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ABSTRACT 

 

Modeling robust closed- loop supply chain under multiple uncertainties and 

multiple criteria where imperfect quality production is incorporated is a new research 

trend in this area. Such integration is essential as it provides meaningful solutions to 

the practical problems of supply chain management. In this dissertation, we develop 

three models. In the first model, we consider a novel closed loop supply chain design 

consisting of multiple periods and multiple echelons. In addition, we assume that the 

screening is not always perfect, and inspection errors are more likely to take place in 

practice. We measure the amount of quality loss as conforming products deviate from 

the specification (target) value. In this model, we develop three robust counterparts 

models based on box, polyhedral, and combined interval and polyhedral uncertainty 

sets. We utilize different a priori probability bounds to approximate probabilistic 

constraints and provide a safe solution. The objective is to minimize the total cost of 

the supply chain network.  

As an extension to the first model, the second model considers a robust multi-

objective mixed integer linear programming model which includes three objectives 

simultaneously. The first objective function minimizes the total cost of the supply 

chain. The second objective function seeks to minimize the environmental influence, 

and the third objective function maximizes the social benefits. The augmented 

weighted Tchebycheff method is used to aggregate the three objectives into one 

objective function and produce the set of efficient solutions. Robust optimization, 

based on the extended Mulvey et al. (1995) approach, is used to obtain a set of 

solutions that are robust against the future fluctuation of parameters. 

In the third model, the affinely adjustable robust formulation based on "wait and 

see" decisions is presented. That is, the decisions are made over two sequential stages 

where multiple uncertainties are included. Moreover, we propose a budget dynamic 

uncertainty set to mimic the dynamic behavior of the market demand over time. The 

introduced dynamic uncertainty set is formulated according to Vector Autoregressive 

(VAR) models where the temporal and spatial correlations of customer demand zones 

are captured. Also, we utilize different a priori probability bounds to approximate 

probabilistic constraints and provide safe solutions.  



xiv 
 

Finally, numerical examples have been presented to test and analyze the 

tradeoff between solution robustness and models robustness. The results reveal 

valuable managerial views. Our proposed models are compatible with several types of 

industries including steel making, electronic and automobile manufacturing, and 

various plastic products where return products (either defective or used) can be reused 

as a raw material, and when environmental and social issues become a company 

concern.    

Keywords: uncertainty sets, robust counterpart, a priori probabilistic bound, closed 

loop- supply chain, imperfect quality production, Tchebycheff method, dynamic 

uncertainty set, adjustable robust counterpart.  
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CHAPTER 1: INTRODUCTION  

 

In this chapter, we briefly explore the different approaches used to deal with 

uncertainty in the modeling optimization problems. Then, we introduce the concept 

of robust optimization through simple examples. In the motivation section, we 

propose our novel robust optimization approach for inventory optimization 

problems with uncertainty sets. Finally, the structure for the rest of dissertation 

chapters is presented.  

1.1 Relative Background: 

One assumption of the parameter values in optimization problems is that they 

are usually assumed to be precisely known. However, this is not always the case in 

practical real- life problems. Parameter uncertainties might have a significant 

influence on the solution optimality and model feasibility if they are ignored. 

Therefore, the uncertainties have to be considered in both modeling and analysis 

stages. Thus, the current research streams tends to tackle the problems raised in an 

uncertain environment.   

 

1.1.1 Approaches Used to Deal with Uncertainty  

Although there are several different approaches to deal with uncertainties in 

the optimization problems, researchers recently have utilized four main approaches 

depending on the level of uncertainties and information availability in the problems: 

dynamic programming, fuzzy, stochastic, and robust optimization, see figure 1.1.  

Dynamic programming was developed by Richard Bellman in the 1953 and 

has found applications in numerous fields. In its traditional version, if large 

problems can be broken into sub-problems and then recursively finding the optimal 

solutions to the sub-problems, then dynamic programming methods are applicable. 

This is done through a mathematical relationship which is known in the 

optimization literature as Bellman equation. However, one major issue with 

dynamic programming is the curse of dimensionality resulted from medium to large 

scale problems. Therefore, several techniques have been developed to address this 

issue and commonly known as approximate dynamic programming. Interested 
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readers may refer to the book titled " Approximate Dynamic Programming" by 

Powell. 

The concept of a fuzzy set was originally published in 1965 by Lotfi Zadeh. 

Since that time, the fuzzy set theory has been applied with great success in many 

different fields when uncertainty associated with data exists. The model is 

formulated  based on the generalization of the classical concepts of set and its 

characteristic  membership function. However, with Fuzzy logic, a well-defined set 

of rules is needed, and these rules are not capable of handling indeterminate 

relations that exist in the data., (Kumar and Yadav, 2015). Flexible programming 

and possibilistic programming are classified as special cases of fuzzy set theory 

programming.  

Figure 1.1: Approaches used to deal with uncertainty in Operations Researches. 

When the probability distribution of an uncertain parameter is known, the 

appropriate modeling approach is stochastic programming. This approach is one of 

the most important approaches used to deal with uncertainty in operations research 

and has applications in a broad range of areas. In terms of methods, stochastic 

programming appears in various forms such as probabilistic modeling, scenario 

based method, chance constraint (sometimes known as probabilistic guarantees on 

constraint satisfaction), two stage (recourse modeling) programming, and renewal 

theory modeling. The stochastic programming seeks to optimize the expected value 

or some other suitable utility function, and thus the solution is not robust. Also, this 

approach results in huge optimization problems with several assumptions and heavy 
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data requirements. When the probability distribution of the uncertain parameter is 

unknown, robust optimization is the appropriate modeling approach. In the next 

section, we introduce the definition of robust optimization with simple examples.   

1.1.2 Definition of Robust Optimization and Examples 

Robust optimization was first proposed in the early 1970s in order to 

provide a decision-making framework when probabilistic models are either 

unavailable or intractable, and has been the focus of significant research attention 

from the 1990s onwards, (Sozuer and Thiele, 2016). Robust optimization is an 

important methodology for dealing with optimization problems with data 

uncertainty. Although no distribution assumption is made on uncertain parameters, 

the availability of data information can be utilized beneficially.  

Before we introduce the mathematical concept of robust optimization, 

consider the example of " cancer treatment" by Chu, Zinchenko, Henderson, and 

Sharpe (2014).  Studies show that about 1.3 million new cancer cases in the U.S. 

each year, and nearly 60% receive radiation therapy (in conjunction with surgery, 

chemotherapy etc.). In external beam radiation therapy, radiation is delivered by a 

linear accelerator. Because cancer cells are more susceptible than normal cells, 

overlay beams are released from different angles, see figure 1.2.  

 

Figure 1.2: External beam radiation therapy. 
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Each radiotherapy beam is divided into many small beamlets that can vary 

the intensity of radiation. This allows different doses of radiation to be given across 

the tumor. Intensity-modulated radiation therapy (IMRT) can be very helpful in 

areas such as the head and neck, for example to avoid the spinal cord or salivary 

glands.  The objective is to choose beam angles and beamlet intensities that deliver 

enough radiation to kill all tumor cells, while avoiding healthy organs and tissue as 

much as possible. The sources of uncertainties are setup errors, patient motion, and 

structural changes during treatment. Therefore, robust optimization is critical to 

achieve a safe treatment planning.  

Robust optimization assumes that the uncertain data belongs to a convex and 

bounded set, called uncertainty set, (Sozuer and Thiele, 2016). The uncertainty set 

is defined as the set of all possible realizations of the uncertain parameter that will 

be considered in the robust problem. The known uncertainty sets in the literature 

are,  

1. Box Uncertainty Set  

2. Ellipsoidal Uncertainty Set 

3. Polyhedral Uncertainty Set 

4. Interval + Ellipsoidal Uncertainty Set 

5. Interval + Polyhedral Uncertainty Set 

6. Box + Ellipsoidal Uncertainty Set 

7. Box+ Polyhedral Uncertainty Set 

8. Interval + Ellipsoidal + Polyhedral Uncertainty Set 

9. Box + Ellipsoidal + Polyhedral Uncertainty Set 

The proposed uncertainty sets are formulated based on different norms of the 

perturbation variables. Moreover, the shape of the selected uncertainty set will 

affect the tractability of the resulting robust optimization counterpart, figure 1.3. 

The characteristics of used uncertainty sets will be explored in the later chapters.  
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Figure 1.3: Illustration of different types of bounded and convex uncertainty 

sets.  

 

Robust optimization has many application areas including supply chain and 

logistics problems, combinatorial optimization, scheduling, and facility layout 

location. Some examples of finance applications are general portfolio problems and 

risk measures. In machine learning and statistics, the incorporation of robust 

optimization is a growing field, (Petros Xanthopoulos, Pardalos, and Trafalis, 

2013).  Another area that has seen significant growth recently is robust optimization 

in energy such as renewable energy, wireless network, and electricity markets. In 

health care applications, robust optimization is considered as an effective approach 

to IMRT treatment planning for different types of cancers.  

1.2 Motivation: A Robust Optimization Approach for Inventory Problem 

Since uncertainty is an essential issue in inventory production management, it 

has been recently discussed extensively by researchers and industry practitioners. 

The approach commonly used in their work is stochastic programming, where a 

specific probability distribution of the uncertain parameters is assumed. The multi-

period inventory control problem under uncertainty has been also addressed using 

dynamic and fuzzy programming. In this work, we develop two robust counterpart 

inventory models based on the box and ellipsoidal uncertainty sets using a different 
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approach than the one used in the literature. In our work, we utilize a priori 

probability bounds which can be used to approximate probabilistic constraints and 

provide safe solutions. Different upper probability bounds for both bounded and 

unbounded uncertainty, with and without detailed probability distribution 

information under different probability constraint violations are considered, and 

useful insights are gained for their corresponding robust solutions. 

1.2.1 Literature Review 

Although there are several different approaches to deal with uncertainties in the 

production systems and inventory control problems, researchers recently have 

utilized four main approaches depending on the level of uncertainties and 

information availability in the problems: dynamic programming, fuzzy, stochastic, 

and robust optimization. 

In the dynamic programming approach (e.g., marketing demand) , for example, 

Mandel (2009) discussed a set of models and algorithms for inventory control with 

uncertainty and dynamic nature following the methodology of adaptive control 

theory and the theory of expert-statistical data processing. Kastsian and Martin 

(2011), however, focused on the so-called normal vector method which was 

developed for solving optimization problems in which stability or related dynamical 

properties of the systems have to be insured with uncertain parameters. They 

showed that this optimization method can be successfully applied for solving supply 

chain optimal design problems. On the other side, Song, Dong, and Xu (2014) 

considered a manufacturing supply chain with multiple suppliers and multiple 

uncertainties such as uncertain material supplies, production times, and customer 

demands. This integrated system was formulated using the stochastic dynamic 

programming approach. Chuang and Chiang (2016) also studied the dynamic and 

stochastic behavior of the coefficient of demand uncertainty incorporated with 

economic order quantity (EOQ) variables. They applied this approach to a finished-

goods inventory from General Motors' dealerships. Recently Qiu, Sun, and Fong  

(2017) discussed a finite-horizon single-product periodic-review inventory 

management problem with demand distribution uncertainty. The problem was 

formulated as a robust dynamic program where the box and the ellipsoid 

uncertainty sets were used to formulate the corresponding robust counterpart.  
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As another approach to deal with uncertainties, many researchers have begun to 

analyze various problems related to inventory management models by incorporating 

fuzzy set theories. Interested readers may refer to (Shekarian, Kazemi, & Abdul-

rashid, 2017). They conducted a comprehensive and systematic literature review in 

the field of fuzzy inventory management. One interesting study in this research 

stream is (Guillaume, Kobyla, & Zieli, 2012). They considered a lot sizing problem 

with uncertain demands modeled by fuzzy intervals. They also provided some 

algorithms for determining optimal robust production plans under fuzzy demands. 

Chen and Ho (2013) focused on an optimal inventory policy for the fuzzy newsboy 

problem with quantity discounts where the proposed solution was based on the 

ranking of fuzzy numbers and optimization theory. Treating demand in terms of 

fuzzy sets was also considered by Sadeghi, Sadeghi, Taghi, and Niaki (2014) with a 

vendor-managed inventory (VMI) policy in supply chain management. However, 

the solution was based on an improved particle swarm optimization algorithm. 

Recently, Farrokh, Azar, Jandaghi, and Ahmadi (2017)  developed a novel robust 

fuzzy stochastic programming approach for closed loop supply chain network 

design under a hybrid uncertainty.  

In some uncertain models, parameters follow known probability distributions. 

However, in many cases the available information about the probability 

distributions is limited or not known. When the probability distribution of an 

uncertain parameter is known, the appropriate modeling approach is Stochastic 

Programming. This approach is one of the most important approaches used to deal 

with uncertainty in production systems and inventory control, (Masih-tehrani, Xu, 

Kumara, & Li, 2011), (Z. L. Zhang, Li, & Huang, 2014), and (Wang, Qin, & Kar, 

2015). However, when the probability distribution of the uncertain parameter is 

unknown, robust optimization is the appropriate modeling approach. 

 Making decisions in inventory control problems under uncertainty has been 

recently addressed using robust optimization. Commonly, marketing demand is 

treated as an uncertain parameter (Bertsimas & Thiele, 2006), (Bai, Alexopoulos, 

Ferguson, & Tsui, 2012), (Caglayan, Maioli, & Mateut, 2012), (Qiu, Shang, & 

Huang, 2014), (Carrizosa, Olivares-nadal, & Ramírez-cobo, 2016). However, 

Ammar et al. (2013) reviewed extensively some of the existing literature of supply 

planning under uncertainty of lead times.  
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Several studies on robust multi-period inventory problems have been recently 

discussed in the literature, (Giarr, Giarr`e, & Pesenti, 2008), (Aharon, Boaz, & 

Shimrit, 2009), (Aharon et al., 2009), (See & Sim, 2010), (Quansheng, 2015), 

(Vahdani, Soltani, Yazdani, & Mousavi, 2017), (Zhaolin Li & Grace, 2017).  

Other extensions to the previous works were done by considering different 

parameters subject to uncertainty in production systems and inventory problems. 

For example,  Al-e-hashem, Malekly, and Aryanezhad (2011) considered cost 

parameters of the supply chain and demand fluctuations subject to uncertainty for 

multi-product multi-site aggregate production planning. Their work was a 

generalization of Rahmani, Ramezanian, Fattahi, and Heydari (2013), Xin, Xi, Yu, 

and Wu (2013), and Hatefi and Jolai (2014) studies. In their papers, network design 

costs and customer demand were uncertain. Wei, Li, and Cai (2011), on the other 

hand, studied robust optimal policies of production and inventory with uncertain 

returns and demand. Pishvaee, Rabbani, and Torabi (2011) included the uncertainty 

of customer demands and transportation costs in a closed-loop supply chain 

network design. Similarly, Kisomi, Solimanpur, and Doniavi (2016) treated 

transportation costs, processing costs and customers’ demand as uncertain where 

the counterpart was formulated based on three different uncertain sets namely, box, 

polyhedral and interval plus polyhedral uncertainty sets.   

1.2.2 Inventory Problem Formulation 

 

The model of the inventory problem at a single station and finite discrete 

horizons of T periods is considered to minimize a given cost function. The notation 

is defined as follows:   

For, 𝑘 = 0,…… . 𝑇 

𝐼𝑘: Quantity of stock available at the beginning of the kth period, 

𝑄𝑘: Stock of goods ordered at the beginning of the kth period, 

𝐷𝑘: Demand during the kth period, 

It can be noticed that, 

𝐼𝑘+1 = 𝐼𝑘 + 𝑄𝑘 − 𝐷𝑘 , where 𝑘 = 0,1, … . 𝑇 − 1.  

Thus, the closed form of 𝐼𝑘+1 can be written as:  

𝐼𝑘+1=𝐼0 + ∑ (𝑄𝑖 −𝐷𝑖)
𝑘
𝑖=0 , 𝑘 = 0,1, … . 𝑇 − 1                                                        (1.1) 
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We will consider that the stock available and the quantity ordered at each period is 

not subject to upper bounds. In their model they consider two types of costs; namely 

purchasing, and a holding/shortage cost. The purchasing cost 𝐶(𝑄𝑘) is defined as 

follows: 

𝐶(𝑄𝑘) = {
𝐾 + 𝑐. 𝑄𝑘                     𝑖𝑓 𝑄𝑘 > 0
0                                         𝑄𝑘 = 0,

                                                           (1.2)  

where 𝑐 is the unit variable cost, and 𝐾 is the fixed cost. The holding/shortage cost 

represents the cost associated with having either excess inventory, ℎ (positive stock) 

or unfilled demand 𝑝 (negative stock). Specifically, we consider a convex, 

piecewise linear holding/shortage cost 𝑅(𝐼) with: 

𝑅(𝐼) = max (ℎ𝐼, −𝑝𝐼),                                                                                         (1.3) 

where ℎ and 𝑝 are nonnegative real numbers, and 𝑝 >  𝑐 is assumed so that the 

ordering stock remains a possibility up to the last period. Therefore, the mixed-

integer programming modeling of the inventory problem can be formulated as:    

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐 𝑄𝑘 + 𝐾𝑣𝑘 + 𝑦𝑘

𝑇−1

𝑘=0

                                                                                   (1.4) 

Subject to 

𝑦𝑘 ≥ ℎ(𝐼0 +∑(𝑄𝑖 − 𝐷̃𝑖)

𝑘

𝑖=0

)                                      𝑘 = 0,1, … . 𝑇 − 1                    (1.5) 

𝑦𝑘 ≥ −𝑝(𝐼0 +∑(𝑄𝑖 − 𝐷̃𝑖)

𝑘

𝑖=0

)                                      𝑘 = 0,1, … . 𝑇 − 1                 (1.6) 

0 ≤ 𝑄𝑘 ≤ 𝑀𝑣𝑘 ,       𝑣𝑘 ∈ {0,1},       𝑘 = 0,1, … . 𝑇 − 1                                               (1.7)          

Where 𝑦𝑘 is a variable which needs to be minimized according to (1.5) and (1.6) 

and 𝑀 is a large positive number. In Bertsimas and Thiele (2006) model, the 

polyhedral plus interval uncertainty set was utilized where the uncertain parameter, 

𝐷̃𝑖, is defined as follows; 𝐷̃𝑖 = 𝐷𝑖 + 𝐷𝑖 .̂ 𝜁𝑖 . Note that 𝐷𝑖 is the nominal value and 𝐷̂𝑖 

represents the deviation magnitudes from the nominal value of the uncertain 

parameter 𝐷𝑖. In addition, 𝜁𝑖 is a variable that takes values in the interval [-1, 1]. 

Actually, this variable provides perturbations to the uncertain parameter.  
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1.2.3 A Novel Robust Counterparts Approach Based on Uncertainty Sets 

Next, we describe a novel robust optimization approach for inventory 

optimization problems with box and ellipsoidal uncertainty sets. In order to ensure 

the computational tractability of robust optimization problems, the parameter 

uncertainty should be defined carefully. Specifically, the uncertainty set should be 

specified by the decision maker, (Gorissen, Yan, & Hertog, 2015). The size and 

shape of the uncertainty set reflect the degree of conservativeness and the 

preferences of the decision maker, respectively. Typically applied uncertainty sets 

are box, ellipsoidal, polyhedral or combinations of them, (Zukui Li, Ding, & 

Floudas, 2011).  

Suppose, without loss of generality, that only the right-hand-side parameters in 

the constraints of (1.15-1.6) model have uncertain data. This assumption is valid 

because of the following: 

• If uncertain data exists in the objective function as coefficients, then the 

objective function can be written as a constraint.  

• In any constraint k, if the right-hand-side parameter is subject to uncertainty, 

then it can be written as,  

𝑦𝑘 − ℎ(𝐼0 +∑(𝑄𝑖 − 𝐷𝑖)

𝑘

𝑖=0

) ≥ 0, 𝑎𝑛𝑑 𝑦𝑘 + 𝑝(𝐼0 +∑(𝑄𝑖 − 𝐷𝑖)

𝑘

𝑖=0

) ≥ 0 

Therefore, we end up with a constraint that has uncertain parameters on the left-

hand side only.  

 

Assuming that only the parameter 𝐷𝑖 is subject to uncertainty in the previous 

model, then in order to acquire control of the conservativeness degree of the 

robust formulation, the true value of the uncertain parameter 𝐷̃𝑖 is represented as 

follows: 

𝐷̃𝑖 = 𝐷𝑖 + 𝜁𝑖  𝐷̂𝑖                                                                                                (1.8) 

In our work, we will use two different uncertainty sets to formulate the 

inventory counterpart problem; namely, box and ellipsoidal uncertainty sets. In 

addition, we will use a different approach than the one used previously in the 

literature. Our approach is based on probabilistic guarantees on constraint 

satisfaction. To immunize against uncertainty, we apply the robust counterpart 

approach to the original constraint (1.5) and (1.6) under the uncertainty set (1.8). 
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This is based on Soyster's approach (1973a). Then, the resulting optimization 

problem is as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐 𝑄𝑘 + 𝐾𝑣𝑘 + 𝑦𝑘

𝑇−1

𝑘=0

                                                                                   (1.9) 

𝑦𝑘 − ℎ(𝐼0 +∑𝑄𝑖

𝑘

𝑖=0

− (∑(𝐷𝑖)

𝑘

𝑖=0

+𝑚𝑎𝑥𝜁𝑖 [∑(𝜁𝑖  𝐷̂𝑖)

𝑘

𝑖=0

])) ≥ 0                           (1.10) 

𝑦𝑘 + 𝑝(𝐼0 +∑𝑄𝑖

𝑘

𝑖=0

− (∑(𝐷𝑖)

𝑘

𝑖=0

+𝑚𝑎𝑥𝜁𝑖 [∑(𝜁𝑖  𝐷̂𝑖)

𝑘

𝑖=0

])) ≥ 0                           (1.11) 

0 ≤ 𝑄𝑘 ≤ 𝑀𝑣𝑘 ,       𝑣𝑘 ∈ {0,1},       𝑘 = 0,1, … . 𝑇 − 1                                            (1.12) 

 

1.2.3.1 Robust Counterpart Based on Box Uncertainty Set: 

Li et al. (2011) provided a comprehensive study on the robust counterpart 

formulation for linear and MILP. They gave the mathematical proof of the robust 

counterpart to linear and MILP using different uncertainty sets. The proposed 

uncertainty sets are formulated based on different norms of the perturbation 

variables.  

The box uncertainty set is formulated based on the Chebyshev norm of the 

perturbation variables and it is presented as follows: 

𝑈∞ = {𝜁𝑖  |‖𝜁𝑖‖∞ ≤ 𝛹}  ,                                                                                     (1.13) 

where  𝛹 is the adjustable parameter that controls the uncertainty set size, 

and hence controls the degree of conservatism, (see figure 1.4). If 𝛹 = 1, then the 

resulting uncertainty set is a unit sphere with respect to the Chebyshev norm which 

is a special case of the box uncertainty set.  

 

Figure 1.4: Illustration of box uncertainty set where 𝑎1 and 𝑎2 are the 

nominal values of the uncertain parameters 𝑎̃1 and 𝑎̃2, respectively.   
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The robust counterpart of the inventory problem model under the box uncertainty 

set (1.13) is given as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐 𝑄𝑘 + 𝐾𝑣𝑘 + 𝑦𝑘

𝑇−1

𝑘=0

                                                                                (1.14) 

𝑦𝑘 − ℎ(𝐼0 +∑𝑄𝑖

𝑘

𝑖=0

− (∑(𝐷𝑖)

𝑘

𝑖=0

+𝛹𝑘 ([∑( 𝐷̂𝑖)

𝑘

𝑖=0

]))) ≥ 0                              (1.15) 

𝑦𝑘 + 𝑝(𝐼0 +∑𝑄𝑖

𝑘

𝑖=0

− (∑(𝐷𝑖)

𝑘

𝑖=0

+𝛹𝑘 ([∑( 𝐷̂𝑖)

𝑘

𝑖=0

]))) ≥ 0                              (1.16) 

0 ≤ 𝑄𝑘 ≤ 𝑀𝑣𝑘 ,       𝑣𝑘 ∈ {0,1},       𝑘 = 0,1, … . 𝑇 − 1                                            (1.17) 

 

1.2.3.2  Robust Counterpart Based on Ellipsoidal Uncertainty Set: 

The ellipsoidal uncertainty set is defined as follows: 

𝑈2 = {𝜁𝑖  |‖𝜁𝑖‖2 ≤ Ω} ,                                                                                        (1.18) 

where  Ω is the radius of the uncertainty set; it also represents the degree of 

conservatism. The ellipsoidal uncertainty set is formulated based on the 2-norm of 

the perturbation variables, (see figure 1.5).  

 

Figure 1.5: Illustration of ellipsoidal uncertainty set where 𝑎1 and 𝑎2 are the 

nominal values of the uncertain parameters 𝑎̃1 and 𝑎̃2, respectively. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐 𝑄𝑘 + 𝐾𝑣𝑘 + 𝑦𝑘

𝑇−1

𝑘=0

                                                                                (1.19) 

𝑦𝑘 − ℎ

(

 
 
𝐼0 +∑𝑄𝑖

𝑘

𝑖=0

−

(

 ∑(𝐷𝑖)

𝑘

𝑖=0

+ Ω𝑘√[∑( 𝐷̂𝑖
2
)

𝑘

𝑖=0

]

)

 

)

 
 
≥ 0                             (1.20) 
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𝑦𝑘 + 𝑝

(

 
 
𝐼0 +∑𝑄𝑖

𝑘

𝑖=0

−

(

 ∑(𝐷𝑖)

𝑘

𝑖=0

+ Ω𝑘√[∑( 𝐷̂𝑖
2
)

𝑘

𝑖=0

]

)

 

)

 
 
≥ 0                             (1.21) 

0 ≤ 𝑄𝑘 ≤ 𝑀𝑣𝑘 ,       𝑣𝑘 ∈ {0,1},       𝑘 = 0,1, … . 𝑇 − 1                                            (1.22) 

Note that as the robust counterpart is formulated for each constraint, different 

uncertainty set size parameters values can be applied for different constraints. 

 

1.2.4 Probabilistic Guarantees of Robust Counterpart Optimization 

In many practical problems, the uncertainty set is defined by the decision 

maker. What makes robust optimization (RO) different from stochastic 

programming is that RO does not require a known probability distribution for the 

uncertainty. However,  probabilistic guarantees (chance constraint approach) can be 

used to evaluate the lower bound on constraint satisfaction based on the desired 

constraint violation.  

  Li, et al. (2012) and Guzman, et al. (2016) considered probabilistic 

guarantees on constraint satisfaction employed in the literature for different 

uncertainty set robust counterpart optimization models, for both bounded and 

unbounded uncertainty, with and without a detailed probability distribution 

information. 

  In general, two different methods can be used in evaluating the probabilistic 

guarantees: a priori and a posteriori probability bounds. In this work, we will focus 

on the first type of methods which uses the uncertainty set information to derive the 

probability bound before we solve the problem. 

1.2.4.1 Priori Probabilistic Guarantees Based on Uncertainty Set Information: 

The a priori probabilistic guarantees approach is used as a traditional way to 

compute the size of the uncertainty set necessary to ensure that the degree of 

constraint violation does not exceed a certain level. Therefore,  

Pr {∑ 𝑎𝑖𝑗𝑥𝑗𝑗 + ∑ 𝜁𝑗𝑗∈𝐽𝑖
𝑎̂𝑖𝑗𝑥𝑗 > 𝑏𝑖} ≤ Pr {∑ 𝜁𝑗𝑗∈𝐽𝑖

𝑎𝛿𝑗 > ∆}                              (1.23) 

where the parameter Δ is the uncertainty set parameter (i.e. 𝛹, or Ω), and 𝐽𝑖 is the 

number of uncertain parameters in the ith constraint. Note that δ is a vector with its 

𝛿𝑗 components satisfying  −1 ≤ 𝛿𝑗 ≤ 1. Moreover, ∑ 𝛿𝑗 ≤ 1𝑗∈𝐽𝑖
, and ∑ 𝛿2𝑗 = 1𝑗∈𝐽𝑖

 

for box and ellipsoidal uncertainties sets respectively.  
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The poof of (1.23) is available in Li et al. (2011). The summary of different 

upper bounds on the probability of constraint violation is presented in Table 1.1. It 

is important to mention that the a priori probability bounds apply to bunded 

probability distributions such as in the case of uniform or triangle distributions. If 

the uncertainty probability distribution of the random variable is unbounded as in 

the cases of exponential or normal distributions, then a priori probability bounds do 

not apply, (Li, et al., 2012).  

upper bounds on the probability of constraint 

violation 

Assumption on 

Uncertainty distribution 

Robust 

Counterpart 

Applicable 

Proposed by 

B1: exp (−
∆2

2
) Independent, symmetric, bounded 

B, E, IE, P, IP (Ben-tal & Nemirovski, 

2000) 

B2: exp (−
∆2

2|𝐽𝑖|
) Independent, symmetric, bounded 

B, E, IE, P, IP 
(Bertsimas & Sim, 2004b) 

B3:exp (𝑚𝑖𝑛𝜃>0{−𝜃∆ + ∑ 𝐼𝑛 𝐸[𝑒𝜃𝜁𝑗]𝑗∈𝐽𝑖
}) 

It has known  probability 

distribution. 

B, E, IE, P, IP (Paschalidis & Kang, 

2005) 

B4: exp (𝑚𝑖𝑛𝜃>0{−𝜃∆ + ∑ 𝐼𝑛 𝐺𝑗(𝜃)𝑗∈𝐽𝑖
}) known bounds on 𝐸[𝜁𝑗] 

B, E, IE, P, IP (Guzman, Matthews, & 

Floudas, 2016) 

B5: exp (𝑚𝑖𝑛𝜃>0 {−𝜃∆ + |𝐽𝑗|∑ 𝐼𝑛 𝐺𝑗̅ (𝜃/√|𝐽𝑗|)𝑗∈𝐽𝑖
}) 

known bounds on 𝐸[𝜁𝑗] 

 E, IE 

(Guzman et al., 2016) 

Table 1.1: The summary of different upper bounds on the probability of constraint 

violation.  

Note that in Table 1.1 we follow the following abbreviations; B: Box, E: 

Ellipsoidal, IE: Interval and Ellipsoidal, P: Polyhedral, IP: Interval and Polyhedral.   

The proof of upper bounds on the probability of constraint violation provided by 

Table 1 is available in (Ben-tal & Nemirovski, 2000),  (Bertsimas & Sim, 2004b),  

(Paschalidis and Kang, 2005), and (Guzman et al., 2016).  

1.2.4.2 The Characteristics of The Introduced Probability Bounds: 

From Table 1, it is observed that for the different types of robust counterparts, 

bounding the probability of constraint violation corresponds to the evaluation of the 

expression Pr {∑ 𝜁𝑗𝑗∈𝐽𝑖
𝛿𝑗 > ∆}. The given probability bounds in Table 1 are  

bounded, symmetric and independent. Moreover, different bounds can be derived if 

the full probability distribution information of the uncertainty is provided. The 

following characteristics of the introduced probability bounds can be listed as 

follows: 

1. If {𝜁𝑗}𝑗𝜖𝐽𝑖 are independent and subject to a bounded and symmetric 

probability distribution supported on [-1, 1], then B1 and B2 apply. That is; 

Pr {∑ 𝑎𝑖𝑗𝑥𝑗𝑗 + ∑ 𝜁𝑗𝑗∈𝐽𝑖
𝑎̂𝑖𝑗𝑥𝑗 > 𝑏𝑖} ≤ exp (−

∆2

2
)                                               (1.24) 

Pr {∑ 𝑎𝑖𝑗𝑥𝑗𝑗 + ∑ 𝜁𝑗𝑗∈𝐽𝑖
𝑎̂𝑖𝑗𝑥𝑗 > 𝑏𝑖} ≤ exp (−

∆2

2|𝐽𝑖|
)                                            (1.25) 
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However, B1 only applies for the box (B), ellipsoidal (E), and interval plus 

ellipsoidal (IE) uncertainty sets induced robust counterparts. 

2. If {𝜁𝑗}𝑗𝜖𝐽𝑖 are independent and subject to a symmetric probability 

distribution, then B3 applies such that, 

Pr{∑ 𝑎𝑖𝑗𝑥𝑗𝑗 + ∑ 𝜁𝑗𝑗∈𝐽𝑖
𝑎̂𝑖𝑗𝑥𝑗 > 𝑏𝑖} ≤ exp(𝑚𝑖𝑛𝜃>0{−𝜃∆ +

∑ 𝐼𝑛 𝐸[𝑒𝜃𝜁𝑗]𝑗∈𝐽𝑖
})                                                                                                       (1.26)                                                                                                                                            

where 𝐸[𝑒𝜃𝜁𝑗] refers to the moment generation function of probability 

density function 𝑓(𝜁𝑗). Moreover, it needs the solution of the following 

additional nonlinear nonconvex optimization problem (1.27): 

min∆ 

s.t. 

−𝜃∆ +∑𝐼𝑛 𝐸[𝑒𝜃𝜁𝑗]

𝑗∈𝐽𝑖

≤ ln (𝜀) 

∆, 𝜃 ≥ 0                                                                                                   (1.27) 

3. For B4 and B5 the uncertain parameters have known lower and upper 

bounds and their means are known only to within some range of values. 

Hence, a single expected value cannot be confidently imposed. Thus, we 

have the following expressions: 

Pr {∑ 𝑎𝑖𝑗𝑥𝑗𝑗 + ∑ 𝜁𝑗𝑗∈𝐽𝑖
𝑎̂𝑖𝑗𝑥𝑗 > 𝑏𝑖} ≤  exp (𝑚𝑖𝑛𝜃>0{−𝜃∆ + ∑ 𝐼𝑛 𝐺𝑗(𝜃)𝑗∈𝐽𝑖

})  (1.28) 

Pr {∑ 𝑎𝑖𝑗𝑥𝑗𝑗 + ∑ 𝜁𝑗𝑗∈𝐽𝑖
𝑎̂𝑖𝑗𝑥𝑗 > 𝑏𝑖} ≤ exp (𝑚𝑖𝑛𝜃>0 {−𝜃∆ + |𝐽𝑗| ∑ 𝐼𝑛 𝐺𝑗̅ (𝜃/𝑗∈𝐽𝑖

√|𝐽𝑗|)}                                                                                                                (1.29) 

where 𝐺𝑗(𝜃) = 𝜇𝑗 sinh 𝜃 + cosh 𝜃, and 𝐺𝑗̅(𝜃) = (max𝜇𝑗) sinh 𝜃 + cosh 𝜃. Note 

that B5 is applicable only to ellipsoidal (E) and interval and ellipsoidal (IE) 

uncertainty sets. Also, we may notice that (1.28) and (1.29) require the solution of 

the additional nonlinear nonconvex optimization problems (1.30) and (1.31), 

respectively. 

For (1.27), we need to solve the following optimization problem; 

min∆ 

s.t. 

−𝜃∆ +∑𝐼𝑛 𝐺𝑗(𝜃)

𝑗∈𝐽𝑖

≤ ln (𝜀) 

∆, 𝜃 ≥ 0                                                                                                               (1.30) 

and for (1.30),  
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min∆ 

s.t. 

−𝜃∆ + |𝐽𝑗|∑ 𝐼𝑛 𝐺𝑗̅ (𝜃/√|𝐽𝑗|)

𝑗∈𝐽𝑖

 

∆, 𝜃 ≥ 0                                                                                                               (1.31) 

In B4 and B5 instead of the nominal value of 𝑎̂𝑖𝑗 representing the mean, yielding 

𝐸[𝜁𝑖𝑗] = 0, the nominal value is chosen such that |𝐸[𝜁𝑖𝑗]| ≤ 𝜇𝑖𝑗.            

 

1.2.5 Solution Methodology and Computational Results 

1.2.5.1 Traditional Robust Approach using Priori Probabilistic Bound: 

Traditional framework steps (Li et al., 2012) of applying robust optimization for a 

probabilistically constrained optimization problem can be summarized as follows: 

1. The probabilistic constraint violation ε is set. 

2.  The uncertainty set is selected by the distribution of the uncertainty.  

3. The uncertainty set size parameter  is computed based on the a priori 

probability bounds.  

4. The problem can be solved using the above uncertainty set size parameter 

and the solution obtained satisfies the desired probability 1− ε. 

Therefore, the framework for robust optimization under box uncertainty set can be 

formulated as follows,  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐 𝑄𝑘 + 𝐾𝑣𝑘 + 𝑦𝑘

𝑇−1

𝑘=0

                                                                               (1.32)  

Pr{−𝑦𝑘 + ℎ(𝐼0 +∑𝑄𝑖

𝑘

𝑖=0

− (∑(𝐷𝑖)

𝑘

𝑖=0

+𝛹𝑘 ([∑( 𝐷̂𝑖)

𝑘

𝑖=0

]))) < 0} ≤ 𝜀       (1.33) 

Pr{−𝑦𝑘 − 𝑝(𝐼0 +∑𝑄𝑖

𝑘

𝑖=0

− (∑(𝐷𝑖)

𝑘

𝑖=0

+𝛹𝑘 ([∑( 𝐷̂𝑖)

𝑘

𝑖=0

]))) < 0}  ≤ 𝜀       (1.34) 

0 ≤ 𝑄𝑘 ≤ 𝑀𝑣𝑘 ,       𝑣𝑘 ∈ {0,1},       𝑘 = 0,1, … . 𝑇 − 1                                            (1.35) 

 Similarly, the framework for robust optimization under an ellipsoidal uncertainty 

set can be formulated as follows,  
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Pr

{
 
 

 
 

𝑦𝑘 − ℎ

(

 
 
𝐼0 +∑𝑄𝑖

𝑘

𝑖=0

−

(

 ∑(𝐷𝑖)

𝑘

𝑖=0

+ Ω𝑘√[∑( 𝐷̂𝑖
2
)

𝑘

𝑖=0

]

)

 

)

 
 
< 0

}
 
 

 
 

≤ 𝜀         (1.36) 

 

Pr

{
 
 

 
 

𝑦𝑘 + 𝑝

(

 
 
𝐼0 +∑𝑄𝑖

𝑘

𝑖=0

−

(

 ∑(𝐷𝑖)

𝑘

𝑖=0

+ Ω𝑘√[∑( 𝐷̂𝑖
2
)

𝑘

𝑖=0

]

)

 

)

 
 
< 0  

}
 
 

 
 

 ≤ 𝜀      (1.37) 

0 ≤ 𝑄𝑘 ≤ 𝑀𝑣𝑘 ,       𝑣𝑘 ∈ {0,1},       𝑘 = 0,1, … . 𝑇 − 1                                            (1.38) 

 

1.2.5.2 Numerical Examples: 

To illustrate the application of the robust optimization framework based on 

the two different uncertainty sets which are box and ellipsoidal uncertainty sets, we 

solve the production and inventory problem introduced earlier. We will utilize the 

five different probability bounds including those bounds which require solving 

additional nonlinear nonconvex optimization problems. In addition, we will 

evaluate the robust solutions at different probability constraint violations 𝜀.    

