
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

ROBUST ADAPTIVE CONTROL LAWS FOR TILT-ROTOR QUADCOPTERS

SUBJECT TO USER-DEFINED CONSTRAINTS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

ROBERT BLAKE ANDERSON

Norman, Oklahoma

2019

ROBUST ADAPTIVE CONTROL LAWS FOR TILT-ROTOR QUADCOPTERS

SUBJECT TO USER-DEFINED CONSTRAINTS

A THESIS APPROVED FOR THE

SCHOOL OF AEROSPACE AND MECHANICAL ENGINEERING

BY

Dr. Andrea L’Afflitto, Chair

Dr. Wei Sun

Dr. Choon Yik Tang

c© Copyright by Robert Blake Anderson 2019
All Rights Reserved

Acknowledgements

First and foremost, I’d like to thank my advisor, Dr. Andrea L’Afflitto. His

passion for his work and dedication to his students is invaluable to all of us in his

lab. He has mentored me in many academic disciplines from performing research,

writing papers, giving presentations, writing proposals, and many others. Perhaps

more importantly has been his mentorship outside of research. Several times, I have

come to a crossroads in my career, and each time Dr. L’Afflitto has been there to act

as both an advisor and a mentor. I wouldn’t be where I am today if it wasn’t for his

guidance, and I look forward to my next journey of completing a PhD under him.

Furthermore, I’d like to extend my sincere gratitude to Dr. Wei Sun and Dr.

Choon Yik Tang for taking time to be a part of my thesis committee. I greatly

appreciate all of your help both in the classroom and in the revising of this thesis.

Finally, I’d like to thank those who worked with me in the lab, Tim Blackford,

J.P. Burke, Cole Domann, Josh Karinshak, Julius Marshall, Karen Martinez Soto,

and many others. I’ll never forget those long hours completing those homework

assignments we thought were too hard, finishing those projects we thought were too

big, and obtaining those research results we thought were impossible. This thesis and

its results are only possible with your support, and I’ll be forever thankful for each

and every one of you.

This thesis was partly supported by the National Science Foundation through

Grant no. 1700640 , the US Army Research Lab through Grant no. 40304747, and

DARPA under grant no. D18AP00069. I wish to express my gratitude to these

sponsors for their continuous support

IV

Contents

Abstract X

1 Introduction 1
1.1 State of the Art in UAV Control . 1
1.2 Original Contribution and Organization of This Thesis 3
1.3 Notation and Mathematical Preliminaries 7

2 Model Reference Adaptive Control (MRAC) 10
2.1 Classical MRAC . 10
2.2 Output Feedback Robust MRAC Based on the e-Modification 15
2.3 Robust MRAC with User-Defined Constraints 20

3 Equations of Motion of a Tilt-Rotor Quadcopter 31
3.1 Problem Statement . 31
3.2 Kinematic and Dynamic Equations 33
3.3 Analysis of Equations of Motion . 37

4 Control Design for a Tilt-Rotor Quadcopter 43
4.1 Underactuation of Mechanical Systems 43
4.2 Control Strategy for Tilt-Rotor Quadcopters 44
4.3 Control Laws for Tilt-Rotor Quadcopters 48
4.4 Realization of Control Inputs . 55

5 Experiment Design and Results 59
5.1 Tilt-rotor Components and Parameters 59

5.1.1 Frame and Body . 59
5.1.2 Pixhawk Autopilot and Odroid XU4 60
5.1.3 Propulsion System . 63
5.1.4 Battery . 65
5.1.5 Servos for Thrust Vectoring 66
5.1.6 Actuation Selection – Mux and Maestro Boards 67

5.2 Experimental Results . 69

6 Conclusion 74
6.1 Future Directions . 76

A Appendix 1 78
A.1 Setting Up a New Odroid . 78

A.1.1 Eclipse Settings . 80
A.1.2 Installing Flight Code . 81
A.1.3 Set Odroid to Automatically Login When Powering On 82

V

A.1.4 Setting Odroid to Performance Mode 83
A.1.5 Set IP Address . 83
A.1.6 Odroid to Pixhawk Cable . 84

A.2 Control Code . 85

VI

List of Figures

1.1 Standard quadrotor platform used for testing at the Advanced Control
Systems Lab. 1

1.2 Tilt-rotor quadcopter carrying a dangling payload. 2

3.1 Schematic representation of the tilt-rotor quadrotor pulling a cart. . . 32

5.1 Computer Aided Design (CAD) model of the main frame of the tilt-
rotor quadcopter . 59

5.2 The Pixhawk Autopilot used on the platform. 61
5.3 The current setup for Odroid, Pixhawk, and Vicon communication.

Vicon cameras deduce the position and velocity of the drone and a
ground station computer streams that data over WiFi to the Odroid
onboard. The Odroid receives the attitude data from the Pixhawk’s
IMU and computes the control inputs. 62

5.4 The Castle DMR 30-40 electronic speed controllers (ESC’s) used for
this vehicle. 63

5.5 Tiger-Motor MN2212 920KV motors. 64
5.6 The thrust curve fitting plot showing the thrust coefficient, k, was

found using bench top thrust data provided by the manufacturer of
the motors. 65

5.7 The 14.8V 3250mAh battery from MaxAmps chosen for this setup. . 66
5.8 The AX-18A Dynamixel servos mounted on the tilt-rotor. 66
5.9 The usb2Dynamixel cable that allows for connecting the Dynamixel

servos to a USB port on a computer. 67
5.10 The mux board used is custom built by the Army Research Lab. It is

used to select whether to use the custom flight controller on the Odroid
or the Pixhawk flight controller for vehicle actuation. 67

5.11 This diagram shows how the mux and maestro boards along with user
inputs from the DSM radio determine which flight controller has control
of the vehicle. 68

5.12 This figure shows both the vehicle and reference trajectories for the
experiment. 69

5.13 This plot shows the pitch angle, θ(·), for the mission. The θ(·) angle
oscillates around the desired point, 0, and never exceeds 6.5 degrees. . 70

5.14 Plot of the norm of the trajectory tracking error norm, ‖e‖, which
shows that the proposed control law outperforms the classical versions
of Model Reference Adaptive Control. 72

VII

5.15 A plot showing the evolution of the constraint function, h(eTMe,∆KΓ−1∆KT),
throughout the experiment. For the proposed control law, the con-
straint function stays positive for the duration of the mission, whereas
both of the classical control techniques violate the constraint and go
below 0. 73

A.1 Performance Mode Settings . 83
A.2 Pixhawk to Odroid Connection Cables 84
A.3 FTDI Wiring Diagram . 84

