

Robert Frizzell, Naba Amgain, Dr. Charles Fontanier | Department of Horticulture and Landscape Architecture, Oklahoma State University | robert.frizzell@okstate.edu

Lew Wentz Foundation

Introduction

- Creeping bentgrass (Agrostis stolonifera L.) is a cool season, perennial, stoloniferous turfgrass primarily used for putting greens in the transition zone.
- Most putting greens are surrounded by trees, which cause shading issues.
- Shade diminishes the health of turfgrass by reducing photosynthetically active radiation (PAR) required for the survival of the plant (Bell and Danneberger 1999).
- Shade is known to reduce plant carbohydrate reserves, the growth of roots, shoots, rhizomes, and stolons, increases stem elongation, and results in longer leaf sheaths (Dudeck and Peacock 1992).
- Morning versus afternoon shade is speculated to affect turf performance differently.
- Research is needed to determine if morning or afternoon shade is more detrimental to creeping bentgrass health.

Objective

- Evaluate net canopy photosynthesis of creeping bentgrass during morning or afternoon shade in comparison to non-shaded conditions.
- Characterize light quality under deciduous tree shade.

Fig. 1. Visual appearance of each treatment on 20 Sept. 2018 for a) full sun, b) morning shade, and c) afternoon shade.

Material and Methods

- Location: Oklahoma State University Turfgrass Research Center; Stillwater, OK
- Turfgrass: '007' creeping bentgrass
- Creeping bentgrass plugs were propagated on July 1, 2018.
- Plugs were grown in a greenhouse until August 15, 2018 and placed into the field under different treatments.

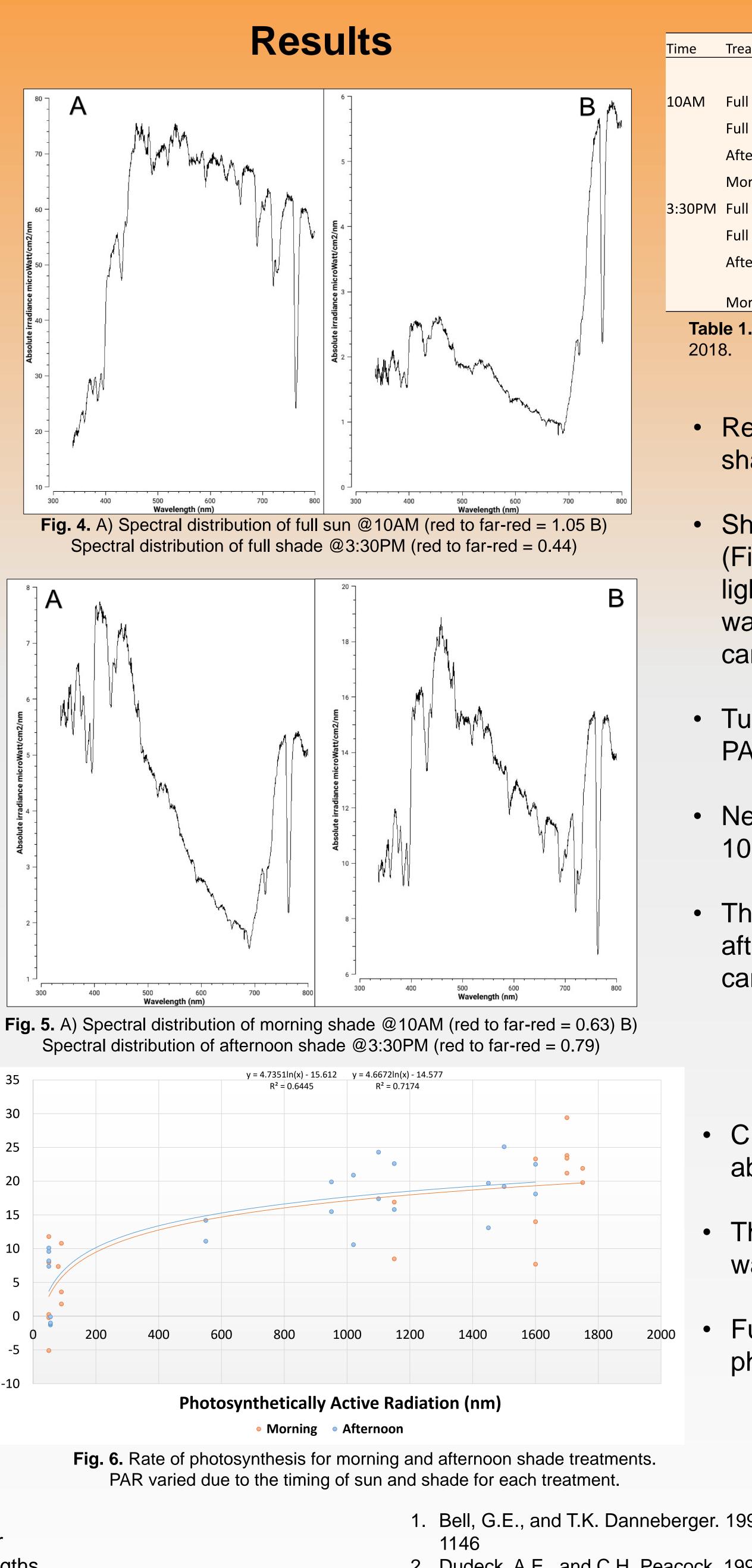
Diurnal Patterns in Light Quality and Photosynthesis of Creeping Bentgrass under Tree Shade

