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Abstract

In 2009 Grunewald and Lubotzky published a paper in which they defined a
family of linear representations of the automorphism group of a free group. In this
dissertation, we will use their ideas to construct a family of linear representation
of the automorphism group of a right-angled Coxeter group. We will then use
graph-theoretic properties of the defining graph to systematically decompose the

image group into a group of block upper triangular matrices.
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Chapter 1

Introduction

1.1 Main Results

In 2009 Grunewald and Lubotzky published a paper ([GL]) in which they con-
structed a family of linear representations of the automorphism group of a free
group. The group Aut(F,) is in some sense analagous to the mapping class
group of a surface, which is the group of orientation-preserving homeomorphisms
up to homotopy. In fact, the Dehn-Nielsen-Baer Theorem implies that the ex-
tended mapping class group of a surface is isomorphic to the outer automorphism
group of the fundamental group of the surface, which is a 1-relator group. Both
Aut(F),) and the mapping class group are of much interest in geometric group
theory. Grunewald and Lubotzky subsequently published a paper in conjunction
with Larsen and Malestein (J[GLLM]) in which they used the same idea to con-
struct a family of linear representations of the mapping class group. They used
these representations to show that the mapping class group has a rich family of
arithmetic quotients.

Often a comparison is made between Aut(F,,)/mapping class groups and lat-



tices in Lie groups/arithmetic groups. They share many algebraic properties, such
as being finitely generated, residually finite, and virtually torsion free. Further-
more, they both satisfy a Tits alternative (for the Tits alternative of a mapping
class group see [M]). This comparison can be taken much further (see, e.g.[J]).
This motivates the question of whether the mapping class group is linear, a ques-
tion which still remains open. While it is known that Aut(F},) is not linear, the
analogy between Aut(F,)/mapping class groups and lattices in Lie groups has
been fruitful.

The Grunewald Lubotzky representations can be used to prove other nice
properties and extract useful information. Koberda showed that these same rep-
resentations could detect the Nielsen-Thurston classification of automorphisms or
mapping classes ([K2]). Following this, Hadari and Liu published papers in which
they showed these representations can detect interesting dynamical properties of
mapping classes and automorphisms of free groups ([H|, [H2],[L]).

Mapping class groups are not the only groups that have similarities to Aut(F},).

The group F;, is an example of a graph product. A graph product is a group

constructed from an underlying graph by letting the vertices of the graph be gen-
erators of the group and the edges of the graph represent relations. The group
F,, corresponds to the graph with n vertices, but no edges. The automorphism
groups of graph products were studied under various conditions in [CG], [CRSV],

and [GPR]. In particular, F,, is a right-angled Artin group (RAAG), where the

generators are of infinite order and the edges represent commutator relations.
Right-angled Artin groups interpolate between the infinite abelian group Z" and
the free group F,. A right-angled Coxeter group (RACG) is like a RAAG, but

the generators are each of order 2. The similarities between free groups and

RAAGs/RACGs are born out in their automorphism groups. In particular, it is



shown in [CG] that both automorphism groups are generated by the same types
of generators.

While the automorphism groups of both RAAGS and RACGs have been stud-
ied to various ends (JAC],|C],[CV],|GS],[KW],[SS]), not much work has been done
on the representations of their automorphism groups, apart from specific cases
like Z™ and F;,. Guirardel and Sale used the Grunewald Lubotzky construction
to study automorphism groups of RAAGs ([GS]). However, no one has applied
Grunewald and Lubotzky’s ideas to construct representations of the automor-
phism group of a RACG. We do so in this dissertation.

Let T" be a finite graph, and let Wt denote the right-angled Coxeter group
associated to I'. Let 7 : Wr — (G be an epimorphism onto some finite group G.
Following Grunewald and Lubotzky [GL], we construct a virtual representation
pr.c.» of the automorphism group Aut(Wr). That is to say, we consider the finite
index subgroup

['(G,m):={pe Aut(Wr) | mop =7}

of Aut(Wr) and construct a representation pr g, : I'(G,7) — GL:(Q) for some
t € Z. This representation then induces a representation of Aut(Wr). While the
construction works for any choice of G, 7, we focus on a standard choice of G, 7
that depends on |V(T')|. In particular, we choose G = (Wp)® = (7,/27)V®),
and we choose 7 to be the abelianization map. Because we always make this
choice, we suppress the GG, 7 indices in our representation and write pr. The goal
of this paper is to better understand Im(pr) as we vary I'. We approach this
goal by computing the isomorphism class of Im(pr). In so doing, we give block
matrix descriptions of the matrices in Im(pr) as well as descriptions of the linear

dependencies within each block. It turns out that Im(pr) is the 2-congruence



subgroup of the integer matrices in the integer points of a linear algebraic group;
hence Im(pr) is arithmetic.

Topologically, pr can be constructed as follows. We first construct a certain
K(Wr, 1) space X. We take the cover p : X — X corresponding to the finite-
index subgroup ker(rm). The group I'(G,7) acts on the first rational homology
H,(X;Q) of X. This action is the representation pr.

Using cellular homology, we can think of H; (X :Q) as consisting of formal
sums of edges of X (up to cellular 1-boundaries). Since G acts on X by deck trans-
formations, we thus obtain an action of Q[G] on Hy(X;Q). As a Q[G]-module,
we may decompose H;(X; Q) as a direct sum of irreducible Q[G]-submodules. By
grouping together the isomorphic irreducible submodules of H;(X;Q), we obtain

what is called the isotypic components of H; (X ;: Q). We describe this in detail in

Section [2.3] Due to our choice of G,m, the isotypic components can be indexed
by subsets J < V(I') of the generating set of Wr.

In Section we show that I'(G, 7) acts by Q|G]-module automorphisms.
Thus we may consider the action of I'(G,7) on the isotypic components of
H, (X ;@Q). This gives us a decomposition of pr into sub-representations pr ;
which are much easier to compute. It turns out that to compute pr ;, we may
restrict our attention to the subgraph I'; of I" induced by J. This is made precise
in the following lemma which we prove in Section 2.4l Here 1, is an element of G
that acts by projecting onto the J-isotypic component and v is a cellular 1-chain
(up to cellular 1-boundaries) that corresponds in a natural way to v € Wr. The

precise meaning will be described later.

Lemma 1.1 (The Subgraph Lemma). Let I' be a finite graph, and let J < V(I').
Then as Q[G]-modules, I;(H\(X;Q)) = (1,0 — ) |v,w € V(I';))/{1,(0 —



W) | (v,w) € E(Ty)) = I[;(Q[G)* !, where k; is the number of components

OfFJ.

In Chapter 3 we prove a number of decompositions that allow us to compute
Im(pr ;). The idea for each of our decompositions is to write the matrices of
Im(pr ;) in an upper triangular block matrix form where each of the entries in
each block either come from Im(pr 4) for some A & J or from a known group.
Thus repeated applications of the decompositions allow us to compute Im(pr ;).

Section deals mainly with showing when elements of Im(pr ;) commute.
In Section , we decompose Im(pr ;) by introducing a division of the set J. A

m
division of J is a decomposition into subsets J = |_|A,~ such that each A; is a
union of components of I'; and contains a special poz';;f a; € A;. The special point
a; provides some level of control over which components of I'\st(a;) intersect A;.
We will formally define special points in Section After some preliminary
work, we get the following decomposition theorem.

Theorem 1.2 (TML Decomposition). Let J = |_|Ai be a division of J with
i=1

special points a; € Ar. Let Jy := {v | v € |a;]; for some 1 < i < m}. Then
Im(pr j) = ((n]m Pr.A; ) X _[m(pl"7‘]0)) x Z" where r = |{([v];,D) | v €
A\|ai]s for some 1 <m, D is a component of T'\st(v), D n A; = &}|.

In Section [3.3| we define the notion of a splitting point. We then show that if

a vertex set .J contains a splitting point, then Im(pr ;) can be decomposed as a

direct product (Proposition (3.22)).

In Section we introduce the notion of a separating set. Given two vertices

v, w in distinct components of I';, we define

sep(v,w) := {x € J | 3" € [x]; such that D(z*,v) # D(z*,w)}.



It is natural to explore this set because partial conjugations by these vertices
act on v — w as something other than an eigenvector. This set also has the nice
property that for every element ¢ outside of sep(v,w), the whole set sep(v,w)
is in the same component of ['\st(c) (Proposition [3.24). We also prove another
decomposition result (Lemma

We take a slight detour in Section [3.9|to deal with a difficult case not covered
by the hypotheses of Lemma [3.26] To that end, we introduce the notion of

a compressible component. A compressible component is a component of I';

which can be compressed to a single vertex without affecting Im(pr ;). This will
be formally defined in Section [3.5} This gives us a new method of computing
Im(pr ;).

In Section (3.6 we finally prove how to compute the isomorphism class of
Im(pr ;) for arbitrary I, J (Theorem [3.37).

Up until this point in the dissertation we have focused on how to compute
Im(pr, ;) for given I', J. One can also ask the following question. Which groups
can be written as Im(pr ;) for some (I', J)? In Section {4.1{ we show that a certain
family of groups can be obtained in this way. To be more precise, consider the

set

Gr:={MeTw(2) | M;; = 0 for all (i,j) ¢ I}

where I, (2) is the kernel of the map GL,(Z) — GL,(Z/2Z) and I < {1,2,...,n}>
We give a condition on the index set [ that is equivalent to G; being a group.
Then every group G can be written as Im(pr ;) for some (I', J). In particular,
we see that the intersection of the upper triangular matrix group with I',(2) can

be written as the image of one of these representations.



1.2 Index of Notation

For the convenience of the reader, we collect here some of the more important

notation that is consistent throughout the paper.

I': a finite graph

Wr: the right-angled Coxeter group associated to I'

G: a finite group, usually Wg = (Z/2Z)" where n = |V (T)]

m: an epimorphism from Wt to G

N(G,m):={pe Aut(Wr) | mop =7}

pr: the virtual representation of Aut(Wr) constructed in Section
X: the K(Wr, 1) space constructed in Section

X: the cover of X corresponding to ker(r)

Aut’(Wr): the subgroup of Aut(Wr): generated by partial conjugations
Out’(Wr): Aut’(Wr)/Inn(Wr)

op.w: the partial conjugation by v on the component D of I'\st(v)

J: a subset of V(I)

I';: the subgraph of I' induced by J

kj: the number of components of I';

[v]s: the component of I'; containing v

pr.;: the projection of pp onto Aut(I;(H(X;Q)))

P i={op, |ve J,Dn J\[v]; # T}

g: the image of o in Out(I)

Q>

= pr.s(0)
D(v,w): the component of I"\lk(v) containing w
[,(2) := ker(GL,(Z) — GL,.(Z/27))



sep(v,w) := {x € J | 3x* € [z]; such that D(z* ,v) # D(z* w)}
Int(v, z) := ﬂ D(w,z)nJ

welv]y

D(v) := {D(w,y) 0 \[v]y |we [v]s,y € N[l



Chapter 2

Setup

2.1 Constructing the representation

Let F), be the free group with n generators. For each surjection 7 : F,, — G
onto a finite group G, Grunewald and Lubotzky constructed a representation
pc.r of Aut(F,) [GL]. We follow Grunewald and Lubotzky’s construction to get
a representation pr g . for Aut(Wr), where Wr is the right angled Coxeter group

associated to the graph I'. That is to say,
Wr:={eV()|v’=1,[v,w] =1 for all (v,w)e E(T)).

Let T be a finite graph. Let G be a finite group and 7 : Wr — G be an
epimorphism. Let R = ker(w) and R := R/[R, R]. The action of Wr on R by

conjugation leads to an action of G on R. Let
I'(G,7) :={peAut(Wr) | mop = 7}.

Then I'(G, ) is a finite index subgroup of Aut(Wr). Furthermore, every ¢ €

9



I'(G,7) induces a G-equivariant linear automorphism ¢ of R. Indeed, given
w € Wr and ¢ € I'(G, ), we have that p(w) = wr, for some r, € R. Hence
o(wrw™) = wrye(r)rytw™! holds for every r € R. But this is equivalent to
we(r)w=! modulo [R, R], which implies that ¢ : R — R is G-equivariant. Ten-
soring the domain and codomain of ¢ by Q induces a G-equivariant linear trans-

formation ¢ : R®; Q - R®z; Q. This yields a representation

PrGan - F<Ga 7T) - GLt(Q)a 2 95

for some t € Z. We wish to describe the image of this representation as we vary
I' for a standard choice of G, 7 that depends on TI'.

Let V(I') = {vy,...,v,}. Then our choice of finite group G is the group
Wgb = (Z/2Z)", and our epimorphism 7p : Wr — W2 is the abelianization
map. We write 7 when I' is understood. Since we will always use this choice
of GG, ™ unless we say otherwise, we compress the GG, 7 in our notation and write
Pr = Pr,G«-

We can translate the above description of our representation into a topological
description as follows. Let I' be a finite graph, let G be a finite group, and let and
7 : Wr — G be an epimorphism. We construct a K(Wr, 1) space X as outlined

in [H3], Section 4.2. We start with the wedge sum \/ S!. For each v e V()
veV(T)
we attach a 2-cell to the loop vu. For each edge (v,w) € E(I'), we attach a 2-cell

to the loop vwvw. We then attach some higher dimensional cells in such a way
that the higher order homotopy groups become trivial.

