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Abstract

The theory of Siegel modular forms generalizes classical elliptic modular forms
which is, in fact, the degree one case. Dimension formulas for spaces of elliptic
modular forms have been much studied, however, the situation for Siegel modular
forms still needs a lot of work to do. In particular, the dimension formula for
the space of Siegel cusp forms of degree 2 with respect to the congruence sub-
group I is related to the dimensional data of spaces of fixed vectors with respect
to the congruence subgroup I' for the irreducible, admissible representations of
GSp(4, F'), where F is a p-adic field.

In this thesis, we use a variety of methods to determine the dimensions of the
spaces of invariant vectors under the Klingen congruence subgroup of level p? for

all irreducible, admissible representations of the algebraic group GSp(4) over F.



Chapter 1

Introduction

1.1 Historical background

The classical theory of newforms is an important topic in holomorphic modular
forms, and the local theory of newforms lies at the intersection of representation
theory, modular forms theory, and applications to number theory. In 1970, Atkin
and Lehner [1] introduced the classical newforms theory for GL(2). In 1973,
Casselman [8] used representation theoretic methods to study the local theory
of new- and oldforms for representations of GL(2). In 1981, Jacquet, Piatetski-
Shapiro and Shalika [11] generalized the local newforms theory for GL(2) to
GL(n) for generic representations. In 2005, Schmidt [22] developed a theory of
local new- and oldforms for representations of GSp(4) over a p-adic field with
Iwahori-invariant vectors. In 2007, Roberts and Schmidt [15] had a satisfactory
local theory of new- and oldforms for representations of GSp(4) with trivial central
character, in which they considered the vectors fixed by the paramodular groups
K(p").

In this thesis, we are going to investigate the vectors fixed by the Klingen



congruence subgroup Kl(p?) as defined in (1.6) of GSp(4, F') with trivial central

character, where F'is a p-adic field.

1.2 Definitions and notations

Let F' be a non-archimedean local field of characteristic zero. Let o be the ring
of integers of F' and p be the maximal ideal of 0. We fix a generator w of p. Let
q be the cardinality of o/p. We let v or | - | be the normalized absolute value on
F; thus v(w) = ¢~ '. Throughout this paper we use the Haar measure on F' such
that o has volume 1 and the Haar measure on F* defined by d*z = dx/|z|, where

dz is our Haar measure on F. The algebraic group GSp(4) is defined as
t !
GSp(1) = {9 € GL(Y) | "0y = N@) M) € GL), = | "] (1)
We shall sometimes abbreviate GSp(4) by G. The homomorphism
A: GSp(4) — GL(1) (1.2)

is called the multiplier homomorphism. Its kernel is the symplectic group Sp(4).
There are three different conjugacy classes of parabolic subgroups of GSp(4),
represented by, the Borel subgroup B, Siegel parabolic subgroup P and Klingen

parabolic subgroup ). They have the following forms

* % %
* % ¥ %

s=[FH). p=[F] e=[H] a9

* K X ¥
* X ¥ %

To be more precise, we have



1. Every element of B can be written in the form

ab 1 1?u K

_ 1

g= cb1 :f 1 ,M/\ )
ca~1 1 1

where a,b,c € F* and x, A\, u, k € F. It is not hard to check that A(g) = c.

2. Every element of P can be written in the form

.4 vy
9= Na/A —\b/A { te “] ;
“Xe/A Ad/A 1

where A =ad —bc € F* X\ € F* and u,k,z € F. We have A\(g) = A. We

will sometimes write
A =[98 AT 98] for A€ GL(2,F).

Using the above notation, a general element in the Levi subgroup of P can

be written as

M=[4,], AeGL(2F), A€ F*.
3. Every element of (Q can be written in the form

t 1Ap kK
_ ab 1
g_|:cd :||: 1“)\:|7
A1 1

where t € F*, and A\, u, k € F. We have A\(g) = A.

The Jacobi subgroup G of ) and its center Z”/ are defined as follows

1 % % % 1 *
GJ::{ 1] ZJ::{ o ] (1.4)



The usual 8-element Weyl group W of GSp(4, F') is generated by the elements

31:{1111}7 32:{1_111] (1.5)

We define the Klingen congruence subgroup of level p” as

Kl(p") := GSp(4,0) N {,‘SZ - 2] (1.6)
propT P oo

Recall that the paramodular group of level p” is defined as

K(p") :={g € GSp(4, F') | det(g) € 0™} N [’;Z
o

We also define the middle group as
M(p?) = {g € GSp(4, F) | det(g) € 0} 1 [

Obviously, we have K(p?) D M(p?) D Kl(p?). Let (7, V) a smooth representation
of GSp(4, F'). Then we have VECH ¢ yMO*) c YK where VT means the
space of invariant vectors under the subgroup I'.

Moreover, by (2.7) of [15], we have the Iwahori factorization for Kl(p?), i.e.,

-1 y )
2 P21 ’ 00 1303
Kl(p>: p? 1 00 lo
p2 p2 p2 1 0X 1]

1

) )
21
] [’;2 - (1.9)
oX p2 2 421




Furthermore, one can show that
w

M(p?) = | | [111U

veo/p

] Kl(p?). (1.10)

1

It follows from (1.9) and (1.10) that the Iwahori factorization also holds for the

middle group M(p?), i.e.,

- i
2 0X loop?
M(p*) = |32 H 0 Hllg
0% i

[100p ! 0X 12 1

P2 1

e ) .

L 1 o 4 | p2 p2 p2 1 |

1.3 Representations of GSp(4, F')

1.3.1 Some general representation theory

Let G be a group of td-type as in [7, §1.1], with a countable basis. Let S(G) be
the complex vector space of all locally constant, compactly supported complex

valued functions on G.

Definition 1.1. A representation (7, V') of G is a complex vector space V' along
with a homomorphism 7 of GSp(4, F') into the group Aut(V') of invertible C-
linear endomorphisms of V. The representation will be denoted simply by 7 or

by V' where convenient.

A representation (7, V') is smooth if for every vector v € V|, the stabilizer of
v in G, given by
Stabg(v) = {g € G | 7(g)v = v}, (1.12)

is open. We say that (7, V) is admissible if 7 is smooth and for any open compact

5



subgroup K of G, the space of invariants in V under K, denoted VX, is finite
dimensional.

Given a smooth representation (7, V) of G, a subspace W of V is said to
be stable or invariant under G if for every w € W and every g € G we have

m(g)w e W.

Definition 1.2. A smooth representation (m, V') is irreducible if the only G stable

subspaces of V are 0 and V. We say that 7 is reducible if 7 is not irreducible.

If (7, V') is a smooth representation of G, then an irreducible constituent or ir-
reducible subquotient of 7 is an irreducible representation of GG that is isomorphic
to W/W' where W/ C W C V are G stable subspaces of V.

If (m,V) and (7', V') are two (smooth) representations of G, then we de-
note the space of G intertwining operators from V' into V' by Homg(m, '), i.e.,

Homg(m, 7') is the space of all linear maps f: V' — V' such that

f(r(g)v) = 7'(9)f(v) (1.13)

forall v € V and all g € G.

Let (m, V) be a smooth representation of G. Let V* be the space of linear
functionals on V, i.e., V* = Homg¢(V,C). An obvious action 7* of G on V* is
given by

(7 (9))(v) = f(m(g~ ) (1.14)

for g € G,v € V and f € V*. However, this representation (7%,V*) is in
general not smooth. Let V'V be the subspace of V* which consists of those lin-
ear functionals in V* whose stabilizers are open in G under the above action.

This representation denoted (7", V") is called the contragredient representation



of (m,V). And if 7 admits a central character, then we denote it by w;.

Definition 1.3. A character of G is a smooth one-dimensional representation of

G, i.e., a continuous homomorphism from G to C*.
Let 14 denote the trivial representation of G, i.e., the trivial character of G.

Definition 1.4. A representation 7 of G is unitary if there is a positive definite

G—-invariant Hermitian form on the space of .

One of the most basic ways of constructing representations is by the process
of induction. Let H be a closed subgroup of G, and let (o,W) be a smooth
representation of . Then 7 = c-Ind% (o) is the representation of G whose space

is the vector space of all functions f: G — W such that
1. f(hg) =0o(h)f(g) for h € H and g € G,

2. there exists a compact open subgroup K of G such that f(gk) = f(g) for
k € K and g € (G, and there exists a compact set X C G such that f

vanishes off of HX.

This is called compact induction. The group G acts on this space by right trans-

lation, i.e., given x € G we have

(- f)(g) = f(gx) forall geG. (1.15)

Suppose G is unimodular, i.e., every left Haar measure is also a right Haar mea-
sure. And assume that M and U are closed subgroups of GG such that M nor-
malizes U, M NU = 1, P = MU is closed in G, U is unimodular, and P\G is

compact. Fix a Haar measure du on U. For p € P let dp(p) be the positive



number such that for all f € S(U),
/f(p_lup)du = 0p(p) / f(u)du.
U U

We call §p : P — C* the modular character of P. Suppose that (o, W) is
a smooth representation of M. Then the normalized induction Ind%(c) is the
representation of G by right translation on the complex vector space of smooth

functions f on G with values in ¢ such that

f(mug) = 8p(m)!?a(m) f(g) (1.16)

forme M,u e U and g € G.

Proposition 1.5. Let (o, W) be a smooth representation of a closed subgroup H
of G. Then

1
1. If H\G is compact and o is admissible, then c-Ind$ (o) = Ind%(6,20) is

admissible.

2. (Frobenius reciprocity) If (w, V') is a smooth representation, then composi-
tion with the map f — f(1) induces an isomorphism of Homg(m, Ind$ (o))

with Homp (7|g, 0).

This proposition can be referred to Lemma 2.26 and Theorem 2.28 of [3].

1.3.2 Generic representations of GSp(4, F)

Let v be a fixed non-trivial additive character of F'. Fix ¢;,co € F*, and consider

the character ¢, ., of U(F), the unipotent radical of the Borel subgroup B(F),



given by
1x* *
el THE]) = w4 can (117
1

Definition 1.6. An irreducible, admissible representation 7 of GSp(4, F') is called

generic if Homgy gy (7, ¢, ¢,) 7 0.

This definition is independent on the choice of ¢; or ¢o. If 7 is generic, then there
exists a Whittaker model for 7 with respect to 1, ,, i.e., ™ can be realized as a

space of functions W: GSp(4, F)) — C that satisfy the transformation property

= %

W([”f i]g>:w<cw+@yw<g>, all g€ GSp(4, F),  (1.18)

1

and GSp(4, F') acts on this space by right translations. By [18], such a Whittaker

model is unique. We denote it by W(7, ¥¢, ¢, )-

1.3.3 Parabolically induced representations of GSp(4, F)

The irreducible, admissible representations of GSp(4, F') come in two classes. The
first class consists of all those representations that can be obtained as subquo-
tients of parabolically induced representations from one of the parabolic sub-
groups B, P or (. These representations have been classified and described in
[20] by Sally and Tadi¢. Furthermore, Roberts and Schmidt reproduce the list,
see [15, section 2.2]. The second class consists of all the other representations,
which are called supercuspidal. In this section, we will not give explicit descrip-
tions of the supercuspidal representations. However, we are going to give explicit

descriptions of the parabolically induced representations as follows.



Borel-induced representations. Let B = M N be the Borel subgroup, where

1 1Ap Kk
v={| || A eamepy

and

M:{[ - }:a,b,cEFX}

Let x1, x2 and o are characters of F'*, and consider the character of B given by

ri's":‘l f }'—Ua(a)m(b)a(c).

ca”t

The representation of GSp(4, F') obtained by normalized parabolic induction of
this character of B is denoted by x; X X2 X 0. Then the standard model of this
representations consists of all locally constant functions f : GSp(4, F') — C with

the transformation property

f(hg) =l a® || ¢|7% x1(a)x2(b)a(c)f(g), heB,geQq. (1.19)

Note here that the modular character of B is given by dg(h) = |a|*|b|*|c|=2. The
group GSp(4, F') acts on this space by right translations. The central character
of X1 X Y2 X 0 is x1x202. Moreover, group I to VI in the Table 1.1 contain
representations supported in B, i.e., these representations are constituents of

induced representations of the form y; X xo % 0.

Klingen-induced representations. Let () = M N be the Klingen parabolic

subgroup, where
lzy =z

N:{{ 11—3/:1;] cx,y,z € F}

1

10



and

— A . X
M_{[ Axldem] . Ae GL(2,F), A € F*}

Let x is a character of F*, and let (m,V) be an admissible representation of
GL(2, F') (for systematic reasons, this GL(2, F) should be consider as the group
GSp(2, F')). Then we denote by x x 7 the representation of GSp(4, F') obtained

by normalized parabolic induction from the representation of () on V' given by

Then the standard model of this representations consists of all locally constant

functions f : GSp(4, F') — V with the transformation property:

f(hg) =] N det(A) " | x(N7(A)f(9), heQ,g€G, (1.20)

We again note that the modular character of Q) is given by dg(h) = |A[*| det(A)| 2.
If 7 has central character w,, then the central character of x X7 is yw,. Moreover,
groups VII, VIII and IX in the Table 1.1 contain representations supported in @),

i.e., they are constituents of induced representations of the form y x .

Siegel-induced representations. Let P = M N be the Siegel parabolic sub-
group, where
1 yz
N:{l 1fy] D x,y,z € F}

1

and
M={[",,]: AeGL(2,F), A€ F*}, with A'=[, ']"A7'[,'].

Let (7, V') be an admissible representation of GL(2, F), and let o be a character

11



of F*. Then we denote by m x ¢ the representation of GSp(4, F') obtained by

normalized parabolic induction from the representation of P on V' given by
[ aw ] (N (A).

Then the standard model of this representations consists of all locally constant

functions f : GSp(4, F') — V with the transformation property:
f(hg) =| det(AA |2 o(N)m(A)f(g). hePgeC, (1.21)

We denote that the modular character of P is given by dp(h) = | det(A)|*|A|72. If
7 has central character w,, then the central character of © x o is wy0%. Moreover,
groups X and XI in the Table 1.1 contain representations supported in P, i.e.,
they are constituents of induced representations of the form 7 x o.

The “tempered” column in Table 1.1 gives the conditions on the inducing data
under which a representation is tempered. The “L?” column in Table 1.1 indi-
cates which of the tempered representations are square-integrable. The “generic”

column in Table 1.1 indicates the generic representations.

1.4 Main methods

Note that Kl(p®) = GSp(4,0) = K, i.e., the hyperspecial maximal compact open
subgroup of GSp(4, F'). We already know the dimensional data for Kl(p) and
for Kl(p°) = K, see Table 3 in [22]. For Kl(p?), the situation becomes much
more complicated. In order to figure out the dimensional data of the spaces of

Kl(p?)-invariant vectors for GSp(4, F'), we use a variety of methods:

12



Table 1.1: Irreducible non-supercuspidal representations of GSp(4, F).

constituents of representation tempered L?
| X1 X x2 X o (irreducible) Xi, 0 unit.
I V2 x v 12y x o a XStarne) X o X, 0 unit.
(X% # v x # vH3?) b Xlare) @ o
1 X X v Xy Y2g a X X 0Stasp(2) T, unit.
(x ¢ {1,v°°}) b X X 0laspe)
Y V2 xvxr g a oStasp(a) o unit. .
b L(v*, v~ oStasp)
¢ L(v*Str ), v3/%0)
d olaspa)
\Y vE x Ex v Y20 a 5(€, ve], v="20) o unit. . .
(2=1,6#1) b L(v"/2€Stgr ), v 1%0)
c L(v'2€Ster ), Ev1%0)
d L(v€, &€ x v=120)
VI v X lpx x v~ Y20 a 7(S,v™120) o unit. .
b (T, v="%0) o unit.
c L(l/l/ZStGL(g), v=120)
d L(v,1px x v=120)
Vi x @7 (irreducible) X, T unit. .
VIl Ipx X a 7(S,m) 7 unit. .
b (T, ) 7 unit.
IX véE x v r a S(v€, v=12m) 7 unit. . .
(E#1, Er=m) b L(ve¢,v=127)
X 7mx o (irreducible) 7,0 unit. .
Xl VP11 2g a S\ 1) 7,0 unit. . .
(we=1) b L' ?m, v 20)

13



e Double coset decompositions. This method works for the full parabolically
induced representations of GSp(4, F'). For example, Proposition 3.7 gives
the dimensional data for some Iwahori-spherical representations. On the
other hand, Proposition 4.5 gives the dimensional data for the non Iwahori-

spherical representations of group I.

e Intertwining operators. For some reducible parabolically induced represen-
tations which consist of several constituents, we use this method to deter-
mine how the fixed vectors distribute among the constituents of an induced
representation. For instance, Proposition 3.14 shows the dimensional data

for the Iwahori-spherical representations of groups V and VI.

e Pj-theory (see [15, section 2.5]). For some reducible parabolically induced
representations, it seems impossible to calculate the intertwining operator
directly. In this case, we use the method of Ps-theory instead to obtain the
desired information. For example, we use this method to investigate the

representations of group VIII as in Section 5.2.

e Hyperspecial parahoric restriction (see [19]) of depth zero representations.
For some representations, none of the previous methods apply. In par-
ticular, we deal with the Siegel-induced representations and supercuspidal
representations in the final Section 6.2. We first prove Lemma 4.2, which
puts us into a depth zero situation. Then we consider the hyperspecial
parahoric restriction of these kinds of representations to obtain the desired

dimensional data. See Theorem 6.6 for more details.

14



1.5 Main result

In fact, after going through all irreducible admissible representations of GSp(4, F')
by applying the above methods, we also obtain the dimensional data of the spaces

of M(p?)-invariant vectors for GSp(4, F). Thus, we have the following main result.

Theorem 1.7. The dimensions of the spaces of M(p?) and Kl(p?)-invariant vec-
tors for all irreducible, admissible representations of GSp(4, F'), where F is a

p-adic field, are given in Table 1.2.

Table 1.2: Dimensions of the spaces of M(p?) and Kl(p?)-invariant vectors.

representation inducing data M(p?)Kl(p?)
I X1 X X2 X O X1, X2, 0 unr. 8 11
(irreducible) a(c) =0,a(x1) =alx2) =1 2 3

a(o) =1,a(x1) =alx2) =0 0 3
a(o) =1,a(x1) = L,a(x2) =0 0 2
a(o) =1,a(x1) =0,a(x2) =1 0

a(o) =1,a(x;) = L,a(x;0) =0 2 3

a(o) =1,a(x;) = 1,a(x;0) =1 0 1

IT a XStare) X o X, O unr. 5 7
a(o) =0,a(x) =1 2 3
a(o) =1,a(x) =0 0 2

b XlgLe) X o X, 0 unr. 3 4
a(o) =0,a(x) =1

Continued on next page

e}
e}
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Table 1.2 — Continued from previous page

representation inducing data M(p?)Kl(p?)
a(o) =1,a(x) =0 0 1
a(o) =1,a(x) = 1,a(xo) = 1 1
a(o) =1,a(x) =1l,a(xoc)=1 0 0
III a X X 0Stasp(2) X, 0 unr. 3 5
a(o) =1,a(x) =0 0 2
a(o) =1,a(x) =1 0 1
b X X 0lasp(2) X, 0 unr. 5 6
a(o) =1,a(x) =0 0 1
a(o) =1,a(x) =1 0 1
IV a oStaspa) o unr. 1 2
a(o) =1 0 1
b L2, v oStaspe) o unr. 2 3
a(o) =1 0 1
¢ L(v3?Star ), v3/%0) o unr. 4 5
a(o) =1 0 1
d olasp4) o unr. 1 1
a(o) =1 0 0
Voa (¢ ve], v %) &,0 unr. 3 5
a(o) =0,a(§) =1 1 2
a(o) =1,a(§) =0 0 2

b L(V1/2§StGL(2), v120) &, 0 unr. 2 2

Continued on next page
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Table 1.2 — Continued from previous page

representation inducing data M(p?)Kl(p?)

¢ L(vY2€Str ), Ev120) £, 0 unr. 2
a(o) =0,a(§) =1 0 0
a(o)=1,a(§) =0 0 0

d L(vé € xv120) &, 0 unr. 1 2
a(o) =0,a(§) =1 0 0

a(o)=1,a(§) =0 0 1

a(o) =1,a(§) =1,a(c) =0 0 0

a(o) =1,a(§) =1,a(c) =1 0 0

VI a (S, v1%0) o unr. 3 5
a(o) =1 0 2

b (T, v="?0) o unr. 0 0
a(o) =1 0 0

c L(y1/2StGL(2)7y_1/2O'> o unr. 2 2
a(o) =1 0 0

d L(v,1px x v=12g) o unr. 3 4
a(o) =1 0 1

VII X X T a(m) = 2, x unr. 0 2

Continued on next page
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Table 1.2 — Continued from previous page

representation inducing data M(p?)Kl(p?)
(irreducible) a(m) =2,a(x) =1 0 1
VIlla T(S,7) a(m) =2 2
b (T, ) a(m) =2 0
IX a S(vé,v127) a(m) = 2,£ unr. 0 1
a(m) =2,a(§) =1 0 1
b L(vé, v=1%7) a(m) = 2,¢ unr. 0 1
a(m) =2,a(§) =1 0 0
X 7 X o (irreducible) a(m) = 2,0 unr. 2 3
a(m) =2,a(0) =1 0 1
XIa &6(w/m v 20) a(m) = 2,0 unr. 1 2
a(m) =2,a(0) =1 0 1
b LY ?m,v7Y2%0) a(m) = 2,0 unr. 1 1
a(m) =2,a(c) =1 0 0
s.c. generic depth zero 0 1
non-generic 0 0
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Chapter 2

Preliminaries

In this chapter, we will start with a brief introduction of a type of Kirillov theory,

called Ps-theory.

2.1 Ps;-theory

First, the subgroup P; of GL(3, F') is defined as

=% %

The representation theory of the analogous subgroup P, of GL(n, F’) plays an
important role in the representation theory of GL(n, F’), and there is an extensive
theory of P, smooth representations, see [3]. Let Z be the center of GSp(4). Then

we have

Z(F):{[ZZZJ,ZEFX}§FX. (2.2)
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Recall the center Z7 of the Jacobi group G as defined in (1.4), then we have
1 *
ZN(F) = { L ] =y (2.3)

We write Z for Z(F) and Z7 for Z/(F) for simplicity, and similarly for other
subgroups of GSp(4, F). The following lemma gives the connection to P3 repre-

sentations.

Lemma 2.1 ([15], Lemma 2.5.1). The group Z’ is a normal subgroup of Q.

Moreover, there is a homomorphism i: () — P53 defined by

e T D= [ e

1
The kernel of i is Z'Z, so that we get an isomorphism Q/Z7 7 = Ps.

Let (7, V') be a smooth representation of GSp(4, F') with trivial central char-
acter. We define

V(Z))=(v—n(2)v|zeZ’,veV). (2.5)

This is a C vector subspace of V. Then Q acts on V(Z7), so that Q acts on
Vys = V/V(Z7). Moreover, we get an action of Q/Z7Z on V., since Z and Z’
act trivially on V,s. By Lemma 2.1, we thus obtain an action of P; on V. Let

p: V. — Vs be the projection map. Then we have

p(m(q)v) = i(q)p(v), forqe Q andv e V. (2.6)

Thus, we can treat Vs as a representation of P;. In particular, there are three
subgroups corresponding to GL(0, F') = 1, GL(1, F') = F* and GL(2, F). Then

the representations of P3 can be induced arise from representations of GL(0, F') =
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1,GL(1, F) = F* and GL(2, F)).

1

e For the first group [ Tﬂ, let Y be the vector space of a fixed smooth

representation of GL(0, ). Define a unitary character © of this group by

1 uio *

@([ 1 ufs}) = (U2 + us3)

and let Y ® © be the smooth representation of this group defined by
u-y = O(u)y for u in this group and y € Y. We consider the smooth

representations
Tgi(g) (Y) = c-Ind [} (Y ®0) = (dimY) - c-Ind* O.

And the representation

is irreducible.

e For the second group [* 1 ﬂ, let (x,X) be a smooth representation of
GL(1, F'). Define a smooth representation xy ® © of this group by letting

X ® © have the same space X as x and setting

@e)|"1v]) = v)xa).

We consider the smooth representation

T(I;i(l) (X) = C-Iﬂdlfi >{ *
1

} (x®©) (2.8)
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of Ps. If x is irreducible, i.e., x is a character, then this representation is

irreducible.

* ¥

e For the last group [I %], i.e., P3, let p be a smooth representation of
GL(2, F). Define a smooth representation Tgi(z) (p) of Ps by letting Tgi@) (p)

have the same space as p and action defined by

ab
()| ¢

If p is irreducible, then Tgi@) (p) is irreducible.

Theorem 2.2 ([15], Theorem 2.5.3). Let (w, V) be an irreducible, admissible
representation of GSp(4, F') with trivial central character. The quotient V5 =
VIV (Z7) is a smooth representation of Q/Z’ Z, and hence via Lemma 2.1 defines
a smooth representation of P3. As a representation of P3, Vs has finite length.
Hence, V5 has a finite filtration by Ps subspaces such that the successive quotients
are irreducible and of the form Tgi(o)(].), Tgi(l)(x) or Tgi(z) (p) for some character
x of F*, or some irreducible, admissible representation p of GL(2, F'). Moreover,

the following statements hold:
i) There exists a chain of Py subspaces 0 C Vo C Vi C Vo = Vs such that:
Vo 278 o) (Vi yy) = dim Homg (V, 1) - 757 ) (1),

‘/1/‘/2 = 753(1)<VU,¢—1,0>7

Vo/Vi = 7-(1?3L(2) (Vivg)-

Here, the complex vector space Viyy_, , defines a smooth representation of

GL(0, F'), the vector space Viy_,, admits a smooth action of GL(1, F') =
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F>* induced by the operators
A ) eery,
1
and Vi, admits a smooth action of GL(2, F) induced by the operators

(| ], gecLep).

it) The representation w is generic if and only if Vo # 0, and if 7w is generic,

then V, = TGL( y(1).

iii) We have Vo = Vi if and only if w is supercuspidal. If w is supercuspidal
and generic, then V5 = Vo = TGL( )(1) 18 non-zero and irreducible. If w is

supercuspidal and non-generic, then Vyzr = Vo = 0.

Moreover, Table A.5 and Table A.6 of [15] give the Ps-filtrations V5 /V; and V3 /V,

for non-supercuspidal representations of GSp(4, F'), respectively.

2.2 Twisted Jacquet-type modules

Let N be the unipotent radical of the Siegel parabolic. Let (7,V’) be an irre-
ducible, admissible representation of GSp(4, F'). Similarly with the definitions of
V(Z”) and Vs in the previous section, we let

V(N)=(r(n)v—v|veV,neN) and Vy=V/V(N) (2.9)

be the usual Jacquet module with respect to N. To further define the twisted

Jacquet modules as desired, we shall first define a character 6 = 0., of N for
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some a, b, c € F by

9({11%%]>:w(ax+by+cz) (2.10)

for x,y,z € F. Here, v is a fixed non-trivial additive character of F. Then the

twisted Jacquet module Vi, , . is defined as follows

VNo, . = VI/V(N,Oupc), where V(N,0up.) = (m(n)v—"0up(n)v | v e V,n e N).

a,b,c

Furthermore, we note that Vg := Vyg_, ;, is a module for

Tm::{[ b }|a€FX}’1FX, (2.11)

and Vs := Vnyg,, , is a module for

fo {[e Jloerr 2

As a immediate consequence, we have the following lemma.
Lemma 2.3. The F'* modules Vg and Vi are isomorphic.