Material and Methods (cont.)

- Pot Specifications: 2.5 cm in diameter, pots filled with sand meeting USGA specifications
- Mowing: 3 times weekly at 4.5 to 5mm
- 20-20-20 fertilizer was applied every two weeks
- Treatments were 'full sun', 'full shade', 'morning sun/afternoon shade', and 'morning shade/afternoon sun' environments.
- Four replicate pots of each treatment were used for measurements.

Fig. 2. Turfgrass pot measurements taken with the LI-COR 6400XT inside the Arabidopsis chamber.

- Data were collected on September 20 and 27, 2018.
- Canopy photosynthesis and respiration were measured using the Li-COR 6400XT (LI-COR Biosciences/Lincoln,NE) fitted with an Arabidopsis chamber.
- PAR was measured using a handheld fullspectrum quantum sensor (Spectrum MQ-501) at time of measurement.
- A spectrometer (WaveGo-VIS-50) measured the sunlight's wavelength, frequency, and energy.


Fig. 3. Spectrometer measuring light wavelengths and frequency.

5 20

U 15

10

-5

I would like to thank the Lew Wentz Foundation for the funding and support of this research project.

atments	PAR(400-700nm)	350-400nm 4	400-500nm 5	500-600nm	600-700nm	700-780nm
	µmol m ⁻² sec ⁻¹					
l Sun	919	42	239	323	357	271
l Shade	22	3	9	8	6	18
ernoon Shade	976	42	247	344	385	302
orning Shade	54	9	25	18	12	19
l Sun	1295	63	342	455	497	103
l Shade	87	5	24	31	32	60
ernoon Shade	189	16	61	65	63	60
orning Shade	1340	62	348	473	519	407
Summary table of PAR readings taken with the spectrometer on 5 October						

Table 1. Summar

Key Findings

 Red to far-red ratios were greatly influenced by shade.

 Shade caused a lower ratio of red to far-red light (Fig. 4 and 5) suggesting blue, green, and red light was absorbed by the trees but far-red light was transmitted or reflected to the turfgrass canopy.

 Turfgrass pots that experienced high amounts of PAR had higher rates of net photosynthesis.

• Net photosynthesis plateaued at approximately 1000 nm regardless of time of day.

• There was no clear evidence that morning or afternoon shade differed in relative importance to canopy net photosynthesis.

Conclusion

 Creeping bentgrass reached light saturation at about 50% of full sun.

• The effect of shade timing on photosynthesis was inconclusive.

Future research should investigate net photosynthesis during multiple seasons of shade.

References

1. Bell, G.E., and T.K. Danneberger. 1999. Temporal shade on creeping bentgrass turf. Crop Sci. 39: 1142-

2. Dudeck, A.E., and C.H. Peacock. 1992. Shade and turfgrass culture. In D.V. Waddington et al. (ed.) Turfgrass. Agron. Monogr. 32. ASA, CSSA, and SSSA, Madison, WI.

Acknowledgements