UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

CIGARCoil: A New Algorithm for the Compression of DNA Sequencing Data

A THESIS
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

Addison Edward Womack
Norman, Oklahoma
2019

CIGARCoil: A New Algorithm for the Compression of DNA Sequencing Data

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Sridhar Radhakrishnan, Chair

Dr. Chongle Pan

Dr. Christan Grant

© Copyright by Addison Edward Womack 2019
All Rights Reserved.

Abstract

DNA sequencing machines produce tens of thousands to hundreds of millions of reads.
Each read consists of letters from the alphabet X= {A T, C, G, N} and varies in length
between 30 to 120 characters and beyond. The DNA reads are stored in a standard
FASTQ file format that contains not only the reads but also a quality score for each
character in each read that corresponds to the probability that the identified character
is correct. The FASTQ files vary in size between 100s of megabytes to 10s of gigabytes.
The reads in the FASTQ files are processed as part of many DNA algorithms for various
sequence analyses. Given the fact that the size of each file is considerable, keeping and
handling multiple of these files in main memory for faster processing is not possible on
commodity hardware. In this thesis, we propose a lossless compression mechanism named
CIGARCoil that operates on the FASTQ files and other files that contain the DNA reads.
The other salient features of CIGARCoil are:

e [t is a not a reference-based algorithm in the sense that one does not need to create a
reference string before the compression can begin. Reference strings are undesirable
due to them not only being hard to determine, but also due to them being required
for both the compression and decompression of the file.

e In this thesis, for the first time, we show that each of the reads can be accessed
directly on the compressed structure created by CIGARCoil. That is, we provide
access to each read without having to uncompress the file.

e Since we can provide direct access to a read on the CIGARCoil compressed struc-
ture, we have implemented a [| (square-bracket) array indexing operator. Through
this implementation, we can implement a predictive caching mechanism that will
make the reads available for the end-user based on their access pattern.

We have analyzed our compressed mechanism on various well-known FASTQ data sets
along with synthetic data sets. In all cases, our compression method produces a com-
pressed file that is smaller or approximately the same size as ones created by the existing
DNA compression mechanisms, including BZIP, DSRC2, and LFQC.

v

Acknowledgements

First, I would like to thank my advisor and mentor, Dr. Sridhar Radhakrishnan, for
not only supporting and guiding me through this research but also providing me with
numerous opportunities to become a better computer scientist and constantly encouraging
his students to think about problems more critically and thoroughly.

Second, I would like to thank the other students that have been involved in Dr. Rad-
hakrishnan’s research group for their insight, criticism, and words of encouragement over
the past year-and-a-half. These students are: Sudhindra Gopal, Aditya Narasimhan,
Aaron Morris, Dorian Selimovic, Dwaine Kenney, and Michael Nelson.

Third, I would like to thank Dr. Naijia Xiao from the microbiology department for
assisting me in both obtaining sequencing data as well as helping me understand it.

Finally, T would like to acknowledge my parents for their constant love and support
during my formative years and my time as a student here at OU.

Contents

1 Introduction

1.1 Background
1.1.1 DNA Sequencing
1.1.2 Compression and Decompression

1.1.3 MPEG-G: A Proposed Standard for DNA Read Compression . . .
1.2 Motivation e

1.3 Preliminaries
1.3.1 Edit Distance
1.3.2 Graphsand Trees
1.3.3 Machine Learning oL
1.34 K-mer
1.3.5 Other DNA Sequencing Data Compressors
1.3.6 CIGAR String

1.4 Contributions

2 CIGARCoil Algorithm

2.1 Inspiration
2.2 Encoding
2.3 Time Complexity
2.4 Node Compartmentalization Heuristic.
2.5 Decoding and Decompression
2.6 Special Features

2.6.1 File Concatenation

2.6.2 Incremental Update

3 Random Access and Predictive Cache

3.1 Random Access of Compressed File
3.2 Predictive Cache

4 CIGARCoil Clustering
4.1 Clustering Hyperparameter Experiments

5 CIGARCoil Implementation

5.1 Source Code Overview
5.2 Adding Edges with Multiple Threads
5.3 CIGAR Operation Struct
5.4 Customized Wagner-Fischer Algorithm
5.5 Results

vi

Sy Ot Ot Ot O W = = =

— = =
NN — —

14
14
15
21
22
27
28
28
28

32
32
33

40
40

6 Conclusion 56

6.1 Future Work 57
Appendices 61
A CIGARCoil Utilities 61

A.1 Header File 61

A2 Definitions 63
B Read 70

B.1 Header File 70

B.2 Definitions 71
C CIGAR Operation 75

C.1 Header File 75

C.2 Definitions s, 77
D Similarity Graph 81

D.1 Header File 81

D.2 Definitions 2
E Hash Bucket Index 84

E.1 Header File 84

E.2 Definitions 84
F Min Heap 86

F.1 Header File 86

F.2 Definitions 7
G Wagner Fischer Matrix 90

G.1 Header File 90

G.2 Definitions o, 91
H DNA File Wrapper 99

H.1 Header File 99

H.2 Definitions 103
I Decoded Reads 149

1.1 Header File 149

1.2 Definitions 149

vil

Chapter 1

Introduction

In this chapter we provide a brief background and overview of topics related to DNA
sequencing and compression. Then we discuss the motivation for this thesis. Then, we
provide a set of preliminary algorithms and theorems that are referenced throughout the
remainder of the paper. Finally, we list the set of contributions made in this thesis.

1.1 Background

Deoxyribonucleic Acid (DNA) or sometimes given by the double helix figure is self-
replicating and the basis of all living organisms. From the computer scientist’s perspective
we process and manipulate strings from the chosen set of alphabets. Most DNA process-
ing, such as genome assembly, involves string searching and replacement algorithms [24].
The most challenging problem is the genome assembly Problem wherein you are a set of
strings and you are to combine these strings and/or fragments of the strings to obtain
the original DNA string that corresponds to the organism.

In this section, we will introduce you in more detail DNA strings and DNA reads
including providing details of how they are captured. Next, we will introduce to you the
concept of lossless and lossy compression as it relates to the DNA reads. FASTA is the
format in which DNA reads are stored and we will introduce them to you.

1.1.1 DNA Sequencing

This section describes in general terms the process and scale of DNA sequencing.

DNA DNA is a collection of four chemical compounds, called bases. Each base is one of
four chemical compounds, adenine, cytosine, guanine, and thymine. which are commonly
represented by the four characters A, C, G, and T, respectively. DNA provide instructions
that tell an organism’s cells how to operate. The complete set of DNA instructions for
an organism is called its genome. A genome can be quite large in size. For example, The
human genome consists of 2.91 billion base pairs [11].

DINNA Sequencing DNA sequencing is the process by which the order of a particular
genome is determined. A special tool called a DNA sequencer takes a DNA sample,
then generates anywhere from a few hundred thousand to several million reads from the
sample. Each read is a string of a length ranging from a few dozen to a few hundred
characters, consisting of A, C, T, G, and N. The characters A, C, T, and G correspond

Figure 1.1: Image of Illumina MiSeq Sequencer Courtesy of the University of Oklahoma’s
Institute of Environmental Genomics

to bases, and the character N corresponds to a base that the DNA sequencer was unsure
of while processing the sample. Many millions of reads are required to piece together the
genome of the source DNA sample as there are points of overlap between reads and reads
have an error rate depending on the quality of the DNA sequencing machine.

DNA Sequencing Machines DNA Sequencers are specialized machines that when
provided with a DNA sample are able to generate a file of reads in either FASTA or
FASTQ format. Machines such as the Illumina MiSeq sequencer as seen in Figure 1.1 are
able produce approximately 200 Megabytes of data per hour.

FASTA Format In FASTA format, each read occupies two consecutive lines. The first
line is the id of the read and begins with the @ character. The second line of the read is
the base-pair data, the string of characters A, C, T, G, and N. An example of a single
FASTA read is:

@J00138:116:HKMFNBBXX:8:1101:23338:1033 1:N:0:NCICTATC
2 GNOGGATOGTGGTTGATGGCTTOGGIGTGCATGGATTTGATGAT

FASTQ Format In the FASTQ format, each read occupies four consecutive lines. The
first two lines are the id and base-pair lines as they are in the FASTA format. In addition
to these first two lines are an additional '+’ line, followed by the read’s quality scores.
There is one quality score character for each character in the sequence field and the

Growth of DNA Sequencing

- &
7 - N
V2 -
> M Recorded growth 7
g B Double every 7 months (Historical growth rate) 7
2 @ Double every 12 months (lllumina Estimate) 7
B Double every 18 months (Moore's Law) Ve
7
7 =0
@ - g >
£ 7 - -8 £
=]
2 7 -~ g
8§ o 7 — = o
> g | s g
E 2 Current Capacity ._// - é
£ S
u— o
5 EXAC / &
3 o 2
£ / ~ istPacBio o 2
2 TCGA o Chaisson et al. -2 £
q>) -~ ()
= 3
3 2 1000 Genomes E
E 31 o S
o < =
1st 454
Wheeler et al.
1ot Sanger 1st Personal Genome dsilliming o
IVHGtSC elt all. Levy etal. o Bentley et al. e
enter et al. -
\‘ o~ V{ang etal.
° — eyetal.
S (]
g 4
2
T T T T T T
2000 2005 2010 2015 2020 2025

Year

Figure 1.2: Figure 1 from [22]. This Figure shows the combined size of all of the human
genomes on the left axis and the quantity of bases that the world is capable of producing
in a year on the right axis.

quality score corresponds to how confident the sequencer was of that particular character
in the read. The range of values in this quality score field is from [0, 255]; however, there
is little standardization of quality scores and their range is often dependent on the DNA
sequencing machine being used. An example of a single FASTQ read is:

1 @J00138:116:HKMFNBBXX:8:1101:23338:1033 1:N:0:NCICTATC
2 GNOGGATOGTGGTTGATGGCTTOGGIGTGCATGGATTTGATGAT

3 +
+ ABAAQCACQRUCCQRAQQACCRACCRUQOCACRBAQRCBRAQACRQ

Next Generation Sequencing With the advent of Next Generation Sequencing in
2008 [21], it became possible to generate huge collections of short-length reads in a mas-
sively parallel process. Ever since this innovation, DNA compression algorithms have
been racing to catch up to handle this influx of data. According to [5], the costs of data
storage has been outpacing innovations in DNA compressors. Additionally, according
to [22] DNA sequencing is rapidly becoming Big Data’s most significant challenge as the
world’s DNA sequencing throughput has been increasing at a rate faster than Moore’s
law since 2008 as seen in Figure 1.2.

1.1.2 Compression and Decompression
This section defines and briefly explains the concepts of encoding and compression as well

as their counter-parts, decoding and decompression.

Encoding and Decoding FEncoding is placing data into a new representation that
supports the compression of the file by either reducing the average number of bits required

to represent a character or representing each character in a way that will support the
compression step. An ASCII character requires 8 bits to store. If we assume that there
are 26 letters in the Latin alphabet (assuming all lower-case letters from a-z, for example),
then the number of bits required to represent (or termed as to encode) is [log, 26| = 5 bits.
This is smaller than the number of bits in the ASCII encoding. There are other encoding
techniques such as Huffman and Arithmetic encoding [19] that takes into account the
frequencies of the occurrence of each letter in the string. Letters that are more frequent
are given fewer bits compared to the ones that occur less frequently. These compression
techniques satisfy a property called the prefiz property wherein the bit string assigned to
any character (or symbol) is not a prefix to bit strings of other characters. This property
allows us to decode (getting the original string back). The decoding process is to get the
letters of the original string. In the case of ASCII encoding, we need the ASCII encoding
table and in the case of Huffman encoding we need the Huffman tree (which is stored in
some elegant manner). The size of the encoding is the sum of the length of the bit strings
of each letter in the string and the size of the encoding table.

Compression is the process of removing redundancy in the data set. This will re-
quire that data be encoded in such a way that much of the redundancy can be removed.
Compression Ratio is defined as the ratio of the size of the compressed file to the size
of the uncompressed file. Compression algorithms are measured on other factors as well.
For example, one might be interested in the time it takes to complete the compression.
Decompression is the process of producing the file from its compressed structure (some-
times referred to as the compression image). Now, decompression time is an additional
factor that must be considered when designing compression algorithms. More recently,
there has been interest in developing compression techniques that allows for data to be
accessed without having to decompress them file. Also, additional efforts to incrementally
add data (sometimes referred to as streaming operations [15]) directly to the compressed
image are also being considered.

There are two kinds of compression techniques: lossless and lossy. In lossless com-
pression, the original data is preserved in its entirety, for example the popular ZIP file
compressor. In lossy compression, some of the original data is lost during the compres-
sion of the file, for example the Moving Picture Expert Group’s MP4 video compression
format. The compression algorithm CIGARCoil that we present in this paper is a lossless
one. A lossless compression scheme is used because failing to preserve the original content
of the DNA sequencing data would be detrimental for end-users as they attempt to piece
genomes together, byte-by-byte.

Some DNA compressors, such as the KungFQ compressor [10], have experimented
with applying a lossy approach to the compression of the DNA sequencing file’s meta-
data (i.e., id field and quality scores).

The lower-bound for lossless compression is known as the information theoretic lower-
bound for compression, which comes from Shannon’s source coding theorem [20]. This
bound is based on the entropy of the data being compressed, which is denoted by H(z),
which is more formally:

H(z)=—) Pilog, P,

where a is the number of different symbols in the alphabet and P; is the probability of a
symbol occurring. If there are N symbols being compressed from an alphabet of size a,
then the compressed file must have at least N x H(x) bits.

1.1.3 MPEG-G: A Proposed Standard for DNA Read Compres-
sion

Understanding this growing challenge of the sheer size of genetic data, and navigating
the task of determining what functionality of DNA compression end users are after is a
difficult task. Fortunately the Motion Picture Entertainment Group surveyed various end
users and compiled features into a hypothetical standard of genetic compression, which
they called MPEG-G [1]. This standard contains the following features which will be
discussed in this paper:

e Indexing to access compressed data allows for random access to a read within the
compressed image.

o Compressing a streamed file allows for file to be incrementally compressed as data
flows into the compressor

o Compressed file concatenation allow for multiple compressed files to be concatenated
into a new compressed file

e [ncremental update of compressed file allow for modification of a single read of the
compressed file without uncompressing the compressed file

1.2 Motivation

DNA sequencing machines produce a massive quantity of data in the order of several
gigabytes of per file. The sheer size of these files makes performing research with the
data from these files prohibitively cumbersome for commodity hardware to store it in
main memory. We seek to reduce the quantity of resources required to store these files
in memory by providing a new compressor specialized for DNA sequencing data that
permits end-users to randomly access individual reads from the file, without needing to
decompress the file. By providing end-users with this compression format, we intend to
not only provide end-users with a new format for storing their data, but also a new way of
accessing the content of such files that does not require decompression and recompression
of the file.

1.3 Preliminaries

The following terms, definitions, and algorithms are used and referenced by the remainder
of this thesis.

1.3.1 Edit Distance

Edit distance is a metric that measures the number of changes that need to be made
to transform one string into another. A common area where edit distance is seen is in
predictive text features for cell phones where similar words are suggested for the user to
enter. Although there are many algorithms that exist for computing edit distance, this
paper focuses on the Wagner-Fischer algorithm [25] due to its robustness and flexibility.

Wagner-Fischer Edit Distance The Wagner-Fischer algorithm is used to calculate
the number of operations needed to convert one string to another. The Wagner-Fischer
algorithm finds the minimum number of a combination of four operations: insertion,
substitution, deletion, and match to convert one string s to ¢. For example given a string
s of AAGGTCCC and a string ¢t of GAAAACCCC. The edit distance is found to be 4
in Table 1.1, by deleting G, matching the first two As, Inserting GGT, and matching the
final three Cs.

This algorithm constructs a two-dimensional matrix, where each cell is the number of
operations needed to transform s to that position in ¢, and the minimum edit distance
is found in the bottom-right cell. Additionally, this algorithm determines the operations
used to find the edit distance, which can be used in the encoding of ¢ relative to s.

Table 1.1: Wagner-Fischer Matrix Example

A

>
)
-
Q
Q
Q

ollollolioldi g di il
©| 0| | | Y x| | | | O @
O || T = | WD | P
~| o] orf x| | | |~ M|
| o] or| x| o 0| 0| M| DO | W
| | O | o] wof wo| Lo wo| |)
1| O | O | | | |] o
O Y | | O O O O O O
G| oo oo | | T
B | ol o 1| ~3| ~1| ~3| 3| o0

1.3.2 Graphs and Trees

Let G=(V, E, W) be a graph with vertex set V' and edge set E. Additionally, let |V|=n
and |E|=m. The weight function W assigns a positive integer weight to each edge in E.
W(u,v) € N

We will now introduce to you the concept of a similarity graph G. There is an one-
to-one correspondence between a read and the node of the graph GG. The graph G is a
complete graph and the weight on the edges is the edit distance between the corresponding
DNA reads as determined by the Wagner-Fischer algorithm.

For example given the set of reads with edge weights calculated using Wagner-Fischer
edit distance as seen in table 1.1:

o rl: AAAAAAAA
o r2: AAAACCCC
e r3: AAAATTTT
o r4: GGAACCCT
e r5: AAGGTCCC

Figure 1.3: Similarity Graph

4 4 6 6
’ rl ‘—>| r2 |—>| r3 |—>| r4 |—>| r5|

4 4 3 3
’7’2 ‘—>|7’1|—’|r3|—>|r4|—>|r5|

4 4 5 5
’r3‘—>|7’1i IT2I IT?)I Ir4|

6 3 3 6

’7“4 ‘—>|r1|—>|r2|—>|r3|—>|r5|

6 3 5 6
’7“5 ‘—’|T1|—'|T2|—’|T3|—’|T’4|

Figure 1.4: Adjacency List Representation of Figure 1.3

A similarity graph can be constructed from these five reads as seen in Figure 1.3.

There are many data structures that can be used for representing graphs (e.g. adja-
cency list and adjacency matrix). The adjacency list representation is used in this thesis
as it supports constant time insertion of elements and does not waste memory resources
when dealing with sparse graphs. An example of an adjacency list representation of a
graph can be seen in Figure 1.4.

Minimum Spanning Tree (MST) A minimum spanning tree is the set of nodes and
edges of a graph that form a tree that minimizes the combined weights of all of the edges.
Similarly, a maximum spanning tree is the set of nodes and edges of a graph that form
a tree that maximize the combined weights of all of the edges. The Coil, ReCoil, and
CIGARCaoil algorithms all use such spanning trees to find the most profitable edges to use
for encoding. There are many algorithms that can be used to find a MST from a graph
(e.g. Kruskal’s algorithm [12] and Prim’s algorithm [17], which have been parallelized
by Quinn and Narsingh [18] and Grama et al. [9], respectively). We will using Prim’s
algorithm which adds one vertex at at time keeping the cost of the tree constructed at any

Figure 1.5: Minimum Spanning Tree

given time at a minimum. We will later see that our algorithm will take the similarity
graph and construct a MST for it. The combined weights on the edges of the MST
together with the size of a single read will determine the size of the resulting compressed
structure. This is the crux of our overall approach and the details are presented in
Chapter 2. A minimum spanning tree of the similarity graph seen in Figure 1.3 can be
seen in Figure 1.5.

Prim’s Algorithm Prim’s algorithm is an for finding the minimum spanning tree for a
graph, which was first presented in [17]. This paper utilizes an implementation of Prim’s
algorithm that has a time complexity of O(Elog(v)), where E is the number of edges
and v is the number of vertices, due to its use a heap data structure.

Degree of a Node The degree of a node is the number of edges that it has connected
to it. For example, using the tree in 1.5, r2 has a degree of 3 because it has edges between
itself and r1, r4, and r5.

Parent Array A tree can be represented as a parent array. Each index of this array
describes the node that is the parent of the node at the current index. For example if
index ¢ of the array has a value of x, then this means that node ¢ has a parent and that
node is z. In the case of the root of the tree, the node can list itself as its own parent.
For example index k of the parent array could have value k to indicate that k is the root
of the parent array.

1.3.3 Machine Learning

Machine learning is the usage of an algorithm that attempts to find patterns in input
data. CIGARCoil utilizes two different machine learning algorithms, K-Means clustering,
and Q-Learning. K-Means clustering is used during the compression of a file to improve
the compression speed of CIGARCoil. Q-Learning is used to assist with CIGARCoil’s
random access feature by pre-fetching records that the user is likely to query in the future.

K-Means Clustering First proposed in [14], K-Means clustering is an unsupervised
learning technique that organizes data into clusters based on their proximity to a set of
centroids. After each iteration of this clustering technique, the centroids themselves are

updated to become an average of their current cluster. Once the centroids have been
updated, the clusters are then recomputed based on the new centroids. This process
continues until either no data moves from one cluster to another or a specified max
number of iterations has been performed. See algorithm 1.

Algorithm 1 K-Means Clustering
LET K be the number of clusters
LET i be the maximum number of iterations
LET N be the number of items being clustered
LET C be the set of centroids
for allk : K do
¢ = randomly initialized item
add ¢ to C
end for
for 0:1ido
for alln: N do
LET b the best similarity be 0
LET e the best centroid be 0
for all k : K do
LET d be the distance between C[k] and n

if d >b then
SETb=d
SET e =k
end if
end for
Assign n to Cle]
end for
for k : K do
Recompute k as average of assigned items
end for
end for

return Centroid item assignments

The time complexity for clustering is as follows:

Let n be the number of elements to be clustered

Let k£ be the number of centroids being used

Let 7 be the maximum number of clustering iterations

Let d be the cost of finding the distance between an element and a centroid

O(n xk xixd) (1.1)

Q-Learning Q-learning is a reinforcement learning strategy first proposed in [26]. Q-
learning works by training a learning agent to take an action a that maximizes a reward
received from a reward function based on the current state that the action is in.

Algorithm 2 Q-Learning

LET « be the learning rate
LET € be the probability of a random action
LET ~ be the discount rate
LET S be the number of states
LET A be the number of actions
LET r be the reward
Initialize Q as a matrix of dimension S x A
for all episode do
LET r = randomValue
LET s be the current state

if r <e then
LET ¢ be a random action
else
CHOOSE c¢ based on MAX(Q]s])
end if
LET prevQ = Q][s][c]
LET prevS = s

Take action ¢ changing state s
if s is good then
reward = 1
else
reward = -1
end if
LET p = MAX(Q][s])
LET u= (1-a) x prevQ + a x (reward + 7 X p)
Q[prevS][c] = Q[prevS][c] + u
end for

10

1.3.4 K-mer

A K-mer is a sub-string of a DNA read such that it contains K characters. For example
given the read ACTGACGGAC, its set of K-mers of length four is {ACTG, CTGA,
TGAC, GACG, ACGG, CGGA, GGAC}.

1.3.5 Other DNA Sequencing Data Compressors

A wide variety of different DNA-sequence-specialized compressors has been proposed
within the past couple of decades as DNA sequencing has become easier and innovations
like Next-Generation Sequencing have made the process faster. Despite the effort that
scientists have spent on producing these specialized compression tools, the most widely-
used compressor is gzip [3]. The gzip compressor has been shown to perform worse in
terms of compression ratio, compression speed, and decompression speed in comparison
to not only specialized DNA compressors like LFQC [16], ReCoil [28], and DSRC [4], but
also other general-purpose compressors like bzip and 7-zip as observed in a 2013 survey
paper comparing different compressors [5].

gzip The gzip compressor is a free widely-used lossless general-purpose compressor that
comes with most flavors of Linux and can be installed on other operating systems as well.
Gzip utilizes Huffman encoding as well as LZ77, a dictionary encoder, to compress a file.
Gzip does not support random access of the compressed file.

bzip2 This compressor, bzip2, is a general purpose compression algorithm that com-
presses files using Burrows-Wheeler transforms as well as Huffman encoding to compress
files. Bzip does not provide any special random access to the compressed file, such as a
square bracket operator, and it has been shown to be inferior to specialized DNA sequence
compressors such as LEFQC and DSRC2 in previous work [16].

LFQC LFQC is an algorithm for the compression of DNA sequences that was first
proposed in 2014 in [16]. This algorithm uses lossless and non-reference based compression
on FASTQ files. This compression scheme compresses the FASTQ file’s identification,
sequence, and quality score information separately, each using a different algorithm that
performs run-length encoding. Although this algorithm achieves impressive results in
terms of compression ratio and speed, it does not provide for random access of the
compressed file’s contents.

DSRC2 DSRC2 is an algorithm for the compression of DNA sequences that was first
proposed in 2010 in [4]. Similarly to LFQC, this algorithm also treats IDs, sequences, and
quality scores as separate streams during compression, making use of different forms of
run-length encoding. This algorithm compresses the file in a set of blocks, which contain
information at the head of each block that can be used to decompress the current block.
This allows an individual block of the compressed file to be encoded; however, it is not
as granular as the decompression of a single read in the file.

The approximate similarity is calculated using a heuristic where the number of k-
mers in common is counted. This algorithm relies on the general-purpose compressor for
finding the optimal way to reduce the encoded differences and only supports FASTA files.

11

ReCoil ReCoil [28] sought to improve upon its predecessor, the Coil algorithm [27]
by utilizing external memory algorithms. External memory algorithms are algorithms
that run while storing the bulk of the content of the file on disk rather than in main
memory. This external memory algorithm was used because Coil required a prohibitively
large amount of memory for the data structures that it used. Although ReCoil succeeded
in circumventing the memory issues that the Coil algorithm encountered, the ReCoil
algorithm became incredibly slow with the usage of its external memory algorithms as
external memory algorithms. Similarly to Coil, ReCoil does not support the compression
of FASTQ files.
The ReCoil algorithm works in the following manner:

1. Construct a Similarity Graph where the edge weights represent the similarity be-
tween each node, which each represents a read. This similarity is the number of
shared sub-strings of a fixed length (referred to as k-mers).

2. Extract a MST that maximizes the similarity between each read.

3. Encode each child node relative to its parent node using a maximal exact match
strategy. Since the MST has been constructed, it is more likely that a large maximal
exact match exists between parent and child, increasing redundancy and leading to
improved compression.

4. Apply a general-purpose compressor to the encoded tree such as gzip.

1.3.6 CIGAR String

CIGAR is an acronym for Concise Idiosyncratic Gapped Alignment Report. The general
idea of a CIGAR string was first presented by Fritz et al. [7]. CIGAR strings describe
the operations required to convert one string into another, by encoding the differences
between the strings, rather than the strings themselves. CIGAR strings are a primary
component of the SAM family of DNA sequencing data compressors [13].

For example, given the strings a) ACTGGGGG and b) GCAGGGGG, the string b)
can be expressed relative to the string a) using the CIGAR String SGCAMS5. This string
is interpreted as follows: the first letter S stands for substituting and it replaces substring
ACT (in string a)) with string GCA (that is in b)), next is the letter M which is a match,
here we have a 5 letter substring (GGGGG) that matches both the strings.

Although the SAM format utilizes seven different operations, this paper uses CIGAR
strings with four different operations, match, insertion, substitution, and deletion, which
is more similar to the reference-based approach of [7] because unlike SAM, CIGARCoil
involves the compression of two reads with similar if not the same lengths, whereas SAM
compares a reference string that has a number of bases in the order of millions to each
read that has a number of bases in the order of hundreds.

1.4 Contributions

In this thesis we make the following contributions:

1. Construction of the similarity graph where the edge weights are the size of the
smallest CIGAR string between any two reads, computed using the Wagner-Fischer
edit distance algorithm

12

. Integration of zpaq, an open source compressor, for the compression of read meta-
data, which previous compressors that used a similarity graph approach did not
support

. Application of an unsupervised machine learning technique, K-Means clustering to
improve compression speeds with small reductions in compression ratio

. Providing mechanism for random access of the sequencing data of the compressed
file in the form of a [] square bracket operator

. Extension of square bracket operator with a predictive cache utility, which uses
machine learning (Q-Learning) to adapt to shifting data access patterns.

. Providing an open source compressor to the public on GitHub free to use for both
public and private entities

13

Chapter 2
CIGARCoil Algorithm

This chapter describes the underlying algorithms of the CIGARCoil compressor. CIGAR-
Coil along with its predecessor compressors ReCoil [28] and Coil [27] are unique in that
treat each read of the input data as a node in a graph. CIGARCoil uses the concept
of a CIGAR string to represent the edge weights inbetween each pairing of nodes in the
graph [7]. Additionally, CIGARCoil uses a general-purpose compressor zpaq to handle
each read’s meta-data. At the end of this chapter a set of special CIGARCoil features
(i.e., file concatenation and incremental update) is described that provide additional
utility for end-users.

2.1 Inspiration

CIGARCaoil at its core is the synthesis and extension of ideas found in three different
approaches for the compression of DNA sequencing data. These ideas are as follows:

CIGAR String The first of these three approaches is the reference-based compression
idea of Fritz et al. [7], which has become a core component in the SAM family of DNA
sequence compressors [13]. A key difference between our approach and Fritz’s approach is
that Fritz utilizes one large reference string that is external to the data for encoding and
our approach uses the reads that are already present in the data set as reference strings.

LFQC Second, in addition to the reference-based idea of Fritz et al. this approach uses
a common approach found in many other DNA sequence compressors, the splitting of
the input file into different streams and processing them differently as to take advantage
of type of data found in each stream. Omne such approach is the LFQC paper, which
separates the DNA base-pair data from the meta-data, performs different transformations
on the data, then applies the zpaq compressor, which they found to be the most effective
general-purpose compressor, to the data [16].

ReCoil Third, this approach re-imagines the unique similarity graph approach taken in
compressing base-pair data by the ReCoil [28] and Coil [27] compressors. Changes include
the support of meta-data, encoding edges using CIGAR size rather than the number of
shared sub-strings, and leveraging the nature of the compressed file’s tree structure to
add support for a few operations to be performed on the compressed file: random access,
file concatenation, and update of the compressed file.

14

2.2 Encoding

This section describes the mechanisms that CIGARCoil uses in its encoding and com-

pression of DNA sequencing data. An overview of this process can be seen in Figure
2.1.

FASTA/FASTQ File

Sequence Stream

ID Stream Quality Stream (FASTQ only)

Generate Similarity Graph

Combined ID and Quality Stream

Encode Using zpagq compressor

Construct MST

Combine as
CIGARCOIL File

Figure 2.1: CIGARCoil Encoding Work-flow

Our algorithm starts with a set of n reads rg,71,...,7,_1. For each read r;,0 < i <
n — 1, we create a node n; in a directed graph G (directed similarity graph. There is a
directed arc from n; to n; to indicate the changes to make in read r; to make it equivalent
to ;. The weight w on the arc (n;, n;) denoted w(n;,n;) is the Wagner-Fischer edit
distance. We will have another arc from n; to n; and we note that w(n;,n;) # w(n;,n;).
This is true if we consider all the operations that are part of the editing process (insert,
substitute, delete, and match).

