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Abstract

We study the existence, uniqueness and stability of solutions to the initial-

value problem for the periodic dispersion-managed nonlinear Schröd-inger

(DMNLS) equation, an equation that models the propagation of periodic, non-

linear, quasi-monochromatic electromagnetic pulses in a dispersion-managed

fiber. The periodic DMNLS equation we derive is the same as the non-

periodic DMNLS equation (1.2), except with a subtle difference in the op-

erator T(s) = TD(s) = e−iD(s)∂2x . The periodic function D(s) still controls the

dispersive properties of the optical fiber.

With respect to the Cauchy problem for the periodic DMNLS equation,

under certain assumptions on the variable dispersion, we use a Strichartz

estimate (Theorem 3.16) on the family of operators TD(s) to prove global well-

posedness for initial data in Hr for non negative integer values of r.

Lastly, we prove results on the existence and stability of ground state

solutions by considering the convergence of minimizing sequences for certain

variational problems. In the case α > 0, the convergence follows from the

Rellich-Kondrachov Theorem; in the case α = 0, we use a concentration-

compactness argument due to Kunze [15], but with significant modifications.
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Chapter 1

Introduction

1.1 About the Dispersion-Managed Schrödinger Equa-

tion

The one-dimensional nonlinear Schrödinger equation (NLS) with periodi-

cally varying dispersion coefficient

iuz + d(z)uττ + |u|2u = 0 (1.1)

is an important model equation for pulses in long distance fiber optics com-

munication systems [1]. This equation describes the amplitude of a signal

transmitted through an optical fiber cable where the dispersion is varied pe-

riodically along the fiber. Here z represents the distance along the fiber, τ

represents the time, and d(z) determines the dispersive properties along the

fiber which is usually taken to be piecewise constant. The NLS equation and

its modified forms also often appear as models for other types of waves, includ-

ing plasma waves and water waves. In this thesis, we will be focusing on an

averaged version of (1.1) called the dispersion-managed nonlinear Schrödinger

(DMNLS) equation.

With optic fiber cables that use localized pulses to transmit information,
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there could be unwanted interaction between individual pulses and thus un-

wanted spreading of signals. This is due to the effects of dispersion within

the fiber. To remedy this situation, in the 1990’s, researchers considered con-

structing a fiber by fusing together fibers with sections of large anomalous

dispersion (sections where d(z) is positive) alternating with sections of large

normal dispersion (sections where d(z) is negative), in such way that the dis-

persion has average value near zero [21] and the intensity and clarity of the

signals are not compromised. This technique is referred to as dispersion man-

agement. It proved to be a success in alleviating the unwanted interactions,

and today is a standard technique used in long distance fiber optic transmis-

sions.

Gabitov and Turitsyn [7] put forward a model equation for nonlinear op-

tical waves in a dispersion-managed fiber. To derive it, one assumes that

d(z) = 〈d〉+
∆(z/ε)

ε
,

that is, d(z) is periodic with small period ε << 1, large in absolute value, of

size O (1/ε), and has mean value 〈d〉 which is of O(1). Also, ∆(z) is a function

of period 1 with mean value zero; i.e.,

∫ 1

0

∆(z) dz = 0.

Under these assumptions and taking the limit as ε goes to 0, it was shown that

one can approximate solutions of (1.1) by solutions of the averaged equation

iuz + αuττ +

∫ 1

0

T−1(s)[|T (s)u|2T (s)u] ds = 0, (1.2)

where α = 〈d〉. This equation is what we refer to as the dispersion managed

nonlinear Schrödinger (DMNLS) equation. As a matter of fact, when ε is very
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small, solutions of (1.2) approximate those of (1.1) well (see [22]).

In the above equation, the invertible operator T (s) is defined as follows.

For s ∈ R, define

D(s) :=

∫ s

0

∆(z) dz.

Note that D(s) is also periodic with period 1, and controls the dispersive

properties of the optical fiber. For 0 ≤ s ≤ 1, define T (s) : L2 7→ L2 by

T (s) = e−iD(s)∂2τ .

In other words, if we take the Fourier transform of T (s), we have that

F(T (s)u)[ω] = e−iD(s)ω2F(u)[ω].

Note that T (s) is a unitary operator on L2(R), with inverse given by T−1(s) =

eiD(s)∂2τ .

In the special case where D(s) = αs, T (s) becomes the solution operator

for the initial-value problem for the linear Schrödinger equation ius +αuxx =

0, and will be denoted by S(αs). That is, we define

S(αs) = eiαs∂
2
τ .

Note that here we do not enforce the condition that D(s) be periodic.

For a detailed description of the process of the derivation of (1.2), see [1, 2].

1.2 Previous Results

One of the first questions that is commonly asked about an initial-value

problem for a partial differential equation is whether it is well-posed. We

say an initial-value problem is well-posed in a function space X if given an
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arbitrary choice of initial data in X, the problem has a unique solution in X

which depends continuously on the initial data. If the unique solution exists

for all time, then we say that the initial-value problem is globally well-posed,

otherwise, we say that the initial-value problem is locally well-posed.

Another commonly studied question, especially when dealing with nonlin-

ear equations, is whether there exist important special solutions. For equa-

tions that model physical phenomena, it is also important to check the stability

of such solutions because stable solutions are likely to be observed in reality

and some have been shown to play an important role in the development of

general solutions to many wave equations. In fact, to prove stability of solu-

tions often requires having a well-posedness result so as to assure existence

of nearby solutions for all time. Examples of important solutions to (1.2)

are standing wave solutions. These are solitary-wave solutions of the form

u(z, τ) = eiθzφ(τ) where θ is a constant.

Recently, results on the well-posedness of the initial-value problem and

the existence and stability of standing wave solutions have been established

for (1.2) in spaces of non-periodic functions. Zharnitsky et al. [23] proved

global well-posedness in the standard L2 based Sobolev space H1(R), in the

case α 6= 0, under the assumption that the dispersion profile ∆(s) is piecewise

constant on [0, 1]. Albert and Kahlil [3] proved a global well-posedness result

for the DMNLS equation also in the L2 based Sobolev space Hr(R) for all

r ≥ 0 when α 6= 0, and in L2(R) when α = 0, under the assumption that

D(s) is absolutely continuous with a derivative that is piecewise constant

and bounded away from zero. We should also note that Hundertmark et al.

[10, 12], already showed that the DMNLS equation is globally well-posed in

L2(R) when α = 0.

A standard procedure for proving the existence of stable standing wave so-

lutions is to solve a constrained variational problem for a conserved functional
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for the equation. This method usually involves showing that a maximizing or

minimizing sequence for the variational problem has a subsequence that con-

verges (up to symmetries) to a maximizer or respectively a minimizer, which

represents the profile of a stable standing wave. If a profile standing wave is a

constrained minimizer for a functional which can be interpreted as an energy

functional for the equation, then we call the standing wave a ground state.

For the DMNLS equation, Zharnitsky et al. [23] gave a result on the

existence of ground state solutions and their stability in H1(R) in the case α >

0. Here stability is interpreted as follows: if we call S the set of all minimizers

(or the set consisting of all the ground state profiles) of the functional E(v)

defined by

E(v) =

∫ ∞
−∞

α|vτ |2dτ −
1

2

∫ 1

0

∫ ∞
−∞
|TD(s)v|4 dτ ds,

subject to the constraint

P (v) =

∫ ∞
−∞
|v|2dτ = λ for each λ <∞,

and we know that an H1 function, u0(τ), is close in norm to a fixed element

φ in S, then the unique solution u(z, τ) of (1.2) whose initial condition is u0

will remain close in norm to some element in S for all values of z. Kunze

[15], by applying an enhanced version of Lions’ concentration compactness

method [17], showed that for α = 0 and ∆(s) piecewise constant, minimizers of

E(v) and thus ground states do exist in L2(R). Further, arbitrary minimizing

sequences have subsequences which, up to symmetries, converge to ground

states. This result, along with the well-posedness in L2(R), implies that

ground states are stable.

There are proofs of the existence of minimizers in H1(R) for α > 0 and in
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L2(R) for α = 0, under very mild conditions on the dispersion profile. The

approach in these proofs avoid the use of Lions’ concentration compactness

argument or Ekeland’s variational principle, and can be extended to show

the existence of minimizers for a family of nonlocal and nonlinear variational

problems. For more on these proofs, see [5, 10, 12, 13, 16]. Finally, there have

been discoveries about the smoothness and exponential decay estimates for

solutions of the DMNLS equation both when the average dispersion is zero

(see for example [6, 9, 11, 19]), and when the average dispersion is non-negative

[9].

1.3 Statement of Main Results

In this thesis, we will establish some results on the well-posedness of the

initial value problem and existence and stability of ground state solutions

for the periodic DMNLS equation, an averaged version of (1.1) in spaces of

periodic functions. Our main results are as follows:

In Chapter 2, in a similar manner as [1], we derive the periodic DMNLS

equation from (1.1) under the assumption that d(z) is periodic with period

εB, and ∆(z) is periodic of period B. It turns out that the periodic DMNLS

equation is given by

iuz + αuττ +
1

B

∫ B

0

T−1
D(s)[|TD(s)u|2 TD(s)u] ds = 0.

We note that this equation is very similar to (1.2), but has a different operator

TD(s).

In Chapter 3, we use a slightly altered version of the L4 Strichartz estimate

[4] on the operator TD(s) (Theorem 3.16), and a Banach contraction mapping

argument to prove that the periodic DMNLS equation is globally well-posed

in Hr(T) for all non negative integer values of r and for all α ≥ 0 (Theorem
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3.20), given the assumption below.

Assumption 1: The function ∆(s) is piecewise constant. That is, there

exist some numbers s0, s1, ..., sn with 0 = s0 < s1 < ... < sn−1 < sn = B, such

that for all j ∈ 0, ...., n− 1, ∆(s) = cj for s ∈ [sj, sj+1].

An L4 Strichartz estimate for the operator S(t) was proved by Bourgain [4].

An interesting fact concerning the well-posedness in L2(T) is that in the case

α > 0, solutions u(z, τ) with initial data u(0, τ) in L2(T) are actually in L4(T)

for almost all z ≥ 0 (Theorem 3.24). To prove this, a Banach contraction map-

ping argument is also applied. The difference is that Bourgain Xs,b estimates

are required along with the same Strichartz estimate on the operator TD(s).

These Bourgain estimates are similar to those explained in Ginibre [8], Kenig

et al. [14], Tao [20], and Bourgain [4].

In Chapter 4, we consider the existence and stability of ground state so-

lutions to (1.2). The periodic DMNLS equation has the following conserved

functionals: the energy functional

E(v) =

∫ 2π

0

α|vτ |2dτ −
1

2B

∫ B

0

∫ 2π

0

|TD(s)v|4 dτ ds,

and

P (v) =

∫ 2π

0

|v|2dτ.

For α > 0, we consider the problem of minimizing E(v) under the constraint

that P (v) be held constant, and show that minimizers exist in H1(T). Hence,

ground states exist in H1(T) and are stable. The proof involves utilizing the

Strichartz estimate on TD(s) to show that any minimizing sequence is bounded

in H1(T). Then by the Rellich-Kondrachov theorem for compact manifolds,

there exists a subsequence which will converge strongly in L2(T). Finally, we
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apply the weak lower semicontinuity of the norm in a Hilbert space to show

that a subsequence converges strongly in H1(T) to a minimizer. A simple

proof by contradiction is then used to prove stability.

For α = 0 and D(s) = s, we provide a sufficient condition for existence and

stability of ground states by considering the problem of maximizing W (v) =

−E(v) under the constraint that P (v) be held constant. The condition for

existence is expressed in terms of the following function. For w ∈ L2(T) define

A(ŵ) = 2π
∑
n

∑
p6=0

∑
l 6=0

i

2lp

[
e−2lpB − 1

]
ŵ(n) ¯̂w(n− l) ¯̂w(n− p) ŵ(n− p− l).

Theorem 1.1. Let λ > 0. Suppose there exists a function w ∈ L2 with P (w) =

λ, such that A(ŵ)− 2πB‖ŵ‖4
l4 > 0. Then there exists at least one maximizer

for W (v) in L2(T). Moreover, given the above condition, every maximizing

sequence for Jλ (see Section 4.2) has a subsequence which, after being suitably

translated in Fourier space, converges strongly in L2 to some maximizer.

The proof of the above theorem is a concentration compactness argument,

and it requires a significant modification of the argument used by Kunze

[15] in his proof of existence of non-periodic ground states. In essence, the

proof shows that if we can find a function w that satisfies the above require-

ments, then for every maximizing sequence {uj}, the sequence of its Fourier

transforms F(uj)[n] is tight in l2. This then enables us to use the Rellich-

Kondrachov theorem and the weak lower semicontinuity of the norm in a

Hilbert space to show that a subsequence, after translations, will converge

strongly in L2 to a maximizer.

Lastly, in Chapter 5, we identify some values of B for which a function w

exists that satisfies the requirements in Theorem 1.1, and other values of B

for which no such w exists.
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1.4 Preliminaries

Notation and Standard Results

The set of all real numbers and the set of all integers will be denoted by

R and Z, respectively. The torus will be denoted by T := R/2πZ.

For any measurable function f on I ⊆ R and any p ∈ [1,∞), we define

‖f‖Lp(I) =

(∫
I

|f(x)|p dx
) 1

p

so that Lp(I) denotes the space of all functions f such that ‖f‖Lp(I) is finite.

Likewise, if f is defined for n ∈ Z, we denote lp as the space of functions f

such that

‖f‖lp :=

(∑
n∈Z

|f(n)|p
) 1

p

is finite.

If f(t, x) is a measurable function depending on the variables t and x, and f

is defined for (t, x) ∈ I × J ⊂ R× T, for p ∈ [1,∞) and q ∈ [1,∞), we define

‖f‖LptLqx(I×J) := ‖‖f‖Lqx(J)‖Lpt (I) =

(∫
I

(∫
J

|f(t, x)|q dx
) p

q

dt

) 1
p

,

and LptL
q
x(I × J) denotes the space of all f for which ‖f‖LptLqx(I×J) is finite. If

p = q, we will express LptL
p
x(I × J) as Lpt,x(I × J). In case I and J are all of

R and T respectively, we exclude the reference to I and J.

We will also use c to denote any positive constant. However, if c is dependent

on variable parameters such as ε, we record the dependence using the notation

cε.

If f(x) is integrable on T, we define the Fourier transform of f in x by

Fx(f)[n] =
1

2π

∫
T
e−inxf(x) dx,
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for n ∈ Z, and the inversion formula is given by

f(x) =
∑
n∈Z

Fx(f)[n]einx.

If g(t) is integrable on R, we define the Fourier transform of g in t by

Ft(g)[κ] =
1

2π

∫
R
e−itκg(t) dt,

for κ ∈ R, and its inverse is given by

F−1
t (F )[t] =

∫
R
eitκF (κ) dκ.

Likewise, if h(t, x) is an integrable function on R× T, we define the Fourier

transform of h in t and x jointly by

F(h)[κ, n] =
1

(2π)2

∫
R
e−itκ

(∫
T
e−inxh(t, x) dx

)
dt

=
1

(2π)2

∫
R

∫
T
e−i(nx+tκ)h(t, x) dx dt,

and its inverse is given by

F−1(H)[t, x] =
∑
n∈Z

∫
R
ei(tκ+nx)H(κ, n) dκ.

One can also define the Fourier transform and inverse Fourier transform of any

tempered distribution in such a way that it agrees with the above definition.

At times, we will express Ft(g)[κ], Fx(f)[n], and F(h)[κ, n] as ĝ(κ), f̂(n),

and ĥ(κ, n) respectively.

The convolution of two functions f and g on R is defined by

f ∗ g(ω) :=

∫
R
f(ω − z)g(z)dz.
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The discrete convolution of two functions f and g on Z is defined by

f ∗ g(n) :=
∑
m∈Z

f(n−m)g(m).

For s > 0, the inhomogeneous Sobolev space on the torus, Hs(T), is

defined to be the space of all measurable functions u on T for which

‖u‖Hs(T) = ‖〈n〉sû(n)‖l2 =

(∑
n∈Z

〈n〉2s|û(n)|2
) 1

2

,

is finite. Here, 〈n〉s = (1 + |n|)s. Similarly, we define Hs(R) to be the space

of all measurable functions u on R whose norm

‖u‖Hs(R) = ‖〈τ〉sû(τ)‖L2 =

(∫
R
〈τ〉2s|û(τ)|2 dτ

) 1
2

is finite. It is also useful to note that when s is an integer, ‖u‖Hs(R) can be

defined as

‖u‖Hs(R) =
s∑
i=0

‖u(i)‖L2 .

For I ⊂ R, we define C0
t (I) as the space of measurable functions f(t) on I

such that

‖f‖C0
t (I) = sup

t∈I
|f(t)|

is finite.

We define C0
t L

2
x(I × T) as the space of measurable functions f(t, x) on I × T

such that

‖f‖C0
t L

2
x(I×T) = sup

t∈I
‖f‖L2

x

is finite. We can also define C0
tH

s
x(I × T) in the same manner.
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For s, b ∈ R, the Sobolev space Hs,b(R × T) is defined as the closure of the

set of all Schwartz functions u(t, x) on R× T with respect to the norm

‖u‖Hs,b := ‖〈n〉s〈κ〉bF(u)[κ, n]‖L2
κl

2
n(R×Z).

Let h : Z→ R be a continuous function, and s, b ∈ R. The Bourgain type

space Xs,b
κ=h(n)(R × T) is defined to be the closure of the set of all Schwartz

functions u(t, x) on R× T with respect to the norm

‖u‖Xs,b
κ=h(n)

(R×T) := ‖〈n〉s〈κ− h(n)〉bF(u)[κ, n]‖L2
κl

2
n(R×Z).

We will also denote the space Xs,b
κ=h(n)(R× T) as Xs,b

κ=h(n).

Theorem 1.2. (Banach algebra property). If s > 1
2
, then there exists a cs > 0,

such that for every u, v ∈ Hs(T)

‖uv‖Hs ≤ cs‖u‖Hs‖v‖Hs,

thus uv ∈ Hs(T) .

Proof. For s > 1
2
,

‖uv‖Hs = ‖〈n〉sûv(n)‖l2

= ‖〈n〉s (û ∗ v̂)‖l2

=

∥∥∥∥∥〈n〉s∑
m∈Z

û(n−m)v̂(m))

∥∥∥∥∥
l2

=

∥∥∥∥∥∑
m∈Z

〈n〉sû(n−m)v̂(m))

∥∥∥∥∥
l2

≤ cs

∥∥∥∥∥∑
m∈Z

(〈n−m〉s + 〈m〉s) û(n−m)v̂(m))

∥∥∥∥∥
l2

12



= cs

∥∥∥∥∥∑
m∈Z

〈n−m〉sû(n−m)v̂(m) +
∑
m∈Z

〈m〉sû(n−m)v̂(m)

∥∥∥∥∥
l2

≤ cs

(∥∥∥∥∥∑
m∈Z

〈n−m〉sû(n−m)v̂(m)

∥∥∥∥∥
l2

+

∥∥∥∥∥∑
m∈Z

〈m〉sû(n−m)v̂(m)

∥∥∥∥∥
l2

)

= cs (‖(〈n〉sû) ∗ v̂‖l2 + ‖(〈n〉sv̂) ∗ û‖l2)

≤ cs (‖u‖Hs‖v̂‖L1 + ‖û‖L1‖v‖Hs)

≤ cs (‖u‖Hs‖v‖Hs + ‖u‖Hs‖v‖Hs),

where we used Young’s Convolution Inequality in the last few estimates.
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Chapter 2

Derivation of Periodic DMNLS Equation

Consider the following nondimensionalized NLS equation

iuz + d(z)uττ + |u|2u = 0, (2.1)

where the dispersion coefficient function,d(z), is periodic of period εB, has

a large absolute value of size O(1/ε) with ε << 1, and has mean value 〈d〉

which is O(1). Hence, d(z) = 〈d〉+ ∆(z/ε)
ε

where ∆(z) is a periodic function

of period B and mean value zero. That is,

∫ B

0

∆(z) dz = 0.

Let u = u(Z, τ, s; ε) where s =
z

ε
, Z = z, and τ ∈ T. Then

∂u

∂z
=
∂u

∂s

ds

dz
+
∂u

∂Z

dZ

dz
=

1

ε

∂u

∂s
+
∂u

∂Z
.

Thus (2.1) can be written as

i

(
1

ε

∂u

∂s
+
∂u

∂Z

)
+

(
〈d〉+

∆(s)

ε

)
∂2u

∂τ 2
+ |u|2u = 0

14



which implies that,

1

ε

(
i
∂u

∂s
+ ∆(s)

∂2u

∂τ 2

)
+ i

∂u

∂Z
+ 〈d〉∂

2u

∂τ 2
+ |u|2u = 0.

If we formally expand u as a series in the small parameter ε, writing it as

u = u0 + εu1 + ε2u2 + ..., (2.2)

we get that

1

ε

[
i

(
∂u0

∂s
+ ε

∂u1

∂s
+ ε2

∂u2

∂s
+ ...

)
+ ∆(s)

(
∂2u0

∂τ 2
+ ε

∂2u1

∂τ 2
+ ε2

∂2u2

∂τ 2
+ ...

)]
+

i

(
∂u0

∂Z
+ ε

∂u1

∂Z
+ ε2

∂u2

∂Z
+ ...

)
+ 〈d〉

(
∂2u0

∂τ 2
+ ε

∂2u1

∂τ 2
+ ε2

∂2u2

∂τ 2
+ ...

)
+

∣∣∣∣u0 + εu1 + ε2u2 + ...

∣∣∣∣2(u0 + εu1 + ε2u2 + ...

)
= 0.

At leading order O(1/ε), we see that

i
∂u0

∂s
+ ∆(s)

∂2u0

∂τ 2
= 0. (2.3)

We can solve the initial-value problem for (2.3) with initial data u0(Z, τ, 0) =

U(Z, τ) on T by means of the Fourier transform. Write u0 =
∑
n∈Z

An(u0)einτ ,

where An(u0) =
1

2π

∫
T
e−inτu0 dτ represents the Fourier coefficients of u0.

Taking the Fourier transform of (2.3) with respect to τ and evaluating at

n, we find that
∂An(u0)

∂s
+ in2∆(s)An(u0) = 0

An(u0(Z, τ, 0)) = An(U).

(2.4)

Since (2.4) is a linear ODE, we can solve it by using the integrating factor

15



I = e
∫ s
0 in

2∆(s̃) ds̃ to get

∂(An(u0)ein
2D(s))

∂s
= 0, where D(s) =

∫ s

0

∆(s̃) ds̃.

Integrating both sides gives:

An(u0)ein
2D(s) = P (Z, n) for some function P.

Evaluating at s = 0 and applying the initial condition in (2.4), we get that

An(u0(Z, τ, 0)) = P (Z, n) = An(U).

In other words,

An(u0) = An(U)e−in
2D(s). (2.5)

Thus,

u0 =
∑
n∈Z

An(u0)einτ =
∑
n∈Z

An(U)e−in
2D(s)einτ . (2.6)

For future purposes, we will view u0 as

u0 = TD(s)U =
∑
n∈Z

An(U)ei(nτ−n
2D(s)), (2.7)

where the Fourier multiplier operator Tζ is defined as Tζ = eiζ∂
2
τ , so that the

Fourier transform of Tζf with respect to τ evaluated at n is given by

F(Tζf)[n] = e−in
2ζF(f)[n].

Note that the inverse operator is also defined as T−1
ζ = e−iζ∂

2
τ , so that

F(T−1
ζ f)[n] = ein

2ζF(f)[n]. (2.8)
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Now at order O(1),

i
∂u1

∂s
+ ∆(s)

∂2u1

∂τ 2
= −i∂u0

∂Z
− 〈d〉∂

2u0

∂τ 2
− |u0|2u0, (2.9)

where u1 =
∑
n∈Z

Bn(u1)einτ with Bn(u1) =
1

2π

∫
T
e−inτu1 dτ .

Again, taking the Fourier transform of (2.9) with respect to τ and evalu-

ating at n, we find that

∂Bn(u1)

∂s
+ in2∆(s)Bn(u1) = −∂An(u0)

∂Z
− in2〈d〉An(u0)+

iF(|u0|2u0)[n].

(2.10)

However, (2.7) implies that

F(|u0|2u0)[n] =
1

2π

∫
T
e−inτ |u0|2u0 dτ

=
1

2π

∫
T
e−inτ |TD(s)U |2 TD(s)U dτ.

