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Abstract

The present dissertation tackles two different problems in fluid mechanics. In

the first problem, we study the stability of free or natural convection of a

compressible fluid over a heated plate underlying a semi-infinite vertical slot

and underlying a closed vessel. For both settings, we show linear and non-

linear stability of the reference solution by constructing respective Lyapunov

functions and using LaSalle’s Invariance Principle. The construction of the

Lyapunov function is motivated by the assumption that the fluid particles

evolve according to a Markov chain. In the second problem, we study the flow

dynamics of a viscous stably stratified fluid in a channel with time-periodic

temperature variations applied at the sidewalls. Seeking solutions in the form

of simple harmonic oscillations, we obtain analytical temperature and veloc-

ity profiles for the one-dimensional time-dependent flow. We then use these

solutions to study the possibility of resonance of the fluid flow with the peri-

odic oscillations of the externally supplied temperatures at the walls. Results

indicate the existence of resonance depicted as prominent peaks of physical

quantities at certain frequencies of the external temperature oscillations.

xii



Chapter 1

Introduction

Natural or free convection is a mechanism in which the motion or mixing of the

fluid is caused only by temperature differences within the fluid and not by an

external source (such as a turbine or fan). These temperature differences result

in density variation and thus give rise to the driving force of free convection

known as buoyancy. Understanding free convection and buoyancy-induced

flows in fluids is critical because of their abundance in nature and engineering

applications. A very common industrial application of natural convection is

free air cooling without the aid of fans. In nature, convection is the principle

motor of cloud formation and circulation.

Chapters 2, 3 and 4, in collaboration with Dr. Alexander Grigo, study

the stability analysis of free convection of a compressible fluid over a heated

plate in two different regimes: semi-infinite vertical slot as well as a closed

vessel. In contrast to previous work, we use the exact non-linear Navier-Stokes

equations without imposing the Boussinesq approximation. Doing so increases

the complexity of the problem as the fluid in this case is compressible and flow

dynamics could be driven by the continuity equation.
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The plan of Part I is as follows: In Chapter 2, we discuss the problem set-up

and its boundary conditions and describe the reference state whose stability

is under study. In Chapter 3, we apply a numerical model based on the finite

element method to study the linear stability of the problem. Although the

numerical results obtained in this chapter cannot be used as a proof of stability

of the reference solution in the linear case, we choose to include them in this

dissertation for their importance in building our intuition about the behaviour

of perturbations of the reference state. Finally, in Chapter 4, we prove the

stability of the reference solution in both the linear and non-linear settings

by constructing respective Lyapunov functions that decrease over solutions of

the corresponding systems. Since there is no systematic way for constructing

Lyapunov functions, we dedicate section 4.3.1 to motivate the choice of the

Lyapunov function that works in the non-linear setting.

The second part of this dissertation (Chapters 5, 6 and 7) is a collaborative

work with Dr. Nikola Petrov and Dr. Alan Shapiro. In this part, we study the

flow dynamics in a stratified fluid along an infinite vertical channel with tem-

porally periodic surface temperature variations. Although a big part of the

literature has been devoted for studying stratified and non-stratified fluids in

various geometrical configurations, most of the research has been done numer-

ically and very few discuss the interesting physical phenomena that arise due

to the complexity of the problem setting. What makes our research unique is

the fact that we obtained analytic solutions of the coupled system of partial

differential equations with the corresponding boundary conditions; thus open-

ing the door to exploring the sensitivity of the fluid behaviour to the physical

parameters.

The structure of Part II is as follows: In Chapter 5, we give a brief literature

2



review, describe the governing equations and what fluid stratification means in

this case, derive the energy balance equations to interpret some of the physical

quantities that appear in the problem, and non-dimensionalize the system in

a way that makes it easier to study and interpret the physical observations. In

Chapter 6, we transform the system of partial differential equations into two

decoupled higher order boundary value problems whose solutions then give the

required temperature and vertical velocity profiles. Finally, in Chapter 7, we

present some interesting and somewhat surprising physical observations and

discuss possible interpretations for these behaviours.

3



Part I

Stability of Free Convection

Over a Heated Plate
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Chapter 2

Problem Formulation

2.1 Introduction

Using statistical mechanics to study dissipative hydrodynamic systems which

exchange energy with an external source has increasingly gained interest over

the years. Some common, everyday examples are the fascinating growing

patterns found in snowflakes or bacteria colonies, ripples in sandy deserts

and the complex turbulent flow patterns found in the atmosphere. But what

causes such patterns to exist and how can one characterize this phenomenon

mathematically? Apparently, systems that show a complex pattern-formation

process share three main ingredients:

1. exchange of energy to drive the system;

2. instability in order to start the pattern;

3. non-linearity in order to choose the pattern.

A huge proportion of the early work on pattern formation was motivated

by the study of convection, which is the overturning of a fluid that is heated

from below. Heat at the bottom of a container causes the fluid there to ex-
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pand, become less dense and more buoyant and so to rise through the colder

fluid above. As the fluid rises away from the heat source, it cools, becom-

ing denser than the fluid below, and so falls back down to the bottom of the

container under the influence of gravity. The cycle repeats, so the fluid is

constantly overturning. The rising and falling fluid forms spatial patterns,

most commonly stripes or convection rolls, though more complicated patterns

such as hexagons and squares are also possible, depending on the details of

the physical system and fluid properties. Convection is important because it

occurs naturally in the environment: in the Earth’s mantle convection leads

to ‘continental drift’ and in the atmosphere convection creates thunderclouds.

One of the most commonly studied convection phenomena is the Rayleigh-

Bénard convection occurring in an incompressible fluid placed between hori-

zontal parallel plates in the gravitational field in which a temperature gradient

is always maintained (Figure 2.1). Literature studies based on the Boussinesq

approximation [9, 17] show that when the temperature difference across the

fluid exceeds a critical value, the rest state becomes unstable and the fluid

breaks into convective flow cells that occur periodically in space. However,

the situation becomes more complicated if the fluid is compressible as some

of the dynamics would be driven by the continuity equation. Moreover, if we

use a container which is open at the top, the fluid has a free surface where

temperature-induced variations in the surface tension can drive motion.

The research problem we are interested in is motivated by modelling the

turbulent flow found in the atmosphere and studying the onset of complex

convective patterns caused mainly by the interactions of solar radiation with

the Earth’s surface. In this chapter, we introduce the governing equations for

the problem, describe the reference state and derive the linearized equations.
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Figure 2.1: Rayleigh-Bénard Convection

2.2 Governing Equations

Consider a Cartesian coordinate system in which the z-axis opposes the gravity

vector and the (x, z)-plane coincides with a semi-infinite vertical plate. We

consider two different geometrical configurations: In the first set-up, the fluid

fills the semi-infinite region Ω∞={(x, z), 0 ≤ x ≤ L, z ≥ 0} whereas in the

second the fluid lies in a finite vessel ΩH = {(x, z), 0 ≤ x ≤ L, 0 ≤ z ≤ H}

of height H as shown in Figures 2.2 and 2.3, respectively. We maintain a

constant temperature across the domain so that the value of the temperature

at the bottom plate is T0.

In the notation of Cartesian tensors with position vector x = (xj) = (x, z)

and velocity vector u = (uj) = (u,w) ( j = 1, 2 ), the hydrodynamic equations

for a compressible fluid are given by the full non-linear Navier-Stokes equations

written as

∂t n = −∇·(nu), (2.1)

∂t (nui) = −
∑
j

∂xjΠij −∇·((nu)ui) + gi n, (2.2)

n ∂t T = −(nu ·∇)T −
∑
i

∑
j

Πij ∂xjui +∇· [κ∇T ], (2.3)

where ∂t =
∂

∂t
, ∂xj =

∂

∂xj
, n is the particle count per unit volume, T =

kB
m
θ

7



Figure 2.2: Semi-infinite Domain Ω∞ Figure 2.3: Finite Domain ΩH

with kB being the Boltzmann constant, m is the mass, and θ is the tempera-

ture. For simplicity, we will refer to T as the temperature. In this case, the

z-axis is the upward vertical, g =

 0

−G

 is the (constant) acceleration due

to gravity, the stress tensor Πij is given by

Πij = nT δij − ν
[
∂xjui + ∂xiuj − δij ∇·u

]
,

ν is the viscosity which is a measure of the fluid’s internal resistance to flow

and κ is the thermal conductivity which measures the rate of heat conduc-

tion through the fluid. Equations (2.1)-(2.3) are referred to as the continuity,

momentum and thermal equations, respectively.

In this set-up, the total count per unit volume is kept fixed, that is, for

any fixed time t and for Ω = ΩH or Ω∞,

∫
Ω

n(x, t) dx = N ≡ Constant. (2.4)
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2.3 Boundary Conditions

As for the case of the Rayleigh-Bénard, we should specify boundary conditions

before we talk about the reference state and apply the stability analysis.

To suppress the effect of the vertical walls at x = 0 and x = L on the

dynamics of the flow, we impose the periodic boundary conditions in the hor-

izontal x-direction; that is, for all t ≥ 0 and 0 ≤ z ≤ H or z ≥ 0, we take

n(0, z; t) = n(L, z; t), (2.5)

u(0, z; t) = u(L, z; t), (2.6)

T (0, z; t) = T (L, z; t). (2.7)

As for the velocity, it is reasonable to consider the no-slip boundary con-

dition on the surfaces z = 0 and z = H in the case of the finite domain ΩH ;

that is, for all t ≥ 0 and 0 ≤ x ≤ L, we have

u(x, 0; t) = 0, (2.8)

u(x,H; t) = 0, (2.9)

whereas, for the semi-infinite domain Ω∞, we consider the no-slip boundary

condition on the surface z = 0 and assume that the fluid is at rest far away

from this surface; that is, for all t ≥ 0 and 0 ≤ x ≤ L, we write

u(x, 0; t) = 0, (2.10)

lim
z→∞

u(x, z; t) = 0. (2.11)

Moreover, in order to ensure that the only way energy can enter the system

is through the bottom layer, we impose a zero flux boundary condition far away

9



from this layer; that is, for all t ≥ 0 and 0 ≤ x ≤ L, we take the boundary

conditions on ΩH to be

T (x, 0; t) = T0, (2.12)

κ ∇T (x, z; t)
∣∣∣
z=H

= 0, (2.13)

and on the domain Ω∞ to be

T (x, 0; t) = T0, (2.14)

lim
z→∞

κ ∇T (x, z; t) = 0. (2.15)

2.4 Reference State

For the steady state and in the absence of any macroscopic flow; that is, u = 0,

equations (2.1)-(2.3) give for i = 1, 2,

∂xi (nT ) = gi n, (2.16)

∂xi [κ ∂xiT ] = 0. (2.17)

Using (2.16), we get

∂x(nT ) = 0 =⇒ (nT ) is independent of x,

∂z(nT ) = −Gn =⇒ n is independent of x =⇒ T is independent of x.

Therefore, both n and T are independent of x.

Using (2.17) and the fact that T is independent of x, we get

∂z [κ ∂zT ] = 0 =⇒ κ ∂zT = C1 ≡ Constant.

Since we’re assuming that there is no heat flux far away from z = 0 using

10



conditions (2.13) and (2.15) then

κ ∂zT = 0 =⇒ T (z) = T0 ≡ Constant ∀ z ≥ 0,

where T0 is the temperature at the bottom plate (see Figures 2.2 and 2.3).

Moreover,
d

dz

(
n(z)T (z)

)
= −Gn(z) and T (z) = T0 give

1

n(z)

dn(z)

dz
= −G

T0

and n(z) = n(0) exp

(
−G
T0

z

)
.

To determine n(0), we integrate both sides of equation T0
dn(z)

dz
= −Gn(z)

with respect to z from 0 to ∞ if Ω = Ω∞ ( and similarly from 0 to H in the

case when Ω = ΩH) to get

lim
z→∞

(
T0 n(z)

)
− T0 n(0) = −G

∫ ∞
0

n(z) dz.

Using (2.4),

∫ ∞
0

n(z) dz =
N

L
and given the exponential decay profile of n(z)

we get

n(0) =
G

T0

N

L
.

Thus, the reference state solutions when the fluid does not convect are

ū = 0, (2.18)

T̄ (z) = T0, (2.19)

n̄(z) = n̄(0) exp

(
−G
T0

z

)
, (2.20)

where n̄(0) =
G

T0

N

L
.
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2.5 Linearized Equations

To study the stability of the reference state, we perturb the solutions (2.18)-

(2.20) slightly and study the resulting linearized equations for the perturba-

tions. Thus we write

u(x, t) = u′(x, t),

T (x, t) = T̄ (z) + T ′(x, t),

n(x, t) = n̄(z) + n′(x, t),

where u(x, t) is a first-order perturbation from equilibrium and u′, T ′ and

n′ are infinitesimal perturbations of velocity, temperature and particle count,

respectively.

It should be noted that in general, the equations of state for a fluid specify

ν and κ as functions of the pressure p = nT and temperature T . For layers

of real fluid in which the pressure does not vary much, these functions are

almost independent of p [17]. Moreover, since the reference state temperature

is constant, it is reasonable to assume that κ = κ(T0) ≡ κ0 and ν = ν(T0) ≡ ν0

are constants.

Let’s now substitute these expressions into the hydrodynamic equations

(2.1)-(2.3) and get the linearized equations for the perturbations n′, u′ and T ′.

From (2.1), we get

∂t n
′ = −∇·(n̄u′) = n̄

[
G

T0

w′ −∇·u′
]
.

Substituting the perturbations in (2.2) gives

∂t (n̄ u′i) = −
∑
j

∂xjδΠij + gi n
′ ,

where δΠij =
(
n̄ T ′ + T̄ n′

)
δij − ν0

[
∂xju

′
i + ∂xiu

′
j − δij∇·u′

]
and

12



∑
j

∂xjδΠij = ∂xi
(
n̄ T ′ + T̄ n′

)
− ν0

[∑
j

∂2
xj
u′i +

∑
j

∂xj∂xiu
′
j − ∂xi∇·u′

]

= ∂xi
(
n̄ T ′ + T̄ n′

)
− ν0

[
∇2u′i + ∂xi

∑
j

∂xju
′
j − ∂xi∇·u′

]

= ∂xi
(
n̄ T ′ + T̄ n′

)
− ν0 ∇2u′i.

Therefore,

∂t (n̄ u′i) = −∂xi
(
n̄ T ′ + T̄ n′

)
+ gi n

′ + ν0 ∇2u′i .

Finally, the linearized version of (2.3) is given by

n̄ ∂tT
′ = −

∑
i

∑
j

δ
(
Πij ∂xju

′
i

)
+∇· [κ0∇T ′] ,

where ∑
i

∑
j

δ
(
Πij ∂xju

′
i

)
=
∑
i

∑
j

n̄T̄ ∂xju
′
i δij = n̄T̄

∑
i

∂xiu
′
i

= n̄T̄ ∇·u′ = n̄T0 ∇·u′.

and

n̄ ∂tT
′ = −n̄T0 ∇·u′ + κ0 ∇2T ′ .

Thus, the linearized system of Navier-Stokes equations (2.1)-(2.3) about

the reference steady state solution (2.18)-(2.20) is given by

∂t n
′ = n̄

[
G

T0

w′ −∇·u′
]
, (2.21)

∂t (n̄ u′) = −∂x
(
n̄ T ′ + T̄ n′

)
+ ν0 ∇2u′, (2.22)

∂t (n̄ w′) = −∂z
(
n̄ T ′ + T̄ n′

)
−Gn′ + ν0 ∇2w′, (2.23)

n̄ ∂tT
′ = −n̄T0 ∇·u′ + κ0 ∇2T ′, (2.24)
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with the periodic boundary conditions in the horizontal x-direction given by

n′(0, z; t) = n′(L, z; t), (2.25)

u′(0, z; t) = u′(L, z; t), (2.26)

T ′(0, z; t) = T ′(L, z; t), (2.27)

and the boundary conditions in the vertical direction given by

u′(x, 0; t) = 0, u′(x,H; t) = 0, on ΩH , (2.28)

u′(x, 0; t) = 0, lim
z→∞

u′(x, z; t) = 0, on Ω∞, (2.29)

T ′(x, 0; t) = 0, κ0∇T ′(x, z; t)
∣∣∣
z=H

= 0, on ΩH , (2.30)

T ′(x, 0; t) = 0, lim
z→∞

κ0∇T ′(x, z; t) = 0, on Ω∞. (2.31)
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Chapter 3

Numerical Approach

To get an intuition about the linear stability of the hydrodynamic problem, we

utilize a numerical model that incorporates the boundary conditions and uses

the Galerkin approximation to write our linearized system in matrix form as

M
dC

dt
= AC. Studying the solutions of the linearized system reduces then to

studying the eigenvalues of the matrix M−1A: if the real part of one (or more)

of the eigenvalues of this matrix turns positive as we change the parameters of

the hydrodynamic problem then the perturbations (for this set of parameters)

would grow exponentially and hence instabilities occur.

Although this problem seems similar to the Rayleigh-Bénard convection,

there are subtle differences that add complexity to the problem and make it

hard to predict, on a first encounter, the stability of the reference solution even

in the linear setting. Having access to this numerical model gives us means to

test the dependence of linear stability on the parameters of the hydrodynamic

problem. Although the numerics presented in this chapter cannot serve as a

proof of linear stability, it should be noted that these results have given us the

intuition that the reference steady state solution is stable in this setting.
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3.1 Numerical Set-up

For numerical purposes, we choose to scale the perturbation n′ by the reference

n̄ and use the expressions for the reference state solutions

T̄ (z) = T0,

n̄(z) = n̄(0) exp

(
−G
T0

z

)
,

to rewrite the linearized equations (2.21)-(2.24) in terms of the rescaled particle

count as

∂t

(
n′

n̄

)
=
G

T0

w′ −∇·u′, (3.1)

∂tu
′ = −∂xT ′ − T0 ∂x

(
n′

n̄

)
+
ν0

n̄
∇2u′, (3.2)

∂tw
′ = −∂zT ′ +

G

T0

T ′ − T0 ∂z

(
n′

n̄

)
+
ν0

n̄
∇2w′, (3.3)

∂tT
′ = −T0 ∇·u′ +

κ0

n̄
∇2T ′. (3.4)

Imposing the periodic boundary conditions in the horizontal x-direction, we

have (
n′

n̄

)
(0, z; t) =

(
n′

n̄

)
(L, z; t), (3.5)

u′(0, z; t) = u′(L, z; t), (3.6)

T ′(0, z; t) = T ′(L, z; t). (3.7)

Since infinite domains can pose computational challenges, we choose to work

with the finite spatial domain ΩH = [0, L]× [0, H] that imposes the boundary

conditions:

u′(x, 0; t) = u′(x,H; t) = 0, (3.8)

T ′(x, 0; t) = κ0 ∂zT
′(x,H; t) = 0. (3.9)
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3.2 Fourier Transform in x-direction

To remove the explicit x-dependence from equations (3.1)-(3.4), we impose the

periodic boundary conditions and take a Fourier Transform in the horizontal

x-direction. Thus, we introduce a horizontal Fourier mode k and write

n′

n̄
=
∑
k∈Z

n′k(z, t) e
i 2πkx
L ,

u′ =
∑
k∈Z

u′k(z, t) e
i 2πkx
L ,

w′ =
∑
k∈Z

w′k(z, t) e
i 2πkx

L ,

T ′ =
∑
k∈Z

T ′k(z, t) e
i 2πkx
L .

Substituting in the linearized equations (3.1)-(3.4), we get

∂tn
′
k =

G

T0

w′k − i kx u
′
k − ∂zw′k , (3.10)

∂tu
′
k = −iT0 kx n

′
k − i kx T

′
k +

ν0

n̄

[
∂2
z − k2

x

]
u′k , (3.11)

∂tw
′
k = −T0 ∂zn

′
k +

G

T0

T ′k − ∂zT ′k +
ν0

n̄

[
∂2
z − k2

x

]
w′k , (3.12)

∂tT
′
k = −iT0 kxu

′
k − T0 ∂zw

′
k +

κ0

n̄

[
∂2
z − k2

x

]
T ′k , (3.13)

where kx =
2πk

L
.

3.3 Weak Formulation of Linearized System

After incorporating the periodic boundary condition in the horizontal direction

by taking the Fourier transform in the x-direction, it is convenient to write a

weak formulation for the system of equations (3.10)-(3.13) with the boundary
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conditions given for all t ≥ 0 by

u′k(0, t) = u′k(H, t) = 0, (3.14)

T ′k(0, t) = ∂z T
′
k(z, t) |z=H = 0 . (3.15)

To derive the weak formulation, let ψ ∈ L2([0, H]) be a test function and let

〈 ·, · 〉 denote the inner product in L2([0, H]), that is, for f and g in L2([0, H]),

〈 f, g 〉 =

∫ H

0

f(z) g(z) dz.

We are going to multiply both sides of equations (3.10)-(3.13) by the test

function ψ and integrate from 0 to H. Thus, (3.10) becomes

〈ψ , ∂tn′k 〉 = − i kx 〈ψ , u′k 〉+
G

T0

〈ψ , w′k 〉 − 〈ψ , ∂z w′k 〉. (3.16)

From equation (3.11), we get

〈ψ , ∂t u′k 〉 =− i kx T0 〈ψ , n′k 〉 − i kx 〈ψ , T ′k 〉

+ ν0 〈ψ ,
1

n̄
∂2
zu
′
k 〉 − ν0 k

2
x 〈ψ ,

1

n̄
u′k 〉.