To explain CIGARCoil’s encoding the step following set of five reads is used as part
of a short example throughout this section:

1. Ryp: AAAAAAAAAAAAAAAA
2. R;: AAAAAAAACCCCCCCC
3. Ry: CCCCCCCCACTGACNN
4. R3: ACTGACTGACTGACTG
5. Ry: CCCCCCCCACTGNNCA

Each of our reads in the example data set of reads will now be represented by a node in
a similarity graph. An image of such a graph is shown in Figure 2.2.

A directed similarity graph G contains n x (n — 1) arcs. Once the similarity graph is
constructed we will find a minimum spanning tree of this directed graph. The minimum
spanning tree of the directed graph has the property that there exists a node such that
there is a directed path from that node to all the other in the spanning tree, such a tree
is referred to as an arborescence [8]. Finding the MST of an arborescence is known as
the optimum branching problem. There are a few approaches for this optimum branching

15

Figure 2.2: An edge-less similarity graph for reads Ry, Ri, Rs, R3, and Ry

problem, such as Edmond’s algorithm, which runs in O(EV) where E is the number of
edges and V is the number of vertices in the arborescence [6], and Tarjan’s algorithm,
which runs in O(Elog V') for sparse graphs and O(V?) for dense graphs [23].

Undirected Similarity Graph Restricting the operations to matches and substitu-
tions will assure that the Wagner-Fischer edit distance between two reads r; and r; will
be symmetrical that is, in the directed similarity graph w(n;,n;) = w(n;,n;). With this
assumption, we can now treat the directed similarity graph as a undirected one, by re-
placing arcs on both directions by a single edge. The weight on the edge will be our edit
distance (or CIGAR size).

Adding Edges Edges are added to the similarity graph using the heuristic as described
in the Node Compartmentalization Heuristic Section. Note that by definition a similarity
graph is a complete graph. We use a heuristic we have developed to reduce the number
of edges added. Continuing with our example set of five reads, we will now create an
empty hashbucket index data structure that will be used later to query a reduced number
of edges for each node to add an edge to. Initially this index structure looks like Figure
2.3; however, we will next populate it based on the partitions of our set of reads.

In order to determine which set of buckets to emplace a read’s ID into within the
hashbucket index structure, a set of partition values is computed for each read. The set
of partition values for a read are the number of occurrences of each base A,C,T, and G
within each partition of size A from the original read. An example of these partitions
being computed for example read R, is shown in 2.4.

Now that the partition values for each bucket have been computed for read Ry, Ry
can now be added to the appropriate indices of the hashbucket index data structure as
seen in Figure 2.5.

16

A=4
Read Length = 16

Partition #

1

~ w N

\nnnn Lgnnnnn

< |
[
o

Figure 2.3: An initially empty hash bucket index for reads Ry, Ry, Rs, R3, and Ry

CCCC cCcCcC ACTG NNCA
#
Occurrences Occurrences Occurrences Occurrences
Partition 0 Partition 1 Partition 3
A 0 0 A 1
C 4 @ 4 C 1
T 0 T 0 T 0
G 0 G 0 G 0

Figure 2.4: Computation of Partition Values for read R, using A of 4

Partition values are computed for all reads in the data set in the same manner that
they were computed for Ry. After emplacing all of the reads from the example data set
in their appropriate buckets within the hashbucket index, the hashbucket index will be
look as it does in Figure 2.6.

Now that we have populated the hashbucket structure with values corresponding to
each read, we can now apply the node compartmentalization heuristic for each read to
obtain a set of candidate reads to add edges to. Figure 2.7 shows the set of candidate
reads for R, being found by performing intersections of the buckets. At the end of this
process only Ry remains as a candidate for Ry.

Now that Ry has been identified as a candidate for adding an edge to from Ry, our
custom implementation of Wagner-Fischer can be employed to determine the CIGAR
size of read R, relative to read Rs, the edge weight. The Wagner-Fischer matrix for this
example is shown in Figure 2.8.

By performing Wagner-Fischer to find R, relative to R, we found that encoding these
differences requires a CIGAR string with a CIGAR size of 2. An edge with this weight
can now be added to the similarity graph as seen in Figure 2.9.

Performing this process on all reads from the example set Ry through Rj results in
the similarity graph as seen in Figure 2.10.

17

R4: CCCC CCCC ACTG NNCA

Partition #

1

2
3
4

Figure 2.5: Hashbucket Index with only read R4 added to it

R,, Ra R; Ry, Ry Rz, Ry Ro, Rq
n Ro, Ry Ry Ry Ry n Ro, Ry Ra Ra, Rs

RCll er RZJ R4 RS I RO! RZJ REI
NN Ro Ry RoRe R Ru Re
Partition # - n Ro,Ra, Rg

1 // Ry, Ry
- mn—unn
: R,, Rs, Ry
4

m-—nan- Ro Ry RyR Ry

RZJ R3I R4

T Ry, R Ry R, R
H. 0 U e e
Ro, Ri, Ry, Ry Ry Ros Ry Ry, Rs, Ry
BB roruRR R

Figure 2.6: Hashbucket index populated with reads Ry, Ry, R, R3, and Ry

Occurrences # Occurrences
Partition O R, Partition 2 R,
A 0 A 1

C

=y
(@]
=

T o k.| R R KR

G

G 0 1
Occurrences # Occurrences R, Ry, R, Ro, Ry, Ro, Ry,
Partition 1 R, Partition 3 R, 2 R, R,
A 0 A 1
Ro, | Ros Ro: | Ros Ro: | Ros R;,
Ry | Ry Ry, | Ry Ry, Ry R;
R; [R; R; [R; R, [R;

-4 o
o &
- o
o B

(0]
o
(0]
o

Figure 2.7: Example of node compartmentalization heuristic for read Ry

18

4 4 4 4
5 5 5

3

1 1 2 2 2 2 3 3

1

[e lc e Jc Jc Jc Jc Jc Jc [a Jc 1 Jo [n [n [c Ja -E-
3

) D
< K

CIGAR Size

Figure 2.8: CIGARCoil Wagner-Fischer Matrix for read R, relative to read Ry

Figure 2.9: Similarity graph with just one edge drawn between R, and R,

19

Figure 2.10: Similarity graph for Ry, Ry, Ro, R3, and R, with all edges added

Compute Minimum Spanning Tree After the edges have been added to the tree,
then a minimum spanning tree can be computed by applying Prim’s algorithm to the
similarity graph.

Now that we have finished adding edges to the similarity graph, a MST can be com-
puted for the similarity graph, yielding the tree that requires the fewest number of bytes
to encode the differences between the reads. We arbitrarily select the read R, as the root
of the tree constructed by Prim’s algorithm. The only edge that needed to be removed
to compute this minimum spanning tree is the edge from read R3 to read R, with weight
4.

Encode Minimum Spanning Tree The parent array for the minimum spanning tree
is written to the encoded output file. Then the root’s ID, sequence, and quality score
(if the original file was FASTQ) are written to the output file. Then for each node in
the tree, its id is written to the output file, followed by the cigar string that encodes its
sequence relative to its parent, followed by its quality score if the original file was FASTQ.

Encoding the Quality Scores The encoding of quality scores is more challenging
than the sequence due to the significantly larger alphabet for quality score characters
than sequencing data. Quality scores can potentially range from 0 to 255, and different
sequencing machines generate these quality scores differently. The approach taken by
other FAST(Q compressors such as DSRC [4] and LFQC [16] is to use separate methods
for handling sequence and quality data. DSRC uses Huffman encoding on blocks of
quality scores, and LFQC uses the zpaq compressor, an open source and open API general
compressor, on quality scores. Since zpaq has been shown to be effective at compressing
quality scores [2], and zpaq supports various operations that are of interest to future
development such as file concatenation and streaming compression, we have also elected
to employ the zpaq compressor for compressing quality scores.

20

3

—~
—~_
— 4
° 4

Figure 2.11: MST computed for similarity graph in Figure 2.10

Parent Array: e Index for R, Index for R, Index for R; Index for R,

R, relative to R; CIGAR

R, relative to R, CIGAR
Encoded MST: R, Explicitly

R, relative to R, CIGAR

R, relative to R, CIGAR

R, compressed metadata
R; compressed metadata
R, compressed metadata
Metadata: R, compressed metadata

R, compressed metadata

Compressed

Figure 2.12: Resulting file structure for Ry, R;, Rs, R3, and Ry

Writing the CIGARCoil file Now that the MST has been rerooted, The final step
is the encoding of the tree. First, the parent array of the MST is written to the file.
Note that in our example, Ry has its parent listed as 2, indicating that it is the root of
the tree. Second, the Minimum spanning tree is encoded by writing each read relative
to its parent in the tree as a CIGAR string. The root of the tree is written explicitly.
Third, the meta-data can be compressed and concatenated to the end of the file. Finally,
a general-purpose compressor like bzip is applied to the file, further reducing its size. An
example of this file is seen in Figure 2.12.

2.3 Time Complexity
The time complexity of encoding is the worst-case amount of time that will be required

to compress a set of data. Let n be the number of reads. In summary the time complexity
of encoding the data set is as follows:

21

(n® —n) x O(Wagner — Fischer) + O(Prim's) + O(EncodeTree) (2.1)

This means that for each of the n reads in the data set we will create an edge to every
other read in the complete directed similarity graph. The cost of computing each edge
is the cost of computing a Wagner-Fischer edit distance. Next, a MST is computed for
the resulting Similarity Graph using Prim’s algorithm. Finally, the tree is encoded using
CIGAR strings. Now we will break down the above expression:

Wagner-Fischer Time Complexity For each edge of the complete graph constructed
with n nodes, the Wagner-Fischer algorithm is performed to compute the edge weight.
As discussed in the preliminaries section, the time complexity of Wagner-Fischer is O(i
X j), where i and j are the lengths of the two nodes’ reads, which are dependent on the
DNA sequencing machine that can produce reads from a few dozen characters in length
to a few hundred characters in length.

Minimum Spanning Tree Time Complexity Once the similarity graph is con-
structed. A minimum spanning tree of it can be computed using Prim’s algorithm, which
as discussed in the preliminaries section has a time complexity of O(E log(n)), where E
is the number of edges and n is the number of reads.

Encode Tree In order to encode an a node of tree, Wagner-Fischer edit distance must
be computed between itself and its parent, which also yields the CIGAR operations
required to encode the set of operations. This step is O(n x (i X j)), where n is the
number of nodes, and 7 and j are the lengths of the parent and child reads.

2.4 Node Compartmentalization Heuristic

Computing the edge weights for all edges within the similarity graph requires a pro-
hibitively large number of operations to be performed. For example, given a set of
100,000,000 reads each with length 100 bases, adding all edges to the undirected graph
requires ((100,000,000? - 100,000,000) / 2) x (100 x 100) operations, which is about fifty
quintillion operations that a machine must complete to compute such a set of edges. The
following heuristics are used to reduce the number of reads that edges are being added
between. This serves three purposes.

e Too many edges would be difficult to store in main memory for a large number of
reads.

e The majority of the edges will be pruned immediately after the construction of the
graph to make a MST, which will then be encoded using CIGAR strings.

e The Wagner-Fischer edit distance used for the edge weights is O(i x j) where i and
j are the lengths of the two nodes’ reads, which would be very costly to compute
for every two nodes.

One of the greatest challenges of generating a similarity graph is determining which
nodes to create edges between. Although an edge could be drawn between each and node,
since there is a CIGAR string for any two strings, doing so would be unwise because this

22

would result in (n? —n)/2 edges. This prohibitively large number of edges significantly
hinders the creation of the minimum spanning tree using Prim’s algorithm (O(FElog(v))),
although it does guarantee that the tree MST is constructed with the lowest cost edges
from the complete graph.

In order to reduce the number of edges that are added to the similarity graph, the
following heuristic is employed:

Each read is L bases in length. Each read can be partitioned into b hash buckets with
a length of A characters.

The following probabilistic calculations are made under the assumption that each
read’s sequencing data consists of approximately 25 percent Adenine (A), 25 percent
Cytosine (C), 25 percent T, 25 percent G, and 0 percent N; however, there will certainly
be deviations from this specific to the source of the data.

percentageOfReadsInBucket = choose(A,) x ((1/4)") x (3/4)27 (2.2)

For each A characters in the sequence, there are four hash buckets, corresponding
to the four characters A, C, T, and G. For read i, if there are j occurrences of A, k
occurrences of C, m occurrences of T, and n occurrences of G, then the hash bucket for A
will have the value i added at index j, the hash bucket for C will have the value ¢ added
at index k, and so are. This is continued for all As within the string, populating the 4 x
L / A hashbuckets. This provides a means for groups of reads with similar characteristics
to any given read to be quickly accessed in constant time using a data structure such as
a dictionary of vectors for each hash-bucket.

Hashbuckets Data Structure The following data structure as seen in Figure 2.13,
a hashbucket index, is used to find all reads with a given number of occurrences of a
particular character in a partition of a sequence of length A in constant time. This data
structure is populated only once when the reads are passed into the file.

Hashbucket Read Insertion Example For example, given a string AAACTTG-
GACTGACTG representing the sequencing data of the read i, and a A of 8, the first
partition of the string is the substring AAACTTGG. This substring contains 3 A, 1 C,
2 T, and 2 G. The value i is emplaced at the end of the sets within the hashbuckets
corresponding to 3 As in the first A characters, 1 C in the first A characters and so on.

Choosing A As is illustrated in figures 2.14 and 2.15, reads are most likely to be
assigned to the partition corresponding to A/4.

The graph in figure 2.16 plots the percentage of total reads in the worst case versus the
size of A. Although increasing the size of A reduces the percentage of reads encountered
in this worst-case, this worst-case quickly begins to converge around 12 percent. In our
implementation of this, we have elected to use a A of 16 because it permits 22 percent
of reads in the worst case and is small enough that a read of length 36, the smallest
length read of one of our data sets as seen in Table 5.6 as well as the smallest read length
supported by a DNA sequencing machine like the Illumina MiSeq sequencer as seen in
1.1 can have still have multiple hash bucket partitions to perform intersections with.

Complete Graph vs. Heuristic Graph A heuristic for adding edges is superior than
using a complete graph (G) for constructing a MST(7) if its resulting graph (G’) and its

23

Number of Occurrences of Character
in this Partition

Partition Number Character

A 0 4 Set of Read Ids that possess this attribute

1
c 1 ﬁ Set of Read Ids that possess this attribute

2
T 2 Set of Read Ids that possess this attribute

3
¢ 3 * Set of Read Ids that possess this attribute

4
4 ﬁ Set of Read Ids that possess this attribute

5
5 A Set of Read Ids that possess this attribute

Length .
5

A 4 Set of Read Ids that possess this attribute

Figure 2.13: The Hash Buckets Index Data Structure that is used to find all reads with
a particular attribute in constant time.

Percentage of Reads Falling into Each Partition for Delta of 16

0.25
|

on
0.20
L&}

[
o

01

0.10

03

_ Q o]

FPercentage of Reads in Partiti

A
W

.00

|

o

L

o

o

L

o

&

Occurrences of Paricular Base

Figure 2.14: Assumed percentage of reads in each bucket for A of 16

24

Percentage of Reads in Partition

Percentage of Reads in Worst Case Partition

0.0s 010 0.15 020 0.25

0.00

02 04 06 08

0.0

Percentage of Reads Falling into Each Partition for Delta of 32

a o
o

Q:'O'JGDGCIDGD*?CII?ODGQ

T T T T T T T
0 5 10 15 20 25 30

Occurrences of Particular Base

Figure 2.15: Assumed percentage of reads in each bucket for A of 32

Predicted Percentage of Reads in Worst Case Partition vs Delta

0000
LT T
C0ooog
°°°°°°00ooooooooo00000000000009000000000

T T T T | T
0 50 100 150 200 250

Delta (number of bases)

Figure 2.16: Percentage of reads in worst case as A increases

25

MST(T") satisfies the following condition: V(u,v) € Eg A (u,v) ¢ Eg and w(T) > w(T")

Time Complexity With Heuristic The time complexity of encoding is the worst-
case amount of time that will be required to compress a set of data. Let n be the number
of reads, and let n;, be the number of reads identified by the node compartmentalization
heuristic. In summary the time complexity of encoding the data set is as follows:

n x O(heuristic) + O(AddEdges) + O(Prim’s) + O(MinTreeHeight) + O(EncodeTree)
(2.3)
This means that for each of the n reads in the data set, we will first apply the hash
bucket heuristic to it. Then for each read’s subset of reads to create an edge to, the cost
of computing the edge weight is applied and the edge is added. Next, a MST is computed
for the resulting Similarity Graph using Prim’s algorithm. Then, the height of the tree is
minimized to assist with decoding and random access. Finally, the tree is encoded using
CIGAR strings. Now we will break down the above expression:

Heuristic Time Complexity The node compartmentalization heuristic identifies a
subset of reads n; for adding edges to between the current read as adding edges between
all reads is not feasible and ultimately unnecessary as a minimum spanning tree is im-
mediately generated after the similarity graph is constructed. The time complexity of
performing the heuristic is as follows:

O(n x (((L/A) x 4) — 1)) = O(heuristic) (2.4)

The n component corresponds to the cost of performing an intersection on two pre-
sorted sets, and the ((L/A) x 4) — 1 component corresponds to the number of non-leaf
nodes of a binary tree for the hash bucket structure where intersections will be performed.
At this point it seems as if this heuristic has resulted in a quadratic time algorithm due to
n x O(heuristic); however, this assumes an exceptionally rare worst case where all reads
in the file are the same. The graph shown in Figure 2.16 illustrates the probable number
of reads to begin with in each partition, and after each intersection the number of reads
remaining to be considered decreases significantly. For example, if there are 25 percent
of reads in a partition A and 25 percent of reads in a partition B, then the expected
percentage of reads in the intersection of both A and B is 6.25 percent. This percentage
of remaining reads continues to become exponentially smaller as more intersections are
performed. The number of reads left for consideration after performing all intersections
is referred to as ny,.

Adding Edges Time Complexity After a subset of ny, reads has been identified for
a given read to generate edges between, the Wagner-Fischer algorithm is performed to
compute the edge weight. As discussed in the preliminaries section, the time complexity
of Wagner-Fischer is O(i x j), where i and j are the lengths of the two nodes’ reads.

O(n xnp X O(i X j)) = O(AddEdges) (2.5)

Minimum Spanning Tree Time Complexity Once the similarity graph is con-
structed. A minimum spanning tree of it can be computed using Prim’s algorithm, which

26

as discussed in the preliminaries section has a time complexity of O(Elog(n)), where E
is the number of edges and n is the number of reads.

Root MST such that it has minimal height Once the minimum spanning tree has
been constructed, the tree is then re-rooted to minimize the height of tree. Although this
does not aid in compression, this step reduces the number of de-coding operations to be
performed to randomly access a node later. This is discussed in Chapter 3 takes O(n)
time.

Encode Tree In order to encode an a node of tree, Wagner-Fischer edit distance must
be computed between itself and its parent, which also yields the CIGAR operations
required to encode the set of operations. This step is O(n x (i x j)), where n is the
number of nodes, and 7 and j are the lengths of the parent and child reads.

2.5 Decoding and Decompression

Decoding and Decompressing a compressed CIGARCoil file is significantly less compu-
tationally intensive than compressing the file. A diagram of this work-flow can be seen
in Figure 2.17. Algorithm 5 describes the recursive process that is used to decode the
entirety of the compressed tree structure.

Algorithm 3 Decode-CIGAR
LET c be a cigar string
LET s be the parent string
LETd=""
LETi=0
for all Operation o in ¢ do
if o == MATCH then
d += s.substr(i,o.length)

i += o.length
else if o == DELETION then
i += o.length

else if o == SUBSTITUTION then
u = o.Values
d+=u
i += u.length
else if o == INSERTION then
u = o.Values
d+=u
end if
end for
return d

27

Algorithm 4 Decode-Child
LET c be a cigar string
LET P be the parent array
LET D be the previously decoded reads
if P[c]| NOT IN D then
CALL Decode-Child on P|c|
end if
CALL Decode-CIGAR with ¢ and D[P[c]]
INSERT decoded ¢ in D

Algorithm 5 Decode CIGARCoil Sequences
LET D be previously decoded reads
LET P = parent array stored at head of file
Insert Root of tree into D
for all CIGAR Strings in File do
if current string != root then
CALL Decode-Child on current child
end if
end for

2.6 Special Features

The following two special features, file concatenation and incremental update are provided
by the CIGARCoil format. These two features are requested in the MPEG-G DNA
compression standard [1].

2.6.1 File Concatenation

Two compressed files can be easily concatenated. Given two CIGARCOIL compressed
files, A and B, file B can be concatenated with file A by finding a node on file A’s
MST to connect the root of file B’s MST. Once this node is found, the root of file B
can be represented using a CIGAR string relative to the node in A’s MST, and the
rest of file B can be inserted into file A following the newly modified root of its own
tree. The resulting file constructed in this manner likely does not represent a minimum
spanning tree; however, concatenating files together in this manner is less computationally
expensive as a new similarity graph and mininimum spanning tree is not constructed.

2.6.2 Incremental Update

Incrementally updating the compressed data is made easy by this format. An individual
read in this compressed file can be updated by first using the same method as file indexing
to arrive at the node of interest. Additionally the children nodes of the chosen read must
be decompressed. Next, the chosen read can be modified. After the chosen read is
modified, new CIGAR representations for its children reads will need to be assigned to
them based upon their modified parent. Then the chosen read will receive its own new
CIGAR representation relative to its parent. The resulting file after this update is likely
not a minimum spanning tree anymore; however, updating an individual read in this

28

manner is less computationally expensive than decoding the file, modifying the record,
then encoding the modified file.

29

CIGARCoil.bz2

decompress bzip

CIGARC il

Read parent array
and corresponding
number of CIGAR
strings from file

Remainder of file is
compressed ID and Quality
fields

CIGAR-Encoded
Read Sequences

zpaq Compressed ID
and Quality Fields

Decode
CIGAR
Strings

decompress
Zpaq

Decoded Read
Sequences

ID and Quality
Fields

FASTA or FASTQ

Figure 2.17: Image of CIGARCoil Decoding and Decompression Process that Occurs

Once Per Run

30

recombine id sequence and
quality scores

ORE

| |
(s) \

Figure 2.18: File Concatenation Example Tree

Figure 2.19: Incremental Update Example Tree

31

Chapter 3

Random Access and Predictive
Cache

Random access of a read is a core feature of the CIGARCoil compression format. Random
access works by traversing the CIGARCoil file’s tree structure, decoding only what is
necessary to obtain the read of interest to the user. Random access is made available
to an end-user in the form of a square bracket [| operator. Since random access of a
CIGARCail file is not constant time, a predictive cache utility is implemented that pre-
fetches data for the user based on their access patterns.

3.1 Random Access of Compressed File

An individual read of the compressed file can be accessed by decompressing only its par-
ents recursively through the root of the MST. Accessing a read in this manner eliminates
the need for decompressing the entire file within memory - providing the end user with
a memory efficient means of reading the contents of a particular read in the compressed
file. For example as seen in Figure 3.1 if r4 is being accessed, then we will decode r4’s
parent, 2, relative to its parent, the root of the minimum spanning tree 1, then decode
r4 relative to the now decoded r2. This circumvents the need to decode the other reads
of the tree.

The Prim’s algorithm provides us with a MST initially rooted arbitrarily at the first
node of the graph. The height of the tree provides is a factor when we randomly access a

rl

A

@/ XM

Figure 3.1: File Indexing Example Tree

32

Figure 3.2: New tree after Root Changed to Minimize Height

read and need to decode the string by following the decoding method described previously
as we move from the node (corresponding to the read) towards the root. Hence, it is
desirable to find a node to be designated as the root that minimizes the height of the
tree. Such a node in the graph literature is a called the center of the tree.

A tree that has been re-rooted to minimize tree height can be seen in Figure 3.2,
which has re-rooted the example tree from Figure 3.1 to minimize the tree’s height by
changing the root from r1 to r2. An algorithm for minimizing tree height can be seen
in Algorithm 6, which takes a parent array and modifies it such that its root is in the
center of the tree, reducing the number of traversals needed to reach the root from the
average leaf node. The algorithm for centering the tree and minimizing its height works
by pruning leaf nodes from the tree until at least two nodes remain. This algorithm is
presented in Algorithm 6. These at least two remaining nodes are guaranteed to be at
the center of the tree so the first is taken to be the root of the tree. With the new root,
the original parent array is modified such that its indices now indicate the new root of
the tree. This algorithm is known to run in linear time.

Using a data-set of the first two-million reads from the SRX001540 data set from
table 5.6, the cost in time of randomly accessing the base-pair data is compared for both
a CIGARCoil compressed file and the original FASTA file inFigure 3.3. On average for
a CIGARCoil compressed file, random access requires 0.00112 seconds with a standard
deviation of 0.00036. For a FASTA file, random access requires 0.00058 seconds on
average with a standard deviation of 0.00010 seconds. As is to be expected, randomly
accessing an uncompressed file requires less time than randomly accessing and decoding
a record of the compressed file; however, despite the need to decode, random access of
the CIGARCaoil file only takes about twice as long as randomly accessing a record of an
uncompressed file. These results are seen in Figure 3.3.

3.2 Predictive Cache

Since CIGARCoil supports the random access of elements within the file in O(n), CIGAR-
Coil is a candidate for the implementation of a predictive caching strategy where elements
that an end-user is likely to request in the future can be fetched in advance. CIGARCoil’s
predictive cache learns which elements to fetch by using the reinforcement learning strat-
egy, Q-Learning. A reinforcement learning approach has been chosen with the intention

33

Algorithm 6 Center Tree - Minimizing Tree Height

LET P be a parent array representation of the tree
LET n be the number of nodes
LET D be an empty array of size n for the degree of each node
LET A be an empty array of vectors that represents adjacency between nodes
for alli: n do
LET j be P[i]
insert i into Alj]
insert j into Alj]

D[j] = D[j] + 1
D[i] = D[i] + 1
end for

LET Q be a FIFO queue
for alli: n do
if D[i] == 1 then
Q.push(i)
end if
end for
LETm=n
while m >2 do
for q : Q.size() do
LET f be Q.pop()
m=m-1
for a : A[f] do
Dla] = DJa] - 1
if D[a] == 1 then
Q.push(a)
end if
end for
end for
end while
LET r be Q.pop()
LET R be a parent array of size n
Q.clear()
for a : Afr|] do
Rla] =r
Q.push(a)
Ala].remove(r)
end for
while Q.size() >0 do
LET v = Q.pop()
for a: A[v] do
Rla] = v
Q.push(a)
Ala].remove(v)
end for
end while
return R

34

Time Spent Performing Random Access for
CIGARCoil and FASTA Without Caching

0.003-

0.002-

colour
- CIGARCoIl Uncompressed
© FASTA

0.001-

Time Spent Retrieving Read (Seconds)

0.000-

0 500000 1000000 1500000 2000000
Read Being Accessed

Figure 3.3: Time required to randomly access (and decode) a record from a FASTA and
CIGARCo il file

of making this caching feature robust with a variety of different access patterns.

Cache Implementation The cached elements is user-defined sliding window of con-
tiguous elements from the source file. An array of this user-defined size is stored in
memory as well as the actual last and first index of the elements being stored. A sliding
window of contiguous elements is used because the end-user is assumed to access elements
of the file sequentially.

State Representation The state representation used for Q-learning has the following
12 states:

1. User requesting element in [0,10) percent of cache
2. User requesting element in [10,20) percent of cache
3. User requesting element in [20,30) percent of cache

4. User requesting element in [30,40) percent of cache

)

)

)

5. User requesting element in [40,50) percent of cache

6. User requesting element in [50,60) percent of cache
)

7. User requesting element in [60,70) percent of cache

35

8. User requesting element in [70,80) percent of cache
9. User requesting element in [80,90) percent of cache
10. User requesting element in [90,100) percent of cache
11. User requesting element before the first element of the cache

12. User requesting element after the last element of the cache

Actions that the Learning Agent can Take The predictive cache, the learning
agent, can take one of the following 21 actions from any of the 12 states:

1. Make no change to the window
2. Advance the window 10 percent of the window-size forward
3. Advance the window 20 percent of the window-size forward
4. Advance the window 30 percent of the window-size forward
5. Advance the window 40 percent of the window-size forward
6. Advance the window 50 percent of the window-size forward
7. Advance the window 60 percent of the window-size forward
8. Advance the window 70 percent of the window-size forward
9. Advance the window 80 percent of the window-size forward
10. Advance the window 90 percent of the window-size forward
11. Advance the window 100 percent of the window-size forward
12. Move the window 10 percent of the window-size backward
13. Move the window 20 percent of the window-size backward
14. Move the window 30 percent of the window-size backward
15. Move the window 40 percent of the window-size backward
16. Move the window 50 percent of the window-size backward
17. Move the window 60 percent of the window-size backward
18. Move the window 70 percent of the window-size backward
19. Move the window 80 percent of the window-size backward
20. Move the window 90 percent of the window-size backward

21. Move the window 100 percent of the window-size backward

36

Rewarding the Learning Agent The learning agent receives a reward based on how
close to the center of the window that the user’s requested element is in. This reward is
chosen because it encourages the predictive cache to keep elements cached in a manner
that supports the user iterating forward or backward through the file. If the element
requested is outside of the window, then a negative reward is given to the agent, discour-
aging behavior that led to this state in the future.

Q-Learning Parameters In my implementation a value of 0.01 is chosen for €, indicat-
ing that the agent will take a random action 1 percent of the time. This is necessary for
the agent to continue to explore different possibilities of actions instead of just choosing
an action that maximizes its reward using its state-action table. A value of 0.1 is chosen
for a, the learning rate. Choosing this somewhat high value for learning rate is done be-
cause it anticipates that the end-user might change their access pattern while accessing
the data, allowing it to more quickly learn the new pattern with its high learning rate. A
value of 0.01 is chosen for v, the discount rate. This relatively low value for the discount
rate is chosen because the value of a possible future reward is unimportant compared to
whether or not the end-user is able to currently access the data that they are requesting.

Time Required to Access A Random Element Using a data-set of the first two-
million reads from the SRX001540 data set from table 5.6, the cost in time of randomly
accessing the base-pair data is compared for a CIGARCoil compressed file with and
without caching in Figure 3.4. In this experiment random access with caching required
0.00038 seconds on average per access with a standard deviation of 0.00025 seconds.
Random access without caching required 0.00112 seconds on average per access with
a standard deviation of 0.00036 seconds. Caching elements in this manner provides a
significant improvement in terms of random access speed. These results are seen in
Figure 3.4.

Time Required to Perform Cache Window Adjustment Using a data-set of the
first two-million reads from the SRX001540 data set from Table 5.6, the cost in time of
adjusting the predictive cache’s window, which in this experiment is set to a size of 1000
reads, is shown for both a CIGARCoil compressed file and the original FASTA file in
Figure 3.5. On average filling the cache requires 1.053 seconds seconds for a CIGARCoil
file with a standard deviation of 0.429 seconds. Filling the cache for a FASTA file required
0.574 seconds on average with a standard deviation of 0.144 seconds. These results are
seen in Figure 3.5.