• Inventory Problem Based on Box Uncertainty Set: 

In this example, we consider the following data: 

𝑇 = 20 months; 𝐼0 = 1200 units; ℎ = 4; 𝑝 = 6; and 𝐷̂ = 0.1𝐷. The nominal 

values 𝐷𝑖  and the deviation magnitudes from the nominal values 𝐷̂𝑖  of the 

uncertain parameter 𝐷𝑖 are provided in Table 1.2.  

The computations of MILP were run using the branch and bound algorithm 

accessed via LINGO16.0 on a PC -3GHzand; 4 GB RAM and under win 10. While 

computations of the nonlinear nonconvex optimization problems were run using 

BARON solver which is offered by GAMS modeling languages.  

We solve the above problem using the five probability bounds at five 

different probability constraint violations 𝜀: 0.05, 0.1, 0.15, 0.20, and 0.25. Also, we 

will perform further analysis to compare and study the robust solutions obtained by 

these probability bounds. You can refer to tables (a-e) in the appendix to observe 

the uncertainty set sizes under the probability bounds. 
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k The Expected Demand (𝐷𝑘 ) The Number of Uncertain Parameters 𝐽𝑘 

0 1500 1 

1 1800 2 

2 2200 3 

3 1300 4 

4 3500 5 

5 950 6 

6 680 7 

7 1050 8 

8 750 9 

9 1200 10 

10 930 11 

11 1400 12 

12 1600 13 

13 1850 14 

14 1500 15 

15 1700 16 

16 1370 17 

17 1000 18 

18 750 19 

19 450 20 

Table 1.2: The uncertain parameter 𝐷𝑘 values and their corresponding deviation 

magnitudes 𝐷̂𝑘   

• Bound 1(B1): The robust solutions (𝑸𝒌
∗ ) obtained by this probability bound 

at five different probability constraint violations are provided by the 

appendix in table 3.  

• Bound 2(B2): The robust solutions (𝑸𝒌
∗ ) obtained by this probability bound 

at different five probability constraint violations are provided by the 

appendix in table 4.  

• Bound 3(B3): The robust solutions (𝑸𝒌
∗ ) obtained by this probability bound 

at different five probability constraint violations are provided by the 

appendix in table 5. This requires solving additional nonlinear nonconvex 

optimization problems provided in (1.26) to obtain the uncertainty set size 

parameter. You can refer to (f-j) in the appendix to observe the 

corresponding values of 𝜃.  

Note that in this case, it is assumed that each 𝜁𝑘 is subject to the uniform 

distribution in [−1, 1], and hence the box uncertainty set applies. For the uniform 

distribution 𝑈(𝑎, 𝑏), the moment generation function is 𝐸(𝑒𝜃𝜁) =
𝑒𝜃𝑏−𝑒𝜃𝑎

𝜃(𝑏−𝑎)
. 
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• Bound 4(B4): The robust solutions(𝑸𝒌
∗ ) obtained by this probability bound 

at five different probability constraint violations are provided by the 

appendix in Table 6. This requires solving additional nonlinear nonconvex 

optimization problems to obtain the uncertainty set size parameter.  You can 

refer to tables (f-j) in the appendix to observe the corresponding values of 𝜃.  

The expected values of the parameters are only known to be within 1% of 

their nominal values. Therefore,  

𝐸[𝐷̃𝑖] 𝜖  [𝐷𝑖 − 0.01𝐷𝑖,  𝐷𝑖 + 0.01𝐷𝑖]and 𝐸[𝜁𝑖] 𝜖  [−0.1, 0.1] that is 

equivalent to |𝐸[𝜁𝑖]| ≤ 0.1 = 𝜇𝑖 

It should be noted that Bound 5 is not applicable for box uncertainty set. In section 

VI we discuss the conservatism of the obtained robust solutions over the proposed 

different scenarios. 

• Inventory Problem Based on Ellipsoidal Uncertainty Set: 

In this example, we consider data given in previous example. We solve the 

above problem using the five probability bounds at different five probability 

constraint violations 𝜀: 0.05, 0.1, .15, 0.20, and 0.25. The robust solutions (𝑸𝒌
∗ ) 

obtained by the five probability bounds at five different probability constraint 

violations are provided in the appendix in Tables 1.7-1.11.  

• Bound 3(B3): This requires solving additional nonlinear nonconvex 

optimization problems provided in (1.26) to obtain the uncertainty set size 

parameter. Note that in this case, it is also assumed that each 𝜁𝑘 is subject to 

the uniform distribution in [−1, 1].   

• Bound 4(B4): This requires solving additional nonlinear nonconvex 

optimization problems provided in (1.30) to obtain the uncertainty set size 

parameter. The expected values of the parameters are only known to be 

within 1% of their nominal values. Therefore,  

𝐸[𝐷̃𝑖] 𝜖  [𝐷𝑖 − 0.01𝐷𝑖,  𝐷𝑖 + 0.01𝐷𝑖]and 𝐸[𝜁𝑖] 𝜖  [−0.1, 0.1] that is equivalent 

to |𝐸[𝜁𝑖]| ≤ 0.1 = 𝜇𝑖 

 

• Bound 5(B5): This requires solving additional nonlinear nonconvex 

optimization problems provided in (1.31) to obtain the uncertainty set size 

parameter.  As for B4, the expected values of the parameters are only known 

to be within 1% of their nominal values.  
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Figure 1.6: Order size over the next 20 months for different probability constraints 

based on different bounds under box uncertainty set.  

1.2.5.3   Discussion: 

 In this section, we discuss the sensitivity and conservatism of the obtained 

robust solutions based on the box and ellipsoidal counterparts formulation.  In our 

discussion, we refer to figures 1.8 and 1.9 which explain how the objective 

functions behave as the probability constraint violations increase for the five 

different bounds. The figures provide to the decision maker an overview of a 

conservatism comparison between the introduced uncertainty sets under different 

probability bounds. Note that B5 is not applicable to the case of box uncertainty set 

and, therefore it is not included in figure 1.6.    
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Figure 1.7: Order size over the next 20 months for different probability constraints 

based on different bounds under ellipsoidal uncertainty set.  

While we compare the size of the different types of uncertainty sets, a 

conservatism recommendation could be made based on the following fact: the 

larger the uncertainty set is, the more conservative the solution are obtained. Thus, 

the model’s conservatism increases in the following order: box, ellipsoidal, 

polyhedral, (Li et al., 2012). However, this is true only and only if the bounded 

uncertainty is within the suggested range such that the adjustable uncertainty set 

parameters are  𝛹𝑘 ≤ 1, and Ω𝑘 ≤ √|𝐽𝑘| for box and ellipsoidal uncertainty sets, 

respectively (Li et al., 2011). Therefore, the robust solution based on the ellipsoidal 

uncertainty counterpart is less conservative than the box uncertainty counterpart.      

     



22 
 

 

Figure 1.8: The behavior of the robust objective functions when different upper 

bounds are applied based on box counterpart. 

From figures 1.8 and 1.9, we make the following observations: 

• In all probability upper bounds as the probability constraint violations 

increase, the robust objective functions tend to be less conservative. This is 

valid since we allow for high constraint violations, and hence we make the 

performance of objective function to get improved.   

• In figures 1.8 and 1.9, the robust solution obtained by B1 is less 

conservative (better solution) among the other probability bounds. However, 

practically B1is not the best probability bound to be applied in the discussed 

inventory problem.  This is because B1 assumes that the amount of 

uncertainty, |𝐽𝑘|, is constant over the months which contradicts with the 

nature of  the model where the uncertainty increases as the period increases. 

• In figure 1.8, the robust solution obtained by B3 is less conservative (and 

hence better solution) comparing with B2 and B4. This would be a better 

choice due to full probability distribution information. If such information is 

available, it can be utilized beneficially which makes the solution less 

conservative.  
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Figure 1.9: The behavior of the robust objective functions when different upper 

bounds are applied based on ellipsoidal counterpart. 

• In both figures, B2 and B4 show high conservatism. In both probability 

bounds, the amount of uncertainty, |𝐽𝑘| over a period of months is 

considered. However, the rapid increase in the uncertainty set size parameter 

makes the robust solution obtained by B4 to be more conservative 

comparing with B2, B3, and B5 (in case of ellipsoidal counterpart).  

• In figure 1.9, if we omit B1, B5 is the tightest probability bound since it is 

specifically derived to be applicable in ellipsoidal and ellipsoidal plus 

interval uncertainty sets. Remember that bounds B4 and B5 permit robust 

counterpart optimization even in the case where the mean of the distribution 

of an uncertain parameter is not known exactly but is assumed to lie within a 

range of values. 

In our inventory problem, we come up with following conclusion: depending on 

the uncertainty information such as whether the uncertain parameter has bounded 

and symmetric distribution or it has a known probability distribution, the decision 

maker will identify a better choice in constructing the robust counterpart model.  

In addition, the probability constraint violation should be set properly if the 

decision maker seeks for low or high conservative robust solutions (e.g. high risk 

involved in the decision making).  
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1.2.6 Conclusion and Future Work  

Different uncertainty approaches have been used to undress the multi-period 

inventory problem . In our study, we have developed two robust counterpart 

inventory models based on box and ellipsoidal uncertainty sets. Moreover, we use a 

different approach based on uncertainty set-based robust optimization. In this work, 

we have utilized a priori probability bound which can be used to approximate 

probabilistic constraints and provide safe solutions. Different upper probability 

bounds for both bounded and unbounded uncertainty, with and without detailed 

probability distribution information in the literature under different probability 

constraint violations are considered in our work, and useful insights are gained for 

their corresponding robust solutions.  

In future work, a posteriori probabilistic guarantees approach can be also 

used to improve the robust solutions. Also, we will apply the approaches discussed 

in this paper to higher classes of production systems and inventory control with a 

dynamic uncertainty set and imperfect quality models where the uncertainties may 

be considered in different system’s parameters. These future studies will provide 

more insights in improving the production systems under uncertainties.  

 

1.3 Dissertation Structure: 

For more practical and effective decision making, we carry out the optimization 

over the whole supply chain under multiple uncertainties rather than focusing only 

on the inventory problem. In the literature, the supply chain networks activities are 

divided into two general groups: 1) Forward network (forward flow): dealing only 

with the supply chain activities from suppliers up to customers, 2) Reverse network 

(returned flow): focusing on the activities returned from customers. The concept of 

closed-loop supply chains (CLSC) is now widely garnering attention as a result of 

the recognition that both the forward and reverse supply chains need to be managed 

jointly. From the previous brief introduction, we develop the following research 

questions:  

• Does considering (CLSC) under imperfect quality production with multiple 

uncertainties make it more interesting, realistic, and worthwhile study? 

• What are the different approaches used in the literature to deal with the 

uncertainty in the above (CLSC) problem?  
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• Are those approaches effective, and tractable formulations especially with 

the lack of information?   

• Although the robust optimization is the most modern and appealing 

uncertainty approach, how can the conservatism issue be addressed?   

• Can robust formulations based on different uncertainty sets and sizes 

improve the quality of robust solutions?  

In addition to chapter 1, three papers are provided in this dissertation, one in 

each chapter. In chapter 2, we consider a novel closed loop supply chain design 

consisting of multiple periods and multiple echelons. The models are considered 

under imperfect quality production with multiple uncertainties to provide 

meaningful solutions to practical problems. In addition, we assume that the 

screening is not always perfect, and inspection errors are more likely to take place 

in practice. We measure the amount of quality loss as conforming products deviate 

from the specification (target) value. In our study, we develop three robust 

counterparts models based on box, polyhedral, and combined interval and 

polyhedral uncertainty sets. We utilize different a priori probability bounds to 

approximate probabilistic constraints and provide a safe solution. The objective is 

to minimize the total cost of the supply chain network. Finally, numerical examples 

are provided to illustrate the proposed models. 

As an extension to chapter 2, chapter 3 considers robust multi-objective mixed 

integer linear programming model which includes three objectives simultaneously. 

The first objective function minimizes the total cost of the supply chain. The second 

objective function seeks to minimize the environmental influence, and the third 

objective function maximizes the social benefits. The augmented weighted 

Tchebycheff method is used to aggregate the three objectives into one objective 

function and produce the set of efficient solutions. Robust optimization, based on 

Mulvey et al. (1995) approach, is used to obtain a set of solutions that are robust 

against the future fluctuation of parameters. Finally, numerical examples have been 

presented to test and analyze the tradeoff between solution robustness and model 

robustness. 

In chapter 4, the affinely adjustable robust formulation based on "wait and see" 

decisions is presented. That is, the decisions are made over two sequential stages 

where multiple uncertainties are included. Moreover, we propose a budget dynamic 
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uncertainty set to mimic the dynamic behavior of the market demand over time. The 

introduced dynamic uncertainty set is formulated according to Vector 

Autoregressive (VAR) models where the temporal and spatial correlations of 

customer demand zones are captured. Also, we utilize different a priori probability 

bounds to approximate probabilistic constraints and provide a safe solution. The 

objective is to minimize the total cost of the supply chain network. Finally, 

numerical examples are provided to illustrate the proposed models. 

Conclusions and possible future research directions are provided in Chapter 5. 
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CHAPTER 2: AN INTEGRATED MULTI-ECHELON ROBUST CLOSED- 

LOOP SUPPLY CHAIN UNDER IMPERFECT QUALITY PRODUCTION 

 

In this chapter, we consider a novel closed loop supply chain design consisting of 

multiple periods and multiple echelons. The models are considered under imperfect 

quality production with multiple uncertainties to provide meaningful solutions to 

practical problems. In addition, we assume that the screening is not always perfect, 

and inspection errors are more likely to take place in practice. We measure the 

amount of quality loss as conforming products deviate from the specification 

(target) value. In our study, we develop three robust counterparts models based on 

box, polyhedral, and combined interval and polyhedral uncertainty sets. We utilize 

different a priori probability bounds to approximate probabilistic constraints and 

provide a safe solution. The objective is to minimize the total cost of the supply 

chain network. Finally, numerical examples are provided to illustrate the proposed 

models. The paper is expected to provide more insights in managing this important 

problem. 

 

2.1 Introduction  

The uncertainty modelling is an important topic in supply chain management, 

and has been recently discussed extensively by researchers and industry 

practitioners. Modeling and solving closed-loop supply chains (CLS) under 

uncertainty is now widely taking attention because both the forward and reverse 

supply chains need to be managed simultaneously. A common assumption of the 

supply chain inventory model is that the produced items are perfect. We consider 

the imperfect quality production to provide meaningful solutions to practical supply 

chain management problems.  

Our modeling investigates the integrated multi-echelon, multi-period under 

multiple uncertainties models, where the most recent techniques of robust 

optimization are used as solution approaches. In addition, we assume that the 

screening is not always perfect, and inspection errors are more likely to take place 

in practice. Thus, some errors are committed in the inspection process. In addition, 

we measure the amount of quality loss as conforming products deviate from the 

specification (target) value.   
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2.2 Literature Review: 

The literature is reviewed with two different ideas in mind. The first section 

is about the most recent studies in the area of robust supply chain under uncertainty. 

The second section discusses incorporating imperfect production quality and 

scenarios of reworking and recycling in the robust supply chain.  

2.2.1 The Most Recent Studies in the Area of Robust Supply Chain under 

Uncertainty:  

A literature survey conducted recently by Govindan, Fattahi, and 

Keyvanshokooh (2017), shows that four main approaches in recent decades are 

adopted to handle the uncertainty environment in the supply chain. These four 

approaches are dynamic programming, stochastic programming, fuzzy 

programming, robust optimization, or the combination of any two of these 

approaches. Consideration of uncertainties in the model dynamic parameters (i.e. 

market demand) will represent a more realistic problem situation. This explains the 

special attention is recently paid to stochastic and dynamic market demand. On the 

other side, fuzzy programming is a popular approach applied recently by many 

researchers along with the supply chain area under uncertainty, (Shekarian, Kazemi, 

and Abdul-rashid, 2017). When the probability distribution of an uncertain 

parameter is known, the appropriate modeling approach is Stochastic Programming. 

This approach is one of the most important approaches used to handle the 

uncertainty in production supply chain and inventory control, (Masih-tehrani, Xu, 

Kumara, and Li, 2011), (Zhang, Li, and Huang, 2014), and (Wang, Qin, and Kar, 

2015). Several extensions of previous studies with supply chain uncertainty make 

stochastic programming an increasingly important modeling approach. 

Robust optimization is the most recent approach for dealing with 

optimization problems with data uncertainty. Although no distribution assumption 

is made on uncertain parameters, the availability of data information can be utilized 

beneficially. The development of robust optimization is based on uncertainty sets 

approach and is summarized in Table 1. The uncertainty set is defined as the set of 

all possible realizations of the uncertain parameter that will be considered in the 

robust optimization problem (Ben-Tal and Nemirovski, 2000). Table 2.1 lists 

different developed uncertainty sets.  
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One of the first early work where robust optimization is incorporated with 

logistics and supply chain is (Yu and Li, 2000). They reformulate robust 

programming methods proposed by Mulvey et al. (1995), into a linear program 

which only requires adding n + m variables (where n and m are the number of 

scenarios and total control constraints, respectively).  

Author Contribution Year 

Soyster  • Simple perturbations in the data are considered in the linear 

programming problem to make the solution feasible under all 

perturbations.    

• Introduces interval set. 

1973 

Ben-tala, 

Nemirovski 

and coworkers  

• The ellipsoidal set robust counterpart is proposed to formulate 

the linear and quadratic programming problems under 

uncertain parameters. 

1998-

2004 

El-Ghaoui and 

coworkers 

• Study the uncertain least-squares problems with the robust 

solutions. 

• Study uncertain semidefinite problems. 

1997,1998 

Lin et al.  

Janak et al.  

• Extend RO for (LP) to MILP  

• The robust optimization framework for different bounded 

known probability distributions are developed. 

2004, 

2007 

Verderame 

and Floudas  

• Investigate both continuous (general, bounded, uniform, 

normal) and discrete (general, binomial, Poisson) uncertainty 

distributions. 

2009 

Bertsimas, Sim 

and coworkers 

• Introduce the uncertainty budgets set ( combined interval and 

polyhedral uncertainty set) in the LP. 

• A new approach is proposed to deal with uncertain parameters 

in the discrete network optimization problems. 

2003- 

2004 

Bertsimas and 

Thiele 

• Extend previous work to address inventory control problems 

to minimize total costs. 

2006 

Soyster 

Li et al. 

Ben-Tal and 

Nemirovski 

Bertsimas and 

Sim 

• Interval Uncertainty Set  

• Pure Box, Ellipsoidal, and Polyhedral Uncertainty Sets 

• Combined interval and ellipsoidal set 

• Combined interval and polyhedral set 

1973 

2011 

2000 

2004 

Table 2.1: Robust optimization approaches in operations research based on 

uncertainty sets.  
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The adapted Mulvey approach has been widely used in supply chain for the 

sake of uncertainty management. Some of these recent studies are (Al-e-hashem, 

Malekly, and Aryanezhad, 2011; Ma, Yao, Jin, Ren, and Lv, 2016; F. Mohammed 

et al., 2017; Pishvaee, Rabbani, and Torabi, 2011; Rahmani, Ramezanian, Fattahi, 

and Heydari, 2013; Safaei, Roozbeh, and Paydar, 2017).  

These models are based on the approach introduced by Mulvey et al. (1995), 

named robust stochastic optimization or scenario-based robust approach. Mulvey et 

al. (1995) extend scenario-based stochastic programming by defining the objective 

function as a mean-variance function incorporating and risk measures and decision 

makers’ preferences in their model formulation.  

The solution obtained by the scenario-based robust model is strongly 

dependent on the defined scenarios accuracy and their probabilities of occurrence. 

Thus, solving such models is more difficult because as the number of scenarios 

increases, the computational complexity increases too. A more popular approach is 

the uncertainty set based robust modelling which enables determining the desirable 

robust decisions without the need to consider different scenarios and their 

occurrence probabilities. 

The uncertainty set is defined as the set of all possible realizations of the 

uncertain parameter that will be considered in the robust optimization problem 

(Ben-Tal and Nemirovski, 2000). See Table 2.1 for different developed uncertainty 

sets. Recently, many researchers apply the uncertainty set based approach to 

manage the multiple uncertainties associated with the robust supply chain 

optimization, (Aharon, Boaz, and Shimrit, 2009; Baghalian, Rezapour, and 

Zanjirani, 2013; Hatefi and Jolai, 2014; Kisomi, Solimanpur, and Doniavi, 2016; 

Ma et al., 2016; Pishvaee et al., 2011; Wei, Li, and Cai, 2011; Xin, Xi, Yu, and Wu, 

2013; Y. Zhang and Jiang, 2017; Zokaee, Jabbarzadeh, Fahimnia, and Jafar, 2017) . 

Table 2.2 summarizes some of the current supply chain models that study the 

parameter uncertainty in their models using a robust optimization approach.  

2.2.2 Incorporating Imperfect Production Quality and Scenarios of Reworking 

and Recycling in the Robust Supply Chain 

 A common assumption of the closed loop supply chain model is that the 

produced items are perfect.  In several real- life situations, this assumption may not 
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be valid. In various inventory problems such as economic order quantity (EOQ 

)models, many researchers relaxed this assumption to provide meaningful solutions 

to practical problems. Khan, Jaber, Guiffrida,and Zolfaghari (2011) make an 

extensive literature review of the extensions of a modified EOQ model for 

imperfect quality items. They also include a fuzzy set theory approach in these 

investigated studies.  

Paper  

Supply Chain 

Network 

Open/Closed 

Single/ Multiple 

Echelons- Period  
Main Contribution   

Optimization 

Problem  

(Yu & Li, 2000) Open SC 

Multi-echelons 

multi-period and 

multi-product 

Developing a robust 

optimization model for 

stochastic logistic 

problems 

Robust Stochastic  

programming     

(Aharon, Boaz, & 

Shimrit, 

 2009) 

Open SC 
Multi-echelons, 

and multi-period 

Modeling, analyzing and 

testing an extension of the 

AARC method known as 

the Globalized Robust 

Counterpart (GRC) in 

order to control 

inventories in serial supply 

chains. 

MILDP 

(Pishvaee, 

Rabbani, &Torabi, 

2011) 

Closed-loop  

Multiple 

Echelons,  

and Periods  

Introducing a robust 

optimization approach  

to closed-loop supply 

chain network design 

under uncertainty 

MILP 

(Al-e-hashem, 

Malekly,  

& Aryanezhad, 

2011) 

Open SC 

Multi-echelons 

multi-period and 

multi-product 

Developing a supply chain 

addressing multi-product 

aggregate production 

 planning (APP) problem 

MINLP 

(Rahmani, 

Ramezanian,  

Fattahi, & 

Heydari, 2013) 

Open SC 

Three-echelons 

multi-period and 

multi-product 

Developing model for 

multi-product two-stage 

capacitated production 

planning under uncertainty 

MILP 

(Baghalian, 

Rezapour,  

& Zanjirani, 2013) 

Open SC 

Multi-echelons 

multi-period and 

multi-product 

Supply chain network 

design with service level 

against disruptions and 

demand uncertainties 

MILP 

(Hatefi & Jolai, 

2014) 
Closed-loop  Multi- Echelons 

Reliable forward–reverse 

logistics network design 
MILP 
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under demand uncertainty 

and facility disruptions 

(Science et al., 

2016)  
Closed-loop  

Three -echelons 

and multi-product 

Environmental closed-

loop supply chain design 

under uncertainty 

MINLP 

(Kisomi, 

Solimanpur,  

& Doniavi, 2016) 

Closed-loop  

Multiple 

Echelons  

and Products 

An integrated supply chain 

configuration model and 

procurement management  

under uncertainty 

MILP 

(Safaei, Roozbeh, 

& Paydar, 2017)  
Closed-loop  

Multiple 

Echelons,  

and Periods  

Developing a model for 

the design of a cardboard 

closed- loop supply chain 

MILP 

(Vahdani, Soltani, 

Yazdani,  

& Mousavi, 2017) 

Closed-loop  Three Echelons 

A three level joint 

location-inventory 

problem with correlated 

demand, shortages and 

periodic review system 

MINLP 

(Mohammed, 

Selim, Hassan, & 

Naqeebuddin, 

2017) 

Closed-loop  

Multiple 

Echelons,  

Periods and 

Products 

Proposing an optimization 

model for design and 

planning supply chain 

with carbon footprint 

consideration 

S-MILP 

(Zhang & Jiang, 

2017) 
Open SC Three Echelons 

Addressing the design of a 

Waste cooking oil  

for-biodiesel-for-biodiesel 

supply chain at both 

strategic and tactical 

levels. 

MILP 

(Bairamzadeh, 

Saidi-mehrabad, & 

Pishvaee, 2018) 

Open SC 

Multiple 

Echelons,  

 and Products 

Modelling different types 

of uncertainty in biofuel 

supply network design and 

planning 

MILP 

Table 2.2: Summary of the most recent studies robust supply chain under 

uncertainty 

 There are very few studies which recognize incorporation of the imperfect 

quality production to the supply chain modelling, (Ahmadi, Khoshalhan, and Glock, 

2016; Masoudipour, Amirian, and Sahraeian, 2017; Sana, 2011). However, these 

studies consider deterministic models.  
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Modeling supply chain under uncertainty where imperfect quality 

production is incorporated is also studied by few researchers. For example, Hu, 

Zheng, Xu, Ji, and Guo (2010) study coordination of supply chain for the fuzzy 

random newsboy problem with imperfect quality in the decentralized and 

centralized systems. Quality uncertainty from a supply chain coordination 

perspective is addressed by Hwan, Rhee, and Cheng (2013). Rad, Khoshalhan, and 

Glock (2014), however, use the renewal-reward theorem as a stochastic approach in 

optimizing inventory and sales decisions in a two-stage supply chain.  

2.3 Problem Definition and Mathematical Formulation 

2.3.1 Problem Definition 

In this study, we consider a closed loop supply chain system consisting of 

multiple periods, products, and echelons. The flow of materials can be described as 

follows:  the network is managed by a manufacturer such that the required quantity 

of raw materials is ordered for production. Then, the produced lot size is sent to the 

distribution center and finally moved to the customer zone according to customer 

demands. The location of the customer zone is supposed to be predefined and fixed. 

In the reverse network, the activities start from the collection center at which the 

returned products (defective or used products) are shipped to the inspection facility 

within the collection center. Subsequently after separation, the recyclable items are 

sent for recycling while the defective items are subject to another inspection that 

classifies them to either reworkable or not reworkable. However, we assume that 

the screening is not always perfect, and inspection errors are more likely to take 

place in practice. Thus, two types of errors are committed in the inspection process. 

Type I, is committed when a conforming item is classified as non-conforming and 

type II error, is committed when a non-conforming item is classified as conforming. 

The recyclable items are used to cover the market demand while the non-

recyclable items are disposed. For those items that are apparently reworkable, they 

will be reworked and become as good as new ones and will be sent back to the 

original plant to cover the demand otherwise they will be disposed. Although the 

perfect items are supposed to be within the specification limits and fall within a 

certain acceptance range, we measure the amount of quality loss as conforming 
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products deviate from the specification (target) value. We describe the activities 

associated to each supply chain component as follows (Fig.2.1):  

• Suppliers: 

According to the order received from the manufacturer, the suppliers 

prepare and process the required quantity of raw material necessary to 

produce the lot size used to cover the market demand. Several costs are 

considered including, ordering cost per lot size, purchasing, processing and 

transportation costs.  Note that the supplier can be either national or 

overseas supplier. Also, we make a restriction on the capacity of raw 

material of any product type for each supply center.  

 

Figure 2.1: Illustration of Our Multi- Echelon Closed Loop Supply Chain 

• Manufacturers:  

The network is managed by manufacturers which include three main 

facilities:  

➢  Manufacturing new products facility: within this facility the ordered raw 

material is used to produce the lot size for covering the demand. A common 

assumption of the supply chain manufacturer model is that the produced 

items are perfect. However, we consider the imperfect quality production to 

provide meaningful solutions to practical problems. Thus, a proportion of 

produced items is assumed defective. Moreover, this proportion of defective 

items are treated as an uncertain parameter. For practical reasons, we restrict 

the production of any product type in each manufacturer to a specific 
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capacity. The considered costs here are manufacturing and transportation 

costs. Also, we penalize for producing defects.   

➢  Recycling facility: for an effective use of supply chain resources, part of 

customers’ returns can be recycled and used to meet the market demand. 

Thus, within this facility the recyclable items sent from the collection center 

are recycled at a cost. However, we consider this cost as an uncertain 

random variable depending on the items condition. Also, these recycled 

items may not be used completely to cover the demand and hence a portion 

of it may be used after recycling.  

➢  Reworking facility: unlike the recycling process where only the used items 

can be recycled, in reworking process, those defective items which are 

identified by customers and sent from the collection center will be reworked 

at a cost in the reworking facility. Similar to the recycling cost, reworking 

cost is subject to uncertainty.  After reworking, the lot or part of it will 

contribute in covering the market demand. The transportation cost is 

considered as well in both recycling and reworking facilities.  

One important question here is why that recycling and reworking costs are 

treated as uncertain parameters in this model? The answer to this question is that 

any cost in a supply chain model can be considered as either deterministic or 

uncertain parameter depending on the model assumptions. However, we assume 

here that the recycling and reworking costs are uncertain because the condition of 

each individual returned item is not necessarily the same, and hence the cost of 

recycling or reworking process needed for each item is not certain.     

• Distribution Centers: 

The distribution centers consist of three facilities:  

➢ Inspection facility: based on our assumption referring to the imperfect 

production quality, inspection and screening process is carried on the whole 

lot transported from the manufacturer. To make it more realistic we assume 

that the inspection process is not always perfect. We consider two types of 

inspection errors: type I, is committed when a conforming item is classified 

as non-conforming and type II error, is committed when a non-conforming 

item is classified as conforming. Moreover, these two types of errors are 

treated as uncertain values. Also, we carry out another type of inspection to 



36 
 

ensure that the produced lot is close enough to the target value according to 

Taguchi Quality approach. The costs included here are inspection and 

quality loss.  

➢ Inventory facility: after the lot being inspected and screened by the 

inspection facility, the lot is placed in the inventory. Note that the items 

contained in the lot are considered apparently conforming because of the 

uncertainties in the inspection process. An inventory holding cost is 

assigned for each item/lot.  

➢ Distributing facility: The lot size is prepared and packed to be delivered to 

customer zone as requested. Processing and transportation costs are included 

here. A limit for aggregated capacity of these facilities at each distribution 

center and product type is assumed.    

 

• Customer Zones: 

As a final destination in the forward network, the lot is transported to 

customer zones based on the expected market demand over time periods. 

Because the demand is subject to uncertainty as well, the shortage is allowed 

in this model. Since this is a closed loop supply chain, we expect some 

returned products from our customers in the form of used or defective 

products. For interesting practical issues, we treat the returned products in 

either form as uncertain parameters as well. Like the supplier, the customer 

can be either national or overseas.   

 

• Collection Centers: 

In the collection centers, further classification of the returned products is 

performed to either classify them to recyclable or reworkable; otherwise 

they will be disposed through the disposal center. Recyclable and 

reworkable items are stored in collection center inventory facility at a 

reduced cost in order to be shipped later to the manufacturer for further 

processing. Also, we assume a capacity of each product type at any 

collection center.       

 

• Disposal Center:  
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We assume that any return products which can not be reworked or recycled 

are disposed through the capacitated disposal centers. The disposal fraction 

of products is treated as uncertain.   

2.3.2 Some Applications 

The proposed models have wide industrial applications including high-

technology, car manufacturing, some grocery store products, plastic products 

industries, various types of machine parts, etc. Here we provide one suitable 

application for the proposed model related to steel making process.  

Steel can be produced using different methods such as blast furnace (BF) and 

direct reduction (DR). BF represents more than 66% of global steel production. 

Principal raw materials consist of iron ore and coke. Several types of iron ore can 

be provided; i.e. iron ore is mined and prepared as concentrate which are sold as 

separate products. Steel products can be also produced in different qualities and 

various rolling types (beam and bar and so on) upon users’ request, (Soltany, 

Sayadi, Monjezi, and Hayati, 2013).   

• The single or multiple suppliers can be either overseas or nationals.  

• The manufacturers produce different quantities, qualities and various rolling 

types which are uncertain. In addition, the production is not always perfect 

which means an uncertain portion of produced steel products is defective.  

• The screening and inspection process, which is done by the facility of 

quality assurance, is subject to uncertain inspection error.  

• The distributers are centered in multiple sites. The inventory holding cost is 

assigned to each steel product according to its type. 

• According to the expected customer demands, the orders are transported to 

multiple customer zones. The uncertain amount of returned steel is collected 

by different collection centers. The returned products can be either used or 

defective. Due to uncertainties in the product condition the recycling and 

reworking costs are uncertain. Also, the recycled and reworked steel can be 

used to satisfy the demand.    

• The amount of the steel production residues, i.e. by-products and waste, 

reflect the amount of produced steel. In 2015, iron and steel production in 

Sweden generated just over two million tons of residual products. This total 
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can roughly be divided into three groups (“Steel production residues,” 

2017): 

1. 39 % is used externally, e.g. sold on as products. 

2. 40 % is used internally, e.g. reused as a raw material in the production 

processes. 

3. 21 % is waste that is sent to landfill 

2.3.3  Notation  

• The following sets are used: 

𝑇         Set of periods, with 𝑡 ∈ 𝑇. 

𝑆        Set of possible supplier center locations, with 𝑠 ∈ 𝑆. 

𝑀     Set of manufactures centers locations, with 𝑚 ∈ 𝑀. 

 𝐼       Set of potential distribution center locations, with 𝑖 ∈ 𝐼. 

𝐶       Set of customer zones, with 𝑐 ∈ 𝐶.  

𝐿       Set of potential collection/disassembly center locations, with 𝑙 ∈ 𝐿 

𝑂      Set of potential disposal center locations, with 𝑜 ∈ 𝑂.  

𝑃      Set of products, with 𝑝 ∈ 𝑃.  

• The parameters are defined as follows:   

𝐷̃𝑡𝑝𝑐: Market demand for product 𝑝 for customer zone 𝑐 at period 𝑡 which is subject 

to uncertainty. 

𝑅̃𝑡𝑝𝑐: Returned of amount product 𝑝 as used items form customer zone 𝑐 at period 𝑡 

which is subject to uncertainty. 

𝑅𝑤̃𝑡𝑝𝑐: Returned of amount product 𝑝 as defective items form customer zone 𝑐 at 

period 𝑡 which is subject to uncertainty.  

𝑅𝑐̃𝑡𝑝𝑚: Recycling cost/unit for product 𝑝 at manufacturer 𝑚 and period 𝑡 which is 

subject to uncertainty.  

𝑅𝐸𝑐̃𝑡𝑝𝑚: Rework costs for items produced below and above the specification limits 

for product 𝑝 at manufacturer 𝑚 and period 𝑡, respectively, which is subject to 

uncertainty.  
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𝑒̃1𝑡: Uncertain proportion of type I error at period 𝑡.  

𝑒̃2𝑡: Uncertain proportion of type II error at period 𝑡.  

𝛽𝑝: Uncertain disposal fraction of product 𝑝. 

𝐹𝑆𝑠: Fixed cost of selecting supplier 𝑠.  

𝐹𝐷𝑖: Fixed cost of opening distribution 𝑖.  

𝐹𝐶𝑙: Fixed cost of opening collection/disassembly 𝑙. 

𝐹𝑂𝑜: Fixed cost of opening disposal 𝑜.  

𝑆𝑐𝑝𝑠: Manufacturing cost/unit for product 𝑝 by the supplier 𝑠. 

𝑀𝑐𝑝𝑚: Manufacturing cost/unit for product 𝑝 by the manufacturer 𝑚.  

𝐼𝑐𝑝𝑖 : Inspection cost/ unit for product 𝑝 the distribution 𝑖.  

𝐷𝑐𝑝𝑖: Processing cost/unit of product 𝑝 at the distribution 𝑖. 

𝐶𝑐𝑝𝑙: Collection cost/unit for the returned product 𝑝 at the collection center 𝑙. 

ℎ𝑝𝑖: Holding cost of apparent good items for product 𝑝 in distribution center 𝑖.  

ℎ𝑤𝑝𝑙: Holding cost associated with quantity of product 𝑝 returned from the 

customer zone to the collection 𝑙. 

𝜋̂𝑝𝑐: Shortage (penalty) cost for product 𝑝 and customer zone 𝑐.    

𝑊𝑝𝑚: Ordering cost per lot size of product 𝑝 at manufacturer 𝑚.  

𝑃𝑝𝑠: Purchasing cost/ unit for product 𝑝 from supplier 𝑠.   

𝐼𝑜𝑝𝑜: Disposal cost/unit of non-recyclable items of product 𝑝 at the disposal center 

𝑜  

𝑇𝑀𝑐𝑝𝑠𝑚: Transportation cost of the raw materials of product for product 𝑝 from 

supplier 𝑠 to manufacturer 𝑚.  

𝑇𝑃𝑐𝑝𝑚𝑖: Transportation cost of product 𝑝 from manufacturer 𝑚 to distribution 𝑖.  