Proof. 1t is easy to check

o ([ ) = ([ 1] )

and s171g 31_1 = Tw. Hence the map v +— 7(s1)v induces an isomorphism Vg — Vi

that intertwines the actions of T and Th. O
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2.3 Jacobi representations

Let (77, S(F)) be the Schrodinger-Weil representation of the Jacobi group G
as defined in (1.4) with central character ™, where S(F') is the space of locally
constant, compactly supported functions on F. By [2, section 2.5], the formulas

for 7&yy are as follows:

([ en ) r=meeans

where the Weil representation 7 of SL(2, F) satisfies

(miy ([ ], 2) f)() =evb(mba®) f (@), (2.13)
(7 ([ 4] 2) (@) =28y (a)(a, m)|al? f(ax), (2.14)
m ([211],e) f=em(m)f. (2.15)

Here, the symbol d, denotes the Weil character as defined in [2, section 5.1],
(a,m) is the Hilbert symbol and the notation 7, indicates the Weil constant

depending on the character ¢ (or /™). The Fourier transform in the last formula

is given by
fla) =% [ wiamay) i)y
Furthermore,
- ( {1 " _M f) () = U™ (s + (22 + ) f(z + A). (2.16)
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Now we take m = —1. Let (7, V') be a smooth representation of the Jacobi group

G7 with central character ¢»~!. Then by Theorem 2.6.2 of [2] we have
FR T (2.17)

as G” representations. Here, (7, ‘7) is a smooth representation of the metaplectic
group éi(Q, F). And the complete list of irreducible, admissible, genuine repre-
sentations 7 of SL(2, F') have been classified in [2, Section 5.3]. In particular, we

would like to put the list as in the following proposition.

Proposition 2.4. Recall that m = —1. The following is a complete list of irre-

ducible, admissible, genuine representations of éi(Z, F).

i) Those supercuspidal representations which are not equal to negative Weil

representations.
i) The principal series representations m, with x* # | |*1.
i1) The special representations o¢ with £ € F*/F*2.
) The positive (even) Weil representations w4 with & € F* /F*2.
v) The negative (odd) Weil representations w4, with € € F* /F*2,

The action of G7 on the tensor product V ® S(F) is given by

T({lggl] rif—‘ZD (e f)=F([eh], Do) @ (g, ({133

1

I

(2.18)
for v € V and f € S(F). Moreover, Theorem 5.8.3 of [2] gives a complete list
of the irreducible, admissible representations of G”(F) with non-trivial central

character ™.
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The following lemma is a special case of Proposition 5.7.1 of [2].

Lemma 2.5. As above, let V = V® S(F) be a smooth representation of G’ for
which the center acts via the character 1='. Let ( : V — C be a linear functional

with the property
0T([te], )v) = L(v) forallz € F,

so that ¢ can be identified with a linear functional £ on ‘7[1 3k Then the map

VR S(F)—C, w®f)=1L0)f0)

satisfies

M({ll%ﬂ) W f) = we f). (2.19)

and can therefore be identified with a linear functional 7 oonv )
1

1 } The map
1

that sends ¥ to 7’ defines an isomorphism of C vector spaces

Assume that there exists a character y of F* such that ¢ satisfies
UF([* o], e)v) = edy(a)x(a)|all(v) for allv € 17[1 ‘] (2.20)
and a € F*. Then

7 (r “ 1] v> = (a0 (v)  forallve v[1 - } (2.21)
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and a € F*.

Proof. The (2.19) follows from (2.13) and (2.16). It is clear that our map is

1 % %
1

injective. Let L be in Hom(V[l « },(C), and also denote by L the composition
1

of L with the quotient map

. 22)
} (2.22

We now follow the argument from page 128-9 of[2]. Fix v € V. Define L, :
S(F) = Chby L,(f) = L(v® f). We have

It follows that L, is an element of Hom [1 . ((msw, S(F')),C). By iii) of Lemma
1

5.1.1 of [16], this space is one-dimensional ;nd spanned by the map defined by
f — f(0). Therefore, there exists ¢(v) € C such that L,(f) = ¢(v)f(0) for
f € S(F); moreover, it is clear that ¢(v) is the unique element of C with this
property. We have proven that for every v € V| there exists a unique ¢(v) € C

such that

Lv® f) = £(v)f(0)

for all f € S(F'). Calculations using this formula imply that ¢ : V — C defined
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by v+ £(v) is a linear map, and that in fact

for all z € F and v € V. Therefore, ¢ is in Hom(vp ’{]’C)' Since ¢ maps to L,
our map is surjective are claimed.

The statement (2.21) follows from a straightforward calculation using (2.14).

]

2.4 Hyperspecial parahoric restriction

Let K = GSp(4,0) be the hyperspecial parahoric subgroup of G = GSp(4, F).

Let I'(p) be the principal congruence subgroup of level p defined as

Definition 2.6. A smooth representation (m, V) of GSp(4, F') is a depth zero

representation if the space of I'(p)-invariant vectors is non-zero.

For more information about the depth of an irreducible admissible represen-
tation of an algebraic group over a p-adic field, see [13, section 5].

With a similar process of the construction of supercuspidal representation for
GL(2, F') from a cuspidal representation GL(2,0/p) in [5, section 4.8], we can
obtain a supercuspidal representation of GSp(4, F') from a compact induction

with respect to the subgroup ZK, where Z is the center of GSp(4, F).

Y

Lemma 2.7. Let © = c-Ind$ () be a depth zero supercuspidal irreducible ad-

missible representation of G, where T is an extension to ZK of an irreducible
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cuspidal admissible representation o of K/I'(p) = GSp(4,0/p). The hyperspeical

parahoric restriction rg () is irreducible and isomorphic to o.
Proof. This is a special case of Lemma 2.18 of [19]. O

Therefore, this lemma give us an effective approach to studying the depth zero
supercuspidal irreducible admissible representations of GSp(4, F') by investigating
the cuspidal irreducible admissible representations of finite group GSp(4,0/p).

Furthermore, by Theorem 2.19 of [19] we have the result that the hyperspecial
parahoric restriction commutes with parabolic induction. For example, let 7 be a
Siegel-induced representation of GSp(4, F'), i.e., 7 is of type X, XlIa or XIb. Then
7 is a subquotient of an induced representation of the form 7 X o, where 7 is a
supercuspidal representation of GL(2, F'), and ¢ is a character of GL(1, F') = F’*.

Then we have

rE(T X 0) = ranee)(T) X ran,e) (o).

Evidently, we can get the similar conclusions for Borel- and Klingen-induced

representations.
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Chapter 3

Iwahori-spherical representations

An admissible representation (m,V’) of G(F) = GSp(4, F) is called Iwahori-
spherical if it has non-zero I-invariant vectors, where [ is the Iwahori subgroup

defined as follows

oooo

oo0o0
I::GSp(4,o)ﬂ{E;E
pPpP

} . (3.1)

Note that the Iwahori-spherical representations are exactly the constituents of
the Borel-induced representations with an unramified character of B(F'). This
fact follows from a basic result of Borel and Casselman; see Lemma 4.7 of [4]
and Theorem 3.3.3. of [9]. For more information about the Iwahori-spherical
representations of GSp(4, F'); see [22, section 1.3].

In this chapter, we determine the dimensions of the spaces of M(p?) and
Kl(p?)-invariant vectors for all Iwahori-spherical representations of GSp(4, F).

Main methods are double coset decompositions and intertwining operators.
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3.1 Double coset representatives

Recall the definition of the middle subgroup
M(p?) := {g € GSp(4, F) | det(g) € 0*} N [

We also define the element ¢ as

L= rllwl}' (3.3)

Then we conjugate the middle subgroup M(p?) by this element. In particular,

oppp
M) = M) ot = Gl o) 35 (3.4)
oppo
Let K = GSp(4,0). By the Iwasawa decomposition we have
GSp(4,F) = B(F)K, (3.5)

where B(F) is the Borel subgroup. Then we consider the double cosets

B(0)\GSp(4,0)/M(p*)", (3.6)

where B(o) is the Iwahori subgroup I defined as in (3.1). Furthermore, we have

the following isomorphism

B(0)\GSp(4,0)/M(p*)" — B(o/p)\GSp(4,0/p)/H, (3.7)
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where H = M(p?)*/T'(p). Thus we further have the following isomorphism

B(F)\GSp(F)/M(p*)" =~ B(o/p)\GSp(4, 0/p)/H. (3.8)
Using the Bruhat decomposition for the finite group GSp(4,0/p), we obtain the
following proposition.

Proposition 3.1. A complete and minimal set of representatives for the double

cosets B(F)\G(F)/M(p?)" is given by the following 8 elements.

1 % 1 % 11
11
5251 1 -1, S15251, S15251 1-1]» S15251 1 .
1 1 1

Proof. First, by the Bruhat decomposition G = || BwB. It follows that
weW

B\G = Uw{lq

weW

} . (3.9)

=% % %

By some straightforward calculation, we have

1 % 1 1
BlofnGsp(t.ofe) =Tiusi | us | Juss | ]
1

1
1 x =% 1 % % % 1 * 1 %
U S$251 1 1 % U 515251 1 1 I U 59518592 Lex U 51525152 1
1 1

Furthermore, for z,y,z € o/p we have

1z 1z z lzy =z
B(U/p)\GSp(4,0/p)/H =1, Us; |: ! 1 —x:| U $951 |: ! 1 —x:| U s15251 |: ! 1 yw:| .
1 1 1

(3.10)

Here, we omit the details since they are elementary. Furthermore, for most cases,
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x,y,z € o/p above can be reduced to 0 or 1. In fact, it easily follows from
straightforward calculations that the right hand side of (3.10) can be reduced to

the following 16 elements.

Ly, s1, s1Bi, 8251, 835182, s351B1, 525107,
515251, 81528182, 81528181, 5152510,

51525183, 51528109, 515251C3, S15251D1, 515251 Ds.

Here, we let

and

and

1111 111 w
D1:|: 11—11:|7 D2:|: 11—11:|7 U}%O,l
1

1
Next, we are going to find all the equivalent classes in B(o/p)\GSp(4,0/p)/H.

In fact, we have the following equivalent relations.

1. The element s1s951 B> is equivalent to I,. In particular,

1 -1 -1
{ " }'14231528132'{ " 1]- (3.11)

1 1

2. The element s5s1 B> is equivalent to s;. In particular,

1 —1
|: 1 _11 :| - 81 = 895185 - |: 1 1 :| . (312)
1 1 —1
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. The element s;s551C5 is equivalent to s;B;. In particular,

-11-1 -1
1 1 — 11
1 1 . SlBl = 81828103 . 1 .
-1

-1 1

. The element s551C] is equivalent to sss1B;. In particular,

1 -1 -1 1 11
1 1 - 898181 = s95,C - 1 .
1

1
1

. The element s;s,51C is equivalent to sps1B;. In particular,

1

1
-1 —1 _ 0 -1
[ 11 :| . SQSlBl = 81828101 . { 11 :| .
1

1 -1

. The element s;s951D; is equivalent to sos1 5. In particular,

11 1 1
-1 1 -2 _ -1 -2
|: 11 :| . 8251B1 = 813251D1 . |: 1 1 :| .
1

. The element sys951 D5 is equivalent to sos1 5. In particular,

1 4 1
w w -1y
—w El —w=l . SQSlBl = 818281D2 . % 1
“w 1 _1 1
w

. The element s;s551C5 is equivalent to s;s251 8. In particular,

1 1
1-1 _ 1-1
|: 1 :| . 81828131 = 51828102 . |: 1 :| .
1 1

35

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

]

Corollary 3.2. Let G(F) = GSp(4, F') and P,Q be the two parabolic subgroups



as defined in (1.3).

1. For the double cosets P(F)\G(F)/M(p*)", a complete and minimal set of

representatives is given by the following 3 elements.

2. For the double cosets Q(F)\G(F)/M(p?)*, a complete and minimal set of

representatives is given by the following 5 elements.

11

1 1
Iy, s1, s1 { 1 1} ,  S15281,  S15281 { 1 1] .
1 1

Proof. The assertions easily follow from the Proposition 3.1. O]

Proposition 3.3. Let G(F) = GSp(4,F) and B, P,Q be three parabolic sub-

groups as defined in (1.3).

i) For the double cosets B(F)\G(F)/M(p?), a complete and minimal set of

representatives is given by the following 8 elements.

1 1 1
1 51595 5 1 595 1

w 1 ) 19291, 1| = 1 , 251 | &= 1 .
w 1 w 1 w 1

i) For the double cosets P(F)\G(F)/M(p?), a complete and minimal set of

representatives is given by the following 3 elements.



i) For the double cosets Q(F)\G(F)/M(p?), a complete and minimal set of

representatives is given by the following 5 elements.

Before giving the proof of this proposition, we need the following lemma.

Proposition 3.4. With v defined as in (3.3), we have

’W—l
1 ley = [ S ] S1, 1 s91 = 59, (3.19)
11 1w ! 11 1 w!
Ll{ 111}L:[ ! l_wl}, Ll[ 111‘|L:[ 1, wl] (3.20)
1 1 1 1
Proof. The assertion easily follows from the straightforward calculations. m

Proof of Proposition 3.3. We observe that

Met = | Men |7 | = aseonn i

PP
o E} . (3.21)
po
By the Iwasawa decomposition GSp(4, F') = B(F)K with K = GSp(4,0), we

have

B(F)\GSp(4, F')/M(p*)" =~ B(0)\GSp(4, 0)/M(p*)" = B(o/p)\GSp(4,0/p)/H,
(3.22)
where H = M(p?)*/T(p). The second isomorphism follows from taking the quo-
tient by the principal congruence subgroup I'(p). Using the Bruhat decomposition
for the finite group GSp(4, 0/p), straightforward calculations show that the dou-
ble coset space on the right of (3.22) has eight elements. Conjugation back by ¢,

we obtain the asserted representatives given in part i). Parts ii) and iii) follow
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easily from part i). ]

As an immediate consequence of this result, we obtain the dimension of the
space VM®?) of M(p?)-invariant vectors in certain induced representations. More

precisely,

i) Let x1, x2 and o be unramified characters of F'*, and let V' be the standard
space of the Borel induced representation y; X x2 X ¢. Then Proposition

3.3 1) implies that dim VM®*) = g8,

ii) Similarly, let x and ¢ be unramified characters of F*, and let V' be the
standard space of the Siegel induced representation xlgr) X o. Then

Proposition 3.3 i) implies that dim VM®*) = 3.

iii) Finally, let x and ¢ be as in ii), and let V' be the standard space of the
Klingen induced representation x X olggp). Then Proposition 3.3 iii)

implies that dim VM®*) = 5,

We use a similar process as in the previous section. First, we conjugate Kl(p?)

by ¢ and we have

Kl(p?)' := ¢ - Kl(p?) - t=* = GSp(4,0) N { (3.23)

oTT o
Toow

T oow

=3
owwS,
—_

Proposition 3.5. With G(F) and B, P,Q as in Proposition 3.3, we have

i) For the double cosets B(F)\G(F)/KI(p?)*, a complete and minimal set of
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representatives is given by the following 11 elements.

1 % 1 L@ 1 %
S$251 1-1], 9S251 1 , 818281, S18281 111>
1 ) 1 ) 1 L ® 1 . 1 . 1 L ®
$15281 1 y  S18281 1 y  S15281 1 1 .
1 1 1 1

i) For the double cosets P(F)\G(F)/K1(p*), a complete and minimal set of

representatives is given by the following 4 elements.

11 1 w
I 1 1
4, 5251, S251 1-1|, 9S251 1 :

1 1

iii) For the double cosets Q(F)\G(F)/K1(p?)*, a complete and minimal set of

representatives is given by the following 6 elements.

11

1 1 % 1 w
1
L, s, s 11|, S15281, 818251 1-1], S182851 R
1 1 1

Proof. Let r; be the representatives of B(F)\G(F)/M(p?)* in Proposition 3.1 and

we define the matrix F' as
1 w 9
= { o } e M(p?)". (3.24)

It follows from (3.4) and (3.23) that

(F) = | | BErME) = | UB(F)M[IHW}KI@Q)L- (3.25)

i=1 ce{0,1} i=1 !
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It is easy to show that r; is not equivalent to r;F' if ¢ # j in the double cosets
B(F)\G(F)/Kl(p?)* with F defined as in (3.24). Next, we need to check whether
r; is equivalent to r; F" for any i € {1,2,--- ,8}. With a similar method as in the

proof of Proposition 3.1, we have

1 w 1
1. Forr1:I4,Wehave[ b :|-T1:T’1F-|: 1, }
1 1

1 1
2. Forrzzsl,wehave{ lw :|"I“2:’I“2F'|: b }
1 1

11 1 1
3. Forr;g:sl[ 111},wehave[ 1?}-7“3:7“3F~[ b }
1 1 1

11 1 @ 1 =
4. For rs = 8981 | 14 _1|, we have | 1, ry=rsF | P F ow|
1 1

11 1 1 —w
5. Forr7:<913251[ 11_1},Wehave[ 1= }-7’7:7“7}7[ 1ww].
1 1

The assertions of parts ii) and iii) easily follow from part i). O

Proposition 3.6. With G(F) and B, P,Q as in Proposition 3.3, we have

i) For the double cosets B(F)\G(F)/K1(p?), a complete and minimal set of

representatives is given by the following 11 elements.

i) For the double cosets P(F)\G(F)/KI(p?), a complete and minimal set of

representatives is given by the following 4 elements.



i) For the double cosets Q(F)\G(F)/KI(p?), a complete and minimal set of

representatives is given by the following 6 elements.

Proof. The proof is analogous to that of Proposition 3.3. In fact, we let r; be the
representatives of B(F)\G(F)/M(p?) in Proposition 3.3, then

o) = Bere = U User |17 ke, e

i=1 e€{0,1} i=1 1

After checking for equalities among the above double cosets, we get a complete
and minimal set of representatives for the double cosets B(F)\G(F)/K1(p?) which
has order 11. Then we go through a similar process as in the proof of Proposition

3.3 to obtain the desired assertions. O

Again, as an immediate consequence of this result, we obtain the dimension of
the space VKI??) of Kl(p?)-invariant vectors in certain induced representations.

More precisely,

i) Let x1, x2 and o be unramified characters of F’*, and let V' be the standard
space of the Borel induced representation x; X x2 % . Then Proposition

3.6 1) implies that dim VK" = 11.

ii) Similarly, let x and ¢ be unramified characters of F*, and let V' be the
standard space of the Siegel induced representation xlgr) X o. Then

Proposition 3.6 ii) implies that dim VKR — 4,

iii) Finally, let x and o be as in ii), and let V' be the standard space of the

Klingen induced representation x X 0lggpe). Then Proposition 3.6 iii)

41



Table 3.1: Dimensions of the spaces of M(p?) and Kl(p?)-invariant vectors for
Iwahori-spherical representations of groups I to IV.

constituent of representation M(p?) Kl(p?)
I X1 X X2 X o (irreducible) 8 11
I a vy xv 2y xo XStare) X o 5 7
b (x*# v x # vH?) XlaLe) X o 3 4
III a X Xvxv Vg X X 0Stasp(2) 3 5
b (x¢{L,v?} X X o lasp() 5 6
IV a V2 xvxur g oStasp(a) 1 2
b L(v?, v 1oStasp(2)) 2 3
c L(V3/QStGL(2), v32¢) 4 5
d oLasp) 1 1

implies that dim VEI®*) = ¢,

3.2 Dimensions of the spaces of fixed vectors for
groups I to IV

Proposition 3.7. Table 3.1 shows the dimensions of the spaces of M(p?) and
Kl(p?)-invariant vectors for the irreducible, admissible representations (mw,V) of

groups I to IV. Here, x1,X2,x and o are unramified characters of F*.

Proof. The results of groups I to III follow from Proposition 3.3 and Proposition
3.6. As for group IV, we consider the representation olgspy of type IVd, which
always has dimension 1. This holds for both the M(p?) and Kl(p?) case. Moreover,

by (2.9) in [15, section 2.2] we have the following relations

dim(IVb)' + dim(IVd)" = dim(IIb)",  dim(IVc)" + dim(IVd)" = dim(IIIb)".
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Here, I’ means the subgroup M(p?) or Kl(p?). Thus we can get the dimensions

of VM®) and VK for the Iwahori-spherical representations of group IV. [

3.3 Intertwining operators for groups V and VI

The symbols F) 0,p, ¢, w have the usual meaning. Consider the degenerate prin-

cipal series representation

S

§v1gre) X s, ¢ an unramified character of F* s € C. (3.27)

Let V¢, be the standard model for this induced representation, consisting of

smooth functions f: G(F) — C with the transformation property

FUA 0] 9) = €um det(A))[u det(A) "2 f(g). (3.28)

By a similar discussion as in [23, section 2|, we study an intertwining operator

A(s): Ves — Vi1 _, given by
(A(s)f)(g) = / f(s25150mg) dn, (3.29)
N

where N is the unipotent radical of the Siegel parabolic P. By Proposition 2.1
of [23], the intertwining operator as in (3.29) is well-defined. Let V;;l(pz) denote
the subspace of Kl(p?)-invariant vectors. By Proposition 3.6 ii), any f € Vil(pQ)

is determined by the four numbers

a:= f(ly), B:= f(s281), 7= f(s2s15151), 6 := f(y2). (3.30)
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Here, y; and y, are defined as follows

ylzz[l?l_w], yQ::{llll}. (3.31)

In particular, dimc(v%il(p2)) = 4. We need to compute A(s) f for such a function.
Since A(s)f is again Kl(p?)-invariant, we only have to compute (A(s)f)(w) for

w € {ly, 251, $281Y151, Y2} We are going to use the following lemma in the

calculation for (A(s)f)(w).

Proposition 3.8. Let R; be the representatives of B(F)\G(F)/Kl(p?) in Propo-
sition 3.6 1). Then those 11 elements {R; | 1 < i < 11} are the same with the

following 11 elements in B(F)\G(F)/K1(p?).

L, s1, siy1s1, S281, S281Y1S1, S18251, (3-32)

5152519151, S1Y1515251, SiY2, Y2, S1Biye. (333)

Proof. The first 10 elements easily follows from the straightforward computation.

As for the last element s;Bjys in (3.32), the matrix identity

1 -1 11
5251Y151Y2 = Bl?/lea with k' = [ —01 —1w 1] , Br = { ! 1 11} ) (3-34)
1

implies that sys1y151y2 and y, define the same element of B(F)\G(F)/Kl(p?).

Since the matrix &’ is exactly belong to Kl(p?). More precisely,

44



B(F)\G(F)/KI(p?). =

3.3.1 First integration

Lemma 3.9. Let f € Vil(pg) and o, 8,7,8 as in (3.30). Let {w;}}L, be the 11

elements as in (3.32). Then, for any unramified character &,

¢t #B +q ' (1=q1)9, w =1,

(14 L5 K= 2, wy = 51,

q o+ %5 +q (1 =g, w3 = 51Y151,
(1+ “i;ig?f;% )8, wy = sps1,

q v+ #5 +q (1 —q7)s, Ws = 52519151,

=\ 5+ (173:25)(;57—%28—1@ + (1 — q_l)f(w)q_s_%fsa We = 5152571,

v+ (1_1(’;(5;:)3_;% a, Wr = S152815151,
(1+ (11q_‘;(i§7;):1;§ )8, Wg = S1Y1515251,
(1 Uity = 5102,

q a+ l_gz;)qq__ls_% B+qt(1—q7t)s, wio = Yo,
\(1 + “‘f;&jf)f_;% )57 w11 = s1B1ys.

Proof. The proof is analogous to that of Lemma 2.2 of [23]. Similarly, the main
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matrix identity that we use is

=S818281

1. For w; = 14, we shall separate into three parts to calculate.

(a) /1 { 3 } = [ L) de =g 211 =4 2.
p? p?

F\p

R [ P O

P —K 1
1—q! 1—q!
et T gt

(c)

[ pac=a fa] D pas
p\pQ K X RO

= '(1—q ") f(y2) =q¢ (L —q ).

2. For wy = 51, we shall separate into two parts to calculate.

@ [r s Jsoae= [re] b pas=atm =
o p



1—q! 1—q!
e e e T

3. w3 = s1y151. This is exactly the same with the case w; = I4. In fact,

Jo s Jsmsoae= [r=r o Pan= o] ] e

4. For wy = s951, we shall separate into two parts to calculate.

@[5 Jssae= 1) =5
OB

F\o

oL TR | P A P
F\o - ! !

(- g Me(w)g 3 (1 —gYe(w)g e

i R e e

5. For ws = s9s1%151, we shall separate into three parts to calculate.
! -2 -2
(a) /f({ Y } sgs19151) dk = ¢~ f(s2819181) = ¢ 7.
2 K 1
b)

(

F\p
— 1 . X -
= / f(|: 1 1 :| |: 1 1 :| 518251 |: 1 1 :| 8251y151> dr
k 1 X
F\p
1 - -1 1 _n—lw R,l
L s [ 1
1—¢&(w)g> 2 1

47



/f([1111] 82513/151)6152611/f<3251y1$1 { 1 111])‘15

p\p? 0¥

1 1
:q_l/f(52 [ L, ] S1Y151Y2) dk = q_l/f({ " ] Biyok') dr

[

= '(L—q ) fp)=q'1—q")s

6. For wg = s15051, we shall separate into three parts to calculate.

—K

(a) /f(|::111:| 315231)d/f=/f(515231 {111 1 } dr = f(s251) = 5.
(b) 0 0

1
/ f([ b 1] $18281) dK
F\p~—1
—r~1 1 K 1 Pt
= / f({ b }{ b }315231{ o :|818281)dﬁ
r 1 1
F\p—1

(=g HE(w) (g 2)? _ N
1 &(wm)g e fil) 1—&(w)g >z '

/f(|::111:|818281)d,i:q2/f([ﬁlllll}slszsl)dﬁ

p—1\o wo X
2 Yy 1, w7 Lo~
=q / f( 1 1 1 S§15281 1 513281) dr
—x~1 1 1
wo X
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—reste@) [ pan=atee [ s

¢ 2 (1 — g @) fly) = ¢ 2 (1 — ¢ ()0

7. For w; = s15951y151, we shall separate into two parts to calculate.

(a) /f([: 1 1} 5159515151) d = [ (5251551) = 7.
(b) 0

-kt 1 1 K
= / f([ 1 } [ N }818281 [ L ]Slszslylsl)dm
—K 1 1

v(k)<—1
(- q*l)i(w}q:j‘ (1) = (1- q*I)S(Wquj‘ N
1—¢(w)g 1—§(@)q 2

D=
[NIE

8. For wg = s1y1515251, we shall separate into two parts to calculate.

(a) /f( {i . 1] s1y1515251) di = f(s1y1518281) = f(s281) = f.
(b) 0

/f({l Y } $1Y1515251) dK

K 1
F\o
_p1 1 K 1 k1
= / f({ ' ] l Y } 515251 [ Y } s1y1815251) dis
F\o - 1 1
(g )e(w)g s (g )e(m)g s
BT Rl e

9. For wg = s112, we shall separate into two parts to calculate.
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(a) /f({} s = [ flsime {lillbcm: F() =0
(v)

F\o
:/f({_n " ]{111’{}818251{111’.i :|81y2)dﬁ;
F\o R 1 1
(1— g e(@)g 2 (1— g é(@)g 2
- /() = .
1—&(w)g 2 e 1—&(w)g 2

10. For wyy = y2, we shall separate into two parts to calculate.

falle Joosems fas ][ o
s e [

0

=q" f(L;l11])dm+/f(L;111])d/s]
x p
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—r—1 1 K 14k lw kL
_ 1 1
= / f( o 1| 81828142 1 ) dk
—K 1 —k1w? 1-k 1w

B 1 — qfl - 1 — qfl
81528 = 1
1 =&(w)g > 1 =&(@)g

3.

