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Abstract

In 2009 Grunewald and Lubotzky published a paper in which they defined a

family of linear representations of the automorphism group of a free group. In this

dissertation, we will use their ideas to construct a family of linear representation

of the automorphism group of a right-angled Coxeter group. We will then use

graph-theoretic properties of the defining graph to systematically decompose the

image group into a group of block upper triangular matrices.

vi



Chapter 1

Introduction

1.1 Main Results

In 2009 Grunewald and Lubotzky published a paper ([GL]) in which they con-

structed a family of linear representations of the automorphism group of a free

group. The group AutpFnq is in some sense analagous to the mapping class

group of a surface, which is the group of orientation-preserving homeomorphisms

up to homotopy. In fact, the Dehn-Nielsen-Baer Theorem implies that the ex-

tended mapping class group of a surface is isomorphic to the outer automorphism

group of the fundamental group of the surface, which is a 1-relator group. Both

AutpFnq and the mapping class group are of much interest in geometric group

theory. Grunewald and Lubotzky subsequently published a paper in conjunction

with Larsen and Malestein ([GLLM]) in which they used the same idea to con-

struct a family of linear representations of the mapping class group. They used

these representations to show that the mapping class group has a rich family of

arithmetic quotients.

Often a comparison is made between AutpFnq/mapping class groups and lat-
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tices in Lie groups/arithmetic groups. They share many algebraic properties, such

as being finitely generated, residually finite, and virtually torsion free. Further-

more, they both satisfy a Tits alternative (for the Tits alternative of a mapping

class group see [M]). This comparison can be taken much further (see, e.g.[J]).

This motivates the question of whether the mapping class group is linear, a ques-

tion which still remains open. While it is known that AutpFnq is not linear, the

analogy between AutpFnq/mapping class groups and lattices in Lie groups has

been fruitful.

The Grunewald Lubotzky representations can be used to prove other nice

properties and extract useful information. Koberda showed that these same rep-

resentations could detect the Nielsen-Thurston classification of automorphisms or

mapping classes ([K2]). Following this, Hadari and Liu published papers in which

they showed these representations can detect interesting dynamical properties of

mapping classes and automorphisms of free groups ([H], [H2],[L]).

Mapping class groups are not the only groups that have similarities to AutpFnq.

The group Fn is an example of a graph product. A graph product is a group

constructed from an underlying graph by letting the vertices of the graph be gen-

erators of the group and the edges of the graph represent relations. The group

Fn corresponds to the graph with n vertices, but no edges. The automorphism

groups of graph products were studied under various conditions in [CG], [CRSV],

and [GPR]. In particular, Fn is a right-angled Artin group (RAAG), where the

generators are of infinite order and the edges represent commutator relations.

Right-angled Artin groups interpolate between the infinite abelian group Zn and

the free group Fn. A right-angled Coxeter group (RACG) is like a RAAG, but

the generators are each of order 2. The similarities between free groups and

RAAGs/RACGs are born out in their automorphism groups. In particular, it is
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shown in [CG] that both automorphism groups are generated by the same types

of generators.

While the automorphism groups of both RAAGS and RACGs have been stud-

ied to various ends ([AC],[C],[CV],[GS],[KW],[SS]), not much work has been done

on the representations of their automorphism groups, apart from specific cases

like Zn and Fn. Guirardel and Sale used the Grunewald Lubotzky construction

to study automorphism groups of RAAGs ([GS]). However, no one has applied

Grunewald and Lubotzky’s ideas to construct representations of the automor-

phism group of a RACG. We do so in this dissertation.

Let Γ be a finite graph, and let WΓ denote the right-angled Coxeter group

associated to Γ. Let π : WΓ Ñ G be an epimorphism onto some finite group G.

Following Grunewald and Lubotzky [GL], we construct a virtual representation

ρΓ,G,π of the automorphism group AutpWΓq. That is to say, we consider the finite

index subgroup

ΓpG, πq :� tϕ P AutpWΓq | π � ϕ � πu

of AutpWΓq and construct a representation ρΓ,G,π : ΓpG, πq Ñ GLtpQq for some

t P Z. This representation then induces a representation of AutpWΓq. While the

construction works for any choice of G, π, we focus on a standard choice of G, π

that depends on |V pΓq|. In particular, we choose G � pWΓq
ab � pZ{2Zq|V pΓq|,

and we choose π to be the abelianization map. Because we always make this

choice, we suppress the G, π indices in our representation and write ρΓ. The goal

of this paper is to better understand ImpρΓq as we vary Γ. We approach this

goal by computing the isomorphism class of ImpρΓq. In so doing, we give block

matrix descriptions of the matrices in ImpρΓq as well as descriptions of the linear

dependencies within each block. It turns out that ImpρΓq is the 2-congruence
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subgroup of the integer matrices in the integer points of a linear algebraic group;

hence ImpρΓq is arithmetic.

Topologically, ρΓ can be constructed as follows. We first construct a certain

KpWΓ, 1q space X. We take the cover p : X̂ Ñ X corresponding to the finite-

index subgroup kerpπq. The group ΓpG, πq acts on the first rational homology

H1pX̂;Qq of X̂. This action is the representation ρΓ.

Using cellular homology, we can think of H1pX̂;Qq as consisting of formal

sums of edges of X̂ (up to cellular 1-boundaries). SinceG acts on X̂ by deck trans-

formations, we thus obtain an action of QrGs on H1pX̂;Qq. As a QrGs-module,

we may decompose H1pX̂;Qq as a direct sum of irreducible QrGs-submodules. By

grouping together the isomorphic irreducible submodules of H1pX̂;Qq, we obtain

what is called the isotypic components of H1pX̂;Qq. We describe this in detail in

Section 2.3. Due to our choice of G, π, the isotypic components can be indexed

by subsets J � V pΓq of the generating set of WΓ.

In Section 2.1 we show that ΓpG, πq acts by QrGs-module automorphisms.

Thus we may consider the action of ΓpG, πq on the isotypic components of

H1pX̂;Qq. This gives us a decomposition of ρΓ into sub-representations ρΓ,J

which are much easier to compute. It turns out that to compute ρΓ,J , we may

restrict our attention to the subgraph ΓJ of Γ induced by J . This is made precise

in the following lemma which we prove in Section 2.4. Here 1J is an element of G

that acts by projecting onto the J-isotypic component and v̂ is a cellular 1-chain

(up to cellular 1-boundaries) that corresponds in a natural way to v P WΓ. The

precise meaning will be described later.

Lemma 1.1 (The Subgraph Lemma). Let Γ be a finite graph, and let J � V pΓq.

Then as QrGs-modules, IJpH1pX̂;Qqq � x1Jpv̂ � ŵq | v, w P V pΓJqy{x1Jpv̂ �
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ŵq | pv, wq P EpΓJqy � IJpQrGsqkJ�1, where kJ is the number of components

of ΓJ .

In Chapter 3 we prove a number of decompositions that allow us to compute

ImpρΓ,Jq. The idea for each of our decompositions is to write the matrices of

ImpρΓ,Jq in an upper triangular block matrix form where each of the entries in

each block either come from ImpρΓ,Aq for some A � J or from a known group.

Thus repeated applications of the decompositions allow us to compute ImpρΓ,Jq.

Section 3.1 deals mainly with showing when elements of ImpρΓ,Jq commute.

In Section 3.2, we decompose ImpρΓ,Jq by introducing a division of the set J . A

division of J is a decomposition into subsets J �
m§
i�1

Ai such that each Ai is a

union of components of ΓJ and contains a special point ai P Ai. The special point

ai provides some level of control over which components of Γzstpaiq intersect Ai.

We will formally define special points in Section 3.2. After some preliminary

work, we get the following decomposition theorem.

Theorem 1.2 (TML Decomposition). Let J �
m§
i�1

Ai be a division of J with

special points ai P AI . Let J0 :� tv | v P raisJ for some 1 ¤ i ¤ mu. Then

ImpρΓ,Jq �
�� m¹

i�1

ImpρΓ,Ai
q
	
� ImpρΓ,J0q

	

 Zr where r :� |tprvsJ , Dq | v P

AizraisJ for some 1 ¤ i ¤ m,D is a component of Γzstpvq, D X Ai � Hu|.

In Section 3.3 we define the notion of a splitting point. We then show that if

a vertex set J contains a splitting point, then ImpρΓ,Jq can be decomposed as a

direct product (Proposition 3.22).

In Section 3.4 we introduce the notion of a separating set. Given two vertices

v, w in distinct components of ΓJ , we define

seppv, wq :� tx P J | Dx� P rxsJ such that Dpx�, vq � Dpx�, wqu.
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It is natural to explore this set because partial conjugations by these vertices

act on v̂ � ŵ as something other than an eigenvector. This set also has the nice

property that for every element c outside of seppv, wq, the whole set seppv, wq

is in the same component of Γzstpcq (Proposition 3.24). We also prove another

decomposition result (Lemma 3.26)

We take a slight detour in Section 3.5 to deal with a difficult case not covered

by the hypotheses of Lemma 3.26. To that end, we introduce the notion of

a compressible component. A compressible component is a component of ΓJ

which can be compressed to a single vertex without affecting ImpρΓ,Jq. This will

be formally defined in Section 3.5. This gives us a new method of computing

ImpρΓ,Jq.

In Section 3.6, we finally prove how to compute the isomorphism class of

ImpρΓ,Jq for arbitrary Γ, J (Theorem 3.37).

Up until this point in the dissertation we have focused on how to compute

ImpρΓ,Jq for given Γ, J . One can also ask the following question. Which groups

can be written as ImpρΓ,Jq for some pΓ, Jq? In Section 4.1 we show that a certain

family of groups can be obtained in this way. To be more precise, consider the

set

GI :� tM P Γnp2q |Mi,j � 0 for all pi, jq R Iu

where Γnp2q is the kernel of the map GLnpZq Ñ GLnpZ{2Zq and I � t1, 2, . . . , nu2.

We give a condition on the index set I that is equivalent to GI being a group.

Then every group GI can be written as ImpρΓ,Jq for some pΓ, Jq. In particular,

we see that the intersection of the upper triangular matrix group with Γnp2q can

be written as the image of one of these representations.
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1.2 Index of Notation

For the convenience of the reader, we collect here some of the more important

notation that is consistent throughout the paper.

Γ: a finite graph

WΓ: the right-angled Coxeter group associated to Γ

G: a finite group, usually W ab
Γ � pZ{2Zqn where n � |V pΓq|

π: an epimorphism from WΓ to G

ΓpG, πq :� tϕ P AutpWΓq | π � ϕ � πu

ρΓ: the virtual representation of AutpWΓq constructed in Section 2.1

X: the KpWΓ, 1q space constructed in Section 2.1

X̂: the cover of X corresponding to kerpπq

Aut0pWΓq: the subgroup of AutpWΓq: generated by partial conjugations

Out0pWΓq: Aut0pWΓq{InnpWΓq

σD,v: the partial conjugation by v on the component D of Γzstpvq

J : a subset of V pΓq

ΓJ : the subgraph of Γ induced by J

kJ : the number of components of ΓJ

rvsJ : the component of ΓJ containing v

ρΓ,J : the projection of ρΓ onto AutpIJpH1pX̂;Qqqq

PΓ,J :� tσD,v | v P J,D X JzrvsJ � Hu

σ̄: the image of σ in OutpΓq

σ̂ :� ρΓ,Jpσq

Dpv, wq: the component of Γzlkpvq containing w

Γnp2q :� kerpGLnpZq Ñ GLnpZ{2Zqq
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seppv, wq :� tx P J | Dx� P rxsJ such that Dpx�, vq � Dpx�, wqu

Intpv, xq :�
£

wPrvsJ

Dpw, xq X J

Dpvq :� tDpw, yq X JzrvsJ | w P rvsJ , y P JzrvsJu.
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Chapter 2

Setup

2.1 Constructing the representation

Let Fn be the free group with n generators. For each surjection π : Fn Ñ G

onto a finite group G, Grunewald and Lubotzky constructed a representation

ρG,π of AutpFnq [GL]. We follow Grunewald and Lubotzky’s construction to get

a representation ρΓ,G,π for AutpWΓq, where WΓ is the right angled Coxeter group

associated to the graph Γ. That is to say,

WΓ :� xv P V pΓq | v2 � 1, rv, ws � 1 for all pv, wq P EpΓqy.

Let Γ be a finite graph. Let G be a finite group and π : WΓ Ñ G be an

epimorphism. Let R � kerpπq and R̄ :� R{rR,Rs. The action of WΓ on R by

conjugation leads to an action of G on R̄. Let

ΓpG, πq :� tϕ P AutpWΓq | π � ϕ � πu.

Then ΓpG, πq is a finite index subgroup of AutpWΓq. Furthermore, every ϕ P
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ΓpG, πq induces a G-equivariant linear automorphism ϕ̄ of R̄. Indeed, given

w P WΓ and ϕ P ΓpG, πq, we have that ϕpwq � wrw for some rw P R. Hence

ϕpwrw�1q � wrwϕprqr
�1
w w�1 holds for every r P R. But this is equivalent to

wϕprqw�1 modulo rR,Rs, which implies that ϕ̄ : R̄ Ñ R̄ is G-equivariant. Ten-

soring the domain and codomain of ϕ by Q induces a G-equivariant linear trans-

formation ϕ̂ : R̄ bZ QÑ R̄ bZ Q. This yields a representation

ρΓ,G,π : ΓpG, πq Ñ GLtpQq, ϕ ÞÑ ϕ̂

for some t P Z. We wish to describe the image of this representation as we vary

Γ for a standard choice of G, π that depends on Γ.

Let V pΓq � tv1, . . . , vnu. Then our choice of finite group G is the group

W ab
Γ � pZ{2Zqn, and our epimorphism πΓ : WΓ Ñ W ab

Γ is the abelianization

map. We write π when Γ is understood. Since we will always use this choice

of G, π unless we say otherwise, we compress the G, π in our notation and write

ρΓ :� ρΓ,G,π.

We can translate the above description of our representation into a topological

description as follows. Let Γ be a finite graph, let G be a finite group, and let and

π : WΓ Ñ G be an epimorphism. We construct a KpWΓ, 1q space X as outlined

in [H3], Section 4.2. We start with the wedge sum
ª

vPV pΓq

S1
v . For each v P V pΓq

we attach a 2-cell to the loop vv. For each edge pv, wq P EpΓq, we attach a 2-cell

to the loop vwv̄w̄. We then attach some higher dimensional cells in such a way

that the higher order homotopy groups become trivial.

By covering space theory, there is a cover of X corresponding to each subgroup

of π1pXq � WΓ. Let p : X̂ Ñ X be the cover of X corresponding to the subgroup

R :� kerpπq. Then G is the deck transformation group of X̂. Fix a lift �̂ of the
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vertex � in X to the cover X̂. Given a deck transformation g P G, we let g�̂ be

the image of �̂ under the deck transformation g. This gives us a labeling of the

vertices of X̂.

For each loop v in X, there is a lift v̂ of v based at �. Note that the terminal

vertex of v is the vertex πpvq�̂. Given a deck transformation g P G, we let gv̂

denote the image of v̂ under the deck transformation. This is precisely the lift of

v based at the vertex g�̂.

