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Abstract 

Computer-Aided Detection and Diagnosis (CAD) of medical images has been 

developed and tested for the last three decades. It is designed to be an effective time-

saving assistant and provide doctors with a wealth of diagnostic information in clinical 

practice. Traditional CAD techniques utilize the features of manual extraction of images 

and algorithms that use shallow supervised learning. They have great limitations in 

medical image classification, effective feature extraction, and segmentation. In order to 

overcome these limitations, deep learning has emerged as a promising technology in CAD 

development. In this study, my motivation is to investigate an optimal approach of 

applying Convolutional Neural Network (CNN), one of the deep learning models, to 

assist detection of residual breast cancer using histopathology images after Neoadjuvant 

treatment (NAT). In this process, CNN models were implemented and compared using 

different optimization objectives and evaluation metrics. 

Specifically, the CAD system used two CNN schemes, namely, ResNet and SE-

ResNeXt. To detect the residual cancer cells from the pathology images after NAT, a 

regression CAD system was developed to predict cancer cellularity value followed by 

applying a concordance evaluation metric to compare and verify the effectiveness of the 

model. The performance of integrated models for predicting cancer cellularity and 

providing doctors with second information is almost the same as the performance of the 

supplementary information given by other doctors.  

To distinguish classes of cancer cellularity in the pathology images, a 

classification CAD system was developed to predict the probability of classes. The 

classier performance was evaluated using the Receiver Operating Characteristic (ROC) 
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method. When using a 5-fold cross-validation method to classify the classes of pathology 

images, the best area under the ROC curve was 0.905±0.075. The results of study 

indicated that CNN based deep learning is a promising CAD technology, which can 

significantly improve the diagnostic efficacy of detecting residual breast cancer cells in 

pathology images after NAT with high performance. 
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Chapter 1: Introduction 

1.1 Breast cancer and screening using radiographic imaging 

Breast cancer, which refers to a malignant tumor, is an uncontrolled growth of 

breast cells. A tumor can be benign (not dangerous to health) or malignant (has the 

potential to be dangerous). Benign tumors are not considered cancerous. The cells in 

benign tumors are close to normal in appearance. They grow slowly and do not invade 

nearby tissues or spread to other parts of the body. Malignant tumors are cancerous 

because malignant cells can grow rapidly and eventually spread beyond the original 

tumor to other parts of the body [1]. Thus, it is important to detect and treat malignant 

tumors in the early stage. 

Most breast cancers are a type of carcinoma called adenocarcinoma, which starts 

in cells that make up glandular tissue. The most common symptom of breast cancer is a 

new lump or mass. A painless, hard mass that has irregular edges is more likely to be 

cancer, but breast cancers can be tender, soft, or rounded. They can even be painful [2]. 

For women in the United States, breast cancer death rates are higher than those 

for any other cancer, besides lung cancer. About 1 in 8 U.S. women (about 12.4%) will 

develop invasive breast cancer over the course of her lifetime. About 41,760 women in 

the U.S. are expected to die in 2019 from breast cancer, though death rates have been 

decreasing since 1989 [3]. These decreases are thought to be the result of treatment 

advances, earlier detection through screening, and increased awareness. 

Imaging tests using the modalities, such as Mammography, Magnetic Resonance 

Imaging (MRI) and Ultrasound, are clinically accepted in aiming to detect and analyze 

the tumor which is still not visible from the epidermis. However, imaging tests have limits; 
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no imaging test can show a single cancer cell or even a few. Other than this, it is a quite 

difficult task for the certified radiologists in breast imaging to interpret the mammogram 

with high detection sensitivity and specificity. In fact, especially in the breast area, the 

dense fibro-glandular tissues overlapping as well as the large heterogeneity of breast 

lesions will produce different diagnostic results from different radiologists due to the high 

inter-reader variability [4]. Thus, in the breast cancer screening environment, high recall 

rates of radiologists will result in a large number of biopsies to determine whether the 

tumor is malignant or benign based on histopathology test and analysis, which is the best 

and gold-standard method in the clinical practice. 

1.2 Breast cancer diagnosis in pathology  

Pathology has always been regarded as a "bridge discipline" between basic 

medicine and clinical medicine, which fully demonstrates its irreplaceably important role 

in medicine, which is determined by the nature and tasks of pathology. Specifically, 

pathology lays a scientific theoretical foundation for mastering the nature, diagnosis, 

treatment, and prevention of diseases and directly participates in clinical diagnosis and 

treatment. As a field of general inquiry and research, the four major tasks of pathology 

include cause (etiology), mechanisms of development (pathogenesis), structural 

alterations of cells (morphologic changes), and the consequences of changes (clinical 

manifestations) [5]. 

The methods of pathological test are diverse, such as biopsy, blood analysis, 

dissection, and other applications of medical microscopy. When conducting pathological 

diagnosis of breast cancer, the pathologists collect the tissue samples extracted by biopsy, 
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which include the use of different methods of local excision, clamping, needle aspiration, 

and scraping, removal, etc. to acquire samples of the patient’s diseased tissue. 

With the development of natural science, medical science has gradually formed 

many sub-disciplines, and their common purpose and tasks are through studying the life 

activities of normal and diseased organisms from different fields and in different ways, 

to prevent diseases and to protect human health. Therefore, pathology is closely related 

to anatomy, histology, embryology, physiology, biochemistry, parasitology, 

microbiology, etc. in basic medicine.  

1.2.1 Histopathology 

Histological observation is one of the most commonly used means of observing 

and studying diseases. By making the diseased tissue into slices several micrometers thick, 

staining them with different materials, and then observing the microscopic lesions with a 

microscope, the resolution of the naked eye observation is improved hundreds of times, 

and the understanding of diseases and lesions is deepened. The pathologists usually utilize 

histopathology which is combining histological observation and pathology to diagnose 

diseased tissue after biopsy in breast cancer. 

Histopathology contrasts with cytopathological methods which use free cells or 

tissue fragments and aid in the diagnosis of certain infectious diseases. Histopathological 

examination of the tissue begins with surgery, biopsy or autopsy [6]. Once the targeted 

breast tissue region is biopsied, the samples taken are studied manually under the 

microscope by a pathologist. And typically, the tissue is removed from the organism and 

placed in a fixative to stabilize the tissue to prevent decay. 
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In the entire field of diagnostic histopathology, the role of pathologists in tumor 

diagnosis is unparalleled. Unfortunately, patients or non-professionals know nothing 

about this and often take it for granted that their diagnostician is a surgeon, clinician or 

oncologist. In fact, for any patient with swelling or mass, a histopathological report is the 

primary factor in diagnosing, predicting clinical progression, and determining treatment. 

However, many patients are reluctant to carry out the histopathology test because to take 

biopsy is an invasive examination. Therefore, histopathology is often performed after the 

image test and surgery. 

Breast histopathology can be used not only to detect the benign and malignant 

tumors after surgery, but can also be used to diagnosis the stage of breast cancer, follow 

up chemotherapy or radiation therapy to prevent cell proliferation, and identify whether 

cancer cells have been completely eliminated. 

1.2.2 Neoadjuvant treatment and cancer cellularity 

Neoadjuvant treatment (NAT) of breast cancer is an option for patients with 

locally advanced disease. In addition to the treatment’s effect on tumor size, NAT may 

alter the cancer cellularity. Tumor response to the therapy provides useful information 

for patient management and can guide decisions about subsequent therapy. Tumor size 

may not decrease, but the overall cellularity may be markedly reduced, making residual 

cancer cellularity an important factor in assessing response.  

Cellularity within the tumor bed is defined as the percentage area of the overall 

tumor bed that is comprised of tumor cells (invasive or in situ). The histopathological 

examination of the tissue sections after surgery to estimate the residual tumor and the 
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assessment of cellularity is an important component of tumor burden assessment. It’s a 

very helpful feedback for NAT of breast cancer. 