By integration by parts,

〈ψ , 1

n̄
∂2
z u
′
k 〉 = 〈ψ 1

n̄
, ∂2

zu
′
k 〉

= −〈 ∂z
(
ψ

1

n̄

)
, ∂zu

′
k 〉+

[
ψ

1

n̄
∂zu

′
k

]z=H
z=0

= −〈 ∂z
(

1

n̄
ψ

)
, ∂zu

′
k 〉

+
1

n̄(H)
ψ(H)

[
∂zu

′
k

]
z=H
− 1

n̄(0)
ψ(0)

[
∂zu

′
k

]
z=0

,
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and so (3.11) becomes

〈ψ , ∂tu′k 〉 =− i kx T0 〈ψ , n′k 〉 − i kx 〈ψ , T ′k 〉

− ν0 〈 ∂z
(

1

n̄
ψ

)
, ∂zu

′
k 〉

+
ν0

n̄(H)
ψ(H)

[
∂zu

′
k

]
z=H
− ν0

n̄(0)
ψ(0)

[
∂zu

′
k

]
z=0

− ν0 k
2
x 〈ψ ,

1

n̄
u′k 〉.

(3.17)

Similarly, equation (3.12) becomes

〈ψ , ∂tw′k 〉 =− T0 〈ψ , ∂zn′k 〉+
G

T0

〈ψ , T ′k 〉 − 〈ψ , ∂zT ′k 〉

− ν0 〈 ∂z
(

1

n̄
ψ

)
, ∂zw

′
k 〉

+
ν0

n̄(H)
ψ(H)

[
∂zw

′
k

]
z=H
− ν0

n̄(0)
ψ(0)

[
∂zw

′
k

]
z=0

− ν0 k
2
x 〈ψ ,

1

n̄
w′k 〉.

(3.18)

Now, from equation (3.13), we get

〈ψ , ∂t T ′k 〉 =− i kx T0 〈ψ , u′k 〉 − T0 〈ψ , ∂zw′k 〉

+ κ0 〈ψ ,
1

n̄
∂2
zT
′
k 〉 − κ0 k

2
x〈ψ ,

1

n̄
T ′k 〉.

By integration by parts and using (3.15), we get

〈ψ , 1

n̄
∂2
zT
′
k 〉 = 〈ψ 1

n̄
, ∂2

zT
′
k 〉

= −〈 ∂z
(
ψ

1

n̄

)
, ∂zT

′
k 〉+

[
ψ

1

n̄
∂zT

′
k

]z=H
z=0

= −〈 ∂z
(
ψ

1

n̄

)
, ∂zT

′
k 〉 − ψ(0)

1

n̄(0)

[
∂zT

′
k

]
z=0

,
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and hence equation (3.13) becomes

〈ψ , ∂tT ′k 〉 =− i kx T0 〈ψ , u′k 〉 − T0 〈ψ , ∂zw′k 〉

− κ0 〈 ∂z
(
ψ

1

n̄

)
, ∂zT

′
k 〉 −

κ0

n̄(0)
ψ(0)

[
∂zT

′
k

]
z=0

− k2
x〈ψ , T ′k 〉.

(3.19)

3.4 Numerical Scheme

At this stage, we are going to apply the Petrov-Galerkin procedure to study

the weak formulation (3.16)-(3.19) as follows.

Discretize the interval [0, H] into J equal subintervals of length h to get

Ω̄h = {zj, zj = j · h, 0 ≤ j ≤ J}.

For u′k, w
′
k and T ′k, use the finite element functions on the domain [0, H],

namely the head test functions, given by

φ0(z) =


− z−z1
z1−z0 , z ∈ [z0, z1]

0, otherwise

φJ(z) =


z−zJ−1

zJ−zJ−1
, z ∈ [zJ−1, zJ ]

0, otherwise

and φj(z) =



z−zj−1

zj−zj−1
, z ∈ [zj−1, zj]

− z−zj+1

zj+1−zj , z ∈ [zj, zj+1], for j = 1, · · · , J − 1

0, otherwise
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and for n′k, we use the finite element functions on the domain [0, H] given by

χj(z) =


1, z ∈ [zj, zj+1]

for j = 0, · · · , J − 1.

0, otherwise

Since we are dealing with each Fourier mode separately, we will drop the kth

index in the coefficients to simplify the notation and write

n′k(z, t) =
J−1∑
j=0

ρj(t)χj(z),

u′k(z, t) =
J∑
j=0

Vx,j(t)φj(z),

w′k(z, t) =
J∑
j=0

Vz,j(t)φj(z),

T ′k(z, t) =
J∑
j=0

Sj(t)φj(z).

Now, on z = 0, using the boundary condition (3.14) for u′k(z, t) and w′k(z, t)

and the boundary condition (3.15) for T ′k(z, t) we get

u′k(0, t) = 0 =⇒
J∑
j=0

Vx,j(t)φj(0) = 0 =⇒ Vx,0(t) = 0

w′k(0, t) = 0 =⇒
J∑
j=0

Vz,j(t)φj(0) = 0 =⇒ Vz,0(t) = 0

T ′k(0, t) = 0 =⇒
J∑
j=0

Sj(t)φj(0) = 0 =⇒ S0(t) = 0,

where we used the fact that φ0(0) = 1 and φj(0) = 0 for all j = 1, · · · , J .
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Similarly, on z = H, the boundary condition (3.14) for u′k(z, t) and w′k(z, t)

implies that

Vx,J(t) = 0 and Vz,J(t) = 0,

where here we used that φJ(H) = 1 and φj(H) = 0 for all j = 0, · · · , J − 1.

Thus, incorporating the proper boundary conditions, we get the follow-

ing representations of the Fourier coefficients in terms of the finite element

functions

n′k(z, t) =
J−1∑
j=0

ρj(t)χj(z),

u′k(z, t) =
J−1∑
j=1

Vx,j(t)φj(z),

w′k(z, t) =
J−1∑
j=1

Vz,j(t)φj(z),

T ′k(z, t) =
J∑
j=1

Sj(t)φj(z).

(3.20)

Substituting these representations in equations (3.16)-(3.19), we can write the

numerical scheme in matrix form as

M
dC

dt
= A C .

The coefficient matrices M , A and C are defined in Appendix A.

In fact, we are trying to solve a problem of the form

∂t v(z, t) = Lv(z, t)

where L is a linear operator. After incorporating the right boundary condi-

tions, the solution can be written as

v(z, t) = v(z, 0) eL t.
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Thus, if the real part of one (or more) of the eigenvalues of L is positive then

the perturbations grow exponentially and we see instabilities.

In the discretized version, our linear operator is the matrix M−1A and

that’s why we turn our attention to studying the eigenvalues of this matrix as

they carry information about when an instability can occur relative to changing

the parameters of the hydrodynamic problem.

3.5 Numerical Results and Discussion

Before starting our numerical analysis, we need a way to choose the height

H that best describes the hydrodynamic problem with infinite vertical extent.

Since

1− exp
(
− G

T0

H

)
= α

gives the fraction of particles that lie inside the column [0, L] × [0, H], it is

enough to choose α as close as possible to 1 (say α = 0.9999) and solve for the

numerical cut-off for H in this case. This says that even if not all the particles

are in [0, H] but say 99.99% are, it’s a good estimate for what happens if we

were to consider that all of them are actually there. In fact, the 0.01% of

particles outside this column would not cause dramatic change in the stability

analysis.

This discussion implies that it is reasonable to choose
G

T0

H as a parameter

and use it to get a quantification on how big the height H should be. For

most of these numerical computations (except those in which we change the

temperature T0 of the hot plate), we will set this parameter to a fixed value

10 and choose the height H that satisfies the relation
G

T0

H = 10.
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Recall that our parameters are: gravitational acceleration G, temperature

of the plate T0, height H (computed from the formula
G

T0

H = 10), width L,

viscosity ν0, thermal diffusivity κ0 and the horizontal mode k. Throughout

this discussion, we set the gravitational acceleration G to 9.81. Rather than

specifying both k and L, we choose to specify the combination kx =
2πk

L
since

it is the one showing up after taking the Fourier transform in the horizontal

direction. Moreover, although we are referring to T0 as the temperature, recall

that in our case T =
kB
m
θ where kB is the Boltzmann constant, m is the mass

and θ is the true temperature so T0 is a scaled version of the temperature θ.

3.5.1 Choosing Reasonable Number of Nodes

Since our numerical scheme depends on discretizing the vertical extent [0, H]

into J subintervals, it is crucial to conduct an experiment to find the number

of nodes J that produces eigenvalues with reasonable accuracy. Below we fix

the parameters ν0 = 0.01827 and κ0 = 0.0261 (so that the Prandtl number

Pr =
ν0

κ0

= 0.7 corresponding to air) and consider two scenarios in which we

determine the height H by solving
G

T0

H = 10: In Experiment 1 we consider

H = 3.65, T0 = 3.58065 and set kx = 2.7 and in Experiment 2 we take H = 70,

T0 = 68.7 and set kx = 0.15.

In Figures 3.1 and 3.2, we plot the real part of the leading eigenvalue as

a function of the number of nodes J as well as the respective log-log plot for

Experiments 1 and 2, respectively. Although increasing the number of nodes

J has the advantage of enhancing the accuracy of the computed eigenvalue,

we notice that we do not get significant changes in the values past J = 250

for either of the experiments. For this reason, we choose to fix the number of
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nodes J to 250 for all the subsequent numerical experiments presented in this

chapter.

(a)

(b)

Figure 3.1: Testing the change of <(λTop) vs. Number of Nodes for H = 3.65,
T0 = 3.58065 and kx = 2.7: (a) <(λTop) vs. number of nodes and (b) Log-log
Plot of <(λTop) vs. number of nodes.
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(a)

(b)

Figure 3.2: Testing the change of <(λTop) vs. Number of Nodes for H = 70,
T0 = 68.7 and kx = 0.15: (a) <(λTop) vs. number of nodes and (b) Log-log
Plot of <(λTop) vs. number of nodes.
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3.5.2 Validation of Numerical Results

In order to make sure that the numerical model produces reliable results, we

will derive a limiting case and check the accuracy of the model in approximat-

ing these analytic results. To do so, recall first that after taking the Fourier

transform in the horizontal x-direction the linearized equations are given by

(3.10)-(3.13) writtten as

∂tn
′
k =

G

T0

w′k − i kx u
′
k − ∂zw′k,

∂tu
′
k = −iT0 kx n

′
k − i kx T

′
k +

ν0

n̄

[
∂2
z − k2

x

]
u′k,

∂tw
′
k = −T0 ∂zn

′
k +

G

T0

T ′k − ∂zT ′k +
ν0

n̄

[
∂2
z − k2

x

]
w′k,

∂tT
′
k = −iT0 kxu

′
k − T0 ∂zw

′
k +

κ0

n̄

[
∂2
z − k2

x

]
T ′k,

where kx =
2πk

L
and n′k, u

′
k, w

′
k and T ′k are the Fourier coefficients of

(
n′

n̄

)
, u′,

w′ and T ′ respectively. To transform this system into an eigenvalue problem,

we write

n′k(z, t) = n̂′(z) eλt,

u′k(z, t) = û′(z) eλt,

w′k(z, t) = ŵ′(z) eλt,

T ′k(z, t) = T̂ ′(z) eλt,

and substituting in the above equations to get

λ n̂′ =
G

T0

ŵ′ − i kx û′ − ∂zŵ′, (3.21)

λ û′ = −iT0 kx n̂′ − i kx T̂ ′ +
ν0

n̄

[
∂2
z − k2

x

]
û′, (3.22)

λ ŵ′ = −T0 ∂zn̂′ +
G

T0

T̂ ′ − ∂zT̂ ′ +
ν0

n̄

[
∂2
z − k2

x

]
ŵ′, (3.23)

λ T̂ ′ = −iT0 kx û′ − T0 ∂zŵ′ +
κ0

n̄

[
∂2
z − k2

x

]
T̂ ′. (3.24)
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First observe that for k = 0, λ∗ = 0 is an eigenvalue of the system corre-

sponding to the eigenfunction 

n̂′

û′

ŵ′

T̂ ′


=



1

0

0

0


.

Proof. To prove this, set k = 0 and λ = 0 in equations (3.21)-(3.24) and study

the resulting system

0 =
G

T0

ŵ′ − ∂zŵ′, (3.25)

0 =
ν0

n̄
∂2
z û
′, (3.26)

0 = −T0 ∂zn̂′ +
G

T0

T̂ ′ − ∂zT̂ ′ +
ν0

n̄
∂2
z ŵ
′, (3.27)

0 = −T0 ∂zŵ′ +
κ0

n̄
∂2
z T̂
′. (3.28)

1. Using (3.26), we solve the boundary value problem


ν0

n̄
∂2
z û
′ = 0,

û′(0) = ŵ′(H) = 0.

and get û′(z) = 0 as the only solution.

2. Similarly, (3.25) together with the boundary conditions ŵ′(0) = ŵ′(H) = 0

gives ŵ′(z) = 0.

3. Moreover, we get T̂ ′(z) = 0 using (3.28) together with the boundary

conditions T̂ ′(0) = ∂zT̂ ′(z)|z=H = 0.

4. Finally, (3.27) suggests that n̂′(z) = C where C is any constant.
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This shows that λ∗ = 0 is an eigenvalue of the system obtained by setting the

horizontal Fourier mode k to zero.

At this point, we want to study how the eigenvalue λ behaves for small

changes of the zero horizontal mode k. Therefore, with attention restricted to

Fourier modes near zero and with ε defined as the deviation of k from zero, we

seek solutions of (3.21)-(3.24) combined with the appropriate boundary con-

ditions for λ, n̂′, û′, ŵ′, and T̂ ′ in the form of regular perturbation expansions

in ε:

λ = λ0 + ε λ1 + ε2 λ2 + . . . =
∞∑
j=0

εj λj,

n̂′ = n̂′0 + ε n̂′1 + ε2 n̂′2 + . . . =
∞∑
j=0

εj n̂′j,

û′ = û′0 + ε û′1 + ε2 û′2 + . . . =
∞∑
j=0

εj û′j,

ŵ′ = û′0 + ε ŵ′1 + ε2 ŵ′2 + . . . =
∞∑
j=0

εj ŵ′j,

T̂ ′ = T̂ ′0 + ε T̂ ′1 + ε2 T̂ ′2 + . . . =
∞∑
j=0

εj T̂ ′j,

(3.29)

with λ0 = 0, n̂′0 = 1 and û′0 = ŵ′0 = T̂ ′0 = 0.

It is easy to see that the differential equations and boundary conditions

for n̂′j, û′j, ŵ′j, and T̂ ′j are independent of ε. Applying (3.29) into equa-

tions (3.21)-(3.24) and collecting terms in common powers of ε, we obtain a

sequence of differential equations for n̂′j, û′j, ŵ′j, and T̂ ′j. Since our objec-

tive is to find λ for any Fourier mode k near zero, we simultaneously solve

for n̂′j, û′j, ŵ′j, and T̂ ′j as well as λj from the resulting equations for succes-

sive j’s.
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ε1-terms:

Collecting the terms multiplying ε, we get

λ1 =
G

T0

ŵ′1 − ∂zŵ′1, (3.30)

0 = −iT0 +
ν0

n̄
∂2
z û
′
1, (3.31)

0 = −T0 ∂zn̂′1 +
G

T0

T̂ ′1 − ∂zT̂ ′1 +
ν0

n̄
∂2
z ŵ
′
1, (3.32)

0 = −T0 ∂zŵ′1 +
κ0

n̄
∂2
z T̂
′
1. (3.33)

1. Solving (3.30) for ŵ′1, we get

ŵ′1(z) = Ce
G
T0

z
+ λ1

T0

G
.

Using the boundary condition ŵ′1(0) = 0, we get

C = −λ1
T0

G
and ŵ′1(z) = −λ1T0

G

[
e
G
T0

z − 1
]
.

However, imposing the boundary condition ŵ′1(H) = 0 forces λ1 to be

zero. Therefore, λ1 = 0 and ŵ′1(z) = 0.

2. Since ŵ′(z) = 0, equation (3.33) gives the boundary value problem
κ0

n̄
∂2
z T̂
′
1 = 0,

T̂ ′1(0) = ∂zT̂ ′1(z)|z=H = 0,

which implies that T̂ ′1(z) = 0.

3. Also, equation (3.32) gives

−T0 ∂zn̂′1 = 0 =⇒ n̂′1(z) = C,

where C is a constant.
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4. Finally, from (3.31), we have

û′1(z) = C1 + C2 z + i
T 3

0 n̄(0)

ν0 G2
e
− G
T0

z
,

where C1 and C2 are determined by imposing the boundary conditions

û′1(0) = û′1(H) = 0 and hence we get

û′1(z) = −i
T 3

0 n̄(0)

ν0 G2

[(
1− e−

G
T0

z
)

+
(
e
− G
T0

H − 1
) z

H

]
.

Therefore, the first order terms λ1, n̂′1 û′1, ŵ′1, and T̂ ′1 are given by

λ1 = 0,

n̂′1(z) = C,

û′1(z) = −i
T 3

0 n̄(0)

ν0 G2

[(
1− e−

G
T0

z
)

+
(
e
− G
T0

H − 1
) z

H

]
,

ŵ′1(z) = T̂ ′1(z) = 0.

(3.34)

ε2-terms:

Collecting the terms multiplying ε2, we get

λ2 =
G

T0

ŵ′2 − i û′1 − ∂zŵ′2 , (3.35)

0 = −iT0 n̂′1 +
ν0

n̄
∂2
z û
′
2 , (3.36)

0 = −T0 ∂zn̂′2 +
G

T0

T̂ ′2 − ∂zT̂ ′2 +
ν0

n̄
∂2
z ŵ
′
2 , (3.37)

0 = −iT0 û′1 − T0 ∂zŵ′2 +
κ0

n̄
∂2
z T̂
′
2 , (3.38)

where n̂′1 and û′1 are given by (3.34).
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We solve for λ2 using (3.35) and solving


∂zŵ′2 −

G

T0

ŵ′2 = −i û′1 − λ2,

ŵ′2(0) = ŵ′2(H) = 0,

we get

λ2 = − T 4
0 n̄(0)

2 ν0 G3 H
e
− G
T0

H

[(
1 + e

G
T0

H
) G
T0

H − 2
(
e
G
T0
H − 1

)]
. (3.39)

Since we’re restricting our attention to small horizontal modes k and ε

represents the deviation from zero, using (3.34) and (3.39), we can write λ up

to the 2nd-oder correction in k as

λ = − T 4
0 n̄(0)

2 ν0 G3 H
e
− G
T0

H

[(
1 + e

G
T0

H
) G
T0

H − 2
(
e
G
T0
H − 1

)]
k2 +O(k3),

(3.40)

and we focus our attention to studying the sign of λ2 as this would give us

information about the graph of λ as a function of k.

Since
T 4

0 n̄(0)

2 ν0 G3 H
e
− G
T0

H ≥ 0, it is enough to study the sign of

[(
1 + e

G
T0

H
) G
T0

H − 2
(
e
G
T0
H − 1

)]
.

Note that the function

f(ζ) =
(
1 + eζ

)
ζ − 2

(
eζ − 1

)
≥ 0 ∀ ζ ≥ 0,

because f(0) = 0 and
df

dζ
(ζ) = (ζ − 1) eζ + 1 ≥ 0 ∀ ζ ≥ 0.
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This implies that[(
1 + e

G
T0

H
) G
T0

H − 2
(
e
G
T0
H − 1

)]
≥ 0 and λ2 ≤ 0.

Therefore, for small values of k, the graph of λ behaves like a parabola that

starts at the origin, has a horizontal tangent there and is concave downward.

In Figure 3.3, we plot the real part of the computed leading eigenvalue

as well as the asymptotic curve presented in equation (3.40) against “small”

values of the scaled horizontal Fourier mode kx for ν0 = 0.01827 and κ0 =

0.0261 and in two different scenarios: Experiment 1 with H = 3.65 and T0 =

3.58065 and Experiment 2 with H = 70 and T0 = 68.7 . Note that the

“smallness” of kx depends on the set of parameters we choose to work with. For

this reason, we see that although the numerics match the asymptotic analytic

curve, the level of accuracy differs with the size of the domain. Moreover, since

kx =
2πk

L
, then taking small kx does not reflect whether the smallness comes

from small k or large width L.

3.5.3 Numerical Experiments

Since instabilities occur when one (or more) of the eigenvalues turn positive

as we vary the parameters governing the hydrodynamic problem, it is enough

then to study the sign of the real part of the leading eigenvalue of the matrix

M−1A in several regimes. Given that our parameter space is big, we conduct

experiments that vary each parameter (or certain combination of parameters)

individually while keeping the rest fixed and study how the sign of the real

part of the leading eigenvalue evolves as a function of the varying parameter.
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(a)

(b)

Figure 3.3: Computed <(λTop) and the asymptotic curve vs. kx for
ν0 = 0.01827 and κ0 = 0.0261: (a) Experiment 1 with H = 3.65 and
T0 = 3.58065, and (b) Experiment 2 with H = 70 and T0 = 68.7.
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In what follows, we present several test cases that can help us understand

the linear stability of the reference state under study. Namely, we study the

behaviour of the real part of the leading eigenvalue as we change individually

the conductivity κ0, viscosity ν0 and temperature T0.