Example 1. Let Γ be the graph

v1 v2

Then the 1-skeleton of X is the graph

�v1 v2

and the 1-skeleton of X̂ is the graph

�̂ e1�̂

e2�̂ pe1 � e2q�̂

v̂1

e1.v̂1

e2.v̂1

pe1 � e2q.v̂1

v̂2 e2.v̂2 e1.v̂2 pe1 � e2q.v̂2

Let ϕ P ΓpG, πq. Since X is a KpWΓ, 1q space, ϕ can be considered as an

automorphism π1pXq Ñ π1pXq. This induces a unique homotopy equivalence

ϕX : pX, �q Ñ pX, �q up to based homotopy (see, e.g. [H3]).
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The map p � ϕX : X̂ Ñ X induces a map pp � ϕXq� : π1pX̂, �̂q Ñ π1pX, �q. By

definition of ΓpG, πq, the map ϕ stabilizes kerpπq � p�pπ1pX̂qq. It follows that

pp�ϕXq�pπ1pX̂, �̂qq � p�pπ1pX̂, �̂qq. Therefore pp�ϕXq lifts to a map ϕ̂ : pX̂, �̂q Ñ

pX̂, �̂q. It is not hard to see that ϕ̂ is a lift of ϕX .

pX̂, �̂q pX̂, �̂q

pX, �q pX, �q

ϕ̂

p p

ϕX

Since ΓpG, πq acts trivially on WΓ{ kerpπq � G, it follows that ϕ fixes the

G-orbit of �̂. But this is precisely X̂0. Consequently, ϕ̂ : pX̂, X̂0q Ñ pX̂, X̂0q is

a map of pairs. We thus get an induced homomorphism ϕ̂� : H1pX̂, X̂
0;Qq Ñ

H1pX̂, X̂
0;Qq.

Let Ccw
i pX̂;Qq :� H1pX̂i, X̂i�1;Qq. By Section 2.2 of [H3], there is a relative

cellular chain complex

� � � Ñ H2pX̂
2, X̂1 Y X̂0;Qq Ñ H1pX̂

1, X̂0 Y X̂0;Qq Ñ H1pX̂
0,HY X̂0;Qq

with homology groups isomorphic to HnpX̂, X̂
0;Qq. But

• H2pX̂
2, X̂1 Y X̂0;Qq � H2pX̂

2, X̂1;Qq � Ccw
2 pX̂;Qq.

• H1pX̂
1, X̂0 Y X̂0;Qq � H1pX̂

1, X̂0;Qq � Ccw
1 pX̂;Qq.

• H0pX̂
0,HY X̂0;Qq � H0pX̂

0, X̂0;Qq � 0.

This shows that H1pX̂, X̂
0;Qq � Ccw

1 pX̂;Qq{δ2pC
cw
2 pX̂;Qqq. Hence we have

a well-defined action of ΓpG, πq on cellular 1-chains mod cellular 1-boundaries.

From this point on we let v̂ represent the cellular 1-chain corresponding to the

vertex v up to cellular 1-boundary.

12



Example 2. Consider the inner automorphism σv by the vertex v. By definition,

for any w P EpΓq, we have that σvpwq � vwv. To compute the action of σv on

ŵ, we look at the lift of the path vwv. Hence σ̂v sends ŵ to v̂� πpvqŵ� πpvwqv̂.

�̂ πpvq�̂

πpvwq�̂πpwq�̂

v̂

πpvqŵ

πpvwqv̂

ŵ

2.2 Reduction to Aut0pG, πq

Let Γ be a finite graph, and let WΓ be the right-angled Coxeter group associated

to the graph Γ. The goal of this section is to show that for the standard choice of

finite group G and epimorphism π : WΓ Ñ G, the group ΓpG, πq is just Aut0pWΓq,

the group generated by partial conjugations of WΓ. We begin by describing

AutpWΓq. By [CG], AutpWΓq is generated by three types of automorphisms:

1. Graph automorphisms

2. Dominated transvections: Choose distinct vertices u, v such that stpuq �

stpvq. Then define

τu,vpwq :�

$''&
''%
uv if w � u

w if w � u

3. Partial conjugations: Choose a vertex v. Let D be a connected component

13



of the graph Γzstpvq. Then define

σD,vpwq :�

$''&
''%
vwv�1 if w P D

w if w R D

We may then define the following two subgroups:

• Aut0pWΓq is the group generated by partial conjugations

• Aut1pWΓq is the group generated by graph automorphisms and dominated

transvections.

Given a right-angled coxeter group WΓ, a word is a finite sequence w �

pvε11 , v
ε2
2 , . . . , v

εn
n q where for each 1 ¤ i ¤ n we have vi P V pΓq and εi P t�1u.

We call n the length of the word w. Each word represents an element of WΓ,

namely the element vε11 v
ε2
2 . . . vεnn obtained by multiplying together the elements

in the sequence. Note that multiple different words may represent the same group

element. A word w is said to be in reduced form if there is no word representing

the same group element with a smaller length than w. Note that the reduced

form of a group element need not be unique. However, any two reduced words

representing the same group element differ only by repeated swapping of the order

of adjacent vertices (Lemma 2.3 of [GPR]).

The following lemma will help us to better understand Aut1pWΓq.

Lemma 2.1. Let Γ be a finite graph. If ϕ P Aut1pWΓq, then for all v P V pΓq we

have that ϕpvq �
k¹
i�1

vi in reduced form for some tvi P V pΓq | 1 ¤ i ¤ ku which

form a complete subgraph of Γ.

Proof. We prove this by induction on the length of a word in Aut1pWΓq. The

base case is trivial.
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Now assume that for all ϕ P Aut1pWΓq of length ¤ k that the induction

hypothesis holds. We can increase the length either by composing by a graph

automorphism or a dominated transvection. Since graph automorphisms take

complete subgraphs to complete subgraphs, we need only consider composing by

a dominated transvection. Let ϕ P Aut1pWΓq such that ϕpvq �
k¹
i�1

vi and let τu,w

be a dominated transvection. If u R tvi | 1 ¤ j ¤ ku, then τu,w �ϕpvq �
k¹
i�1

vi and

we are done. If, on the other hand, u P tvi | 1 ¤ i ¤ ku, then for all 1 ¤ i ¤ k

we have vi P stpuq � stpwq since tvi | 1 ¤ i ¤ ku form a complete graph and

τu,w is well-defined. Therefore tvi | 1 ¤ i ¤ ku Y twu form a complete subgraph,

completing the induction.

In order to prove that ΓpG, πq � Aut0pWΓq, we first show the following lemma.

Lemma 2.2. If ϕ P Aut1pWΓqztIdu then ϕ R ΓpG, πq.

Proof. Let ϕ P Aut1pWΓqztIdu. If ϕ is a graph isomorphism, then it is not

in ΓpG, πq. By this and Lemma 2.1, we may assume for some v P V pΓq that

ϕpvq �
k¹
i�1

vi � v in reduced form and the vi form a complete subgraph. But

then π
� k¹
i�1

vi

	
� πpvq.

We now have all the tools we need to prove the main result of this section.

Lemma 2.3. ΓpG, πq � Aut0pWΓq

Proof. By proposition 5.3 of [CG], Aut0pWΓq is the group of conjugating auto-

morphisms, i.e. automorphisms where the images of generators are conjugates.

Since G is abelian, and π is a homomorphism, for any v P V pΓq the image of a

conjugate of v under π is the same as for v. Thus Aut0pWΓq ¤ ΓpG, πq.
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To show the reverse inclusion, we will first show that Aut1pWΓq normalizes

Aut0pWΓq. Let σ � σD,v be partial conjugation by v on the component D of

Γzstpvq and γ be a graph isomorphism. Then for all w P V pΓq, we compute

γ�1 � σ � γpwq � γ�1pvεγpwqv�εq � γ�1pvqεwγ�1pvq�ε

where ε P t0, 1u depending on whether γpwq P D. This is a conjugate of w, so

γ�1 � σ � γ P Aut0pWΓq. Now let τ � τu,w be a dominated transvection. For any

vertex v � u, let σpvq � cvc�1; then τ�1 � σ � τpvq � τ�1pcqvτ�1pcq�1, which is a

conjugate of v. Therefore to show that τ�1 � σ � τ P Aut0pWΓq it suffices to show

that τ�1 � σ � τpuq is a conjugate of u. If w P stpvq, then w and v commute and

w R D, so

τ�1 � σ � τpuq � τ�1pvεuv�εwq � τ�1pvεuwv�εq � τ�1pvqεuτ�1pvq�ε

is a conjugate of u. If u P stpvq, then v P stpuq � stpwq. Hence w P stpvq

and we are in the case above. If u,w R stpvq, then u and w are in the same

component of Γzstpvq so τ�1 � σ � τpuq � τ�1pvεuwv�εq � τ�1pvqεuτ�1pvq�ε is a

conjugate of u. Since this covers all cases, τ�1 � σ � τ P Aut0pWΓq. Therefore

Aut1pWΓq normalizes Aut0pWΓq. Since Aut0pWΓq,Aut1pWΓq generate AutpWΓq.

this implies that any φ P AutpWΓq can be written in the form σ � ϕ for some

σ P Aut0pWΓq, ϕ P Aut1pWΓq.

Now let φ P ΓpG, πq and write φ � σ�ϕ as above. Then since σ P Aut0pWΓq ¤

ΓpG, πq, it follows that ϕ � σ�1�φ P ΓpG, πq. By Lemma 2.2, this implies ϕ � Id.

Therefore φ � σ P Aut0pCΓq.
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2.3 Isotypic components

The following information can be found in [CR]. Let G be a finite group. Then

there are a finite number of irreducible left QrGs-modules. Let M1,M2, . . .Ms be

the irreducible left QrGs-modules. Every left QrGs-module M may be written

as a finite direct sum of irreducible left QrGs-modules M �
sà
i�1

M ri
i for some

ri P Z¥0. Given any 1 ¤ i ¤ s, the left QrGs-module IipMq :� M ri
i is called

the Mi-isotypic component of the left QrGs-module M . We may therefore write

M �
sà
i�1

IipMq as a direct sum of its isotypic components.

Now QrGs itself may be thought of as a left-QrGs module, where the group

action is multiplication on the left by elements of QrGs. Thus we may write

QrGs �
sà
i�1

IipQrGsq. Each IipQrGsq is not only a QrGs-module, it is also a

ring with unity 1i. From the theory of representations of finite groups, QrGs

decomposes as a product of rings B1 �B2 � � � � �Bs where Bi is the Mi-isotypic

component. Moreover, each p0, 0, . . . , 1i, 0, . . . , 0q acts on Mi as identity and on

Mj as 0 for each j � i. Thus, if we view Bi as a subring in this way, multiplying

by 1i is the same as projection to the Mi-isotypic component.

We now consider our standard finite group G � W ab
Γ � pZ{2Zqn. Since G is

finite, abelian, and all elements are of order 2, its irreducible rational represen-

tations are all one-dimensional over Q. In fact the irreducible rational represen-

tations of G are precisely ρJ : GÑ Q� where J � πpV pΓqq and

ρJpπpvqq �

$''&
''%
�1 if πpvq P J

1 if πpvq R J

.

Let MJ denote the irreducible module corresponding to the representation ρJ .
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Then for distinct MJ1 and MJ2 we have that MJ1 � MJ2 as left QrGs-modules.

Therefore each MJ is an isotypic component of QrGs. We therefore index the

isotypic components of QrGs-modules and their corresponding identity elements

by subsets J � πpV pΓqq rather than integers as above.

Because the standard epimorphism π : WΓ Ñ G induces a bijection between

V pΓq and πpV pΓqq, we can think of J as indexing a subset of V pΓq rather than

a subset of πpV pΓqq. We therefore identify J with a subset of V pΓq. Hence the

irreducible QrGs-modules are in bijective correspondence with PpV pΓqq.

2.4 Subgraph Lemma

We now return to considering the representation ρΓ. Recall this arose by con-

sidering the action of ΓpG, πq on the QrGs-module H1pX̂;Qq. It turns out to

be much simpler to consider the action of ΓpG, πq on the isotypic components of

H1pX̂;Qq.

Let J � V pΓq. Let ΓJ denote the subgraph of Γ induced by J , let kJ denote

the number of connected components of ΓJ , and let rvsJ denote the connected

component of ΓJ containing v. It turns out that decomposing H1pX̂;Qq into its

isotypic components is simply a matter of understanding the subgraphs ΓJ (the

subgraph induced by the vertices in J). To that end, we now prove the Subgraph

Lemma (Lemma 1.1)

Lemma 1.1 (The Subgraph Lemma). Let Γ be a finite graph, and let J �

V pΓq. Then as QrGs-modules, IJpH1pX̂;Qqq � x1Jpv̂�ŵq | v, w P V pΓJqy{x1Jpv̂�

ŵq | pv, wq P EpΓJqy � IJpQrGsqkJ�1.

Proof of Subgraph Lemma. Let di : Ccw
i pX̂;Qq Ñ Ccw

i�1pX̂;Qq be the boundary

maps on the cellular chain complex and let pi,J : Ccw
i pX̂;Qq Ñ IJpC

cw
i pX̂;Qqq
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denote projection onto the isotypic component corresponding to J . Because

dip1J v̂q � 1Jdipv̂q, the pi,J induce a boundary map on the chain complex

IJpC
cw
i pX̂;Qqq such that the following diagram commutes.

. . . Ccw
2 pX̂;Qq Ccw

1 pX̂;Qq Ccw
0 pX̂;Qq

. . . IJpC
cw
2 pX̂;Qqq IJpC

cw
1 pX̂;Qqq IJpC

cw
0 pX̂;Qqq

d3 d2

p2,J

d1

p1,J p0,J

d̄3 d̄2 d̄1

Furthermore IJpH
cw
1 pX̂;Qqq � kerpd̄1q{Impd̄2q is just the first homology of the

induced chain complex.

Let v̂ be an element of Ccw
1 pX̂;Qq. Then d1pv̂q � pπpvq�1q�̂. Projecting onto

IJpC
cw
i pX̂;Qqq is the same as multiplying by 1J . Thus we compute

d̄1p1J v̂q � 1Jpπpvq � 1q�̂ � pρJ � πpvq � 1q1J �̂ �

$''&
''%
�2 � 1J �̂ if v P J

0 if v R J

Therefore kerpd̄1q � x1Jpv̂ � ŵq | v, w P V pΓJqy ` x1J v̂ | v R V pΓJqy.

We now wish to compute Impd̄2q. Let fv denote the 2-cell in X̂ attached to the

lift of v2 based at �̂. Then d2pfvq � pπpvq � 1qv̂. Let fv,w denote the 2-cell in X̂

attached to the lift of rv, ws based at �̂. Then d2pfv,wq � p1�πpvqqŵ�pπpwq�1qv̂.