In the current clinical practice, cancer cellularity is manually estimated by 

pathologists on haematoxylin and eosin (H&E) stained slides, the quality and reliability 

of which might be impaired by inter-observer variability which potentially affects 

prognostic power assessment in NAT trials [7, 8]. Although this procedure is also 

qualitative and time-consuming in the current practice, cellularity fraction of cancer is a 

better prognostic indicator to illustrate the therapy results without segmenting the bound 

of the cancer cell or indexing the cell’s characteristic individually [9]. 

1.3 Digital pathology 

Whenever using optical microscopes or electron microscopes, pathologists who 

diagnose pathology images need to operate microscopes manually. The data size of 

pathology images is huge when compared to radiology images, in order to save time costs, 

pathologists often use their experience to determine suspected areas for diagnosis and 

observation, rather than for the whole image. Therefore, reading such a big size of images 

by pathologists is a tedious and high error rate job. However, with the rapid development 

of the information age in these decades, the emergence of digital pathology can 

effectively revolute this situation. Digital pathology images are obtained through medical 

instruments, such as Aperio Digital Pathology Slide Scanner, a commercialized available 

whole slide scanner to produce digital images, which can display whole digital slides in 

computer monitors in less than 60 seconds. It also can change the magnification manually 

in computers which is the same as observing the glass slide under a conventional 

microscope. 
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Meanwhile, relatively objective diagnostic reports often need to be diagnosed by 

more than one pathologist. Because different pathologists often have different diagnosis 

results, we call it inter-reader variability. If two pathologists are not in the same laboratory, 

it is difficult for them to give a diagnosis of the pathological image under a conventional 

microscope at the same time. Along with the development of digital pathology, images 

can be transmitted in the network without being constrained by space. Also, digital 

pathology can assist telemedicine (or tele-pathology) to diagnosis jointly and even to 

better serve remote areas without or with few highly experienced pathologists. 

Digital pathology is a disruptive technology, as technology becomes more cost-

effective, digital pathology is becoming more common. Digital pathology will 

undoubtedly allow pathologists to make more accurate and consistent diagnoses in the 

near future. 

1.4. Computer-aided detection and diagnosis 

Once a digital image has been acquired, Computer-aided Detection and Diagnosis 

(CAD) system can be leveraged to analyze the information they hold. Over the past 

decade, dramatic increases in computational power and improvement in image analysis 

algorithms have allowed the development of powerful CAD approaches to biomedical 

image data. Just as with digital radiology over two decades ago, digitized histopathology 

has now become amenable to the application of computerized image analysis and 

machine learning techniques for an accurate diagnosis. 

For instance, a Whole Slide Images (WSI) printed at 600 dpi could fill 70 dull 

8.5" × 11" pages, to predict the cellularity of every 512 × 512 patches at a rate of 5s/patch. 

Using the CAD method, global scanning of the WSI and giving the diagnosis for each 
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patch only takes less than five minutes, but when labeling by pathologists, they may need 

12 hours or more. A WSI figure is shown in Figure 1. 

 

Figure 1. The WSI and four examples in different cancer cellularity. 

CAD as a second opinion system includes prognosis diagnosis, evaluation, and 

assessment. Different pathologists have different results in each slice. Only with 

improved consistency, will the prognostic value and outcomes be increased. So, we can 

build a CAD system to minimize this heavy work. The CAD system can pay attention to 

the slices on which pathologists have big differences in opinion from the result of CAD 

system and also give a second opinion to pathologists who have different diagnosis results. 

CAD systems reduce the workload of specialists and cost, contributing to diagnosis 

efficiency and effectiveness.  
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1.4.1 Research status 

There has already been researching about an analysis of cell and microscopy 

images in 1965, a very long time ago. Mendelsohn et al. initially demonstrated the 

morphological analysis of cells and chromosomes [10]. Over the last decade, clinical 

diagnosis and research were interested in digital pathology, a progressive technology with 

the rapid development of the Internet. Besides digital pathology, a large digital repository 

of tissue slides for medical students and pathologists is a huge educational resource. 

Using CAD tools to address specifically targeted biomarkers or segment and classify the 

cells in pathology were advanced in recent years as well. In this study, I am going to pay 

more attention to CAD field in the Artificial Neural Networks (ANN). 

Compared to traditional methods, ANN methods do not require hand-crafted 

functional design and feature extraction, however, they also can scale well to large data 

sets, and can be easily applied to other applications. ANN-based methods, especially 

those based on Convolutional Neural Networks (CNN), have received much attention in 

the field of histopathology images analysis because they have better performance in some 

applications than traditional methods. 

Wang D. et al. created a 27-layer deep network correlated with pathologists to 

identify metastatic breast cancer [11]. Han Z. et al. achieved a BiCNN model which 

combined some traditional feature descriptors, such as PFTAS and GLCM, to automated 

classify the images’ property [12]. Bayramoglu N. et al. developed a system which uses 

conditional generative adversarial networks to virtually stain the unstained 

histopathology [13]. Sari CT. et al. produced a model to extract features in 

histopathological classification field [14]. The research [13, 14] above created 
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unsupervised ANNs to analyze features automatically. Motlagh NH. et al. used a simple 

ResNet CNN model to classify binary benign-malignant assessment in breast cancer 

imaging [15].  

There are too many examples to mention. But, through the research and 

development of CNN models by many scientists in the past decades, I will research the 

breast cancer histopathology image after NAT treatment by training and generated on 

CNN model. 

1.5 Objective of this study 

Although CAD of digital pathology images has been attracting great research and 

development interest in the last decades, it still faces many technical challenges in 

automatically identifying the diseased regions, conducting cell segmentation, and 

selecting the optimal hand-craft image features to develop machine learning classifiers 

for disease diagnosis. In order to better address these challenges, researchers have 

investigated the feasibility of using deep learning approaches to develop new CAD 

schemes of digital pathology images.     

In this study, two quantitative CAD systems were utilized to automatically predict 

the cancer cellularity and classes within tumor bed in WSI breast cancer histopathology 

images of surgical or biopsy specimens acquired from the breast patients after NAT (i.e., 

neoadjuvant chemotherapies). Accurately detecting residual cancer cells and 

distinguishing (or diagnosing) cancer categories based on cancer cellularity levels is 

important for clinicians (surgeons and oncologists) to select or determine the optimal 

treatment strategy for the individual patients after NAT. The CAD systems also aim to 

minimize pathologist overloading work and give a second opinion for diagnosis. For this 
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purpose, we took the following steps in this study. First, a series of preprocessing methods 

were developed to automatically augment the size of datasets and decrease overfitting, 

which will influence the accuracy of predictions. Second, different schemes were 

compared by computing performance, and two CAD systems were used by cross-

validation to identify the optimal CNN models in solving the different problems. Third, 

different outcome layers were analyzed to fit different evaluation metrics and 

circumstances. Fourth, the CNN models were ensembled from trained processes, and 

calculated and discussed the prediction effectiveness, advantages, and disadvantages 

from the results. Finally, the potentials for further improvement were discussed to amend 

the prediction performance. 

The details of the datasets, the procedures of CAD systems and the study results 

are presented in the following sections. 
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Chapter 2: Neural networks 

2.1 ANN 

Just like 90 billion neurons form a complex neural network system in the human 

brain, the concept of neural network construction is inspired by the operation of biological 

(human or other animals) neural network [16]. Each connection, such as a synapse in a 

biological brain, can pass signals from one artificial neuron to another. Artificial neurons 

that receive the signals can process it and then signal other artificial neurons to connect 

it.  