11. For wy; = s1B1ys, we shall separate into two parts to calculate.

(a) /f([il 1 1] SlBlyz)d/f:/f(SlBlyz {
(b) 0 0

1

b e = s =

F\o
:/f({_ﬁi L ] [111’{] 518951 {111,@1}81313/2)6%
F\o o ! !
(1— g He(w)g 2 O G
B i B e =

3.3.2 Double integration

Lemma 3.10. With f and w;,1 <@ <11 as in Lemma 3.9, we define

B(w;) ::/f (F;l 1} wi) dp dr, (3.36)

F2
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then for any unramified character £, we have B(w;)

)
—1¢1_,,—1 © —s+1 _ _ _ _ .
gl + DGR 23 4 (1 — gy + 21— g0, i=1,

—1(1_,,—1 - —s—1 o —s-ﬁ—l _ =1
(q_2+ B 2+1)) o+ e

o 1)2¢()g—— % .
+g7 (1= g7y + B, i=2,

—1¢1_,,—1 © —s+1 _ _ _ _ .
q_40é+q a qli)ég(qu;;é(%)q 2)ﬁ+q 3(1_q 1)'}/—{—(] 2(]_—(] 1)5, 2237

—g et (w)g—45—2 -1 - e 1 2( ) g—25
. %_5)25(;)(1)225 o+ (1 + (1=g )(gg_é%(w);:’;g (@)gq )) B

o122 () g~ 25— 1 .
+(1 = ¢ (@)g 22y + T, i=4,

—1¢1_,,—1 © —s+1 _ _ _ _ .
gt + T ORGEEE 2G 4 (1 — g )y + g (L g8 i =5,

(1—q71)§2(w)q72871(52(w)q—2s+1+§(w)q75+%+1>
1-€%(w)g—2s a+f

H(1— g (@) >y + (1 — g Hé(w)g 26, i =6,

—1(1_,—1 p —s—1 o —s+1 _ 4,1
(q_2+q e Hl)) o+ g

o128 ()= % )
+q 7 (1 — gy + S, i=1,
—a~ )4 () g—4s—2 1Y (E() a5 +-£2 () g—25
e e L.
o 1)262 () g—2s—1 .
+(1 — 1) (w)g 22y + B =, i=8,

11—~ 13 () 35 — —s—3
(11352%;)2—)2% 204+1 52 _23ﬁ+(1—q )€< )

_ (1—gHé(w)g™* 2 (¢ (w)q 3 gl41 }
- (q e 1—52(€z)q25 )> %, v=9

—1(1_,—1 o —s+3 _ . 7 _ .
g+ L ql_)g(i(fﬁﬁ(gs)" LB+ q (1 — g v+ g (1 —g71)s, i=10,

~“1(1—g=1)e3(w)g 35— - —s—3
0oy DE )y a+1€2 B+ (1= g )E(w)g 2y

(1—¢gHg(w)g ™~ %(ﬁ(wm’s’lftflﬂ) )
-1
L (q 1_52(w)q—2s 57 1= 11

Proof. The proof is analogous to that of Lemma 2.3 of [23]. Similarly, the main
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matrix identity that we use is

=828182

1. For w; = 14, we have

1

//f[ . ]-I4)dud/<a:q_2/f(Llll]-I4)d/-@.

Fp2

M1

//f( w1 }-L;)cludm
Lep 1

F F\p
[ —pt -1 1 1 pt

:/ / f( Mign —Mfl B -1 |: 1 :| 595189 |: 1 :| 14) d,udli
_Z _ k2 1 1
F F\p #

_ a1
1—152 - —2s/f{ 1 13281)dud/1.

// [ ] 1,) dp dx

F p\p?

/( Sl HW;%]W) o
. //f ] P
a //f( L h 1} sysuyrsisy!) dpd

F oX

=¢'(1 - ql)/f({1 b J $2814151) dk.
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2. For wy = 51, we have

//f{ Jvareit [ Jovon

r1
//f( PR }sl)dudm
L p 1
F F\p
[ —n! -1 1 1 opt
://f( “72'{7“71_M71 [ Y }525152{ 1 . “_1}81)dlﬁd/§
F F\p —eop] Lt !

1_1§;q _2S/f { ]315251)dﬂ,

[ [aler Joawas=[ [l ][or Jooaman

Fop\p2 F woX
1 1 1
Ty K ER Ay
F X B =1 _u_l
—qlf/f [ }sgslylslsg s1)dpdr
F X

_—1 1 ! 1
=q (1 q ) /f( |: 1 :| 818281y181> dli.
e K 1

3. For w3 = s1y151, this is exactly the case w; = 1. In fact,

[l Jomsms= [ fafE, ] Lot oo
/f({éllwl} [;;11})dudﬁ://f([;;1l] 1) dpdk.
F FF

o4



4. For w, = s981, we have

(a) //f([;ill}sgsl)dud/{:/f(ﬁlljszsl)d/@.
b)

F v(p)<—
-1 T 1 1 pt
/ / f( M *k — u -1 { h } S95159 { 1 ) “_1} s981) dpdk
F F\p—1! TR et ' !
(1—¢ (=g ™) / '
pr— d .
[ —2(w)g 2 AP s

/L/fqﬁzkmmmﬁ

Fov(p)=

T L] 1 ot
/ / f(|» s —n L -1 1 | S25189 { 1 . ”_1} 5951) dpdk

__#_1 1 7T r 1 q 31

:/ / f( M2,‘1 _u—l 7N—1 11 So |:;/, 1 . :|)d,l,bd/{,
Jol— —ko—p| Len7? 1 —nt1
w—loX
1
%//f[ ] {ml bWM
—pw 1

F X

=& (w@)q>( /f [ Y ]5231y131)d/€.

5. For ws = s9819151, it is the same as the first case w; = 1. In fact,
Y
//f( {u 1 } S981Y181) dp dk
K 1
F F g
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T T T
kh
H»—\
-
| —— |
b
|
5
q
-
-
_
.
=
L
=

Kﬁ
—
—_
—_
—
—_
—
= —
—
—_

—
—
V)

no
| — |
g~
—_
—
1
N—
L
=
IS
=N

/]
/]
/

K
1
f(w
K
6. For wg = s15051, we have

(a) //f({,zill}sls2sl)dudn:1-/f([illjslszsl)dﬁ;.
; ya F
/ / f([;lll}slsgsl)dudn

Foy(p)<-2
—}L_l —1 T 1 1 #71
:/ / f(| e ! { . . } 528182 { b Ml] $18981) dp dk
F F\p—! —rop ] LR ! 1
(- )E@) /
= dk.
T-e@er )]s

/ / f({;l11]813251)dudn

F ov(p)=
1 L 1 pt
2 —1 _
/ / pooms -t { 1 }828182[ Low 1}815231)0[/10[5
—2
_ K 1
F w—1loX H K 1

1
=¢’ w)q_2s//f(Ll 1 1] 5182 [MWI L 1})d,ud,€
F ox
:§Q(W)Q_2S//f(ﬁ Y 1} 515251Y151) djedr

F X
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—e@r -0 [ 1] ssasinsn dn

K 1
F

7. For w; = s158981y151, this is exactly same with the case wy = s;. In fact,

—w 1

/]
:F/F/f(:illl} [u—lwﬂlwl ] dudﬁ_//f{ ] dd.

f(-lll }[ill }{—1@ ! 1 }5152)d,ud/<;

1 1
//f({ull }S1y1818281)dud/‘€://f({u11 ] {21”1 2 :|5231)d/,£dl{
Kp 1 Kp 1 —w 1
FF F
) RIS T ]
F/F/f([ R n+5;mu11 $981) dp dk F/F/f( /f:,ull S981) du dk.

9. For wg = 5112, we have

//f{ 1 ]slyz>dudn=q—2/f<{:lll}sm)dm.

Fp2

//f([;,ilj s1y2) dpdk

F p\p?
= [ [ fe = e
F oXx
=q ! f( { ]slszslylslyz)dudﬁ
/]
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M1
//f( wi }51y2)dl~bd/€
F F\o S
[t 1 1 1 -t
://f( ”_2”_“_1_M_1][ 7211 }828152[ . “_1}8192)dﬂdm
F F\p Sl ! 1
—2s
_(11352 /f[ ' ]313281y2)d“~

1
Deﬁne]z/f({ b :|815281y2)dli.
K 1
F

ko2 1+Krw

l—kw —K
1. Il = /f(slsgslyQ |: 1 1 :|)d:‘£ = f(8281) = ﬁ
ii. 0

—k1 1 K 1 Pt
= / f({ 1 } [ 111]313231 { b }818231342)61"€
—K 1

F\p~!
:(1 _ q—1)52(w)q—2s—1
1 —&(@)g 2

J.

111.

—k1 1 K 1 kL
LA e
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o ifl—Kk€Ep,i.e.k €1+p, then (1 — k)p € p?, therefore

w(l—k) 1

In conclusion, we have

/ / f [; ; ' 1} s1Y2) dpdr = (1-¢ )& (w)g™™

1—&(w)g*
F F\o

. [5 o

-1 —s—% 9,1 —s—%
T — 0+q &(w)g " 2a+ (1 -2 )¢(w)qg " 20| .

(d) In this case, we will use the following matrix identity

1w —w
§25152Y151Y2 = |: 1 1 w :| 515251S592. (338)
1
r1 )
//f( w1 :|51y2)dﬂd/€
e L p 1
_7H;1 B -1 1 L 1 ’u—l
://f( g _Mfl [ ! }528182{ 1 . #_1]S1yz)d,udm
F oX - hTH s ! 1
M1 1 » 1 1
= FO Yy | s2s18251y2 | # @l B dpdk
1 K p
F oX% - ! Bl 1
M1
://f( 1 1 1:| 82813281y281y131)dﬂd/€
F X -

59



1
f({ Y ] S25152Y151Y2) dpv dk

1 l—w —w
f({ b ] { v ] $18951) dp dk.
1 1
Furthermore, we define

1 l —w —w
J = /f([ b } Ys18981)dR, Y = [ LI } : (3.39)
a K 1

1. J, = /f({l 1 11] Y'si18981) dr = f(ses1) = B.

ii. In this case, we shall use the following matrix identity

11 11
[ t _1} 515251Y 515251 = Yo [ o } . (3.40)
1

-1

1
J2 = / f(|: 1 1 :| Y81$281) dk
K 1
—x~1 1 K 1 k-1
({ b ] [ o } 518981 [ b :|Y81$281)d/€

(1—q¢ )& (@)g >

= I
'BL\»
~

(1—q¢ )& (@)g >

- P p—" f(s18981Y 818251) = I — e(w)g ]

1il.

1
Jg = / f(|: 1 1 :| YS18281) dk
K 1
v(k)=—1

1 1
~c@t [ | B
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oo o ][ P
el /f [Ki?w w} s
e ‘S‘/ LT | B

1 1 -1
q e / f({_ }
—1+4p
= T / f(s2s19181) dk = §(w)q™* %7‘
~1+p
1 B 1 —1
f(w)q_s_§ / f( (Tlﬂ) 71 1%])d’€
0X\—1+p )
1 1 1 1 -1
<@t [ L D
(k+)w 1 koo 1
0X\—1+p
1 1 1 1 1 -1
:g(w)q e / f( KT ! 1 |: ﬁ%ﬂll])dl{
GX\_1+p (K,-f—l)w 1 KTo 1 1
1 1 1
={(w)q 2 f( U | ee "1 |)dE
(/{—l—l)w 1 koo 1
0X\—1+p
a1 (1 1
@t [oren [ s
0X\—1+p )
:f(w)qfsfé / f(s251y15192)dK
0X\—1+p

=(1 =20 )¢(@)q "2 flye) = (1 — 207 )&(w)g 20,
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In conclusion, we have

//f([%ill}m)dudﬁ:(l—q—l)-

F oX

. [@+ (1-¢ ) (wm)g >

0+ ¢ (@) Ty + (1 - 27 HE(w)g

1—¢(w)g 2

10. For wyp = yo, it turns out to be the same as the first case w; = I4. In fact,

//f(_;till}yz)dudﬁ

— [ [ w] { })dudﬁ

L K+ pno 1

( ull }'h)dﬂd“-

Lep 1

F F
[ [
F F
11. For w1 = s1B1ys9, it is the same as the case wyg = s1y2. In fact,

Yy
f(|:;;#1 ]81B1y2 dudli—//f [ } [ 111]31y2)dud/@
1
f(l%lﬂ 1} szwlbll} e dludﬂ://f { ' }SlyQ)dudﬁ'

3.3.3 Triple integration

Let

W =1y, Wy =538, W3=5281Y151, W4 = Yo. (3'41)
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Lemma 3.11. With f and £ as in the previous lemmas, we have

(A(s)f)(@i) = /f ({iil 1} 323152@) dz du dr =

K p
(
a2 () g—25+1 _ _etl .
Blea) + S IEELES  Blun) + (1 g7 )e(w)a - Blw) i=1
— 7s+l
1+ (1—q~M&(w)g "2 . Blw i=9
( 1-g(w@)g T 1)
(@ > (1-6w) ) | 1-g(@)g ¢ E(@)a 2 (1-g(w)g ")
o+ + ¢ 0
1-¢(w@)g 2 - swm*”éﬁ 1-(w)g "+
(1-¢(@)a " )e(@)q~> " (@ (@)a > +a-De(@)g " 2 +g—q'-1) i3
(1-€2(w)q—2)(1-¢(w)q~*+2) !
—2s _ — o 75+l .
Blws) + E()q™"F - Blun) + SIS TR () i=4
@)

\
Proof. The proof is analogous to that of Lemma 2.3 of [23]. Similarly, the main
matrix identity that we use is
1 1 1 1 1
{Malcl 1 = {_Wl o :;10 } { —pz! ' 1 } { h } { 13611 ] (3.42)
1 p—p2e—l -1 4 1 1

—uzx
—

=S92

1. For w; = 14, we have

1

//f[ z 1 ]523132-14)dxdudﬁ:/f({ull :|82$1)d,ud/ﬂ?.
1 kp 1

F2 o F?

/ / |: z 1 1 S$951S9 - 14) dx d,u dk
F2 y(z)<-2
1 1 1 1 1
/ / f _lw - —i } { —pz— ! 1 } S9 { 1 . } Sgsl)dl‘ du dk
F2 F\p—1 —p 1l Le—ple=t —px=t 1 1
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/ / |: x :| 595189 14) de‘ d,u dl’i

F?2 y(z)=

—,ur | ! 1 ! 1 -1
—z —pz! 1 S92 Il 5281) dx d,u dk
k—plel —px~t 1 1

—u 1

W)qfs//f([ﬁ;ll} 51 L;%J)dxd#dn

F2 oX%

w)qés//f([;i1l] s132) da dpu dks.

F2 oX

2. For wy = s951, we have

//f { }3251525281)dxd,ud/<a:/f({;;ll})d,udm.

F2 o

1
//f( uglcl }8281828281)d1‘d/¢d,‘£
F2 F\o S
! 1 1 1 1 1
://f( I } [ —pz? 1 }82{ 1a]’ })dl’dud/ﬁ

F2 F\ —pu 1) Le—p?2™ —pz=t 1 1

1—q! 378 1

1_£(w)q2 s kp 1

3. For w3 = s951y151, we have

1 1
a) //f({#f}fl ]32ylsl)d$dﬂd/€:/f({u11 :|82y181)d,udl-€.
kup 1 kup 1
F2 o 2

1
To calculate /f( [# o } Soy151) d dr, we have
1

Kop
F
] 11 }[11 } — [11 }
lF/U/f({K L “Mll Soy151)dudk F/f( T Soy151)dK.
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. /f([l ! 1 } S2y151) dk = /f(52y181)d/‘0 = Cflﬁ-

p p

[

F\p

:/f({ﬂ o } {1111:1318251[1115 1829181)d’§
F\p - !

- 1—q! 1—q!

eme Y T e

ii.

//f(::111] {i;11}52y181)dudm

F P\p—1

o L]

F p\p-t b I

1

$2515252Y151 [# . })dud/@
pt1

:(1 —f_?ﬁiﬂ(;ﬁjs? F/f( [i Y J $981Y151) dK.

1il.

//f([illl] {;;11]821/151)@%

F =1
1 1
252(w>qzs//f({ Y 1] 5251Y151 [“w . 1])d,ud/<a
K —pw

F X

5 9 1 1 (p+)w
=& (w)q 5//][({ 1, 1} 5251 { L _(u+1)W} s1) dp dk.
" 1

F X
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ég(w)q‘%/ / f(EIIJ 1) dpds

~1+4p

QIEQ(W)QF%/f(E L 1])d/<¢.

9 5 1 1 (p+1)w
e [ s | s duae
1

K
FoX\—1+p

~a-2 @ [ s dn
F

M1
//f( ,uicl }Sgylsl)dxd,ud/{
Lk p 1

F2 F\o
r 171 . 1 L
:/ / f( —px —T :91: :| |: _Mx—l 1 :|
F2F\o —utd Leoptet et
1
S9 [ 1 l“Il ] Soy151) dx dp dk
1
7;3:_1 —z~ b —1 ! 1 ! 1
= f( —x —px~?t 1 Y151 1 ) dx d[l, dk.
P2 F\o —u 1 k—plr~l —px—t 1 —z—1 1

—u 1 k—p2z=! —pz—l 1

1 1
/ f( |ilw_1 —e! :; :| |: —px ! ! 1 :| ylsl) dz d/L dk
F

2 p(z)<-2

UL (1 o
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Let

1 1 1
Kz/f({ull }ylsl)dﬂdﬁz/f({ Y }ylsl[ w1 })dﬂd&
kp 1 K 1 2 1

F? F?

then we have

K1=//f([:111]ylsl)dﬂdﬁzq_Q/f([:11l]ylsl)d“

F p2 F

1
Kw* kw1
F

g / flyis: {; L })dm > / fL)dk = g%

kw? kw1

p p
) 1
q / f([ o J y151) di
F\p
9 —g1 1 K 1 k1
ey TIN5 Y g P
—K 1
F\p
- 1—-q¢! _ 1—q!
2 2
=q 1 f(5251y181) =q T
1—&(w)g "2 1—¢&(w)g 2

In conclusion, we have

K —qtasgi— 2 (3.43)
JEpT—
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1 1
= f(ylsl |:/~iw k1 :| |:,LL11 :|)de/€
kw? kw1 w1
v(u)=1
_ . 1
:ql//f( (HJﬁugw K 1 ])dud/ﬁl
7o | k@ (k+p)w 1
! 1
- _1//f( Ko k—p 1 })d,udli
(k—p)w? kw1
F X
1 1 1 1 1
=q //f( nw;lﬁ1:||: 1:||:_1“1 :|)d,l£dl<&
kwo? koo 1 —pwo? 1 1
F X
1 ! 1
:qi //f( mxr k1 :|)d/~Ld/§
7 oox | kw? koo 1
1 _
— (g /f w b D
kw? koo 1]
1 1 ! 1 2 1
Rl L) e R
Krw* ko 1
b J
1 —1 !
- [ e

-1

1 K
515251 1 1
1

=¢'(1-q¢7") Lo  f(52519151)
1 —¢(w)g 2
_ _ 1—q!
=g Y1 —qg! .
O @
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In conclusion, we have

1—q_1

1= g(@)g et

Kr=q*(1—q a+q'(1-q") (3.44)

=/ / f{ 1]@/131)@61,{

F v(p)<o
F F\p —rop] B !

1 p_l
898189 1 . uo
1

1—
1_52 L ZS/f [ Y ]3231329181)61“-

1] y181) dp dk

1 —
q _zs/f{ 11 }525182y181)dﬁ

1 —§2
. 1-q - 1—q7!
_Wﬂszsl) Wﬁ.

1 — g1
quﬂ)q—% / I {i Yy 11 595152Y151) AR

v(k)<=2

—r! K 1 kL
f([ Y { Y } 515251 [ b } S98182Y181) dK
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_ 1-— q*l (1 — q*l)(g(w)qfsf%)2 o

1= €2 (w)q?s 1 — &(w) o1 f(s2519151)

_ =gt (A—g (@) E)
1-&(@)g™> 1-¢(w)g>:

_ -1
1_1£Tq> / f([l Y ] $25182y151) dpedk
v(k)=—1
1
1_152 ! —2s /f 52514151 L; 1 1})(1/1
:%g _5_5 /f 8251y181y2) dk
1—q! _S_i
1_52 q /f Y2)d
R 1
—Tim_mwmwu 8

In conclusion, we have

_ =gt

Rs=1T £ (w)q %
Jpr G—aE@e L 15]
B+ T y— Y@ (1 —q7)

11.

1 1 .
-1 _ -1
—pz —x -1
/ / f(|: g —z :| |: —px~1 1 :| S289Y151
-1 k—plzt -1 1

1
[ o })dwdudm
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) 1
=(1—q¢ He(w)g "> /f( [M o } y151Yo) dpdr.
7o kp 1

Let

1
L= /f( [# Y 1} y151Y2) dp dr, (3.46)
K
F2

then we have

A.
o
L, —//f([u 1 } yi5192) dysdr
P o kp 1
) 1
=q /f(y181y2[,mg P ])dn.
pa rw® kw1
2 ! 2 3

°*q /f({ Y }%3192) dk = q~ /f(ylslzn)dﬁ:q‘ 0.

K 1

p p
[ J
—k~ 1 1 K 1 P
L AT P A
—K 1
F\p
3 1— qfl B 1— qfl
2 2
=q i f(32519181y2) =q 7 0.
1—¢(w)g 2 1—¢(w)g 2
In conclusion, we have
2| -1 1—q!
Ly=q q + —T 0. (3.47)
1—¢(w)g 2
B.
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1
:q1//f([1111]9131y2 |:uw ! 11})dud/<;
K ww

F X

—q_l//f(y151

F oX

=q‘1//f(y181 -

F oX

:qlf/f(ylsl _

F X

1
1

(k+p)w K 1

kw?  (kdp)w 1

] y2) dppdk

1

1
R K—p 1
L (k—p)w? kw1

} Yy2) dpdr

1 1
1 1
Krw K 1 —u 1
| kw? ko 1

=) [0 | msimae

. In order to calculate

1
L3://f([/;;11]918192)dﬂd“7

F X

1
1
1 —pwo?

1 :| yg) d,ud/@
1

(3.48)

we are going to change the order. In particular, we have

1
ng//f({ulll} Y151Y2) dp dk

F X

1
://f([ull } [111 ]ylslyz)dﬁd#-
ST no 1 K 1

//ﬂ{;;ll} {:1111y151y2)d/€du

oX p

1
:q_l/f(ylslyz[ P 1)6[#
2um 1

10 ! 1 ! 1
=q /f({u 1 ] { 1 })du
w1 2p+1)w 1
OX
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_ 1 ! L
1 /f({lilj |:(2,u+1)w 11})@'

— If 2u+ 1 € p, then by the matrix identity

1111 1 . 11 -11
11 _ - -1 -1
11| S251B151 = 8259 -1 1 -1

1

1 1

we have

g / f({111 })dﬂzq_l / f(s2s1Bis1) dp

1

2p+lep 2p+lep
=¢"" f(s251) / dp=q"'p / dp.
2u+lep 2u+lep

— If 2u+ 1 ¢ p, then by the matrix identity

1 1 1 1 1 1 1%
-« 1 828131813/2 = S951 E——1 1 -1
w 1 1 1

we have

oX\{2u+1ep}

-1

=q / f(s2s1B1s1y2) dp

o*\{2p+1€p}

=q " f(s251) / dp=q'p / dp.

o*\{2u+1€p} o> \{2u+1ep}
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In conclusion, we have

[ [ oo

oxX p

o [+ [ Dde=0-a0s

2p+1ep oX\{2u+1€p}

//ﬂ{‘l‘;lj |:1111:|y151y2)dﬁdu

oX F\p

://ﬂﬁlll] [;;11}y151y2)dndu

oX F\p

1
K1 k=1
:/ / f(s2s1915192 [ p 1 ) })d/fdlu
Gl

0X F\p

//nyk/|: UK -1 1 n;l :|)d/€d/vt
LR

0X F\p

/ / f y2k/ |i ”_1 1 nIl })d/—{du
—p27t —prTl 1

0Xx V(H,< 2

-t _1q_1 3 /f Yo)d

A-q £2< T
1 —&(w)g 2

/ / f({;;ll]ylslyﬂdndﬂ
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1 H
=E(w)q "2
1 Lo
'//f(8251 [ul 1 :|y131y2|: e 1 ])d/ﬂd,u
po1 —pwlrw  —pkw 1
0X oX
—s—3 ! 1 K}Z 1
={(w)q 2 f(sas1 | 1 | Y1s102 L ) drk dj.
w1 —UKTT  —KW
U>< OX

By the matrix identity

1 1
1 kw1
S281 | p 1 | Y1S1Y2 1
w1 —prkw  —kKw 1

M1 T 1
_ 1 kw1
=S2|pu 1 S1Y151Y2 1

Ll 1] —pkw  —Kw 1

1 1 ] ! : 1
— 1 Ko
=So | p 1 “ Y2 1
po1 —w 1 —pkw —Kkw 1

1 | 11 ( —|—11) 1
—s, ull |:(/$+)w1 . :|:s2 nuw .
(

l—pr)w  — (k41w 1 (141w 1 —(r+1)w 1
1
I 1
= [—(n—i—l)w 1 ] S2
(I+u)w —(k+1)w —p 1
1 1 1
—unl (I-pr)w —(k+1)w 1

then the integral

1
/ / f({u Y } Y151Y2) dk dp
) kp 1

0X v(k)=—

1)



1 1 1
={(w)q "2 //f(5251 {u b 1 Y151Y2 [ kw1 })d/@du
po1 —prkw  —kKw 1

UX UX
1
el 1
=¢{(w)q 2//f(|:(n+1)w 1 })d/fbdu.
0X X (A-pr)w —(s+l)w 1

D If 1 4+ k € p, then we have

B 1
§(w>q_s_é/ / (] 1) oy })d/ﬁd,u
L (1—pr)w —(k+1)w 1
oX 1+kep
1 i 1
=£(w)qs2/ / f( h ])dmdﬂ
| (1—pk)w 1
0x 1+k€EP
1 i 1
:f(w)qSQ/ / f( Yy 1)df<;du.
L (1+p)w 1
0x 1+k€EP

a') If 14 p € p, then we have

sl vy

é(w)q / / f(Lw)w 11])@@@
1+pep 1+k€p

={(@)g 2 / / dk dp = ¢ %(w)q " 2.