Looking now at the induced boundary map, we see that

d̄2p1Jfvq � pρJ � πpvq � 1q1J v̂ �

$''&
''%

2 � 1J v̂ if v R J

0 if v P J
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d̄2p1Jfv,wq � p1� ρJ � πpvqq1Jŵ � pρJ � πpwq � 1q1J v̂ �$''''''''''&
''''''''''%

2 � 1Jpŵ � v̂q if v, w P J

�2 � 1Jŵ if v P J, w R J

2 � 1Jŵ if v R J, w P J

0 if v, w R J

It follows that Impd̄2q � x1Jpv̂ � ŵq | pv, wq P EpΓJqy ` x1J v̂ | v R V pΓJqy.

Therefore

IJpH1pX̂;Qqq � IJpH
cw
1 pX̂;Qqq � px1Jpv̂�ŵq | v, w P V pΓJqy`x1J v̂ | v R V pΓJqyq{

px1Jpv̂ � ŵq | pv, wq P EpΓJqy ` x1J v̂ | v R V pΓJqyq.

This gives us the first isomorphism. To see the second one, let tv1, . . . , vkJ u be

a set of representatives of the components of ΓJ . Then t1Jpv̂i�1�v̂iq | 1 ¤ i   kJu

is a basis for IJpH
cw
1 pX̂;Qqq.

We now return to the automorphism group ΓpG, πq, which we showed is

equal to Aut0pWΓq (Lemma 2.3). Let ρΓ,J denote the projection of ρΓ onto

AutpIJpH1pX̂;Qqqq. We will mostly be studying the images of these ρΓ,J . When

there is no room for ambiguity, given any σ P Aut0pWΓq, we let σ̂ denote the

map on Ccw
1 pX̂;Qq{δ2pC

cw
2 pX̂;Qqq induced by σ described in Section 2.1. Since

σ̂ is linear, and elements of IJpH1pX̂;Qqq are essentially linear combinations of

elements of Ccw
1 pX̂;Qq{δ2pC

cw
2 pX̂;Qqq, we also let σ̂ denote the matrix ρΓ,Jpσq.

It will always be clear from context which definition of σ̂ is being used.

The following corollary tells us that we can ignore partial conjugations by

elements not in J . Recall that rvsJ is the component of ΓJ containing v.
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Corollary 2.4. For any v R J and any partial conjugation σ � σD,v of D by v,

we have that σ̂ � Id. Furthermore, for any partial conjugation σ � σD,v such

that v P J and D X JzrvsJ � H, we have that σ̂ � Id.

Proof. For the first statement, if w R D, then σpwq � w, hence σ̂p1Jŵq � 1Jŵ.

If w P D, then σpwq � vwv�1 � vwv. In this case, the induced automorphism

on C1pX̂;Qq maps the 1-chain ŵ to the 1-chain v̂ � πpvqŵ � πpvwqv̂. Note that

v R J ùñ 1J v̂ � 0. Projecting onto IJpH1pX̂;Qqq, we get that σ̂ maps 1Jŵ to

1Jpv̂� πpvqŵ� πpvwqv̂q � 1J v̂� ρJ � πpvq1Jŵ� ρJ � πpvwq1J v̂ � 1Jŵ. Therefore

σ̂ acts as identity on all the 1-chains mod boundaries in IJpC1pX̂;Qqq, so σ̂ � Id.

For the second statement, let 1Jŵ P IJpC1pX̂;Qqq be non-zero. Then if w R D,

we have that σpwq � w. If w P D, then by hypothesis w P rvsJ . By the

Subgraph Lemma (Lemma 1.1), 1J v̂ � 1Jŵ inside of IJpH1pX̂;Qqq. By the

above calculation, σ̂p1Jŵq � 1J v̂� ρJ �πpvq1Jŵ� ρJ �πpvwq1J v̂ � 2p1J v̂q� 1Jŵ.

Inside of IJpH1pX̂;Qqq this equals 1Jŵ. Therefore σ̂ � Id.

To make use of the above corollary we establish the following notation. Let

Γ be a graph, J � V pΓq. We define

PΓ,J :� tσD,v | v P J,D X JzrvsJ � Hu.

We also define the following subgroup of Aut0pWΓq.

AutJpWΓq :� xPΓ,Jy.

Given σD,v P PΓ,J , to compute σ̂D,v it suffices to know how σ̂D,v acts on vectors

of the form b̂ � â for a, b P J . That computation is the content of the following

lemma.
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Lemma 2.5. Let σD,v P PΓ,J and a, b P J .

1. If a, b R D, then σ̂D,vp1Jpb̂� âqq � 1Jpb̂� âq.

2. If a, b P D, then σ̂D,vp1Jpb̂� âqq � �1Jpb̂� âq.

3. If b P D, a R D, then σ̂D,vp1Jpb̂� âqq � 2 � 1Jpv̂ � b̂q � 1Jpb̂� âq.

4. If a P D, b R D, then σ̂D,vp1Jpb̂� âqq � 2 � 1Jpv̂ � âq � 1Jpb̂� âq.

Proof. If w R D, then σD,vpwq � w, so σ̂D,vp1Jŵq � 1Jŵ. If w P D, then

σD,vpwq � vwv, so σ̂D,vp1Jŵq � 1J v̂�ρJ �πpvq1Jŵ�ρJ �πpvwq1J v̂ � 2�1J v̂�1Jŵ.

The result follows by linearity.

Knowing how partial conjugations act on vectors of the form b̂� â for a, b P J ,

we see that writing 1J all the time isn’t really necessary. Therefore we will abuse

notation and will set v̂ � 1J v̂.

Corollary 2.4 allows us to restrict the domain of ρΓ,J to AutJpWΓq when

computing its image. The following lemma will allow us to restrict the codomain

of ρΓ,J as well.

Lemma 2.6. For any choice of basis of IJpH1pX̂;Qqq where every vector is of the

form v̂ � ŵ for some v, w P V pΓq, we have ImpρΓ,Jq ¤ ΓkJ�1p2q where Γnp2q :�

kerpGLnpZq Ñ GLnpZ{2Zqq.

Proof. Fix a basis tv̂i � v̂i�1 | 1   i ¤ kJu of IJpH1pX̂;Qqq. By the above com-

mentary, we need only consider the images of elements of PΓ,J . Let σD,v P PΓ,J .

Then by Lemma 2.5, we have

σ̂D,vpv̂i�1 � v̂iq � apv̂ � v̂i�1q � bpv̂ � v̂iq � cpv̂i�1 � v̂iq
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for some a, b P t0,�2u and c P t�1u.

Now v̂� v̂i need not be a basis vector, but since v, vi P J we can write v̂� v̂i as

a linear combination of basis vectors with all coefficients equal to 1 or 0. If v � vj

and j   i then v̂ � v̂i �
j�i̧

k�1

pv̂j�k�1 � v̂j�kq (similarly for i   j). If i � j, then

v̂ � v̂i � 0. Thus each basis vector maps to a linear combination of basis vectors

where the coefficients are all �2s or 0s except the coefficient on the original basis

vector, which is �1. This shows that σ̂ P Γnp2q.

By virtue of Lemma 2.6 and Corollary 2.4, we adopt the standing assump-

tion that ρΓ,J : AutJpWΓq Ñ ΓkJ�1p2q. We now show that this is the most we

can restrict the codomain in general. However, we first introduce the following

notation which will be used henceforth. Given non-adjacent vertices, v, w P J ,

let Dpv, wq denote the component of Γzlkpvq containing w. We use lkpvq in this

definition rather than stpvq so that we have Dpv, vq � tvu. This will be useful

later.

Theorem 2.7. Let H � J � V pΓq. Let K be a set of representatives of the

components of ΓJ . Assume that for each pair of distinct vertices v, w P K we

have Dpv, wq X K � twu. Then ImpρΓ,Jq � ΓkJ�1p2q. In particular, if Γ is

discrete, then ImpρΓ,Jq � Γ|J |�1p2q for every nonempty J � V pΓq.

Proof. Let K � tv1, v2, . . . , vkJ u. It is known that for all n ¥ 1 the group Γnp2q

is generated by tEi,j, Fi | 1 ¤ i, j ¤ n, i � ju where Ei,j is the matrix identical to

the identity matrix except in the pi, jq-entry, which equals 2, and Fi is the matrix

identical to the identity matrix except in the pi, iq-entry, which equals -1 (see, for

example, [K]).

Fix the basis v̂kJ � v̂1, v̂kJ � v̂2, . . . , v̂kJ � v̂kJ�1 of IJpH1pX̂;Qqq. By Lemma

2.6, we know that ImpρΓ,Jq ¤ ΓkJ�1p2q. Thus it suffices to show that each element
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of tEi,j, Fi | 1 ¤ i, j ¤ kJ � 1, i � ju is in ImpρΓ,Jq. Let 1 ¤ i, j ¤ kJ � 1 with

i � j. Then by direct calculation,

σ̂Dpvi,vjq,vi � σ̂DpvkJ ,vjq,vkJ � Ei,j

σ̂DpkJ ,viq,vkJ � Fi.

This completes the proof.

We conclude this section with a couple of simple observations that will be

used throughout

Lemma 2.8. For any J � V pΓq the following hold.

1. For any partial conjugation σ P PΓ,J , we have σ̂ is of order 2.

2. For any inner automorphism σ relative to J (i.e. σ conjugates all of J by

some element v), we have σ̂ � �Id.

Proof. For the first statement, this follows immediately from the fact that σ is

of order 2, which follows from the fact that every generator v P V pΓq of WΓ is of

order 2. For the second statement, this follows from the second case calculation

in the proof of Lemma 2.6.
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Chapter 3

Computing ImpρΓ,Jq

3.1 Commutation relations

In this section we prove a strong connection between commuting matrices in

ImpρΓ,Jq and commuting outer automorphisms in Out0pWΓq :� Aut0pWΓq{InnpWΓq.

To understand when two outer automorphisms commute, we must first recall the

definition of a separating intersection of links (SIL). We do so here.

Definition 3.1. Let Γ be a graph. A Separating Intersection of Links(SIL) is a

triple pu, v | wq of vertices u, v, w P V pΓq such that u and v are non-adjacent and

w is not in the same component of Γzplkpuq X lkpvqq as u or v. One may also

write pu, v | Dq where D is the component of Γzplkpuq X lkpvqq containing w.

One reason that SILs are useful is that if pu, v | Dq is a SIL, then D is not only

a component of Γzplkpuq Y lkpvqq, it is also a component of Γzlkpuq and Γzlkpvq.

This will be the content of Lemma 3.4. However, before we can prove that, we

need the following lemma from [GPR] (Lemma 4.3).
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Lemma 3.2 (GPR). Let σC,v, σD,w be partial conjugations. If v, w are non-

adjacent and w R C, then C XD � H or C � D.

For our purposes, the following form of the above lemma will be more useful.

Recall from Section 2.4 the following notation. Given non-adjacent vertices,

v, w P J , let Dpv, wq denote the component of Γzlkpvq containing w.

Corollary 3.3. Let u, v, w P J be pairwise non-adjacent. Then if v R Dpu,wq

then Dpu,wq � Dpv, wq.

Proof. Consider the partial conjugations σDpu,wq,u and σDpv,wq,v. By Lemma 3.2,

either Dpu,wqXDpv, wq � H or Dpu,wq � Dpv, wq. But w P Dpu,wqXDpv, wq.

Therefore Dpu,wq � Dpv, wq.

Lemma 3.4. Let v, w be non-adjacent vertices. Then, pv, w | Dq is a SIL ðñ

for all d P D, we have Dpv, dq � Dpw, dq � D.

Proof. By the definition of a SIL, D is a component of Γzplkpvq X lkpwqq. Let

d P D. Then by the definition of a SIL, we have that w R Dpv, dq and v R Dpw, dq.

Since Dpv, dq XDpw, dq � H, Corollary 3.3 implies that Dpv, dq � Dpw, dq.

Let u P Dpv, dq. Then there is a path α from u to d that does not pass through

stpvq. It follows that α does not pass through lkpvq X lkpwq, hence u P D. This

shows that Dpv, dq � D.

Now let u P Dpv, dqA. Let α be a path from d to u. We claim that α must pass

through lkpvqX lkpwq. Clearly it passes through lkpvq. If α passed through lkpwq

prior to passing through lkpvq, then we would have a path β from d to w that

did not pass through lkpvq. However pv, w | dq is a SIL, so this is not the case.

Therefore α does not pass through lkpwq prior to passing through lkpvq. Similarly,

α does not pass through lkpvq prior to passing through lkpwq. Since α passes
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through lkpvq, it follows that α passes through lkpvq X lkpwq. This shows that

Dpv, dqA � DA and hence Dpv, dq � D. By symmetry, Dpw, dq � D � Dpv, dq.

Next, assume that Dpv, dq � Dpw, dq � D where D is the component of

Γzplkpvq X lkpwqq containing d. Then v R Dpv, dq � D and w R Dpw, dq � D, so

pv, w | Dq is a SIL.

We now turn our attention to determining when matrices in ρΓ,JpPΓ,Jq com-

mute. We establish the following notation. Given an automorphism σ P Aut0pWΓq,

we let σ̄ denote the image of σ in Out0pWΓq. The following lemma, though proved

in [GPR] is stated in our preferred form in [SS] (Lemma 1.4). It tells us when

two outer automorphisms commute.

Lemma 3.5 (SS). Given two partial conjugations σ1 :� σC,u and σ2 :� σD,v, we

have that σ̄1, σ̄2 do not commute ðñ there exists some w P V pΓq such that

pu, v | wq is a SIL and one of the following conditions is met:

1. w P C � D

2. u P D, v P C

3. v P C,w P D

4. u P D,w P C

Recall that by Lemma 2.8, every inner automorphism maps to �Id. Combin-

ing this with Lemma 2.6, we get the following commutative diagram.

AutJpWΓq OutJpWΓq

ΓkJ�1p2q ΓkJ�1p2q{t�Idu

ρΓ,J ρ̄Γ,J

We use this diagram to prove the following result.
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Proposition 3.6. Let σC,u, σD,v P PΓ,J . If σ̄C,u and σ̄D,v commute then σ̂C,u and

σ̂D,v commute.

However before we prove this, we need the following lemma:

Lemma 3.7. There is no A P Γnp2q such that A2 � �Id

Proof of Lemma 3.7. Let A P Γnp2q. Then either A1,1 �4 1 or A1,1 �4 3. In

either case, we see that A2
1,1 �4 1. Furthermore, for all 2 ¤ i ¤ n, we have

that A1,iAi,1 �4 0. Thus pA2q1,1 � A2
1,1 �

ņ

i�2

A1,iAi,1 �4 1. But p�Idq1,1 �4 1.

Therefore A2 � �Id.

Proof of Proposition 3.6. If σ̄1, σ̄2 commute, then the above diagram implies that

rσ̂1, σ̂2s � �Id. By the first statement of Lemma 2.8, we have prσ1, σ2sq � pσ̂1 �

σ̂2q
2. Then by Lemma 3.7, we have pσ̂1 � σ̂2q

2 � �Id. Therefore rσ̂1, σ̂2s � Id, so

σ̂1 and σ̂2 commute.

The reverse direction to Proposition 3.6 does not hold in general. However it

is easy to state when it holds. First we need the following definition.