By covering space theory, there is a cover of X corresponding to each subgroup
of m(X) = Wr. Let p: X — X be the cover of X corresponding to the subgroup

R := ker(n). Then G is the deck transformation group of X. Fix a lift # of the

10



vertex * in X to the cover X. Given a deck transformation g € G, we let g= be
the image of * under the deck transformation g. This gives us a labeling of the
vertices of X.

For each loop v in X, there is a lift © of v based at =. Note that the terminal
vertex of v is the vertex m(v)*. Given a deck transformation g € G, we let gv
denote the image of ¥ under the deck transformation. This is precisely the lift of

v based at the vertex g#.

Example 1. Let I be the graph

(%1 Vo
Then the 1-skeleton of X is the graph

and the 1-skeleton of X is the graph

62.@1

Let ¢ € T'(G,m). Since X is a K(Wr,1) space, ¢ can be considered as an
automorphism 7 (X) — m(X). This induces a unique homotopy equivalence

ox : (X,*) > (X, =) up to based homotopy (see, e.g. [H3]).

11



The map po ¢y : X — X induces a map (powx)s : 7T1(X,§<) — m (X, *). By

A

definition of I'(G, 7), the map ¢ stabilizes ker(m) = p.(m(X)). It follows that

A~ ~

(powx)«(m(X,#)) = pu(m1(X,#)). Therefore (popx) lifts to a map ¢ : (X, %) —

(X,#). It is not hard to see that ¢ is a lift of px.

Since I'(G, ) acts trivially on Wr/ker(r) = G, it follows that ¢ fixes the
G-orbit of 3. But this is precisely Xo. Consequently, ¢ : (X, X%) — (X, X?) is
a map of pairs. We thus get an induced homomorphism ¢, : H; (X . X0 Q) —
H,y (X ) X ; Q).

Let C*(X; Q) := Hy(X;, X;_1; Q). By Section 2.2 of [H3], there is a relative

cellular chain complex

o Hy (X XU X0Q) - (X X0 0 X% Q) - (X0, g U X% Q)

with homology groups isomorphic to Hn(X . X0 Q). But
o Hy(X% X' U X%Q) = Ho(X? X1;Q) = C5*(X; Q).
o (X', XU X%Q) = H (X', X%Q) = C{*(X; Q).
o Hy(X° &u X% Q) = Hy(X° X% Q) =0.

This shows that Hy(X, X% Q) = C(X;Q)/0,(C5”(X;Q)). Hence we have
a well-defined action of I'(G, ) on cellular 1-chains mod cellular 1-boundaries.
From this point on we let © represent the cellular 1-chain corresponding to the

vertex v up to cellular 1-boundary.

12



Example 2. Consider the inner automorphism o, by the vertex v. By definition,
for any w € E(I'), we have that o,(w) = vwv. To compute the action of o, on

w, we look at the lift of the path vwwv. Hence 6, sends w to v + 7(v)w + 7(vw)o.

m(w)x w(ow)o T(vw)x

&
A
=

X

2.2 Reduction to Aut’(G, )

Let I be a finite graph, and let Wt be the right-angled Coxeter group associated
to the graph I'. The goal of this section is to show that for the standard choice of
finite group G and epimorphism 7 : W — G, the group I'(G, 7) is just Aut®(Wr),
the group generated by partial conjugations of Wr. We begin by describing

Aut(Wr). By [CG], Aut(WWr) is generated by three types of automorphisms:
1. Graph automorphisms

2. Dominated transvections: Choose distinct vertices u,v such that st(u) <

st(v). Then define

w fw=u
Tup(W) 1=
w ifw#u

3. Partial conjugations: Choose a vertex v. Let D be a connected component

13



of the graph T'\st(v). Then define

vwo™t ifwe D

opy(w) =
w ifwé¢ D

We may then define the following two subgroups:

o Aut’(Wr) is the group generated by partial conjugations

e Aut!(Wr) is the group generated by graph automorphisms and dominated

transvections.

Given a right-angled coxeter group Wp, a word is a finite sequence w =

(v, vs?, ..., ver) where for each 1 < i@ < n we have v; € V(') and ¢; € {£1}.

We call n the length of the word w. Each word represents an element of Wr,

namely the element v{'v5* ... v5"

obtained by multiplying together the elements
in the sequence. Note that multiple different words may represent the same group

element. A word w is said to be in reduced form if there is no word representing

the same group element with a smaller length than w. Note that the reduced
form of a group element need not be unique. However, any two reduced words
representing the same group element differ only by repeated swapping of the order
of adjacent vertices (Lemma 2.3 of |[GPR]).

The following lemma will help us to better understand Aut'(Wr).

Lemma 2.1. Let I be a finite graph. If ¢ € Aut'(Wr), then for allve V(T) we
k

have that p(v) = nvi in reduced form for some {v; € V(I') | 1 < i < k} which
i=1

form a complete subgraph of I.

Proof. We prove this by induction on the length of a word in Aut'(Wr). The

base case is trivial.

14



Now assume that for all ¢ € Aut!'(Wr) of length < k that the induction
hypothesis holds. We can increase the length either by composing by a graph
automorphism or a dominated transvection. Since graph automorphisms take
complete subgraphs to complete subgraphs, we need only consid:r composing by

a dominated transvection. Let ¢ € Aut'(Wr) such that p(v) = n v; and let 7,4,
i=1

— 1=

be a dominated transvection. If u ¢ {v; | 1 < j <k}, then 7,,00(v) = | | v; and

A

we are done. If, on the other hand, u € {v; | 1 <@ < k}, then for all 1 < i <k
we have v; € st(u) € st(w) since {v; | 1 < i < k} form a complete graph and
Tuw 18 well-defined. Therefore {v; | 1 <i < k} U {w} form a complete subgraph,

completing the induction. O
In order to prove that T'(G, 7) = Aut®(Wr), we first show the following lemma.
Lemma 2.2. If ¢ € Aut'(Wp)\{Id} then ¢ ¢ T(G, 7).

Proof. Let ¢ € Aut'(Wr)\{Id}. If ¢ is a graph isomorphism, then it is not

in ['(G,w). By this and Lemma [2.1] we may assume for some v € V(I') that
k

p(v) = Hvi # v in reduced form and the v; form a complete subgraph. But
i=1

then W(ﬁvi) # 7(v). O

=1

We now have all the tools we need to prove the main result of this section.
Lemma 2.3. I'(G, 1) = Aut’(Wr)

Proof. By proposition 5.3 of [CG], Aut’(Wr) is the group of conjugating auto-
morphisms, i.e. automorphisms where the images of generators are conjugates.
Since G is abelian, and 7 is a homomorphism, for any v € V(I') the image of a

conjugate of v under 7 is the same as for v. Thus Auty(Wr) < I'(G, 7).

15



To show the reverse inclusion, we will first show that Aut'(Wr) normalizes
Aut’(Wr). Let o = op. be partial conjugation by v on the component D of

[\st(v) and v be a graph isomorphism. Then for all w € V(I'), we compute

€

v oo oy(w) = (W (w)r™) =77 () Wy (v)

—€

where € € {0,1} depending on whether v(w) € D. This is a conjugate of w, so
v loooye Aut’(Wr). Now let 7 = Tuw be a dominated transvection. For any

Yogor(v) =77 (c)vr™ (c)™!, which is a

vertex v # u, let o(v) = cvc™!; then 77~
conjugate of v. Therefore to show that 7! oo o7 € Aut’(Wr) it suffices to show

that 771 o 0 o 7(u) is a conjugate of u. If w € st(v), then w and v commute and

wé¢ D, so

T looor(u) =7 (vuv w) = 7 (vuwe ) = 7 (v)ur (v) €
is a conjugate of u. If u € st(v), then v € st(u) < st(w). Hence w € st(v)

and we are in the case above. If u,w ¢ st(v), then v and w are in the same

1 —€

component of T\st(v) so 71 oo or(u) = 7 1 (vuwr ) = 7 1(v)ur t(v) “is a
conjugate of u. Since this covers all cases, 77! o o o 7 € Aut’(Wr). Therefore
Aut'(Wr) normalizes Aut’(Wr). Since Aut’(Wr), Aut! (Wr) generate Aut(Wr).
this implies that any ¢ € Aut(Wr) can be written in the form o o ¢ for some
o€ Aut’(Wr), p € Aut(Wr).

Now let ¢ € I'(G, 7) and write ¢ = ooy as above. Then since o € Aut’(Wr) <
I'(G, ), it follows that ¢ = 0~ 'o¢ € I'(G, ). By Lemmal|2.2] this implies ¢ = Id.

Therefore ¢ = o € Aut’(Cr). O

16



2.3 Isotypic components

The following information can be found in [CR]. Let G be a finite group. Then
there are a finite number of irreducible left Q[G]-modules. Let M;, My, ... M, be
the irreducible left Q[G]-modules. Every left Q[G]-module M may be written
as a finite direct sum of irreducible left Q[G]-modules M = éMZT " for some

=1

ri € Zso. Given any 1 < i < s, the left Q[G]-module I;(M) := M/ is called
the M;-isotypic component of the left Q[G]-module M. We may therefore write
M = (—T} I;(M) as a direct sum of its isotypic components.

Né:le[G] itself may be thought of as a left-Q|G]| module, where the group
action is multiplication on the left by elements of Q[G]. Thus we may write
Q|G] = é—)[i(Q[G]). Each [;(Q[G]) is not only a Q[G]-module, it is also a
ring Withizlnity 1;. From the theory of representations of finite groups, Q[G]
decomposes as a product of rings By x By x --- x By where B; is the M;-isotypic
component. Moreover, each (0,0,...,1;,0,...,0) acts on M; as identity and on
M; as 0 for each j # i. Thus, if we view B; as a subring in this way, multiplying
by 1; is the same as projection to the M;-isotypic component.

We now consider our standard finite group G = W =~ (Z/2Z)". Since G is
finite, abelian, and all elements are of order 2, its irreducible rational represen-

tations are all one-dimensional over Q. In fact the irreducible rational represen-

tations of G are precisely p; : G — Q* where J < 7(V(I')) and

-1 ifr(v)eJ
pa(m(v)) =
1 ifn(v) ¢ J

Let M; denote the irreducible module corresponding to the representation p;.

17



Then for distinct My, and M, we have that M; % M, as left Q[G]-modules.
Therefore each M is an isotypic component of Q[G]. We therefore index the
isotypic components of Q[G]-modules and their corresponding identity elements
by subsets J < 7(V/(I')) rather than integers as above.

Because the standard epimorphism 7 : Wr — G induces a bijection between
V(T') and 7(V(T")), we can think of J as indexing a subset of V(I') rather than
a subset of m(V(I')). We therefore identify J with a subset of V(I'). Hence the

irreducible Q[G]-modules are in bijective correspondence with P(V (I")).

2.4 Subgraph Lemma

We now return to considering the representation pr. Recall this arose by con-
sidering the action of T'(G, ) on the Q[G]-module H,(X;Q). It turns out to
be much simpler to consider the action of I'(G, 7) on the isotypic components of
H,y (X ; Q).

Let J < V(I'). Let I'; denote the subgraph of I' induced by J, let k; denote
the number of connected components of I';, and let [v]; denote the connected
component of I'; containing v. It turns out that decomposing H; (X ; Q) into its
isotypic components is simply a matter of understanding the subgraphs I"; (the

subgraph induced by the vertices in J). To that end, we now prove the Subgraph
Lemma (Lemma

Lemma (The Subgraph Lemma). Let I' be a finite graph, and let J <
V(). Then as Q[G]-modules, I,;(H,(X;Q)) = (1,(6—1) | v,w € V(I;))/{1,(t—
w) | (v,w) € E(Ty)) = L(Q[G]) .

Proof of Subgraph Lemma. Let d; : C*(X;Q) — C¢(X;Q) be the boundary

maps on the cellular chain complex and let p; ; : C(X;Q) — I,(C(X;Q))
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denote projection onto the isotypic component corresponding to J. Because
d;(1,0) = 1,d;(0), the p; ; induce a boundary map on the chain complex

I;(Ce(X;Q)) such that the following diagram commutes.

S O5(X;Q) — 2 Of(X;Q) — P C5U(X;Q)

p”l pul po,Jl
ds

e L(O5(RQ) s L(CF(R:Q) — L(CE(X:Q))
Furthermore I;(H(X;Q)) = ker(d;)/Im(d,) is just the first homology of the
induced chain complex.

Let 9 be an element of C?(X; Q). Then dy () = (7(v) —1). Projecting onto
I;(C*(X;Q)) is the same as multiplying by 1,;. Thus we compute

2.1, ifved

di(1;0) = 1;(m(v) = 1)i = (pyonm(v) — 1)1 =
0 ifvegJ

Therefore ker(d;) = (1,;(0 — ) | v,w e V(T,))@® {10 | v¢ V(T))).

We now wish to compute Im(cfg). Let f, denote the 2-cell in X attached to the
lift of v® based at . Then dy(f,) = (7(v) + 1)0. Let f, ., denote the 2-cell in X
attached to the lift of [v, w] based at #. Then ds(fy, ) = (1—7(v))W+ (7(w)—1)0.