1+pep 1+kep

b') If 1+ p ¢ p, then we have

@ [ [t pasa

1—pgp 1+rep

zi(w)q‘s‘é/ /f([;lll])dmdu

1—pgp 1+reEp

=¢ 71 (1 — 2¢"1)é(w)g 20,
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QIfl+rép:

roo1
f(w)q—s_z/ / f(] ~(vt)w by ])d/—idu
L 1—pr)w —(k+1)w 1
0% 1+ké¢p
[1 1 .
@t [ [l ||t Pasas
L = 1 (1—pk) 1
0* 1+ké¢p
[1 1 .
:g(w)q52/ / f(le ' } { 1 ])dmdu
| w1 (+w)w 1
0X 14r¢p

d)If 14 p € p, then we have

£(W)q‘5‘5/ /f([;;ll})dlﬁd,u

1+p€p 1+Kép

:§<w>q787% / / f(8281y151) dr d,u
1+p€p 1+rép

—£(@)g 2 (1 - 247y

d) If 1+ p ¢ p, then we have

dt [ /f({;;ll] [;111]>dw

1—pép 1+k¢p

=¢(w)g 2 / / f(s281918192) dk dpu

L—pép L+rgp

=€(w)q >3 (1 - 2¢7)%.

/ / f({;;l 1] y151y2) dis dp
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1
:/ / f(ylsl[ e P ])d/{d,u
(kow+2u+1)w kwo+p 1

//f ylsll Keo-Hi by })dmd,u
(kw+2pu+1)w koo+p 1

1

//f ylsll 11 ])dmdu
o nw+2p+1) 1

o F K RN | PR L2
s 1 2u+1)w 1
el L,
~(1-4 )Zf({uull I L
=(1—q)*B.

For the last equality, it follows from the previous calcula-
1 1
tion for //f( {# o ] [ b ] y151Yy2) dk dp. Further-
no 1 K 1

more, we can combine them as

//f({iill] Elll}ymyz)dmdu
:<//+//>f<[i;11} K%jylslymndu

oX p 0% 0%

= (1—q¢ " )B+(1—q¢')B=(01-q¢")B.

Ly= f( I3 ' 1 } ?/15192) dup dk
F F\o i
[ —p? -1 1
- P —ptt -l 1
/ A _h Lu2 ' 1]
F F\o - T
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1 ,u‘l
828182[ 1 . - :|y151y2) dp dr

- 1_52 25 /f{ Y }328182y181y2)d

1
f([ Y } 525152Y151Y2) dK

K 1
_ g 1)¢2 —2s 1—kw K —K
! 1 352(;()?33 /f(3231$2y181y2 [ net 1okt onw ) dg
kw?  —kw? l+kw
1—qgt 62 —2s 1—qg! §2 —2s
:( 1 :152)(73(;5—33 f(s150y15192) = ( 1 352)(73(;5_)35
_ 12 —2s
(1 : _qu)é()f—)i f(El 1 1} 52818051813) d
v(k)<—2
1 — 1) ¢2 25 -1 1 o
( 1 _q§2>(£w<)?qﬂ)gs f({ Yy _J [ t 1} 518251
v(Kk)<—2
[1 ! 1 Iil] 525152Y151Y2) d
1— g 1)e? 25 (1 — g 1)(¢& s—1y2
R S
(1—-q¢ D (w)g > (1 —q ) (E(w)q s=3)2
1 —&(w)g 1—&(w)g fu2)
(1—q¢H(w)g > (1 - q_1)§2(w)q_23_15
1 — & (w)g2 1—¢&(w)q -3 .
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1- —he? —2s —rt 1 K
:< 1_q§2><€ﬂ<;qﬂ>2qs / f({ 117 ] [ 111}815281
v(k)=—1

[1 1 ) K :| 523182y131y2) dk
1
— g )2 —2s )

:(1 1352)(;&2)(]8 £(w>q52/f(5251y181y2 {: L ])d/ﬁ

)q_ w 1

1

(1- Q_1)52(w)2q_286(w)q—8—% /f(8281y181 [ " ])d“-

1 —&*(w)q 2

(k+1)w 1

—Ifk+1ep, ie, k€ —1+p, then the integral becomes

1
/ f(s2s1y181 [ Y })d’f = / f(s2519181) dK = 7.
Yo 1

(k+1
—1+4p —1+4p

—Ifk+1¢p,ie, k+1€0”, then the integral becomes

1
/ f(s2815181 { Y })dm
(k+)wm 1

0X\—1+4p
1
= / f(s2519151 { ! 1 1} ) drk
0X\—1+4p “
= [ rin= -2
0X\—1+p

4. For wy = 1y, we have

(a)

1
//f(|:u31511:| 828152y2)d$d,u,dl<&
K

F2 o

i ][ e Jen

F2 o
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- L
://f( 171w ‘| |:M;71 1 :|5281)d$d,ud/€
P2 L 1 K p—pw 1l
r1 1
://f( el }{ w1 ]szsl)dxd,ud/{
F2 o ) “he wtwtw 1
- .
://f( ull }5251)d:cdpdﬁ;:/f(lull :|5281)dﬂdﬁ.
F2 o el F2 rpl

1
/ / f( u:}: 1 1:| 528152y2) dx d,u dr
K [

F2 F\p—1
r 1 1 )
—pr~t —z=t —1
:/ / f( a —z —/LCC71 1
—n 1 k—plr—t —px~l 1

F2 p\p—1
1
S9 [ 1 xf } S981Y2) dx dp dk
1

1
:§(x)_1]x|_s_é/ / f(|:/;;11} So {1”11 1} {1117”1} $981) dx dp dk

2 F \71

1 — 2 —2s+1
:< 1z 5_ /f [ 1 } $1Y2) dz dp dk.
1—g¢q s+3 1

//f({;h :|528182y2)d$d,ud/£

K p

1
—pr~t —z7t 1 1
/ / |: K —z —px~?! 1
—nl w—plz—l —pz—l 1

1
S9 l 1z } S281Y2) dx dp dk
1

//5 ) Mo f ([ }32{11%11] [11—;31}5251)@@@4

—10><
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1 1
ZS(W)qf‘”? //f( [;}: ; 1 1:| |: w(ll_x) 1 1:| 51) dz d,LL dk.

F2 g%
i. If1—2ep, ie,xrel+p, then we have

‘5+2// { 1] ) dx dp drs

F2 1+p

/fLM } dud%/das

1+p

ol Jos

ii. If z € 0*\1+p, ie., 1 —2z € 0, then we have

M1 T 1

/ / £(w>|w|87§f( 0 ! 1 . |: w(ll_x) 1 1 81) dx d,u dk
LK K i 1

F

20X \14p

. ]
:/ / f(w)|w|s_%f( L {11;1 }sﬂd:vdud/f
Lkp 1) 1

F2 0X\1+4p
L
~[ [ @it s dvdun
F2 oX\1+4p - N
1
:f(w)qH?/f({ul 11} s132) dp d - / de
K

0™ \1+p

(1 - 26]_1 _S+2 /f |: 1 1:| 51y2) d,ud/-i.
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3.3.4 Dimensions of the spaces of fixed vectors for groups
V and VI

Proposition 3.12. Let Vg, be the standard space of the induced representation

§V81GL(2) X fv*lV*S.

i) Let & be the trivial character of F*. Taking s = —%, we obtain an inter-
twining operator

A(=1/2): Vi 12 = Vi (3.49)

The restriction of this operator to the four-dimensional space of K1(p?)-fized

vectors 1s zero.

ii) Let & be the non-trivial unramified quadratic character of F*. Taking s = %,

we obtain an intertwining operator

A(1/2) ‘/571/2 — ‘/57,1/2. (350)

With respect to a suitable basis, the restriction of this operator to the four-

dimensional space of Kl(p?)-invariant vectors has matriz

e 204q7 Y 14q7! Tla-a"? _la-q7?
2 2 2 2
e 1497t T30-07?H  T20-¢72)
2 2 2 2
e 20+q7YH 14q7t Tl Tl | (351)

2 2 2 2

—3(14,-1 -1 -2 _ =2 B B
_4g (2+q )H—g _ g (2q >q2(1+q 1)

In particular, this matriz has rank 2.

Proof. Let
A=¢E(w)g 2, Bi=E(w)g >, C=¢&w)g s, (3.52)
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then we have C' = gA, B = AC = ¢AZ%.
From the calculation for the double integration in section 3.3.2, it is enough

to just show the following cases. More precisely, we need to calculate

1.

S USSR

B(wﬁ-lf(hull wy | dudek
|
o TUZLIETIED 5 o0 gy 420 - g7
2.
1
B(w)—/f({,éill]wg) dp drk
F2
—1 _ 71A _ 1 _ 1 2A
:(q—2+q (1 f_)B(C_l—l))O‘_’_ 11 _qB 6+q_1(1_q_1)7+ (1 133) 5
3.
1
B(w4):/f<[ﬁi11}w4) du dk
F2
“2(1 — ¢~ 1) B2 1—¢g')(A+B
| (Y w1CES
_ _ ¢ '(1-¢")B
+q¢*(1—qg "By + T g J.

4.

o= f5([11 ) s

F2
1—qg HA*(C*+C+1
:( q )1£B+ + )oz—i—ﬁ—k(l—q_l)Bv—i-(1—q_1)A5.
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o f5([12 ) s

FQ

-1 -1 -1
g'(1—q¢ HAB 1— ., .

= 1— A

1—-B @t 1—Bﬁ+q ( ¢ ) Ay

(1-¢gHAA=q ' +1)
1-B

+ (' + )0.

i) Since {(w) =1, s = —3, then we have

1
2

A=g@) =1 B=g@0 =g C=g@) =g

(a) Blw) =q'a—q?(1+2¢)8+q (1 —q )y +q (1 —q")d
(b) B(wz) =—qla—q'B+q¢ ' (1—q)y—q ' (1-q")s
(¢) Blw) =—qla—q ' B+q ' (L—¢)y—q'(1-qg )0
(d) Blws) =—q¢ (@ + g+ Da+B+q(l —g)y+(1—q¢1)d.
(e) Blws) =—q la—q ' B+q (L—q¢ ' )y—q ' (1-qg )0
From above result, we can see that B(w,) = B(ws) = B(w).

With (A(s)f)(@;),1 <i <4 as defined in Lemma 3.11, then we have

(¢) (AS)f)(@3)=0-a—0-8—0-7+0-5=0.

(d) (A(s)f)(@s) = 0.

In conclusion, we have A(—1) = 0.
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ii) Since {(w) = —1,s = 3, then
A=Ew)g 2 =—q L B=E(w)g * =q"", C=¢(w)g = -1

(a) Blw) =q'a+B+q¢>(1—q)y+q*(1—q1)o
(b) Blwz) =qa+B+q ' (1—q )y —q(1—q')d.
(c) Blws) =q ta+B+q(1—qg )y +q?(1—q ")
(d) Blws) =qa+B+q (1—¢ " )y—q¢ (1 -q )0
(e) Blwy) = —g’a+ B —q (1 —q7")y+2¢7%.

Similarly, from above result, we can see that B(wy) = B(w,), B(ws2) = B(wg).

Therefore, we have

5 9 1 1 1 -2 —1q_ -2
(a> (A(s)f)(wl):q (1;-q )Oz—l— 1+;1 B‘i‘q (12q )7_q (1211 )5.

(b) (A(s)f) (@) = TG 4 Lrg g 200 D)y 0 2000 Dy

(c) (A(s)f)(w3) = qu(lgrqfl)a + 1+g_1ﬁ + q71(12—‘1*2)7 _ Q’1(12—q*2)5.

(d) (A(s)f) (@) = g 4 B g 2000 4 g=2(1 4 g7 1),

In conclusion, we have

e 20+q7YH 14¢7! ¢Tra-g7? _g7l-¢7?)
2 2 2 2
1 e *0+q7YH 1447t T30-07H  20-472)
) — 2 2 2 2
A<2) q2(0+q™ ) 14¢7! ¢7'-¢7? _a7'a—g™? [~ (3.53)
2 2 2 2

—3(14,—1 -1 —201_,-2 B B
_q (2+q )1+§ _ g (Qq >q2(1+q 1)

With a similar process as in Proposition 2.5 of [23] to obtain the assertions.

]

Corollary 3.13. With Vg, A(—1/2) and A(1/2) as in Proposition 3.12, we have
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i) The restriction of the operator A(—1/2) to the three-dimensional space of

M(p?)-invariant vectors is zero.

ii) With respect to a suitable basis, the restriction of the operator A(1/2) to

the three-dimensional space of M(p?)-invariant vectors has matriz

a2(1+qh) 1+ ¢ '(1-q"?
2
—4 -1y =2 Y
(g Y 20+ o302
4~ "(+g ¢~ "(+q) ¢""(1—g . (354)
a2(1+¢™h) 1+q al1-q7?)
2 2 2

In particular, this matrix has rank 1.

Proof. The matrix identity

Yo (3.55)

—
|
g
|
_
—
—
|
g
| |
i
—
—_
—
= 9
1
V)
—
¥
[\
v
—
| —
—
—
—
g
= |
N
| |

implies that y, and sys; define the same element of P(F)\G(F)/M(p?). Then

the assertions follow easily from Proposition 3.12. ]

Proposition 3.14. Table 3.2 shows the dimensions of the spaces of M(p?) and
Kl(p?)-invariant vectors for the irreducible, admissible representations (m,V') of

groups V and V1. Here, £ and o are unramified characters of F'*.

Proof. By (2.11) in [15, section 2.2], it follows that the dimension of the space of
[-invariant vectors of type VIb is equal to the rank of the matrix A(—1/2) as in

(3.49), where T is the subgroup M(p?) or Kl(p?). Moreover, we have the relations

dim(VIb)" + dim(VId)" = dim(IIb)",  dim(VIc)" + dim(VId)" = dim(IIIb)".

Similarly by (2.10) in [15, section 2.2], the dimension of the space of I'-invariant

vectors of type Vd is equal to the rank of the matrix A(1/2) as in (3.50). Again
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Table 3.2: Dimensions of the spaces of M(p?) and Kl(p?)-invariant vectors for
Iwahori-spherical representations of groups V to VI.

constituent of representation M(p?) Kl(p?)
V a véExExv /o 5[, v€],v120) 3 5
b (€=1,8#1)  L3Stare),v?0) 2 2
c L(V1/2§StGL(2), &v120) 2 2
d L(v€, € xv™120) 1 2
VI a vxlp xv %0 (S, v1%0) 3 5
b (T, v=%0) 0 0
c L(vY?Stay ), v %0) 2 2
d L(v, 1px x v™1/%g) 3 4

we have the relation dim(Vb)" + dim(Vd)" = dim(ITb)". Moreover, we consider
the representation of type Vb as the representation of type Ve twisted by some
character o. It follows that dim(Vb)' = dim(Vc)'. Then by Proposition 3.12

and Corollary 3.13, we obtain the desired dimensional data as in (3.2). ]
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Chapter 4

Non Iwahori-spherical:

Borel-induced representations

In this chapter, we obtain the desired dimensional data for the Borel-induced

representations which are non Iwahori-spherical representations.

4.1 Depth zero representations

4.1.1 Kl(p")-vectors and Kl (p")-vectors

Let
Kl(p") = GSp(4,0) N [EZ o o E] (4.1)
p'VL pTL p'VL 0
and
0_1 o] 0 0
Kli(p") = GSp(4,0) N [pp" b o E]. (4.2)
pn pn pnfl 0
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Let (m,V) be a smooth representation of GSp(4, F'). Let n > 2 be an integer.

We define a linear map a : VKIF") — PRLG™) by

a(v) = Zw([mh” . 11])U. (4.3)

TE€0/p

We further define a linear map 3 : VELG") 5 yKIG") by

By= % w([lgdet(g)])vzZw([lgllbvﬂ(sz)v. (4.4)

g€GL(2,0)/T'0(p) y€oa/p

Lemma 4.1. Let (7, V) be a smooth representation of GSp(4, F). Let n be an

integer such that n > 2. Let a and Sbe the maps defines above.
i) « is injective.

ii) Suppose v € VELG™) s such that B(v) = 0. Then v is invariant under
1
1
[P”‘l ! ] (4.5)
1
Proof. i) We calculate, for v € VK"

pla(v))

1
= Z s ({ v ]) a(v) + m(s2)a(v)
yeo/p !
1 1 1
o ORl (ETH1 R IN) [R5 v C S O
zy€o/p —zw" 1 1 z€o/p —zw™ 1 1
1

1
1
1 1 1
— E T 1 yxw”fl y 1 v
—zw™ 1 1 y12w2n_2 yrw~t 1

z,y€o/p
1
+ Z 7T<|:an—1 ! 1 ]52>v
1

-1
x€o/p zw”
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z,y€o/p
1 1
=qu + Z 7T(|:yw"_1 by } [Iwnll 1 ])v
z,y€o0/p yw Tl 1 —zw" 11
1
=qu + Z us (|:yw"_l ' 1 ]) a(v).
yeo/p et

Hence, if a(v) = 0, then v = 0.

ii) We calculate, for v € VKL G"),

(A1)
()

-11 /6
1 L 1 1 L

_ w1 1 w1

pp R (N | R B SL{( R (Y
1

z,y€o/p z€o/p

1
: : 1 n—1
y$2w2n72 _ywwnfl 1 _an,1 1

z,y€o/p

1 1
1 n—1
-2 W({_W"l o ])HZW([W L 182)7}
—yxw”fl 1 —zwn~1 1

x€o/p
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=+ Y Y 7 d_ym inlllbv

yE(o/p)* z€o/p

el )
er/p zwn 11
1
=qu + Z Z ([ ; 1 :|>'U+Z7T(Sg|:anl ! 1 })v
ye(o/p)* z€o/p acw"fl 1 z€o/p zwnTl 1
1 1
1 1
w2 o s Ee ()
z,y€o/p rw 1 z€o/p rTw
1
+ Z T <32 [mﬂm by ]) v
xea/p mwn—l 1

The three sums are all invariant under the group (4.5). Hence, if 5(v) = 0, then

v is also invariant under the group (4.5). O

4.1.2 The case n =2

Now consider

o
o o o
o oo

KI(p?) = GSp(4,0) N [,ﬁ ] and K1, (p?) = GSp(4, 0) N [
p

NN N
N
»
o o O o

pep

We also define

TT o

} . (4.7)

o ooo

Kl (p%) = GSp(4,0) N {

=3
N
T T oo
T ooo

By Lemma 4.1, we have an injective map a : VK¢ — yKLG*)  and a map

B VELG?) s YKIGY) whose kernel is contained in VE11(*)  Observe that

Kl (p*)* :=[ “ }Kh(p?){ . ]:GSp(él,o)ﬂ [gg
1 pp

1
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and
Klll(pg)w = |: « 1

both contain I'(p).

Lemma 4.2. Let (m,V) be a smooth representation of GSp(4, F'). Suppose that

VK £ 0. Then 7 is a depth zero representation, i.e., VI® £ 0.

Proof. Suppose that VKIp?) # 0. By Lemma 4.1 1), then also VKL(p?) # 0. Hence
there exist non-zero vectors invariant under the group Kl;(p?)« defined in (4.8).

In particular, there exist non-zero vectors invariant under I'(p). O
As an immediate consequence, we have

e If 7 is a depth zero supercuspidal irreducible admissible representation of
GSp(4, F'), we can study 7 by restricting it to a irreducible cuspidal admis-

sible representation of the finite group GSp(4,0/p); see Lemma 2.7.

e If 7 is a parabolically (Borel-, Klingen- and Siegel-) induced representation
of GSp(4, F’). Then by Theorem 5.2 of [14] and the property of depth zero

of 7, we have the following conclusions.

i) The depth zero character x of F’* has the conductor at most 1, i.e.,
a(x) < L.

ii) The depth zero supercuspidal representation 7 of GL(2, F') has the

conductor exactly 2, i.e., a(m) = 2.
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4.2 Group I

Recall the Iwahori factorization for Kl(p?), i.e.,
p12 1 0x looo]

Kl(p*) = P21 [ o0 }[ i
0X 1]

1 :
] [§§ . (4.10)
0* p2

For this reason, we let

[ov=s]l e

where A = ad — be,u,v,w € p?,x,y,z € 0,t € 0%,[¢4] € GL(2,0). Consider the
full Borel-induced representation y; X x2 X o, where x1, x2 and ¢ are characters
of F*. The standard space V consists of smooth functions f: B — C* with the

transformation property

ﬂ[aiil i]h>=ra?ér\é\-wxl<a>><2<6>a<e>f<h>, abeeF*  (412)

X(9) = [a@b]1e]~**x1(@)xa(b)o (2), (4.13)

and we take

€ B(F),h € GSp(4, F). (4.14)

sm—1

Suppose f € VEI®)  then f is determined on the set of representatives for the
double cosets B(F)\GSp(4, F)/Kl(p?) as in Proposition 3.6 ). That is to say, f is
determined by f(r1), f(r2), ..., f(r11). Consider B(F)r;Kl(p?),i € {1,2,...,11}
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and assume f(r;) # 0. Then for g € B(F), h € Kl(p?), we need

fgrih) =x(@)f(ri), ie{1,2,...,11}. (4.15)

To prove above equation (4.15) is well defined, it is equivalent to show that if for

some §' € B(F), I € Kl(p?), we have
Grih = Gl (4.16)
Then, it follows that
g 'g=nrt'h 7t € B(F) nrKl(p?)r; . (4.17)
Since f € VKI*) and h, i’ € Kl(p?), it follows from (4.16) that

X(9)f(ri) = x(@)f(r:). (4.18)

Thus, we obtain

X 9 f(ri) = f(ri),  f(rs) #0. (4.19)

By the equation (4.17), the well-definedness of (4.15) is equivalent to the following

condition for the character x as defined in (4.12).

x must be trivial on B(F)Nr; - Kl(p?) -r;t, i€ {1,2,...,11}. (4.20)

70

95



Because we are concerning the non Iwahori-spherical representations, the char-

acter x should not be unramified, i.e.,

X1, X2 and o cannot be unramified at the same time. (4.21)

In addition, all the representations of GSp(4, F') are with the trivial central char-
acter. That is to say, x1x202 = 1. Furthermore, with the discussion in previous

section 4.1.2, we have

a(x1) <1, a(xe) <1, afo)<1. (4.22)

And the matrix will be

It follows from the condition (4.20) and (4.22) that

x1(t)xa(a)o(ad) =1, Vt,a,d € o*. (4.23)

It is easy to see that we need the characters y1, xo and o are all unramified.
This will not happen since we are considering the non Iwahori-spherical

representations; see (4.21).
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ii) For 7y = sy, to ensure that r,Kl(p?)r; ' € B(F), we need

And the matrix will be

By the similar reason for the case of r; = I, we need the condition that

X1, X2 and o are all unramified and this is impossible; see (4.21).

iii) For 73 = sys1, to ensure that r3Kl(p?)r;' € B(F), we need

r=c=z=v=0.

And the matrix will be

| — |
e
e
”‘&
o~
U
| S
—=
— %
— % ¥
% ¥
| S

By the similar reason for the case of r; = I, we need the condition that

X1, X2 and o are all unramified and this is impossible; see (4.21).

iv) For ry = 515951, to ensure that r4Kl(p?)r;* € B(F), we need

r=y=z2=c=0

And the matrix will be



By the similar reason for the case of r; = I, we need the condition that

X1, X2 and o are all unramified and this is impossible; see (4.21).

In fact, 71,79, 73 and r4 are the elements of Weyl group W of GSp(4, F') which is
8-element group generated by s; and ss; see (1.5). From above discussion, all of
these four cases cannot support non-zero Kl(p?) vectors for non Iwahori-spherical

representations.

1
5. For r5 = [w by ], to ensure that rsKI(p?)r; ' € B(F), we need

—w 1

It follows from the condition (4.20) and (4.22) that
x1(a)xz(a)o(ad) = (x1x2)(a)o(ad) = o(a™d) =1, Va,d € o*. (4.24)

The last equality is because of the trivial central character (yiy202 = 1).
Then o has to be unramified. It further implies that a(y1x2) = 0. Since we

are studying the non Iwahori—spherical representations, then we have

a(x1) =alx2) =1, a(o)=0. (4.25)

w 1
w 1

6. For rg = [ 1 ], to ensure that r¢Kl(p?)rg ' € B(F), we need

: . wd o d X
) 1= o) = Gomplizos ) € 0
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i) b= ep.

iil) w= —uw € p*.

dw(x(—2+wy)+wz)
(—1+wy)?

iv) ¢ = €p.

And the matrix will be

dw
w+v

a(l—wy)+

dowu((—24+wy)zt+wz) 1
(@w+v)(—1+wy)

=%
% %

_d
1-wy

=% %X %
| S

du((—24+wy)z+wz)

a(l+2)— Ciren)?

It follows from the condition (4.20) and (4.22) that

X1(d)xz(a)o(ad) = (x10)(d)(x20)(a) =1, Va,d € 0*. (4.26)

By the trivial central character (x;x20% = 1), we have

(x10)(ad) = (x20)(ad™') =1, Va,d € o*. (4.27)

It implies that
a(xio) =0, i€ {l,2}. (4.28)

Again, since we are studying the non Iwahori—spherical representations,

then we have

a(x1) = a(x2) = a(o) = 1,a(xi0) =0, i €{1,2}. (4.29)
1
7. For r; = sy {w by ], to ensure that r;Kl(p?)r- ' € B(F), we need
w 1

i) v =wz € p.
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i __ dw?z 2
i) ¢ = ooy € P

- d
111) t = ==y (lt=-T0) €o”.

iV) h— d(2wutuv+w)

(’W+7J)2 E 0.

And the matrix will be

a(lfyw)Jr dw2(2wu+uv+w)z

(w+v)2
dw 1 *
w+v 1 % % .
a1+ ) -G e [ : T}
17dwy
It follows from the condition (4.20) and (4.22) that
x1(a)xe(d)o(ad) = (x10)(a)(x20)(d) =1, Va,d € 0*. (4.30)

By the trivial central character (x;x20% = 1), we have
(x10)(ad™ ") = (x20)(a”d) =1, Va,d € o*. (4.31)
It implies that
a(x;0) =0, i€ {l,2}. (4.32)

Again, since we are studying the non Iwahori-spherical representations,

then we have

a(x1) = alxa) = a(o) = 1,a(xs0) =0, i€ {1,2}. (4.33)

1

w 1

8. For rg = s95; [ }, to ensure that rgKl(p?)rg ' € B(F), we need




And the matrix will be

a(l—wy)
a(l—i—%) 1 >{
dw
w+Hv

% %

=% % %
| IS

d
l—-wy

It follows from the condition (4.20) and (4.22) that

x1(a)xz(a)o(ad) = (x1x2)(a)o(ad) = o(a™*d) =1, Va,d € o*. (4.34)

The last equality is because of the trivial central character (yiy202 = 1).
Then o has to be unramified. It further implies that a(y1x2) = 0. Since we

are studying the non Iwahori—spherical representations, then we have

a(x1) =alx2) =1, a(o)=0. (4.35)

o av 3
iil) c= S €p°.

_ bc;ad+(1+w71w)

1
w wtw

bc—ad
t2(w+w) +

iv) z = € o.

And the matrix will be

aw(—bv2+d(w+uv+w))
t(w+w)(wt+uvt+w)

d+ v(du—bv)

wtw

a(w+w) 1 T *
wHuv+w T
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It follows from the condition (4.20) and (4.22) that

ad

XI(T)XQ(G)U(GCZ) = 1. (4.36)

By the above condition iv), we have

bc — ad

v + (1 + o tw) €p. (4.37)

Since ¢ € p3,w € p?, it follows that

_ad

t2+1ep<:>adet2+p. (4.38)

Therefore, by (4.36) and the trivial central character, we have
x1(t)xa(a)o(t?) = xaolat™') =1, Va,t €o”. (4.39)

Thus, we have the conclusion that ys is unramified, i.e., a(xs) = 0. Again,
since we are studying the non Iwahori—spherical representations, then we

have two possibilities

(a) a(o) =1,a(x1) = 0,a(x2) = 0.