Definition 3.8. Let Γ be a finite graph and let J � V pΓq. We say pu, v | wq is a

SIL relative to J if pu, v | wq is a SIL, u, v, w P J , and rusJ � rvsJ . We also say

pu, v | Dq is a SIL relative to J if pu, v | wq is a SIL relative to J for some w P D.

We require rusJ � rvsJ in the above definition because if rusJ � rvsJ then

û � v̂. Thus this requirement is in some sense analogous to the requirement for

SILs that u and v be non-adjacent. We now show that partial conjugations by

elements u, v P J such that rusJ � rvsJ commute.

Proposition 3.9. Let σC,u, σD,v P PΓ,J be such that rusJ � rvsJ . Then σ̂C,u and

σ̂D,v commute.
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Proof. Fix a basis B of IJpH1pX̂;Qqq such that each element of B is of the form

û � ŵ for some w R rusJ . Then for each û � ŵ P B we have that σ̂C,upû � ŵq �

�pû � ŵq. Therefore σ̂C,u is a diagonal matrix. Similarly, since û � v̂, we get

that σ̂D,v is a diagonal matrix. Therefore σ̂C,u and σ̂D,v commute.

Corollary 3.10. Given u, v P J , if u and v do not form a SIL relative to J , then

σ̂C,u, σ̂D,v commute for all σC,u, σD,v P PΓ,J .

Proof. Let σC,u, σD,v P PΓ,J . Assume that u and v do not form a SIL relative to

J . If rusJ � rvsJ , then σ̂D,v commutes with σ̂C,u by Proposition 3.9. If not, then

by Proposition 3.6, σ̂D,v commutes with σ̂C,u unless σ̄D,v does not commute with

σ̄C,u. By Lemma 3.5, this implies that pu, v | wq is a SIL for some w P V pΓq and

one of the four conditions is met. Since u and v do not form a SIL relative to

J , it follows from Lemma 3.4 that w R C and w R D. Thus we must have that

u P D, v P C.

We now show by contradiction that pC Y Dq X J � J . Let j P JzpC Y Dq.

Then since j R C � Dpu, vq, it follows that v R Dpu, jq. Corollary 3.3 implies

that Dpu, jq � Dpv, jq. Similarly, since j R D � Dpv, uq, we get that Dpv, jq �

Dpu, jq. This implies that Dpu, jq � Dpv, jq. But then by Lemma 3.4, we have

that pu, v | Dpu, jqq is a SIL relative to J . This is a contradiction. Therefore

pC YDq X J � J .

By direct computation, for any w P J we have rσC,u, σD,vspwq � uvuvwvuvu

so rσ̂C,u, σ̂D,vs � Id. This shows that σ̂C,u and σ̂D,v commute.

We now have all the tools we need to say exactly when the images of two

partial conjugations commute.

Proposition 3.11. Let σC,u, σD,v P PΓ,J . Then σ̂C,u and σ̂D,v do not commute
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ðñ there exists some w P J such that pu, v | wq is a SIL relative to J and one

of the following conditions is met:

1. w P C � D

2. u P D, v P C

3. v P C,w P D

4. u P D,w P C

Proof. Assume that σ̂C,u and σ̂D,v do not commute. Then by the contrapositive

of Proposition 3.6, we see that σ̄C,u and σ̄D,v do not commute. By Lemma 3.5,

this implies that there exists some w P J such that pu, v | wq is a SIL and one

of the four conditions is met. Note that the contrapositive of Proposition 3.9

implies that rusJ � rvsJ . If Dpu,wq � C, then pu, v | Cq is a SIL relative to J

and one of the four conditions is met. Similarly, if Dpu,wq � C, then pu, v | Cq

is a SIL relative to J and one of the four conditions is met. Thus we can assume

that u P D and v P C. In this case, it remains to show that u and v form a SIL

relative to J . This follows from the contrapositive to Corollary 3.10.

Now assume that there exists some w P J such that pu, v | wq is a SIL relative

to J and one of the four conditions holds. We check case by case that σ̂C,u and

σ̂D,v do not commute by finding a vector in IJpH1pX̂,Qqq which rσ̂C,u, σ̂D,vs does

not fix.

1. pw P C � Dq: Then rσ̂C,u, σ̂D,vspŵ � ûq � 4v̂ � 4û� ŵ � û.

2. pu P D, v P Cq: In this case, neither pu, v | Cq nor pu, v | Dq is a SIL.

Therefore w R C YD, It follows that rσ̂C,u, σ̂D,vspŵ� v̂q � 4v̂� 4û� ŵ� v̂.
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3. pv P C,w P Dq: Since w P D, we have that pu, v | Dq is a SIL. Hence u R D.

It follows that rσ̂C,u, σ̂D,vspŵ � ûq � 4v̂ � 4û� ŵ � û.

4. pu P D,w P Cq: Then rσ̂C,u, σ̂D,vspŵ � v̂q � 4v̂ � 4û� ŵ � v̂.

Since rusJ � rvsJ , we have that 4v̂ � 4û � 0 in IJpH1pX̂;Qqq. Thus each of

the above calculations show that rσ̂C,u, σ̂D,vs � Id.

3.2 TML Decomposition

The goal of this section is to prove a decomposition theorem that will allow us to

reduce the size of our vertex set J subject to certain conditions. The basic idea

of the argument is to partition J into ”components” J �
m§
i�1

Ai in a nice way.

We use this partition to break ImpρΓ,Jq into three different subgroups.

• The subgroup T is generated by images of partial conjugations by elements

of Ai on subsets of Ai for some i. Thus, choosing the appropriate basis,

you almost end up with block upper diagonal matrices with one block cor-

responding to each Ai. Unfortunately, to make a complete basis, we need

to include vectors which are a difference of vectors from distinct Ai. We

group these all into a block at the end. After some slight modifications,

you end up with matrices that look like this:

�
�����������

M1 0 0 . . . 0

0 M2 0 . . . 0

. . .

0 0 . . . Mm 0

0 0 0 . . . Id

�
�����������

.
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To clarify how T relates to our other groups, we compress the non-identity

blocks and think of T as consisting of block 2x2 matrices

�
��
M 0

0 Id

�
�� .

The blocks for our other subgroups correspond to the blocks here.

• The subgroup L is generated by images of partial conjugations by elements

of Ai on things outside of Ai. We choose our Ai in such a way that such

elements can only act as �Id on the blocks corresponding to Ai. This can

be easily modified so as to act as Id on these blocks. In so doing, we end

up with matrices of the following form:

�
��

Id M

0 Id

�
�� .

• In making the modifications for the subgroup L, some partial conjugations

end up getting left out. These get grouped together to form the subgroup

M. Again modifications are made to ensure thatM behaves nicely on the

Ai blocks, and we end up with matrices of the form

�
��

Id 0

0 M

�
�� .

When considering the block diagonal forms of these matrices, it seems natural

to expect that ImpρΓ,Jq � pT �Mq 
 L. Furthermore, each of these subgroups

is either isomorphic to ImpρΓ,J 1q for some J 1 � J or to a known group.
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Before we define our partition condition, we must first make a different defi-

nition.

Definition 3.12. Let A � J be a non-empty union of components of ΓJ . Then

a point a P A is a special point if the following hold:

1. For each v P rasJ and each component D of Γzstpvq, either DX JzrvsJ � A

or D X JzrvsJ � AA

2. For each v P AA, we have that A � Dpv, aq.

The reason a special point is special is that, for any v P J , it provides some

level of control over which components of Γzlkpvq intersect A. If v P AA, we

see by the second condition that only one component of Γzlkpvq intersects A. If

v P rAsJ , the first condition ensures that any component that intersects A (up

to elements of rvsJ) is in fact a subset of A. To see what happens to elements in

AzrasJ , we prove the following lemma.

Lemma 3.13. Let A � J be a non-empty union of components of ΓJ , Let a P A

be such that for each v P rasJ and each component D of Γzstpvq we have that

either D X JzrvsJ � A or D X JzrvsJ � AA. Then for all b P AzrasJ and every

component D of Γzstpbq the following hold.

1. If a R D, then either D X J � A or D X J � AA.

2. If D � AA, we have that D is a component of Γzstpaq.

Proof. 1. Let d P D so that D � Dpb, dq. Then by Corollary 3.3, we have that

Dpb, dq � Dpa, dq. But by hypothesis, we have that Dpa, dq X JzrasJ � A

or Dpa, dq X JzrasJ � AA. Since rasJ XD � H, this shows that D X J � A

or D X J � AA.
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2. Let d P D so that D � Dpb, dq. Since a R Dpb, dq, Corollary 3.3 im-

plies that Dpb, dq � Dpa, dq. Furthermore, since d P AA, by hypothesis we

have that Dpa, dq X JzrasJ � AA. In particular, we see that b R Dpa, dq.

Therefore Corollary 3.3 implies that Dpa, dq � Dpb, dq. This shows that

D � Dpb, dq � Dpa, dq.

We now define the partition condition necessary for the TML decomposition

to hold.

Definition 3.14. Let J � V pΓq. We say J �
m§
i�1

Ai is a division of J if the

following hold.

1. Each Ai is a union of components of ΓJ .

2. Each Ai has a special point ai.

To get a sense of this definition we state a few examples.

Example 3. Let J �
m§
i�1

rvisJ . Then define Ai :� rvisJ . Then it is trivial that

J �
m§
i�1

Ai is a division of J . Thus every J has a trivial division. However, this

division will not be useful to us.

Example 4. Let Γ have m components D1, D2, . . . , Dm that intersect J for some

m ¡ 1. For each 1 ¤ i ¤ m, let Ai :� DiX J . Since each component of ΓJ lies in

a component of Γ, each Ai is a union of components of ΓJ . For each 1 ¤ i ¤ m,

fix some ai P Ai. Then for any 1 ¤ i ¤ m, any v P rais, and any w P Aj with

j � i, we have Dpv, ajq X J � Aj and Dpaj, aiq X J � Ai. Thus each ai is a

special point, and J �
m§
i�1

Ai is a division of J .
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Example 5. Let Γ be a tree, and let J be the set of leaves of Γ. Given v, w P J , we

say v � w if lkpvq � lkpwq. Then � is an equivalence relation. Assume that there

is more than one equivalence class under this relation, and let A1, A2, . . . , Am

be the equivalence classes. Since J consists of pairwise non-adjacent vertices,

each Ai is a union of components of ΓJ . For each 1 ¤ i ¤ m, fix some ai P Ai.

Then for any v � w we have that Dpv, wq � twu. Furthermore, if v � w, then

lkpvq X lkpwq � H. Therefore for any v P Ai, w P AA
i , we have that Dpw, vq � Ai.

This shows that J �
m§
i�1

Ai is a division of J .

Example 6. In the previous examples, every point was a special point relative

to Ai. This need not be the case. Consider, for example the following graph:

v3

v1 v2

v4

v5

v6

v7

v10

v8v9

v11

v12

v13

v14

Let J � tv1, v2, . . . , v14u. LetA1 � tv1, v2, . . . , v7u, and letA2 � tv8, v9, . . . , v14u.

Then J � A1 \ A2 is a division of J . However, v4 and v5 are not special points

with respect to A1 and v11 and v12 are not special points with respect to A2.

To simplify notation, we extend our partial conjugation notation as follows.

We write σDXJ,v :� σD,v whenever σD,v is defined. Furthermore, since conju-

gating any element of rvsJ by v acts as identity in the homology, we may add

or remove elements of rvsJ to the set being conjugated and still have the same

automorphism. Thus for an arbitrary subset D � J , we define σD,v :� σD1,v for
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any D1 such that σD1,v is defined and DzrvsJ � D1zrvsJ . Thus, for example, we

may write σJ,v to represent an inner automorphism relative to J .

Recall that the group T consists of block diagonal matrices that are non-

identity on a number of distinct blocks. It will be beneficial to us later on to look

at these blocks individually. Therefore, before working with the full subgroup

T , we consider a subgroup T1 consisting of a single block. Recall that PΓ,J :�

tσD,v | v P J,D X JzrvsJ � Hu.

Lemma 3.15. Let J � V pΓq be an arbitrary vertex set. Let A � J be a non-

empty union of components of ΓJ . Assume there exists an a P A such that for

each v P rasJ and each component D of Γzstpvq, either D X JzrvsJ � A or

D X JzrvsJ � AA. We define the following subgroup of ImpρΓ,Jq.

T1 :� xσ̂D,v P ρΓ,JpPΓ,Aq | a R Dy.

Then with respect to the appropriate bases,

T1 �
!
�
��
M 0

0 Id

�
��
���M P ImpρΓ,Aq

)
� T1 � ImpρΓ,Aq.

Proof. Let BA be an ordered basis of xv̂�ŵ | v, w P Ay ¤ IJpH1pX̂;Qqq consisting

of vectors of the form v̂ � ŵ. Let S be an ordered list of representatives of the

components of ΓJzA. We extend BA to an ordered basis B of IJpH1pX̂;Qqq so

that B � BA Y tŝ� â | s P Su.

Let G :� tσD,v P PΓ,A | a R DzrvsJu. Let σD,v P G. By the definition of

a special point, combined with Lemma 3.13, we have that D X JzrvsJ � A.

Therefore the matrix σ̂D,v only differs from identity on the block corresponding

to BA.
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Let π : T1 Ñ Γ|BA|p2q be the projection map onto the block corresponding

to BA. By the above argument π is both well-defined and injective, hence an

isomorphism onto its image.

Because A � J , we have a linear embedding

T : IApH1pX̂;Qqq Ñ IJpH1pX̂;Qqq, T p1Apv̂ � ŵqq � 1Jpv̂ � ŵq.

Fix the basis T�1pBAq of IApH1pX̂;Qqq. Then for all σ P ρ�1
Γ,JpT1q we have that

ρΓ,Apσq � π � ρΓ,Jpσq. Thus it suffices to show that ρΓ,ApPΓ,Aq P πpT1q. By

the hypothesis, for each v P rasJ and each component D of Γzstpvq, either D X

JzrvsJ � A or D X JzrvsJ � AA. Thus we need only show that ρΓ,ApσDpv,aq,vq P

πpT1q for each v P AzrasJ .

Note that σA,a P xGy, since σD,a P G for all components of Γzstpaq which

intersect AzrasJ . Since σA,a is inner relative to A, we have that ρΓ,ApσA,aq � �Id

(Lemma 2.8). It follows that for any v P AzrasJ we have

ρΓ,ApσDpv,aq,vq � ρΓ,A

�
σA,a �

¹
aRD

σD,v

	
P πpT1q.

The following corollary will be useful in proving other similar decomposition

theorems later.

Corollary 3.16. Let J � V pΓq be an arbitrary vertex set. Fix some v P J . Then

tσ̂D,w | v R Du generates ImpρΓ,Jq.

Proof. This follows immediately from Lemma 3.15 by letting A � J .

With Lemma 3.15 in hand, understanding the subgroup T is fairly straight-
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forward.

Corollary 3.17. Let J �
m§
i�1

Ai be a division of J with special points ai P AI .

We define the following subgroup of ImpρΓ,Jq.

T :� xσ̂D,v | v P Ai, 1 ¤ i ¤ m,D X AizrvsJ � H, ai R Dy.

Then T �
m¹
i�1

ImpρΓ,Ai
q.