VIII

Abstract

This thesis focuses on Model Reference Adaptive Control (MRAC) and its appli-

cation to a tilt-rotor quadcopter. After formulating two standard MRAC approaches,

this thesis proposes a robust model reference adaptive control law that guarantees

satisfactory trajectory following for the nonlinear dynamical system despite paramet-

ric, matched, and unmatched uncertainties. This control law is unique for its ability

to exploit barrier Lyapunov functions and guarantee user-defined constraints both on

the trajectory tracking error and the adaptive gains at all time. The proposed robust

control law is then applied to design a control law for a tilt-rotor quadcopter with

H-configuration with unknown and unsteady center of mass and matrix of inertia due

to the presence of poorly modeled and dangling payloads. The tilt-rotor quadcopter

equations of motion are presented and thoroughly analyzed. A novel approach is

proposed to model the coupling between the translational and rotational dynamics as

matched uncertainties, and a control strategy is developed to overcome the vehicle’s

underactuation. A tilt-rotor is designed and all of the components are presented and

discussed. A challenging experiment where a tilt-rotor quadcopter pulls an unknown

cart is performed and the results show the applicability of the proposed theoretical

framework.

Key Words: Model reference adaptive control, robust adaptive control, tilt-rotor

quadcopter, barrier Lyapunov functions, constrained control.

IX

Chapter 1: Introduction

1.1. State of the Art in UAV Control

Quadrotors are small unmanned aerial vehicles (UAVs) which have been utilized

in many diverse scenarios for the past few decades. These scenarios include typical

surveillance or picture taking, crop monitoring, search and rescue missions, and many

others. An important component to all of these scenarios is that the UAV is typically

flying in open space, in good weather conditions, and the specifications of the vehicle

such as its mass and inertia are well estimated. The small UAV of the future should

not only be able to successfully perform all of the previous scenarios, which are

only passive in the environment, but the new UAV should be an active part of the

environment. This could include picking up and moving unknown objects, interacting

at or near hard surfaces introducing the aerodynamic “wall effect”, or being tasked

with pulling or placing cables within an environment.

Figure 1.1: Standard quadrotor platform used for testing at the Advanced Control
Systems Lab.

1

Current autopilots almost exclusively run proportional-integral-derivative (PID)

control laws that are pre-tuned for each mission scenario. This means that the vehicle

would is assumed to have a known payload, a known matrix of inertia, and a known

center of gravity. This architecture allows for success in the very specific scenarios

they are designed for, but these simplifying assumptions undermine the vehicle’s capa-

bility to operate in off-nominal conditions. This includes scenarios wherein the UAV

transports some unknown dangling payload, or the propulsion system is damaged.

The future autopilot requires robust control algorithms to guarantee performance for

these challenging missions.

Figure 1.2: Tilt-rotor quadcopter carrying a dangling payload.

In recent years, numerous authors such as [1–4] as well as many others, have em-

ployed nonlinear robust control techniques such adaptive backstepping control, sliding

mode control (SMC), and model reference adaptive control (MRAC) for quadrotor au-

topilots. These techniques account for inaccurate modeling assumptions and damages

2

to the motors or propellers. Although these nonlinear control techniques undeniably

provide advantages over classical autopilots with underlying PID control algorithms,

it is apparent that there are still ample margins for improvements. For instance,

backstepping control requires perfect knowledge of the UAV’s dynamics [5]. Sliding

mode control is usually affected by chattering [5, Ch. 14], and tuning autopilots based

on sliding mode control laws may be daunting [6]. Lastly, MRAC is particularly ef-

fective, but is also characterized by undesired spikes in the control input during the

transient period [7, Ch. 13].

An additional downside to the modern quadrotor design is its underactuation. Due

to all of the propellers lying in a single plane, the vehicle is incapable of producing

forces in the lateral directions without pitching or rolling. For some types of transport

or manipulation missions, it may be desirable to have a vehicle that can maintain

zero pitch and roll angle while moving to the destination. For this reason, tilt-

rotor quadcopters have been introduced. The motors of these vehicles are typically

mounted on servos for thrust vectoring to increase the number of controllable degrees

of freedom. It is apparent that tilt-rotor quadcopters can be reduced to classical

quadcopters by locking all of the propellers to a tilt-angle of zero.

1.2. Original Contribution and Organization of This Thesis

The original contribution of this thesis is multifold. In particular, we present

a detailed analysis of the equations of motion of a tilt-rotor quadcopter with H-

configuration revealing nonlinear effects unknown in the current literature. Succes-

sively, a nonlinear robust control technique is presented to overcome the aforemen-

3

tioned limitations of classical backstepping control, sliding mode control, and model

reference adaptive control. Finally, the original control technique is applied to the

autopilot design problem for tilt-rotor UAVs performing challenging tasks, such as

transporting unknown dangling payloads. All of the original results are discussed in

detail in [6, 8, 9]. See the following details for the structure of this thesis.

In Chapter 2, multiple MRAC control algorithms are formulated. The classical

MRAC technique is first presented. In its original formulation, this technique is de-

signed to regulate time invariant dynamical systems, and for this reason classical

MRAC is insufficient for trying to account for time-varying parameters such as the

inertial counter-torque. Moreover, the classical MRAC is robust to parametric and

matched uncertainties, but it is not robust to unmatched uncertainties. For this rea-

son, a robust MRAC based on the e-modification of [10] is presented. This technique

is robust to unmatched uncertainties, which could include unmodeled aerodynamic

disturbances. This control law, however, only guarantees that the trajectory track-

ing error remains bounded at all times, and this bound can only be estimated in a

conservative manner [11]. For this reason, a novel robust MRAC law is proposed.

This control law exploits barrier Lyapunov functions [12] to guarantee user-defined

constraints on both the trajectory tracking error and the adaptive gains at all time.

As previously remarked, classical MRAC and several of its robust formulations, such

as the dead-zone modification [13], the σ-modification [14], and the e-modification of

MRAC [10], are affected by high and rapidly varying oscillations of the control input

in the transient phase.

A classical approach to bound adaptive gains is to employ the projection operator

4

[15, 16], which constrains the adaptive gains within some user-defined convex set.

As discussed in [11], using the projection operator one can only guarantee uniform

ultimate boundedness of the trajectory tracking error and the ultimate bounds can

only be estimated in a conservative manner. In this thesis, we present an original

robust MRAC law that allows to impose user-defined constraints on the adaptive

gains and trajectory tracking error that does not require that the constraint set be

convex. Moreover, the proposed framework allows to correlate the constraints on

the trajectory tracking error and the adaptive gains explictly. If no constraint is

imposed, then the proposed MRAC law reduces to the e-modification of MRAC [10].