(b) a(o) =1,a(x1) = 1,a(x2) = 0.

1
10. For 79 = s [ b ], to ensure that r1oKl(p?)r;g € B(F), we need

w 1

2 _
x:c:vzo,a:t(w+w)(1 wz)eox.
dw
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11.

And the matrix will be

+2 (w+w)(l—wz)
dw *
t(l—wz) 1

=% %
=% % %

1
H(1+2) { ] '
d

It follows from the condition (4.20) and (4.22) that

t2

Xl(E)XQ(t)U(t2) =xi(td™) =1, Vd,t€o* (4.40)

Thus, we have the conclusion that x; is unramified, i.e., a(x1) = 0. Again,
since we are studying the non Iwahori-spherical representations, then we

have two possibilities

(a> a(U) = 17a(Xl) = O>a(X2) =0.
(b> CL(O') = 1,@(}(1) = 070’(X2) =1L
1 1
For ri1 = s [ b } [ 1 ], to ensure that r1; KI(p?)r;' € B(F), we
1

need

) zr=2z=c=0.

i) d = Y=oy o gx

. (a+bw)(w+v) X
111) t= (w+2wutuv+w)(l—wy) co”.

And the matrix will be

a(l—wy)
(a+bw)(w+v) 1 % % %
wt+2wutuvtw 1 % %

(a+bw)(w+'u)2
w(w+2wutuvtw)(l—wy)
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Table 4.1: Inducing data for non-zero K1(p?) vectors of Borel-induced cases.

B(F)r;K1(p?) Inducing data
it a(x1) = a(xz) = a(o) =0
T2 a(x1) = a(xz) = a(o) =0
T3 a(x1) = a(xz) = a(o) =0
T4 a(x1) = a(xz) = a(o) =0
75 a(c) =0
T a(x10) = a(x20) =0
7 a(x10) = a(x20) =
g a(c) =0
To a(xz2) =0
10 a(x1) =
11 a(x1x20%) =1

It follows from the condition (4.20) and (4.22) that

x1(a)xz(a+bw)o(a®(1 4+ a 'bw)) = (x1x20°)(a) =1, Va € 0*. (4.41)

It is always true by the fact of trivial central character. Thus, there is no
the other restriction for the characters xi, x2 and o. Again, however, they
cannot be unramified at the same time since we are focusing on the non

Iwahori-spherical representations.

Proposition 4.3. Leti € {1,2,...,11}. The inducing data for the double cosets
B(F)r;K1(p?) to support a non-zero K1(p?)-invariant vector is given in Table 4.1.

We assume the central character is trivial, i.e., x1x20° = 1. Moreover, if we are
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Table 4.2: Inducing data for K1(p?) of non Iwahori-spherical Borel-induced case.

B(F)rKl(p?) Inducing data
Ts a(o) =0,a(x1) = a(x2) = 1
6 alo) = a(x1) = alx2) = 1,a(x;0) = 0,5 € {1,2}
r7 a(o) = a(x1) = alx2) = 1,a(x;0) = 0,5 € {1,2}
T3 a(o) =0,a(x1) = a(x2) =1
g a(o) = 1,a(x1) € {0,1},a(x2) =0
T10 a(o) =1,a(x1) = 0,a(xz2) € {0,1}
&n {a(o) €{0,1},a(x;) € {0,1}} \{a(x;) = a(o) =0}, j € {1,2}

just considering non Iwahori-spherical representations, then above table shall be

as Table 4.2.
Proof. The conclusions follows from the above discussion. m

Corollary 4.4. Let i € {1,2,...,8}. The inducing data for the double cosets
B(F)r;M(p?) to support a non-zero M(p?)-invariant vector is given in Table 4.3.
We assume the central character is trivial, i.e., x1x20° = 1. Moreover, if we are

Just considering non Iwahori-spherical representations, then above table shall be

as Table /.4.
Proof. The proof is analogue to that of Proposition 4.3. [

Proposition 4.5. Table 4.5 gives the dimensions of spaces of M(p?)- and K1(p?)-
invariant vectors for an admissible full Borel-induced representation x1 X X2 X 0

which is non Twahori-spherical with trivial central character.
Proof. 1t easily follows from Proposition 4.3 and Corollary 4.4. O
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Table 4.3: Inducing data for non-zero M(p?) vectors of Borel-induced cases.

B(F)r;M(p?) Inducing data

r1 a(x1) = a(xz) = a(o) =0
ra a(x1) = a(xz) = a(o) =0
T3 a(x1) = a(xz) = a(o) =0
T4 a(x1) = a(xz) = a(o) =0
75 a(c) =0

6 a(x10) = a(x20) =

7 a(x10) = a(x20) =

g a(c) =0

Table 4.4: Inducing data for M(p?) of non Iwahori-spherical Borel-induced case.

B(F)r;M(p?) Inducing data
- NA
T _ NA
T3 _ NA
T4 _NA
Ts a(o) = 0,a(x1) = a(x2) =1
T a(o) = a(x1) = a(x2) = 1, a(x;0) = 0,5 € {1,2}
r7 a(o) = a(x1) = a(x2) = 1, a(x;0) = 0,5 € {1,2}
rg a(o) =0,a(x1) = a(xz) =1

106



Table 4.5: Dimensions of the spaces of M(p?) and Kl(p?)-invariant vectors for
non Iwahori-spherical representations of group I.

inducing data dim VT
a(o) a(xi) alx2) alxio) | M(p?) Ki(p?)
0 1 1 2 3
0 0 0 3
1 0 0 2
0 1 0 2
1 1 0 2 3
1 0 1

4.3 Groups II to VI

Since Proposition 4.5 already gives the dimensional data for group I in which the
Borel-induced representation x; X x2 X o is irreducible, we are going to investi-
gate the representations of group II to VI in this section. In fact, the analogue

dimensional data follows from Proposition 4.5 for most cases, see Table 4.6.

Table 4.6: Dimensions of the spaces of M(p?) and Kl(p?)-invariant vectors for
non Iwahori-spherical representations of groups II to VI.

representation inducing data M(p?)Kl(p?)
11 a a(o) =0,a(x) =1 2 3
a(o) =1,a(x) =0 0 2
a(o) =1,a(x) = La(xo) =0 1 2
a(o) =La(y)=1la(xoc)=1 0 1
b a(o) =0,a(y) =1 0 0
a(o) =1,a(x) =0 0 1

Continued on next page
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Table 4.6 — Continued from previous page

representation inducing data M(p?)Kl(p?)
a(o) =1,a(x) = l,a(xoc) =1 0 0
I a a(o) =1,a(x) =0 0 2
a(o) =1,a(x) =1 0 1
b a(oc) =1,a(x) =0 0 1
a(o) =1,a(x) =1 0 1
IV  a ao) =1 0 1
b a(o) =1 0 1
c a(o) =1 0 1
d alo) =1 0 0
\% a a(o) =0,a(¢) =1 1 2
a(o) =1,a(¢) =0 0 2
a(o) =1,a(§) =1,a(o) =0 1 2
alo)=1,a¢) =1,a(o)=1 0 1
b a(c) =0,a(¢) =1 1 1
a(oc) =1,a(¢) =0 0 0
a(oc) =1,a(§) =1,a(6o) =0 0 0
a(o) =1,a(f) =1,a(o)=1 0 0
c a(o) =0,a(¢) =1 0 0
a(c) =1,a(&) =0 0 0
a(oc) =1,a(¢) =1,a(éo) =0 1 1
a(oc) =1,a(§) =1,a(éo)=1 0 0
d a(c) =0,a(¢) =1 0 0
a(oc) =1,a(¢) =0 0 1

Continued on next page
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Table 4.6 — Continued from previous page

representation inducing data M(p?)Kl(p?)

a(o) =1,a(§) =1,a(fo) =0 0

0
a(o) =1,a(f) =1,a(o)=1 0 0

VI a a(o) =1 0 2
b a(o) =1 0 0
c a(o) =1 0 0
d a(o) =1 0 1

The dimensional data for groups II and III easily follows from Proposition
4.5 since types IIb and IIIb are related to the double cosets P(F)\G(F)/I" and
Q(F)\G(F)/T, respectively. Here, I' is represented as the congruence subgroup
Kl(p?) or M(p?). As for the dimensional data for group IV, in particular, we
consider the representation of type IVd which is the trivial representation of

GSp(4) twisted by the character o. Furthermore, we have the following claim.

Claim 4.6. There is no non-zero Kl(p?)-invariant vector for the type of IVd which
is non Iwahori-spherical. Similarly, in the non Iwahori-spherical case, there is no

non-zero M(p?)-invariant vector for the type of IVd either.

Proof of Claim /.6. Since we are concerning the non Iwahori-spherical represen-
tations, then we have a(o) = 1 for the type of IVd. Suppose that there is such
1
a non-zero Kl(p?)-invariant vector v. In particular, we can take g = { L } €
xr

Kl(p?), for any = € 0* and we have
(0lasp))(9)v =o(z)v=v, Vz€o™ (4.42)

This implies that a(c) = 0, i.e., o is unramified. However, this contradicts the
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condition of a(c) = 1. With the similar discussion, the assertion also holds for

the case of M(p?)-invariant vector. O

Then the dimensional data for the other types IVa, IVb and IVc easily follows

from the relations

dim(IVb)" + dim(IVd)" = dim(IIb)",  dim(IVc)" + dim(IVd)" = dim(IIIb)".

Next, we are going to figure out the dimensional data for groups V and VI. Recall

the relations in the proof of Proposition 3.14,

dim(VIb)" + dim(VId)" = dim(IIb)", dim(VIc)" 4 dim(VId)" = dim(I1Ib)".

dim(Vb)" + dim(Vd)" = dim(IIb)", dim(Vb)" = dim(Vc)".

Then we can immediately obtain the dimensional data for M(p?)-invariant vectors
by combing above relations and the data for K(p?)-invariant vectors; see Table
A12 of [15]. Now we consider the Kl(p?)-invariant vectors, for group VI, it
is enough to consider the o ramified case, i.e., a(c) = 1. By (3.2), we know
that dim VKP®) = 0 for the type of VIb in the Iwahori-spherical case. Then,
it is easy to see that dim VE(®*) = 0 for the type of VIb still holds in the non
Iwahori-spherical case; the reason is that if a double coset does not support an
invariant function if a(o) = 0, then it also does not support an invariant function
if a(oc) = 1. Once the dimensions for VIb are known, the dimensions for the other
representations in group VI follow as before.

However, we shall need more tools to completely obtain the desired dimen-
sional data, which is summarized in Table 1.2, for group V. First, the following

lemma is very useful to determine the dimensional data for Kl(p?)-invariant vec-
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tors for GSp(4, F).

Lemma 4.7. Let (7,V') be an admissible representation of GSp(4, F) with trivial
0* 0
central character. Let v € V' be a vector invariant under the group [ o } :
1
Then

1 p!
Pv)=0 <= v isinvariant under { U ] (4.43)
1

Here, P s the projection V- — V1 1.
Proof. See [17]. O

The following theorem plays an important role in determining the dimensions

of spaces of Kl(p?)-invariant vectors for some cases.

Theorem 4.8. Let (m,V') be an irreducible, admissible, non-generic representa-
tion of GSp(4, F) with trivial central character. Let ©/ be any irreducible sub-
quotient of Vzi 1. Write

T2 FRag, (4.44)

with an irreducible, admissible representation T of éf(Q, F). If 7 is non-spherical

and VMO =0, then VKIP*) = (.

Proof. Suppose that v is a non-zero Kl(p?)-invariant vector in (w,V); we will
obtain a contradiction. We consider the projection P: V — Vs 1. It easily
follows from v € V that P(v) is invariant under G”(0). That is to say, P(v) is
a spherical vector in the Jacobi representation Vs ,,-1. One can show that such
a representation must be of the form 7 ® 7. with 7 either a spherical principal
series representation or an unramified even Weil representation.

Moreover, it follows from Theorem 7.1.4 of [16] that the G’-module Vs ;-1
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has finite length. In particular, we consider a composition series
O=VcCcWViCc...CV,=Vziy, (4.45)

where V;/V;_; is an irreducible G’-module 7; for i € {1,...,n}. Asin (2.17), we
may write

VifVis 2= T, @ S(F), (4.46)

where ‘Z is the space of an irreducible, admissible representation 7; of the meta-
plectic group éi(2, F), and S(F)) is the space of the Schrodinger-Weil represen-
tation ..

We assume P(v) # 0, then P(v) defines a non-zero vector u in V;/V;_; for
some i, which is G’ (0)-invariant. Hence V;/V;_; is a spherical G’-representation.
Then we can conclude that 7; is a spherical principal series representation or an
unramified even Weil representation 7; = 7™ for some m. However, we assume
that 7 is non-spherical which is not of this kind. Thus, we get a contradiction,
proving that P(v) = 0. In addition, it follows from Lemma 4.7 that v is invariant

—1

1 P
under [ L ] . Thus, v is also a M(p?)-invariant vector which contradicts the

1
assumption of VM®*) = (. O

Now we come back to determining the dimensions of the spaces VM®*) and
VEI®) for group V. The diemsnion of the space VM) easily follow from those
of the spaces of K(p?)-invariant vectors; see Table A.12 of [15]. As for the space
VK" in fact, the dimensional data for most of the cases easily follows from
that of VM®*) And only the case of a(0) = 1,a(¢) = 0 needs more work to do.
Furthermore, we note that dim VM®*) = 0 in this case.

Let (m, V') be the representation of type Vb. By Table A.5 and Table A.6 of
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[15], we have

Vyr = Tgi@)(u(yéga X yiéa)) - Tgi(l)(l/QU). (4.47)

For more details about Ps-theory, see [15, section 2.5]. First, we have the following

more general lemma for the second part of (4.47).

Lemma 4.9. Let x be a character of F*. For a € F, consider the character

If a # 0, then

=0.

(Tgiu)(X)) [1 ok

1 :| 100,,0

Proof. To any f € Tgi(l)(x), associate the function f : F' x F* — C defined by
= 1
Flub) = f([ue ]).

As in the proof of Lemma 2.5.5 of [15], one sees that f € S(F x F¥). It is easy to
see that the map f — f from Tgi(l)()() to S(F x F*) thus defined is surjective.
It is also injective since the set [*1][L,] is dense in GL(2, F)). Thus we have an

isomorphism

e (X) = S(F x FX).

Transferring the action of [1 1 :] , we see that

(Y] P ) = viww fb).
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We calculate the asserted Jacquet module in stages, by first calculating

(Tgi(1)<X))[l *} =~ S(F x FX){1 ) *} (4.48)

Consider the map S(F x F*) — S(F*) which maps f to the function b — £(0,b).

Its kernel is S(F* x F*), and we have an exact sequence
00— S(F*xF*)— S(F x F*) — S(F*) — 0.
The sequence

0—>S(F>< XFX)[11*} —>S(F><FX){11*} —>S(FX)[11*} — 0 (4.49)

is also exact. It is easy to see that if f € S(F* x F*), then

for large enough n. Hence the module on the left in (4.49) is zero, so that we get

an isomorphism

1 1
1 1

S(Fx F*)r1 w1 2S(F¥)r1 1. 4.50
( )[ } ()[ } (4.50)

Evidently, the group [1 1 j] acts trivially on S(F*), so that

1
1

S(FX)[1 *} = S(F). (4.51)
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Combining (4.48), (4.50) and (4.51), we see that

(&) (0) [1 } = S(F). (4.52)

Hence

(Tg?ﬁu)(X)) [1 : *}79%0 = S(FY) {1 : },wa‘ (4.53)

By the definitions involved, the map that induces the isomorphism (4.52) is f —

A

f, where

fo=r"e ) ver

It is thus easy to transfer the action of the group [1 1 1}: It acts trivially on
S(F*). It follows that

This proves the lemma. O]

Let (p,W) be an irreducible, admissible principal series representation of
GL(2, F). where p = l/%g(f X v 30 and ¢ is a non-trivial quadratic character
of F*. As for the first part of (4.47), this representation has the same space W

as p, and the action of () is given by

ad—bc * * * u
ab x u
cd * |: u ]w
1 u

The central character is w, = £202 = 02, since €2 =1,£ # 1.

1

wr(w)(igo x vio) (2 hw.  (454)

Lemma 4.10. Let (m,V) be a representation of type Vb. The F* module Vg is

one-dimensional and isomorphic to the character V€.
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Proof. By Lemma 2.5,

VE — (VzJ)NO797170 — W[l ﬂﬂ/’*l'

The space on the right is one-dimensional by the existence and uniqueness of

Whittaker models for GL(2). It follows from (4.54) that

[“ ' ] w = w(a ) (ieo x vho)([*  J)w = |af(a)

for all w € V,s. Hence Ty = F* acts on Vg via the character v2¢. ]

Proposition 4.11. As above, let (7, V') be the representation of type Vb. Then

there is only one non-supercuspidal T; is isomorphic to 6™, where m is such that

(m") =¢.

Proof. First, it follows from Theorem 7.1.4 of [16] that the G7-module Vs ;1

has finite length. In particular, we consider a composition series
O=VocWVicC...CV,=Vziy, (4.55)
where V;/V;_; is an irreducible G’-module 7; for i € {1,...,n}. Then we get
0= (Vo)yo C (Vi)no C ... C (V) no = Va. (4.56)

By Lemma 2.3 and Lemma 4.10, we have dim Viz = 1. It follows that (V;/V;_1)yo

is one-dimensional for exactly one i, and zero for all the other :. By Lemma 2.5,

dim((‘N/z')[l «) = dim((Vi/Vi1) no)-
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Hence the dim((Vi)P ﬂ) are zero except for one 7, where the dimension is one.
It follows that all but one of the 7; are zero, and the remaining one, say 7;,, has
a one-dimensional Jacquet module. One can show that one-dimensional Jacquet
modules occur precisely for special representations ¢ and for even Weil repre-

sentations 7T, More precisely, as an A-module, 6™ has Jacquet module

[N

([* o1 ],8) == edy(a)(m, a)v(a)?,

and 7't has Jacquet module

N

([% a-1],8) = edy(a)(m, a)v(a)>.

By Lemma 4.10, Ta = F* acts on Va via the character v2¢. Using (2.21), it

follows that 7;, = 6™, where m is such that (m,-) = &. O

Proposition 4.12. If a(o) = 1,a(§) = 0, then the dimensions of spaces of

Kl(p?)-invariant vectors for types of V(a,b,c,d) are (2,0,0,1).

Proof. 1t follows from Proposition 4.11 and Theorem 4.8 that
dim(Vb)¥'¥*) = dim (V)K" = 0. (4.57)

Recalling the relation dim(Vb)' + dim(Vd)" = dim(IIb)"', we can conclude that

the dimensions for V(a, b, c,d) are (2,0,0,1). ]
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Chapter 5

Non Iwahori-spherical:

Klingen-induced representations

In this chapter, we obtain the desired dimensional data for the Klingen-induced

representations which are non Iwahori-spherical representations.

5.1 Group VII

Recall that
lzy =z
B

where A = ad — be,u,v,w € p*,x,y,z € 0,t € 0%,[25] € GL(2,0). Consider
the full Klingen-induced representation x X 7, where 7 is a supercuspidal repre-
sentation of GL(2, F') and x is a character of F*. The standard space V' of this

representation consists of smooth functions f: () — V, with the transformation
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property

*

H7 iy | 1) = la%det(e) (@) (9) f(h), g € GLa(F),a € F*. (52)

a"ldet(g)

7(g) := la*det(g) " x(a)7(g), (5.3)

and we take

*

§= [az | €QUP) b e GSp(4, F), (5.4)

a~tdet(g)

Suppose f € VEKI®) then f is determined on the set of representatives for the
double cosets Q(F)\G(F)/Kl(p?) as in Proposition 3.6 iii). That is to say, f is
determined by f(Ry), f(R2),..., f(Rs). Consider Q(F)R;Kl(p?),j = {1,...,6}
and assume f(R;) # 0. Then, for g € Q(F),h € Kl(p?), we need

f(gR;h) = 7(9)f(R;), j=AL...,6}. (5.5)

By a similar discussion as in Section 4.2, to check the well-definedness of (5.5),

we need the following for the representation 7 as defined in (5.2).

7 must be trivial on Q(F) N R;KI(p*) R, j€{1,2,...,6}. (5.6)

7

It follows from Lemma 4.2 that the full Klingen-induced representation y x 7 has

depth zero. It implies that

x and 7 both are depth zero. (5.7)
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Then by the discussion in Section 4.1.2, we have the conductor condition
a(r) =2, a(x) <1. (5.8)

In particular, the condition of a(7) = 2 implies that there is a non-zero newform

vy € Vi such that vg is invariant under

L) = |5 e ] (59)

For each of double coset Q(F)R,;KI(p?),j = {1,...,6}, let 9; := f(R;). By
the above discussion, to support a non-zero Kl(p?) vector, i.e., 9; # 0, Up to

conjugation, we have
w([ 5 15 ) = (5.10)
In fact, the conductor condition (5.8) follows from the following proposition.

Proposition 5.1. If G = G| x Gy with p-adic groups G1 and Gy, and if 7 is the
representation m ® wo of G, where m; is an irreducible, admissible representation

of G; fori=1,2, then the depth of the representation m has the property.

p(m) = max{p(r), p(m2)}. (5.11)

Proposition 5.2 (Proposition 3.4, [24]). Let 7 be a supercuspidal representation
of GL(2, K), and let x be a quasi—character of K* with conductor a(x). Then
cond(m ® x) < max(condr,2a(x)), with equality if © is minimal or cond(mw) #

2a(x). The conductor of w, is at most (1/2)cond (7).

Recall the central character of x x 7 is yw,, where w, is the central character

of m. Since we are working with representations of GSp(4, F') with trivial central
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character, we assume xw, = 1. In particular, we have a(x) = a(w,). Then it

follows from Proposition 5.2 that

a(x) = a(wy) < za(m) = 1. (5.12)

Remark 5.3. If x is unramified, then so is w,. In this case, the condition of

0><

1 (p?)
Vil v o

a(m) = 2 implies that the non-zero newform v, € is even [ % ]—invariant,

VTFFO(P2)

ie., vy € . In fact, for any = € 0* we have

7([* 2 ]))vo = wa(z)vg = vp.

We can further assume that w, = 1 by some appropriate twisting. That is to say,
we can assume that 7w has trivial central character if the central character w, is
unramified.

If x is ramified, i.e., a(x) = 1, then so is w,. In this case, the condition
Vwrl(PQ)

: 0% o
1S even |: 2 1+p:|_

of a(m) = 2 implies that the non-zero newform v, € "

invariant. By a similar discussion with above case, we just need to show that v
is invariant under [',,,]. In particular, we take any diagonal element [! ] €

[1 1+p}, then we have
m([* 4])vo = Ww(d)[l/d 1}7)0 = wx(d)vg = vy, Vde1+p.

The last equality is because that a(w,) = a(y) = 1.

In summary, we have the following proposition.

Proposition 5.4. Let (7, V) be a supercuspidal representation of GL(2, F') with

depth zero. And we assume vg € V is a nonzero newform, i.e., vy is invariant
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under T'1(p?) as defined in (5.9). Then we have
7T<|:%>2< 1_7_p:|>1)0:1)0. (513)
Proof. Since m a depth zero supercuspidal representation of GL(2, F'), then we

X
([ 5]

. . . . X
That is to say, there is a non-zero newform v, which is [;2 e

have

} -invariant. To

[

p; 1ip}—invariant. In fact, by

complete proof, we need to show such v, is also [
Proposition 5.2, we have a(w,) < 1. Here, w, is the central character of 7. It

implies that for any element [¢ Y] € [‘;2 1ip:|’ we have
7(d - [Zﬁ b{d] Yo = wy(d)vg = vg.

The second equality is because that a(w,) < 1 and d € 1 + p. That is to say, vg

0

. X 0 . .
is also [ v 11 ] -invariant. ]

All the elements of Kl(p?) can be written as AMY with A, M,Y as in (5.1).

That is to say, any element h of Kl(p?) has the form of

1 tab lzy =z
h:hlllHMAH llyx], (5.14)
wv —u 2 1

where A = ad — be,u, v, w € p*,x,y,z € 0,t € 0, (28] € GL(2,0).

i) For Ry =1, to ensure that R;KI(p>)R;* € Q(F), we need
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And the matrix will be

XOT([¢ 8o, = 5, Yt €0, V[28] € GL(2,0). (5.15)

It implies that y and 7 both are unramified. 1t is impossible since it con-
tradicts (5.7) or (5.8).

ii) For Ry = s;, to ensure that RoKI(p?) R, € Q(F), we need

r=c=v=0.

And the matrix will be

a * * *
t tz *
tw “Td+th x| -

It follows from (5.6) that

M@T([ 21 fiue |72 = x(@)n ()7 (

N -
X(E)W([ % H‘;Sﬁz})vg = Uy. (5.17)

We observe that
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And it is easy to see that any element in [;E 1 jpz] can have the form of

If follows from a(7) = 2 that the equation (5.17) becomes to

t
X(a)@g = 172, \V/t, d e OX. (518)

It implies that x is unramified. Hence also w, since yw, = 1. In conclusion,

the double cosets Q(F)RyKl(p?) does support a non-zero Kl(p?)-invariant

vector Uy and the conductor condition is

(5.19)

In addition, by Remark 5.3 this non-zero K1(p?) vector 9 is T'g(p?)-invariant

iii) For Ry = 515951, to ensure that RsK1(p?)R;' € Q(F), we need

And the matrix will be

It follows from (5.6) that

d—b
- Vt € 0, [98] € GL(2, 0). (5.20)

(e ) = B,

It implies that x and 7 both are unramified. It is impossible since it con-
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tradicts (5.7) or (5.8).
1

iv) For Ry = {w 1 }, to ensure that RyKl(p?)R;* € Q(F), we need

—w 1

(a) v=—-2ep’=>wep’
(b) a ==& ¢ 0% = ¢ p\{0}.

(C) tz—mEUX.

And the matrix will be

w * * *
_ cw(w+tu) w2c(u+w)((wz—2)y—wz)—bw(wz—l)2 %
w(—1+wz) w(wz—1)
c wc((ww72)y7wz)7d(w:cfl)2 %
l—wz wr—1

wd(utw)—bw
2

It follows from (5.6) that

w(—14+wz) w(wz—1) 5
wc((w:c—Q)y—wz)—d(ww—l)2 = U (521>
l—wz wr—1

cw2 _ cw(w+tu) w2c(u+w)((w172)y7wz)7bw(wzfl)2 N
)04

In particular, we have % € 0*. And we denote that

1 _ cw(wHu) WQC(u+w)((wzf2)y7wz)7bw(wzfl)2
g . w(—14+wz) w(wz—1) c 0% 0

0- d c wc((ww—Q)y—wz)—d(wa:—l)Z p\{O} 1+ ’
l—wx wr—1

Then the equation (5.21) becomes

cw2 C’Zﬂ2

X(T)wﬁ(d)ﬁ(go)m = x(——)7(go)04 = V4, Vd € 0*. (5.22)

This implies that x is unramified and hence also w,. In order to support a

non-zero Kl(p?)-invariant vector o, we need

m(g)0s = Us, Vg€ [% 1%]- (5.23)



Thus, we obtain that a(7) = 1 which is a contradiction since a(w) = 2.