Looking now at the induced boundary map, we see that

i 2.1,0 ifvgJ
do(1,fo) = (pyom(v) + 1)1,0 =
0 ifved
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JQ(lJfU’w) = (} — pPJ OW(U))lJ’lI) + (PJ ow(w) - 1)1J@ =

2-1(w—0) fvwed
—2- 1w ifveJw¢J

2-1;w ifv¢g JwelJ

0 ifov,we¢J
\

It follows that Im(dy) = {(1;(0 — ) | (v,w) € ET)) @10 | v ¢ V(L))

Therefore
L(H\(X;Q)) = L;(H{*(X;Q) = ((1,(6—) | v,w e V(L)@ | v ¢ V(T))))/

(L0 =) [ (v, w) € E(L'y)) & 1s0 [ v ¢ V(L))

This gives us the first isomorphism. To see the second one, let {vy, ..., v, } be
a set of representatives of the components of I';. Then {1;(0;11—0;) | 1 <1 < ky}

is a basis for I;(H™(X;Q)). O

We now return to the automorphism group I'(G,7), which we showed is
equal to Aut’(Wr) (Lemma . Let pr; denote the projection of pr onto
Aut(I;(H,(X;Q))). We will mostly be studying the images of these pr ;. When
there is no room for ambiguity, given any ¢ € Aut’(Wr), we let & denote the
map on C¢(X;Q)/d,(C5*(X;Q)) induced by o described in Section 2.1 Since
& is linear, and elements of I;(H,(X;Q)) are essentially linear combinations of
elements of C¢(X;Q)/6,(C5*(X;Q)), we also let & denote the matrix pr (o).
It will always be clear from context which definition of & is being used.

The following corollary tells us that we can ignore partial conjugations by

elements not in J. Recall that [v]; is the component of T'; containing v.
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Corollary 2.4. For any v ¢ J and any partial conjugation o = op, of D by v,
we have that 6 = Id. Furthermore, for any partial conjugation o = op, such

that ve J and D n J\|v|; = &, we have that 6 = Id.

Proof. For the first statement, if w ¢ D, then o(w) = w, hence 6(1,w) = 1,w.

1 = pwv. In this case, the induced automorphism

If we D, then o(w) = vwv~
on Cy(X; Q) maps the 1-chain @ to the 1-chain © 4 7 (v)w + 7(vw)d. Note that
ve¢J = 1;0 = 0. Projecting onto ]J(Hl(X;Q)), we get that 6 maps 1;w to
Ly(0 4+ 7m(v)w + w(vw)v) = 1,0+ pyom(v)lw + pyom(vw)l ;0 = 1,w. Therefore
o acts as identity on all the 1-chains mod boundaries in I;(C4 (X, Q)),so 0 =1d.

For the second statement, let 1w € I;(C4 (X, Q)) be non-zero. Then if w ¢ D,
we have that o(w) = w. If w € D, then by hypothesis w € [v];. By the
Subgraph Lemma (Lemma , 1,0 = 1, inside of I;(Hy(X;Q)). By the
above calculation, 6(1,w) = 1,0+ pyon(v)1,;0 + pyom(vw)l;o = 2(1,;0) — 1 0.

Inside of I;(H,(X;Q)) this equals 1. Therefore & = Id. O

To make use of the above corollary we establish the following notation. Let

I" be a graph, J < V(I'). We define
P = {op, |ve J, DnJ\[v]; # T}
We also define the following subgroup of Aut®(Wr).
Aut” (Wp) .= (PY).

Given op, € P to compute 0p, it suffices to know how o p , acts on vectors
of the form b — a for a,b € J. That computation is the content of the following

lemma.
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Lemma 2.5. Let op, € P and a,be J.

~

1. If a,b¢ D, then 6p,(1;(b—a)) = 1,(b—a).

~ ~

2. ]fa,be D, then 5’D7v(1J(b— d)) = _1J(b_ d)

~ ~

3. Ifbe D,a¢ D, then 6p,(1;(b—a)) =2-1,(0 —b) + 1,(b—a).

~

4. IfaeD,b¢ D, then 6p,(1,(b—a)) =2-1,(6 —a) —1,(b—a).

Proof. If w ¢ D, then op,(w) = w, so dp,(lyw) = 1;0. If w e D, then
opw(w) = vwv, so 6p (1) = 1,0+ pyom(v)l+pyom(vw)l o = 2-1,;0—1 0.

The result follows by linearity. O]

Knowing how partial conjugations act on vectors of the form b—a for a,be J,
we see that writing 1; all the time isn’t really necessary. Therefore we will abuse
notation and will set v = 1;0.

Corollary allows us to restrict the domain of pr; to Aut’(Wr) when
computing its image. The following lemma will allow us to restrict the codomain

of pr s as well.

Lemma 2.6. For any choice of basis of I;,(H,(X;Q)) where every vector is of the
form v —w for some v,w € V(I'), we have Im(pr. ;) < I'y,—1(2) where I',(2) :=

ker(GLn(Z) — GL.(Z/2Z)).

Proof. Fix a basis {0; — ;1 | 1 < i < ky} of I;(H,(X;Q)). By the above com-
mentary, we need only consider the images of elements of P/, Let op, € P'/.

Then by Lemma [2.5] we have

0D, (Vig1 — 0;) = a0 — V1) + b(0 — 0;) + (Vi1 — ;)
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for some a,b € {0,4+2} and c e {+1}.
Now © —©; need not be a basis vector, but since v, v; € J we can write v —v; as
a linear combination of basis vectors with all coefficients equal to 1 or 0. If v = v;
j—i
and j < ¢ then 0 — 0; = jz:(@j_kﬂ — 0;_y) (similarly for ¢ < 7). If ¢ = j, then
v — 0; = 0. Thus each baski;lvector maps to a linear combination of basis vectors

where the coefficients are all +2s or Os except the coefficient on the original basis

vector, which is +1. This shows that & € T',(2). O

By virtue of Lemma and Corollary 2.4] we adopt the standing assump-
tion that pr : Aut”(Wr) — TI'y,_1(2). We now show that this is the most we
can restrict the codomain in general. However, we first introduce the following
notation which will be used henceforth. Given non-adjacent vertices, v,w € J,
let D(v,w) denote the component of I"\lk(v) containing w. We use lk(v) in this
definition rather than st(v) so that we have D(v,v) = {v}. This will be useful

later.

Theorem 2.7. Let & # J < V(I'). Let K be a set of representatives of the
components of I';. Assume that for each pair of distinct vertices v,w € K we
have D(v,w) n K = {w}. Then Im(pr.;) = Tk,-1(2). In particular, if T is

discrete, then Im(pr ;) = I'1;-1(2) for every nonempty J < V(I').

Proof. Let K = {vy,va,...,vg,}. It is known that for all n > 1 the group I',(2)
is generated by {E; ;, F; | 1 <i,j < n,i # j} where E; ; is the matrix identical to
the identity matrix except in the (i, j)-entry, which equals 2, and F; is the matrix
identical to the identity matrix except in the (4, 7)-entry, which equals -1 (see, for
example, [K]).

Fix the basis 0y, — 01, 0, — 2, .., 0%, — 0,1 of I;(H1(X;Q)). By Lemma

[2.6] we know that Im(pr ;) < T'x,—1(2). Thus it suffices to show that each element
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of {E;;,Fi |1 <i,j <ksj—1,i+#j}isin Im(pry). Let 1 <i,57 < ky — 1 with

1 # 7. Then by direct calculation,

O D(vi,wj)wi * ID(vg ;,05) 0k, — Ei»j

O-D(k(],vi),vk‘] = F;.

This completes the proof.
O

We conclude this section with a couple of simple observations that will be

used throughout
Lemma 2.8. For any J < V(I') the following hold.
1. For any partial conjugation o € P/, we have & is of order 2.

2. For any inner automorphism o relative to J (i.e. o conjugates all of J by

some element v), we have 6 = —1d.

Proof. For the first statement, this follows immediately from the fact that o is
of order 2, which follows from the fact that every generator v € V(I') of Wr is of
order 2. For the second statement, this follows from the second case calculation

in the proof of Lemma [2.6] O
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Chapter 3

Computing Im(pr ;)

3.1 Commutation relations

In this section we prove a strong connection between commuting matrices in
Im(pr ;) and commuting outer automorphisms in Out’(Wr) := Aut®(Wr)/Inn(Wr).
To understand when two outer automorphisms commute, we must first recall the

definition of a separating intersection of links (SIL). We do so here.

Definition 3.1. Let I" be a graph. A Separating Intersection of Links(SIL) is a

triple (u,v | w) of vertices u,v,w € V(I') such that v and v are non-adjacent and
w is not in the same component of T'\(lk(u) N lk(v)) as u or v. One may also

write (u,v | D) where D is the component of T'\(lk(u) n lk(v)) containing w.

One reason that SILs are useful is that if (u,v | D) is a SIL, then D is not only
a component of I'\(lk(u) U lk(v)), it is also a component of I'\lk(u) and I'\lk(v).
This will be the content of Lemma [3.40 However, before we can prove that, we

need the following lemma from [GPR] (Lemma 4.3).
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Lemma 3.2 (GPR). Let 0¢y,0p,. be partial conjugations. If v,w are non-

adjacent and w ¢ C, then C nD = & or C < D.

For our purposes, the following form of the above lemma will be more useful.
Recall from Section the following notation. Given non-adjacent vertices,

v,we J, let D(v,w) denote the component of I'\lk(v) containing w.

Corollary 3.3. Let u,v,w € J be pairwise non-adjacent. Then if v ¢ D(u,w)
then D(u,w) € D(v,w).

Proof. Consider the partial conjugations o pyw)u and op(,w)w- By Lemma [3.2]
either D(u, w) n D(v,w) = & or D(u,w) S D(v,w). But w € D(u,w)n D(v,w).
Therefore D(u,w) € D(v,w). O

Lemma 3.4. Let v,w be non-adjacent vertices. Then, (v,w | D) is a SIL <=

for all d € D, we have D(v,d) = D(w,d) = D.

Proof. By the definition of a SIL, D is a component of I'\(Ik(v) n lk(w)). Let
d € D. Then by the definition of a SIL, we have that w ¢ D(v,d) and v ¢ D(w, d).
Since D(v,d) n D(w,d) # &, Corollary [3.3 implies that D(v,d) = D(w, d).

Let u € D(v,d). Then there is a path « from u to d that does not pass through
st(v). It follows that a does not pass through lk(v) n lk(w), hence u € D. This
shows that D(v,d) € D.

Now let u € D(v,d)*. Let a be a path from d to u. We claim that o must pass
through lk(v) nlk(w). Clearly it passes through lk(v). If a passed through lk(w)
prior to passing through lk(v), then we would have a path 8 from d to w that
did not pass through lk(v). However (v,w | d) is a SIL, so this is not the case.
Therefore v does not pass through lk(w) prior to passing through lk(v). Similarly,

a does not pass through lk(v) prior to passing through lk(w). Since « passes
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through 1k(v), it follows that « passes through lk(v) m lk(w). This shows that
D(v,d)* < D* and hence D(v,d) = D. By symmetry, D(w,d) = D = D(v,d).
Next, assume that D(v,d) = D(w,d) = D where D is the component of
[\ (Ik(v) N Ik(w)) containing d. Then v ¢ D(v,d) = D and w ¢ D(w,d) = D, so
(v,w | D) is a SIL. O

We now turn our attention to determining when matrices in pr j(P"7) com-
mute. We establish the following notation. Given an automorphism o € Aut®(IWr),
we let & denote the image of o in Out®(Wr). The following lemma, though proved
in [GPR] is stated in our preferred form in [SS| (Lemma 1.4). Tt tells us when

two outer automorphisms commute.

Lemma 3.5 (SS). Given two partial conjugations oy := 0¢,, and o9 := 0p,, we
have that 1,05 do not commute <= there exists some w € V(I') such that

(u,v | w) is a SIL and one of the following conditions is met:
1. weC=D
2. ue D,veC
3. veCweD

4. ueDweC

Recall that by Lemma [2.8] every inner automorphism maps to +Id. Combin-

ing this with Lemma [2.6] we get the following commutative diagram.

AU_tJ(WF) E— OutJ(Wp)

PF,Jl lﬁr,J

Lr=1(2) — Dy, -1 (2)/{£1d}
We use this diagram to prove the following result.
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Proposition 3.6. Let 0¢y,0p, € PUI L If Ocu and op, commute then 6¢,, and

Op commute.
However before we prove this, we need the following lemma:
Lemma 3.7. There is no A € T',(2) such that A*> = —Id

Proof of Lemma[3.7]. Let A € T',(2). Then either A1; =4 1 or A;; =4 3. In
either case, we see that A%}l =, 1. Furthermore, for all 2 < i < n, we have
that A;;A;; =4 0. Thus (A?);; = Ail + iAl,iAi,l =, 1. But (-Id);; #,4 1.
Therefore A% # —Id. - O
Proof of Proposition[3.0. If 31,52 commute, then the above diagram implies that
[61,02] = +1d. By the first statement of Lemma [2.8] we have ([01,02]) = (61 ©
&2)2. Then by Lemma [3.7, we have (6, o 63)? # —Id. Therefore [61, 6] = 1d, so

01 and 09 commute. O

The reverse direction to Proposition does not hold in general. However it

is easy to state when it holds. First we need the following definition.

Definition 3.8. Let I" be a finite graph and let J < V(T"). We say (u,v | w) is a

SIL relative to J if (u,v | w) is a SIL, u,v,w € J, and [u]; # [v];. We also say

(u,v | D) is a SIL relative to J if (u,v | w) is a SIL relative to J for some w € D.