37

Random Access Timings for CIGARCoil With and Without Caching
Cache Size of 1000

* With Cache
* Without Cache

colour

L ouon

S edernarinipianii BN

Lo.....o..

i

ot _m.u“ —
. 5 Wt ou g8o
R I S B ... L 3
R - B !, 1
ok g L .r.:m&n.n. HIY :
5 o lm -. - ...u.u. Hit g .

LR T u.ooomo.&m 1
H gre 0% + g :
L ="y .uou"u‘- i ml 2 5
. .)

ee T te '

Wt e sttt ..mm_ ik

. | Mt -1 mm 8
“ e s s e s u.us.. mm s 3
© PRI | .)

Su_a_m_m_ wm.. © o
w e entare et

T et ..u? _r.m.. 0
* agl t"”“ * .

. * . oooouoo mm“um—l — o"”oooo

., . b .”‘oo ‘“"u“ .

.

seese 0 owte e “.w.u."n_w _ .1 U
L) . s ooo.o-.o el i E .
P e N ' i
. stonring qenppanl _- _I.._........ .4
LI * oo.........oo‘o.“— “ I R R :
. ooo..ooo:oooo:o._-nr-r- m- LY -
L .

* wegeer sepre oo sneli Ll gt -

. e

u ooo ouo mu oonomo oo o..o M— -'u‘o B
LR T IRt Ll P N ...m- il — um... _
sintilill - |
* e . et ooouo ﬂ.‘-‘-‘ - — e
. __ pous- §
. . su.a._...__. -2
st

0.003-
0.002-
0.001-
0.000-

(spuooag) peay Buinallay Jusds sl

1000000 1500000 2000000

Read Being Accessed

500000

Figure 3.4: Cost of Random Access for a CIGARCoil file with and without caching

38

Time Spent Performing Predictive Cache for CIGARCoil and FASTA

3=

colour
* CIGARCoil Uncompressed

. ! . .
y a .'..I LI ", PR s Sue
't. ‘ i i LI :--'-'- 1'2.0': * FASTA
> g N 1
"r

'._'.:m".'

Time Spent Performing Predictive Cache Operation (Seconds)

1- 1 ..' 5 ol
:."‘. | : 1 . ":‘ﬂ . s
- . - :
Jl 3 . A o3 LIPS 1AW ARt L e
W ¥ T T >
! ’ : 5
_— * iy o Bl S P . =
L] F L] 4 2 L] :: -
. 5 o L] i LY H : -
L . - t ..f. ‘i} 'i t
. ¢ B & $
-] . an ®]
U_
0 500 1000 1500 2000

Instance of Populating Cache

Figure 3.5: Cost Adjusting Predictive Cache for CIGARCoil compressed file and Uncom-
pressed File

39

Chapter 4
CIGARCoil Clustering

Although the node compartmentalization heuristic that is applied reduces the amount
of edit distance computations that need to be performed on the data set, it seemed
that it should be possible to use a clustering strategy to offer further improvements
to compression speed at the cost of some compression ratio performance. By applying
clustering to the data set, similar reads can be clustered together, reducing the number of
reads that the read compartmentalizing heuristic has to deal with in the first place. This
chapter describes the implementation and results of applying clustering to the CIGARCoil
COMPpressor.

After the different parts of the input file have been split into their separate temporary
files. A clustering algorithm can then be applied to the sequencing data, which has
been shown to drastically reduce compression speeds at the cost of small compression
ratio performance decrease as seen in Tables 4.1 and 4.2. K-Means clustering is used
as the clustering algorithm because it runs in linear time, and the number of clusters
and iterations used in the clustering are specified as command line arguments, allowing
the end-user to determine the trade-off in compression that they are willing to incur for
faster performance. The k-means implementation in this paper uses a set of £ random
strings of length equal to the average read length, which was calculated when the file was
initially split into sequencing data, id data, and quality streams. Initially we sought to
use Wagner-Fischer edit distance for our clustering algorithm’s distance metric; however,
the cost of applying Wagner-Fischer between the sequences and the centroids took a
prohibitively long time. In order to work around this, the distance between a cluster and
each of the centroids is instead calculated using Algorithm 7, which provides linear time
complexity instead of Wagner-Fischer’s quadratic time complexity. After clustering, each
cluster becomes its own similarity graph, which are each separately encoded as MST as
is done without clustering. Once all clusters have been encoded, they are all combined
using the CIGARCoil concatenation idea that is shown in Figure 2.18. An illustration of
the CIGARCoil workflow with clustering is shown in Figure 4.1.

4.1 Clustering Hyperparameter Experiments

The following clustering hyperparameters were run using a dataset that consists of the
first five-hundred thousand reads of the SRR001540 dataset. These tests were run to
provide an idea of the efficacy of the clustering algorithm on reducing compression speeds
and how detrimental clustering is to the compression ratio of the resulting file. Each
combination was run only once due to the amount of time required for each experiment.

40

FASTA/FASTQ File

Sequence Stream

ID Stream Quality Stream (FASTQ only)

Apply Clustering
Combined ID and Quality Stream

Encode Using zpagq compressor

Combine as
CIGARCOIL File

Encode Each Cluster As an MST

Combine Encoded Clusters

Figure 4.1: CIGARCoil Encoding Work-flow With Clustering

Algorithm 7 Clustering Linear-Time Similarity

LET s; be the first string

LET s, be the second string

LET similarity be 0

LET L be MIN(LENGTH(s;), LENGTH(s2))

fori: L do
if s1[i] == s5[i] then
similarity = similarity + 1
end if
end for

return similarity

Table 4.1: Hyper Parameter Test Compression Ratios

Clusters/Iterations | 1 2 4 8

1 0.267 - - -
2 0.279 | 0.278 | 0.279 | 0.279
4 0.283 | 0.282 | 0.282 | 0.282
8 0.286 | 0.286 | 0.286 | 0.285
16 0.288 | 0.288 | 0.287 | 0.287
32 0.290 | 0.290 | 0.290 | 0.289
64 0.292 | 0.292 | 0.292 | 0.292
128 0.294 | 0.293 | 0.293 | 0.293
256 0.296 | 0.296 | 0.295 | 0.295
512 0.298 | 0.297 | 0.297 | 0.296
1024 0.299 | 0.299 | 0.299 | 0.299
2048 0.301 | 0.300 | 0.300 | 0.300

41

Table 4.2: Hyper Parameter Test Compression Speed (Hours)

Clusters/Iterations | 1 2 4 8

1 10.52 - - -
2 6.22 | 6.16 | 6.09 | 6.15
4 3.54 | 3.97 | 4.40 | 4.53
8 242 | 255|277 3.33
16 1.76 | 1.93 | 1.99 | 2.09
32 1.40 | 1.52 | 1.63 | 1.75
64 1.21 | 1.33 | 1.45 | 1.66
128 1.14 | 1.27 | 1.56 | 1.84
256 1.15 | 1.35 | 1.73 | 2.47
512 1.29 | 1.64 | 2.38 | 3.802
1024 1.62 | 2.30 | 3.64 | 6.32
2048 2.28 | 3.58 | 6.19 | 11.39

Choosing the Number of Iterations and Clusters After performing the clustering
hyper parameter tests as seen in Table 4.1 and Table 4.2, we elected to choose 128
clusters with 1 training iteration. This combination was chosen because it reduced the
required amount of time for compression of the 500,000 read dataset to 1.14 hours with
a compression ratio loss of only 3 percent relative to a run without clustering, which
required 10.52 hours. This combination of parameters is used for the other experiments
of this section as seen in Table 4.3, Table 4.4, and Table 4.5.

Effect of Clustering As can be seen in Table 4.1 and Table 4.2, clustering improves the
compression speed of CIGARCoil with a small reduction in compression ratio performance
as the number of clusters increases. The number of iterations improves the compression
ratio only slightly as seen in Table 4.1. Additionally, the cost of performing a large
number of clustering iterations begins to outweigh the cost of performing the CIGARCoil
algorithm as seen in Table 4.2. With the approximate edit distance metric used in our
clustering implementation, many reads are assigned to the first centroid because they
have nothing in common with any of the centroids. This causes the first cluster to almost
always be significantly larger than the other clusters. This relationship between the

number of reads in each cluster and the number of training iterations can be seen in
Figure 4.2.

Compression Ratio vs. Number of Reads It can be observed in Figure 4.3 that
the compression ratio continues to improve for CIGARCoil as the number of reads in
the data set increases. CIGARCoil’s compression ratio relative to the number of reads
continues to improve as bzip and gzip’s compression ratios level off.

Compression Speed vs. Number of Reads It can be observed in Figure 4.4 that
although compression takes an extremely large amount of time, it is still increasing at an
approximately linear rate.

42

Nurnber of Reads

Nurnber of Reads

1 lteration Std. Dev.= 17703

[]
(o] —
g -
@ z
m
- [1k]
= =
(=T 2
g 2
_ £
=
=
o
Cluster
4 lterations Std. Dev.= 20679
-
(] (5]
[B =
(] m
o0 [2F)
] o
o k=]
E a —
:
— =
=
o

Cluster

2 lterations Std. Dev. = 19690

80000
|

40000
|

0
|

Cluster

8 lterations Std. Dev. = 21092

40000 80000

0
|

Cluster

Figure 4.2: Effect of Clustering on Read Distribution With 32 Clusters

43

Compression Ratio vs Number of Reads

- L]
-
30- ‘ L .
L -
29- o .
28- = -
-

27-
26"
-
5 colour
=P
& 2 bz2

.
522 * CIGARCOoil
o 22-)
a * CIGARCoil.bz2
591-
ol]

19-

18- .

17 - M .

16- -

[y}
(S
M2

Number of Reads

Figure 4.3: Compression Ratio vs Number of Reads With Clustering Performed on Reads
from Beginning of the SRX001540 Dataset

Decompression Speed vs. Number of Reads It can be observed in Figure 4.5
that the decompression speed increases linearly as as the number of reads in the data set
increases. Additionally decompression is significantly faster for CIGARCoil than com-
pression as decompressing eight-million reads required less than an hour and compressing
eight-million reads required just over three days.

44

Compression Duration vs Number of Reads

L]
262144 -

16384 -

Compression Duration (s)
o
=]
o
1
[]

8192 131072 2097152
Mumber of Reads

Figure 4.4: Compression Duration vs Number of Reads with Clustering Performed on
Reads from Beginning of the SRX001540 Dataset

45

Decompression Duration vs Number of Reads

3000 -
w
—
2 2000-
o
=]
0
—
o
L]
un L]
T
&
c
(=]
i
2 1000-
[]
[]
[]
[]
0- &
0e-+00 2e-+06 4e+06 Ge-+06 2e-+06

Mumber of Reads

Figure 4.5: Decompression Duration vs Number of Reads With Clustering Performed on
Reads from Beginning of the SRX001540 Dataset

46

Chapter 5

CIGARCoil Implementation

This chapter describes the software components that are used in the implementation
of the CIGARCoil compressor. This chapter includes an overview of the source code
that has been included in the appendix of this thesis as well as details as to how multi-
threading was included. A description of the 2-byte CIGAR string struct is included in
this section as well as a description of the modified Wagner-Fischer algorithm that yields
edit distances in terms of CIGAR size is included in this chapter. Finally, a set of results
of the CIGARCoil compressor in comparison to other compressors is included at the end
of this chapter.

5.1 Source Code Overview

This section describes the source code that can be found in the appendix of this thesis.

CigarOperation This class defines the two-byte object that is described in table 5.2.
This class has constructors that support the four different types of operations: match,
substitution, deletion, and insertion. Additionally this class has methods that converts
its four three bit fields into either a match or deletion length, or up to four characters.
The source code for this class can be found in Appendix C.

Read This class represents a single read obtained from the DNA sequencing FASTA or
FASTQ input file. This class stores statistical information for the read and the location
of the read in the original file rather than the entirety of the read - taking a cue from the
ReCoil compressor’s usage of external memory algorithms. By doing this, only a 64-bit
unsigned integer is used for each read rather than what is likely at least 300 bytes of
id,quality, and sequence information. A key strength of storing a read’s data like this is
that the read’s explicit id, quality, and base-pair information are only all used at once at
the very beginning and very end of the encoding and compression step - making storing
them in memory extremely wasteful. The source code for this class can be found in
Appendix B.

Similarity Graph This class defines the similarity graph. The similarity graph is
implemented as an adjacency list similar to 1.3. This implementation is chosen because
the graph being constructed will be sparse and it allows for edges to be added in constant
time. The head of each read’s adjacency list contains a read object, which are accessed

47

by the order which they were read from the file in constant time. The source code for
this class can be found in Appendix D.

Hash Bucket Index This class creates the data structure that is described inFigure
2.13. The source code for this class can be found in Appendix E.

Min Heap This class is used in my implementation of Prim’s algorithm for finding the
MST of the similarity graph. The source code for this class can be found in Appendix F.

Wagner-Fischer Matrix This class is used for finding the CIGAR-size edit distance
between two strings. Additionally this class can return the set of cigar operations that
must be performed to transform the first string into the next. This implementation of
Wagner-Fischer makes use of modified cost functions that reflect the two-byte structure
of table 5.2. The source code for this class can be found in Appendix G.

Decoded Reads This class stores the set of decoded reads for the DNA File Wrapper
objects. A fixed number of reads is stored in this structure that stores the elements that
are most frequently accessed. The source code for this class can be found in Appendix I.

CigarCoil Utilities This class provides a set of static helper methods that are used
by the various other classes of this program. Methods include performing zpaq com-
pression and decompression, concatenating files together, generating temporary files, and
computing edit distances. The source code for this class can be found in Appendix A.

DINA File Wrapper This class provides the bulk of the functionality for this com-
pressor. This class is instantiated by passing it a path to the file for the wrapper to be
created around. Supported file types are FASTA, FASTQ, and CIGARCoil. This object
provides a square bracket operator that an end-user can use to access a desired element
of their choosing. Additionally, if the file is a FASTA or FASTQ file, the file can be
compressed into a CIGARCoil file, and if the the file is a CIGARCoil file, then it can be
decoded back into a FASTA or FASTQ file, whichever it was originally. The source code
for this class can be found in Appendix H.

5.2 Adding Edges with Multiple Threads

Adding edges and performing the node compartmentalization heuristic is the most com-
putationally expensive part of the CIGARCoil compressor. By splitting the number of
nodes to add edges from by the umber of available cores on the machine, the tasks of
querying the hashbucket index structure and adding edges can be performed by multiple
threads simultaneously as seen in algorithm 8.

48

Algorithm 8 Adding Edges With Multiple Threads
LET ¢ be the number of available cores
LET n be the number of reads to be compressed
fori: cdo
LET s be (¢ / n) x i
if i != c then
LET ebe (¢ /n) x i+ 1)
else
LET e be n
end if
Call Add Edge Function for reads [s ... €]
end for

5.3 CIGAR Operation Struct

Information Theoretic Lower Bound In order to determine the minimum number
of bits to use to represent each each character in the original file, an information theo-
retic lower bound can be used. The IUPAC (International Union of Pure and Applied
Chemistry) specifies that the following six items can be expressed by a character in a
read’s sequencing data:

1. Adenine (A)
2. Cytosine (C)
3. Thymine (T)
4. Guanine (G)
5. Unknown (N)
6. Space (-)

Since we have six symbols that need to be represented, the theoretical minimum
number of bits required can be calculated using [log, 6], which is 3.

Encoding of Each Base From the previously calculated theoretic lower bound, it is
clearly seen that 3 bits are required to represent each base for the six different symbols.
Table 5.1 illustrates the binary strings that have been given to the different base codes.
A couple of extra values for uracil and emptiness have been added as these two three
bit combinations would otherwise be wasted. Uracil, although not used by DNA, is used
instead of T in RNA. Including this symbol allows CIGARCoil to support RNA FASTA
and FASTQ files. The empty position code is used by CIGARCoil when there is an
insertion or substitution with fewer than four characters. Having this empty position
helps to facilitate using a fixed-length two-byte struct for each cigar operation as is seen
in table 5.2.

49

Table 5.1: Base Encoding

Base Binary Representation
Empty Position 000
Adenine 001
Cytosine 010
Thymine 011
Guanine 100
Unknown Base 101
Uracil 110
Space 111

CIGAR String Encoding In order to express our CIGAR strings in an efficient man-
ner, a special CigarOperation structure is defined. This two-byte structure contains the
following three components.

1. End of sequence bit 'E’ that indicates the end of this read and the beginning of the
next

2. Three bits that can represent up to eight different operations
3. 12 bits that either represent four base encodings or an integer value from [0, 4095].

Considering that not all FASTA/FASTQ files consist of reads that are of the same
length, and that this compression scheme ought to support the concatenation of multiple
compressed FASTA /FASTQ files, which certainly have no guarenteed read length among
themselves. The following set of operations is instead used.

Table 5.2: Supporting up to Eight Operations with Unfixed Read Length

0/1[2[3]4]5]| 6 [7][8] 9 [0[1] 2 [3][4] 5
E 0 Match Length

E 1 mismatchO | mismatchl | mismatch2 | mismatch3
E 2 insert(0 insert1 insert2 insert3
E 3 Deletion Length

5.4 Customized Wagner-Fischer Algorithm

Although Wagner-Fischer is an excellent algorithm for calculating an edit distance be-
tween two strings, its notion of an operation doesn’t coincide with the 2-byte struct that
we are using that favors the match and deletion operations over the insertion and sub-
stitution operations. CIGARCoil makes use of a modified Wagner-Fischer Matrix that
allows subsequent match and deletion operations to only cost one operation, as well as
groups of up to 4 insertions/substitutions also only costing 1 operation. By using a cus-
tomized Wagner-Fischer matrix, we can find an edit distance that corresponds directly

20

with the amount of resources that will be used to encode the child relative to its parent.
Additionally, this custom Wagner-Fischer Matrix allows an optimal CIGAR string using
our struct to be generated, whereas the standard wagner-fischer matrix would frequently
lead to CIGAR strings that contain many match 1 operations, which are inefficient com-
pared to a substitute multiple characters operation. For example when finding an edit
distance for the two strings ACTG and GCTA, the traditional Wagner-Fischer matrix
would indicate to substitute the first character, match the next two characters, and then
substitute the final character, but the custom wagner-fischer matrix based on our struct
would instead opt for one substitution operation that covers all 4 of the characters. We
have decided to refer to the edit distance from this matrix as the CIGAR size.

Table 5.3: Custom Wagner-Fischer Matrix Example

>

v | 10| 10| 13| 13| 1o 10| | 10| = 3>
0
0
=

W W| w| po| Wb w| o w0
W| W po| w| w|po| | w| w0
W/ po| w| wo| w| b w| w| w0

el i i e i i e el =1

QI QA Q| & & &> Q.
po| bo| bo| bo| Do| Mo| M| MO |
po| po| po| ho| ho| Mo | ho| ho| —
po| bo| bo| bO| DO | do| Do| Do|
w| w| w| w| po| b w| w| ro| ro

Side-effect of Modifying Wagner-Fischer algorithm In the traditional Wagner-
Fischer algorithm, all operations are weighted the same, making the algorithm symmet-
rical (i.e., WF(s1,s2) = WFE(sq,51)); however, since we are using different weights for
the operations to reflect our structure in table 5.2, our implementation of Wagner-Fischer
loses its symmetry. A simple example of two strings yielding asymmetric CIGAR sizes is

as follows for s; of AAAAACCCC and s9 of CCCC:

Table 5.4: String s; relative to s

AlAA AA

SIFNVIEGIRSIENIN)
|| R w0
| Pl w| w0
R w| w|w|w| O

= = == O

QaQQam
I
(NI RN
NIRRT N
NN |
po| bo| ho| po| BN

As can be seen in tables 5.4 and 5.5, the modified version of Wagner-Fischer is not
symmetrical as proven by counter-example. This means that an edge from s; to ss should
should more accurately be a directed edge rather than an undirected edge. We have

51

Table 5.5: s5 relative to s

ollollollolrdirdirdrdibdEa

[y iy e = L Bl Ml Bl Y IS N
| o | N o oo |~ — 0
po| | N o o o o = o~ 0
SIIECITCITCIE I R NI)
B po| po| no| b — | pof po| o~)

elected to continue to use undirected edges in this thesis because we make an assumption
that edges representing greatest similarity will consist of mostly substitution and match
operations. A CIGAR string that consists of only match and substitution operations is
symmetrical under our implementation.

MATCH = A[i] = Bli

SUB = Ali] # Bli]

If A relative to B is the CIGAR specifying a match of size x, followed by substitution
of y characters, followed by match of z characters, then A must be equal to:
BOBI'-'Bm—lAzAr—l-l-"A:r+y—le+me+y+1--‘Bx—l-y—l—z—s——l- With A equivalent to B in those
terms, it is obvious that B relative to A can also be represented with a CIGAR specifying
match of size x, followed by a substitution of y characters, followed by a match of size z
characters. In terms of A, B must be equal to:
ByBy...By_1ByByii...Boty—1BeaiyBoyyi1.. - Bagyto4-1, showing the symmetry of match
and substitution operations.

5.5 Results

The following results represent CIGARCoil as compared to a few other reference-string-
free compression algorithms (SeqSqueezel, DSRC2, and LFQC) as well as bzip. The
results for these other compressors are obtained from [16], and the CIGARCoil algorithm
is run on the same set of publicly available FASTQ data sets.

CIGARCoil vs. Other Compression Schemes In order to show the performance
of CIGARCoil in contrast to other existing algorithms. A set of four benchmark data
sets have been chosen as seen in table 5.6. The first three FASTQ data sets are data sets
used in the benchmarking of the LFQC and DSRC2 compressors in [16]. Like CIGAR-
Coil, LFQC and DSRC2 are reference-genome free lossless compressors that can process
FASTQ files. The other data sets used in [16] could either not be located or used a color-
space representation of the base-pairs, which is supported by CIGARCoil presently. The

52

fourth data set is the only real data set that the ReCoil compressor was applied against
in [28].

bzip2 This compressor, bzip2, is a general purpose compression algorithm that com-
presses files using Burrows-Wheeler transforms. Its inclusion in these results is to high-
light the differences in performance between these specialized DNA compressors and
general purpose compressors. Bzip does not provide any special access to the compressed
file, such as a square bracket operator, and it has been shown to be inferior to specialized
DNA sequence compressors such as LFQC, DSRC2 in previous work [16].

LFQC LFQC is an algorithm for the compression of DNA sequences that was first pro-
posed in 2014 in [16]. This algorithm uses lossless and non-reference based compression
on FASTQ files. This compression scheme compresses the FASTQ file’s identification,
sequence, and quality score information separately, each using a different algorithm that
performs run-length encoding. Although this algorithm achieves impressive results in
terms of compression ratio and speed, it does not provide for special access to the com-
pressed file.

DSRC2 DSRC2 is an algorithm for the compression of DNA sequences that was first
proposed in 2010 in [4]. Similarly to LFQC, this algorithm also treats IDs, sequences,
and quality scores as separate streams during compression, making use of different forms
of run-length encoding. This algorithm

ReCoil The ReCoil algorithm, from which CIGARCoil has adapted the similarity graph
idea is also used for comparison.

Interpretation of Results Table 5.7 illustrates the performance of CIGARCoil versus
the general-purpose compressor, Bzip2, as well as the specialized compressors DSRC2 and
LFQC. CIGARCoil encoding alone shows that the file can be reduced to less than a third
in the case of the SRR001471 data set, with CIGARCoil in its zipped state outperforming
or rivaling other specialized compressors in terms of compression ratio. In terms of
compression speed, as seen in table 5.8, CIGARCoil requires significantly more time to
run than any of the other compressors being compared to, which can be contributed
to the amount of time that is required to generate the CIGARCoil similarity graph in
comparison to the block-compression approaches to bzip2, DSRC2, and LFQC. In table
5.9, CIGARCaoil is shown to be slower at decompression than the other approaches as
well. This can be attributed to uncompressing the zpaq compression that is applied to
the entirety of the file’s meta-data. Random access of the base-pair data of the file is still
fast and possible.

Comparing against ReCoil Although ReCoil and CIGARCoil are relatively similar
due to their usage of a similarity graph while encoding base-pair data, ReCoil is heavily
specialized in that it only processes FASTA data with fixed-read lengths without sup-
porting meta-data, which is why it can not be applied to many of the data sets in 5.6.
In the ReCoil paper, Yanovsky runs ReCoil on a variety of synthetic data sets, which
were generated by making random samples of fixed length from Human Chromosome 14,
where each nucleotide had a 2 percent change of being modified and each substring had

53

Table 5.6: Benchmark Datasets Used

Dataset Type Size [GB] | # of Reads | Avg. Read Length
SRR001471 | LS454-FASTQ 0.393210 629071 275.210
SRR003186 | LS454-FASTQ 1.575455 1280292 584.362
SRR003177 | LS454-FASTQ 1.802988 1504571 568.203
SRR001540 | Nlumina-FASTA | 17.684191 | 192132427 36

Datasets Downloaded from the National Center for Biotechnology Information

Table 5.7: Compression Percent (File Size of Compressed / File Size of Original)

SRR001471 | SRR003186 | SRR003177

bz2 24.248 26.034 26.680
Dsrc2 * 20.665 23.026 21.739
LFQC * 19.062 21.538 19.585
ReCoil - - -
CIGARCaoil 29.081 34.302 ** 33.656 **
CIGARCoil.bz2 19.933 23.581 ** 23.048 **
CigarCoil clustered 31.036 34.654 ** 34.021 **
CIGARCoil.bz2 clustered 20.471 23.752 ** 22.953 **

* Results taken from [16]

** Results Created With 100,000 Read Sample

Table 5.8: Compression Speeds in MiB/s (Millions of Bytes per Second)

SRR001471 | SRR003186 | SRR003177
bz2 2.604 2.783 2.056
Dsrc2 * 13.102 25.217 30.369
LFQC * 0.759 1.080 1.053
ReCoil - - -
CIGARCoil 0.0012047 0.0010671 ** | 0.0010964 **
CIGARCoil.bz2 0.0012046 0.0010671 ** | 0.0010963 **
CigarCoil clustered 0.00173 0.0013925 ** | 0.0014363 **
CIGARCoil.bz2 clustered 0.00171 0.0013923 ** | 0.0014362 **

* Results taken from [16]

** Results Created With 100,000 Read Sample

54

Table 5.9: Decompression Speeds in MiB/s (Millions of Bytes per Second)

SRR001471 | SRR003186 | SRR003177

bz2 3.818 5.293 3.920
Dsrc2 * 6.907 9.608 9.670
LFQC * 0.717 1.217 1.173
ReCoil - - -
CIGARCoil 0.0388 0.358 ** 0.357 **
CIGARCoil.bz2 0.0386 0.358 ** 0.357 **
CigarCoil clustered 0.0382 0.346 ** 0.353 **
CIGARCOoil.bz2 clustered 0.0381 0.346 ** 0.353**

* Results taken from [16]
“* Results Created With 100,000 Read Sample

a b percent change of being reverse complimented (i.e., replacing As with Ts, Gs with
Cs, and vice-versa) [28]. We generated our own synthetic data with the same parame-
ters from Human Chromosome 14; however, in the interest in running the data set in a
reasonable amount of time we generated a smaller data set of two million reads, whereas
the other compressors were run on a data set of 50 million reads. Due to the nature of
how CIGARCoil achieves better compression ratio performance with larger numbers of
reads, it is plausible to anticipate that CIGARCoil would further improve upon its result
on this synthetic data if it were also run on a set of 50 million reads. Table 5.10 shows
how CIGARCoil stacks up against other compressors on this synthetic data. CIGARCoil
and ReCoil are clearly superior to general-purpose compressors like 7zip and bzip on this
data. ReCoil outperforms CIGARCoil on this data set with a compression ratio that is
2 percent of the original file size better, while being significantly faster than CIGAR-
Coil. We believe that this difference can be attributed to the highly specialized nature
of ReCoil towards files with fixed read lengths without meta data, which this synthetic
file conformed to; additionally, the ReCoil compressor does not store a parent array for
the tree but instead stores the encoded reads in pre-order traversal order, which saves
200 megabytes in this particular instance where the initial uncompressed file was 1800
megabytes. We use a parent array in our CIGARCoil implementation, which is utilized
for random access of the compressed reads within the file.

Table 5.10: Comparison Against ReCoil on Synthetic Data Set

Time (Min) | Compression Ratio
Tzip * 300 0.27
bzip * 45 0.36
ReCoil * 290 0.18
CIGARCoil 1190 0.20

* Results taken from [28]

95

Chapter 6

Conclusion

Building off of the work done on the Coil and ReCoil DNA compression algorithms, I have
incorporated the reference-based compression ideas presented in [7] and [28] to provide
a new compression algorithm, CIGARCoil, which seeks to improve upon these two ap-
proaches by supporting a wider variety of input data, while providing compression results
that are approximately the same if not better than those of other compressors. Further-
more, the CIGARCoil compression scheme also supports several operations that are of use
to end-users such as random access of the compressed file, using a square-bracket opera-
tor, updating a read within the compressed file, and concatenating multiple compressed
files together. Additionally, CIGARCoil can utilize a predictive caching mechanism that
pre-fetches records for an end-user, further increasing the utility of the CIGARCoil for-
mat. Ultimately, CIGARCoil provides a compression scheme that provides end-users with
compression ratios that are on-par or better than other compressors as seen in tables 5.7
and 5.10, while offering end-users additional usability of the compressed file, reducing
the number of reasons that an end-user would have for decompressing and recompress-
ing a file, and making it possible to store and randomly access large numbers in main
memory on commodity machines. The primary drawback of CIGARCoil is that it takes
a significant amount of time to encode and compress data sets as seen in table 5.8.

CIGARCoil and MPEG-G The CIGARCoil format addresses three areas of the
MPEG-G white paper standard, which are enabled with the underlying tree structure of
the encoded sequencing data:

1. random access of the file
2. concatenation of compressed files

3. update of the content of the compressed files

Democratization of Research By providing a DNA sequencing read compression
format that supports the random access of the compressed file, end-users are provided
with a compress-once format that enables them to perform work on compressed files
without the need for decompressing the file as they can iterate over the compressed
file with a square bracket operator. This reduces the amount of resources required for
processing the compressed DNA reads, enabling more researchers to contribute to this
area.

26

6.1 Future Work

We foresee the following areas of future work for the CIGARCoil compressor, which will
improve its compression speed performance as well as increase its utility by supporting
color-space encoded reads as well as supporting streaming compression.

Support Color-Space Encoded Reads The datasets used in this paper consist of
sequencing data that consists of A, C, T, G, and N; however, there are some types of
Datasets, such as SOLid, which use color-space encoded reads where instead of A, C, T,
G, and N, numerical values are used that represent a base’s value relative to the base in
the sequence. The encoding algorithm could be modified to support color-space encoded
reads.

Distributed Computing Approach It seems possible to perform some components of
the CIGARCoil compression, notably the construction of the hashbucket inedex structure
by using a tool like Hadoop’s map-reduce.