1

v) For R = s [ ! ], to ensure that RsKl(p?)R;' € Q(F), we need

w 1
w 1

(a) x=zw =2z €DP.

(b) c=24% = cep?

(C) t:m:dEUX

And the matrix will be

a—way+w2bz * * %
dww wdz %

w+v (v+w)(1—wy)

2

B w(b(erw) 7d(uv+2wu+w)) a(v+w)2(my—1)—m2dz(uv+2wu+w) .

vtw w(v+w)(wy—1)
d

l1-—wy

It follows from (5.6) that

dw wdz
w+v (v+w)(1—wy) ~ ~

X(a)ﬂ—( [_w(b(v+w)2—d(uv+2mu+w)) a(v+)2 (wy—1)—w2dz(uv+2mutw) ] )U5 = Vs (524)
v+ w(v+w)(wy—1)

since 1 — wy + w?bza™! € 1 + p. Again, we denote that

dw wdz
w w+v (v+=)(1—wy)
90 = : w(b(v+w)27d(uu+2wu+w)) 2 2 )
a(v+w)?(wy—1)—wdz(uv+2wutw)
a<w + v) - v+ w(v+w)(wy—1)

and we observe that
9o € [?a; 11;:} :
It follows from (5.24) and (5.12) that

a(w +v)

- )7(90) 05 = (xwx)(a)T(g0)0s = 7(go)Ts = Us. (5.25)

x(a)w(
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Thus, in order to support a non-zero Kl(p?)-invariant vector 05, we need

™ ([‘;é 11‘3}) U5 = Us. (5.26)

It follows from the Remark 5.3 and Proposition 5.4 that (5.26) is possible.
In conclusion, the double cosets Q(F)R5;Kl(p?) indeed support a non-zero

Kl(p?)-invariant vector 95 and the conductor condition is
a(m) =2, a(y) <1 (5.27)

In addition, this non-zero Kl(p?) vector 05 is invariant under [;2 1ip].

1
vi) For Rg = [ b ], to ensure that RgKl(p?)Rs' € Q(F), we need

w 1

(a) = T = TED.

(b) y= i =y ep

(c) z:t;’(cw’fi)—i-éjad—bceﬁ—i-p.

And the matrix will be

w(ad—bc)

o) * * *

-

o+ v(fuu+—wav) d_"_v(ii—;w) %

t(w+w)
It follows from (5.6) that
ad _ bc at+ u(cu—av) b+u(du7b'u)
w—+To w—+to ~

X ™ v(cu—av v(du—bv Uﬁ - UG 528
(| e i |)ie= i (5.29
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since == € 1+ p. We also observe that

du—bv)
ZJJ—WIW) € GL(2a 0)‘

w+w

a+u(z}u+7£v) b+ u(
C+v(:;}u;‘;v) d+’v(

This implies that xy and 7 are both unramified which is impossible.
In conclusion, we have the following proposition.

Proposition 5.5. The following table gives the dimensions of spaces of M(p?)-
and K1(p?)-invariant vectors for an admissible full Klingen-induced representation

X X 7 which is non Twahori-spherical with trivial central character.

inducing data dim VT

a(r) a(x) | M(p*) Kl(p?)

2 0 0 2

1 0 1

Proof. The dimensions of the spaces of Kl(p?)-invariant vectors easily follows
from above discussion. The proof for the dimensional data for M(p?)-invariant
vectors is analogue to that for the Kl(p?) case. In particular, it sufficient to check
Ry and Rj cases. Note that the only difference from Kl(p?) case is that z € p~,

see (1.11). Here, we use the same notation v;,j = {2,5} with the Kl(p?) case.

1. For Ry = 51, to ensure that RoM(p?)R,! € Q(F), we need
r=c=v=0.

And the matrix will be
“TL %
tw aTd—Q—th * .
d
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It follows from (5.6) that
+2

M@(| 21 e |82 = (@) () (

(5.30)

t Rl - -
| 5 =
It is easy to that y is unramified. In fact, we can take some special relations

ad =t*, z=w=0. (5.31)

Hence also a(w,) = 0. Thus, in order to support a non-zero M(p?)-invariant

vector U, we need

s Vg, =g 5.32
a a —
”({]) >:32)

However, we observe that

ﬁ ﬁz oX p71 X
ad ad o 0
< |:p2 1+p] ~ 5]

It follows that a(m) = 1 which is impossible since a(m) = 2; see (5.8).

1
2. For Rs = 51 {w b ], to ensure that RsM(p?)R;* € Q(F), we need

w 1

(a) x=zw =1z € o.

(b) c=2% = cep.

(C) t:m:deox
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And the matrix will be

a—way+w?bz * * *
dwo wdz %

w—+v (v+w)(1—wy)

2

w(b(v+w) 7d(uv+2wu+w)) a(v+w)2(wy—l)—w2dz(uv+2wu+w) .

vtw w(v+w)(wy—1)
d

l—wy

It follows from (5.6) that

dw wdz
w+4v m ~ ~

X(a)ﬂ'( [_w<b(v+w)2—d(uv+2wu+w)) a(vt )2 (wy—1)—w2dz(uvt2mutw) ] )U5 = Vs (5.33)
v+ w(vt+w)(wy—1)

since 1 — wy + w?bza™! € 1 + p. Again, we denote that

dwo wdz
w w+v (v+=)(1—-w=y)
90 = w(b(v+w)27d(uv+2wu+w)) 2 2 )
a(v+w)?(wy—1)—wdz(uv+2wutw)
a(@+v) |- e w(ot=)(=y-1)

and we observe that
0>< pfl
90 S |:p2 1+p} .

Similarly, it follows from (5.24) and (5.12) that

(|5 0]) o= (5.35)

It is impossible since [‘;Z ’f;;} ~ [% 1%,] - This implies that a(7) = 1 which

again contradicts the fact of a(m) = 2, see (5.8) .

In conclusion, there is no non-zero M(p?)-invariant vector in any Klingen-induced

representation y X 7. O
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5.2 Group VIII

Let (p, W) be an irreducible, admissible supercuspidal representation of GL(2, F').
Then 1px X p is a unitary representation of GSp(4, F). It decomposes as a direct
sum

1px X p=7(S,p) @& 7(T, p),

where 7(S, p) is of type VIlla and 7(T,p) is of type VIIIb. Let (7, V) be the

representation of type VIIIb. By the tables in [15], we have

Vzr = T(I;Di@) (vp),

where this representation has the same space W as p, and the action of () is given
by

{d_bgl} [uuuu]U’:ww(U)(vp)([‘éZ])w. (5.36)

(Note that the tables list the P3-module, which ignores the action of the center.)

The central character is w, = w,.

Lemma 5.6. The F'* module Vg is one-dimensional and isomorphic to the char-

acter v?.

Proof. With a similar discussion with in the proof of Lemma 4.10, the space Vg

is one-dimensional. It follows from (5.36) that

for all w € V5. Hence Ty = F* acts on Vg via the character v/2. O

By Theorem 7.1.4 of [16], the G’-module Vs ;-1 has finite length. Consider
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a composition series
O:‘/E)CVlC...CVn:VZJWA, (537)

where V;/V;_; is an irreducible G’-module 7; for i € {1,...,n}. Asin (2.17), we
may write

VifVis 2= T, @ S(F), (5.38)

where ‘Z is the space of an irreducible, admissible representation 7; of the meta-
plectic group éi(2, F), and S(F)) is the space of the Schrodinger-Weil represen-

. -1
tation mgyy,.

Proposition 5.7. As above, let (w, V') be the representation of type VIIIb. Then
all but one of the 7; are supercuspidal, and the remaining one is isomorphic to

the special representation &'.

Proof. From (5.37) we get
0=Wo)r1 = 1C(V)p1 » 1C...C (V)1 « 7 =Va. (5.39)
I N B

By Lemma 2.3 and Lemma 5.6, we have dim Viz = 1. It follows that

(Vi/Vie) 1«
{ 1**]

1

is one-dimensional for exactly one 7, and zero for all the other 7. By Lemma 2.5,

dim((%)[l 9{]) = dim((V;/Vi-1) [1 . *} )-
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Hence the dim((Vi)[l ﬂ) are zero except for one i, where the dimension is one. It
follows that all but one of the 7; are supercuspidal, and the remaining one, say
Tio» has a one-dimensional Jacquet module. One can show that one-dimensional
Jacquet modules occur precisely for special representations ¢ and for even Weil

representations my". More precisely, as an A-module, ™ has Jacquet module

[N

([* 1 ],€) = edy(a)(m, a)v(a)?,

and 7" has Jacquet module

N

([% a-1],8) = edy(a)(m, a)v(a)>.

By Lemma 5.6, Ta = F* acts on Vj via the character 2. Using (2.21), it follows

that 7,, = o' O
Theorem 5.8. There is no non-zero Kl(p?)-invariant vector for type VIIIb.

Proof. Suppose that v is a non-zero Kl(p?)-invariant vector in type VIIIb; we will
obtain a contradiction. Consider the projection P: V' — Vs ,-1. Then P(v)
is invariant under G’(0). By Theorem 7.1.4 of [16], the G’-module Vs 41 has
finite length. In particular, we consider a composition series as in (5.37). Assume
P(v) # 0, then P(v) defines a non-zero vector u in V;/V;_; for some i, which is
G’ (o)-invariant. Hence V;/V;_; is a spherical G’-representation. Then we can
conclude that 7; is a spherical principal series representation or 7; = iy for
some m. But, by Proposition 5.7 we can see that the 7; is not of this kind. Thus,

we get a contradiction, proving that P(v) = 0. Moreover, it follows from [17]
-1

1
1

type VIIIb, which contradicts Proposition 5.5. O

that v is invariant under { 1 } . Thus, v is also a M(p?)-invariant vector in
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5.3 Fourier-Jacobi quotient for the type of IXb

Again, let (p, W) be an irreducible, admissible supercuspidal representation of
GL(2, F'). Assume that there exists a non-trivial quadratic character £ of F'*

such that £p = p. Then there is an exact sequence
1 — 0V, V_%p) — V€ X V_%p — L(l/f,y_%p) — 1.

The representation §(v¢, v~2p) is of type IXa, and L(vg, v2p) is of type IXb.
Let (m, V') be the representation of type IXb. Similarly, by Table A.5 and Table
A6 of [15], we have

1
Vg = Tgi(Q)(l/Qp),

where this representation has the same space W as p, and the action of @) is given
by

ad—bc * x x u
][ s seae e (5.40
The central character is w, = {w,.

Lemma 5.9. The F* module Vg is one-dimensional and isomorphic to the char-

acter V€.
Proof. The proof is analogous to that of Lemma 5.6. m

Proposition 5.10. Let (m,V) be the representation of type IXb. Then all but

one of the T; are supercuspidal, and the remaining one is isomorphic to my ',

where m is such that (m,-) = &.
Proof. The proof is analogous to that of Proposition 5.7. m

Proposition 5.11. Let (7, V) be the representation of type IXb.
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i) If a(€) = 1, then dim VK = 0.
i) If € is unramified, i.e., a(§) = 0, then dim VK < 1.

Proof. The proof of part i) is analogous to that of Theorem 5.8. For part ii), the

result follows easily from Proposition 5.10. [

5.4 Intertwining operator for Kly(p?)

To determine the precise number of dim VKR i Proposition 5.11 ii), we would

like to consider a new subgroup Kly(p?) defined as follows

TT o
o coo

Kly(p?) := l ] : (5.41)

- o999
- o 99

=3
»

Clearly, the space of Kly(p?)-invariant vectors is a subspace of Kl(p?)-invariant
vectors.

Let m be a supercuspidal representation of GL(2, F) with the central character
w, = &. Here, £ is the unique non-trivial unramified quadratic character of F'*,

characterized by {(w) = —1. Consider the family of induced representations
V€ x v E£ 1, én=m,s€C. (5.42)

Let Vi, be the standard model for ¢ x v=%/2x, i.e., Vi, , consists of locally

constant functions f: GSp(4, F') — V, that transform as

/ ([ ; aﬂiug)} h) = |a***|det(g)| /> ¢(a)m(g) f(h), a€ F*,g€ GL(2,F).
(5.43)
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Proposition 5.12. A complete and minimal system of representatives for the

double cosets Q(F)\G(F)/Kly(p?) is given by the following 4 elements.

1
I4, S1, 515251, |: 1 1 :| . (544)
1

If a(m) = 2 and x is unramified, then Q(F)s1Kly(p?) supports a unique Kl (p?)-
wnwvariant vector. Otherwise, none of the double cosets as above supports a non-
zero Kly(p?)-invariant vector. Moreover, we say f(s1) = vy, where vy is the

newform in 7 and invariant under GL(2,0) N [, ¢ ].
Proof. The proof is analogous to that of Proposition 5.5. m

Let V;(;?S(p?) denote the subspace of Kly(p?)-invariant vectors. By Proposition 5.12,
any f € VI’(T:?SW) is determined by f(s1) = vo. It follows that dim(nglfs(”%) = 1.

We shall determine, for s = 1, the dimensions of the spaces of Kly(p?)-invariant

vectors for types [Xa and IXb. Consider the intertwining operator
A<S): ‘/ﬁ,ﬂ,s — ‘/fﬁ,fs

defined by
(A(s)f)(g) = / F (s18951m9) dn, (5.45)

N

where T denotes the representation contragredient to w. Here N is the unipotent
radical of Klingen parabolic (). By a similar discussion in Section 3.3, we only

need to compute

(A(s)f)(s1) =/f (Fﬁ ! }sl) dp dr d). (5.46)
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To compute this (A(s)f)(s1), we separate it into two parts. More precisely,

))(s1

)
P Dy (o)

We write the first (resp. second) integral as Z; (resp. Zj,). We further divide

the second integral I}\p into three parts in terms of the variable . In particular,

Tiny = / / / / / ([’i‘;_ﬁl}sl) dy drk d. (5.48)

“lox F\p~! ) F\p

Again, for convenience, these three integrals are denoted by J7,J2_,,« and

Tp\p-1, Tespectively.

5.4.1 A useful lemma

Before we prove a lemma which is very useful for calculation A(s), we need the

following theorem.

Theorem 5.13 ([21], Theorem 3.2.2). For each infinite-dimensional, irreducible,

admissible representation ™ of PGL(2, F'), the Atkin-Lehner eigenvalue equals

Remark 5.14. In our case, the supercuspidal representation m of GL(2, F) does
not have trivial central character, i.e., w, # 1. In fact, w, is an unramified,
non-trivial quadratic character of F* i.e., wy(w) = —1. Thus, our newform v,
is not just invariant under the group [ 2 4 +p } but also invariant under [;; e }
It is easy to check since w, is unramified. In particular, we just need to check vy

is ["X X ]—invariant.
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1. Take any = € 0*, we have ([ . ])vo = wx(z)vy = vo.
2. Take any a € 0*, we have 7([* {])vy = vo.

Claim 5.15. For our w with a(w,) = 0,w, is a non-trivial quadratic character, we
still have

([ 2 ' Dvo = 5(%,7r)v0.

Proof of Claim 5.15. For ' = am with trivial central character, i.e., the above

theorem works for 7’. That is to say
([ 2 vo = (5, @)vo. (5.49)

In fact, we can take such o unramified character and o = £. Then we put back

7’ = am, then we have

(am)([ o 't =< (3 am)vo = o) @2 We(2 ),
ofdet [ 1)([ 'y =a(w)e(5, e
a(=@r([ 2 v =a(@)e(, M
T([as Do =2(5, 7o

As a consequence, we have

T Dvo=m ([ Do =7 ([ o2 ]) 7 ([2 ']) w0
=em ([ _—2]) vo = ewr(@ )7 ([#* ,]) vo

—et( ) ([=,]) v0 = (1P ([=*,]) o
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=em ([=*1]) vo.

Here, e = ¢(3,m) € {£1}. For more information about e-factors, see [21].

Lemma 5.16. Let (m,V) be the supercuspidal representation of GL(2, F') with
conductor a(m) = 2. Let vy be the newform in 7, characterized by being invariant

under GL(2,0) N [ 2 o] . Then

i) /W([lf{’])vodm:o, m € Z and m > 1.
=

i) /W([;l})vody—(), neZandn <1.
pn

Proof. We prove i), the argument for ii) being very similar. Define

W (8) = / 7([*%)vodz, m>1. (5.50)

pfm

It is easy to see that w;(s) is invariant under [;2 pu;l } In fact, we have

Now consider

vi(s) = a([t o ])wi(s).

b o0X } However, this implies

It easily follows that vi(s) is invariant under [°X g
v1(s) = 0, since the conductor of 7 is 2. It follows that w;(s) = 0. For m >

2, wp,(s) = 0 follows from Theorem 1 of [12, III, §1]. O]
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Now we are going to calculate (A(s)f)(s1) as defined in (5.46) by using the
identities in the proofs of Lemma 3.2, Lemma 3.3 and Lemma 3.4 of [23]. How-
ever, the matrix identity (26) in the proof of Lemma 3.4 of [23] needs a slight

refinement. In particular, we show the refined statement as follows.

r1
/f< 21 1 :|818281w> du drk dA
E4 Lk p —A1
r 1
:/f< :2 ! 1 }81828110) du drk dX
23 L—k —p A1
M—1 -1
= f< . ] [2 - }31323110) dp dr dA
s L -1 K op =X —1
r—1
= f( ﬁ " :|S18281w) dp drk dX
23 L pu —XA-—1

Then the matrix identity (26) in the proof of Lemma 3.4 of [23] is as follows
-1 —pt 1 1
v -1 - —u 1
K p —A -1 —u —uZe4pm N kpTl 1

528182

5.4.2 I

First, we have the following proposition for Z.

Proposition 5.17. With vy as in Proposition 5.12, we have

—1 —2—2s
s ¢ '(1—gq )
Iy =1 e (5.51)

Before we prove this proposition, we need the following claim.
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Claim 5.18. Let n be a positive integer, then we have

0 v(\?) <n—1,

/ W([l H{\Q])UO drx = —q" Ly I/()\Q) —n—1, (5.52)
w—nox

¢"Hg— vy v(X?) =n.

\

Proof of Claim 5.18. Since w™"0* = p~"\p """, then we have

/w_w W([l”%Q])Uod/‘vz/p_nﬂ([“ﬂ)vodﬁ—/ 7([1 o oo dr. (5.53)

p—n+1

By Lemma 5.16 i), for any n € Z~, we have

0 v(A\?) <mn,
/pn T([1 5 ])vodrk = (5.54)

"vg v(\?) >n.

Thus, it follows from the straightforward calculation that

0 v(\?) <n—1,

/ m([1 5 Pvodi = —q" v(A?) =n—1,
w X

¢"Hg—1Dvo v(A?) =n.

Proof of Proposition 5.17. Recall the integral Z; as defined in (5.47), i.e.,

1 1
zg://f([ﬁ% }sl) dudmzq*/f([“l ]51> dr dA
F Kp =1 P2 koo=Al
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IF\a:q—l//f(El_lM} sl> dr d\

F F\o
k1 rIN 1 11 -1 —r!
_q_l/ / f (|: 1 K,7]1->\2 )\:| |:“_ Al 1 :| 518281 |: 1 1 :| Sl) dr dA
K —k~IX1 -1
F F\o
1
= [ [t (s ([0 4 ) s
F F\o o

3 [+ [ [ ([P ) aan

0 F\o ) F\o

(a) Let 4}, be the first part of above integral. Then we have

0
UF\o
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[ [ () ([ ] e

o F\o
_1/ / |k ([L527]) vo d* ke dA
0 F\o
S [ [ e () wds
m=0 n= 1wmoxw o X
:q_l Z Zq—mq—n(S-‘rl / / 1 ,ii\ Vo d/{‘: d*)\
m=0 n=1 omoX m-noX
r
0 2m < n —1,
=g Y g > ()T n(st+l) [ ¢" oo diA 2m =n —1,
wmoX
_IZm ozn 1( 1)"q —mon(s+1) f q q—l)vgd*A 2m > n,
\ oMo X
-3 S e
m=0 n=1
n<2m

n=2m+1
=> (=g D> (=) 0
m=1 n=1
n<2m
. Z(_1)2m+1q—m—(2m+1)s—1<1 . q—l)q—lv0
m=0
X —1-s 1— —1)\2
:_Zq 1(4_ _q )(1_ (ms U0+Zl—ql —52—(28+1) vo
qs
=1
1+ q m=1 m=1
1
+(1—q¢ g ———=—=0
( ) 1 — q- 2s—1
- q—l—s(l _ q—1)2 q—l B q—2s—1
T —s _ g1 _ q—2s—1 Yo
1+g¢q 1—¢q 1—g¢q
1
g
( ) 1— q—25—1
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=gy ( ¢ (1=q™*) ) ;

B 1+q (I—g¢gH1—g>1)"
1

[T

¢ (1—qg (1 —q) (I—q g

+(1—qg g7

- 1 g 21 o + 1 g1 Yo
(=g HA-144¢7) (g
- 1 — g 251 Yo = 1— g 21 Yo

(b) Similarly, let 13, , be the second part of above integral. Then we have

So=i [ [l hm@an s ([P s awan

F\o F\o
[ [ e ()
F\o F\o
-7t 1A 1 !
SR [0 A B P
A 1 ~1 1

=0

In conclusion, we have

¢ 0 =g (=g

s _ —1
Ip =qg + 1— q_25_1 Vo = 1 q—28—1 Vo- (555)

5.4.3 Ij,

Next, we are going to calculate pr\p as defined in (5.46). In particular, we have

1
;‘\p://f<|:ﬁl 1 }31) dp dr dA
K —A1

F2 F\p
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// ([2 :_)\_1:|51) dp dr dA

F2 F\p
_M—l
ST
F2 F\p Tt D ST |
525152 [ ] )dpd/{d)\
_M—1
:/ / f ([ —A— K,u -1 ] |: *Ii,LL -1 ) :|5281$251> d,udlf,d)\
F2 F\p e ey TR T
e 1 1_1
F2 F\p —p | L=p2rtp™ X mpmt 1

Z//Iu‘l\”sﬁ(u‘l)ﬂ([‘“l ‘*:ﬁ“’l])

F2 F\p
! 1
f({ o by }518281> d* i dr dX
D ST i |

:/ / |N|1_s§(ﬂ_1)7r ([_“71 _ﬁff’\D f [i ! 1)\ 1} 318251) d"pdr dX

F2 F\p

///w e (| Wx])f({illu]mzsl) 0

o F\p

L fprenn
(

+/ / /Iull‘sf(u‘l)w([—ul —Hg:%])f

F F\p~! F\p

1
{/\1 1 ]515251> d* pdr dX
K =Xl

1
{/\1 1 ]318281> d* i drk dX
Al

First part J;’

///W ) ([_ 7 wﬁI”Df(Pll“}slszsl> d* udrs d\

o F\p
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[} s ()

F\ o F\p

f({“ . ]slsgs) d* pdk d)

\//\/ Ml qu [ e
J/#MM (s =
([ 1H H [ e s

[ [ [ st ] ) e 0

F\o o F\p

m([* o ]) ([ ) vod pdrdi A

=[] [

F\o o F\p

n ([*N* *KEZ”D 7 ([* 0 ]) 7 ([ b)) vo d s d A

=[] [ o

F\o o F\p

w7 ) (D A (P D e v d pdrdA

[ [ oo

F\o F\p o

(DA DT D7 D7 (o)) wdsd s
—ZZ/ /wr W () (%)

i=1 j=0_

w([x1})w([11])/w([wg21])vod,@dmm
-3 / 7 =t ) (=)

*1]0
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(ERIO | LI IR R (PRT N | R e

0

-~

0 if2i—2j<1ld.e,i—j<0

vo 2 —2j>2d.e,i—j>1

_ZZ( 1) g J(1=s)+i(—1—s)
=1 7=0
//W([mﬂ I 1)\w*j+i,u)ﬁ1]>ﬂ-([l 2w Jlli)\ 1])71’([ ])Uod*ﬂd*)\
oo i—1

_ Z Z(_l)iﬂ(l _ qfl)qj(lfs)Jri(flfs)
T <[wjiilfl Wi_jﬂ]) m([11]) /7 ([Qw}*ju 1}) vo dp.

oX

Second part J°_, .

O I T (R )

Lox F\p

f([““f“} {1 L ]) e
/ / [ ety ([ ) el (1))

Lox F\p

fq ‘ll“ﬂl_m] [11111}) & d’ ke d\
/ / / =gy ([ e ) el ([19°])

F w—1oX F\p
1 1
f([/\l 1 } { Y }) d*pd* K d\
-1 —k~1 1

[ 7} vt =)

p F\p ) ox F\p
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T([' WDﬂ[“d)f({il 1“} )d*ud*mdA

e ][ o[ )

F\p o> F\p

([ [ ) e
—a [ estetye ([t e ) ()

F\p o F\p

O D (e D
—a [ [ ([ =)

F\p o> F\p
([ D= D e (e ) v d pd rdy

e f ] s ()
F\p o> F\p
r ([ =R ] [ T ey d d e

S [ [ e ()

1=0 j= 00>< 0X oX
e s
wi i)t
WY [ o (L))

2030><><

W([l T ] [ ) v d pd's

(=g zz// SR ([ L))

=0 7=0

0X oXx

m([roeaE e [ ]) v d nd s
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i=0 j=0
//7? ([w] i w“j}) - ([1 w1 k(1—w( J)u)2:| [K 1 D vo d* o d*
— (=g iiqj(l—s)—i-z(—l—s)( 1)i+i
i=0 j=0
[ [ ([ L)

1. If i > j, we can take a substitution x > £(1 — )2, then we have

oo t1—1
S gy [ (e
=1 7=0 0X X
T ([l w—lln—l [Rw(l_;(i—_j)u)Q 1:|) Vo d*lu d*/ﬁ
oo i1—1
_ 1 N q Z qu(lfs)ﬁ’i(*lfs)(_l)YH’j
i=1 j=0
// wJ i i ([1 —w’llnfl] [’%U 1]) Vo d*,ud*/{
oo i—1
— 1_q 2ZZqJ1 8)+i( 15) 1)’L+j
i=1 7=0
/ (7 o T = Lk ) v d's,

oX

2. If ¢ < j, then we let I; ; be the integral

[ [ LA Dadnds
0X %
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Then we have

LJ=//%QLWM””Ww“wlﬂﬂLAwawufn
// 1 —w2(i= ]) 'k 2][H—lw(w(jli)uf1_1)21i|)vd*ﬂd*’f
et menes

For fixed u, consider the inner integral

Liw= [ w0 == A s

oX

= Y [ e Doy

zeo* /(1+p) 171

= Y[R e

2€0X /(14p) 1%4p

For fixed x € 0, consider

Ii7j’“’m _ / 71'([1 7w2(i_j1)_1$y,u2} [z—llw 1])@ d*y

1+p
= [ e LA Dedy

1+p
= [ LA Dody

p
= ([t ]) [ | A Dody

p

([ =] / n([ = [ v dy

0
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== [ LA s

0

Lemma 5.19. Let k > 1 be an integer and x € 0*. Then

/ﬂ([l w_fky] [:E_llw 1])vdy =0.