(a)

(b)

Figure 3.4: <(λTop) vs. ν0 for κ0 = 1.5, H = 70, T0 = 68.7, kx = 0.15 and (a)
small ν0-values and (b) big ν0-values.
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(a)

(b)

Figure 3.5: <(λTop) vs. κ0 for ν0 = 0.01827, H = 70, T0 = 68.7, kx = 0.15 and
(a) small κ0-values and (b) big κ0-values.

In Figures 3.4 and 3.5, we study the sign of the real part of the leading

eigenvalue for small as well as large values of ν0 and κ0, respectively. To

see how the perturbations behave in the presence of high temperature, we

consider a spatial domain whose bottom plate is at temperature T0 = 68.7.

This then implies from
G

T0

H = 10 that the height H = 70 and we set the scaled

36



horizontal Fourier mode to kx = 0.15. Although we tested the eigenvalues for

both small and big values of ν0 and κ0, from a physical point of view, we

expect instabilities to occur for small viscosity while keeping κ0 relatively big

(in Figure 3.4 we set κ0 = 1.5) or high conductivity while maintaining small

viscosity (in Figure 3.5 we set ν0 = 0.01827). However, no matter how much

we increase the range of ν0 and κ0, the observed real part of the top eigenvalue

remains negative and so we cannot see instabilities in this case.

Since increasing the temperature at the bottom plate would heat the fluid

there and cause it to move, we want to investigate how increasing T0 would

affect the sign of <(λTop). For this reason, for the experiment in Figure 3.6

we choose a fluid with viscosity ν0 = 0.01827 and conductivity κ0 = 0.0261

(Prandtl number Pr = 0.7 represents air at room temperature) and we set

kx = 2.7. To avoid numerical instabilities, we choose a spatial domain of height

H = 3.65 so that when we increase T0 the fraction
G

T0

H remains bounded

away from 10 (remember, this term appears as the argument of the expo-

nential function and we want to maintain it within a reasonable range). We

conduct the experiment searching for a critical temperature T0 above which

the perturbations will grow exponentially and hence the fluid would convect.

These instabilities would be seen as a change in the sign of <(λTop) from neg-

ative to positive and we want to inspect when the first crossing would occur.

However, as we observe from Figure 3.6, no matter how much we increase the

temperature, <(λTop) remains negative and bounded away from zero.
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(a)

(b)

Figure 3.6: <(λTop) vs. T0 for ν0 = 0.01827 and κ0 = 0.0261: (a) Small T0-
values with H = 3.65 and kx = 2.7 and (b) Big T0-values with H = 70 and
kx = 0.15.
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3.5.4 Concluding Remarks

Although we cannot treat these numerical experiments as a concrete proof

that the reference solution under study is stable in the linear case, they give

a good indication that there is very little chance for instabilities to occur.

Note that once instabilities occur for a certain set of parameters they would

persist throughout. For this reason, testing the limiting cases give us a good

idea about the behaviour of the eigenvalues even if they might not be able to

detect the first crossing of the eigenvalue from negative to positive.
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Chapter 4

Stability Analysis

The numerical results from Chapter 3 indicate that the real part of the eigen-

values of the linearized system of perturbations remain negative regardless of

how we choose the parameters of the hydrodynamic problem. This gives us

the intuition to expect perturbations to be damped as time evolves and hence

get linear stability of the reference steady state solution. In this chapter, we

show that the discrete spectrum of the differential operator defining the lin-

earized equations consists of eigenvalues with negative real part. On the other

hand, we use the linearized equations to construct a Lyapunov function and

use LaSalle’s Invariance Principle to prove the stability of the reference state

flow. Since linear stability results are not enough to infer stability of a so-

lution on the non-linear level, we utilize LaSalle’s Invariance Principle again

and construct a Lyapunov function motivated by Markov chains to prove the

stability of the reference solution.

Before starting the stability analysis, in what follows we will introduce no-

tation and some theorems that will be useful when studying certain physical

quantities and proving the stability results.
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4.1 Miscellaneous definitions and theorems

4.1.1 A Version of Green’s Theorem

Since most of the discussions and proofs in this chapter rely heavily on the

integration by parts formula in higher dimensions, we recall it in the following

remark:

Remark 4.1. Recall that the product rule for divergence is

∇·(φv) = ∇φ · v + φ∇·v .

Let Γ be an open subset of Rn with a piecewise smooth boundary ∂Γ, then

∫
Γ

φ ∇·v dx =

∫
Γ

∇·(φv) dx −
∫

Γ

v · ∇φ dx .

By the Divergence Theorem, we get

∫
Γ

∇·(φv) dx =

∫
∂Γ

φ v · ds ,

where s is an outward normal to the boundary ∂Γ.

Therefore, the integration by parts formula can be written as

∫
Γ

φ ∇·v dx =

∫
∂Γ

φ v · ds−
∫

Γ

v · ∇φ dx . (4.1)

For simplicity, we will refer to this version of Green’s theorem as integration

by parts to be understood in the context of Remark 4.1.
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4.1.2 Notations for the Spatial Domains

For ΩH = [0, L]× [0, H], let ∂ ΩH denote the boundary of ΩH consisting of the

four curves:

C1 = {(x, 0)|0 ≤ x ≤ L} with outward unit normal vector − ẑ,

C2 = {(L, z)|0 ≤ z ≤ H} with outward unit normal vector x̂,

C3 = {(x,H)|0 ≤ x ≤ L} with outward unit normal vector ẑ,

C4 = {(0, z)|0 ≤ z ≤ H} with outward unit normal vector − x̂,

where x̂ and ẑ are the unit normal vectors in the x− and z−direction re-

spectively. We will refer to this notation when using the integration by parts

formula given in Remark 4.1.

On the other hand, we will pay special attention to the infinite boundary when

using integration by parts on the semi-infinite domain Ω∞ = [0, L] × [0,∞].

To remove any ambiguity, we will state clearly which geometric configuration

(ΩH or Ω∞) we’re considering.

4.1.3 Jensen’s Inequality

In what follows, we recall Jensen’s inequality as presented in [25]:

Definition 4.2. A continuous function f(x) is said to be convex on an interval

[a, b] if for any two points x1 and x2 in [a, b] and any λ such that 0 < λ < 1,

f
(
λx1 + (1− λ)x2

)
≤ λ f(x1) + (1− λ) f(x2).

Theorem 4.3. (Jensen’s Inequality in Integral Form)

Let (X ,Σ, µ) be a probability space, such µ(X ) = 1. If f is a real-valued
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function that is µ-integrable, and if φ is a convex function on the real line,

then

φ

(∫
X
f dµ

)
≤
∫
X
φ ◦ f dµ .

Theorem 4.4. (Jensen’s Inequality in Discrete Form)

If p1, p2, . . . , pn are positive numbers such that
n∑
k=1

pk = 1 and f is a real-valued

continuous function that is convex, then

f

(
n∑
k=1

pk xk

)
≤

n∑
k=1

pk f(xk).

4.1.4 Stability of Equilibrium Points

We distinguish between two types of stability of equilibria.

Definition 4.5. Consider ẋ(t) = f(x(t)) and let x∗ be an equilibrium point

as shown in Figure 4.1.

• We say that x∗ is stable if for all ε > 0 , there exists δ1 > 0 such that if

x0 ∈ B(x∗, δ1), then x(t) ∈ B(x∗, ε) for all t > 0.

• We say that x∗ is asymptotically stable if it is stable and there exists

δ2 > 0 such that if x0 ∈ B(x∗, δ2), then x(t)→ x∗ and t→∞.

4.1.5 LaSalle’s Invariance Principle
Let D be a closed subset of a Banach space B and let {U(t), t ≥ 0} be a

dynamical system on D. In what follows, we will extend some definitions to

the infinite dimensional setting:

Definition 4.6. For v ∈ D, we define the positive orbit starting from p at

t = 0 to be the set

Γ+(f) := {U(t) v ∈ D, t ≥ 0} .
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Figure 4.1: Schematic for Lyapunov and asymptotic stability of equilibrium
points.

We say that φ ∈ D is an equilibrium point for {U(t), t ≥ 0} if Γ+(φ) = φ.

Definition 4.7. A set Σ ⊂ D is “positively invariant” for the dynamical sys-

tem {U(t), t ≥ 0} if

U(t)Σ ⊂ Σ, for any t ≥ 0.

Definition 4.8. A “Lyapunov functional” (or simply Lyapunov function) for

the dynamical system {U(t), t ≥ 0} on D ⊂ B is a continuous real valued

function V : D ⊂ B → R such that for all v ∈ D,

V(v) ≥ 0,

V̇(v) := lim sup
t→0+

1

t

{
V (U(t)v)− V(v)

}
≤ 0.

At this point, we are in good shape to state LaSalle’s Invariance Principle

for infinite dimensional systems (see, [28, 67]).
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Theorem 4.9. ( LaSalle’s Invariance Principle)

Let V be a Lyapunov function on D. Define E ⊂ D to be the set

E :=
{
v ∈ D, V̇(v) = 0

}
,

and let M be the largest (positively) invariant subset of E. If for v0 ∈ D, the

orbit Γ+(v0) is precompact (i.e. lies in a compact subset C ⊂ D). Then, every

solution starting in C approaches M as t→∞, that is,

lim
t→+∞

dist(U(t)v0,M) = 0 .

Remark 4.10. For dynamical systems generated by evolution equations

d

dt
v = Av + f(v) ,

where A is a strongly elliptic operator, bounded orbits are generally precompact

(see [68]), and boundedness of orbits frequently follows from the existence of a

Lyapunov function such that {v ∈ D, V(v) < k} is a bounded set for a suitable

choice of k > 0.
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4.2 Linear Stability Analysis

Recall that the linearized system of Navier-Stokes equations (2.1)-(2.3) about

the steady state solution

ū = 0, (4.2)

T̄ (z) = T0, (4.3)

n̄(z) = n̄(0) exp

(
−G
T0

z

)
, (4.4)

is given by

∂tn
′ = n̄

[
G

T0

w′ −∇·u′
]
, (4.5)

n̄ ∂tu
′ = −∂x (n̄ T ′ + T0 n

′) + ν0 ∇2u′, (4.6)

n̄ ∂tw
′ = −∂z (n̄ T ′ + T0 n

′)−Gn′ + ν0 ∇2w′, (4.7)

n̄ ∂tT
′ = −n̄T0 ∇·u′ + κ0 ∇2T ′, (4.8)

with the periodic boundary conditions in the horizontal x-direction given by

n′(0, z; t) = n′(L, z; t) , (4.9)

u′(0, z; t) = u′(L, z; t) , (4.10)

T ′(0, z; t) = T ′(L, z; t) , (4.11)

and the boundary conditions in the vertical direction given by

u′(x, 0; t) = 0, u′(x,H; t) = 0, on ΩH , (4.12)

u′(x, 0; t) = 0, lim
z→∞

u′(x, z; t) = 0, on Ω∞, (4.13)

T ′(x, 0; t) = 0, κ0∇T ′(x, z; t)
∣∣∣
z=H

= 0, on ΩH , (4.14)

T ′(x, 0; t) = 0, lim
z→∞

κ0∇T ′(x, z; t) = 0, on Ω∞. (4.15)
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4.2.1 Analysis of the Discrete Spectrum

To study the discrete spectrum of the linear differential operator, we write

n′(x, z; t) = ñ(x, z) eλt,

u′(x, z; t) = ũ(x, z) eλt,

w′(x, z; t) = w̃(x, z) eλt,

T ′(x, z; t) = T̃ (x, z) eλt,

(4.16)

and substitute them into equations (4.5)-(4.8) to get

λ ñ = n̄

[
G

T0

w̃ −∇· ũ
]
, (4.17)

λ n̄ ũ = −∂x
(
n̄ T̃ + T0 ñ

)
+ ν0 ∇2ũ, (4.18)

λ n̄ w̃ = −∂z
(
n̄ T̃ + T0 ñ

)
−G ñ+ ν0 ∇2w̃, (4.19)

λ n̄ T̃ = −n̄T0 ∇· ũ + κ0 ∇2T̃ , (4.20)

so that the boundary conditions would translate to

ñ(0, z) = ñ(L, z) ,

ũ(0, z) = ũ(L, z) ,

T̃ (0, z) = T̃ (L, z) ,

ũ(x, 0) = ũ(x,H) = 0 ,
on ΩH ,

T̃ (x, 0) = κ0 ∂zT̃ (x, z)
∣∣∣
z=H

= 0 ,

ũ(x, 0) = lim
z→∞

ũ(x, z) = 0 ,
on Ω∞ .

T̃ (x, 0) = lim
z→∞

κ0 ∂zT̃ (x, z) = 0 ,

(4.21)
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In this case,
(
ñ, ũ, w̃, T̃

)
is an eigenfunction of the linear operator correspond-

ing to the eigenvalue λ and so at least one of ñ, ũ, w̃ and T̃ should be non-zero.

Let ñ∗, ũ∗, w̃∗ and T̃ ∗ denote the complex conjugate of ñ, ũ, w̃ and T̃ ,

respectively. In what follows, we present the detailed computation for the

finite spatial domain ΩH . The same result can be obtained for the semi-

infinite domain Ω∞ by imposing the decay at infinity boundary conditions on

both the velocity and heat flux.

Multiplying (4.18) by ũ∗ and (4.19) by w̃∗, adding the resulting equations

and integrating over ΩH , we get

λ

∫
ΩH

n̄
[
|ũ|2 + |w̃|2

]
dx =−

∫
ΩH

ũ∗ · ∇
(
n̄ T̃ + T0 ñ

)
dx

−G
∫

ΩH

w̃∗ ñ dx

+ ν0

∫
ΩH

[
ũ∗∇2ũ+ w̃∗∇2w̃

]
dx.

(4.22)

1. Using the integration by parts formula (4.1), we have

∫
ΩH

ũ∗ · ∇
(
n̄ T̃ + T0 ñ

)
dx =

∫
∂ΩH

(
n̄ T̃ + T0 ñ

)
ũ∗ · ds

−
∫

ΩH

(
n̄ T̃ + T0 ñ

)
∇· ũ∗ dx.

(4.23)

Now, using the geometric construction of ΩH and the boundary condi-

tions on ũ∗, we get
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∫
∂ΩH

(
n̄ T̃ + T0 ñ

)
ũ∗ · ds = −

∫ L

0

[
n̄(0) T̃ (x, 0) + T0 ñ(x, 0)

]
w̃∗(x, 0) dx

+

∫ H

0

[
n̄(z) T̃ (L, z) + T0 ñ(L, z)

]
w̃∗(L, z) dz

+

∫ L

0

[
n̄(H) T̃ (x,H) + T0 ñ(x,H)

]
w̃∗(x,H) dx

−
∫ H

0

[
n̄(z) T̃ (0, z) + T0 ñ(0, z)

]
w̃∗(0, z) dz

=

∫ L

0

[
n̄(H) T̃ (x,H) + T0 ñ(x,H)

]
w̃∗(x,H) dx,

which implies that

∫
ΩH

ũ∗ · ∇
(
n̄ T̃ + T0 ñ

)
dx =

∫ L

0

[
n̄(H) T̃ (x,H) + T0 ñ(x,H)

]
w̃∗(x,H) dx

−
∫

ΩH

(
n̄ T̃ + T0 ñ

)
∇· ũ∗ dx .

Using the no-slip boundary condition w̃∗(x,H) = 0, equation (4.23) be-

comes

∫
Ω∞

ũ∗ · ∇
(
n̄ T̃ + T0 ñ

)
dx = −

∫
ΩH

(
n̄ T̃ + T0 ñ

)
∇· ũ∗ dx .

2. Similarly, we have

∫
ΩH

[
ũ∗∇2ũ+ w̃∗∇2w̃

]
dx =−

∫
ΩH

[∇ũ · ∇ũ+∇w̃ · ∇w̃] dx

=−
∫

ΩH

[
|∇ũ|2 + |∇w̃|2

]
dx .
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Therefore, equation (4.22) can be rewritten as

λ

∫
ΩH

n̄
[
|ũ|2 + |w̃|2

]
dx =

∫
ΩH

(
n̄ T̃ + T0 ñ

)
∇· ũ∗ dx

−G
∫

ΩH

w̃∗ ñ dx

− ν0

∫
ΩH

[
|∇ũ|2 + |∇w̃|2

]
dx.

(4.24)

Now, multiplying (4.17) by
T0

n̄
ñ∗ and integrating over ΩH , we get

λ

∫
ΩH

T0

n̄
|ñ|2 dx =

∫
ΩH

[G ñ∗ w̃ − T0 ñ
∗∇· ũ] dx

=

(∫
ΩH

[G ñ w̃∗ − T0 ñ∇· ũ∗] dx

)∗

and substituting in (4.24), we have

λ

∫
ΩH

n̄
[
|ũ|2 + |w̃|2

]
dx =

∫
ΩH

n̄ T̃ ∇· ũ∗ dx− λ∗
∫

ΩH

T0

n̄
|ñ|2 dx

− ν0

∫
ΩH

[
|∇ũ|2 + |∇w̃|2

]
dx .

(4.25)

Finally, multiplying (4.20) by
T̃ ∗

T0

and integrating over ΩH , we get

λ

∫
ΩH

n̄

T0

|T̃ |2dx =

∫
ΩH

[
−n̄ T̃ ∗ ∇· ũ +

κ0

T0

T̃ ∗ ∇2T̃

]
dx . (4.26)

Using integration by parts , we have

∫
ΩH

T̃ ∗ ∇2T̃dx =

∫
∂ΩH

T̃ ∗ ∇T̃ · ds−
∫

ΩH

∇T̃ · ∇T̃ dx .
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Employing the boundary conditions on T̃ , we have

∫
∂ΩH

T̃ ∗ ∇T̃ · ds = −
∫ L

0

T̃ ∗(x, 0) ∂zT̃ (x, z)|z=0 dx

+

∫ H

0

T̃ ∗(L, z) ∂xT̃ (x, z)|x=L dz

+

∫ L

0

T̃ ∗(x,H) ∂zT̃ (x, z)|z=H dx

−
∫ H

0

T̃ ∗(0, z) ∂xT̃ (x, z)|x=0 dz

= −
∫ L

0

T̃ ∗(x, 0) ∂zT̃ (x, z)|z=0 dx

+

∫ L

0

T̃ ∗(x,H) ∂zT̃ (x, z)|z=H dx

= 0.

Therefore,∫
ΩH

T̃ ∗ ∇2T̃dx = −
∫

ΩH

∇T̃ · ∇T̃ dx = −
∫

ΩH

|∇T̃ |2 dx ,

and equation (4.26) becomes

λ

∫
ΩH

n̄

T0

|T̃ |2dx = −
∫

ΩH

[
n̄ T̃ ∗ ∇· ũ +

κ0

T0

|∇T̃ |2
]

dx

= −

(∫
ΩH

[
n̄ T̃ ∇· ũ∗ +

κ0

T0

|∇T̃ |2
]

dx

)∗
.

(4.27)

Substituting in (4.25), we get

λ

∫
ΩH

n̄
[
|ũ|2 + |w̃|2

]
dx =− λ∗

∫
ΩH

[
n̄

T0

|T̃ |2 +
T0

n̄
|ñ|2
]

dx

−
∫

ΩH

κ0

T0

|∇T̃ |2 dx

− ν0

∫
ΩH

[
|∇ũ|2 + |∇w̃|2

]
dx .

(4.28)
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Separating the real and imaginary parts, we get

Reλ = −

∫
ΩH

{
κ0
T0
|∇T̃ |2 + ν0 (|∇ũ|2 + |∇w̃|2)

}
dx∫

ΩH

{
n̄
[
|ũ|2 + |w̃|2

]
+ n̄

T0
|T̃ |2 + T0

n̄
|ñ|2
}

dx
, (4.29)

Imλ

∫
ΩH

{
n̄
[
|ũ|2 + |w̃|2

]
− n̄

T0

|T̃ |2 − T0

n̄
|ñ|2
}

dx = 0 . (4.30)

This implies that the eigenvalue λ is not necessarily real however its real part

is always negative and hence is in good agreement with the numerical results

obtained in Chapter 3.

4.2.2 Proof of Linear Stability

Using spectral theory, we show that the discrete spectrum of the linear opera-

tor consists of eigenvalues with negative real part. Although this is consistent

with the numerical results, it is insufficient to deduce linear stability of solu-

tions because this approach gives information about the discrete part of the

spectrum only. To bypass this difficulty, we construct a Lyapunov function

that decreases over solutions of the linearized system and use LaSalle’s Invari-

ance Principle to deduce linear stability.

Since there is no systematic way for constructing Lyapunov functions, it is

important that we show all the steps that led to this construction rather than

just giving the final result. Throughout the following discussion, we will be

referring to the linearized equations (4.5)-(4.8) with the boundary conditions

(4.9)-(4.15).
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As a first attempt, for Ω = Ω∞ or ΩH , consider the function Ṽ given by

Ṽ(u′, w′) :=
1

2

∫
Ω

n̄
[
u′ 2 + w′ 2

]
dx, (4.31)

so that

Ṽ(u′, w′) ≥ 0 for all u′ and w′. (4.32)

In order for Ṽ to define a Lyapunov function, this function should decrease over

solutions of the linearized system of equation. For this reason, we investigate

the rate of change of Ṽ given by

dṼ
dt

(u′, w′) =

∫
Ω

n̄
[
u′ ∂tu

′ + w′ ∂tw
′
]
dx. (4.33)

At this point, we will show the computation in the case of the finite domain

ΩH . Imposing the decay at infinity boundary conditions when dealing with

the semi-infinite domain Ω∞ will yield the same results.