The neural network itself is not an algorithm, but rather a framework for many 

different machine learning algorithms to work together and process complex data inputs 

[17]. Typically, artificial neurons are aggregated into layers where different layers can 

perform different types of conversions on their inputs. The output of each artificial neuron 

is calculated by activation function of the sum of its inputs. Rectified linear unit (ReLU) 

is one of the most common activation functions; it can be described as outputting the 

maximum number between 0 and x: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

The connection between artificial neurons is called the edge. Artificial neurons 

and edges often have weights that adjust as learning progresses. The weight increases or 

decreases the strength of the signal at the junction. The signal may propagate from the 

first layer (input layer) to the last layer (output layer) after traversing the layers multiple 

times. The commonly used ANNs in the traditional machine learning field, which used a 

limited number of subjectively defined or hand-craft image features, is shown in Figure 

2. The ANN has a 3-layer structure including an input layer with neurons represented by 
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selected image features, a hidden layer to adjust or increase discriminatory power, and an 

output layer linked with neurons represented different classes.   

Input layer

Hidden layer

Output layer

Neuron

 

Figure 2. Simplest ANN architecture. 

ANNs have been used on a variety of fields, including computer vision, natural 

language processing, image segmentation and classification, and medical diagnosis. 

Unquestionably, ANN is an ideal machine learning tool widely optimized and used in 

variety of CAD schemes of medical images including digital pathology images [18,19].  

2.2 CNN 

The challenge of developing an optimal conventional ANN is the difficulty in 

identifying a small set of effective and not redundant image features. In order to address 

and overcome this challenge, developing feature-less CNN has been attracting great 

research interest recently. A CNN is quite similar to an ANN: they are all composed of 

neurons, which have the weight and bias of learning ability. However, a CNN includes 

many input neurons and many hidden neuron layers. Each neuron gets input data and 
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performs a convolutional operation before performing an activation function. The 

network still has a loss function and a fully connection (FC) layer often performed in the 

last layers. 

The biggest difference between the CNN and the ANN is the receptive field. Each 

convolutional neuron was proposed to connect to a small sub-region of the previous layer. 

The size of the connection is called the neuron's receptive field, and its shape is square, 

and size is a hyperparameter (actually the spatial size of the filter). This architecture 

ensures the strongest response to a spatially local input pattern. The earliest CNN 

architecture is LeNet in the last decade of the last century, shown in Figure 3. 

 

(A six-layer structure: C1 + S2 + C3 + S4 + C5 + F6) 

Figure 3. Architecture of LeNet, the first successful CNN application [20]. 

The CNN has a batch filter that continuously scrolls in the picture. It only collects 

a small pixel area at each time, after collecting all the information, the output value can 

be understood as a volume, has a higher height with the size of batch filter. It will be 

inadvertently losing some information. When the volume is set, retain more information 

and the compression work is given to the max pooling layer. Such additional work can 

effectively improve accuracy. 

Pooling layer also used to reduce the spatial size and the number of parameters, 

to overcome overfitting. In addition to max pooling, average pooling was often used 
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historically but has recently fallen out of favor compared to max pooling, which performs 

better in practice [21]. 

 The following are some of the more well-known structures in the field of CNNs, 

and are sorted by accuracy from low to high which is as same as the order of years of 

birth [22]. 

 LeNet [20], the first successful CNN application was implemented by Yann 

LeCun in the 1990s. LeNet laid out three core ideas of the CNN: local receptive field, 

weight sharing, and downsampling. 

AlexNet [23] has been successfully applied to a larger variety of computer vision 

tasks. It was developed by Alex Krizhevsky et al. and won the ImageNet ILSVRC 

challenge in 2012. The network structure is very similar to LeNet, but deeper and larger. 

In terms of connection design, the number of convolutional layers is increased to 5 layers, 

the convolutional layer scales are 11x11, 5x5, 3x3, and the FC layer is increased to 3 

layers. In terms of operators, ReLU was used instead of a sigmoid as the activation 

function. Besides, Dropout and LRN were implemented to reduce overfitting and to 

normalize the data. 

ZF Net [24], the network invented by Matthew Zeiler and Rob Fergus, won the 

ILSVRC 2013 competition. It implements the improvement of AlexNet by modifying the 

hyperparameters in the structure, specifically increasing the size of the intermediate 

convolutional layer, making the step size and filter size of the first layer smaller. 

GoogLeNet [25] (Inception Net) was the winner of ILSVRC 2014. It mainly 

makes a big improvement in the convolutional layer and significantly reduces the number 

of parameters in the network (60M in AlexNet, only 4M in the GoogLeNet). While the 
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network deepens, the convolutional layer network is broadened. The influence of 

increasing the number of filters is as same as the influence of increasing the number of 

channels, and the widening network can be simply considered to be a wider structure. 

VGGNet [26] got the runner-up placement in ILSVRC 2014. Its demonstrated 

that the depth of the network is a key part of the excellent performance of the algorithm. 

Because a 5 × 5 convolution layer can be equivalent to two layers of 3 × 3 convolutions 

so that the size of convolution in VGGNet is all 3 × 3, that makes the network unit 

modularization. However, VGGNet consumes more computing resources and uses more 

parameters, resulting in more memory usage. Most of the parameters are from the first 

FC layer. It was later discovered that even if these FC layers were removed, which will 

significantly reduce the number of parameters, there will be no effect on performance. 

It is not hard to find that the performance of a CNN is improved by the deeper 

depth and wider width of networks [27]. The deeper depth means more layers in the CNN 

architecture, and the wider width means more channels in a single layer. However, deep 

networks often have gradient explosions that require very good initialization of 

parameters; deep networks also can overfit and increase the test loss. The emergence of 

Batch Normalization [28] can normalize the output of each layer so that the gradient can 

remain stable after being transmitted in the reverse layer without being too small or too 

large.  

Moreover, as the depth of the network increases, the accuracy becomes saturated 

and then decreases rapidly. This degradation is not caused by overfitting nor by gradient 

explosions, but because the network is so complicated that it is difficult to achieve the 

ideal error rate by unconstrained stocking training, which means adding more layers to 
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the appropriate depth model leads to higher training errors [27,29]. The currently widely 

used optimization methods, whether SGD [30, 31], Adam[32], or RMSProp [33], are 

unable to achieve theoretically optimal convergence results as the network depth 

increases. 
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Chapter 3: Image datasets 

This study used a publicly available image dataset, which was collected and 

ensembled from the Sunnybrook Health Sciences Centre, Toronto, Canada. It contains 

3698 patch images with a size of 512 × 512 pixels. These patch images were acquired 

from 96 WSIs, which have been stained with H&E, a commonly used stain in pathology 

for prominent cells and connective tissue. After NAT therapy, 96 WSIs were extracted 

from excised specimens of 64 patients with residual invasive breast cancer. WSIs were 

prepared and scanned using a whole slice digitizer of pathology images at 20× 

magnification (0.5µm/pixel). The two pathologists have more than 10 years of practical 

experience in reading and diagnosis of histopathology images of breast lesion specimens 

at the University of Toronto. They were involved in interpreting these images to build 

“ground-truth” in detecting residual cancer cells and scoring image slices based on their 

subjectively graded cellularity values [34]. The Canadian Cancer Society provided 

research funding to support assembling this image dataset. This dataset was made 

publicly available for research purposes and was used as a common dataset in a 

competition to develop CAD systems of histopathology images of breast lesion 

specimens namely, the SPIE-AAPM-NCI BreastPathQ: Cancer cellularity challenge in 

SPIE 2019 [35]. Figure 4 shows a number of randomly selected samples of image slices 

from the dataset. 