Proof. For each 1 ¤ i ¤ m, let BAi
be an ordered basis of xv̂ � ŵ | v, w P Aiy ¤

IJpH1pX̂;Qqq consisting of vectors of the form v̂ � ŵ. Fix the following ordered

basis of IJpH1pX̂;Qqq.

B1,B2, . . . ,Bm, â2 � â1, â3 � â1, . . . , âm � â1.

Consider the set of automorphisms

Gi :� tσD,v | v P Ai, D X AizrvsJ � H, ai R Du.

Then
m§
i�1

ρΓ,JpGiq is a generating set for T . Furthermore, by Lemma 3.13, each

σ̂D,v P ρΓ,JpGiq only acts non-trivially on the block corresponding to Bi. Note that

our choice of basis corresponds to the choice of basis in Lemma 3.15. Therefore

by Lemma 3.15, we have that
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T �
!

�
�����������

M1

M2

. . .

Mm

Idm�1

�
�����������

���Mi P ImpρΓ,Ai
q
)
�

m¹
i�1

ImpρΓ,Ai
q.

Next, we turn our attention to the subgroup M.

Lemma 3.18. Let J �
m§
i�1

Ai be a division of J with special points ai P Ai. Let

M :�
A� ¹

Ai�D

pσ̂Ai,aiq
	
σ̂D,v | v P rajsJ for some 1 ¤ j ¤ m,D X JzrvsJ � AA

j

E
.

Let J0 :� tv | v P raisJ for some 1 ¤ i ¤ mu. Then with respect to the appropriate

bases

M �
!
�
��

Id|J |�m 0

0 M

�
��
���M P ImpρΓ,J0q

)
� ImpρΓ,J0q.

Proof. For each 1 ¤ i ¤ m, let Bi be an ordered basis of xv̂ � ŵ | v, w P Aiy ¤

IJpH1pX̂;Qqq consisting of vectors of the form v̂ � ŵ. Fix the following ordered

basis of IJpH1pX̂;Qqq.

B1,B2, . . . ,Bm, â2 � â1, â3 � â1, . . . , âm � â1.

Let
� ¹
Ai�D

pσ̂Ai,aiq
	
� σ̂D,v be a generator of M. Then for each Ai such that

i � j and Ai X D � H, by definition of special point we have that Ai � D. It
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follows that DXJzrvsJ �
¤
Ai�D

Ai. Therefore for each d P DXJzrvsJ , there exists

an i � j such that d P Ai � D. It follows that
� ¹
Ai�D

pσAi,aiq
	
�σD,vpdq � vaidaiv.

Hence
� ¹
Ai�D

pσ̂Ai,aiq
	
σ̂D,v fixes Bi for each 1 ¤ i ¤ m.

Let V̂end be the vector space spanned by â2 � â1, â3 � â1, . . . , âm � â1. Let

π :MÑ Γm�1p2q be the projection onto V̂end. By the above argument, π is both

well-defined and injective. Since J0 � J , we have a linear embedding

T : IJ0pH1pX̂,Qqq Ñ IJpH1pX̂,Qqq, T p1J0pv̂ � ŵqq � 1Jpv̂ � ŵq.

Fix the basis T�1pt1Jpâi � â1q | 2 ¤ i ¤ muq of IJ0pH1pX̂,Qqq. Then for each

σ P ρ�1
Γ,JpMq, we have that ρΓ,J0pσq � π � ρΓ,Jpσq.

Note that ρΓ,J0pσAi,aiq � Id. Thus for each generator
� ¹
Ai�D

pσ̂Ai,aiq
	
σ̂D,v of

M, we have that πp
� ¹
Ai�D

pσ̂Ai,aiq
	
σ̂D,vq � ρΓ,J0pσ̂D,vq.

We now show that the condition D X JzrvsJ � AA
j in the definition of M

can be replaced by the condition D X J0zrvsJ � H. From this it follows that

M � πpMq � xρΓ,J0pPΓ,J0qy � ImpρΓ,J0q, which proves the lemma.

Let
� ¹
Ai�D

pσ̂Ai,aiq
	
� σ̂D,v be a generator ofM. If v P Aj and DXJzrvsJ � AA

j,

then for some i � j we must have that D X Ai � H. Since ai is a special point

and v R Ai, we have that D � Ai. In particular, ai P D. This shows that

D X J0zrvsJ � H.

Now assume that DXJ0zrvsJ � H. Then for some i � j, we have that ai P D.

In particular, this shows that D X AA
i � H. But since v P rajsJ , the definition of

a special point implies that D X JzrvsJ � AA
j. This completes the proof.

Just as T can be divided into distinct subgroups with similar properties to
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T , the same can be said of the group L. It will be beneficial to us later to work

with these smaller subgroups, so we prove their properties first. The same results

about L will follow from them.

Lemma 3.19. Let J � V pΓq be an arbitrary vertex set. Let A � J be a non-

empty union of components of ΓJ containing a special point a. We define the

following subgroup of ImpρΓ,Jq.

L1 :� xσ̂D,v � σ̂D,a | v P AzrasJ , D is a component of Γzlkpvq, D X J � AAy.

Then for the appropriate basis

Zr � L1 ¤
!
�
��

IdkJ�|S| M

0 Id|S|�1

�
��
���M PMkJ�|S|,|S|�1p2Zq

)

where r :� |tprvsJ , Dq | v P AzrasJ , D is a component of Γzstpvq, D X J � AAu|.

Furthermore L1 is normal in ImpρΓ,Jq.

Proof. Let BA be an ordered basis of xv̂�ŵ | v, w P Aiy ¤ IJpH1pX̂;Qqq consisting

of vectors of the form v̂ � ŵ. Let S be an ordered list of representatives of the

components of ΓJzA. We extend BA to an ordered basis B of IJpH1pX̂;Qqq so

that B � BA Y tŝ� â | s P Su.

Fix a generator σ̂D,v � σ̂D,a of L1. Let d P D. First note that by Lemma

3.13 this generator is well-defined. This also implies that D is independent of

the choice of representative of rvsJ . By direct computation, the only vectors that

σ̂D,v � σ̂D,a does not fix are vectors of the form ŵ� â where w P D. It maps these
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vectors to �2pv̂ � âq � pŵ � âq. Therefore

L1 ¤
!
�
��

IdkJ�|S| M

0 Id|S|�1

�
��
���M PMkJ�|S|,|S|�1p2Zq

)
.

It follows that each generator σ̂D,v � σ̂D,a of L1 is of infinite order and com-

mutes with every other generator. Furthermore, since the entries where distinct

generators differ from identity are distinct to those generators, L1 � Zr.

We now show that L1 is normal in ImpρΓ,Jq. Let L :� σ̂C,v � σ̂C,a P L1. Let

M :� σ̂D,w P ρΓ,JpPΓ,Jq. We break into a number of cases:

• pw P A,D X J � Aq: In this case, D X C X J � H. In particular, D �

C. Furthermore, w R C. By Proposition 3.11, M and L commute unless

pv, w | Cq is a SIL relative to J (this is equivalent to pa, w | Cq being a SIL

relative to J) and either v P D or a P D. By Lemma 3.4, this implies that

C is a component of Γzstpwq, so σC,w is well-defined.

– If both v, a P D, then

σD,w � σC,v � σC,a � σD,wpuq �

$''&
''%
wavwuwvaw if u P C

u else

so that

MLM�1 � L�1 P L1

– If v P D, a R D, then

σD,w � σC,v � σC,a � σD,wpuq �

$''&
''%
awvwuwvwa if u P C

u else
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so that

MLM�1 � pσ̂C,w � σ̂C,aq � pσ̂C,v � σ̂C,aq
�1 � pσ̂C,w � σ̂C,aq P L1

– If v R D, a P D, then

σD,w � σC,v � σC,a � σD,wpuq �

$''&
''%
wawvuvwaw if u P C

u else

so that

MLM�1 � pσ̂C,v � σ̂C,aq � pσ̂C,w � σ̂C,aq
�2 P L1

• pw P A,D X J � A, a R Dq: If D � C, then by direct computation

MLM�1 � L�1 P L1. If not, let d P D X JzA. Then Corollary 3.3 implies

that D � Dpw, dq � Dpa, dq. The definition of special point implies that

Dpa, dqzrasJ � AA. This shows that v R D. Since w R C, Proposition 3.11

implies that M and L commute.

• pw P A,D X J � A, a P Dq: By Lemma 2.8, every inner automorphism

relative to J maps to �Id. Since the image of every partial conjugation is

of order 2 (Lemma 2.8) and every pair of partial conjugations by v commute,

M � σ̂J,w �
¹
D1�D

σ̂D1,w � �
¹
D1�D

σ̂D1,w. This reduces this case to the previous

two cases.

• pw R A,D X A � Hq: If D � C, then by direct calculation MLM�1 �

L�1 P L1. If not, then since v, a R D, Proposition 3.11 implies that M and

L commute unless w P C. In addition, we must have that pv, w | Dq is a

SIL relative to J , or pa, w | Dq is a SIL relative to J . We show that the
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existence of one of these SILs implies the existence of the other.

Assume that pv, w | Dq is a SIL relative to J . Let d P D X J . By Lemma

3.13, we have that Dpa, dq � Dpv, dq � D. Then Lemma 3.4 implies that

pa, w | Dq is a SIL relative to J .

Now assume that pa, w | Dq is a SIL relative to J . Let d P D X J . Since

D X A � H, we have that v R D � Dpa, dq. Therefore by Corollary 3.3,

we have that Dpa, dq � Dpv, dq. Since w P C, we have that C � Dpv, wq.

Since a R C, it follows that w R Dpv, aq. Applying Corollary 3.3, we see that

Dpv, aq � Dpw, aq. Then since a R D � Dpw, dq, we have that d R Dpw, aq.

It follows that d R Dpv, aq, which implies that a R Dpv, dq. Applying

Corollary 3.3, we get that Dpv, dq � Dpa, dq. Thus D � Dpa, dq � Dpv, dq.

Finally, Lemma 3.4 implies that pv, w | Dq is a SIL relative to J .

We can now assume that w P C and that both pv, w | Dq and pa, w | Dq

are SILs relative to J . Since Dpv, dq � D � C � Dpv, wq, we have that

D X C � H. By direct computation,

σD,w � σC,v � σC,a � σD,wpuq �

$''''''&
''''''%

avuva if u P C

vawavwuwvawaw if u P D

u else

so that

MLM�1 � pσ̂C,v � σ̂C,aq � pσ̂D,v � σ̂D,aq
�2 P L1

• pw R A,D X A � Hq: Let d P D X A. By definition of a special point, we

have that A � Dpw, aq � Dpw, dq � D. Then M � �
¹
D1�D

σ̂D1,w and this

reduces to the previous case.
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This shows that L1 is normal in ImpρΓ,Jq.

Corollary 3.20. Let J �
m§
i�1

Ai be a division of J with special points ai P AI .

Let

L :� xσ̂D,v�σ̂D,ai | 1 ¤ i ¤ m, v P AizraisJ , D is a component of Γzstpvq, DXJ � AA
iy.

Then for the appropriate basis,

Zr � L ¤
!
�
��

Id|J |�m M

0 Idm�1

�
��
���M PM|J |�m,m�1p2Zq

)

where r :� |tprvsJ , Dq | v P AizraisJ for some 1 ¤ i ¤ m,D is a component of Γzstpvq,

D X J � AA
iu|. Furthermore L is normal in ImpρΓ,Jq.

Proof. For each 1 ¤ i ¤ m, let Bi be an ordered basis of xv̂ � ŵ | v, w P Aiy ¤

IJpH1pX̂;Qqq consisting of vectors of the form v̂ � ŵ. Fix the following ordered

basis of IJpH1pX̂;Qqq.

B1,B2, . . . ,Bm, â2 � â1, â3 � â1, . . . , âm � â1.

By direct computation,

L ¤
!
�
��

Id|J |�m M

0 Idm�1

�
��
���M PM|J |�m,m�1p2Zq

)
.

Let

Li :� xσ̂D,v � σ̂D,ai | v P AizraisJ , D X AizrvsJ � H, ai R Dy.

Note that our choice of basis corresponds to the choice of basis made in Lemma
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3.19. Then by Lemma 3.19, for each 1 ¤ i ¤ m we have that Li � Zri where

ri :� |tprvsJ , Dq | v P AizraisJ , D is a component of Γzstpvq, D X J � AA
iu|. Since

each Li only differs from identity on rows corresponding to vectors in Bi, it follows

that L �
m¹
i�1

Li � Zr. Furthermore, since each Li is normal in ImpρΓ,Jq, we have

that L is normal in ImpρΓ,Jq.

We are now ready to prove the TML decomposition (Theorem 1.2).

Theorem 1.2 (TML Decomposition). Let J �
m§
i�1

Ai be a division of J with

special points ai P AI . Let J0 :� tv | v P raisJ for some 1 ¤ i ¤ mu. Then

ImpρΓ,Jq �
�� m¹

i�1

ImpρΓ,Ai
q
	
� ImpρΓ,J0q

	

 Zr where r :� |tprvsJ , Dq | v P

AizraisJ for some 1 ¤ i ¤ m,D is a component of Γzstpvq, D X J � AA
iu|.

Proof. For each 1 ¤ i ¤ m, let Bi be an ordered basis of xv̂ � ŵ | v, w P Aiy ¤

IJpH1pX̂;Qqq consisting of vectors of the form v̂ � ŵ. Fix the following ordered

basis of IJpH1pX̂;Qqq.

B1,B2, . . . ,Bm, â2 � â1, â3 � â1, . . . , âm � â1.

Let V̂end be the vector space spanned by â2� â1, â3� â1, . . . , âm� â1. Consider

the following subgroups of Impρδq

• T :� xσ̂D,v | v P Ai, 1 ¤ i ¤ m,D X AizraisJ � Hy.

• M :�
A� ¹

Ai�D

pσ̂Ai,aiq
	
σ̂D,v | v P rajsJ for some 1 ¤ j ¤ m,D X JzrvsJ �

AA
j

E
.

• L :� xσ̂D,v�σ̂D,ai | 1 ¤ i ¤ m, v P AizraisJ , D is a component of Γzlkpvq, DX

J � AA
iy.
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Our choice of basis corresponds to the choices of bases made in Corollary 3.17,

Lemma 3.18 and Corollary 3.20. Thus by Corollary 3.17, Lemma 3.18, and

Corollary 3.20, we have that

m¹
i�1

ImpρΓ,Ai
q � T ¤

!
�
��
M 0

0 Idm�1

�
��
)
.

M �
!
�
��

Id|J |�m 0

0 M

�
��
���M P ImpρΓ,J0q

)
� ImpρΓ,J0q.

Zr � L ¤
!
�
��

Id|J |�m M

0 Idm�1

�
��
���M PM|J |�m,m�1p2Zq

)
.

We also know from Corollary 3.20 that L is normal in ImpρΓ,Jq. From this

and the above block matrix descriptions of T ,M, and L, we see that TML �

pT �Mq
L. It remains to show that TML � ImpρΓ,Jq. It suffices to show that

ρΓ,JpPΓ,Jq P TML.