Therefore, (2.10) becomes

∂Bn(u1)

∂s
+ in2∆(s)Bn(u1) = −∂An(u0)

∂Z
− in2〈d〉An(u0)+

i
1

2π

∫
T
e−inτ |TD(s)U |2 TD(s)U dτ.

This is also an ODE with the same integrating factor as before, so can be

17



solved to get that

∂(Bn(u1)ein
2D(s))

∂s
=

[
− ∂An(u0)

∂Z
− in2〈d〉An(u0)+

i
1

2π

∫
T
e−inτ |TD(s)U |2 TD(s)U dτ

]
ein

2D(s).

Hence,

Bn(u1)ein
2D(s)

∣∣∣∣s
0

=

∫ s

0

[
− ∂An(u0)

∂Z
− in2〈d〉An(u0)+

i
1

2π

∫
T
e−inτ |TD(s)U |2 TD(s)U dτ

]
ein

2D(s) ds.

Since D(s) is periodic in s and ∆ has zero mean, An(u0) is also periodic in s.

To remove the secular term, we need

∫ B

0

[
− ∂An(u0)

∂Z
− in2〈d〉An(u0) +

i
1

2π

∫
T
e−inτ |TD(s)U |2 TD(s)U dτ

]
ein

2D(s) ds = 0.

Using (2.5) we have that

∫ B

0

[
− ∂(An(U)e−in

2D(s))

∂Z
− in2〈d〉An(U)e−in

2D(s)

]
ein

2D(s) ds +∫ B

0

[
i

1

2π

∫
T
e−inτ |TD(s)U |2 TD(s)U dτ

]
ein

2D(s) ds = 0,

which implies that

∫ B

0

−∂(An(U))

∂Z
− in2〈d〉An(U) ds +∫ B

0

[
i

1

2π

∫
T
e−inτ |TD(s)U |2 TD(s)U dτ

]
ein

2D(s) ds = 0,

or
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B

[
−∂(An(U))

∂Z
− in2〈d〉An(U)

]
+∫ B

0

[
i

1

2π

∫
T
e−inτ |TD(s)U |2 TD(s)U dτ

]
ein

2D(s) ds = 0.

Multiplying by
−ieinτ

B
, and summing over all n results in

i
∂

∂Z

∑
n∈Z

An(U)einτ − 〈d〉
∑
n∈Z

n2An(U)einτ+

1

B

∫ B

0

∑
n∈Z

[
1

2π

∫
T
e−inτ |TD(s)U |2 TD(s)U dτ

]
ei(n

2D(s)+nτ) ds = 0.

To conclude, we use (2.8) together with the fact that U =
∑
n∈Z

An(U)einτ and

Uττ = −
∑
n∈Z

n2An(U)einτ to obtain the averaged equation

iUZ + 〈d〉Uττ +
1

B

∫ B

0

T−1
D(s)[|TD(s)U |2 TD(s)U ] ds = 0. (2.11)

Equation (2.11) is a periodic version of the DMNLS equation (1.2). The

above analysis shows that at least formally, it is necessary that U(Z, τ) satisfy

equation (2.11) in order for the expansion in (2.2) to be valid. One expects

that, in the limit as ε→ 0, solutions of (2.11) should be good approximations

to solutions of (2.1).
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Chapter 3

Well-posedness of the Initial-Value Problem

From now on, the variables Z and τ in the previous section will be denoted

by t and x respectively. We begin with the following lemmas that are required

for the proof of the well-posedness results in Theorems 3.20 and 3.24.

Lemma 3.1. For every u ∈ L2(T),

TD(s)u = T−1
D(s)ū.

Proof. TD(s)u =
∑
n∈Z

û(n)ei(nx−n2D(s))

=
∑
n∈Z

û(n)e−i(nx−n
2D(s))

=
∑
k∈Z

ˆ̄u(k)ei(kx+k2D(s)) with k = −n,

= T−1
D(s)ū.

Lemma 3.2. For u, v ∈ L2(T),

〈u, T−1
D(s)v〉 = 〈TD(s)u, v〉.

Therefore, TD(s) is a unitary operator on L2(T).
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Proof. By Parseval’s identity, we can show that

〈u, T−1
D(s)v〉 =

∫
T
u T−1

D(s)v dx

= 2π
∑
n∈Z

û T̂−1
D(s)v

= 2π
∑
n∈Z

û(n) v̂(n)ein2D(s)

= 2π
∑
n∈Z

û(n) v̂(n)e−in
2D(s)

= 2π
∑
m∈Z

¯̂v T̂D(s)u

=

∫
T
TD(s)u v̄ dx,

= 〈TD(s)u, v〉.

Lemma 3.3. For r ∈ R and for u ∈ Hr(T),

∥∥TD(s)u
∥∥
Hr = ‖u‖Hr .

Proof.
∥∥TD(s)u

∥∥
Hr =

∥∥∥〈n〉r e−in2D(s)û(n)
∥∥∥
l2

= ‖〈n〉r û(n)‖l2 = ‖u‖Hr .

Remark 3.4. A similar proof can be used to show that ‖S(αt)u‖Hr = ‖u‖Hr

for u ∈ Hr(T).

Lemma 3.5. Suppose ∆(s) satisfies Assumption 1. Then for u ∈ Hr with

r ≥ 1,

TD(s)u ∈ C0
sH

r
x([0, B]× T).

Proof. Observe that
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∥∥TD(s)u− TD(s0)u
∥∥2

Hr =
∑
n∈Z

〈n〉2r |û(n)|2
∣∣∣e−in2D(s) − e−in2D(s0)

∣∣∣2 .
Since D′(s) is piecewise constant, D(s) is continuous. The function ex is

also continuous for all values of x, thus e−in
2D(s) is continuous. This implies

that lim
s→s0

e−in
2D(s) − e−in2D(s0) = 0 for s ∈ [0, B]. In addition, since

∣∣∣e−in2D(s) − e−in2D(s0)
∣∣∣2 ≤ 4

for all s, then ∥∥TD(s)u− TD(s0)u
∥∥2

Hr ≤ 4‖u‖2
Hr <∞.

So by the Lebesgue Dominated Convergence Theorem,

lim
s→s0

∥∥TD(s)u− TD(s0)u
∥∥2

Hr =
∑
n∈Z

〈n〉2r |û(n)|2 lim
s→s0

∣∣∣e−in2D(s) − e−in2D(s0)
∣∣∣2

= 0,

concluding the proof of the theorem.

Let us rewrite the periodic DMNLS equation. We will write (2.11) as

iut + αuxx + F (u) = 0, (3.1)

with α ∈ R, and

F (u) =
1

B

∫ B

0

T−1
D(s)[|TD(s)u|2 TD(s)u] ds.

Definition 3.6. Suppose u0 ∈ L2(T). We say u(t, x) ∈ C0
t L

2
x(I × T) is a

strong solution of (3.1) with initial data u0 if
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(a) for all t ∈ I,

u(t, x) = S(αt)u0 + i

∫ t

0

S(α(t− t′))F (u(t′, x)) dt′

with S(αt) as previously defined, and

(b) if we fix t ∈ I and let u = u(t, ·) , then

|TD(s)u|2 TD(s)u ∈ C0
sL

2
x([0, B]× T),

making F (u) well-defined.

3.1 Time Independent Quantities

let P : L2 → R and E : L2 → R be defined as

P (u) =

∫
T
|u|2 dx,

and

E(u) =

∫
T
α|ux|2dx−

1

2B

∫ B

0

∫
T
|TD(s)u|4 dx ds.

Theorem 3.7. Suppose u(t, x) ∈ C0
tH

r
x(I × T) is a strong solution to (3.1)

for r large enough. Then P (u(t, x)) and E(u(t, x)) are independent of t.

Proof. Note that

ut = iαuxx + i 1
B

∫ B
0
T−1
D(s)[|TD(s)u|2TD(s)u] ds.

For r ≥ 1, applying the Banach Algebra property for Hr(T) and Lemma 3.5,

we get that ut ∈ C0
tH

r−2
x (I×T). Also, since u is periodic for fixed t, the value

of u and its derivatives with respect to x at the end points are the same. Now
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for u, a strong solution to (3.1), we see that

∫
T
ū (iut + αuxx + F (u)) dx = 0 (3.2)

and ∫
T
u
(
−iūt + αūxx + F (u)

)
dx = 0. (3.3)

Subtract (3.3) from (3.2) to get

0 = i

∫
T
utū+ ūtu dx+ α

∫
T
ūuxx − uūxx dx+

∫
T
ūF − uF̄ dx

= i
d

dt

∫
T

1

2
|u|2 dx+ α

∫
T
ūuxx − uūxx dx+

∫
T
ūF − uF̄ dx.

If u ∈ Hr(T) for r sufficiently large, then by applying integration by parts,

we can address the second integral as follows:

∫
T
ūuxx − uūx dx = ūux − uūx |2π0 +

∫
T
ūxux − uxūx dx = 0.

To calculate the third integral, note that, by Lemma 3.2,

∫
T
ūF dx =

1

B

∫
T
ū

∫ B

0

T−1
D(s)[|TD(s)u|2 TD(s)u] ds dx

=
1

B

∫ B

0

∫
T
ū T−1

D(s)[|TD(s)u|2 TD(s)u] dx ds

=
1

B

∫ B

0

∫
T
TD(s)u|TD(s)u|2 TD(s)u dx ds

=
1

B

∫ B

0

∫
T
|TD(s)u|4 dx ds.

Then by taking the complex conjugate, we get that
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∫
T
uF̄ dx =

1

B

∫ B

0

∫
T
|TD(s)u|4 dx ds.

Thus, ∫
T
ūF − uF̄ dx = 0,

and to conclude,

d

dt

∫
T
|u|2 dx = 0.

Hence P (u) =
∫
T |u|

2 dx is independent of t.

To show that E(u) is independent of t, by the product rule, we can write

that

dE(u)

dt
=

d

dt

[∫
T
α|ux|2dx−

1

2B

∫ B

0

∫
T
|TD(s)u|4 dx ds

]

= α

∫
T
uxūxt + uxtūx dx−

1

B

∫
T

∫ B

0

TD(s)u TD(s)ut(TD(s)u)2 ds dx

− 1

B

∫
T

∫ B

0

(TD(s)u)2 TD(s)ut TD(s)u ds dx

=

∫
T
ut

{
−αūxx −

1

B

∫ B

0

T−1
D(s)[|TD(s)u|2 TD(s)u] ds

}
dx+ c.c.,

where we used integration by parts and Lemma 3.2 in the last step, and c.c.

represents the complex conjugate. However,

−αūxx −
∫ B

0

T−1
D(s)[|TD(s)u|2 TD(s)u] ds = −iūt.

Therefore,

dE(u)

dt
=

∫
T
−iutūt + iutūt dx = 0.
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3.2 Estimates for Linear and Nonlinear Terms

Lemma 3.8. Suppose α ∈ R, r ∈ R, and T > 0. For all u0(x) ∈ Hr(T), we

have

‖S(αt)u0‖C0
tH

r
x([0,T ]×T) = ‖u0‖Hr

x
. (3.4)

Proof. We have

‖S(αt)u0‖C0
tH

r
x([0,T ]×T) = sup

t∈[0,T ]

‖S(αt)u0‖Hr
x
.

Apply Remark 3.4 to get the desired result.

Lemma 3.9. Suppose α ∈ R, r ∈ R, and T > 0. For all

F ∈ C0
tH

r
x ([0, T ]× T) , we have

∥∥∥∥∫ t

0

S(α(t− t′))F (t′, x) dt′
∥∥∥∥
C0
tH

r
x([0,T ]×T)

≤ T‖F‖C0
tH

r
x([0,T ]×T). (3.5)

Proof. We have

∥∥∥∥∫ t

0

S(α(t− t′))F (t′, x) dt′
∥∥∥∥
C0
tH

r
x

= sup
t∈[0,T ]

∥∥∥∥∫ t

0

S(α(t− t′))F (t′, x) dt′
∥∥∥∥
Hr
x

≤ sup
t∈[0,T ]

∫ t

0

‖S(α(t− t′))F (t′, x)‖Hr
x
dt′

= sup
t∈[0,T ]

∫ t

0

‖F (t′, x)‖Hr
x
dt′

≤ sup
t∈[0,T ]

∫ t

0

sup
t′∈[0,T ]

‖F (t′, x)‖Hr
x
dt′

= T sup
t′∈[0,T ]

‖F (t′, x)‖Hr
x
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= T ‖F‖C0
tH

r
x([0,T ]×T).

Corollary 3.10. Suppose T > 0. For all F ∈ C0
t L

2
x ([0, T ]× T) , we have

∥∥∥∥∫ t

0

F (t′, x) dz′
∥∥∥∥
C0
t L

2
x([0,T ]×T)

≤ T‖F‖C0
t L

2
x([0,T ]×T). (3.6)

Proof. The proof is similar to Lemma 3.9.

In the next few lemmas, we let η(t) ∈ C∞0 (R) be a function that is sup-

ported on [−2, 2] and equals 1 on [−1, 1], and set ηT (t) = η
(
t
T

)
for T > 0.

Lemma 3.11. Suppose T > 0 and α ∈ R. For all u0(x) ∈ L2(T), we have

‖ηT (t)S(αt)u0‖C0
t L

2
x
≤ ‖u0‖L2

x
. (3.7)

Proof. We have

‖ηT (t)S(αt)u0‖C0
t L

2
x

= sup
t∈R
‖ηT (t)S(αt)u0‖L2

x

=
√

2π sup
t∈R
‖Fx(ηT (t)S(αt)u0)[n]‖l2n

=
√

2π sup
t∈R

ηT (t)‖Fx(S(αt)u0)[n]‖l2n

=
√

2π sup
t∈R

ηT (t)‖e−iαn2tFx(u0)[n]‖l2n

≤
√

2π‖Fx(u0)‖l2n

= ‖u0‖L2
x
.
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Definition 3.12. Let Y be the space of all functions f(t, x) whose derivatives

of all orders with respect to t and x exist, and such that for all m, n, k ∈ N

there exists cm,k,n such that |t|k |∂mt ∂nx f(t, x)| ≤ cm,k,n for all (t, x) ∈ R× T.

Lemma 3.13. There exists c > 0 such that for all T ∈ (0, 1] and all F ∈ Y

∥∥∥∥ηT (t)

∫ t

0

S(α(t− t′))F (t′, x) dt′
∥∥∥∥
C0
t L

2
x

≤ c T
1
16‖F‖

X
0,−3/8

κ=−αn2
. (3.8)

Proof. Let ω(z) ∈ C∞0 be a bump function that is supported on [−3, 3] and

equals 1 on [−2, 2]. If we define ωT (t) = ω
(
t
T

)
, then

∥∥∥ηT (t)
∫ t

0
S(α(t− t′))F (t′, x) dt′

∥∥∥
C0
t L

2
x

=
∥∥∥ηT (t)

∫ t
0
S(α(t− t′)) ωT (t′)F (t′, x) dt′

∥∥∥
C0
t L

2
x

= sup
t∈R

∥∥∥∥ηT (t)

∫ t

0

S(α(t− t′)) ωT (t′)F (t′, x) dt′
∥∥∥∥
L2
x

=
√

2π sup
t∈R

∥∥∥∥Fx(ηT (t)

∫ t

0

S(α(t− t′))H(t′, x) dt′
)∥∥∥∥

l2n

,

where H(t, x) = ωT (t)F (t, x). Let H(κ, n) = F(H)[κ, n], and observe that

1

2π

∫
T
e−inxH(t′, x) dx =

∫
R
eit
′κH(κ, n) dκ = F−1

t′ (H)[t′].

Therefore, for any fixed b >
1

2
, we have

∥∥∥∥iηT (t)

∫ t

0

S(α(t− t′))F (t′, x) dt′
∥∥∥∥
C0
t L

2
x
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=
√

2π sup
t∈R

∥∥∥∥ηT (t)

∫ t

0

Fx(S(α(t− t′))H)[n] dt′
∥∥∥∥
l2n

=
√

2π sup
t∈R

∥∥∥∥ηT (t)

∫ t

0

e−iαn
2(t−t′)Fx(H)[n] dt′

∥∥∥∥
l2n

=
√

2π sup
t∈R

∥∥∥∥ηT (t)

∫ t

0

e−αn
2(t−t′)F−1

t′ (H)[t′] dt′
∥∥∥∥
l2n

= sup
t∈R

∥∥∥∥ηT (t)

∫
R

∫ t

0

e−iαn
2(t−t′)+it′κ H(κ, n) dt′ dκ

∥∥∥∥
l2n

=
√

2π sup
t∈R

∥∥∥∥ηT (t)

∫
R
e−iαn

2t

∫ t

0

eit
′(κ+αn2)H(κ, n) dt′ dκ

∥∥∥∥
l2n

=
√

2π sup
t∈R

∥∥∥∥ηT (t)

∫
R
e−iαn

2t

(∫ t

0

eit
′(κ+αn2)dt′

)
H(κ, n) dκ

∥∥∥∥
l2n

≤
√

2π

∥∥∥∥∫
R
〈κ+ αn2〉−1|H(κ, n)| dκ

∥∥∥∥
l2n

=
√

2π

∥∥∥∥∫
R
〈κ+ αn2〉−1+b−b|H(κ, n)| dκ

∥∥∥∥
l2n

≤ cb ‖〈κ+ αn2〉b−1H(κ, n)‖L2
κl

2
n

= cb‖H‖X0,b−1

κ=−αn2
,

where in the last estimate, the Cauchy-Schwarz inequality was applied. Specif-

ically, if b =
9

16
then

∥∥∥∥iηT (t)

∫ t

0

S(α(t− t′))F (t′, x) dz′
∥∥∥∥
C0
t L

2
x

≤ c ‖ωT (t)F (t, x)‖
X

0,−7
16

κ=−αn2

, (3.9)

where c is an absolute constant. Applying Lemma 2.11 from [20] results in

‖ωT (t)F (t, x)‖
X

0,−7
16

κ=−αn2

=
∥∥ω ( t

T

)
F (t, x)

∥∥
X

0,− 7
16

κ=−αn2
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≤ c T
1
16‖F‖

X
0,− 3

8
κ=−αn2

,

where c depends only on ω. Combine this estimate with (3.9), to conclude

the proof of Lemma 3.13.

The following estimates can also be found in [8] and [14].

Lemma 3.14. Suppose b > 1
2
. Then, there exists c > 0 such that for all

T ∈ [0, 1],

‖ηT (t)S(αt)u0‖Xs,b

κ=−αn2
≤ c T

1
2
−b‖u0‖Hs . (3.10)

Proof. Note that

ηT (t)S(αt)u0 = η

(
t

T

)∑
n∈Z

einx−iαn
2tû0(n)

=

∫
R
ei

t
T
ω η̂(ω) dω

∑
n∈Z

einx−iαn
2tû0(n)

=
∑
n∈Z

einxû0(n)

∫
R
eit(

ω
T
−αn2) η̂(ω) dω

=
∑
n∈Z

einxû0(n) T

∫
R
eitκ η̂(T (κ+ αn2)) dκ

= T

∫
R

∑
n∈Z

einxeitκû0(n) η̂(T (κ+ αn2)) dκ,

where η̂(ω) represents the Fourier transform of η(t) evaluated at ω, and

κ = ω
T
− αn2. Therefore,

‖ηT (t)S(αt)u0‖2

Xs,b

κ=−αn2

= T 2

∫
R

∑
n∈Z

(1 + |n|)2s (1 +
∣∣κ+ αn2

∣∣)2b |û0(n)|2
∣∣η̂ (T (κ+ αn2

))∣∣2 dκ
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=
∑
n∈Z

(1 + |n|)2s |û0(n)|2
(
T 2

∫
R

(
1 +

∣∣κ+ αn2
∣∣)2b ∣∣η̂ (T (κ+ αn2

))∣∣2 dκ)

=
∑
n∈Z

(1 + |n|)2s |û0(n)|2 Jn.

Since b > 1
2
, we have that

Jn ≤ c

[
T 2

∫
R

∣∣η̂ (T (κ+ αn2
))∣∣2 dκ
+T 2

∫
R

∣∣κ+ αn2
∣∣2b ∣∣η̂ (T (κ+ αn2

))∣∣2 dκ]

= cb

[
T

∫
R
|η̂ (ω)|2 dκ+ T 1−2b

∫
R
|ω|2b |η̂ (ω)|2 dκ

]

≤ cb
[
T ‖η̂‖2

L2 + T 1−2b ‖η‖2
Hb

]

≤ cb T
1−2b,

where ω = T (κ+ αn2), and c only depends on b. Thus

‖ηT (t)S(αt)u0‖2

Xs,b

κ=−αn2
≤ c T 1−2b

∑
n∈Z

(1 + |n|)2s |û0(n)|2 .

Taking the square root on both sides results in (3.10), and completes the proof

of Lemma 3.14.

Lemma 3.15. Let −1
2
< b′ ≤ 0 ≤ b ≤ 1 + b. There exists c > 0 such that

for all T ∈ [0, 1] and all F ∈ Y,

∥∥∥∥ηT (t)

∫ t

0

S(α(t− t′))F (t′, x) dt′
∥∥∥∥
Xs,b

κ=−αn2

≤ c T 1+b′−b‖F‖
Xs,b′
κ=−αn2

. (3.11)
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Proof. To establish (3.11), we need to first prove the following inequality

∥∥∥∥ηT (t)

∫ t

0

f(t′) dt′
∥∥∥∥
Hb

≤ c T 1+b′−b ‖f‖Hb′ . (3.12)

We write

ηT (t)

∫ t

0

f(t′) dt′ = ηT (t)

∫ t

0

∫
R
eit
′κf̂(κ) dκ dt′

= ηT (t)

∫
R
f̂(κ)

∫ t

0

eit
′κ dt′ dκ

= ηT (t)

∫
R
f̂(κ)

1

iκ
(eitκ − 1) dκ

= ηT (t)

∫
|κ|T≥1

(iκ)−1(eitκ − 1)f̂(κ) dκ

+ ηT (t)

∫
|κ|T≤1

(iκ)−1
(
eitκ − 1

)
f̂(κ) dκ

= ηT (t)

∫
|κ|T≥1

(iκ)−1(eitκ − 1)f̂(κ) dκ

+ ηT (t)

∫
|κ|T≤1

(iκ)−1

(∑
n≥0

(itκ)n

n!
− 1

)
f̂(κ) dκ

= ηT (t)

∫
|κ|T≥1

(iκ)−1(eitκ − 1)f̂(κ) dκ

+ ηT (t)

∫
|κ|T≤1

(iκ)−1

(∑
n≥1

(itκ)n

n!

)
f̂(κ) dκ

= ηT (t)
∑
n≥1

(t)n

n!

∫
|κ|T≤1

(iκ)n−1f̂(κ) dκ + ηT (t)

∫
|κ|T≥1

(iκ)−1eitκf̂(κ) dκ

− ηT (t)

∫
|κ|T≥1

(iκ)−1f̂(κ) dκ

= I + J −K.
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Therefore,

∥∥∥∥ηT (t)

∫ t

0

f(t′) dt′
∥∥∥∥
Hb

≤ ‖I‖Hb + ‖J‖Hb + ‖K‖Hb . (3.13)

We work on the norms of each of the terms on the right hand side of

(3.13). Utilizing the triangle inequality, the fact that |κ| ≤ T−1, and the

Cauchy-Schwarz inequality respectively, we have that

‖I‖Hb =

∥∥∥∥∥ηT (t)
∑
n≥1

(t)n

n!

∫
|κ|T≤1

(iκ)n−1f̂(κ) dκ

∥∥∥∥∥
Hb

≤
∑
n≥1

1

n!

∥∥∥∥znηT (t)

∫
|κ|T≤1

(iκ)n−1f̂(κ) dκ

∥∥∥∥
Hb

=
∑
n≥1

1

n!