Using equations (4.6) and (4.7), we can rewrite this as

dṼ
dt

(u′, w′) =−
∫

ΩH

u′ · ∇ (n̄ T ′ + T0 n
′) dx

−
∫

ΩH

Gw′ n′ dx

+ ν0

∫
ΩH

[
u′∇2u′ + w′∇2w′

]
dx.

(4.34)

1. Using integration by parts, we have

∫
ΩH

u′∇2u′ dx =

∫
∂ΩH

u′ ∇u′ · ds −
∫

ΩH

∇u′ · ∇u′ dx, (4.35)
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where using the boundary conditions on u′, we get

∫
∂ΩH

u′ ∇u′ · ds = −
∫ L

0

u′(x, 0) ∂zu
′(x, z)|z=0 dx

+

∫ H

0

u′(L, z) ∂xu
′(x, z)|x=L dz

+

∫ L

0

u′(x,H) ∂zu
′(x, z)|z=H dx

−
∫ H

0

u′(0, z) ∂xu
′(x, z)|x=0 dz

= −
∫ L

0

u′(x, 0) ∂zu
′(x, z)|z=0 dx

−
∫ H

0

u′(0, z) ∂xu
′(x, z)|x=0 dz

= 0 .

Therefore, we can rewrite (4.35) as

∫
ΩH

u′∇2u′ dx = −
∫

ΩH

∇u′ · ∇u′ dx = −
∫

ΩH

|∇u′|2 dx . (4.36)

Similarly, since w′ satisfies the same boundary conditions that u′ satisfies,

we have ∫
ΩH

w′∇2w′ dx = −
∫

ΩH

|∇w′|2 dx . (4.37)

2. Also, using integration by parts and using the boundary conditions on

u′, we can write

∫
ΩH

u′ · ∇ (n̄ T ′ + T0 n
′) dx =−

∫
ΩH

(n̄ T ′ + T0 n
′) ∇·u′ dx

−
∫

ΩH

(n̄ T ′ + T0 n
′) ∇·u′ dx .

(4.38)
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Substituting (4.36), (4.37) and (4.38) into (4.34), we get an expression for

the rate of change of the function Ṽ

dṼ
dt

(u′, w′) =−
∫

ΩH

n′ [Gw′ − T0 ∇·u′] dx

+

∫
ΩH

n̄ T ′ ∇·u′ dx

− ν0

∫
ΩH

[
|∇u′|2 + |∇w′|2

]
dx .

(4.39)

Let’s use equations (4.5)-(4.8) to rewrite (4.39) in terms of n′ and T ′ and

their time derivatives.

Multiplying (4.5) by
T0

n̄
n′ and integrating over ΩH , we have

∫
ΩH

T0

n̄
n′ ∂tn

′ dx =

∫
ΩH

n′ [Gw′ − T0∇·u′] dx . (4.40)

On the other hand, multiplying (4.8) by
T ′

T0

and integrating over ΩH , we get

∫
ΩH

n̄

T0

T ′ ∂tT
′ dx = −

∫
ΩH

n̄ T ′ ∇·u′ dx +
κ0

T0

∫
ΩH

T ′ ∇2T ′ dx . (4.41)

By integration by parts, we write∫
ΩH

T ′ ∇2T ′ dx =

∫
∂ΩH

T ′ ∇T ′ · ds−
∫

ΩH

|∇T ′|2 dx ,

where ∫
∂ΩH

T ′ ∇T ′ · ds = −
∫ L

0

T ′(x, 0) ∂zT
′(x, z)|z=0 dx

+

∫ H

0

T ′(L, z) ∂xT
′(x, z)|x=L dz

+

∫ L

0

T ′(x,H) ∂zT
′(x, z)|z=H dx

−
∫ H

0

T ′(0, z) ∂xT
′(x, z)|x=0 dz .
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Using the periodic boundary conditions on T ′ and T ′(x, 0) = 0, we have∫
∂ΩH

T ′ ∇T ′ · ds = −
∫ H

0

T ′(0, z) ∂xT
′(x, z)|x=0 dz .

But ∂zT
′(x, z)

∣∣∣
z=H

= 0 so that

∫
∂ΩH

T ′ ∇T ′ · ds = 0 and hence

∫
ΩH

T ′ ∇2T ′ dx = −
∫

ΩH

|∇T ′|2 dx .

Therefore, we can rewrite (4.41) as

∫
ΩH

n̄

T0

T ′ ∂tT
′ dx = −

∫
ΩH

n̄ T ′ ∇·u′ dx− κ0

T0

∫
ΩH

|∇T ′|2 dx . (4.42)

Substituting (4.40) and (4.42) (and their respective counterparts obtained for

Ω∞ by imposing the decay at infnity boundary conditions) into equation (4.39),

we get for Ω = ΩH or Ω∞

dṼ
dt

(u′, w′) =−
∫

Ω

T0

n̄
n′ ∂tn

′ dx

−
∫

Ω

n̄

T0

T ′ ∂tT
′ dx− κ0

T0

∫
Ω

|∇T ′|2 dx

− ν0

∫
Ω

[
|∇u′|2 + |∇w′|2

]
dx .

(4.43)

Although we cannot conclude from (4.43) that
dṼ
dt

(u′, w′) ≤ 0, this gives

us a way to construct a Lyapunov function given in the theorem below.

Theorem 4.11. For the perturbations n′, u′, w′ and T ′ defined on Ω =

ΩH or Ω∞, the functional

V(n′, u′, w′, T ′) =
1

2

∫
Ω

{
n̄
(
u′ 2 + w′ 2

)
+
T0

n̄
n′ 2 +

n̄

T0

T ′ 2
}

dx
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defines a Lyapunov function and hence proves the linear stability of the steady

state solution (2.18)-(2.20).

Proof. Consider the functional

V =
1

2

∫
Ω

{
n̄
(
u′ 2 + w′ 2

)
+
T0

n̄
n′ 2 +

n̄

T0

T ′ 2
}

dx . (4.44)

By construction, we have

V(n′, u′, w′, T ′) ≥ 0 for all perturbations n′, u′, w′ and T ′. (4.45)

Thus, it remains to check whether V decreases over solutions of the linearized

system (4.5)-(4.8). To do this, consider the rate of change of V given by

dV
dt

(n′, u′, w′, T ′) =

∫
Ω

{
n̄ (u′ ∂tu

′ + w′ ∂tw
′) +

T0

n̄
n′ ∂tn

′ +
n̄

T0

T ′ ∂tT
′
}

dx

which can be written in terms of
dṼ
dt

as

dV
dt

(n′, u′, w′, T ′) =
dṼ
dt

(u,w′) +

∫
Ω

{T0

n̄
n′ ∂tn

′ +
n̄

T0

T ′ ∂tT
′
}

dx . (4.46)

But by (4.43), we have

dṼ
dt

+

∫
Ω∞

(T0

n̄
n′ ∂tn

′+
n̄

T0

T ′ ∂tT
′
)

dx = −
∫

Ω

{
ν0

(
|∇u′|2+|∇w′|2

)
+
κ0

T0

|∇T ′|2
}

dx,

which implies that

dV
dt

(n′, u′, w′, T ′) = −
∫

Ω

{
ν0

(
|∇u′|2 + |∇w′|2

)
+
κ0

T0

|∇T ′|2
}

dx ≤ 0. (4.47)
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It is easy to see that for u′ = ū = 0, T ′ = T̄ = T0 and n′ = n̄, then

dV
dt

(n̄, ū, w̄, T̄ ) = 0 .

On the other hand, if
dV
dt

(n′, u′, w′, T ′) = 0, then by (4.47), we have

∇u′ = ∇w′ = 0 and ∇T ′ = 0 .

Using the boundary conditions u′(x, 0; t) = w′(x, 0; t) = 0 and u′(x,H, t) =

w′(x,H; t) = 0 or the decay at infinity boundary condition, we get

u′(x, z; t) = w′(x, z; t) = 0 on Ω = ΩH or Ω∞ .

Similarly, using the boundary condition T ′(x, 0; t) = 0 and κ0∇T ′(x, z; t)
∣∣∣
z=H

= 0

or the decay at infinity of the heat flux, we get

T ′(x, z; t) = 0 on Ω = ΩH or Ω∞ .

Substituting u′(x, z; t) = w′(x, z; t) = 0 and T ′(x, z; t) = 0 into (4.5)-(4.8), we

get

∂xn
′ = 0 and T0 ∂zn

′ = −Gn′,

whose solution is n′(x, z; t) ≡ n′(z) = n′(0) exp

(
−G
T0

z

)
.

But by (2.4), ∫
Ω

n(x, t) dx =

∫
Ω

n̄(z) dx = N ≡ Constant,

so that

∫
Ω

n′(x, t) dx = 0 which forces n′(x, z; t) = 0 .
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This implies that

{
(n′, u′, w′, T ′)

∣∣∣ dV
dt

(n′, u′, w′, T ′) = 0
}

=
{

(0, 0, 0, 0)
}
,

which is invariant under the dynamics ((0, 0, 0, 0) is an equilibrium point) and

so by LaSalle’s Invariance Principle, all perturbations (n′, u′, w′, T ′) should

approach (0, 0, 0, 0) as t→∞. This proves the linear stability of the reference

steady state solution (2.18)- (2.20).

4.3 Non-linear Stability Analysis

Although linear stability results are important, unfortunately they are not

enough to infer stability of solutions in the non-linear case. To bypass this,

we have to construct a Lyapunov function that decreases over solutions of the

non-linear system and hence deduce global stability of the reference steady

state solution using LaSalle’s Invariance Principle.

4.3.1 Motivation Behind the Construction of Lyapunov

Function

In studying the dynamics of a fluid in a vessel, we can divide the container

into cells small enough that the velocity does not change over each of these

cells. Thus, we can think of the following set-up:

Divide the domain into small cells so that the position of each particle is

pinned down and we know the average velocity over each cell but we do not

know the velocity of each of the individual particles in the cell. The ques-

tion then becomes: Knowing only the average and variance, what is the least
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biased velocity distribution of the molecules that results in the most evenly

distributed energy?

Let ρ(V ) be the density of the distribution. Since entropy gives a measure

of the number of arrangements the molecules of the system can have, the

statement of the problem can be stated as follows:

Given

E[V ] =

(
u

w

)
, V ∈ Rd,

E

[
1

2

∣∣∣∣V − (uw
)∣∣∣∣2
]

=
d

2
T, V ∈ Rd,

find the density ρ(V ) that minimizes the entropy

J [ρ(V )] = −
∫
ρ(V ) log ρ(V ) dV

subject to the constraints

ρ(V ) ≥ 0, (4.48)

I1[ρ(V )] =

∫
ρ(V ) dV = 1, (4.49)

I2[ρ(V )] =

∫
ρ(V )V dV =

(
u

w

)
, (4.50)

I3[ρ(V )] =

∫
ρ(V )

1

2

∣∣∣∣V − (uw
)∣∣∣∣2 dV =

d

2
T. (4.51)

At this point, write ρ̂ = ρ+ ε η, where ρ̂ satisfies the constraints. Then,

Ψ(ε) =: J [ρ̂] = −
∫
ρ̂ log ρ̂ dV = −

∫
(ρ+ ε η) log(ρ+ ε η) dV,

Φ1(ε) =: I1[ρ̂] =

∫
(ρ+ ε η) dV = 1,

Φ2(ε) =: I2[ρ̂] =

∫
(ρ+ ε η)V dV =

(
u

w

)
,

Φ3(ε) =: I3[ρ̂] =

∫
(ρ+ ε V )

1

2

∣∣∣∣V − (uw
)∣∣∣∣2 dV =

d

2
T.
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Using Lagrange multipliers, we need to solve

∂εΨ(ε) = µ1 ∂ε(Φ1(ε)− 1) + µ2 ∂ε

(
Φ2(ε)−

(
u

w

))
+ µ3 ∂ε

(
Φ3(ε)− d

2
T

)
,

that is

∂εΨ(ε)− µ1 ∂εΦ1(ε)− µ2 ∂εΦ2(ε)− µ3 ∂εΦ3(ε) = 0. (4.52)

At ε = 0, ρ̂ = ρ is an extremal, so we have to evaluate the partial derivatives

at ε = 0. But

∂εΨ(ε) = −
∫

[η log(ρ+ ε η) + η] dV,

∂εΦ1(ε) =

∫
η dV,

∂εΦ2(ε) =

∫
η V dV,

∂εΦ3(ε) =

∫
η

1

2

∣∣∣∣V − (uw
)∣∣∣∣2 dV,

so that evaluating (4.52) at ε = 0 gives

∫
η

[
log ρ(V ) + 1 + µ1 + µ2 V + µ3

1

2

∣∣∣∣V − (uw
)∣∣∣∣2
]

dV = 0.

Since this equation is true for every arbitrary η, we get

log ρ(V ) = −1− µ1 − µ2 V − µ3
1

2

∣∣∣∣V − (uw
)∣∣∣∣2 ,

and so

ρ(V ) = exp

{
−(1 + µ1)− µ2 V − µ3

1

2

∣∣∣∣V − (uw
)∣∣∣∣2
}

(4.53)

for which µ1, µ2 and µ3 can be obtained by using the constraints (4.48)-(4.51).
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1. Note that the constraint (4.48) is trivially satisfied by the construction

of ρ(V ).

2. Using the constraint (4.49), we have

e−(1+µ1)

∫
exp

{
−µ2 V − µ3

1

2

∣∣∣∣V − (uw
)∣∣∣∣2
}

dV = 1. (4.54)

3. Note that by change of variables and using (4.54), we can write

∫
V ρ(V ) dV = e−(1+µ1)

∫
V exp

{
−µ2 V − µ3 −

1

2

∣∣∣∣V − (uw
)∣∣∣∣2
}

dV

=

(
u

w

)
+ e

−(1+µ1)−µ2

u
w

 ∫
V exp

{
−µ2 V − µ3

1

2
|V |2

}
dV .

Imposing (4.50), we have

e
−(1+µ1)−µ2

u
w

 ∫
V exp

{
−µ2 V − µ3

1

2
|V |2

}
dV = 0. (4.55)

Similarly as in the 1-D case, setting µ2 = 0 would give us

e−(1+µ1)

∫
V exp

{
−µ3

1

2
|V |2

}
dV = 0,

so that the new expression for ρ(V ) becomes

ρ(V ) = e−(1+µ1) exp

{
−µ3

1

2

∣∣∣∣V − (uw
)∣∣∣∣2
}
.

Moreover, using the properties of Gaussians and their probability density

functions together with (4.49), we get a relation between µ1 and µ3 given

by e−(1+µ1) =

√
2π

µ3

,
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so that the new expression for ρ(V ) would depend on µ3 only as follows:

ρ(V ) =

√
µ3

2π
exp

{
−µ3

1

2

∣∣∣∣V − (uw
)∣∣∣∣2
}
. (4.56)

4. Finally, (4.50) requires that

∫
ρ(V )

1

2

∣∣∣∣V − (uw
)∣∣∣∣2 dV =

d

2
T,

where the integral represents the variance of ρ(V ) and hence equation

(4.56) can be written as

ρ(V ) =
1√

2πT d
exp

{
− 1

2T

∣∣∣∣V − (uw
)∣∣∣∣2
}

. (4.57)

The density ρ(V ) obtained in (4.57) depends on the position of the cell, that

is,

ρq(V ) =
1√

2πT d
exp

{
− 1

2T

∣∣∣∣V − (uw
)∣∣∣∣2
}
,

so that globally the molecular distribution function that is the least biased is

given by

ρ(q, V ) =
n

N

1√
2πT d

exp

{
− 1

2T

∣∣∣∣V − (uw
)∣∣∣∣2
}
, (4.58)

where n(q) is the particle count per unit volume and N =

∫
n(q) dq is the

total number of particles in the vessel.

To facilitate the construction of the Lyapunov function, we introduce the

definition of the relative entropy (known as KullbackLeibler divergence) of

probability distributions (see [52, 56, 57]) and relate it to Markov chains.
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Definition 4.12. Relative Entropy

Let P (x) and Q(x) be two probability distributions of the random variables X

and Y with probability densities p(x) and q(x) respectively. Then, the relative

entropy of P with respect to Q, also called Kullback - Leibler divergence, is

defined to be the integral

H(P ‖Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx. (4.59)

More generally, if P and Q are probability measures over a set X , and P

is absolutely continuous with respect to Q, then the relative entropy of P with

respect to Q is defined as

H(P ‖Q) =

∫
X

log h dP =

∫
X
h log h dQ, (4.60)

where h =
dP

dQ
is the Radon-Nikodym derivative of P with respect to Q and

provided that the expression on the right-hand side exists.

In the case when the random variables X and Y take on only a finite

of different values x1, x2, . . . , xm and y1, y2, . . . , ym respectively and we put

Pr{X = xk} = pk and Pr{Y = yk} = qk for k = 1, 2, . . . , m, then(4.60)

reduces to

H(P ‖Q) =
m∑
k=1

pk log

(
pk
qk

)
. (4.61)

Remark 4.13. The relative entropy has many useful properties, in particular,

H(P ‖Q) ≥ 0,

H(P ‖Q) = 0 ⇐⇒ P and Q are identical.
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Because the relative entropy is non-negative and measures the difference be-

tween two distributions, it is often conceptualized as measuring some sort of

distance between these distributions. However, it is not a true distance measure

because it is not symmetric: H(P ‖Q) 6= H(Q ‖P ) in general.

Proof. We will prove these results for the case when P is absolutely continous

with respect to Q.

By (4.60),

H(P ‖Q) =

∫
X
h log h dQ,

where h =
dP

dQ
.

Since Ψ(s) = s log s is convex, then by Jensen’s inequality

H(P ‖Q) = EQ [Ψ(h)] ≥ Ψ
(
EQ [h]

)
= Ψ

(∫
X
h dQ

)
= Ψ

(∫
X

dP

)
= Ψ (1) = 0 .

It follows from this that H(P ‖Q) = 0 ⇐⇒ P and Q are identical.

Remark 4.14. Let (Xn)n≥0 be a discrete time Markov chain with stationary

distribution π. Then, the relative entropy H(Xn ‖π) monotonically decreases

as n increases.

Proof. Let pjk for j, k = 1, 2, . . . , M denote the transition probability in one

step and suppose that Xn has probability distibution µ(n). We want to show

that

H(Xn+1 ‖ π) ≤ H(Xn ‖ π), for all n ≥ 0.
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By (4.61),

H(Xn+1 ‖ π) =
M∑
k=1

µ
(n+1)
k log

(
µ

(n+1)
k

πk

)
=

M∑
k=1

πk h
(n+1)
k log

(
h

(n+1)
k

)
,

where h
(n+1)
k =

µ
(n+1)
k

πk
. But µ

(n+1)
k =

M∑
j=1

µ
(n)
j pjk and so using the notation

h
(n)
k =

µ
(n)
k

πk
, we have

h
(n+1)
k =

1

πk
µ

(n+1)
k =

1

πk

M∑
j=1

µ
(n)
j pjk

=
1

πk

M∑
j=1

πj h
(n)
j pjk =

M∑
j=1

πj
πk

pjk h
(n)
j :=

M∑
j=1

Qkj h
(n)
j ,

where Qkj =
πj
πk

pjk and so h(n+1) = Qh(n).

Note that by the definition of Qkj, we have

M∑
j=1

Qkj =
M∑
j=1

πj
πk

pjk =
1

πk

M∑
j=1

πj pjk = 1 .

So, by the convexity of the function Ψ(s) = s log s and Jensen’s inequality, we

have
Ψ(h

(n+1)
k ) = Ψ

(
M∑
j=1

Qkj h
(n)
j

)
≤

M∑
j=1

Qkj Ψ(h
(n)
j ),

and so Ψ(h(n+1)) ≤ QΨ(h(n). This implies that

H (Xn+1 ‖ π) = Eπ
[
Ψ(h(n))

]
= Eπ

[
Ψ
(
Qh(n)

)]
≤ Eπ

[
QΨ

(
h(n)

)]
=

M∑
k=1

πk

M∑
j=1

Qkj Ψ
(
h

(n)
j

)
=

M∑
j=1

πk

M∑
j=1

πj
πk

pjk Ψ
(
h

(n)
j

)
=

M∑
j=1

[
πj Ψ

(
h

(n)
j

) M∑
k=1

pjk

]
=

M∑
j=1

[
πj Ψ

(
h

(n)
j

)]
= Eπ

[
Ψ
(
h(n)

)]
= H(Xn ‖ π),
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and H(Xn ‖ π) is a decreasing function.

The above discussion suggests that if we assume that the molecules evolve

according to a Markov chain (although this might not be quite true because it

does not take into account the intermolecular collision), then a good candidate

for a Lyapunov function is

E(n, u, w, T ) =

∫
Ω

H(ρt ‖ ρ̄) dx, (4.62)

where

ρt(q, V ) =
n

N

1

2πT
exp

(
− 1

2T

∣∣∣∣V − (uw
)∣∣∣∣2
)
, (4.63)

and

ρ̄(q, V ) =
n̄

N

1

2πT0

exp

(
− 1

2T0

|V |2
)
. (4.64)

At this point, it is useful to derive the relative entropy of two Gaussian

random variables. So, consider two Gaussian random variables Z1 and Z2 with

probability densities f1(V ) and f2(V ) given by

f1(V ) =
n1

N

1√
2πσ2

1
d

exp

(
− 1

2σ2
1

∣∣∣∣V − (u1

w1

)∣∣∣∣2
)
,

f2(V ) =
n2

N

1√
2πσ2

2
d

exp

(
− 1

2σ2
2

∣∣∣∣V − (u2

w2

)∣∣∣∣2
)
.