𝑇𝑍𝑐𝑝𝑖𝑐: Transportation cost of the product 𝑝 from distribution 𝑖 to customer zone 𝑐.  
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𝑇𝑂𝑐𝑝𝑐𝑙: Transportation cost of product 𝑝 from the customer zone 𝑐 to collection 

center 𝑙. 

𝑇𝑂𝑃𝑐𝑝𝑙𝑚: Transportation cost of product 𝑝 from collection center 𝑙 to manufacturer 

𝑚.  

𝑇𝐼𝑐𝑝𝑙𝑜: Transportation cost of product 𝑝 from collection center 𝑙 to disposal center 

𝑜.  

𝐶𝑆𝑝𝑠: Capacity of raw material of product 𝑝 for supply center 𝑠.  

𝐶𝑃𝑝𝑚: Capacity for production of product 𝑝 in manufacturer 𝑚. 

𝐶𝐼𝑝𝑖: Capacity of product 𝑝  in distribution center 𝑖. 

𝐶𝐿𝑝𝑙: Capacity of product 𝑝 in collection center 𝑙. 

𝐶𝑂𝑝𝑜: Capacity of product 𝑝 in disposal center 𝑜.  

𝑈𝑆𝐿𝑝: Upper specification limit of product 𝑝. 

𝐿𝑆𝐿𝑝: Lower specification limit of product 𝑝. 

K: loss parameter  

𝑋𝑝: Actual value of the quality characteristic of product 𝑝. 

L(x): Loss of poor quality per unit product. 

𝜇𝑝 : Target quality characteristic of product 𝑝. 

𝜎𝑝 : Standard deviation of quality characteristic of product 𝑝. 

𝜓: Deviation from the target value. 

• The decision variables are defined as follows: 

𝑄𝑆𝑀𝑡𝑝𝑠𝑚: Quantity of raw material of product 𝑝 ordered from supplier 𝑠 to 

manufacturer 𝑚 at period 𝑡. 

𝑄𝑀𝐷𝑡𝑝𝑚𝑖: Quantity of product 𝑝 sent from manufacturer 𝑚 to distribution center 𝑖 

at period 𝑡. 

𝑄𝐷𝐶𝑡𝑝𝑖𝑐: Quantity of product 𝑝 planned to be sent from distribution center 𝑖 to 

customer zone 𝑐 at period 𝑡.  
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𝑄𝑁𝑆𝑡𝑝𝑐: Quantity of non-satisfied demand of product 𝑝 for customer zone 𝑐 at 

period 𝑡.   

𝑄𝐶𝑂𝑡𝑝𝑐𝑙: Quantity of product 𝑝 returned from customer zone 𝑐 to collection center 𝑙 

at period 𝑡.   

𝑄𝑅𝑃𝑡𝑝𝑙𝑚: Quantity of recyclable product 𝑝 shipped from collection center 𝑙 to 

manufacturer 𝑚 at period 𝑡.  

𝑄𝐸𝑃𝑡𝑝𝑙𝑚: Quantity of reworkable product 𝑝 shipped from collection center 𝑙 to 

manufacturer 𝑚 at period 𝑡. 

𝑄𝐼𝑃𝑡𝑝𝑙𝑜: Quantity of disposal product 𝑝 shipped from collection center 𝑙 to disposal 

center 𝑜 at period 𝑡.  

𝑣𝑡𝑝𝑠𝑚: 1 if the order of product 𝑝 is placed by manufacturer 𝑚 at period 𝑡 and 0 

otherwise.  

𝑆𝑡𝑠: 1 if a supplier is selected at location s at period t , 0 otherwise. 

𝐷𝑇𝑡𝑖: 1 if a distribution is opened at location i at period 𝑡, 0 otherwise. 

𝐶𝑇𝑡𝑙: 1 if a collection/disassembly is opened at location l at period 𝑡, 0 otherwise. 

𝐷𝑂𝑡𝑜: 1 if a disposal is opened at location o at period 𝑡, 0 otherwise. 

2.3.4 Mathematical Formulation: 

The objective function, 𝑍 minimizes the total cost of the supply chain network. The 

included costs are: 

- Facility opening costs: 

 ∑∑𝐹𝑆𝑠𝑆𝑡𝑠
𝑠∈𝑆𝑡∈𝑇

+∑∑𝐹𝐷𝑖𝐷𝑇𝑡𝑖
𝑖∈𝐼𝑡∈𝑇

+∑∑𝐹𝐶𝑙𝐶𝐿𝑡𝑙
𝑙∈𝐿𝑡∈𝑇

+∑∑𝐹𝑂𝑜𝐷𝑂𝑡𝑜
𝑜∈𝑂𝑡∈𝑇

 

- Purchasing cost: 

∑∑∑ ∑ 𝑊𝑝𝑚𝑣𝑡𝑝𝑠𝑚 + 𝑃.𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑚∈𝑀𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇

 

- Ordering costs: 
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∑∑∑ ∑ 𝑄𝑆𝑀𝑡𝑝𝑠𝑚(𝑆𝑐𝑝𝑠 + 𝑇𝑀𝑐𝑝𝑠𝑚)

𝑚∈𝑀𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇

 

- Cost incurred in the manufacturers: 

∑∑ ∑ ∑𝑄𝑀𝐷𝑡𝑝𝑚𝑖(𝑀𝑐𝑝𝑚 + 𝑇𝑃𝑐𝑝𝑚𝑖 + 𝐼𝑐𝑝𝑖 + 𝑑̃𝑡𝑃𝑅𝑝)

𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

 

- Cost incurred in the distributor centers: 

∑∑∑∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐 (𝐷𝑐𝑝𝑖 + 𝑇𝑍𝑐𝑝𝑖𝑐 + ℎ𝑝𝑖 + 𝐹𝑝(𝑥𝑝; 𝜇𝑝))

𝑐∈𝐶𝑖∈𝐼𝑝∈𝑃𝑡∈𝑇

 

- Cost incurred in the collection centers: 

∑∑∑∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙(𝐶𝑐𝑝𝑙 + 𝑇𝑂𝑐𝑝𝑐𝑙)

𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙ℎ𝑤𝑝𝑙
𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

 

- Costs related to recycling and reworking respectively: 

∑∑∑ ∑ 𝑄𝑅𝑃𝑡𝑝𝑙𝑚(𝑅𝑐̃𝑡𝑝𝑚 + 𝑇𝑂𝑃𝑐𝑝𝑙𝑚)

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝑄𝐸𝑃𝑡𝑝𝑙𝑚(𝑅𝐸𝑐̃𝑡𝑝𝑚 + 𝑇𝑂𝑃𝑐𝑝𝑙𝑚)

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

 

- Cost incurred in the disposal center: 

∑∑∑∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜(𝐼𝑜𝑝𝑜 + 𝑇𝐼𝑐𝑝𝑙𝑜)

𝑜∈𝑂𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

 

- Shortage cost: 

∑∑∑𝑄𝑁𝑆𝑡𝑝𝑐𝜋̂𝑝𝑐
𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

 

The total cost of the supply chain network optimization problem can be defined as 

follows:  
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =∑∑𝐹𝑆𝑠𝑆𝑡𝑠
𝑠∈𝑆𝑡∈𝑇

+∑∑𝐹𝐷𝑖𝐷𝑇𝑡𝑖
𝑖∈𝐼𝑡∈𝑇

+∑∑𝐹𝐶𝑙𝐶𝐿𝑡𝑙
𝑙∈𝐿𝑡∈𝑇

+∑∑𝐹𝑂𝑜𝐷𝑂𝑡𝑜
𝑜∈𝑂𝑡∈𝑇

+∑∑∑ ∑ 𝑊𝑝𝑚𝑣𝑡𝑝𝑠𝑚 + 𝑃𝑝𝑠. 𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑚∈𝑀𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝑄𝑆𝑀𝑡𝑝𝑠𝑚(𝑆𝑐𝑝𝑠 + 𝑇𝑀𝑐𝑝𝑠𝑚)

𝑚∈𝑀𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇

+∑∑ ∑ ∑𝑄𝑀𝐷𝑡𝑝𝑚𝑖(𝑀𝑐𝑝𝑚 + 𝑇𝑃𝑐𝑝𝑚𝑖 + 𝐼𝑐𝑝𝑖 + 𝑑̃𝑡𝑃𝑅𝑝)

𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐 (𝐷𝑐𝑝𝑖 + 𝑇𝑍𝑐𝑝𝑖𝑐 + ℎ𝑝𝑖 + 𝐹𝑝(𝑥𝑝; 𝜇𝑝))

𝑐∈𝐶𝑖∈𝐼𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙(𝐶𝑐𝑝𝑙 + 𝑇𝑂𝑐𝑝𝑐𝑙)

𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝑄𝑅𝑃𝑡𝑝𝑙𝑚(𝑅𝑐̃𝑡𝑝𝑚 + 𝑇𝑂𝑃𝑐𝑝𝑙𝑚)

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝑄𝐸𝑃𝑡𝑝𝑙𝑚(𝑅𝐸𝑐̃𝑡𝑝𝑚 + 𝑇𝑂𝑃𝑐𝑝𝑙𝑚)

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙ℎ𝑤𝑝𝑙
𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜(𝐼𝑜𝑝𝑜 + 𝑇𝐼𝑐𝑝𝑙𝑜)

𝑜∈𝑂𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑𝑄𝑁𝑆𝑡𝑝𝑐𝜋̂𝑝𝑐
𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

 

                                                                                                                               (2.1) 

Subject to: 

∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐
𝑖∈𝐼

+ 𝑄𝑁𝑆𝑡𝑝𝑐 ≥ 𝐷̃𝑡𝑝𝑐 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶                                      (2.2) 

∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑙∈𝐿

≤ 𝑅̃𝑡𝑝𝑐 + 𝑅𝑤̃𝑡𝑝𝑐 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶                                                 (2.3) 

∑ 𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑚∈𝑀

(1 − 𝑑̃𝑡) ≥∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐
𝑐∈𝐶

, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼                                (2.4) 

∑∑𝛽𝑝. 𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑝∈𝑃𝑐∈𝐶

≤∑∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜
𝑝∈𝑃𝑜∈𝑂

, ∀ 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿                                              (2.5) 

∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜
𝑜∈𝑂

+ ∑ 𝑄𝑅𝑃𝑡𝑝𝑙𝑚
𝑚∈𝑀

+ ∑ 𝑄𝐸𝑃𝑡𝑝𝑙𝑚
𝑚∈𝑀

=∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑐∈𝐶

, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙

∈ 𝐿                                                                                                             (2.6) 

∑∑𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑝∈𝑃𝑠∈𝑆

+∑∑𝑄𝑅𝑃𝑡𝑝𝑙𝑚
𝑝∈𝑃𝑙∈𝐿

+∑∑𝑄𝐸𝑃𝑡𝑝𝑙𝑚
𝑝∈𝑃𝑙∈𝐿

=∑∑𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑝∈𝑃𝑖∈𝐼

, ∀ 𝑡

∈ 𝑇,𝑚 ∈ 𝑀                                                                                              (2.7) 
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∑𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑠∈𝑆

≤ 𝐵. 𝑣𝑡𝑝𝑠𝑚, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆,𝑚 ∈ 𝑀                                           (2.8) 

∑ 𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑚∈𝑀

≤ 𝐶𝑆𝑝𝑠𝑆𝑡𝑠, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆                                                         (2.9) 

∑𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑖∈𝐼

≤ 𝐶𝑃𝑝𝑚, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃,𝑚 ∈ 𝑀                                                         (2.10) 

∑ 𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑚∈𝑀

≤ 𝐶𝐼𝑝𝑖𝐷𝑇𝑡𝑖 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼                                                      (2.11) 

∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑐∈𝐶

≤ 𝐶𝐿𝑝𝑙𝐶𝑇𝑡𝑙, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿                                                         (2.12) 

∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜
𝑙∈𝐿

≤ 𝐶𝑆𝑝𝑜𝐷𝑂𝑡𝑜 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑜 ∈ 𝑂                                                      (2.13) 

𝑣𝑡𝑠𝑚, 𝑆𝑡𝑠, 𝐷𝑇𝑡𝑖, 𝐶𝑇𝑡𝑙, 𝐷𝑂𝑡𝑜 ∈ {0,1}    ∀𝑡, 𝑝, 𝑠,𝑚, 𝑖, 𝑙, 𝑜                                           (2.14)                                             

 Non-negativity constraints                                                                                (2.15)                     

Constraint (2.2) ensures the customer demand satisfaction. Constraint (2.3) 

states that the returned items are not all necessarily collected from the customer 

zones. Constraint (2.4) makes sure that apparent produced good items quantity is 

larger than the quantity transported to the customer zone. Constraint (2.5) limits the 

quantity of disposed products shipped from the collection centers. Constraints (2.6) 

and (2.7) confirm the movement equilibrium between all the echelons. Constraint 

(2.8) assigns cost whenever the order is placed .Constraints (2.9-2.13) are based on 

capacity restriction for the facilities.                  

Two types of errors are committed in the inspection process. Type I error, 

𝒆̃𝟏, is committed when a conforming item is classified as non-conforming and Type 

II error, 𝒆̃𝟐, is committed when a non-conforming item is classified as conforming. 

The apparent conforming items fraction can be determined as follows: 

(1 − 𝒅)(1 − 𝒆̃𝟏) + 𝒅 𝒆̃𝟐 = 1 − 𝒆̃𝟏 − 𝒅(1 − 𝒆̃𝟏 − 𝒆̃𝟐) = 1 − 𝒅̃, with 0 ≤ 𝒅̃ ≤ 1 

 where, 

𝒅̃ = 𝒆̃𝟏 + 𝒅(1 − 𝒆̃𝟏 − 𝒆̃𝟐),                                                                                 (2.16) 

and the vectors 𝒆̃𝟏 and 𝒆̃𝟐 are both uncertain.  
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The quality loss function is proposed by Taguchi (1986). It states that for 

given specification limits not all values falling within them are equal and create 

equal loss because of poor quality. Quality loss function 𝐿(𝑥) is defined as follows: 

𝐿(𝑥) = 𝐾(𝑥 − 𝜇)2                 𝐿𝑆𝐿 ≤ 𝑥 ≤ 𝑈𝑆𝐿 

The quadratic term indicates that if the difference between actual value and target 

value is large, the loss would be more where 𝐾 is the loss parameter, 

𝐾 =
𝑉

𝜓2
 

and, 

𝜓 = (𝑈𝑆𝐿 − 𝜇) = (𝜇 − 𝐿𝑆𝐿) 

Thus, the amount of loss is expressed as follows:  

𝑄𝐷𝐶𝑡𝑝𝑖𝑐 ∫
1

𝜎√2𝜋
𝑒
−(𝑥−𝜇)2

2𝜎2  𝐾(𝑥 − 𝜇)2𝑑𝑥
𝑈𝑆𝐿

𝐿𝑆𝐿
= 𝑄𝐷𝐶𝑡𝑝𝑖𝑐 (1 − 𝑑̃𝑡)𝐹(𝑥; 𝜇)             (2.17) 

Equation (2.17) states that the apparent conforming quantity of product 𝑝 

planned to be sent from distribution center 𝑖 to customer zone 𝑐 at period 𝑡 is 

subject to an inspection to ensure that the produced lot is close enough to the target 

value according to Taguchi Quality approach. This loss is included in the objective 

function under the cost incurred in the distribution centers.  

2.4 Robust Counterpart Formulations 

2.4.1 Definition 1: Counterpart Formulation for Linear Programming  

Consider the following linear programming £, 

𝑀𝑖𝑛 ∑ 𝑐̃𝑗𝑥𝑗𝑗                                                          

s.t. ∑ 𝑎̃𝑖𝑗𝑥𝑗 ≤ 𝑏̃𝑖    ∀𝑖𝑗  

where 𝑎̃𝑖𝑗, 𝑏̃𝑖, and 𝑐̃𝑗, represent the true value of the parameters which are subject to 

uncertainty and defined as follows: 

𝑎̃𝑖𝑗 = 𝑎𝑖𝑗 + 𝜁𝑖𝑗𝑎̂𝑖𝑗    ∀𝑗 ∈ 𝐽𝑖 

𝑏̃𝑖 = 𝑏𝑖 + 𝜁𝑖𝑗𝑏̂𝑖 

𝑐̃𝑗 = 𝑐𝑗 + 𝜁𝑗𝑐̂𝑗            ∀𝑗 ∈ 𝐽𝑖 
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where 𝑎𝑖𝑗, 𝑏𝑖, and 𝑐𝑗 represent the nominal (expected) value of the parameters; 𝑎̂𝑖𝑗, 

𝑏̂𝑖, and 𝑐̂𝑗 represent constant perturbation; 𝜁𝑖𝑗 is a random variable that takes values 

in the interval [-1, 1]. Without loss of generality, we make the following 

assumptions: 

• If uncertain data exists in the objective function as coefficients, then the 

objective function can be written as a constraint.  

• In any constraint j, if the right-hand-side parameter is subject to uncertainty, 

then model £ can be written as:  

𝑀𝑖𝑛 𝑍                                                 

s.t.  ∑ 𝑐̃𝑗𝑥𝑗𝑗 ≤ 𝑍 

𝑏̃𝑖 −∑𝑎̃𝑖𝑗𝑥𝑗 ≤ 0    ∀𝑖

𝑗

 

Therefore, we end up with a constraint that has uncertain parameters on the left-

hand-side only.  

 

2.4.2 Definition 2: Box Uncertainty Set   

The box uncertainty set is formulated based on the Chebyshev (infinity) norm of the 

perturbation variables (Figure 2.2). It is presented as follows: 

𝑈∞ = {𝜁 |‖𝜁‖∞ ≤ 𝛹} = { 𝜁||𝜁|  ≤ 𝛹}                                                                

(2.18) 

where  𝛹 is the adjustable parameter that controls the uncertainty set size, and 

hence controlling the degree of conservatism (Figure 2.1). If 𝛹 = 1, then the 

resulting uncertainty set is the interval uncertainty set which is a special case of the 

box uncertainty set.  
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Figure 2.2: Illustration of box uncertainty set where 𝑎1 and 𝑎2 are the 

nominal values of the uncertain parameters 𝑎̃1 and 𝑎̃2, respectively.   

 

Ben–Tal and Nemirovski (2000) introduced a tractable form of a model with box 

uncertainty sets which is given as follows, derived from Model £: 

𝑀𝑖𝑛 𝑍 

s.t.  ∑ 𝑐𝑗𝑥𝑗𝑗 +  𝛹[∑ 𝑐̂𝑗|𝑥𝑗|𝑗 ] ≤ 𝑍 

∑𝑎𝑖𝑗𝑥𝑗 +  𝛹 [∑𝑎̂𝑖𝑗|𝑥𝑗|

𝑗

+ 𝑏̂𝑖]  ≤ 𝑏𝑖    ∀𝑖

𝑗

 

The box uncertainty set is less conservative in comparison with the other 

bounded uncertainty sets. However, if 𝛹𝑖 is not within the suggested range such that 

the adjustable uncertainty set parameters 𝛹𝑖 ≥ 1, the box uncertainty becomes more 

conservative than the original linear programming. Proof is provided by (Zukui Li, 

Ran Ding, and Christodoulos A. Floudas, 2011).  

The corresponding robust counterpart formulation for Model (2.1) – (2.15) is given 

as follows, 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧 𝑍 =∑∑𝐹𝑆𝑠𝑆𝑡𝑠
𝑠∈𝑆𝑡∈𝑇

+∑∑𝐹𝐷𝑖𝐷𝑇𝑡𝑖
𝑖∈𝐼𝑡∈𝑇

+∑∑𝐹𝐶𝑙𝐶𝐿𝑡𝑙
𝑙∈𝐿𝑡∈𝑇

+∑∑𝐹𝑂𝑜𝐷𝑂𝑡𝑜
𝑜∈𝑂𝑡∈𝑇

+∑∑∑ ∑ 𝑊𝑝𝑚𝑣𝑡𝑝𝑠𝑚 + 𝑃. 𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑚∈𝑀𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝑄𝑆𝑀𝑡𝑝𝑠𝑚(𝑆𝑐𝑝𝑠 + 𝑇𝑀𝑐𝑝𝑠𝑚)

𝑚∈𝑀𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇

+∑∑ ∑ ∑𝑄𝑀𝐷𝑡𝑝𝑚𝑖(𝑀𝑐𝑝𝑚 + 𝑇𝑃𝑐𝑝𝑚𝑖 + 𝐼𝑐𝑝𝑖)

𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐 (𝐷𝑐𝑝𝑖 + 𝑇𝑍𝑐𝑝𝑖𝑐 + ℎ𝑝𝑖 + 𝐹𝑝(𝑥𝑝; 𝜇𝑝))

𝑐∈𝐶𝑖∈𝐼𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙(𝐶𝑐𝑝𝑙 + 𝑇𝑂𝑐𝑝𝑐𝑙)

𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝑄𝑅𝑃𝑡𝑝𝑙𝑚(𝑇𝑂𝑃𝑐𝑝𝑙𝑚)

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝑄𝐸𝑃𝑡𝑝𝑙𝑚(𝑇𝑂𝑃𝑐𝑝𝑙𝑚)

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙ℎ𝑤𝑝𝑙
𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜(𝐼𝑜𝑝𝑜 + 𝑇𝐼𝑐𝑝𝑙𝑜)

𝑜∈𝑂𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑𝑄𝑁𝑆𝑡𝑝𝑐𝜋̂𝑝𝑐
𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+ 𝑦𝑑 + 𝑦𝑅𝐶 + 𝑦𝑅𝐸𝑐                                                                              (2.19) 

Subject to: 

∑∑ ∑ ∑𝑃𝑅𝑝𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

𝑑𝑡 +𝛹𝑑∑∑ ∑ ∑𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

𝑑̂𝑡 ≤ 𝑦𝑑      (2.20) 

∑∑∑ ∑ 𝑄𝑅𝑃𝑡𝑝𝑙𝑚𝑅𝑐𝑡𝑝𝑚
𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+𝛹𝑅𝐶∑∑∑ ∑ 𝑄𝑅𝑃𝑡𝑝𝑙𝑚𝑅𝑐̂𝑡𝑝𝑚
𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

≤ 𝑦𝑅𝐶(2.21) 

∑∑∑ ∑ 𝑄𝐸𝑃𝑡𝑝𝑙𝑚𝑅𝐸𝑐𝑡𝑝𝑚
𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+𝛹𝑅𝐸𝑐∑∑∑ ∑ 𝑄𝐸𝑃𝑡𝑝𝑙𝑚𝑅𝐸𝑐̂𝑡𝑝𝑚
𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

≤ 𝑦𝑅𝐸𝑐                                                                                                    (2.22) 

∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐
𝑖∈𝐼

+ 𝑄𝑁𝑆𝑡𝑝𝑐 ≥ 𝐷𝑡𝑝𝑐 + 𝛹𝐷𝐷̂𝑡𝑝𝑐 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶                (2.23) 

∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑙∈𝐿

− 𝛹𝑅𝑅̂𝑡𝑝𝑐 −𝛹𝑅𝑤𝑅𝑤̂𝑡𝑝𝑐 ≤ 𝑅𝑡𝑝𝑐 + 𝑅𝑤𝑡𝑝𝑐 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶  (2.24) 
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∑ 𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑚∈𝑀

(1 − 𝑑𝑡 −𝛹𝑄𝑑̂𝑡) ≥∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐
𝑐∈𝐶

, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼              (2.25) 

∑∑𝛽𝑝. 𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑝∈𝑃𝑐∈𝐶

+ 𝛹𝛽∑∑𝛽̂𝑝. 𝑄𝐶𝑂𝑡𝑝𝑙𝑜
𝑝∈𝑃𝑜∈𝑂

≤∑∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜
𝑝∈𝑃𝑜∈𝑂

, ∀ 𝑡 ∈ 𝑇, 𝑙

∈ 𝐿                                                                                                           (2.26) 

Given constraints (2.6)- (2.15).  

2.4.3 Definition 3: Polyhedral Uncertainty Set   

The polyhedral uncertainty set that is described using the 1-norm of the uncertain 

data vector is presented as follows: 

𝑈1 = {𝜁 |‖𝜁‖1 ≤ Г} = { 𝜁| ∑ |𝜁𝑖|𝑗∈𝐽𝑖
 ≤ Г}                                                         (2.27) 

where Γ is the adjustable parameter controlling the size of the uncertainty set, 

Figure 2.3.  

 

Figure 2.3: Illustration of polyhedral uncertainty set where 𝑎1 and 𝑎2 are the 

nominal values of the uncertain parameters 𝑎̃1 and 𝑎̃2, respectively.   

Bertsimas and Sim introduced the polyhedral uncertain set which has the equivalent 

tractable form, based on Model £: 

𝑀𝑖𝑛 𝑍 

s.t.  ∑ 𝑐𝑗𝑥𝑗𝑗 +  Г𝑈 ≤ 𝑍 

𝑈 ≥ 𝑐̂𝑗|𝑥𝑗|,     ∀𝑗 ∈ 𝐽 

∑𝑎𝑖𝑗𝑥𝑗 +  Г𝑢𝑖  ≤ 𝑏𝑖    ∀𝑖

𝑗

 

𝑢𝑖 ≥ 𝑎̂𝑖𝑗|𝑥𝑗|,          ∀𝑖, 𝑗 ∈ 𝐽 
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𝑢𝑖 ≥ 𝑏̂𝑖,              ∀𝑖   

In the case where the uncertain parameter is subject to an unbounded 

distribution, it is recommended to use the polyhedral uncertainty set because of  its 

flexibility to design a set size that leads to the desired robust solution. Unlike the 

bounded distribution, where the combined interval and polyhedral uncertainty sets 

are considered such that the bounds can not be exceeded by the designed set. 

The corresponding robust counterpart formulation based on the polyhedral 

uncertainty sets for model (2.1) – (2.15) is given as follows,    

∑∑ ∑ ∑𝑃𝑅𝑝𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

𝑑𝑡 + 𝑢𝑑Г𝑑 ≤ 𝑦𝑑                                                        (2.28) 

𝑢𝑑 ≥ 𝑑̂𝑡𝑄𝑀𝐷𝑡𝑝𝑚𝑖 ,         ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃,𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼                                              (2.29) 

∑∑∑ ∑ 𝑄𝑅𝑃𝑡𝑝𝑙𝑚𝑅𝑐𝑡𝑝𝑚
𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+ 𝑢𝑅𝐶Г𝑅𝐶 ≤ 𝑦𝑅𝐶                                                     (2.30) 

𝑢𝑅𝐶 ≥ 𝑅𝑐̂𝑡𝑝𝑚𝑄𝑅𝑃𝑡𝑝𝑙𝑚,   ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿,𝑚 ∈ 𝑀                                           (2.31)                                            

∑∑∑ ∑ 𝑄𝐸𝑃𝑡𝑝𝑙𝑚𝑅𝐸𝑐𝑡𝑝𝑚
𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+ 𝑢𝑅𝐸𝑐Г𝑅𝐸𝑐 ≤ 𝑦𝑅𝐸𝑐                                            (2.32) 

𝑢𝑅𝐸𝑐 ≥ 𝑅𝐸𝑐̂𝑡𝑝𝑚𝑄𝐸𝑃𝑡𝑝𝑙𝑚,   ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿,𝑚 ∈ 𝑀                                       (2.33)                                           

∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐
𝑖∈𝐼

+ 𝑄𝑁𝑆𝑡𝑝𝑐 ≥ 𝐷𝑡𝑝𝑐 + Г𝐷𝑢𝐷 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶                    (2.34) 

𝑢𝐷 ≥ 𝐷̂𝑡𝑝𝑐 ,                           ∀𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶                                                        (2.35)            

∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑙∈𝐿

− 𝑅𝑡𝑝𝑐 − 𝑅𝑤𝑡𝑝𝑐 ≤ Г𝑅+𝑊 + 𝑅̂𝑡𝑝𝑐 + 𝑅𝑤̂𝑡𝑝𝑐 ,    ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐

∈ 𝐶                                                                                                          (2.36) 

∑ 𝑄𝑀𝐷𝑡𝑝𝑚𝑖(1 − 𝑑̃𝑡)

𝑚∈𝑀

− 𝑢𝑄Г𝑄 ≥∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐
𝑐∈𝐶

,    ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼            (2.37) 

  𝑢𝑄 ≥ 𝑑̂𝑡𝑄𝑀𝐷𝑡𝑝𝑚𝑖 ,                                ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃,𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼                     (2.38)          

∑∑𝛽𝑝. 𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑝∈𝑃𝑐∈𝐶

+ 𝑢𝛽 Г𝛽 ≤∑∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜
𝑝∈𝑃𝑜∈𝑂

, ∀ 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿                           (2.39) 

𝑢𝛽 ≥ 𝛽̂𝑝. 𝑄𝐶𝑂𝑡𝑝𝑐𝑙        ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶, 𝑙 ∈ 𝐿                                                  (2.40) 

Given equation (2.19) and constraints (2.6) - (2.15).  
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2.4.4 Definition 4: Combined Interval and Polyhedral Uncertainty Set   

This type of uncertainty set is the intersection between the polyhedral and the 

interval set defined with both 1-norm and infinite norm as follows: 

𝑈1∩∞ = {𝜁𝑖  |∑ |𝜁𝑖|𝑗∈𝐽𝑖
≤ Г, |𝜁𝑖| ≤ 1, ∀𝑗 ∈ 𝐽𝑖}                                                      (2.41) 

Figure 2.4: Illustration of the combined interval and polyhedral uncertainty set. 

Bertsimas and Sim introduced the combined interval and polyhedral uncertain set 

which has the following equivalent tractable form, based on Model £: 

𝑀𝑖𝑛 𝑍 

s.t.  ∑ 𝑐𝑗𝑥𝑗𝑗 +  Г𝑈 + ∑ 𝜑𝑗0𝑗∈𝐽𝑖
≤ 𝑍 

𝑈 + 𝜑𝑗0 ≥ 𝑐̂𝑗|𝑥𝑗|,     ∀𝑗 ∈ 𝐽 

𝑈, 𝑝𝑗0 ≥ 0 

∑𝑎𝑖𝑗𝑥𝑗 +  Г𝑢𝑖 +∑𝜑𝑖𝑗
𝑗∈𝐽𝑖

+𝜑𝑖0 ≤ 𝑏𝑖    ∀𝑖

𝑗

 

𝑢𝑖 + 𝜑𝑖𝑗 ≥ 𝑎̂𝑖𝑗|𝑥𝑗|,          ∀𝑖, 𝑗 ∈ 𝐽 

𝑢𝑖 + 𝜑𝑖0 ≥ 𝑏̂𝑖,              ∀𝑖   

The complete derivation of the above model can be seen in (Li, Tang, and Floudas, 

2012). The corresponding robust counterpart formulation based on the combined 

interval and polyhedral uncertainty sets for model (2.1) – (2.15) is given as follows,    

∑∑ ∑ ∑𝑃𝑅𝑝𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

𝑑𝑡 + 𝑢𝑑Г𝑑  +  ∑𝜑𝑡
𝑑

𝑡∈𝑇

≤ 𝑦𝑑                                    (2.42) 
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𝑢𝑑 + 𝜑𝑡
𝑑 ≥ 𝑑̂𝑡𝑄𝑀𝐷𝑡𝑝𝑚𝑖 ,         ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃,𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼                                   (2.43)                                       

∑∑∑ ∑ 𝑄𝑅𝑃𝑡𝑝𝑙𝑚𝑅𝑐𝑡𝑝𝑚
𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+ 𝑢𝑅𝐶Г𝑅𝑐 +∑∑ ∑ 𝜑𝑡𝑝𝑚
𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

≤ 𝑦𝑅𝐶               (2.44) 

𝑢𝑅𝐶 + 𝜑𝑡𝑝𝑚
𝑅𝑐 ≥ 𝑅𝑐̂𝑡𝑝𝑚𝑄𝑅𝑃𝑡𝑝𝑙𝑚,   ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿,𝑚 ∈ 𝑀                             

(2.45) 

∑∑∑ ∑ 𝑄𝐸𝑃𝑡𝑝𝑙𝑚𝑅𝐸𝑐𝑡𝑝𝑚
𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+ 𝑢𝑅𝐸𝑐Г𝑅𝐸𝑐 +∑∑ ∑ 𝜑𝑡𝑝𝑚
𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

≤ 𝑦𝑅𝐸𝑐      (2.46) 

𝑢𝑅𝐸𝑐 + 𝜑𝑡𝑝𝑚
𝑅𝐸𝑐 ≥ 𝑅𝐸𝑐̂𝑡𝑝𝑚𝑄𝐸𝑃𝑡𝑝𝑙𝑚,   ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿,𝑚 ∈ 𝑀                      (2.47)   

∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐
𝑖∈𝐼

+ 𝑄𝑁𝑆𝑡𝑝𝑐 ≥ 𝐷𝑡𝑝𝑐 + Г𝐷𝑢𝐷 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶                    (2.48) 

∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑙∈𝐿

− 𝑅𝑡𝑝𝑐 − 𝑅𝑤𝑡𝑝𝑐 ≤ Г𝑅+𝑊 + 𝑅̂𝑡𝑝𝑐 + 𝑅𝑤̂𝑡𝑝𝑐 ,   ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐

∈ 𝐶                                                                                                          (2.49) 

∑ 𝑄𝑀𝐷𝑡𝑝𝑚𝑖(1 − 𝑑̂𝑡)

𝑚∈𝑀

− 𝑢𝑄Г𝑄 −∑𝜑𝑡
𝑄

𝑡∈𝑇

≥∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐
𝑐∈𝐶

,    ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑖

∈ 𝐼                                                                                                           (2.50) 

𝑢𝑄 + 𝜑𝑡
𝑄 ≥ 𝑑̂𝑡𝑄𝑀𝐷𝑡𝑝𝑚𝑖 ,                   ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃,𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼                       (2.51)   

∑∑𝛽𝑝. 𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑝∈𝑃𝑐∈𝐶

+ 𝑢𝛽 Г𝛽  +∑𝜑𝑝
𝛽

𝑝∈𝑃

 ≤ ∑∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜
𝑝∈𝑃𝑜∈𝑂

, ∀ 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿       (2.52) 

𝑢𝛽 + 𝜑𝑝
𝛽
≥ 𝛽̂𝑝. 𝑄𝐶𝑂𝑡𝑝𝑐𝑙        ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶, 𝑙 ∈ 𝐿                                       (2.53)                            

Given equation (2.19) and constraints (2.6) - (2.15).  

2.5 Probabilistic Guarantees of Robust Counterpart Optimization: 

In many practical problems the uncertainty set is defined by the decision 

maker. What makes robust optimization (RO) different from stochastic 

programming is that RO does not require a known probability distribution for the 

uncertainty. However,  probabilistic guarantees (chance constraint approach) can be 

used to evaluate the lower bound on constraint satisfaction based on the desired 

constraint violation.  

  Li, Tang, and Floudas (2012) and Guzman, Matthews, and Floudas (2016) 

considered probabilistic guarantees on constraint satisfaction employed in the 

literature for different uncertainty set robust counterpart optimization models, for 
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both bounded and unbounded uncertainty, with and without a detailed probability 

distribution information. 

 In general, two different methods can be used in evaluating the probabilistic 

guarantees: a priori and a posteriori probability bound, (Li, et al., 2012). In this 

work we will focus on the first type of methods which uses the uncertainty set 

information to derive  the probability before we solve the problem. 

2.5.1 Priori Probabilistic Guarantees Based on Uncertainty Set Information 

The a priori approach is used as a traditional way to compute the size of the 

uncertainty set necessary to ensure that the degree of constraint violation does not 

exceed a certain level. Therefore,  

Pr {∑ 𝑎𝑖𝑗𝑥𝑗𝑗 + ∑ 𝜁𝑗𝑗∈𝐽𝑖
𝑎̂𝑖𝑗𝑥𝑗 > 𝑏𝑖} ≤ Pr {∑ 𝜁𝑗𝑗∈𝐽𝑖

𝑎𝛿𝑗 > ∆}                              (2.54)                                           

where the parameter Δ is the uncertainty set parameter (i.e. 𝛹, or Г), and 𝐽𝑖 is the 

number of uncertain parameters in the ith constraint. Note that δ is a vector with its 

𝛿𝑗 components satisfying  −1 ≤ 𝛿𝑗 ≤ 1. Moreover, ∑ 𝛿𝑗 ≤ 1𝑗∈𝐽𝑖
, and 0 ≤ 𝛿𝑗 ≤ 1 

for the box and combined interval and polyhedral uncertainties sets respectively.  

The poof of (2.54) is available in Li et al. (2011). The summary of different 

upper bounds on the probability of constraint violation is presented in Table 2.3. 

Note that in Table 2.3 we follow the following abbreviations; B: Box, E: 

Ellipsoidal, IE: Interval and Ellipsoidal, P: Polyhedral, IP: Interval and Polyhedral.   

The proof of upper bounds on the probability of constraint violation provided by 

Table 2.3 is available in (Ben-tal & Nemirovski, 2000),  (Bertsimas & Sim, 2004b),  

(Paschalidis and Kang, 2005), and (Guzman et al., 2016).  

 

upper bounds on the probability of constraint 

violation 

Assumption on 

Uncertainty distribution 

Robust 

Counterpart 

Applicable 

Proposed 

by 

B1: exp (−
∆2

2
) Independent, symmetric, bounded 

B, E, IE (Ben-tal & 

Nemirovski, 
2000) 

B2: exp (−
∆2

2|𝐽𝑖|
) Independent, symmetric, bounded 

B, E, IE, P, 

IP 

(Bertsimas 

& Sim, 
2004b) 

B3:exp (𝑚𝑖𝑛𝜃>0{−𝜃∆ + ∑ 𝐼𝑛 𝐸[𝑒𝜃𝜁𝑗]𝑗∈𝐽𝑖
}) 

It has known  probability 

distribution. 