GPGPU Computing The largest weakness of this approach currently is the tremen-
dous length of the compression time. Fortunately, the most time-intensive parts of the
compression algorithm, the node compartmentalizing heuristic and the edit distance com-
putation can be enhanced by integrating GPGPU computing, reducing the time required
to compress the file by utilizing more potentially already available resources.

Streaming Compression We believe that this algorithm could be adapted to work
with streaming compression. Such an approach could work during the edge adding part
of the algorithm, where sequence data are streamed in and immediately added to the
similarity graph. Once the data are finished being read, then the minimum spanning tree
and CIGAR encoding steps can occur, finishing the compression of the file.

o7

Bibliography

1]

[11]

[12]

Claudio Alberti, Tom Paridaens, Jan Voges, Daniel Naro, Junaid J Ahmad, Mas-
simo Ravasi, Daniele Renzi, Paolo Ribeca, Giorgio Zoia, Idoia Ochoa, et al. An
introduction to mpeg-g, the new iso standard for genomic information representa-
tion. bioRziv, page 426353, 2018.

James K Bonfield and Matthew V Mahoney. Compression of fastq and sam format
sequencing data. PloS one, 8(3):59190, 2013.

Cornel Constantinescu and Gero Schmidt. Fast and efficient compression of next
generation sequencing data. In 2018 Data Compression Conference, pages 402-402.
IEEE, 2018.

Sebastian Deorowicz and Szymon Grabowski. Compression of dna sequence reads in
fastq format. Bioinformatics, 27(6):860-862, 2011.

Sebastian Deorowicz and Szymon Grabowski. Data compression for sequencing data.
Algorithms for Molecular Biology, 8(1):25, 2013.

Jack Edmonds. Optimum branchings. Journal of Research of the national Bureau

of Standards B, 71(4):233-240, 1967.

Markus Hsi-Yang Fritz, Rasko Leinonen, Guy Cochrane, and Ewan Birney. Efficient
storage of high throughput dna sequencing data using reference-based compression.
Genome research, 2011.

Gary Gordon and Elizabeth McMahon. A greedoid polynomial which distin-
guishes rooted arborescences. Proceedings of the American Mathematical Society,
107(2):287-298, 1989.

Ananth Grama, Vipin Kumar, Anshul Gupta, and George Karypis. Introduction to
parallel computing. Pearson Education, 2003.

Elena Grassi, Federico Di Gregorio, and Ivan Molineris. Kungfq: A simple and
powerful approach to compress fastq files. IEEE/ACM transactions on computational
biology and bioinformatics, 9(6):1837-1842, 2012.

Eric D Green, Mark S Guyer, and National Human Genome Research Institute.
Charting a course for genomic medicine from base pairs to bedside. Nature,
470(7333):204, 2011.

Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1):48-50,
1956.

o8

[13]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor
Marth, Goncalo Abecasis, and Richard Durbin. The sequence alignment /map format
and samtools. Bioinformatics, 25(16):2078-2079, 2009.

Stuart Lloyd. Least squares quantization in pcm. IEEFE transactions on information
theory, 28(2):129-137, 1982.

Michael Nelson, Sridhar Radhakrishnan, Amlan Chatterjee, and Chandra N Sekha-
ran. Queryable compression on streaming social networks. In 2017 IEEFE Interna-
tional Conference on Big Data (Big Data), pages 988-993. IEEE, 2017.

Marius Nicolae, Sudipta Pathak, and Sanguthevar Rajasekaran. Lfqc: a lossless
compression algorithm for fastq files. Bioinformatics, 31(20):3276-3281, 2015.

Robert Clay Prim. Shortest connection networks and some generalizations. The Bell
System Technical Journal, 36(6):1389-1401, 1957.

Michael J Quinn and Narsingh Deo. Parallel graph algorithms. ACM Computing
Surveys (CSUR), 16(3):319-348, 1984.

David Salomon and Giovanni Motta. Handbook of data compression. Springer Science
& Business Media, 2010.

Claude Elwood Shannon. A mathematical theory of communication. Bell system
technical journal, 27(3):379-423, 1948.

Jay Shendure and Hanlee Ji. Next-generation dna sequencing. Nature biotechnology,
26(10):1135, 2008.

Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxiang Zhai,
Miles J Efron, Ravishankar Iyer, Michael C Schatz, Saurabh Sinha, and Gene E
Robinson. Big data: astronomical or genomical? PLoS biology, 13(7):e1002195,
2015.

Robert Endre Tarjan. Finding optimum branchings. Networks, 7(1):25-35, 1977.

J Craig Venter, Mark D Adams, Eugene W Myers, Peter W Li, Richard J Mural,
Granger G Sutton, Hamilton O Smith, Mark Yandell, Cheryl A Evans, Robert A
Holt, et al. The sequence of the human genome. science, 291(5507):1304-1351, 2001.

Robert A Wagner and Michael J Fischer. The string-to-string correction problem.
Journal of the ACM (JACM), 21(1):168-173, 1974.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD
thesis, King’s College, Cambridge, 1989.

W Timothy J White and Michael D Hendy. Compressing dna sequence databases
with coil. BMC bioinformatics, 9(1):242, 2008.

Vladimir Yanovsky. Recoil-an algorithm for compression of extremely large datasets
of dna data. Algorithms for Molecular Biology, 6(1):23, 2011.

29

Appendices

60

Appendix A
CIGARCoil Utilities

A.1 Header File

1 #ifndef CIGAR_COIL_UTIL_H
> #define CIGAR_COIL_UTIL_H

3

+ #include <string>

5 #include ”WagnerFischerMatrix.h”
6 #include 7 SimilarityGraph.h”

7 #include ”MinHeap.h”

s #include <vector>

9 #include <queue>

10 #include <fstream>

11 #include ”libzpaq.h”

12

29

30

// Provides a set of static methods to be called by the various methods of
this compressor
class CigarCoilUtilities

{

public:

// returns the wagner fischer edit distance in terms of CIGAR operations
static unsigned short getWagnerFischerEditDistance (const std::string =
originString , const std::string xtargetString);

// returns a cheap linear time similarity distance based on the diagonal
of a Wagner Fischer Edit Distance matrix only

static unsigned short getCheapSimilarityDistanceMetric(const std::string
xoriginString , const std::string xtargetString , unsigned short
currentBest) ;

// returns the first index of a vector that is greater than a target
value

static unsigned int findFirstIndexGreaterThanTarget(const vector<unsigned
int> #v, unsigned int target);

// returns the first index of a vector that is greater than a target
value

static unsigned int findFirstIndexGreaterThanTarget (const vector<double>
xv, double target);

// creates a temporary file and returns the string of the path to the
temporary file

61

32
33
34

35
36

37

39

40

41
42

43

o 0 o ~ ~ -~ N =
N o~ O © o N O ¢

o

3

static string createTemporaryFile();

// returns data at the given position of a file
static string getDataAtFilePosition (unsigned long long pos, unsigned
short length, ifstream xfileStream);

// returns a parent array of the provided graph object
static unsigned ints PrimMST(SimilarityGraphx graph);

// re—centers a tree to minimize its height
static unsigned intx getMinimumHeightTree(const unsigned intx parentArray
, size_t numberOfElements, unsigned int *root);

// returns which element of 4 is larger in value
static char greatestOfFour(double vall , double val2, double val3, double
vald);

// encodes file of quality values and returns name of encoded file
static string encodeZpaq(const char xqualityFile);

// decodes zpaq compressed file
static string decodeZpaq(const char xcompressedZpaqFile);

private:
// Disallow creating an instance of this class
CigarCoilUtilities () {}

iz

// Implement a zpaq reader object for zpaq calls
class ZpaqReader : public libzpaq:: Reader {
private:

std ::ifstream * _fileStream ;
public:

ZpaqReader (std :: ifstream xfileName);
// should return 0..255, or —1 at EOF
int get();

// read to buf[n], return no. read
int read(charx buf, int n);
“ZpaqReader () {};

}s

// Implement a zpaq writer object for zpaq calls
class ZpaqWriter : public libzpaq:: Writer {
private:
std :: ofstream x*_fileStream ;
public:
ZpagWriter (std :: ofstream xfileStream);
// should output low 8 bits of c
void put(int c);
// write buf[n]
void write(const charx buf, int n);
“ZpaqWriter () {};
I

#endif // !|CIGAR.COIL_UTIL.H

62

A.2 Definitions

1 #include ” CigarCoilUtilities.h”

2

3

// uses a heuristic for the similarity distance between two reads or

returns early if it has no chance of beating the current best edit
distance

unsigned short CigarCoilUtilities:: getCheapSimilarityDistanceMetric (const

}

std ::string *originString , const std::string xtargetString , unsigned
short currentBest) {

size_t smallerLength = min(originString —>length (), targetString—>length ()

)3
unsigned short similarity = 0;
short checkpoint = smallerLength — currentBest ;

for (size_-t ¢ = 0; ¢ < smallerLength; c++) {
if (originString—>at(c) == targetString—at(c)) {
similarity++;

}

// quit early
if (¢ = checkpoint && similarity < currentBest) {
return similarity ;

}
}

return similarity ;

s // compute wagner fischer edit distance (CIGAR size) of two strings

unsigned short CigarCoilUtilities :: getWagnerFischerEditDistance (const std::

}

string *originString , const std::string xtargetString) {

return WagnerFischerMatrix (originString , targetString).getEditDistance () ;

5 // uses binary search to find the first vertex of a vector that is greater

than the given target

; unsigned int CigarCoilUtilities :: findFirstIndexGreaterThanTarget (const

vector<unsigned int> % preSortedVector, unsigned int target) {

size_t low = 0;
size_t high = preSortedVector—>size ();
while (low != high) {
size_t lowHighSum = low + high;
unsigned int mid = (lowHighSum) / 2;
if (preSortedVector—at(mid) <= target) {
low = mid + 1;
}
else {
high = mid;
}

63

19 }

50 return high;

51}

53 // returns the first index greater than the requested target
t unsigned int CigarCoilUtilities :: findFirstIndexGreaterThanTarget (const
vector<double> % preSortedVector, double target) {

56 // don’t even bother searching
57 if (preSortedVector—>at (preSortedVector—>size () — 1) < target) {
58 return preSortedVector—>size () ;

59 }

61 size_t low = 0;

62 size_t high = preSortedVector—>size ();
63 while (low != high) {

64 size_t lowHighSum = low + high;

65 unsigned int mid = (lowHighSum) / 2;
66 if (preSortedVector—at(mid) <= target) {
67 low = mid + 1;

68 }

69 else {

70 high = mid;

71 }

72 }

return high;

}

// creates a new temporary file and returns the path to it
string CigarCoilUtilities :: createTemporaryFile () {

#ifdef unix

79 string temporaryCompressedFileName = tmpnam(nullptr);

- w

o

S BN N |

~

-~
[

81 ofstream file ;

s2 file .open(temporaryCompressedFileName.c_str (), ios::out);
ss file.close();

84 return temporaryCompressedFileName ;

85 #else

86 char temporaryCompressedFileName [L_tmpnam_s|;

57 tmpnam_s(temporaryCompressedFileName , L_tmpnam_s);

89 ofstream file ;

90 file .open(temporaryCompressedFileName, ios::out);

91 file.close();
92 return string (temporaryCompressedFileName) ;
93 #endif // unix

94 }

96 string CigarCoilUtilities :: getDataAtFilePosition (unsigned long long pos,
unsigned short length, ifstream =xfileStream) {

100 char xbuffer = new char[length|;
102 fileStream —>seekg (pos, fileStream—>beg);
103 fileStream —>read (buffer , length);

104

64

105 string result = string(buffer, length);
106

07 delete [] buffer;

108

109 return result ;

110 }

112 // constructs a minimum spanning tree with Prim’s algorithm and returns the
parent array

s unsigned intx CigarCoilUtilities ::PrimMST(SimilarityGraph* graph)

114{

115 // Get the number of vertices in graph

116 unsigned int numberOfVertices = graph—>getVectorSize () ;

117 // create parent array to store constructed MST

115 unsigned int *parent = new unsigned int[numberOfVertices];
119 // Key values used to pick minimum weight edge in cut
120 unsigned int *key = new unsigned int[numberOfVertices |;

122 // minHeap represents set of edges
123 MinHeap minHeap = MinHeap (numberOfVertices) ;

124

1250 // Initialize min heap with all vertices. Key value of
26 // all vertices (except Oth vertex) is initially infinite
127 for (umnsigned int v = 1; v < numberOfVertices; ++v) {

128 parent [v] = —1;

129 key [v] = UINTMAX;

130 minHeap . addNewMinHeapNode (v, key[v]) ;

131 minHeap . pos [v] = v;

132 }

133

3¢ // Make key value of Oth vertex as 0 so that it
135 // is extracted first

136 key[0] = 0;

157 minHeap.addNewMinHeapNode (0, key [0]) ;

135 minHeap.pos[0] = 0;

139

o // Initially size of min heap is equal to V
121 minHeap.size = numberOfVertices;

143 // In the following loop, min heap contains all nodes
144 // mnot yet added to MST.
115 while (!minHeap.isEmpty()) {

146 // Extract the vertex with minimum key value

147 struct MinHeapNodex minHeapNode = minHeap.extractMin () ;

148

149 // Store the extracted vertex number

150 int u = minHeapNode—>v ;

151

152 // Traverse through all adjacent vertices of u (the extracted
153 // vertex) and update their key values

154 struct AdjListNodex pCrawl = graph—>adjList [u]. head;

155 while (pCrawl != NULL) {

156 int v = pCrawl—>dest ;

157

158 // If v is not yet included in MST and weight of u—v is
159 // less than key value of v, then update key value and
160 // parent of v

161 if (minHeap.isInMinHeap (v) && pCrawl->weight < key[v]) {

65

162 key [v] = pCrawl-—>weight ;

163 parent [v] = u;

164 minHeap . decreaseKey (v, key[v]);
165 }

166 pCrawl = pCrawl—>next ;

167 }
168 }

170 return parent;

171 }

173 // returns a new parent array that minimizes the height of the provided
parent array

172 unsigned intx CigarCoilUtilities :: getMinimumHeightTree (const unsigned intx
parentArray , size_t numberOfElements, unsigned int xroot)

s {

76 // create FIFO queue
77 queue<unsigned int> q;

179 unsigned int xdegrees = new unsigned int[numberOfElements];
180 unsigned int xresult = new unsigned int [numberOfElements];
181

1s2 // track which nodes are adjacent to each other

183 vector <vector<unsigned int>> adj = vector<vector<unsigned int>>();
184

185 // initialize degrees to 1

16 for (size_t i = 0; i < numberOfElements; i++) {

187 adj.push_back (vector<unsigned int >());

188 degrees[i] = 1;

189 adj[i] = vector<unsigned int >();

190

191

192 // determine degrees by adding up number of children for each node and
populate adjacency vector for trees
103 for (size-t i = 1; i < numberOfElements; i++) {

194 degrees [parentArray[i]] += 1;

195 adj[i].push_back(parentArray[i]) ;

196 adj [parentArray[i]]. push_back(i);

197 }

198

199 // enqueue leaf nodes

200 for (umsigned int i = 0; i < numberOfElements; i++) {
201 if (degrees[i] = 1) {

202 q.push(i);

203

204 }

205

206 unsigned int numberOfVerticesRemaining = numberOfElements;

208 // loop until total vertex remains less than 2
200 while (numberOfVerticesRemaining > 2)

210 {

211 for (size_t i = 0; i < q.size(); i++)
212 {

213 unsigned int t = q.front();

214 q.pop () ;

215 numberOfVerticesRemaining ——;

216

66

N
C ot

N
o

}

// for each neighbour, decrease its degree and
// if it become leaf, insert into queue
for (auto j = adj[t].begin(); j != adj[t].end(); j++)

degrees [*j]——;
if (degrees[*j] = 1)
q.push(*j);
}
}
}

delete [] degrees;

// copying the result from queue to result vector
vector<unsigned int> res;
while (!q.empty())
{
res . push_back(q.front ());

q.pop () ;

// get minimum height root for the tree and set its parent in the new
parent array to itself

unsigned minimumHeightRoot = res [0];
result [minimumHeightRoot] = minimumHeightRoot;
xroot = minimumHeightRoot;

// empty queue
while (!q.empty()) {
a.pop();

q.push (minimumHeightRoot) ;

while (!q.empty()) {
unsigned int currentParentVertex = q.front ();

a.pop();

for (size_-t ¢ = 0; ¢ < adj[currentParentVertex].size(); ct++) {
unsigned int currentChild = adj[currentParentVertex|[c];
if (ladj[currentChild].empty()) { // checks if this child has already
been added
// updates resulting parent array and pushes this child into the
queue
result [currentChild] = currentParentVertex;
q.push(currentChild);

}
}

// no longer need this set of adjacent vertices — also marks that this
vertex has been handled
adj[currentParentVertex . clear () ;

}

// returns updated parent array
return result ;

67

3 char CigarCoilUtilities :: greatestOfFour (double vall, double val2, double
val3 , double vald) {
o if (vall >= val2) {

275 if (vall >= val3) {
276 if (vall >= val4) {
277 return 1;

279 else {

280 return 4;

281 }
282 }

283 else {

284 if (val3 >= vald) {
285 return 3;

286 }

287 else {

288 return 4;

289 }
290 }
291 }

292 else {

203 if (val2 >= val3) {
294 if (val2 >= vald) {
295 return 2;

296 }

207 else {

298 return 4;

299 }
300 }

301 else {

302 if (val3 >= val4) {
303 return 3;

304 }

305 else {

306 return 4;

307 }

308 }

309 }

31()}

311

s12 // encode file using zpaq

313 string CigarCoilUtilities :: encodeZpaq(const char xsourceFile) {

314 string encodedFileName = CigarCoilUtilities :: createTemporaryFile () ;
315 ifstream inputFileStream (sourceFile, ios_base::binary);
s16 ofstream outputFileStream (encodedFileName.c_str (), ios_base::binary);

sir ZpaqReader reader = ZpaqReader(&inputFileStream) ;
315 ZpaqWriter writer = ZpaqWriter(&outputFileStream) ;

s20 // call zpaq compressor with method 5 (slower with best compression)
321 libzpaq :: compress(&reader , &writer, 757);

323 inputFileStream . close ();
i outputFileStream . close () ;

326 return encodedFileName;

68

328
329
330
331
332
333

334

350

360
361
362
363

364

// decompresses zpagq—compressed file
string CigarCoilUtilities :: decodeZpaq(const char xcompressedZpaqFile) {

}

string decompressedFile = CigarCoilUtilities :: createTemporaryFile () ;
ifstream inputFileStream (compressedZpaqFile, ios_base:: binary);
ofstream outputFileStream (decompressedFile.c_str (), ios_base:: binary);
ZpaqReader reader = ZpaqReader(&inputFileStream) ;

ZpaqWriter writer = ZpaqWriter(&outputFileStream) ;

libzpaq :: decompress(&reader , &writer);

inputFileStream . close () ;
outputFileStream . close () ;

return decompressedFile;

5 // provide location of pre—existing file

ZpaqReader :: ZpaqReader (std :: ifstreamx fileStream) {

s I

_fileStream = fileStream ;

int ZpaqReader::get () {

}

if (-fileStream—>eof()) {
return —1;
}

else {
return _fileStream —>get () ;
}

int ZpaqReader::read(char *xbuf, int n) {

}

_fileStream —>read (buf, n);
return _fileStream —>gcount () ;

5 // provide location of pre—existing file

ZpaqWriter :: ZpagWriter (std :: ofstream =fileStream) {

}

_fileStream = fileStream ;

void ZpaqWriter::put(int c¢) {

}

_fileStream —>put(c);

void ZpaqWriter :: write (const charx buf, int c¢) {

}

_fileStream —>write (buf, c¢);

69

10

Appendix B

Read

B.1 Header File

/!

Author: Addison Womack
Class: Read

Purpose: This class represents
a read’s sequencing data

HITTTEETIET DT

#ifndef READH

11 #define READH

12

13 #include <iostream>

14 #include <string>

15 #include <set>

16 #include <vector>

17 #include <algorithm >

18 #include <iterator >

19 #include <stack>

20 #include <math.h>

21 #include 7 CigarOperation.h”

22
23
24
25
26
27
28
29
30
31
32

33

using namespace std;

class Read {
private:
// location in origin file of this sequence
unsigned long long _filePos;
// length of the sequence
unsigned short _sequencelLength;
// returns the magnitude of the partitions object ,
as dimensions of a euclidean vector
double getMagnitudeOfBasesVector () const;
public:

vector<unsigned char> partitions;

70

treating

its

indices

a1 // Default Constructor
12 Read();

a4 // Initializer Constructor
45 Read(string sequence, unsigned long long filePos, unsigned short
readLengthForPartitionsCap , unsigned short partitionsCap);

a7 // Copy Constructor
15 Read(const Read & read);

50 // Destructor
51 "Read () ;

53 // Getter that returns the value of this Read
52 unsigned long long getSequencePos();

56 unsigned short getSequenceLength () ;

8 // gets the difference between this read and another by comparing
magnitude of partition vector
59 double getMagnitudeOfDifferenceOfTwoReads (Read *comparisonRead);

61 // gets the difference between this read and another by comparing the
angle between partition vectors
62 double getAngleBetweenTwoReads(const Read xcomparisonRead) ;

64 // finds partition values for a given string
65 static vector<unsigned char> populatePartitionValues(string s*sequence,
size_t readLengthForPartitionsCap, unsigned short partitionsCap);

67 // Overloaded assignment operator

6s Read & operator= (const Read & read);
69 };

70

71

‘72 #endif
B.2 Definitions

1 #include ”Read.h”

2

3 /x Default Constructor for Read intitalizes private fields to NULL %/
1+ Read::Read () {

5 partitions = vector<unsigned char>();

6 _filePos = 0;

7 _sequencelLength = 0;

)

// Initializer Constructor

11 Read::Read(string sequence, unsigned long long filePos, unsigned short
readLengthForPartitionsCap , unsigned short partitionsCap) {

12 partitions = populatePartitionValues(&sequence ,
readLengthForPartitionsCap , partitionsCap);

13 _filePos = filePos;

14 _sequenceLength = sequence.length () ;

71

17 /x Copy Constructor that creates a Read from another read x/
15 Read ::Read(const Read& userRead) {

19 _filePos = userRead. _filePos;

20 partitions = userRead.partitions;

21 _sequenceLength = userRead. _sequencelLength;

zz}

24 // populates the partitions of the current read based on the provided
sequence

25 vector<unsigned char> Read:: populatePartitionValues(string *sequence,
size_t readLengthForPartitionsCap, unsigned short partitionSize) {

26 vector<unsigned char> partitions = vector<unsigned char>();

25 unsigned char currentPartitionValueA = (sequence—>at(0) =— 'A’) ? 1 0;
20 unsigned char currentPartitionValueC = (sequence—>at(0) = 'C’) 7 1 0;
30 unsigned char currentPartitionValueG = (sequence—>at(0) =— 'G’) 7 1 0;
31 unsigned char currentPartitionValueT = (sequence—>at(0) = 'T’) 7 1 0;
32

33 size_t stoppingPoint = min(sequence—>size (), readLengthForPartitionsCap);
34

35 for (size_t i = 1; i < stoppingPoint; i++) {

36 if (i % partitionSize =— 0) {

37 partitions.push_back(currentPartitionValueA);

38 partitions.push_back(currentPartitionValueC);

39 partitions.push_back (currentPartitionValueG);

40 partitions.push_back (currentPartitionValueT);

41 currentPartitionValueA = 0;

12 currentPartitionValueC = 0;

13 currentPartitionValueG = 0;

44 currentPartitionValueT = 0;

b

45 }

16 switch (sequence—>at(i)) {

17 case A’
18 currentPartitionValueA ++;
19 break ;
50 case 'C’:
51 currentPartitionValueC-++;
52 break;
53 case 'G’:
54 currentPartitionValueG++;
55 break;
56 case 'T’:
57 currentPartitionValueT ++;

}
5o ()

61 return partitions;

62 }

6+ // Gets the value of this Read
5 unsigned long long Read:: getSequencePos () {
66 return _filePos;

6o unsigned short Read:: getSequenceLength () {
70 return _sequenceLength;

71}

72

117

double Read:: getMagnitudeOfBasesVector () const {

unsigned int valueToBeSquareRooted = 0;
for (size-t i = 0; i < partitions.size(); i++) {
valueToBeSquareRooted += partitions[i] * partitions|[i];

}

return sqrt (valueToBeSquareRooted) ;

}

double Read:: getMagnitudeOfDifferenceOfTwoReads (Read s*comparisonRead) {

unsigned int valueToBeSquareRooted = 0;

size_t smallerNumberOfDimensions =

(partitions.size () < comparisonRead—>partitions.size()) ?

partitions.size ()

comparisonRead—>partitions.size () ;

)

for (size_-t i = 0; i < smallerNumberOfDimensions; i++) {

short difference = partitions[i]| — comparisonRead—>partitions|[i];

valueToBeSquareRooted += difference x difference;

}

return sqrt (valueToBeSquareRooted) ;

}

// returns angle between two reads in degrees

double Read:: getAngleBetweenTwoReads(const Read xcomparisonRead) {

unsigned int innerProduct = 0;
size_t smallerNumberOfDimensions =

(partitions.size () < comparisonRead—>partitions.size()) 7

partitions.size ()

comparisonRead—>partitions.size () ;

b

for (size_-t i = 0; i < smallerNumberOfDimensions; i++) {

innerProduct += partitions[i]| * comparisonRead—>partitions|[i];

}

double magnitudeOfThisVector = getMagnitudeOfBasesVector () ;

double magnitudeOfComparisonVector
getMagnitudeOfBasesVector () ;

// min is used to bound error due to precision (e.g. two equivalent reads
could end up with acos(1.000000002)

comparisonRead —

leading to NAN)

return acos (min(innerProduct / (magnitudeOfThisVector x
magnitudeOfComparisonVector) ,1.0));

}

/* Destructor for Read x/
Read:: "Read () {
partitions.clear () ;

}

/* Overloaded assignment operator x/

73

127 Read& Read:: operator= (const Read& read) {

_filePos = read. _filePos;
_sequencelength = read._sequenceLength;
partitions = read.partitions;

return xthis;

74

Appendix C
CIGAR Operation

C.1 Header File

1 #ifndef CIGAR.OPERATION_H
> #define CIGAR.OPERATION_H
3
1

#include <string>
5 #include <stdio.h>
6
7 #define MatchOperation 0;
s #define SubstitutionOperation 1;
o #define InsertionOperation 2;
10 #define DeletionOperation 3;

12 #define MAXIMUM MATCH OR_DELETION SIZE = 4095;

14 const unsigned char PositionEmpty = 0
15 const unsigned char ValueAdenine = 1
16 const unsigned char ValueCytosine = 2
17 const unsigned char ValueThymine = 3;
18 const unsigned char ValueGuanine = 4
const unsigned char ValueNotKnown 5

o |l

20 const unsigned char ValueUracil = 6;

21 const unsigned char ValueSpace = T;

22

23 static const unsigned int maxNumberOfCharactersPerlnsertion = 4;

24

25 // define 2—byte struct

26 struct Operation {

27 unsigned short reserved : 1;

28 unsigned short operationType : 3;

29 unsigned short value3 3;

30 unsigned short value2 : 3;

31 unsigned short valuel 3;
unsigned short valueO 3;

0N

s« unsigned short getNumericValue () {

36 return value3 *x 512 +
37 value2 * 64 +

38 valuel * 8 +

39 valueO;

75

90

91

93
94
95
96
97

98

Iz

// This class represents
class CigarOperation {
private:
// 2—byte structure
Operation operation;
public :
// default constructor
CigarOperation () ;

a single CIGAR operation

// substitution/insertion constructor
CigarOperation (std :: string s, bool isSub);

// match/deletion constructor

CigarOperation (unsigned int length, bool isMatch);

// construct from struct

CigarOperation (Operation operation);

// construct from two bytes

CigarOperation (unsigned char byteArr[2]);

// returns the two—bytes that represent this struct

charx GetBytes();

// returns the internal 2—byte struct

Operation getOperation () ;

// returns whether or not this is a match operation
bool isMatch () ;

// returns whether or not this is an insertion operation
bool isInsertion ();

// returns whether or not this is a substitution operation
bool isSubstitution () ;

// returns whether or not this is a deletion operation
bool isDeletion () ;

// returns the insertion or substitution values
std::string getValueString () ;

unsigned short getValueNumeric() ;

// decodes a 3—bit value

static char mapValueToCharacter (unsigned char val) {

switch (wval) {
case PositionEmpty:

return ’\0’;

case ValueAdenine:
return 'A’;

case ValueCytosine:
return 'C’;

case ValueThymine:
return 'T7;

case ValueGuanine:
return 'G’;

case ValueNotKnown:

76

99 return 'N’;

100 case ValueUracil:
101 return U’ ;
102 case ValueSpace:
103 return '—’;

3

104 }

105 }

106

w7 // encodes a 3—bit value

s static unsigned char mapCharacterToValue(char character) {
109 switch (character) {

110 case '\0’:

111 return PositionEmpty ;

112 case 'A’:

113 return ValueAdenine;
114 case 'C’:

115 return ValueCytosine;
116 case 'T7:

117 return ValueThymine;
118 case 'G’:

119 return ValueGuanine;
120 case 'U’:

121 return ValueUracil;
122 case . :

123 case '—’:

124 return ValueSpace;
125 default :

126 // mnormally N

127 return ValueNotKnown ;

128 }
129 }

134

135 #endif // !CIGAR.OPERATION H

C.2 Definitions

1 #include ” CigarOperation.h”
3 // substitution/insertion constructor
1 CigarOperation :: CigarOperation (std :: string s, bool isSub) {

5 Operation op;

7 if (iSSub) {

8 op.operationType = SubstitutionOperation ;
9 }

0 else {

11 op.operationType = InsertionOperation;

12 }

13

14 // only supports up to length 4 per mismatch operation

16 op.value0 = 0;
17 op.valuel = 0;

77

op.value2 =
op.value3

0;
op.reserved =

L
switch (s.length()) {
case 4:

op.value3 = CigarOperation :: mapCharacterToValue(s.

case 3:

op.value2 = CigarOperation :: mapCharacterToValue (s.

case 2:

op.valuel = CigarOperation :: mapCharacterToValue(s.

case 1:

op.value0 = CigarOperation :: mapCharacterToValue(s.

break;
default :

printf(”undefined behavior...\n”);

}

operation = op;

}

CigarOperation :: CigarOperation () {
Operation op;
op.operationType = MatchOperation;
op.reserved = 0;
op.value0 = 0;
op.valuel = 0;
op.value2 = 0;
op.valued = 0
operation = op;

}

// match/deletion constructor

)

)

CigarOperation :: CigarOperation (unsigned int length, bool isMatch) {

Operation op;
op.reserved = 1;
if (isMatch) {

op.operationType = MatchOperation;