Then,

H(f1 || f2) =

∫
log

(
f1(V )

f2(V )

)
f1(V ) dV

=

∫
n1

N

1√
2πσ2

1
d

exp


−
∣∣∣∣V − (u1

w1

)∣∣∣∣2
2σ2

1


[
log

(
n1

n2

)
+
d

2
log

(
σ2

2

σ2
1

)]
dV

+

∫
n1

N

1√
2πσ2

1
d

exp

(
− 1

2σ2
1

∣∣∣∣V − (u1

w1

)∣∣∣∣2
)

1

2σ2
2

∣∣∣∣V − (u2

w2

)∣∣∣∣2 dV

−
∫
n1

N

1√
2πσ2

1
d

exp

(
− 1

2σ2
1

∣∣∣∣V − (u1

w1

)∣∣∣∣2
)

1

2σ2
1

∣∣∣∣V − (u1

w1

)∣∣∣∣2 dV.
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Using the properties of Gaussian random variables,

First Integral =
n1

N

[
log

(
n1

n2

)
+
d

2
log

(
σ2

2

σ2
1

)]
, (4.65)

Third Integral =
1

2σ2
1

n1

N
dσ2

1 =
d

2

n1

N
. (4.66)

For the second integral, we write

∣∣∣∣V − (u2

w2

)∣∣∣∣2 =

∣∣∣∣V − (u1

w1

)∣∣∣∣2 +2

(
V −

(
u1

w1

))
·
(
u1 − u2

w1 − w2

)
+

∣∣∣∣(u1 − u2

w1 − w2

)∣∣∣∣2 ,
and use change of variables to get

Second Integral =
d

2

n1

N

σ2
1

σ2
2

+
1

2σ2
2

n1

N

∣∣∣∣(u1 − u2

w1 − w2

)∣∣∣∣2 . (4.67)

Substituting (4.65)-(4.67), we get the final expression for H(η1 ||η2) given by

H(η1 ‖η2) =
n1

N

{
log

(
n1

n2

)
+
d

2

[
σ2

1

σ2
2

− 1− log

(
σ2

1

σ2
2

)]}
+
n1

N

1

2σ2
2

∣∣∣∣(u1 − u2

w1 − w2

)∣∣∣∣2 . (4.68)

Now, for the expressions of ρt(q, V ) and ρ̄(q, V ) given by (4.63) and (4.64) and

for d = 2, we get

H(ρt ‖ ρ̄) =
n

N

{
log
(n
n̄

)
+ Ψ

(
T

T0

)
+

1

2T0

(
u2 + w2

)}
(4.69)

where Ψ(s) = s− 1− log(s).
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4.3.2 Proof of Stability of Steady State Solution

Using the expression for the stress tensor Πij and still assuming (for simplic-

ity) that κ and ν are constant, we can rewrite the non-linear Navier-Stokes

equations (2.1)-(2.3) as

∂tn = −∇·(nu), (4.70)

n ∂tu = −nu · ∇u− ∂x(nT ) + ν0∇2u, (4.71)

n ∂tw = −nu · ∇w − ∂z(nT )−Gn+ ν0∇2w, (4.72)

n ∂tT = −nu · ∇T − (nT )∇·u + κ0∇2T

+ ν0

(
|∇u|2 + |∇w|2

)
− 2ν0 [(∂xu)(∂zw)− (∂xw)(∂zu)] ,

(4.73)

with the periodic boundary conditions in the horizontal x-direction given by

n(0, z; t) = n(L, z; t),

u(0, z; t) = u(L, z; t),

T (0, z; t) = T (L, z; t),

(4.74)

and the boundary conditions in the vertical direction given by

u(x, 0; t) = 0, u′(x,H; t) = 0,

on ΩH

T ′(x, 0; t) = T0, κ0∇T ′(x, z; t)
∣∣∣
z=H

= 0,

u′(x, 0; t) = 0, lim
z→∞

u′(x, z; t) = 0,

on Ω∞
T ′(x, 0; t) = 0, lim

z→∞
κ0∇T ′(x, z; t) = 0.

(4.75)
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Recall that the steady state solution is given by

ū = 0 , (4.76)

T̄ (z) = T0 , (4.77)

n̄(z) = n̄(0) exp

(
−G
T0

z

)
, (4.78)

so that both n and n̄ satisfy for Ω = ΩH or Ω∞

∫
Ω

n(x, t) dx = N =

∫
Ω

n̄(z) dx . (4.79)

Theorem 4.15. The functional

E(n, u, w, T ) :=

∫
Ω

n

N

[
log
(n
n̄

)
+ Ψ

(
T

T0

)
+

1

2T0

(u2 + w2)

]
dx,

where

Ψ

(
T

T0

)
=
T

T0

− 1− log

(
T

T0

)

defines a Lyapunov function for the non-linear system (4.70)-(4.73) on Ω = ΩH

or Ω∞ and hence we prove stability of the steady state solution (4.76)-(4.78).

Proof. To show that the function E(n, u, w, T ) is a Lyapunov function, we need

to show that for Ω = ΩH or Ω∞

I. E(n, u, w, T ) is non-negative; that is,

E(n, u, w, T ) ≥ 0 for all n, u, w, and T.

II. E(n, u, w, T ) decreases over solutions of the non-linear system (4.70)-

(4.73); that is, for all n, u, w, and T satisfying (4.70)-(4.73), we have

dE
dt

(n, u, w, T ) ≤ 0.
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I. Checking Non-negativity:

1. Note first that the function Ψ(α) = α− 1− log(α) has a global minimum

at α = 1 and so

Ψ(α) ≥ Ψ(1) = 0 for all α > 0.

2. Consider now the integral

∫
Ω

n

N
log
(n
n̄

)
dx =

∫
Ω

n̄

N

n

n̄
log
(n
n̄

)
dx =

∫
Ω

n̄

N
Φ
(n
n̄

)
dx,

where Φ(α) = α log (α) and note that by (4.79)

∫
Ω

n̄

N
dx = 1 so that dπ =

n̄

N
dx is a probability measure on Ω.

Since H(α) is convex and dπ is a probability measure we can apply

Jensen’s inequality together with (4.79) to get

∫
Ω

Φ
(n
n̄

) n

n̄
dx ≥ Φ

(∫
Ω

n

n̄

n̄

N
dx

)
= Φ

(∫
Ω

n

N
dx

)
= Φ(1) = 0.

Hence, for all n, u, w, and T ,

E(n, u, w, T ) :=

∫
Ω

n

N

[
log
(n
n̄

)
+ Ψ

(
T

T0

)
+

1

2T0

(u2 + w2)

]
dx ≥ 0,

and so the non-negativity condition of E(n, u, w, T ) is proved.
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II. Checking the Rate of Change:

Taking the time derivative of E(n, u, w, T ) and using the definition of Ψ(α),

we can write the rate of change as

dE
dt

=

∫
Ω

∂tn

N

[
log
(n
n̄

)
+
T

T0

− log

(
T

T0

)
+

1

2T0

(
u2 + w2

)]
dx

+
1

N T0

∫
Ω∞

[(
1− T0

T

)
n ∂tT + u n ∂tu+ w n∂tw

]
dx.

(4.80)

Since most of the steps in this computation are very similar to those done

in the case of linear stability, we will go quickly over the steps that use the

same conditions and give more details whenever needed.

1. Using (4.70), integration by parts and the boundary conditions (4.74)-

(4.75) on u, we can rewrite the first integral as

∫
Ω

∂tn

N

[
log
(n
n̄

)
+
T

T0

− log

(
T

T0

)
+

1

2T0

(
u2 + w2

)]
dx

= −
∫

Ω

∇·(nu)

N

[
log
(n
n̄

)
+
T

T0

− log

(
T

T0

)
+

1

2T0

(
u2 + w2

)]
dx

=
1

N

∫
Ω

(nu) · ∇
[
log
(n
n̄

)
+
T

T0

− log

(
T

T0

)
+

1

2T0

(
u2 + w2

)]
dx

=
1

N

∫
Ω

[
u · ∇n+

G

T0

nw

]
dx +

1

NT0

∫
Ω∞

nu ·
(

1− T0

T

)
∇T dx

+
1

2NT0

∫
Ω

nu · ∇
(
u2 + w2

)
dx.
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2. Multiplying (4.71) by u and (4.72) by w and adding we get

u n ∂tu+ w n∂tw = −n u · u∇u− n u · w∇w

− [u ∂x(nT ) + w ∂z(nT )]−Gnw + ν0

[
u∇2u+ w∇2w

]
= −1

2
n u · ∇(u2 + w2)− u · ∇(nT )−Gnw

+ ν0

[
u∇2u+ w∇2w

]
.

Moreover, using integration by parts and utilizing the boundary condi-

tions, we have

∫
Ω

u · ∇(nT ) dx = −
∫

Ω

(n T ) ∇·u dx,

∫
Ω

(
u∇2u+ w∇2w

)
dx = −

∫
Ω

(
|∇u|2 + |∇w|2

)
dx,

so that we can write

1

NT0

∫
Ω

(u n ∂tu+ w n∂tw) dx =− 1

2N T0

∫
Ω

nu · ∇(u2 + w2) dx

+
1

NT0

∫
Ω

(nT )∇·u dx

− 1

NT0

∫
Ω

Gnw dx

− ν0

NT0

∫
Ω

(
|∇u|2 + |∇w|2

)
dx.
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3. Finally, multiplying (4.73) by

(
1− T0

T

)
, we get

1

NT0

∫
Ω

(
1− T0

T

)
n ∂tT dx =− 1

NT0

∫
Ω

nu ·
(

1− T0

T

)
∇T dx

− 1

NT0

∫
Ω

(nT )∇·u dx

+
ν0

NT0

∫
Ω

(
|∇u|2 + |∇w|2

)
dx

− ν0

N

∫
Ω

1

T

(
|∇u|2 + |∇w|2

)
dx

+
1

N

∫
Ω

n∇·u dx

+
κ0

NT0

∫
Ω

(
1− T0

T

)
∇2T dx

− 2ν0

NT0

∫
Ω

[(∂xu)(∂zw)− (∂xw)(∂zu)] dx

+
2ν0

N

∫
Ω

1

T
[(∂xu)(∂zw)− (∂xw)(∂zu)] dx.

Using integration by parts, the periodic boundary conditions on both

n and u and the conditions u(x, 0; t) = u(x,H; t) = 0 or the decay at

infinity conditions, we get

1

N

∫
Ω

n∇·u dx = − 1

N

∫
Ω

u · ∇n dx.

Similarly, using the periodic boundary conditions on u, the no-slip bound-

ary conditions on z = 0 and the no-slip boundary condition at z = H or

the decay at infinity conditions, we get
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∫
Ω

(∂xu) (∂zw) dx =

∫
Ω

(∂zu) (∂xw) dx,

and

− 2ν0

NT0

∫
Ω

[(∂xu)(∂zw)− (∂xw)(∂zu)] dx = 0.

Note that since T (x, 0; t) = T0, then

(
1− T0

T

) ∣∣∣
z=0

= 0.

Hence, using integration by parts, the periodic boundary conditions on

T and the zero heat flux condition on z = H or the decay at infinity of

the heat flux, we can write

∫
Ω

(
1− T0

T

)
∇2T dx = −

∫
Ω

∇
(

1− T0

T

)
· ∇T dx

= −T0

∫
Ω

1

T 2
∇T · ∇T dx

= −T0

∫
Ω

1

T 2
|∇T |2 dx,

and so,

κ0

NT0

∫
Ω

(
1− T0

T

)
∇2T dx = −κ0

N

∫
Ω

1

T 2
|∇T |2 dx.
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Therefore,

1

N T0

∫
Ω

(
1− T0

T

)
n ∂tT dx =− 1

N T0

∫
Ω

nu ·
(

1− T0

T

)
∇T dx

− 1

N T0

∫
Ω

(nT )∇·u dx

+
ν0

N T0

∫
Ω

(
|∇u|2 + |∇w|2

)
dx

− ν0

N

∫
Ω

1

T

(
|∇u|2 + |∇w|2

)
dx

− 1

N

∫
Ω

u · ∇n dx

− κ0

N

∫
Ω

1

T 2
|∇T |2 dx

+
2ν0

N

∫
Ω

1

T
[(∂xu)(∂zw)− (∂xw)(∂zu)] dx.

Putting all these steps together, we get a simplified expression for the rate of

change given by

dE
dt

(n, u, w, T ) =− ν0

N

∫
Ω

1

T

(
|∇u|2 + |∇w|2

)
dx

− κ0

N

∫
Ω

1

T 2
|∇T |2 dx

+
2ν0

N

∫
Ω

1

T
[(∂xu)(∂zw)− (∂xw)(∂zu)] dx .
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But

|∇u|2 + |∇w|2 − 2(∂xu)(∂zw) + 2(∂xw)(∂zu)

=
[
(∂xu)2 + (∂zu)2

]
+
[
(∂xw)2 + (∂zw)2

]
− 2(∂xu)(∂zw) + 2(∂xw)(∂zu)

=
[
(∂xu)2 − 2(∂xu)(∂zw) + (∂zw)2

]
+
[
(∂xw)2 + 2(∂xw)(∂zu) + (∂zu)2

]
= [∂xu− ∂zw]2 + [∂xw + ∂zu]2 .

This implies that the rate of change of E(n, u, w, T ) can be written as

dE
dt

(n, u, w, T ) =− ν0

N

∫
Ω

1

T

[
(∂xu− ∂zw)2 + (∂xw + ∂zu)2] dx

− κ0

N

∫
Ω

1

T 2
|∇T |2 dx.

(4.81)

Since T (x, t) ≥ 0 is the temperature of the fluid, then from (4.81) we conclude

that for all n, u, w, and T satisfying (4.70)-(4.73), we have

dE
dt

(n, u, w, T ) ≤ 0 for all n, u, w and T.

So far, we proved that E(n, u, w, T ) is a Lyapunov function for the non-linear

system (4.70)-(4.73). In order to apply LaSalle’s Invariance Principle, we still

need to show that

{
(n, u, w, T )

∣∣∣∣∣ dE
dt

(n, u, w, T ) = 0

}
=

{(
n̄, ū, w̄, T̄

)}
.

Since this set is invariant under the dynamics
((
n̄, ū, w̄, T̄

)
is a fixed point

)
,

applying LaSalle’s Invariant Principle on this set would then allow us to con-
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clude that all solutions starting in a compact neighbourhood of
(
n̄, ū, w̄, T̄

)
approach this fixed points and hence prove the stability of the steady state

solution.

To prove the claim, first note that since the reference steady state solution

satisfies equations (4.70)-(4.73), then

dE
dt

(n̄, ū, w̄, T̄ ) = 0,

and it remains to show that the only place where
dE
dt

(n, u, w, T ) = 0 is at the

reference solution.

Setting
dE
dt

(n, u, w, T ) = 0, we get

∂xu− ∂zw = 0, (4.82)

∂xw + ∂zu = 0, (4.83)

∇T = 0, (4.84)

with u and T satisfying the boundary conditions (4.74)-(4.75).

(i) From (4.84) and imposing the boundary conditions, it is easy to see that

T (x, z; t) = T0.

(ii) Differentiating (4.82) with respect to x and (4.83) with respect to z and

adding, we get

∂2
xu+ ∂2

zu = 0 ,

u(0, z; t) = u(L, z; t) ,

u(x, 0; t) = 0 ,

u(x,H; t) = 0 , or lim
z→∞

u(x, z; t) = 0 .
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Writing

u = V1(z, t) cos

(
2π x

L

)
+ V2(z, t) sin

(
2π x

L

)
,

then the periodic boundary condition is trivially satisfied and by substi-

tution, we get the 2nd order system in V1 and V2, given by

−
(

2π

L

)2

V1 + ∂2
zV1 = 0,

−
(

2π

L

)2

V2 + ∂2
zV2 = 0,

with the boundary conditions

V1(0, t) = V2(0, t) = 0,

V1(H, t) = V2(H, t) = 0 or lim
z→∞

V1(z, t) = lim
z→∞

V2(z, t) = 0.

At this point, it is an easy computation to show that the only solutions

to this system are

V1(z, t) = V2(z, t) = 0 and so u(x, z; t) ≡ 0.

But this implies that ∂xw = ∂zw = 0 with the boundary conditions (4.74)-

(4.75) and so w(x, z; t) ≡ 0.

Hence, we have u(x, t) ≡ 0 := ū and T (x, t) = T0 := T̄ . Substituting these

solutions in equations (4.70)-(4.73), we get that n is independent of x and t

and satisfies
T0

dn

dz
= −Gn,

whose solution is n(z) = n(0) exp

(
−G
T0

z

)
:= n̄(z).
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This discussion shows that
dE
dt

(n, u, w, T ) = 0 ⇐⇒ (n, u, w, T ) = (n̄, ū, w̄, T̄ ),

thus proving the claim.

Remark 4.16. For n = n̄+ n′, u = 0 + u′, w = 0 + w′, and T = T0 + T ′, we

get

E(n, u, w, T ) =
1

2N T0

V(n′, u′, w, T ′) + Higher order terms,

where V(n′, u′, w, T ′) is the Lyapunov function in the linear case.

Proof. For n = n̄+ n′, u = 0 + u′, w = 0 + w′, and T = T0 + T ′, we can write

for Ω = ΩH or Ω∞

E(n, u, w, T ) =

∫
Ω

(
n̄+ n′

N

)[
log

(
1 +

n′

n̄

)
+ Ψ

(
1 +

T ′

T0

)]
dx

+

∫
Ω

(
n̄+ n′

N

)[
1

2T0

(
u′ 2 + w′ 2

)]
dx.

But by Taylor series expansion, and for small perturbations n′ and T ′, we can

write

log

(
1 +

n′

n̄

)
=
n′

n̄
− 1

2

(
n′

n̄

)2

+
1

3

(
n′

n̄

)3

+ . . .

Ψ

(
1 +

T ′

T0

)
=
T ′

T0

− log

(
1 +

T ′

T0

)
=

1

2

(
T ′

T0

)2

− 1

3

(
T ′

T0

)3

+ . . . ,

so that

E(n, u, w, T ) =
1

2N T0

∫
Ω

[
T0

n̄
n′ 2 +

n̄

T0

T ′ 2 + n̄
(
u′ 2 + w′ 2

)]
dx +

∫
Ω∞

n′

N
dx

+ Higher order terms.

But using (4.79), we have∫
Ω

n′

N
dx =

1

N

∫
Ω

n dx− 1

N

∫
Ω

n̄ dx = 1− 1 = 0,
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and so if n = n̄+ n′, u = 0 + u′, w = 0 + w′, and T = T0 + T ′, we have

E(n, u, w, T ) =
1

2N T0

V(n′, u′, w′, T ′) + Higher order terms.
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Part II

Flow Dynamics in a Stratified

Fluid in a Channel
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Chapter 5

Problem Formulation

5.1 Introduction and Literature Review

5.1.1 Motivation

Natural convection in rectangular cavities with unequally heated sidewalls is

a problem of fundamental interest to fluid mechanics and heat transfer, with

many geophysical and industrial applications. For example, it is well known

that convection in narrow vertical tubes of various heat engineering equipment

influences its operating features. In particular, in heat pipes, a slug regime

of boiling appears in the case of natural convection lowering, which reduces

the heat transfer and decreases the thermosyphon efficiency [64]. As a conse-

quence, it is required to reveal the dependency of natural convection intensity

on the inner diameter of the pipes and the way of heating.

The fact that air is a good insulator has been appreciated and utilized in

the construction of buildings for many years. For instance, in the construction

of residential units, it is common practice to build walls consisting of two thick-
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nesses of brick separated by an unventilated air gap of a few inches. Engineers

have therefore been interested in studying how much heat is transferred across

the air gap, and how the rate at which heat is transferred depends on the

distance and the temperature difference between the two vertical walls. More-

over, fluid adjacent to a heated wall undergoes motion as a result of variations

in the buoyancy force caused by temperature gradients in the fluid. Rather

than studying the rate of transfer of heat across the cavity, geophysicists have

been more concerned with discovering the motion of the fluid and the tem-

perature distribution within. The evident interest in the problem has led to

theoretical and experimental studies of the role played by buoyancy forces in a

variety of circumstances and to one of the earliest formulations of the problem

in the two-dimensional form [5].

Another interesting application of natural convection that has attracted

increasing research attention in recent years is the adoption of solar chimneys

for building ventilation as an energy-efficient means of delivering fresh air to

the occupants (see, for example, [49, 55, 73, 26, 35]). A solar chimney may be

described as an asymmetrically heated air channel with air flow constrained

between two vertical walls (glazing and absorber). The air movement is due

to the buoyancy force generated by solar heating such that hot air rises and

exits from the top of the chimney cavity, drawing cooler air into the building

in a continuous fashion [4].
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5.1.2 One-Dimensional Flows in Plane Geometries

Due to its significance for a variety of engineering and industrial applications,

the natural convection flow of a viscous fluid along a vertical plate has been

studied extensively in the literature. In the case where the plate is doubly-

infinite, the equations of motion and thermodynamic energy reduce to one-

dimensional forms, and the problem becomes analytically tractable. Solutions

by the method of Laplace transforms have been obtained for a variety of plate

boundary conditions [31, 24, 14], assuming the fluid is unstratified. These

exact solutions provide rare analytical descriptions of transient natural con-

vection flows and are potentially valuable as a means of validating numerical

convection models.