B, E, IE, P, 

IP 

(Paschalidis 

& Kang, 

2005) 

B4: exp (𝑚𝑖𝑛𝜃>0{−𝜃∆ + ∑ 𝐼𝑛 𝐺𝑗(𝜃)𝑗∈𝐽𝑖
}) known bounds on 𝐸[𝜁𝑗] 

B, E, IE, P, 

IP 

(Guzman et 

al., 2016) 

B5: exp (𝑚𝑖𝑛𝜃>0 {−𝜃∆ + |𝐽𝑗|∑ 𝐼𝑛 𝐺𝑗̅ (𝜃/𝑗∈𝐽𝑖

√|𝐽𝑗|)}) known bounds on 𝐸[𝜁𝑗] 

 E, IE 

(Guzman et 

al., 2016) 

Table 2.3: The summary of different upper bounds on the probability of constraint 

violation.  
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2.5.2 The Characteristics of The Introduced Probability Bounds 

From Table 2.3, it is observed that for the different types of robust counterparts, 

bounding the probability of constraint violation corresponds to the evaluation of the 

expression Pr {∑ 𝜁𝑗𝑗∈𝐽𝑖
𝛿𝑗 > ∆}. The given probability bounds in Table 2.3 are  

bounded, symmetric and independent. Moreover, different bounds can be derived if 

the full probability distribution information of the uncertainty is provided. The 

following characteristics of the introduced probability bounds can be listed as 

follows: 

1. If {𝜁𝑗}𝑗𝜖𝐽𝑖 are independent and subject to a bounded and symmetric 

probability distribution supported on [-1, 1], then B1 and B2 apply. That is; 

Pr {∑ 𝑎𝑖𝑗𝑥𝑗𝑗 + ∑ 𝜁𝑗𝑗∈𝐽𝑖
𝑎̂𝑖𝑗𝑥𝑗 > 𝑏𝑖} ≤ exp (−

∆2

2
)                                               (2.55)                                              

Pr {∑ 𝑎𝑖𝑗𝑥𝑗𝑗 + ∑ 𝜁𝑗𝑗∈𝐽𝑖
𝑎̂𝑖𝑗𝑥𝑗 > 𝑏𝑖} ≤ exp (−

∆2

2|𝐽𝑖|
)                                            (2.56)           

However, B1 only applies for the box (B), ellipsoidal (E), and interval plus 

ellipsoidal (IE) uncertainty sets induced robust counterparts. 

2. If {𝜁𝑗}𝑗𝜖𝐽𝑖 are independent and subject to symmetric probability distribution, 

then B3 applies such that, 

Pr {∑ 𝑎𝑖𝑗𝑥𝑗𝑗 + ∑ 𝜁𝑗𝑗∈𝐽𝑖
𝑎̂𝑖𝑗𝑥𝑗 > 𝑏𝑖} ≤ exp (𝑚𝑖𝑛𝜃>0{−𝜃∆ + ∑ 𝐼𝑛 𝐸[𝑒𝜃𝜁𝑗]𝑗∈𝐽𝑖

}) (2.57)                 

where 𝐸[𝑒𝜃𝜁𝑗] refers to the moment generation function of probability 

density function 𝑓(𝜁𝑗). Moreover, it needs the solution of the following 

additional nonlinear nonconvex optimization problem (2.58): 

min∆ 

s.t. 

−𝜃∆ +∑𝐼𝑛 𝐸[𝑒𝜃𝜁𝑗]

𝑗∈𝐽𝑖

≤ ln (𝜀) 

∆, 𝜃 ≥ 0                                                                                                   (2.58) 

3. For B4 and B5 the uncertain parameters have known lower and upper 

bounds and their means are known only to within some range of values. 

Hence, a single expected value cannot be confidently imposed. Thus, we 

have the following expressions: 

Pr {∑ 𝑎𝑖𝑗𝑥𝑗𝑗 + ∑ 𝜁𝑗𝑗∈𝐽𝑖
𝑎̂𝑖𝑗𝑥𝑗 > 𝑏𝑖} ≤  exp (𝑚𝑖𝑛𝜃>0{−𝜃∆ + ∑ 𝐼𝑛 𝐺𝑗(𝜃)𝑗∈𝐽𝑖

})  (2.59) 
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Pr {∑ 𝑎𝑖𝑗𝑥𝑗𝑗 + ∑ 𝜁𝑗𝑗∈𝐽𝑖
𝑎̂𝑖𝑗𝑥𝑗 > 𝑏𝑖} ≤ exp (𝑚𝑖𝑛𝜃>0 {−𝜃∆ + |𝐽𝑗| ∑ 𝐼𝑛 𝐺𝑗̅ (𝜃/𝑗∈𝐽𝑖

√|𝐽𝑗|)}                                                                                                                (2.60) 

where 𝐺𝑗(𝜃) = 𝜇𝑗 sinh 𝜃 + cosh 𝜃, and 𝐺𝑗̅(𝜃) = (max𝜇𝑗) sinh 𝜃 + cosh 𝜃. Note 

that B5 is applicable to only ellipsoidal (E) and interval and ellipsoidal (IE) 

uncertainty sets. Also, we may notice that (2.59) and (2.60) require the solution of 

additional nonlinear nonconvex optimization problems (2.61) and (2.62), 

respectively. 

For (2.53), we need to solve the following optimization problem; 

min∆ 

s.t. 

−𝜃∆ +∑𝐼𝑛 𝐺𝑗(𝜃)

𝑗∈𝐽𝑖

≤ ln (𝜀) 

∆, 𝜃 ≥ 0                                                                                                               (2.61)                                                                                                                                                                                                 

and for (2.54),  

min∆ 

s.t. 

−𝜃∆ + |𝐽𝑗|∑ 𝐼𝑛 𝐺𝑗̅ (𝜃/√|𝐽𝑗|)

𝑗∈𝐽𝑖

 

∆, 𝜃 ≥ 0                                                                                                               (2.62) 

In B4 and B5 instead of the nominal value of 𝑎̂𝑖𝑗 representing the mean, yielding 

𝐸[𝜁𝑖𝑗] = 0, the nominal value is chosen such that |𝐸[𝜁𝑖𝑗]| ≤ 𝜇𝑖𝑗.                                                          

Traditional framework steps (Li et al., 2012) of applying robust optimization for a 

probabilistically constrained optimization problem can be summarized as follows: 

1. The probabilistic constraint violation  ε is set. 

2.  The  uncertainty set is selected by the distribution of the uncertainty.  

3. The uncertainty set size parameter  is computed based on the a priori 

probability bounds.  

4. The problem can be solved using the above uncertainty set size parameter   

and the solution obtained satisfies the desired probability 1− ε. 

 

2.6 Numerical Example and Computational Results 

To illustrate the application of robust optimization framework based on the 

three different uncertainty sets which are box, polyhedral, and the combined 
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interval and polyhedral, we solve our proposed model. We utilize four different 

probability bounds including those bounds which require solving additional 

nonlinear nonconvex optimization problems. In addition, we evaluate the robust 

solutions at different probability constraint violations, 𝜀, for three problem sizes. 

The sizes of the problem are explained in Table 2.4.   

  

Size 

problem  

No. 

No. of 

periods 

No. of 

potential 

supplier 

centers 

No. of 

plant 

 centers 

No. of 

potential 

distribution 

centers 

No. of 

customer 

zones 

No. of 

potential 

collection 

centers 

No. of 

potential 

disposal 

centers 

1 12 3 2 3 5 3 2 

2 12 5 3 5 10 5 3 

3 12 7 5 7 20 7 5 

Table 2.4: Test Problem Sizes.  

Three random numerical examples of different sizes are considered, and 

specifications of the test problems are presented next. The nominal values of the 

following uncertain parameters: 𝐷̃𝑡𝑝𝑐, 𝑅̃𝑡𝑝𝑐, 𝑅𝑤̃𝑡𝑝𝑐, 𝑅𝑐̃𝑡𝑝𝑚, 𝑅𝐸𝑐̃𝑡𝑝𝑚, 𝛽𝑝, and 𝑑̃𝑡 are 

generated randomly using uniform distribution at 𝑡 = 1, Table 2.5, and then the 

nominal values for the rest of the periods are generated as explained in Fig.2.5. For 

instance, it shows that in Fig.2.5 the nominal values at period 𝑡 = 2, is higher than 

the nominal values of 𝑡 = 1 by 10%. This increase continues until it reaches to 𝑡 =

6, at which the nominal values decrease by 10% of 𝑡 = 5. Then, the values keep 

going down by 10% until it reaches the end of the year 𝑡 = 12. 

 This behavior is projected on the assumption that the market demand 

growth for some products would increase gradually at the beginning of the cycle 

until it reaches to its highest sales in the mid of the cycle. After that the customers 

lose their interests in these products because other companies in the market offer 

competitive products with reasonable prices. In addition, the company decides to 

shift to new products with new features which means low sales of old products at 

the end of the cycle.        

Note that the deviation magnitudes of the uncertain parameters are always 

set to be 0.1 of the nominal values. The random generated data of the proposed 

model parameters are given in Tables 2.5 and 2.6.  

 Nominal Values for Product p 

Uncertain 

Parameter 
1 2 3 
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𝐷̃𝑡𝑝𝑐 U (65, 165) U (55, 147) U (70, 170) 

𝑅̃𝑡𝑝𝑐 U (44, 85) U (38, 95) U (61, 110) 

𝑅𝑤̃𝑡𝑝𝑐 U (10, 36) U (13, 43) U (9, 26) 

𝑅𝑐̃𝑡𝑝𝑚 U (9, 12) U (6.5, 9) U (6, 8) 

𝑅𝐸𝑐̃𝑡𝑝𝑚 U (4, 6) U (4, 6.5) U (3.5, 6) 

𝛽𝑝 0.2 0.175 0.18 

𝑑̃𝑡   0.05   

Table 2.5: The nominal values of the model uncertain parameters at period 𝑡 =

1,for each product p.  

 

Figure 2.5: Generating the nominal values for the entire year based on period t=1. 

 

 Values  Values 

Parameter Product 1 (𝑝1) Product 2 (𝑝2) Product 3 (𝑝3) Parameter Product 1(𝑝1) Product 2 Product 3 

𝑆𝑐𝑝𝑠 ~U(12.5, 15) ~U(10,12) ~U(8,13) 𝐶𝐼𝑝𝑖 ~U(575, 660) ~U(580,645) ~U(550,630) 

𝑀𝑐𝑝𝑚 ~U(40,45) ~U(38,42) ~U(43,45) 𝐶𝐿𝑝𝑙 ~U(235, 280) ~U(200, 245) 

~U(220, 

265) 

𝐼𝑐𝑝𝑖 ~U(5,6) ~U(3.75,5.75) ~U(4.5,5.5) 𝐶𝑂𝑝𝑜 ~U(345,350) ~U(295,300) 
~U(315, 
320) 

𝐷𝑐𝑝𝑖 ~U(10,12) ~U(10,11) ~U(9.5,10.5) 𝑇𝑀𝑐𝑝𝑠𝑚 ~U(5, 8) 

0.75 +Values 

of (𝑝1) 

1.2 +Values 

of (𝑝1) 

𝐶𝑐𝑝𝑙 ~U(8,9.5) ~U(7,8) ~U(7.75,8.75) 𝑇𝑃𝑐𝑝𝑚𝑖 ~U(3, 4.75) 

ℎ𝑝𝑖 ~U(3,4) ~U(4,4.5) ~U(4,5) 𝑇𝑂𝑐𝑝𝑐𝑙 ~U(4, 8) 

𝑃𝑝𝑠 ~U(6.5,10) ~U(5,6) ~U(3,7) 𝑇𝑍𝑐𝑝𝑖𝑐 ~U(3, 5) 

𝐼𝑜𝑝𝑜 ~U(3,3.5) ~U(3, 3.75) ~U(3,5) 𝑇𝑂𝑃𝑐𝑝𝑙𝑚 ~U(3.25, 5) 

𝐶𝑆𝑝𝑠 ~U(685, 800) ~U(720, 840) ~U(750, 780) Tic ~U(4,5) 

𝐶𝑃𝑝𝑚 ~U(540, 650) ~U(500,600) ~U(590,620)         

Table 2.6: The randomly generated data of the proposed model parameters.  

 

Parameter Values Parameter Values 

𝐹𝑆𝑠 ~U(65000,81000) 𝑈𝑆𝐿𝑝 4.8 

𝐹𝐷𝑖  ~U(40000, 55000) 𝐿𝑆𝐿𝑝 5.2 

𝐹𝐶𝑙 ~U(35000, 45000) K 120 

𝐹𝑂𝑜 ~U(20000, 30000) 𝜇𝑝 5 

ℎ𝑤𝑝𝑙 ~U(2, 2.5) 𝜎𝑝 0.05 

𝜋̂𝑝𝑐 ~U(70000, 95000) 

𝑊𝑝𝑚 1000   

Table 2.7: Design of the data set.   

The computations of MILP were run using the branch and bound algorithm 

accessed via LINGO16.0 on a PC -3GHzand; 4 GB RAM and under win 10. While 
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computations of the nonlinear nonconvex optimization problems were run using 

BARON solver which is offered by GAMS modeling languages.  

Prior to solving the robust models, the deterministic model is solved where 

the uncertain parameters in model (2.1-2.15) are set at their expected values, Table 

2.8. The optimal uncertainty set sizes (𝛹, Г) using four probability bounds at five 

constraint violations 𝜀 are provided in Tables 2.9 and 2.10.  

 

Test Problem Size The Objective Function of The Deterministic Model 

1 3771306 

2 15576814 

3 61765418 

Table 2.8: The solutions of the deterministic model.  

 

 The Optimal Values of ∆  

∆= 𝛹, Г B1 B2 B3 B4 Constraint Violations 

∆𝑑 

2.44775 

8.47924 4.77114 9.04779 

0.05 
∆𝑅𝑐, ∆𝑅𝐸𝑐 20.76982 11.9414 27.5186 

∆𝛽 4.23962 2.18631 3.00241 

∆𝐷, ∆𝑅, ∆𝑅𝑤 2.44775 0.96321 1.00356 

∆𝑑 

2.14597 

7.43384 4.20847 8.18640 

0.1 
∆𝑅𝑐, ∆𝑅𝐸𝑐 18.20913 10.4793 25.0654 

∆𝛽 3.71692 1.97231 3.00054 

∆𝐷, ∆𝑅, ∆𝑅𝑤 2.14597 0.92642 1.00214 

∆𝑑 

1.94788 

6.74766 3.83349 7.59772 

0.15 
∆𝑅𝑐, ∆𝑅𝐸𝑐 16.52832 9.51744 23.4452 

∆𝛽 3.37383 1.81918 3.00005 

∆𝐷, ∆𝑅, ∆𝑅𝑤 1.94788 0.88964 1.00179 

∆𝑑 

1.79412 

6.21502 3.53967 7.12964 

0.2 
∆𝑅𝑐, ∆𝑅𝐸𝑐 15.22363 8.76969 22.1824 

∆𝛽 3.10751 1.69421 2.92976 

∆𝐷, ∆𝑅, ∆𝑅𝑤 1.79412 0.85285 1.00115 

∆𝑑 

1.66511 

5.76811 3.29144 6.73008 

0.25 
∆𝑅𝑐, ∆𝑅𝐸𝑐 14.12892 8.14161 21.1197 

∆𝛽 2.88405 1.58565 2.80700 

∆𝐷, ∆𝑅, ∆𝑅𝑤 1.66511 0.81606 1.00081 

Table 2.9: The optimal values of uncertainty set size parameters for the four upper 

probability bounds at different 𝜀 for problem size 1.    

Since ∆𝑑, ∆𝛽, ∆𝐷, ∆𝑅, and ∆𝑅𝑤 have the same number of uncertain 

parameters, |𝐽𝑗|, for the three problem sizes, only ∆𝑅𝑐, and ∆𝑅𝐸𝑐 are presented in 
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Table 2.10. Note that in case B3, it is assumed that each 𝜁𝑗  is subject to the uniform 

distribution in [−1, 1], and hence the three uncertainty sets apply. For the uniform 

distribution 𝑈(𝑎, 𝑏), the moment generation function is 𝐸(𝑒𝜃𝜁) =
𝑒𝜃𝑏−𝑒𝜃𝑎

𝜃(𝑏−𝑎)
. Also, in 

B4 the expected values of the parameters are only known to be within 1% of their 

nominal values. Therefore,  

𝐸[𝑎̃𝑖] 𝜖  [𝑎𝑖 − 0.01𝑎𝑖,  𝑎𝑖 + 0.01𝑎𝑖]and 𝐸[𝜁𝑗] 𝜖  [−0.1, 0.1] that is equivalent to 

|𝐸[𝜁𝑖]| ≤ 0.1 = 𝜇𝑖. 

 The Optimal Values of  
∆= Ψ, Г 

 

Problem Size B2 B3 B4 
Constraint 

Violations 

2 25.43773 14.6457 35.7908 
0.05 

3 32.83997 18.9286 50.3834 

2 22.30153 12.8483 32.7558 
0.1 

3 28.79116 16.6013 46.4313 

2 20.24297 11.6667 30.755 
0.15 

3 26.13356 15.0723 43.8297 

2 18.64507 10.7487 29.1974 
0.2 

3 24.07068 13.8848 41.8065 

2 17.30432 9.97782 27.8877 
0.25 

3 22.33978 12.8879 40.1065 

Table 2.10: The optimal values of uncertainty set size parameters of ∆𝑅𝑐 and ∆𝑅𝐸𝑐 

for the four upper probability bounds at different 𝜀 for problem sizes 2.2 and 2.3.    

The computational time in seconds (CPU) is presented in Table 2.11 where 

CPU column indicates the average computational time taken for each probability 

bound at the five constraint violations. The obtained robust solutions under the three 

uncertainty sets at different constraint violations are provided in Table set 2.12. 

Test 

Problem 
Deterministic 

Probability 

bound 
Average CPU Time in Seconds 

   Box Polyhedral Interval +Polyhedral 

1 15 B1 261.8 - - 

  B2 515.33 10097.38 13842.51 

  B3 1731.47 10280.39 14460.46 

  B4 92.16 8969.28 11397.14 

2 9547.12 B1 18111.07 - - 

  B2 18472.67 23445.18 26303.43 

  B3 17811.24 25398.47 25803.61 

  B4 15256.9 22945.36 28256.72 
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3 21796.43 B1 26547.83 - - 

  B2 28327.78 32364.41 36222.67 

  B3 27563.04 31804.27 38214.36 

  B4 26325.66 33062.41 35189.02 

Table 2.11: Average CPU time in seconds for the three robust counterparts and 

deterministic models.   

Obviously, Table 2.11 shows that as the problem size gets bigger, the CPU 

time becomes higher. Moreover, among the three robust models, the combined 

interval and polyhedral uncertainty set has the highest computational time due to its 

large number of variables and constraints. Although the number of variables is 

slightly smaller in the polyhedral uncertainty set, it shows a higher CPU time 

comparing to the box uncertainty set because it has a higher number of constraints 

(i.e. almost two times of the box uncertainty set). Finally, because of the complexity 

of robust models, the deterministic model always shows the lowest computational 

time. Figure 2.6 depicts this issue clearly.     

 

Figure 2.6: The average computational time in seconds (CPU) for the three 

problems sizes. 
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Constraint violation ε =0.05    

Test Problem 
Probability 

bound 
Objective function under the three-uncertainty sets 

  Box Polyhedral Interval +Polyhedral 

1 B1 6592058 - - 
 B2 8009469 4729108 4544201 
 B3 4537171 4685844 4538036 
 B4 5046554 4735464 4556286 

2 B1 47514058 - - 
 B2 54963465 18902103 17100948 
 B3 28226301 18008611 17042753 
 B4 32520896 19038609 17128582 

3 B1 173098213 - - 
 B2 192446017 67542110 65321472 
 B3 109144300 65655012 65278114 
 B4 122666354 67851320 65378330 

     

Constraint violation ε =0.1    

Test Problem 
Probability 

bound 
Objective function under the three-uncertainty sets 

  Box Polyhedral Interval +Polyhedral 

1 B1 5920070 - - 
 B2 6935649 4716817 4532741 
 B3 4440835 4635722 4529285 

 B4 4909418 4726066 4547893 

2 B1 42426511 - - 
 B2 48363623 18648395 17055214 
 B3 27410419 17884535 17011472 

 B4 31734072 18829480 17087106 

3 B1 156638354 - - 
 B2 173927244 67017146 65320129 
 B3 106143139 65365550 65121678 
 B4 120144300 67419121 65346831 

     

Constraint violation ε =0.15    

Test Problem 
Probability 

bound 
Objective function under the three-uncertainty sets 

  Box Polyhedral Interval +Polyhedral 

1 B1 5525777 - - 
 B2 6342092 4709063 4530214 
 B3 4358074 4610032 4521069 
 B4 4775322 4719112 4539261 

2 B1 39034525 - - 
 B2 44347860 18480642 17031856 
 B3 26639880 17806288 16925471 

 B4 31207772 18688012 17055987 
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3 B1 146209120 - - 
 B2 161181194 66676940 65318098 
 B3 103617411 65176014 64921648 
 B4 118451247 67120520 65328432 

     

Constraint violation ε =0.2    

Test Problem 
Probability 

bound 
Objective function under the three-uncertainty sets 

  Box Polyhedral Interval +Polyhedral 

1 B1 5279842 - - 
 B2 5927165 4703231 4523512 
 B3 4306092 4606827 4515345 
 B4 4740978 4713609 4537736 

2 B1 36614050 - - 
 B2 41296110 18350532 16982734 
 B3 26016644 17744765 16825694 

 B4 30772114 18574604 17015872 

3 B1 138494312 - - 
 B2 151772013 66407740 65307263 
 B3 101245176 65030806 64910547 
 B4 117099157 66859850 65316835 

     

Constraint violation ε =0.25    

Test Problem 
Probability 

bound 
Objective function under the three-uncertainty sets 

  Box Polyhedral Interval +Polyhedral 

1 B1 5084526 - - 
 B2 5607536 4698142 4513441 
 B3 4263312 4604356 4509232 
 B4 4711869 4708867 4529678 

2 B1 34638133 - - 
 B2 38734567 18244110 16874382 
 B3 25421019 17693080 16647985 

 B4 30404775 18477380 16970146 

3 B1 131955214 - - 
 B2 144099242 66152348 65274602 
 B3 99063534 64907270 64899431 
 B4 116007325 66644866 65300292 

Table 2.12: The robust solutions under the three uncertainty sets at different constraint 

violations. 

2.7 Discussion and Analysis 

In this section we discuss the sensitivity and conservatism of the obtained 

robust solutions based on the box, polyhedral, and combined interval and 
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polyhedral counterparts formulations.  In our discussion, we refer to figures 2.7, 

2.8, and 2.9 which explain how the objective functions behave as the probability 

constraint violations increase for the four different bounds under three test 

problems. The figures provide to the decision maker an overview of a conservatism 

comparison between the introduced uncertainty sets under different probability 

bounds. Note that B1 is not applicable for the case of the polyhedral, and the 

combined interval and polyhedral uncertainty sets and, therefore it is not included in 

figures 2.8 and 2.9.  

While we compare the size of the different types of uncertainty sets, a 

conservatism recommendation could be made based on the following fact: the 

larger the uncertainty set is, the more conservative the solution are obtained. Thus, 

the model’s conservatism increases in the following order: box, polyhedral, (Li et 

al., 2012). However, this is true if and only if the bounded uncertainty is within the 

suggested range such that the adjustable uncertainty set parameters are  𝛹𝑗 ≤ 1, and 

Г𝑗 ≤ |𝐽𝑗| for box and polyhedral uncertainty sets, respectively (Li et al., 2011). 

Therefore, the robust solution based on the polyhedral uncertainty counterpart is 

less conservative than the box uncertainty counterpart.   

Comparing the combined interval and polyhedral and the polyhedral set 

based models, the polyhedral model is more conservative since the combined 

interval and polyhedral set is always inside the polyhedral set with same parameter 

defining the  
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Figure 2.7: The behavior of the robust objective functions when different upper 

bounds are applied based on box counterpart.  

 

 

Figure 2.8: The behavior of the robust objective functions when different upper 

bounds are applied based on polyhedral counterpart. 

set.  From the results, it can be observed that the solution of the different models is 

consistent with the above recommendation on robust counterpart optimization 
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models’ conservatism. Therefore, we conclude that for our proposed model the 

robust solutions based on the combined interval and polyhedral is the least 

conservative and robust solutions.  

From figures 2.7, 2.8, and 2.9 we make the following observations: 

• In all probability upper bounds as the probability constraint violations 

increase, the robust objective functions tend to be less conservative. This is 

valid since we allow for a higher constraint violation, and hence we make 

the performance of objective function to get improved.   

• In all the figures, the robust solution obtained by B3 is the least conservative 

(and hence the best solution) comparing with the other probability bounds. 

This would be a better choice due to full probability distribution 

information. If such information is available, it can be utilized beneficially 

which makes the solution less conservative.  

 

   

  Figure 2.9: The behavior of the robust objective functions when different upper 

bounds are applied based on the combined interval and polyhedral counterpart. 

• In figure 2.7, the robust solution obtained by B1 is less conservative (better 

solution) comparing with B2 . However, practically B1is not a good 

probability bound to be applied in the discussed multi periods closed – loop 

supply chain problem. This is because B1 assumes that the amount of 
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uncertainty, |𝐽𝑗|, is constant over the course of time which contradicts with 

the nature of  the model where the uncertainty increases as the period 

increases. 

• When we compare B2 with B4, we can not reach to a definite conclusion for 

which one gives the tightest probability bound. As indicated by figures 2.8 

and 2.9, the objective functions attained using B2 are better than those 

attained at B4, since the uncertainty levels are almost lower in B2 (see 

Tables 2.9 and 2.10) while in the box uncertainty set formulation B4 

provides better solution.   

To display the impact of model parameters, we perform a sensitivity analysis for 

deterministic and robust models. As our proposed models have several parameters, 

our focus is on: shortage, and inventory holing costs. However, the other parameters 

such as transportation, and processing costs can also be tested, and the models 

behavior can be easily inferred. Note that the sensitivity analysis is tested over fixed 

parameters because the uncertain parameters are insensitive to the variation.   

For consistency purposes, the robust counterparts models are solved where the 

constraint violation is set at ε =0.05, and a priori probability bound, B3, is used. 

Figures 2.10 and 2.11 depict the sensitivity analysis for the shortage and inventory 

costs, respectively. Practically, the shortage cost is set relatively high by decision 

makers  
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Figure 2.10: Objective function values and shortage costs for deterministic and 

robust models.  

 

Figure 2.11: Objective function values and inventory costs for deterministic and 

robust models.  

because it may result in loss in goodwill. Figure 2.10 shows a dramatic decrease in 

the objective function values with a steeper slope as the shortage cost reduces for 

both deterministic and robust models. For example, when the shortage cost is 

reduced only by 25% in problem size 3, the average reduction in the robust 

objective functions is 21% ,and 19.6% reduction in the deterministic objective 

function. On the other hand, the inventory costs, (ℎ𝑝𝑖, ℎ𝑤𝑝𝑙), which include holding 

cost of apparent good and returned items respectively, show a slight impact on the 

objective function values, figure 2.11. As shown in this figure, by increasing the 

value of inventory costs, the objective function value for all the models increases in 

an insignificant manner. 

 

2.8 Conclusion 

In this chapter we have developed three robust counterparts formulations 

based on the box, polyhedral, and combined interval and polyhedral uncertainty sets 

to address our multi-echelon robust closed- loop supply chain under imperfect 

quality production model. The characteristics of each of the selected uncertainty 

sets provide the decision maker a flexibility to design his own robust model based 
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on his favorable robustness. For example, if the uncertainty has a bounded 

distribution (as in our case), then the combined interval and polyhedral uncertainty 

set give the least conservative solution. However, if he assumes that the uncertainty 

levels over periods are generally low (i.e. 𝛹𝑗 ≤ 1), then he will implement the box 

uncertainty set, otherwise he can apply the polyhedral uncertainty set.   

      Our proposed model is compatible with several types of industries 

including steel making, electronic and automobile manufacturing, and various 

plastic products where return products (either defective or used) can be reused as a 

raw material. Moreover, in this model the imperfect quality production, inspection 

errors and quality loss function have been taken into consideration to provide 

meaningful solutions.   

 In future work, a posteriori probabilistic guarantees approach can be also 

used to improve the robust solutions. Also, besides to minimizing the total supply 

chain network costs, the model can consider multiple objective functions under 

uncertainty, such as minimizing environmental influences and maximizing social 

benefits. In addition, the market demand can be treated as an uncertain dynamic 

parameter.    
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CHAPTER 3: AN INTEGRATED MULTI-ECHELON AND MULTI-

OBJECTIVE PROGRAMMING ROBUST CLOSED- LOOP SUPPLY 

CHAIN UNDER IMPERFECT QUALITY PRODUCTION 

 

In this chapter, we  propose a novel robust multi-objective mixed integer linear 

programming model considering the optimization of three objectives 

simultaneously. The first objective function minimizes the total cost of the supply 

chain. The second objective function seeks to minimize the environmental 

influence, and the third objective function maximizes the social benefits. The 

augmented weighted Tchebycheff method is used to aggregate the three objective 

functions into one objective and produce the set of efficient solutions. Robust 

optimization, based on Mulvey et al. (1995) approach, is used to obtain a set of 

solutions that are robust against the future fluctuation of parameters. Finally, 

numerical examples have been presented to test and analyze the tradeoff between 

solution robustness and model robustness. 

 

3.1 Introduction and Literature Review 

The integration of uncertainty is an important topic in the supply chain 

management. Many researchers and industry practitioners have extensively 

discussed modeling and solving closed-loop supply chains (CLS) under uncertainty 

because both the forward and reverse supply chains need to be managed 

simultaneously. Moreover, the optimal decisions under uncertainty need to be taken 

in the presence of trade-offs between two or more conflicting objectives to provide 

meaningful solutions to the current practical problems.  

A common assumption of the supply chain model is that the produced items are 

perfect. However, in real application this does not hold. To address this practical 

issue, we consider the imperfect quality production modeling scenario. We assume 

that the screening is not always perfect, and inspection errors are more likely to take 

place in practice. Thus, some errors are committed in the inspection process. We 

measure the amount of quality loss as conforming products deviate from the 

specification (target) value.   
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There are very few studies which recognize incorporation of the imperfect 

quality production to the supply chain modelling, (Ahmadi, Khoshalhan, and Glock, 

2016; Masoudipour, Amirian, and Sahraeian, 2017; Sana, 2011). These studies 

consider deterministic models.  

Modeling supply chain under uncertainty where imperfect quality production is 

incorporated is also studied by few researchers. For example, Hu, Zheng, Xu, Ji, 

and Guo (2010) study coordination of supply chain for the fuzzy random newsboy 

problem with imperfect quality in the decentralized and centralized systems. 

Quality uncertainty from a supply chain coordination perspective is addressed by 

Hwan, Rhee, and Cheng (2013).   

One of the most important issues is designing a green supply chain network 

which guarantees the product delivery from a manufacturer to a customer, or vice 

versa, in an environmentally friendly manner (Ma et al., 2016). The growing 

awareness of green supply chain activities aspects is now greatly recognized by 

academic and industrial communities. Thus, in this study we attempt to address the 

environmental issues where one of the objective functions aims to minimize carbon 

emission and environmental waste. Because of environmental concerns many 

nations devise incentives and penalties to lower their carbon footprints. Particularly, 

𝐶𝑂2 and greenhouse gas emissions (GHG) resulting from transportation activities 

and power generation in supply chains have a significant impact on the global 

climate change. A survey conducted in 2016 shows that 26% of 𝐶𝑂2 emissions are 

generated by transportation activities, (U.S. Environmental Protection Agency, 

2016) 

In recent years, social benefits  are widely taking attention besides to 

environmental factors in the design of CLSC, (Tsao, Thanh, Lu, and Yu, 2017). 

This new impact dimension considers the number of job opportunities created and 

hazardous products while minimizing the total supply chain costs.  

Modeling the supply chain while the above three objectives are taken into 

consideration simultaneously ( the economic, environmental, and social aspects) is 

the current research trend in this area. Table 3.1 shows several studies of supply 

chain optimization under imperfect quality production over the past decade. For the 

sake of comparison different features are set across each work where mark (×)  in  
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   Objectives Criteria    

Author(s) CLSC 

Imperfect 

Quality  

Production 

Economic Environmental Social 

Uncertainty 

in The 

Model 

Robust 

Model 

Multi-

Objective  

Approach  

(Al-e-hashem, 

Malekly, & 

Aryanezhad,2011) 

  *   * * 
LP-metrics  
method 

(Pishvaee & 

Razmi, 2012) *  * *  *  
Interactive 

fuzzy  

 approach 

(Datta, 2012)   * *  *  Heuristics 

(Beheshtifar & 

Alimoahmmadi, 

2014) 
  *  *   - 

(Garg, Kannan, 

Diabat, & Jha, 

2015) 
*  * *    

Interactive 

programming 
 approach 

(Govindan, Jha, & 

Garg, 2016) *  * * *   

Interactive 

programming 

 approach 

(Ma et al., 2016) 
*  * *  * * 

LP-metrics  

method 

(Pal & Mahapatra, 

2017) * * *   *  - 

(Masoudipour et 

al., 2017) * * *     
Simple 

weighted 

 method 

(Tsao et al., 2017)   * * * *  
Interactive 

fuzzy  

 approach 

(Govindan, 

Dhingra, 

Agarwal, & Jha, 

2017) 

*  * *  *  Weighted  
max-min  

(Soleimani, 

Govindan, 

Saghafi, & Jafari, 

2017) 

*  * *  *  E-Constraint 

(Puji, Carvalho, & 

Costa, 2017) *  * *    

Augmented 

weighted  

Tchebycheff 

(Imran, Kang & 

Babar, 2018)      *   *  
Interactive 

fuzzy  
 approach 

(Govindan, 

Jafarian, & 

Nourbakhsh, 

2018) 

  * * *   weighting 

 method 

(Ghaderi, Moini, 

& Pishvaee, 2018) *  * * * * * 
Interactive 
fuzzy  

 approach 
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Table 3.1: Some of the studies in the field of supply chain optimization under 

imperfect quality production. Mark (*)  in this table means that an article in a row 

has the feature mentioned in that column. 

this table means that an article in a row has the feature mentioned in that column. 

These features include modeling the supply chain with closed-loop (CLSC), 

incorporating imperfect quality production, multi-criteria optimization considering 

existence of the uncertainty, and finally a robust framework optimization.   

Our proposed model is based on the approach introduced by Mulvey et al. 

(1995), namely robust stochastic optimization or scenario-based robust approach. 

Mulvey et al. (1995) extend scenario-based stochastic programming by defining the 

objective function as a mean-variance function incorporating the risk measures and 

decision makers’ preferences in their model formulation. 

An adapted Mulvey approach has been widely used in supply chain for the sake 

of uncertainty management. In this approach, both solution robustness  and model 

robustness are taken into consideration .Some of these recent studies are (Al-e-

hashem, Malekly, and Aryanezhad, 2011; Ma, Yao, Jin, Ren, and Lv, 2016; F. 

Mohammed et al., 2017; Pishvaee, Rabbani, and Torabi, 2011; Rahmani, 

Ramezanian, Fattahi, and Heydari, 2013; Safaei, Roozbeh, and Paydar, 2017). The 

solution obtained by the scenario-based robust model is strongly dependent on the 

defined scenarios accuracy and their probabilities of occurrence. 

The rest of the chapter is organized as follows. Section 3.2 provides the problem 

definition and mathematical formulation, section 3.3 discusses the robust 

formulation, section 3.4 introduces the multi-objective solution considering the 

augmented weighted Tchebycheff method, section 3.5 is about numerical examples 

and computational results. Finally, section 3.6 concludes the paper. 

3.2 Mathematical Formulation   

3.2.1 Notation 

• The following sets are used: 

𝑇         Set of periods, with 𝑡 ∈ 𝑇. 

This paper * * * * * * * 
Augmented 
weighted  

Tchebycheff 
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𝑆        Set of possible supplier center locations, with 𝑠 ∈ 𝑆. 

𝑀     Set of manufactures centers locations, with 𝑚 ∈ 𝑀. 

 𝐼       Set of potential distribution center locations, with 𝑖 ∈ 𝐼. 

𝐶       Set of customer zones, with 𝑐 ∈ 𝐶.  

𝐿       Set of potential collection/disassembly center locations, with 𝑙 ∈ 𝐿 

𝑂      Set of potential disposal center locations, with 𝑜 ∈ 𝑂.  

𝑃      Set of products, with 𝑝 ∈ 𝑃.  

• Parameters Subjected to Uncertainty: 

First Objective Function (𝒇𝟏): Minimizing the total cost across the supply 

chain network: 

𝐷𝜁𝑡𝑝𝑐: Market demand for product 𝑝 for customer zone 𝑐 at period 𝑡 and scenario 𝜁. 

𝑅𝜁𝑡𝑝𝑐: Returned amount of product 𝑝 as used items form customer zone 𝑐 at period 

𝑡 and scenario 𝜁. 

𝑅𝑤𝜁
𝑡𝑝𝑐: Returned amount of product 𝑝 as defective items form customer zone 𝑐 at 

period 𝑡 and scenario 𝜁.   

𝑅𝑐𝜁𝑡𝑝𝑚 Recycling cost/unit for product 𝑝 at manufacturer 𝑚 and period 𝑡 for 

scenario 𝜁. 

𝑅𝐸𝑐𝜁𝑡𝑝𝑚: Rework costs for items produced below and above the specification 

limits for product 𝑝 at manufacturer 𝑚 and period 𝑡 for scenario 𝜁, respectively.  

𝑒𝜁1𝑡: Type I error at period 𝑡 and scenario 𝜁.  

𝑒𝜁2𝑡: Type II error at period 𝑡 and scenario 𝜁. 

𝛽𝜁
𝑝
: Disposal fraction of product 𝑝 and scenario 𝜁.  

Second Objective Function (𝒇𝟐): Minimizing the environmental Influence 

Costs:   

 𝐸𝑀𝑐𝑚𝑝
𝜁

: Environmental impact (𝐶𝑂2 equivalent emission per unit product) of 

producing one unit of product 𝑝 by manufacturer 𝑚 and scenario 𝜁. 
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𝐸𝑅𝑐𝑚𝑝
𝜁

: Environmental impact of recycling one unit of product 𝑝 by manufacturer 

𝑚 and scenario 𝜁. 

𝐸𝑅𝑊𝑚𝑝
𝜁

: Environmental impact of reworking one unit of product 𝑝 by manufacturer 

𝑚 and scenario 𝜁. 

𝐸𝑂𝑐𝑜𝑝
𝜁

: Environmental impact  of handling one unit of product 𝑝 in disposal center 𝑜 

and scenario 𝜁.  