3.1 The training set and validation set 

The whole dataset was divided into three independent subsets. The training set 

has 2579 patches in 63 WSIs. The validation set has 185 patches in 6 WSIs. In the both 

sets, the truth ground was labeled by a single pathologist. The label is called cancer 
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cellularity, it is defined in Chapter 1 as the percentage area of the overall tumor bed that 

is comprised of tumor cells (invasive or in situ). Plus, the number is a percentile decimal 

number between 0.00 and 1.00, where 0 corresponds to 0% cellularity, and 1 corresponds 

to 100% cellularity. 

        (a)      (b)       (c)       (d) 

 

        (e)      (f)       (g)       (h) 

 

(a-b) Cellularity Scores are 0; (c) Cellularity Score is 0.1; (d) Cellularity Score is 0.35; 

(e) Cellularity Score is 0.65; (f) Cellularity Score is 0.9; (g-h) Cellularity Scores are 1.0. 

Figure 4. Samples of cancer cellularity values. 

Table 1 and Figure 5 illustrate the statistics of truth ground in the training set and 

validation set. As we can see in Table 1, the distribution of cellularity value is relatively 

uniform.  In Figure 3, it is clear that the labels from 0 to 0.1 and 0.9 to 1.0 are stepped by 

0.01 approximately; the labels between 0.1 and 0.9 are stepped by 0.05.  

Table 1. Cancer cellularity value and distribution in classes. 

 
Cancer cellularity value and distribution in classes 

 
0% 1 – 30% 31 – 70% >70% 

Training  

(Pathologist A) 
670 (28.0%) 775 (32.4%) 597 (24.9%) 352 (14.7%) 

Validation 

(Pathologist A) 
31 (16.8%) 65 (35.1%) 68 (36.8%) 21 (11.4%) 
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Figure 5. Percentage of cellularity value in the training set and validation set. 

3.2 The testing set 

The testing set has been prepared and scanned in an identical manner as the 

training set, which includes 1119 patches in 27 WSIs acquired from 18 patients. In the 

testing set, the truth ground was labeled by two pathologists and one of the pathologists 

is the same person as the pathologist who marked the training set. This testing dataset is 

used to objectively evaluate performance of CAD schemes developed by different 

research groups in the SPIE competition. Thus, the truth ground is invisible or not 

released to the researchers. The competition organizer will use this testing dataset to test 

the CAD schemes submitted to the competition and report the performance results to the 

researchers only. Table 2 demonstrates the statistics of the testing set labeled by two 

pathologists. 

3.3 ImageNet 

Since a deep CNN typically involves a huge number of weights or link 

coefficients, it needs to be trained using a very big dataset to yield or maintain high 

robustness (avoiding overfitting). The number of images in this histopathology dataset is 

too small to fully train a complete CNN. Thus, a transfer learning method was applied 
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and used in this study and the initial epoch of the CNN was pretrained by a published 

large dataset named as an ImageNet [36]. ImageNet is an image dataset organized 

according to the WordNet hierarchy [37] and consists 1000 classes. Images of each 

concept are quality-controlled and human-annotated. The models were trained on 1.28 

million training images, evaluated on 50k validation images, and tested on 100k testing 

images. 

Table 2. Cancer cellularity value and distribution in classes. 

 
0% 1 – 30% 31 – 70% >70% 

Test (Pathologist A) 242 (21.6%) 225 (20.1%) 301 (26.9%) 353 (31.4%) 

Test (Pathologist B) 237 (21.1%) 312 (27.8%) 375 (33.5%) 197 (17.6%) 
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Chapter 4: ResNet and SE-ResNeXt  

In order to apply proper CNN architectures or models, based on the literature 

review above and knowledge learned, ResNet and SE-ResNeXt were selected as the CNN 

structures applying to develop the new CAD schemes of digital histopathology images. 

Those two structures have performed very well in the field of image processing for the 

past five years. To detect residual breast cancer cells and classify cancer severity based 

on the cancer cellularity values in this study, the selected structures have relatively 

different complexity, which can be compared to the performance when the database is 

not big enough. 

4.1 Training a ResNet based CNN model  

ResNet (Residual Neural Network) [38] was proposed by Kaiming He et al. from 

the Microsoft Research Institute. ResNet was successfully trained and won the 

championship in all five main tracks of ILSVRC & COCO 2015 competitions (ImageNet: 

classification, detection, localization, and COCO: detection and segmentation). At the 

same time, the parameter quantity of ResNet is lower than VGGNet, the runner-up CNN 

scheme. The structure of ResNet can accelerate the training of neural networks very 

quickly while the accuracy of the model is also greatly improved. Also, ResNet consists 

of some similar blocks of the convolutional layer, which has strong expandability. It can 

be applied not only to previous networks but also to the subsequent networks. A simple 

block of ResNet-50 is shown in Figure 6. 

ResNet mainly solves the degradation in a deeper network. The main idea of 

ResNet is to add a direct connection channel (shortcut) to the network. The previous 

network structure was a non-linear transformation of the performance inputs, while the 
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Residual network allowed a certain percentage of the output of the previous network layer 

to be preserved and passed directly to the later layers. ResNet solved this problem to a 

certain extent. By directly transferring the input information to the output and protecting 

the integrity of the information, the entire network only needs to learn the part of the input 

and output differences, simplifying the learning objectives and difficulty.  

 

Figure 6. The block of ResNet-50. 

With the most basic ResNet block, and through stacking, different layers of the 

ResNet scheme can be generated. The ResNet-50 simple blocks contain three 

convolutional layers, as shown in Figure 6 and Table 3. The two shortcuts between the 

three blocks in conv2 stage are directly added to the output of the convolutional network. 

Meanwhile, between two different stages, ResNet connected the convolutional network 

and shortcut by using a 1 × 1 convolution kernel. The whole architecture of ResNet-50 

including the number of parameters and Floating-point Operations Per Second (FLOPs) 

is shown in Table 3. 

The last layer of ResNet is composed of the global average pool [39], FC layer 

and softmax. The global average pool is mainly used to solve the problem of full 
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connection. The main purpose is to make the feature map of the last layer into a mean 

value pool of the whole graph to form a feature point and form these feature points into 

the final feature vector. The global average uses a simple average to establish the 

connection between the feature map and the category which is a very effective way to 

reduce overfitting. For instance, in ResNet-50, the output is operated from 7 × 7 × 2048 

to 1 × 2048 by the global average pool. 

When training on the classification of an ImageNet dataset that has 1000 classes, 

the output after the global average pool is a 2048-dimension vector. FC layer acts as a 

"classifier" throughout the ResNet, mapping the learned "distributed feature 

representation" to the role of the sample marker space which is 1000 classes in ImageNet. 

In practical applications, the FC layer can be implemented by convolution operations.  

Softmax is used in the multi-classification process to map the output of multiple 

neurons to the (0,1) interval, the output with the highest probability (the value 

corresponds to the largest) or the probabilities of classes can be the final output result. 

The equation of Softmax is shown below. 