Alternatively, if unmatched uncertainties are neglected, then the proposed MRAC

law reduces to the one presented in [17]. Only recently, barrier Lyapunov functions

have been utilized to impose user-defined constraints on the closed-loop system’s

trajectory tracking error, while the adaptive gains are constrained employing the

projection operator [11].

In Chapter 3, the full nonlinear equations of motion of a tilt-rotor with H-

configuration are derived and thoroughly discussed , including discussing a previously

unnamed term, which we named the tilt-rotor gyroscopic effect which arises from the

motion of the servos during thrust vectoring. This formulation assumes that the ref-

erence frame of the vehicle is conveniently placed at the center of the vehicle, which

does not necessarily coincide with the location of the center of mass. This assumption

implies that the generalized mass matrix is not diagonal, and hence the translational

and rotational dynamic equations are coupled.

In Chapter 4, a control law is designed for tilt-rotor quadcopters with H-configuration

5

under the assumption that the vehicle’s mass is known and both its inertia matrix

and the location of its center of mass are unknown. Specifically, considering the pro-

pellers’ thrust force and moment of the thrust force as control inputs, it is proven

that tilt-rotor quadcopters with H-configuration are underactuated [18, Def. 2.9], and

a control strategy is proposed, whereby the vehicle’s reference position, pitch angle,

and yaw angle can be arbitrarily defined by the user and the reference roll angle

is deduced accordingly using an “outer loop.” Successively, the robust MRAC law

presented in the first part of this paper is applied to the UAV’s feedback-linearized

equations of motion. The performance of MRAC laws, including the one proposed in

this paper, is degraded by unmatched uncertainties, but not parametric and matched

uncertainties [7, Ch. 9, 11]. If the vehicle’s translational and rotational dynamic

equations were considered as decoupled, then the control design process would be

considerably simplified, but the coupling between translational and rotational dy-

namics would increase the detrimental effect of unmatched uncertainties. In order to

maximize the robustness of the proposed control algorithm for tilt-rotor quadcopters,

the regressor vector has been designed to capture the coupling of the translational

and rotational dynamic equations, nonlinearities in the rotational dynamics of the

vehicle, and systematic errors in the estimation of the aircraft parameters as matched

uncertainties. Existing results on the control synthesis for tilt-rotor aircraft assume

perfect knowledge of the location of the vehicle’s center of mass and rely on feedback

linearization together with proportional-derivative control [19–23], backstepping con-

trol [24, 25], sliding-mode control [26], hierarchical control [27], neural networks [28],

or optimal control [29]. To the authors’ best knowledge, a robust MRAC architecture

6

has not been applied to design autopilots for tilt-rotor quadcopters and the proposed

approach to reduce the effect of unmatched uncertainties is unprecedented.

In Chapter 5, our original control laws are applied to regulate a custom built

tilt-rotor quadcopter with H-configuration, and the results of the flight experiments

are presented. Our UAV includes a Pixhawk autopilot for estimating the attitude of

the vehicle, Dynamixel servos for thrust vectoring capabilities, and T-Motor MN212

motors mounted with 9x3 propellers for actuation. This vehicle was designed to

produce enough thrust for pulling a heavy cart in the experiment whose mass is

6.2kg; more than 3 times than the UAV’s mass. This cart is connected to the UAV

by means of a flexible wire, and its contribution to the vehicle’s inertial properties

is purposefully unmodeled to test the robustness of our original MRAC law and its

ability to meet user-defined constraints. Experimental results also show that our new

MRAC law outperforms both the classical MRAC and the e-modification of MRAC in

regards to trajectory tracking error. In addition, our new control law is able to verify

the a priori imposed user-defined constraints on the tracking error and estimated

adaptive gains while both of the classical variations of MRAC violate the constraints.

1.3. Notation and Mathematical Preliminaries

In this section, notation definitions are established, and some basic results are

reviewed. Let N denote the set of positive integers, R denote the set of real numbers,

Rn the set of n×1 real column vectors, and Rn×m the set of n×m real matrices. The

ith vector of the canonical basis in Rn is denoted by ei,n or ei, the identity matrix in

Rn×n is denoted by 1n, the zero n×m matrix in Rn×m is denoted by 0n×m or 0. The

7

interior of the set S ⊆ Rn×m is denoted by S̊ and the boundary of the set S is denoted

by ∂S. We write ‖ · ‖ both for the Euclidean vector norm and the corresponding

equi-induced matrix norm, and we define ‖B‖F,L ,
[
tr
(
BLBT

)] 1
2 as the weighted

Frobenius norm of B ∈ Rn×m, where L ∈ Rm×m is symmetric and positive-definite; if

L = I, then we write ‖B‖F. The transpose of B ∈ Rn×m is denoted by BT, the rank

of B is denoted by rank(B), the spectrum of A ∈ Rn×n is denoted by spec(A), the

trace of A is denoted by tr(A), and the smallest eigenvalue of the symmetric matrix

Q ∈ Rn×n is denoted by λmin(Q). The Kronecker product of A ∈ Rn×m and B ∈ Rp×q

is denoted by A ⊗ B [30, Def. 7.1.2]. Given x = [x1, x2, x3]T ∈ R3, we define the

cross-product operator (·)× as x× ,

0 −x3 x2

x3 0 −x1

−x2 x1 0

.

The Fréchet derivative of the continuously differentiable function V : D → R at

x ∈ D ⊆ Rn is denoted by V ′(x) , ∂V (x)
∂x

. The Fréchet derivative of the continuously

differentiable function h : X → R at X ∈ X ⊆ Rn×m is given by [31, Ch. 5], [32]

∂h(X)

∂X
,

∂h(X)
∂X1,1

. . . ∂h(X)
∂X1,m

...
. . .

...

∂h(X)
∂Xn,1

. . . ∂h(X)
∂Xn,m

 , (1.1)

where Xi,j denotes the element of X on the ith row and jth column. Moreover, given

X : [t0,∞)→ X , it holds that [31, Ch. 5], [32]

ḣ(X(t)) = tr

(
Ẋ(t)

∂h(X(t))

∂XT

)
, t ≥ t0. (1.2)

8

Theorem 1.1 If A ∈ Rn×m and b ∈ Rm, then

Ab = MW (b, n)WM(A), (1.3)

where

MW (b, n) ,
(
bT ⊗ 1n

)
∈ Rn×nm, (1.4)

WM(A) ,
n∑
i=1

[ei,m ⊗ (Aei,m)] ∈ Rnm. (1.5)

Proof: Let b = [b1, . . . , bm]T and A = [A1, . . . Am], where Ai ∈ Rn denotes the ith

column of A. Then, MW (b, n) = [b11n, . . . , bm1n], WM(A) = [AT
1 , . . . , A

T
m]T, and the

result can be verified by direct substitution. �

9

Chapter 2: Model Reference Adaptive Control (MRAC)

2.1. Classical MRAC

In this section, the standard MRAC framework as presented by [7] is formulated.