∣∣∣∣∫
|κ|T≤1

(iκ)n−1f̂(κ) dκ

∣∣∣∣ ‖tnηT (t)‖Hb

≤
∑
n≥1

1

n!
‖tnηT (t)‖Hb

∫
|κ|T≤1

|iκ|n−1
∣∣∣f̂(κ)

∣∣∣ dκ
≤
∑
n≥1

1

n!
‖tnηT (t)‖Hb

∫
|κ|T≤1

T 1−n〈κ〉b′−b′
∣∣∣f̂(κ)

∣∣∣ dκ
≤
∑
n≥1

1

n!
‖tnηT (t)‖Hb T

1−n
∥∥∥〈κ〉b′ f̂(κ)

∥∥∥
L2
|κ|T≤1

∥∥∥〈κ〉−b′∥∥∥
L2
|κ|T≤1

≤
∑
n≥1

1

n!
‖tnηT (t)‖Hb T

1−n ‖f‖Hb′

∥∥∥〈κ〉−b′∥∥∥
L2
|κ|T≤1

. (3.14)

Note also that since |κ| ≤ T−1, then (1 + |κ|)−2b′ ≤ (1 + |T−1|)−2b′ ≤

cb′ T
2b′ . So,

∥∥∥〈κ〉−b′∥∥∥
L2
|κ|T≤1

=

(∫
|κ|T≤1

〈κ〉−2b′ dκ

) 1
2
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≤ cb′

(∫
|κ|T≤1

T 2b′ dκ

) 1
2

≤ cb′ T
b′

(∫ T−1

−T−1

dκ

) 1
2

≤ cb′ T
b′− 1

2 . (3.15)

In addition,

‖tnηT (t)‖Hb =

∥∥∥∥T n( t

T

)n
η

(
t

T

)∥∥∥∥
Hb

= T n
∥∥∥∥( t

T

)n
η

(
t

T

)∥∥∥∥
Hb

= T n
∥∥∥∥gn( t

T

)∥∥∥∥
Hb

,

where gn (t) = tnη (t). By the definition of Fourier transform,

gn

(
t

T

)
=

∫
R
ei(

t
T )ω Ft(gn)[ω] dω = T

∫
R
eitκFt(gn)[Tκ] dκ.

Therefore,

∥∥∥∥gn( t

T

)∥∥∥∥2

Hb

= T 2

∫
R

(1 + |κ|)2b |Ft(gn)[Tκ]|2 dκ

≤ cb T
2

(∫
R
|Ft(gn)[Tκ]|2 dκ+

∫
R
|κ|2b |Ft(gn)[Tκ]|2 dκ

)

= cb T

(∫
R
|Ft(gn)[ω]|2 dω +

∫
R
T−2b |ω|2b |Ft(gn)[ω]|2 dω

)

≤ cb T
1−2b

(∫
R
|Ft(gn)[ω]|2 dω +

∫
R
|ω|2b |Ft(gn)[ω]|2 dω

)
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≤ cb T
1−2b

(
‖gn‖2

L2 + ‖gn‖2
Hb

)

≤ cb T
1−2b

(
‖gn‖2

L2 +

[
‖gn‖L2 +

∥∥∥∥dgndt
∥∥∥∥
L2

]2
)

≤ cb T
1−2b

(
‖tnη(t)‖2

L2 +
[
‖tnη(t)‖L2 + ‖tnη′(t)‖L2 +

∥∥ntn−1η(t)
∥∥
L2

]2)

≤ cb 4n T 1−2b
(
‖η(t)‖2

L2 + [‖η(t)‖L2 + ‖η′(t)‖L2 + n ‖η(t)‖L2 ]
2
)

≤ cb 4n T 1−2b
(
k2 + [k(1 + n) + C]2

)

≤ cb 4n T 1−2b(1 + n)2,

where k and C are fixed constants, and we used the fact that η and its deriva-

tive are in L2. Thus,

‖tnηT (t)‖Hb = T n
∥∥∥∥gn( t

T

)∥∥∥∥
Hb

≤ cb 2n T
1
2
−b+n(1 + n). (3.16)

To conclude, substituting (3.15) and (3.16) into (3.14) results in

‖I‖Hb ≤ c
∑
n≥1

2n(1 + n)

n!
T

1
2
−b+nT 1−nT b

′− 1
2 ‖f‖Hb′

≤ c
∑
n≥1

2n(1 + n)

n!
T 1+b′−b ‖f‖Hb′

≤ c T 1+b′−b ‖f‖Hb′ , (3.17)

where c depends only on b and b′.

For the third term, we have

‖K‖Hb =

∥∥∥∥ηT (t)

∫
|κ|T≥1

(iκ)−1f̂(κ) dκ

∥∥∥∥
Hb
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=

∣∣∣∣∫
|κ|T≥1

(iκ)−1f̂(κ) dκ

∣∣∣∣ ‖ηT (t)‖Hb

≤
(∫
|κ|T≥1

|iκ|−1|f̂(κ)| dκ
)
‖ηT (t)‖Hb

=

(∫
|κ|T≥1

|iκ|−1〈κ〉b′−b′ |f̂(κ)| dκ
)
‖ηT (t)‖Hb

≤
∥∥∥|iκ|−1〈κ〉−b′

∥∥∥
L2
|κ|T≥1

∥∥∥〈κ〉b′ |f̂(κ)|
∥∥∥
L2
|κ|T≥1

‖ηT (t)‖Hb

=
∥∥∥|iκ|−1〈κ〉−b′

∥∥∥
L2
|κ|T≥1

‖f‖Hb′ ‖ηT (t)‖Hb . (3.18)

To obtain an estimate for the Hb norm on the right hand side of (3.18),

note that

ηT (t) =

∫
R
ei

t
T
ωη̂(ω) dω = T

∫
R
eitκη̂(Tκ) dκ.

So,

‖ηT (t)‖2
Hb = T 2

∫
R
〈κ〉2b |η̂(Tκ)|2 dκ

= T 2

∫
R
〈κ〉2b |η̂(Tκ)|2 dκ

≤ cb T
2

(∫
R
|η̂(Tκ)|2 dκ

)
+ c T 2

(∫
R
|κ|2b |η̂(Tκ)|2 dκ

)

= cb T

(∫
R
|η̂(κ)|2 dκ

)
+ c T 1−2b

(∫
R
|κ|2b |η̂(κ)|2 dκ

)

≤ cb T
1−2b. (3.19)

Also, if |κ|T ≥ 1, then |κ| ≥ T−1 ≥ 1. So,

∥∥∥|κ|−1〈κ〉−b′
∥∥∥
L2
|κ|T≥1

=

(∫
|κ|T≥1

|iκ|−2〈κ〉−2b′ dκ

) 1
2
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=

(∫
|κ|T≥1

(1 + κ)−2b′

κ2
dκ

) 1
2

≤ cb′

(∫
|κ|T≥1

(2κ)−2b′

κ2
dκ

) 1
2

= cb′

(∫
|κ|T≥1

κ−2b′−2 dκ

) 1
2

= cb′

(
lim
k→∞

[
κ−2b′−1

−2b′ − 1

]k
T−1

) 1
2

≤ cb′ T
1
2

+b′ . (3.20)

Applying estimates (3.19) and (3.20) to (3.18), we have

‖K‖Hb ≤ c T 1+b′−b ‖f‖Hb′ , (3.21)

where again c depends only on b and b′.

For the second term, we let h(t) =
∫
|κ|T≥1

(iκ)−1eitκf̂(κ) dκ. Then

‖J‖Hb =
∥∥∥〈κ〉bη̂T ∗ ĥ∥∥∥

L2

=

∥∥∥∥〈κ〉b ∫
R
η̂T (κ− p)ĥ(p) dp

∥∥∥∥
L2

=

∥∥∥∥ ∫
R
〈κ〉bη̂T (κ− p)ĥ(p) dp

∥∥∥∥
L2

=

∥∥∥∥ ∫
R
〈κ+ p− p〉bη̂T (κ− p)ĥ(p) dp

∥∥∥∥
L2

≤
∥∥∥∥cb ∫

R
(1 + |p|+ |κ− p|)b η̂T (κ− p)ĥ(p) dp

∥∥∥∥
L2

≤
∥∥∥∥cb ∫

R
|κ− p|b η̂T (κ− p)ĥ(p) dp

∥∥∥∥
L2

+

∥∥∥∥c ∫
R
〈p〉bη̂T (κ− p)ĥ(p) dp

∥∥∥∥
L2
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= cb

∥∥∥(|κ|b η̂T) ∗ ĥ∥∥∥
L2

+ c
∥∥∥η̂T ∗ (〈κ〉bĥ)∥∥∥

L2

≤ cb

∥∥∥|κ|b η̂T∥∥∥
L1
‖h‖L2 + c ‖η̂T‖L1 ‖h‖Hb , (3.22)

where in the last three estimates, we used Minkowski’s inequality and Young’s

convolution inequality. The norms in (3.22) are estimated as follows:

‖η̂T‖L1 = T

∫
R
|η̂(Tκ)| dκ =

∫
R
|η̂(ω)| dω ≤ c, (3.23)

∥∥∥|κ|b η̂T∥∥∥
L1

= T

∫
R
|κ|b |η̂(Tκ)| dκ = T−b

∫
R
|η̂(ω)| dω ≤ c T−b, (3.24)

and

‖h‖2
Hb =

∥∥∥∥∫
|κ|T≥1

(iκ)−1eitκf̂(κ) dκ

∥∥∥∥2

Hb

=

∥∥∥∥∫
R

1|κ|T≥1 (iκ)−1eitκf̂(κ) dκ

∥∥∥∥2

Hb

=

∥∥∥∥∫
R
eitκg(κ) dκ

∥∥∥∥2

Hb

=
∥∥〈κ〉bg(κ)

∥∥2

L2

=
∥∥∥〈κ〉b−b′+b′1|κ|T≥1 (iκ)−1f̂(κ)

∥∥∥2

L2

=

∫
|κ|T≥1

〈κ〉2b−2b′+2b′ |κ|−2
∣∣∣f̂(κ)

∣∣∣2 dκ
≤ sup
|κ|T≥1

|κ|−2〈κ〉2b−2b′
∫
|κ|T≥1

〈κ〉2b′
∣∣∣f̂(κ)

∣∣∣2 dκ
≤ c T 2−2b+2b′ ‖f‖2

Hb′ ,
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for b, b′ ∈ R, b ≤ 1+b′. Taking the square root on both sides of the inequality,

we have

‖h‖Hb ≤ c T 1−b+b′ ‖f‖Hb′ . (3.25)

Specifically, if b = 0 then

‖h‖L2 ≤ c T 1+b′ ‖f‖Hb′ . (3.26)

Lastly, we apply (3.23), (3.24), (3.25), and (3.26) to (3.22), to get

‖J‖Hb ≤ c T 1+b′−b ‖f‖Hb′ . (3.27)

The estimation in (3.12) results from substituting (3.17), (3.21), and (3.27)

into (3.13). To get (3.11), note that

∥∥∥∥ηT (t)

∫ t

0

S(α(t− t′)) F (t′, x) dt′
∥∥∥∥2

Xs,b

κ=−αn2

=

∥∥∥∥S(−αt) ηT (t)

∫ t

0

S(α(t− t′)) F (t′, x) dt′
∥∥∥∥2

Hb
tH

s
x

=

∥∥∥∥ηT (t)

∫ t

0

S(−αt′) F (t′, x) dt′
∥∥∥∥2

Hb
tH

s
x

=
∑
n∈Z

∫
R
〈n〉2s〈κ〉2b

∣∣∣∣F (ηT (t)

∫ t

0

S(−αt′) F (t′, x) dt′
)

[κ, n]

∣∣∣∣2 dκ
=
∑
n∈Z

〈n〉2s
∫
R
〈κ〉2b

∣∣∣∣Ft(ηT (t)

∫ t

0

H(t′, n) dt′
)

[κ]

∣∣∣∣2 dκ,
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where H(t, n) = Fx(S(−αt) F )[n]. For a fixed n, let H(t, n) = fn(t).

By applying the estimate in (3.12), it follows that

∥∥∥∥ηT (t)

∫ t

0

S(α(t− t′))F (t′, x) dt′
∥∥∥∥2

Xs,b

κ=−αn2

=
∑
n∈Z

〈n〉2s
∫
R
〈κ〉2b

∣∣∣∣Ft(ηT (t)

∫ t

0

fn(t′) dt′
)

[κ]

∣∣∣∣2 dκ
=
∑
n∈Z

〈n〉2s
∥∥∥∥ηT (t)

∫ t

0

fn(t′) dt′
∥∥∥∥2

Hb

≤ c
∑
n∈Z

〈n〉2sT 2+2b′−2b ‖fn‖2
Hb′

= c T 2+2b′−2b
∑
n∈Z

〈n〉2s
∫
R
〈κ〉2b′

∣∣∣f̂n(κ)
∣∣∣2 dκ

= c T 2+2b′−2b
∑
n∈Z

〈n〉2s
∫
R
〈κ〉2b′ |Ft (H(t, n)) [κ]|2 dκ

= c T 2+2b′−2b
∑
n∈Z

〈n〉2s
∫
R
〈κ〉2b′ |Ft (Fx(S(−αt)F )[n]) [κ]|2 dκ

= c T 2+2b′−2b
∑
n∈Z

∫
R
〈n〉2s〈κ〉2b′ |F (S(−αt)F ) [κ, n]|2 dκ

= c T 2+2b′−2b ‖S(−αt)F‖2
Hb′
z H

s
x

= c T 2+2b′−2b ‖F‖2

Xs,b′
κ=−αn2

.

Taking the square root of both sides concludes the proof of Lemma 3.15.

Theorem 3.16. (Strichartz Estimate). Suppose D′(s) = ∆(s) satisfies As-

sumption 1. Then for all u ∈ S(T) and for all s ∈ [0, B],

‖TD(s)u‖L4
s,x
≤ c ‖u‖L2

x
(3.28)
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Proof. The following proof is similar to that of Proposition 2.1 in [4]. First,

‖TD(s)u‖L4
s,x

=

(∫ B

0

‖TD(s)u‖4
L4
x
ds

) 1
4

=

( n−1∑
j=0

∫ sj+1

sj

‖TD(s)u‖4
L4
x
ds

) 1
4

≤ K
n−1∑
j=0

(∫ sj+1

sj

‖TD(s)u‖4
L4
x
ds

) 1
4

≤ K

n−1∑
j=0

‖TD(s)u‖L4
s,x((sj ,sj+1)×T)

with s0, s1, ..., sn as in Assumption 1. Thus it is enough to prove Theorem

3.16 on an arbitrary finite interval [a, b] instead of on [0, B], and under the

assumption that D′(s) = k, a constant on [a, b].

With this in mind, we write

‖TD(s)u‖4
L4
s,x((a,b)×T) ≤ ‖TD(s)u‖4

L4
s,x((p,q)×T)

for some p, q such that for a given k , [a, b] ⊆ [p, q] and q − p =
2Mπ

k
, for

some M ∈ Z.

Let g = TD(s)u, then by definition of Fourier transform,

g =
∑
n∈Z

û(n)ei(nx−n
2D(s)) with û(n) = Fx(u)[n]. Thus,

‖g‖2
L4
s,x((p,q)×T) = ‖g · ḡ‖L2

s,x((p,q)×T)

=

∥∥∥∥∑
n∈Z

∑
m∈Z

û(n)¯̂u(m)ei((n−m)x−(n2−m2)D(s))

∥∥∥∥
L2
s,x((p,q)×T)

=

∥∥∥∥∑
n∈Z

|û(n)|2 +
∑
n∈Z

∑
m6=n∈Z

û(n)¯̂u(m)ei((n−m)x−(n2−m2)D(s))

∥∥∥∥
L2
s,x((p,q)×T)
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≤
∥∥∥∥∑
n∈Z

|û(n)|2
∥∥∥∥
L2
s,x

+

∥∥∥∥∑
n∈Z

∑
m6=n∈Z

û(n)¯̂u(m)ei((n−m)x−(n2−m2)D(s))

∥∥∥∥
L2
s,x

≤
∥∥∥∥∑
n∈Z

|û(n)|2
∥∥∥∥
L2
s,x

+

∥∥∥∥∑
n∈Z

∑
l 6=0∈Z

û(n)¯̂u(n− l)eilxe−il(2n−l)D(s)

∥∥∥∥
L2
s,x

, (3.29)

where l = n−m.

The second term on the right hand side of (3.29) can be dealt with as

follows. Let bl =
∑
n∈Z

û(n)¯̂u(n− l)e−il(2n−l)D(s). Then

∥∥∥∥∑
n∈Z

∑
l 6=0∈Z

û(n)¯̂u(n− l)eilxe−il(2n−l)D(s)

∥∥∥∥
L2
s,x

=

∥∥∥∥∥∑
l 6=0∈Z

ble
ilx

∥∥∥∥∥
L2
s,x

=

∫ q

p

∫
T

∣∣∣∣∣ ∑
l 6=0∈Z

ble
ilx

∣∣∣∣∣
2

dx ds

 1
2

≤ c

(∫ q

p

∑
l 6=0∈Z

|bl|2 ds

) 1
2

≤ c

(∑
l 6=0∈Z

∫ q

p

bl · b̄l ds

) 1
2

= c

(∑
l 6=0∈Z

(∑
n∈Z

∑
r∈Z

û(n)¯̂u(n− l)û(r − l)¯̂u(r)

∫ q

p

e−il(2n−2r)D(s) ds

)) 1
2

.

Now we observe that since q − p = 2Mπ
k
, the integral

∫ q

p

e−il(2n−2r)D(s) ds =

∫ q

p

e−il(2n−2r)(ks+d) ds

is equal to q − p when n = r; and is equal to 0 when n 6= r. So,

∥∥∥∥∑
n∈Z

∑
l 6=0∈Z

û(n)¯̂u(n− l)eilxe−il(2n−l)D(s))

∥∥∥∥
L2
s,x
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≤ c

(
2Mπ

k

∑
l 6=0∈Z

∑
n∈Z

û(n)¯̂u(n− l)û(n− l)¯̂u(n)

) 1
2

= c

(
2Mπ

k

∑
n6=m

|û(n)¯̂u(m)|2
) 1

2

since m = n− l

≤ c

(
2Mπ

k

∑
n

∑
m

|û(n)|2|û(m)|2
) 1

2

= c

(
2Mπ

k

∑
n

|û(n)|2
∑
m

|û(m)|2
) 1

2

,

≤ c ‖u‖2
L2
x
.

Putting the estimate above into (3.29) results in

‖g‖2
L4
s,x((a,b)×T) ≤ ‖g‖2

L4
s,x((p,q)×T) ≤ c

(∥∥∥∥∑
n∈Z

|û(n)|2
∥∥∥∥
L2
s,x((p,q)×T)

+ ‖u‖2
L2
x

)

≤ c

(∣∣∣∣∣∑
n∈Z

|û(n)|2
∣∣∣∣∣+ ‖u‖2

L2
x

)

≤ c ‖u‖2
L2
x
.

Finally, (3.28) can be obtained from the above estimate.

3.3 Well-posedness in Hr

Lemma 3.17. Fix B ∈ R and M > 0, and suppose r is a non-negative

integer. Suppose u1, u2, u3 ∈ Hr
x, and define

R(s) := T−1
D(s)[TD(s)u1 · TD(s)u2 · TD(s)u3]

for s ∈ [0, B]. If we let
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F (u1, u2, u3) :=
1

B

∫ B

0

R(s) ds,

then we have that

‖F (u1, u2, u3)‖C0
tH

r
x([0,M ]×T) ≤ c ‖u1‖C0

tH
r
x([0,M ]×T) · ‖u2‖C0

tH
r
x([0,M ]×T)

·‖u3‖C0
tH

r
x([0,M ]×T),

(3.30)

where c is independent of u1, u2, u3.

Proof. For r ∈ Z and r > 0,

‖F‖C0
tH

r
x([0,M ]×T) =

1

B
sup

t∈[0,M ]

∥∥∥∥∫ B

0

T−1
D(s)[TD(s)u1 · TD(s)u2 · TD(s)u3] ds

∥∥∥∥
Hr
x

≤ 1

B
sup

t∈[0,M ]

∫ B

0

∥∥∥T−1
D(s)[TD(s)u1 · TD(s)u2 · TD(s)u3]

∥∥∥
Hr
x

ds

=
1

B
sup

t∈[0,M ]

∫ B

0

∥∥TD(s)u1 · TD(s)u2 · TD(s)u3

∥∥
Hr
x
ds

=
c

B
sup

t∈[0,M ]

∫ B

0

‖TD(s)u1‖Hr
x
‖TD(s)u2‖Hr

x
‖TD(s)u3‖Hr

x
ds

= c ‖u1‖C0
tH

r
x([0,M ]×T)‖u2‖C0

tH
r
x([0,M ]×T)‖u3‖C0

tH
r
x([0,M ]×T)

For r = 0,

‖F‖C0
t L

2
x([0,M ]×T) =

1

B
sup

t∈[0,M ]

∥∥∥∥∫ B

0

T−1
D(s)[TD(s)u1 · TD(s)u2 · TD(s)u3] ds

∥∥∥∥
L2
x

≤ 1

B
sup

t∈[0,M ]

∫ B

0

∥∥∥T−1
D(s)[TD(s)u1 · TD(s)u2 · TD(s)u3]

∥∥∥
L2
x

ds

=
1

B
sup

t∈[0,M ]

∫ B

0

sup
‖v‖L2≤1

∣∣∣∣∫
T
T−1
D(s)[TD(s)u1 · TD(s)u2 · TD(s)u3] · v̄ dx

∣∣∣∣ ds
=

1

B
sup

t∈[0,M ]

∫ B

0

sup
‖v‖L2≤1

∣∣∣∣∫
T
TD(s)u1 · TD(s)u2 · TD(s)u3 · TD(s)v dx

∣∣∣∣ ds
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≤ 1

B
sup

t∈[0,M ]

∫ B

0

sup
‖v‖L2≤1

∫
T
|TD(s)u1 · TD(s)u2 · TD(s)u3 · TD(s)v| dx ds.

It follows from Holder’s inequality and the Strichartz estimate found in The-

orem 3.16 that

‖F‖C0
t L

2
x([0,M ]×T) ≤

1

B
sup

t∈[0,M ]

sup
‖v‖L2≤1

‖TD(s)u1‖L4
s,x
‖TD(s)u2‖L4

s,x
‖TD(s)u3‖L4

s,x

‖TD(s)v‖L4
s,x

≤ c

B
sup

t∈[0,M ]

sup
‖v‖L2≤1

‖u1‖L2
x
‖u2‖L2

x
‖u3‖L2

x
‖v‖L2

x

≤ c

B
sup

t∈[0,M ]

‖u1‖L2
x
‖u2‖L2

x
‖u3‖L2

x

= c ‖u1‖C0
t L

2
x([0,M ]×T) ‖u2‖C0

t L
2
x([0,M ]×T) ‖u3‖C0

t L
2
x([0,M ]×T)

Lemma 3.18. Suppose s ∈ [0, B] and M > 0, and suppose r is a non-

negative integer. Let F (u1, u2, u3) be as defined in Lemma 3.17. For u ∈ Y

define

F (u(t, x)) = F (u) := F (u, u, u) =
1

B

∫ B

0

T−1
D(s)[|TD(s)u|2 TD(s)u] ds.

Then for all u, v ∈ Y , we have that

‖F (u)‖C0
tH

r
x([0,M ]×T) ≤ c ‖u‖3

C0
tH

r
x([0,M ]×T) (3.31)

and

‖F (u)− F (v)‖C0
tH

r
x([0,M ]×T) ≤ c ‖u− v‖C0

tH
r
x
(‖u‖C0

tH
r
x

+ ‖v‖C0
tH

r
x
)2, (3.32)

where c is independent of u and v.
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Proof. The estimate (3.31) follows immediately from (3.30). Observe that

F (u)− F (v) = F (u− v, u, u) + F (u− v, v, v) + F (v, u− v, u). (3.33)

Thus,

‖F (u)− F (v)‖C0
tH

r
x([0,M ]×T) ≤ ‖F (u− v, u, u)‖C0

tH
r
x

+ ‖F (u− v, v, v)‖C0
tH

r
x

+‖F (v, u− v, u)‖C0
tH

r
x

≤ c (‖u− v‖C0
tH

r
x
‖u‖2

C0
tH

r
x

+ ‖u− v‖C0
tH

r
x
‖v‖2

C0
tH

r
x

+ ‖u− v‖C0
tH

r
x
‖u‖C0

tH
r
x
‖v‖C0

tH
r
x
)

≤ c ‖u− v‖C0
tH

r
x
(‖u‖C0

tH
r
x

+ ‖v‖C0
tH

r
x
)2.

Remark 3.19. It follows from Lemma 3.18 that for α = 0, E(u) is a contin-

uous functional on L2(T) . Indeed, we have

|E(u)− E(v)| = | 〈F (u), u〉 − 〈F (v), v〉 |

≤ c(| 〈F (u)− F (v), u〉 |+ | 〈F (v), u− v〉 |)

≤ c(‖F (u)− F (v)‖L2
x
‖u‖L2

x
+ ‖F (v)‖L2

x
‖u− v‖L2

x
)

≤ c(‖u− v‖L2(‖u‖L2
x

+ ‖v‖L2
x
)2‖u‖L2

x
+ ‖v‖3

L2
x
‖u− v‖L2

x
),

≤ c‖u− v‖L2
x
(‖u‖3

L2
x

+ ‖v‖3
L2
x
).