𝑆𝑖 =
𝑒𝑖

∑ 𝑒𝑗𝑗
 

In ResNet-50, the error rate of the largest softmax, called top-1 error, is 20.74% 

and the error rate of the largest five softmax, called top-5 error, is 5.25%. ResNet is the 

state-of-art CNN scheme in 2016. 
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Table 3. The architectures of ResNet-50 and ResNeXt-50 when training on 

ImageNet dataset. 

stage output ResNet-50 ResNeXt-50 (32×4d) 

conv1 112×112 7 × 7, 64, stride 2 

conv2 56×56 

3 × 3 max pool, stride 2 

















256 1,×1

64 3,×3

64 1,×1

 × 3 

















=

256 1,×1

32  C 128， 3,×3

128 1,×1

 × 3 

conv3 28×28 

















512 1,×1

128 3,×3

128 1,×1

 × 4 

















=

512 1,×1

32  C 256， 3,×3

256 1,×1

 × 4 

conv4 14×14 

















1024 1,×1

256 3,×3

256 1,×1

 × 6 

















=

1024 1,×1

32  C 512， 3,×3

512 1,×1

 × 6 

conv5 7×7 

















2048 1,×1

512 3,×3

512 1,×1

 × 3 

















=

2048 1,×1

32  C 1024， 3,×3

1024 1,×1

 × 3 

 1×1 
global average pool  

1000-d fc, softmax  

global average pool 

1000-d fc, softmax 

# params. 25.5 × 106 25.0 × 106 

FLOPs 4.1 × 109 4.2 × 109 

 

4.2 ResNeXt 

ResNeXt [40] proposes a strategy between common convolution and depth 

separable convolution: packet convolution, which balances the two strategies by 

controlling the number of packets (cardinality). The idea of packet convolution comes 

from Inception network [41]. Unlike Inception, which needs to manually design each 
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branch, the topologies of branches of ResNeXt are same. Finally, after cardinality 

architecture, ResNeXt also combined the shortcut connection and residual network. 

The simple block in ResNeXt-50 (30×4d) has 32 cardinalities, the size of the set 

of transformations. The numbers in each rectangle of Figure 7 represent numbers of 

channels, filter size, and numbers of out channels, it roughly has the same complexity of 

block in Figure 6. 

 

Figure 7. A simple aggregated residual transformation block. 

The architectures of two blocks illustrated in Figure 7 and Figure 8 are similar. In 

Figure 7, thirty-two paths of convolutional blocks were concatenated initially, and then 

the shortcut of input was concatenated as well, the paths here are all the same topology. 

On the contrary, Figure 8 is combining the idea of group convolution proposed in AlexNet 

[23]; the width is grouped and convoluted in the same layer, the input and output channels 

of 32 groups are all 4. This algorithm can reduce the amount of calculations by combining 

only after convolution in one convolution layer. In the ResNeXt paper [40], through 

experiments, the author proves that the two architectures are completely equivalent, and 
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the results of the two structures are exactly the same. However, using the Figure 8 model 

can speed up the training and be more concise, so ResNeXt uses the architecture of Figure 

8 as the block. 

 

Figure 8. The block of ResNeXt-50. Implemented as grouped convolutions [23]. 

Experiments demonstrate that increasing cardinality is a more effective way of 

gaining accuracy than going deeper or wider, especially when depth and width start to 

give diminishing returns for existing models. In particular, a 101-layer ResNeXt is able 

to achieve better accuracy than ResNet-200 [42] but has only 50% complexity. The 

detailed comparisons between ResNet-50 and ResNeXt-50 are shown in Table 3.  

4.3 Training a SE-ResNeXt based CNN model 

SENet [43], the winner of the last ImageNet competition Image Classification 

mission in 2017 reduced top-5 error to 2.251% on the ImageNet dataset, with the original 

best score being 2.991%. 

It is obvious that there are already a lot of attempts to improve the performance 

of the network in the spatial dimension, for instance, ResNet and ResNeXt. Besides, it is 

possible that the network can be considered to improve performance from other parts, 
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such as considering the relationship between feature channels. Specifically, based on 

learning loss, enhance the weight of useful features according to the degree of importance, 

and suppress the features that are not useful for the current task. The Squeeze-and-

Excitation (SE) is a method to enhance and suppress the features. SENet is not a complete 

network structure, but a substructure that can be embedded in other classification or 

detection models to recalibrate the original features. 

Figure 9 shows the basic idea of SE. The most left cube has three parameters, H, 

W, and C, which have no relationship with the size of output and numbers of channels. C 

represents the number of features, H and W are the sizes of features. In the Squeeze stage, 

through a global pooling, feature compression is performed along the spatial dimension, 

and each two-dimensional feature is turned into a real number that has a global receptive 

field to some extent, this process does not change the feature numbers C. In the Excitation 

stage, as demonstrated in Figure 10, the r is a scaling parameter, which is 16 in the SENet 

paper [43]. The purpose is to reduce the number of channels and reduce the amount of 

calculation. After two FC layers and two activation functions, the SE architecture 

achieves the purpose of learning feature weights. 

Figure 9. A Squeeze-and-Excitation block. 
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Figure 10. The block of SE-ResNeXt-50. 

Finally, in a reweight operation, the weight of the output of the Excitation can be 

regarded as the importance of each feature channel after the feature selection, and then 

weight-by-channel weighted to the previous feature to complete the pair in the channel 

dimension. The architecture of SE-ResNeXt-50 is illustrated in Table 4.  

Table 4 shows that the SENet construct is very simple and easy to deploy without 

introducing new functions or layers. In addition, it has good characteristics in terms of 

model and computational complexity, additional model parameters only exist in two new 

FCs. So, the FLOPs which was re-implemented by SENet paper [43] between ResNet-50 

and SE-ResNeXt-50 is not differing greatly.  
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Table 4. The architectures of ResNet-50 and SE-ResNeXt-50 when training on 

ImageNet dataset. 

Stage output ResNet-50 SE-ResNeXt-50 (30×4d) 

conv1 112×112 7 × 7, 64, stride 2 

conv2 56×56 

3 × 3 max pool, stride 2 

















256 1,×1

64 3,×3

64 1,×1

 × 3 



















=

[16,256] fc,

256 1,×1 conv,

32  C ，128 3,×3 conv,

128 1,×1 conv,

 × 3 

conv3 28×28 

















512 1,×1

128 3,×3

128 1,×1

 × 4 



















=

[32,512] fc,

512 1,×1 conv,

32  C ，256 3,×3 conv,

256 1,×1 conv,

 × 4 

conv4 14×14 

















1024 1,×1

256 3,×3

256 1,×1

 × 6 



















=

[64,1024] fc,

1024 1,×1 conv,

32  C ，512 3,×3 conv,

512 1,×1 conv,

 × 6 

conv5 7×7 

















2048 1,×1

512 3,×3

512 1,×1

 × 3 



















=

[128,2048] fc,

2048 1,×1 conv,

32  C ，1024 3,×3 conv,

1024 1,×1 conv,

 × 3 

 1×1 
global average pool  

1000-d fc, softmax  

global average pool 

1000-d fc, softmax 

FLOPs 3.86 × 109 3.87 × 109 
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Chapter 5: Experimental methods 

In this study, the experiments for SPIE competition and follow-up are discussed. 

First, the experiment for SPIE competition, which is predicting the cancer cellularity 

value. Second, the follow-up experiment is predicting the classes of cancer cellularity. 

After selected two CNN structures, ResNet and SE-ResNeXt, the following experiments 

were conducted to build the final integrated models and evaluate its performance.   

5.1 Pre-processing 

5.1.1 Transfer learning 

CNN needs to train on the dataset and get useful information from the data, which 

in turn translates information into corresponding weights and bias in network. The 

weights and bias are parameters, not fixed values, that need to be iteratively optimized. 

Although using a large amount of time and hardware resources, the optimal value of these 

parameters can be found, a more effective way is to extract these weights and translate to 

our target neural networks. This process is called transfer learning [44]. 

Because of the not big enough dataset, transfer the parameters from the same 

model which was trained on other similarity big datasets to this CNN model before 

training is an effective way. And then fine-tuning the models by training and iterating on 

these parameters. In this study, pre-trained models which contain the parameters of all 

layers were used from ImageNet [37], a set of containing 1000 classes annotated daily 

images. And pathology images were used as the input of first layer of CNN models. 

5.1.2 Data augmentation 

When training a machine learning model, the goal is to get an objective function 

that contains the optimal network parameters. In CNN, if the parameter can predict the 
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result even if it performs a variety of transformations on the dataset, it will be a robust 

and optimized network. 