First, consider σD,v P PΓ,J where v P raisJ for some 1 ¤ i ¤ m. By the

definition of divisibility, either D X JzrvsJ � Ai or D X JzrvsJ � AA
i . In the first

case, σ̂D,v P T . In the second case, since σ̂Ak,ak P T , we see that

σ̂D,v �
� ¹
Ak�D

σ̂Ak,ak

	
�
�� ¹

Ak�D

pσ̂Ak,akq
	
σ̂D,v

	
P TM.

In particular, we see that σ̂J,v � �Id P TML.

Next, consider σD,v P PΓ,J for v R J0. Let v P Ai. If D X JzrvsJ � AA
i , then

σ̂D,v � pσ̂D,v � σ̂D,aiq � σ̂D,ai P TML. If DXAizraisJ � H, then σ̂D,v P T . Finally,

if ai P D, then σ̂D,v � �
¹
C�D

σ̂D,v P TML by the previous arguments. This
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completes the proof.

3.3 Splitting Points

In this section we give a condition that will allow us to decompose ImpρΓ,Jq as a

direct sum of the images of representations with restricted domains.

Definition 3.21. We say that v P J is a splitting point if there exist non-empty

disjoint subsets A,B � J , such that J � A\B \ rvsJ and v is a special point of

both A\ rvsJ and B \ rvsJ .

Proposition 3.22. Let Γ be a graph, J a set of pairwise non-adjacent vertices,

and v P J a splitting point. Let A,B be as in the definition of splitting set. Then

we have

ImpρΓ,Jq � ImpρΓ,AYrvsJ q � ImpρΓ,BYrvsJ q.

Proof. Let BA be a basis of xv̂ � ŵ | v, w P Ay ¤ IJpH1pX̂;Qqq, and let BB be a

basis of xv̂ � ŵ | v, w P By ¤ IJpH1pX̂;Qqq. Fix some a P A, b P B. Then we use

the ordered basis

B � BA, v̂ � â, v̂ � b̂,BB.

We define the following subgroups of ImpρΓ,Jq:

• A :� xσ̂D,w P PΓ,A\rvsJ | v R DzrwsJy

• B :� xσ̂D,w P PΓ,B\rvsJ | v R DzrwsJy

Then by the definition of a splitting point, for any generator σ̂D,w of A, we

must have that D X J � A. Similarly, for any generator σ̂D,w of B, we must

have that D X J � B. By the definitions of splitting point, v is a special point
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with respect to the subsets A\ rvsJ and B \ rvsJ . Note that our choice of basis

corresponds to the choice of basis in Lemma 3.15. Hence by Lemma 3.15 we have

A �
!
�
��
M 0

0 Id|BB |�1

�
��
���M P ImpρΓ,A\rvsJ q

)
� ImpρΓ,A\rvsJ q

B �
!
�
��

Id|BA|�1 0

0 M

�
��
���M P ImpρΓ,B\rvsJ q

)
� ImpρΓ,B\rvsJ q

By the block diagonal descriptions above, it follows that AB � A � B �

ImpρΓ,A\rvsJ q � ImpρΓ,B\rvsJ q. Thus it remains to show that ImpρΓ,Jq � AB.

By Corollary 3.16, it suffices to show that σ̂D,w P AB for all σ̂D,w such that

v R DzrwsJ . But this is immediate from our definitions of A and B.

3.4 Separating Sets

Consider a vector of the form v̂� ŵ in IJpH1pX̂;Qqq where rvsJ � rwsJ . For any

partial conjugation σD,u, the action of σ̂D,u on v̂ � ŵ depends upon whether or

not v or w are in D. If neither v nor w are in D, then σ̂D,u acts as identity on

v̂ � ŵ. If both v and w are in D, then σ̂D,u acts as �Id on v̂ � ŵ. However, if D

separates v and w, i.e. exactly one of these two vertices is in D, then v̂� ŵ is not

an eigenvector (unless u P rvsJ Y rwsJ). This motivates us to make the following

definition.

Definition 3.23. Let v, w P J be such that rvsJ � rwsJ . Then

seppv, wq :� tx P J | Dx� P rxsJ such that Dpx�, vq � Dpx�, wqu.
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Right away from the definition, we see that rvsJ Y rwsJ � seppv, wq. Besides

determining which partial conjugations induce homomorphisms for which v̂ � ŵ

is not an eigenvector, seppv, wq has a couple of nice properties that we outline

below.

Proposition 3.24. If c R seppv, wq then Dpc, vq � seppv, wq.

Proof. Let x P seppv, wq. Then there exists a x� P rxsJ such that Dpx�, vq �

Dpx�, wq. If x� R Dpc, vq, then by Corollary 3.3, we have Dpc, vq � Dpx�, vq. But

w P Dpc, vq and w R Dpx�, vq. This is a contradiction, therefore x� P Dpc, vq. It

follows that x P Dpc, vq. This proves the proposition.

Proposition 3.25. If a, b P seppv, wq then seppa, bq � seppv, wq

Proof. Let a, b P seppv, wq. Then by definition of seppv, wq, there exist a� P rasJ

and b� P rbsJ such thatDpa�, vq � Dpa�, wq andDpb�, vq � Dpb�, wq. Next, let c P

seppa, bq. By definition, of seppa, bq, there exists c� P rcsJ such that Dpc�, a�q �

Dpc�, aq � Dpc�, bq � Dpc�, b�q. Corollary 3.3 implies that Dpc�, a�q � Dpb�, a�q.

SinceDpb�, vq � Dpb�, wq, it follows that eitherDpb�, a�q � Dpb�, vq orDpb�, a�q �

Dpb�, wq. Assume without loss of generality thatDpb�, a�q � Dpb�, vq. Then since

Dpc�, a�q � Dpb�, a�q, we have that Dpc�, a�q � Dpc�, vq. It follows from Corol-

lary 3.3 that Dpc�, vq � Dpa�, vq. But w R Dpa�, vq. Therefore w R Dpc�, vq, so

Dpc�, vq � Dpc�, wq. This shows that c� P seppv, wq, hence c P seppv, wq. The

statement follows.

Earlier we observed that rvsJ Y rwsJ � seppv, wq. If we have that seppv, wq �

rvsJ Y rwsJ , then v̂ � ŵ is always an eigenvector. This motivates us to explore

what happens in this case. We prove the following decomposition result.
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Lemma 3.26. If seppv, wq � tvu Y rwsJ , then ImpρΓ,Jq � pImpρΓ,AYrvsJ q �

ImpρΓ,AAqq
Zr where A :� Dpv, wq and r � |tprasJ , Dq | a P A,D is a component

of Γzstpaq, D X J � pA\ rvsJq
Au|.

Proof. We define the following subgroups:

• A :� xσ̂D,a P PΓ,AYrvsJ | v R Dy

• B :� xσ̂D,b P PΓ,AA

| v R Dy.

• L :� xσ̂D,a � σ̂D,v | a P A,D is a component of Γzstpvq, DXJ � pA\rvsJq
Ay.

Let ta1, . . . , asu be a set of representatives of the components of ΓA and let

tb1, . . . , btu be a set of representatives of the components of ΓAAzrvsJ . Consider the

basis

v̂ � â1, v̂ � â2, . . . , v̂ � âs, v̂ � b̂1, v̂ � b̂2, . . . , v̂ � b̂t.

We show that v is a special point with respect to A \ rvsJ . First note that

by hypothesis, rvsJ � tvu. Thus if a P A � Dpv, wq, then Dpv, aq X JzrvsJ �

Dpv, wq X JzrvsJ � A � A \ rvsJ , and if b P AA, then Dpv, bq X Dpv, wq � H,

so Dpv, bq X JzrvsJ � pA Y rvsJq
A. Furthermore, if b P pA Y rvsJq

A, then b R

Dpv, wq X J � A. By Corollary 3.3, this implies that Dpv, wq � Dpb, wq. But

since b R seppv, wq, we have that Dpb, wq � Dpb, vq. This shows that v is a special

point with respect to A\ rvsJ .

The above argument also shows that for all j P JzrvsJ we have that either

Dpv, jq X JzrvsJ � AA or Dpv, jq X JzrvsJ � A. Note that our choice of basis

corresponds to the choice of basis in Lemma 3.15. Applying Lemma 3.15, we

have that

A �
!
�
��
A 0

0 1

�
��
��� A P ImpρΓ,AYrvsJ q

)
� ImpρΓ,AYrvsJ q
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B �
!
�
��

1 0

0 B

�
��
��� B P ImpρΓ,AAq

)
� ImpρΓ,AAq

We now turn to the subgroup L. Note that our choice of basis corresponds

to the choice of basis in Lemma 3.19. Since v is a special point with respect to

A\ rvsJ , Lemma 3.19 implies that

L � Zr ¤
!
�
��

1 L

0 1

�
�� | L PMs,tp2Zq

)

and L is normal in ImpρΓ,Jq. Therefore ABL � pA� Bq 
L. By Corollary 3.16,

it suffices to show that ABL contains tσ̂D,u | v R Du.

First note that σ̂D,v P AB for any choice of D. In particular, this shows that

�Id P ABL.

Let a P A and let x P J be such that x R rasJ and v R Dpa, xq . By Corollary

3.3, we have that Dpa, xq � Dpv, xq. If x P A, this implies that Dpa, xq � A, so

that σ̂Dpa,xq,a P A. If x P AA, then Dpa, xq � AA. Thus σ̂Dpa,xq,v � σ̂Dpa,xq,a P L.

Since σ̂Dpa,xq,v P B, we have that σ̂Dpa,xq,a P BL. Thus ABL includes σ̂D,a for all

a P A and all D such that v R D.

Finally, let b P AAzrvsJ . In particular, we have that b R rvsJYrwsJ � seppv, wq.

Since b R A � Dpv, wq, Corollary 3.3 implies that A � Dpv, wq � Dpb, wq. But

Dpb, wq � Dpb, vq. Therefore Dpb, vq � A\ rvsJ . Now let x P J be such that x R

rbsJ and v R Dpb, xq. By the above statement, it follows that Dpb, xq � AAzrvsJ .

Therefore σ̂Dpb,xq,b P B. Thus ABL includes σ̂D,b for all D such that v R D. This

shows that ABL contains a complete set of generators of ImpρΓ,Jq.
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3.5 Compressible Components

We now take a slight detour to deal with the hypotheses of Lemma 3.26. Ideally,

we would like a similar statement to Lemma 3.26 but without requiring that

rvsJ � tvu. To see that the statement of Lemma 3.26 does not hold in this case,

we provide a counter-example.

Example 7. Let Γ be the graph

v1

v2

v3 v4

v5

v6

v7v8

and let J be the vertex set tv1, v2, . . . , v8u. Then Γ has a unique minimal separat-

ing set, namely seppv1, v5q � tv1, v2, v5, v6u � rv1sJ \ rv5sJ . However Dpv2, v5q X

Jzrv2sJ � Dpv1, v5qXJzrv1sJ and Dpv6, v1qXJzrv6sJ � Dpv5, v1qXJzrv5sJ . Thus

if A :� Dpv1, v5q X J , then A \ rv1sJ does not have a special point. Similarly, if

A :� pDpv5, v1q X Jq \ rv5sJ , then A does not have a special point. This was a

crucial point in the proof of Lemma 3.26 because it allowed us to apply Lemma

3.19.

It is possible that the conclusion of Lemma 3.26 could still hold. If this were

the case, letting A � Dpv1, v5q X J , then applying Theorem 2.7, we would see
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that

ImpρΓ,Jq � pImpρΓ,tv1,v2,v3,v4,v5,v6uq � ImpρΓ,tv7,v8uqq 
 Z2 � pΓ3p2q � Z{2Zq 
 Z2.

There is, however, an alternate way to solve this problem. Consider the

slightly modified graph Γ1

v1,2

v3 v4

v5,6

v7v8

with vertex set J 1 :� tv1,2, v3, v4, v5,6, v7, v8u obtained by compressing the edges

pv1, v2q and pv5, v6q to a point. This graph is useful because ImpρΓ,Jq � ImpρΓ1,J 1q.

We give a sketch of why this is true. We will give a more formal argument later.

Any possible issue lies with partial conjugations by v1,2 (or symmetrically v5,6).

The partial conjugations σtv3u,v1,2 , σtv4u,v1,2 , σtv7u,v1,2 , and σtv8u,v1,2 have clear ana-

logues in PΓ,J . However, the partial conjugation σtv5,6u,v1,2 does not. By consider-

ing instead the product of partial conjugations σ :� σtv3,v4,v5,v6u,v1�σtv3u,v2�σtv4u,v2 ,

we are able to remedy this problem. The corresponding matrix σ̂ acts on the the

symmetric difference of the sets being conjugated tv3, v4, v5, v6u4tv3u4tv4u �

tv5, v6u by the 1-chain v̂1 � v̂2.

Now seppv1,2, v5,6q � tv1,2, v5,6u is a minimal separating set. Applying Lemma

3.26, we get that

ImpρΓ,Jq � pImpρΓ,tv1,2,v5,6uq� ImpρΓ,Jztv1,2uqq
Z4 � pZ{2Z� ImpρΓ,Jztv1,2uqq
Z4.
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We see that v1,2 is a splitting point in Γztv5,6u, Proposition 3.22 and Theorem

2.7 imply that

ImpρΓ,Jq � pZ{2Z�ImpρΓ,tv1,2,v3,v4uq�ImpρΓ,tv1,2,v7,v8uqq
Z4 � pZ{2Z�Γ2p2q
2q
Z4.

As pZ{2Z � Γ2p2q
2q 
 Z4 � pΓ3p2q � Z{2Zq 
 Z2, we see that the conclusion

of Lemma 3.26 does not hold for this example.

We now formalize the above method of compressing components of ΓJ .

Definition 3.27. Let Γ be a finite graph and let J � V pΓq be a vertex set. Given

v, x P J such that rvsJ � rxsJ , we say that x is a v-expander if the set

Intpv, xq :�
£

wPrvsJ

Dpw, xq X J

cannot be written as a symmetric difference of elements of

Dpvq :� tDpw, yq X JzrvsJ | w P rvsJ , y P JzrvsJu.

We say rvsJ is a compressible component relative to J if no x P JzrvsJ is a v-

expander. A component that is not compressible is incompressible.

Proposition 3.28. If J contains a compressible component rvsJ , then there exists

a graph Γ1 with vertex set J 1 � pJzrvsJ \ tv
1uq such that ImpρΓ,Jq � ImpρΓ1,J 1q.

Proof. Let Γ1 be the graph where the subgraph ΓrvsJ induced by rvsJ is replaced

by a single point v1. Then the edges incident to v1 in Γ1 are precisely the edges

incident to only one vertex in rvsJ in Γ. Fix a basis B of IJpH1pX̂;Qqq. Let B1

be the basis of IJpH1pX̂;Qqq where for every w P rvsJ , every occurrence of ŵ is

replaced by v̂1.
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Consider the map

f : J Ñ J 1, fpjq �

$''&
''%
v1 if j P rvsJ

j else

.

Note that f induces a bijection between the components of ΓJ and the compo-

nents of Γ1
J 1 . We show that for each a, b P J such that rasJ � rbsJ we have that

Dpfpaq, fpbqq X J 1 � fpDpa, bq X Jq, with equality when a R rvsJ .