}

else {

}
op.value3 = length / (512);

op.operationType = DeletionOperation ;

unsigned short remainder = length % (512);
op.value2 = remainder / (64);

remainder = remainder % (64);

op.valuel = remainder / (8);

remainder = remainder % (8);

op.value0 = remainder;

operation = op;

78

at (3));
at (2));
at (1)) ;

at (0));

90

93

103

105

106

107

108

109

110

111

130

// construct from two bytes

7 CigarOperation :: CigarOperation (unsigned char byteArr[2]) {

Operationx op = (Operation*) byteArr;
operation = *op;

}

CigarOperation :: CigarOperation (Operation op) {
operation = op;

}

i // return underlying 2—byte structure
7 Operation CigarOperation :: getOperation () {

return operation;

}

// is this a match operation
bool CigarOperation ::isMatch () {
return operation.operationType = MatchOperation;

}

// is this a insertion opeartion
bool CigarOperation ::isInsertion () {
return operation.operationType = InsertionOperation ;

}

// is this a substitution operation
bool CigarOperation::isSubstitution () {
return operation.operationType = SubstitutionOperation ;

}

// 1is this a deletion operation
bool CigarOperation ::isDeletion () {
return operation.operationType = DeletionOperation;

}

// get string corresponding to last 12 bits of the 2—byte struct
std::string CigarOperation :: getValueString () {

9

std :: string result = 3

char currentCharacter = mapValueToCharacter(operation.value0);
result += currentCharacter;
if (currentCharacter =— ’'\0")
return result; // this should never happen
currentCharacter = mapValueToCharacter (operation.valuel);
if (currentCharacter = "\0")

return result ;
result += currentCharacter;
currentCharacter = mapValueToCharacter (operation.value2);
if (currentCharacter = ’"\0")
return result ;
result += currentCharacter;
currentCharacter = mapValueToCharacter (operation.value3);
if (currentCharacter = ’\0")
return result ;
result += currentCharacter;
return result ;

}

// returns the value corresponding to the last 12 bits of the 2—byte struct

79

1:

+ unsigned short CigarOperation :: getValueNumeric () {

135 return operation.getNumericValue () ;

136 }

137

138 // converts the underlying two—byte struct to an array of characters
130 charx CigarOperation :: GetBytes() {

140 return reinterpret_cast <char *>(&operation);

141 }

80

Appendix D

Similarity Graph

D.1 Header File

1 #ifndef SIMILARITY GRAPH_H
> #define SIMILARITY_ GRAPH_H

3

. #include <limits.h>

5 #include <stdio.h>
6 #include <stdlib .h>
7 #include ”Read.h”

s #include <vector>

9

10

11

12

16

¥

NN N NN N W

w oW NN
= o © ® =

%]

// A structure to represent a node in adjacency list
struct AdjListNode {

unsigned int dest;

unsigned char weight;

struct AdjListNode* next;

5 15

// A structure to represent an adjacency list

struct AdjList {

struct AdjListNodex head; // pointer to head node of list
Read read;

}s

; class SimilarityGraph {

private:
AdjListNodex addNewAdjListNode(unsigned int dest, unsigned char weight);

; public:

/] size of array
unsigned int V;

unsigned int getVectorSize () ;

// Destructor
“SimilarityGraph () ;

// formerly called array

//struct AdjList* adjList;

vector<AdjList> adjList;

void addRead (Read read);

void addEdge(unsigned int src, unsigned int dest, unsigned char weight);
Read getReadAt(unsigned int 1);

81

41
43
14
45
16

20

40
41
42
13
A4

void clearReadPartitionInfo () ;

SimilarityGraph () ;

iE

7 #endif

D.2 Definitions

#include 7 SimilarityGraph.h”

// initializes graph

SimilarityGraph :: SimilarityGraph () {
adjList = vector<AdjList >();

}

unsigned int SimilarityGraph:: getVectorSize () {
return adjList.size () ;
}

Read SimilarityGraph :: getReadAt (unsigned int i) {
return adjList.at(i).read;

5 }

void SimilarityGraph ::addRead (Read read) {
AdjList adjList = AdjList();
adjList .head = NULL;
adjList.read = read;
this—>adjList .push_back (adjList);
}

25 // A utility function to create a new adjacency list node
i struct AdjListNodex SimilarityGraph :: addNewAdjListNode(unsigned int dest,

unsigned char weight)
{

struct AdjListNodex newNode = (struct AdjListNodesx)malloc(sizeof (struct
AdjListNode)) ;

newNode—>dest = dest;

newNode—>weight = weight;

newNode—>next = NULL;

return newNode;

}

5 // Adds an edge to an undirected graph

void SimilarityGraph ::addEdge(unsigned int src, unsigned int dest, unsigned
char weight)

- {

// Add an edge from src to dest. A new node is added to the adjacency
// list of src. The node is added at the begining

struct AdjListNodex newNode = addNewAdjListNode (dest, weight);
newNode—>next = adjList [src].head;

adjList [src].head = newNode;

// Since graph is undirected, add an edge from dest to src also

82

15 newNode = addNewAdjListNode (src, weight);
16 newNode—>next = adjList [dest].head;
17 adjList [dest].head = newNode;

o I

50 void SimilarityGraph :: clearReadPartitionInfo () {
1 for (size_t i = 0; i < adjList.size(); i++) {
52 adjList [i].read.partitions.clear ();
53

)
7)4}

56 /* Destructor for Similarity Graph x/

57 SimilarityGraph ::~ SimilarityGraph () {

ss for (size_t 1 = 0; 1 < adjList.size(); i++) {

59 /* deref head_ref to get the real head x/

60 struct AdjListNodex current = adjList[i].head;
61 struct AdjListNodex next;

63 while (current != NULL)

64 {

65 next = current—>next;

66 free (current) ;

67 current = next;

68 }

69

70 /* deref head_ref to affect the real head back
71 in the caller. x/

72 adjList [i].head = NULL;

83

Appendix E

Hash Bucket Index

E.1 Header File

1 #ifndef HASH BUCKET INDEX H
2 #define HASH BUCKET INDEX H

3

. #include <vector>

5

6

9

10

30

using namespace std;

// structure used for read compartmentalization heuristic
class HashBucketIndex {
private:

// size of partitions (Delta)
unsigned char partitionSize;

// read lengths to base partition size on
unsigned short readLength;

// number of hash buckets to create
unsigned short numberOfHashBuckets;

// underlying structure is a 3—dimensional matrix of values
vector<vector<vector<umnsigned int>>> hashBuckets;

public:

}s

HashBucketIndex (unsigned char partitionSize , unsigned short readLength);
void insert (unsigned short hashBucketNumber, unsigned char partitionValue
, unsigned int readNumber):;

const vector<unsigned int>%x at(unsigned short hashBucketNumber, unsigned
char partitionValue) const;

“HashBucketIndex () ;

31 #endif

E.2 Definitions

1 #include ”HashBucketIndex.h”

2

84

3 HashBucketIndex :: HashBucketIndex (unsigned char partitionSize , unsigned
short readLength) {

4 this—>partitionSize ;

5 this—>readLength ;

7 // 1 bucket for each A CT G
s numberOfHashBuckets = (readLength / partitionSize) * 4;

10 hashBuckets = vector<vector<vector<unsigned int>>>();

12 for (size_t ¢ = 0; ¢ < numberOfHashBuckets; c++) {

13 hashBuckets. push_back (vector<vector<unsigned int>>());
14 for (size_-t p = 0; p < (partitionSize + 1); p++) {

15 hashBuckets[c]. push_back (vector<unsigned int>());

16 }

17}

19 }

21 const vector<unsigned int>x HashBucketIndex:: at(unsigned short
hashBucketNumber, unsigned char partitionValue) const {
2 return &hashBuckets. at (hashBucketNumber) .at (partitionValue);

}

void HashBucketIndex::insert (unsigned short hashBucketNumber, unsigned char
partitionValue , unsigned int readNumber) {
hashBuckets [hashBucketNumber | [partitionValue |. push_back (readNumber) ;

NN NN

o o

1
—

NN NN
¢ SIS

HashBucketIndex :: " HashBucketIndex () {
s0 hashBuckets. clear () ;

31 }

85

Appendix F
Min Heap

F.1 Header File

LTI DT r i r il i rrrllr g
// This class provides a min heap data structure that
// is used primarily in computation of a minimum spanning tree

A w N e

5 #ifndef MIN_.HEAP_H
¢ #define MIN_HEAP_H

s #include <limits.h>

9 #include <stdio.h>

10 #include <stdlib .h>

11

12 // Structure to represent a min heap node
13 struct MinHeapNode {

14 unsigned int v;

5 unsigned int key;

16 };

1z class MinHeap {

9 private:

o public:

1 // Number of heap nodes stored in this structure
unsigned int size;

// maximum capacity of this structure

unsigned int capacity;

5 // This is needed for decreaseKey ()

6 unsigned int* pos;

7 // 2—d array of nodes stored in this min—heap structure
28 struct MinHeapNodex* array ;

NN NN NN N =
cUos W N

s0 MinHeap (unsigned int capacity);

31 void swapMinHeapNode (struct MinHeapNodex*x a, struct MinHeapNodexx b);
32 void addNewMinHeapNode (unsigned int v, unsigned int key);

33 void minHeapify (unsigned int idx);

32 bool isEmpty () ;

35 struct MinHeapNodex extractMin () ;

37 void decreaseKey (unsigned int v, unsigned int key);

39 bool isInMinHeap (unsigned int v);

10 };

86

41

12 #endif
F.2 Definitions

1 #include ”MinHeap.h”

3 MinHeap : : MinHeap (unsigned int capacity) {

1 this—>pos = (unsigned intx)malloc(capacity % sizeof (unsigned int));

5 this—>size = 0;

6 this—>capacity = capacity;

7 this—>array = (struct MinHeapNodexx)malloc (capacity #* sizeof(struct
MinHeapNodex)) ;

o

10 // A utility function to swap two nodes of min heap. Needed for min heapify
11 void MinHeap :: swapMinHeapNode (struct MinHeapNodex* a, struct MinHeapNodesxx

b)
12 {

13 struct MinHeapNodex t = xa;
14 xa = *b;
15 xb = t;

16 }

1s // A utility function to create a new Min Heap Node

19 void MinHeap : : addNewMinHeapNode (unsigned int v, unsigned int key)

20 {

21 struct MinHeapNodex minHeapNode = (struct MinHeapNodex)malloc (sizeof (
struct MinHeapNode)) ;

22 minHeapNode—>v = v;

23 minHeapNode—>key = key;

25 this—>array [v] = minHeapNode;

26 }

25 // A utility function to check if the given minHeap is empty or not
20 bool MinHeap :: isEmpty ()

30 {

31 return this—>size — 0;

32 }

a1 // A utility function to check if a given vertex
35 // ’v’ is in min heap or not

36 bool MinHeap ::isInMinHeap (unsigned int v)

37 {

ss if (this—>pos[v] < this—>size)

39 return true;

40 return false;

a1} 7

43 // Function to decreasy key value of a given vertex v. This function
14 // uses pos[] of min heap to get the current index of node in min heap
15 void MinHeap:: decreaseKey (unsigned int v, unsigned int key)

46 {

a7 // Get the index of v in heap array

15 unsigned int i = this—>pos|[v];

87

50 // Get the node and update its key value
this—>array [i]—>key = key;

// Travel up while the complete tree is not heapified.
s // This is a O(Logn) loop
55 while (1 && this—>array[i]—>key < this—>array[(i — 1) / 2]->key) {

56 // Swap this node with its parent

57 this —>pos[this—>array [i]->v] = (i — 1) / 2;

58 this—>pos[this—>array [(i — 1) / 2]->Vv] = i;

59 swapMinHeapNode(& this —array [i], &this—>array [(i — 1) / 2]);

61 // move to parent index
62 i=(i-1)/ 2

67 // Standard function to extract minimum node from heap
6s struct MinHeapNodex MinHeap:: extractMin ()

69 {

70 if (isEmpty())

71 return NULL;

s // Store the root node
72 struct MinHeapNodex root = this—>array [0];

// Replace root node with last node
struct MinHeapNodex lastNode = this—>array[this—>size — 1];
this—array [0] = lastNode;

[

~ ~ -~ -~ -~
h 3 5

// Update position of last node

®

si this—>pos[root—>v]| = this—>size — 1;
s2 this—>pos[lastNode—>v]| = 0;

83

s« // Reduce heap size and heapify root
s5 —this—>size;

s minHeapify (0) ;

87

88 return root;

89 }

90

91 // A standard function to heapify at given idx

92 // This function also updates position of nodes when they are swapped.

93 // Position is needed for decreaseKey ()

94 void MinHeap :: minHeapify (unsigned int idx)

95 {

96 unsigned int smallest , left , right;

97 smallest = idx;

98 left = 2 % idx + 1;

99 right = 2 x idx + 2;

100

101 if (left < this—>size && this—>array[left]—>key < this—>array|[smallest]—>
key)

102 smallest = left ;

103

104 if (right < this—>size && this—>array[right]—>key < this—>array|[smallest
|—>key)

105 smallest = right ;

88

if (smallest != idx) {

// The nodes to be swapped in min heap
MinHeapNodex smallestNode = this—>array[smallest];
MinHeapNodex idxNode = this—>array [idx];

// Swap positions
this —>pos[smallestNode—>v] = idx;
this —>pos[idxNode—>v] = smallest;

// Swap nodes
swapMinHeapNode(& this —>array [smallest], &this—>array[idx]) ;

minHeapify (smallest) ;

89

1
2
3

1
5
6

8

,},

s class WagnerFischerMatrix {

Appendix G

Wagner Fischer Matrix

G.1 Header File

#ifndef WAGNER_FISCHER_H
#define WAGNER_FISCHER_H

#include <string>
#include <stack>
#include <vector>
#include 7 CigarOperation.h”
#include ”DNAFileWrapper.h”

using namespace std;

// tracks dominant action for the given cell
enum cellType{

notSetYet ,

match ,

deletion ,

insertion ,

substitution

Ix

// repreents single cell of matrix

struct cell {

unsigned short value;

unsigned short numberOfConsecutiveOperations;
cellType type;

private:
cell xarr;
size_t width;
size_t height;
// string being transformed into target
string origin;
// string that the source is transforming into
string target;

void addMatchOperation(vector<CigarOperation> % operations, size_t size);

void addDeletionOperation (vector<CigarOperation> * operations, size_t
size);

90

0 void addInsertionOperations(vector<CigarOperation> xoperations, string
toBelnserted) ;

a1 void addSubstitutionOperations(vector<CigarOperation> koperations, string

tolnsert) ;

42

i3 public:

44

15 WagnerFischerMatrix (const string soriginString , const string
targetString) ;

16 cellx at(size_t rowlndex, size_t columnIndex);

47

48 void set(size_t rowlndex, size_t columnlndex, unsigned short value,
cellType type, unsigned short numberOfConsecutiveOperations) ;

50 string getCigar () ;
52 unsigned short getEditDistance () ;

54 // Destructor
55~ WagnerFischerMatrix () ;

56 };

ss #endif // !WAGNERFISCHER H

G.2 Definitions

1 #include ”WagnerFischerMatrix.h”

3 WagnerFischerMatrix :: WagnerFischerMatrix (const string *originString , const
string xtargetString) {
4 /) For all i and j, d[i,j] will hold the CIGAR size.

6 //let d be a 2 — d array with dimensions[0..m, 0..n]
7 width = originString —>length () + 1;
s height = targetString—>length () + 1;

10 arr = new cell[width % height|;
11 for (size_t i = 0; i < width x height; i++) {

12 arr [i].type = notSetYet;
13 arr [i].numberOfConsecutiveOperations = 0;
14 arr [i].value = 0;

15 }

17 origin xoriginString;
18 target = xtargetString;

20 // the top left corner corresponds to two empty strings
21 set (0, 0, 0, notSetYet, 0);

23 // the distance of any first string to an empty second string

24 // (transforming the string of the first i characters of s into

25 // the empty string requires i deletions)

26 for (size_t i = 1; i <= originString—length(); i++) {

27 // with the struct being used, reducing any string to an empty string
requires only 1 operation

28 set (i, 0, 1, deletion, i);

29 }

91

30

31

14
15

16

64

66

68

69

// top row —— insertions only
for (size_t j = 1; j <= targetString—>length (); j++) {

// with the struct being used, each insertion can insert up to 4
characters at once

size_t value = ((j — 1) / 4) + 1;
set (0, j, value, insertion, j)

)

}

// apply dynamic algorithm to fill in the wagner—fischer matrix
for (size_t i = 1; i <= originString—>length(); i++) {
for (size_t j = 1; j <= targetString—>length(); j++) {
if ((originString—at(i — 1) = targetString—at(j — 1)) && (at(i —
1, j — 1)—>type =— match)) {
// no new operation required: match already in progress
set(i, j, at(i — 1, j — 1)—>value, match, at(i — 1, j — 1)—>
numberOfConsecutiveOperations + 1);

else if ((1>=4) & (j >= 4) && (originString—>at(i — 1) =

targetString—>at(j — 1)) && (originString —>substr(i — 4, 4) =
targetString —>substr(j — 4, 4))) {

// create a new match operation on previous diagonal values

size_t value = at(i — 3, j — 3)—>value + 1;

set (i, j, value, match, 4);

set(i — 1, j — 1, value, match, 3);
set(i — 2, j — 2, value, match, 2);
set(i — 3, j — 3, value — 1, match, 1);

else {
// operation is not a match operation

cellType previousType;

// get adjacent three cells

cell xabove = at(i — 1, j);

cell xleftSide = at(i, j — 1);

cell xtopLeftCorner = at(i — 1, j — 1);

// minimum operation

size_t deletionValue = (above—>type = deletion) ? above—>value
above—>value + 1;

size_t insertionValue;

if (leftSide —>type = insertion) {
bool needsANewStruct = leftSide —>numberOfConsecutiveOperations %
4 = 0;

insertionValue = needsANewStruct 7 leftSide—>value + 1 : leftSide

—>value;

else {
insertionValue = leftSide —>value + 1;

}

size_t substitutionValue;

if (topLeftCorner—>type =— substitution) {
bool needsANewStruct = topLeftCorner—
numberOfConsecutiveOperations % 4 =— 0;

substitutionValue = needsANewStruct 7 topLeftCorner—>value + 1

92

79

80

81

88

90

91

93

94

96

97

98

99

100

topLeftCorner—>value;

}

else {
substitutionValue = topLeftCorner—>value + 1;

}

if (deletionValue <= substitutionValue) {
if (deletionValue <= insertionValue) {

size_t numberOfConsecutiveOperations = above—>type = deletion

?7 above—>numberOfConsecutiveOperations + 1 : 1;
set (i, j, deletionValue, deletion ,
numberOfConsecutiveOperations) ;

}

else {

size_t numberOfConsecutiveOperations = leftSide —>type —

insertion ? leftSide—>numberOfConsecutiveOperations + 1 : 1;
set (i, j, insertionValue, insertion ,
numberOfConsecutiveOperations) ;

}
}
else {
if (substitutionValue <= insertionValue) {

size_t numberOfConsecutiveOperations = topLeftCorner—>type —

substitution ? topLeftCorner—>numberOfConsecutiveOperations + 1
set (i, j, substitutionValue, substitution ,
numberOfConsecutiveOperations) ;

}

else {

1;

size_t numberOfConsecutiveOperations = leftSide —>type —

insertion ? leftSide—>numberOfConsecutiveOperations + 1 : 1;
set (i, j, insertionValue, insertion ,
numberOfConsecutiveOperations) ;

// get value at specified row and column
cell*x WagnerFischerMatrix ::at(size_t rowlndex, size_t columnIndex)
return &arr [rowIndex + width % columnIndex];

}

// set value at specified row and column

5 void WagnerFischerMatrix :: set (size_t rowIndex, size_t columnIndex,

short value, cellType type, unsigned short
numberOfConsecutiveOperations) {
arr [rowIndex + width # columnlIndex].value = value;
arr [rowIndex + width * columnIndex].type = type;
arr [rowIndex + width * columnIndex].numberOfConsecutiveOperations
numberOfConsecutiveOperations;
}

string WagnerFischerMatrix :: getCigar () {

size_t currentRow = origin.length () ;
size_t currentColumn = target.length ();

93

{

unsigned

126 stack<char> operationStack = stack<char>();
127 vector<CigarOperation> xoperations = &vector<CigarOperation >();

129 string cigar = 7" ;

131 bool isSub = false;

132 bool isInsert = false;

133

132 while ((currentColumn > 0) || (currentRow > 0)) {
135 // case if on left border of matrix

136 if (currentColumn < 1) {
137 operationStack.push(’D’);

138 currentRow ——;

139 }

140 // case if on top border of matrix

141 else if (currentRow < 1) {

142 operationStack .push(target.at(currentColumn— — 1));

143 operationStack .push(’'17);

144 }

145 else {

146 size_t numberOfConsecutiveOperations = at(currentRow, currentColumn)
—>numberOfConsecutiveOperations;

147 switch (at(currentRow, currentColumn)—>type) {

148 case match:

149

150 // if the match has less than 4, then it’s more efficient to use
substitution

151 if (numberOfConsecutiveOperations < 4) {

152 for (size_-t i = 0; i < numberOfConsecutiveOperations; i++) {

153 operationStack .push(target.at(currentColumn— — 1));

154 operationStack .push(’S’);

155 }

156 currentRow —= numberOfConsecutiveOperations;

157 }

158 else {

160 for (size_-t i = 0; i < numberOfConsecutiveOperations; i++) {
161 operationStack .push(M’);

162 }

163 currentRow —= numberOfConsecutiveOperations;

164 currentColumn —= numberOfConsecutiveOperations;

165 }

166 break;

167 case deletion :

168 for (size_-t i = 0; i < numberOfConsecutiveOperations; i++) {
169 operationStack .push(’'D’);

170 }

171 currentRow — numberOfConsecutiveOperations;

172 break;

173 case substitution:
174 for (size_-t i = 0; i < numberOfConsecutiveOperations; i++) {

175 operationStack.push(target.at (currentColumn— — 1));
176 operationStack .push(’S’);

177 }

178 currentRow —= numberOfConsecutiveOperations;

179 break ;

180 case insertion:

94

181 for (size-t i = 0; i < numberOfConsecutiveOperations; i++) {

182 operationStack.push(target.at(currentColumn— — 1));
183 operationStack.push(’17);

184 }

185 break ;

186 }
187 }
188 }

190 bool isMatch = false;

191 bool isDelete = false;

192 bool isInsertion = false;

193 bool isSubstitution = false;

194 string currentString = 77 ;

195 size_t matchOrDeletionLength = 0;

o7 while (operationStack.size() > 0) {
198 char currentSymbol = operationStack.top();
199 operationStack .pop () ;

200

201 switch (currentSymbol) {

202 case 'M’:

203 if (isMatch) {

204 matchOrDeletionLength++;

205 }

206 else if (isDelete) {

207 // add delete operation

208 addDeletionOperation (operations , matchOrDeletionLength) ;

209 // reset length

210 matchOrDeletionLength = 1;

211 isMatch = true;

212 isDelete = false;

213 }

214 else if (isSubstitution) {

215 // add sub with current string

216 if (currentString.length() > 0)

217 addSubstitutionOperations (operations , currentString);

218 currentString = 77;

219 isMatch = true;

220 isSubstitution = false;

221 matchOrDeletionLength = 1;

222 }

223 else if (isInsertion) {

224 // add insertion with current string

225 if (currentString.length() > 0) addInsertionOperations(operations,
currentString) ;

226 currentString = 77

227 isMatch = true;

228 isInsertion = false;

229 matchOrDeletionLength = 1;

230 }

231 else {

232 isMatch = true;

233 matchOrDeletionLength = 1;

234 }

235 break ;

236 case 'D’

95

if (isMatch) {
// add match operation
addMatchOperation (operations , matchOrDeletionLength) ;
// reset length
matchOrDeletionLength = 1;
isDelete = true;
isMatch = false;

}

else if (isDelete) {
matchOrDeletionLength++;

}

else if (isSubstitution) {
// add sub with current string
if (currentString.length() > 0)
addSubstitutionOperations (operations, currentString);
currentString = 77 ;
isDelete = true;
isSubstitution = false;
matchOrDeletionLength = 1;
}
else if (isInsertion) {
// add insertion with current string

if (currentString.length() > 0) addInsertionOperations(operations,
currentString) ;

currentString = 77

isDelete = true;
isInsertion = false;
matchOrDeletionLength = 1;
}
else {
isDelete = true;
matchOrDeletionLength = 1;

}

break ;

default: // insertion/substitution

// take off next operation since it tells us what the current

symbol is for

bool isThisInsertion = "I’ = currentSymbol; // otherwise

substitution

bool isThisSubstitution = 'S’ = currentSymbol;

if (isMatch) {
addMatchOperation (operations , matchOrDeletionLength) ;
matchOrDeletionLength = 0;
isMatch = false;

}

else if (isDelete) {
addDeletionOperation (operations , matchOrDeletionLength);
matchOrDeletionLength = 0;
isDelete = false;

}

else if (isThisInsertion && isSubstitution) {
// add sub with current string
if (currentString.length() > 0)

addSubstitutionOperations (operations , currentString);

isSubstitution = false;

96

293
294
295

296

307
308
309
310

311

345

346

9

currentString = ;

}

else if (isThisSubstitution && isInsertion) {
// add insertion with current string

if (currentString.length() > 0) addInsertionOperations(operations ,

currentString) ;
isInsertion = false;

7

currentString = ;

}

isInsertion = isThisInsertion
isSubstitution = isThisSubstitution ;

currentString += operationStack.top();
operationStack .pop () ;

isMatch = false;
isDelete = false;
matchOrDeletionLength = 0;

}

if (isMatch) {
addMatchOperation (operations , matchOrDeletionLength) ;

}
else if (isDelete) {

addDeletionOperation (operations , matchOrDeletionLength) ;
}

if (isSubstitution) {
// add sub with current string
if (currentString.length() > 0)
addSubstitutionOperations (operations , currentString);
currentString = 77 ;
}
else if (isInsertion) {
// add insertion with current string
if (currentString.length () > 0) addInsertionOperations(operations,
currentString) ;
currentString = 77 ;
}

char % myBytes = new char|[operations—>size () * 2];

for (unsigned int j = 0; j < operations—>size (); j++) {
char * currentOpBytes = operations—at(j).GetBytes();
myBytes[(2 * j)] = currentOpBytes [0];
myBytes[(2 % j) + 1] = currentOpBytes|[1];

}

cigar = string (myBytes, operations—>size () * 2);
delete [] myBytes;

#ifdef DEBUG
if (DNAFileWrapper:: decodeChildSequenceRelativeToParent(&cigar , &origin)

I= target) {
printf(”something is wrong...\n”);

97

348

319 #endif

350

351 return cigar;

352 }

void WagnerFischerMatrix :: addMatchOperation (vector<CigarOperation> x
operations , size_t equivalentRegionSize) {
355 operations —>push_back (CigarOperation (equivalentRegionSize , true));

355 void WagnerFischerMatrix :: addDeletionOperation (vector<CigarOperation> x
operations , size_t equivalentRegionSize) {

359 operations —>push_back (CigarOperation (equivalentRegionSize , false));

360 }

361

s62 void WagnerFischerMatrix :: addSubstitutionOperations (vector<CigarOperation>
xoperations , string tolnsert) {

363 size_t insertionSize = tolnsert.size();
364 size_t insertionRemainder = insertionSize % 4;
365 unsigned short numberOfCompletelnsertions = insertionSize / 4; // integer

division intended
ss6 for (unsigned short t = 0; t < numberOfCompletelnsertions; t++) {

367 string segment = tolnsert.substr(t % 4, 4);
368 CigarOperation operation = CigarOperation (segment, true);
369 operations —>push_back (operation) ;

371 if (insertionRemainder > 0)
72 operations —>push_back (CigarOperation (toInsert.substr (
numberOfCompletelnsertions % 4, insertionRemainder), true));

5 void WagnerFischerMatrix :: addInsertionOperations (vector<CigarOperation> x*
operations , string tolnsert) {

s76 size_t insertionSize = tolnsert.size();
377 size_t insertionRemainder = insertionSize % 4;
378 unsigned short numberOfCompletelnsertions = insertionSize / 4; // integer

division intended
s7o for (unsigned short t = 0; t < numberOfCompletelnsertions; t++) {

380 string segment = tolnsert.substr(t = 4, 4);
381 CigarOperation operation = CigarOperation (segment, false);
382 operations —>push_back (operation) ;

if (insertionRemainder > 0)

385 operations —>push_back (CigarOperation (tolnsert.substr (
numberOfCompletelnsertions % 4, insertionRemainder), false));

386 }

sss unsigned short WagnerFischerMatrix :: getEditDistance () {
sso return at(origin.length (), target.length())—>value;
390 }

391

302 /% Destructor for matrix =/

303 WagnerFischerMatrix ::~ WagnerFischerMatrix () {

394 delete [] arr;

395 }

98

Appendix H
DNA File Wrapper

H.1 Header File

1 #ifndef DNAFileWrapper_H

> #define DNAFileWrapper_H

3

 #include <fstream>

5 #include<string >

6 #include ”Read.h”

7 #include<stdio .h>

s #include<vector>

9 #include<stack>

10 #include<list >

11 #include 7 SimilarityGraph.h”
12 #include 7 CigarOperation.h”
13

11 #ifndef UINT32.MAX

15 #define UINT32.MAX __UINT32_MAX__
16 #endif
17
18 #ifdef unix
19 #include <pthread .h>
20 #include <map>
21 #include<sys/sysinfo .h>

b

; struct argumentStruct {
SimilarityGraph* graph;
HashBucketIndex* indices;
unsigned int startingPosition;
unsigned int stoppingPosition;
string fileName;

&

30

31 #else

32 #include <thread>

33 #define USING.THREAD

34 #include <unordered map>

35 #define USING.UNORDERED MAP
36 #endif

37

NN N NN NN
o N o O K W

N

38
30 #include <algorithm>
0 #include <iterator >

99

41
42
43
44

45

6
47
18

49

TS S T B B
at - w [\V] -

~ -~ -~
~

©

~

8(

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96

#include <ctime>

#include <sstream>

#include ”"WagnerFischerMatrix.h”
#include ” CigarCoilUtilities.h”
#include ”HashBucketIndex.h”
#include ”"DecodedReads.h”

enum DNAFileType {
FASTQ,
FASTA,
SAM,
CIGARCOIL

}s

static const charx cigarFileMarker = "CGRC” ;

static const size_t maximumNumberOfReadsToApplyWagnerFischerTo = 2;

static const size_t halfMaximumNumberOfReadsToApplyWagnerFischerTo =
maximumNumberOfReadsToApplyWagnerFischerTo / 2;

static const int numberOfStates = 13;

static const int numberOfActions = 21;

// learning rate
static const double ALPHA = 0.05;

// discount rate

5 static const double GAMMA = 0.01;