We require [u]; # [v]; in the above definition because if [u]; = [v], then
# = ¥. Thus this requirement is in some sense analogous to the requirement for
SILs that v and v be non-adjacent. We now show that partial conjugations by

elements u, v € J such that [u]; = [v]; commute.

Proposition 3.9. Let 0¢.,0p, € P/ be such that [u]; = [v];. Then 6¢, and

Op commute.
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Proof. Fix a basis B of I;(H,(X;Q)) such that each element of B is of the form

>

— b for some w & [u];. Then for each & —w € B we have that 6¢, (0 — W) =
+(a — w). Therefore ¢, is a diagonal matrix. Similarly, since @ = v, we get

that op, is a diagonal matrix. Therefore 6¢, and 6p, commute. O

Corollary 3.10. Giwen u,v € J, if u and v do not form a SIL relative to J, then

GCus Opw commute for all oc,0p,, € PHY.

Proof. Let oc,0p, € P57, Assume that u and v do not form a SIL relative to
J. If [u]; = [v]s, then 6p, commutes with ¢, by Proposition . If not, then
by Proposition 0p,» commutes with ¢, unless op, does not commute with
0cu- By Lemma [3.5] this implies that (u,v | w) is a SIL for some w € V(I') and
one of the four conditions is met. Since u and v do not form a SIL relative to
J, it follows from Lemma that w ¢ C' and w ¢ D. Thus we must have that
ue D,veC.

We now show by contradiction that (C'v D) nJ = J. Let j € J\(C v D).
Then since j ¢ C' = D(u,v), it follows that v ¢ D(u,j). Corollary implies
that D(u,j) € D(v,j). Similarly, since j ¢ D = D(v,u), we get that D(v,j) <
D(u, 7). This implies that D(u,j) = D(v,j). But then by Lemma we have
that (u,v | D(u,j)) is a SIL relative to J. This is a contradiction. Therefore
(CuD)ynJ=J.

By direct computation, for any w € J we have [o¢ ., 0p,|(w) = vvwvwvuvu

0 [6¢u, 0poy] = Id. This shows that ¢, and 6p, commute. O

We now have all the tools we need to say exactly when the images of two

partial conjugations commute.

Proposition 3.11. Let 0¢y,0p, € PUJ. Then Ocu and 0p, do not commute
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<= there exists some w € J such that (u,v | w) is a SIL relative to J and one

of the following conditions is met:
1. weC=D
2. ue DveC
3. veCweD
4. ue DyweC

Proof. Assume that ¢, and op, do not commute. Then by the contrapositive
of Proposition [3.6, we see that ¢¢, and 6p, do not commute. By Lemma [3.5]
this implies that there exists some w € J such that (u,v | w) is a SIL and one
of the four conditions is met. Note that the contrapositive of Proposition
implies that [u]; # [v],. If D(u,w) = C, then (u,v | C) is a SIL relative to .J
and one of the four conditions is met. Similarly, if D(u,w) = C, then (u,v | C)
is a SIL relative to J and one of the four conditions is met. Thus we can assume
that w € D and v € C'. In this case, it remains to show that u and v form a SIL
relative to J. This follows from the contrapositive to Corollary [3.10]

Now assume that there exists some w € J such that (u,v | w) is a SIL relative
to J and one of the four conditions holds. We check case by case that ¢, and
&p.» do not commute by finding a vector in I;(Hy(X,Q)) which [6¢,4,p.,] does

not fix.
1. (we C = D): Then [6cy, 0po|(W — 1) = 40 — 40 + W — a.

2. (u € D,v € C): In this case, neither (u,v | C') nor (u,v | D) is a SIL.

Therefore w ¢ C'u D, It follows that [6¢.y, 0p,| (0 —0) = 40 — 44 + W — .
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3. (ve C,w e D): Since w € D, we have that (u,v | D) is a SIL. Hence u ¢ D.

~

It follows that [G¢u, 0p,|(W — 1) = 40 — 44 + b — 4.
4. (ue D,we C): Then [6cu, 0po](W0 — ) =40 — 44 + b — 0.

Since [u]; # [v]s, we have that 40 — 44 # 0 in I;(H,(X;Q)). Thus each of

the above calculations show that [6¢., 0p ] # Id. O

3.2 TML Decomposition

The goal of this section is to prove a decomposition theorem that will allow us to

reduce the size of our vertex set J subject to certain conditions. The basic idea
m

of the argument is to partition J into ”components” J = |_| A; in a nice way.

We use this partition to break Im(pr ;) into three different ;ﬁ)groups.

e The subgroup T is generated by images of partial conjugations by elements
of A; on subsets of A; for some i. Thus, choosing the appropriate basis,
you almost end up with block upper diagonal matrices with one block cor-
responding to each A;. Unfortunately, to make a complete basis, we need
to include vectors which are a difference of vectors from distinct A;. We

group these all into a block at the end. After some slight modifications,

you end up with matrices that look like this:

(v 0 0 . 0]
0 My 0 ... 0
0 0 M, 0

0 0 0 Id|
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To clarify how T relates to our other groups, we compress the non-identity

blocks and think of 7 as consisting of block 2x2 matrices

M 0
0 Id

The blocks for our other subgroups correspond to the blocks here.

e The subgroup L is generated by images of partial conjugations by elements
of A; on things outside of A;. We choose our A; in such a way that such
elements can only act as £Id on the blocks corresponding to A;. This can
be easily modified so as to act as Id on these blocks. In so doing, we end

up with matrices of the following form:

Id M
0 Id

e In making the modifications for the subgroup £, some partial conjugations
end up getting left out. These get grouped together to form the subgroup
M. Again modifications are made to ensure that M behaves nicely on the

A; blocks, and we end up with matrices of the form

Id 0
0 M

When considering the block diagonal forms of these matrices, it seems natural
to expect that Im(pr ;) = (T x M) x L. Furthermore, each of these subgroups

is either isomorphic to Im(pr ) for some J' & J or to a known group.
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Before we define our partition condition, we must first make a different defi-

nition.

Definition 3.12. Let A € J be a non-empty union of components of I';. Then

a point a € A is a special point if the following hold:

1. For each v € [a]; and each component D of I"\st(v), either D n J\[v]; € A
or D~ J\[v]; € A

2. For each v € A", we have that A < D(v,a).

The reason a special point is special is that, for any v € J, it provides some
level of control over which components of I'\lk(v) intersect A. If v € A", we
see by the second condition that only one component of I'\lk(v) intersects A. If
v € [A],, the first condition ensures that any component that intersects A (up
to elements of [v];) is in fact a subset of A. To see what happens to elements in

A\|a] s, we prove the following lemma.

Lemma 3.13. Let A < J be a non-empty union of components of I'y, Let a € A
be such that for each v € [a]; and each component D of T'\st(v) we have that
either D n J\[v]; € A or D n J\|[v]; € A", Then for all b € A\|a]; and every
component D of T'\st(b) the following hold.

1. Ifa ¢ D, then either DnJ < A or D Jc A"
2. If D < A%, we have that D is a component of T'\st(a).

Proof. 1. Let d € D so that D = D(b,d). Then by Corollary [3.3] we have that
D(b,d) < D(a,d). But by hypothesis, we have that D(a,d) n J\[a]; € A
or D(a,d) nJ\[a]; € A". Since [a]; n D = (&, this shows that D~ J € A
or DnJc A%
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2. Let d € D so that D = D(b,d). Since a ¢ D(b,d), Corollary im-
plies that D(b,d) < D(a,d). Furthermore, since d € A, by hypothesis we
have that D(a,d) n J\[a]; S A". In particular, we see that b ¢ D(a,d).
Therefore Corollary implies that D(a,d) < D(b,d). This shows that
D = D(b,d) = D(a, d).

O]

We now define the partition condition necessary for the TML decomposition

to hold.

Definition 3.14. Let J < V(I'). We say J = |_|Ai is a division of J if the
i—1
following hold.

1. Each A; is a union of components of IT";.
2. Each A; has a special point a;.

To get a sense of this definition we state a few examples.

m

Example 3. Let J = |_|[vz] J. Then define A; := [v;];. Then it is trivial that

i=1
m

J = |_| A; is a division of J. Thus every J has a trivial division. However, this
divisggrll will not be useful to us.

Example 4. Let I' have m components Dy, D», ..., D,, that intersect J for some
m > 1. For each 1 <i < m,let A; := D; nJ. Since each component of I'; lies in
a component of I', each A; is a union of components of I';. For each 1 < i < m,
fix some a; € A;. Then for any 1 < i < m, any v € [q;], and any w € A; with
J # i, we have D(v,a;) nJ = A; and D(a;,a;) nJ = A;. Thus each q; is a

special point, and J = |_| A; is a division of J.
i=1
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Example 5. Let I" be a tree, and let J be the set of leaves of I'. Given v, w € J, we
say v ~ w if Ik(v) = lk(w). Then ~ is an equivalence relation. Assume that there
is more than one equivalence class under this relation, and let Ay, Ay, ..., A,
be the equivalence classes. Since J consists of pairwise non-adjacent vertices,
each A; is a union of components of I';. For each 1 < i < m, fix some q; € A;.
Then for any v ~ w we have that D(v,w) = {w}. Furthermore, if v # w, then
lk(v) n1k(w) = . Therefore for any v € A;, w € A%, we have that D(w,v) 2 A;.
This shows that J = |i| A; is a division of J.

i=1
Example 6. In the previous examples, every point was a special point relative

to A;. This need not be the case. Consider, for example the following graph:

Vg Ug U1 V2

Yzl

V12 V14 U7 Us

Let J = {1)1, Vo, ... ,U14}. Let Al = {Ul, Vo, ... ,1]7}, and let AQ = {'Ug, Vg, . .. ,1}14}.
Then J = A; U A, is a division of J. However, v, and vs are not special points

with respect to A; and vy; and v19 are not special points with respect to As.

To simplify notation, we extend our partial conjugation notation as follows.
We write 0pn~j, := 0p, Whenever op, is defined. Furthermore, since conju-
gating any element of [v]; by v acts as identity in the homology, we may add
or remove elements of [v]; to the set being conjugated and still have the same

automorphism. Thus for an arbitrary subset D < J, we define op, := opr, for
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any D’ such that op, is defined and D\[v]; = D'\[v];. Thus, for example, we
may write o, to represent an inner automorphism relative to J.

Recall that the group 7 consists of block diagonal matrices that are non-
identity on a number of distinct blocks. It will be beneficial to us later on to look
at these blocks individually. Therefore, before working with the full subgroup
T, we consider a subgroup 7; consisting of a single block. Recall that P/ :=

{opw |veE J, Dn J\[v]; # T}

Lemma 3.15. Let J < V(T') be an arbitrary vertex set. Let A & J be a non-
empty union of components of I' ;. Assume there exists an a € A such that for
each v € |a]; and each component D of T'\st(v), either D n J\|[v]; € A or

D~ J\[v]; € A", We define the following subgroup of Im(pr ;).

T :={6p. € pra(P"") | a¢ D).

Then with respect to the appropriate bases,

7’1:{MO

‘ M e Im(pp’A)} =Ty = Im(pr.a).
0 Id

Proof. Let B4 be an ordered basis of (60— | v,w € A < I;(H,(X;Q)) consisting
of vectors of the form © — w. Let S be an ordered list of representatives of the
components of I'n 4. We extend B4 to an ordered basis B of I;(H; (X:;:Q)) so
that B=Bau{s—a|se S}

Let G := {op, € P" | a ¢ D\[v];}. Let op, € G. By the definition of
a special point, combined with Lemma [3.13] we have that D n J\[v], € A.
Therefore the matrix 6p, only differs from identity on the block corresponding

to BA.
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Let 7 : 71 — I',|(2) be the projection map onto the block corresponding
to B4. By the above argument 7 is both well-defined and injective, hence an
isomorphism onto its image.

Because A < J, we have a linear embedding
T : I4(H{(X;Q)) - I,(H(X;Q)), T(14(0—w))=1,(0—wb).

Fix the basis T '(By4) of I4(H,(X;Q)). Then for all o € prl(T1) we have that
pr.a(o) = mopry(o). Thus it suffices to show that pr 4(PV4) € #(71). By
the hypothesis, for each v € [a]; and each component D of I'\st(v), either D n
J\[v]; € Aor Dn J\[u]; € A". Thus we need only show that pr a(op,a)..) €
7(T1) for each v € A\[a];.

Note that o4, € (G), since op, € G for all components of I"\st(a) which
intersect A\[a];. Since 04, is inner relative to A, we have that pr a(c4,.) = —1d

(Lemma[2.8). It follows that for any v € A\[a]; we have

pF,A(UD(v,a),v) = pr,A <UA,a o 1_[ OD,U) € W(ﬂ)

a¢D
]

The following corollary will be useful in proving other similar decomposition

theorems later.

Corollary 3.16. Let J < V(I') be an arbitrary vertex set. Fiz some v € J. Then

{6p.w |vé& D} generates Im(pr ).
Proof. This follows immediately from Lemma by letting A = J. O
With Lemma in hand, understanding the subgroup 7 is fairly straight-
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forward.

Corollary 3.17. Let J = |_|A,~ be a division of J with special points a; € Aj.
i=1
We define the following subgroup of Im(pr, ;).

T i={op.|ve A1 <i<m,DnA\[v]; # @, a; ¢ D).