𝐸𝑇𝑐𝑝
𝜁
: Environmental impact of transporting one unit of product 𝑝 per km and 

scenario 𝜁.  

Third and Forth Objective Functions (𝒇𝟑, 𝒇𝟒): Maximizing the Social Benefits  

𝐺𝐷𝑖
𝜁
: Number of job opportunities created for a distribution center 𝑖 and scenario 𝜁.  

𝐺𝐶𝑙
𝜁
: Number of job opportunities created for a collection center 𝑙 and scenario 𝜁. 

𝐺𝑂𝑜
𝜁
: Number of job opportunities created for a disposal center 𝑜 and scenario 𝜁. 

𝐻𝑆𝑚
𝜁

: Average fraction of potentially hazardous products manufactured by plant 𝑚 

and scenario 𝜁.  

• The following fixed parameters are defined:  

𝐹𝑆𝑠: Fixed cost of selecting supplier 𝑠.  

𝐹𝐷𝑖: Fixed cost of opening distribution 𝑖.  

𝐹𝐶𝑙: Fixed cost of opening collection/disassembly 𝑙. 

𝐹𝑂𝑜: Fixed cost of opening disposal 𝑜.  

𝑆𝑐𝑝𝑠: Manufacturing cost/unit for product 𝑝 by the supplier 𝑠. 

𝑀𝑐𝑝𝑚: Manufacturing cost/unit for product 𝑝 by the manufacturer 𝑚.  

𝐼𝑐𝑝𝑖 : Inspection cost/ unit for product 𝑝 the distribution center 𝑖.  

𝐷𝑐𝑝𝑖: Processing cost/unit of product 𝑝 at the distribution center 𝑖. 

𝐶𝑐𝑝𝑙: Collection cost/unit for the returned product 𝑝 at the collection center 𝑙. 

ℎ𝑝𝑖: Holding cost of apparent good items for product 𝑝 at distribution center 𝑖.  
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ℎ𝑤𝑝𝑙: Holding cost associated with quantity of product 𝑝 returned from the 

customer zone to the collection 𝑙. 

𝜋̂𝑝𝑐: Shortage (penalty) cost for product 𝑝 and customer zone 𝑐.    

𝑊𝑝𝑚: Ordering cost per lot size of product 𝑝 at manufacturer 𝑚.  

𝑃𝑝𝑠: Purchasing cost/ unit for product 𝑝 from supplier 𝑠.   

𝐼𝑜𝑝𝑜: Disposal cost/unit of non-recyclable items of product 𝑝 at the disposal center 

𝑜. 

𝐵𝑐𝑚𝑠: Abatement cost of manufacturer 𝑚 by material from 𝑠 per unit of product 𝑝.    

𝑇𝑀𝑐𝑝𝑠𝑚: Transportation cost of the raw materials of product 𝑝 from supplier 𝑠 to 

manufacturer 𝑚.  

𝑇𝑃𝑐𝑝𝑚𝑖: Transportation cost of product 𝑝 from manufacturer 𝑚 to distribution 

center 𝑖.  

𝑇𝑍𝑐𝑝𝑖𝑐: Transportation cost of the product 𝑝 from distribution center 𝑖 to customer 

zone 𝑐.  

𝑇𝑂𝑐𝑝𝑐𝑙: Transportation cost of product 𝑝 from the customer zone 𝑐 to collection 

center 𝑙. 

𝑇𝑂𝑃𝑐𝑝𝑙𝑚: Transportation cost of product 𝑝 from collection center 𝑙 to manufacturer 

𝑚.  

𝑇𝐼𝑐𝑝𝑙𝑜: Transportation cost of product 𝑝 from collection center 𝑙 to disposal center 

𝑜.  

𝛾𝑠𝑚: The distance between supplier 𝑠 to manufacturer 𝑚 generated based on the 

Euclidean distance.  

𝛾𝑚𝑖: Euclidean distance between manufacturer and distributer. 

𝛾𝑖𝑐: Euclidean distance between distributer and customer zone. 

𝛾𝑐𝑙: Euclidean distance between customer zone and collection center. 

𝛾𝑙𝑚: Euclidean distance between collection center and manufacturer. 

𝛾𝑙𝑜: Euclidean distance between collection center and disposal center. 
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𝐶𝑆𝑝𝑠: Capacity of raw material of product 𝑝 for supply center 𝑠.  

𝐶𝑃𝑝𝑚: Capacity of production for product 𝑝 in manufacturer 𝑚. 

𝐶𝐼𝑝𝑖: Capacity of product 𝑝  in distribution center 𝑖. 

𝐶𝐿𝑝𝑙: Capacity of product 𝑝 in collection center 𝑙. 

𝐶𝑂𝑝𝑜: Capacity of product 𝑝 in disposal center 𝑜.  

𝑈𝑆𝐿𝑝: Upper specification limit of product 𝑝. 

𝐿𝑆𝐿𝑝: Lower specification limit of product 𝑝. 

K: loss parameter  

𝑋𝑝: Actual value of the quality characteristic of product 𝑝. 

L(x): Loss of poor quality per unit product. 

𝜇𝑝 : Target quality characteristic of product 𝑝. 

𝜎𝑝 : Standard deviation of quality characteristic of product 𝑝. 

𝜓: Deviation from the target value. 

• The following decision variables are defined as follows:   

𝑄𝑆𝑀𝑡𝑝𝑠𝑚: Quantity of raw material of product 𝑝 ordered from supplier 𝑠 to 

manufacturer 𝑚 at period 𝑡. 

𝑄𝑀𝐷𝑡𝑝𝑚𝑖: Quantity of product 𝑝 sent from manufacturer 𝑚 to distribution center 𝑖 

at period 𝑡. 

𝑄𝐷𝐶𝑡𝑝𝑖𝑐: Quantity of product 𝑝 planned to be sent from distribution center 𝑖 to 

customer zone 𝑐 at period 𝑡.  

𝑄𝑁𝑆𝑡𝑝𝑐: Quantity of non-satisfied demand of product 𝑝 for customer zone 𝑐 at 

period 𝑡.   

𝑄𝐶𝑂𝑡𝑝𝑐𝑙: Quantity of product 𝑝 returned from customer zone 𝑐 to collection center 𝑙 

at period 𝑡.   

𝑄𝑅𝑃𝑡𝑝𝑙𝑚: Quantity of recyclable product 𝑝 shipped from collection center 𝑙 to 

manufacturer 𝑚 at period 𝑡.  
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𝑄𝐸𝑃𝑡𝑝𝑙𝑚: Quantity of reworkable product 𝑝 shipped from collection center 𝑙 to 

manufacturer 𝑚 at period 𝑡. 

𝑄𝐼𝑃𝑡𝑝𝑙𝑜: Quantity of disposal product 𝑝 shipped from collection center 𝑙 to disposal 

center 𝑜 at period 𝑡.  

𝑣𝑡𝑝𝑠𝑚: 1 if the order of product 𝑝 is placed by manufacturer 𝑚 at period 𝑡 and 0 

otherwise.  

𝑆𝑡𝑠: 1 if a supplier is selected at location s at period t , 0 otherwise. 

𝐷𝑇𝑡𝑖: 1 if a distribution is opened at location i at period 𝑡, 0 otherwise. 

𝐶𝑇𝑡𝑙: 1 if a collection/disassembly is opened at location l at period 𝑡, 0 otherwise. 

𝐷𝑂𝑡𝑜: 1 if a disposal is opened at location o at period 𝑡, 0 otherwise. 

The objective function, 𝑓1 minimizes the total cost of the supply chain network. The 

included costs are: 

- Facility opening costs: 

 ∑∑𝐹𝑆𝑠𝑆𝑡𝑠
𝑠∈𝑆𝑡∈𝑇

+∑∑𝐹𝐷𝑖𝐷𝑇𝑡𝑖
𝑖∈𝐼𝑡∈𝑇

+∑∑𝐹𝐶𝑙𝐶𝐿𝑡𝑙
𝑙∈𝐿𝑡∈𝑇

+∑∑𝐹𝑂𝑜𝐷𝑂𝑡𝑜
𝑜∈𝑂𝑡∈𝑇

 

- Purchasing cost: 

∑∑∑ ∑ 𝑊𝑝𝑚𝑣𝑡𝑝𝑠𝑚 + 𝑃.𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑚∈𝑀𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇

 

- Ordering costs: 

∑∑∑ ∑ 𝑄𝑆𝑀𝑡𝑝𝑠𝑚(𝑆𝑐𝑝𝑠 + 𝑇𝑀𝑐𝑝𝑠𝑚)

𝑚∈𝑀𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇

 

- Cost incurred in the manufacturers: 

∑∑ ∑ ∑𝑄𝑀𝐷𝑡𝑝𝑚𝑖(𝑀𝑐𝑝𝑚 + 𝑇𝑃𝑐𝑝𝑚𝑖 + 𝐼𝑐𝑝𝑖 + 𝑑𝑡
𝜁
𝑃𝑅𝑝)

𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

 

- Cost incurred in the distributor centers: 
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∑∑∑∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐 (𝐷𝑐𝑝𝑖 + 𝑇𝑍𝑐𝑝𝑖𝑐 + ℎ𝑝𝑖 + 𝐹𝑝(𝑥𝑝; 𝜇𝑝))

𝑐∈𝐶𝑖∈𝐼𝑝∈𝑃𝑡∈𝑇

 

- Cost incurred in the collection centers: 

∑∑∑∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙(𝐶𝑐𝑝𝑙 + 𝑇𝑂𝑐𝑝𝑐𝑙)

𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙ℎ𝑤𝑝𝑙
𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

 

- Costs related to recycling and reworking respectively: 

∑∑∑ ∑ 𝑄𝑅𝑃𝑡𝑝𝑙𝑚(𝑅𝑐
𝜁
𝑡𝑝𝑚 + 𝑇𝑂𝑃𝑐𝑝𝑙𝑚)

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝑄𝐸𝑃𝑡𝑝𝑙𝑚(𝑅𝐸𝑐
𝜁
𝑡𝑝𝑚 + 𝑇𝑂𝑃𝑐𝑝𝑙𝑚)

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

 

- Cost incurred in the disposal center: 

∑∑∑∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜(𝐼𝑜𝑝𝑜 + 𝑇𝐼𝑐𝑝𝑙𝑜)

𝑜∈𝑂𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

 

- Shortage cost: 

∑∑∑𝑄𝑁𝑆𝑡𝑝𝑐𝜋̂𝑝𝑐
𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

 

- Abatement cost: 

∑∑ ∑ 𝐵𝑐𝑚𝑠𝑆𝑡𝑠
𝑚∈𝑀𝑠∈𝑆𝑡∈𝑇

 

 

The objective function, 𝑓2 minimizes the environmental impact. The included 

impacts are represented in Figure 3.1 and defined as follows:  

- Suppliers: 

∑∑∑ ∑ 𝐸𝑇𝑐𝑝
𝜁
𝛾𝑠𝑚𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑚∈𝑀𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇

 

- Manufacturers:  
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∑∑ ∑ ∑(𝐸𝑀𝑐𝑚𝑝
𝜁
+ 𝐸𝑇𝑐𝑝

𝜁
 𝛾𝑚𝑖)𝑄𝑀𝐷𝑡𝑝𝑚𝑖

𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

 

- Destitution Centers:  

∑∑∑∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐𝐸𝑇𝑐̃𝑝𝛾𝑖𝑐
𝑐∈𝐶𝑖∈𝐼𝑝∈𝑃𝑡∈𝑇

 

- Collection centers: 

∑∑∑ ∑ (𝐸𝑅𝑐𝑚𝑝
𝜁
+ 𝐸𝑇𝑐𝑝

𝜁
𝛾𝑙𝑚)𝑄𝑅𝑃𝑡𝑝𝑙𝑚

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑(𝐸𝑅𝑊𝑚𝑝
𝜁
+ 𝐸𝑇𝑐𝑝

𝜁
𝛾𝑙𝑚)𝑄𝐸𝑃𝑡𝑝𝑙𝑚

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

 

- Disposal Centers: 

∑∑∑∑(𝐸𝑂𝑐𝑜𝑝
𝜁
+ 𝐸𝑇𝑐𝑝

𝜁
𝛾𝑙𝑜)𝑄𝐼𝑃𝑡𝑝𝑙𝑜

𝑜∈𝑂𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

 

The objective functions, 𝑓3 and 𝑓4, maximize the social benefits and their terms are 

defined as follows:  

- The number of jobs created in the distributions, collections and disposals 

centers, respectively:  

∑∑𝐺𝐷𝑖
𝜁
𝐷𝑇𝑡𝑖

𝑖∈𝐼𝑡∈𝑇

+∑∑ 𝐺𝐶𝑙
𝜁
𝐶𝐿𝑡𝑙

𝑙∈𝐿𝑡∈𝑇

+∑∑ 𝐺𝑂𝑜
𝜁
𝐷𝑂𝑡𝑜

𝑜∈𝑂𝑡∈𝑇

 

- Average fraction of potentially hazardous products manufactured: 

∑∑𝐻𝑆𝑠
𝜁
𝑆𝑡𝑠

𝑠∈𝑆𝑡∈𝑇

 

 

Figure 3.1: Breakdown of the environmental impacts.   
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3.2.2 The Multi-Objectives MILP Model 

Thus, the multi-Objectives MILP model of proposed closed-loop supply chain is:  

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒇𝟏 =∑∑𝐹𝑆𝑠𝑆𝑡𝑠
𝑠∈𝑆𝑡∈𝑇

+∑∑𝐹𝐷𝑖𝐷𝑇𝑡𝑖
𝑖∈𝐼𝑡∈𝑇

+∑∑𝐹𝐶𝑙𝐶𝑇𝑡𝑙
𝑙∈𝐿𝑡∈𝑇

+∑∑𝐹𝑂𝑜𝐷𝑂𝑡𝑜
𝑜∈𝑂𝑡∈𝑇

+∑∑∑ ∑ 𝑊𝑝𝑚𝑣𝑡𝑝𝑠𝑚 + 𝑃𝑝𝑠. 𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑚∈𝑀𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝑄𝑆𝑀𝑡𝑝𝑠𝑚(𝑆𝑐𝑝𝑠 + 𝑇𝑀𝑐𝑝𝑠𝑚)

𝑚∈𝑀𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇

+∑∑ ∑ ∑𝑄𝑀𝐷𝑡𝑝𝑚𝑖(𝑀𝑐𝑝𝑚 + 𝑇𝑃𝑐𝑝𝑚𝑖 + 𝐼𝑐𝑝𝑖 + 𝑑𝑡
𝜁
𝑃𝑅𝑝)

𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐 (𝐷𝑐𝑝𝑖 + 𝑇𝑍𝑐𝑝𝑖𝑐 + ℎ𝑝𝑖 + 𝐹𝑝(𝑥𝑝; 𝜇𝑝))

𝑐∈𝐶𝑖∈𝐼𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙(𝐶𝑐𝑝𝑙 + 𝑇𝑂𝑐𝑝𝑐𝑙)

𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝑄𝑅𝑃𝑡𝑝𝑙𝑚(𝑅𝑐
𝜁
𝑡𝑝𝑚 + 𝑇𝑂𝑃𝑐𝑝𝑙𝑚)

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝑄𝐸𝑃𝑡𝑝𝑙𝑚(𝑅𝐸𝑐
𝜁
𝑡𝑝𝑚 + 𝑇𝑂𝑃𝑐𝑝𝑙𝑚)

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙ℎ𝑤𝑝𝑙
𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜(𝐼𝑜𝑝𝑜 + 𝑇𝐼𝑐𝑝𝑙𝑜)

𝑜∈𝑂𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑𝑄𝑁𝑆𝑡𝑝𝑐𝜋̂𝑝𝑐
𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+∑∑ ∑ 𝐵𝑐𝑚𝑠𝑆𝑡𝑠
𝑚∈𝑀𝑠∈𝑆𝑡∈𝑇
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𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆𝒇𝟐 =∑∑∑ ∑ 𝐸𝑇𝑐𝑝
𝜁
𝛾𝑠𝑚𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑚∈𝑀𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇

+∑∑ ∑ ∑(𝐸𝑀𝑐𝑚𝑝
𝜁
+ 𝐸𝑇𝑐𝑝

𝜁
 𝛾𝑚𝑖)𝑄𝑀𝐷𝑡𝑝𝑚𝑖

𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐𝐸𝑇𝑐𝑝
𝜁
𝛾𝑖𝑐

𝑐∈𝐶𝑖∈𝐼𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ (𝐸𝑅𝑐𝑚𝑝
𝜁
+ 𝐸𝑇𝑐𝑝

𝜁
𝛾𝑙𝑚)𝑄𝑅𝑃𝑡𝑝𝑙𝑚

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑(𝐸𝑅𝑊𝑚𝑝
𝜁
+ 𝐸𝑇𝑐𝑝

𝜁
𝛾𝑙𝑚)𝑄𝐸𝑃𝑡𝑝𝑙𝑚

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝐸𝑇𝑐𝑝
𝜁
𝛾𝑐𝑙 𝑄𝐶𝑂𝑡𝑝𝑐𝑙

𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑(𝐸𝑂𝑐𝑜𝑝
𝜁
+ 𝐸𝑇𝑐𝑝

𝜁
 𝛾𝑙𝑜)𝑄𝐼𝑃𝑡𝑝𝑙𝑜

𝑜∈𝑂𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

 

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆 𝒇𝟑 =∑∑𝐺𝐷𝑖
𝜁
𝐷𝑇𝑡𝑖

𝑖∈𝐼𝑡∈𝑇

+∑∑𝐺𝐶𝑙
𝜁
 𝐶𝐿𝑡𝑙

𝑙∈𝐿𝑡∈𝑇

+∑∑ 𝐺𝑂𝑝
𝜁
 𝐷𝑂𝑡𝑜

𝑜∈𝑂𝑡∈𝑇

 

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆 𝒇𝟒 = −∑∑ ∑ ∑𝐻𝑆𝑚
𝜁
 𝑄𝑀𝐷𝑡𝑝𝑚𝑖

𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

                                                 (3.1) 

Subject to: 

∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐
𝑖∈𝐼

+ 𝑄𝑁𝑆𝑡𝑝𝑐 ≥ 𝐷𝑡𝑝𝑐
𝜁
 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶, 𝜁                                   (3.2) 

∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑙∈𝐿

≤ 𝑅𝑡𝑝𝑐
𝜁
+ 𝑅𝑤𝑡𝑝𝑐

𝜁
, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶, 𝜁                                               (3.3) 

∑ 𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑚∈𝑀

(1 − 𝑑𝑡
𝜁
) ≥∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐

𝑐∈𝐶

, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼, 𝜁                            (3.4) 

∑∑ 𝛽𝑝
𝜁
. 𝑄𝐶𝑂𝑡𝑝𝑐𝑙

𝑝∈𝑃𝑐∈𝐶

≤∑∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜
𝑝∈𝑃𝑜∈𝑂

, ∀ 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿, 𝜁                                         (3.5) 

∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜
𝑜∈𝑂

+ ∑ 𝑄𝑅𝑃𝑡𝑝𝑙𝑚
𝑚∈𝑀

+ ∑ 𝑄𝐸𝑃𝑡𝑝𝑙𝑚
𝑚∈𝑀

=∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑐∈𝐶

, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙

∈ 𝐿                                                                                                             (3.6) 

∑∑𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑝∈𝑃𝑠∈𝑆

+∑∑𝑄𝑅𝑃𝑡𝑝𝑙𝑚
𝑝∈𝑃𝑙∈𝐿

+∑∑𝑄𝐸𝑃𝑡𝑝𝑙𝑚
𝑝∈𝑃𝑙∈𝐿

=∑∑𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑝∈𝑃𝑖∈𝐼

, ∀ 𝑡

∈ 𝑇,𝑚 ∈ 𝑀                                                                                              (3.7) 
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∑𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑠∈𝑆

≤ 𝐵. 𝑣𝑡𝑝𝑠𝑚, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆,𝑚 ∈ 𝑀                                           (3.8) 

∑ 𝑄𝑆𝑀𝑡𝑝𝑠𝑚

𝑚∈𝑀

≤ 𝐶𝑆𝑝𝑠𝑆𝑡𝑠, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆                                                         (3.9) 

∑𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑖∈𝐼

≤ 𝐶𝑃𝑝𝑚, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃,𝑚 ∈ 𝑀                                                         (3.10) 

∑ 𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑚∈𝑀

≤ 𝐶𝐼𝑝𝑖𝐷𝑇𝑡𝑖 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼                                                      (3.11) 

∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑐∈𝐶

≤ 𝐶𝐿𝑝𝑙𝐶𝑇𝑡𝑙, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿                                                         (3.12) 

∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜
𝑙∈𝐿

≤ 𝐶𝑆𝑝𝑜𝐷𝑂𝑡𝑜 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑜 ∈ 𝑂                                                      (3.13) 

𝑣𝑡𝑠𝑚, 𝑆𝑡𝑠, 𝐷𝑇𝑡𝑖, 𝐶𝑇𝑡𝑙, 𝐷𝑂𝑡𝑜 ∈ {0,1}    ∀𝑡, 𝑝, 𝑠,𝑚, 𝑖, 𝑙, 𝑜                                           (3.14)                                             

 Non-negativity constraints                                                                                (3.15)                     

Constraint (3.2) ensures the customer demand satisfaction. Constraint (3.3) 

states that the returned items are not all necessarily collected from the customer 

zones. Constraint (3.4) makes sure that the apparent produced good items quantity 

is larger than the quantity transported to the customer zone. Constraint (3.5) limits 

the quantity of disposed products shipped from the collection centers. Constraints 

(3.6) and (3.7) confirm the movement equilibrium between all the echelons. 

Constraint (3.8) assigns cost whenever the order is placed .Constraints (3.9-3.13) 

are based on capacity restriction for the facilities.                  

Two types of errors are committed in the inspection process. Type I error, 

𝒆𝟏
𝜻
, is committed when a conforming item is classified as non-conforming and Type 

II error, 𝒆𝟐
𝜻
, is committed when a non-conforming item is classified as conforming. 

The apparent conforming items fraction can be determined as follows: 

(1 − 𝒅)(1 − 𝒆𝟏
𝜻
) + 𝒅 𝒆𝟐

𝜻
= 1 − 𝒆𝟏

𝜻
− 𝒅(1 − 𝒆𝟏

𝜻
− 𝒆𝟐

𝜻
) = 1 − 𝒅𝜻, with 0 ≤ 𝒅𝜻 ≤ 1  

 where, 

𝒅𝜻 = 𝒆𝟏
𝜻
+ 𝒅(1 − 𝒆𝟏

𝜻
− 𝒆𝟐

𝜻
),                                                                                (3.16) 

and the vectors 𝒆𝟏
𝜻
and 𝒆𝟐

𝜻
 are both uncertain.  
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The quality loss function is proposed by Taguchi (1986). It states that for 

given specification limits LSL, USL not all values falling within them are equal and 

create equal loss because of poor quality. Quality loss function 𝐿(𝑥) is defined as 

follows: 

𝐿(𝑥) = 𝐾(𝑥 − 𝜇)2                 𝐿𝑆𝐿 ≤ 𝑥 ≤ 𝑈𝑆𝐿 

The quadratic loss function indicates that if the difference between the actual and 

the target value is large, the loss would be more where 𝐾 is the loss parameter, 

𝐾 =
𝑉

𝜓2
 

and, 

𝜓 = (𝑈𝑆𝐿 − 𝜇) = (𝜇 − 𝐿𝑆𝐿) 

Thus, the amount of loss is expressed as follows:  

𝑄𝐷𝐶𝑡𝑝𝑖𝑐 ∫
1

𝜎√2𝜋
𝑒
−(𝑥−𝜇)2

2𝜎2  𝐾(𝑥 − 𝜇)2𝑑𝑥
𝑈𝑆𝐿

𝐿𝑆𝐿
= 𝑄𝐷𝐶𝑡𝑝𝑖𝑐 (1 − 𝑑𝑡

𝜁
)𝐹(𝑥; 𝜇)             (3.17) 

Equation (3.17) states that the apparent conforming quantity of product 𝑝 

planned to be sent from distribution center 𝑖 to customer zone 𝑐 at period 𝑡 is 

subject to an inspection to ensure that the produced lot is close enough to the target 

value according to Taguchi Quality approach. This loss is included in the objective 

function, 𝑓1 under the cost incurred in the distribution centers. Next, we describe the 

robust optimization formulation.  

3.3 Robust Formulation: 

The robust framework introduced by Mulvey et al. (1995) addresses two types 

of robustness: solution robustness which means that the solution remains nearly 

optimal under all realizations (scenarios), and model robustness which refers to the 

solution feasibility under all realizations. This approach of robust optimization is an 

extension of stochastic programming (scenario-based method) where the cost 

variability is addressed instead of minimizing /maximizing the expected value of the 

objective function.  

3.3.1 Preliminaries 

Consider the following linear programming with uncertain parameters:  
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min
,𝑥,𝑦≥0

{ 𝑐𝑥
𝑇𝑥 + 𝑐𝑦

𝑇𝑦: 𝐴𝑥 ≤ 𝑏, 𝐵𝑥 + 𝐷𝑦 ≤ 𝑒, ∀𝜁 = [𝐵, 𝐷, 𝑒] ∈ 𝒵}                             

(3.18) 

where 𝒙 is the vector of decision variables determined  under the uncertainty of 

model parameters denoted by 𝑩,𝑫, and 𝒆, respectively. 𝒵 is assumed a finite 

scenario set, with 𝒵 = {1, 2, … , 𝜁}. Thus, we associate a scenario 𝜁 ∈ 𝒵 to model 

the uncertain parameters, [𝑩𝜻, 𝑫𝜻, 𝒆𝜻], where the probabilities of the scenarios 

∑ 𝜌𝜁𝜁 = 1. The above model is a general case where 𝒚 denotes a vector of control 

variables which are determined and adjusted after the realization of the uncertain 

parameters. Thus, 𝒚 can be represented by 𝒚𝜁 for each scenario. 

  Due to the parameters uncertainty, the model infeasibility may occur at 

some scenarios. Therefore, the uncertainty amount under scenario 𝜁 can be 

represented by 𝛿𝜁, where 𝛿𝜁 > 0 indicates an infeasible model, and 0 otherwise. 

Model (3.18) becomes, 

min
 𝑥,𝑦𝜁,𝛿𝜁≥0

{∑𝜌𝜁𝑓
𝜁

𝜁

+ 𝜔∑𝜌𝜁𝛿𝜁
𝜁

∶ 𝐴𝑥 ≤ 𝑏, 𝐵𝜁𝑥 + 𝐷𝜁𝑦 + 𝛿𝜁 ≤ 𝑒𝜁 , ∀𝜁 = [𝐵, 𝐷, 𝑒]

∈ 𝒵}                                                                                                          (3.19) 

In model (3.19), the first term in the objective function refers to solution 

robustness while the second term presents the model robustness which penalizes the 

infeasibility in the model by the infeasibility parameter 𝜔. The infeasibility is 

resulted from the constraint violations. In other words, a low change of the 

uncertain parameters values can cause a high change in the objective function.  

To represent solution robustness, Mulvey et al. (1995) develop the following 

formulation:   

𝑍 =∑𝜌𝜁𝑓
𝜁

𝜁

+ 𝜆∑𝜌𝜁 (𝑓
𝜁 −∑𝜌𝜁

𝜁

𝑓𝜁)

2

𝜁

                                                           (3.20) 

where 𝜆 is the weighting scale to measure the tradeoff between sensitivity and 

robustness (i.e. if 𝜆 is a relatively high, the model becomes insensitive to the 
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uncertain model variation). Because of the quadratic term in equation (3.20), the 

issue of computational complexity arises. Yu and Li (2000) proposed an absolute 

deviation instead of the quadratic term as shown in the following formulation:  

𝑍 =∑𝜌𝜁𝑓
𝜁

𝜁

+ 𝜆∑𝜌𝜁 |𝑓
𝜁 −∑𝜌𝜁

𝜁

𝑓𝜁|

𝜁

                                                                (3.21) 

As can be seen, there is a nonlinear term in equation (3.21) denoted by the 

absolution deviation term. However, the above formulation can be optimized 

through converting this term into linear by introducing two non-negative 

deviational variables. Yu and Li (2000) extend equation (3.20) as follows:  

𝑍 = 𝑚𝑖𝑛 ∑𝜌𝜁𝑓
𝜁

𝜁

+ 𝜆∑𝜌𝜁 [(𝑓
𝜁 −∑𝜌𝜁

𝜁

𝑓𝜁) + 2𝜃𝜁]

𝜁

                                    (3.22) 

Subject to 

𝑓𝜁 −∑𝜌𝜁𝑓
𝜁

𝜁

+ 𝜃𝜁 ≥ 0,       ∀𝜁                                                                                   (3.23) 

𝜃𝜁 ≥ 0,                                       ∀𝜁                                                                                   (3.24) 

where the following relation can be interpreted as follows:  

𝜃𝜁 =

{
 
 

 
 0,                 𝑓𝜁 ≥∑𝜌𝜁𝑓

𝜁

𝜁

 

∑𝜌𝜁𝑓
𝜁

𝜁

− 𝑓𝜁 ,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                         (3.25) 

Finally, the trade-off between solution robustness measured from the first 

term in equation (3.22) and model robustness measured from the penalty term, the 

weight 𝜔, is included as follows: 

𝑍 = 𝑚𝑖𝑛 ∑𝜌𝜁𝑓
𝜁

𝜁

+ 𝜆∑𝜌𝜁 [(𝑓
𝜁 −∑𝜌𝜁

𝜁

𝑓𝜁) + 2𝜃𝜁]

𝜁

+ 𝜔∑𝜌𝜁𝛿𝜁
𝜁

           (3.26) 

Subject to constraints (3.22) and (3.24), which presents the extended Mulvey et al. 

(1995) approach of robust optimization. 

3.3.2 Robust Model Formulation 
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According to the previous discussion, our novel multi-objective robust 

optimization model is based on the extended Mulvey’s approach where the 

uncertainty is expressed through a set of discrete scenarios (𝜁): 

𝑍1 =  𝑚𝑖𝑛∑𝜌𝜁𝑓1
𝜁

𝜁

+ 𝜆1∑𝜌𝜁 [(𝑓1
𝜁 −∑𝜌𝜁

𝜁

𝑓1
𝜁) + 2𝜃1𝜁]

𝜁

+ 𝜔 [ ∑ 𝜌𝜁𝛿𝑡𝑝𝑐𝜁
𝐷

𝜁,𝑡,𝑝,𝑐

+ ∑ 𝜌𝜁𝛿𝑡𝑝𝑐𝜁
𝑅,𝑅𝑤

𝜁,𝑡,𝑝,𝑐

+∑𝜌𝜁𝛿𝑡𝜁
𝑑

𝜁,𝑡

+∑𝜌𝜁𝛿𝑝𝜁
𝛽

𝜁,𝑝

] 

𝑍2 =  𝑚𝑖𝑛∑𝜌𝜁𝑓2
𝜁

𝜁

+ 𝜆2∑𝜌𝜁 [(𝑓2
𝜁 −∑𝜌𝜁

𝜁

𝑓2
𝜁) + 2𝜃2𝜁]

𝜁

 

𝑍3 =  𝑚𝑎𝑥∑𝜌𝜁𝑓3
𝜁

𝜁

− 𝜆3∑𝜌𝜁 [(𝑓3
𝜁 −∑𝜌𝜁

𝜁

𝑓3
𝜁) + 2𝜃3𝜁]

𝜁

 

𝑍4 =  𝑚𝑎𝑥∑𝜌𝜁𝑓4
𝜁

𝜁

− 𝜆4∑𝜌𝜁 [(𝑓4
𝜁 −∑𝜌𝜁

𝜁

𝑓4
𝜁) + 2𝜃4𝜁]

𝜁

 

Subject to:                                                  

𝑓1
𝜁 −∑𝜌𝜁𝑓1

𝜁

𝜁

+ 𝜃1𝜁 ≥ 0,        ∀𝜁                                                                              (3.27) 

𝑓2
𝜁 −∑𝜌𝜁𝑓2

𝜁

𝜁

+ 𝜃2𝜁 ≥ 0,        ∀𝜁                                                                              (3.28) 

𝑓3
𝜁 −∑𝜌𝜁𝑓3

𝜁

𝜁

+ 𝜃3𝜁 ≥ 0,      ∀𝜁                                                                                (3.29) 

𝑓4
𝜁 −∑𝜌𝜁𝑓4

𝜁

𝜁

+ 𝜃4𝜁 ≥ 0,        ∀𝜁                                                                               (3.30) 

∑𝑄𝐷𝐶𝑡𝑝𝑖𝑐
𝑖∈𝐼

+ 𝑄𝑁𝑆𝑡𝑝𝑐 ≥ 𝐷𝜁𝑡𝑝𝑐 − 𝛿𝑡𝑝𝑐𝜁
𝐷 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶, 𝜁               (3.31) 

∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑙∈𝐿

≤ 𝑅𝜁𝑡𝑝𝑐 + 𝑅𝑤
𝜁
𝑡𝑝𝑐 + 𝛿𝑡𝑝𝑐𝜁

𝑅,𝑅𝑤,        ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶, 𝜁              (3.32) 

∑ 𝑄𝑀𝐷𝑡𝑝𝑚𝑖𝑚∈𝑀 (1 − 𝑑𝜁𝑡) ≥ ∑ 𝑄𝐷𝐶𝑡𝑝𝑖𝑐𝑐∈𝐶 − 𝛿𝑡𝜁
𝑑 , ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑖 ∈

𝐼, 𝜁         (3.33)              

∑∑ 𝛽𝑝
𝜁
. 𝑄𝐶𝑂𝑡𝑝𝑐𝑙

𝑝∈𝑃𝑐∈𝐶

≤∑∑(𝑄𝐼𝑃𝑡𝑝𝑙𝑜 + 𝛿𝑝𝜁
𝛽
)

𝑝∈𝑃𝑜∈𝑂

, ∀ 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿, 𝜁                       (3.34) 
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𝜃𝜁 ≥ 0,  ∀𝜁                                                                                                                        (3.35)                                                                                               

Constraints (3.6) – (3.15)  

The objective functions set, [𝑍1, 𝑍2, 𝑍3, 𝑍4] are the robust formulations of 

the original objective functions set given in model (3.1-3.15), respectively. The 

non- negative decision variables vector 𝜽𝜻̀ = [𝜃1𝜁 , 𝜃2𝜁 , 𝜃3𝜁 , 𝜃4𝜁], are described by 

constraints (3.27-3.30) according to the relation given in (3.25). Because of  

uncertain parameters, the model infeasibility may occur at some scenarios, 𝜁. 

Therefore, constraints (3.31-3.34) are included to consider any potential violations. 

Next, we discuss the application of the augmented weighted Tchebycheff method in 

our robust optimization model.   

3.4 Multi-Objective Solution Approach: The Augmented Weighted 

Tchebycheff Method 

 The augmented weighted Tchebycheff is a special case of compromise 

programming performed through scalarization. Thus, the multi-objective 

optimization problem is converted into a single objective with some parameters. 

However, the limitation of other scalarization methods (i.e. methods with a priori 

articulation of preferences) such as the weighted sum method is that it can not reach 

to solutions in non-convex regions of the Pareto-optimal frontier. A solution is 

called Pareto-optimal if there are no other solutions that dominates it, and therefore 

none of the objectives can be improved without deteriorating at least one of the 

other objectives. Moreover, weighted Tchebycheff  method has a limitation which 

does not guarantee that all solutions obtained are Pareto, and therefore the 

augmented weighted Tchebycheff approach is used.  

 The use of augmentation terms is to avoid weakly nondominated points and 

allows to handle non-convexity of the Pareto-optimal frontier. Miettinen, Makela, 

and Kaario (2006) study through an experimental comparison of methods with or 

without augmentation terms and they conclude that the methods with augmentation 

term significantly outperform equivalent methods without such a term with respect 

to computational costs. We refer to the work of (Steuer & Choo, 1983) to formulate 

our multi-objective model according to the augmented weighted Tchebycheff 

approach. The solution methodology can be outlined as follows: 
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Step (1): the multi-objective robust  method based on extended Mulvey approach is 

formulated and provided by (3.6)- (3.15) and  (3.27)- (3.35). 

Step(2): set the vectors of solution robustness, 𝝀, and model robustness, 𝝎, as 

follows: 

𝜆 = [

𝜆1
𝜆2
𝜆3
𝜆4

],      𝜔 = [

𝜔1
𝜔2
𝜔3
𝜔4

] 

Step (3): solve 𝑍𝑖 ,  ∀𝑖 = 1,  2,  3,  4 relative to its constraints independently to obtain 

the optimal values, 𝑍𝑖
∗ (a utopia point) corresponding to each objective function. 

The utopia vector 𝒁∗, is described as follows:  

𝒁∗ = [𝑍1
∗,  𝑍2

∗,  𝑍3
∗,  𝑍4

∗]𝑇 

Step (4): apply the augmented weighted Tchebycheff method: 

𝑚𝑖𝑛 𝜈 + 𝜏 ∑ [𝑍𝑖 − 𝑍𝑖
∗]4

𝑖=1                                                                                 

Subject to    

𝑤1(𝑍1 − 𝑍1
∗) ≤ ν                                                                                                        

𝑤2(𝑍2 − 𝑍2
∗) ≤ ν                                                                                                        

𝑤3(𝑍3 − 𝑍3
∗) ≥ ν                                                                                                        

𝑤4(𝑍4 − 𝑍4
∗) ≥ ν                                                                                                         

(3.6)- (3.15) and  (3.27)- (3.35). 

where 𝜏 is a small positive number roughly (0.001 ≤ 𝜏 ≤ 0.01).  

Step(5): solve the model of step(4) with different weight combinations which are 

generated randomly using uniform distribution (URG): 

𝑤1 = 𝑈𝑅𝐺(0,1) 

𝑤2 = 𝑈𝑅𝐺(0,1 − 𝑤1) 

𝑤3 = 𝑈𝑅𝐺(0,1 − (𝑤1 + 𝑤2)) 

𝑤4 = 1 − (𝑤1 + 𝑤2 + 𝑤3) 



89 
 

where 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 = 1 

Step(6): report the efficient solutions obtained by step (5). Adjust 𝝀, and 𝝎 from 

step(2) as needed, otherwise stop. Note that the vectors 𝝀, and 𝝎 are selected such 

that 𝜽𝜻 and 𝜹𝜻 are minimum, respectively.  