In addition, data augmentation can not only perform transformations on the image 

but also expand the size of the dataset to minimize the influence of overfitting. When 

training on the training set, the CNN predict and fit the results precisely and flawlessly, 

but when testing on the verification set and the testing set, it cannot get the same good 

result as training. In this circumstance, CNN was considered to have been overfitting. 

The main reason for this phenomenon is the presence of noise in the training data or the 

small scale of the training dataset. 

In specifically, the dataset and truth grounds in this study are 512 × 512 square 

images and cancer cellularity, a real number between 0 and 1. When augmenting the 

dataset, the relationship between the image and the truth ground cannot be changed. If 

random cutting and random rotation without expanding are performed, the cancer 

cellularity value in the image will be transformed without the truth ground, so that it will 

be an inconsequent augmentation. 

Implementation of data augmentation includes: random flips (horizontal, vertical 

and both), random rotation (-5 to 5 degrees, expand space area), random grayscale (10% 

probability), color jitter (saturation = 0.2, hue = 0.25), and color normalize (mean = [0.485, 

0.456, 0.406], std = [0.229, 0.224, 0.225]).  

Finally, after data augmentation transforms, convert the original image size 512 

× 512 to the input size 224 × 224 that matches the model. A comparison of example from 

the training set and its data augmentation output are shown in Figure 11. 



32 

 

      

(left: Original; right: After augmentation) 

Figure 11. The original data and augmentation outputs. 

5.2  Model training and validation 

In addition to the model structures, details of the convolutional layer, and model 

complexity introduced in CNN section, the specific parameters in networks, subtle 

changes of the models, and methods of ensemble models will be explained in this section. 

5.2.1 Cross-validation 

Cross-validation is a statistical analysis method used to verify the performance of 

a model. The basic idea is splitting a part of the training set as a new training set, and 

another part as a validation set. Use the new training set to train the model, and another 

set for evaluation. 

By using cross-validation method, the training set and the testing set can be 

completely isolated which is a basic rule of machine learning. Only the training set can 

be used in the training process of the model, and only the testing set can be used to 

evaluate the merits of the models after training. Moreover, since increased the training 
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times of data, the generated plurality of models can be integrated together, to eliminate 

the enormous influence of erroneous data. 

Common cross-validation methods are as follows: 

Hold-out cross-validation: It's the easiest method to handle, just randomly divide 

the dataset into two groups. But there is no crossover, just the simplest grouping. 

Leave-one-out cross-validation: Almost all samples in each epoch are used to train 

the model, so the distribution is closest to the original sample. But at the same time, when 

the numbers of the dataset are large, the calculation cost is very high. 

K-fold cross-validation: The original dataset is divided into K groups, and each 

subset dataset is separately used as a validation set, and the remaining K-1 subset datasets 

are used as a training set, so that K models obtained, which can avoid overfitting 

effectively. The final result is persuasive and reasonable. 

Finally, K-fold cross-validation method was chosen for both evaluation metrics 

but applied different K values. For predicting the cancer cellularity and meeting the 

requirements of the SPIE competition, 7-fold cross-validation and seven individual 

models were trained on the training set. For predicting the classes of cancer cellularity in 

the follow-up experiment, 5-fold cross-validation was trained and tested on the training 

set, the results of 5-fold cross-validation are the final prediction results of the validation 

set individually. 

5.2.2 Models for SPIE competition 

In the competition period, the distribution of the database is divided into three 

phases: 1. Distributing the training set and its labels; 2. Distributing the validation set and 

its labels; 3. Distributing the testing set without labels. Therefore, it is necessary to use 
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the cross-validation method to select the optimal models based on the training set in phase 

1.  

ResNet-50 and SE-ResNeXt-50 were selected from a number of schemes and 

experiments. For predicting the cancer cellularity, a linear layer was used to transfer the 

outputs from pre-trained models to a single number.  

In phase 1 of SPIE competition, 7-fold cross-validation method was implemented 

by training on 2394 pathology images. Considering the overfitting and performance of 

the models, ResNet-50 at epoch 320 and SE-ResNeXt-50 at epoch 196 were chosen; each 

CNN scheme has 7 sub-models in this phase. In phase 2, competition organizer released 

a validation set includes 185 images for allowing participants to compare and adjust the 

model in the middle of the competition, SE-ResNeXt-50 was trained on the training set 

and tested on the validation set at epoch 384 which is the optimal one in the whole training 

process. Finally, ensembled 7 sub-models of ResNet-50 at epoch 320 and SE-ResNeXt-

50 model at epoch 384 as Model A. Ensembled 7 sub-models of SE-ResNeXt-50 at epoch 

196 and SE-ResNeXt-50 model at epoch 384 as Model B. Eight sub-models of each CNN 

scheme were integrated as the submission models for testing and evaluation of 

competition. 

For both of the network models, through a large number of experiments, Adam 

[32] was implemented as the optimize function and β1 is 0.9 and β2 is 0.999 which are 

the default parameters. The learning rate is adaptable from 10-4 to 10-6, the learning rate 

changes with different epochs, models and different loss functions. And the evaluation 

metric is concordance metric. 
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5.2.3 Models for follow-up experiment 

Cancer cellularity can be used to illustrate the steps of breast cancer after NAT, 

the classes of cancer cellularity can be used to perfectly explain the steps that patients 

belong to. So that in some cases, analyze classes of cancer cellularity is more intuitive 

and useful than the cancer cellularity values.  

To predict the classes, transferred the cancer cellularity to classes is necessary, 

the labels of images were changed to four discrete names as the classes at first. Class 1 

represents no-cancer cells in tumor bed; Class 2 means low-level cancer cellularity in 

tumor bed; the pathology images in Class 3 and Class 4 are belonging to mid-level and 

high-level cancer cellularity in tumor bed respectively. Based on the four classes, the last 

layer of models should have four classes as outputs and implement a softmax layer to 

calculate the probability of each class which is suitable for loss function. 

The training set in phase 1 and the validation set in phase 2 of the SPIE 

competition were combined to enlarge the dataset of predicting the classes of cancer 

cellularity. ResNet-50 and SE-ResNeXt-50 were trained by 5-fold cross-validation, and 

the results of the testing sets of each sub-model from cross-validation were constituted 

the final prediction results.  

Those two models were evaluated by ROC. Trough average the testing results 

from cross-validation process, ResNet-50 at epoch 160 and SE-ResNeXt-50 at epoch 168 

were chosen to be the Model C and Model D which are the optimum models. The 

optimize function and learning rate is as same as Model A and Model B. 
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5.3 Evaluation metrics and loss function 

Next, for participating in SPIE competition, the Model A and Model B were 

evaluated using the default evaluation metric defined by the competition organizer and 

an independent testing dataset. Furthermore, due to the lack of truth ground of 

independent testing dataset and different objective in the follow-up experiment after SPIE 

competition, another evaluation metric which is commonly used in medical image-based 

CAD schemes was implemented. 

5.3.1 Concordance metric and Mean Square Error 

Under the subjective labeling processing, different pathologists barely have the 

same diagnosis results. Variability among clinical raters’ results makes it difficult to 

define an unbiased and calibrated reference standard. Concordance metric is a good 

evaluation metric in this circumstance so that it is the default evaluation metric chosen by 

the competition organizer. 

Specifically, the testing set in this study was labeled by two pathologists. 

Prediction Probability (Pk) is one of concordance metric. This method ranks two 

randomly chosen cases in the same order as the reference standard first, and finally 

averages all of the Pk value using the two sets: prediction set and truth ground. 