// probability

s static const double EPSILON = 0.05;

enum predictiveCacheAccessPatterns {
NEXT SEQUENTIAL,
NEXT DELTA,
PREV_SEQUENTIAL,
PREV_DELTA,
RANDOM_IN_DELTA

iE

// Class that permits operations to be performed on FASTA/FASTQ/CIGARCoil
files
class DNAFileWrapper {
private:
// path to the file
string myFileName;
// type of file that it is
DNAFileType fileType;
// typical read length for this file
unsigned short readLength;
// position of the parent array in a CIGARCoil file
streampos parentArrayLength ;
// element that is the root of the tree of a CIGARCoil file
unsigned int root;

// is this wrapped around a file with an underlying FASTQ structure?
bool isFASTQ;

// track positions of reads within a file
vector<std ::streampos> readPositions;

100

// track position in CIGARCoil file where zpaq file begins
unsigned long long idQualityStart;

// methdos for accessing the ith element of a particular type of file
string fastQFileAccess(size_t 1);

string fastAFileAccess(size_t i);

string cigarCoilFileAccess(size_-t 1i);

string cigarCoilFileAccess(size_t readNumber, ifstream =fileStream);
string cigarCoilFileAccess(size_t i, string childSequence);

string cigarCoilFileAccess(size_t i, string childSequence, ifstream x
fileStream) ;

// encodes the given MST

static void encodeMSTAndWriteToFile(unsigned int root, unsigned int x*
parents , SimilarityGraph xsimilarityGraph , string outputFileName, string
inputFileName , ifstream =xfileStream);

// encodes file of sequence values and returns name of encoded file
static string encodeSequenceFields(const char xsequenceFile, unsigned
short averageReadLength, bool isUsingWagnerFischerForEdgeWeigths) ;

// concatenates a set of files together
void concatenateFilesTogether (const string *files , size_t numberOfFiles,
string resultFileName);

// concatenates a set of CIGAR encoded sequences together
static void concatenateCompressedSequencesTogether(const string =files ,
size_t numberOfFiles, string resultFileName);

// returns a parent array for the given CIGAR object
static vector<unsigned int> findParentArray (const char xfileName, size_t
offset , streampos xfinalPosition);

// computes K—means in a memory conservative manner

vector<unsigned int>x kmeans(const char % sequenceFileName, size_t
numberOfClusters, size_t maximumNumberOflterations, unsigned short
sequenceLength) ;

// computes K—means with all sequences stored in memory
vector<unsigned int>x kmeans(const vector<string> * sequences, size_t
numberOfClusters, size_t maximumNumberOflterations, unsigned short

sequenceLength) ;

// initialize a random set of strings
string* initializeCentroids (size_t numberOfCentroids, unsigned short
sequenceLength) ;

// updates the centroids based on average of clustered elements
void recomputeCentroids(double sxxrunningAverageForEachReadPosition ,
size_t numberOfCentroids, string #*centroids, unsigned short
sequenceLength) ;

ILTTTT T

// Predictive Cache Private variables

bool islnitialized ;

// The number of elements for the predictive cache to store
size_t numberOfElementsToCache;

101

141
142
143
144
145

146

149

182
183
184
185
186

187

191
192
193
194

195

// the first id of the cache window
unsigned int idOfFirstElementCached;
// the last id of the cache window
unsigned int idOfLastElementCached;
// set of cached elements
vector<string> cachedElements;
// Q-table of state action pairings
float stateActionPairs|[numberOfStates|[numberOfActions];
// make learning agent perform an action based on requested i
void qLearningPrediction(size_-t requestedId);
// returns the best action for the given state
int getBestActionForAState(size_t state);
// fetches up to the specified number of elements into the cache
void fetchElementsForward (size_t start, size_t numberOfElements) ;
// fetches up to the specified number of elements into the cache
void fetchElementsBackward (size_t start, size_t numberOfElements) ;
// figures out which state corresponds to the element i
unsigned int determineState(unsigned int i);
// initializes the predictive cache
void initialize ();
// returns the sequence at the specified element
std::string getElement(size_t element);
public:
// array for parentArray of reads
vector<unsigned int> parentArray;
// used for accessing encoded file
DecodedReads decodedReads;
// undoes a set of CIGAR operations based on the parent sequence
static string decodeChildSequenceRelativeToParent(const string
childCigar , const string xparentSequence);
// initializes this object with the file path to the file
DNAFileWrapper (const char xfileName) ;
// encodes the wrapped FASTA or FASTQ file
void encode(const char xencodedFileName, size_t numberOfClusters, size_t
maximumNumberOflterations, bool isBeingConservativeWithMainMemory , bool
isUsingWagnerFischerForEdgeWeigths) ;
// decodes the wrapped CIGARCoil file
void decode(const char xdecodedFileName) ;

// updates the read at the given sequence
void updateReadSequence(size_t i, string sequence);

// concatenates two CIGARCoil files together

102

196

197
198
199
200

201

NN

@ N

204

s W N

NN N NN
5 X e o

}s

DNAFileWrapper concatenate (DNAFileWrapper #childFile , string
concatenatedFileName) ;

// static method for adding edges that can be run by multiple threads
static void parallelAddEdges(SimilarityGraphs* graph,

const HashBucketIndexx indices ,

unsigned int startingPosition , unsigned int stoppingPosition, string
fileName , bool isUsingWagnerFischerForEdgeWeigths) ;

// construct a CIGARCoil file with a given parent array, and the original
FASTA/FASTQ file

void reconstructCompressedFile(const char xuncompressedFileName, const
char xreconstructedCompressedFileName , const char x
compressedldAndQualityFileName, bool isBeingMemoryConservative);

"DNAFileWrapper () ;

// Returns string at the specified element i
std::string at(size_t i);

// square bracket operator for accessing the ith sequence
std::string operator [](size_t 1i);

#endif // !DNAFileParser_H

H.2 Definitions

#include ”DNAFileWrapper.h”

DNAFileWrapper : : DNAFileWrapper (const char xfileName) {

ifstream fileStream
fileStream .open (fileName) ;

if (fileStream .bad()) {
printf(” file stream is bad\n”);
}

myFileName = fileName;
parentArray = vector<unsigned int >();
islnitialized = false;

numberOfElementsToCache = 1000;

unsigned int idOfFirstElementCached = 0;
unsigned int idOfLastElementCached = 0;
vector<string> cachedElements = vector<string >();

for (size_t i = 0; i < numberOfStates; i++) {
for (size_-t j = 0; j < numberOfActions; j++) {
stateActionPairs[i][j] = 0;

}

103

readPositions = vector<std ::streampos>();

string firstLine;
string secondLine;
string thirdLine;

getline (fileStream , firstLine);
parentArrayLength = 0;

root = 0;

idQualityStart = 0;

if
{

(firstLine.length () > 4 && firstLine.substr (0, 4) = cigarFileMarker)

// this file is a CIGARCoil file
fileType = DNAFileType :: CIGARCOIL;

fileStream . close () ;
// extract parent array from CIGARCoil file

parentArray = findParentArray (fileName, 4, &parentArrayLength);
for (size_t i = 0; i < parentArray.size(); i++) {

if (parentArray[i] = 1) {
root = i;
break ;

}
}

fileStream . close () ;
fileStream .open(fileName, ios::binary);
fileStream . seekg (parentArrayLength, ios_base ::beg);
readPositions . push_back(fileStream . tellg ());
unsigned long long previousInsertionPosition = parentArrayLength;
string temp = "7 ;
string bigTemp = 77 ;
size_t tempMax = 0;
size_t positionOfTempMax ;
double averageCig = 0.0;
unsigned int rNum = 0;
for (size_-t i = 1; i < parentArray.size(); i++) {
getline (fileStream , temp);
if (temp 77y A
printf(”hit.\n”);

else if (fileStream.eof()) {
printf(”end of file reached early.\n”);

}

else if (!fileStream.is_open()) {
printf(”not open.\n”);

}

else if (fileStream .bad()) {
printf(”bad\n”);

}

else {
if (temp.size () > tempMax) {

104

84 tempMax = temp. size () ;

85 bigTemp = temp;

86 positionOfTempMax = rNum;

87 }

88 averageCig = (temp.size () + averageCig) / ++Num;

90 }

91 std :: streampos sPos = fileStream . tellg () ;

95 readPositions.push_back(fileStream . tellg ())
96 previousInsertionPosition = readPositions|[i
7 #ifdef DEBUG

98 ifstream testStream (myFileName. c_str ());

99 testStream . seekg (readPositions[i — 1], ios_base::beg);
100 string testString = 77 ;

101 getline (testStream , testString);

I

C

102 if (temp != testString) {

103 printf(”something is wrong\n”);

104 }

105 #endif

106 }

107

108 decodedReads = DecodedReads (parentArray.size ());

109

110 numberOfElementsToCache = (numberOfElementsToCache > parentArray.size ()

) ? parentArray.size () : numberOfElementsToCache;

111

112 getline (fileStream , temp);

113 idQualityStart = fileStream . tellg ();//temp.size () +
previouslnsertionPosition + 2;

114

115

116 else {

117

118 getline (fileStream , secondLine);

119 getline (fileStream , thirdLine);

120

121 readLength = secondLine.length () ;

122

123 char firstLineFirstChar = firstLine.at(0);

124 char thirdLineFirstChar = thirdLine.at (0);

125 if (firstLineFirstChar = ’'Q’ && thirdLineFirstChar = '+’) {

126 fileType = DNAFileType ::FASTQ;

127 isFASTQ = true;

128

129 else if (firstLineFirstChar = >’ || firstLineFirstChar = ’Q’) {
130 fileType = DNAFileType::FASTA;

131 isFASTQ = false;

132 }

133 else if (false) {
134 // TODO: Condition if SAM format
135 isFASTQ = false;

136 }

137}

138

139 fileStream . close () ;

105

141 }

15 #ifndef USING.THREAD
s #endif // !USING.THREAD

147 // adds part of the edges to a similarity graph

11z void DNAFileWrapper :: parallelAddEdges (SimilarityGraphs* graph,

149 const HashBucketIndex* indices ,

150 unsigned int startingPosition , unsigned int stoppingPosition, string
fileName , bool isUsingWagnerFischerForEdgeWeigths) {

152 ifstream fileStream ;
153 fileStream .open(fileName.c_str ());

155 string rootSequence = CigarCoilUtilities :: getDataAtFilePosition (graph—>

getReadAt (0) . getSequencePos (), graph—>getReadAt (0).getSequenceLength (),
&fileStream);

157 for (unsigned int i = startingPosition; i < stoppingPosition; i++) {
159 double bestMatchSoFar = 10000;

160 Read currentRead = graph—>getReadAt(i);

161 clock_t intersectionStart = clock();

163 vector<vector<unsigned int>> vectors = vector<vector<unsigned int>>();

165 // populates vector with all queries for the current read’s partitions
166 for (size_-t p = 0; p < currentRead.partitions.size(); p++) {

167 const vector<unsigned int> x currentVector = indices—>at(p,
currentRead . partitions.at(p));
168 unsigned int firstIndex = CigarCoilUtilities ::

findFirstIndexGreaterThanTarget (currentVector , i);

170 vector<unsigned int >::const_iterator first = currentVector—>begin () +
firstIndex ;
171 vector<unsigned int >::const_iterator last = currentVector—>end();

172 vector<unsigned int> entriesGreaterThanThisRead(first , last);

74 vectors.push_back (entriesGreaterThanThisRead) ;

175 }

177 vector<unsigned int> bestIntersectionVector = vector<unsigned int >();

178 size_t bestSizeSoFar = 2000000;

179 bool intersectionsOfAllSetsFound = true;

180

181 vector<vector<unsigned int>> intersections = vector<vector<unsigned int
>>();

182 do {

183

184 intersections.clear () ;

185

186 for (size_t q = 0; q < vectors.size(); q += 2) {

187 // if odd number of vectors, last—most vector skips to next round

188 if (¢ = vectors.size() — 1) {

189 intersections.push_back(vectors.at(q));

190 }

106

239

else {
vector<unsigned int> intersectionVector = vector<unsigned int >();
vector<unsigned int> xvl = &vectors.at(q);
vector<unsigned int> xv2 = &vectors.at(q + 1);

// takes intersection of two vectors
set_intersection (vl—>begin (), vl—>end(),
v2—>begin (), v2—end (),
back_inserter (intersectionVector));

if (intersectionVector.size() > 0) {
intersections.push_back(intersectionVector);
if (intersectionVector.size () < bestSizeSoFar) {

bestIntersectionVector = intersectionVector;
bestSizeSoFar = intersectionVector.size ();
}
}
else {

intersectionsOfAllSetsFound = false;

}
¥
}

// mnext round will have about half as many vectors left
vectors = intersections;

} while (intersections.size() > 1);

// if only one vector remains, then it is assumed to be the best
if (intersections.size() = 1) {
bestIntersectionVector = intersections.at (0);

}

if (!fileStream.is_open()) {

fileStream .open(fileName) ;
}
string parentSequence = CigarCoilUtilities :: getDataAtFilePosition (
currentRead . getSequencePos (), currentRead.getSequenceLength(), &
fileStream) ;

Read xchildRead ;

// additional step for reducing set size that is useless to enter if
all intersections were successful
if (bestIntersectionVector.size() >
maximumNumberOfReadsToApplyWagnerFischerTo && !
intersectionsOfAllSetsFound) {
vector<unsigned int> correspondinglndices = vector<unsigned int >();
vector<double> intersectionsApproximateValues = vector<double >();

// initialize vector of best values
unsigned int currentCandidate = bestIntersectionVector [0];
double approximateEditDistance = currentRead.getAngleBetweenTwoReads
(&graph—>getReadAt (currentCandidate)) ;
for (size_-t j = 0; j < maximumNumberOfReadsToApplyWagnerFischerTo; j
++) {
correspondingIndices.push_back(currentCandidate) ;
intersectionsApproximateValues.push_back (approximateEditDistance);

107

}

// populate vectors with best values
for (size_-t k = 1; k < bestIntersectionVector.size(); k++) {
currentCandidate = bestIntersectionVector [k];

approximateEditDistance = currentRead.getAngleBetweenTwoReads(&
graph—>getReadAt (currentCandidate)) ;

unsigned int firstIndexGreaterThanTarget = CigarCoilUtilities ::
findFirstIndexGreaterThanTarget(&intersectionsApproximateValues
approximateEditDistance) ;

if (firstIndexGreaterThanTarget < intersectionsApproximateValues.
size ()) {
// transition sorted elements of vectors up by 1 to make room for
new value
for (unsigned int m = maximumNumberOfReadsToApplyWagnerFischerTo
— 1; m > firstIndexGreaterThanTarget; m——) {
intersectionsApproximateValues [m] =
intersectionsApproximateValues [m — 1];
correspondinglIndices [m] correspondingIndices [m — 1];
}

intersectionsApproximateValues [firstIndexGreaterThanTarget]| =
approximateEditDistance ;

correspondingIndices [firstIndexGreaterThanTarget| =
currentCandidate ;

}

}

bestIntersectionVector.clear () ;

unsigned int previouslnsertion = 2000000000;
for (size_-t n = 0; n < maximumNumberOfReadsToApplyWagnerFischerTo; n
++) {
if (correspondinglndices[n] = previousInsertion) {

n = maximumNumberOfReadsToApplyWagnerFischerTo;

}

else {
bestIntersectionVector.push_back(correspondingIndices[n]) ;
previousInsertion = correspondinglndices[n];

}
}

}

unsigned char currentBest = UCHARMAX;
for (size_-t k = 0; k < bestIntersectionVector.size(); k++) {

unsigned int bestChild = bestIntersectionVector.at (k) ;
childRead = &graph—>getReadAt(bestChild);

string childSequence = CigarCoilUtilities :: getDataAtFilePosition (
childRead —>getSequencePos (), childRead—>getSequenceLength (), &fileStream

)5

108

288 unsigned char numberOfOperationsRequired = 0;

289

290 if (isUsingWagnerFischerForEdgeWeigths) {

201 WagnerFischerMatrix matrix = WagnerFischerMatrix(&parentSequence , &
childSequence) ;

292 numberOfOperationsRequired = matrix.getEditDistance () ;

293 }

204 else {

205 numberOfOperationsRequired = parentSequence.size () —

CigarCoilUtilities :: getCheapSimilarityDistanceMetric(&parentSequence , &
childSequence, 0) + 1;
296 }

208 // caps the weight of an edge at 255 — this should rarely if ever
occur
200 unsigned char cappedNumberOfRequirements = (

numberOfOperationsRequired > 255) ? 255 : numberOfOperationsRequired ;

301 if (cappedNumberOfRequirements < currentBest) {

302 // adds edge to this undirected graph

303 graph—>addEdge (i, bestChild, cappedNumberOfRequirements) ;
304 currentBest = cappedNumberOfRequirements ;

305 }

306

307 }
309 }

sio fileStream . close () ;

311 }

s13 // concatenates a set of files together

312 void DNAFileWrapper:: concatenateFilesTogether (const string =*files , size_t
numberOfFiles, string resultFileName) {

s15 ofstream appenderStream (resultFileName.c_str (), std::ios_base::app | std
::ios_base :: binary);

s17 for (size_t m = 0; n < numberOfFiles; n++) {

318 std ::ifstream fileStream (files[n].c_str(), std::ios_base::binary);
319

320 appenderStream .seekp (0, std::ios_base::end);

321 appenderStream << fileStream .rdbuf () ;

322

323 fileStream . close () ;

324 }

325

326 appenderStream. close () ;

327 }

320 vector<unsigned int> DNAFileWrapper:: findParentArray (const char xfileName
size_t offset , streampos xfinalPosition) {

331 ifstream fileStream ;
333 fileStream .open(fileName, ios::binary);

335 // populate parent array
ss6 fileStream .seekg(offset , ios_base::beg);

109

339
340
341
342
343

344

346

368
369
370
371
372
373

374

383

384

386
387
388
389
390
391

392

const size_t bufferSize = sizeof(int);
char verificationBuffer [bufferSize |;
char buffer [bufferSize ;

streamsize amountRead = 0;
unsigned int root = 0;
unsigned int numberOfReads = 0;

vector<unsigned int> resultArray

while (true) {

if (!fileStream) {
printf(”throw error for not finding end sequence\n”);

vector<unsigned int >();

return resultArray;
}
unsigned int positionInBuffer = 0;
unsigned int amountToRead = bufferSize;
unsigned int makeupCharacterCount = 0;
unsigned int numberOfConsecutiveReturnCharacters = 0;
do {
makeupCharacterCount = 0;
char sverificationBuffer = new char[amountToRead];

fileStream .read (verificationBuffer , amountToRead) ;

for (size_t

i =0; i < amountToRead; i++) {

if (verificationBuffer[i] = ’'\r’) {
numberOfConsecutiveReturnCharacters++;

}

else {
numberOfConsecutiveReturnCharacters = 0;

}

if ((i !'= (amountToRead — 1)) &&
numberOfConsecutiveReturnCharacters % 2 = 1 && verificationBuffer [i +

1] — "\n") {
makeupCharacterCount++;
buffer [positionInBuffer++]

else if ((positionInBuffer > 0) && buffer [positionInBuffer — 1]
"\r’ && verificationBuffer[i] = "\n’) {
buffer [positionInBuffer — 1] = ’\n’;

makeupCharacterCount++;

}

else

{

buffer [positionInBuffer—++]

}
}

verificationBuffer[++1];

verificationBuffer [i];

amountToRead = makeupCharacterCount ;
delete [] verificationBuffer;
} while (makeupCharacterCount > 0);

if (buffer[3] = ’'\r’) { // I hate windows
streampos p = fileStream. tellg ();
char checkBuffer [1];

110

393 fileStream .read (checkBuffer , 1);

394 if (checkBuffer [0] = ’\n’) {

395 buffer [3] = "\n’;

396 }

397 else {

398 fileStream .seekg(p, ios_base::beg);

399 }
100 }

401
402 unsigned int currentValue = kxreinterpret_cast <unsigned intx>(buffer);
403

104 if (currentValue = UINT32.MAX)

105 break;

406

407 if (resultArray.size() = currentValue)
108 root = resultArray.size();

109 resultArray . push_back (currentValue);

110 numberOfReads++;

111 }

412

113 xfinalPosition = fileStream.tellg();

14 fileStream . close () ;

116 return resultArray ;

417 }

419 // This method concatenates a set of cigarcoil compressed sequences
together , encoding the root of each cluster

120 // relative to the root of the first file and merging their parent arrays
together .

121 void DNAFileWrapper :: concatenateCompressedSequencesTogether (const string =
files , size_t numberOfFiles, string resultFileName) {

123 // the concatenated files will be written to the result file

21 ofstream outputFile (resultFileName.c_str (), std::ofstream::out);
425

126 // this vector will hold the combined parent arrays

127 vector<unsigned int> combinedParentArray = vector<unsigned int >();
128 streampos * parentArrayLengths = new streampos|[numberOfFiles];
129 size_t *numberOfElements = new size_t [numberOfFiles |;

130 unsigned int xroots = new unsigned int[numberOfFiles];

431

132 vector<string> rootSequences = vector<string >();

133

43¢ // combines the parent arrays of all files

435

136 for (size_t m = 0; n < numberOfFiles; n++) {

437 vector<unsigned int> currentParentArray = findParentArray(files[n].
c_str (), 4, &parentArrayLengths[n]) ;

438 size_t sizePreConcatenation = combinedParentArray.size () ;

139 numberOfElements [n] = currentParentArray.size ();

440 for (unsigned int i = 0; i < currentParentArray.size(); i++) {

441

442 if (i = currentParentArray.at(i)) {

443 roots [n] = i;

144 currentParentArray[i] = roots[0];

445

446 else {

111

147 currentParentArray[i] += sizePreConcatenation;

148 }

150 combinedParentArray . push_back (currentParentArray[i]) ;

152 }
153 }

55 // writes special identifying 4 bytes to signal that this file is a
cigarcoil file
456 outputFile. write (cigarFileMarker , 4);

158 unsigned intx parents = &combinedParentArray [0];

460 outputFile. write (reinterpret_cast <char *>(parents), sizeof(int) x
combinedParentArray . size ());

162 unsigned int arrayEnding = UINT32.MAX;
63 outputFile.write(reinterpret_cast <char #>(&arrayEnding), sizeof(int));

165 ifstream firstFileStream (files [0]. c_str());

7

7 string parentSequence = 77 ;

169 string currentLine = 7"

470

am size_t readNumber = 0;

172

175 firstFileStream .seekg(parentArrayLengths [0], ios_base::beg);

174

a7s. while (firstFileStream) {

476 getline (firstFileStream , currentLine);

177 if (readNumber = roots [0])

178 parentSequence = currentLine;

179 outputFile << currentLine;

180

481 if (readNumber != (numberOfElements[0] — 1))

482 outputFile << 7\n”;

183

184 readNumber++;

185 }

486

as7 for (size_t n = 1; n < numberOfFiles; n++) {

138 ifstream currentFileStream (files [n]. c_str());

189 currentFileStream . seekg (parentArrayLengths[n], ios_base::beg);

190 readNumber = 0;

491

192 while (currentFileStream) {

193 getline (currentFileStream , currentLine);

94

195 if (readNumber =— roots[n]) {

196 string cigar = WagnerFischerMatrix(&parentSequence , ¤tLine).
getCigar () ;

497 outputFile << cigar;

198 }

199 else {

500 outputFile << currentLine;

112

if (readNumber != (numberOfElements|[n] — 1))
outputFile << ”\n”;

readNumber++;

}
}

delete [] numberOfElements;
delete [] roots;

delete [] parentArrayLengths;
outputFile. close () ;

 }}

// creates a set of random strings of the specified length

515 string *DNAFileWrapper :: initializeCentroids (size-t numberOfCentroids,

unsigned short sequenceLength) {
string *centroids = new string [numberOfCentroids];

// initialize centroids
for (size-t i = 0; i < numberOfCentroids; i++) {
string centroid = 77
// populate centroid with random sequence
for (size_t stringPos = 0; stringPos < sequenceLength; stringPos++) {
int randomValue = rand () % 4;
switch (randomValue) {
case O:
centroid += ’A’;
break;
case 1:
centroid += 'C’;
break ;
case 2:
centroid += 'T7;
break ;
case 3:
centroid += 'G’;
break ;
}
}

centroids[i] = centroid;

}

return centroids;
}
void DNAFileWrapper :: recomputeCentroids (double sx*x
runningAverageForEachReadPosition, size_t numberOfCentroids, string =
centroids , unsigned short sequenceLength) {
for (size_-t ¢ = 0; ¢ < numberOfCentroids; c++) {
string newCentroid = 77 ;
// calculate new centroid based on its cluster
for (size_-t r = 0; r < sequenceLength; r++) {
double aAverage = runningAverageForEachReadPosition [0][r][c];
double cAverage = runningAverageForEachReadPosition [1][r][c];
double tAverage = runningAverageForEachReadPosition [2][r][c];

113

557 double gAverage = runningAverageForEachReadPosition [3][r][c];

559 switch (CigarCoilUtilities :: greatestOfFour (aAverage, cAverage,
tAverage, gAverage)) {

560 case 1:

561 newCentroid += ’A’;

562 break ;

563 case 2:

564 newCentroid 4= 'C’;

565 break ;

566 case 3:

567 newCentroid += 'T7;

568 break ;

569 case 4:

570 newCentroid 4= 'G’;

571 break ;

572 }

573

574 }

575 centroids [c] = newCentroid;

576 }
577 }

579 // This method performs kmeans on a set of DNA read sequences

550 // this implementation of kmeans stops after the given number of iterations
is completed or there is no change

sst // this function returns an array of vectors such that there is one vector
for each cluster

552 vector<unsigned int> xDNAFileWrapper :: kmeans(const vector<string> x
sequences , size_t numberOfClusters, size_t maximumNumberOflterations,
unsigned short sequenceLength) {

sss clock_t start = clock ();

587 double centroidBuildingTime = 0;
588 double wagnerFischerTime = 0;
589 double updatingAveragesTime = 0;
590 double binarySearchTime = 0;

s02 // this struct will track which reads belong to which cluster
593 vector<unsigned int> xclusterings = new vector<unsigned int >|

numberOfClusters] ;

505 for (size-t i = 0; i < numberOfClusters; i++) {

596 clusterings [i] = vector<unsigned int >();

597 }

598

599 string *centroids = initializeCentroids (numberOfClusters, sequenceLength)
)

600

601 bool isChange = false;

602 size_t currentlteration = 0;

603

604 // continues until there is either no change or the current number of
iterations exceeds the maximum

605 dO {

606 isChange = false;

114

607
608
609

610

635
636
637

638

639

640

unsigned int currentRead = 0;

// this vector is used to ascertain if a change has occurred
vector<unsigned int> sxcomparisonClusterings = new vector<unsigned int >|
numberOfClusters] ;
for (size_-t i = 0; i < numberOfClusters; i++) {
comparisonClusterings [i] = clusterings[i];
clusterings [i]. clear ();

}
for (size_t s = 0; s < sequences—>size (); s++) {

unsigned short currentBestSimilarityMetric = 0;
size_t bestCentroid = 0;

clock_t editDistanceStart = clock();
const string * currentSequence = &sequences—>at (s);

// determination of closest centroid to this particular read
for (size_t j = 0; j < numberOfClusters; j++) {
unsigned short similarityMetric = CigarCoilUtilities ::
getCheapSimilarityDistanceMetric(¢roids [j], &sequences—>at(s),
currentBestSimilarityMetric) ;
if (similarityMetric > currentBestSimilarityMetric) {
currentBestSimilarityMetric = similarityMetric;
bestCentroid = j;

}
}

wagnerFischerTime += (clock () — editDistanceStart) / (double)
CLOCKS_PER_SEC;

// take note that this read belongs to this centroid for later

clusterings [bestCentroid |. push_back (currentRead);

// if no change has been detected yet — check the original cluster
for the current read

clock_t binSearchStart = clock();

if (!isChange && !(std::binary_search (comparisonClusterings |
bestCentroid |. begin (), comparisonClusterings[bestCentroid].end(),
currentRead))) {

isChange = true;
}

binarySearchTime += (clock () — binSearchStart) / (double)
CLOCKS_PER-SEC;

currentRead++;

}

delete [] comparisonClusterings;

// recompute centroids

if (isChange) {
// maintains averages for A C T, and G so that the centroids can be

recomputed
// the first dimension is whether the average is for A CT or G

115

656 // the second dimension is for the position in the centroid

657 // the third dimension identifies the centroid

658 double *sxrunningAverageForEachReadPosition = new double xx*[4];

659 unsigned int currentRead = 0;

660

661 for (size_-t k = 0; k < 4; k++) {

662 runningAverageForEachReadPosition [k] = new double*[sequenceLength];
663

664 for (size_-t 1 = 0; 1 < sequenceLength; I4++) {

665

666 runningAverageForEachReadPosition [k][1] = new double]

numberOfClusters | ;

668 for (size_-t m= 0; m < numberOfClusters; mt+) {

669 runningAverageForEachReadPosition [k][1][m] = 0.0;
670 }

671 }

672 }

675 for (size_t s = 0; s < sequences—>size (); s++) {

677 // Update running averages for the cluster that this read belongs
to

678 for (size_-t i = 0; i < numberOfClusters; i++) {

679

680 clock_t binarySearchStart = clock();

681

682 if (binary_search (clusterings[i].begin(), clusterings|[i].end(),
currentRead)) {

68

684 binarySearchTime += (clock () — binarySearchStart) / (double)
CLOCKS_PER_SEC;

685

686 clock_t averageUpdateStart = clock () ;

687

688 size_t clusterSize = clusterings[i].size();

689 // update running average for this cluster

690 for (size-t j = 0; j < sequenceLength && j < sequences—>at(s).
length (); j++) {

691 switch (sequences—>at(s).at(j)) {

692 case 'A’:

693 runningAverageForEachReadPosition [0][j][i] += (1.0) /
clusterSize;

694 break;

695 case 'C’:

696 runningAverageForEachReadPosition [1][j][i] += (1.0) /
clusterSize ;

697 break ;

698 case 'T’:

699 runningAverageForEachReadPosition [2][j][i] += (1.0) /
clusterSize ;

700 break ;

701 case 'G’:

702 runningAverageForEachReadPosition [3][j][i] += (1.0) /
clusterSize;

703 break ;

704 }

116

705
706

707

708

709

IS IIEES S BN SRS TR BN S B SRS SRS IR IS NS B |
w w w w w W w w N [] [N [[) [\ [
[=)] ot > w [N - o © g} ~ (=2} ot = w

-~

a3
%

750

~
o

SIS S
AL 0

N4 9 9

ot
o

}

}

updatingAveragesTime += (clock () — averageUpdateStart) / (
double) CLOCKS_PER _SEC;

// found match — end this loop early

i = numberOfClusters;

}
}

currentRead++;

}

// recompute centroids based on running averages
clock_t centroidRecomputingStart = clock () ;

recomputeCentroids (runningAverageForEachReadPosition ,
numberOfClusters, centroids, sequenceLength);

centroidBuildingTime += (clock () — centroidRecomputingStart) / (
double) CLOCKS_PER_SEC;