Consider the nonlinear time-varying system of the form,

ẋ(t) = Ax(t) +BΛ
[
u(t) + ΘTΦ(x(t))

]
, x(0) = x0, t ≥ 0, (2.1)

where x(t) ∈ D ⊆ Rn denotes the system state, t ≥ 0, u(t) ∈ Rm denotes the control

input, A ∈ Rn×n is unknown, B ∈ Rn×m, Λ ∈ Rm×m is diagonal, positive-definite, and

unknown, Θ ∈ RN×m is unknown, and Φ(x(t)) : Rn → RN is the Lipschitz continuous

regressor vector. The uncertainty of Λ is used to model inaccuracies or failures in the

control system. While A is considered as unknown, its structure is usually known,

and it can be assumed that the pair (A,BΛ) is controllable.

Introduce the reference model given by,

ẋref(t) = Arefxref(t) +Brefr(t), xref(0) = xref,0, t ≥ 0, (2.2)

where xref(t) ∈ Rn is the reference model system state, t ≥ 0, Aref ∈ Rn×n is Hurwitz,

Bref ∈ Rn×m is such that the pair (Aref , Bref) is controllable, and r(t) ∈ Rm is bounded.

The goal is to design a state feedback adaptive control law, u(·), such that the

state tracking error, e(t) , x(t) − xref(t), t ≥ 0, globally uniformly asymptotically

10

converges to zero while all signals in the closed-loop system stay uniformly bounded.

Assuming both A and Λ are perfectly known, the ideal control law could be calculated

as,

φideal(π,K) = Kπ, (2.3)

where K ,

[
KT
x , K

T
r ,−ΘT

]
∈ Rm×(n+m+N) denotes the control gain, Kx ∈ Rn×m,

Kr ∈ Rm×m, Θ ∈ RN×n, and π(t) ,

[
xT(t), rT(t),ΦT(x(t))

]T

∈ Rn+m+N . In this

case, the closed-loop system becomes,

ẋ(t) =
(
A+BΛKT

x

)
x(t) +BΛKT

r r(t), x(0) = x0, t ≥ 0. (2.4)

Comparing closed-loop system, (2.4), with the reference model dynamics, (2.2), the

matching conditions are generated as,

Aref = A+BΛKT
x , (2.5)

Bref = BΛKT
r . (2.6)

If the matching conditions hold, then the closed-loop system is identical to the refer-

ence model and asymptotic tracking is guaranteed.

However, in most cases A and Λ are not fully known. In practice, the structure of

A is usually known and the matrices, (Aref , Bref), are designed such that the matching

conditions have at least one ideal solution. Assuming the ideal pair, (Kx, Kr), exists,

11

consider the feedback control law

φ(π, K̂) = K̂π, (2.7)

where K̂ : [t0,∞) → Rm×(n+m+N) denotes the adaptive gain matrices. Defining

the parameter estimation error as ∆K(t) , K̂(t) − K, the error tracking dynamics

become,

ė(t) = Arefe(t) +BΛ∆K(t)π(t), e(t0) = e0, t ≥ 0. (2.8)

Furthermore, the control law (2.7) is used where the adaptive gains are found using

the adaptive gain equation,

˙̂
KT(t) = −Γπ(t)eT(t)PB, K̂(t0) = K̂0, t ≥ 0, (2.9)

where Γ = blockdiag{Γx,Γr,Γθ} ∈ R(n+m+N)×(n+m+N), where Γx ∈ Rn×n, Γr ∈ Rm×m,

and Γθ ∈ RN×N are user-defined and positive-definite, and P ∈ Rn×n is the positive-

definite solution to the Lyapunov equation

0 = AT
refP + PAref +Q, (2.10)

where Q ∈ Rn×n is user-defined and positive-definite.

Theorem 2.1 Given a nonlinear time-varying dynamical system with dynamics (2.1)

and tracking error dynamics (2.8), with control law (2.7) and adaptive update law

(2.9), the trajectory tracking error dynamics are globally, uniformly asymptotically

12

stable.

Proof: Consider the following Lyapunov function candidate,

V (e,∆K) = eTPe+ tr
(
[∆KΓ∆KT]Λ

)
, (e,∆K) ∈ Rn × Rm×(n+m+N), (2.11)

where tr(·) denotes the trace operator. Taking the time derivative of V (·, ·) gives,

V̇ (e,∆K) = ėTPe+ eTP ė+ 2tr
([

∆KΓ−1 ˙̂
KT
]

Λ
)
, (2.12)

and substituting in the error dynamics (2.8), we obtain that

V̇ (e,∆K) = (Arefe+BΛ (∆Kπ))Pe+ eTP
(
Arefe+BΛ

(
∆KTπ

))
+ 2tr

([
∆KΓ−1 ˙̂

KT
]

Λ
)
,

(2.13)

= eT
(
AT

refP + PAref

)
e+ 2eTPBΛ∆Kπ + 2tr

([
∆KΓ−1 ˙̂

KT
]

Λ
)
, (2.14)

and applying (2.10) it holds that,

V̇ (e,∆K) = −eTQe+ 2eTPBΛ∆Kπ + 2tr
([

∆KΓ−1 ˙̂
KT
]

Λ
)
. (2.15)

Now, recall a property of the tr(·) operator where given two matrices A,B of appro-

priate dimensions,

tr(AB) = tr(BA). (2.16)

13

Using this trace identity, the second term of (2.15) can be written as,

2eTPBΛ∆Kπ = 2tr
(
∆KπeTPBΛ

)
(2.17)

and the derivative of V (·, ·) can then be written as,

V̇ (e,∆K) = −eTQe+ 2tr
(

∆K
[
πeTPB + Γ−1 ˙̂

KT
]

Λ
)
, (2.18)

and by applying the adaptive law (2.9), the equation becomes,

V̇ (e,∆K) = −eTQe, (2.19)

where it has been shown that V̇ (e,∆K) is negative semi-definite in its arguments,

that is,

V̇ (e,∆K) ≤ 0, (e,∆K) ∈ Rn × Rm×(n+m+N), (2.20)