Concordance pair means Case 2 > Case 1 for both sets. Discordance pair means Case 2 > 

Case 1 for one set and Case 1 > Case 2 for another set. The formula is shown below: 

𝑃𝑘 =
𝐶 +

1
2𝑇

𝐶 + 𝐷 + 𝑇
 

Where C is the number of concordant pairs, D is the number of discordant pairs, 

and T is numbers of ties in the submitted algorithm results. 
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Typically, there are two different Pk values between two sets by using a different 

set as the submitted set. Furthermore, because the Pk metric only focuses on the orders of 

results in the dataset, the same Pk value cannot be used to prove that the two sets are 

identical. 

Based on this evaluation metric, Mean Square Error (MSE) was used as the loss 

function to iterate and optimize the models. This statistical parameter is the mean of the 

sum of the squares of the corresponding point errors between the predicted results and 

the truth ground. The formula is shown below: 

𝑀𝑆𝐸 =
1

𝑛
∑𝑤𝑖(𝑦𝑖 −ŷ𝑖)

2

𝑛

𝑖=1

 

Where n is the size of the dataset, yi is truth ground and ŷi is predict result, wi is 

the weight of data and all of the weights are 1 in this study. 

5.3.2  Receiver Operating Characteristic and cross-entropy 

Concordance metric is an evaluation metric that can only predict the order of 

results in the dataset. To truly understand whether the predicted class of the model is 

similar to the truth ground’s class, the Receiver Operating Characteristic (ROC) curve 

method was chosen to analyze the validity and rationality of the model. 

To apply the ROC curve, the regression scheme in predicting the cancer cellularity 

values should be transferred to a classification scheme. So that the cancer cellularity value 

was divided into four classes to facilitate prediction. There are four possible outcomes 

from a binary classifier. If the outcome from a prediction is positive and as same as the 

truth ground, then it is called a true positive (TP); however, if the truth ground is negative 

then it is said to be a false positive (FP). Conversely, a true negative (TN) is when both 
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the prediction outcome and the truth ground are negative, and false negative (FN) is when 

the truth ground is positive. 

The ROC is a comparison of two operating characteristics (TPR and FPR) as its 

discrimination threshold is varied. TPR is defined as the ratio of TP and the sum of TP 

and FN. FPR is defined as 1 – TNR, TNR is the ratio of TN and the sum of TN and FP. 

We also call TPR as sensitivity and TNR as specificity. 

Unlike the regression problem, the truth ground of the classification is not a 

continuous number, but a discrete name that represents different classes. Therefore, the 

output of CNN schemes are probabilities belonging to different classes. Through the 

comparison between multi-classes probabilities and truth ground, the network can iterate 

out the optimal function. The cross-entropy function describes the distance between two 

probability distributions so that it can be used for loss functions in multi-classification 

tasks. The formula is shown below: 

𝐿𝑜𝑠𝑠 = −∑𝑦𝑙𝑜𝑔ŷ𝑖

𝑛

𝑖=1

 

Where n is the size of dataset, ŷi is the probability of prediction and yi is truth 

ground which can only be 0 or 1. Unlike the original truth ground, truth ground of 

classification problem represents whether the corresponding image belongs to a class, 

where 1 means belonging, 0 means not belonging. 

5.4 Implementation 

The integrated CNN based CAD systems were developed and tested in this study 

was implemented with Python based on PyTorch [45]. The experiments were conducted 

on an Ubuntu 16.04 LTS system with Intel (R) Xeon(R) CPU E5-1620 v4 @ 3.5 GHz 
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and two GPUs of Nvidia GeForce GTX 1080Ti with 32GB memory. The speed of 

training six models which are explained above is around one epoch per minute 

approximately. 
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Chapter 6: Experimental results 

6.1 Results of SPIE competition  

When trained ResNet-50 by 7-fold cross-validation method, Figure 12 shows the 

Pk value changes with the growth of epochs. It is clearly to see that in the whole figure, 

the Pk value does not have much fluctuations, so that chosen the biggest three Pk value at 

epoch 320, epoch 340 and epoch 308. Considering the stability of the seven folds in these 

three epochs and the performance when tested on the validation set in phase 2 of 

competition, epoch 320 was selected to become the seven sub-models of Model A. 

 

Figure 12. The Pk value of Model A by 7-fold cross-validation. 

Different from the chosen in ResNet-50, because of the complexity of SE-

ResNeXt-50 is much larger than ResNet-50. When trained SE-ResNeXt-50 by 7-fold 

cross-validation method, chosen three epochs to compare the performance: the smallest 

average MSE loss value at epoch 328, shown in Figure 13; the biggest average Pk value 
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at epoch 312, shown in Figure 14; and the first epoch when started to collect information 

which is epoch 196. 

 

Figure 13. The MSE Loss value of Model B by 7-fold cross-validation. 

Figure 14. The Pk value of Model B by 7-fold cross-validation. 
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Finally, when tested on the validation set in phase 2 of competition, epoch 196 

got the best prediction and was selected to become the seven sub-models of Model B. 

Even though it has not been trained to fit the training set very well, the early epoch 

performed better in the testing set, which shows that the complexity of SE-ResNeXt-50 

is not suitable for the small database in this study, and the data deviation will have a great 

impact. In other words, the epoch that fits better with the training set has produced 

overfitting. 

In the end, a CNN model was trained on the whole training set without cross-

validation and tested on the validation set in phase 2. The loss and Pk value of this model 

is shown in Figure 15 and Figure 16. 

 

Figure 15. The MSE loss value of SE-ResNet-50 training in the whole training set. 
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Figure 16. The Pk value of SE-ResNet-50 training in the whole training set. 

The model at epoch 384 which have the optimum result Pk value was chosen to 

make up the last sub-model in Model A and Model B. The final prediction Pk value was 

calculated by the average of results of eight sub-models in Model A and Model B. 

Pk value of Model A is 0.825 when tested on the validation set and 0.92004 when 

tested on the testing set. 

Pk value of Model B got 0.803 when tested on the validation set and 0.92345 when 

tested on the testing set. 

The testing set was labeled by two pathologists, the Pk value is 0.962 when 

pathologist B as a submitted group and pathologist A as truth ground group, in contrast, 

when pathologist A as a submitted group and pathologist B as truth ground group, the Pk 

value is 0.929. The different results are due to the characteristic of the concordance metric. 
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There are 101 total qualified algorithms from 37 participations submitted to 

competition organizer. The ranking of participation still does not be released. But Figure 

17 shows the distribution information of results in the SPIE challenge competition. 

 

Figure 17. Distribution information of results in the SPIE challenge competition. 

6.2 Results of follow-up experiment 

Different from the prediction of cancer cellularity value, when set up a CAD 

system to predict the classes of cancer cellularity, the cancer cellularity should be 

transferred to four classes first. Because of lacking the labels of the testing set, the models 

can only get the results of the validation set in the five sub-models through the 5-fold 

cross-validation method. Finally, the five results were combined to cover the entire 

training set, in this way, the labels of the training set did not affect the predicted results. 

By comparing the largest accuracy values, cross-entropy loss values and complexity of 

models, the epoch 160 of ResNet-50 as Model C and the epoch 168 of SE-ResNeXt-50 

as Model D were optimum choices for implemented to the CAD system. The accuracy of 

Model C is 66.93% and loss value is 2.18 × 10-5 , the accuracy of Model D is 73.05% and 
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loss value is 9.29 × 10-6. Related figures are shown in Figure 18 to Figure 21. Figure 22 

and Figure 23 shows the ROCs of Model C and Model D.  

 

Figure 18. The accuracy of cancer cellularity classification by Model C. 

 

Figure 19. The cross-entropy loss of cancer cellularity classification by Model C. 
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Figure 20. The accuracy of cancer cellularity classification by Model D. 