// cleanup memory
for (size_-t k = 0; k < 4; kt++) {

delete [] runningAverageForEachReadPosition [k];
}

delete [] runningAverageForEachReadPosition;

} // if change

} while (isChange && ((++currentlteration) < maximumNumberOfIterations));

// no longer care what the centroids were — reclaim memory
delete [] centroids;

double duration = (clock () — start) / (double)CLOCKSPERSEC;

printf ("K means finished taking %f seconds...\n”, duration);

printf (”\t%f was spent running binary search\n”, binarySearchTime);
printf (”\t%f was spent updating averages\n”, updatingAveragesTime);
printf (”\t%f was spent computing edit distance\n”, wagnerFischerTime);
printf (7\t%f was spent recomputing centroids\n”, centroidBuildingTime);

return clusterings;

s // This method performs kmeans on a set of DNA read sequences

// this implementation of kmeans stops after the given number of iterations

is completed or there is no change

// this function returns an array of vectors such that there is one vector

for each cluster

vector<unsigned int> *DNAFileWrapper::kmeans(const char * sequenceFileName ,

size_t numberOfClusters, size_t maximumNumberOflterations, unsigned
short sequenceLength) {

clock_t start = clock();

117

oo
J o

RS BEPS BN |
B S B
Q0

o

760

789
790
791
792
793
794
795
796
797
798
799

800

double centroidBuildingTime = 0;

double wagnerFischerTime = 0;
double updatingAveragesTime = 0;
double binarySearchTime = 0;

9

string sequencelLine = ;

// this struct will track which reads belong to which cluster
vector<unsigned int> xclusterings = new vector<unsigned int >|
numberOfClusters] ;

for (size-t i = 0; i < numberOfClusters; i++) {
clusterings [i] = vector<unsigned int >();
}

string *centroids = initializeCentroids (numberOfClusters, sequenceLength)

)

bool isChange = false;
size_t currentlteration = 0;

// continues until there is either no change or the current number of
iterations exceeds the maximum
do {
isChange = false;
unsigned int currentRead = 0;
ifstream sequenceFileStream (sequenceFileName) ;

// this vector is used to ascertain if a change has occurred
vector<unsigned int> sxcomparisonClusterings = new vector<unsigned int >|
numberOfClusters] ;
for (size_-t 1 = 0; i < numberOfClusters; i++) {
comparisonClusterings[i] = clusterings[i];
clusterings [i]. clear ();

}

while (sequenceFileStream) {

// consumes sequence line from file
if (!getline(sequenceFileStream , sequenceLine)) break;

unsigned short currentBestSimilarityMetric = 0;
size_t bestCentroid = 0;

clock_t editDistanceStart = clock();

// determination of closest centroid to this particular read
for (size_t j = 0; j < numberOfClusters; j++) {
unsigned short similarityMetric = CigarCoilUtilities ::
getCheapSimilarityDistanceMetric(¢roids [j], &sequenceLline ,
currentBestSimilarityMetric) ;
if (similarityMetric > currentBestSimilarityMetric) {
currentBestSimilarityMetric = similarityMetric;
bestCentroid = j;

}
}

wagnerFischerTime += (clock () — editDistanceStart) / (double)

118

CLOCKS_PER_SEC;

808

809 // take mnote that this read belongs to this centroid for later

810 clusterings [bestCentroid]. push_back (currentRead) ;

811 // if no change has been detected yet — check the original cluster
for the current read

812 clock_t binSearchStart = clock();

813 if (!isChange && !(std::binary_search (comparisonClusterings |
bestCentroid]. begin (), comparisonClusterings|[bestCentroid].end(),
currentRead))) {

814 isChange = true;

815 }

816

817 binarySearchTime += (clock () — binSearchStart) / (double)
CLOCKS_PER_SEC;

818

819 currentRead++;

820 }

821

822 sequenceFileStream . close () ;

823

824 delete [] comparisonClusterings;

826 // recompute centroids

827 if (isChange) {

828 sequenceFileStream . open (sequenceFileName) ;

829

830 // maintains averages for A C T, and G so that the centroids can be
recomputed

831 // the first dimension is whether the average is for ACT or G

832 // the second dimension is for the position in the centroid

833 // the third dimension identifies the centroid

834 double **xrunningAverageForEachReadPosition = new doublex*[4];

835 unsigned int currentRead = 0;

836

837 for (size_-t k = 0; k < 4; k++) {

838 runningAverageForEachReadPosition [k] = new double*[sequenceLength |;

839

840 for (size-t 1 = 0; 1 < sequenceLength; 1++) {

841

842 runningAverageForEachReadPosition [k][1] = new double [
numberOfClusters] ;

843

844 for (size_-t m = 0; m < numberOfClusters; mt+) {

845 runningAverageForEachReadPosition[k]|[1][m] = 0.0;

846 }
847 }
848 }

851 while (sequenceFileStream) {

852

853 // consumes sequence line from file

854 if (!getline(sequenceFileStream , sequenceLine)) break;

855

856 // Update running averages for the cluster that this read belongs
to

857 for (size_t i = 0; i < numberOfClusters; i++) {

119

859

860

861

862

863

864
865
866
867
868

869

870

876

877

879
880

881

882
883

884

886

887

889
890
891
892
893
894
895
896
897
898
899
900

901

902

903

904

905

clock_t binarySearchStart = clock();

if (binary_search(clusterings[i].begin(), clusterings[i].end(),
currentRead)) {

binarySearchTime += (clock () — binarySearchStart) / (double)
CLOCKS_PER._SEC;

clock_t averageUpdateStart = clock () ;

size_t clusterSize = clusterings[i].size();
// update running average for this cluster
for (size_t j = 0; j < sequenceLength && j < sequenceLine.
length (); j++) {
switch (sequenceLine.at(j)) {
case 'A’:
runningAverageForEachReadPosition [0][j][i] += (1.0) /
clusterSize ;
break ;
case 'C’:
runningAverageForEachReadPosition [1][j][i] += (1.0) /
clusterSize;
break ;
case 'T’:
runningAverageForEachReadPosition [2][j][i] += (1.0) /
clusterSize;
break ;
case 'G’:
runningAverageForEachReadPosition [3][j]|[i] += (1.0) /
clusterSize ;
break ;
}

}

updatingAveragesTime += (clock () — averageUpdateStart) / (
double) CLOCKS_PER_SEC;

// found match — end this loop early

i = numberOfClusters;

}
¥

currentRead++;

}

sequenceFileStream . close () ;
// recompute centroids based on running averages
clock_t centroidRecomputingStart = clock () ;

recomputeCentroids (runningAverageForEachReadPosition ,
numberOfClusters, centroids, sequenceLength);

centroidBuildingTime += (clock () — centroidRecomputingStart) / (
double)CLOCKS_PER_SEC;

// cleanup memory

120

906
907
908
909
910

911

932

933

934
935
936

937

939
940
941
942
943
944
945
946
947
948

949

}

for (size-t k = 0; k < 4; k++) {
delete [] runningAverageForEachReadPosition [k];
}

delete [] runningAverageForEachReadPosition;

} // if change
} while (isChange && ((++currentlteration) < maximumNumberOflterations));

// no longer care what the centroids were — reclaim memory
delete [] centroids;

double duration = (clock () — start) / (double)CLOCKSPERSEC;

printf (”K means finished taking %f seconds...\n”, duration);

printf (”\t%f was spent running binary search\n”, binarySearchTime);
printf (”\t%f was spent updating averages\n”, updatingAveragesTime);
printf (”\t%f was spent computing edit distance\n”, wagnerFischerTime)
printf (”\t%f was spent recomputing centroids\n”, centroidBuildingTime

);

return clusterings;

// applies cigarcoil compression to the current FASTA or FASTQ file using

clustering

//specified by the parameters and writing the result to the given file path
void DNAFileWrapper :: encode(const char sencodedFileName, size_t

numberOfClusters, size_t maximumNumberOflterations, bool
isBeingConservativeWithMainMemory , bool
isUsingWagnerFischerForEdgeWeigths) {

clock_t start = std::clock();

string sequenceFileName = CigarCoilUtilities :: createTemporaryFile () ;
string idLine = 77

string sequencelLine = 77 ;

string qualityScorelLine = 77

” N

string plusSignLine = ;

ofstream sequenceStream ;

sequenceStream .open (sequenceFileName.c_str (), ios::out);
ifstream fileStream ;

fileStream . open (myFileName. c_str ());

stringstream sstream;

vector<string> sequences = vector<string >();

bool isStoringSequencesInMainMemoryDuringClustering = !
isBeingConservativeWithMainMemory ;

unsigned short centroidReadLength = 0;

121

959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

977

980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

1010

1011

1012

unsigned int numberOfReads = 0;
while (fileStream) {
if (!getline (fileStream , idLine)) break;

// consumes sequence line from file
if (!getline (fileStream , sequenceLine)) break;

// FASTQ only
if (fileType = FASTQ) {
if (!getline(fileStream , plusSignLine)) break;
if (!getline(fileStream , qualityScoreLine)) break;

}

numberOfReads++;

// update cumulative average of centroid length

centroidReadLength = (unsigned short)round ((centroidReadLength * ((
numberOfReads — 1.0) / numberOfReads)) + (sequenceLine.length() * (1.0 /
numberOfReads))) ;

if (isStoringSequencesInMainMemoryDuringClustering) {
sequences . push_back (sequenceLine) ;

}
else {

sstream << sequencelLine << 7\n”;

sstream .seekp (0, ios::end);
stringstream :: pos_type streamLength = sstream. tellp () ;

if (streamLength > 5000000) {
sequenceStream << sstream.rdbuf();
// clear stream content
sstream . str (string ());

}
}
}

if (isStoringSequencesInMainMemoryDuringClustering) {
sequenceStream << sstream.rdbuf();

}

sequenceStream . close () ;

double duration = (clock () — start) / (double)CLOCKSPER.SEC;

printf (”Took %f seconds to scan over file\n”, duration);

start = clock ();

vector<unsigned int> % clusterings =
isStoringSequencesInMainMemoryDuringClustering 7
kmeans(&sequences , numberOfClusters, maximumNumberOflterations

centroidReadLength) :
kmeans (sequenceFileName. c_str (), numberOfClusters,

122

1013
1014
1015
1016
1017
1018
1019
1020
1021

1022

1023
1024
1025
1026
1027
1028
1029
1030

1031

1032

1033

1034

1035

1036

1037

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

1062

maximumNumberOflterations, centroidReadLength);

remove (sequenceFileName. c_str ());
sequences. clear () ;

duration = (clock () — start) / (double)CLOCKSPERSEC;

printf (”Took %f seconds to cluster reads\n”, duration);

size_t numberOfNonEmptyClusters = 0;
vector<vector<unsigned int>> nonEmptyClusterings =

int >>();
for (size_-t c

}
}

= 0; ¢ < numberOfClusters; c++) {

if (clusterings|[c].size() > 0) {
numberOfNonEmptyClusters++;
nonEmptyClusterings . push_back (clusterings[c]) ;

// create temporary file for each nonempty cluster

stringstream % uncompressedldAndQualityScoresStringStreams = new
stringstream [numberOfNonEmptyClusters | ;

stringstream x uncompressedSequencesStringStreams =
numberOfNonEmptyClusters | ;

string* temporaryUncompressedldsAndQualityScores =
numberOfNonEmptyClusters | ;

string* temporaryUncompressedSequences = new string
numberOfNonEmptyClusters | ;

for (size-t n = 0; n < numberOfNonEmptyClusters; n++) {
temporaryUncompressedldsAndQualityScores [n] = CigarCoilUtilities ::
createTemporaryFile () ;
temporaryUncompressedSequences [n] = CigarCoilUtilities ::
createTemporaryFile () ;

}

size_t currentRead = 0;

fileStream . close () ;

start = clock ();

fileStream . open (myFileName. c_str ());

// split input file

while (fileStream) {

into files based on clusters

if (!getline(fileStream , idLine)) break;

// consumes sequence line from file
if (!getline (fileStream , sequencelLine)) break;

// FASTQ only
if (fileType =— FASTQ) {
if (!getline(fileStream , plusSignLine)) break;
if (!lgetline (fileStream , qualityScoreLine)) break;

}

// split original

for (size_t

i = 0;

file based on its clusters
i < numberOfNonEmptyClusters;

123

vector<vector<unsigned

new stringstream |
new string |

[

i++) {

1063

1064

1065
1066

1067

1068
1069
1070

1071

1072

1073
1074
1075
1076
1077
1078
1079
1080
1081

1082

1083

1084
1085
1086
1087
1088
1089

1090

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

1101

// use binary search to find the cluster that this read belongs to
since clusters are presorted

if (binary_search (nonEmptyClusterings[i].begin(), nonEmptyClusterings
[i].end (), currentRead)) {

uncompressedldAndQualityScoresStringStreams[i].seekp (0, ios::end);
stringstream :: pos_type streamLength =
uncompressedldAndQualityScoresStringStreams [i]. tellp () ;

if (streamLength > 5000000) {

ofstream relevantldAndQualityScoreFile;

relevantIdAndQualityScoreFile.open (
temporaryUncompressedldsAndQualityScores[i], ios::app);

relevantld AndQualityScoreFile <<
uncompressedIdAndQualityScoresStringStreams [i].rdbuf();

uncompressedIdAndQualityScoresStringStreams[i]. str(string());

relevantIdAndQualityScoreFile. close () ;

}

uncompressedSequencesStringStreams[i].seekp (0, ios::end);
streamLength = uncompressedSequencesStringStreams[i]. tellp ();

if (streamLength > 5000000) {

ofstream relevantSequenceFile;

relevantSequenceFile.open(temporaryUncompressedSequences[i], ios
:1app) ;

relevantSequenceFile << uncompressedSequencesStringStreams[i].
rdbuf () ;

uncompressedSequencesStringStreams [1]. str(string ());

relevantSequenceFile. close () ;

}

uncompressedldAndQualityScoresStringStreams|[i] << idLine << 7\n”;
if (isFASTQ) {
uncompressedIldAndQualityScoresStringStreams [1] <<
qualityScoreLine << ”\n”;

}

uncompressedSequencesStringStreams[i] << sequenceLine << ”"\n”;

// found match — end this loop early
i = numberOfClusters;

}
}

currentRead++;

}

fileStream . close () ;

delete [] clusterings;
nonEmptyClusterings. clear () ;

// finished writing uncompressed files clean up
for (size_t n = 0; n < numberOfNonEmptyClusters; n++) {

ofstream relevantldAndQualityScoreFile;

relevantldAndQualityScoreFile.open(
temporaryUncompressedldsAndQualityScores[n], ios::app);

124

1112 relevantldAndQualityScoreFile <<
uncompressedldAndQualityScoresStringStreams [n]. rdbuf () ;

1113 uncompressedldAndQualityScoresStringStreams [n]. str(string());

1114 relevantIdAndQualityScoreFile. close () ;

1115

1116 ofstream relevantSequenceFile;

1117 relevantSequenceFile.open(temporaryUncompressedSequences [n], ios::app);

1118 relevantSequenceFile << uncompressedSequencesStringStreams [n].rdbuf();
1119 uncompressedSequencesStringStreams [n]. str(string());
1120 relevantSequenceFile. close () ;

1121 }

1122

1123 // no longer need these

1124 delete [] uncompressedldAndQualityScoresStringStreams;

1125 delete [] uncompressedSequencesStringStreams;

1126

1127 duration = (clock() — start) / (double)CLOCKS_PER-SEC;

1128

1129 printf (”Took %f seconds to separate input file into cluster order\n”,
duration) ;

1130

1131 string reorderedldAndQualityScoresFile = CigarCoilUtilities ::
createTemporaryFile () ;

1132

1133 concatenateFilesTogether (temporaryUncompressedldsAndQualityScores ,
numberOfNonEmptyClusters, reorderedldAndQualityScoresFile);

135 start = clock () ;

1136 string encodedIdFieldFile = CigarCoilUtilities :: encodeZpaq(
reorderedIdAndQualityScoresFile.c_str ());

sz duration = (clock () — start) / (double)CLOCKSPERSEC;

1140 printf(”Took %f seconds to compress IDs and quality scores\n”, duration);

1112 remove(reorderedIdAndQualityScoresFile. c_str ());

1144 string encodedQualityFieldFile = 77 ;

146 for (size-t n = 0; n < numberOfNonEmptyClusters; n++) {

1147 remove (temporaryUncompressedldsAndQualityScores [n]. c_str ());

1148 }

1150 delete [] temporaryUncompressedldsAndQualityScores;

1152 string* temporaryCompressedSequenceFiles = new string |
numberOfNonEmptyClusters | ;

1154 // individually compress each cluster

1155 for (size-t n = 0; n < numberOfNonEmptyClusters; n++) {

1156 temporaryCompressedSequenceFiles [n] = CigarCoilUtilities ::
createTemporaryFile () ;

1157 string toBeDeleted = temporaryCompressedSequenceFiles[n];

1158 temporaryCompressedSequenceFiles [n] = encodeSequenceFields (

temporaryUncompressedSequences [n]. c_str (), centroidReadLength ,
isUsingWagnerFischerForEdgeWeigths) ;

1159 remove (toBeDeleted . c_str ());

1160 printf(”Encoded cluster %d out of %d\n”, n, numberOfNonEmptyClusters) ;

125

1161 }

1162

1163 start = clock();

1164

1165 concatenateCompressedSequencesTogether (temporaryCompressedSequenceFiles
numberOfNonEmptyClusters, encodedFileName) ;

1166

1167 duration = (clock () — start) / (double)CLOCKS_PER_SEC;

1168

1169 printf(”Took %f seconds to compress sequences\n”, duration);

1170

1171 for (size-t n = 0; n < numberOfNonEmptyClusters; n++) {

1172 remove (temporaryCompressedSequenceFiles[n]. c_str ());

1173 remove (temporaryUncompressedSequences [n]. c_str ());

1174 }

1175

1176 string * filesToAppendToEndOfSequences = new string[1];

177 filesToAppendToEndOfSequences [0] = encodedIdFieldFile;

1178

1179 concatenateFilesTogether (filesToAppendToEndOfSequences, 1
encodedFileName) ;

)

1180
1181 delete [] filesToAppendToEndOfSequences;

1182

1183 // no longer need this array of file names;
1184 delete [] temporaryUncompressedSequences;
1185

11s6 remove (encodedIdFieldFile. c_str());

1187
1188 // finish up garbage collection for this method
1189 delete [] temporaryCompressedSequenceFiles;

1190 }

1191

1192 #i fndef USING.THREAD

1193

1194 void % pthreadAddEdges(void kxarguments)

1195 {

1196 struct argumentStruct kxargs = (argumentStruct #*)arguments;

1197 DNAFileWrapper :: parallelAddEdges (args—>graph, args—>indices , args—>
startingPosition , args—>stoppingPosition, args—>fileName, args—>
isUsingWagnerFischerForEdgeWeigths) ;

1198 return NULL;

1199 }

1200

1201 #endif // VUSING.THREAD

1202

3 // encodes file of sequence values and returns name of encoded file

1204 string DNAFileWrapper :: encodeSequenceFields (const char xsequenceFile
unsigned short averageReadLength, bool
isUsingWagnerFischerForEdgeWeigths) {

12(

1205 string encodedFileName = CigarCoilUtilities :: createTemporaryFile();
1206 ifstream fileStream ;

1207 fileStream .open(sequenceFile);

1208

1200 #ifdef unix

1210 unsigned numberOfCoresAvailable = get_nprocs();

1211 #else

1212 unsigned numberOfCoresAvailable = std:: thread:: hardware_concurrency () ;

126

1213 #endif // unix

1260

1261

// if hardware concurrency method fails then it returns 0 assume only 1
core if this happens
numberOfCoresAvailable = (numberOfCoresAvailable = 0) 7 1
numberOfCoresAvailable;
SimilarityGraph similarityGraph = SimilarityGraph () ;
unsigned char partitionSize = averageReadLength > 84 7?7 17 : T7;
HashBucketIndex hashBuckets = HashBucketIndex(partitionSize ,
averageReadLength) ;
string sequenceline = 77 ;
unsigned int numberOfReads = 0;
// Reading in the file and constructing read objects
clock_t start = std::clock();
while (fileStream) {
streampos filePosition = fileStream. tellg ();
// consumes sequence line from file
if (!getline(fileStream , sequenceLine)) break;
Read read = Read(sequenceLine, filePosition , averageReadLength ,
partitionSize);
similarityGraph .addRead (read) ;
vector<unsigned char> currentReadsPartitionValues = read. partitions;

for (size_t p = 0; p < currentReadsPartitionValues.size (); p++) {

hashBuckets.insert (p, currentReadsPartitionValues.at(p),
numberOfReads) ;

}

numberOfReads++;
}

fileStream . close () ;

for (size-t i = 1; i < similarityGraph.getVectorSize(); i++) {
similarityGraph .addEdge(i, 0, UCHARMAX) ;
}

o #ifdef USING.THREAD

thread smyThreads = new thread [numberOfCoresAvailable];
unsigned int numberOfReadsPerThread = numberOfReads /
numberOfCoresAvailable;

for (unsigned int t = 0; t < numberOfCoresAvailable; t++) {

127

1265
1266

1267

unsigned int startingPoint = numberOfReadsPerThread #* t;

// all reads have edge to 0

1268 if (startingPoint =— 0)

1269 startingPoint++;

1270

1271 // last thread takes care of remainder of reads

1272 unsigned int stoppingPoint = (t = numberOfCoresAvailable — 1) ?

1273 numberOfReads

1274 numberOfReadsPerThread * (t + 1);

1275

1276 myThreads|[t] = thread (parallelAddEdges , &similarityGraph , &hashBuckets,
startingPoint , stoppingPoint, sequenceFile ,
isUsingWagnerFischerForEdgeWeigths) ;

1277 }

1278

1270 // anticipate threads to end in descending order

1280 for (unsigned int t = 0; t < numberOfCoresAvailable; t++) {

1281 myThreads[t]. join () ;

1282 }

1283 #else

1284 pthread_t smyThreads = new pthread_t [numberOfCoresAvailable |;

1285

1286 unsigned int numberOfReadsPerThread = numberOfReads /
numberOfCoresAvailable ;

1287

1288 for (unsigned int t = 0; t < numberOfCoresAvailable; t++) {

1289

1290 unsigned int startingPoint = numberOfReadsPerThread x* t;

1291 // all reads have edge to 0

1292 if (startingPoint = 0)

1293 startingPoint++;

1294

1205 // last thread takes care of remainder of reads

1206 unsigned int stoppingPoint = (t = numberOfCoresAvailable — 1) ?

1297 numberOfReads

1298 numberOfReadsPerThread * (t + 1);

1299

1300 argumentStruct xarguments = new argumentStruct;

1301 arguments—>fileName = sequenceFile;

1302 arguments—>graph = &similarityGraph ;

1303 arguments—>indices = &hashBuckets;

1304 arguments—>startingPosition = startingPoint;

1305 arguments—>stoppingPosition = stoppingPoint;

1306

1307 pthread_create(&myThreads[t], NULL, pthreadAddEdges, (void *)&arguments
)

1308 }

1309

1350 // anticipate threads to end in descending order

1311 for (unsigned int t = 0; t < numberOfCoresAvailable; t++) {

1312 pthread_join (myThreads[t], NULL);

1313 }

1314 #endif

1315
1316
1317

1318

// don’t mneed these now that edges are added
similarityGraph.clearReadPartitionInfo () ;

128

1320 // Create Minimum Spanning Tree
1321 unsigned int xparents = CigarCoilUtilities ::PrimMST(&similarityGraph);

125 for (size_t i = 1; i < similarityGraph.getVectorSize(); i++) {

1324 if (parents[i] >= similarityGraph.getVectorSize())
1325 parents[i] = 0;

1326 }

1327

1328 // reopen the file stream

1329 fileStream .open(sequenceFile);

1331 unsigned int root = 0;
1332
1333 unsigned int sminimumHeightParentArray = CigarCoilUtilities ::

getMinimumHeightTree (parents , similarityGraph.getVectorSize (), &root);
1335 delete [] parents;

1337 // Encode The MST
1338 encodeMSTAndWriteToFile(root , minimumHeightParentArray , &similarityGraph ,
encodedFileName , sequenceFile, &fileStream);

1339

1310 fileStream . close () ;
1341 delete [| minimumHeightParentArray ;
1342

1343 return encodedFileName;

1344 }

1345

1346 // prints all not yet visited vertices reachable from s

1317 void DNAFileWrapper :: encodeMSTAndWriteToFile (unsigned int root, unsigned
int kxparents, SimilarityGraph *similarityGraph , string outputFileName,
string inputFileName, ifstream xfileStream)

1348 {

1310 ofstream outputFile (outputFileName.c_str (), std::ofstream::out);
1350

1351 // root of tree is identified by being its own parent

1352 parents[root] = root;

1353

1354 // writes special identifying 4 bytes to signal that this file is a

cigarcoil file
1355 outputFile.write (cigarFileMarker , 4);

1356

1357 outputFile.write(reinterpret_cast <char x>(parents), sizeof(int) =x
similarityGraph—>getVectorSize ()) ;

1358

1359 unsigned int arrayEnding = UINT32 MAX;

1360 outputFile.write(reinterpret_cast<char s>(&arrayEnding), sizeof(int));

1361

1362 stringstream sstream;

1363

1364 for (size_t i = 0; i < similarityGraph—>getVectorSize(); i++) {
1365

1366 sstream . seekp (0, ios::end);

1367 stringstream :: pos_type streamLength = sstream. tellp ();

1368

1369 if (streamLength > 5000000) {

1370 outputFile << sstream.rdbuf();

129

1371 // clear stream content

1372 sstream . str (string ());

1373 }

1374

1375 Read xchildRead = &similarityGraph—>getReadAt(i);

1376

1377 if (i = root) {

1378 // write root explicitly

1379 sstream << CigarCoilUtilities :: getDataAtFilePosition (childRead—>

getSequencePos (), childRead—>getSequenceLength (), fileStream) << "\n”;

1380 }

1381 else {

1382

1383 Read xparentRead = &similarityGraph—>getReadAt(parents|[i]) ;

1384 if (!fileStream—>is_open()) {

1385 fileStream —>open (inputFileName. c_str ());

1386 }

1387 string childSequence = CigarCoilUtilities :: getDataAtFilePosition (
childRead —>getSequencePos (), childRead—>getSequenceLength (), fileStream)

1388 if (!fileStream —>is_open()) {

1389 fileStream —>open (inputFileName. c_str ());

1390 }

1391 string parentSequence = CigarCoilUtilities :: getDataAtFilePosition (

parentRead—>getSequencePos (), parentRead—>getSequenceLength (),
fileStream) ;

1392 WagnerFischerMatrix matrix = WagnerFischerMatrix(&parentSequence , &
childSequence) ;

1393 string cigarLine = matrix.getCigar () ;

1394

1395 sstream << cigarLine << ”7\n”;

1396

F)

1398

1399 }

1400

o1 outputFile << sstream.rdbuf();
1202 outputFile.close ();

1403 }

1404

139

1405

1106 void DNAFileWrapper :: decode (const char xdecodedFileName) {

1408 if (fileType != DNAFileType :: CIGARCOIL)

1409 return ;

1410

1111 stack<Read> readStack = stack<Read>();
1412 unsigned int lineNumber = 0;

1413 std ::ifstream fileStream;
1114 fileStream .open(myFileName. c_str ()) ;

1416 string idLine = 77
1417 string cigarLine = 77
9

1418 string qualityLine = 2
1419 string rootSequenceLine = 77 ;

1421 const size_t bufferSize = sizeof (int);
1422 char buffer [bufferSize |;

130

1424 streamsize amountRead = 0;

1126 fileStream .seekg(readPositions[root], ios_base::beg);

1428 getline (fileStream , rootSequenceLine);

1130 decodedReads.insert (root, rootSequenceLine);

1432 string encodedldsAndQualityScores = CigarCoilUtilities ::
createTemporaryFile () ;

1433 string decodedSequences = CigarCoilUtilities :: createTemporaryFile();

1435 ofstream decodedSequencesStream (decodedSequences, std::ofstream ::out);

1437 stringstream sstream:;

1130 for (size_t child = 0; child < parentArray.size (); child++) {

1441 sstream .seekp (0, ios::end);
1442 stringstream :: pos_type streamLength = sstream. tellp () ;

1444 if (streamLength > 5000000) {
1445 decodedSequencesStream << sstream.rdbuf();
1446 // clear stream content

1447 sstream . str (string ());

1448 }

1449

1450 if (child != root) {

1451

1452 fileStream .seekg(readPositions [child], ios_base::beg);

1453 getline (fileStream , cigarLine);

1454

1455 string uncompressedSequence = cigarCoilFileAccess (child, cigarLine, &

fileStream) ;

1457 // write decoded content to output file
1458 sstream << uncompressedSequence << "\n”;
1459

1460 else {

1461 sstream << rootSequenceLine << 7\n”;
1462 }
1463 }

1464

465 decodedSequencesStream << sstream.rdbuf() ;
1166 decodedSequencesStream . close () ;

1467

146 sstream.str(string());

1470 ofstream encodedldAndQualityScoresStream ;
1471 encodedIdAndQualityScoresStream .open(encodedldsAndQualityScores. c_str (),
ios_base :: binary);

1472

s fileStream . close () ;

1474 fileStream . open (myFileName. c_str (), ios_base:: binary);
1475 fileStream .seekg (idQualityStart , ios_base ::beg);

1476

a7 // rest of file should be zpaq

131

1487
1488
1489
1490
1491
1492
1493

1494

1496
1497
1498
1499
1500

1501

do {
sstream .seekp (0, ios::end);
stringstream :: pos_type streamLength = sstream. tellp ();

if (streamLength > 5000000) {
encodedldAndQualityScoresStream << sstream.rdbuf();
// clear stream content
sstream . str (string ());

}

sstream << (char)fileStream .get () ;
} while (!fileStream.eof());

encodedIdAndQualityScoresStream << sstream.rdbuf();
encodedIdAndQualityScoresStream . close () ;

string decodedIldAndQualityScoresFile = CigarCoilUtilities :: decodeZpaq(
encodedIdsAndQualityScores. c_str ());

ofstream outputStream (decodedFileName, std::ofstream ::out);
ifstream sequencesStream (decodedSequences.c_str ());
ifstream idAndQualityScoresStream (decodedIdAndQualityScoresFile) ;

5

string firstLine = 77

%

string secondLine = ;

getline (idAndQualityScoresStream , firstLine);
getline (idAndQualityScoresStream , secondLine);

bool iSFASTA = (secondLine.at(0) = ’Q’ || secondLine.at(0) = '>");

idAndQualityScoresStream . seekg (0, ios_base::beg);

9

string sequencelLine = 77 ;

for (size_t i = 0; i < parentArray.size(); i++) {
getline (sequencesStream , sequenceLine);
if (isSFASTA) {
getline (idAndQualityScoresStream , idLine);
outputStream << idLine << 7\n” << sequencelLine << ”\n”;