This shows that the closed-loop error dynamics are uniformly stable, so the adaptive

law, K(·), the tracking error, e(·), and the estimation error, ∆K(·), are uniformly

bounded. Combining this statement with the pre-defined assumptions that r(·) is

bounded and Aref is Hurwitz, it can be stated that x(·) is bounded and the control

input u(·) is bounded. Taking the second derivative of V (·, ·) gives,

V̈ (e,∆K) = −2eTQė, (e,∆K) ∈ Rn × Rm×(n+m+N), (2.21)

14

which is bounded since e(·), ė(·) are both bounded. Since it is known that V (·, ·) is

bounded from below and V̇ (e,∆K) ≤ 0, applying Barbalat’s Lemma, [5, Lemma 8.2

] gives that

lim
t→∞

V̇ (e(t),∆K(t)) = 0, (2.22)

so the trajectory tracking error, e(·), converges asymptotically to the origin for all

e(0) ∈ Rn. �

2.2. Output Feedback Robust MRAC Based on the e-Modification

The classical MRAC law presented in Section 2.1 is state-feedback and is not

robust to external disturbances. In this section, a form of robust output feedback

MRAC is presented based on both the e-modification from [10] and the output feed-

back control law of [33]. After a finite time transient, this control law guarantees that

the plant’s measured output will track a given reference signal with bounded error

despite uncertainties in the model and the presence of external disturbances.

Consider the nonlinear time-varying plant dynamics given by

ẋp(t) = Apxp(t)+BpΛ[u(t)+ΘTΦ(xp(t))]+ ξ̂(t), xp(t0) = xp,0, t ≥ t0, (2.23)

where xp(t) ∈ Dp ⊆ Rnp , t ≥ t0, denotes the trajectory of the plant, u(t) ∈ Rm denotes

the control input, Ap ∈ Rnp×np is unknown, Bp ∈ Rnp×m, Λ ∈ Rm×m is diagonal,

positive-definite, and unknown, Θ ∈ RN×m is unknown, Φ : Rnp → RN denotes the

Lipschitz continuous regressor vector, and ξ̂ : [t0,∞)→ Rnp is continuous, unknown,

and is assumed to be bounded such that ‖ξ̂(t)‖ ≤ ξmax, t ≥ t0. It is assumed that Λ

15

is such that the pair (Ap, BpΛ) is controllable and Λmin1m ≤ Λ, for some Λmin > 0.

The plant’s matched and parametric uncertainties are captured in Λ and ΘTΦ(xp),

xp ∈ Dp, which includes possible malfunctions in the control system, and ξ̂(·) captures

the unmatched uncertainties, such as external disturbances of the plant.

Also consider the plant’s sensor dynamics given by

ẏ(t) = εCpxp(t)− εy(t), y(t0) = Cpxp,0, (2.24)

where y(t) ∈ Rm denotes the system output, ε > 0, and Cp ∈ Rm×np . The sensor

dynamics are modeled as linear dynamical systems. The uncontrolled sensor dynamics

are exponentially stable and characterized by the parameter ε > 0. Introduce the

given reference command r : [t0,∞) → Rm, which has a continuous first derivative,

define r2(t) , ṙ(t), t ≥ t0, and assume that both r(t), r2(t) are bounded, that is,

‖r(t)‖ ≤ rmax, t ≥ t0, and ‖r2(t)‖ ≤ rmax,2 for some rmax, rmax,2 > 0.

The goal of the proposed robust MRAC is to design a feedback control law, u(·),

such that after a finite-time transient, the measured output y(·) is able to track the

reference signal r(·) with some bounded error, that is, there exist b > 0 and c > 0,

and for every a ∈ (0, c), there exists a finite-time T = T (a, c) ≥ 0, such that if

‖y(t0)− r(t0)‖ ≤ a, then

‖y(t)− r(t)‖ ≤ b, t ≥ t0 + T. (2.25)

For this, an augmented system is created where n , np +m and

16

x(t) ,

[
xT
p (t), [y(t)− r(t)]T

]T

∈ Rn, t ≥ t0, which allows (2.23) and (2.24) to be

expressed as

ẋ(t) = Ax(t)+BΛ[u(t)+ΘTΦ(xp(t))]+ξ(t), x(t0) =

 xp,0

Cpxp,0 − r(t0)

 , t ≥ 0,

(2.26)

where x(t) ∈ D ⊆ Rn, D ∈ Dp × Rm, A ,

Ap 0np×m

εCp −ε1m

, B ,

 Bp

0m×m

, and

ξ(t) ,

0np×m

−1m

[r2(t) + εr(t)

]
+

 1np

0m×np

 ξ̂(t). Also consider the reference model

whose dynamics are given by

ẋref(t) = Arefxref(t) +Brefr(t), xref(t0) =

 xp,0

Cpxp,0 − r(t0)

 , t ≥ 0, (2.27)

where xref(t) ∈ Rn is the reference model system state, t ≥ 0, Aref =

Aref,1 0np×m

0m×np Aref,2

,

where Aref,1 ∈ Rnp×np is Hurwitz, Aref,2 ∈ Rm×m is Hurwitz, and Bref ∈ Rn×m is such

that the pair (Aref , Bref) is controllable.

Define the error as e , x(t)− xref(t), and let the feedback control be of the form

φ(K̂, π) = K̂π, (xp, x) ∈ [0,∞)×Dp ×D, (2.28)

where K =

[
KT
x , K

T
r ,−ΘT

]
∈ Rm×(n+m+N) denotes the control gain where Kx ∈

17

Rn×m, Kr ∈ Rm×m, Θ ∈ RN×n, and π(t) =

[
x(t), r(t),Φ(x(t))

]T

∈ Rn+m+N . The

adaptive law is given by

˙̂
KT(t) = −Γ

(
π(t)eT(t)PB + σ‖BTPe(t)‖K̂(t)

)
,

K̂(t0) = K̂0 t ≥ 0,

(2.29)

where the adaptive learning rates, Γ = blockdiag{Γx,Γr,Γθ} ∈ R(n+m+N)×(n+m+N),

Γx ∈ Rn×n, Γr ∈ Rm×m, and Γθ ∈ RN×N are user-defined and positive-definite,

σ ∈ R > 0, and P ∈ Rn×n is the positive definite solution to the Lyapunov equation

given by

0 = AT
refP + PAref +Q, (2.30)

where Q ∈ Rn×n is user-defined and positive definite.