Proof. The vector

is invariant under [*¢], ['"", 4p] and [p12 1 ] We claim that

wi= [ A Dedy

[

1+p

is invariant under [1 9~ and [ »ti1 | |. The first two assertions
1 ) 1+p p 1

2k+1

are obvious. To see the third one, let = € p . We calculate

w2 Dee = [ w201 =] [ A Dody

:/7<[(1+IWU%)1 1—5;:?21@} [(1+xyw1*2k)711 1] [m*llw IDU dy

0

T w*?k —1 w*Qk
_ / w0 = 104 Dudy

0

:/71'([1 w72ky(1+fyw*2k)fl] [(1+:cyw72k)71 1+xyw—2k} [xfllw 1])1} dy

0

_ / A([1= o= [ 3 Ty,

0

Let z = y/(1 + xyw2¥). Then y = 2/(1 — xzww~2*). Hence the map y — 2

is a bijection of o onto itself, and in fact is a legitimate change of variables.
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Hence

rbde = [ (=] LA =0

[

This proves our claim about the invariance properties of vs.

k

w,k})vg. It is invariant under [Hp ¢ } The

3 . W
Now consider vs := 7r([ P 14p

group generated by these three types of matrices contains the principal
congruence subgroup I'(p) (use the Iwahori decomposition for I'(p)). Hence

vs lies in the space V; of I'(p)-invariant vectors.

Now recall that 7 is a depth zero supercuspidal of GL(2, F'). This implies
that
7 = c-Ind5 ;> (p)

)

where p is an irreducible, cuspidal representation of GL(2,F,), inflated to
a representation of K = GL(2,0), and then further extended to a represen-
tation of ZK by making the center Z act trivially. In such a situation it is
known that Vj is the same with the space of p. It follows that vs, considered
as a vector in the representation p of the finite group GL(2,F,), is invariant
under [!7]. But this implies v3 = 0, since p is cuspidal; see page 410 of [5].

Since vz = 0, then also vy = 0. O]

It follows from this lemma that I; = 0. Hence also /; ;,, = 0and I, ; = 0.

7j7l’l'7x

3. If i = 7, then we have

Tt == =g ) [ [w (O L e
1=0

0X 0%
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Third part jl;i\p,l

jF\p
1

/ / / ’:u|1 H “+2)\}> f ([A 1 1 :| 818281) d*,udnd)\
K —=X1

F F\p~=! F\p

-/ / /mnml SR

FF\p F\p

(o1} Jrawm )

P F\p ) F\p~1 F\p

W&(Mw(wm([ﬂ ) dwdw

=0+/ / /|M|1_S§(H_1)W<[_“l ‘*"it?“])

F\p F\p=t F\p
1
K| 7°E(k™ ) ([“ﬁ)f({“ 1MD d*pd* s dX

N )

F\p F\p~1 F\p

|| 2€ (s ([

N G (Rt

F\p F\p~! F\p

=
[
P
>
|
—
|
[
—~
>
L
S~—
3
—~
>
>
P
<
o
S
=
S
&
S
>
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6|26 D) m ([ ]) N6 ([M o ]) vod pd v di A
[ [ e @ D )

F\p F\p~! F\p
|/§|_s£(/<a_1)7r ([1 51\2}) ’)\|_1_S€()\_1)7T ([)\ )\71}) Vo d*,ud*,%d*)\
= [ [t e
F\p F\p~! F\p
-1 } [1 2,\;m] [1 K(p? +>\2)] [A A—lD Uod*ﬂd*ﬁd*)\
///WS e o)
F\p F\p~! F\p
([ [ ) [ )
=£/'h/‘u/|nw-ﬂmrﬂxr4—%xunx>
F\p F\p~! F\p

([ _IA ] E K(pA—? 2 L) Dfu d* ud xd A

zzzz/(//mwwwuwm

= w igX o—koX g—IoX

([VU /\1][1&(1 ’? })Uod*ud*/ﬁld*)\

:ii // H—k—i—j —1—8)+k(—s)+j(1—s)

= =2 j=

)
/N

|:wj—l,u—1)\ wi_j/‘)‘_l] |:1 o Fr(1— wl( =D pr—1 i|> v d*,Uzd*lid*)\
- Z Z Z /(1 ) (1) 1) R =)+ (1)

o olNe e o}

(=g ZZ / / )b i1 ()i (1)
0 k=2 3 oX ox

w([wﬂ*z i ] [“” Fr—m D)2 ])v d*ud s
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1. Ifi > j,ie., 1 — w9y € 0%, then we can make the substitution

k= k(1 — )72,

That is,
1 oo oo i—1
T =Y / / [ )i i) k()5 (1)
_ p
(1 q 1=1 k=2 j=0 0X X

m([=7 s e ) v dnd's

/ )H—k—l—]q i(—1—s)+k(—s)+j(1—s)
0 X

—_

M8

-3

=1

T

27

7 ([=7 o) [r (=) wdkds

oX

I\
o

Now look at the inner integration. Since k > 2 we have

/([ o kn]) pdtk = // =] ) o d'h = 0— 0= 0.

oX

2. Similarly, if ¢ < j, then
1 -y =~ (1 — =9y, (5.56)
where (1 — w9 pu~1) € 0*. Again, we make the substitution

)

ko= kp (1 — U~ 2
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and get

j;,\i:jl 1_q ZZ Z // z+k+] z( 1—8)+k(—s)+5(1—s)

=0 k=2 j=i+1

0% 0%

R([= ] [ d s

1_q ZZ Z / z+k:+] Z( 1—s)+k(—s)+j(1—s)

=0 k=2 j= H—l

P ) [ (s

oX

Similar to above, the inner integration gives zero.

3. That is, only the ¢ = j case remains. Our integration becomes

Tih = 0L Y [ [0 ([ vy

=0 k=2

UXUX
1““2/ D [ (= )
25 1 0d Ra [t
UX

(a) If 1 — pu € 0, with the same reason as in the previous cases, we have

/W ([1= =0 ]) vy d'i = 0, Vk > 2, (5.57)

UX

(b) If 1 — p € p, ie., p € 1+ p, then we have

jF\_j - - q—QS Z / k _ks/ ([1 w*’m(l_u)q) vod Kk d

F=21%
OO
_1-q"

1—q—25 k _ks// 1w 1u Dvod*/{d*,u.

14+p ox
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i. If v(w*(1—p)?) < =2, ie., k>2+2v(1—p), the inner integral

1S

= was = [ (=) v

0x 0%
:/W([lw_k(ll—ﬂ)%])vodli—/W([lw_k(ll_“)%])vod/i
0 p
=0-0=0.

ii. If v(w*(1—p)?) =—1,1ie., k=1+2v(1—p), the inner integral

1S

[t wdn = [ ([ 0wy

0x 0%
= [ D wde ([ v
0 p
=0— ¢ 'vg = —q 'vp.

iii. If v(w*(1 — p)?) >0, ie., 2 <k < 2v(l — p), the inner integral
is
/7r ([*= =) vy d's = (1 — Vo,
UX

Let v(1 — u) =m > 1. It follows from the above discussions that

-1

. 1 — —k 2 * *
Tt =i e [ [ (v

-2
q ’ k=2
- 1+p ox
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1_q_25 ZZ Yeghe / / [1=" k(l W) e d*rd

m=1 k=2 v(1—p)=m o
1—q2szz k g / / lw"“(l 1)? ])v d*kd*
m=1 k=2

v(1—p)=m oX

1— - ~(+2m
B 1 — qq—Zs Z q_(l-‘r?m)s / /ﬂ- ([1 o (142 1)(1_#)2,‘-;i|> Vo d*lid*ﬂ

m=1 v(1—p)=m 0%
l—q~ ' o k 71@5 -1 *
S Y =aud s
m=1 k=2

v(1—p)=m

1- q_l - — m)s - *
g > a / (Ca e
m=1

v(l—p)=m

:% Z (—1)kgFs / vo d*

v(l—p)=m
q_1<1 — q_l) - —(142m)s *
+‘—f:gtz—'§:q vod'p
m=1 v(1—p)=m
1_ qil 723 1 + —(2m—1)s
1—q2 — L+q—

q (1—61 1—(11 - m—(1+2m8
+ 1_q23 Zq Yo
m=1

o0

_ (1 _ q71>3q725
L= 2)(1+q7) &

(qu + qsqf(Qerl)m) Vo

1
1

(1—q1)2%q - (2s+1)my,
+ 1 — q725 Z q
m=
(1—q "> ( q S N )
= + U
g0 +g)\T-¢" TT-¢g>7)"

(1 . q—l)Qq—s—l q—25—1
1 — q,QS 1 — q72sfl
B (1 _ q71)3q72s qfl(]_ _ q72371 + qfs _ qfsfl)
(A=) (1 +g7) ( 1 =g (L —g™>7) ) "
(1—q V)2 ¢ 2!
1— q_Qs 1— q—25—1

_l_

Vo

+ Yo
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(=2 (1= Y (1— g 1)2q 32 .

= ( (1 — q*25)<1 _ q72371) + (1 — q72s)(1 _ qgsl)) 0

_ (1—g )™
(1—q=)(1+q*)(1—qg21)

Vo.

From above discussion, we can summary the results as in following proposition.

Proposition 5.20. With 17,73

p as defined in (5.47), then we have

—1(1 _ ,—2-2s
7= (1—g7*)
1— q—2s—1

Vo,
2. Ting = T3 + To10x + Tprp-1, where T3, T2 1« and Jpy -1 as in (5.48).

(a)

0><
(b) jé—lox = j;’i?gx + jsiTgX
1.
oo 1—1
T = (- Y Y e
=1 j=0
/”([w“ w7 L) o d's
UX
s,i=] 1_ —w KT * *
jw”lgxz_ 1—q—q25 // [ O L ) v d nd s
UX UX
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(1— q—1)2q—25—1
(I=g=) 1 +qg)(1—qg 21

(C) L71:?‘\13*1 =

Vo-

5.5 Whittaker model of intertwining operator
evaluated at 1,

From Proposition 5.20, we can see that the result for I;\p is not so nice and
cannot be simplified completely. Next we shall consider the Whittaker model of

the newform vy. In particular, we define

7' := am, « unramified character and o? = £. (5.58)

Then it follows that 7" has trivial central character. Furthermore, it follows from

Theorem 2.3.2 i) of [21] that a(§) = 1. Thus by Theorem 3.2.2 of [21], we have

T ([ t]) vo = 8(%%)% (5.59)

which follows from straightforward computations with 7’ = axr. Here, 5(%, ) is
the e-factor attached to w. The additive character v has the conductor o, i.e.,
Y [o=1but ¢ |,-1# 1. By Corollary 3.5 of [6], we may assume that vy(15) = 1.

Moreover, we will have the following fact:

Fact 5.21. There is a isomorphism

W(m,1p) — W(am,1))

W(g) — (g a(det(g)))W(g)
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This is, in fact, a statement at the end of [10, page 36]. That is to say,

va(g) = a(det(g)) - v(g) (5.60)

Thus, by above discussion, we are going to evaluate I}S,\p at 1. And we recall

that

]sr\p - ._705 + j;—lox + j;\pfl, (561)

see (5.48) for the precise details. Let 7, j be two non-negative integers. With 7, vy

as in Proposition 5.12 and s € C, we set

K= [ [ L s (56

0% oXx

By Proposition 5.20, we can easily have

oo 1—1
\705 _ Z Z(l . q—l)(_1)i+jqj(1—s)+z’(—1—s) (563)
i=1 j=0
/7T ([wjii wi—j} [1 1] |:2wi1_j,u 1}) Vo d*/% (5-64)
UX
j,;flox =—q* Z Z(l - q—l)(_1)i+jqj(1—s)+i(—1—s)7r ([wj—i w@;j}) ’Ci7j7
i=0 j=0
(5.65)
1 — g-1)2g-25-1
Tip-—1 = U-a ) Vo. (5.66)

(I=g) (A +g>)(1—g )
Recall that for the integral /C; ; as defined in (5.62), we have already showed that
lCi’j =0if: <j.

Now we evaluate each of 7, 72, « and J, Fs'\p*1 at 1o, respectively.
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5.5.1  J5(1s)

Proposition 5.22.

I [ A —q~"  if qis odd,

L if q is even.

Proof. i) Let

(J5(1,7)) (12) := /W ([= i T Lawian 1)) vo(12) d'p

oX

Then we have

(T3, 7)) (1z) :/UO ([wj_i wz’—j] (1] [zw}ﬂp 1}) d"p

oX

= [ (@ [ )

oX

‘/ V@ TP d v ([77 L] )

For the coefficient part of above, we have the following claim.

Claim 5.23.
e
0 if gis odd and ¢ — 5 > 2.
—q ! if ¢is odd and 7 — j = 1.
/w(Qw(ij)M) d'pn=140 if ¢ is even and i — j > 2+ v(2).
" —q ' ifgisevenand i —j =1+ v(2).
1—q ' ifgisevenandi—j <wv(2).
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Proof of Claim 5.23. First, we have

Juamesmon-{ [ [feue e

Since ¢ has the conductor o, then (5.69) easily follows from straightforward

calculations. O

In fact, we can investigate vy ([ _i—; ] [11]), and because of the fact that

. . . . X
vp is a newform, we have v, is invariant under [‘; e } If b € p?, then we have

w (#1001 = (5 o] L))
=g ([1 bw2§j_i)] [wjii wifj] [ lD

:w(bwﬂj*i))vo ([wjii wifj] [1 1])

This means that
1. If 1 — j > 2, we have vy ([wj*i wi*i] [ 1]) =0;
2. Ifi—j5=1,i.e.,j =1 — 1, the coefficient part will be

(a) If ¢ is odd, the coefficient C, will be —g™*;

(b) If q is even, the coefficient C, will be 1 — ¢~*

Consequently, only the case of j =4 — 1 survives, so that

e}

Ti(la) == (1—qg e () Cuo ([ ][ 1)

i=1

—(1-q! Z ) ([=7 1) m([1 1)) wo (12)
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o0

(=g e S e ([ L)) 7 ([ 1]) v (1)

: 2
=1
— s— - —25\1 1
== (=g ")y (¢ Coe(5, mwn(w)vo (12)
i=1
(L—g Mg, 1
= 1 — q_QS Cq€(§7ﬂ-)
5.5.2 j;,lox(lg)
Proposition 5.24.
—s(1—g N |g?—eqt if qis odd,
Tirpel1a) = c(1/2,m) 00
—q _9 . .
q if q is even,

where € = —(w, —1)e(1/2,7) € {£1}. Here, (w,-) is the Hilbert symbol.

Proof. ii) Since we already know that

Kij=0ifi < j, ie, js’fgx(b) =0

w

It follows that we only need to calculate j;f?g «(12).

Assume that ¢ > j, it follows from Proposition 5.20 that

oo t—1
j;i?gx _ —q_s(l o q—1>2 Z qu(l—s)+i(—1—s)(_1)i+j
i=1 j=0
/”([“’“ a7 e ]) o d's
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Let y € p. Evaluating the integral at 15, we have

/w —2(i=j)—1,.— y)so( 72(i7j)71/€71)1]0 ([wjii wi—j] [n}z 1]) d*k.

We can find some y € p such that ¢(—w=20=)~15~1y) equals a non-trivial con-
stant since ¢ has the conductor 0. This implies that the above integral is zero.
Hence J° ’Tgx (1) =0.

Now assume that i = 7, it easily follows from the above discussion that
T10x(12) = T250. (1), (5.71)

Moreover, it follows from (5.65) and (5.62) that

i 1 — o1t 2
T25 =~ 29 ) // [1- = L Dvodpds.  (5.72)

]_ _ q—28

0x oX
Then after evaluating at 1, we have

. (1 — o
J;’i?gx(lz)z— q //vo [t e O L)) dpd k. (5.73)

1 — q—QS

0X oX%

Let

I:://vo([l‘wl"“ll( L)) dudss. (5.74)

0X oX%
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Then we have the following claim for I.

Claim 5.25.
g% —eq ! if ¢is odd,
I=—¢(1/2,7) (5.75)
q? if ¢ is even,
where € = —(w, —1)e(1/2,7) € {£1}. Here, (w,-) is the Hilbert symbol.
Thus the assertion easily follows from the above claim. O

In order to proof Claim 5.25, we need some lemmas on Whittaker functions
for GL(2). More precisely, we let (7,V) be an irreducible, admissible, infinite-
dimensional representation of GL(2, F'). Recall the standard local zeta integrals

for GL(2), given by

HMW:/WWJMFWW% (5.76)

and more generally, for a character 5 of F'*,
2. W.8) = [ W D@t 2 e (577
FX

Here, W is any element of the 1)-Whittaker model of 7. The integrals (5.76) are
known to converge for Re(s) large enough, have meromorphic continuation to the
entire s—plane, and satisfy the functional equation

e(s, 7, ) L(1 — s,w-17)
L(s, )

Z(1—s,7([ ' DW,wr’) = Z(s,W). (5.78)
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More generally, for any character § of F'*, we have

e(s, BT, ) L(1 — 5, B 'wr ')
L(s, 57)

21— s,7([ YW B 7wy ) = Z(s,W, ). (5.79)

(See Theorem 4.7.5 of [5].) Assume that 7 satisfies L(s,7) = 1. Let n = a(7).
Let vg be the newform in the Whittaker model, normalized so that vy(1) = 1.

Then it is easy to see that

. 1 if m=0,
w4 ]) = (5.80)
0 ifm#0.

1/2,7, if m=—n,
o= L, = ) (5.81)
0 if m # —n.

We note that e(1/2,7,v) = e(1/2, 7, ¢)w,(w) "

Lemma 5.26. Assume that L(s,7) = 1 and that w, is unramified. And we also
assume that L(1—s,w=17) = 1. Let m be any integer, and k be a positive integer.

Then

(

1—q¢ 't ifk>nand m =0,

/UO([xwm 1][;’9 1})dxx: \ —¢ " ifk=n—1and m=0, (5.82)

oX

0 otherwise.

\

Proof. We apply (5.78) to W = 7([ 1 | |)vo. The left hand side equals

ﬂ“ﬁ“MWWWﬂ=/mwnuwumWﬁ@WWww

FX
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=/vo<[m[1?’“M_s]>w;1<x>|x|%-sm

FX
- / b(—amyoo([* 1)1 D @)zl d*a
J

@80 / b(—wwh)e(1/2,7, )wr (@) 2] d¥a

= (@ (1/27,0) (et

= Ie(1)2,7,0) / $(—awh ) d*a

(

(1— g Ng"2)e(1/2,7,¢) ifk—n >0,
— _q—lqn(%_5)€(1/2777¢) lfl{j—n: —17

0 ifk—n<-=-2

The right hand side equals

e(s,1,0)Z (s, W)

—=/2.70)g " [l 4 Dleldav

/20D [ ([ Dl

meZ oMo

—c/2.70) e ()[4 )
meZ %

The assertion follows by comparing powers of ¢—* on both sides. O

We will need the following formula for e-factors for GL(1). For a ramified

character x of F'*, a character ¢ of F’ with conductor o, and an element r € F'*,
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we have

if v(r —a(y),
/ @ (@) de = | 17 =00 (53

K4 g O2x(r)e(1/2,x,¢)  ifo(r) = —a(x).
Lemma 5.27. Assume that 7 is supercuspidal with conductor n = a(1). Let m

be any integer, and k be a positive integer. Let B be a quadratic character of F*.

If Bw, is ramified, then

/ w((=" ][ % ,])B(@) dz (5.84)

0 if m#n — a(B7)
or k # n— a(ﬁw‘l‘)7
g q~UBwn)23( —yalBr)=a(Bur) )y (—ggn—alBur)) if m =n — a(B7)

and k =n — a(pw,),

where
2,7, 9)e(1/2, oy, ¥)
e(1/2, BT, ¢) '

Proof. We apply (5.79) to W = 7([ % ] )vo. The left hand side equals

(5.85)

2 =s,7([1 W, B ) = /Uo([m R | 1})5(I)w;1(x)|w|%_s d*x
- /UO([OC 1] [1 ﬂfk][—l 1])ﬁ(x)w;1(x)|x’%*s d*x
- /w(_xwk)%([x o DB (@)a] 2 d*a

G2y / B(—awh)e(1/2,7, )8 (0))a]b e

w—nUX
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= "6 B (@ )e(1/2,7,1)) / V(=2 "B, (z) d

(5.83) 0 if k #n—a(fw,),
05 (w0 B)(— M) (12 7 0)e(1/2, Bur ) ik =1 — a(fwr).

The right hand side equals

e(s, pr, ) Z(s, W, B)
= c(1/2,5m ) O (2] L sl d

F><
—c(1/2.pr0) DS ([ Da@el d

meZ

o X

= (1/2,87,9) Y q 2 g /vo([mm o1 DB(2) d .
meZ 0%

The assertion follows by comparing powers of ¢—* on both sides. O

The following lemma in odd residual characteristic is very helpful for calcu-

lating our integral I as defined in (5.74).

Lemma 5.28. Assume that F has odd residual characteristic. There exists a

§ € C with |0| =1 such that

Z Y(zb?w ™) = §(w, 2)q"? (5.86)

beo/p

for all x € 0. Here, (w,-) is the Hilbert symbol. The constant is given by

d = (w,w)e(1/2, (w, ), ). (5.87)
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Proof. We compute the square of the absolute value:

S vt )| = Y bl - )

beo/p a,bco/p

= ) da(a—b)(a+bw)

a,bco/p

= Z Y(wedw ™)

c,d€o/p

= > > dlaedm )+ > 9(0)

ce(o/p)* deo/p deoa/p

= D > dadw )+

c€(o/p)* deo/p

Hence, f(z) = > e, ¢(2b*w™!) has absolute value q/?. Let u € 0% be a

non-square. Then, for x € 0%,

0="> t¢(zdw™)
deo/p

=1+ Z xdw Z ¢($wa_1)
de(o/p)*2 dG(O/P)X2

—1r (Y v+ Y veuds)

de(o/p)* de(o/p)*
1. %((f(x) — 1) + (f(ux) — 1))
= S0 @) + f(ua)

Hence f(u) = —f(1). Since also f(zy?) = f(x) for all z,y € o*, this proves
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(5.86). To prove (5.87), consider (5.83) for x = (w,-) and r = w

/(w, 2)Y(w ) dr = q_l/Q(w, w)e(1/2, (w, ), ) (5.88)

oX

We calculate the left hand side:

J@ouE =g 3 @)

e be(o/p)
1 1
1 2 —172 2 —1,,1,2
—q(§§jwwWWb»@52<wwwmuw)
be(o/p)* be(o/p)*
1
_—1 —172 2
=q (5 Z (™ b%) Z V(™ tub?) )
be(o/p)* bE(v/p
_ 1 —1 —172 -1, 12
«ﬁq(zwwm—waw>
beo/p beo/p

= S0 () = f(w) = a7 ()

=q (@, 1)¢"? = 6¢7"?

Substituting into (5.88), we obtain (5.87). O

Finally, we come back to calculate J° ilg «(12). Assume that 7 is supercuspidal

and a(m) = 2. Assume also that the central character of 7 is £, the non-trivial,

quadratic, unramified character of F'*. Let us now calculate the integral

Fim [ [l =70 ) dd

0X oX%

First I = I, — Iy, where



and

bim [ [l =0 L D dud

oX p

A translation in k gives

b= [ [l = Nk Dauds =g [ = |k D

0X P 0%

—qlfvo([ : w_f”_l])d“_q1/00([”11“%wl_l})d’f

oX

The last step follows from Lemma 5.26. Next,

I - / / Lot P ) dpde
/ / (= )Lk 1) duds
_ / / W= w5 )], ) duds

> (o )l L 1)) dr.

0% peo/p

Assume first that the residual characteristic of F'is odd. Then, with ¢ being the
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constant from Lemma 5.28, we get

I =" /(W» —w)vo([ & 1)) di = 6~ (w, 1) /(m R)0o([ o 11) dis.

0X 0x

Now we apply Lemma 5.27 with 5 = (w, ), and get
L =67 Y (w, —1)e ¢ V¥ (w, —w)ws(—w) = —de(w, —1)g~ .

Note that a(fw,) = a(f) =1 and a(f7) = 2.
Now assume that the residual characteristic of F' is even. In this case the map

p— pu? from o/p to itself is a bijection. Hence

h=g [ 3 wlem il o)) ds

oX ueo/p

— [ 3 vl () de =0,

0% u€o/p

To summarize, we have

gt —e(1/2,m)q™% if ¢ is odd,
I —

—e(1/2,7)g if ¢ is even,
where €’ is a constant of absolute value 1. It follows that

qfs(]_ _ qfl) q_2 — E”q_l if ¢ is odd,

Tiosgx (12) = T50 (12) = e(1/2,m)=—— pr

w

q? if ¢ is even,

where ¢” = ¢'/£(1/2,7) is another constant of absolute value 1.
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Let us be more precise about the constants (even though this may not be

necessary). We have

g = —de(w, —1)
CE) (@, @)e(1/2, (@, ), ¥)e(w, -1)
= —8(1/27 (w7 ')7 ¢)5

65 (172, (w, .>7w)8(1/277?, ¥)e(1/2, Bwr, )

“e(1/2,6m9)
= —e(1/2, () ) LA Qfl);"g(gfﬁ)/w””
= (1/2. () ) SR
_ £(1/2,7,1)
= @D )
= (w —1)M
T2 )
Hence
"o__ 1 1
== )

The formula (s, m,1¥)e(1 — s,7¥,1%) = wy(—1), applied to 7 = 7, gives

e(1/2,Bm)* = 1.

Hence

e’ = (w,—1)e(1/2, B, ) € {£1}.

Furthermore, one can show that €(1/2, fm, 1) = —e(1/2,m,4). This implies that

e’ = —(w,—1)e(1/2,7,¢) € {£1}. (5.89)
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This €” is exactly € as defined in Proposition 5.24.

5.6 Main Theorem for group IX

Before we formulate the main theorem for group IX, we would like to summarize

the calculations we have so far.

Proposition 5.29. With I{f,If;\p as in Proposition 5.20, recall that
;\p = \708 + j;—10x + j}?\p—la

where J3, T2 _1,« and jl:i\p,l are as in Proposition 5.20. Let € € {+1} as defined
in Proposition 5.24. Let vo(1) = 1. Then we have

72723)

—1
1 T = T

1 )q—s—l(l —q Y —q ! if q is odd,

1— q72s .

1—gq if q is even.

s 1 q—s_l(l N A if q is odd,
3. jw—lox (]-2) = 6(57 7T) 1— q725

gt if q is even.

(1 _ q—1)2q—23—1
(1—g )1 —qg2>71)
Theorem 5.30. Let (7, V) be the representation of type IXb and a(§) = 0, then
dim VK6 = 1.

4- j}?‘\p—l(]-Q) -

Proof. By Proposition 5.11 ii), it suffices to show dim VK2(*) = 1. Then by

[15, section 2.2], it is reduced to showing that lirr%(A(s)f)(sl) is non-zero. In
S—
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particular, it is enough to show

lim (A(s) f)(s1)(12) # 0. (5.90)

This easily follows from Proposition 5.29. More precisely, we have

i)

Ly (12) + Tpyp-1(12)

_q_l(l . q—2—2s) (1— q—1)2q—23—1
1— q—23—1 (]_ _ q—25)(1 _ q—25—1)

g g )+ (A g )
N (1 =g )1 —qg>1)

qil(l . q*2*25 . qus + q7274s) +(1- qul + q72)q72371

(1—g )1 —g>)
q—1 + q—3—4s _ 2q—2s—2
B e [ )
_q_l(l Y q—2—4s>
o (1 —q25)(1 — g=2s-1)
q—l(l _ q—23—1)2
(1—g¢>)A—g>1)
(=g
1— q—25

ii)

1 —s=1(1 _ g1 —e if q is Odd,
To(a) + T 10 (1) = (3, m L=

27 1—q 2%

1 if ¢ is even.