Then T = H Im(pr a,).

i=1
Proof. For each 1 < i < m, let B4, be an ordered basis of {0 —w | v,w € A;) <

I;(Hy(X;Q)) consisting of vectors of the form © — . Fix the following ordered
basis of I;(H,(X;Q)).

617827"'787717@2_@17@3_ala"'agm_gl'

Consider the set of automorphisms

Gi = {O'D,v | v e AHD M A’L\[U]J # Q’a'i ¢ D}

Then |_| pr.s(G;) is a generating set for 7. Furthermore, by Lemma |3.13| each
i-1
Gp.w € pr,s(G;) only acts non-trivially on the block corresponding to B;. Note that

our choice of basis corresponds to the choice of basis in Lemma [3.15] Therefore

by Lemma [3.15, we have that

38



Ms

Idm—l

Next, we turn our attention to the subgroup M.

Lemma 3.18. Let J = |_| A; be a division of J with special points a; € A;. Let
i=1

M = <( n (&Aiyai))é—D,v | vela;]y for some 1 <j<m,Dn J\[v]; < AS>

Let Jy :={v | v € |a;]; for some 1 < i< m}. Then with respect to the appropriate

bases

{ [ 0

M € Im(pr,p,) } = Im{pr.,).
0 M

Proof. For each 1 < ¢ < m, let B; be an ordered basis of (0 —w | v,w € A;) <
I;(H,(X;Q)) consisting of vectors of the form © — . Fix the following ordered
basis of I;(H,(X;Q)).

81,82,...,Bm,d2—&1,d3—d17...,am—a1.

Let ( H (&Ai,ai)> - 0p, be a generator of M. Then for each A; such that
A, D
1 # 7 and A; n D # , by definition of special point we have that A; < D. It

39



follows that D J\[v]; = U A;. Therefore for each d € D~ J\[v];, there exists

A, D
an i # j such that d € A; < D. It follows that ( n (O'Ai,ai)) oop(d) = vadav.
Hence ( n (6Ai,ai))&p,v fixes B; for each 1 <7 < m.
A; €D
Let V,.,q be the vector space spanned by as — ay,as — ay,...,a,, — a,. Let

m: M — T, 1(2) be the projection onto Vord. By the above argument, 7 is both

well-defined and injective. Since Jy & J, we have a linear embedding
T: Ly (H(X, Q) = L(H(X,Q)),  T(Ly,(0 — @) = 1,(6 — ).

Fix the basis T~ ({1,(a; — a1) | 2 < i < m}) of I;,(H,(X,Q)). Then for each
o€ p;i](/\/l), we have that pr s, (c) = 7o pr.s(0).

Note that pr j,(04,q,) = Id. Thus for each generator ( H (&Ai,ai))6D,v of
AigD

M, we have that 7T(( n (6,4%%))6,371,) = pr.J(0pw)-

We now show tha%4 itg}]l)e condition D n J\[v]; & A} in the definition of M
can be replaced by the condition D n Jo\[v]; # &. From this it follows that
M = 1(M) = {pr s, (P"7°)) = Im(pr.;, ), which proves the lemma.

Let ( H (&Aiyai)) 0Gp, be a generator of M. If v € A; and D J\[v]; < A,
then for 545;@ i # 7 we must have that D n A; # ¢J. Since q; is a special point
and v ¢ A;, we have that D 2 A;. In particular, a; € D. This shows that
D n Jo\[v]; # &.

Now assume that D Jo\|v]; # . Then for some i # j, we have that a; € D.
In particular, this shows that D n A} # 5. But since v € [a;], the definition of

a special point implies that D n J\[v]; € AS-. This completes the proof. ]

Just as T can be divided into distinct subgroups with similar properties to
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T, the same can be said of the group L. It will be beneficial to us later to work
with these smaller subgroups, so we prove their properties first. The same results

about £ will follow from them.

Lemma 3.19. Let J < V(T') be an arbitrary vertex set. Let A & J be a non-
empty union of components of I'; containing a special point a. We define the

following subgroup of Im(pr ).
Ly :={6py-6pal|veA\als, D is a component of T\lk(v), D n J < A").
Then for the appropriate basis

e p <{ I,y M
— 1 <
0 Idg,

‘ M e Mkj—\sw,|5|—1(2Z)}
where v := |{([v];, D) | ve A\[a];, D is a component of T'\st(v), D n J < A%}|.

Furthermore Ly is normal in Im{pr. ;).

Proof. Let B4 be an ordered basis of (i— | v, w € A;) < I;(Hy(X;Q)) consisting
of vectors of the form © — w. Let S be an ordered list of representatives of the
components of I'n 4. We extend B4 to an ordered basis B of I;(H; (X;Q)) so
that B=Bau{s—a|se S}

Fix a generator op, - 6p, of L. Let d € D. First note that by Lemma
this generator is well-defined. This also implies that D is independent of
the choice of representative of [v];. By direct computation, the only vectors that

O0pw-0p,.q does not fix are vectors of the form w — @ where w € D. It maps these
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vectors to —2(0 — a) + (w — a). Therefore

Idg,— 15y M

Ly < { Me MkJ—|S|,\S\—1(QZ)}-

0 Id|s—1
It follows that each generator 6p, - 0p, of £; is of infinite order and com-
mutes with every other generator. Furthermore, since the entries where distinct
generators differ from identity are distinct to those generators, £, = Z".
We now show that £; is normal in Im(pr ;). Let L := 6¢, - 604 € L£1. Let

M :=6p.y € pr.s(P"7). We break into a number of cases:

e (we A,DnJ < A): In this case, D nC' nJ = . In particular, D #
C. Furthermore, w ¢ C. By Proposition M and L commute unless
(v,w | C) is a SIL relative to J (this is equivalent to (a,w | C') being a SIL
relative to J) and either v € D or a € D. By Lemma , this implies that

C'is a component of ['\st(w), so o¢,, is well-defined.

— If both v,a € D, then

wavwuwvaw if ueC
ODwC0Cw©0Ca®0Dw (u) =

u else

so that

MLMt=L"1 e[

— IfveD,a¢ D, then

awvwuwvwa ifueC
ODw®0Cw©®0Ca®0Dw (u) =

u else
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so that
MLM_I = (a-C,w ' a-C',a) ' (&C,v ' é-C',a)_l ' (OA-C,w ' &C,a) € £1
— Ifvé¢ D, ae D, then

wawvvvwaw ifueC
ODw © OCw © 00, 0 0p () =

u else

so that

MLMil = (a'cw . &C,a) . ((5’0@ . (5’07(1)72 € £1

e (we ADnJ & Aja ¢ D): If D = C, then by direct computation
MLM ' = L"1'e L. If not, let d € D ~ J\A. Then Corollary implies
that D = D(w,d) < D(a,d). The definition of special point implies that
D(a,d)\[a]; < A’. This shows that v ¢ D. Since w ¢ C, Proposition [3.11]

implies that M and L commute.

e (we ADnJ & A,a € D): By Lemma , every inner automorphism
relative to J maps to —Id. Since the image of every partial conjugation is
of order 2 (Lemma and every pair of partial conjugations by v commute,
M =6j.,- n Op'w = — n 0pw- This reduces this case to the previous

D'#D D'#D
two cases.

o (wW¢g AADnA = ): If D= C, then by direct calculation MLM™! =
L~ e L. If not, then since v,a ¢ D, Proposition implies that M and
L commute unless w € C. In addition, we must have that (v,w | D) is a

SIL relative to J, or (a,w | D) is a SIL relative to J. We show that the
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existence of one of these SILs implies the existence of the other.

Assume that (v,w | D) is a SIL relative to J. Let d € D nJ. By Lemma
3.13, we have that D(a,d) = D(v,d) = D. Then Lemma implies that

(a,w | D) is a SIL relative to J.

Now assume that (a,w | D) is a SIL relative to J. Let d € D n J. Since
D~ A= ¢, we have that v ¢ D = D(a,d). Therefore by Corollary [3.3]
we have that D(a,d) € D(v,d). Since w € C, we have that C' = D(v,w).
Since a ¢ C, it follows that w ¢ D(v,a). Applying Corollary [3.3] we see that
D(v,a) € D(w,a). Then since a ¢ D = D(w,d), we have that d ¢ D(w, a).
It follows that d ¢ D(v,a), which implies that a ¢ D(v,d). Applying
Corollary 3.3} we get that D(v,d) < D(a,d). Thus D = D(a,d) = D(v,d).
Finally, Lemma [3.4] implies that (v, w | D) is a SIL relative to J.

We can now assume that w € C' and that both (v,w | D) and (a,w | D)
are SILs relative to J. Since D(v,d) = D # C = D(v,w), we have that

D n C = J. By direct computation,

-

avuva ifueC

ODwC0CwC0C,a® UD,w(U) = 4 vawavwuwvawaw if uwe D

u else
\

so that

MLM?l = (a-C,U : a-C,a) : (&D,v : a-D,a)i2 € ['1

(w¢ A,DnA# &) Let de D n A. By definition of a special point, we
have that A € D(w,a) = D(w,d) = D. Then M = — H Gpr . and this

_ D'#D
reduces to the previous case.
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This shows that £; is normal in Im(pr ;). O

Corollary 3.20. Let J = |_|A,- be a division of J with special points a; € Aj.
i=1

Let
L:={6pytpa |1 <i<m,ve A\[a;]s, D is a component of ['\st(v), DnJ < A%).

Then for the appropriate basis,

Mjm M

Z’";£<{ R

M € Miyj o 1(22) }

wherer := |{([v];, D) | ve A\|a;]; for some 1 <i < m,D is a component of T'\st(v),

D~ J < AL}|. Furthermore L is normal in Im(pr. ;).

Proof. For each 1 < i < m, let B; be an ordered basis of (0 —w | v,w € A;) <
I;(Hy(X;Q)) consisting of vectors of the form © — . Fix the following ordered
basis of I;(H,(X;Q)).

By, By, ..., By, ay —ay,a3 — a1, . .., Gy — a1

By direct computation,

Eg{ iy m M

M € Miyj . 1(22) .
0 Id,

Let
ﬁi = <6-D,v . 5-D,ai | v E Ai\[ai]J, Dn AZ\[U]J = @, a; ¢ D>

Note that our choice of basis corresponds to the choice of basis made in Lemma
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3.19. Then by Lemma |3.19] for each 1 < ¢ < m we have that £; = Z" where
ri = {([v]s, D) | ve A\[ai]s, D is a component of M\st(v), D n J < At}|. Since

each £; only differs from identity on rows corresponding to vectors in B;, it follows
m

that £ = H L; = Z". Furthermore, since each £; is normal in Im(pr ), we have
i=1
that £ is normal in Im(pr ;). O

We are now ready to prove the TML decomposition (Theorem [1.2)).

Theorem (1.2| (TML Decomposition). Let J = |_|A7; be a division of J with

i—1
special points a; € A;. Let Jy := {v | v € [a;]; for some 1 < i < m}. Then
Im(pr ) = ((Hlm Or.A; ) X Im(ppJO)) x Z" where r := [{([v];,D) | v €
A\[a;]; for some 1 < m, D is a component of T\st(v), D n J < A%}].

Proof. For each 1 < i < m, let B; be an ordered basis of (0 —w | v,w € A;) <
I;(H,(X;Q)) consisting of vectors of the form © — . Fix the following ordered
basis of I;(H,(X;Q)).

Bl,BQ,...,Bm,CLQ — Q1,03 — A1y..., 0y — A7.
Let V.,.q be the vector space spanned by as —ay, a3 —ay, .. ., G, —a;. Consider

the following subgroups of Im(ps)
o T :={(bpy|veA, 1 <i<m,Dn A\a]s # D).
o M: <( (Ga, az)&D,U|ve[aj]Jforsomel<j<m,DmJ\[v]JC
A,CD
c
A5,

o L:={0puy0pa |1<i<m,ve A\|a;]s, D is a component of I'\lk(v), Dn
Jc Ab).
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Our choice of basis corresponds to the choices of bases made in Corollary [3.17],
Lemma and Corollary Thus by Corollary [3.17, Lemma [3.18] and
Corollary we have that

m M 0

nlm(pF,Ai) =T < { }

=1 0 Idm_1

Id_p O
= { ‘ M e Im(pnjo)} = Im(pr,,)-
0 M
Iy m M
z' =L < M e Mgy 1(22)}.
0 Id,, 1

We also know from Corollary that £ is normal in Im(pr ;). From this
and the above block matrix descriptions of 7, M, and L, we see that TML =
(T x M) x L. It remains to show that TML = Im(pr ;). It suffices to show that
pr.7(PY) e TML.

First, consider op, € P/ where v € [a;]; for some 1 < i < m. By the
definition of divisibility, either D n J\[v]; € A; or D n J\[v]; € AL In the first

case, 0p, € T. In the second case, since 04, 4, € T, We see that

500 =TT o) - (( [T ) )500) € TM.

In particular, we see that 6, = —Id e TML.

Next, consider op,, € P*7 for v ¢ Jy. Let ve A;. If D n J\[v]; € A%, then
0pw = (0pw-0pa;) Opa € TML. If D A\|a;]; # &, then 6p, € T. Finally,
if a; € D, then 6p, = — n 6pw € TML by the previous arguments. This

C#D
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completes the proof. O]

3.3 Splitting Points

In this section we give a condition that will allow us to decompose Im(pr ;) as a

direct sum of the images of representations with restricted domains.