Since thermally stratified media often occur in nature, of particular interest

is the case when there exists a prevailing vertical stratification in addition to a

temperature contrast in the horizontal direction between two vertical sidewalls.

Steady-state solutions for these flows were obtained by several researchers

[5, 18, 22, 7]. The analytical procedure was focused on an exact solution

of the Boussinesq equation in an infinite vertical layer. By examining the

asymptotic structure of the base flow for large Rayleigh numbers, it was shown

that the mass flux is carried by the boundary layer on the vertical wall. The

dynamical significance of this layer, referred to as the buoyancy layer, has

been asserted in a wide variety of strongly stratified fluid systems. A large

part of the literature on natural convection in an enclosure has been concerned

with steady-state situations. Time-dependent flows of buoyant convection in a

cavity have received far less attention (e.g., [29]). As observed by Jischke and

Doty in [32], this scarcity does not imply that the time-dependent processes

85



are in any way less important. Rather, this is reflective of the major difficulties

involved in dealing with time-dependent convection problems in general.

The classical framework was then extended by Park and Hyun [51] and Park

[50] to include thermal stratification in the study of time-dependent flows. In

[51], Park and Hyun used the eigenfunction expansion method to find a formal

solution to the unsteady equations of motion for the buoyancy layer generated

by an impulsive (step) change of temperature at the infinite vertical wall.

A straightforward analysis of the transient buoyancy layer revealed that the

transition to the steady state can be monotonic or oscillatory depending on

how big (or small) the Prandtl number is compared to the Rayleigh number.

While Park and Hyun [51] and Park [50] considered the flow in the gap

between two parallel plates, Shapiro and Fedorovich [61] considered the un-

steady flow in the semi-infinite domain bounded by a single plate immersed

in a stably stratified fluid. Shapiro and Fedorovich also made provision for

pressure work for a perfect gas, a term that is neglected in the conventional

Boussinesq approximation. With attention restricted to fluids of Prandtl num-

ber unity, Shapiro and Fedorovich obtained analytical solutions for the cases

of (1) impulsive (step) change in plate perturbation temperature, (2) sudden

application of a plate heat flux, and (3) for arbitrary temporal variations in

plate perturbation temperature or plate heat flux. Thermal stratification pro-

vided a negative feedback mechanism whereby rising fluid cooled relative to

the environment, while subsiding fluid warmed relative to the environment. In

a later paper of the same authors [60], analytical solutions of the viscous equa-

tions of motion and thermodynamic energy were obtained for Prandtl numbers

near unity by the method of Laplace transforms and a regular perturbation
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expansion in the Prandtl number. It was shown that the developing bound-

ary layers are thicker, more vigorous, and more sensitive to smaller Prandtl

numbers (< 1).

5.1.3 Some Flows in Other Geometries

To address the demands of fast developing engineering applications, researchers

have studied a variety of geometrical configurations. Some of the interest-

ing problems in the literature include the study of analytical solutions for

time-periodic thermally driven slope flows [74], stability scaling for inclined

differentially heated cavity flows [71] and investigation of fluid dynamics and

thermal performance in the space between a hot inner cylinder and a cold outer

polygonal shape when radiative heat flux is taken into consideration [58].

Convective heat transfer problems about cylindrical bodies have gained

increasing attention because of their widely used geometry: in geothermal

reservoirs for power generation, heat generating fuel rods in reactors, hot fil-

aments in polymer industries, and others. The early research mainly focused

on unstratified media and examined natural convective flows along vertical

cylinders with constant or sudden change in heat flux [24, 46] and surface

temperature [45, 11]. To add realism to the problem, researchers considered

vertical cylinders immersed in stratified media and studied free convection for

a sudden change in surface temperature of the cylinder [15] as well as time-

periodic surface boundary conditions [62]. Recently, more studies have been

conducted for flows along oscillating and moving cylinders in both unstratified

[34] and stratified media [16].
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5.1.4 Direct Numerical Simulation of Boundary Layers

Unsteady natural convection flows are considerably more difficult to analyze

theoretically because of the intrinsic coupling between the temperature and

velocity fields. The case of a doubly infinite plate, in which no leading edges

are considered, is one of the few scenarios where the Boussinesq equations of

motion and the thermodynamic energy may be solved analytically. This owes

to the fact that the unsteady natural convection flow along an infinite vertical

plate can be assumed laminar one-dimensional and so the equations reduce

to a set of linear partial differential equations which may be easier to study

theoretically in a number of circumstances.

Flows between infinite vertical walls become much more difficult to analyze

when the temperature along each plate is not constant (isothermal case) but

increases linearly with height (positive stratification). Moreover, the level

of complexity of the problem increases when we want to study a fluid in a

rectangular closed container as we lose the one-dimensional property of the

flow and instead the full two-dimensional setting should be considered. This

led researchers to rely on numerical models to understand these turbulent flows

for a variety of regimes and for different boundary conditions (for example,

[19, 53, 20, 42]). There has also been increasing interest over the years to

use direct numerical simulations to understand the initial stage of laminar to

turbulent transition (see, [1, 27, 76, 63]) as well as the problem of evaporation

and condensation by mixed convection in vertical channels and rectangular

ducts (for example, [6, 48, 10, 47, 66, 30]).
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5.1.5 Periodically-Driven Flows

A major issue that will be the main object of our study is the case of a

fluid driven by external periodic temperature variations. When a system is

subjected to an external excitation with the correct natural frequency, its

eigenmodes will be amplified and the system undergoes a physical phenomenon

referred to as resonance. This problem statement has serious ramifications

from the standpoint of the fundamental dynamics of natural convection. In

practical applications, the problem models, for example, natural convection in

a room which is heated periodically on a daily basis. Even more appealing

is the convection in a confined space in many electronic devices, where time-

dependent flows are induced due to the periodic energizing of the on and off

modes.

Extensive studies have been conducted for instabilities of natural convec-

tion boundary layers in differentially heated cavities and other interesting

regimes for both unstratified (for example, [3, 8, 12, 13, 65]) and stratified

media (see, [23, 44, 69, 70, 72]). However, resonance of natural convection

flows has attracted much less interest and results about resonance in a cavity

were initially reported by Kazmierczak and Chinoda [33] and Lage and Bejan

[41]. Some of the later investigations were concerned with external periodic-

heating-induced resonance of natural convection (for example, [39, 40, 37]) and

others examined the resonance induced by a mechanical oscillating boundary

[36]. Moreover, Zhao et al. [75] used a direct stability analysis to exploit the

resonance characteristics of the thermal boundary layer and the effects of the

resonance on heat transfer, especially in the nonlinear flow response regime.

In [41], Lage and Bejan’s interest was directed at a rectangular cavity with
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a constant-temperature cold sidewall and a time-dependent heat flux fluctuat-

ing in a square-wave fashion about the mean value at the other vertical wall.

Their research mainly focused on the effect of periodicity of the sidewall heat-

ing on the time-dependent flow and the possibility of resonance of the fluid

system with the oscillation of the externally supplied heat input. The numeri-

cal studies in [41] at high Rayleigh numbers clearly established the existence of

resonance for periodic heating which was identified by the occurrence of max-

imal fluctuations of the local velocity and the Nusselt numbers. The study in

[41] shows good evidence of the existence of resonance in natural convection

when a continuously changing thermal boundary condition is adopted.

In a related problem set-up, Kazmierczak and Chinoda [33] conducted

numerical studies of natural convection in a square cavity with one vertical

sidewall at a constant temperature while the temperature at the other wall

varied sinusoidally in time about the mean value. The numerical simulations

produced periodic solutions for one Rayleigh number (Ra = 1.4 × 105) and

one Prandtl number (Pr = 7), and for three different frequencies of the tem-

perature oscillations. The solutions demonstrated that the interior flow fluc-

tuations changed monotonically with the frequency of the externally supplied

temperature, and no resonance was detected between the temporal temper-

ature variations and the resulting flow oscillations. The numerical account

of Kazmierczak and Chinoda [33] was then at variance with the qualitative

conclusions of Lage and Bejan [41], although the precise problem formulations

may be only slightly different.

Kwak and Hyun [39] performed comprehensive and far-ranging numerical

computations for the same problem formulation as the one used in [33] to ob-
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tain detailed numerical solutions over a much broader range of the frequency

of the hot-wall temperature oscillation. It was shown that the previous com-

putational results in [33] for three different values of frequency represent only

a narrow portion of the whole spectrum of solutions. Owing to the limited

frequency resolution, distinct evidence of resonance between the flow fluctua-

tion and the frequency of wall temperature oscillation was not found in [33].

However, the numerical results in [39] have illustrated that the fluctuations

of flow and heat transfer responses display peak values at certain frequencies,

if computations span much more extended ranges of the frequency with con-

siderably finer resolution. These efforts explain the apparent disagreements

among the previous works.

5.1.6 Our Problem

In the present part of the dissertation, we study a viscous stably stratified fluid

in a channel with time-periodic temperature variations applied at the sidewalls.

The fundamental question then concerns the way in which the periodicity of

the sidewalls’ heating-cooling cycles affect both the time-dependent flow and

the heat transfer across the cavity. The crux of the argument is focused on the

possibility of ‘resonance’ of the fluid flow with the periodic oscillations of the

externally supplied temperatures at the walls. Although several authors have

studied such physical phenomena (for example, [33, 41, 39]), their research

heavily relied on numerical studies of natural convection since in most cases

they did not have analytical solutions to the time-dependent flow.

For the above set-up, we seek solutions in the form of simple harmonic

oscillations to obtain analytical temperature and velocity profiles of the time-
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dependent flow for the Boussinesq equations of motion and thermodynamic

energy that depend on time and one spatial variable. This enables us to study

the vertical motion of the fluid caused by variations in the buoyancy forces as

well as the heat transfer across the cavity.

The results presented in the following chapters are a part of an ongoing

research aimed at analyzing the existence of resonance of the fluid flow as

a function of three parameters: Prandtl number, width of the channel, and

frequency of the external temperature oscillations. So far, we consider time-

periodic temperature oscillations at the sidewalls to be in direct opposition. As

a future project, we wish to consider the set-up in which we make a provision

for a phase shift between the heating and cooling cycles of the two vertical

walls. In that case, it would be interesting to study how this phase shift

affects any resonance in view of different Prandtl numbers. We hope to study

this problem in the near future.
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5.2 Governing Equations

Consider a Cartesian coordinate system in which the z-axis opposes the gravity

vector, the (y, z)-plane coincides with an infinite vertical plate, the x-axis

is directed perpendicular to the plates, and the fluid fills an infinite vertical

channel of width 2L. In the initial state, the fluid is at rest with zero horizontal

temperature gradient until thermal conditions at the left and right plates are

abruptly changed at t = 0 (see Figure 5.1). The derivation of the governing

equations below follows closely the discussion found in [61]. In full generality,

these equations are far more complicated as there are many competing factors.

Detailed accounts can be found in the classical works of Prandtl [54] and

Schlichting [59]. In the present study, we neglect terms that are small and

only consider a simplified version of these equations.

5.2.1 Derivation of the PDEs

The motion of the fluid is assumed laminar, with the only non-zero velocity

component, the vertical velocity W , varying only in the x-direction. (Hence,

the incompressibility condition is trivially satisfied). In order for the horizontal

equations of motion to be satisfied,
∂p

∂x
= 0 and the local pressure p(x, z, t) =

p0(z) where the environmental pressure p0(z) satisfies the hydrostatic equation,

dp0

dz
= −ρ0 g, (5.1)

and ρ0(z) is the environmental density. Accordingly, p itself satisfies the hy-

drostatic equation based on the environmental density.

Writing the density as the sum of its environmental and perturbation com-

ponents
ρ(x, z, t) = ρ0(z) + ρ′(x, t), (5.2)
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Figure 5.1: Geometric Configuration of a fluid in a channel of width 2L with
left (cold) wall at temperature T = − δ cos(ωt) and right (Hot) wall at tem-
perature T = + δ cos(ωt).

the Boussinesq form of the vertical equation of motion is given by

∂W

∂t
= −g ρ

′

ρr

+ ν
∂2W

∂x2
. (5.3)

Here, the subscript ‘r’ denotes a constant reference value, and ν is a constant

kinematic viscosity coefficient.

We can also decompose the temperature into its environmental and per-

turbation components,

T (x, z, t) = T0(z) + T ′(x, t), (5.4)
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and use the Boussinesq (linearized) form of the equation of state

ρ′ = −ρr

Tr

T ′ (5.5)

to eliminate ρ′ from (5.3) in favour of T ′ and get

∂W

∂t
= g

T ′

Tr

+ ν
∂2W

∂x2
. (5.6)

The term g
T ′

Tr

represents the buoyancy force per unit mass of the fluid.

Now let us turn our attention to the thermodynamic energy equation for

a perfect gas of constant thermal conductivity [59],

ρcp
DT

Dt
=

Dp

Dt
+ k

∂2T

∂x2
, (5.7)

where
D

Dt
=

∂

∂t
+W

∂

∂z
is the one-dimensional total derivative operator, cp is

the specific heat at constant pressure and k is the thermal conductivity.

Note that we have neglected the viscous dissipation term which is generally

smaller than the other terms in (5.7), including the pressure work term (see

[2, 21, 43]). The pressure work term is itself small and is neglected in the con-

ventional Boussinesq approximation [38]; in our case, however, the retention

of the pressure work term amounts to a slight refinement of the Boussinesq

model. For a detailed and lucid discussion of this issue, we refer the reader

to [61].

Using (5.4) and p(x, z, t) = p0(z), where p0 satisfies (5.1), the equation (5.7)

becomes

∂T ′

∂t
= −dT0

dz
W − ρ0 g

ρ cp

W +
k

ρcp

∂2T ′

∂x2
. (5.8)
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Approximating
ρ0

ρ
by unity and treating the thermal diffusivity κ :=

k

ρ cp
as

constant, we rewrite (5.8) as

∂T ′

∂t
= −σW + κ

∂2T ′

∂x2
, (5.9)

where σ :=
dT0

dz
+
g

cp

is a constant parameter referred to as the stratification

parameter. The term −σW in (5.9), which is a combination of the vertical

temperature advection and pressure work, introduces a coupling between W

and T ′. When σ > 0, the environment is said to be statically stable and in this

case the term −σW provides a simple negative feedback in (5.3), (5.6) and

(5.9): warm fluid rises, expands and cools relative to the environment, whereas

cool fluid subsides, compresses and warms relative to the environment. Thus,

the classical problem becomes more realistic when we take into account the

effects from thermal stratification.

5.2.2 Boundary Conditions

Recall that in this case we have an incompressible fluid contained in a vertically

infinite channel of width 2L so that the left plate is located at x = −L and

the right plate is located at x = L (see Figure 5.1).

The no-slip boundary condition is imposed at the plate surfaces, that is,

for t > 0,

W (±L, t) = 0. (5.10)

The perturbation temperature at both of the plate surfaces is a temporal

oscillation with circular frequency ω and an amplitude of −δ on the left (cold)

plate and +δ on the right (hot) plate, that is, for t > 0,

T ′(±L, t) = ± δ cos(ωt). (5.11)

96



5.3 Energy Balance Equations

In this section, we attach a physical meaning to each of the terms that appear

in our governing equations given for x ∈ (−L,L) and t > 0 by the system

∂W

∂t
= −g ρ

′

ρr
+ ν

∂2W

∂x2
, (5.12)

∂T ′

∂t
= −σW + κ

∂2T ′

∂x2
. (5.13)

Multiplying (5.12) by ρrW , integrating with respect to x from x1 to x2, where

−L ≤ x1 < x2 ≤ L, and using integration by parts, we obtain

d

dt

∫ x2

x1

ρrW
2

2
dx+

∫ x2

x1

ρ′gW dx =−
∫ x2

x1

ρrν

(
∂W

∂x

)2

dx

+ ρrν W
∂W

∂x

∣∣∣∣x2
x1

.

(5.14)

If we use the fact that g
ρ′

ρr

= −g T
′

Tr

, we can rewrite (5.14) in the form

d

dt

∫ x2

x1

ρrW
2

2
dx− g ρr

Tr

∫ x2

x1

T ′W dx =−
∫ x2

x1

ρrν

(
∂W

∂x

)2

dx

+ ρrν W
∂W

∂x

∣∣∣∣x2
x1

.

(5.15)

Interpretation of each term in (5.14) and (5.15):

• rate of change of the kinetic energy,

∫ x2

x1

ρrW
2

2
dx, of the fluid between

x1 and x2:

d

dt

∫ x2

x1

ρrW
2

2
dx ;

• rate of increase of the potential energy of the fluid in the gravity field
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(heavier fluid is moved higher because of the vertical motion of the fluid):

∫ x2

x1

ρ′gW dx = −g ρr

Tr

∫ x2

x1

T ′W dx ;

• rate of viscous dissipation of the mechanical energy of the fluid:

−
∫ x2

x1

ρrν

(
∂W

∂x

)2

dx ;

• flux of mechanical energy through the boundaries of the region [x1, x2]:

ρrν W
∂W

∂x

∣∣∣∣x2
x1

= −

(
− ρrν W

∂W

∂x

∣∣∣∣
x2

)
+

(
− ρrν W

∂W

∂x

∣∣∣∣
x1

)
.

Multiplying (5.13) by cpρr and integrating with respect to x from x1 to x2:

d

dt

∫ x2

x1

cpρrT
′ dx = −

∫ x2

x1

cpρrσW dx+ cpρrκ
∂T ′

∂x

∣∣∣∣x2
x1

. (5.16)

Interpretation of each term in (5.16):

• rate of change of the excess heat energy,

∫ x2

x1

cpρrT
′ dx, over the “back-

ground” heat energy,

∫ x2

x1

cpρrT∞ dx, of the fluid between x1 and x2:

d

dt

∫ x2

x1

cpρrT
′ dx ;

• rate of change of the heat energy due to the vertical temperature advec-

tion and the vertical stratification of the fluid:

−
∫ x2

x1

cpρrσW dx ;
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Using that σ =
dT∞
dz

(z) +
g

cp

, we can write this as

−
∫ x2

x1

cpρr
dT∞
dz

(z)W dx−
∫ x2

x1

ρrgW dx ,

where the first term accounts for the fact that the fluid at different

heights has different environmental temperature T∞(z), while the second

one comes from the pressure work;

• flux of heat energy through the boundaries of the region [x1, x2]:

cpρrκ
∂T ′

∂x

∣∣∣∣x2
x1

= −

(
− cpρrκ

∂T ′

∂x

∣∣∣∣
x2

)
+

(
− cpρrκ

∂T ′

∂x

∣∣∣∣
x1

)
.

Note that cpρrκ is the coefficient in front of the temperature gradient in

the Fourier law of heat conduction,

j = −cpρrκ∇T .

It is important to note that while the term −
∫ x2

x1

ρrν

(
∂W

∂x

)2

dx in (5.14)

accounts for the loss of mechanical energy due to viscous dissipation, it is

neglected in the balance of heat energy in (5.16). This is customary since

detailed theoretical considerations and analysis of experimental data show that

the viscous dissipation term is typically smaller than the other terms in (5.16),

including the pressure work term (see, e.g., Ackroyed [2], Gebhart et al [21]

and Mahajan and Gebhart [43]).
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5.4 Non-dimensionalization

We non-dimensionalize the variables with the intent of clearing the govern-

ing equations of all parameters except the Prandtl number. Recall that our

governing equations for x ∈ (−L,L) and t > 0 are given by

∂W

∂t
= g

T ′

Tr
+ ν

∂2W

∂x2
, (5.17)

∂T ′

∂t
= −σW + κ

∂2T ′

∂x2
, (5.18)

with the boundary conditions

W (±L, t) = 0, (5.19)

T ′(±L, t) = ± δ cos(ωt). (5.20)

In what follows, we describe how we non-dimensionalize our variables to

reduce the number of degrees of freedom in the governing equations to one.

We set

x = x∗ x , t = t∗ t , W = W ∗W , and T ′ = T ∗ T .

and plug in (5.17) and (5.18) to obtain

∂W

∂t
= g

T ∗t∗

TrW ∗ T + ν
t∗

x∗2
∂2W

∂x2 , (5.21)

∂T

∂t
= −σ W

∗t∗

T ∗
W + κ

t∗

x∗2
∂2T

∂x2 . (5.22)
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This produces the following system for the coefficients:

g

Tr

T ∗t∗

W ∗ = λ1,

ν
t∗

x∗2
= λ2,

σ
W ∗t∗

T ∗
= λ3,

κ
t∗

x∗2
= λ4.