Thus, we have the following two cases.
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1. If ¢ is odd, and let &€ = ee(3,m) € {£1}. Then

lim(A(s) f)(s1)(12)

—1 1— —2s5—1 1 —s—1 1 — —1
TN Ot )_65(_,@61 (1-¢7)
s—1 1 — q—2s 92 1 — q—28

-1
— lim ( - q—25—1 - Sq_s(l - q—l))

g =~ (1-—g > ' —2g(1—¢™)

g 1—-qgHA+qg? ife=1,

S T O
>0

2. If ¢ is even. Then

lim(A(s) f)(s1)(12)

¢ -g ™) 1y -a)

= lim 1 —q2 * €<§’ 1—q
q! 25—1 1 1
i (1 G- o))
g (1—g¢H(1+q¢hH? if 5(%, ) =

In particular, we have

lim(A(s)f)(s1)(12) > 0.

s—1
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Chapter 6

Non Iwahori-spherical:
Siegel-induced representations

and supercuspidals

In this chapter, we obtain the desired dimensional data for the Siegel-induced rep-

resentations and supercuspidal representations which are non Iwahori-spherical.

6.1 Group X

Recall that
t b lzy =z
1 _ | a _ 1
U11‘|, M{Cdf‘]’ Y{ 1_1/4’ (61

where A = ad — be,u,v,w € p*,x,y,z € 0,t € 0*,[25] € GL(2,0). Consider
the full Siegel-induced representation m X o, where 7 is a supercuspidal repre-

sentation of GL(2, F') and o is a character of F*. The standard space V' of this
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representation consists of smooth functions f: P — V, with the transformation

property

f([A A}’} h) = |det(A)N 2o (M m(A)f(h), A€ GL@2,F),Ae F*. (6.2)

3 ~

Let 7(A) := |det(A)A ™ 20(M\)7(A), and we take

g= "] epErnecspr)y A=A (63)
Suppose f € VEKI®) then f is determined on the set of representatives for the
double cosets P(F)\G(F)/KI(p?) as in Proposition 3.6 ii). That is to say, f is
determined by f(S1), f(S2), f(S3), f(S4). Consider P(F)S;Kl(p?),j = {1,...,4}

and assume f(S;) # 0. Then, for g € P(F), h € Kl(p?), we need

f(gS;h) = 7(9)f(S;), J={1,...,4}. (6.4)

By a similar discussion as in Section 4.2, to check the well-definedness of (6.4),

we need the following for the representation 7 as defined in (6.2).

7 must be trivial on P(F) N S;Kl(p?)S;7", 4 € {1,2,3,4}. (6.5)

7 0

It follows from Lemma 4.2 that the full Siegel-induced representation m x ¢ has
depth zero. Again, it implies that 7 and o both are depth zero. Then by the

discussion in Section 4.1.2, we have the conductor condition

a(m) =2, a(o) <1. (6.6)
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Furthermore, by the condition of the trivial central character, we have
0w, =1 and a(w;) < 1. (6.7)

The second assertion a(w,) < 1 can be also seen from Proposition 5.2. Similarly,
for each of double coset P(F)S;Kl(p?),j = {1,...,4}, let 0; := f(S;). Again, to
support a non-zero Kl(p?) vector, i.e., 0; # 0, we at least have a(r) = 2, a(0) < 1.

Again, all the elements of Kl(p?) can be written as AMY with A, M,Y as in

(5.1). That is to say, any element h of Kl(p?) has the form of

1 tab lxy =z
I T
WY —u 2 1

where A = ad — be,u,v,w € p*,x,y,z € 0,t € 0*,[24] € GL(2, 0).

i) For S; = 1, to ensure that S;KI(p?)S; ' € P(F), we need

And the matrix will be

t tx * *
tu at+tuxr * *
d —dzx .
_du d(aﬁ;tuz)

It follows from (6.5) that

tx

L B =01 (69)

a

o (ad)([y e )01 = oad)eor()

ol el
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ii)

By the trivial central character w,0? = 1, we have

)W([% Jm})@l = 1. (6.10)

And we observe that
t tx
o @ 0X o
e €[50t

It follows from a(w) = 2 that

d
)=1, VYa,deo*. (6.11)

O'(a

Thus, in order to support a non-zero Kl(p?)-invariant vector, the character
o has to be unramified. In conclusion, the double coset P(F')S;Kl(p?) does

support a non-zero Kl(p?)-invariant vector ; with the conductor condition
a(r) =2, a(o)=0. (6.12)

In addition, this non-zero Kl(p?) vector 9; is invariant under T'o(p?).

For Sy = 851, to ensure that SoKI(p?)S,* € P(F), we need
r=c=2z=0.

And the matrix will be

a ay * *
av a(dttvy) % %
t  —ty :
—tv d+tvy
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It follows from (6.5) that

o(ad)m(| gy atstion | )5y = o (ad)n (“Dyr( E

t ])@2 — 0. (6.13)

12 t ot
d d N — A3
o( ([ & )5 = 5. (6.14)

And we observe that

Then we have that

—)=1 d e o”. 1
a(ad) , a,d€o (6.15)

Thus, to support a non-zero Kl(p?)-invariant vector, the character o has to
be unramified. In conclusion, the double cosets P(F')S;Kl(p?) does support

a non-zero Kl(p?)-invariant vector o, with the conductor condition
a(r) =2, a(o)=0. (6.16)

In addition, this non-zero Kl(p?) vector 0y is invariant under Ty(p?).

1
iii) For S3 = [ ! } , to ensure that S3K1(p?)S;' € P(F), we need

w 1
w 1

(a) d = tot@)(l-my) o g%

wy—1)(uwv+2wutw
(b) b= — e w((v+—;) ) €o.
() c= —trralon tres ¢
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And the matrix will be [A /\Z,], where

i t(1—wy) t(z—w2)
= t(wy_;lw a+tum—w(ay+tac(wy_;)((:i;—jwu*—w)+t“3)
and
tHwtv) ,%
5 pu @ (wy—
>\A - a(v+w)(wy—1)+t(w(uvzy+uvz—3uz+wzy)+z(—2uv—w)+w2u(22y+z))
t(u ;) w (wy—1)

In particular, we denote

Ayi=———-Ae[% %] (6.17)

It is not hard to see that

1— A
). t( z?y) _ t(w +v) L det(A)(w + v) (6.18)
det(A) @ @ (1 — wy)
It follows from (6.5) and (6.6) that
o(at)m(a(l — wy) - Ag)is = o(at)w,(a)m(Ay)vs = vs. (6.19)
By the trivial central character, i.e., 0?w, = 1, we have
t o\~ -
O'(a)ﬂ'(Ao)Ug =03, Va,te€o”. (6.20)
This implies that o is unramified and
m([% 13p]) U3 = Ts. (6.21)
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This is impossible since 7 is a supercuspidal representation of GL(2, F') or
by the fact of a(7) = 2 from (6.6).

1
iv) For S, = [ b ], to ensure that S;K1(p?)S;* € P(F), we need

w 1

(a) T = ity € P

2

(b) c= —2— ¢ p3.

uv+tw—+w

(C) d— tQ(wzfl)(f(m;ranrw))fwatvy c 0.

And the matrix will be [A ;4']’ where
- t(1—wz) w+7u(%0v+w
A — w(a(bv+ty(uv+w+w))+t2uz(uv+w+w)) a(wtw)
tu— t(uvtw—+w) uvt+w+w
and
~ _tz(wzfl)(uv+w+w) tu
A= tu(—mavy—H(wz -1 (wtwiw) Hewtw) | -

In particular, we have

det(A) € at - (1 +p). (6.22)
Again, it is not hard to see that

). t(l—wz) _t2(wz— 1) (uv + w + w) - tdet(/Nl)(uquw—l—w)'

det(A) wa wa
(6.23)

It follows from (6.5), (6.6) and trivial central character (o*w, = 1) that

tdet(A)(uwv +w + w) (A

(N (A)i; =0 - V()i
l—wz m .
:O-(tZ)wTr (t)ﬂ—( w(a(bv+ty(uv+w+'w))+t2uz(uv+w+w)) a(wtw) )’04
U= t2 (uv+w+w) t(uvtw+w)
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1-wz t(w;55+w) - -
:ﬂ—( w(a(bv+ty(uv+w+w))+t2uz(uv+w+w)) a(wtw) )/04 = V4.
u= tz(uv+w+w) t(uvtw+w)

In particular, there is no restriction for the character o. Now we take

(a) u=v=w=2z=y=0,t=1, then we need 7([' .« ])0y = 0s.
(b) u=v=w=y=0,t=a, then we need ([ ])0s = 04.

() u=v=w=2z=0,a=t=1, then we need ([ ])0s = 04.

(d) u=w=y=z=b=0,a=1t=1, then we need ([ }])0s = ¥s.

This implies, to support a non-zero Kl(p?)-invariant vector, we need

pooX

71'([1+p b })174 =10y, and a(o) <1, (6.24)

Moreover, we have a(w,) < 1 by trivial central character. Recall that

a(m) = 2, i.e., there is a non-zero newform v, € VT1*) | That is to say,

w([‘;é e ] Yoo = o (6.25)

0

X . . .
w2 lip ] -invariant since

It follows from Proposition 5.4 that vy is also [

a(w;) < 1. Now we consider the vector
vy =7 =1 ])vo. (6.26)

And the vector vy is invariant under ['}],[°" ,,,] and [} {]. This implies

.. . X .
that v; is invariant under ["p 1 —pﬂs] . Then we consider the vector

ve :=m([{ 1])vs. (6.27)
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It is easy to check that v, is invariant under [

1+p »p

b ox ] And v is non-zero

since vy is non-zero. It follows that vy is non-zero. Hence the desired condi-

tion (6.24) is satisfied. In conclusion, the double coset P(F)S Kl(p?) does

support a non-zero Kl(p?)-invariant vector 94 with the conductor condition

In addition, this non-zero Kl(p?) vector o, is invariant under [

(6.28)

1+p p
pooX "

In conclusion, we have the following proposition.

Proposition 6.1. The following table gives the dimensions of spaces of M(p?)-

and K1(p?)-invariant vectors for an admissible full Siegel-induced representation

m X o which is non Twahori-spherical with trivial central character.

inducing data

dim VT

M(p*) Ki(p?)

2 3

0 1

Proof. The dimensions of the spaces Kl(p?)-invariant vectors easily follow from

the above discussion. The proof for the dimensional data for M(p?)-invariant

vectors is analogous to that for the Kl(p?) case. In particular, it suffices to check

the S; and S, cases. Note that the only difference from the Kl(p?) case is that

z € pt see (1.11). Here, we again use the same notation 0;, j = {1,2} with the

Kl(p?) case.

1. For S; = I, to ensure that S;M(p?)S;* € P(F), we need



And the matrix will be

t tx * *
tu at+tuxr * *
d —dzx .
_du d(uttuz)

It follows from (6.5) that

o (@) ([ o e )51 = olador(@)(| & | s |51 = 1

By the trivial central character w,o? = 1, we have

And we observe that

t otz

a a
tu tux
a 1+

a

X
&[]

It follows from the fact of a(7) = 2 that

a

d
o(5)=1, Va,deo*.

(6.29)

(6.30)

(6.31)

Thus, in order to support a non-zero M(p?)-invariant vector, the character

o has to be unramified. In conclusion, the double cosets P(F)S;M(p?) does

support a non-zero M(p?)-invariant vector with the conductor condition

(6.32)



And the matrix will be

a ay * *
av 7a(dtwy) * *
t  —ty :
—tv d+tvy

It follows from (6.5) that

o[ gy sen ) = o{ad)sn (S|

Again by the trivial central character condition w,o? = 1, we have
L e ~ ~
O'(-)Tl'( [ g} Hﬁfvy :| )U2 = V2. (634)
And we observe that

Then we have that

0'(—)’[}2 =10y, a,dE€ 0. (635)

Thus, to support a non-zero M(p?)-invariant vector, the character o has to
be unramified. In conclusion, the double cosets P(F)S;M(p?) does support

a non-zero M(p?)-invariant vector with the conductor condition

a(r) =2, a(o)=0. (6.36)
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6.2 Group XI and supercuspidals

Let IF, be the residue field of . Consider the following subgroups of GSp(4,F,),

1 % % % 1 * % 1 % % % 1 =x
- 1 - 1 R 1 R 1
N := T% 7NP'_ T: 7NQ‘_ 1: 7N0'_ 1
1

— * %

] (6.37)

as well as the group of the diagonal matrices 7.

Let (m,V) be an admissible representation of GSp(4, F'). Let rx(m) be the
hyperspecial parahoric restriction of 7, i.e., rx(m) = VI'® endowed with the
action of K/T'(p) = GSp(4,F,). Recall the groups Kl;(p*)* defined in (4.8) and
Kly;(p?)“ defined in (4.9). We have

K1, (p?) /T (p) = [} ~ [} — TN, (6.38)
and
K1, (p?) /T (p) = [} ~ [} — TNy (6.39)

Lemma 6.2. Let (m,V) be an admissible representation of GSp(4, F'). Let ny =

dim 7 (7)™ and ng = dimrg(7)™™e. Then
no —ng < dim VEICY < .

Proof. By Lemma (4.1) i) and (4.8), we have an injection VI#*) — YKLt By
(6.38), VELG*)Y 2 pp (7)TNo | This proves dim VEIP?) < p.
By Lemma 4.1 ii), the kernel of the map 5 : VELG?) _ VK i5 contained in

VEL®) Tt follows that dim(im(3)) = dim VX1 ®*) — dim(ker(53)). Hence

dim V¥ > dim V¥0*) — dim(ker(3)) > dim VER®?) — gim p¥n 6%,
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We have

YRG0 &2 RGD® o g ()T

by (6.38) and

VKNG o RING? o g (7)TNa

by (6.39). This proves dim V) > ng —ng. O

Lemma 6.3. Let (7, V) be an irreducible, admissible representation of GSp(4, F).

Assume that w is either supercuspidal, or of type X, Xla or XIb. Then
dim VKl(pQ) = Ng = dim TK(ﬂ')TNO.

Proof. Assume first that 7 is of type X, XIa or XIb. Then 7 is a subquotient of an
induced representation of the form 7x o, where 7 is a supercuspidal representation

of GL(2, F), and o is a character of F*. By Theorem 2.19 of [19],

Tr(T X 0) = 6L, (T) X rara,e) (o). (6.40)

Since 7 is supercuspidal, 7qr,2,0)(7) is a cuspidal representation of GL(2,F,). It
follows that the representation in (6.40) does not contain any non-zero N-fixed
vectors. Hence 7 (m)Ve = 0. By Lemma 6.2, we get dim VKI®*) = p.

Now assume that 7 is supercuspidal. If 7 is not of depth zero, then VKGR = @
by Lemma 4.2, and rx(m) = 0, so that our assertion holds. Assume that 7 is of
depth zero. Then, by Theorem 2.15 and Lemma 2.18 of [19], 7k (7) us a cuspidal
representation of GSp(4,F,). Hence again r (m)¥e = 0, so that dim V) = n

by Lemma 6.2. O

Lemma 6.4. Let (p,U) be an irreducible representation of GSp(4,F,).
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i) Assume that p is cuspidal. Then

1 if p is generic,
dim ™o = (6.41)

0 uf p 1s non-generic.

and dim UTNe = (.

ii) Assume that p = T X o, where T is a cuspidal representation of GL(2,F,),

and o is a character of F. Then

3 ifa(o) =0,
dim UM = (6.42)

1 ifa(o)=1.

and dim UTNe = (.

ii1) Let p be as in i), and suppose that p is reducible. Then p has exactly two
irreducible constituents, a generic constituents (p1,U;) and a non-generic

constituent (p2, No). We have

2 =0,
dim U™ = valo) (6.43)
1 ifa(o)=1.
and
1 =0,
dim Uy Mo = ¥alo) (6.44)
0 ifa(o)=1.

Proof. i) Tt is clear that dim U?"e = 0, since p has no Ng-invariant vectors. The

group N/N; = F2 (see (6.37)) acts on UM, Fix a non-trivial character 1 of F,.
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Then the characters of N are the maps

bore ql fy D — (e + cay), (6.45)

1

where ¢1, co € Fy. Evidently, 9., ., descends to a character of N/N,. No character
N/Ny of the form 1., o or ., appears in UM since otherwise U would have
vectors fixed under the unipotent radical of one of the maximal parabolics.
Assume that p is non-generic. Then no character of N/Ny of the form ¢, .,
with ¢; # 0 and ¢y # 0 can appear in UM, Hence U0 = 0, and thus U™ = 0.
Assume that p is generic. Then every character of N/Nj of the form v, ., with
c1 # 0 and ¢, # 0 appears exactly once in UM, by the uniqueness of Whittaker

models. It follows that

UNo =~ @ Cy, ., (6.46)

X
c1,c2€lFg

as a representation of N. The action of T on UM is such that

¢ b
|: Cb_l Ca1:| chl,CQ = Cwa_lbcl,b_Qccg’ a? b E FX‘ (647)

It follows easily that U™ contains a unique vector (up to scalars) that is invariant
under T',i.e., U™ is one-dimensional.
ii) Since 7 is cuspidal, we have UYe = (0. Hence UT™e = 0.

Let 9, ¢, be the character of N defined in i). We have

Homy (te; ey, p) = Home (ind§ (¢, o,), ind%(r ® o). (6.48)
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Here, 7 ® o is the action of P on V., the space of 7, given by

(r@a)([* v ])v=0c(u)T(A)w. (6.49)

To calculate the space on the right side of (6.48), we use Mackey theory, as in

Exercise 4.1.2 of [5]. As a system of representatives for P\G/N we take

(r1,72,73,74) = (1, 52, 5281, $25152). (6.50)

Let S; = PnN riNri_l. Explicitly,

S, =PNN = N, (6.51)
Sy =PNsyNsyt = [lfjﬂ, (6.52)
Sy =P N 5551 N (s951) " = {1 1 J , (6.53)
Sy =P N s95189N(s35152) ! = [1 1 1 T] : (6.54)

Let 7; be the representation of S; given by 7;(g) = e, ¢, (r; 'gr;). Explicitly,

o (1“{1 ) —y(crz + cay), (6.55)
s <11fif > —(ery), (6.56)
- <_1gf1 _1> —(cz2), (6.57)
s <_1 T _fc_) —p(cr12). (6.58)
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Mackey theory implies that
4
Homg (ind§ (Y, ), ind % (7 @ 7)) = @ Homyg, (m;, 7 ® o). (6.59)
i=1
Using that 7 is cuspidal and generic, we can have the following claim.

Claim 6.5.

1 ifcl#oacZ#O,
dim Homg (ind$ ind® B 0 ifc;=0,¢0#0,

G<1n N(wcl,@),ln p(T@O‘)) = (660)
2 ifcl#ochIO,

0 if61202:0.

We thus get

v  cy 0 P 2-Cy, (6.61)

017026]1‘7;< c1 GF;
as a representation of N. As seen in part i), the first direct sum in (6.61) contains
a one-dimensional space of T-invariant vectors. However, as for the second direct

sum in (6.61), it depends on whether o is trivial or not. More precisely, we define

W,, = {v\ [1 i g _4 v = zp(clx)v} : (6.62)

1

1
It is easy to see that there is an action of the group [ L. } on W, forallc € Fr.
(&

Let f: G — V, with the transformation property

F ([ lg) = ow)r(A)f(9),
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and

/ (g{ ty D — (i) f(g).

1
It easily follows from (6.50) that f is determined on f(1) and f(s2s152). In fact,

we take x € F, and consider

)= ([ 137 ]) G =m0 D10

1

This implies that f(se) = 0 since 7 is cuspidal. Similarly, we have f(s2s1) = 0.

If f(1) is T-invariant, in particular we have

r=(["r w=s(]"]) =o@r, weer;.

Hence f(1) = 0 if o is non-trivial. A similar argument applies to f(s25152). This
proves (6.42).

iii) Assume that p = 7 x ¢ is reducible. Let (p;,U;),i € {1,...,n}, be the
irreducible constituents. The representation p; is not cuspidal, but UiNQ = 0.
Hence UY" # 0. This implies that U contains characters of the form 1., ¢ with
cp € FX. By (6.47), UNe contains all characters of the form ., o with ¢; € Fy. In

view of (6.61), it follows that n = 2. If p; denotes the generic constituent, then

0= P Cyp,.,® P Cup and U= Cy, (6.63)
c1,c2€Fy c1€Fg c1€F)
Thus, the assertion easily follows from the above discussion for part ii). m

Proof of Claim 6.5. 1. If ¢; #0,¢0 # 0,

(a) In this case 1 is non-trivial on the y variable. However the entry y is
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trivial under 7 ® o, and also

Hom
1 *
1

1 ] (non-triv., 7 ® o) =0 (6.64)
1

Hence, there is no contribution to dim Home (ind$ (¢, ., ), ind% (1®0)).

(b) Similarly with (6.64), we have

Hom
1 =%
1

1« ] (non-triv., 7 ® ) =0 (6.65)
1

Hence, there is no contribution to dim Homg (ind$ (e, ., ), ind%(r7®0)).

(c) Again, similarly with (6.64), we have

Hom
1
1

1 *] (non-triv., 7 ® o) =0 (6.66)
1

Hence, there is no contribution to dim Home (ind$ (¢, ., ), ind% (1®0)).

(d) Since 7 is generic, then by (6.58), we have

Hom
1
1 %

1% ] (non-triv., 7 ® o) # 0 (6.67)
1

Hence dim Homg(indJG\,(wcl,@), indIGD(T ® o)) = 1.
2. Ifer = 0,00 £ 0,

(a) Similarly to (6.64), we have

Hom
1 *
1

1

1 ] (non-triv., 7 ® o) =0 (6.68)
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Hence, there is no contribution to dim Home (ind$ (¢, ., ), ind%(1®0)).

(b) Since 7 is cuspidal, by definition (see §4.1, [5], Page 410), we have
Hom[1 ﬂ(]_,’l') =0 (6.69)

Hence, there is no contribution to dim Homg (ind$ (e, ., ), ind%(r7®0)).

(c) Same with the case [1, (c)], we have

Hom

1
1

1 *] (non-triv., 7 ® 0) =0 (6.70)

Hence, there is no contribution to dim Home (ind$ (¢, ., ), ind% (1®0)).

(d) Similar reason with (6.69), we have
Hom[1 ﬂ(l,T) =0 (6.71)

Hence, there is no contribution to dim Homg (ind$ (e, ., ), ind% (r7®0)).
3. IfCl 7é 0,62 = 0,

(a) Since T is generic, then by (6.55), we have

Hom
1
1 %

1 ] (non-triv., 7 ® 0) # 0 (6.72)
1

Hence dim Homg(indg(wch@), indIGD(T ® o)) = 1.

(b) Same with the case [1, (b)], we have

Hom
1 =%
1

1

1 ] (non-triv., 7 ® 0) =0 (6.73)
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Hence, there is no contribution to dim Home (ind$ (¢, ., ), ind%(1®0)).

(c) Similar reason with (6.69), we have
Hom[l ﬂ(l’T) =0 (674)

Hence, there is no contribution to dim Homg (ind$ (e, ., ), ind%(r7®0)).

(d) Since 7 is generic, then by (6.58), we have

Hom 4 - ] (non-triv., 7 ® o) # 0 (6.75)

1 *
1

Hence dim Homg(indg(wclm), ind$(r ® o)) = 1.

4. If ¢ = 0,c9 = 0, for a similar reason as in (6.69), we have
Hom[1 ﬂ(l, 7)=0 (6.76)

Hence, there is no contribution to dim Home(ind§ (¢, o,), ind% (7 ® o).

]

Theorem 6.6. Table 6.1 gives the dimensions of the spaces of M(p?)- and K1(p?)-
inwvariant vectors for irreducible, admissible Siegel-induced representations and

supercuspidal representations of GSp(4, F') with trivial central character.

Proof. We first consider the Kl(p?)-invariant vectors. Assume that 7 is supercus-
pidal. Then rg(7) is cuspidal, so that the assertion follows from Lemma 6.3 and
Lemma 6.4 i).

Assume that 7 is of type X. Then rx () is a representation as in Lemma 6.4

ii); see (6.40). Hence the assertion follows from Lemma 6.3 and Lemma 6.4 ii).
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Table 6.1: Dimensions of the spaces of M(p?) and Kl(p?)-invariant vectors for
non Iwahori-spherical representations of groups X to XI and supercuspidals.

representation inducing data dim VT

a(m) _alo) |ME) KIF)
X TXOo 2 0 2 3
(irreducible) 1 0 1
XI a §('Y2m,v7Y20) 2 0 1 2
1 0 1
b L' ?rv1%0) 2 0 1 1
1 0 0
S.C. generic depth zero 0 1
non-generic 0 0

Let 7 be a supercuspidal representation of GL(2, F') with trivial central char-

acter, and let ¢ be a character of F’*. Then there is an exact sequence
0— §(vir, v 20) — V2T X v 20 — L(v21, v 20) — 0 (6.77)

where (by definition) §(v27,v20) is of type Xla and L(v27,v 20) is of type

XIb. Applying the parahoric restriction functor, we get an exact sequence

0 — r(8(v27, 07 20)) —> 1 (V2T ¥ v 20) — i (L(veiT, v 20)) — 0
(6.78)

By Theorem 5.2 of [14], the following conditions are equivalent:
e 7 and o are of depth zero.
e §(v27,v720) is of depth zero.
o L(v27,v 20) is of depth zero.
Assume that these conditions are satisfied. Hence the representations
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1

TK((S((V%T, 1/_%0))) and ’I"K(L((V%T, v 20)))

are both non-zero. The middle representation in (6.78) is rar2,0) X TGL(,0)(0);
see (6.40). It follows that rx(8((v27, v~ 20)) is the p; from Lemma 6.4 iii), and
re(L((v2T,v™20))) is the py from Lemma 6.4 iii). Hence the assertion for types
XTIa and XIb follows from Lemma 6.3 and Lemma 6.4 iii).

Next we consider the M(p?) case. By Table A.12 of [15] and dim VE®*) = 1, it
follows that dim VM®*) = 1 for type XIb if a(¢) = 0; otherwise, dim VM®*) = 0.
Hence, it follows from Proposition 6.1 that dim VM®*) = 1 for type XIa if a(0) =
0; otherwise dim VM®*) = (.

Assume that 7 is supercuspidal, by the previous result for VEI®*) only the
generic case remains. Suppose v is a non-zero vector in VM®*): we will obtain a
contradiction. Recall that « is injective, see Lemma 4.1 i). This implies a(v) # 0.

Let

op !

0o o0

o o ] , (6.79)
p o

and observe that

o oT o

Ja) |7 = | =esaan|

1

T oTYoT

} . (6.80)

TTT o
T o909

Furthermore, we can easily show that «a(v) is also invariant under the group

1 p !
[ L, } Tt follows that VM1®*) =£ 0. Moreover, by (6.80) we have

J=["

This implies that rx(7)" # 0 which is a contradiction, since 7 () is cuspidal.

I

My (p?)/T(p) 2 [

* ¥ %
* * %

} . (6.81)

* % *

]
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