Theorem 2.2 If Kx and Kr exist such that the following matching conditions are

satisfied,

Aref = A+BΛKT
x ,

Bref = BΛKT
r ,

(2.31)

then the nonlinear time-varying system (2.26) with u(t) = φ(K̂(t), π(t)), t ≥ t0, track-

ing error dynamics (2.32), with control law (2.28) and adaptive update law (2.29),

the system (2.26) and the adaptive gains (2.29) remain uniformly ultimately bounded

for all time and (2.25) is verified.

Proof: Define ∆K(t) , K̂(t)−K, t ≥ t0, and subtract the reference model dynamics

18

(2.27) from the state dynamics (2.26) to obtain the error dynamics as

ė(t) = Arefe(t) +BΛ∆K(t)π(t) + ξ(t), e(t0) = e0, t ≥ 0. (2.32)

Next, consider the following Lyapunov function candidate

V (e,∆K) = eTPe+ tr
(
[∆KΓ∆KT]Λ

)
, (e,∆K) ∈ Rn × Rm×(n+m+N), (2.33)

where tr(·) is the trace operator. Using this candidate, the error dynamics (2.32),

and following the arguments of 2.1 and applying Barbalat’s Lemma, it can be shown

that

V̇ (e,∆K) < 0, (e,∆K) ∈ Rn × Rm×(n+m+N) \ Ω, (2.34)

for some compact set Ω containing the origin. It then follows from [5] that nonlinear

dynamical system given by (2.32) with adaptive law (2.29) is uniformly ultimately

bounded.

Then let xref(t) =

[
xT

ref,1(t), xT
ref,2(t)

]T

, t ≥ t0, verify the reference model (2.27),

where xref,1(t) ∈ Rnp and xref,2(t). It follows from the ultimate boundedness of the

error dynamics that

‖y(t)− r(t)− xref,2(t)‖ ≤ b̂, t ≥ T + t0, (2.35)

for some b̂ > 0, T ≥ 0, both independent of t0. Since Aref is block-diagonal and

Hurwitz, r(t) is bounded, it follows from (2.27) that xref,2(t) is uniformly bounded,

19

that is, ‖xref,2(t)‖ ≤ b2, t ≥ t0, for some b2 ≥ 0 independent of t0. Finally, it follows

from (2.35) that (2.25) is verified with b = b̂+ b2. �

If the adaptive gains verify (2.29) and σ = 0, then the control law (2.28) reduces

to the standard model reference adaptive control presented in Section 2.1. The main

difference is that the standard MRAC does not guarantee uniform ultimate bounded-

ness of the system in the presence of unmatched uncertainty, ξ̂(·), whereas the robust

MRAC presented in this section does handle bounded unmatched uncertainties.

2.3. Robust MRAC with User-Defined Constraints

In this section, a robust adaptive control law is presented that steers the trajectory

of an unknown dynamical system affected by matched, unmatched, and parametric

uncertainties to track the trajectory of a reference dynamical model, while verifying

user-defined constraints on both the trajectory tracking error and the adaptive gains

at all time. Consider the unknown dynamical system

ẋ(t) = Ax(t) +B
[
u(t) + ΘTΦ(x(t))

]
+ ξ(t), x(t0) = x0, t ≥ t0, (2.36)

where x(t) ∈ D ⊆ Rn, t ≥ t0, denotes the system’s trajectory, u(t) ∈ U ⊆ Rm denotes

the control input, A ∈ Rn×n, B ∈ Rn×m, Θ ∈ RN×m, the regressor vector Φ : D → RN

is Lipschitz continuous, and ξ : [t0,∞) → Rn. The matrices A and Θ are unknown

and capture parametric and matched uncertainties, and the continuous function ξ(·)

is unknown, captures unmatched uncertainties, and is such that ‖ξ(t)‖ ≤ ξmax, t ≥ t0,

where ξmax ≥ 0 is known.

20

Consider also the reference dynamical model

ẋref(t) = Arefxref(t) +Brefr(t), xref(t0) = xref,0, t ≥ t0, (2.37)

where xref(t) ∈ Rn, t ≥ t0 is the reference model system state, r(t) ∈ Rm is bounded

and denotes the reference command, Aref ∈ Rn×n is Hurwitz, Bref ∈ Rn×m, and the

pair (Aref , Bref) is controllable. It is assumed that there exist (Kx, Kr) ∈ Rn×m×Rm×m

such that

Aref = A+BKT
x , (2.38)

Bref = BKT
r . (2.39)

The matching conditions (2.38) and (2.39) are standard assumptions in model refer-

ence adaptive control and, as discussed in Section 2.1, guarantee that if (2.36) were

not affected by matched, unmatched, and parametric uncertainties, then there would

exist a control law that guarantees asymptotic convergence to zero of the trajectory

tracking error e(t) , x(t)− xref(t), t ≥ t0.

Consider the nonlinear dynamical system (2.36) with ξ(t) = 0, t ≥ t0, and the

reference dynamical model (2.37). Define K ,
[
KT
x , K

T
r ,−ΘT

]
, where Kx and Kr

verify (2.38) and (2.39), and π(t) ,
[
xT(t), rT(t),ΦT(x(t))

]T
, t ≥ t0. Assume that

both A and Θ are known, and there exist Kx ∈ Rn×m and Kr ∈ Rm×m such that

21

(2.38) and (2.39) are verified. If u = φideal(π,K), where

φideal(π,K) = Kπ, (π,K) ∈ Rn+m+N × Rm×(n+m+N), (2.40)

then limt→∞ e(t) = 0.

Lastly, consider the feedback control law

φ(π, K̂) = K̂π, (π, K̂) ∈ Rn+m+N × Rm×(n+m+N), (2.41)

where K̂ : [t0,∞) → Rm×(n+m+N). Ideally, a design specification for the adaptive

gain matrix K̂(·) would be that the adaptive gain’s error ∆̃K(t) , K̂(t)−K, t ≥ t0,

verifies some constraints assigned a priori. Since both A and Θ are unknown, K is

unknown, and hence, ∆̃K(·) cannot be computed. However, in problems of practical

interest it is possible to find Ke ∈ Rm×(n+m+N) that provides an estimate of K, that

is, such that ‖Ke −K‖F ≤ ε, for some ε ≥ 0. In this formulation, K̂(·) is provided

such that both the trajectory tracking error e(·) and the estimated adaptive gain’s

error ∆K(t) , K̂(t) − Ke, t ≥ t0, verify user-defined constraints at all time; note

that ‖∆̃K(t) − ∆K(t)‖F ≤ ε, t ≥ t0. In particular, the constraints considered here

are captured by the compact, connected constraint set

C ,
{

(e,∆K) ∈ Rn × Rm×(n+m+N) : h(eTWe,∆KΓ−1∆KT) ≥ 0
}
, (2.42)

where W ∈ Rn×n is symmetric and positive-definite, Γ ∈ R(n+m+N)×(n+m+N) is sym-

metric and positive-definite, and h : R×Rm×m → R is continuously differentiable and

22

such that h(0, 0) > 0. The compactness of C allows to capture bounded constraint

sets, and the connectedness of C guarantees that there exists a subset of C containing

both (e(t0),∆K(t0)) and (0n, 0m×(n+m+N)) that cannot be expressed as two disjoint

non-empty sets. Note that the interior of C, that is,

C̊ =
{

(e,∆K) ∈ Rn × Rm×(n+m+N) : h(eTWe,∆KΓ−1∆KT) > 0
}
,

is not empty, since h(0, 0) > 0, and C̊ \{(0, 0)} is not empty, since h(·, ·) is continuous.