If a P rvsJ , then fpaq � v1. But Γ1zstpv1q is a subgraph of Γzstpaq. Since

f |JzrvsJ � Id, the result follows. If a R rvsJ , then fpaq � a. Let x P Dpfpaq, fpbqqX

J 1 and let αx be a path in Γ1zstpfpbqq from fpbq to x. If αx does not pass through

v1, then αx only passes through points in JzrvsJ . It follows that αx induces a

path βx in ΓzrvsJ from b to x such that fpβxq � αx. The result follows. Assume

that αx passes through v1. Without loss of generality, we may assume that αx

does not contain a loop. Then we may write αx � pα1, v
1, α2q for some (possibly

empty) paths α1, α2 that do not pass through v1. Then α1, α2 induce paths

β1, β2 in ΓzrvsJ such that fpβ1q � α1 and fpβ2q � α2. Furthermore, there exist

u,w P rvsJ such that the terminal vertex of β1 is adjacent to u and the initial

vertex of β2 is adjacent to w. By definition of rvsJ , there is a path β in Γ from

u to w that only passes through vertices in rvsJ . Then fppβ1, β, β2qq � αx. The

result follows.

Next, we show that ImpρΓ1,J 1q contains the images of all partial conjugations.

Let σD,a P PΓ,J . Let b P D so that D � Dpa, bq. By the previous claim, we have

that Dpfpaq, fpbqq X J 1 � fpDpa, bq X Jq. We may therefore write

fpD X Jq �
§
wPI

Dpfpaq, fpwqq X J 1

56



for some index set I. It follows that

ρΓ,JpσD,aq �
¹
wPI

ρΓ1,J 1pσDpfpaq,fpwqq,fpaqq P ImpρΓ1,J 1q.

Finally, we show that ρΓ1,J 1pPΓ1,J 1

q � ImpρΓ,Jq. First, let σD,v1 P PΓ1,J 1

. Then

D is a component of Γ1zstpv1q. By construction, we have that

Γ1zstpv1q � Γz
� ¤
wPrvsJ

stpwq
	
�
£

wPrvsJ

Γzstpwq.

Let x P D, so that D � Dpv1, xq. Then by the above observation,

D X J � Dpv1, xq X J � Intpv, xq.

By the definition of compressible, we may write D X J � D14D24 . . .4Dm

where for each 1 ¤ i ¤ m we have Di P Dpvq. Let Di � Dpwi, yiq. Then

ρΓ1,J 1pσD,v1q �
m¹
i�1

ρΓ,JpσDi,wi
q P ImpρΓ,Jq.

Now let σD,a P PΓ1,J 1

for some a � v1. It follows that f�1paq � tau. Let

b P J be such that fpbq P D. Then D � Dpfpaq, fpbqq X J 1 � fpDpa, bq X Jq.

Let x P Dpa, bq X JzrbsJ , and let αx be a path in Γzstpaq from b to x. If αx does

not intersect rvsJ , then αx induces a path βx in Γ1zstpaq from fpbq � b to x. If

αx intersects rvsJ , we may write αx � pα1, α2, . . . , αmq where each of the even-

indexed αi lies entirely in rvsJ and each of the odd-indexed αi lies entirely outside

rvsJ (α1 might be empty). Then each of the odd-indexed αi induces a path βi in

Γ1zstpaq and fpαq � pβ1, v
1, β3, v

1, . . . q is a path in Γ1zstpaq from fpbq to x. This

shows that D � fpDpa, bq X Jq. Therefore ρΓ1,J 1pσD,aq � ρΓ,JpσD,aq P ImpρΓ,Jq.
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This completes the proof.

Unfortunately, there exist vertex sets J with incompressible components of

ΓJ , as the following example shows.

Example 8. Let Γ be the graph

v9 v10

v2 v3 v4 v5v1

v8v7v6

and let J be the vertex set tv1, v2, . . . , v10u. Then rv1sJ and rv9sJ are both in-

compressible. Furthermore, the separating set seppv1, v9q � rv1sJ \rv9sJ fails the

hypothesis of Lemma 3.26. As this is not the only separating set in this graph, we

can get around this fact. However, it is not inconceivable that every separating

set could fail in this way.

To avoid the issue presented in the previous example, we will show that for

every finite graph Γ and J � V pΓq such that ΓJ has at least 2 components,

there must be a minimal separating set seppv, wq such that either rvsJ or rwsJ

is compressible. We first prove a couple of lemmas. The first lemma gives us a

nice consequence of a vertex being a v-expander. The second lemma tells us that

every incompressible component rvsJ has at least two distinct vertices x and y,

both of which are v-expanders, and that are separated by an element of rvsJ .

Lemma 3.29. Let v, x P J be such that rvsJ � rxsJ . If x is a v-expander, then

for all y P JzprvsJ Y rxsJq we have that Dpv, xq � Dpy, xq.
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Proof. We prove the contrapositive. Let y P JzprvsJYrxsJq be such thatDpv, xq �

Dpy, xq. Then for all w P rvsJ , we have Dpy, xq � Dpy, vq � Dpy, wq. Hence

by Corollary 3.3, we have that Dpy, xq � Dpw, xq for all w P rvsJ . It follows

that Dpv, xq X J � Dpy, xq X J � Intpv, xq. But Intpv, xq � Dpv, xq. Hence

Dpv, xq � Intpv, xq which shows that x is not a v-expander.

Lemma 3.30. Let v P J be such that rvsJ is incompressible. Then there exist

x, y P JzrvsJ such that Intpv, xq � Intpv, yq and both x and y are v-expanders.

Proof. First note that for any x, y P JzrvsJ , if y R Intpv, xq, then there exists

a w P rvsJ such that Dpw, xq � Dpw, yq. Hence x R Intpv, yq. It follows that

tIntpv, xq x P JzrvsJu forms a partition of JzrvsJ .

By definition, there exists some x P JzrvsJ such that x is a v-expander.

Assume that y is a v-expander only if Intpv, xq � Intpv, yq. Since x is a v-

expander, it follows that Intpv, xq � JzrvsJ .

Let c P Intpv, xqAzrvsJ . Then by assumption Intpv, cq can be written as a

symmetric difference of elements of Dpvq. Since tIntpv, jq | j P JzrvsJu forms

a partition of JzrvsJ , it follows that
¤

c PpIntpv,xqqAzrvsJ

Intpv, cq can be written as a

symmetric difference of elements of Dpvq. Let tv1, v2, . . . , vnu � JzrvsJ be such

that
n§
i�1

Dpv, viq X JzrvsJ � JzrvsJ . Then

Intpv, xq � pDpv, v1qXJzrvsJq4pDpv, v2qXJzrvsJq4 . . .4pDpv, vnqXJzrvsJq4¤
c PpIntpv,xqqAzrvsJ

Intpv, cq.

This contradicts the fact that x is a v-expander. Therefore there exists y P

JzrvsJ and w P rvsJ such that Dpw, xq � Dpw, yq and y is a v-expander.

We are now ready to prove the Proposition.
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Proposition 3.31. There is no finite graph Γ and J � V pΓq such that ΓJ con-

tains at least 2 components and every minimal separating set consists solely of

incompressible components.

Proof. If J contains less than 2 incompressible components then this is trivial.

Assume that J contains at least two incompressible component.

Claim 1. There exist v, w P J such that rvsJ is an incompressible component, w

is not a v-expander, and Dpv, wq X J consists solely of compressible components.

Let v1, v2 P J be such that rv1sJ � rv2sJ and rv1sJ , rv2sJ are both incompress-

ible components. Then by Lemma 3.30, there exists a w3 P Jzprv1sJ Y rv2sJq

such that Intpv2, v1q � Intpv2, w3q and w3 is a v2-expander. Without loss of

generality, we may assume that Dpv2, v1q � Dpv2, w3q. If Dpv2, w3q consists

solely of compressible components, then we are done. If not, there exists a

v3 P Dpv2, w3q such that rv3sJ is incompressible. By Corollary 3.3, we have that

Dpv2, v3q � Dpv2, w3q � Dpv1, w3q. It follows that Dpv1, w3q � Dpv1, v3q and

Dpv2, v3q � Dpv1, v3q. By Lemma 3.29, we have that Dpv1, v3q � Dpv1, w3q �

Dpv2, w3q � Dpv2, v3q. Therefore Dpv1, v3q � Dpv2, v3q.

Assume that we have constructed v1, . . . , vn such that rv1sJ , rv2sJ , . . . , rvnsJ

are incompressible and Dpv1, vnq � Dpv2, vnq � � � � � Dpvn�1, vnq. Then by

Lemma 3.30, there exists a wn�1 P JzrvnsJ such that Intpvn, vn�1q � Intpvn, wn�1q

and wn�1 is a vn-expander. Without loss of generality, we may assume that

Dpvn, vn�1q � Dpvn, wn�1q. If Dpvn, wn�1q consists solely of compressible compo-

nents, then we are done. If not, there exists a vn�1 P Dpvn, wn�1q such that rvn�1sJ

is incompressible. By Corollary 3.3, we have that Dpvn, vn�1q � Dpvn, wn�1q �

Dpvn�1, wn�1q. It follows that Dpvn�1, wn�1q � Dpvn�1, vn�1q and Dpvn, vn�1q �

Dpvn�1, vn�1q. By Lemma 3.29, we have that Dpvn�1, vn�1q � Dpvn�1, wn�1q �
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Dpvn, wn�1q � Dpvn, vn�1q. Therefore Dpvn�1, vn�1q � Dpvn, vn�1q. Further-

more, by the contrapositive of Corollary 3.3, it follows that Dpvn�1, vn�1q �

Dpvn�1, vnq. HenceDpv1, vn�1q � Dpv2, vn�1q � � � � � Dpvn�1, vn�1q � Dpvn, vn�1q.

Since Γ is a finite graph, this process must eventually terminate in a vertex wN

such that wN is a vN�1-expander and DpvN�1, wNq consists solely of compressible

components. This proves Claim 1.

Claim 2. Let v, w P J be such that rvsJ is incompressible, w is a v-expander, and

Dpv, wq X J consists solely of compressible components. Then seppv, wqzprvsJ Y

rwsJq contains only compressible components.

Suppose on the contrary that x P seppv, wqzprvsJ Y rwsJq is such that rxsJ is

incompressible. Then there exists an x� P rxsJ such that Dpx�, vq � Dpx�, wq.

Then Corollary 3.3 implies that Dpx�, wq � Dpv, wq consists solely of compress-

ible components. Since w is a v-expander, Lemma 3.29 implies that Dpx�, wq �

Dpv, wq. The contrapositive of Corollary 3.3 thus implies thatDpv, x�q � Dpv, wq.

But this contradicts the fact that Dpv, wq consists solely of compressible compo-

nents. Therefore no such rxsJ exists. This proves Claim 2.

By Claim 1, there exists v, w P J such that rvsJ is incompressible, w is a

v-expander, and Dpv, wq consists solely of compressible components. Claim 2

implies that rvsJ is the only incompressible component in seppv, wq. It follows

that any minimal separating set in seppv, wq has at most one incompressible

component. This proves the statement.
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3.6 Computing ImpρΓ,Jq

If a separating set seppv, wq is minimal, then by Proposition 3.25, we see that

seppv, wq � seppa, bq for all a, b P seppv, wq. This makes minimal separating sets

particularly nice to work with. The following lemma gives another nice property

of minimal separating sets.

Lemma 3.32. Let seppv, wq be minimal with respect to inclusion. Then for each

a P seppv, wq there exists an a� P rasJ such that for all b P seppv, wqzrasJ we have

that Dpa�, bq X seppv, wqzrasJ � rbsJ .

Proof. First, let a P rvsJ Y rwsJ . Without loss of generality, assume that a P

rvsJ . If seppv, wq � rvsJ Y rwsJ then the statement is trivial. If not, let c P

seppv, wqzprvsJ Y rwsJq. Then by Proposition 3.25 combined with minimality, we

have that seppv, wq � seppc, wq. Thus we may assume that a R rvsJ Y rwsJ .

Let a� P rasJ be such that Dpa�, vq � Dpa�, wq. Then for any c P seppv, wq

such that c R rasJ Y rvsJ , we show that Dpa�, vq � Dpa�, cq. This implies that

Dpa�, vq X seppv, wqzrasJ � rvsJ .

To begin, Proposition 3.25 implies that seppv, cq � seppv, wq. Then by mini-

mality seppv, cq � seppv, wq. Hence there exists a w� P rwsJ such that Dpw�, vq �

Dpw�, cq. Since Dpa�, vq � Dpa�, wq � Dpa�, w�q, Corollary 3.3 implies that

Dpa�, vq � Dpw�, vq. But c R Dpw�, vq. Therefore c R Dpa�, vq, as claimed.

Next, let b P seppv, wqzprasJ Y rvsJq. Then Proposition 3.25 combined with

minimality tells us that seppv, wq � seppb, vq. We showed above that Dpa�, bq �

Dpa�, vq. But this is the only assumption we needed to run the above argument.

Therefore Dpa�, bq X seppb, vqzrasJ � rbsJ .
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Using Lemma 3.32, we make the following definition.

Definition 3.33. Let seppv, wq be minimal with respect to inclusion. For each

x P seppv, wqzprvsJ Y rwsJq, fix an element x� P rxsJ via Lemma 3.32. Then for

the given choices for all rxsJ � seppv, wq, we define

sep�pv, wq :� tx� | x P seppv, wqu.

Note that this definition depends on the choice of x�. However, no matter

what choice is made, it contains a unique representative of each component rxsJ

of ΓJ that intersects seppv, wq. Furthermore, Lemma 3.32 says that for each

a�, b� P sep�pv, wq we have that Dpa�, b�q X sep�pv, wq � tb�u.

With this definition in hand, we prove the following corollary.

Corollary 3.34. Let seppv, wq be minimal with respect to inclusion. Then for all

distinct a�, b�, c� P sep�pv, wq, we have Dpa�, c�q � Dpb�, c�q.

Proof. By Lemma 3.32, we have that c� R Dpb�, a�q and b� R Dpa�, c�q. By a

double application of Corollary 3.3, this implies that Dpb�, c�q � Dpa�, c�q. This

completes the proof.

We now consider a set that is slightly bigger than seppv, wq. We define this

set now.

Definition 3.35. Let seppv, wq be minimal with respect to inclusion. Fix a set

sep�pv, wq. Then we define

Cpv, wq :� tc P J | Da�, b� P sep�pv, wq such that Dpa�, b�q � Dpa�, cqu.
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Using properties of seppv, wq, we can show that Cpv, wq contains a spe-

cial point. This will allow us to construct a division and apply the TML-

decomposition. However, if Cpv, wq � J , then this application will be trivial.

We therefore deal with this case separately.

Note that if seppv, wq � J is minimal, then Cpv, wq � J . This case is easily

dealt with. Indeed the minimality of seppv, wq, combined with Proposition 3.25,

implies that seppa, bq � J for all a, b P J such that rasJ � rbsJ . Then by Theorem

2.7, we have that ImpρΓ,Jq � ΓkJ�1p2q. Thus we may safely ignore this case.