}

else {

getline (idAndQualityScoresStream , idLine);

getline (idAndQualityScoresStream , qualityLine);

outputStream << idLine << ”\n” << sequenceline << ”"\n” << "4+\n” <<
qualityLine << ”\n”;

}
}
idAndQualityScoresStream . close () ;

sequencesStream . close () ;

remove (decodedSequences. c_str ());
remove (decodedIdAndQualityScoresFile. c_str ());

outputStream . close () ;

132

1534 std :: string DNAFileWrapper:: fastQFileAccess (size_t 1) {

1535
1536
1537
1538
1539
1540
1541
1542

1543

}

std :: ifstream fileStream ;

fileStream . open (myFileName. c_str ());
fileStream .seekg(readPositions [i], ios::beg);
std :: string result;

std:: getline (fileStream , result);
fileStream . close () ;

return result ;

1514 std :: string DNAFileWrapper :: fastAFileAccess(size_t 1) {

1545
1546
1547
1548
1549
1550
1551
1552

1553

}

std ::ifstream fileStream ;

fileStream .open (myFileName. c_str ()) ;
fileStream . seekg(readPositions [i], ios::beg);
std :: string result;

std:: getline (fileStream , result);
fileStream . close () ;

return result ;

1551 string DNAFileWrapper :: cigarCoilFileAccess(size_t readNumber) {

1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

1585

1586
1587
1588
1589

1590

if (decodedReads.isKnown (readNumber)) {
// this read has already been requested before
return decodedReads. at (readNumber) ;

}

else {
string childCigarString = "7 ;
string result = 77 ;

ifstream stream (myFileName. c_str());
stream . seekg (readPositions [readNumber], ios_base::beg);

// this line is the sequence for the string
getline (stream, childCigarString):;

while (childCigarString = "")
if (!stream.is_open()) {
printf(”stream is not open\n”);
stream . open (myFileName. c_str ()) ;

if (stream.bad()) {
printf(”stream is bad\n”);

}
if (stream.eof()) {
printf(”at end of file\n”);
}
printf(” file stream at %d\n”, stream.tellg());
stream . seekg (readPositions [readNumber], ios_base ::beg);
printf(” file stream at %d after seeking to %d\n”, stream.tellg (),
readPositions [readNumber]) ;
getline (stream , childCigarString);
while (childCigarString = "") {
getline (stream , childCigarString);

}

133

1591 }

1592

1593 stream . close () ;

1594

1595 if (readNumber != 0) {

1596 result = cigarCoilFileAccess (readNumber, childCigarString);
1597 //result = cigarCoilFileAccess (readNumber, childCigarString , &stream)
1598 //stream . close () ;

1599 return result ;

1600 }

1601 else {

1602 //stream . close () ;

1603 return childCigarString;

1604 }

1605 }

1606

1607 }

1608

1600 string DNAFileWrapper:: cigarCoilFileAccess (size_t readNumber, ifstream x
fileStream) {

1610

1611 if (decodedReads.isKnown (readNumber)) {

1612 // this read has already been requested before

1613 return decodedReads. at (readNumber) ;

1614 }

1615 else {

1616

1617 string childCigarString = 77 ;

1618 string result = "7

1619

1620 if (!fileStream || !fileStream—>is_open () || fileStream—>bad() || !
fileStream —>good ()) {

1621 printf(”closed\n”);

1622

1623 else if (fileStream—>eof()) {

1624 printf(”at end of file\n”);

1625 }

1626

1627 ifstream stream (myFileName.c_str ());

1628 stream . seekg (readPositions [readNumber], ios_base::beg);

1629 fileStream —>seekg (readPositions [readNumber], ios_base::beg);

1630

1631 // this line is the sequence for the string

1632 getline (xfileStream , childCigarString);

1633

1634 while (childCigarString =— 77) {

1635 getline (xfileStream , childCigarString);

1636 printf(” file stream now at %d\n”, fileStream-—>tellg());

1637 }

1638

1639 if (readNumber != root) {

1640 result = cigarCoilFileAccess (readNumber, childCigarString);

1641 //result = cigarCoilFileAccess (readNumber, childCigarString ,
fileStream) ;

1642 //fileStream —>close () ;

1643 return result;

1644 }

134

1645 else {

1646 //fileStream —>close () ;

1647 return childCigarString ;

1648 }

1649 }

1650

1651 }

1652

1653 string DNAFileWrapper:: cigarCoilFileAccess(size_t i, string
childCigarString) {

1654

1655 if (decodedReads.isKnown(i)) {

1656 // this read has already been requested before

1657 return decodedReads.at(i);

1658 }

1659 else {

1660 unsigned parentNumber = parentArray|[i];

1661 // recursively discover parents

1662 string parentSequence = cigarCoilFileAccess (parentNumber) ;

1663

1664 // decode child sequence relative to parent

1665 string decodedSequence = decodeChildSequenceRelativeToParent (&
childCigarString , &parentSequence) ;

1666

1667 decodedReads. insert (i, decodedSequence);

1668

1669 return decodedSequence;

1670

1671 }

1672 }

1673

1674

1675 string DNAFileWrapper :: cigarCoilFileAccess (size_t i, string
childCigarString , ifstream xfileStream) {

1676

1677 1f (decodedReads.isKnown(i)) {

1678 // this read has already been requested before

1679 return decodedReads.at(i);

1680

1681 else {

1682 unsigned parentNumber = parentArray[i];

1683 // recursively discover parents

1684 string parentSequence = cigarCoilFileAccess (parentNumber, fileStream);

1685

1686 // decode child sequence relative to parent

1687 string decodedSequence = decodeChildSequenceRelativeToParent (&
childCigarString , &parentSequence);

1688

1689 decodedReads. insert (i, decodedSequence);

1690

1691 return decodedSequence;

1692 }
1693 }

1694

1605 std :: string DNAFileWrapper:: at (size_-t i) {
606 switch (fileType) {

1697 case DNAFileType :: CIGARCOIL:

1698 return cigarCoilFileAccess (i) ;

135

1699 break ;

1700 case DNAFileType::FASTA:

1701 return fastAFileAccess(i);
1702 break ;

1703 case DNAFileType::FASTQ:

1704 return fastQFileAccess (i) ;

1705 break;

1706 case DNAFileType ::SAM:

1707 printf(”not implemented\n”);
1708 break ;

1709 }
1710 }

1711

1712 std :: string DNAFileWrapper :: operator [](size_t i) {
7 return getElement (i);
1714 }

void DNAFileWrapper:: updateReadSequence(size_t i, string sequence) {

w

1715 string sequenceBeforeChange = cigarCoilFileAccess (i);
1719
1720 string parentSequence = cigarCoilFileAccess (parentArray.at(i));

22 string newCIGAR = WagnerFischerMatrix(&parentSequence , &sequence).
getCigar () ;

1724 string temporaryFileName = CigarCoilUtilities ::createTemporaryFile () ;

1726 ofstream temporaryFileStream (temporaryFileName.c_str (), std::ofstream::
out) ;

1728 // writes special identifying 4 bytes to signal that this file is a
cigarcoil file
20 temporaryFileStream . write (cigarFileMarker , 4);

31 // there should be no change to the parent array since the content of a
read is being modified

732 unsigned int* parents = &parentArray [0];

1733 temporaryFileStream . write (reinterpret_cast <char *>(parents), sizeof(int)

* parentArray.size ());

35 unsigned int arrayEnding = UINT32 MAX;
1736 temporaryFileStream . write (reinterpret_cast <char x>(&arrayEnding), sizeof (
int));

1738 ifstream oldFileStream (myFileName. c_str ());
1730 oldFileStream .seekg(readPositions.at(0), ios_base ::beg);

1741 stringstream sstream:;

1743 //unordered _map<unsigned int, string> childrenSequences = unordered_map<
unsigned int, string >();

1744

1745 string idLine = "7

1746 string sequencelLine = 77 ;

1747 string qualityLine = 77

1748

1749 // populate childrensequences map

136

1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769

1770

1803

for (size_-t p = 0; p < parentArray.size(); p++) {

sstream .seekp (0, ios::end);
stringstream :: pos_type streamLength = sstream. tellp ();

if (streamLength > 5000000) {
temporaryFileStream << sstream.rdbuf();
// clear stream content
sstream . str (string ());

}

getline (oldFileStream , idLine);
getline (oldFileStream , sequenceLine);

if (isFASTQ) {
getline (oldFileStream , qualityLine);
¥

sstream << idLine << ”"\n”;
if (parentArray|[p] = i) {

string decodedChildSequence = decodeChildSequenceRelativeToParent (&

sequencelLine , &sequenceBeforeChange) ;

string newChildCigar = WagnerFischerMatrix(&sequence , &
decodedChildSequence) . getCigar () ;

sstream << newChildCigar << ”\n”;

else if (p = 1) {
sstream << newCIGAR << 7\n”;

else {

sstream << sequenceLine << 7\n”;

if (isFASTQ) {
sstream << qualityLine << ”\n”;
}

}
temporaryFileStream << sstream.rdbuf();

oldFileStream . close () ;
temporaryFileStream . close () ;

// remove the file prior to this change
remove (myFileName. c_str ()) ;

// rename the changed file to the old file’s name
rename (temporaryFileName. c_str (), myFileName. c_str ());

// update this file wrapper

DNAFileWrapper postEditFileWrapper = DNAFileWrapper ((char #)myFileName.

c_str());
xthis = postEditFileWrapper;

}

DNAFileWrapper DNAFileWrapper :: concatenate (DNAFileWrapper xchildFile ,
string concatenatedFileName) {
vector<unsigned int> baseParentArray = parentArray;

137

1804 vector<unsigned int> schildParentArray = &childFile —>parentArray;

1805

1506 unsigned int initialNumberOfReadsInBaseFile = baseParentArray.size () ;
1807

1s0s // The root of the base tree will be the root of the child tree.

1500 baseParentArray.push_back (root);

1811 // add updated parent entries of child file to the original base parent
array

1812 for (size_t i = 1; i < childParentArray—>size (); i++) {

1813 baseParentArray . push_back (childParentArray—>at (i) +

initialNumberOfReadsInBaseFile) ;
1814 }

516 string cigarForChildRoot = WagnerFischerMatrix(&cigarCoilFileAccess (root)
, &childFile —>cigarCoilFileAccess (childFile —>root)).getCigar () ;

isis // open the file streams

1819 ifstream baseFileStream ;

1520 baseFileStream .open (myFileName. c_str ());

1821 ifstream childFileStream ;

1822

1523 childFileStream .open(childFile —>myFileName. c_str ());

1824

1525 ofstream concatenatedFileStream (concatenatedFileName.c_str (), std::
ofstream ::out);

1826

1827 // writes special identifying 4 bytes to signal that this file is a

cigarcoil file
1528 concatenatedFileStream . write (cigarFileMarker , 4);

1829
1830 // writes the new parent array to the file
1831 unsigned int* parents = &baseParentArray [0];

1532 concatenatedFileStream . write (reinterpret_cast <char *>(parents), sizeof (
int) % baseParentArray.size());

1833

1834 unsigned int arrayEnding = UINT32 MAX;

1535 concatenatedFileStream . write (reinterpret_cast <char x>(&arrayEnding),
sizeof (int));

1836

1837 string currentLine = 77

1838

130 baseFileStream .seekg(readPositions.at(0), ios_base::beg);

1841 stringstream sstream;

1842

1513 while (baseFileStream) {

1844

1845 sstream . seekp (0, ios::end);

1846 stringstream :: pos_type streamLength = sstream. tellp ();
1847

1848 if (streamLength > 5000000) {

1849 concatenatedFileStream << sstream.rdbuf();
1850 // clear stream content

1851 sstream . str (string ());

1852 }

1853

1854 getline (baseFileStream , currentLine);

138

1855

1856 if (currentLine.length () > 0)

1857 sstream << currentLine << ”"\n”;

1858

1859 }

1860

1861 concatenatedFileStream << sstream.rdbuf();

ise2 // clear stream content

1s63 sstream.str (string ());

1864

1865 string childRootIdLine = 77 ;
1866

1867

1565 childFileStream .seekg(childFile —>readPositions.at (0), ios_base::beg);
1s60 getline (childFileStream , childRootIdLine);

1570 sstream << childRootIdLine << ”7\n”;

1871 sstream << cigarForChildRoot << ”"\n”;

sz if (childFile —isFASTQ) {

1873 string childQualityLine = 77 ;

1874 // first getline is the childs sequence

1875 getline (childFileStream , childQualityLine) ;
1876 // this line should be the quality line

1877 getline (childFileStream , childQualityLine);
1878

1879 sstream << childQualityLine << 7\n”;

1880 }

1881

1552 childFileStream .seekg(childFile —>readPositions.at (1), ios_base::beg);
1883

155 while (childFileStream) {

1885

1886 sstream . seekp (0, ios::end);

1887 stringstream :: pos_type streamLength = sstream. tellp () ;
1888

1889 if (streamLength > 5000000) {

1890 concatenatedFileStream << sstream.rdbuf();
1891 // clear stream content

1892 sstream . str (string ());

1893 }

1894

1895 getline (childFileStream , currentLine);
1896

1897 if (currentLine.length() > 0)

1898 sstream << currentLine << ”7\n”;

1899

1900 }

1901

1902 concatenatedFileStream << sstream.rdbuf();

1903

o014 baseFileStream . close () ;

1905 childFileStream . close () ;

106 concatenatedFileStream . close () ;

1907

1wos DNAFileWrapper result = DNAFileWrapper ((char #*)concatenatedFileName.c_str
()

1909

1910 return result ;

1911 }

139

1912

1913

1914
1915
1916
1917

1918

1919
1920

1921

1923
1924
1925
1926
1927

1928

1929

1930

1931
1932
1933
1934
1935
1936

1937

1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963

1964

string DNAFileWrapper :: decodeChildSequenceRelativeToParent (const string *
childCigar , const string sparentSequence) {
unsigned char cigarOperationBuffer [2];

string result = 77;
size_t positionInParentSequence = 0;

for (size_t cigarSize = 0; cigarSize < childCigar—>size (); cigarSize 4=

2) A

cigarOperationBuffer [0] = childCigar—>at(cigarSize);
cigarOperationBuffer [1] = childCigar—at(cigarSize + 1);

CigarOperation currentOperation = CigarOperation (cigarOperationBuffer);

if (currentOperation.isMatch()) {
unsigned int matchLength = currentOperation.getValueNumeric() ;

if (positionInParentSequence + matchLength > parentSequence—>length ()

) |

int difference = (matchLength + positionInParentSequence) —
parentSequence—>length () ;

while (positionInParentSequence < parentSequence—>length()) {
result += parentSequence—>at (positionInParentSequence) ;
positionInParentSequence++;

}

else {
result += parentSequence—>substr (positionInParentSequence ,
matchLength) ;
positionInParentSequence += matchLength ;
}

}

else if (currentOperation.isDeletion()) {
unsigned int deletionLength = currentOperation.getValueNumeric () ;
positionInParentSequence 4= deletionLength ;

}

else if (currentOperation.isSubstitution ()) {
string substitution = currentOperation.getValueString();
positionInParentSequence += substitution.size () ;
result += substitution;

}

else if (currentOperation.isInsertion ()) {
string insertion = currentOperation.getValueString () ;
result 4= insertion;

¥

else {
printf(”invalid operation detected\n”);

}
}

return result ;

140

1965 }

1966

1967 void DNAFileWrapper:: initialize () {
1968 if (lisInitialized) {

1969

1970 string s =77

1971

1972 // store read positions for random access

1973 if (fileType — FASTA || fileType — FASTQ) {
1974 readPositions . clear () ;

1975 ifstream fileStream (myFileName. c_str ());

1976 while (fileStream) {

1977 getline (fileStream , s);

1978 readPositions.push_back(fileStream . tellg ());
1979 getline (fileStream , s);

1980 if (fileType = FASTQ) {

1981 getline (fileStream , s);

1082 getline (fileStream , s);

1983 }
1984 }
1985 }

1986

1987

1988 isInitialized = true;

1989 cachedElements. clear () ;

1990 for (size_-t i = 0; i < numberOfElementsToCache; i++) {
1991 cachedElements . push_back (at (1)) ;

1992 }

1993 idOfFirstElementCached = 0;

1994 idOfLastElementCached = cachedElements.size () — 1;
1995
1996

1997
1998 }
1999 }

2000

2001 int DNAFileWrapper :: getBestActionForAState (size_t state) {
2002 int bestAction = 0;

2003 double bestValue —1 % FLT MAX;

2004 for (size_t j = 0; j < numberOfActions; j++) {
2005 if (stateActionPairs[state][j] > bestValue) {
2006 bestValue = stateActionPairs[state][j];

2007 bestAction = j;

2008 }

2009 }

2010 return bestAction;

2011 }

2012

2013 void DNAFileWrapper :: fetchElementsForward (size_t start , size_t
numberOfElements) {

2014 unsigned int previousIdOfFirstElementCached = idOfFirstElementCached;
2015 unsigned int previousldOfLastElementCached = idOfLastElementCached;
2016

2007 // fetch new additions

201 vector<string> newAdditions = vector<string >();

2019

2020 for (size_t i = 0; i < numberOfElements; i++) {

2021 long position = i + previousldOfLastElementCached;

141

2022

2023 if (position < readPositions.size()) {

2024 newAdditions.push_back (at (position));

2025 }

2026 }

2027

2028 // move cached elements forward to make room for new additions

2020 for (size_t j = newAdditions.size(); j < numberOfElementsToCache; j++) {

2030 cachedElements[j — newAdditions. size ()] = cachedElements[]j];
2031 }

2032

2033 // add new additions to end of cached elements

2034 size_t positionInNewAdditions = 0;

2035 for (long k = numberOfElementsToCache — newAdditions.size (); k <
numberOfElementsToCache; k++) {

2036 cachedElements [k] = newAdditions [positionInNewAdditions++];
2037 }

2038

2030 // move window of cached elements forward

2010 1dOfFirstElementCached += newAdditions. size () ;

2041 1dOfLastElementCached += newAdditions. size () ;

2042 }

2043

2014 void DNAFileWrapper :: fetchElementsBackward (size_t start , size_t
numberOfElements) {

2045 unsigned int previousldOfFirstElementCached = idOfFirstElementCached;

2046 unsigned int previousldOfLastElementCached = idOfLastElementCached;

2047

2048 // fetch new additions

2009 vector<string> newAdditions = vector<string >();

2050

2051 for (size_t 1 = 1; i <= numberOfElements; i++) {

2052 long position previousIdOfFirstElementCached — 1i;
2053 if (position >= 0) {
2054 newAdditions.push_back (at(position));

2055 }
2056 }

2057
208 // shift elements up to make room for new additions
2059 for (long j = numberOfElementsToCache — 1; j >= newAdditions.size (); j——)

2060 if (j <0) {

2061 break ;

2062

2063 cachedElements[j] = cachedElements|[j — newAdditions.size ()];
2064 }

2065

2066 // insert new additions to first elements of cache

2067 size_t positionInNewAdditions = 0;
20 for (long k = newAdditions.size () — 1; k >= 0; k——) {

2069 cachedElements [k] = newAdditions[positionInNewAdditions++];
2070 }

2071

2072 // move window of cached elements backward

2073 1dOfFirstElementCached —= newAdditions. size () ;

2074 1dOfLastElementCached —= newAdditions. size () ;

2075

2076 }

142

2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110

2111

// map user’s requested element to a particular state
unsigned int DNAFileWrapper:: determineState (unsigned int 1) {
if (i < idOfFirstElementCached) {
return 11;
}

else if (i >= idOfLastElementCached) {
return 12;

else {
size_t progress = i — idOfFirstElementCached;
double percent = (progress % 1.0) / numberOfElementsToCache;
return (int)floor (percent);

void DNAFileWrapper:: qLearningPrediction (size_t requestedId) {

// state = % in cached reads [0,10);[10,20) ...
// state 11 = outside range backward

// state 12 = outside range forward

// state 0: i + 1 is unknown other is known
// state 1: i — 1 is unknown other is known
// state 2: i + 1 and i — 1 are unknown

// state 3: prev diff + unknown

// state 4: prev diff — unknown

// state 5: prev diff + and — are unknown
// state 6: is start

// state 7: is end

// action0: do nothing
// actionl — 10: reverse window 10% multiple
// actionll — 20: advance window 10% multiple

unsigned int currentState = determineState(requestedId);
unsigned int currentPosition = 0;

// find best action to take from policy matrix
unsigned int bestAction = 0;
float randomValue = static_cast <float> (rand()) / static_cast <float> (
RANDMAX) ;
if (randomValue < EPSILON) {
bestAction = rand () % numberOfActions;

else {
float bestValue = stateActionPairs|[currentState][0];
for (unsigned int i = 1; 1 < numberOfActions; i++) {
if (stateActionPairs|[currentState][i] > bestValue) {

bestAction = i;
bestValue = stateActionPairs[currentState|[i];

143

2135 unsigned int previousState = currentState;

2136

2137 // take action and determine next state

2138 if (bestAction = 0) {

2139 // do mnothing

2140

211 else {

2142 if (bestAction > 0 && bestAction <= 10) {

2143 double percent = bestAction / 10.0;

2144 unsigned int numberToFetch = round(numberOfElementsToCache % percent)
)

2145 fetchElementsBackward (1dOfFirstElementCached , numberToFetch) ;

2146 }

2147 else if (bestAction > 10 && bestAction <= 20) {

2148

2149 double percent = (20 — bestAction) / 10.0;

2150 unsigned int numberToFetch = round(numberOfElementsToCache % percent)

2151 fetchElementsForward (idOfLastElementCached , numberToFetch) ;

2152 }

2153 currentState = determineState(requestedId);

2154 }

2155

2156 // determine reward

2157 float reward = 0.0;

2158

2150 switch (currentState) {
2160 case O0:

2161 // first 10%
2162 reward = 0.1;
2163 break ;
2164 case 1:
2165 // first 20%
2166 reward = 0.2;
2167 break ;
2168 case 2:
2169 // first 30%
2170 reward = 0.3;
2171 break ;
2172 case 3:
2173 /] first 40%
2174 reward = 0.4;

6 case 4:

2175 break;
77 // first 50%

2178 reward = 0.45;
2179 break ;

2180 case b:

2181 // first 60%

2182 reward = 0.5;
2183 break ;

2184 case 6:

2185 // first 70%

2186 reward = 0.45;
2187 break ;

2188 case T:

2189 // first 80%

144

2190 reward = 0.4;

2191 break;

2192 case 8:

2193 // first 90%

2194 reward = 0.3;

2195 break;

2196 case 9:

2197 // first 100%

2198 reward = 0.2;

2199 break ;

2200 case 10:

2201 case 11:

2202 case 12:

2203 // out of current bounds of cache

2204 reward = —10;

2205 break ;

2206 }

2207

208 float prevQValue = stateActionPairs|[previousState |[bestAction |;
2209

210 float bestNextQValue = stateActionPairs|[currentState |[0];
2211

2212 for (unsigned int i = 1; i < numberOfActions; i++) {

2213 if (stateActionPairs[currentState][i] > bestNextQValue) {
2214 bestAction = i;

2215 bestNextQValue = stateActionPairs|[currentState |[1i];
2216 }

2217 }

2218

219 float update = (1 — ALPHA) % prevQValue + (ALPHA % (reward + GAMMA =x
bestNextQValue)) ;

2200 stateActionPairs [previousState |[bestAction] += update;
2221

2222 }

2223

2221 std ::string DNAFileWrapper :: getElement (size_t element) {
2225

2226 if (fileType =— CIGARCOIL) {

2227 return cigarCoilFileAccess (element);

2228 }

2229 else if (fileType = FASTA) {

2230 return fastAFileAccess (element) ;

2231 }

2232 else if (fileType == FASTQ) {

2233 return fastQFileAccess (element);

2234 }

2235

2236 initialize () ;

2235 clock_t cacheStart = clock () ;

2239

2240

2241 while (!(element >= idOfFirstElementCached && element <=

idOfLastElementCached)) {

)N

NN N
NN NN

| qLearningPrediction (element) ;

145

2246

if (element >= idOfFirstElementCached && element <=
idOfLastElementCached) {

double cacheDuration = ((clock () — cacheStart) / (double)
CLOCKS_PER.-SEC) ;

ofstream cacheTime (”C:\\ projectInputFiles\\cacheTime.csv”, ios::app);
cacheTime << cacheDuration << ”\n”;
cacheTime. close () ;

}
}

return cachedElements[element — idOfFirstElementCached |;

/* Destructor for DNAFileParser x/
DNAFileWrapper:: " DNAFileWrapper () {

void DNAFileWrapper:: reconstructCompressedFile (const char x

uncompressedFileName , const char *reconstructedCompressedFileName , const
char xcompressedldAndQualityFileName , bool isBeingMemoryConservative) {
DNAFileWrapper uncompressedFile = DNAFileWrapper (uncompressedFileName) ;

ofstream outputFile(reconstructedCompressedFileName , std::ofstream ::out);
vector<string> sequences = vector<string >();

// writes special identifying 4 bytes to signal that this file is a
cigarcoil file
outputFile.write (cigarFileMarker , 4);

outputFile.write (reinterpret_cast <char x>(&parentArray[0]), sizeof(int) x
parentArray.size ());

unsigned int arrayEnding = UINT32.MAX;
outputFile. write (reinterpret_cast <char x>(&arrayEnding), sizeof(int));

vector<streampos> positionsInOriginalFile = vector<streampos >();
ifstream uncompressedFileStream (uncompressedFileName);

7

string temp = ;

for (size_-t i = 0; i < parentArray.size(); i++) {
getline (uncompressedFileStream , temp) ;

if (isBeingMemoryConservative) {
positionsInOriginalFile.push_back (uncompressedFileStream. tellg ());
}
getline (uncompressedFileStream , temp) ;
if (!isBeingMemoryConservative) {
sequences . push_back (temp) ;

if (uncompressedFile.isFASTQ) {

getline (uncompressedFileStream , temp) ;
getline (uncompressedFileStream , temp) ;

146

2298
2299

2300

2306

2307

2308

2309

uncompressedFileStream . close () ;
if (isBeingMemoryConservative)

uncompressedFileStream . open (uncompressedFileName) ;

stringstream sstream;

for (size_t i = 0; i < parentArray.size(); i++) {

sstream . seekp (0, ios::end);
stringstream :: pos_type streamLength = sstream. tellp () ;

if (streamLength > 5000000) {
outputFile << sstream.rdbuf();
// clear stream content
sstream . str (string ());

}

string childSequence = 77 ;

string parentSequence = "7 ;
if (isBeingMemoryConservative) {

if (luncompressedFileStream.is_open()) {
uncompressedFileStream . open (uncompressedFileName) ;

}

uncompressedFileStream . seekg (positionsInOriginalFile[i], ios::beg);
getline (uncompressedFileStream , childSequence);

}
else {

childSequence = sequences|[i];
}

if (i = root) {

// write root explicitly
sstream << childSequence << 7\n”;

else {
unsigned int parentId = parentArray[i];
if (isBeingMemoryConservative) {
if (!uncompressedFileStream.is_open()) {

uncompressedFileStream . open (uncompressedFileName) ;
}

uncompressedFileStream . seekg (positionsInOriginalFile [parentId], ios

::beg) ;

getline (uncompressedFileStream , parentSequence);

}

else {
parentSequence = sequences|[parentld];

}

WagnerFischerMatrix matrix = WagnerFischerMatrix(&parentSequence , &

childSequence) ;

string cigarLine = matrix.getCigar () ;

147

2369

2370

sstream << cigarLine << 7\n”;

}

outputFile << sstream.rdbuf();
outputFile. close () ;

string xmyFiles = new string[2];

myFiles [0] = string (reconstructedCompressedFileName) ;

myFiles[1] = string (compressedldAndQualityFileName) ;

concatenateFilesTogether (myFiles, 2, string(
reconstructedCompressedFileName) + 7. final”);

delete [] myFiles;

148

Appendix 1
Decoded Reads

1.1 Header File

1 #ifndef DECODED_READSH
> #define DECODED_READS H
3

+ #include <vector>

5 #include<string >

6

7 const unsigned int numberOfGenerations = 10;

s const unsigned int numberOflnsertionsBeforeCleanup = 10000000;

9
o // class for storing previously decoded reads. After a threshold is reached

only keep most frequently accessed elements

11 class DecodedReads {
12 private:
135 // vector of stored reads
14 std :: vector<std :: string> reads;
15 // track popularity of a particular read
16 std :: vector<unsigned int> readGenerations;
17 //// number of reads to store
18 size_t _numberOfReads;
19 // tracks how many insertions have occurred since last cleanup
20 unsigned int currentlnsertionNumber;
1 public:
> // constructurs

DecodedReads () ;

DecodedReads(size_t numberOfReads) ;

// 1is the requested element stored in this structure?
26 bool isKnown(size_t i) const;

o7 // insert an element into this structure

2s void insert(size_t i, std::string s);

29 // returns the requested element

30 std::string at(size_t 1i);

31 “DecodedReads () ;

32 };

33

51 #endif // !DECODEDREADSH

1.2 Definitions

NN N NN
A~

<1

1 #include ”DecodedReads.h”

149

s DecodedReads :: DecodedReads () {

| _numberOfReads = 0;

5 reads = std::vector<std::string >();

¢ readGenerations = std:: vector<unsigned int >();
7 currentInsertionNumber = 0;

<)

10 DecodedReads :: DecodedReads (size_t numberOfReads) {
11 _numberOfReads = numberOfReads;

12 reads = std::vector<std::string >();

5 for (size-t 1 = 0; i < numberOfReads; i++) {

14 reads . push_back ("”);

15}

16 readGenerations = std:: vector<unsigned int >();

17 for (size_t j = 0; j < numberOfReads; j++) {
readGenerations. push_back (0) ;

}

currentInsertionNumber = 0;

}

// is the requested element stored in this structure
bool DecodedReads ::isKnown(size_t i) const{
if (_numberOfReads <= 1)
return false;
return reads[i] != 77;

}

// adds element to the set of decoded reads

31 void DecodedReads:: insert (size_t i, std::string s) {

2 reads[i] = s;

5 readGenerations[i] = numberOfInsertionsBeforeCleanup / 3;

34 // perform memory cleanup if threshold exceeded

35 if (currentInsertionNumber4++ > numberOfInsertionsBeforeCleanup) {
36 for (size-t i = 0; i < _numberOfReads; i++) {

©

TR W N =

MO N NN NN N N e
© o N & o w D *

37 if (readGenerations|[i] < numberOflInsertionsBeforeCleanup / 2) {
38 reads[i] = "7;

39 readGenerations [i] = 0;

10 }

I else {

12 readGenerations [i] = readGenerations[i] — (

numberOfInsertionsBeforeCleanup / 2);
43 }
14 }
15 currentInsertionNumber = 0;
6}
47 }

48

v std ::string DecodedReads::at(size_t i) {

5o readGenerations[i] = readGenerations[i] + 1;
51 return reads|[i];

52}

51 DecodedReads :: ~ DecodedReads () {
55 reads.clear ();
56 readGenerations. clear () ;

150