Define he : R× Rm×m → R and hX : R× Rm×m → Rm×m so that

he(e
TWe,∆KΓ−1∆KT) ,

∂h(β,X)

∂β

∣∣∣∣
β=eTWe
X=∆KΓ−1∆KT

, (e,∆K) ∈ C̊, (2.43)

hX(eTWe,∆KΓ−1∆KT) ,
∂h(β,X)

∂X

∣∣∣∣
β=eTWe
X=∆KΓ−1∆KT

, (2.44)

and assume that

he(e
TWe,∆KΓ−1∆KT) ≤ 0, (2.45)

hX(eTWe,∆KΓ−1∆KT) ≤ 0, (2.46)

that is, hX(·, ·) is symmetric and nonpositive-definite, and

(0n, 0m×(n+m+N)) = arg max
(e,∆K)∈Rn×Rm×(n+m+N)

h(eTWe,∆KΓ−1∆KT). (2.47)

It follows from (2.42) and (2.45)–(2.47) that h(·, ·) must be chosen so that h(eTWe, ·)

23

attains its maximum for e = 0 and h(·,∆KΓ−1∆KT) attains its maximum for ∆K =

0. As an example, consider

h(eTWe,∆KΓ−1∆KT) = hmax − ‖W
1
2 e‖2 − ‖∆K‖2

F,Γ−1 ,

(e,∆K) ∈ Rm × Rm×(n+m+N),

(2.48)

where hmax > 0 and M
1
2 denotes the square root of M [30, p. 474]. In this case,

(2.48) verifies (2.45)–(2.47), since h(0, 0) = hmax > 0, he(e
TWe,∆KΓ−1∆KT) = −1,

and hX(eTWe, ∆KΓ−1∆KT) = −1m.

The next theorem is the main result of this section and provides an adaptive law

K̂(·) for the feedback control law (2.41) so that if u(t) = φ(π(t), K̂(t)), t ≥ t0, then

both the trajectory tracking error e(·) and the estimated adaptive gain’s error ∆K(·)

verify the user-defined constraints captured by (2.42) at all time, despite parametric,

matched, and unmatched uncertainties. For the statement of this theorem, note that

it follows from (2.36), (2.41), and (2.37) that

ė(t) = Arefe(t) +B∆̃K(t)π(t) + ξ(t), e(t0) = x0 − xref,0, t ≥ t0. (2.49)

In addition, define the positive-definite function

V (e,∆K) ,
eTPe+ tr

(
∆KΓ−1∆KT

)
h(eTWe,∆KΓ−1∆KT)

, (e,∆K) ∈ C̊, (2.50)

where P ∈ Rn×n denotes the symmetric, positive-definite solution of the algebraic

24

Lyapunov equation

0 = AT
refP + PAref +Q1, (2.51)

and Q1 ∈ Rn×n is symmetric and positive-definite, and let

Sπ ,
{

(e,∆K) ∈ Rn × Rm×(n+m+N) : Sπ(e,∆K) > 0
}
, (2.52)

where

Sπ(e,∆K) , −α‖e‖2 − σ‖eTPB‖p‖∆K‖2
F + 2 (ε‖π‖+ ξmax) ‖R(e,∆K)‖F, (2.53)

p ∈ N, σ > 0, α , λmin(Q1), and

R(e,∆K) , eT
[
P − V (e,∆K)he(e

TWe,∆KΓ−1∆KT)W
]
B. (2.54)

Lastly, note that the trajectory xref(t), t ≥ t0, of the reference dynamical model

(2.37) is bounded, since r(t) is bounded and Aref is Hurwitz [34, p. 245], and if e(t)

is bounded, then x(t) is bounded and there exists a compact set Π ⊂ Rn+m+N such

that π(t) =
[
xT(t), rT(t),−ΦT(x(t))

]T ∈ Π for all t ≥ t0. Therefore, since Sπ(·, ·) is

continuous in π, it follows from Weierstrass theorem [34, Th. 2.13] that

π∗(e,∆K) , argmaxπ∈ΠSπ(e,∆K), (e,∆K) ∈ Rn × Rm×(n+m+N), (2.55)

exists and is finite. For simplicity, we denote Sπ∗(e,∆K)(e,∆K) by Sπ∗(e,∆K) and

25

Sπ∗ =
{

(e,∆K) ∈ Rn × Rm×(n+m+N) : Sπ∗(e,∆K) > 0
}

.

Theorem 2.3 Consider the uncertain nonlinear dynamical system (2.36), the refer-

ence model (2.37), the feedback control law (2.41), the trajectory tracking error dy-

namics (2.49), the constraint set (2.42), and the set Sπ given by (2.52). Let x0 ∈ Rn,

xref,0 ∈ Rn, and K̂0 ∈ Rm×(n+m+N) be such that (x0 − xref,0, K̂0 −Ke) ∈ C̊ \{(0, 0)},

and let

˙̂
KT(t) = −Γ

[
π(t)eT(t)

(
P − V (e(t),∆K(t))he(e

T(t)We(t),∆K(t)Γ−1∆KT(t))W
)
B

+σ‖eT(t)PB‖p∆KT(t)
]

·
[
1m − V (e(t),∆K(t))hX(eT(t)We(t),∆KΓ−1∆KT(t))

]−1
,

K̂(t0) = K̂0, t ≥ t0, (2.56)

where P ∈ Rn×n denotes the symmetric, positive-definite solution of (2.51), V (·, ·)

is given by (2.50), he(·, ·) is given by (2.43), and hX(·, ·) is given by (2.44). If the

matching conditions (2.38) and (2.39) are verified and Sπ∗ ⊂ C̊, where π∗(·, ·) is given

by (2.55), then (2.36) with control law (2.41) and adaptive law (2.56) is such that

(e(t),∆K(t)) ∈ C̊, t ≥ t0.