An appropriate choice of the parameter, 𝜏, is critical when the complete set 

of nondominated solutions has to be obtained. If 𝜏 is too small, this may cause 

numerical issues because the augmentation term weight in the objective function 

may lose significance with respect to the primary objective. On the other hand, 

selecting 𝜏 to be very large may result in the situation that some of the 

nondominated points are not reachable. The proof is available in (Dachert, Gorski, 

& Klamroth, 2012). 

3.5 Numerical Example and Computational Results 

In this section, we illustrate the application of our novel multi-objective 

robust optimization model. The size of our artificial numerical example is explained 

next. The closed-loop supply chain system consists of 12 periods, and 3 products, 

where the network is managed by 3 manufacturers. The required quantity of raw 

materials is ordered for production from 5 potential suppliers. Then, the produced 

lot size is sent to 5 potential distribution centers and finally moved to 10 customer 

zones according to customer demands. In the reverse network, the returned products 

(defective or used products) are shipped to 5 potential collection centers. The non-

recyclable and non-reworkable items are disposed through 3 potential disposal 

centers. 

3.5.1 Illustrated Numerical Example  

 Three scenarios are considered in this study with probabilities of 0.3, 0.5, 

and 0.2, respectively. Note that for scenarios 2 and 3, the estimations are always 

multiplied by 1.3 and 1.5, respectively. The values of scenario 1 for the uncertain 

parameters associated with the first objective function (𝐷𝜁𝑡𝑝𝑐, 𝑅
𝜁
𝑡𝑝𝑐, 𝑅𝑤

𝜁
𝑡𝑝𝑐, 

𝑅𝑐𝜁𝑡𝑝𝑚, 𝑅𝐸𝑐𝜁𝑡𝑝𝑚, 𝑑𝜁𝑡, 𝛽
𝜁
𝑝
) are generated randomly using the uniform distribution 

at 𝑡 = 1, table 2, and then the values for the rest of the periods are generated as 

explained in figure 3.2. It shows that the value at period 𝑡 = 2, is higher than the 

values of 𝑡 = 1 by 10%. This increase continues until it reaches to 𝑡 = 6, at which 
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the value decrease by 10% of 𝑡 = 5. Then, the value keeps going down by 10% 

until it reaches the end of the year 𝑡 = 12. 

 Values for Product p 

Uncertain 

Parameter 
1 2 3 

𝐷̃𝑡𝑝𝑐 U (65, 165) U (55, 147) U (70, 170) 

𝑅̃𝑡𝑝𝑐 U (44, 85) U (38, 95) U (61, 110) 

𝑅𝑤̃𝑡𝑝𝑐 U (10, 36) U (13, 43) U (9, 26) 

𝑅𝑐̃𝑡𝑝𝑚 U (9, 12) U (6.5, 9) U (6, 8) 

𝑅𝐸𝑐̃𝑡𝑝𝑚 U (4, 6) U (4, 6.5) U (3.5, 6) 

𝛽𝑝 0.2 0.175 0.18 

𝑑̃𝑡 
 0.05  

Table 3.2: The values of the uncertain parameters associated with the first 

objective function at period 𝑡 = 1, and scenario 1.  

  This behavior is projected on the assumption that the market demand growth 

for some products would increase gradually at the beginning of the cycle until it 

reaches to its highest sales in the mid of the cycle. After that the customers lose 

their interests in these products because other companies in the market offer 

competitive products with reasonable prices. In addition, the company decides to 

shift to new products with new features which means low sales of old products at 

the end of the cycle. 

 

Figure 3.2: Generating the values for the entire year based on period t=1. 

Data related to environmental impact are estimated as follows. We assume 

that the manufacturing centers (including reworking and recycling facilities), and 

the disposal centers would consume electrical energy beside to gasoline. Thus, the 

amount of 𝐶𝑂2 emissions is estimated according to (ECTA, 2012; McKinnon, 

2007), table 3.3. Note that gasoline is used for transportation delivery.  

Utility 𝐶𝑂2 Unit of measure 

Electricity 0.7306 kg/kwh 

Gasoline 2.392 kg/𝑚3 

Table 3.3: 𝐶𝑂2 per utility consumption. 
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The proportion of each utility usage depends on the facility. For example, 

the power for manufacturing new products may require 35% gasoline and 65% 

electricity. This percentage of gasoline consumption would be lower in products 

recycling and reworking with 15% and 25%, respectively, while it is 100% in the 

transportation, table 3.4. Practically, the distance between the echelons can be 

obtained from "Google Map". In our artificial example we assume these distances 

are generated randomly according to matrix distance in a metric space.  

 

Parameter Amount of 𝐶𝑂2 emissions 

𝐸𝑀𝑐𝑚𝑝
𝜁

 65% ×  Electricity + 35% × Gasoline 

𝐸𝑅𝑐𝑚𝑝
𝜁

 85% ×  Electricity + 15% × Gasoline 

𝐸𝑅𝑊𝑚𝑝
𝜁

 75% ×  Electricity + 25% × Gasoline 

𝐸𝑂𝑐𝑜𝑝
𝜁

 50% ×  Electricity + 50% × Gasoline 

𝐸𝑇𝑐𝑝
𝜁
 Gasoline 

Table 3.4: : The values of the uncertain parameters associated with the second 

objective function for 𝑝1, 𝑚1, 𝑜1, and first scenario.  

Note that for 𝑝2 and 𝑝3, the estimations are multiplied by 1.15 and 1.25, 

respectively. Also, the estimations for 𝑚2, and 𝑚3 as well as the disposal centers 

are multiplied by 1.25 and 1.35, respectively.  

The number of jobs created depends on the number of facilities and their 

capacity. Also, in a region with high unemployment, the weight  assigned to the 

number of jobs created should be higher than the weights assigned to other 

objective functions. The values of scenario 1 for the uncertain parameters 

associated with the third and fourth objective functions are provided in table 3.5. 

The random generated data of the fixed model parameters are given in tables 3.6 

and 3.7. Note that in table 3.6, the values of parameters listed from 𝑇𝑀𝑐𝑝𝑠𝑚 to Tic 

for products 𝑝2, and 𝑝3 are estimated to be 0.75 +Values of (𝑝1) , and 1.2 +Values of 

(𝑝1), respectively. 

 

Uncertain Parameter  Expected values 

𝐺𝐷𝑖
𝜁
  U(9,35) 

𝐺𝐶𝑙
𝜁
 U(15,45) 

𝐺𝑂𝑜
𝜁
 U(9, 25) 

𝐻𝑆𝑚
𝜁

 U(0.05,0.1)  
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Table 3.5: The values of the uncertain parameters associated with the third and 

fourth objective functions for scenario 1.  

 Values  Values 

Parameter Product 1 (𝑝1) Product 2 (𝑝2) Product 3 (𝑝3) Parameter Product 1(𝑝1) Product 2 Product 3 

𝑆𝑐𝑝𝑠 ~U(12.5, 15) ~U(10,12) ~U(8,13) 𝐶𝐼𝑝𝑖 ~U(575, 660) ~U(580,645) ~U(550,630) 

𝑀𝑐𝑝𝑚 ~U(40,45) ~U(38,42) ~U(43,45) 𝐶𝐿𝑝𝑙 ~U(235, 280) ~U(200, 245) 

~U(220, 

265) 

𝐼𝑐𝑝𝑖 ~U(5,6) ~U(3.75,5.75) ~U(4.5,5.5) 𝐶𝑂𝑝𝑜 ~U(345,350) ~U(295,300) 
~U(315, 
320) 

𝐷𝑐𝑝𝑖 ~U(10,12) ~U(10,11) ~U(9.5,10.5) 𝑇𝑀𝑐𝑝𝑠𝑚 ~U(5, 8) 

0.75 +Values 

of (𝑝1) 

1.2 +Values 

of (𝑝1) 

𝐶𝑐𝑝𝑙 ~U(8,9.5) ~U(7,8) ~U(7.75,8.75) 𝑇𝑃𝑐𝑝𝑚𝑖 ~U(3, 4.75) 

ℎ𝑝𝑖 ~U(3,4) ~U(4,4.5) ~U(4,5) 𝑇𝑂𝑐𝑝𝑐𝑙 ~U(4, 8) 

𝑃𝑝𝑠 ~U(6.5,10) ~U(5,6) ~U(3,7) 𝑇𝑍𝑐𝑝𝑖𝑐 ~U(3, 5) 

𝐼𝑜𝑝𝑜 ~U(3,3.5) ~U(3, 3.75) ~U(3,5) 𝑇𝑂𝑃𝑐𝑝𝑙𝑚 ~U(3.25, 5) 

𝐶𝑆𝑝𝑠 ~U(685, 800) ~U(720, 840) ~U(750, 780) Tic ~U(4,5) 

𝐶𝑃𝑝𝑚 ~U(540, 650) ~U(500,600) ~U(590,620)         

Table 3.6: The randomly generated data of the proposed model parameters.  

 

Parameter Values Parameter Values 

𝐹𝑆𝑠 ~U(65000,81000) 𝑈𝑆𝐿𝑝 4.8 

𝐹𝐷𝑖  ~U(40000, 55000) 𝐿𝑆𝐿𝑝 5.2 

𝐹𝐶𝑙 ~U(35000, 45000) K 120 

𝐹𝑂𝑜 ~U(20000, 30000) 𝜇𝑝 5 

ℎ𝑤𝑝𝑙 ~U(2, 2.5) 𝜎𝑝 0.05 

𝜋̂𝑝𝑐 ~U(70000, 95000) 

𝑊𝑝𝑚 1000   

Table 3.7: Design of the data set.   

The computations of MILP were run using the branch and bound algorithm 

accessed via LINGO16.0 on a PC -3GHzand; 4 GB RAM and under win 10. The 

ideal solution for each objective function is calculated before performing the 

computational processes, see table 3.8. This ideal point is used as reference point 

for the augmented weighted Tchebycheff approach. Note that in table 3.8, 𝑍𝑖
∗ refers 

to the robust objective function of  𝑓𝑖
𝜁
, at each scenario 𝜁. Considering different 

values for weights of the objective functions by uniformly varying the weights, 

different Pareto solution are produced, and the results are presented in table 3.9. 

The solutions are computed at 𝝀 = 1,  𝝎 = [1000, 100,10000,2000], and 𝜏 =

0.01.     

Utopia Point 𝑍𝑖
∗ Value of 𝑍𝑖

∗ Objective function (𝑓𝑖
𝜁
) at 𝑍𝑖

∗ 𝜁 = 1 𝜁 = 2 𝜁 = 3 

𝑍1
∗ 26857316 𝑓1

𝜁
 7924407 7927961 7930330 

𝑍2
∗ 46764950 𝑓2

𝜁
 23095187 30022209 34638172 

𝑍3
∗ 22214.4 𝑓3

𝜁
 3468 4572 5256 

𝑍4
∗ 1658.21 𝑓4

𝜁
 809.2205 1047.751 1276.928 

Table 3.8: The ideal solution of the robust objective function, 𝑍𝑖
∗ and its 

corresponding optimal function value, 𝑓𝑖
𝜁
 at each scenario, 𝜁.    
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Weights Combinations Robust Objective Functions 

𝑤1 𝑤2 𝑤3 𝑤4 𝑍1 𝑍2 𝑍3 𝑍4 

0.7 0.1 0.1 0.1 31557288 79664791 2094.78 6989.774 

0.6 0.2 0.1 0.1 34788564 70558702 2108.13 5388.623 

0.5 0.2 0.2 0.1 35577058 68564314 4259.34 5111.073 

0.4 0.3 0.2 0.1 38030300 61662246 4266.34 3899.628 

0.3 0.4 0.2 0.1 40025672 56641218 4314.76 3126.003 

0.2 0.4 0.2 0.2 41089851 53881219 4357.84 2733.508 

0.2 0.3 0.2 0.3 40365119 55770150 4329.12 3011.481 

0.1 0.5 0.3 0.1 42806945 49954872 6614.91 2182.152 

0.1 0.5 0.1 0.3 42806945 49954872 2204.97 2182.152 

0.25 0.25 0.25 0.25 39112397 59020407 5355.65 3460.824 

0.5 0.25 0.15 0.1 36526536 66103432 3209.43 4751.669 

0.2 0.1 0.4 0.3 36475576 66001477 8529.36 4689.249 

0.1 0.2 0.4 0.3 41113755 53893164 8715.68 2730.917 

0.1 0.7 0.1 0.1 43185878 49097576 2207.64 2002.309 

0.1 0.1 0.7 0.1 39059363 58967000 15082.97 3520.784 

0.1 0.1 0.1 0.7 39060739 58968379 2150.2 2103.234 

0.5 0.4 0.05 0.05 38272151 61033501 1070.175 4806.619 

0.4 0.4 0.1 0.1 39063694 58971324 2150.2 3440.517 

0.2 0.2 0.3 0.3 39122157 59029800 6464.13 3519.653 

0.1 0.2 0.3 0.4 41312944 53992754 6581.91 2857.06 

Table 3.9: Robust objective functions value of numerical example through 

augmented weighted Tchebycheff approach. 

 

3.5.2 Discussion and Analysis  

The solutions provided in table 3.9 validate the proposed model. The 

weights indicated in bold refer to the highest priority assigned to each objective 

function. Thus, the resulted robust objective functions at these priorities tend to be 

close to the utopia vector provided in table 3.8. Referring to table 3.9, when we 

assign the highest weight to the second robust objective function, 𝑍2 (the amount of 

𝐶𝑂2 emissions is minimum), this leads to a significant reduction in the production 

lots. Consequently, the first robust objective function, 𝑍1(the total cost across the 

CLSC network) tends to be high because the market demand is partially met, and 

therefore the penalty term sharply increases. Indeed, the minimum of hazardous 

products manufactured, 𝑍4 is achieved. On the other hand, if the third robust 

objective function, 𝑍3 (maximizing job opportunities created) is given the highest 

weight, the maximum total cost across the CLSC network is obtained. Practically 

speaking, this conclusion is valid because more facilities have to be operational to 
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increase the number of jobs which in turn leads to an undesired strategic planning 

due to the high facilities opening costs.  

 

Next, we study the behavior of the performance of the robust objective 

functions as the weighting scale to measure the tradeoff between sensitivity and 

robustness, 𝝀 changes. Generally speaking, 𝝀 should be small enough. However, 

if 𝝀 is chosen to be a relatively high value, the model becomes insensitive to the 

uncertain   

 

Figure 3.3: The behavior of the robust objective functions as vector 𝝀 increases.  

model variation which means more conservative. Therefore, choosing 𝝀 properly 

can control the degree of conservatism and improve the quality of the robust 

solution. In this regard, we test the sensitivity of the model for two different cases. 

In the first case, we study the behavior of the four robust objective functions as the 

vector 𝝀 increases, see figure 3.3, while in the second test, we study the behavior of 

each robust objective function as its corresponding value of 𝜆𝑖 increases, see figure 

3.4. It should be noted that in this analysis the weights of four objectives are set at 

(0.4, 0.3, 0.2, 0.1), respectively.     
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Figure 3.4: The behavior of each robust objective function as its corresponding 

value of 𝜆 increases.  

In figure 3.3, as 𝝀 increases from 0.5 to 2.5, only the values of robust 

objectives 𝑍1, and 𝑍2, increase while in figure 3.4, 𝑍1, 𝑍2, and 𝑍4 increase. 

Moreover, the increase in 𝑍1, and 𝑍2 is relatively higher in figure 3.3. Note that in 

figure 3.3 because of interactions between the four objectives, 𝑍4 decreases as 𝝀 

increases. However, the average value of 𝑍4 in figure 3.3 (𝑍̅4 = 3443.4016) is less 

than the average value of 𝑍4 in figure 3.4 (𝑍̅4 = 4690.2066). Therefore, we make 

the following observation: to reduce the conservatism and improve the robust 

solutions quality of 𝑍1, and 𝑍2, the decision maker should change their 

corresponding values of 𝜆𝑖 individually (case 2), while changing the value of 𝝀 =

[𝜆1,  𝜆2,  𝜆3,  𝜆4]
𝑇, simultaneously (case 1), leads to improve 𝑍4. Also, the difference 

in 𝑍2 is not significant for the two cases. The situation is different in robust 

objective 𝑍3 since the goal here is maximization. In this case, we seek to maximize 

the expected value of 𝑍3 but at the same time its variance term must be minimized. 

Due to this conflict, we can not draw a conclusion when 𝜆3 increases. As depicted 

in both figures, it seems that the optimal value of 𝑍3 is achieved at 𝜆3 = 2.      
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Figure 3.5: The behavior of the robust objective functions as 𝜏 increases.  

Figure 3.5 shows the effect of the penalty parameter, 𝜏 associated with 

augmented weighted Tchebycheff method on the solutions. It can be observed that 

as 𝜏 changes from 0.001 to 0.01 (Steuer and Choo, 1983), there is a slightly change 

in the robust objective functions. As shown in figure 3.5, the ranges of 𝑍1, 𝑍2, 𝑍3, 

and 𝑍4 remain approximately at 38×106, 61×106, 4200, and 3900, respectively.   

3.6 Conclusion  

This chapter proposes a novel robust multi objective closed-loop supply 

chain model to accommodate the gaps in the previous researches in mathematical 

modeling concerning CLSC. Some of the features of the proposed model are as 

follows: (i) Investigating the imperfect quality production to provide meaningful 

solutions to practical problems; (ii) Considering that the inspection is not free of 

errors such that types I and II errors are associated with the inspection, and the 

amount of quality loss as conforming products deviate from the specification 

(target) value is measured; (iii) Exploring multiple periods, echelons, and 

uncertainties; (iv) Modeling MILP of the supply chain, while four objectives are 

taken into consideration simultaneously ( the economic, environmental, and social 
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aspects) and the augmented weighted Tchebycheff method is used to aggregate the 

four objective functions and produce the set of efficient solutions; (v) Robust 

optimization, based on Mulvey et al. (1995) approach, is used to obtain a set of 

solutions that are robust against the future fluctuation of parameters. Our proposed 

model is compatible with several types of industries including steel making, 

electronic and automobile manufacturing, and various plastic products where return 

products (either defective or used) can be reused as a raw material, and when 

environmental and social issues become a company concern.  

Several research directions read considerations in the area of CLSC under 

uncertainty. One possible future extension is treating the market demand as an 

uncarting dynamic parameter. For real input datasets, integrating this model with 

design of control charts can be a subject of future research. In the case of large scale 

problems, this MILP robust optimization model is NP-hard and requires an 

effective algorithm to handle large scale real problems.  
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CHAPTER 4: A ROBUST CLOSED- LOOP SUPPLY CHAIN UNDER 

IMPERFECT QUALITY PRODUCTION: AFFINELY ADJUSTABLE 

ROBUST OPTIMIZATION APPROACH UNDER DYNAMIC 

UNCERTAINTY SET 

In this chapter, the affinely adjustable robust formulation based on "wait and see" 

decisions is presented. That is, the decisions are made over two sequential stages 

where multiple uncertainties are included. Moreover, we propose a budget dynamic 

uncertainty set to mimic the dynamic behavior of the market demand over time. The 

introduced dynamic uncertainty set is formulated according to Vector 

Autoregressive (VAR) models where the temporal and spatial correlations of 

customer demand zones are captured. Also, we utilize different a priori probability 

bounds to approximate probabilistic constraints and provide a safe solution. The 

objective is to minimize the total cost of the supply chain network. Finally, 

numerical examples are provided to illustrate the proposed models.    

4.1 Introduction and Literature Review  

The uncertainty in the supply chain modeling has been recently discussed 

extensively by researchers and industry practitioners. When both the forward and 

reverse supply chains are considered, then the network modeling becomes a closed-

loop supply chain (CLSC) which is now widely taking attention. A common 

assumption of the supply chain inventory model is that the produced items are 

perfect. We consider here the imperfect quality production to provide meaningful 

solutions to practical supply chain management problems.  

Our modeling investigates the integrated multi-echelon, multi-period under 

multiple uncertainties models, where the most recent techniques of robust 

optimization are used as solution approaches. Many researches have addressed the 

issues of the uncertainty of the supply chain using robust optimization under a 

single stage decision (here and now decision).  In this chapter, the affinely 

adjustable robust formulation based on "wait and see" decision is presented over 

two sequential stages.  

The traditional uncertainty set in robust optimization assumes that the 

uncertain parameter lies within a static uncertainty set which may not be the case 

for some real applications. To make this model more practical, we assume that the 
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uncertainty of the market demand in the CLSC is subject to a dynamic uncertainty 

set in which the temporal and spatial correlations of customer demand zones are 

captured. In addition, to determine the uncertainty set size parameters we utilize 

different a priori probability bounds to approximate probabilistic constraints and 

provide a safe solution.   

Recently, Govindan et al. (2017) conducted a literature survey showing that 

four main approaches in recent decades have been adopted to handle the uncertainty 

environment in the supply chain modeling. The four approaches are: dynamic 

programming, stochastic programming, fuzzy programming, robust optimization, or 

the combination of any two of these approaches. With existing uncertainty in the 

dynamic modeling, the dynamic parameters (i.e. market demand) will represent a 

more realistic problem, and hence there is a special attention recently paid to 

stochastic dynamic market demand. On the other side, fuzzy programming is a 

popular approach applied recently by many researchers to the supply chain area 

under uncertainty, (Shekarian, Kazemi, and Abdul-rashid, 2017).  When the 

probability distribution of an uncertain parameter is known, the appropriate 

modeling approach is stochastic programming. This approach is one of the most 

important approaches used to handle the uncertainty in production supply chain and 

inventory control, (Masih-tehrani, Xu, Kumara, and Li, 2011), (Zhang, Li, and 

Huang, 2014), and (Wang, Qin, and Kar, 2015). Several extensions of previous 

studies with supply chain uncertainty make stochastic programming an increasingly 

important modeling approach.  

Robust optimization is a modeling approach where an uncertainty set is 

considered to describe the possible values of uncertain parameters of an 

optimization model. This optimization approach seeks to find the best feasible 

solution for all uncertain parameters inscribed in the uncertainty set. The 

formulation is originally proposed by Soyster (1972), but the proposed solution is 

very conservative. Ben-Tal and Nemirovski (1998, 1999, 2000), Ghaoui and Lebret 

(1997) and Ghaoui et al. (1998) propose a robust counterpart (RC) with tractable 

solution approaches based on ellipsoidal uncertainty set (conic quadratic problems). 

The developed RC formulation produced a less conservative solution. Although no 

distribution assumption is made on uncertain parameters, the availability of data 
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information can be utilized beneficially. The development of robust optimization is 

based on uncertainty sets approach and is summarized in Table 4.1. 

Author Contribution Year 

Soyster  • Simple perturbations in the data are considered in the linear 

programming problem to make the solution feasible under all 

perturbations.    

• Introduces interval set. 

1973 

Ben-tala, 

Nemirovski 

and coworkers  

• The ellipsoidal set robust counterpart is proposed to formulate 

the linear and quadratic programming problems under 

uncertain parameters. 

1998-

2004 

El-Ghaoui and 

coworkers 

• Study the uncertain least-squares problems with the robust 

solutions. 

• Study uncertain semidefinite problems. 

1997,1998 

Lin et al.  

Janak et al.  

• Extend RO for (LP) to MILP  

• The robust optimization framework for different bounded 

known probability distributions are developed. 

2004, 

2007 

Verderame 

and Floudas  

• Investigate both continuous (general, bounded, uniform, 

normal) and discrete (general, binomial, Poisson) uncertainty 

distributions. 

2009 

Bertsimas, Sim 

and coworkers 

• Introduce the uncertainty budgets set ( combined interval and 

polyhedral uncertainty set) in the LP. 

• A new approach is proposed to deal with uncertain parameters 

in the discrete network optimization problems. 

2003- 

2004 

Bertsimas and 

Thiele 

• Extend previous work to address inventory control problems 

to minimize total costs. 

2006 

Soyster 

Li et al. 

Ben-Tal and 

Nemirovski 

Bertsimas and 

Sim 

• Interval Uncertainty Set  

• Pure Box, Ellipsoidal, and Polyhedral Uncertainty Sets 

• Combined interval and ellipsoidal set 

• Combined interval and polyhedral set 

1973 

2011 

2000 

2004 

Table 4.1: Robust optimization approaches in operations research based on 

uncertainty sets.  

Recently, many researchers apply the uncertainty set based approach to 

manage the multiple uncertainties associated with the robust supply chain 

optimization, (Aharon, Boaz, and Shimrit, 2009; Baghalian, Rezapour, and 

Zanjirani, 2013; Hatefi and Jolai, 2014; Kisomi, Solimanpur, and Doniavi, 2016; 
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Ma et al., 2016; Pishvaee et al., 2011; Wei, Li, and Cai, 2011; Xin, Xi, Yu, and Wu, 

2013; Y. Zhang and Jiang, 2017; Zokaee, Jabbarzadeh, Fahimnia, and Jafar, 2017).  

There are very few studies which recognize incorporation of the imperfect 

quality production to the supply chain modelling, (Ahmadi, Khoshalhan, and Glock, 

2016; Masoudipour, Amirian, and Sahraeian, 2017; Sana, 2011). However, these 

studies consider deterministic models.  

Author(s) 
Closed 

Loop- SC 

Imperfect 

Quality  

Production 

Uncertainty 

in The 

Model 

Robust  

Framework 

Multistage  

Formulation 

Dynamic 

Uncertainty 

Set 

Hu, Zheng, Xu, Ji, 

and Guo (2010) 

  

 × ×  ×  

Sana (2011) 

  

 ×     

Hwan, Rhee, and 

Cheng (2013) 
 × ×    

 

Rad, Khoshalhan, 

and Glock (2014) 

 × ×  ×  

       

Ahmadi, 

Khoshalhan, and 

Glock (2016) 

 × ×  ×  

       

Masoudipour, 

Amirian, and 

Sahraeian (2017) 

× ×     

       

Manna, Das, Dey, 

and Mondal (2017) 
× × ×    

       

This paper × × × × × × 

       

Table 4.2: Some of the studies in the field of supply chain under imperfect quality 

production. Mark (×)  in this table means that an article in a row has the feature 

mentioned in that column. 

Modeling supply chain under uncertainty where imperfect quality 

production is incorporated is also studied by few researchers. For example, Hu, 

Zheng, Xu, Ji, and Guo (2010) study coordination of supply chain for the fuzzy 

random newsboy problem with imperfect quality in the decentralized and 

centralized systems. Quality uncertainty from a supply chain coordination 

perspective is addressed by Hwan, Rhee, and Cheng (2013). Rad, Khoshalhan, and 

Glock (2014), however, use the renewal-reward theorem as a stochastic approach in 
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optimizing inventory and sales decisions in a two-stage supply chain. Table 4.2 

presents some of the studies in the field of supply chain under imperfect quality.  

In summary, our contributions are the integration of the following:  

•  We propose a novel closed loop supply chain design with multiple periods 

and echelons. The considered CLS model is under imperfect quality 

production. Also, we assume that the inspection is not free of errors.   

• The modelling is with multiple uncertainties including market demand, 

returned of amount product as either used or defective, recycling and 

reworking costs, and types I and II errors associated with the inspection.  

• The affinely adjustable robust formulation based on "wait and see" decision 

is presented over two sequential stages.  

• We propose a budget dynamic uncertainty set to mimic the dynamic 

behavior of market demand over time, and it is formulated according to 

Vector Autoregressive (VAR) models where the temporal and spatial 

correlations of customer demand zones are captured.  

• We utilize a priori probability bounds to approximate probabilistic 

constraints and provide a safe solution. Then, we will evaluate the robust 

solutions at different probability constraint violations.  

The rest of the chapter is organized as follows. Section 4.2 discusses the 

adjustable robust formulation, section 4.3 introduces a budget dynamic uncertainty 

set, section 4.4 proposes the integrated model formulation, followed by a solution 

methodology and numerical examples in section 4.5. Finally, section 4.6 concludes 

the paper. 

4.2 The Adjustable Robust Formulation 

The usual RC formulation is used to treat "here and now" decisions. That is, all 

decision variables values are determined before the realization of uncertain 

parameters. However, in many practical real life problems some variables, 

including auxiliary variables such as slack or surplus variables, could be decided 

after realization of (some of) the uncertain parameters. We refer to this as "wait and 

see” decisions.  
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To the best of our knowledge, the first work that addressed this type of robust 

formulation was done by (Ben-Tal et al., 2004). They proposed an adjustable robust 

counterpart (ARC) approach for models such that the adjustable variables reveal 

themselves with uncertainty. Moreover, the developed ARC tackled two types of 

recourses; fixed, where the coefficients of adjustable variables are deterministic, 

and uncertain, otherwise. However, the computational tractability of their model 

was a major concern. Therefore, they proposed an affinely adjustable robust 

counterpart (AARC) approach to approximate the ARC by restricting the adjustable 

variables to be affine functions of the uncertain parameters. Next, we describe the 

AARC approach for the case of linear programming.   

Consider a linear program (LP): 

min
𝑤≥0

𝑐𝑇𝑤 :     𝐴𝑤 ≤ 𝑏,                                                                                            (4.1) 

where 𝑤 ∈ ℝ+
𝑛 , 𝑐 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚. The RC was proposed by Ben-Tal et 

al. (2004) as follows: 

min
𝑤≥0

max
𝜁∈𝒵

{𝑐𝑇𝑤:       𝐴𝑤 − 𝑏 ≤ 0,    ∀𝜁 = [𝑐, 𝐴, 𝑏] ∈ 𝒵}, 

where  𝒵 ⊂ ℝ𝑛 × ℝ𝑚×𝑛 × ℝ𝑚 is a given uncertainty set. 

In fact, the decision variables 𝑤 can be decomposed into non-adjustable 

variables 𝑥 and adjustable variables 𝑦. In addition, if the costs of some non-

adjustable variables are affected by uncertainty then we reformulate the problem as 

follows to move all uncertainty to the constraints: 

min
𝑢,𝑥,𝑦≥0

{𝑢: 𝑐𝑥
𝑇𝑥 + 𝑐𝑦

𝑇𝑦 − 𝑢 ≤ 0, 𝐴𝑥 + 𝐷𝑦 ≤ 𝑏, ∀𝜁 = [𝑐, 𝐴, 𝐷, 𝑏] ∈ 𝒵},                 (4.2) 

where 𝑥 ∈ ℝ+
𝑛−𝑝, 𝑦 ∈ ℝ+

𝑝 , 𝐴 ∈ ℝ𝑚×(𝑛−𝑝), 𝐷 ∈ ℝ𝑚×𝑝, 𝑏 ∈ ℝ𝑚 , 𝒵 ⊂ ℝ𝑛 ×

ℝ𝑚×(𝑛−𝑝) × ℝ𝑚×𝑝 × ℝ𝑚. 

Upon this formulation (if necessary) we can state the robust counterpart as: 

𝑍𝑅𝐶 = min
𝑥,𝑦≥0

{ 𝑐𝑥
𝑇𝑥 + 𝑐𝑦

𝑇𝑦, 𝐴𝑥 + 𝐷𝑦 ≤ 𝑏, ∀𝜁 = [𝑐, 𝐴, 𝐷, 𝑏] ∈ 𝒵}.                          (4.3) 

Therefore, we assume that all uncertain parameters appear in the constraints. The 

ARC corresponding to (4.3), where the adjustable variable 𝑦 is decided after 

realization of the uncertain parameters, is: 
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𝑍𝐴𝑅𝐶 = min
𝑥,𝑦(𝜁)≥0,∀𝜁∈𝒵

{ 𝑐𝑥
𝑇𝑥 + max

𝜁∈𝒵
𝑐𝑦
𝑇𝑦(𝜁) , 𝐴𝑥 + 𝐷𝑦(𝜁) ≤ 𝑏, ∀𝜁 = [𝐴, 𝐷, 𝑏]

∈ 𝒵}                                                                                                          (4.4) 

Ben-Tal et al. (2004) assume, without loss of generality, that the uncertainty set 𝒵 is 

affinely parameterized by a perturbation vector 𝜁 varying in a given non-empty 

convex compact perturbation set , χ ⊂ ℝ𝐿: 

𝒵 = {[𝐴, 𝐷, 𝑏] = [𝐴0,  𝐷0, 𝑏0] + ∑ 𝜁𝑙[𝐴𝑙 ,  𝐷𝑙 , 𝑏𝑙]𝐿
𝑙=1 : 𝜁 ∈ χ}                                (4.5) 

In the case of fixed recourse, the coefficients of the adjustable variables are 

deterministic. the RC formulation with fixed recourses is as follows: 

𝑍𝑅𝐶 = min
𝑥,𝑦≥0

{ 𝑐𝑥
𝑇𝑥 + 𝑐𝑦

𝑇𝑦, (𝑎𝑖
0 + ∑ 𝜁𝑙𝑎𝑖

𝑙𝐿
𝑙=1 )𝑥 + 𝑑𝑖𝑦 ≤ 𝑏𝑖

0 + ∑ 𝜁𝑙𝑏𝑖
𝑙𝐿

𝑙=1 , ∀𝜁 ∈ χ, 𝑖 =

1, …𝑚 },                                                                                                                 (4.6) 

and the fixed recourse version of ARC is: 

𝑍𝐴𝑅𝐶 = min
𝑥,𝑦(𝜁)≥0,∀𝜁∈χ

{ 𝑐𝑥
𝑇𝑥 +max

𝜁∈χ
𝑐𝑦
𝑇𝑦(𝜁) : (𝑎𝑖

0 + ∑ 𝜁𝑙𝑎𝑖
𝑙𝐿

𝑙=1 )𝑥 + 𝑑𝑖𝑦(𝜁) ≤ 𝑏𝑖
0 +

∑ 𝜁𝑙𝑏𝑖
𝑙𝐿

𝑙=1 , ∀𝜁 ∈ χ, 𝑖 = 1,…𝑚 }                                                                             (4.7) 

The AARC is an approximation of the ARC in which the adjustable 

variables are restricted to be affine functions of the uncertain parameters. In this 

approximation, if 𝒵 is affinely parameterized as defined in equation (4.5), the 

adjustable variables 𝑦 are restricted to affinely depend on 𝜁 : 

𝑦 = 𝜋0 + ∑ 𝜁𝑙𝜋𝑙𝐿
𝑙=1 ≥ 0,                                                                                      (4.8) 

where 𝜋𝑙 ∈ ℝ𝑝 for 𝑙 = 0,… , 𝐿. The fixed recourse AARC formulation 

corresponding to (4.7) is: 

𝑍𝐴𝐴𝑅𝐶 = min
𝑥,𝜋

{ 𝑐𝑥
𝑇𝑥 + max

𝜁∈χ
𝑐𝑦
𝑇(𝜋0 +∑𝜁𝑙𝜋𝑙

𝐿

𝑙=1

) : (𝑎𝑖
0 +∑𝜁𝑙𝑎𝑖

𝑙

𝐿

𝑙=1

)𝑥

+ 𝑑𝑖 (𝜋
0 +∑𝜁𝑙𝜋𝑙

𝐿

𝑙=1

) ≤ 𝑏𝑖
0 +∑𝜁𝑙𝑏𝑖

𝑙

𝐿

𝑙=1

, ∀𝜁 ∈ χ, 𝑖

= 1,…𝑚; 𝜋0 +∑𝜁𝑙𝜋𝑙
𝐿

𝑙=1

≥ 0 , ∀𝜁 ∈ χ}                                            (4.9) 
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4.3 Budget Dynamic Uncertainty Set: 

The traditional uncertainty sets used in robust optimization assume that the 

uncertain parameter lies within a convex and static uncertainty set in which all 

values of the uncertainty set are realized. 

The budget (polyhedral) uncertainty set is described using the 1-norm of the 

uncertain data vector and is presented as follows: 

𝑈1 = {𝜁 |‖𝜁‖1 ≤ Г} = { 𝜁| ∑ |𝜁𝑖|𝑗∈𝐽𝑖
 ≤ Г}                                                         (4.10) 

where Γ is the adjustable parameter controlling the size of the uncertainty set, see 

figure 4.1  

 

Figure 4.1: Illustration of a polyhedral uncertainty set where 𝑎1 and 𝑎2 are the 

nominal values of the uncertain parameters 𝑎̃1 and 𝑎̃2, respectively.   

Bertsimas and Sim (2004) introduced the polyhedral uncertain set which has the 

equivalent tractable form: 

𝑀𝑖𝑛 𝑍 

s.t.  ∑ 𝑐𝑗𝑥𝑗𝑗 +  Г𝑈 ≤ 𝑍 

𝑈 ≥ 𝑐̂𝑗|𝑥𝑗|,     ∀𝑗 ∈ 𝐽 

∑𝑎𝑖𝑗𝑥𝑗 +  Г𝑢𝑖  ≤ 𝑏𝑖    ∀𝑖

𝑗

 

𝑢𝑖 ≥ 𝑎̂𝑖𝑗|𝑥𝑗|,          ∀𝑖, 𝑗 ∈ 𝐽 

𝑢𝑖 ≥ 𝑏̂𝑖,              ∀𝑖   
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where 𝑎𝑖𝑗, 𝑏𝑖, and 𝑐𝑗 represent the nominal (expected) value of the parameters; 𝑎̂𝑖𝑗, 

𝑏̂𝑖, and 𝑐̂𝑗 represent constant perturbation; 𝜁𝑖𝑗 is a random variable that takes values 

in the interval [-1, 1]. 

In some practical problems, however, this may not be the case; the uncertainty 

depends on the previous stage and hence the bounds of the uncertainty set 

dynamically change over the course of time.  

4.3.1 The Formulation of Budget Dynamic Uncertainty Set 

These correlations can be explicitly modeled by introducing the so -called 

dynamic uncertainty set. To the best of our knowledge Lorca and Sun (2015) 

proposed a linear budgeted dynamic uncertainty set. Specifically, they constructed a 

dynamic uncertainty set for wind power using linear systems to capture the 

temporal and spatial correlations of wind speeds at adjacent wind farms at time 𝑡.  