Definition 3.21. We say that v € J is a splitting point if there exist non-empty

disjoint subsets A, B < J, such that J = Au B u|v]; and v is a special point of
both A L [v]; and B u [v],.

Proposition 3.22. Let I' be a graph, J a set of pairwise non-adjacent vertices,
and v € J a splitting point. Let A, B be as in the definition of splitting set. Then

we have

Im(pr,s) = Im(pr acp),) X Im(pr,Bop,)-

Proof. Let By be a basis of (b — i | v,w € AY < I,(H(X;Q)), and let Bg be a
basis of (0 — @ | v,w € BY < I,(H,(X;Q)). Fix some a € A,be B. Then we use
the ordered basis

B=Ba0—a,0—0b Bg.

We define the following subgroups of Im(pr ;):
o A:=(6p, € Pl | v ¢ D\[w],)
e B:={6p, e PB-Il | v¢ D\[w],)

Then by the definition of a splitting point, for any generator p, of A, we
must have that D nJ < A. Similarly, for any generator op,, of B, we must

have that D nJ € B. By the definitions of splitting point, v is a special point
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with respect to the subsets A L [v]; and B u [v];. Note that our choice of basis
corresponds to the choice of basis in Lemma [3.15] Hence by Lemma we have

M 0
{ ‘ M € Im(pl",Au[’U]J)} = Im(prvAU[”]J)
0 Id|BB|+1

B:{ Idig,+1 0
0 M

By the block diagonal descriptions above, it follows that AB = A x B =~

‘ M e Im(pp,Bu[v]J)} = Im(pF,Bu[’U]J)

Im(pr,acp,) X Im(pr gup),). Thus it remains to show that Im(pr ;) = AB.
By Corollary [3.16] it suffices to show that ¢p, € AB for all 6p, such that

v ¢ D\|w],. But this is immediate from our definitions of A and B. O

3.4 Separating Sets

Consider a vector of the form © — & in I;(H;(X;Q)) where [v]; # [w],. For any
partial conjugation op,,, the action of 6p, on v — w depends upon whether or
not v or w are in D. If neither v nor w are in D, then 6p, acts as identity on
0 —w. If both v and w are in D, then op, acts as —Id on © —w. However, if D
separates v and w, i.e. exactly one of these two vertices is in D, then v —w is not
an eigenvector (unless u € [v]; U [w];). This motivates us to make the following

definition.

Definition 3.23. Let v, w € J be such that [v]; # [w];. Then

sep(v,w) :={x € J | Iz* € ], such that D(z*,v) # D(z*,w)}.
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Right away from the definition, we see that [v]; U [w]; € sep(v, w). Besides
determining which partial conjugations induce homomorphisms for which ¢ — w
is not an eigenvector, sep(v,w) has a couple of nice properties that we outline

below.
Proposition 3.24. If ¢ ¢ sep(v,w) then D(c,v) 2 sep(v,w).

Proof. Let x € sep(v,w). Then there exists a z* € [z]; such that D(x* v) #
D(z*,w). If * ¢ D(c,v), then by Corollary [3.3] we have D(c,v) < D(z*,v). But
w € D(c,v) and w ¢ D(xz*,v). This is a contradiction, therefore z* € D(c,v). It

follows that = € D(c,v). This proves the proposition. ]
Proposition 3.25. If a,b € sep(v,w) then sep(a,b) S sep(v,w)

Proof. Let a,b € sep(v,w). Then by definition of sep(v, w), there exist a* € [a];
and b* € [b]; such that D(a*,v) # D(a*,w) and D(b*,v) # D(b*, w). Next, let c €
sep(a, b). By definition, of sep(a, b), there exists ¢* € [¢]; such that D(c*, a*) =
D(c*,a) # D(c*,b) = D(c*,b*). Corollary [3.3]implies that D(c*,a*) < D(b*, a*).
Since D(b*,v) # D(b*, w), it follows that either D(b*, a*) # D(b*,v) or D(b*, a*) #
D(b*, w). Assume without loss of generality that D(b*, a*) # D(b*,v). Then since
D(c*,a*) < D(b*,a*), we have that D(c*,a*) # D(c*,v). It follows from Corol-
lary [3.3| that D(c*,v) € D(a*,v). But w ¢ D(a*,v). Therefore w ¢ D(c*,v), so
D(c*,v) # D(c*,w). This shows that ¢* € sep(v,w), hence ¢ € sep(v,w). The

statement follows. O]

Earlier we observed that [v]; U [w]; € sep(v, w). If we have that sep(v, w) =
[v]; U [w]y, then © — W is always an eigenvector. This motivates us to explore

what happens in this case. We prove the following decomposition result.
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Lemma 3.26. If sep(v,w) = {v} u [w];, then Im(pr;) = (Im(pr,acp],) X
Im(pr ac)) X Z" where A := D(v,w) andr = |{([a];, D) | a € A, D is a component
of D\st(a),D nJ < (A u|v],) Y}

Proof. We define the following subgroups:
o A:= <5-D,a c ’PF,AU[U]J | v ¢ D>
o B:={(6p,e P |v¢ D).

o L:={6pa-6py,]|ac A D isacomponent of M\st(v),DnJ < (Au[v];)".

Let {ai,...,as} be a set of representatives of the components of I'4 and let
{b1,..., b} be a set of representatives of the components of I 4e\(,1,. Consider the
basis

D — 1,0 — Aoy ..., 0 — g, 0 — by, D — b, ..., 0— by

We show that v is a special point with respect to A s [v];. First note that
by hypothesis, [v]; = {v}. Thus if a € A = D(v,w), then D(v,a) n J\[v]; =
D(v,w) n J\[v]; = A < Auv]y, and if b e A*, then D(v,b) n D(v,w) = ¢,
so D(v,b) n J\[v]; € (A U |v];)". Furthermore, if b € (A U [v];)', then b ¢
D(v,w) nJ = A. By Corollary [3.3] this implies that D(v,w) < D(b,w). But
since b ¢ sep(v, w), we have that D(b, w) = D(b,v). This shows that v is a special
point with respect to A ui [v] .

The above argument also shows that for all j € J\[v]; we have that either
D(v,j5) n J\[v]; € A® or D(v,5) n J\[v]; € A. Note that our choice of basis
corresponds to the choice of basis in Lemma [3.15] Applying Lemma [3.15] we

have that

A0
{ ‘ Ae Im(pF,Au[v]J)} = Im(pRAU[U]J)
0 1
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1 0
B = { ‘ Be Im(pp’Ac)} = Im(pr ac)
0 B

We now turn to the subgroup £. Note that our choice of basis corresponds
to the choice of basis in Lemma Since v is a special point with respect to
A u [v];, Lemma implies that

ILe Ms,t(zz)}
0 1

and £ is normal in Im(pr ;). Therefore ABL = (A x B) x L. By Corollary [3.16]
it suffices to show that ABL contains {6p,, | v ¢ D}.

First note that 6p, € AB for any choice of D. In particular, this shows that
—Id e ABL.

Let a € A and let x € J be such that x ¢ [a]; and v ¢ D(a,z) . By Corollary
3.3, we have that D(a,x) € D(v,z). If x € A, this implies that D(a,z) S A, so
that 6p(am,e € A If © € AY then D(a,z) € A" Thus 6p(am)e - Op(az)a € L-
Since 6 p(a,z),0 € B, we have that 6p(aq). € BL. Thus ABL includes 6p, for all
a € A and all D such that v ¢ D.

Finally, let b € A"\[v];. In particular, we have that b ¢ [v];uU[w]; = sep(v, w).
Since b ¢ A = D(v,w), Corollary implies that A = D(v,w) € D(b,w). But
D(b,w) = D(b,v). Therefore D(b,v) 2 A i [v];. Now let z € J be such that = ¢
[b]; and v ¢ D(b,x). By the above statement, it follows that D (b, z) < A%\[v];.
Therefore 6p, g5 € B. Thus ABL includes 6py for all D such that v ¢ D. This

shows that ABL contains a complete set of generators of Im(pr, ;). O
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3.5 Compressible Components

We now take a slight detour to deal with the hypotheses of Lemma |3.26] Ideally,
we would like a similar statement to Lemma but without requiring that
[v]; = {v}. To see that the statement of Lemma does not hold in this case,

we provide a counter-example.

Example 7. Let I be the graph

U3 Uy
U2 Us
U1 Ve
Us U7
and let J be the vertex set {vq,vg,...,vs}. Then I' has a unique minimal separat-

ing set, namely sep(vq,vs) = {v1, V2, Vs, 06} = [v1]; L [v5],. However D(vg, vs) N
J\[v2]s & D(v1,v5) N J\[v1]; and D(vg,v1) N J\[ve]s & D(vs,v1) nJ\[vs];. Thus
if A:= D(vy,v5) nJ, then A [v1]; does not have a special point. Similarly, if
A = (D(vs,v1) n J) u [vs]y, then A does not have a special point. This was a
crucial point in the proof of Lemma because it allowed us to apply Lemma
B.19

It is possible that the conclusion of Lemma [3.26| could still hold. If this were

the case, letting A = D(vy,v5) n J, then applying Theorem , we would see
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that

Im(pRJ) = (Im(pf,{m,v2,U3,U4,v5,v6}) X Im(pr,{vnvg})) X Z2 = (F3(2) X Z’/2Z) X ZQ'

There is, however, an alternate way to solve this problem. Consider the

slightly modified graph I

U3 V4

V1,2 Us.6

Ug U7

with vertex set J' := {vy 2, v3,v4, 056,07, U} obtained by compressing the edges
(v1,v9) and (vs, vg) to a point. This graph is useful because Im(pr ;) = Im(pr ).
We give a sketch of why this is true. We will give a more formal argument later.

Any possible issue lies with partial conjugations by v; 5 (or symmetrically vs ).
The partial conjugations o y,},v; 45 fui},o105 Tvr}er A0d Tug) o, have clear ana-
logues in P*+/. However, the partial conjugation o ;.4 , does not. By consider-
ing instead the product of partial conjugations o := 0y, v,,05,06},01 9T {v3},02 T s} 09>
we are able to remedy this problem. The corresponding matrix ¢ acts on the the
symmetric difference of the sets being conjugated {vs, vy, vs, v6} A{vs}Af{vy} =
{vs,v6} by the 1-chain 0, = 05.

Now sep(v1.2,v56) = {v12, 56} is a minimal separating set. Applying Lemma

[3.26] we get that

Im(pF,J) = (Im(pf,{m,z,vs),e}) X Im(pF:J\{vl,Q})) X Z4 = (Z/QZ X Im(pFJ\{Ul,Q})) X Z4'
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We see that vy is a splitting point in I'\{vs ¢}, Proposition and Theorem

imply that
Im(pF,J) = (Z/2ZXIm(pF,{v1,2,v3,v4}) XIm(pF,{v1,2,v7ws})) xZ* = (Z/2ZXF2 (2)2) KZ4'

As (Z)27 x Ty(2)?) x Z* ¢ (I'3(2) x Z/27Z) x Z?, we see that the conclusion
of Lemma does not hold for this example.

We now formalize the above method of compressing components of I';.

Definition 3.27. Let I' be a finite graph and let J € V(I") be a vertex set. Given

v,z € J such that |v]; # [z];, we say that x is a v-expander if the set

Int(v, x) := ﬂ D(w,z)n J

wev] s

cannot be written as a symmetric difference of elements of
D(v) :={D(w,y) n J\[v]; | we [v];,y e J\[v],}.

We say [v]; is a compressible component relative to J if no z € J\[v]; is a v-

expander. A component that is not compressible is incompressible.

Proposition 3.28. If J contains a compressible component [v];, then there exists

a graph I with vertex set J' = (J\[v]; w{v'}) such that Im(pr ;) = Im(pr y).

Proof. Let I'" be the graph where the subgraph I',;, induced by [v]; is replaced

J
by a single point v’. Then the edges incident to v’ in I are precisely the edges
incident to only one vertex in [v]; in I'. Fix a basis B of I;(H,(X;Q)). Let B’

be the basis of I;(H;(X;Q)) where for every w € [v];, every occurrence of 1 is

replaced by ¢'.
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Consider the map

!/

/ _ o' i g e [v]y
fod=T, f0G)=
7 else

Note that f induces a bijection between the components of I'; and the compo-
nents of I;,. We show that for each a,b € J such that [a]; # [b]; we have that
D(f(a), f(b)) nJ < f(D(a,b) nJ), with equality when a ¢ [v].

If a € [v]y, then f(a) = v'. But I"\st(v') is a subgraph of I"\st(a). Since
flnp), = 1d, the result follows. If a ¢ [v];, then f(a) = a. Let x € D(f(a), f(b))n
J' and let a, be a path in I"\st(f(b)) from f(b) to z. If v, does not pass through
v, then «, only passes through points in J\[v];. It follows that a, induces a
path 3, in T'\[v]; from b to x such that f(S,) = a,. The result follows. Assume
that o, passes through v’. Without loss of generality, we may assume that «,
does not contain a loop. Then we may write a, = (g, v, ) for some (possibly
empty) paths g, s that do not pass through v’. Then «j, s induce paths
B1, B2 in T\[v]; such that f(51) = a; and f(f2) = ay. Furthermore, there exist
u,w € [v]; such that the terminal vertex of f; is adjacent to w and the initial
vertex of 3y is adjacent to w. By definition of [v];, there is a path £ in I" from
u to w that only passes through vertices in [v];. Then f((81, 3, 52)) = a,. The
result follows.