Theorem 3.20. The periodic DMNLS equation is globally well-posed in Hr(T)

for non-negative integer values of r. That is, suppose α ∈ R. Let D(s) satisfy

Assumption 1. If u0 ∈ Hr, then for every M > 0, equation (3.1) has a unique

strong solution u ∈ C0
tH

r
x ([0,M ]× T) with initial data u0. The map u0 7→ u

is locally Lipschitz from Hr
x to C0

tH
r
x ([0,M ]× T). With M as defined above,

P (u) is independent of t, for t ∈ [0,M ]. Finally, the number M can be taken
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arbitrarily large.

Proof. Let r be an integer. We start by obtaining a local solution via a Banach

contraction mapping argument.

We denote the closed ball of radius a centered at the origin in

C0
tH

r
x ([0,M ]× T) by

ΛM,a = {u ∈ C0
tH

r
x ([0,M ]× T) : ‖u‖C0

tH
r
x
≤ a}.

Here we will show that if K > 0, then for every a ∈ [2K,∞) there exists

M > 0 such that if u0 ∈ Hr satisfies ‖u0‖Hr ≤ K, and M ′ ∈ (0,M ], then

there is a unique strong solution to (3.1) in ΛM ′,a with initial data u0.

Fix u0 ∈ Hr such that ‖u0‖Hr ≤ K. For each M > 0, we define Q :

C0
tH

r
x ([0,M ]× T) → C0

tH
r
x ([0,M ]× T) by setting, for t ∈ [0,M ] and u ∈

C0
tH

r
x ([0,M ]× T) ,

Q(u)(t) = S(αt)u0 + i

∫ t

0

S(α(t− t′))F (u(t′, x)) dt′, (3.34)

with F (u) as defined in Lemma 3.18. We have shown in Lemmas 3.8, 3.9, and

3.18 that

‖Q(u)‖C0
tH

r
x([0,M ]×T) ≤ ‖u0‖Hr

x
+M‖F‖C0

tH
r
x

≤ ‖u0‖Hr
x

+ cM ‖u‖3
C0
tH

r
x
. (3.35)

Furthermore, if u, v ∈ C0
t L

2
x ([0,M ]× T) , then Lemma 3.9 and (3.32) imply

that

Q(u)−Q(v) = i

∫ t

0

S(α(t− t′))[F (u(t′, x))− F (v(t′, x))] dt′
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satisfies

‖Q(u)−Q(v)‖C0
tH

r
x([0,M ]×T) ≤ cM ‖u− v‖C0

tH
r
x
(‖u‖C0

tH
r
x

+ ‖v‖C0
tH

r
x
)2.

(3.36)

Now suppose a ≥ 2K, choose M = 1
(8ca2)

, and suppose 0 < M ′ ≤ M. For

all u, v ∈ ΛM ′,a we have that

‖Q(u)‖C0
tH

r
x([0,M ′]×T) ≤

a

2
+
a

2
= a

and

‖Q(u)−Q(v)‖C0
tH

r
x([0,M ′]×T) ≤

1

2
‖u− v‖C0

tH
r
x([0,M ′]×T).

Therefore Q(u) defines a contraction from the closed ball ΛM ′,a to itself,

and so by the Banach Contraction Mapping Theorem, Q(u) has a unique fixed

point u ∈ ΛM ′,a. This fixed point is a strong solution to (3.1) with initial data

u0. Note also that every strong solution with initial data u0 is also a fixed

point of Q, so there exists a unique strong solution in u ∈ ΛM ′,a with initial

data u0.

We next prove continuity of the fixed point with respect to the initial data.

Let K > 0, u0, v0 ∈ Hr with ‖u0‖Hr ≤ K, and ‖v0‖Hr ≤ K. For a = 2K,

and M defined as above, let u and v be unique solutions in ΛM,a with initial

data u0 and v0 respectively. Then we will show that

‖u− v‖C0
tH

r
x([0,M ]×T) ≤ c‖u0 − v0‖Hr . (3.37)

Suppose Q is defined on C0
tH

r
x ([0,M ]× T) as in (3.34). Then we know that

‖Q(u)−Q(v)‖C0
tH

r
x([0,M ]×T) ≤

1

2
‖u− v‖C0

tH
r
x([0,M ]×T). (3.38)
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Define Ψ : C0
tH

r
x ([0,M ]× T)× L2

x → C0
tH

r
x ([0,M ]× T) by

Ψ(u,w) = S(αt)w + i

∫ t

0

S(α(t− t′))F (u) dt′.

Then Ψ(u, u0) = u and Ψ(v, v0) = v. So for every t ∈ [0,M ],

‖u− v‖C0
tH

r
x

= ‖Ψ(u, u0)−Ψ(v, u0) + Ψ(v, u0)−Ψ(v, v0)‖C0
tH

r
x

≤ ‖Ψ(u, u0)−Ψ(v, u0)‖C0
tH

r
x

+ ‖Ψ(v, u0)−Ψ(v, v0)‖C0
tH

r
x

= ‖Q(u)−Q(v)‖C0
tH

r
x

+ ‖u0 − v0‖Hr

≤ 1

2
‖u− v‖C0

tH
r
x

+ ‖u0 − v0‖Hr .

This gives the desired continuity with respect to the initial data.

Next, we will show that if u0 ∈ L2 and M > 0, then there can not be two

different strong solutions of (3.1) with initial data u0.

Suppose u and v are two strong solutions in C0
t L

2
x ([0,M ]× T) with the

same initial data u0, and let

T = sup{t ∈ [0,M ] : u(t′) = v(t′) for all t′ ∈ [0, t]}.

Continuity in t implies that u(T ) = v(T ). Suppose T < M ; then for every

ε ∈ (0,M − T ), there exists t ∈ [T, T + ε] such that u(t) 6= v(t). Define u1 =

u(T ) = v(T ). If a1 = 2‖u1‖L2 , then there exists M1 > 0 such that for every

ε ∈ (0,M1], (3.1) has a unique solution in Λε,a1 with initial data u1. Choose

ε such that ε < min(M1,M − T ) and a1 ≥ max(‖v(t)− u1‖L2
x
, ‖u(t)− u1‖L2

x
)

for all t ∈ [T, T + ε]. Then the functions ũ(t) := u(t − T ) and ṽ(t) := v(t −

T ) are two distinct strong solutions in Λε,a1 with initial data u1, which is a

contradiction. This implies that we must have T = M, and therefore u = v
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in C0
t L

2
x ([0,M ]× T) .

For a given u0 ∈ Hr, let

M(u0, r) = sup{M > 0 : ∃ a strong solution of (3.1) in C0
tH

r
x

with initial data u0}.

Note that by the Banach contraction mapping theorem, M(u0, r) > 0; and

since every strong solution in C0
tH

r
x ([0,M ]× T) is also a strong solution in

C0
t L

2
x ([0,M ]× T) , we have that if two solutions with the same initial data

are defined on different time intervals, then they must agree on the smaller

of the two intervals. Therefore, there is a well-defined function u(t, x) for

t ∈ [0,M(u0, r)) such that for every M ∈ [0,M(u0, r)), u is the unique

strong solution of (3.1 ) in C0
tH

r
x ([0,M ]× T) with initial data u0. Moreover, if

M(u0, r) < ∞, then limt→M(u0,r) ‖u(t)‖Hr = ∞. Otherwise, we obtain a con-

tradiction by choosing u(M) as the initial data with M sufficiently close to

M(u0, r), and then use the fixed point argument above to extend the solution

u to an interval [0,M + ε), with M + ε > M(u0, r).

We next establish persistence of regularity: if a solution u(t, x) ∈ L2 has

initial data that is in Hr for some positive integer r, then u will remain in

Hr for as long as it is in L2.

Suppose to begin with that u0 ∈ H1. Then M(u0, 1) = M(u0, 0). We will

show that if 0 < M < M(u0, 0) and u is a strong solution in C0
tH

1
x ([0,M ]× T)

with initial data u0, then ‖u(t)‖H1
x

remains bounded for z ∈ [0,M ]. To see

this, first observe that

‖u(t)‖H1
x
≤ ‖S(αt)u0‖H1

x
+

∫ t

0

‖S(α(t− t′))F (u(t′))‖H1
x
dt′
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= ‖u0‖H1 +

∫ t

0

‖F (t′)‖H1
x
dz′

≤ ‖u0‖H1 + c

∫ t

0

‖F (t′)‖L2
x

+ ‖Fx(t′)‖L2
x
dt′.

From (3.31), we have that ‖F (t)‖L2
x
≤ c ‖u(t)‖3

L2
x
≤ c ‖u(t)‖2

L2
x
‖u(t)‖H1

x
. Also,

‖Fx(t)‖L2 =
1

B

∥∥∥∥∫ B

0

d

dx
T−1
D(s)[TD(s)u(t) · TD(s)u(t) · TD(s)u(t)] ds

∥∥∥∥
L2
x

=
1

B

∥∥∥∥∫ B

0

T−1
D(s)

[
d

dx

(
TD(s)u(t) · TD(s)u(t) · TD(s)u(t)

)]
ds

∥∥∥∥
L2
x

≤ 1

B

∥∥∥∥∫ B

0

T−1
D(s)[TD(s)u(t) · TD(s)ux(t) · TD(s)u(t)] ds

∥∥∥∥
L2
x

+

1

B

∥∥∥∥∫ B

0

T−1
D(s)[2 TD(s)ux(t) · TD(s)u(t) · TD(s)u(t)] ds

∥∥∥∥
L2
x

≤ c ‖u(t)‖2
L2
x
‖ux(t)‖L2

x
≤ c ‖u(t)‖2

L2
x
‖u(t)‖H1

x

where we have used the product rule and Minkowski’s inequality and

(3.30). Therefore,

‖u(t)‖H1
x
≤ ‖u0‖H1 + c

∫ t

0

‖u(t′)‖2
L2
x
‖u(t′)‖H1

x
dt′

≤ ‖u0‖H1 + cR

∫ t

0

‖u(t′)‖H1
x
dt′

where R = ‖u‖2
C0
t L

2
x([0,M ]×T)

< ∞. Then from Gronwall’s inequality it follows

that, for all t ∈ [0,M ],

‖u(t)‖H1
x
≤ ‖u0‖H1 ecRt ≤ ‖u0‖H1 ecRM <∞.

Next, suppose u0 ∈ H2. Then M(u0, 2) = M(u0, 0). Again, for all t ∈
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[0,M ],

‖u(t)‖H2
x
≤ ‖S(αt)u0‖H2

x
+

∫ t

0

‖S(α(t− t′))F (u(t′))‖H2
x
dt′

= ‖u0‖H2 +

∫ t

0

‖F (t′)‖H2
x
dt′

≤ ‖u0‖H2 + c

∫ t

0

‖F (t′)‖L2
x

+ ‖Fx(t′)‖L2
x

+ ‖Fxx(t′)‖L2
x
dz′.

≤ ‖u0‖H2 + c

∫ t

0

‖u(t′)‖2
L2
x
‖u(t′)‖H1

x
+ ‖u(t′)‖2

L2
x
‖u(t′)‖H1

x
+ ‖Fxx(t′)‖L2

x
dz′.

‖Fxx(t)‖L2
x

=
1

B

∥∥∥∥∫ B

0

d2

dx2
T−1
D(s)[TD(s)u(t) · TD(s)u(t) · TD(s)u(t)] ds

∥∥∥∥
L2
x

≤ 1

B

∥∥∥∥∫ B

0

T−1
D(s)

[
d

dx

(
TD(s)u(t) · TD(s)ux(t) · TD(s)u(t)

)]
ds

∥∥∥∥
L2
x

+

1

B

∥∥∥∥∫ B

0

T−1
D(s)

[
2
d

dx

(
TD(s)ux(t) · TD(s)u(t) · TD(s)u(t)

)]
ds

∥∥∥∥
L2
x

≤ c ‖u(t)‖L2
x
‖ux(t)‖2

L2
x

+ c ‖u(t)‖2
L2
x
‖uxx(t)‖L2

x

≤ c (‖u(t)‖L2
x
‖u(t)‖2

H1
x

+ ‖u(t)‖2
L2
x
‖u(t)‖H2

x
)

≤ c ‖u(t)‖2
L2
x
‖u(t)‖H2

x
,

where we have used the product rule and Minkowski’s inequality, (3.30) and

the fact that ‖u(t)‖H1
x

is bounded for t ∈ [0,M ]. Therefore,

‖u(t)‖H2 ≤ ‖u0‖H2 + c

∫ t

0

‖u(t′)‖2
L2
x
‖u(t′)‖H2

x
dt′

≤ ‖u0‖H2 + cR

∫ t

0

‖u(t′)‖H2
x
dt′.

Then from Gronwall’s inequality it follows that, for all t ∈ [0,M ],

‖u(t)‖H2
x
≤ ‖u0‖H2 ecRt ≤ ‖u0‖H2 ecRM <∞.
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By using the same strategy as above, we can show that if u0 ∈ Hr, then

M(u0, r) = M(u0, 0) for every positive integer value of r.

We will next show that if u0 ∈ Hr, then M(u0, 0) =∞, and P (u(t)) and

E(u(t)) are independent of t for t ≥ 0. For this proof, we let M < M(u0, 0),

so that a strong solution u with initial value u0 exists in

C0
t L

2
x ([0,M ]× T) . Note that since M(u0, r) = M(u0, 0), u is also a strong

solution in C0
tH

r
x ([0,M ]× T) . We can then conclude the independence of

P (u(t)) and E(u(t)) by applying Theorem 3.7. We showed that P (u(t)) and

E(u(t)) are constant for t ∈ [0,M ], for all M < M(u0, 0). Therefore, ‖u(t)‖L2
x

is constant for 0 ≤ t < M(u0, 0) and we can conclude that M(u0, 0) =∞.

Next, we show that if u0 ∈ L2 then M(u0, 0) = ∞, and P (u(t)) is inde-

pendent of t for t ≥ 0. Moreover, if α = 0, then E(u(t)) is also independent

of t for t ≥ 0.

To prove this, first choose K > 0 such that ‖u0‖L2 < K. As we have shown

above, there exists MK > 0 so that whenever u0, v0 ∈ L2 with ‖u0‖L2 ≤

K and ‖v0‖L2 ≤ K, there exist corresponding strong solutions u and v in

C0
t L

2
x ([0,MK ]× T) satisfying

‖u− v‖C0
t L

2
x([0,MK ]×T) ≤ c‖u0 − v0‖L2 . (3.39)

Since H2 is dense in L2, we can let φn be a sequence of functions in H2 such

that ‖φn‖L2 ≤ K for all n, and φn → u0 in L2. As shown above, for each n

there exists a strong solution vn in C0
t L

2
x ([0,MK ]× T) with P (vn(t)) = P (φn)

and E(vn(t)) = E(φn) for all t ∈ [0,MK ]. From (3.39), we have that vn → u

in C0
t L

2
x ([0,MK ]× T). Hence for all t ∈ [0,MK ] we have that P (u(t)) =

limn→∞ P (vn(t)) = limn→∞ P (φn) = P (u0); and if α = 0, since E(u) is contin-

uous (see Remark 3.19), then E(u(t)) = limn→∞E(vn(t)) = limn→∞E(φn) =
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E(u0).

Now, since we have that ‖u(MK)‖L2 = ‖u0‖L2 < K, we can repeat

the argument with u(MK) as initial data, to obtain a strong solution u ∈

C0
t L

2
x ([0, 2MK ]× T) with P (u(t)) constant for t ∈ [0, 2MK ]. Iterating this

argument gives that M(u0, 0) = ∞ and P (u(t)) is constant for all z ≥ 0;

moreover, E(u(t)) is constant for t ≥ 0, if α = 0.

We now show that the map from initial data to strong solutions in Hr is

locally Lipschitz: for every K > 0 and M > 0, there exists C > 0 such that

if u0, v0 ∈ Hr with ‖u0‖Hr ≤ K and ‖v0‖Hr ≤ K, and u and v are strong

solutions in C0
tH

r
x ([0,M ]× T) with initial data u0 and v0, then

‖u− v‖C0
tH

r
x([0,M ]×T) ≤ ‖u0 − v0‖Hr .

Suppose ‖u0‖Hr ≤ K and ‖v0‖Hr ≤ K, let M be given, and let u and

v be the corresponding strong solutions in C0
tH

r
x ([0,M ]× T) . From above

we have that ‖u(t)‖L2
x
≤ K and ‖v(t)‖L2

t
≤ K for all t. Define R =

max(‖u‖C0
tH

r
x([0,M ]×T), ‖v‖C0

tH
r
x([0,M ]×T)). Then for all t ∈ [0,M ], we have that

‖u(t)− v(t)‖Hr
x

=

∥∥∥∥S(αt)(u0 − v0) + i

∫ t

0

S(α(t− t′))[F (u(t′))− F (v(t′))] dt′
∥∥∥∥
Hr
x

≤ ‖u0 − v0‖Hr +

∫ t

0

‖[F (u(t′))− F (v(t′))]‖Hr
x
dt′

≤ ‖u0 − v0‖Hr + CKR

∫ t

0

‖u(t′)− v(t′)‖Hr
x
dt′.

So from Gronwall’s inequality it follows that

‖u(t)− v(t)‖Hr
x
≤ eCKRt‖u0 − v0‖Hr ≤ eCKRM‖u0 − v0‖Hr
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for all t ∈ [0,M ].

3.4 Well-posedness in L2 ∩L4

In this section we prove a result that shows that the periodic DMNLS

equation is locally well-posed in L2 ∩ L4([0,M ] × T). This result can also be

interpreted as establishing a smoothing property for DMNLS: for every choice

of initial data in L2(T), although this data may not be in L4(T), the unique

solution u(t, x) found in Theorem 3.20 is in L4
t,x([0,M ] × T), and therefore

u(·, x) is in L4(T) for almost every t ∈ [0,M ].

The proof of this result requires the following lemmas.

Lemma 3.21. Suppose α > 0. Then there exists C > 0 such that for all

u0(x) ∈ L2 (T), T ∈ (0, 1], and G ∈ Y , the function Q(t, x) defined by

Q(t, x) := η1(t)S(αt)u0 + iηT (t)

∫ t

0

S(α(t− t′))G(t′, x) dt′

satisfies

‖Q‖C0
t L

2
x

+ ‖Q‖L4
t,x
≤ C

(
‖u0‖L2 + T

1
16 ‖G‖

L
4
3
t,x

)
.

Proof. From the triangle inequality, Lemma 3.11 and Lemma 3.13, we have

that

‖Q‖C0
t L

2
x
≤ ‖η1(t)S(αt)u0‖C0

t L
2
x

+

∥∥∥∥ηT (t)

∫ t

0

S(α(t− t′))G(t′, x) dt′
∥∥∥∥
C0
t L

2
x

≤ c

(
‖u0‖L2 + T

1
16 ‖G‖

X
0,− 3

8
κ=−αn2

)
. (3.40)

55



Also, applying another periodic Strichartz estimate (see [4, 20]) results in

‖Q‖L4
t,x
≤ c ‖Q‖

X
0, 38
κ=−αn2

≤ c ‖Q‖
X

0, 9
16

κ=−αn2
. (3.41)

Hence by the triangle inequality, Lemma 3.14 and Lemma 3.15 with

b′ = −3
8
, we have that

‖Q‖
X

0, 9
16

κ=−αn2
≤ ‖η1(t)S(αt)u0‖

X
0, 9

16
κ=−αn2

+

∥∥∥∥ηT (t)

∫ t

0

S(α(t− t′))G(t′, x) dt′
∥∥∥∥
X

0, 9
16

κ=−αn2

≤ c

(
‖u0‖L2 + T

1
16 ‖G‖

X
0,− 3

8
κ=−αn2

)
. (3.42)

Note also that by duality and the Bourgain estimate in (3.41),

‖G‖
X

0,− 3
8

κ=−αn2
= sup

v∈X
0, 38
κ=−αn2

,‖v‖≤1

∫
Gv̄ dx dt

≤ sup

v∈X
0, 38
κ=−αn2

,‖v‖≤1

‖v‖L4
t,x
‖G‖

L
4
3
t,x

≤ sup

v∈X
0, 38
κ=−αn2

,‖v‖≤1

‖v‖
X

0, 38
κ=−αn2

‖G‖
L

4
3
t,x

≤ ‖G‖
L

4
3
t,x

. (3.43)

Now Lemma 3.21 follows if we apply (3.43) to the sum of (3.40) and (3.42).

Lemma 3.22. There exists c > 0 such that for u1, u2, u3 ∈ C∞ we have

‖F (u1, u2, u3)‖
L

4
3
x

≤ c ‖u1‖L4
x
‖u2‖L4

x
‖u3‖L4

x
, (3.44)

where F (u1, u2, u3) is as defined in Lemma 3.17.

Proof. The proof is similar to that of Lemma 3.17.

56



‖F (u1, u2, u3)‖
L

4
3
x

= sup
‖v‖

L4
x
≤1

∣∣∣∣ ∫
T
F (u1, u2, u3)v̄ dx

∣∣∣∣
=

1

B
sup
‖v‖

L4
x
≤1

∣∣∣∣ ∫
T

(∫ B

0

T−1
D(s)[TD(s)u1 · TD(s)u2 · TD(s)u3] ds

)
· v̄ dx

∣∣∣∣
=

1

B
sup
‖v‖

L4
x
≤1

∣∣∣∣ ∫ B

0

∫
T
T−1
D(s)[TD(s)u1 · TD(s)u2 · TD(s)u3] · v̄ dx ds

∣∣∣∣
=

1

B
sup
‖v‖

L4
x
≤1

∣∣∣∣ ∫ B

0

∫
T
TD(s)u1 · TD(s)u2 · TD(s)u3 · TD(s)v dx ds

∣∣∣∣
≤ 1

B
sup
‖v‖

L4
x
≤1

∫ B

0

∫
T
|TD(s)u1 · TD(s)u2 · TD(s)u3 · TD(s)v| dx ds.

It follows from Holder’s inequality and the Strichartz estimate found in The-

orem 3.16 that

‖F‖
L

4
3
x

≤ c sup
‖v‖

L4
x
≤1

‖TD(s)u1‖L4
s,x
‖TD(s)u2‖L4

s,x
‖TD(s)u3‖L4

s,x
‖TD(s)v‖L4

s,x

≤ c sup
‖v‖

L4
x
≤1

‖u1‖L2
x
‖u2‖L2

x
‖u3‖L2

x
‖v‖L2

x

≤ c sup
‖v‖

L4
x
≤1

‖u1‖L4
x
‖u2‖L4

x
‖u3‖L4

x
‖v‖L4

x

≤ c ‖u1‖L4
x
‖u2‖L4

x
‖u3‖L4

x
.

Lemma 3.23. Let F (u1, u2, u3) be as defined in Lemma 3.17, and u ∈ C∞.

Define

F (u(t, x)) = F (u) := F (u, u, u) =
1

B

∫ B

0

T−1
D(s)[|TD(s)u|2TD(s)u] ds.

Then for all u, v ∈ C∞, we have

‖F (u)‖
L

4
3
t,x

≤ c ‖u‖3
L4
t,x

(3.45)
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and

‖F (u)− F (v)‖
L

4
3
t,x

≤ c ‖u− v‖L4
t,x

(‖u‖L4
t,x

+ ‖v‖L4
t,x

)2. (3.46)

Proof. The estimate (3.45) follows immediately from (3.44) and integrating

with respect to t. Again utilizing (3.33), we have

‖F (u)− F (v)‖
L

4
3
t,x

≤ ‖F (u− v, u, u)‖
L

4
3
t,x

+ ‖F (u− v, v, v)‖
L

4
3
t,x

+‖F (v, u− v, u)‖
L

4
3
t,x

≤ c

(∫
R
(‖u− v‖L4

x
‖u‖2

L4
x
)
4
3 dt

) 3
4

+ c

(∫
R
(‖u− v‖L4

x
‖v‖2

L4
x
)
4
3 dt

) 3
4

+c

(∫
R
(‖u− v‖L4

x
‖u‖L4

x
‖v‖L4

x
)
4
3 dt

) 3
4

.