In this model we will propose a polyhedral dynamic uncertainty set to 

mimic the dynamic behavior of market demand over time. Also, the construction of 

such dynamic set captures the correlation of the demand at each customer zone.     

Consider the following general form of dynamic uncertainty set: 

𝚭𝒕(𝜻[𝟏:𝒕−𝟏]) = {𝜻𝒕: ∃𝑢[𝑡] s. t. 𝑓(𝜻[𝒕], 𝝐[𝑡]) ≤ 0}  ∀𝑡                                              (4.11) 

where 𝜻[𝒕𝟏: 𝒕𝒏] ≜ (𝜻𝒕𝟏 , … , 𝜻𝒕𝒏 ) and in shorthand 𝜻[𝒕] ≜ 𝜻[𝟏:𝒕], and the uncertainty 

vector 𝜻𝒕 are functions of uncertainty realizations in previous time periods. The 

error term is denoted by 𝝐𝒕. To make the model computational tractable, we model  

𝑓(𝜻[𝒕], 𝝐[𝑡]) as semi-definite representable. Therefore, 𝑓 can described through a 

linear dynamic uncertainty set.  

To construct the dynamic uncertainty set for the market demand, we define the 

uncertain demand vector 𝑫𝒕 as: 

℧𝒕(𝑫[𝒕−𝚷:𝒕−𝟏]) = {𝑫𝒕: ∃ 𝑫̃[𝒕−𝚷:𝒕], 𝝐𝑡   s. t. 

𝑫̃𝒕 = ∑ 𝑨𝒓
Π
𝑟=1 𝑫̃𝒕−𝒓 + Г

𝜖𝒖𝒕
𝜖 ,        ∀ 𝑡 ∈ 𝑇                                                            (4.12) 

|𝑢𝑐𝑡
𝜖 | ≥ 𝜖𝑐𝑡         ∀ 𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶                                                                            (4.13)            

𝑫̃𝒕 ≥ 0                                                                                                                 (4.14) 

The temporal and spatial correlations of customer demand zones at time 𝑡 is 

represented by Eq.(4.12) where the vector 𝑫𝒕 = (𝐷1𝑡, 𝐷2𝑡 , … , 𝐷𝑐𝑡 )́ denotes the 

uncertain market demand for each customer zone 𝑐 at time 𝑡. The temporal and 
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spatial correlation coefficients are denoted by matrix 𝐴. The error vector 𝜖𝑡 consists 

of random variables defined by the dynamic budget uncertainty set which is 

controlled by the parameter Γ𝜖 in Eq.(4.12). Finally, the non-negativity constraint of 

𝑫𝒕 is provided by (4.14).  

 

4.3.2 Estimating the Parameters of the Dynamic Uncertainty Set 

The introduced dynamic uncertainty set is formulated according to Vector 

Autoregressive (VAR) models and includes parameters which need to be estimated. 

The preliminaries and definitions of the multivariant of time series model is 

provided in Appendix A.  

Consider the vector autoregressive model given by Eq(4.12). It can be expanded as 

follows: 

{
  
 

  
 
𝐷̃1,𝑡 = 𝛼1 + 𝜌11𝐷̃1,𝑡−1 + 𝜌12𝐷̃2,𝑡−1 +⋯+ 𝜌1𝑘𝐷̃𝑐,𝑡−Π + 𝜖1,𝑡

𝐷̃2,𝑡 = 𝛼2 + 𝜌21𝐷̃1,𝑡−1 + 𝜌22𝐷̃2,𝑡−1 +⋯+ 𝜌2𝑘𝐷̃𝑐,𝑡−Π + 𝜖2,𝑡
.
.
.

𝐷̃𝑐,𝑡 = 𝛼𝑐 + 𝜌𝑘1𝐷̃1,𝑡−1 + 𝜌𝑘2𝐷̃2,𝑡−1 +⋯+ 𝜌𝑘𝑘𝐷̃𝑐,𝑡−Π + 𝜖𝑐,𝑡

                           (4.15) 

The correlation coefficients, 𝜌𝑖𝑗,given by (4.15) refers to the ith row and jth 

column element of the 𝑘 × 𝑘 cross-correlation matrix A. Each variable is a linear 

function of the lag Π values for all variables in the set. Also, 𝜶 = (𝛼1, 𝛼1, … 𝛼𝑐)́ is a 

fixed 𝑐 × 1 vector of intercept terms. Note that the first equation in the recursive 

formulations given by (4.15), we have run the regression 𝐷̃1,𝑡 on 

𝐷̃1,𝑡−1, … , 𝐷̃𝑐,𝑡−1, … , 𝐷̃1,𝑡−Π, … , 𝐷̃𝑐,𝑡−Π, and in the second equation, we regress 𝐷̃2,𝑡 

and so on.   

Using statistical inference techniques developed for time series, the 

parameters of the autoregressive component namely the cross-correlation matrix, A, 

and the matrix of cross-covariance Σ can be estimated. We use R software package 

to estimate VAR model parameters. The function for estimating a VAR(Π) model is 

VAR(). It consists of seven arguments such as a data matrix, the appropriate lag-

order, a desired information criterion, and the type of deterministic regressors. The 

details of these determinations can be found in (Pfaff & Taunus, 2008).  
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4.4 The Model Based on AARC and Budget Dynamic Uncertainty Set  

In this section we discuss the formulation of our tractable closed-loop 

supply chain network under imperfect quality production that is introduced in 

chapter 2. Our proposed model assumes a single stage decision making or "here and 

now decision". In this model, however, we consider "wait and see decision". That 

is, the decisions are made over two sequential stages: the first stage variables 

determine long-term facility configurations which includes the number of selected 

suppliers, number of opened distribution centers, collection centers, and disposal 

centers. Thus, 𝑣𝑡𝑠𝑚, 𝑆𝑡𝑠, 𝐷𝑇𝑡𝑖, 𝐶𝑇𝑡𝑙, and 𝐷𝑂𝑡𝑜 represent the "here and now" decision 

variables. Since our model includes multiple uncertain parameters, the first stage 

decision variables values are determined before the realization of these uncertain 

parameters.  

 The second stage decisions concern a plan for the product flows among 

facilities after realization of the uncertain parameters which include market demand, 

returned amount of product as used items and defective, recycling and reworking 

costs, and inspection errors. Thus, the "wait and see" decision variables are denoted 

by 𝑄𝑆𝑀𝑡𝑠𝑚, 𝑄𝐷𝐶𝑡𝑝𝑖𝑐, 𝑄𝑅𝑃𝑡𝑝𝑙𝑚, and 𝑄𝐸𝑃𝑡𝑝𝑙𝑚.  

We assume that the quantity of raw material ordered from the suppliers, 

𝑄𝑆𝑀𝑡𝑠𝑚, must be determined after the market demand is realized, while the 

quantity of product planned to be sent from the distribution centers to the customer 

zones, 𝑄𝐷𝐶𝑡𝑝𝑖𝑐, must be determined after the proportion of apparent defective items 

is realized. Finally, quantity of recyclable and reworkable products shipped from 

the collection centers to the manufacturers (𝑄𝑅𝑃𝑡𝑝𝑙𝑚, 𝑄𝐸𝑃𝑡𝑝𝑙𝑚) must be determined 

before the realization of the returned amount of product as either used or defective 

items form the customer zones are realized, respectively. Thus,  

𝑄𝑆𝑀𝑡𝑠𝑚 = 𝜋𝑡𝑠𝑚(0)
𝑄𝑆𝑀 + 𝐷̃𝑡𝑐𝜋𝑡𝑠𝑚(1)

𝑄𝑆𝑀
                                                                        (4.16) 

𝑄𝐷𝐶𝑡𝑝𝑖𝑐 = 𝜋𝑡𝑝𝑖𝑐(0)
𝑄𝐷𝐶 + 𝑑̃𝑡𝜋𝑡𝑝𝑖𝑐(1)

𝑄𝐷𝐶
                                                                          (4.17) 

𝑄𝑅𝑃𝑡𝑝𝑙𝑚 = 𝜋𝑡𝑝𝑙𝑚(0)
𝑄𝑅𝑃 + 𝑅̃𝑡𝑝𝑐𝜋𝑡𝑝𝑙𝑚(1)

𝑄𝑅𝑃
                                                                   (4.18) 

𝑄𝐸𝑃𝑡𝑝𝑙𝑚 = 𝜋𝑡𝑝𝑙𝑚(0)
𝑄𝐸𝑃 + 𝑅𝑤̃𝑡𝑝𝑐𝜋𝑡𝑝𝑙𝑚(1)

𝑄𝐸𝑃
                                                                (4.19) 
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In Eq.(4.16-4.19), the adjustable variables are restricted to be affine 

functions of the uncertainties, where 𝜋0 and 𝜋1are non-adjustable variables which 

allow the adjustable decision variables to depend on the uncertain parameters.  

Therefore, the corresponding AARC objective of model (2.1-2.15) under 

budget dynamic uncertainty set is given as follows:𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍𝐴𝐴𝑅𝐶= Facility 

opening costs determined before the realization of the uncertainty at the first stage + 

the product flows among facilities after realization of the uncertainty at the second 

stage. Thus,                                                                    

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍𝐴𝐴𝑅𝐶

=∑∑𝐹𝑆𝑠𝑆𝑡𝑠
𝑠∈𝑆𝑡∈𝑇

+∑∑𝐹𝐷𝑖𝐷𝑇𝑡𝑖
𝑖∈𝐼𝑡∈𝑇

+∑∑𝐹𝐶𝑙𝐶𝐿𝑡𝑙
𝑙∈𝐿𝑡∈𝑇

+∑∑𝐹𝑂𝑜𝐷𝑂𝑡𝑜
𝑜∈𝑂𝑡∈𝑇

+∑∑ ∑ 𝑊𝑝𝑚𝑣𝑡𝑠𝑚 + 𝑃𝑠𝜋𝑡𝑠𝑚(0)
𝑄𝑆𝑀

𝑚∈𝑀𝑠∈𝑆𝑡∈𝑇

+∑∑ ∑ 𝜋𝑡𝑠𝑚(0)
𝑄𝑆𝑀 (𝑆𝑐𝑠 + 𝑇𝑀𝑐𝑠𝑚)

𝑚∈𝑀𝑠∈𝑆𝑡∈𝑇

+∑∑ ∑ ∑𝑄𝑀𝐷𝑡𝑝𝑚𝑖(𝑀𝑐𝑝𝑚 + 𝑇𝑃𝑐𝑝𝑚𝑖 + 𝐼𝑐𝑝𝑖)

𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝜋𝑡𝑝𝑖𝑐(0)
𝑄𝐷𝐶 (𝐷𝑐𝑝𝑖 + 𝑇𝑍𝑐𝑝𝑖𝑐 + ℎ𝑝𝑖 + 𝐹𝑝(𝑥𝑝; 𝜇𝑝))

𝑐∈𝐶𝑖∈𝐼𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙(𝐶𝑐𝑝𝑙 + 𝑇𝑂𝑐𝑝𝑐𝑙)

𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝜋𝑡𝑝𝑙𝑚(0)
𝑄𝑅𝑃 (𝑇𝑂𝑃𝑐𝑝𝑙𝑚)

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑ ∑ 𝜋𝑡𝑝𝑙𝑚(0)
𝑄𝐸𝑃 (𝑇𝑂𝑃𝑐𝑝𝑙𝑚)

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙ℎ𝑤𝑝𝑙
𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+∑∑∑∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜(𝐼𝑜𝑝𝑜 + 𝑇𝐼𝑐𝑝𝑙𝑜)

𝑜∈𝑂𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+∑∑∑𝑄𝑁𝑆𝑡𝑝𝑐𝜋̂𝑝𝑐
𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+ 𝑦𝑄𝑆𝑀(1) + 𝑦𝑄𝑆𝑀(2) + 𝑦𝑑 + 𝑦𝑄𝐷𝐶 + 𝑦𝑄𝑅𝑃 + 𝑦𝑄𝐸𝑃                   (4.20) 

∑∑∑ ∑ 𝑃𝑠. (𝐷̃𝑡𝑐𝜋𝑡𝑠𝑚(1)
𝑄𝑆𝑀 )

𝑚∈𝑀𝑐∈𝐶𝑠∈𝑆𝑡∈𝑇

≤ 𝑦𝑄𝑆𝑀(1)                                                              (4.21) 

∑∑∑ ∑ 𝐷̃𝑡𝑐𝜋𝑡𝑠𝑚(1)
𝑄𝑆𝑀 (𝑆𝑐𝑠 + 𝑇𝑀𝑐𝑠𝑚)

𝑚∈𝑀𝑐∈𝐶𝑠∈𝑆𝑡∈𝑇

≤ 𝑦𝑄𝑆𝑀(2)                                           (4.22) 

∑∑ ∑ ∑𝑃𝑅𝑝𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑖∈𝐼𝑚∈𝑀𝑝∈𝑃𝑡∈𝑇

𝑑𝑡 + 𝑢
𝑑Г𝑑 ≤ 𝑦𝑑                                                      (4.23) 
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𝑢𝑑 ≥ 𝑑̂𝑡𝑄𝑀𝐷𝑡𝑝𝑚𝑖 ,         ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃,𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼                                              (4.24) 

∑∑∑∑𝑑𝑡𝜋𝑡𝑝𝑖𝑐(1)
𝑄𝐷𝐶 (𝐷𝑐𝑝𝑖 + 𝑇𝑍𝑐𝑝𝑖𝑐 + ℎ𝑝𝑖 + 𝐹𝑝(𝑥𝑝; 𝜇𝑝)) + 𝑢

𝑄𝐷𝐶Г𝑄𝐷𝐶

𝑐∈𝐶𝑖∈𝐼𝑝∈𝑃𝑡∈𝑇

≤ 𝑦𝑄𝐷𝐶                                                                                                   (4.25)  

𝑢𝑄𝐷𝐶 ≥ 𝑑̂𝑡 𝜋𝑡𝑝𝑖𝑐(1)
𝑄𝐷𝐶 ,        ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶                                                (4.26) 

∑∑∑∑ ∑ 𝑅𝑐𝑡𝑝𝑚𝜋𝑡𝑝𝑙𝑚(0)
𝑄𝑅𝑃 + 𝑅𝑐𝑡𝑝𝑚𝑅𝑡𝑝𝑐𝜋𝑡𝑝𝑙𝑚(1)

𝑄𝑅𝑃 + 𝑇𝑂𝑃𝑐𝑝𝑙𝑚𝑅𝑡𝑝𝑐𝜋𝑡𝑝𝑙𝑚(1)
𝑄𝑅𝑃

𝑚∈𝑀𝑙∈𝐿𝑐∈𝐶𝑝∈𝑃𝑡∈𝑇

+ 𝑢𝑄𝑅𝑃Г𝑄𝑅𝑃 ≤ 𝑦𝑄𝑅𝑃                                                                           (4.27) 

 𝑢𝑄𝑅𝑃 ≥ 𝑅𝑐̂𝑡𝑝𝑚𝜋𝑡𝑝𝑙𝑚(0)
𝑄𝑅𝑃

,           ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿,𝑚 ∈ 𝑀                                 (4.28)      

𝑢𝑄𝑅𝑃 ≥ 𝑅𝑐̂𝑡𝑝𝑚𝑅̂𝑡𝑝𝑐𝜋𝑡𝑝𝑙𝑚(1)
𝑄𝑅𝑃 ,    ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈, 𝐶 𝑙 ∈ 𝐿,𝑚 ∈ 𝑀                     (4.29) 

∑∑∑ ∑ 𝑅𝐸𝑐𝑡𝑝𝑚𝜋𝑡𝑝𝑙𝑚(0)
𝑄𝐸𝑃 + 𝑅𝐸𝑐𝑡𝑝𝑚𝑅𝑤𝑡𝑝𝑐𝜋𝑡𝑝𝑙𝑚(1)

𝑄𝐸𝑃

𝑚∈𝑀𝑙∈𝐿𝑝∈𝑃𝑡∈𝑇

+ 𝑇𝑂𝑃𝑐𝑝𝑙𝑚𝑅𝑤𝑡𝑝𝑐𝜋𝑡𝑝𝑙𝑚(1)
𝑄𝐸𝑃 + 𝑢𝑄𝐸𝑃Г𝑄𝐸𝑃 ≤ 𝑦𝑄𝐸𝑃                          (4.30) 

𝑢𝑄𝐸𝑃 ≥ 𝑅𝐸𝑐̂𝑡𝑝𝑚𝜋𝑡𝑝𝑙𝑚(0)
𝑄𝐸𝑃 ,           ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿,𝑚 ∈ 𝑀                               (4.31)      

𝑢𝑄𝐸𝑃 ≥ 𝑅𝐸𝑐̂𝑡𝑝𝑚𝑅𝑤̂𝑡𝑝𝑐𝜋𝑡𝑝𝑙𝑚(1)
𝑄𝐸𝑃 ,    ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿,𝑚 ∈ 𝑀                          (4.32) 

∑𝜋𝑡𝑝𝑖𝑐(0)
𝑄𝐷𝐶 + 𝑑𝑡𝜋𝑡𝑝𝑖𝑐(1)

𝑄𝐷𝐶

𝑖∈𝐼

+ 𝑄𝑁𝑆𝑡𝑝𝑐 + 𝑢
𝑄𝐷𝐶(2)Г𝑄𝐷𝐶(2) ≥ 𝐷̃𝑡𝑐  ,

∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶                                                                           (4.33) 

𝑢𝑄𝐷𝐶(2) ≥ 𝑑̂𝑡 𝜋𝑡𝑝𝑖𝑐(1)
𝑄𝐷𝐶(2),        ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼, 𝑐 ∈ 𝐶                                           (4.34) 

∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑙∈𝐿

− 𝑅𝑡𝑝𝑐 − 𝑅𝑤𝑡𝑝𝑐 ≤ Г
𝑅+𝑊 + 𝑅̂𝑡𝑝𝑐 + 𝑅𝑤̂𝑡𝑝𝑐 ,    ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐

∈ 𝐶                                                                                                          (4.35) 

∑ 𝑄𝑀𝐷𝑡𝑝𝑚𝑖(1 − 𝑑𝑡)

𝑚∈𝑀

− 𝑢𝑄𝑀𝐷Г𝑄𝑀𝐷 ≥∑𝜋𝑡𝑝𝑖𝑐(0)
𝑄𝐷𝐶 + 𝑑𝑡𝜋𝑡𝑝𝑖𝑐(1)

𝑄𝐷𝐶

𝑐∈𝐶

,    ∀ 𝑡 ∈ 𝑇, 𝑝

∈ 𝑃, 𝑖 ∈ 𝐼                                                                                                (4.36) 

𝑢𝑄𝑀𝐷 ≥ 𝑑̂𝑡𝑄𝑀𝐷𝑡𝑝𝑚𝑖,                     ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃,𝑚 ∈ 𝑀, 𝑖 ∈ 𝐼                             (4.37) 

∑(𝜋𝑡𝑠𝑚(0)
𝑄𝑆𝑀 + 𝐷̃𝑡𝑐𝜋𝑡𝑠𝑚(1)

𝑄𝑆𝑀 )

𝑠∈𝑆

≤ 𝐵. 𝑣𝑡𝑠𝑚 , ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶 𝑚 ∈ 𝑀                   (4.38) 

∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜
𝑜∈𝑂

+ ∑ 𝜋𝑡𝑝𝑙𝑚(0)
𝑄𝑅𝑃 + 𝑅𝑡𝑝𝑐𝜋𝑡𝑝𝑙𝑚(1)

𝑄𝑅𝑃

𝑚∈𝑀

+ ∑ 𝜋𝑡𝑝𝑙𝑚(0)
𝑄𝐸𝑃 + 𝑅𝑤𝑡𝑝𝑐𝜋𝑡𝑝𝑙𝑚(1)

𝑄𝐸𝑃

𝑚∈𝑀

+ 𝑢𝑅+𝑅𝑤Г𝑅+𝑅𝑤 ≤∑𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑐∈𝐶

, ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑐 ∈ 𝐶     (4.39) 
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𝑢𝑅+𝑅𝑤 ≥ 𝑅̂𝑡𝑝𝑐 𝜋𝑡𝑝𝑙𝑚(1)
𝑄𝑅𝑃

,                  ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑐 ∈ 𝐶 𝑚 ∈ 𝑀               (4.40)             

𝑢𝑅+𝑅𝑤 ≥ 𝑅𝑤̂𝑡𝑝𝑐 𝜋𝑡𝑝𝑙𝑚(1)
𝑄𝐸𝑃 ,                ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑐 ∈ 𝐶 𝑚 ∈ 𝑀              (4.41) 

∑(𝜋𝑡𝑠𝑚(0)
𝑄𝑆𝑀 + 𝐷̃𝑡𝑐𝜋𝑡𝑠𝑚(1)

𝑄𝑆𝑀 )

𝑠∈𝑆

+∑∑𝜋𝑡𝑝𝑙𝑚(0)
𝑄𝑅𝑃 + 𝑅𝑡𝑝𝑐𝜋𝑡𝑝𝑙𝑚(1)

𝑄𝑅𝑃

𝑝∈𝑃𝑙∈𝐿

+∑∑𝜋𝑡𝑝𝑙𝑚(0)
𝑄𝐸𝑃 + 𝑅𝑤𝑡𝑝𝑐𝜋𝑡𝑝𝑙𝑚(1)

𝑄𝐸𝑃

𝑝∈𝑃𝑙∈𝐿

+ 𝑢𝑅𝑅𝑤Г𝑅𝑅𝑤  

≤ ∑∑𝑄𝑀𝐷𝑡𝑝𝑚𝑖
𝑝∈𝑃𝑖∈𝐼

 , ∀ 𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 𝑚 ∈ 𝑀                                 (4.42) 

𝑢𝑅𝑅𝑤 ≥ 𝑅̂𝑡𝑝𝑐 𝜋𝑡𝑝𝑙𝑚(1)
𝑄𝑅𝑃 ,                  ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑐 ∈ 𝐶 𝑚 ∈ 𝑀                  (4.43)             

𝑢𝑅𝑅𝑤 ≥ 𝑅𝑤̂𝑡𝑝𝑐 𝜋𝑡𝑝𝑙𝑚(1)
𝑄𝐸𝑃 ,                ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑐 ∈ 𝐶 𝑚 ∈ 𝑀                (4.44) 

∑∑𝛽𝑝. 𝑄𝐶𝑂𝑡𝑝𝑐𝑙
𝑝∈𝑃𝑐∈𝐶

+ 𝑢𝛽Г𝛽 ≤∑∑𝑄𝐼𝑃𝑡𝑝𝑙𝑜
𝑝∈𝑃𝑜∈𝑂

, ∀ 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿                           (4.45) 

𝑢𝛽 ≥ 𝛽̂𝑝. 𝑄𝐶𝑂𝑡𝑝𝑐𝑙 ,              ∀ 𝑡 ∈ 𝑇, 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶, 𝑙 ∈ 𝐿                                           (4.46) 

∑ 𝜋𝑡𝑠𝑚(0)
𝑄𝑆𝑀 + 𝐷̃𝑡𝑐𝜋𝑡𝑠𝑚(1)

𝑄𝑆𝑀

𝑚∈𝑀

≤ 𝐶𝑆𝑠𝑆𝑡𝑠,            ∀ 𝑡 ∈ 𝑇, 𝑠 ∈, 𝑐 ∈ 𝐶                            (4.47) 

Given constraints (2.10-2.15), and (4.12-4.14). 

Note that 𝐷̃𝑡𝑐 is assumed to be subject to a budget dynamic uncertainty set 

described by (4.12-4.14). The description of the robust counterpart formulation is 

provided in Appendix B.  

4.5 Numerical Example and Computational Results: 

In this section, we illustrate the application of our affinely adjustable robust 

optimization framework where the market demand is subject to a dynamic 

polyhedral budget uncertainty set. We utilize three different probability bounds 

including those bounds which require solving additional nonlinear nonconvex 

optimization problems. In addition, we evaluate the robust solutions at different 

probability constraint violations, 𝜀. Finally, we discuss the sensitivity and 

conservatism of the obtained robust solutions.  

 

4.5.1 Numerical Example  

The size of our artificial numerical example is explained next. The closed-loop 

supply chain system consisting of 12 periods, and 3 products, where the network is 
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managed by 3 manufacturers. The required quantity of raw materials is ordered for 

production from 5 potential suppliers. Then, the produced lot size is sent to 5 

potential distribution centers and finally moved to 10 customer zones according to 

customer demands. In the reverse network, the returned products (defective or used 

products) are shipped to 5 potential collection centers. The non-recyclable and non-

reworkable items are disposed through 3 potential disposal centers.  

Assume a data set of  C market demand zones taken between years [2003, 2018] 

with a frequency of 12 periods (months). To estimate the correlation coefficients, 

𝜌𝑖𝑗 of the 𝑘 × 𝑘 cross-correlation matrix A, given by (32), we need first to estimate 

the lag Π. The lag length for the VAR(Π) model may be determined using model 

selection criteria. The general approach is to fit VAR(Π) models with orders 𝑟 =

0, …  Π, and choose the value of Π which minimizes some model selection criteria. 

The three most common information criteria are the Akaike (AIC), Schwarz-

Bayesian (BIC) and Hannan-Quinn (HQ). For more information on the use of 

model selection criteria in VAR models see Lutkepohl (1991), chapter four. 

Once the parameters of the autoregressive components are estimated, the 

recursive formulations given by (4.15) are generated. The details of these 

determinations are provided in the supplementary document.  

The nominal values of the following uncertain parameters: 𝑅̃𝑡𝑝𝑐, 𝑅𝑤̃𝑡𝑝𝑐, 

𝑅𝑐̃𝑡𝑝𝑚, 𝑅𝐸𝑐̃𝑡𝑝𝑚, 𝛽𝑝, 𝜖𝑐𝑡, and 𝑑̃𝑡 are generated randomly using the uniform 

distribution, as shown in Table 4.2. Note that the deviation magnitudes of the 

uncertain parameters are always set to be 0.1 of the nominal values. The random 

generated data of the proposed model parameters are given in Tables 4.3 and 4.4.  

 Nominal Values for Product p 

Uncertain 

Parameter 
1 2 3 

𝑅̃𝑡𝑝𝑐 U (44, 85) U (38, 95) U (61, 110) 

𝑅𝑤̃𝑡𝑝𝑐 U (10, 36) U (13, 43) U (9, 26) 

𝑅𝑐̃𝑡𝑝𝑚 U (9, 12) U (6.5, 9) U (6, 8) 

𝑅𝐸𝑐̃𝑡𝑝𝑚 U (4, 6) U (4, 6.5) U (3.5, 6) 

𝛽𝑝 0.2 0.175 0.18 

𝜖𝑐𝑡  U(5, 30)  

𝑑̃𝑡   0.05   
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Table 4.2: The nominal values of the model uncertain parameters for each product 

p. 

 Values  Values 

Parameter Product 1 (𝑝1) Product 2 (𝑝2) Product 3 (𝑝3) Parameter Product 1(𝑝1) Product 2 Product 3 

𝑆𝑐𝑝𝑠 ~U(12.5, 15) ~U(10,12) ~U(8,13) 𝐶𝐼𝑝𝑖 ~U(575, 660) ~U(580,645) ~U(550,630) 

𝑀𝑐𝑝𝑚 ~U(40,45) ~U(38,42) ~U(43,45) 𝐶𝐿𝑝𝑙 ~U(235, 280) ~U(200, 245) 

~U(220, 

265) 

𝐼𝑐𝑝𝑖 ~U(5,6) ~U(3.75,5.75) ~U(4.5,5.5) 𝐶𝑂𝑝𝑜 ~U(345,350) ~U(295,300) 

~U(315, 

320) 

𝐷𝑐𝑝𝑖 ~U(10,12) ~U(10,11) ~U(9.5,10.5) 𝑇𝑀𝑐𝑝𝑠𝑚 ~U(5, 8) 

0.75 +Values 

of (𝑝1) 

1.2 +Values 

of (𝑝1) 

𝐶𝑐𝑝𝑙 ~U(8,9.5) ~U(7,8) ~U(7.75,8.75) 𝑇𝑃𝑐𝑝𝑚𝑖 ~U(3, 4.75) 

ℎ𝑝𝑖 ~U(3,4) ~U(4,4.5) ~U(4,5) 𝑇𝑂𝑐𝑝𝑐𝑙 ~U(4, 8) 

𝑃𝑝𝑠 ~U(6.5,10) ~U(5,6) ~U(3,7) 𝑇𝑍𝑐𝑝𝑖𝑐 ~U(3, 5) 

𝐼𝑜𝑝𝑜 ~U(3,3.5) ~U(3, 3.75) ~U(3,5) 𝑇𝑂𝑃𝑐𝑝𝑙𝑚 ~U(3.25, 5) 

𝐶𝑆𝑝𝑠 ~U(685, 800) ~U(720, 840) ~U(750, 780) Tic ~U(4,5) 

𝐶𝑃𝑝𝑚 ~U(540, 650) ~U(500,600) ~U(590,620)         

Table 4.3: The randomly generated data of the proposed model parameters.  

Parameter  Values Parameter  Values 

𝐹𝑆𝑠 ~U(65000,81000) 𝑈𝑆𝐿𝑝 4.8 

𝐹𝐷𝑖  ~U(40000, 55000) 𝐿𝑆𝐿𝑝 5.2 

𝐹𝐶𝑙 ~U(35000, 45000) K 120 

𝐹𝑂𝑜 ~U(20000, 30000) 𝜇𝑝 5 

ℎ𝑤𝑝𝑙 ~U(2, 2.5) 𝜎𝑝 0.05 

𝜋̂𝑝𝑐 ~U(70000, 95000) 

𝑊𝑝𝑚 1000   

Table 4.4: Design of the data set.   

The computations of MILP were run using the branch and bound algorithm 

accessed via LINGO16.0 on a PC -3GHzand; 4 GB RAM and under win 10. While 

computations of the nonlinear nonconvex optimization problems were run using 

BARON solver which is offered by GAMS modeling languages. The optimal 

uncertainty set sizes (Г) using three probability bounds at five constraint violations 

𝜀 are provided in Table 4.5.  Note that in case B3, it is assumed that each 𝜁𝑗  is 

subject to the uniform distribution in [−1, 1], and hence the three uncertainty sets 

apply. For the uniform distribution 𝑈(𝑎, 𝑏), the moment generating function is 

𝐸(𝑒𝜃𝜁) =
𝑒𝜃𝑏−𝑒𝜃𝑎

𝜃(𝑏−𝑎)
. Also, in B4 the expected values of the parameters are only 

known to be within 1% of their nominal values. Therefore,  

𝐸[𝑎̃𝑖] 𝜖  [𝑎𝑖 − 0.01𝑎𝑖,  𝑎𝑖 + 0.01𝑎𝑖]and 𝐸[𝜁𝑗] 𝜖  [−0.1, 0.1] that is equivalent to 

|𝐸[𝜁𝑖]| ≤ 0.1 = 𝜇𝑖. The obtained robust solutions under different constraint 

violations are provided in table 4.6. Note that (Г𝜖(1),Г𝜖(2)) are associated with the 

dynamic budget uncertainty set, and they are corresponding to constraints (4.21-

4.22) and (4.38, 4.42, 4.47), respectively.     
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  The Optimal Values of  Г∆   

Г∆ B2 B3 B4 Constraint Violations 

  Г𝜖(1) 26.81372 15.4422 38.3662 

0.05 

  Г𝜖(2) 2.44775 0.96321 1.00356 

  Г𝑑, Г𝑄𝐷𝐶  8.47924 4.77114 9.04779 

 Г𝑄𝑅𝑃, Г𝑄𝐸𝑃 52.95286 30.5528 99.2308 

 Г𝑄𝐷𝐶(2), Г𝑄𝑀𝐷, Г𝑅+𝑊, 

Г𝑅+𝑅𝑤  
 

3.46164  

 

1.67096  

 

2.00196  

 Г𝑅𝑅𝑤 6.47613 3.57414 6.39249 

 Г𝛽 4.23962 2.18631 3.00241 

  Г𝜖(1) 23.50788 13.5462 35.1603 

0.1 

  Г𝜖(2) 2.14597 0.92642 1.00214 

  Г𝑑, Г𝑄𝐷𝐶  7.43384 4.20847 8.18640 

 Г𝑄𝑅𝑃, Г𝑄𝐸𝑃 46.42434 26.7899 92.7998 

 Г𝑄𝐷𝐶(2), Г𝑄𝑀𝐷, Г𝑅+𝑊, 

Г𝑅+𝑅𝑤  
 

3.03485  

 

1.53458  

 

2.00150  

 Г𝑅𝑅𝑤 5.67769 3.16769 5.84108 

 Г𝛽 3.71692 1.97231 3.00054 

  Г𝜖(1) 21.33797 12.3 33.0476 

0.15 

  Г𝜖(2) 1.94788 0.88964 1.00179 

  Г𝑑, Г𝑄𝐷𝐶  6.74766 3.83349 7.59772 

 Г𝑄𝑅𝑃, Г𝑄𝐸𝑃 42.13911 24.3192 88.746 

 Г𝑄𝐷𝐶(2), Г𝑄𝑀𝐷, Г𝑅+𝑊, 

Г𝑅+𝑅𝑤  
 

2.75472  

 

1.42956  

 

2.00097  

 Г𝑅𝑅𝑤 5.15361 2.89326 5.44232 

 Г𝛽 3.37383 1.81918 3.00005 

  Г𝜖(1) 19.65363 11.3318 31.4034 

0.2 

  Г𝜖(2) 1.79412 0.85285 1.00115 

  Г𝑑, Г𝑄𝐷𝐶  6.21502 3.53967 7.12964 

 Г𝑄𝑅𝑃, Г𝑄𝐸𝑃 38.81281 22.4009 85.2886 

 Г𝑄𝐷𝐶(2), Г𝑄𝑀𝐷, Г𝑅+𝑊, 

Г𝑅+𝑅𝑤  
 

2.53727  

 

1.34031  

 

2.00100  

 Г𝑅𝑅𝑤 4.74680 2.67654 5.11654 

 Г𝛽 3.10751 1.69421 2.92976 

  Г𝜖(1) 18.24036 10.5189 30.021 

0.25 

  Г𝜖(2) 1.66511 0.81606 1.00081 

  Г𝑑, Г𝑄𝐷𝐶  5.76811 3.29144 6.73008 

 Г𝑄𝑅𝑃, Г𝑄𝐸𝑃 36.02182 20.791 82.531 

 Г𝑄𝐷𝐶(2), Г𝑄𝑀𝐷, Г𝑅+𝑊, 

Г𝑅+𝑅𝑤  
 

2.35482  

 

1.26069  

 

2.00013  

 Г𝑅𝑅𝑤 4.40546 2.49243 4.83361 

 Г𝛽 2.88405 1.58565 2.80700 

Table 4.5: The optimal values of uncertainty set size parameters for the three upper 

probability bounds at different 𝜀.  
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 Objective Function under 

 Probability Bounds 

Constraint Violation B2 B3 B4 

0.05 
       

5,645,527  

  

5,618,405  

   

5,637,858  

0.1 
       

5,640,151  

  

5,607,357  

   

5,629,852  

0.15 
       

5,634,591  

  

5,601,234  

   

5,621,852  

0.2 
       

5,628,473  

  

5,594,248  

   

5,614,877  

0.25 
       

5,621,476  

  

5,581,637  

   

5,606,974  

Table 4.6: The robust solutions under different constraint violations. 

4.5.2 Analysis and Discussion 

In this section we discuss the sensitivity and conservatism of the obtained 

robust solutions under the three probability bounds. We refer to figure 4.2 which 

explains how the objective functions behave as the probability constraint violations 

increase for the three different bounds. The figure provides to the decision maker an 

overview of a conservatism comparison between the introduced uncertainty set 

under different probability bounds. 

 

Figure 4.2: The behavior of the robust objective functions when different 

upper bounds are applied.  
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From figure 4.2, we make the following observations. In all probability 

upper bounds as the probability constraint violations increase, the robust objective 

functions tend to be less conservative. This is valid since we allow for a higher 

constraint violation, and hence we improve the performance of objective function. 

Also, the robust solution obtained by B3 is the least conservative (and hence the 

best solution) comparing with the other probability bounds. This would be a better 

choice due to full probability distribution information. If such information is 

available, it can be utilized beneficially which makes the solution less conservative. 

Besides to the affinely adjustable robust optimization framework, incorporating a 

budget dynamic uncertainly set can significantly improve the market demand 

forecasting and produce less conservative robust solutions.  

To display the effectiveness of our closed -loop supply chain model under 

imperfect quality production, we consider the open version of our supply chain 

model. Unlike in the closed-loop or reverse supply chain, in the open-loop system, 

materials (products) are not returned and collected  through the collection centers. 

Moreover, the scenarios of recycling and reworking products which can be as either 

defective or used are not considered in the open -loop case. As a result, the disposal 

centers are always not operational, see figure 4.3.  

 

 

Figure 4.3: The open -loop system of our model.  

To address the open loop system, models (2.10-2.15) and (4.20-4.47) 

developed in the previous sections and chapter 2 are modified such that all 

collection and disposal centers are closed and the associated opening facilities costs 

are omitted from the model. Note that the constraints referring to the return 

products are not considered.  
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Figure 4.4: the total costs incurred in the open and closed- loop systems. 

In figure 4.4, it is illustrated that the total costs incurred in the open- loop 

system is higher by at least 60% than the closed -loop system. In the scenario of the 

open -loop supply chain model, almost all the suppliers are selected, and 

distribution centers are operational. This is a necessary strategic planning  as there 

are no returned products that can be used to satisfy the market demands although it 

would lead to high costs incurred due to opening facilities. In addition, 

manufacturing new products typically is more expensive than recycling used or 

reworking defective ones. We can see those aspects in a wide range of industries 

including steel making, electronic and automobile manufacturing, and various 

plastic products where the return products (either defective or used) can be reused 

as a raw material.      