Next, we show that Im(pr ;) contains the images of all partial conjugations.
Let opq € P57, Let b e D so that D = D(a,b). By the previous claim, we have

that D(f(a), f(b)) nJ" < f(D(a,b) nJ). We may therefore write

F(Dnd) =] |D(f(a), f(w) nJ’

wel
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for some index set I. It follows that

pr.i(0pa) = HPF',J'(UD(f(a),f(w)),f(a)) e Im(prv ).

wel

Finally, we show that pr p (PF”J') < Im(pr ;). First, let op v € P Then

D is a component of I"\st(v"). By construction, we have that

F'\st(v’)=F\< | st(w)) = (] Dstlw).
welv];

welv];

Let x € D, so that D = D(v', z). Then by the above observation,
DnJ=DW,z)nJ=1Int(v,z).

By the definition of compressible, we may write D n J = DiADy/A...AD,,

where for each 1 < i < m we have D; € D(v). Let D; = D(w;,y;). Then

prg(opw) = [ | r.a(op,w,) € Im(pr,s).
=1

Now let op, € P/ for some a # o'. It follows that f~'(a) = {a}. Let
b € J be such that f(b) € D. Then D = D(f(a), f(b)) nJ < f(D(a,b) nJ).
Let € D(a,b) n J\[b];, and let a,, be a path in I'\st(a) from b to z. If o, does
not intersect [v];, then «, induces a path (5, in I"\st(a) from f(b) = b to z. If
o, intersects [v];, we may write o, = (g, @, ..., a,,) where each of the even-
indexed «; lies entirely in [v]; and each of the odd-indexed «; lies entirely outside
[v]; (o1 might be empty). Then each of the odd-indexed «; induces a path f; in
Mst(a) and f(a) = (B1,0', 83,0, ...) is a path in T"\st(a) from f(b) to z. This

shows that D = f(D(a,b) n J). Therefore pr y(0pa) = pr.s(opa) € Im(pr ).
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This completes the proof.
O

Unfortunately, there exist vertex sets J with incompressible components of

I';, as the following example shows.

Example 8. Let I' be the graph

U1 V2 U3 (1 Us

Ve U7 Ug (%) V10

and let J be the vertex set {vy,vs,...,v10}. Then [v1]; and [vg]; are both in-
compressible. Furthermore, the separating set sep(vy, vg) = [v1]; L [ve] s fails the
hypothesis of Lemma[3.26] As this is not the only separating set in this graph, we
can get around this fact. However, it is not inconceivable that every separating

set could fail in this way.

To avoid the issue presented in the previous example, we will show that for
every finite graph I' and J < V/(I') such that I'; has at least 2 components,
there must be a minimal separating set sep(v,w) such that either [v]; or [w],
is compressible. We first prove a couple of lemmas. The first lemma gives us a
nice consequence of a vertex being a v-expander. The second lemma tells us that
every incompressible component [v]; has at least two distinct vertices x and ,

both of which are v-expanders, and that are separated by an element of [v];.

Lemma 3.29. Let v,z € J be such that [v]; # [z];. If x is a v-expander, then
for ally € J\([v]; v |z]s) we have that D(v,x) # D(y, x).

58



Proof. We prove the contrapositive. Let y € J\([v],u[x];) be such that D(v,z) =
D(y,z). Then for all w € [v];, we have D(y,x) # D(y,v) = D(y,w). Hence
by Corollary we have that D(y,z) € D(w,z) for all w € [v],. It follows
that D(v,z) nJ = D(y,z) n J < Int(v,x). But Int(v,x) < D(v,z). Hence

D(v,x) = Int(v, x) which shows that z is not a v-expander. O

Lemma 3.30. Let v € J be such that [v]; is incompressible. Then there exist

x,y € J\[v]s such that Int(v,z) # Int(v,y) and both x and y are v-ezpanders.

Proof. First note that for any z,y € J\|v];, if v ¢ Int(v,x), then there exists
a w € [v]; such that D(w,z) # D(w,y). Hence x ¢ Int(v,y). It follows that
{Int(v, z) x € J\[v],} forms a partition of J\[v];.

By definition, there exists some z € J\[v]; such that z is a v-expander.
Assume that y is a v-expander only if Int(v,z) = Int(v,y). Since z is a v-
expander, it follows that Int(v,z) # J\[v],.

Let ¢ € Int(v,z)"\[v];. Then by assumption Int(v,c) can be written as a

symmetric difference of elements of ®(v). Since {Int(v,j) | j € J\[v],} forms

a partition of J\[v],, it follows that U Int(v, ¢) can be written as a
c €(Int(v,z))°\[v] s
symmetric difference of elements of D (v). Let {vq,vs,...,v,} S J\|v], be such
that |_| D(v,v;) n J\[v]; = J\[v];. Then
i=1

Int(v,z) = (D(v,v1)nJ\[v]))A(D(v,v2)nJ\[v] ) A ... A(D(v, v,)nJ\[v] ) A

Int(v, ¢).
c €(Int(v,z))\[v] s

This contradicts the fact that = is a v-expander. Therefore there exists y €

J\[v],; and w € [v]; such that D(w,x) # D(w,y) and y is a v-expander. O

We are now ready to prove the Proposition.
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Proposition 3.31. There is no finite graph T' and J < V(T') such that T'; con-
tains at least 2 components and every minimal separating set consists solely of

incompressible components.

Proof. 1f J contains less than 2 incompressible components then this is trivial.

Assume that J contains at least two incompressible component.

Claim 1. There exist v,w € J such that [v]; is an incompressible component, w

is not a v-expander, and D(v,w) " J consists solely of compressible components.

Let vy, vy € J be such that [v1]; # [ve]s and [v1] s, [ve], are both incompress-
ible components. Then by Lemma [3.30] there exists a wz € J\([v1]s U [va])
such that Int(ve,v1) # Int(ve,ws) and ws is a ve-expander. Without loss of
generality, we may assume that D(vg,v1) # D(ve,ws). If D(vy,w3) consists
solely of compressible components, then we are done. If not, there exists a
v3 € D(vg, w3) such that [vs], is incompressible. By Corollary we have that
D(va,v3) = D(vg,w3) S D(vy,ws). It follows that D(vy,ws) = D(vy,v3) and
D(vg,v3) € D(vy,v3). By Lemma we have that D(vy,v3) = D(vy,ws3) #
D(ve,ws) = D(vg,v3). Therefore D(vy,vs) 2 D(vq, v3).

Assume that we have constructed vy, ..., v, such that [vi];, [v2]s, ..., [vn]s
are incompressible and D(vy,v,) 2 D(va,v,) 2 -+ 2 D(v,_1,v,). Then by
Lemma , there exists a wy, 1 € J\[v,]s such that Int(v,, v, 1) # Int(v,, W, 1)
and w,,1 is a v,-expander. Without loss of generality, we may assume that
D(vp,vn1) # D(Vp, wyy1). If D(vy,, wyy1) consists solely of compressible compo-
nents, then we are done. If not, there exists a v, 11 € D(vy,, wy11) such that [v,,1]s
is incompressible. By Corollary , we have that D(v,, vp11) = D(Vp, Wpy1) S
D(vyp_1,wpy1). It follows that D(v, 1, wn 1) = D(vy_1,0,11) and D(vp, v,41) S

D(vy—1,V+1). By Lemma [3.29) we have that D(v,—1,vp41) = D(Up—1, Wpy1) #
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D(vp, wny1) = D(Vp,vne1). Therefore D(v,_1,vn41) 2 D(vn,vp41). Further-
more, by the contrapositive of Corollary [3.3] it follows that D(v,_1,vn41) =
D(vy,_1,vy,). Hence D(vy, vp41) 2 D(v2,Un41) 2+ 2 D(Vn-1,Un+1) 2 D(n, Vpy1)-
Since I' is a finite graph, this process must eventually terminate in a vertex wy
such that wy is a vx_1-expander and D(vx_1,wy) consists solely of compressible

components. This proves Claim 1.

Claim 2. Let v,w € J be such that [v]; is incompressible, w is a v-expander, and
D(v,w) n J consists solely of compressible components. Then sep(v, w)\([v]; v

[w];) contains only compressible components.

Suppose on the contrary that = € sep(v, w)\([v]; U [w]s) is such that [z], is
incompressible. Then there exists an x* € [x]; such that D(z* v) # D(z*, w).
Then Corollary [3.3| implies that D(x*, w) € D(v,w) consists solely of compress-
ible components. Since w is a v-expander, Lemma implies that D(z*,w) #
D(v,w). The contrapositive of Corollary [3.3|thus implies that D(v, 2*) = D(v, w).
But this contradicts the fact that D(v, w) consists solely of compressible compo-
nents. Therefore no such [z]; exists. This proves Claim 2.

By Claim 1, there exists v,w € J such that [v]; is incompressible, w is a
v-expander, and D(v,w) consists solely of compressible components. Claim 2
implies that [v]; is the only incompressible component in sep(v,w). It follows
that any minimal separating set in sep(v,w) has at most one incompressible

component. This proves the statement. O
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3.6 Computing Im(pr ;)

If a separating set sep(v,w) is minimal, then by Proposition [3.25, we see that
sep(v,w) = sep(a, b) for all a,b € sep(v, w). This makes minimal separating sets
particularly nice to work with. The following lemma gives another nice property

of minimal separating sets.

Lemma 3.32. Let sep(v,w) be minimal with respect to inclusion. Then for each
a € sep(v,w) there exists an a* € [al; such that for all b€ sep(v, w)\|a]; we have

that D(a*,b) n sep(v, w)\[a]; = [b],.

Proof. First, let a € [v]; U |w];. Without loss of generality, assume that a €
[v];. If sep(v,w) = [v]; U [w], then the statement is trivial. If not, let ¢ €
sep(v, w)\([v]s v [w]s). Then by Proposition combined with minimality, we
have that sep(v, w) = sep(c, w). Thus we may assume that a ¢ [v]; U [w];.

Let a* € [a]; be such that D(a*,v) # D(a*,w). Then for any ¢ € sep(v, w)
such that ¢ ¢ [a]; U [v];, we show that D(a*,v) # D(a*, c¢). This implies that
D(a*,v) rsep(v, w)\[a]; = [v],.

To begin, Proposition implies that sep(v, c) € sep(v,w). Then by mini-
mality sep(v, ¢) = sep(v, w). Hence there exists a w* € [w]; such that D(w*,v) #
D(w*,c). Since D(a*,v) # D(a*,w) = D(a*, w*), Corollary implies that
D(a*,v) € D(w*,v). But ¢ ¢ D(w*,v). Therefore ¢ ¢ D(a*,v), as claimed.

Next, let b € sep(v, w)\([a]; v [v];). Then Proposition combined with
minimality tells us that sep(v, w) = sep(b,v). We showed above that D(a*,b) #
D(a*,v). But this is the only assumption we needed to run the above argument.

Therefore D(a*,b) n sep(b,v)\[a]; = [b],.
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Using Lemma we make the following definition.

Definition 3.33. Let sep(v,w) be minimal with respect to inclusion. For each
x € sep(v, w)\([v]; v [w],), fix an element z* € [x]; via Lemma [3.32l Then for

the given choices for all [z]; S sep(v, w), we define

sep® (v, w) := {z* | x € sep(v,w)}.

Note that this definition depends on the choice of x*. However, no matter
what choice is made, it contains a unique representative of each component [z];
of I'; that intersects sep(v,w). Furthermore, Lemma says that for each
a*,b* € sep*(v, w) we have that D(a*,b*) nsep*(v,w) = {b*}.

With this definition in hand, we prove the following corollary.

Corollary 3.34. Let sep(v, w) be minimal with respect to inclusion. Then for all

distinct a*, b*, c* € sep*(v,w), we have D(a*,c*) = D(b*, c*).

Proof. By Lemma we have that ¢* ¢ D(b* a*) and b* ¢ D(a*,c*). By a
double application of Corollary [3.3] this implies that D(b*, ¢*) = D(a*,c¢*). This

completes the proof. O

We now consider a set that is slightly bigger than sep(v, w). We define this

set now.

Definition 3.35. Let sep(v, w) be minimal with respect to inclusion. Fix a set

sep* (v, w). Then we define

C(v,w) :={ce J|Ia* b* € sep™(v,w) such that D(a*,b*) = D(a*, c)}.
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Using properties of sep(v,w), we can show that C(v,w) contains a spe-
cial point. This will allow us to construct a division and apply the TML-
decomposition. However, if C'(v,w) = J, then this application will be trivial.
We therefore deal with this case separately.

Note that if sep(v,w) = J is minimal, then C(v,w) = J. This case is easily
dealt with. Indeed the minimality of sep(v,w), combined with Proposition m,
implies that sep(a,b) = J for all a,b € J such that [a]; # [b];. Then by Theorem

, we have that Im(pr ;) = I'y,_1(2). Thus we may safely ignore this case.

Proposition 3.36. Let sep(v,w) & J be minimal. Let sep(v,w) # [v]; v [w];.

Then if C(v,w) = J, then § has a splitting point.