Apply Holder’s inequality to each of the sums to get

‖F (u)− F (v)‖
L

4
3
t,x

≤ c

∥∥∥∥‖u− v‖ 4
3

L4
x

∥∥∥∥ 3
4

L3
t

·
∥∥∥∥‖u‖ 8

3

L4
x

∥∥∥∥ 3
4

L
3
2
t

+c

∥∥∥∥‖u− v‖ 4
3

L4
x

∥∥∥∥ 3
4

L3
t

·
∥∥∥∥‖v‖ 8

3

L4
x

∥∥∥∥ 3
4

L
3
2
t

+c

∥∥∥∥‖u− v‖ 4
3

L4
x

∥∥∥∥ 3
4

L3
t

·
∥∥∥∥‖u‖ 4

3

L4
x

∥∥∥∥ 3
4

L3
t

·
∥∥∥∥‖v‖ 4

3

L4
x

∥∥∥∥ 3
4

L3
t

= c (‖u− v‖L4
t,x
‖u‖2

L4
t,x

+ ‖u− v‖L4
t,x
‖v‖2

L4
t,x

+ ‖u− v‖L4
t,x
· ‖u‖L4

t,x
‖v‖L4

t,x
)

≤ c ‖u− v‖L4
t,x

(‖u‖L4
t,x

+ ‖v‖L4
t,x

)2.

Theorem 3.24. Suppose α ∈ R\{0} and D(s) satisfies Assumption 1. If u0 ∈

L2, then for every M > 0, the unique strong solution u ∈ C0
t L

2
x([0,M ] × T)

found in Theorem 3.20 with initial data u0, exists in L4
t,x([0,M ]× T).

Proof. We denote the closed ball of radius a centered at the origin in C0
t L

2
x ∩
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L4
t,x([0,M ]× T) by

ΛM,a = {u ∈ C0
t L

2
x ∩ L4

t,x([0,M ]× T) : |||u||| ≤ a},

where |||u||| = ‖u‖C0
t L

2
x

+ ‖u‖L4
t,x
. Fix u0 ∈ L2 such that ‖u‖L2 ≤ K. For each

M > 0, we define Q : C0
t L

2
x ∩ L4

t,x([0,M ] × T) → C0
t L

2
x ∩ L4

t,x([0,M ] × T) by

setting, for t ∈ [0,M ] and u ∈ C0
t L

2
x ∩ L4

t,x([0,M ]× T),

Q(u)(t) := η1(t)S(αt)u0 + iηM(t)

∫ t

0

S(α(t− t′))F (u(t′, x)) dt′,

with η as previously defined, and F defined in Lemma 3.17. Then by Lemmas

3.21 and 3.23, we have that

|||Q(u)||| ≤ c

(
‖u0‖L2 +M

1
16‖F‖

L
4
3
t,x

)

≤ c
(
‖u0‖L2 +M

1
16‖u‖3

L4
t,x

)
.

In addition, if u, v ∈ C0
t L

2
x ∩L4

t,x([0,M ]×T), then Lemma 3.21 and Lemma

3.23 imply that

|||Q(u)−Q(v)||| ≤ c M
1
16‖u− v‖L4

t,x
(‖u‖L4

t,x
+ ‖v‖L4

t,x
)2 (3.47)

Now suppose a ≥ K, and choose M =
(

1
8ca2

)16
so that for all u, v ∈ ΛM,a,

|||Q(u)||| < a

2
+
a

2
= a,

and

|||Q(u)−Q(v)||| < 1

2
‖u− v‖L4

t,x
.

Therefore Q(u) defines a contraction from the closed ball ΛM,a to itself, and
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so by the Banach Contraction Mapping Theorem, Q(u) has a unique fixed

point u ∈ ΛM,a. This fixed point is also a strong solution of (3.1) with initial

data u0, and is in L4
t,x([0,M ]× T).

Let K > 0, u0, v0 ∈ L2 with ‖u0‖L2 ≤ K, and ‖v0‖L2 ≤ K. For a = 2K,

and M defined as above, let u and v be the unique solutions in ΛM,a with

initial data u0 and v0 respectively. Then we will show that

|||u− v||| ≤ c‖u0 − v0‖L2 . (3.48)

Define Ψ : C0
t L

2
x ∩ L4

t,x ([0,M ]× T)× L2
x → C0

t L
2
x ∩ L4

t,x ([0,M ]× T) by

Ψ(u,w) = η1(t)S(αt)u0 + iηM(t)

∫ t

0

S(α(t− t′))F (u(t′, x)) dt′.

Then Ψ(u, u0) = u and Ψ(v, v0) = v. So for every t ∈ [0,M ],

|||u− v||| = |||Ψ(u, u0)−Ψ(v, u0) + Ψ(v, u0)−Ψ(v, v0)|||

≤ |||Ψ(u, u0)−Ψ(v, u0)|||+ |||Ψ(v, u0)−Ψ(v, v0)|||

= |||Q(u)−Q(v)|||+ ‖u0 − v0‖L2

≤ 1

2
‖u− v‖L4

t,x
+ ‖u0 − v0‖L2

≤ 1

2
|||u− v|||+ ‖u0 − v0‖L2 ,

which in turn implies (3.48).
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Chapter 4

Existence and Stability of Ground State

Solutions

Solitary wave solutions of (3.1) are solutions of the form

u(t, x) = eiθtφ(x)

where θ ∈ R and φ ∈ L2(T). Note that if we substitute u = eiθtφ(x) into (3.1),

we see that u(t, x) is a standing wave solution if and only if E ′(v) = θP ′(v).

Here E ′(v) and P ′(v) denote the Frechet derivatives of the already introduced

functionals E(v) and P (v) respectively. Therefore, we have (see [18]) that

φ is a critical point of the variational problem of minimizing E(v) subject

to P (v) = λ. Hence, u(t, x) is a standing wave solution if and only if φ is

a critical point of E(v) subject to the constraint P (v) = λ, and u(t, x) is a

ground state solution if and only if φ is a global minimizer for E(v) subject

to this constraint. The aim of this chapter is to show that stable ground states

exist by finding global minimizers of this constrained variational problem.
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4.1 Existence of Minimizers in H1

In this section, for α 6= 0, we find a solution to the problem of minimizing

the functional

E(v) =
α

B

∫ B

0

∫
T
|vx|2 dx ds−

1

2B

∫ B

0

∫
T
|TD(s)v|4 dx ds (4.1)

under the constraints v ∈ H1(T) and P (v) =
∫
T |v|

2 dx = λ. Let Iλ be defined

as follows:

Iλ = inf{E(v) : v ∈ H1 and P (v) = λ}.

Theorem 4.1. Suppose that α > 0 and that ∆′(s) satisfies Assumption 1.

Then for every λ > 0, there exists at least one minimizer for Iλ in H1(T).

Moreover, every minimizing sequence for Iλ has a subsequence which converges

strongly in H1 to some minimizer u.

Proof. We will prove Theorem 4.1 for B = 1. The proof for general values

of B follows similar steps as the one below. Fix λ > 0. Let {un}n∈N be a

minimizing sequence of E(v) subject to P (v) = λ. That is, we have that

un ∈ H1(T) and P (un) = λ for all n ∈ N, and E(un)→ Iλ as n→∞.

Since {E(un)} is a convergent sequence, then it is bounded. Therefore,

‖un‖2
H1 = ‖un‖2

L2 + ‖unx‖2
L2

= λ+

∫
T
|unx|

2 dx

= λ+

∫ 1

0

∫
T
|unx|2 dx ds

= λ+

∫ 1

0

∫
T
|unx|2 dx ds−

1

2α

∫ 1

0

∫
T
|TD(s)un|4 dx ds
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+
1

2α

∫ 1

0

∫
T
|TD(s)un|4 dx ds

=
1

α

(
αλ+ E(un) +

1

2

∫ 1

0

∫
T
|TD(s)un|4 dx ds

)

≤ 1

|α|

(
|α|λ+ |E(un)|+ 1

2
‖TD(s)un‖4

L4
s,x

)

≤ 1

|α|
(
|α|λ+ |E(un)|+ C‖un‖4

L2

)
,

by the Strichartz estimate in (3.28). Also, because ||un||4L2 = P (un) = λ

for all n, it follows that {un} is bounded in H1(T). This in turn implies that

{un} has a weakly convergent subsequence in H1(T), which we continue to

denote by {un}. We will also define u ∈ H1(T) to be the weak limit of this

subsequence. By the Rellich-Kondrachov Theorem for compact manifolds,

H1(T) is compactly embedded in L2(T). Hence we can conclude that {un}

has a subsequence, still denoted by {un}, that converges strongly to u in

L2(T).

As a result of the weak convergence of {un} to u in H1(T), by the

weak lower semicontinuity of the norm in a Hilbert space, we have that

‖u‖H1(T) ≤ lim infn→∞ ‖un‖H1(T). Again, by the L4
s,x Strichartz estimate in

(3.28), we know that ‖TD(s)(un−u)‖L4
s,x
≤ c‖un−u‖L2 . So, TD(s)un → TD(s)u

in L4
s,x, and ‖TD(s)un‖L4

s,x
→ ‖TD(s)u‖L4

s,x
. Thus,

lim
n→∞

‖un‖2
H1(T) =

1

α

(
Iλ + αλ+

1

2
‖TD(s)u‖L4

s,x

)
.

Convergence of {un} to u in L2 implies that lim
n→∞

P (un) = P (u), which in

turn means that P (u) = λ. Hence, by the definition of Iλ, E(u) ≥ Iλ. Note
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also that

Iλ = lim
n→∞

E(un)

= lim
n→∞

α

∫ 1

0

∫
T
|uλnx |

2 dx ds− 1

2

∫
T

∫ 1

0

|TD(s)un|4 ds dx

= lim
n→∞

(
α

∫
T
|uλnx|

2 dx− 1

2

∫
T

∫ 1

0

|TD(s)un|4 ds dx

+α

∫
T
|un|2 dx− α

∫
T
|un|2 dx

)

= lim
n→∞

(
α‖un‖2

H1(T) −
1

2

∫
T

∫ 1

0

|TD(s)un|4 ds dx− α
∫
T
|un|2 dx

)

= lim
n→∞

α‖un‖2
H1(T) −

1

2

∫
T

∫ 1

0

|TD(s)u|4 ds dx− αλ.

By the lower semicontinuity of the norm it follows that

Iλ ≥ α‖u‖2
H1(T) −

1

2

∫
T

∫ 1

0

|TD(s)u|4 ds dx− αλ

= α‖u‖2
H1(T) −

1

2

∫
T

∫ 1

0

|TD(s)u|4 ds dx− α
∫
T
|u|2 dx

= E(u).

So, E(u) = Iλ. Since {un} is a minimizing sequence, then

lim
n→∞

‖un‖2
H1(T) = lim

n→∞

1

α

(
αλ+ E(un) +

1

2

∫ 1

0

∫
T
|TD(s)un|4 dx ds

)

=
1

α

(
Iλ + αλ+

1

2
‖TD(s)u‖L4

s,x

)

=
1

α

(
E(u) + αλ+

1

2
‖TD(s)u‖L4

s,x

)
,
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= ‖u‖2
H1(T).

Again, as a result of the weak convergence of {un} to u in H1(T) and

lim
n→∞

‖un‖2
H1(T) = ‖u‖2

H1(T), we have that {un} converges strongly to u inH1(T).

Therefore {un} and {unx} converge in L2(T) to u and ux respectively. Equa-

tion (3.28) implies that ‖TD(s)(un − u)‖L4
s,x
≤ c‖un − u‖L2 . So, {TD(s)un}

converges strongly to TD(s)u in L4
s,x, which in turn implies that ‖TD(s)un‖L4

s,x

converges to ‖TD(s)u‖L4
s,x
. With this in mind, we find that the limit of E(un)

is

lim
n→∞

E(un) = lim
n→∞

α‖unx‖2
2 −

1

2
lim
n→∞

‖TD(s)un‖4
L4
s,x

= α‖ux‖2
2 −

1

2
‖TD(s)u‖4

L4
s,x

= E(u).

This shows that u is a constrained minimizer of E(v).
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4.2 Existence of Minimizers (Sufficient Condition)

In the case α = 0, we cannot apply the argument of the preceding sub-

section to minimize E(u). This is because, if we take a minimizing sequence

{uj} ⊂ H1, there is no H1 bound on {uj} that enables us to apply the Rellich-

Kondrachov Theorem to show that a subsequence converges strongly in L2

to a minimizer. However, it is still possible to establish strong convergence

in L2, if we can decompose the minimizing sequence into two parts; a reg-

ular low-frequency part which is bounded in H1, to which we can apply the

Rellich-Kondrachov Theorem, and a small high-frequency part in L2, to which

we can apply weak lower semicontinuity of the norm in a Hilbert space. Kunze

[15] explained that in the non-periodic case, the minimizing sequence can be

separated into the two parts if the corresponding sequence of the Fourier trans-

forms has a subsequence that is tight in the sense of measures. A variant of

the method of concentration compactness was then applied to show that a

subsequence of the Fourier transforms is indeed tight.

It turns out that this idea is useful in the periodic case as well, but requires

significant modifications. In this section, we explain how to adopt Kunze’s

method in the periodic case to provide a proof of the existence of minimizers

in L2.

We note that the problem of minimizing E(v) subject to P (v) = λ is the

same as maximizing W (v) subject to P (v) = λ, where

W (v) = −E(v) =

∫ B

0

∫
T
|T (s)v|4 dx ds B > 0 (4.2)

under the constraint v ∈ L2(T), P (v) =
∫
T |u|

2 dx = λ, and the operator

T (s) is the Fourier multiplier operator TD(s) = eiD(s)∂2x with D(s) = s. In this

section and onward, the variable B here represents half the period of ∆(s).
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Note that if we define D(s) to be

D(s) =

 s 0 ≤ s ≤ B

2B − s B ≤ s ≤ 2B B > 0,

then we have that

‖TD(s)v‖4
L4
s,x([0,2B]×T) = 2‖T (s)v‖4

L4
s,x([0,B]×T).

Therefore, it is sufficient to consider maximizing ‖T (s)v‖4
L4
s,x([0,B]×T) subject

to P (v) = λ. Define

Jλ = sup {W (u) : u ∈ L2 and P (u) = λ}. (4.3)

We will repeat the statement provided in Theorem 1.1.

Theorem 4.2. Let λ > 0. Suppose there exists a function w ∈ L2 with

P (w) = λ, such that A(ŵ) − 2πB‖ŵ‖4
l4 > 0. Then there exists at least one

maximizer for Jλ, in L2(T). Moreover, given the above condition, every maxi-

mizing sequence for Jλ has a subsequence which, after being suitably translated

in Fourier space, converges strongly in L2 to some maximizer. Here, we define

A(ŵ) = 2π
∑
n

∑
p 6=0

∑
l 6=0

i

2lp

[
e−2ilpB − 1

]
ŵ(n) ¯̂w(n− l) ŵ(n− p− l) ¯̂w(n− p).

To construct the proof of the above theorem, it is necessary to introduce

some supplementary results and estimates.
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4.2.1 The Concentration Compactness Method

The concentration compactness method is commonly used to prove stabil-

ity of wave solutions of a differential equation by ensuring the compactness of

minimizing or maximizing sequences. The concentration compactness princi-

ple says that for any L2 bounded sequence of functions, there is a subsequence

that satisfies exactly one of the three possibilities: the sequence is tight, or it

is vanishing (tends to zero uniformly on balls of fixed radius), or it splits into

two other functions with separated supports and fixed masses. We will state

a specific case of the principle below along with a proof.

Lemma 4.3. Suppose p > 0, and let {aj} ⊂ l2 be a sequence of sequences

such that ‖aj‖2
l2 = p for j ∈ N. Then, there is a subsequence of {aj}, still

denoted by {aj}, for which one of the following three statements is true.

1) Concentration / Tightness:

There exists a sequence of integers m1,m2,m3, ... such that for every

ε > 0, there exists r = r(ε) with the property that

mj+r∑
mj−r

|aj(n)|2 dx ≥ p− ε, for all j ∈ N.

2) Vanishing:

For every r > 0,

lim
j→∞

sup
m∈Z

m+r∑
m−r

|aj(n)|2 = 0.

3) Dichotomy / Splitting:

There is a number α ∈ (0, p) and sequences {bj} and {cj} in l2 such

that d(supp(bj), supp(cj))→∞, ‖aj− bj− cj‖2
l2 → 0, ‖bj‖2

l2 → α, and
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‖cj‖2
l2 → p− α.

Specifically, for every δ ∈ (0, α), there exists j0 = j0(δ) and two integers

r∗1 = r∗1(δ), r∗2 = r∗2(δ) such that

α− δ < sup
m∈Z

m+r∗2∑
m−r∗2

|aj(n)|2 < α + δ for all j ≥ j0.

Also, for each j ∈ N, we may select mj ∈ Z satisfying

α− δ <
mj+r

∗
1∑

mj−r∗1

|aj(n)|2 < α + δ for all j ≥ j0.

Moreover, lim δ→0 r
∗
2(δ) − r∗1(δ) =∞.

Proof. It is sufficient to prove the lemma for a sequence {aj} ⊂ l2 such that

‖aj‖2
l2 = 1 for all j ∈ N. Define, for each j ∈ N and r ∈ N,

Mj(r) = sup
m∈Z

m+r∑
m−r

|aj(n)|2.

Then, Mj is such that 0 ≤ Mj ≤ 1, and Mj(r) as a function of r is non-

decreasing. An elementary argument shows that any uniformly bounded se-

quence of non-decreasing functions has a subsequence converging pointwise

to a non-negative and non-decreasing limit function. Hence, {Mj} has such

a subsequence which will be denoted again by {Mj}. We also continue to

denote by {aj} the subsequence of {aj} corresponding to this subsequence

of {Mj}. Let M be the non-decreasing function to which Mj converges. If

α := limr→∞M(r), then there are three possibilities: α = 1, α = 0, and

0 < α < 1.

Case 1: α = 0.

Let ε > 0. For each r ∈ N,

|Mj(r)| = |Mj(r)−M(r) +M(r)| ≤ |Mj(r)−M(r)|+ |M(r)|.

Since M(r) is non-negative and non-decreasing with limit 0, then |M(r)| = 0
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for all r ∈ N. Note that by the definition of pointwise limit, there exists N

such that for j ≥ N, |Mj(r)−M(r)| < ε. Therefore, |Mj(r)| < ε for j ≥ N,

which implies that {aj} is vanishing

Case 2: α = 1.

In this case, there exists r0 such that for all r ≥ r0, |M(r)− 1| < 1
2
. Specif-

ically, |M(r0) − 1| < 1
2
, and M(r0) > 1

2
. For any j ∈ Z, choose mj ∈ Z such

that

Mj(r0) ≤
mj+r0∑
mj−r0

|aj(n)|2 +
1

j
. (4.4)

Now, for 0 < ε < 1
3
, there exists rε such that |M(rε) − 1| < ε. That is,

M(rε) > 1− ε > 2
3
. Again, for any j ∈ Z, choose mε

j ∈ Z such that

Mj(rε) ≤
mεj+rε∑
mεj−rε

|aj(n)|2 +
1

j
. (4.5)

Equations (4.4) and (4.5) imply that

mεj+rε∑
mεj−rε

|aj(n)|2 +

mj+r0∑
mj−r0

|aj(n)|2 ≥Mj(rε) +Mj(r0)− 2

j
.

Therefore, for sufficiently large j, we have

mεj+rε∑
mεj−rε

|aj(n)|2 +

mj+r0∑
mj−r0

|aj(n)|2 ≥Mj(rε) +Mj(r0) >
1

2
+

2

3
− 2

j
> 1 = ‖aj‖2

l2 .

Thus, for large j, we have that

{n ∈ [mε
j − rε , mε

j + rε]} ∩ {n ∈ [mj − r0 , mj + r0]} 6= ∅.
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That is,

[mε
j − rε , mε

j + rε] ⊂ [mj − (2rε + r0) , mj + (2rε + r0)].

Therefore,
mj+(2rε+r0)∑
mj−(2rε+r0)

|aj(n)|2 ≥ 1− ε.

Now if we choose r ≥ (2rε + r0), we get that the inequality in 1) is satisfied

for sufficiently large j. This proves that {aj} is tight.

Case 3: 0 < α < 1.

Let δ ∈ (0, α). We know that for δ > 0, there exists r∗ such that α − δ <

M(r) ≤ α for r ≥ r∗. Choose r∗1, r
∗
2 > r∗ with r∗2−r∗1 ≥ 6δ−1. Since Mj(r

∗
1)→

M(r∗1) and Mj(r
∗
2) → M(r∗2), there exists j0 such that for j ≥ j0, α − δ <

Mj(r
∗
2) < α + δ and α− δ < Mj(r

∗
1) < α + δ. Hence, for j ≥ j0,

α− δ < sup
m∈Z

m+r∗2∑
m−r∗2

|aj(n)|2 < α + δ,

and for each j ≥ j0, we can choose mj such that

α− δ <
mj+r

∗
1∑

mj−r∗1

|aj(n)|2 < α + δ.

For mj chosen, define bj satisfying bj(n) = aj(n) for |n − mj| ≤ r∗1 and

bj(n) = 0 for |n −mj| ≥ r∗1 + 2δ−1. Also define cj satisfying cj(n) = aj(n)

for |n−mj| ≥ r∗2 and cj(n) = 0 for |n−mj| ≤ r∗2 − 2δ−1. Now,

‖aj − (bj + cj)‖2
l2 ≤

mj+r
∗
2∑

mj+r∗1

|aj(n)|2 +

mj−r∗1∑
mj−r∗2

|aj(n)|2
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=

mj+r
∗
2∑

mj−r∗2

|aj(n)|2 −
mj+r

∗
1∑

mj−r∗1

|aj(n)|2

≤ α + δ − (α− δ)

= 2δ.

Therefore,

‖aj − bj − cj‖2
l2 → 0.

Similarly,

|‖bj‖2
l2 − α| ≤

∣∣∣∣∣∣
mj+r

∗
1+2δ−1∑

mj−r∗1−2δ−1

|aj(n)|2 − α

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
mj+r1∑
mj−r1

|aj(n)|2 − α

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

r∗1≤|n−mj |≤r∗2

|aj(n)|2
∣∣∣∣∣∣

≤ δ + 2δ = 3δ,

which in turn implies that ‖bj‖2
l2 → α. Lastly,

∣∣‖cj‖2
l2 − (1− α)

∣∣ =
∣∣‖cj‖2

l2 − (‖aj‖2
l2 − α)

∣∣
=
∣∣‖cj‖2

l2 − ‖aj‖2
l2 + ‖bj‖2

l2 + α− ‖bj‖2
l2

∣∣
≤
∣∣‖cj‖2

l2 − ‖aj‖2
l2 + ‖bj‖2

l2

∣∣+
∣∣α− ‖bj‖2

l2

∣∣
≤

∣∣∣∣∣∣
∑

|n−mj |≥r∗2

|aj(n)|2 −
∑
n∈Z

|aj(n)|2 +
∑

|n−mj |≤r∗1

|aj(n)|2 +

+
∑

r∗1≤|n−mj |≤r∗1+2δ−1

|bj(n)|2 +
∑

r∗2−2δ−1≤|n−mj |≤r∗2

|cj(n)|2
∣∣∣∣∣∣+ 3δ

=

∣∣∣∣∣∣
∑

r∗1≤|n−mj |≤r∗1+2δ−1

|bj(n)|2 −
∑

r∗1≤|n−mj |≤r∗2

|aj(n)|2 +
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+
∑

r∗2−2δ−1≤|n−mj |≤r∗2

|cj(n)|2
∣∣∣∣∣∣+ 3δ

≤

∣∣∣∣∣∣
∑

r∗1≤|n−mj |≤r∗2

|aj(n)|2
∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

r∗1≤|n−mj |≤r∗1+2δ−1

|bj(n)|2
∣∣∣∣∣∣ +

+

∣∣∣∣∣∣
∑

r∗2−2δ−1≤|n−mj |≤r∗2

|cj(n)|2
∣∣∣∣∣∣+ 3δ

≤ 3

∣∣∣∣∣∣
∑

r∗1≤|n−mj |≤r∗2

|aj(n)|2
∣∣∣∣∣∣+ 3δ

≤ 6δ + 3δ = 9δ.

This shows that, ‖cj‖2
l2 → 1− α.