4.6 Conclusion 

In this chapter, a robust optimization approach is applied to a novel closed 

loop supply chain design with multiple periods, echelons and uncertainties. The 

assumptions of imperfect quality production and that the inspection is not free of 

errors is practically sound. In the traditional uncertainty set-based robust approach, 

the uncertainty set is assumed static. We propose a budget dynamic uncertainty set 

to mimic the dynamic behavior of market demand over time, and the proposed 

approach is formulated according to Vector Autoregressive (VAR) models where 

the temporal and spatial correlations of customer demand zones are captured. In 

addition, the formulation is based on the affinely adjustable robust formulation. 
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Those aspects can significantly improve the market demand forecasting and 

produce less conservative robust solutions. Through the utilization of three different 

probability bounds at different probability constraint violations, 𝜀, the robust 

solutions are evaluated. The results reveal valuable managerial views.  

There are some interesting directions to extend this work. Besides to 

minimizing the total supply chain network costs, the model can consider multiple 

objective functions under uncertainty, where the economic, environmental, and 

social aspects are taken into consideration simultaneously. The problem may turn to 

a more complex, but of course, more interesting ,realistic, and worthwhile study. In 

addition, the market demand can be treated as an uncertain dynamic parameter. 

Another possible future work is to develop robust counterparts formulations based 

on different dynamic uncertainty sets such box and ellipsoidal uncertainty sets. The 

characteristics of each of the selected uncertainty sets provide to the decision maker 

a flexibility to design his own robust model based on his favorable robustness.  

Appendix A: Multivariate Time Series Analysis : 

Time series analysis comprises methods for analyzing time series data in 

order to extract meaningful statistics and other characteristics of the data. 

Multivariate Autoregressive models extend this approach to multiple time series so 

that the vector of current values of all variables is modelled as a linear sum of 

previous activities. 

Let  𝑫𝒕 = (𝐷1𝑡, 𝐷2𝑡, … , 𝐷𝑐𝑡)́, 𝑡 = 0,∓1,∓2,…, denote a c-dimensional time 

series vector of random variables of interest. The process {𝑫𝒕} is a stationary if the 

probability distributions of the random vectors 𝑫𝒕 = (𝐷1𝑡, 𝐷2𝑡 , … , 𝐷𝑐𝑡)́, and 𝑫𝒕 =

(𝑫𝒕𝟏+𝚷, 𝑫𝒕𝟐+𝚷, … , 𝑫𝒕𝒏+𝚷)́ are the same for arbitrary times 𝑡1, 𝑡2, … , 𝑡𝑛, all n, and 

all lags or leads Π = 0,∓1,∓2, …. Thus, for a stationary process we must have 

𝑬(𝑫𝒕) = 𝝁, constant for all t, where 𝝁 = (𝜇1, 𝜇2, … , 𝜇𝑐 )́ is the mean vector of the 

process. Also, the vectors 𝑫𝒕 must have a constant covariance matrix for all t, 

which we denoted by Σ𝐷.  

A MAR model predicts the next value in a c-dimensional time series, 𝑫𝒕 as 

a linear combination of the Π previous vector values: 

𝑫̃𝒕 = 𝜶 +∑𝑨𝒓

Π

𝑟=1

𝑫̃𝒕−𝒓 + 𝝐𝒕                                                                                           (4.48) 
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In (64), the vector, 𝜖𝑡, represents a residual term which is assumed uncertain 

in our model. Note that the vectors 𝜖𝑡 are independent across different time periods.   

In addition, for a stationary process {𝑫𝒕} the covariance between  𝐷𝑖𝑡 and 

𝐷𝑗,𝑡+Π must depend only on the difference in times 𝑡 + Π and 𝑡 of the observations, 

that is, the time Π, not on time 𝑡, for 𝑖, 𝑗 = 1,… , 𝑘, Π = 0,∓1,∓2, …. Hence, we let  

𝛾𝑖𝑗(Π) = Cov(𝐷𝑖𝑡 , 𝐷𝑗,𝑡+Π) = 𝐸[(𝐷𝑖𝑡 − 𝜇𝑖)(𝐷𝑗,𝑡+Π − 𝜇𝑗)]                                     

(4.49) 

and denote the 𝑘 × 𝑘 matrix of cross-covariance at lag Π as  

Σ𝐷 = Γ(Π) = 𝐸[(𝑫𝒕 − 𝝁)(𝑫𝒕+𝚷 − 𝝁)́] =

[
 
 
 
 
𝛾11(Π) 𝛾12(Π) . . 𝛾1𝑘(Π)

𝛾21(Π) 𝛾22(Π) . . 𝛾2𝑘(Π)
. . . . .
. . . . .

𝛾𝑘1(Π) 𝛾𝑘2(Π) . . 𝛾𝑘𝑘(Π)]
 
 
 
 

  (4.50)  

 Also, the corresponding cross-correlation matrix at lag Π is denoted by  

𝐴 = ρ(Π) =

[
 
 
 
 
𝜌11(Π) 𝜌12(Π) . . 𝜌1𝑘(Π)

𝜌21(Π) 𝜌22(Π) . . 𝜌2𝑘(Π)
. . . . .
. . . . .

𝜌𝑘1(Π) 𝜌𝑘2(Π) . . 𝜌𝑘𝑘(Π)]
 
 
 
 

, given that 

 𝜌𝑖𝑗(Π) = Corr(𝐷𝑖𝑡, 𝐷𝑗,𝑡+Π) =
𝛾𝑖𝑗(Π)

[𝛾𝑖𝑖(0) 𝛾𝑗𝑗(0)]
1
2⁄
                                                     (4.51) 

   

Appendix B: The Definition of Robust Counterpart Formulation: 

Consider the following linear programming, 

𝑀𝑖𝑛 ∑ 𝑐̃𝑗𝑥𝑗𝑗                                                          

s.t. ∑ 𝑎̃𝑖𝑗𝑥𝑗 ≤ 𝑏̃𝑖    ∀𝑖𝑗  

where 𝑎̃𝑖𝑗, 𝑏̃𝑖, and 𝑐̃𝑗, represent the true value of the parameters which are subject to 

uncertainty and defined as follows: 

𝑎̃𝑖𝑗 = 𝑎𝑖𝑗 + 𝜁𝑖𝑗𝑎̂𝑖𝑗    ∀𝑗 ∈ 𝐽𝑖 

𝑏̃𝑖 = 𝑏𝑖 + 𝜁𝑖𝑗𝑏̂𝑖 

𝑐̃𝑗 = 𝑐𝑗 + 𝜁𝑗𝑐̂𝑗            ∀𝑗 ∈ 𝐽𝑖 
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where 𝑎𝑖𝑗, 𝑏𝑖, and 𝑐𝑗 represent the nominal (expected) value of the parameters; 𝑎̂𝑖𝑗, 

𝑏̂𝑖, and 𝑐̂𝑗 represent constant perturbation; 𝜁𝑖𝑗 is a random variable that takes values 

in the interval [-1, 1]. Without loss of generality, we make the following 

assumptions: 

• If uncertain data exists in the objective function as coefficients, then the 

objective function can be written as a constraint.  

• In any constraint j, if the right-hand-side parameter is subject to uncertainty, 

then the model can be written as:  

𝑀𝑖𝑛 𝑍                                                 

s.t.  ∑ 𝑐̃𝑗𝑥𝑗𝑗 ≤ 𝑍 

𝑏̃𝑖 −∑𝑎̃𝑖𝑗𝑥𝑗 ≤ 0    ∀𝑖

𝑗

 

Therefore, we end up with a constraint that has uncertain parameters on the left-

hand-side only. 
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Supplementary 

• Data set used in the chapter 4 :  

ï..Zone1 Zone2 Zone3 Zone4 Zone5 Zone6 Zone7 Zone8 Zone9 Zone10 

Jan 2003       86    82   122    86    80    91   137   179   128    103 

Feb 2003       85    96    73   147   107   101    99   128    82     82 

Mar 2003      104    97    83   141   104    68   117   102   117    119 

Apr 2003      161    67    75   190    86    86    89   117    93     73 

May 2003       87   101   143   133   112    82    99   181   177    116 

Jun 2003      114    64   132    98    94    64    95   140   142     78 

Jul 2003       75    83   123    97   129   109    88    90   105     82 

Aug 2003      102    91    90   110    80    54   113   102   153    137 

Sep 2003       71   119   147   185   141   126   127   183   121     78 

Oct 2003       79    70    98    89   146    56   131    84    90     86 

Nov 2003      145   128    84   178   152    51   128   166   104    120 

Dec 2003      118   137   113   163   135    74   118   160    66    106 

Jan 2004       69   144    92   176    93    90    89   137   174     99 

Feb 2004      115   120   145   118    97    71   134   137    64    132 

Mar 2004      111   119    85   175   100    76    97   138   182     85 

Apr 2004      140   109   167   164   100   115   119    84   150    103 

May 2004      138   130   144    91   119    95   104   176   143    113 

Jun 2004      145   146   116   183   127   130   125   172    83     98 

Jul 2004       68   111    82   180   119   112   124   145    58    137 

Aug 2004      165   136   118    89   146    90   118   164   154     80 

Sep 2004       67    74   109   158   135    52    95   131    66    137 

Oct 2004       82   110   163   138    80    83   117   129   131    130 

Nov 2004      150   121   112   185   135   122   137    59   133     72 

Dec 2004      144    61    77   165    91    79   144   136   162    106 

Jan 2005      150   146   137   156   151    64   117   162   117    127 

Feb 2005       96    96   157   146   154   130   117   147   105     80 

Mar 2005      120   128   122   142   112    92   140    62   105     89 
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Apr 2005       93   133   129   142    89    68   106   141   183     86 

May 2005      153    66    94   146    92   103   125    65    92    132 

Jun 2005       72    59   131    96   126    59   149    78   179    101 

Jul 2005      139    75   121    87   120   125   128    50    63    103 

Aug 2005      124    84   163   111   147    92    91   139   128     83 

Sep 2005       76    97   114   147   102   105   124   157    55    110 

Oct 2005      158   118   149   128   101    47   124    69   132    100 

Nov 2005      112   115   126   111   132    71   137    69   175    108 

Dec 2005      127    78   157   120   152    94   101    84    76    112 

Jan 2006       92   100   131   159   152    61   104    60   190    134 

Feb 2006      130    92   163   134   124    52   137    71    94     93 

Mar 2006      101   108   126   185    86    73   146   121    55    116 

Apr 2006       97    73   129   107   133    87   129   123    78     94 

May 2006       92   116   162   143    99    47   143   127   124     73 

Jun 2006      147    64    76   186   117    56   107   163   145     73 

Jul 2006      128   118    79   151    83   111   149   128   163     76 

Aug 2006      164   139   109   143   144    54   110   107    76     85 

Sep 2006       73    88   156   149   115    75   108   184    99    103 

Oct 2006      146    74   163    94   121    92   111    89   128     75 

Nov 2006      125   103    83   163   112   123   149   150   115     88 

Dec 2006       86    69    86   145   122    94   139   171   124     73 

Jan 2007       70   146    85   150   146    68   143   169   166    133 

Feb 2007      138   119    92    92   134    95    88   170    95     88 

Mar 2007       93    86   147   171   113    74   124   165    84    135 

Apr 2007      102   114    93   176    82    73   135   142   142    113 

May 2007      127   124   146   173   109    48   139   144    87    102 

Jun 2007       76    73   102   117    94   108   111    78    86    107 

Jul 2007      113   126   111   112   111    94   131   184    74    117 

Aug 2007      163   142    89   107    96   121   113   140   136    127 

Sep 2007      111   137   139   119   134    72   134   102   151    123 
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Oct 2007      110   102    99   111    85   128    84   179   118     87 

Nov 2007       91   133   163   110   154    55   114   180    61    119 

Dec 2007      121    59   123   148   122    52    84   152    96     89 

Jan 2008      155    76   148   115   112   105    85   119   108     78 

Feb 2008      111   107   147   105   103   124    99    87    67    125 

Mar 2008      161   117    94   175   117    74    98    59    70     88 

Apr 2008      135    83   103   156   150   113    91   158    78    130 

May 2008       95    68    83   121   111   119   104    81   190    103 

Jun 2008       91    81   133   136   138    97   147   102   153     75 

Jul 2008      125    58    84   182   130    84   144    66   132    137 

Aug 2008       83    99   156    88   114   105   127    88   124    135 

Sep 2008      153   119   167   106    99    89    91    90   170     94 

Oct 2008      161   113   152   161    84   111   114    81   178    104 

Nov 2008      133    56   170   112   151   128   101   164    83    130 

Dec 2008      157    90    93   189    95   104   116    67   146     85 

Jan 2009      141   116   134   114   147    82    99   124    82    113 

Feb 2009       76   147   156   187   145    68   110   167    92    130 

Mar 2009      162   147   166   160   140   109    87   167   127     85 

Apr 2009      165    63   125   104   148    92   139   103   101    116 

May 2009      111   117   141   169   104    79   105   132   157    114 

Jun 2009       80   114   164   187   104    90    82   156   168    129 

Jul 2009       90   101   134   143   100    92   123   167   178    128 

Aug 2009      102    60   137    91   131   112   107    75   189    104 

Sep 2009      145   132    79   100    96    57   141    93    87     96 

Oct 2009       90   138   130    93    81    87   132   109   104     82 

Nov 2009      130    80   157   135   138   129   113    77    59    124 

Dec 2009      132   109   139   154   145   112   108   117   133     99 

Jan 2010      109   127   128   110   133    75    95    77   170    119 

Feb 2010      107    55   139   181   106    96   141    62   154    113 

Mar 2010      162    69    92    91   103   129    87    87    60    105 
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Apr 2010       83    88    91   175   105   101   117   144   152     89 

May 2010       95   123   170   152   100    59   130    74    69    123 

Jun 2010       76   113   166   136   122    62   129    51   128     73 

Jul 2010      148    58    86   176   117    80   133   172    88    122 

Aug 2010       65    77   112   149   142    46   137   153   122     77 

Sep 2010       66    58   104   115   146    76    93    88   163    127 

Oct 2010       96   142    88    98    86    60   109   177   174    137 

Nov 2010       97   136   112   177   108    83   128   127   134    123 

Dec 2010      128   139   166   167   151    66   117    77   184    134 

Jan 2011      122    81    90   172   119    52   121    76   162     80 

Feb 2011       88   133    87    88   100    96   107   166    62    112 

Mar 2011      126   131    85   177   139    78    98    71   112     92 

Apr 2011      144   132   131   135   113   126   122   106   147     85 

May 2011      144    72    85   166    87   128   111   152   114    133 

Jun 2011      151   116   134   163    86   109   127   133   140    112 

Jul 2011      156   141    99   154    82    74   132   144   112     75 

Aug 2011      136   138   133    98   126    73   109    59    89    136 

Sep 2011      135    56   106   136   139   109    84   117   112    104 

Oct 2011      147    86   106   131   115   117   116   118    63     85 

Nov 2011       96   118    73   175   126    89   102    61   162    110 

Dec 2011       78   142   105   109    82   113   148    67   130     99 

Jan 2012      131   111    95   110   137   105   123    64   129     88 

Feb 2012      105    73   103   130   130    57   106   122   118     94 

Mar 2012      133    72   115   181   152    87    84   120   152    110 

Apr 2012      131   116   112   158   118    85    88   123   109     97 

May 2012       70   147   170    91    87    71    85   148    57    101 

Jun 2012      127    63   163    85    98   102    91    62   102     79 

Jul 2012       73   131   150    85   105    81    85   156   142     74 

Aug 2012       81   105   120   168   102    70    94    58   183    107 

Sep 2012      140   137   167   108   115    45    96   180   106    116 
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Oct 2012      125   137    88   115    91    71   121    74   115    139 

Nov 2012      163   129    74    91   152    77   102    90   189    108 

Dec 2012      104   105   134    93   146   103   101   123    71    114 

Jan 2013      163   135   145   129   103   116    85   114    84    103 

Feb 2013       95   104   109   187   151   126   126   169    71    113 

Mar 2013       89    71   146   177   121    95   141    89   109    103 

Apr 2013      137    68   162   110   126    71    98    84   104     73 

May 2013      153   123   168   136   146    60   126   153    75     95 

Jun 2013       84   100   113   113    94   119   143   148    74    120 

Jul 2013      105    76   169    91   115   128   119    83    70     77 

Aug 2013      127    56   100   141    98    55   143   147   141    134 

Sep 2013       96    94   161   100   133    82    93   161   137    138 

Oct 2013      149   115   117   102   149    68    92    80    88    129 

Nov 2013      128   105   155   173   140   116   131    82   189    128 

Dec 2013       71    88    72    89    81   123   142   125    88    103 

Jan 2014      114    90   127    86   104    89   139    51   179    107 

Feb 2014      102   123   130   168    95   117   114   170   137    136 

Mar 2014      132   103   110   138    91    71   132   127   120    105 

Apr 2014       65   140   135   168   139    86    95    93    66     92 

May 2014      151   147    96    97   140   104    92    77   127    101 

Jun 2014      158   119    80   153    86   112    93   181   106    121 

Jul 2014      103   135   116   165    86   118   118   163    84    123 

Aug 2014      134   115   157   166    83    66    82   184   146    100 

Sep 2014       81    90   168   120    87   101    92   164   171     81 

Oct 2014      115   127   133   111   116   105    97    74   140    112 

Nov 2014      131    55   102   128   109    72   121   164   127    134 

Dec 2014      160   120   133   117   131   106    91   165   169    100 

Jan 2015      159    79   155   108    99    55    82    75    73     93 

Feb 2015      131   107    76   171   135    45   126    50   139     74 

Mar 2015      157    87   147   157   132    59   122   142   187     84 
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Apr 2015      117    93   167   165   144    55   134    96   101    108 

May 2015      144    56   151   153   125   115   127   159   160    124 

Jun 2015      147    60    73   148   101    77   135   156   146     99 

Jul 2015      112   115    98   178    97   130   138    57    67    109 

Aug 2015       69   115   168   166    83   120   122    74   177    114 

Sep 2015      129   107   119   109   136    92   130   185   137    133 

Oct 2015      123   137   137   132    90    63   105    90   129     97 

Nov 2015      165    73   121    98   115    80    99    66   160    136 

Dec 2015       85   119   133    98   139   118   128   118   129    137 

Jan 2016       79   115   125   162   130    83   117   180   185    123 

Feb 2016      164    72   130   111    96   111    89   162   166    132 

Mar 2016      155   134    95   115   142   106   123   100    97     81 

Apr 2016       81   131   113   125   141    59   113   129   178    131 

May 2016      157   130   139   127   148    53    88   165   117    103 

Jun 2016      165    95    94   123   129    78   112   178   166    126 

Jul 2016       76   108   106   127   109    69   144   122   156     89 

Aug 2016      141    59   157   181   151   115   140    62   142     99 

Sep 2016      151    97   130   158   129    83    87   165   164    131 

Oct 2016      110   126   130   157    93    49   136   168   104    115 

Nov 2016      118   103   128    86   107    49   102    56   180    111 

Dec 2016      100   104   134   165   134    92    85   155   142    127 

Jan 2017      141   102    92   174   124    51   107   117   140    100 

Feb 2017      160   116   157   142   145    96   120    62   128    132 

Mar 2017      113   142   127   104   130    72   139   149   163     91 

Apr 2017      103   120   145   140    84   120   147    95   114    126 

May 2017       76    66   121   120   112    69   102   116   161    124 

Jun 2017       95    80   158   101   106   116   126    56   134    103 

Jul 2017      121    83    81   168   139   127   127   172   143    113 

Aug 2017       87   115   156   106   154    63    96   180   119     97 

Sep 2017       75    97   118    95    96    62   111   175    71     98 
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Oct 2017      161    81   129    88   151    90   137   175    62    134 

Nov 2017       97    62   140   173   138    84    83    54   183    118 

Dec 2017      144    61   129    87    97    88   102   149   139     92 

Jan 2018       74   113    71   179   133   113   133   133   165    116 

Feb 2018      161    70   105   126    80    82   108    51   147    114 

Mar 2018       82    62    74   119   105    72   120    89    91    130 

Apr 2018       75    60   134   179   114    80   116   166   155     89 

May 2018      113    66    74   142   154    63   145   161   127    120 

Jun 2018       75    60   145   181   128   128   121   134    98     79 

Jul 2018      105    96   137    96    87   106   135   157   188     90 

Aug 2018      132   118    71   149   116   127   101   122   151    121 

Sep 2018      104   144   168   160   155    55   148   107   106    112 

Oct 2018       65   137   114   167   144   108   136   121   110    126 

Nov 2018      140    66    77   139   137    56    90   134   149    112 

Dec 2018       84   100   156   111   148    60   130   110   113    137 
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• The behavior of the market demand at each zone and period: 

 

Figure 4.5: The behavior of the market demand at each zone and period.  

 

• Lag Criteria selection:  

VARselect(data2, lag.max = 5, type = "both") 

AIC(n)  HQ(n)  SC(n) FPE(n)  

     2      1      1      2 

 

$criteria 

                  1            2            3            4            5 

AIC(n) 6.655835e+01 6.715162e+01 6.757084e+01 6.799316e+01 6.832601e+01 

HQ(n)  6.739851e+01 6.869191e+01 6.981126e+01 7.093372e+01 7.196669e+01 

SC(n)  6.863179e+01 7.095292e+01 7.310001e+01 7.525020e+01 7.731091e+01 

FPE(n) 8.066597e+28 1.473431e+29 2.293038e+29 3.655019e+29 5.481780e+29 
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• Generating dynamic recursive equations:  

𝐷̃1,𝑡 = 78.878294  − 0.086340 𝐷̃1,𝑡−1 + 0.109930 𝐷̃2,𝑡−1 + 0.119004 𝐷̃3,𝑡−1
+ 0.023933 𝐷̃4,𝑡−1 − 0.054209 𝐷̃5,𝑡−1 + 0.073547 𝐷̃6,𝑡−1
− 0.039347𝐷̃7,𝑡−1 − 0.042888 𝐷̃8,𝑡−1 + 0.092220 𝐷̃9,𝑡−1
+ 0.045914 𝐷̃10,𝑡−1 − 0.021736  𝐷̃1,𝑡−2 + 0.108956 𝐷̃2,𝑡−2
+ 0.099983 𝐷̃3,𝑡−2 − 0.030266 𝐷̃4,𝑡−2 + 0.091980 𝐷̃5,𝑡−2
− 0.077802 𝐷̃6,𝑡−2 − 0.005297𝐷̃7,𝑡−2 + 0.020798 𝐷̃8,𝑡−2
− 0.039784 𝐷̃9,𝑡−2 − 0.025672 𝐷̃10,𝑡−2 

𝐷̃2,𝑡 = 95.321945 + 0.068930 𝐷̃1,𝑡−1 + 0.1796600 𝐷̃2,𝑡−1 − 0.164288 𝐷̃3,𝑡−1
− 0.017699 𝐷̃4,𝑡−1 − 0.093021 𝐷̃5,𝑡−1 + 0.029761 𝐷̃6,𝑡−1
− 0.200601 𝐷̃7,𝑡−1 + 0.010177 𝐷̃8,𝑡−1 − 0.018151 𝐷̃9,𝑡−1
+ 0.118296 𝐷̃10,𝑡−1 + 0.001663 𝐷̃1,𝑡−2 − 0.045539 𝐷̃2,𝑡−2
− 0.032239 𝐷̃3,𝑡−2 + 0.072001 𝐷̃4,𝑡−2 + 0.110241 𝐷̃5,𝑡−2
+ 0.121883  𝐷̃6,𝑡−2 − 0.036194  𝐷̃7,𝑡−2 + 0.012520 𝐷̃8,𝑡−2
− 0.047897 𝐷̃9,𝑡−2 − 0.051237 𝐷̃10,𝑡−2 

𝐷̃3,𝑡 = 91.021949 + 0.006942 𝐷̃1,𝑡−1 − 0.012449 𝐷̃2,𝑡−1 + 0.031256 𝐷̃3,𝑡−1
+ 0.060516 𝐷̃4,𝑡−1 − 0.137204 𝐷̃5,𝑡−1 − 0.172722 𝐷̃6,𝑡−1
− 0.156500𝐷̃7,𝑡−1 − 0.013626  𝐷̃8,𝑡−1 − 0.011580 𝐷̃9,𝑡−1
+ 0.171030 𝐷̃10,𝑡−1 + 0.187244 𝐷̃1,𝑡−2 + 0.009811 𝐷̃2,𝑡−2
+ 0.050655 𝐷̃3,𝑡−2 − 0.069318 𝐷̃4,𝑡−2 − 0.018403 𝐷̃5,𝑡−2
+ 0.054601 𝐷̃6,𝑡−2 + 0.212725 𝐷̃7,𝑡−2 + 0.047883 𝐷̃8,𝑡−2
− 0.0177257 𝐷̃9,𝑡−2 + 0.037576  𝐷̃10,𝑡−2 

𝐷̃4,𝑡 = 155.4 + 0.1587 𝐷̃1,𝑡−1 + 0.06195 𝐷̃2,𝑡−1 − 0.008855 𝐷̃3,𝑡−1
− 0.002605 𝐷̃4,𝑡−1 + 0.1063 𝐷̃5,𝑡−1 − 0.04936 𝐷̃6,𝑡−1
+ 0.06932𝐷̃7,𝑡−1 + 0.04060  𝐷̃8,𝑡−1 − 0.09607 𝐷̃9,𝑡−1
− 0.037533 𝐷̃10,𝑡−1 − 0.05686 𝐷̃1,𝑡−2 − 0.098981 𝐷̃2,𝑡−2
− 0.06733 𝐷̃3,𝑡−2 − 0.02262 𝐷̃4,𝑡−2 − 0.007478 𝐷̃5,𝑡−2
+ 0.1243 𝐷̃6,𝑡−2 − 0.1003 𝐷̃7,𝑡−2 − 0.07455 𝐷̃8,𝑡−2
+ 0.0008324 𝐷̃9,𝑡−2 − 0.08390 𝐷̃10,𝑡−2 

𝐷̃5,𝑡 =  113.7 + 0.04913 𝐷̃1,𝑡−1 − 0.002244 𝐷̃2,𝑡−1 − 0.06855 𝐷̃3,𝑡−1
− 0.05505 𝐷̃4,𝑡−1 + 0.1033 𝐷̃5,𝑡−1 − 0.05684 𝐷̃6,𝑡−1
+ 0.1387𝐷̃7,𝑡−1 − 0.01224  𝐷̃8,𝑡−1 − 0.008922 𝐷̃9,𝑡−1
+ 0.002732 𝐷̃10,𝑡−1 − 0.03780 𝐷̃1,𝑡−2 + 0.03813 𝐷̃2,𝑡−2
− 0.00005268 𝐷̃3,𝑡−2 − 0.01241 𝐷̃4,𝑡−2 − 0.03020 𝐷̃5,𝑡−2
− 0.09132 𝐷̃6,𝑡−2 + 0.03495 𝐷̃7,𝑡−2 + 0.001576 𝐷̃8,𝑡−2
− 0.004235 𝐷̃9,𝑡−2 + 0.03766 𝐷̃10,𝑡−2 
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𝐷̃6,𝑡 = 75.79478 +  0.08578 𝐷̃1,𝑡−1 − 0.02812 𝐷̃2,𝑡−1 + 0.04961 𝐷̃3,𝑡−1
− 0.06831 𝐷̃4,𝑡−1 − 0.10721 𝐷̃5,𝑡−1 + 0.05984 𝐷̃6,𝑡−1
+ 0.11032 𝐷̃7,𝑡−1 + −0.01548 𝐷̃8,𝑡−1 + 0.02285 𝐷̃9,𝑡−1
+ 0.05964 𝐷̃10,𝑡−1 + 0.08563  𝐷̃1,𝑡−2 + 0.05921 𝐷̃2,𝑡−2
− 0.01844 𝐷̃3,𝑡−2  − 0.04296 𝐷̃4,𝑡−2 + 0.02846 𝐷̃5,𝑡−2
− 0.03872 𝐷̃6,𝑡−2 − 0.09358 𝐷̃7,𝑡−2 − 0.04732 𝐷̃8,𝑡−2
− 0.07069 𝐷̃9,𝑡−2 + 0.11808 𝐷̃10,𝑡−2 

𝐷̃7,𝑡 = 77.108989 +  0.008744 𝐷̃1,𝑡−1 − 0.046470 𝐷̃2,𝑡−1 − 0.033333 𝐷̃3,𝑡−1
+ 0.047098 𝐷̃4,𝑡−1 − 0.008751 𝐷̃5,𝑡−1 + 0.067757 𝐷̃6,𝑡−1
+ 0.141424 𝐷̃7,𝑡−1 − 0.007236 𝐷̃8,𝑡−1 + 0.030365 𝐷̃9,𝑡−1
− 0.085690 𝐷̃10,𝑡−1 − 0.027492 𝐷̃1,𝑡−2 − 0.023492 𝐷̃2,𝑡−2
+ 0.078597 𝐷̃3,𝑡−2 + 0.053659 𝐷̃4,𝑡−2 + 0.046921 𝐷̃5,𝑡−2
− 0.009055 𝐷̃6,𝑡−2 + 0.017410  𝐷̃7,𝑡−2 − 0.027098 𝐷̃8,𝑡−2
+ 0.023197  𝐷̃9,𝑡−2 + 0.064786 𝐷̃10,𝑡−2 

𝐷̃8,𝑡 = 109.275745 +  0.111486 𝐷̃1,𝑡−1 + 0.012849 𝐷̃2,𝑡−1 + 0.012574 𝐷̃3,𝑡−1
+ 0.117133 𝐷̃4,𝑡−1 + 0.104027 𝐷̃5,𝑡−1 + 0.049200 𝐷̃6,𝑡−1
− 0.133409 𝐷̃7,𝑡−1 + 0.057492 𝐷̃8,𝑡−1 + 0.049676 𝐷̃9,𝑡−1
+ 0.002191 𝐷̃10,𝑡−1 − 0.207120 𝐷̃1,𝑡−2 + 0.118808  𝐷̃2,𝑡−2
− 0.051294 𝐷̃3,𝑡−2 − 0.077960 𝐷̃4,𝑡−2 + 0.147847 𝐷̃5,𝑡−2
+ 0.107461 𝐷̃6,𝑡−2 + 0.214762 𝐷̃7,𝑡−2 − 0.067192 𝐷̃8,𝑡−2
− 0.068820 𝐷̃9,𝑡−2 − 0.385775 𝐷̃10,𝑡−2 

𝐷̃9,𝑡 = 104.88455 − 0.08667 𝐷̃1,𝑡−1 − 0.10556 𝐷̃2,𝑡−1 + 0.02747 𝐷̃3,𝑡−1
+ 0.06802 𝐷̃4,𝑡−1 + 0.02598 𝐷̃5,𝑡−1 + 0.06135 𝐷̃6,𝑡−1
+ 0.04938 𝐷̃7,𝑡−1 − 0.08392 𝐷̃8,𝑡−1 − 0.03958  𝐷̃9,𝑡−1
+ 0.38943 𝐷̃10,𝑡−1 − 0.05604  𝐷̃1,𝑡−2 − 0.06069 𝐷̃2,𝑡−2
+ 0.03549 𝐷̃3,𝑡−2 + 0.01084 𝐷̃4,𝑡−2 − 0.15354 𝐷̃5,𝑡−2
− 0.01805 𝐷̃6,𝑡−2 − 0.09828 𝐷̃7,𝑡−2 − 0.10270 𝐷̃8,𝑡−2
− 0.04820 𝐷̃9,𝑡−2 + 0.05920 𝐷̃10,𝑡−2 

𝐷̃10,𝑡 = 83.285753 + 0.028729 𝐷̃1,𝑡−1 + 0.077074 𝐷̃2,𝑡−1 − 0.019566 𝐷̃3,𝑡−1
− 0.027475 𝐷̃4,𝑡−1 + 0.024747 𝐷̃5,𝑡−1 + 0.004009 𝐷̃6,𝑡−1
− 0.045474 𝐷̃7,𝑡−1 − 0.008409 𝐷̃8,𝑡−1 + 0.074345 𝐷̃9,𝑡−1
− 0.104962 𝐷̃10,𝑡−1 − 0.023839 𝐷̃1,𝑡−2 + 0.058262 𝐷̃2,𝑡−2
− 0.018108 𝐷̃3,𝑡−2 − 0.089708 𝐷̃4,𝑡−2 + 0.058820 𝐷̃5,𝑡−2
+ 0.065851 𝐷̃6,𝑡−2 + 0.116664 𝐷̃7,𝑡−2 − 0.015468 𝐷̃8,𝑡−2
+ 0.077614 𝐷̃9,𝑡−2 + 0.008399 𝐷̃10,𝑡−2 
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CHAPTER 5: GENERAL CONCLUSION 

Robust optimization approach for closed-loop supply chain under uncertain 

environments and imperfect quality production is the focus of this dissertation. It 

integrates three areas together namely, operations research, production systems, and 

quality engineering, and is a key to come up with theses sustainable, robust, and 

realistic design of CLSC models.   

The proposed CLSC network design problems in this dissertation include 

multiple periods, echelons, objectives, and uncertainties. The robust optimization 

with uncertainty set- based approach , and Mulvey et al. (1995) approach are used 

to obtain a set of solutions that are robust against the future fluctuation of 

parameters. 

In the motivation section of chapter 1, a novel robust model for the 

inventory problem at a single station and finite discrete horizons of T periods is 

proposed. The robust counterparts are based on box and ellipsoidal uncertainty sets. 

The box uncertainty set is formulated based on the Chebyshev norm of the 

perturbation variables, while the ellipsoidal uncertainty set is formulated based on 

the 2-norm of the perturbation variables. The a priori probabilistic guarantees 

approach is used to compute the size of the uncertainty set necessary to ensure that 

the degree of constraint violation does not exceed a certain level. The problem is 

solved using five probability bounds at five different probability constraint 

violations. The results reveal the following conclusion: the robust solution based on 

the ellipsoidal uncertainty counterpart is less conservative than the box uncertainty 

counterpart. In addition, depending on the uncertainty information such as whether 

the uncertain parameter has bounded and symmetric distribution or it has a known 

probability distribution, the decision maker will identify a better choice in 

constructing the robust counterpart model.    

In chapter 2, modeling CLSC under uncertainty with incorporation of 

imperfect quality production is addressed. The uncertainties are associated with 

each component of the network and include market demand, return of amount 

products used and defective items, recycling and reworking costs, types I and II 

errors, and disposal fraction of products. The objective of the MILP model is to 

minimize the total cost of the supply chain network. To address the uncertainties, 
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three robust counterparts formulations based on the box, polyhedral, and combined 

interval and polyhedral uncertainty sets are developed. The polyhedral uncertainty 

set is described using the 1-norm of the uncertain data vector, while combined 

interval and polyhedral uncertainty set is the intersection between the polyhedral 

and the interval set defined with both 1-norm and infinite norm. To illustrate the 

application of the robust optimization framework based on the three different 

uncertainty sets, four different probability bounds are utilized. Also, the robust 

solutions at different probability constraint violations, 𝜀, for three problem sizes are 

evaluated. The solutions and analysis show that for our proposed model, the robust 

solutions based on the combined interval and polyhedral is the least conservative 

robust solutions. 

 

Chapter 3 extends chapter 2 such that the robust multi-objective mixed 

integer linear programming model is developed and includes three objectives 

simultaneously. The first objective function minimizes the total cost of the supply 

chain. The second objective function seeks to minimize the environmental 

influence, and the third objective function maximizes the social benefits. The 

limitation of scalarization methods (i.e. methods with a priori articulation of 

preferences) is that it can not reach to solutions in non-convex regions of the 

Pareto-optimal frontier. In this work, the augmented weighted Tchebycheff method 

is used to aggregate the three objective functions and produce the set of efficient 

solutions. Robust optimization, based on Mulvey et al. (1995) approach, is used. 

The robust framework introduced by Mulvey et al. (1995) addresses two types of 

robustness: solution robustness which means that the solution remains nearly 

optimal under all realizations (scenarios), and model robustness which refers to the 

solution feasibility under all realizations. Considering different values for weights 

of the objective functions by uniformly varying the weights, different Pareto 

solution are produced. Also, the behavior of the performance of the robust objective 

functions as the weighting scale to measure the tradeoff between sensitivity and 

robustness, 𝝀 changes is studied.  

 

In chapter 4, the affinely adjustable robust formulation based on "wait and 

see" decision is presented over two sequential stages. In this robust optimization 

approach, the adjustable variables reveal themselves with uncertainty. Thus, the 
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first stage variables determine long-term facility configurations which includes the 

number of selected suppliers, number of opened distribution centers, collection 

centers, and disposal centers. The second stage decisions concern a plan for the 

product flows among facilities after realization of the uncertain parameters which 

include market demand, returned of amount product as used items and defective, 

recycling and reworking costs, and inspection errors. Moreover, a polyhedral 

dynamic uncertainty set is proposed to mimic the dynamic behavior of market 

demand over time. Also, the construction of such dynamic set captures the 

correlation of the demand at each customer zone. The introduced dynamic 

uncertainty set is formulated according to Vector Autoregressive (VAR) models. 

Besides to the affinely adjustable robust optimization framework, incorporating a 

budget dynamic uncertainly set can significantly improve the market demand 

forecasting and produce less conservative robust solutions. Finally, in the 

comparison between open and closed -loop systems, the total costs incurred in the 

open- loop system is higher by at least 60% than the closed -loop system.  

We summarize the future research directions as follows: 

• Integration of Robust Optimization and Stochastic Programming: in the 

hybrid robust/stochastic optimization approach, the model is formulated 

over multi sequential stages. In the first stage, binary decisions variables for 

facility configuration are determined. The second stage decisions are 

determining the expected values of product flows after realization of random 

variables which follow some probability distributions. The third stage 

decisions are unit transportation capacities that should be decided after 

realization of the uncertain parameters.  

• Robust Counterparts Formulations Based on Different Dynamic Uncertainty 

Sets: another possible future work is to develop robust counterparts 

formulations based on different dynamic uncertainty sets such box and 

ellipsoidal uncertainty sets. The characteristics of each of the selected 

uncertainty sets provide the decision maker a flexibility to design his own 

robust model based on his favorable robustness. 

• Multi-Stage Adjustable Robust Optimization with Uncertainty-Affected 

Recourse: in this dissertation we consider the fixed recourse case. Also, 
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nonlinear adjustable robust optimization can be considered as a future 

research, but it would require more computational complexity.  

• Larger-Scale Instances: they may require new decomposition approaches.  
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