Scaling the temperature by the amplitude δ, that is, setting T ∗ = δ, we get

gδ

Tr

t∗

W ∗ = λ1, (5.23)

ν
t∗

x∗2
= λ2, (5.24)

σ

δ
W ∗t∗ = λ3, (5.25)

κ
t∗

x∗2
= λ4. (5.26)

Now,

• choosing λ2 = 1, we get a time scale from (5.24): t∗ =
x∗2

ν

• the choice of λ2 fixes the constant λ4 because of (5.26): λ4 =
κ

ν
=

1

Pr

• choosing λ1 = λ3 = 1, we get:

the spatial scale: x∗ =
√
κ

(
Tr

σg

)1/4

the velocity scale: W ∗ = δ

√
g

σTr

• as a consequence, we get the time scale: t∗ =

√
Tr

σg
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Therefore, the scaling:

x =
√
ν

(
Tr

σg

)1/4

x, t =

√
Tr

σg
t, T ′ = δ T , W = δ

√
g

σTr

W

gives the following non-dimensionalized system of differential equations

∂W

∂t
= T +

∂2W

∂x2 ,

∂T

∂t
= −W +

1

Pr

∂2T

∂x2 ,

where Pr =
ν

κ
is the Prandtl number. The non-dimensional boundary condi-

tions are

W (±L, t) = 0,

T (±L, t) = ± cos(ωt),

where L =
1√
ν

(
σg

Tr

)1/4

L and ω =

√
Tr

σg
ω.

Remark 5.1. Park and Hyun [51] and Park [50] used the natural length scale

L to non-dimensionalize the space variable and their choice corresponds to:

x∗ = L , t∗ =
L2

κ
, W ∗ =

κ

L
, T ∗ = σL ,

which gives us

λ1 = RaPr , λ2 = Pr , λ3 = 1 , λ4 = 1 ,

where Ra =
L4gσ

κνTr

.
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Therefore, the non-dimensional system for x ∈ (−1, 1) and t > 0 is given by

1

Pr

∂W

∂t
= RaT +

∂2W

∂x2 ,

∂T

∂t
= −W +

∂2T

∂x2 ,

with the non-dimensional boundary conditions

W (±1, t) = 0,

T (±1, t) = ± δ cos(ωt).
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Chapter 6

Temperature and Velocity

Profiles

Consider the non-dimensionalized system of differential equations (from Sec-

tion 5.4) given for x ∈ (−L,L) and t > 0 by

∂W

∂t
= T +

∂2W

∂x2
, (6.1)

∂T

∂t
= −W +

1

Pr

∂2T

∂x2
, (6.2)

with the boundary conditions for t > 0

W (±L, t) = 0, (6.3)

T (±L, t) = ± cos(ωt), (6.4)

where we dropped the bars to simplify the notation.

Eliminating one of the variables in terms of the other has the advantage of

decoupling the system by getting a higher order partial differential equation

(PDE) but this poses challenges in terms of deriving the required number of

boundary conditions needed to solve the resulting PDEs.
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6.1 Transforming the PDEs into ODEs

Using (6.1), we can express T as a function of W and substitute it in (6.2) to

get a fourth order PDE for the vertical velocity W given by

∂4W

∂x4
− (1 + Pr)

∂3W

∂t ∂x2
+ Pr

∂2W

∂t2
+ PrW = 0. (6.5)

Alternatively, if we choose to express W from (6.2) as a function of T and

substitute it in (6.1), we get a fourth order PDE for the temperature T given

by
∂4T

∂x4
− (1 + Pr)

∂3T

∂t ∂x2
+ Pr

∂2T

∂t2
+ Pr T = 0. (6.6)

Note that the structure of the system (6.1)-(6.2) is special in the sense that

both the temperature T and the vertical velocity W satisfy the same partial

differential equation

∂4Φ

∂x4
− (1 + Pr)

∂3Φ

∂t ∂x2
+ Pr

∂2Φ

∂t2
+ PrΦ = 0,

but corresponding to different boundary conditions and so it does not matter

which equation we choose to solve first.

6.1.1 Deriving the ODEs

At this stage, we will focus our attention on equation (6.6) and use (6.2) to

find the vertical velocity. We seek solutions of (6.5) and (6.6) in the form of

simple harmonic oscillations and so we write:

W (x, t) = <
{

eiωt [A(x) + iB(x)]
}
, (6.7)

T (x, t) = <
{

eiωt [C(x) + iD(x)]
}
, (6.8)

where A, B, C, D : (−L,L)→ R are real-valued functions.
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Substituting the expression for T (x, t) from (6.36) into (6.6) yields two

coupled ordinary differential equations in C and D (fourth-order system) given

by

C(4) + Pr (1− ω2)C = −ω (1 + Pr)D′′, (6.9)

D(4) + Pr (1− ω2)D = ω (1 + Pr)C ′′, (6.10)

where ′ =
d

dx
.

Differentiating (6.10) twice (with respect to x), multiplying by ω (1 + Pr)

and substituting ω (1 +Pr)D′′ and ω (1 +Pr)D(6) obtained from (6.9), we get

C(8) +
[
2Pr + ω2 (1 + Pr2)

]
C(4) + Pr2 (1− ω2)2C = 0. (6.11)

Similarly, one can easily see that D satisfies the same ordinary differential

equation (ODE), that is,

D(8) +
[
2Pr + ω2 (1 + Pr2)

]
D(4) + Pr2 (1− ω2)2D = 0. (6.12)

6.1.2 Deriving the Boundary Conditions for the ODEs

The boundary conditions for the real-valued functions C and D follow imme-

diately from the expression of T (x, t) (6.36) and the boundary condition (6.4),

so that

C(±L) = ±1 and D(±L) = 0. (6.13)

To obtain the boundary conditions for the higher derivatives of C and D,
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1. Using (6.2), we have

1

Pr

∂2T

∂x2
(x, t)− ∂T

∂t
(x, t) = W (x, t).

Setting x = ±L and using the boundary condition W (±L, t) = 0, we get

1

Pr

∂2T

∂x2
(±L, t) =

∂T

∂t
(±L, t).

Using the expression for T from (6.36), we can rewrite this as a condition

on C ′′(±L) and D′′(±L) in terms of C(±L) and D(±L) given by

[
−ω C(±L) +

1

Pr
D′′(±L)

]
sin(ωt) +

[
−ωD(±L)− 1

Pr
C ′′(±L)

]
cos(ωt) = 0,

or, using (6.13),[
∓ω +

1

Pr
D′′(±L)

]
sin(ωt) − 1

Pr
C ′′(±L) cos(ωt) = 0 .

This gives the boundary conditions

C ′′(±L) = 0 and D′′(±L) = ±ωPr. (6.14)

2. Setting x = ±L in (6.9) and using the boundary conditions (6.13) and

(6.14), we get

C(4)(±L) = −Pr (1− ω2)C(±L)− ω (1 + Pr)D′′(±L)

= ∓Pr (1− ω2)∓ ω2(1 + Pr)

and

C(4)(±L) = ∓Pr (1 + ω2 Pr). (6.15)
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Similarly, setting x = ±L in (6.10) and using the boundary conditions

(6.13) and (6.14), we get

D(4)(±L) = −Pr (1− ω2)D(±L) + ω (1 + Pr)C ′′(±L) = 0. (6.16)

3. Now, taking the second x-derivatives of (6.9) and (6.10) and using the

boundary conditions (6.13)-(6.16), we get

C(6)(±L) = −Pr (1− ω2)C ′′(±L)− ω (1 + Pr) D(4)(±L) = 0,

and respectively,

D(6)(±L) = −Pr (1− ω2)D′′(±L) + ω (1 + Pr)C(4)(±L)

= ∓ω Pr2 (1− ω2)∓ ω Pr (1 + Pr) (1 + ω2 Pr)

= ∓ω Pr
[
1 + Pr

(
2 + ω2Pr

)]
.

Therefore, C and D satisfy the boundary value problem

Ψ(8) +
[
2Pr + ω2 (1 + Pr2)

]
Ψ(4) + Pr2 (1− ω2)2 Ψ = 0,

with the boundary conditions

C(±L) = ±1, D(±L) = 0,

C ′′(±L) = 0, D′′(±L) = ±ω Pr,

C(4)(±L) = ∓Pr
(
1 + ω2Pr

)
D(4)(±L) = 0,

C(6)(±L) = 0, D(6)(±L) = ∓ω Pr
[
1 + Pr

(
2 + ω2 Pr

)]
.

(6.17)
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6.2 Solving the BVPs

Now let’s find the general solution of the ODE (6.11) for C (and respectively

(6.12) for D). Recall that C and D satisfy the same ODE whose characteristic

equation

(
λ4
)2

+
[
2Pr + ω2

(
1 + Pr2

)]
λ4 + Pr2 (1− ω2)2 = 0 (6.18)

is a quadratic equation in λ4 and so

λ4 =
1

2

[
−2Pr − ω2(1 + Pr2)±

√
[2Pr + ω2 (1 + Pr2)]2 − 4Pr2(1− ω2)2

]
= −Pr − ω2

2
(1 + Pr2)± ω (1 + Pr)

√
Pr +

ω2

4
(1− Pr2)2.

(6.19)

One can easily observe that:

• the discriminant of (6.18) is always strictly positive, hence both values

of λ4 are real, and

• using the fact that both
[
2Pr + ω2(1 + Pr2)

]
and the discriminant are

both strictly positive, we get that

[
2Pr + ω2 (1 + Pr2)

]2
>
[
2Pr + ω2 (1 + Pr2)

]2 − 4Pr2
(
1− ω2

)2
> 0

and

− Pr − ω2

2
(1 + Pr2) + ω (1 + Pr)

√
Pr +

ω2

4
(1− Pr2)2 < 0,

so that both values of λ4 are negative.
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Let us set

∆ := Pr +
ω2

4
(1− Pr)2, (6.20)

and

γ1,2 :=

{
1

4

[
Pr +

ω2

2
(1 + Pr2) ∓ ω(1 + Pr)

√
∆

]}1/4

, (6.21)

so that γ1 and γ2 are real with 0 < γ1 < γ2, and

λ4 = −4 γ4
1,2.

Introducing the notations

λ1 := (1 + i) γ1 and λ2 := (1 + i) γ2, (6.22)

we can write all eight roots of the characteristic equation (6.18) as

λ1, −λ1, λ̄1, −λ̄1, λ2, −λ2, λ̄2, −λ̄2.

The general solution for C has, therefore, the form

C(x) = k1eλ1x + k2e−λ1x + k3eλ̄1x + k4e−λ̄1x

+ k5eλ2x + k6e−λ2x + k7eλ̄2x + k8e−λ̄2x,

(6.23)

where kl (l = 1, . . . , 8) are arbitrary complex-valued constants.

Since the function C is real-valued, then C must equal its complex conjugate,

that is,
C(x) = C(x) ,

which implies that the constants kj satisfy

k3 = k̄1, k4 = k̄2, k7 = k̄5, k8 = k̄6,
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and the general solution (6.23) becomes (c.c.=“complex conjugate”)

C(x) = k1eλ1x + k2e−λ1x + k5eλ2x + k6e−λ2x + c.c. . (6.24)

For the case of zero “dephasing” we expect the function C to be also odd,

C(−x) = −C(x) ,

which yields the relations

k2 = −k1, k6 = −k5 ,

and hence restricts the general solution (6.24) even further to give

C(x) = k1

(
eλ1x − e−λ1x

)
+ k5

(
eλ2x − e−λ2x

)
+ c.c.

= 2<
{
k1

(
eλ1x − e−λ1x

)
+ k5

(
eλ2x − e−λ2x

)}
,

(6.25)

where λ1,2 are given by (6.21) and (6.22).

Moreover, using expression(6.25) for C and notations (6.21) and (6.22), we

can record the 2nd, 4th and 6th-order derivatives of C as follows:

C(x) = 2<
{
k1

(
eλ1x − e−λ1x

)
+ k5

(
eλ2x − e−λ2x

)}
,

C ′′(x) = 2γ2
1 <
{

ik1

(
eλ1x − e−λ1x

)}
+ 2γ2

2 <
{

ik5

(
eλ2x − e−λ2x

)}
,

C(4)(x) = −4γ4
1 <
{
k1

(
eλ1x − e−λ1x

)}
− 4γ4

2 <
{
k5

(
eλ2x − e−λ2x

)}
,

C(6)(x) = −8γ6
1 <
{

ik1

(
eλ1x − e−λ1x

)}
− 8γ6

2 <
{

ik5

(
eλ2x − e−λ2x

)}
.

(6.26)

Let
kζ = kζr + ikζi , ζ = 1, 5,

where the subscripts r and i stand for “real part” and “imaginary part,” re-

spectively.
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Observe that

<
{
k1

(
eλ1x − e−λ1x

)}
= 2<{k1 sinh(λ1x)}

= 2<{[k1r sinh(γ1x) cos(γ1x)− k1i cosh(γ1x) sin(γ1x)]

+ i [k1r cosh(γ1x) sin(γ1x) + k1i sinh(γ1x) cos(γ1x)]}

= 2 [k1r sinh(γ1x) cos(γ1x)− k1i cosh(γ1x) sin(γ1x)] ,

where we used sinh(λ1x) = sinh(γ1x) cos(γ1x) + i cosh(γ1x) sin(γ1x).

Therefore, the expression (6.25) for C can be rewritten as

C(x) = 4
[
k1r sinh(γ1x) cos(γ1x)− k1i cosh(γ1x) sin(γ1x)

+ k5r sinh(γ2x) cos(γ2x)− k5i cosh(γ2x) sin(γ2x)
]
.

(6.27)

Moreover, introducing the notations

αζ(x) := cosh(γζx) sin(γζx),

ζ = 1, 2,

βζ(x) := sinh(γζx) cos(γζx),

(6.28)

we can simplify the expression (6.25) for C and write

C(x) = 4
[
k1r β1(x)− k1i α1(x) + k5r β2(x)− k5i α2(x)

]
. (6.29)

It remains now to impose the boundary conditions on C. Since we have

already implemented the fact that C is an odd function, we need to impose

only the boundary conditions at x = L.
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At this point, it is convenient to introduce the temporary notations

aζ := αζ(L) = cosh(γζL) sin(γζL),

ζ = 1, 2,

bζ := βζ(L) = sinh(γζL) cos(γζL),

(6.30)

and write the system from which we solve for the coefficients klr and kli,

l = 1, 5, as

1
4
C(L) = a1 k1r − a1 k1i + b2 k5r − a2 k5i = 1

4
,

−1
8
C ′′(L) = γ2

1a1 k1r + γ2
1b1 k1i + γ2

2a2 k5r + γ2
2b2 k5i = 0,

− 1
16
C(4)(L) = γ4

1b1 k1r − γ4
1a1k1i + γ4

2b2 k5r − γ4
2a2 k5i = 1

16
Pr(1 + ω2Pr),

1
32
C(6)(L) = γ6

1a1 k1r + γ6
1b1 k1i + γ6

2a2 k5r + γ6
2b2 k5i = 0.

The solution of this system is

 k1r k1i

k5r k5i

 =
1

16(γ4
1 − γ4

2)


Pr − 4 γ4

2 + ω2Pr2

a2
1 + b2

1

b1 −
Pr − 4 γ4

2 + ω2Pr2

a2
1 + b2

1

a1

−Pr − 4 γ4
1 + ω2Pr2

a2
2 + b2

1

b2
Pr − 4 γ4

1 + ω2Pr2

a2
2 + b2

2

a2

 .

Going back to the original notations:

1. Using the expressions (6.21) and (6.22), we have

1

16(γ4
1 − γ4

2)
= − 1

8ω (1 + Pr)
√

∆
.

2. Similarly,

Pr − 4 γ4
1 + ω2Pr2 = ω

√
∆ (1 + Pr)

[
1− w

2
√

∆
(1− Pr)

]
,

Pr − 4 γ4
2 + ω2Pr2 = −ω

√
∆ (1 + Pr)

[
1 +

w

2
√

∆
(1− Pr)

]
.
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3. Moreover, using the definitions of aζ and bζ for ζ = 1, 2, we can write

a2
ζ + b2

ζ = cosh2(γζL) sin2(γζL) + sinh2(γζL) cos2(γζL)

=
[
1 + sinh2(γζL)

]
sin2(γζL) + sinh2(γζL) cos2(γζL)

= sinh2(γζL) + sin2(γζL).

Incidentally, a2
ζ + b2

ζ can be factorized as

a2
ζ + b2

ζ = cosh2(γζL)− cos2(γζL).

Using these expressions, we can write

k1r = − 1

8ω (1 + Pr)
√

∆

−ω
√

∆ (1 + Pr)
[
1 + w

2
√

∆
(1− Pr)

]
a2

1 + b2
1

b1

=
1

8

[
1 +

ω

2
√

∆
(1− Pr)

]
sinh(γ1L) cos(γ1L)

sinh2(γ1L) + sin2(γ1L)
.

Similarly, the other coefficients of C can be written as

k1i = −1

8

[
1 +

ω

2
√

∆
(1− Pr)

]
cosh(γ1L) sin(γ1L)

sinh2(γ1L) + sin2(γ1L)
,

k5r =
1

8

[
1− ω

2
√

∆
(1− Pr)

]
sinh(γ2L) cos(γ2L)

sinh2(γ2L) + sin2(γ2L)
,

k5i = −1

8

[
1− ω

2
√

∆
(1− Pr)

]
cosh(γ2L) sin(γ2L)

sinh2(γ2L) + sin2(γ2L)
.

Substituting these expression in (6.29), we obtain

C(x) =
1

2

[
1 +

ω

2
√

∆
(1− Pr)

]
α1(L)α1(x) + β1(L) β1(x)

sinh2(γ1L) + sin2(γ1L)

+
1

2

[
1− ω

2
√

∆
(1− Pr)

]
α2(L)α2(x) + β2(L) β2(x)

sinh2(γ2L) + sin2(γ2L)
.

(6.31)
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The function D satisfies the same differential equation as C (namely,

(6.12)), so its general solution has the form

D(x) = k′1eλ1x + k′2e−λ1x + k′3eλ̄1x + k′4e−λ̄1x

+ k′5eλ2x + k′6e−λ2x + k′7eλ̄2x + k′8e−λ̄2x,

(6.32)

where k′l (l = 1, . . . , 8) are arbitrary complex-valued constants.

Similarly to C, the function D must be real and odd, so the general solution

for D becomes

D(x) = k′1
(
eλ1x − e−λ1x

)
+ k′5

(
eλ2x − e−λ2x

)
+ c.c.

= 2<
{
k′1
(
eλ1x − e−λ1x

)
+ k′5

(
eλ2x − e−λ2x

)}
,

(6.33)

and by writing

k′l = k′lr + ikli , l = 1, 5

and using the notations (6.28), we can write

D(x) = 4
[
k′1r β1(x)− k′1i α1(x) + k′5r β2(x)− k′5i α2(x)

]
. (6.34)

Imposing the boundary conditions and using notations (6.30), we have

b1 k
′
1r − a1 k

′
1i + b2 k

′
5r − a2 k

′
5i = 0,

γ2
1a1 k

′
1r + γ2

1b1 k
′
1i + γ2

2a2 k
′
5r + γ2

2b2 k
′
5i = −1

8
ω Pr,

γ4
1b1 k

′
1r − γ4

1a1 k
′
1i + γ4

2b2 k
′
5r − γ4

2a2 k
′
5i = 0,

γ6
1a1 k

′
1r + γ6

1β1 k
′
1i + γ6

2a2 k
′
5r + γ6

2b2 k
′
5i = − 1

32
ωPr

[
1 + Pr

(
2 + ω2Pr

)]
.
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The solution of this system is

 k′1r k′1i

k′5r k′5i

 =
ωPr

32(γ4
1 − γ4

2)


−1− 4 γ4

2 + p

γ2
1 (a2

1 + b2
1)
a1 −

1− 4 γ4
2 + p

γ2
1 (a2

1 + b2
1)
b1

1− 4 γ4
1 + p

γ2
2 (a2

2 + b2
2)
a2

1− 4 γ4
1 + p

γ2
2 (a2

2 + b2
2)
b2

 ,

where p = 2Pr + ω2Pr2.

Going back to the original notations and similarly as in the case of solving for

the coefficients for C, we can write the coefficients of D as

k′1r = − Pr

16γ2
1

[
ω +

ω2

2
√

∆
(1− Pr)− 1√

∆

]
cosh(γ1L) sin(γ1L)

sinh2(γ1L) + sin2(γ1L)
,

k′1i = − Pr

16γ2
1

[
ω +

ω2

2
√

∆
(1− Pr)− 1√

∆

]
sinh(γ1L) cos(γ1L)

sinh2(γ1L) + sin2(γ1L)
,

k′5r = − Pr

16γ2
2

[
ω − ω2

2
√

∆
(1− Pr) +

1√
∆

]
cosh(γ2L) sin(γ2L)

sinh2(γ2L) + sin2(γ2L)
,

k′5i = − Pr

16γ2
2

[
ω − ω2

2
√

∆
(1− Pr) +

1√
∆

]
sinh(γ2L) cos(γ2L)

sinh2(γ2L) + sin2(γ2L)
.

Substituting these expressions in (6.34), we get

D(x) = − Pr

4γ2
1

[
ω +

ω2

2
√

∆
(1− Pr)− 1√

∆

]
α1(L) β1(x)− β1(L)α1(x)

sinh2(γ1L) + sin2(γ1L)

− Pr

4γ2
2

[
ω − ω2

2
√

∆
(1− Pr) +

1√
∆

]
α2(L)β2(x)− β2(L)α2(x)

sinh2(γ2L) + sin2(γ2L)
.