4.2.2 Other Estimates

Lemma 4.4. Suppose u1, u2, u3, and u4 are in L2(T). Then

∣∣∣∣∫ B

0

∫
T
T (s)u1 T (s)u2 T (s)u3 T (s)u4 dx ds

∣∣∣∣ ≤ c‖u1‖L2‖u2‖L2‖u3‖L2‖u4‖L2 .

(4.6)

Proof.

∣∣∣∣∫ B

0

∫
T
T (s)u1 T (s)u2 T (s)u3 T (s)u4 dx ds

∣∣∣∣
≤
∫ B

0

∫
T

∣∣∣T (s)u1 T (s)u2 T (s)u3 T (s)u4

∣∣∣ dx ds
≤ ‖T (s)u1‖L4

s,x
‖T (s)u2‖L4

s,x
‖T (s)u3‖L4

s,x
‖T (s)u4‖L4

s,x

≤ c‖u1‖L2 ‖u2‖L2 ‖u3‖L2 ‖u4‖L2 ,

where we applied Holder’s inequality and the Strichartz estimate in Theorem

3.16.
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Lemma 4.5. For Jλ defined as above in (4.3), we have Jλ = λ2J1.

Proof. For u with P (u) = λ, let v = λ−
1
2u. Then, ‖v‖2

L2 = ‖λ− 1
2u‖2

L2 =

λ−1‖u‖2
L2 = 1. Also,

W (u) =

∫ B

0

∫
T
|T (s)u|4 dx ds

=

∫ B

0

∫
T
|T (s)(λ

1
2v)|4 dx ds

=

∫ B

0

∫
T
λ

4
2 |T (s)v|4 dx ds

= λ2‖T (s)v‖4
L4

= λ2W (v).

Taking the supremum of this identity over all u ∈ L2 with P (u) = λ con-

cludes the proof.

Lemma 4.6. For the Fourier multiplier operator T (s) = eis∂
2
x , we have that

‖T (s)u‖4
L4
s,x([0,B]×T) = 4πB‖û‖4

l2 − 2πB‖û‖4
l4 + A(û),

where û(n) = Fx(u)[n], and

A(û) = 2π
∑
n

∑
p6=0

∑
l 6=0

i

2lp

[
e−2ilpB − 1

]
û(n) ¯̂u(n− l) û(n− p− l) ¯̂u(n− p).

Proof. We will begin the proof in a similar fashion as Theorem 3.16. Let

g = T (s)u; then by the definition of T (s), g =
∑
n

û(n)ei(nx−n
2s). Thus,

‖T (s)u‖4
L4
s,x([0,B]×T) = ‖g‖4

L4
s,x([0,B]×T) = ‖g · ḡ‖2

L2
s,x([0,B]×T)

=

∥∥∥∥∑
n

∑
m

û(n) ¯̂u(m) ei((n−m)x−(n2−m2)s)

∥∥∥∥2

L2
s,x
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=

∥∥∥∥∑
n

∑
l

û(n) ¯̂u(n− l) eilx e−il(2n−l)s
∥∥∥∥2

L2
s,x

,

where l = n−m. Let bl =
∑
n

û(n) ¯̂u(n− l) e−il(2n−l)s, then

∥∥∥∥∑
n

∑
l

û(n) ¯̂u(n− l) eilxe−il(2n−l)s
∥∥∥∥2

L2
s,x

=

∥∥∥∥∥∑
l

bl e
ilx

∥∥∥∥∥
2

L2
s,x

=

∫ B

0

∫
T

∣∣∣∣∑
l

bl e
ilx

∣∣∣∣2 dx ds
= 2π

∫ B

0

∑
l

|bl|2 ds

= 2π
∑
l

∫ B

0

bl · b̄l ds

= 2π
∑
l

∑
n

∑
r

û(n) ¯̂u(n− l) û(r − l) ¯̂u(r)

∫ B

0

e−il(2n−2r)s ds.

Now by direct integration,

∫ B

0

e−il(2n−2r)s ds =


i

2l(n−r)

[
e−2ilB(n−r) − 1

]
n 6= r and l 6= 0

B n = r or l = 0.

Therefore,∥∥∥∥∑
n

∑
l

û(n) ¯̂u(n− l) eilx e−il(2n−l)s
∥∥∥∥2

L2
s,x

=

2π
∑
l

∑
n

∑
r

û(n) ¯̂u(n− l)...


i

2l(n−r)

[
e−2ilB(n−r) − 1

]
n 6= r and l 6= 0

B n = r or l = 0.

(4.7)

We split the sum in (4.7) into four parts.

First we sum over all values of l, n, r such that l 6= 0 and n = r. This

75



gives

2πB
∑
l 6=0

∑
n

û(n) ¯̂u(n− l) û(n− l) ¯̂u(n)

= 2πB
∑
n

∑
m6=n

û(n) ¯̂u(m) û(m) ¯̂u(n)

= 2πB

(∑
n

∑
m

û(n) ¯̂u(m) û(m) ¯̂u(n)−
∑
n

û(n) ¯̂u(n) û(n) ¯̂u(n)

)

= 2πB
(
‖û‖4

l2 − ‖û‖4
l4

)
.

Next we sum over all values of l, n, r such that l = 0 and n 6= r. This

gives

2πB
∑
n

∑
r 6=n

û(n) ¯̂u(r) û(r) ¯̂u(n)

= 2πB

(∑
n

∑
r

û(n) ¯̂u(r) û(r) ¯̂u(n)−
∑
n

û(n) ¯̂u(n) û(n) ¯̂u(n)

)

= 2πB
(
‖û‖4

l2 − ‖û‖4
l4

)
.

Next we sum over all values of l, n, r such that l = 0 and n = r. This

gives

2πB
∑
n

û(n) ¯̂u(n) û(n) ¯̂u(n)

= 2πB‖û‖4
l4 .

Finally, we sum over all values of l, n, r such that l 6= 0 and n 6= r. This

gives

2π
∑
l 6=0

∑
n

∑
r 6=n

i

2l(n− r)
[
e−2ilB(n−r) − 1

]
û(n) ¯̂u(n− l) û(r − l) ¯̂u(r)

= 2π
∑
n

∑
p 6=0

∑
l 6=0

i

2lp

[
e−2ilpB − 1

]
û(n) ¯̂u(n− l) û(n− p− l) ¯̂u(n− p)

= A(û).
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Adding these four parts, we obtain from (4.7) that

‖T (s)u‖4
L4
s,x([0,B]×T) = 4πB

(
‖û‖4

l2 − ‖û‖4
l4

)
+ 2πB‖û‖4

l4 + A(û)

= 4πB‖û‖4
l2 − 2πB‖û‖4

l4 + A(û).

(4.8)

The next two lemmas are modeled on Lemmas 2.9 and 2.11 in Kunze [15].

Lemma 4.7. Assume u, v, w, h ∈ L2 are such that u = v + w + h. Then

|‖T (s)u‖4
L4
s,x
− ‖T (s)v‖4

L4
s,x
− ‖T (s)w‖4

L4
s,x
| ≤ c(1 + ‖u‖3

L2 + ‖v‖3
L2+

‖w‖3
L2) ‖h‖L2 + (|Λ1(v, w)|+ ...+ |Λ7(v, w)|),

(4.9)

where the remainder terms Λ1 through Λ7 are given by

Λ1(v, w) = 4

∫ B

0

∫
T
|T (s)v|2 |T (s)w|2 dx ds

Λ2(v, w) = 2

∫ B

0

∫
T
|T (s)v|2 T (s)v T (s)w dx ds

Λ3(v, w) =

∫ B

0

∫
T
T (s)v

2
(T (s)w)2 dx ds

Λ4(v, w) = 2

∫ B

0

∫
T
(T (s)w)2 T (s)v T (s)w dx ds

Λ5(v, w) = 2

∫ B

0

∫
T
(T (s)v)2 T (s)v T (s)w dx ds

Λ6(v, w) =

∫ B

0

∫
T
(T (s)v)2 T (s)w

2
dx ds

Λ7(v, w) = 2

∫ B

0

∫
T
|T (s)w|2 T (s)w T (s)v dx ds.
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Proof. It is clear that

‖T (s)u‖4
L4
s,x
− ‖T (s)v‖4

L4
s,x
− ‖T (s)w‖4

L4
s,x

=

∫ B

0

∫
T
|T (s)v + T (s)w + T (s)h|4 − |T (s)v|4 − |T (s)w|4 dx ds.

Expand |T (s)v + T (s)w + T (s)h|4 and divide into a principal part whose

terms have at least one T (s)h or T (s)h as a factor, and a remainder whose

terms are the expressions Λ1(v, w), ... , Λ7(v, w) defined above. After taking

the absolute value on both sides of the equality, apply the Triangle Inequal-

ity to the right hand side. The terms in the principal part can be written

either in the form
∫ B

0

∫
T T (s)f1 T (s)f2 T (s)f3 T (s)h dx ds, or in the form∫ B

0

∫
T T (s)f1 T (s)f2 T (s)f3 T (s)h dx ds, with f1, f2, f3 ∈ {u, v, w, h}. Apply

Lemma 4.4 and Young’s inequality to these terms to get the desired result.

Lemma 4.8. Suppose u, v ∈ L2 are such that, for some n0 ∈ Z, δ > 0, and

r∗1, r
∗
2 ∈ Z with r∗1 − r∗2 ≥ 6δ−1, we have v̂(n) = 0 for |n− n0| ≥ r∗1 + 2δ−1,

and ŵ(n) = 0 for |n− n0| ≤ r∗2 − 2δ−1. Then

∣∣∣∣∫
T
F (v, v, w)w̄ dx

∣∣∣∣ ≤ (2πB + cδ
1
2 )‖v̂‖2

l2 ‖ŵ‖2
l2 , (4.10)

∣∣∣∣∫
T
F (v, v, w)v̄ dx

∣∣∣∣ ≤ c‖v̂‖3
l2 ‖ŵ‖l2 δ

1
2 , (4.11)

∣∣∣∣∫
T
F (w, v, w)v̄ dx

∣∣∣∣ ≤ c‖v̂‖2
l2 ‖ŵ‖2

l2 δ
1
2 , (4.12)

∣∣∣∣∫
T
F (w,w,w)v̄ dx

∣∣∣∣ ≤ c‖v̂‖l2 ‖ŵ‖3
l2 δ

1
2 , (4.13)

∣∣∣∣∫
T
F (v, v, v)w̄ dx

∣∣∣∣ ≤ c‖v̂‖3
l2 ‖ŵ‖l2 δ

1
2 , (4.14)

∣∣∣∣∫
T
F (v, w, v)w̄ dx

∣∣∣∣ ≤ c‖v̂‖2
l2 ‖ŵ‖2

l2 δ
1
2 , (4.15)

∣∣∣∣∫
T
F (v, w, w)w̄ dx

∣∣∣∣ ≤ c‖v̂‖l2 ‖ŵ‖3
l2 δ

1
2 , (4.16)
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with F as defined in Lemma 3.17, and c > 0 independent of n0, δ, r
∗
1, and

r∗2.

Proof. According to Parseval’s Theorem,∫
T
F (u1, u2, u3)u4 dx = 2π

∑
n

F̂ (u1, u2, u3)[n] û4[n]

= 2π
∑
n

û4(n)

∫ B

0

ein
2s

(
T̂ (s)u1 ∗ T̂ (s)u2 ∗ T̂ (s)u3

)
ds

= 2π
∑
n

∑
n1

∑
n2

û4(n)

∫ B

0

ein
2s T̂ (s)u1(n− n1 − n2) T̂ (s)u2(n1) T̂ (s)u3(n2) ds

= 2π
∑
n

∑
n1

∑
n2

(∫ B

0

e−i2s(n−n2)(n1+n2) ds

)
û1(n− n1 − n2) û2(n1) û3(n2) û4(n)

= 2π
∑
n3

∑
n1

∑
n2

(∫ B

0

e−i2s(n1+n3)(n1+n2) ds

)
û1(n3) û2(n1) û3(n2) û4(n1 + n2 + n3),

where n3 = n− n1 − n2. Therefore,

∣∣∣∣∫
T
F (u1, u2, u3)v̄4 dx

∣∣∣∣ ≤ 2π
∑
n3

∑
n1

∑
n2

∣∣∣∣∫ B

0

e−isα(n1,n2,n3) ds

∣∣∣∣ ∣∣û1(n3)
∣∣ ∣∣û2(n1)

∣∣
∣∣û3(n2)

∣∣ ∣∣û4(n1 + n2 + n3)
∣∣,

(4.17)

where α(n1, n2, n3) = 2(n1 + n3)(n1 + n2). We will be estimating each of the

integrals by splitting these sums into partial sums. With respect to equation

(4.10), let u1 = u2 = v and u3 = u4 = w. Then (4.17) can be written as,

2π
∑
n3

∑
n1

∑
n2

∣∣∣∣∫ B

0

e−isα(n1,n2,n3) ds

∣∣∣∣ ∣∣v̂(n3)
∣∣ ∣∣v̂(n1)

∣∣ ∣∣ŵ(n2)
∣∣ ∣∣ŵ(n1 + n2 + n3)

∣∣
(4.18)

≤ (I) + (II) + (III) + (IV ),

where (I) is the sum over all n1, n2, n3 such that |n1 +n2| = 0, (II) is the
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sum over all n1, n2, n3 such that |n1 + n3| = 0, (III) is the sum over all

n1, n2, n3 such that |n1 + n2| ≥ |n1 + n3| ≥ 1, and (IV ) is the sum over all

n1, n2, n3 such that |n1 + n3| ≥ |n1 + n2| ≥ 1.

To estimate (I), we write

(I) = 2πB
∑
n3

∑
n2

∣∣v̂(n3)
∣∣ ∣∣v̂(−n2)

∣∣ ∣∣ŵ(n2)
∣∣ ∣∣ŵ(n3)

∣∣
= 2πB

∑
n3

∑
n2

∣∣v̂(n3)
∣∣ ∣∣v̂(n2)

∣∣ ∣∣ŵ(n2)
∣∣ ∣∣ŵ(n3)

∣∣
= 0, (4.19)

because the assumption on the supports of v and w implies that either v̂ = 0

or ŵ = 0.

To estimate (II), we write

(II) = 2πB
∑
n3

∑
n2

∣∣v̂(n3)
∣∣ ∣∣v̂(−n3)

∣∣ ∣∣ŵ(n2)
∣∣ ∣∣ŵ(n2)

∣∣
= 2πB

∑
n3

∑
n2

∣∣v̂(n3)
∣∣ ∣∣v̂(n3)

∣∣ ∣∣ŵ(n2)
∣∣ ∣∣ŵ(n2)

∣∣
= 2πB‖v̂‖2

l2 ‖ŵ‖2
l2 . (4.20)

To obtain estimates for (III) and (IV ), we note that by direct integration

we have

(4.18) = 2πB
∑
n3

∑
n1

∑
n2

∣∣∣∣1− eiBα(n1,n2,n3)

Bα(n1, n2, n3)

∣∣∣∣ ∣∣v̂(n3)
∣∣ ∣∣v̂(n1)

∣∣ ∣∣ŵ(n2)
∣∣
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∣∣ŵ(n1 + n2 + n3)
∣∣

≤ 2πc
∑
n3

∑
n1

∑
n2

1

1 + |n1 + n2||n1 + n3|
∣∣v̂(n3)

∣∣ ∣∣v̂(n1)
∣∣ ∣∣ŵ(n2)

∣∣
∣∣ŵ(n1 + n2 + n3)

∣∣. (4.21)

In order that v̂(n3) v̂(n1) ŵ(n2) ŵ(n1n2 +n3) be non-zero, we must have that

|n2 − n0| ≥ r∗2 − 2δ−1, |n3 − n0| ≤ r∗1 + 2δ−1, |n1 + n0| ≤ r∗1 + 2δ−1,

and |n1 + n2 + n3 − n0| ≥ r∗2 − 2δ−1.

To estimate (III), we first observe that if |n1 + n2| ≥ |n1 + n3| ≥ 1, then

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n2| |n1 + n3|

≥ |n1 + n2|
1
2 |n1 + n3|

3
2

= |(n1 + n2 + n3 − n0)− (n3 − n0)| 12 |n1 + n3|
3
2

≥ (|n1 + n2 + n3 − n0| − |n3 − n0|)
1
2 |n1 + n3|

3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n3|

3
2

≥ (2δ−1)
1
2 |n1 + n3|

3
2 .

Let K(n) = χ|n|≥1 |n|−
3
2 , K∗ = K(n) [(|ŵ(−.)| ∗ |ŵ|)(n)]. Then by equation

(4.21), we have that

(III) ≤ 2πc
∑
n3

∑
n1

∑
n2

[
χ|n1+n2|≥|n1+n3|≥1

1 + |n1 + n2||n1 + n3|

] ∣∣v̂(n3)
∣∣ ∣∣v̂(n1)

∣∣ ∣∣ŵ(n2)
∣∣∣∣ŵ(n1 + n2 + n3)
∣∣

≤ 2πcδ
1
2

∑
n3

∑
n1

∑
n2

χ|n1+n3|≥1 |n1 + n3|−
3
2

∣∣v̂(n3)
∣∣ ∣∣v̂(n1)

∣∣ ∣∣ŵ(n2)
∣∣∣∣ŵ(n1 + n2 + n3)

∣∣
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= 2πcδ
1
2

∑
n3

∑
n1

K(n1 + n3)
[(∣∣ŵ(−.)

∣∣ ∗ ∣∣ŵ∣∣) (n1 + n3)
] ∣∣v̂(n3)

∣∣ ∣∣v̂(n1)
∣∣

= 2πcδ
1
2

∑
n3

∑
n1

K∗(n1 + n3)
∣∣v̂(n3)

∣∣ ∣∣v̂(n1)
∣∣

= 2πcδ
1
2

∑
n1

∣∣v̂(−n1)
∣∣ (K∗ ∗

∣∣v̂(−.)
∣∣)(n1)

≤ 2πcδ
1
2

∥∥∥∣∣v̂∣∣∥∥∥
l2

∥∥K∗ ∗ ∣∣v̂(−.)
∣∣∥∥
l2

≤ 2πcδ
1
2 ‖v̂‖l2 ‖K∗‖l1

∥∥∣∣v̂(−.)
∣∣∥∥
l2

= 2πcδ
1
2 ‖v̂‖l2 ‖K∗‖l1 ‖v̂‖l2 ,

where the Cauchy-Schwarz inequality and Young’s inequality were applied to

the last few estimates. However,

‖K∗‖l1 =
∥∥∥K(n)(|ŵ(−.)| ∗ |ŵ|)

∥∥∥
l1

≤ ‖K‖l1
∥∥∥|ŵ(−.)| ∗ |ŵ|

∥∥∥
l∞

≤ ‖K‖l1 ‖ŵ‖l2 ‖ŵ‖l2

≤ c ‖ŵ‖l2 ‖ŵ‖l2 .

Note ‖K‖l1 =
∑

n χ|n|≥1 |n|−
3
2 = 2

∑∞
n=1 n

− 3
2 <∞. Therefore,

(III) ≤ cδ
1
2 ‖v̂‖2

l2 ‖ŵ‖
2
l2 . (4.22)

To estimate (IV ), we first observe that if |n1 + n3| ≥ |n1 + n2| ≥ 1, then

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n2|2

= |(n1 + n2 + n3 − n0)− (n3 − n0)| 12 |n1 + n2|
3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n2|

3
2

≥ (2δ−1)
1
2 |n1 + n2|

3
2 .

Then we obtain
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(IV ) ≤ 2πc
∑
n3

∑
n1

∑
n2

[
χ|n1+n3|≥|n1+n2|≥1

1 + |n1 + n2||n1 + n3|

] ∣∣v̂(n3)
∣∣ ∣∣v̂(n1)

∣∣ ∣∣ŵ(n2)
∣∣∣∣ŵ(n1 + n2 + n3)
∣∣

≤ cδ
1
2 ‖ŵ‖2

l2 ‖v̂‖
2
l2 , (4.23)

by an argument similar to that used to obtain (4.22).

To summarize, (4.19), (4.20), (4.22), and (4.23) show that

∣∣∣∣∫
T
F (v, v, w)w̄ dx

∣∣∣∣ ≤ (2πB + cδ
1
2 )‖v̂‖2

l2 ‖ŵ‖2
l2 . (4.24)

Thus we have proved (4.10).

For (4.11), let u1 = u2 = u4 = v and u3 = w. Then equation (4.17) can be

written as

2π
∑
n3

∑
n1

∑
n2

∣∣∣∣∫ B

0

e−i2s(n1+n3)(n1+n2) ds

∣∣∣∣ ∣∣v̂(n3)
∣∣ ∣∣v̂(n1)

∣∣ ∣∣ŵ(n2)
∣∣ ∣∣v̂(n1+n2+n3)

∣∣
(4.25)

≤ (I) + (II) + (III) + (IV ),

where (I) to (IV ) are as previously explained.

For (I), we have

(I) = 2πB
∑
n3

∑
n2

∣∣v̂(n3)
∣∣ ∣∣v̂(−n2)

∣∣ ∣∣ŵ(n2)
∣∣ ∣∣v̂(n3)

∣∣
= 2πB

∑
n3

∑
n2

∣∣v̂(n3)
∣∣ ∣∣v̂(n2)

∣∣ ∣∣ŵ(n2)
∣∣ ∣∣v̂(n3)

∣∣
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= 0, (4.26)

based on the assumption on the supports of v and w.

Also, for (II), we have

(II) = 2πB
∑
n3

∑
n2

∣∣v̂(n3)
∣∣ ∣∣v̂(−n3)

∣∣ ∣∣ŵ(n2)
∣∣ ∣∣v̂(n2)

∣∣
= 0, (4.27)

applying the same reasoning as in (I).

Again, to obtain estimates (III) and (IV ), we note that by direct integra-

tion we have

(4.25) = 2πB
∑
n3

∑
n1

∑
n2

∣∣∣∣1− eiBα(n1,n2,n3)

Bα(n1, n2, n3)

∣∣∣∣ ∣∣v̂(n3)
∣∣ ∣∣v̂(n1)

∣∣ ∣∣ŵ(n2)
∣∣∣∣v̂(n1 + n2 + n3)

∣∣
≤ 2πc

∑
n3

∑
n1

∑
n2

1

1 + |n1 + n2||n1 + n3|
∣∣v̂(n3)

∣∣ ∣∣v̂(n1)
∣∣ ∣∣ŵ(n2)

∣∣
∣∣v̂(n1 + n2 + n3)

∣∣. (4.28)

In order for v̂(n3) v̂(n1) ŵ(n2) v̂(n1 + n2 + n3) to be non-zero, we must have

|n2 − n0| ≥ r∗2 − 2δ−1, |n3 − n0| ≤ r∗1 + 2δ−1, |n1 + n0| ≤ r∗1 + 2δ−1,

and |n1 + n2 + n3 − n0| ≤ r∗1 + 2δ−1.

To estimate (III), we observe that if |n1 + n2| ≥ |n1 + n3| ≥ 1, then

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n2| |n1 + n3|

≥ |n1 + n2|
1
2 |n1 + n3|

3
2

= |(n2 − n0)− (−n1 − n0)| 12 |n1 + n3|
3
2
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≥ (|n2 − n0| − |n1 + n0|)
1
2 |n1 + n3|

3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n3|

3
2

≥ (2δ−1)
1
2 |n1 + n3|

3
2 .

Let K(n) = χ|n|≥1 |n|−
3
2 , K∗ = K(n) [(|ŵ(−.)| ∗ |v̂|)(n)]. Then by equation

(4.28), we have that

(III) ≤ 2πc
∑
n3

∑
n1

∑
n2

[
χ|n1+n2|≥|n1+n3|≥1

1 + |n1 + n2||n1 + n3|

] ∣∣v̂(n3)
∣∣ ∣∣v̂(n1)

∣∣ ∣∣ŵ(n2)
∣∣∣∣v̂(n1 + n2 + n3)
∣∣

≤ 2πcδ
1
2

∑
n3

∑
n1

∑
n2

χ|n1+n3|≥1 |n1 + n3|−
3
2

∣∣v̂(n3)
∣∣ ∣∣v̂(n1)

∣∣ ∣∣ŵ(n2)
∣∣∣∣v̂(n1 + n2 + n3)

∣∣
= 2πcδ

1
2

∑
n3

∑
n1

K(n1 + n3)
[(∣∣ŵ(−.)

∣∣ ∗ ∣∣v̂∣∣) (n1 + n3)
] ∣∣v̂(n3)

∣∣ ∣∣v̂(n1)
∣∣

= 2πcδ
1
2

∑
n3

∑
n1

K∗(n1 + n3)
∣∣v̂(n3)

∣∣ ∣∣v̂(n1)
∣∣

= 2πcδ
1
2

∑
n1

∣∣v̂(−n1)
∣∣ (K∗ ∗ ∣∣v̂(−.)