Proof. Pick some ¢ ¢ sep(v, w) and some s*,t* € sep*(v, w) such that D(t*, s*) =
D(t*,c). Then define A := D(t*,s*)\[s*]; and let B := D(t*, s*)"\[s*];. We will
show that s* is a splitting point with splitting A L [s*]; u B.

First, we have that given any a € A and any r* € sep*(v, w)\([s*]; U [t*])),
Corollary implies that D(t*,a) = D(t*,s*) = D(r*,s*). By Lemma [3.32]
we have that D(r*,s*) # D(r*,t*). This in turn implies that a ¢ D(r*,t*). By
Corollary [3.34] we have D(r*,t*) = D(s*,t*). Thus a ¢ D(s*,t*). Equivalently,
t* ¢ D(s*,a). Then Corollary implies that D(s* a) € D(t*,a) = D(t*, s*).
Finally, we conclude that D(s*,a) n J\[s*]; € A. This also implies that for all
be B we have D(s*,b) n J\[s*]; € B.

Next, note that given any b € B we have b ¢ D(t*, s*). By Corollary [3.3] we
have that D(t*,s*) < D(b, s*). This implies that B® < D(b, s*)\[0].

It remains to show that for any a € A we have A® € D(a,s*)\[a];. Note that
since a € sep(v,w)’ and s € sep(v, w), Proposition implies that sep(v, w) <
D(a, s*). Thus it suffices to show that D(a,b) = D(a, s*) for any b € B\sep(v, w).
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Assume that B ¢ sep(v,w) and let b € B\sep(v,w). By our hypothesis, there
exists *,y* € sep*(v,w) such that D(y* z*) = D(y* b). By Corollary [3.34]
we have D(y*,b) = D(y*,a*) = D(t*,z*) = D(t*,b) # D(t*,a). This shows
that a ¢ D(y*,b). Corollary - 3.3| then implies that D(y*,b) < D(a,b). It follows
that * € D(a,b). Proposition implies that sep(v,w) € D(a,b). Therefore
D(a,b) = D(a,z*) = D(a, s*), which was to be shown.

[

We now present an algorithm that can compute the isomorphism class of

Im(pr ;) for general (I, J).

Theorem 3.37. Given an arbitrary finite graph I' and vertez set J < V(I'), the

group Im(pr,;) can be computed up to isomorphism.

Proof. We induct on |J|.

First, by using repeated applications of Proposition we may assume that
for all v € J either [v]; = {v} or [v], is incompressible. By Proposition[3.31] there
exists some minimal separating set sep(v,w) such that [v]; = {v}. If sep(v,w) =
J, then by minimality and Proposition .25 we have that sep(a,b) = J for all
distinct a,b € J. Hence Im(pr,;) = T'4,-1(2) by Theorem 2.7 Thus we may
assume that sep(v, w) # J. Furthermore, by Lemma , we may assume that
sep(v,w) # [v]; U [w];. We prove a couple of nice facts about C(v,w):

Claim 1. For any a*,b* € sep*(v,w) and any j € C(v,w)", we have that

D(a*,j) = D(b", j) -
Let a*,b* € sep*(v,w) be such that a* # b* and let j € C(v,w)". Then by

definition of C'(v, w), we have that D(a*, j) # D(a*,b*) and D(b*, j) # D(b*,a™*).
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Therefore by a double application of Corollary , we have that D(a*,j) =
D(b*,j). If a* = b* then D(a*,j) = D(b*, j). This proves the claim.

Claim 2. For any u* € sep*(v,w) and any j € C(v,w)", we have that D(u*,j) N
Cv,w\[u*]; = .

Let u* € sep*(v,w), j € C(v,w)". Let ¢ € C(v,w) such that [u*]; # [c];.
By definition of C'(v,w), there exists z*,y* € sep*(v,w) such that D(z* ¢) =
D(z*,y*). By Claim 1, D(u*,j) = D(x*,j). But by definition of C(v,w), we
have that D(x*,j) # D(z*,y*) = D(z*,¢). Therefore ¢ ¢ D(u*,j). This proves

the claim.
Claim 3. For any j € C(v,w)*, we have that D(j,v) 2 C(v,w)

Let j € C(v,w)’. Given any ¢ € C(v,w), there exists x*, y* € sep*(v,w)
such that D(z* ¢) = D(z*,y*). By Proposition we have that D(j,v) 2
sep(v,w). This implies that D(j,v) = D(j,y*). By definition of C(v,w), we
have D(z*,y*) # D(x*,j). Therefore by Corollary 3.3] we have D(z* ¢) =
D(xz*,y*) < D(j,y*) = D(j,v). Thus c € D(j,v). This proves the claim.

If C(v,w) = J, then since sep(v, w) # J and sep(v,w) # [v]; U [w];, we are
done by Proposition [3.36] combined with Proposition [3.22] If not, then we may
write J = DAi where A; = C'(v,w) and for all 1 < ¢ < m, we have A; = [a;];
for some ajzel J. We show that this is a non-trivial division of J. Hence we are
done by the TML decomposition (Theorem |1.2)).

It is trivial to verify that for any a € J, we have that a is a special point in
[a];. Hence we need only show that A; contains a special point. We show that

v is a special point in A;. We assumed earlier that [v]; = {v}. Hence by default

v € sep*(v,w). Then Claim 2 implies that for all j € J either D(v,j) nJ < A,
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or D(v,j) nJ < A%, and Claim 3 implies that for all j € A} we have that

A; € D(j,v). Therefore v is a special point in A;.
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Chapter 4

Additional Results

4.1 Star groups

In this section we show that every element in a certain family of subgroups of
I'(2) can be written as Im(pr ) for some (I',.J). We will use the following
notation from the proof of Theorem 2.7, Given 1 <i,j < n, i # j, let E; ; denote
the matrix identical to the identity matrix except in the (z, j)-entry, which equals
2 and let F; denote the matrix identical to the identity matrix except in the

(1,1)-entry, which equals —1.

Definition 4.1. Let I < {1,2,...,n}? be a subset with the following properties.
For all i € {1,2,...,n} we have (i,i) € I, and for each (i,j), (j,k) € I we have

(i,k) € I. Then we call I a star set of width n. Given any star set of width n,

the star group associated to I is the group

Gy i={AeT,(2) | Ay =0 for all (i,j) ¢ I}.

It is not immediately clear that G is a group, in particular that it is closed
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under inverses. This will follow from Proposition in which we compute a

generating set for GG;. First, however, we need the following lemma.

Lemma 4.2. Let I be a star set of width n, and let S; = {(i,7) | 1 < j <

n, (i,j) € I}. Assume that |S,,| is mazimal. If (i,m) € I, then (m,i) € I

Proof. Assume that (i,m) € I. It follows that for all 1 < j < n such that
(m, 7) € I we have that (i,j) € I. Hence |S;| = |S,|. But |S,,| is maximal. Hence
|S;| = |Sim|. But since (m,j) € I = (i,j) € I, it follows that i € {j | (,]) €
I} = {j | (m,j) € I}. Therefore (m,i) e 1. ]

We now compute a generating set for each Gj.

Proposition 4.3. Let I be a star set. Then G is the subgroup of I',(2) generated

by {F |1 <isn}o{Ey;|(i,j)eli#j}

Proof. Let Hy be the group generated by {F; | 1 < < n}Uu{E;; | (i,7) ¢ I,i # j}.
It is clear that H; < G;. Thus it suffices to show that G; < H;. We proceed by
induction on the width of I. The base case is trivial.

Assume for induction that for every star set I of width less than n, we have
G;r = Hj. Let I be a subgroup of width n, and let A € G;. To show that
G < Hyp, we will take an arbitrary element of G; and multiply it by elements of
H; to reduce it to the identity matrix.

Since A € I',,(2), we must have A;; =5 1. Assume that |A4;,| > 1. We show
that we can multiply A by elements of H; to obtain a matrix A’ € G such that
|A} 1| < |A11]. By induction, this will allow us to assume that [A; ;] = 1. If A;,
is negative, then (F1A);; is positive. Since F € Hy, we may assume that A; ; is

positive. If A;; is a multiple of A;; for all < then A is not invertible. Therefore
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there exists an ¢ such that A;; is not a multiple of A;;. Multiplying by F; on
the left if necessary, we may assume that A, ; is positive.

Assume that A;; > A;;. Then (i,1) € I, so E;; € H;. By the division
algorithm, there exists ¢, € Z such that A;; = ¢gA;1+rand 0 <r < Ay;. If
q = 2k for some k € Z, then (E;'A);y = r < Ay and (E;A);1 = A;; for all
j#1. If ¢q=2k—1for some ke Z, then —Ay; <r—Ay; = A;n —2kA;; <.
Therefore 0 < (FZ-EZTII“A)E-J < A;; and (FiEiflkA)jJ = Aj, for all j #i. We may
therefore assume that 0 < A;; < A; ;.

Let S; be as in Lemma [4.2] Up to reindexing, we may assume that |S;| is
maximal. Since (i,1) € I, Lemma implies that (1,4) € I. Therefore E; ; € Hy.
Since 0 < A;1 < Ay 1, it follows that A1 —2A4;1| < Ay 1. Hence |E’;}A|171 <Ay,
and (Ep}A)j1 = Ajy for all j # 1. Thus we can reduce to the case where
|A14] = 1.

If Aj; = —1, then I} € H; and (F1A);; = 1. Thus we may assume that
Ayqp = 1. For all ¢ # 1 we have that A;; is even. Assume that A;; = 2k # 0.
Then (i,1) € I, hence E;; € Gy. It follows that E;*A € G;. But (E;{A);; =0
and (Eiflk)j@ = A;; for all j # i. Repeating this process for each i such that

1 =

A;1 # 0, we reduce to a matrix of the form
0 =

For each (1,7) € I, we have that Ey; € H. If A;; = 2k # 0, then (AEl_f)lz =0
and (AE[!)1; = Ay for all j # i. Repeating this process for each i such that

0
Ay ; # 0, we reduce to a matrix of the form

0 B
Let I' := {(i,j) € I | ¢ # 1,7 # 1}. Then I’ is a star set of rank n — 1. By
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induction, B € Hp. But there is a natural embedding

L:H[/—>H[, B

Therefore A € Hy, which completes the proof. O]

Now that we have a generating set for the star groups, we will show that every
star group is the image of some representation pr ;. To that end, we first give a

condition on J which results in Im(pr ;) being a star group.

Theorem 4.4. Let {vy,...,v,} be a set of representatives of the components of
['y. Assume that D(v,,v;) 0 {vy,...,v.} = {v;} for all v; € {vy,..., v, 1}. Let
I:={(i,j) |1 <i,j<n-—1D(v,v;) n{v,...,v.} ={v;}}. Then I is a star

set of width n — 1 and Im(pr.;) = Gy.

Proof. First assume that D(v;, v;)n{vs,...,v,} = {v;} and D(vj, vi)n{or, ..., o5} =
{ur}. Then since v; ¢ D(v;,vy,), Corollary [3.3 implies that D(v;, vy) € D(vj, vy),
so that D(v;,vg) N {v1,...,v,} = {vx}. This shows that I is a star set.

Fix the following basis of I;(H,(X;Q)).

A ~ A~ A

Up — V1, Up —V2,...,Unp — Up_1.

By Corollary [3.16, {Gp. | v, ¢ D} is a generating set. Fix some 6p(y, ;) such
that v, ¢ D(v;,v;). Then by Corollary .3} we have that D(v;,v;) n{v,...,v,} S
D(vn,v;) N Aoy, ..o 00 = {vj} so D(vi,v;) n {vr,..., v} = {v;}. If i = n,

then by direct calculation 0 p(y, )0, = Fj. If @ # n, then by direct calculation

Ui

OD(vswy) e = FjEij. Therefore by Proposition

Im(pr ) ={F|1<i<n—1}Uu{E;|1<ij<n—1,0,5)el}) =G
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]

Now that we have a theorem that recognizes when the image of a given rep-
resentation is a star group, we can show that all such groups can be written as

Im(pr ) for some (T, J).

Theorem 4.5. Let I be a star set of width n. Then there exists a graph I' and a

vertex set J such that Im(pr ;) = Gj.

Proof. Let J = {v1,v9,..., 0, Ups1} and let W= {w;; |1 <i<j<n+1}. Let

V) =JuW

and let

E) := {(vi,wjy) | (i,j) e or (i,k) e [ ori=n—+1}

By construction, I' is a bipartite graph, and J consists of pairwise non-adjacent
vertices. Since (vpi1,w; ;) € E(I) for all 1 < ¢ < j < n + 1, we have that
D(vps1,v) nJ ={v} forall 1 <i<n+1.

Assume that (i, j) € I. It follows that j # n + 1. Let (v;,wp.) € E(I'). Then
either (7,b) € I or (j,¢) € I. Since [ is a star set, it follows that either (i,0) € I or
(i,c) € I. Hence (v;, wp) € E(T). This shows that lk(v;) < lk(v;), which implies
that D(v;,v;) nJ = {v;}.

Now let 1 < 4,5 < n be such that D(v;,v;) nJ = {v;}. Then since
(Vj, Wjnt1,Vn+1) is & path in I', we must have that w;,41 € lk(v;). This im-
plies that (i,7) € I.

We have shown that D(v,.1,v;) nJ = {v;} for all 1 < ¢ < n and that
I ={(i,5) |1 <4,j <n,D(v;,v;) nJ = {v;}}. Therefore by Theorem [£.4] we

have that Im(pp,J) = G[. UJ
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