 

Figure 21. The cross-entropy loss of cancer cellularity classification by Model D. 
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Figure 22. The ROC curve of Model C when predicting the classes. 

 

Figure 23. The ROC curve of Model D when predicting the classes. 
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The evaluation index of the binary classifier, area under the ROC curve (AUC), 

can be used as an indicator to evaluate models, AUC equals to 1 is the ideal model. For 

Model C, AUC of four classes are 0.95, 0.89, 0.78 and 0.95, the average AUC value of 

four classes is 0.893 ± 0.113; For Model D, AUC of four classes are 0.93, 0.90, 0.83 and 

0.96, the average AUC value of four classes is 0.905±0.075. 

Table 5 and Table 6 summarized the performance of the sensitivity and specificity 

with different thresholds over the different CNN schemes. 

Table 5. Performance of Model C for cancer cellularity classification. 

 

 

Table 6. Performance of Model D for cancer cellularity classification. 

 

  

sensitivity specificity sensitivity specificity sensitivity specificity sensitivity specificity

Class 1 0.595 0.988 0.488 0.995 0.412 0.997 0.245 0.998

Class 2 0.858 0.746 0.814 0.800 0.750 0.848 0.639 0.901

Class 3 0.687 0.757 0.585 0.822 0.481 0.878 0.301 0.938

Class 4 0.820 0.937 0.751 0.956 0.694 0.971 0.539 0.986

Classes
Threshold = 0.3 Threshold = 0.5 Threshold = 0.7 Threshold = 0.9

sensitivity specificity sensitivity specificity sensitivity specificity sensitivity specificity

Class 1 0.763 0.947 0.725 0.963 0.665 0.975 0.568 0.987

Class 2 0.904 0.763 0.865 0.802 0.824 0.833 0.755 0.872

Class 3 0.528 0.894 0.444 0.923 0.386 0.945 0.257 0.967

Class 4 0.869 0.933 0.831 0.946 0.815 0.960 0.718 0.976

Classes
Threshold = 0.3 Threshold = 0.5 Threshold = 0.7 Threshold = 0.9
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Chapter 7: Discussion and conclusion 

7.1 Discussion and future works 

In this study, two CAD systems were implemented for predicting the cancer 

cellularity value and cancer cellularity classification. For each CAD system, two CNN 

schemes were compared and combined to some extent to complete the assessment and 

diagnosis of the problem requirements. In general, during the entire research process of 

model selection and model evaluation, there are several widely exist problems as follows: 

overfitting, the complexity of models and the absence of the testing dataset. 

First, whatever the system for predicting cancer cellularity value or cancer 

cellularity classification, the overfitting circumstance always exist. To overcome 

overfitting, fully use and enlarge the training set, data augmentation and cross-validation 

were used in the CAD systems. From the results and figures, the model which fitting more 

and more in the training set, the performance on the testing set is not showing better. Such 

as in Figure 13 vs. Figure 14, Figure 18 vs. Figure 19, and Figure 20 vs. Figure 21. 

Although the output values of various loss functions decreased with the increase of the 

training epochs, the results of evaluation did not increase significantly, instead of were 

stabilized near a certain value in the form of waves.  

So that select the models which are at the early epochs is better for evaluation and 

assessment. Increase the size of the training set and let the training set covers more and 

more different cases that may be happened in the assessment processing are other 

effective ways to solve overfitting. Even if obtaining the pathology images is a time 

consuming and difficult task, increasing the size of the dataset is an indispensable 

condition for future research. At the same time, in the future, it is also important to adjust 
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the structure of the deep learning network models to make it more adaptable to a small 

number of datasets. 

Second, in this study, two CNN schemes were selected to compare the differences. 

From the results, the performance of SE-ResNeXt-50 is commonly better than the 

performance of ResNet-50. The same result actually can be seen from the performances 

of ImageNet. This proves that a better model is effective for improving performance. 

However, in the field of medical image processing, because the size of the dataset is small, 

it is difficult to perform deep neural network processing. More complex network 

structures mean more loss of accuracy in evaluating diverse data. Precisely, because of 

the diversification and unpredictability of medical images data, there are a lot of 

requirements for the professional doctors. Therefore, the current CAD system can only 

exist as a second opinion in the doctor's clinical diagnosis process. 

Third, the absence of the testing dataset. Because the testing set in SPIE 

competition is used to be an objective evaluation dataset, its truth ground is invisible and 

not released to the researchers, so in the subsequent research, only the cross-validation 

can be used to aggregate the predicted values of each validation. And finally, use the 

summarized results of the verification set as an objective output for the entire training set. 

Although this is an experimental process that completely isolates the training set and the 

testing set, have not been tested in the additional datasets, making the model cannot fully 

convincing for evaluating diverse data. 

In addition to the above three points, there are still many details that can be 

improved in future research.  
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1. Instead of using sub-models at the same epoch, different epochs can be selected 

for different sub-models, which can make up for the deficiencies between the 

models and make the model performance more excellent.  

2. Applying more data augmentation methods to augment the dataset and eliminate 

the effects of overfitting is another way.   

3. Expand more truth ground information which is outside the medical images. Such 

as in the pathology image of breast cancer, the age of the patient, the number of 

days after cancer detected, and the number of days after NAT treatment. Using 

these truth grounds may have a small impact on the forecast results. 

4. Do not use cancer cellularity as the only annotation, positioning the location of 

cancer cells in pathology images, or segmenting the boundaries of cancer cells, 

will greatly improve the performance of the model. But at the same time, marking 

these truth grounds is very time consuming and inefficient. There is no medical 

value in clinical manifestations. 

Of course, researching and developing a better CNN model is a top priority and a 

key to greatly improving the performance of the CAD system. 

7.2 Conclusion 

In the past decade, with a significant increase in computing power and digitization 

in various fields, the CAD system of medical digital images has become possible. 

Applying CAD system to help doctors make a clinical diagnosis can greatly improve the 

efficiency and robustness of diagnosis, reduce the time cost, and if applied properly, it is 

possible for medical teaching, long-distance medical diagnosis, and even gradually 

independent diagnosis in the future instead of as a second opinion. For this reason, in this 
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study, four deep learning network models were used to predict and evaluate cancer 

cellularity information in breast histopathology images after NAT treatment. 

As a result of the SPIE competition, the Model B presented in this study is in the 

top 15% of all valid submissions. The Pk value of Model B is very similar to the Pk value 

between two pathologists who labeled the testing set individually. From Figure 12 and 

Figure 14, in the competition phase 1, the Pk value of Model B is greater than the Pk value 

of Model A as well. It can be said that the Model B developed based on SE-ResNeXt-50 

has better performance.  

However, in phase 2, since the validation set only contains 185 images, and the 

distribution of truth ground in the validation set is quite different from the training set, 

the Pk value of Model B is not better than Model A, because Model A has less overfitting. 

The differences in the distribution of two datasets also explain why the competition 

results are much better than the results of the validation. 

In the cancer cellularity classification, from the accuracy and cross-entropy loss 

value shown in Figure 18 to Figure 21, Model D is better than Model C; from the ROC 

curve, the Model D is larger than Model C in the AUC value of average, Class2, Class3, 

and Class4, Model C just better in predicting Class 1; from the performance table of 

sensitivity and specificity, Model D also has a better performance for predicting the 

classes of cancer cellularity. In summary, Model D has better performance. By 

developing more models to compare the performance in the future can give more 

comparisons and references for pathologists’ clinical diagnosis. 

In conclusion, this study shows that CAD systems developed by CNN schemes 

such as SE-ResNeXt and ResNet are an effective and efficient method for the diagnostic 
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of residual breast cancer cells in pathological images after NAT treatment. And let CAD 

systems to be the second opinion for pathologists is useful and valuable. 
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