∣∣)(n1)

≤ 2πcδ
1
2

∥∥∥∣∣v̂∣∣∥∥∥
l2

∥∥K∗ ∗ ∣∣v̂(−.)
∣∣∥∥
l2

≤ 2πcδ
1
2

∥∥∥v̂∥∥∥
l2
‖K∗‖l1 ‖v̂(−.)‖l2

= 2πcδ
1
2 ‖v̂‖l2 ‖K∗‖l1 ‖v̂‖l2 ,

≤ cδ
1
2 ‖ŵ‖l2 ‖v̂‖

3
l2 . (4.29)

To estimate (IV ), we observe that if |n1 + n3| ≥ |n1 + n2| ≥ 1, then

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n3|
1
2 |n1 + n2|

3
2
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= |(n0 − n2)− (n0 − n1 − n2 − n3)| 12 |n1 + n2|
3
2

≥ (|n0 − n2| − |n0 − n1 − n2 − n3|)
1
2 |n1 + n2|

3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n2|

3
2

≥ (2δ−1)
1
2 |n1 + n2|

3
2 .

Then we obtain

(IV ) = 2πc
∑
n3

∑
n1

∑
n2

[
χ|n1+n3|≥|n1+n2|≥1

1 + |n1 + n2||n1 + n3|

] ∣∣v̂(n3)
∣∣ ∣∣v̂(n1)

∣∣ ∣∣ŵ(n2)
∣∣∣∣v̂(n1 + n2 + n3)
∣∣

≤ cδ
1
2 ‖ŵ‖l2 ‖v̂‖

3
l2 , (4.30)

by an argument similar to that used in (4.29).

To summarize, (4.26), (4.27), (4.29), and (4.30) show that

∣∣∣∣∫
T
F (v, v, w)v̄ dx

∣∣∣∣ ≤ c‖v̂‖3
l2 ‖ŵ‖l2 δ

1
2 . (4.31)

We note that the proof of the estimates in equations (4.12) to (4.16) follow

the same procedure as the proof of the estimate in equation (4.11). In fact, the

estimates for the sums analogous to (I) and (II) in equations (4.12) to (4.16)

are the same as that of equation (4.11). Since the estimates for the sums anal-

ogous to (III) and (IV ) also follow the same strategy as that of (4.11), we

only need to check that the estimates 1+|n1+n2| |n1+n3| ≥ (2δ−1)
1
2 |n1+n3|

3
2

and 1 + |n1 + n2| |n1 + n3| ≥ (2δ−1)
1
2 |n1 + n2|

3
2 are satisfied, and to choose

the appropriate function K∗.
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Concerning (4.12), let u1 = u3 = w and u2 = u4 = v. In order for

ŵ(n3) v̂(n1) ŵ(n2) v̂(n1 + n2 + n3) to be non-zero, we must have that

|n2 − n0| ≥ r∗2 − 2δ−1, |n3 − n0| ≥ r∗2 − 2δ−1, |n1 + n0| ≤ r∗1 + 2δ−1,

and |n1 + n2 + n3 − n0| ≤ r∗1 + 2δ−1.

To estimate (III), we observe that if |n1 + n2| ≥ |n1 + n3| ≥ 1, then

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n2|
1
2 |n1 + n3|

3
2

= |(n2 − n0)− (−n1 − n0)| 12 |n1 + n3|
3
2

≥ (|n2 − n0| − |n1 + n0|)
1
2 |n1 + n3|

3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n3|

3
2

≥ (2δ−1)
1
2 |n1 + n3|

3
2 .

To estimate (IV ), we observe that if |n1 + n3| ≥ |n1 + n2| ≥ 1, then

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n2|
3
2 |n1 + n3|

1
2

= |(n3 − n0)− (−n1 − n0)| 12 |n1 + n2|
3
2

≥ (|n3 − n0| − |n1 + n0|)
1
2 |n1 + n2|

3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n2|

3
2

≥ (2δ−1)
1
2 |n1 + n2|

3
2 .

Let K∗ = K(n) [(|ŵ(−.)|∗|v̂|)(n)]. We then proceed as with the proof of (4.11)

to verify (4.12).

Regarding (4.13), let u1 = u2 = u3 = w, and u4 = v. The term,

ŵ(n3) ŵ(n1) ŵ(n2) v̂(n1 + n2 + n3) is non-zero if

|n2 − n0| ≥ r∗2 − 2δ−1, |n3 − n0| ≥ r∗2 − 2δ−1, |n1 + n0| ≥ r∗2 − 2δ−1,
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and |n1 + n2 + n3 − n0| ≤ r∗1 + 2δ−1.

To estimate (III), we observe that |n1 +n2| ≥ |n1 +n3| ≥ 1 implies that

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n3|
1
2 |n1 + n3|

3
2

= |(n0 − n2)− (−n1 − n2 − n3 + n0)| 12 |n1 + n3|
3
2

≥ (|n0 − n2| − |n0 − (n1 + n2 + n3)|) 1
2 |n1 + n3|

3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n3|

3
2

≥ (2δ−1)
1
2 |n1 + n3|

3
2 .

To estimate (IV ), we observe that if |n1 + n3| ≥ |n1 + n2| ≥ 1, then

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n2|
3
2 |n1 + n2|

1
2

= |(n0 − n3)− (−n1 − n2 − n3 + n0)| 12 |n1 + n2|
3
2

≥ (|n0 − n3| − |n0 − (n1 + n2 + n3)|) 1
2 |n1 + n2|

3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n2|

3
2

≥ (2δ−1)
1
2 |n1 + n2|

3
2 .

Let K∗ = K(n) [(|ŵ(−.)|∗|v̂|)(n)]. Again, we proceed as before to verify (4.13).

For (4.14), let u1 = u2 = u3 = v and u4 = w. Again,

v̂(n3) v̂(n1) v̂(n2) ŵ(n1 + n2 + n3) is non-zero, if

|n2 − n0| ≤ r∗1 + 2δ−1, |n3 − n0| ≤ r∗1 + 2δ−1, |n1 + n0| ≤ r∗1 + 2δ−1,

and |n1 + n2 + n3 − n0| ≥ r∗2 − 2δ−1.

For (III), we observe that |n1 + n2| ≥ |n1 + n3| ≥ 1 implies that

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n2|
1
2 |n1 + n3|

3
2

= |(n1 + n2 + n3 − n0)− (n3 − n0)| 12 |n1 + n3|
3
2

≥ (|n1 + n2 + n3 − n0| − |n3 − n0|)
1
2 |n1 + n3|

3
2
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≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n3|

3
2

≥ (2δ−1)
1
2 |n1 + n3|

3
2 .

To estimate (IV ), we observe that if |n1 + n3| ≥ |n1 + n2| ≥ 1, then

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n2|
3
2 |n1 + n3|

1
2

= |(n1 + n2 + n3 − n0)− (n2 − n0)| 12 |n1 + n2|
3
2

≥ ((|n1 + n2 + n3 − n0| − |n2 − n0|)
1
2 |n1 + n2|

3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n2|

3
2

≥ (2δ−1)
1
2 |n1 + n2|

3
2 .

Let K∗ = K(n) [(|v̂(−.)| ∗ |ŵ|)(n)], and proceed with the proof as before to

verify (4.14).

For (4.15), let u1 = u3 = v and u2 = u4 = w.

The term v̂(n3) ŵ(n1) v̂(n2) ŵ(n1 + n2 + n3) is non-zero if

|n2 − n0| ≤ r∗1 + 2δ−1, |n3 − n0| ≤ r∗1 + 2δ−1, |n1 + n0| ≥ r∗2 − 2δ−1,

and |n1 + n2 + n3 − n0| ≥ r∗2 − 2δ−1.

To estimate (III), we observe that |n1 +n2| ≥ |n1 +n3| ≥ 1 implies that

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n2|
1
2 |n1 + n3|

3
2

= |(n1 + n2 + n3 − n0)− (n3 − n0)| 12 |n1 + n3|
3
2

≥ (|n1 + n2 + n3 − n0| − |n3 − n0|)
1
2 |n1 + n3|

3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n3|

3
2

≥ (2δ−1)
1
2 |n1 + n3|

3
2 .

To estimate (IV ), we observe that if |n1 + n3| ≥ |n1 + n2| ≥ 1, then

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n2|
3
2 |n1 + n3|

1
2

= |(n1 + n2 + n3 − n0)− (n2 − n0)| 12 |n1 + n2|
3
2
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≥ (|n1 + n2 + n3 − n0| − |n2 − n0|)
1
2 |n1 + n2|

3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n2|

3
2

≥ (2δ−1)
1
2 |n1 + n2|

3
2 .

Let K∗ = K(n) [(|v̂(−.)| ∗ |ŵ|)(n)], and proceed as before to verify (4.15).

Finally, to prove (4.16), let u1 = v and u2 = u3 = u4 = w. In order for

v̂(n3) ŵ(n1) ŵ(n2) ŵ(n1 + n2 + n3) to be non-zero, we must have that

|n2 − n0| ≥ r∗2 − 2δ−1, |n3 − n0| ≤ r∗1 + 2δ−1, |n1 + n0| ≥ r∗2 − 2δ−1,

and |n1 + n2 + n3 − n0| ≥ r∗2 − 2δ−1.

Thus, to estimate (III), we observe that |n1 + n2| ≥ |n1 + n3| ≥ 1 implies

that

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n3|
1
2 |n1 + n3|

3
2

= |(n1 + n0)− (−n3 + n0)| 12 |n1 + n3|
3
2

≥ (|n1 + n0| − |n3 − n0|)
1
2 |n1 + n3|

3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n3|

3
2

≥ (2δ−1)
1
2 |n1 + n3|

3
2 .

To estimate (IV ), we observe that if |n1 + n3| ≥ |n1 + n2| ≥ 1, then

1 + |n1 + n2| |n1 + n3| ≥ |n1 + n2|
3
2 |n1 + n2|

1
2

= |(n1 + n2 + n3 − n0)− (n3 − n0)| 12 |n1 + n2|
3
2

≥ (|n1 + n2 + n3 − n0| − |n3 − n0|)
1
2 |n1 + n2|

3
2

≥ (r∗2 − 2δ−1 − r∗1 − 2δ−1)
1
2 |n1 + n2|

3
2

≥ (2δ−1)
1
2 |n1 + n2|

3
2 .

Let K∗ = K(n) [(|ŵ(−.)| ∗ |ŵ|)(n)], and proceed as before to verify (4.16).

Lemma 4.9. If there exists a function w such that P (w) = λ and A(ŵ) −
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2πB‖ŵ‖4
l4 > 0, then Jλ >

Bλ2

π
.

Proof. From Lemma 4.6,

‖T (s)w‖4
L4
s,x([0,B]×T) = 4πB‖ŵ‖4

l2 − 2πB‖ŵ‖4
l4 + A(ŵ)

=
Bλ2

π
− 2πB‖ŵ‖4

l4 + A(ŵ) >
Bλ2

π
.

Hence by the definition of Jλ,

Jλ ≥ ‖T (s)w‖4
L4
s,x([0,B]×T) >

Bλ2

π
.

Lemma 4.10. If a sequence {uj} ⊂ L2 is such that ‖uj‖2
L2 = λ, and {ûj}

vanishes in the sense defined in Lemma 4.3, then as j →∞,

‖ûj‖4
l4 → 0. (4.32)

Proof. Suppose {ûj} vanishes. Then for each fixed r > 0 and for ε > 0, there

exists an N = N(r, ε) ∈ N such that

sup
m∈Z

m+r∑
m−r

|ûj(n)|2 < ε

2
,

for j ≥ N. Thus, we have that |ûj(n)|2 < ε
2

for j ≥ N, which in turn implies

that ‖ûj‖l∞ < ε for j ≥ N. So, ‖ûj‖l∞ → 0. To get (4.32), we observe that

by interpolation, ‖ûj‖4
l4 ≤ ‖ûj‖2

l2 ‖ûj‖2
l∞ .

Lemma 4.11. If a sequence {uj} ⊂ L2 is such that ‖uj‖2
L2 = λ and {ûj}
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vanishes in the sense of Lemma 4.3, then

D(ûj)→ 0. (4.33)

Proof. We have

|D(ûj)| =
∣∣∣∣2πB∑

l 6=0

∑
n

∑
r 6=n

i

2lB(n− r)
[
e−2ilB(n−r) − 1

]
ûj(n)

¯̂uj(n− l) ûj(r − l) ¯̂uj(r)

∣∣∣∣
≤ 2πc

∑
l 6=0

∑
n

∑
r 6=n

1

1 + |l||n− r|
|ûj(n)| | ¯̂uj(n− l)| |ûj(r − l)| | ¯̂uj(r)|. (4.34)

Since l 6= 0 and n 6= r , we have that |l| ≥ 1 and |n − r| ≥ 1. Suppose

1 ≤ |l| ≤ β and 1 ≤ |n− r| ≤ β for some β, then

(4.34) = 2πc
∑
l

∑
n

∑
r

χ1≤|l|≤β, 1≤|n−r|≤β

1 + |l||n− r|
|ûj(n)| | ¯̂uj(n− l)| |ûj(r − l)| | ¯̂uj(r)|

= 2πc
∑
n

∑
l

χ1≤|l|≤β |ûj(n)| | ¯̂uj(n− l)|
n+β∑
n−β

|ûj(r − l)| | ¯̂uj(r)|

≤ 2πc ‖ûj‖l2
(
n+β∑
n−β

| ¯̂uj(r)|2
) 1

2 ∑
n

|ûj(n)|
∑
l

χ|l|≤β | ¯̂uj(n− l)|

≤ 2πc ‖ûj‖l2
(
n+β∑
n−β

| ¯̂uj(r)|2
) 1

2 ∑
n

|ûj(n)| [(χ[−β,β] ∗ | ¯̂uj|)(n)]

≤ 2πc ‖ûj‖2
l2 ‖χ[−β,β] ∗ | ¯̂uj|‖l2

(
n+β∑
n−β

| ¯̂uj(r)|2
) 1

2

≤ 2πc ‖ûj‖3
l2 ‖χ[−β,β]‖l1

(
n+β∑
n−β

| ¯̂uj(r)|2
) 1

2
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= 2πcβ ‖ûj‖3
l2

(
n+β∑
n−β

| ¯̂uj(r)|2
) 1

2

. (4.35)

Now, suppose |l| > β and |n − r| ≥ |l|, then 1 + |l| |n − r| ≥ |l| |n − r| ≥

|l| 32 |n − r| 12 ≥ β
1
2 |l| 32 . Let K(n) = χ|n|≥1 |n|−

3
2 , andK∗ = K(n) [(|ûj| ∗

|ûj(−.)|)(n)]. Thus,

(4.34) = 2πc
∑
l

∑
n

∑
r

χ|n−r|≥|l|>β
1 + |l||n− r|

|ûj(n)| | ¯̂uj(n− l)| |ûj(r − l)| | ¯̂uj(r)|

≤ 2πcβ−
1
2

∑
l

∑
n

∑
r

χ|l|≥1 |l|−
3
2 |ûj(n)| | ¯̂uj(n− l)| |ûj(r − l)| | ¯̂uj(r)|

= 2πcβ−
1
2

∑
n

|ûj(n)|
∑
l

χ|l|≥1 |l|−
3
2 | ¯̂uj(n− l)| [(|ûj| ∗ |ûj(−.)|)(l)]

= 2πcβ−
1
2

∑
n

|ûj(n)|
∑
l

K∗(l) | ¯̂uj(n− l)|

= 2πcβ−
1
2

∑
n

|ûj(n)| (K∗ ∗ | ¯̂uj|)(n)

≤ 2πcβ−
1
2

∥∥∥∣∣ûj∣∣∥∥∥
l2

∥∥K∗ ∗ ∣∣ûj∣∣∥∥l2
≤ 2πcβ−

1
2 ‖ûj‖L2 ‖K∗‖l1 ‖ûj‖l2

≤ 2πcβ−
1
2 ‖ûj‖4

l2 , (4.36)

by Cauchy Schwarz inequality, Young’s inequality, and using the estimate for

K∗ found in the proof of (4.10). Suppose |l| ≥ |n− r|, then 1 + |l| |n− r| ≥

|l| |n− r| ≥ β
1
2 |n− r| 32 . This means that

(4.34) = 2πc
∑
l

∑
n

∑
r

χ|l|≥|n−r|
1 + |l||n− r|

|ûj(n)| | ¯̂uj(n− l)| |ûj(r − l)| | ¯̂uj(r)|

≤ 2πcβ−
1
2

∑
l

∑
n

∑
r

χ|n−r|≥1|n− r|−
3
2 |ûj(n)|| ¯̂uj(n− l)||ûj(r − l)|| ¯̂uj(r)|
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= 2πcβ−
1
2

∑
n

∑
p

χ|p|≥1 |p|−
3
2 |ûj(n)| | ¯̂uj(n− p)|

∑
l

| ¯̂uj(n− l)| |ûj(n− p− l)|

≤ 2πcβ−
1
2 ‖ûj‖2

l2

∑
n

|ûj(n)|
∑
p

χ|p|≥1 |p|−
3
2 | ¯̂uj(n− p)|

= 2πcβ−
1
2 ‖ûj‖2

l2

∑
n

|ûj(n)| [(K ∗ | ¯̂uj|)(n)]

≤ 2πcβ−
1
2 ‖ûj‖3

l2

∥∥∥K ∗ ∣∣ûj∣∣∥∥∥
l2

≤ 2πcβ−
1
2 ‖ûj‖3

l2 ‖K‖l1 ‖ûj‖l2

≤ 2πcβ−
1
2 ‖ûj‖4

l2 , (4.37)

where p = n−r. The cases where |n−r| > β and either |l| ≥ |n−r| or |n−r| ≥

|l|, can be dealt with by applying the same strategies as those used to find

(4.36) and (4.37). To conclude, (4.35), (4.36), and (4.37) imply that,

|D(ûj)| ≤ cβ−
1
2 ‖ûj‖4

2 + cβ ‖ûj‖3
2

(
n+β∑
n−β

| ¯̂uj(r)|2
) 1

2

. (4.38)

If {ûj} vanishes, then for each fixed β and for ε > 0, there exists N ∈ N such

that for j ≥ N,
n+β∑
n−β

| ¯̂uj(r)|2 < ε6.

In particular, for β = ε−2, there exists N such that for j ≥ N,

|D(ûj)| ≤ cβ−
1
2 ‖ûj‖4

2 + cβ ‖ûj‖3
2

(
n+β∑
n−β

| ¯̂uj(r)|2
) 1

2

= c(ε−2)
− 1

2 ‖ûj‖4
2 + cε−2 ‖ûj‖3

2

(
n+ε−2∑
n−ε−2

| ¯̂uj(r)|2
) 1

2

≤ cε ‖ûj‖4
2 + cε−2 (ε6)

1
2 ‖ûj‖3

2.

≤ cε
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This shows that lim
j→∞

D(ûj) = 0, and concludes the proof of the lemma.

4.2.3 Proof of Theorem 1.1

Fix λ > 0. Let {uj}j∈N be a maximizing sequence of W (u) subject to

P (u) = λ. Suppose there exists w ∈ L2(T) such that P (w) = λ and D(ŵ) −

2πB‖ŵ‖4
l4 > 0.

It is clear that {uj} is tight as it is defined on a compact space. What

is left is to determine which of the three cases in Lemma 4.3 the sequence of

Fourier transforms {ûj} satisfies.

If {ûj} vanishes, then Lemmas 4.10 and 4.11 imply that
∥∥ûλj ∥∥4

l4
→ 0, and D

(
ûλj
)
→

0. Also, since w satisfies D(ŵ) − 2πB‖ŵ‖4
l4 > 0, by Lemma 4.9, Jλ >

Bλ2

π
.

Taking the limit as j →∞ on both sides of Lemma 4.6 results in

lim
j→∞
‖T (s)uj‖4

L4
s,x

= lim
j→∞

4πB ‖ûj‖4
l2 = 4πB

‖uj‖4
L2

4π2
=
Bλ2

π
.

However, since (uj)j∈N is a maximizing sequence, we have that

lim
j→∞
‖T (s)uj‖4

L4
s,x

= lim
j→∞

W (uj) = Jλ.

This implies that Jλ = Bλ2

π
, thus contradicting the fact that Jλ >

Bλ2

π
. Hence,

(ûj) can not vanish.

If the sequence of Fourier transforms exhibits dichotomy, then as in case
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3) of Lemma 4.3,

α ∈
(

0,
λ

2π

)
, aj = ûj, bj = v̂j, and cj = ŵj.

Thus, for every δ ∈ (0, α), there exists a j0 such that for j ≥ j0, the following

occur:

i) With mj, r
∗
1 and r∗2 chosen as in Lemma 4.3, v̂j(n) = 0 for |n −mj| ≥

r∗1 + 2δ−1, and ŵj(n) = 0 for |n −mj| ≤ r∗2 − 2δ−1. Also, ‖vj‖2
L2 ≤ λ and

‖wj‖2
L2 ≤ λ.

ii) ‖ûj − v̂j − ŵj‖2
l2 ≤ 2δ, ‖v̂j − α‖2

l2 ≤ 3δ, and ‖ŵj − ( λ
2π
− α)‖2

l2 ≤ 9δ.

Let ĥj = ûj − v̂j − ŵj, so that hj = uj − vj − wj, and ‖hj‖2
L2 ≤ cδ for

j ≥ j0.

Thus, utilizing Lemma 4.7, we have that

|W (uj)−W (vj)−W (wj)| ≤ c
(
1 + ‖uj‖3

L2 + ‖vj‖3
L2 + ‖wj‖3

L2

)
‖hj‖L2

+ (|Λ1(vj, wj)|+ ...+ |Λ7(vj, wj)|)

≤ cδ
1
2 + |Λ1(vj, wj)|+ ...+ |Λ7(vj, wj)|.

Due to Lemma 3.2, we have that

∫
T
F (u1, u2, u3)ū4 dx =

∫
T

∫ B

0

T−1(s)[T (s)u1 T (s)u2 T (s)u3] ū4 ds dx

=

∫ B

0

∫
T
T (s)u1 T (s)u2 T (s)u3 T (s)u4 dx ds.

Thus, by Lemma 4.8,

|W (uj)−W (vj)−W (wj)| ≤ cδ
1
2 + 4(2πB + cδ

1
2 )‖v̂j‖2

l2 ‖ŵj‖2
l2

+2c‖v̂j‖3
l2 ‖ŵj‖l2 δ

1
2 + ...+ 2c‖v̂j‖l2 ‖ŵj‖3

l2 δ
1
2
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≤ cδ
1
2 + 8πB‖v̂j‖2

l2 ‖ŵj‖2
l2 , for j ≥ j0.

Hence, by Lemma 4.5,

‖T (s)uj‖4
L4
s,x
≤ ‖T (s)vj‖4

L4
s,x

+ ‖T (s)wj‖4
L4
s,x

+ cδ
1
2 + 8πB ‖v̂j‖2

l2 ‖ŵj‖2
l2

≤ J‖vj‖2
L2

+ J‖wj‖2
L2

+ cδ
1
2 + 8πB ‖v̂j‖2

l2 ‖ŵj‖2
l2

= ‖vj‖4
L2 J1 + ‖wj‖4

L2 J1 + cδ
1
2 + 8πB ‖v̂j‖2

l2 ‖ŵj‖2
l2

= 4π2(‖v̂j‖4
l2 J1 + ‖ŵj‖4

l2 J1) + cδ
1
2 + 8πB ‖v̂j‖2

l2 ‖ŵj‖2
l2 , for j ≥ j0.

Taking the limit as j → ∞ and δ → 0 on both sides of the inequality

results in

Jλ ≤ 4π2

(
α2 +

(
λ

2π
− α

)2
)
J1 + cδ

1
2 + 8πBα

(
λ

2π
− α

)
.

On the other hand, by Lemma 4.5, we have that

Jλ = λ2J1 = 4π2

(
λ

2π

)2

J1 = 4π2

(
α +

λ

2π
− α

)2

J1.

Hence,

4π2

(
α +

λ

2π
− α

)2

J1 ≤ 4π2

(
α2 +

(
λ

2π
− α

)2
)
J1 + cδ

1
2 + 8πBα

(
λ

2π
− α

)
.