Proposition 3.36. Let seppv, wq � J be minimal. Let seppv, wq � rvsJ Y rwsJ .

Then if Cpv, wq � J , then δ has a splitting point.

Proof. Pick some c R seppv, wq and some s�, t� P sep�pv, wq such that Dpt�, s�q �

Dpt�, cq. Then define A :� Dpt�, s�qzrs�sJ and let B :� Dpt�, s�qAzrs�sJ . We will

show that s� is a splitting point with splitting A\ rs�sJ \B.

First, we have that given any a P A and any r� P sep�pv, wqzprs�sJ Y rt�sJq,

Corollary 3.34 implies that Dpt�, aq � Dpt�, s�q � Dpr�, s�q. By Lemma 3.32,

we have that Dpr�, s�q � Dpr�, t�q. This in turn implies that a R Dpr�, t�q. By

Corollary 3.34, we have Dpr�, t�q � Dps�, t�q. Thus a R Dps�, t�q. Equivalently,

t� R Dps�, aq. Then Corollary 3.3 implies that Dps�, aq � Dpt�, aq � Dpt�, s�q.

Finally, we conclude that Dps�, aq X Jzrs�sJ � A. This also implies that for all

b P B we have Dps�, bq X Jzrs�sJ � B.

Next, note that given any b P B we have b R Dpt�, s�q. By Corollary 3.3, we

have that Dpt�, s�q � Dpb, s�q. This implies that BA � Dpb, s�qzrbsJ .

It remains to show that for any a P A we have AA � Dpa, s�qzrasJ . Note that

since a P seppv, wqA and s P seppv, wq, Proposition 3.24 implies that seppv, wq �

Dpa, s�q. Thus it suffices to show that Dpa, bq � Dpa, s�q for any b P Bzseppv, wq.
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Assume that B � seppv, wq and let b P Bzseppv, wq. By our hypothesis, there

exists x�, y� P sep�pv, wq such that Dpy�, x�q � Dpy�, bq. By Corollary 3.34,

we have Dpy�, bq � Dpy�, x�q � Dpt�, x�q � Dpt�, bq � Dpt�, aq. This shows

that a R Dpy�, bq. Corollary 3.3 then implies that Dpy�, bq � Dpa, bq. It follows

that x� P Dpa, bq. Proposition 3.24 implies that seppv, wq � Dpa, bq. Therefore

Dpa, bq � Dpa, x�q � Dpa, s�q, which was to be shown.

We now present an algorithm that can compute the isomorphism class of

ImpρΓ,Jq for general pΓ, Jq.

Theorem 3.37. Given an arbitrary finite graph Γ and vertex set J � V pΓq, the

group ImpρΓ,Jq can be computed up to isomorphism.

Proof. We induct on |J |.

First, by using repeated applications of Proposition 3.28, we may assume that

for all v P J either rvsJ � tvu or rvsJ is incompressible. By Proposition 3.31, there

exists some minimal separating set seppv, wq such that rvsJ � tvu. If seppv, wq �

J , then by minimality and Proposition 3.25, we have that seppa, bq � J for all

distinct a, b P J . Hence ImpρΓ,Jq � ΓkJ�1p2q by Theorem 2.7. Thus we may

assume that seppv, wq � J . Furthermore, by Lemma 3.26, we may assume that

seppv, wq � rvsJ Y rwsJ . We prove a couple of nice facts about Cpv, wq:

Claim 1. For any a�, b� P sep�pv, wq and any j P Cpv, wqA, we have that

Dpa�, jq � Dpb�, jq .

Let a�, b� P sep�pv, wq be such that a� � b� and let j P Cpv, wqA. Then by

definition of Cpv, wq, we have that Dpa�, jq � Dpa�, b�q and Dpb�, jq � Dpb�, a�q.
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Therefore by a double application of Corollary 3.3, we have that Dpa�, jq �

Dpb�, jq. If a� � b� then Dpa�, jq � Dpb�, jq. This proves the claim.

Claim 2. For any u� P sep�pv, wq and any j P Cpv, wqA, we have that Dpu�, jqX

Cpv, wqzru�sJ � H.

Let u� P sep�pv, wq, j P Cpv, wqA. Let c P Cpv, wq such that ru�sJ � rcsJ .

By definition of Cpv, wq, there exists x�, y� P sep�pv, wq such that Dpx�, cq �

Dpx�, y�q. By Claim 1, Dpu�, jq � Dpx�, jq. But by definition of Cpv, wq, we

have that Dpx�, jq � Dpx�, y�q � Dpx�, cq. Therefore c R Dpu�, jq. This proves

the claim.

Claim 3. For any j P Cpv, wqA, we have that Dpj, vq � Cpv, wq

Let j P Cpv, wqA. Given any c P Cpv, wq, there exists x�, y� P sep�pv, wq

such that Dpx�, cq � Dpx�, y�q. By Proposition 3.24, we have that Dpj, vq �

seppv, wq. This implies that Dpj, vq � Dpj, y�q. By definition of Cpv, wq, we

have Dpx�, y�q � Dpx�, jq. Therefore by Corollary 3.3, we have Dpx�, cq �

Dpx�, y�q � Dpj, y�q � Dpj, vq. Thus c P Dpj, vq. This proves the claim.

If Cpv, wq � J , then since seppv, wq � J and seppv, wq � rvsJ Y rwsJ , we are

done by Proposition 3.36 combined with Proposition 3.22. If not, then we may

write J �
m§
i�1

Ai where A1 � Cpv, wq and for all 1   i ¤ m, we have Ai � raisJ

for some ai P J . We show that this is a non-trivial division of J . Hence we are

done by the TML decomposition (Theorem 1.2).

It is trivial to verify that for any a P J , we have that a is a special point in

rasJ . Hence we need only show that A1 contains a special point. We show that

v is a special point in A1. We assumed earlier that rvsJ � tvu. Hence by default

v P sep�pv, wq. Then Claim 2 implies that for all j P J either Dpv, jq X J � A1
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or Dpv, jq X J � AA
1, and Claim 3 implies that for all j P AA

1 we have that

A1 � Dpj, vq. Therefore v is a special point in A1.
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Chapter 4

Additional Results

4.1 Star groups

In this section we show that every element in a certain family of subgroups of

Γnp2q can be written as ImpρΓ,Jq for some pΓ, Jq. We will use the following

notation from the proof of Theorem 2.7. Given 1 ¤ i, j ¤ n, i � j, let Ei,j denote

the matrix identical to the identity matrix except in the pi, jq-entry, which equals

2 and let Fi denote the matrix identical to the identity matrix except in the

pi, iq-entry, which equals �1.

Definition 4.1. Let I � t1, 2, . . . , nu2 be a subset with the following properties.

For all i P t1, 2, . . . , nu we have pi, iq P I, and for each pi, jq, pj, kq P I we have

pi, kq P I. Then we call I a star set of width n. Given any star set of width n,

the star group associated to I is the group

GI :� tA P Γnp2q | Ai,j � 0 for all pi, jq R Iu.

It is not immediately clear that GI is a group, in particular that it is closed
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under inverses. This will follow from Proposition 4.3 in which we compute a

generating set for GI . First, however, we need the following lemma.

Lemma 4.2. Let I be a star set of width n, and let Si :� tpi, jq | 1 ¤ j ¤

n, pi, jq P Iu. Assume that |Sm| is maximal. If pi,mq P I, then pm, iq P I

Proof. Assume that pi,mq P I. It follows that for all 1 ¤ j ¤ n such that

pm, jq P I we have that pi, jq P I. Hence |Si| ¥ |Sm|. But |Sm| is maximal. Hence

|Si| � |Sm|. But since pm, jq P I ùñ pi, jq P I, it follows that i P tj | pi, jq P

Iu � tj | pm, jq P Iu. Therefore pm, iq P I.

We now compute a generating set for each GI .

Proposition 4.3. Let I be a star set. Then GI is the subgroup of Γnp2q generated

by tFi | 1 ¤ i ¤ nu Y tEi,j | pi, jq P I, i � ju

Proof. LetHI be the group generated by tFi | 1 ¤ i ¤ nuYtEi,j | pi, jq R I, i � ju.

It is clear that HI ¤ GI . Thus it suffices to show that GI ¤ HI . We proceed by

induction on the width of I. The base case is trivial.

Assume for induction that for every star set I of width less than n, we have

GI � HI . Let I be a subgroup of width n, and let A P GI . To show that

GI ¤ HI , we will take an arbitrary element of GI and multiply it by elements of

HI to reduce it to the identity matrix.

Since A P Γnp2q, we must have A1,1 �2 1. Assume that |A1,1| ¡ 1. We show

that we can multiply A by elements of HI to obtain a matrix A1 P GI such that

|A1
1,1|   |A1,1|. By induction, this will allow us to assume that |A1,1| � 1. If A1,1

is negative, then pF1Aq1,1 is positive. Since F1 P HI , we may assume that A1,1 is

positive. If Ai,1 is a multiple of A1,1 for all i then A is not invertible. Therefore
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there exists an i such that Ai,1 is not a multiple of A1,1. Multiplying by Fi on

the left if necessary, we may assume that Ai,1 is positive.

Assume that Ai,1 ¡ A1,1. Then pi, 1q P I, so Ei,1 P HI . By the division

algorithm, there exists q, r P Z such that Ai,1 � qA1,1 � r and 0 ¤ r   A1,1. If

q � 2k for some k P Z, then pE�k
i,1 Aqi,1 � r   A1,1 and pE�k

i,1 Aqj,1 � Aj,1 for all

j � i. If q � 2k � 1 for some k P Z, then �A1,1   r � A1,1 � Ai,1 � 2kA1,1   0.

Therefore 0   pFiE
�k
i,1 Aqi,1   A1,1 and pFiE

�k
i,1 Aqj,1 � Aj,1 for all j � i. We may

therefore assume that 0   Ai,1   A1,1.

Let Si be as in Lemma 4.2. Up to reindexing, we may assume that |S1| is

maximal. Since pi, 1q P I, Lemma 4.2 implies that p1, iq P I. Therefore E1,i P HI .

Since 0   Ai,1   A1,1, it follows that |A1,1�2Ai,1|   A1,1. Hence |E�1
1,iA|1,1   A1,1

and pE�1
1,iAqj,1 � Aj,1 for all j � 1. Thus we can reduce to the case where

|A1,1| � 1.

If A1,1 � �1, then F1 P HI and pF1Aq1,1 � 1. Thus we may assume that

A1,1 � 1. For all i � 1 we have that Ai,1 is even. Assume that Ai,1 � 2k � 0.

Then pi, 1q P I, hence Ei,1 P GI . It follows that E�k
i,1 A P GI . But pE�k

i,1 Aqi,1 � 0

and pE�k
i,1 qj,1 � Aj,1 for all j � i. Repeating this process for each i such that

Ai,1 � 0, we reduce to a matrix of the form

�
��

1 �

0 �

�
��.

For each p1, iq P I, we have that E1,i P H. If A1,i � 2k � 0, then pAE�k
1,i q1,i � 0

and pAE�k
1,i q1,j � A1,j for all j � i. Repeating this process for each i such that

A1,i � 0, we reduce to a matrix of the form

�
��

1 0

0 B

�
��.

Let I 1 :� tpi, jq P I | i � 1, j � 1u. Then I 1 is a star set of rank n � 1. By
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induction, B P HI 1 . But there is a natural embedding

ι : HI 1 Ñ HI , B ÞÑ

�
��

1 0

0 B

�
�� .

Therefore A P HI , which completes the proof.

Now that we have a generating set for the star groups, we will show that every

star group is the image of some representation ρΓ,J . To that end, we first give a

condition on J which results in ImpρΓ,Jq being a star group.

Theorem 4.4. Let tv1, . . . , vnu be a set of representatives of the components of

ΓJ . Assume that Dpvn, viq X tv1, . . . , vnu � tviu for all vi P tv1, . . . , vn�1u. Let

I :� tpi, jq | 1 ¤ i, j ¤ n � 1, Dpvi, vjq X tv1, . . . , vnu � tvjuu. Then I is a star

set of width n� 1 and ImpρΓ,Jq � GI .

Proof. First assume thatDpvi, vjqXtv1, . . . , vnu � tvju andDpvj, vkqXtv1, . . . , vnu �

tvku. Then since vj R Dpvi, vkq, Corollary 3.3 implies that Dpvi, vkq � Dpvj, vkq,

so that Dpvi, vkq X tv1, . . . , vnu � tvku. This shows that I is a star set.

Fix the following basis of IJpH1pX̂;Qqq.

v̂n � v̂1, v̂n � v̂2, . . . , v̂n � v̂n�1.

By Corollary 3.16, tσ̂D,v | vn R Du is a generating set. Fix some σ̂Dpvi,vjq,vi such

that vn R Dpvi, vjq. Then by Corollary 3.3, we have that Dpvi, vjqXtv1, . . . , vnu �

Dpvn, vjq X tv1, . . . , vnu � tvju so Dpvi, vjq X tv1, . . . , vnu � tvju. If i � n,

then by direct calculation σ̂Dpvi,vjq,vi � Fj. If i � n, then by direct calculation

σ̂Dpvi,vjq,vi � FjEi,j. Therefore by Proposition 4.3

ImpρΓ,Jq � xtFi | 1 ¤ i ¤ n� 1u Y tEi,j | 1 ¤ i, j ¤ n� 1, pi, jq P Iuy � GI .
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Now that we have a theorem that recognizes when the image of a given rep-

resentation is a star group, we can show that all such groups can be written as

ImpρΓ,Jq for some pΓ, Jq.

Theorem 4.5. Let I be a star set of width n. Then there exists a graph Γ and a

vertex set J such that ImpρΓ,Jq � GI .

Proof. Let J � tv1, v2, . . . , vn, vn�1u and let W :� twi,j | 1 ¤ i   j ¤ n� 1u. Let

V pΓq :� J \W

and let

EpΓq :� tpvi, wj,kq | pi, jq P I or pi, kq P I or i � n� 1u

By construction, Γ is a bipartite graph, and J consists of pairwise non-adjacent

vertices. Since pvn�1, wi,jq P EpΓq for all 1 ¤ i   j ¤ n � 1, we have that

Dpvn�1, viq X J � tviu for all 1 ¤ i ¤ n� 1.

Assume that pi, jq P I. It follows that j � n� 1. Let pvj, wb,cq P EpΓq. Then

either pj, bq P I or pj, cq P I. Since I is a star set, it follows that either pi, bq P I or

pi, cq P I. Hence pvi, wb,cq P EpΓq. This shows that lkpvjq � lkpviq, which implies

that Dpvi, vjq X J � tvju.

Now let 1 ¤ i, j ¤ n be such that Dpvi, vjq X J � tvju. Then since

pvj, wj,n�1, vn�1q is a path in Γ, we must have that wj,n�1 P lkpviq. This im-

plies that pi, jq P I.

We have shown that Dpvn�1, viq X J � tviu for all 1 ¤ i ¤ n and that

I � tpi, jq | 1 ¤ i, j ¤ n,Dpvi, vjq X J � tvjuu. Therefore by Theorem 4.4, we

have that ImpρΓ,Jq � GI .
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