(6.35)
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We can therefore write an expression for the temperature T (x, t) as

T (x, t) = C(x) cos(ωt)−D(x) sin(ωt), (6.36)

where

C(x) =
1

2

[
Q1

α1(L)α1(x) + β1(L) β1(x)

sinh2(γ1L) + sin2(γ1L)
+Q2

α2(L)α2(x) + β2(L) β2(x)

sinh2(γ2L) + sin2(γ2L)

]
,

D(x) = − Pr

4γ2
1

[
ωQ1 −

1√
∆

] α1(L) β1(x)− β1(L)α1(x)

sinh2(γ1L) + sin2(γ1L)

− Pr

4γ2
2

[
ωQ2 +

1√
∆

] α2(L) β2(x)− β2(L)α2(x)

sinh2(γ2L) + sin2(γ2L)
,

and

Q1 = 1 +
ω

2
√

∆
(1− Pr) , (6.37)

Q2 = 1− ω

2
√

∆
(1− Pr) , (6.38)

In order to solve for the vertical velocity W (x, t), we’ll use equation (6.2)

and the expression for T (x, t) from (6.36) to write

W (x, t) =
1

Pr

∂2T

∂x2
(x, t)− ∂T

∂t
(x, t)

=
[ 1

Pr
C ′′(x)− ωD(x)

]
cos(ωt)−

[ 1

Pr
D′′(x) + ω C(x)

]
sin(ωt)

= A(x) cos(ωt)−B(x) sin(ωt).

Now, using the expressions of C(x) and D(x) from (6.36), we have an expres-

sion for the vertical velocity W (x, t) given by

W (x, t) = A(x) cos(ωt)−B(x) sin(ωt), (6.39)

117



where

A(x) = − 1

Pr

1

4γ2
1

[
Q1

(
ω2Pr2 − 4γ4

1

)
− ωPr2√

∆

] α1(L) β1(x)− β1(L)α1(x)

sinh2(γ1L) + sin2(γ1L)

− 1

Pr

1

4γ2
2

[
Q2

(
ω2Pr2 − 4γ2

2

)
+
ωPr2√

∆

] α2(L) β2(x)− β2(L)α2(x)

sinh2(γ2L) + sin2(γ2L)
,

and

B(x) = − 1

2
√

∆

[α1(L)α1(x) + β1(L) β1(x)

sinh2(γ1L) + sin2(γ1L)
− α2(L)α2(x) + β2(L) β2(x)

sinh2(γ2L) + sin2(γ2L)

]
,

with Q1 and Q2 are given by (6.37) and (6.38), respectively.
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Chapter 7

Physical Interpretation

7.1 Temperature Distribution

Using the expression for T (x, t) from (6.36), we can study the effect of the

frequency of the external temperature oscillations ω and the width of the

channel L on the temperature distribution of the fluid at some fixed instant t.

In Figure 7.1, we consider a fluid of Prandtl number Pr = 0.07 in two different

regimes. When L = 3 (Figure 7.1(top)), the temperature T (x, 0) is almost

linear for ω = 4 and we see less uniform temperature distribution when we take

a larger frequency ω = 40. Although there is less time for heat to propagate

across the cavity, the fact that the walls are relatively close to each other allows

us to see some temperature variations throughout the fluid.

The effect of the width of the channel becomes more prominent when we

consider sidewalls that are relatively far from each other (Figure 7.1(bottom)).

In this case, even for smaller frequency ω = 4, temperature variations are

confined to layers close to the right (hot) wall. This can be seen evidently

for the large frequency ω = 40 when only a thin layer adjacent to the wall
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Figure 7.1: T (x, 0) vs. x for Pr = 0.07, ω = 0.4 and 40, and L = 3 (top) and
30 (bottom).

gets heated. Thus, the impact of the oscillating temperature wall condition is

confined to a narrow region adjacent to the hot wall.

7.2 Vertical Motion of the Fluid

In Figure 7.2, we study the vertical motion of the fluid by plotting the analyti-

cal solution W (x, t) from equation (6.39) as a function of x at a fixed instant t.
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Figure 7.2: W (x, 0) vs. x for Pr = 0.07, ω = 0.4 and 40, and L = 0.3 (top), 3
(middle), and 30 (bottom).
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For Prandtl number Pr = 0.07, we see that the response of the fluid flow

is in line with the heat transfer. For smaller widths of the channel (see Fig-

ure 7.2(top) for L = 0.3), changing the frequency ω from 4 to 40 does not

produce drastic changes in the vertical velocity of the fluid. The amplitude of

W (x, 0) is slightly smaller for ω = 40 but the overall behaviour of the interior

velocity is the same.

The impact of the wall temperature oscillations becomes more interesting

for wider cavities. We get moderate effects on the fluid motion for lower

frequency (see Figure 7.2(middle) and (bottom) for ω = 4) and negligibly

small effects for higher frequency (see Figure 7.2(middle) and (bottom) for

ω = 40). It is also worth pointing out that similar to the case of heat transfer,

changes in the interior velocity are confined to a thin boundary layer adjacent

to the right (hot) wall.

7.3 Energy Balance

Using equations (6.1) and (6.2), we can write the non-dimensionalized equa-

tions of mechanical and heat energy balance for any x1, x2 ∈ (−L,L) as

d

dt

∫ x2

x1

W 2

2
dx︸ ︷︷ ︸

r.o.c. of kin. energy

−
∫ x2

x1

TW dx︸ ︷︷ ︸
r.o.c. of pot. energy

= −
∫ x2

x1

(
∂W

∂x

)2

dx︸ ︷︷ ︸
rate of viscous dissipation

+ W
∂W

∂x

∣∣∣∣x2
x1︸ ︷︷ ︸

flux through boundaries

,

(7.1)

d

dt

∫ x2

x1

T dx︸ ︷︷ ︸
r.o.c. of heat energy

+

∫ x2

x1

W dx︸ ︷︷ ︸
r.o.c. of energy by advection

=
1

Pr

∂T

∂x

∣∣∣∣x2
x1︸ ︷︷ ︸

heat flux through boundaries

. (7.2)
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Figure 7.3: Plot of the individual energy quantities from mechanical equation
for Pr = 7 , L = 20, and ω = 2 (top) and 0.2 (bottom).

To study the effect of the frequency of the temperature oscillations on the

energy of the fluid, we plot the temporal behaviour of the individual energy

quantities from equations (7.1) and (7.2) for Pr = 7 , L = 20 and for two

different ω-values. In this case, we focus our attention to the right half of the

cavity, that is, from x1 = 0 to x2 = L.
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Figure 7.4: Plot of the individual energy quantities from heat equation for
Pr = 7 , L = 20, and ω = 2 (top) and 0.2 (bottom).

In Figure 7.3, we observe two main differences in the energy quantities for

higher and lower frequencies (compare Figure 7.3(top) for ω = 2 and (bottom)

for ω = 0.2). The rate at which the amount of energy is stored in the fluid

decreases as we increase the frequency of oscillations. This is depicted by

maxima of rate of change of energy quantities for ω = 2 occurring at lower
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values than those considered for ω = 0.2. There also appears to be a shift in

the peaks of the rate of change of the kinetic and potential energies for ω = 2

whereas this shift is almost negligible when ω = 0.2. Since we are technically

comparing the rate of change of two different types of energies (kinetic vs.

potential), it is not quite obvious why such a shift would be more prominent

for higher frequencies. Also, notice that for both high and low frequencies, the

flux through the boundaries is negligible.

Another interesting behaviour is detected when we focus our attention to

studying the rate of change of heat energy, rate of change of heat energy by

advection and the heat flux through the boundaries from equation (7.2). We

notice that for ω = 2 the rate at which heat energy is retained in the fluid

due to advection is lower than that for ω = 0.2 (compare the amplitude of the

orange curves of Figure 7.4(top) for ω = 2 and (bottom) for ω = 0.2). This

is because smaller frequencies ω allow more time for heat to propagate across

the cavity by the movement of bulk fluid causing more advection to occur. On

the contrary, the heat flux through the boundaries and the rate of change of

heat energy are considerably bigger for the higher frequency ω = 2 because

heat transfer in this case will be restricted to the fluid layer adjacent to the

wall as seen in Figure 7.1.

7.4 Resonance Effects

7.4.1 Space-Time Average of Kinetic Energy

By symmetry of the vertical velocity W (x, t), it is enough to study the kinetic

energy for the right-half of the cavity from x = 0 to x = L. To remove
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the space and time dependence, we take the space-time average of the kinetic

energy, denoted by 〈KE 〉x,t

〈KE 〉x,t :=
ω

2πL

∫ L

0

∫ 2π/ω

0

W 2(x, t) dt dx

=
1

4L

∫ L

0

[
A2(x) +B2(x)

]
dx ,

(7.3)

which is then a function of Prandtl number Pr, the frequency of the oscillations

ω and the width L of the channel.

The effects of Pr and L on the behaviour of 〈KE 〉x,t are shown in Figure

7.5 for three different Pr-values: Pr = 7, 0.7 and 0.007. Although the re-

sults display quantitative differences, the overall qualitative features remain

unchanged. For each of these Pr-values, there is some width of the channel L

for which 〈KE 〉x,t monotonically decreases as a function of ω (for example, see,

Figure 7.5(top) for L = 2). This is reasonable because for higher frequencies

ω the movement of the fluid is confined to the boundary layer adjacent to the

hot wall thus causing the average kinetic energy of the fluid across the channel

to decrease.

For each fixed Prandtl number, Figure 7.5 shows the existence of reso-

nance identified by the occurrence of peak values of the space-time average

of the kinetic energy around ω = 1. These peaks become sharper and more

pronounced as L increases (for example, see, Figure 7.5(middle) for L = 40).

When L is relatively small (see Figure 7.5(top) for L = 4), resonance is less

clear-cut. Also, there does not appear to be another peak forming for ω > 1 as

〈KE 〉x,t becomes vanishingly small at high frequencies. Such resonance effects

have been studied numerically for more complicated problems such as fluids

in square cavities (see for example, [39]).
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Figure 7.5: Space-time average of the kinetic energy vs. ω for different width
L of the channel and Pr = 7 (top), 0.7 (middle), and 0.07 (bottom).
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Figure 7.6: Contour plot of the space-time average of the kinetic energy in the
(ω, L) plane for Pr = 0.7.

Plots in Figure 7.5 give a strong indication that in order to see resonance

in fluids with smaller Prandtl numbers, we need to consider channels with

bigger widths L. Moreover, if we look at Figure 7.5(bottom) for Pr = 0.007

and L = 20, we notice that the curve of 〈KE 〉x,t dips before forming the

peak around ω = 1. Another interesting observation is that the values of

〈KE 〉x,t are comparatively bigger for smaller Prandtl numbers. To validate

these observation, we draw the contour plots of 〈KE 〉x,t in the (ω, L)-plane

for both Pr = 0.7 and Pr = 0.07 in which darker colours indicate smaller
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Figure 7.7: Contour plot of the space-time average of the kinetic energy in the
(ω, L) plane for Pr = 0.07.

values of 〈KE 〉x,t. In fact, for Pr = 0.7, it seems that there is some critical

width L between 4 and 5 beyond which 〈KE 〉x,t forms a peak around ω = 1

(see Figure 7.6). Similarly, looking at the contour plot from Figure 7.7 for

Pr = 0.07, we notice that for L > 16 (roughly) 〈KE 〉x,t dips first before

forming a peak indicating the existence of resonance.
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7.4.2 Heat Transfer Across the Cavity

In general, we expect the heat flux at the right (hot) wall to be the same as the

one computed at the vertical mid-plane between the sidewalls. The explicit

solution for the temperature T (x, t) from equation (6.36) enables us to write

down the time-average of the heat flux over one period

〈φq 〉t :=
ω

2π

∫ 2π/ω

0

|∂xT (x, t)| dx =
2

π

√
C ′(x)2 +D′(x)2

and hence study the ratio of time-average of the heat flux at the center (x = 0)

to the time-average of the heat flux at the hot wall (x = L), that is,

Rφq =
〈φq 〉t|x=0

〈φq 〉t|x=L

.

In Figure 7.8, we plot Rφq as a function of the frequency ω for Pr = 0.7

and L = 2. In the steady state case corresponding to ω = 0, we notice that

this ratio is around 0.65 indicating that only about 65 % of the heat at the

hot boundary is conducted to the center of the cavity. This is because heating

of fluid causes it to move vertically and, in the case of thermal stratification,

some of the heat energy will be transformed into potential energy due to lifting

some of the heavier (cooler) fluid from below. Moreover, as the frequency ω

increases, Rφq monotonically decreases indicating the inverse proportionality

between ω and the amount of heat transferred across the cavity.
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Figure 7.8: (Center-to-right wall) ratio of the time average of the heat flux vs.
ω for Pr = 0.7 and L = 2 .

To study the effect of the width L on the heat transferred across the cavity,

for each fixed Pr number we plot Rφq vs. ω for different values of L as shown

in Figure 7.9. As we increase the width of the channel L, we notice that Rφq

starts to lose its monotonic behaviour by gradually forming a peak (see Figure

7.9(top) for L = 4) indicating the start of the resonance phenomenon. One

interesting feature to point out is that these peaks seem to shrink in amplitude

but tend to be more concentrated around ω = 1 for larger values of L. This

concentration around ω = 1 is in accordance with what we observed when we

studied the resonance effects in the case of space-time average of the kinetic

energy.
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Figure 7.9: (Center-to-right wall) ratio of the time average of the heat flux vs.
ω for different width L of the channel and Pr = 7 (top), 0.7 (middle), and 0.07
(bottom).
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Figure 7.10: Contour plot of the (center-to-right wall) ratio of the time average
of heat flux in the (ω, L) plane for Pr = 0.7.

To get more details about when a resonance may occur, we draw the con-

tour plots of Rφq in the (ω, L)-plane for Pr = 0.7 and Pr = 0.07 as shown

in Figures 7.10 and 7.11, respectively. Both contour plots show that there

appears to be a critical length L after which we see resonance depicted by a

single peak in the Rφq -curve around ω = 1.
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Figure 7.11: Contour plot of the (center-to-right wall) ratio of the time average
of heat flux in the (ω, L) plane for Pr = 0.07.

7.5 Concluding Remarks

Although the flow of the fluid is assumed to be one-dimensional, the coupling of

the system by the stratification parameter adds complexity to the problem and

appears to be one of the reasons why we see resonance effects. The analytical

solutions for the vertical velocity and the temperature allow us to study the

behaviour of the physical quantities and obtain plenty of observations some

of which need more detailed interpretation. All performed studies indicate

that the resonance frequency seems to be ω = 1 but we do not have a rigorous
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explanation for this. Moreover, we wish to obtain a somewhat explicit relation

between Prandtl number Pr, the width of the channel L and the frequency ω.

For each fixed Pr, we can then obtain the critical width L after which we see

resonance in the fluid.
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Appendix A

Coefficient Matrices for

Numerical Scheme

Substituting the representations (3.20) in equations (3.16)-(3.19), we get the

following numerical scheme :

For ψ ∈ { 1

h
χj, j = 0, · · · , J − 1},

J∑
j=0

〈ψ , φj 〉 ∂tρj =− i kx

J−1∑
j=1

〈ψ , φj 〉Vx,j +
G

T0

J−1∑
j=1

〈ψ , φj 〉Vz,j

−
J−1∑
j=1

〈ψ , ∂zφj 〉Vz,j.

(A.1)

For ψ ∈ { 1

h
φj, j = 1, · · · , J − 1},

J−1∑
j=1

〈ψ , φj 〉 ∂tVx,j =− i kx T0

J−1∑
j=0

〈ψ , χj 〉 ρj

− i kx

J∑
j=1

〈ψ , φj 〉 Sj

− ν0

J−1∑
j=1

〈 ∂z
(

1

n̄
ψ

)
, ∂zφj 〉 Vx,j

− ν0 k
2
x

J−1∑
j=1

〈ψ , 1

n̄
φj 〉Vx,j,

(A.2)
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and

J−1∑
j=1

〈ψ , φj 〉 ∂tVz,j = T0

J−1∑
j=0

〈 ∂zψ , χj 〉 ρj +
G

T0

J∑
j=1

〈ψ , φj 〉Sj

−
J∑
j=1

〈ψ , ∂zφj 〉 Sj

− ν0

J−1∑
j=1

〈 ∂z
(

1

n̄
ψ

)
, ∂zφj 〉Vz,j

− ν0 k
2
x

J−1∑
j=1

〈ψ , 1

n̄
φj 〉 Vz,j.

(A.3)

For ψ ∈ { 1

h
φj, j = 1, · · · , J},

J∑
j=1

〈ψ , φj 〉 ∂t Sj =− i kx T0

J−1∑
j=1

〈ψ , φj 〉 Vx,j − T0

J−1∑
j=1

〈ψ , ∂zφj 〉Vz,j

− κ0

J∑
j=1

〈 ∂z
(

1

n̄
ψ

)
, ∂zφj 〉 Sj

− κ0 k
2
x

J∑
j=1

〈ψ , 1

n̄
φj 〉Sj.

(A.4)

In what follows, we introduce some notation that would help us translate

the numerical scheme into matrix form to be used later in the stability analysis.

Note first that there are 4J − 1 equations in 4J − 1 unknowns and it is useful

to divide the indexing set 1 ≤ i ≤ 4J − 1 into four regions each associated

with the corresponding coefficients used in the finite element representation of

the Fourier coefficients n′k, u
′
k, w

′
k and T ′k.

Define the regions Iρ, IVx , IVz and IS and the corresponding indexing func-

tions σρ, σVx , σVz and σS as follows:

137



Iρ = { j, 1 ≤ j ≤ J + 1 }

IVx = { j, J + 2 ≤ j ≤ 2J }

IVz = { j, 2J + 1 ≤ j ≤ 3J − 1 }

IS = { j, 3J ≤ j ≤ 4J − 1 }

σρ(j) = j − 1, j ∈ Iρ

σVx(j) = j − J − 1, j ∈ IVx

σVz(j) = j − 2J, j ∈ IVz

σS(j) = j − 3J + 1, j ∈ IS

Let C be a column vector containing the coefficients used in the finite

element representations of n′k, u
′
k, w

′
k and T ′k, that is

C =

(
ρ0(t) · · · ρJ(t) Vx,1(t) · · ·Vx,J−1(t) Vz,1(t) · · ·Vz,J−1(t) S1(t) · · ·SJ(t)

)T
,

where ( )T is a short notation for transpose.

Define the (4J − 1)× (4J − 1) matrices M = {Ml,j , 1 ≤ l, j ≤ 4J − 1 }

by

Ml,j =
1

h



〈φσρ(l) , φσρ(j) 〉, l, j ∈ Iρ

〈φσVx (l) , φσVx (j) 〉, l, j ∈ IVx

〈φσVz (l) , φσVz (j) 〉, l, j ∈ IVz

〈φσS(l) , φσS(j) 〉, l, j ∈ IS

and A = {Al,j , 1 ≤ l, j ≤ 4J − 1 } as follows:

For l ∈ Iρ,

Al,j =
1

h


− i kx 〈φσρ(l) , φσVx (j) 〉, j ∈ IVx

+ G
T0
〈φσρ(l) , φσVz (j) 〉 − 〈φσρ(l) , ∂zφσVz (j) 〉, j ∈ IVz

0, otherwise
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For l ∈ IVx ,

Al,j =
1

h



− i kx T0 〈φσVx (l) , φσρ(j) 〉, j ∈ Iρ

− i kx 〈φσVx (l) , φσS(j) 〉, j ∈ IS

− ν0

[
〈 ∂z

(
1
n̄
φσVx (l)

)
, ∂zφσVx (j)) 〉 + k2

x 〈φσVx (l) ,
1
n̄
φσVx (j) 〉

]
, j ∈ IVx

0, otherwise

For l ∈ IVz ,

Al,j =
1

h



T0 〈 ∂zφσVz (l) , φσρ(j) 〉, j ∈ Iρ

G
T0
〈φσVz (l) , φσS(j) 〉 − 〈φσVz (l) , ∂zφσS(j) 〉, j ∈ IS

− ν0

[
〈 ∂z

(
1
n̄
φσVz (l)

)
, ∂zφσVz (j)) 〉 + k2

x〈φσVz (l) ,
1
n̄
φσVz (j) 〉

]
, j ∈ IVz

0, otherwise

For l ∈ IS,

Al,j =
1

h



−i kx T0 〈φσS(l) , φσVx (j) 〉, j ∈ IVx

−T0 〈φσS(l) , ∂zφσVz (j) 〉, j ∈ IVz

−κ0

[
〈 ∂z

(
1
n̄
φσS(l)

)
, ∂zφσS(j) 〉 + k2

x 〈φσS(l) ,
1
n̄
φσS(j) 〉

]
, j ∈ IS

0. otherwise
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[49] H. F. Nouanégué and E. Bilgen. Heat transfer by convection, conduc-
tion and radiation in solar chimney systems for ventilation of dwellings.
International Journal of Heat and Fluid Flow, 30(1):150–157, 2009.

[50] Jun Sang Park. Transient buoyant flows of a stratified fluid in a vertical
channel. KSME International Journal, 15:656–664, 2001.

[51] Jun Sang Park and Jae Min Hyun. Transient behavior of vertical buoy-
ancy layer in a stratified fluid. International Journal of Heat and Mass
Transfer, 41:4393–4397, 1998.

[52] K. Petersen. Ergodic Theory. Cambridge University Press, Cambridge,
1983.
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