It follows that 8π2α
(
λ
2π
− α

)
J1 ≤ 8πBα

(
λ
2π
− α

)
, which implies that Jλ ≤

Bλ2

π
. This contradicts the fact that Jλ >

Bλ2

π
, and we conclude that {ûj} can

not exhibit dichotomy.

The final case is that in which the sequence of Fourier transforms is tight.

Then there exists a sequence of integers m1,m2,m3, ... such that for each ε > 0,
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there exists an integer r = r(ε) > 0 with the property that

mj+r∑
mj−r

|ûj|2 ≥
λ

2π
− ε for j ∈ N.

Let vj = e−imjxuj; then ‖vj‖L2 =
√
λ, ‖vj‖L4 = ‖uj‖L4 , and v̂j(n) = ûj(n +

mj). Also, using Lemma 4.6, we have that ‖T (s)vj‖4
L4
s,x

= ‖T (s)uj‖4
L4
s,x

. Hence,

vj is also a maximizing sequence. Note that

mj+r∑
mj−r

|ûj|2 =
r∑
−r

|ûj(n+mj)|2 =
r∑
−r

|v̂j|2.

So, without loss of generality, we can assume mj = 0 for all j ∈ N. This

implies that for each ε > 0, there exists an integer r > 0 with the property

that
r∑
−r

|ûj|2 ≥
λ

2π
− ε for j ∈ N.

Define µ ∈ C∞0 such that µ(n) = 1 for |n| ≤ 1, and µ(n) = 0 for |n| ≥ 2.

Define µr(n) = µ(n
r
), where r > 0. For each k ∈ N, let ε = 1

k
and choose r(ε) =

r( 1
k
) := rk. Let µk = µrk , and define vj,k := (µk ûj )̌ and wj,k := ((1− µk) ûj )̌ .

Then, uj = vj,k + wj,k and

‖vj,k‖2
H1 =

∑
n

(1 + |n|)2 |µk ûj|2

≤ c

(∑
n

|µk ûj|2 +
∑
n

|n|2 |µk ûj|2
)

≤ c

(
‖ûj‖2

l2 +

2rk∑
−2rk

|n|2 |µk ûj|2
)

≤ c
(
‖ûj‖2

l2 + ‖|n|2‖l∞ ‖|µkûj|2‖l1
)

≤ c (1 + 4r2
k) ‖ûj‖2

l2
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= c (1 + 4r2
k). (4.39)

In addition,

‖wj,k‖2
L2 = 2π

∑
|n|≥rk

|(1− µk)ûj|2

≤ 2π
∑
|n|≥rk

|ûj|2

= 2π

∑
n

|ûj|2 −
∑
|n|≤rk

|ûj|2


= 2π

 λ

2π
−
∑
|n|≤rk

|ûj|2


≤ 2π

[
λ

2π
−
(
λ

2π
− 1

k

)]
=

2π

k
. (4.40)

Now, ‖uj‖L2 =
√
λ implies that there exists a subsequence, still denoted by

{uj}, that converges weakly to some function u ∈ L2, with ‖u‖L2 ≤
√
λ.

Fix k ∈ N. Equation (4.39) implies that {vj,k}j∈N is bounded in H1(T), and

(4.40) implies that {wj,k}j∈N is small in L2(T). Thus, there exists a subse-

quence (j′) ⊂ N, and functions vk ∈ H1(T) and wk ∈ L2(T), such that,

{vj′,k} converges weakly to vk in H1(T) and {wj′,k} converges weakly to wk

in L2(T), with u = vk +wk. By the weak lower semicontinuity of the norm in

a Hilbert space,

‖wk‖L2 ≤ lim inf
j′→∞

‖wj′,k‖L2 ≤
√

2π

k
.

By the Rellich-Kondrachov Theorem for compact manifolds, we can con-
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clude that there is a subsequence of {vj′,k}, still denoted by {vj′,k}, that con-

verges strongly to vk ∈ L2(T). Now,

‖u‖L2(T) = ‖vk + wk‖L2(T)

≥ ‖vk‖L2(T) − ‖wk‖L2(T)

≥ lim
j′→∞

‖vj′,k‖L2(T) −
√

2π

k

= lim
j′→∞

‖uj′ − wj′,k‖L2(T) −
√

2π

k

≥ lim sup
j′→∞

‖uj′‖L2(T) − ‖wj′,k‖L2(T) −
√

2π

k

≥ lim sup
j′→∞

‖uj′‖L2(T) − 2

√
2π

k

=
√
λ− 2

√
2π

k
.

Taking the limit as k → ∞, it follows that ‖u‖L2(T) ≥
√
λ. To conclude,

since {uj} converges weakly to u, and ‖u‖L2(T) =
√
λ = lim

j→∞
‖uj‖L2(T),

then {uj} converges strongly to u in L2(T). Finally, W (u) : L2 → R is

continuous (see Remark 3.19), so we can conclude that u is a maximizer of

W (u).

4.3 Stability

Let Sλ be the set of all maximizers for Jλ; that is,

Sλ = {φ ∈ L2 : W (φ) = Jλ and P (φ) = λ}.

Theorem 4.12. The set Sλ is nonempty and is a stable set for the initial
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value problem for (3.1) in L2(T). That is, for every ε > 0, there exists δ > 0

such that if u0 ∈ L2, and

inf
φ∈Sλ

‖u0 − φ‖L2 ≤ δ,

then the solution u(t, x) of (3.1) with u(0, x) = u0(x) satisfies

inf
φ∈Sλ

‖un(t, ·)− φ‖L2 < ε

for all t > 0.

Proof. Suppose for contradiction that Sλ is not stable. Then there exists

ε0 > 0 such that for all n ∈ N, we can find u0n ∈ L2 such that

inf
φ∈Sλ

‖u0n − φ‖L2 ≤ 1

n
,

and some tn > 0 such that the solution un(t, x), of (3.1) with initial data

u0n satisfies

inf
φ∈Sλ

‖un(tn, ·)− φ‖L2 ≥ ε0.

Let ε > 0 be given. We know that since infφ∈Sλ ‖u0n−φ‖L2 ≤ 1
n
, then for

each n there exists φn ∈ Sλ such that ‖u0n − φn‖L2 ≤ 2
n
.

Also, there exists N such that for n ≥ N, 1
n
< ε

2
. Thus for n ≥ N, we

have

|‖u0n‖L2 −
√
λ| = |‖u0n‖L2 − ‖φn‖L2|

≤ ‖u0n − φn‖L2

≤ 2

n

< ε.
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This shows that P (u0n) converges to λ in L2.

Moreover, let M be such that ‖u0n‖L2 ≤M. Then for all φ ∈ Sλ,

|W (u0n)−W (φ)| ≤ c‖u0n − φ‖L2(‖u0n‖L2 + ‖φ‖L2)3.

Therefore, for ε > 0, there exists Ñ such that for n ≥ Ñ , 1
n
< ε

2c(M+
√
λ)3
.

So for n ≥ Ñ ,

|W (u0n)− Jλ| = |W (u0n)−W (φn)|

≤ c‖u0n − φn‖L2(‖u0n‖L2 + ‖φn‖L2)3

≤ c
2

n
(M +

√
λ)3

< ε.

This shows that W (u0n) converges to Jλ.

Now, define {αn} such that P (αn u0n) = λ for all n ∈ N. Then αn → 1.

Define vn = αn un(·, t). Since P (un) and W (un) are independent of time,

then P (vn) = P (αn un) = α2
n P (un) = α2

n P (u0n) = P (αn u0n) = λ, and

lim
n→∞

W (vn) = lim
n→∞

W (αn un) = lim
n→∞

α4
nW (un(t, ·)) = lim

n→∞
α4
nW (un0) = Jλ.

This implies that {vn} is a maximizing sequence. From Theorem 1.1, it follows

that there exists a maximizer ψ ∈ Sλ such that a subsequence of e−imnx vn

satisfies ‖e−imnx vn − ψ‖2 <
ε0
2
. On the other hand,

ε0 ≤ ‖un(tn, ·)− eimnx ψ‖L2

=

∥∥∥∥ 1

βn
vn(tn, ·))− eimnx ψ

∥∥∥∥
L2
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=

∥∥∥∥ 1

βn
vn(tn, ·)− vn(tn, ·) + vn(tn, ·)− eimnx ψ

∥∥∥∥
L2

=

∥∥∥∥ 1

βn
vn(tn, ·)− vn(tn, ·)

∥∥∥∥
L2

+ ‖vn(tn, ·)− eimnx ψ‖L2

≤
∣∣∣∣ 1

βn
− 1

∣∣∣∣ ‖vn(tn, ·)‖L2 + |eimnx|‖e−imnx vn(tn, ·)− ψ‖L2 .

Taking the limit as n→∞, we obtain that ε0 ≤ ε0
2
, a contradiction.

Remark 4.13. We note that a similar approach can be used to prove stability

of the set of all minimizers in H1.
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Chapter 5

Intervals of Existence of Maximizers in L2

The goal of this section is to prove results on the existence or nonexistence

of functions w satisfying the sufficient condition for stability in Theorem 1.1,

for various values of B. We show in Section 5.1 that such functions w do not

exist for B = Nπ, N ∈ N, but do exist for B = π
4

and for B ∈ (0, B0)

where B0 is about 0.6958. We show in Section 5.2 that such functions exist

for B = π
2

and for B ∈ [B0, B1] where B1 is about 1.39.

5.1 Functions w with Real-Valued Fourier Transform

Lemma 5.1. If B = Nπ for N ∈ N, then there does not exist any maximizing

function for Jλ in L2(T).

Proof. Let B = Nπ for N ∈ Z. If u ∈ L2(T) is such that P (u) = λ, then

Lemma 4.6 implies that

‖T (s)u‖4
L4
s,x([0,Nπ]×T) = 4Nπ2‖û‖4

l2 − 2Nπ2‖û‖4
l4 ≤ Nλ2,

since A(û) = 0 when B = Nπ. According to the definition of Jλ, we have that
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Jλ ≤ Nλ2. However, if we define uj ∈ L2 by

ûj(n) =


√

λ
2π(2j−1)

|n| < j

0 otherwise,

then ‖ûj‖2
l2 = λ

2π
and, as j → ∞, ‖ûj‖l∞ → 0; hence ‖ûj‖l4 → 0 and

‖T (s)uj‖4
L4
s,x([0,Nπ]×T) → Nλ2. This implies that Jλ ≥ Nλ2, and therefore

that Jλ = Nλ2.

Now suppose u is a maximizer for Jλ in L2(T). Then we have that

‖T (s)u‖4
L4
s,x([0,Nπ]×T) = Nλ2.

Lemma 4.6 implies that ‖û‖4
l4 = 0; thus u = 0. This contradicts the fact that

P (u) = λ > 0, and we conclude that there does not exist a maximizer for Jλ

in L2(T).

From now on, we will write A(û) as

A(û) = 2πB
∑
p 6=0

∑
l 6=0

bp,l ap,l, (5.1)

where

bp,l =
i

2lpB

[
e−2ilpB − 1

]
=

1

2lpB
[sin(2lpB) + i(cos(2lpB)− 1)] (5.2)

and

ap,l =
∑
n

û(n) ¯̂u(n− l) û(n− p− l) ¯̂u(n− p). (5.3)

Lemma 5.2. For all p, l ∈ Z, we have

ap,l = a−p,−l,
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a−p,l = ap,l = ap,−l,

and

ap,l = al,p.

Proof. The equation ap,l = al,p follows immediately from the definition of ap,l.

Also, we have

a−p,−l =
∑
n

û(n) ¯̂u(n+ l) û(n+ p+ l) ¯̂u(n+ p)

=
∑
ñ

û(ñ− p− l) ¯̂u(ñ− p) û(ñ) ¯̂u(ñ− l)

= ap,l,

where in the second sum we changed the index from n to ñ = n + p + l.

Finally,

a−p,l =
∑
n

û(n) ¯̂u(n− l) û(n+ p− l) ¯̂u(n+ p)

=
∑
ñ

û(ñ− p) ¯̂u(ñ− p− l) û(ñ− l) ¯̂u(ñ)

= ap,l,

where we made the change of index from n to ñ = n+ p. A similar calcula-

tion works for ap,−l.

For a function u with real-valued Fourier transform û, we see that ap,l is

even as a function of p and l, and bp,l is the sum of an even function and an

odd function of p and l ( but not both). Hence, if û is real-valued, we can
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rewrite A(û) as

A(û) = 2πB
∑
p6=0

[∑
l 6=0

1

2lpB
[sin(2lpB) + i(cos(2lpB)− 1)] ap,l

]

= 2πB
∑
p 6=0

∑
l 6=0

sin(2lpB)

2lpB
ap,l

= 2πB · 4
∞∑
p=1

∞∑
l=1

sin(2lpB)

2lpB
ap,l. (5.4)

From equation (5.4), we have that

A(ŵ)− 2πB ‖ŵ‖4
l4 = 8πB

∞∑
p=1

∞∑
l=1

sin(2lpB)

2lpB
ap,l − 2πB ‖ŵ‖4

l4 . (5.5)

Fix B > 0, and let ŵ be defined by

ŵ(n) =


1 n = 0

r n = ±1

0 otherwise,

where r ∈ R. From (5.3) we see that if p ≥ 1 and l ≥ 1, then for ap,l 6= 0

to hold, we must have that p < 2, l < 2, |p − l| ≤ 2, and |p + l| ≤ 2; and

therefore we must have p = l = 1. Hence

A(ŵ)− 2πB ‖ŵ‖4
l4 = 8πB

(
sin 2B

2B

)
a1,1 − 2πB ‖ŵ‖4

l4

= 8πB

(
sin 2B

2B

)∑
n

ŵ(n) ¯̂w(n− 1) ŵ(n− 2) ¯̂w(n− 1)− 2πB ‖ŵ‖4
l4 .

If we consider all the possible values for n such that ŵ(n) ¯̂w(n − 1) ŵ(n −

2) ¯̂w(n−1) is non-zero, we see that this can only happen for n = 1. Therefore,

A(ŵ)− 2πB ‖ŵ‖4
l4 = 8πB

(
sin 2B

2B

)
ŵ(1) ŵ2(0) ŵ(−1)− 2πB ‖ŵ‖4

l4
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= 8πBr2

(
sin 2B

2B

)
− 2πB(1 + 2r4).

Note that A(ŵ)− 2πB ‖ŵ‖4
l4 > 0 if

4r2

(
sin 2B

2B

)
> (1 + 2r4),

that is, if (
sin 2B

2B

)
>

1 + 2r4

4r2
. (5.6)

Since the function f(r) = 1+2r4

4r2
has a minimum value of

√
2

2
at r = 2−

1
4 ,

then (5.6) will be satisfied at some r > 0, as long as

(
sin 2B

2B

)
>

√
2

2
. (5.7)

We see that (5.7) is true for all values of B in the interval (0, B0), where B0

is about 0.6958.

To obtain a function wλ satisfying satisfying the condition of Theorem 1.1,

we now set

ŵλ(n) =

√
λ

2π

ŵ(n)

‖ŵ‖l2
,

so that

‖wλ‖2
L2 = 2π‖ŵλ‖2

l2 = 2π

(√
λ

2π

)2
‖ŵ‖2

l2

‖ŵ‖2
l2

= λ,

and

A(ŵλ)− 2πB ‖ŵλ‖4
l4 =

λ2

4π2‖ŵ‖4
l2

[A(ŵ)− 2πB ‖ŵ‖4
l4 ] > 0

for all B in the interval (0, B0).
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More generally, we can define the function w by setting

ŵ(n) =



1 n = 0

r n = ±1

s n = ±2

0 otherwise,

where r, s ∈ R. From equation (5.3), we see that in order to have ap,l 6= 0,

we must have that p < 4, l < 4, |p− l| ≤ 4, and |p + l| ≤ 4. In this case,

the possibilities for (p, l) are (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), and (3, 1). This

implies that

A(ŵ)− 2πB ‖ŵ‖4
l4 = 8πB

[(
sin 2B

2B

)
a1,1 +

(
sin 4B

4B

)
a1,2 +

(
sin 6B

6B

)
a1,3

+

(
sin 4B

4B

)
a2,1 +

(
sin 6B

6B

)
a3,1 +

(
sin 8B

8B

)
a2,2

]
− 2πB ‖ŵ‖4

l4 .

By Lemma 5.2, it suffices to calculate ap,l for (p, l) = (1, 1), (1, 2), (1, 3),

and (2, 2). For a1,1, the term ŵ(n) ¯̂w(n− 1) ŵ(n− 2) ¯̂w(n− 1) is non-zero

when n = 0, 1 and 2. Evaluating at each of these values and taking the

sum results in a1,1 = 2sr2 + r2. For a1,2, the only values of n that make

ŵ(n) ¯̂w(n − 1) ŵ(n − 3) ¯̂w(n − 2) non-zero are n = 1 and 2. Evaluating at

each of these values and taking the sum results in a1,2 = 2sr2. For a2,2,

the only value of n that makes ŵ(n) ¯̂w(n− 2) ŵ(n− 4) ¯̂w(n− 2) non-zero is

n = 2. Evaluating at this value results in a2,2 = s2. Lastly, for a1,3, the only

value of n that makes ŵ(n) ¯̂w(n − 1) ŵ(n − 4) ¯̂w(n − 3) non-zero is n = 2.

Evaluating at this value results in a1,3 = s2r2.

109



For B = π
4
, we have that

A(ŵ)− π2

2
‖ŵ‖4

l4 = 8π

[(
sin π

2

2

)
r2(2s+ 1) +

(
sin π

4

)
2sr2 +

(
sin 3π

2

6

)
s2r2

+

(
sin π

4

)
2sr2 +

(
sin 3π

2

6

)
s2r2 +

(
sin 2π

8

)
s2

]
− π2

2
(2s4 + 2r4 + 1)

= 8π

[
1

2
r2(2s+ 1) +

−1

3
s2r2

]
− π2

2
(2s4 + 2r4 + 1). (5.8)

Therefore, for B = π
4
, A(ŵ) − π2

2
‖ŵ‖4

l4 has a positive maximum when r =

1.16426, and s = 0.754222.

Again, to obtain a function wλ satisfying the condition of Theorem 1.1,

one can set

ŵλ(n) =

√
λ

2π

ŵ(n)

‖ŵ‖l2
.

5.2 Functions w with Complex-Valued Fourier Trans-

form

Let B = π
2
, and define the function ŵ by

ŵ(n) =


1 n = 0

r n = ±1, ±2

0 otherwise

where now, unlike in Section 5.1, we allow r to take a complex value. For this

value of B, equation (5.2) gives

bp,l =
1

lpπ
[sin(lpπ) + i cos(lpπ)− i] ,
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=

 0 if either l or p is even

−2i
lpπ

otherwise.

Thus

A(ŵ)− 2πB ‖ŵ‖4
l4 = π2

∑
p-odd

∑
l-odd

−2i

lpπ
ap,l − π2 ‖ŵ‖4

l4 . (5.9)

In order to have ap,l 6= 0, we must have that |p| < 4, |l| < 4, |p − l| ≤ 4

and |p+ l| ≤ 4. In this case, we see that the possibilities for (p, l) are (1, 1),

(−1, 1), (1,−1), (−1,−1), (1, 3), (−1, 3), (1,−3), (−1,−3), (3, 1), (3, 1),

(3,−1), and (−3,−1). Hence,

A(ŵ)− 2πB ‖ŵ‖4
l4 = −2iπ

[
a1,1 − a−1,1 − a1,−1 + a−1,−1 +

1

3
a1,3 −

1

3
a−1,3

−1

3
a1,−3 +

1

3
a−1,−3 +

1

3
a3,1 −

1

3
a−3,1 −

1

3
a3,−1 +

1

3
a−3,−1

]
− π2 ‖ŵ‖4

l4

In addition, Lemma 5.2 shows that we need only calculate a1,1 and a1,3. For

a1,1, the only values of n that make ŵ(n) ¯̂w(n−1) ŵ(n−2) ¯̂w(n−1) non-zero

are n = 0, 1, and 2. Hence, a1,1 = 2rr̄2 +r2. Apply a similar strategy to each

of the possibilities for a1,3 to get a1,3 = r2r̄2. With this in mind, we get from

(5.9) that

A(ŵ)− 2πB ‖ŵ‖4
l4 = −2iπ

[
(2rr̄2 + r2)− (2r̄r2 + r̄2)− (2r̄r2 + r̄2)+

(2rr̄2 + r2) +
1

3
r2r̄2 − 1

3
r̄2r2 − 1

3
r̄2r2 +

1

3
r2r̄2 +

1

3
r2r̄2 − 1

3
r̄2r2−

1

3
r̄2r2 +

1

3
r2r̄2

]
− π2(1 + 4|r|4)

= −2iπ
[
2(2rr̄2 + r2)− 2(2r̄r2 + r̄2)

]
− π2(1 + 4|r|4)
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= −2iπ
[
2(2r̄|r|2 + r2)− 2(2r|r|2 + r̄2)

]
− π2(1 + 4|r|4)

= −4iπ
[
2|r|2(r̄ − r) + r2 − r̄2

]
− π2(1 + 4|r|4).

If we let r = x+ iy, then

A(ŵ)− 2πB ‖ŵ‖4
l4 = −4iπ

[
−4iy(x2 + y2) + 4ixy

]
− π2(1 + 4(x2 + y2)2)

= π
[
−16x2y + 16xy − 16y3

]
− π2(1 + 4(x2 + y2)2). (5.10)

One sees that the right hand side of (5.10) has a positive maximum at x =

−0.527097, and y = −0.947191. Therefore, for B = π
2
, there exists a func-

tion w satisfying the conditions of Theorem 1.1.

Define the function ŵ, by

ŵ(n) =


1 n = 0

r n = ±1

0 otherwise.

where again we allow r to take a complex value. For this value of B, equations

(5.1) and (5.2) give

A(ŵ) = 2πB
∑
p 6=0

∑
l 6=0

bp,l ap,l

= π
∑
p 6=0

∑
l 6=0

i

lp
[e−2ilpB − 1] ap,l.

For ap,l 6= 0, we have that |p| ≤ 2, |l| ≤ 2, |p− l| ≤ 2 and |p + l| ≤ 2. In

this case, we see that the possibilities for (p, l) are (1, 1), (−1, 1), (1,−1),
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and (−1,−1). Hence,

A(ŵ) = iπ
[
(e−2iB − 1)(a1,1 + a−1,−1)− (e2iB − 1)(a−1,1 + a1,−1)

]
.

In addition, Lemma 5.2 shows that we need only calculate a1,1. For a1,1, the

only value of n that makes ŵ(n) ¯̂w(n − 1) ŵ(n − 2) ¯̂w(n − 1) non-zero is

n = 1. This results in a1,1 = r2. With this in mind,

A(ŵ) = 2iπ
[
(e−2iB − 1)r2 − (e2iB − 1)r̄2

]
. (5.11)

If we let r = x+ iy, then

A(ŵ) = 2iπ
[
cos(2B)(r2 − r̄2)− i sin(2B)(r2 + r̄2)− (r2 − r̄2)

]
= 2iπ

[
4xyi cos(2B)− 2i(x2 − y2) sin(2B)− 4xyi

]
.

Therefore,

A(ŵ)− 2πB‖ŵ‖4
l4 = 2π

[
−4xy cos(2B) + 2(x2 − y2) sin(2B) + 4xy−

B(1 + 2(x2 + y2)2)
]
.

(5.12)

For x = 0.65 and y = 0.53, we have that A(ŵ)− 2πB‖ŵ‖4
l4 > 0 in the interval

(B0, B1) where B0 = 0.67 and B1 = 1.39.

To summarize, by Theorem 1.1, we have shown that maximizers for Jλ,

and thus stable ground state solutions, exist for the values of B in the interval

(0, 1.39), and for B = π
2
. However, maximizers do not exist for Nπ when

N ∈ N.
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5.3 Open questions

The known values of B for which maximizers exist in L2 suggest that

there could be a possibility to extend the existence all the way to B = π, by

considering larger classes of functions w.

It is not yet known whether the periodic DMNLS equation is globally (or

locally) well posed in Hs for small fractional values of s > 0, or for s < 0.

It would seem that the first hurdle is in finding a suitable Strichartz type

estimate that will help with the Banach contraction mapping argument.

Also, since ground state solutions correspond to optimizers of the energy

functional E(u), and we have only considered minimizers of E(u), it could be

possible to find ground state solutions that correspond to maximizers of the

energy functional.

Lastly, a more challenging question will be to identify precisely which

functions are in the set of minimizers S, and use this information to determine

whether ground states are orbitally stable.
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