Proof: This proof is divided in two parts. First, assume that (e(t),∆K(t)) ∈ C̊,

t ≥ t0 and show that V̇ (e,∆K) ≤ 0 for all (e,∆K) ∈ C̊ \ Sπ∗ . Then, a contradiction

argument is used to prove that if (x0−xref,0, K̂0−Ke) ∈ C̊\{(0, 0)}, then (e(t),∆K(t)) ∈

C̊, t ≥ t0.

26

Define

Q(eTWe,∆KΓ−1∆KT) , Q1 + V (e,∆K)he(e
TWe,∆KΓ−1∆KT)

(
AT

refW +WAref

)
,

(e,∆K) ∈ C̊,

(2.57)

and note that it follows from (2.51) and (2.57) that

−Q(eTWe,∆KΓ−1∆KT) = AT
ref

[
P − V (e,∆K)he(e

TWe,∆KΓ−1∆KT)W
]

+
[
P − V (e,∆K)he(e

TWe,∆KΓ−1∆KT)W
]
Aref .

(2.58)

Note also that Q(·, ·) is symmetric and Q(e,∆K) ≥ α1n, since Q1 ≥ α1n, V (e,∆K)

is positive-definite, AT
refW + WAref is symmetric and nonpositive-definite [35], and

(2.45) holds by assumption. Now, assume that (e(t),∆K(t)) ∈ C̊, t ≥ t0. Since C is

compact by assumption, both e(·) and ∆K(·) are bounded and (2.55) exists and is

finite. Additionally, it follows from (2.50), (2.49), (2.36), and (2.58) that

V̇ (e,∆K) = −h−1(eTWe,∆KΓ−1∆KT)eTQ(eTWe,∆KΓ−1∆KT)e

+ 2h−1(eTWe,∆KΓ−1∆KT)

· tr
(

∆̃KπeT
[
P − V (e,∆K)he(e

TWe,∆KΓ−1∆KT)W
]
B

+ ∆KΓ−1 ˙̂
KT

[
1m − V (e,∆K)hX(eTWe,∆KΓ−1∆KT)

])
+ 2h−1(eTWe,∆KΓ−1∆KT)

27

· tr
(
ξ(t)eT

[
P − V (e,∆K)he(e

TWe,∆KΓ−1∆KT)W
])
,

(2.59)

for all (e,∆K) ∈ C̊. Since tr(XTY) is an inner product ofX and Y ∈ Rn×m [30, p. 95],

‖∆̃K(t) −∆K(t)‖F ≤ ε, t ≥ t0, by assumption, and Q(e,∆K) ≥ α1n, (e,∆K) ∈ C̊,

by construction, it follows from (2.56) and the Cauchy–Schwarz inequality [30, Fact

1.18.9] that

V̇ (e,∆K) ≤ h−1(eTWe,∆KΓ−1∆KT)Sπ(e,∆K), (e,∆K) ∈ C̊, (2.60)

where Sπ(·, ·) is given by (2.53). Since (e(t),∆K(t)) ∈ C̊ and C is compact, e(·) is

bounded, π∗(·, ·) given by (2.55) is well-defined, and V̇ (e,∆K) ≤ 0, (e,∆K) ∈ C̊\Sπ∗ .

Next, assume that (e(t0),∆K(t0)) ∈ C̊ \ {(0, 0)}, and suppose ad absurdum that

there exists T ∗ > 0 such that limt→T ∗ dist((e(t),∆K(t)), ∂C) = 0, where dist(·, ·) de-

notes the distance of a point from a set [36, p. 16]. In this case,

limt→T ∗ h(eT(t)We(t),∆K(t)Γ−1∆KT(t)) = 0 along the trajectory of (2.49) and

(2.56), and it follows from the continuity of h(·, ·), e(·), and ∆K(·) that

lim
t→T ∗

h(eT(t)We(t),∆K(t)Γ−1∆KT(t)) = h(eT(T ∗)We(T ∗),∆K(T ∗)Γ−1∆KT(T ∗)),

(2.61)

which implies that (e(T ∗),∆K(T ∗)) 6= (0, 0), since h(eTWe,∆KΓ−1∆KT) > 0 for all

(e,∆K) ∈ C̊ and (0, 0) ∈ C̊ by assumption. Moreover, since tr(·) is continuous and

eTPe + tr
(
∆KΓ−1∆KT

)
is positive-definite for all (e,∆K) ∈ Rn × Rm×(n+m+N), it

28

holds that limt→T ∗
[
eT(t)Pe(t) + tr

(
∆K(t)Γ−1∆KT(t)

)]
6= 0. Therefore,

lim
t→T ∗

V (e(t),∆K(t)) =
eT(T ∗)Pe(T ∗) + tr

(
∆K(T ∗)Γ−1∆KT(T ∗)

)
h(eT(T ∗)We(T ∗),∆K(T ∗)Γ−1∆KT(T ∗))

=∞. (2.62)

Now, if (e(t0),∆K(t0)) ∈ Sπ∗ , then there exists T ∗∗ ≥ t0

such that (e(T ∗∗),∆K(T ∗∗)) ∈ ∂Sπ∗ . Since Sπ∗ ⊂ C̊ by assumption, it holds that

T ∗∗ < T ∗ and it follows from (2.60) that for all t1 and t2 ∈ [T ∗∗, T ∗) such that t2 ≥ t1,

V (e(t2),∆K(t2)) ≤ V (e(t1),∆K(t1)) <∞, (2.63)

along the trajectory of (2.49) and (2.56), which contradicts (2.62). Alternatively, if

(e(t0),∆K(t0)) ∈ C̊ \ Sπ∗ , then there exists T ∗∗ > t0 such that (e(T ∗∗),∆K(T ∗∗)) ∈

∂Sπ∗ , and (2.62) is contradicted by applying a similar argument as for the previous

case. Therefore, if (e(t0),∆K(t0)) ∈ C̊ \{(0, 0)}, then (e(t),∆K(t)) ∈ C̊, t ≥ t0, which

concludes the proof. �

Theorem 2.3 provides sufficient conditions for the control law (2.41) and the adap-

tive law (2.56) to steer the trajectory of the dynamical system (2.36) and guarantee

user-defined levels of performance, which are captured by the constraint set (2.42),

despite uncertainties in the dynamical model. The set Sπ∗ captures the effect of un-

certainties on the performance of the control law (2.41) and the adaptive law (2.56).

Indeed, if ε > 0 and ξmax > 0, then there exist (e,∆K) ∈ Rn × Rm×(n+m+N) such

that Sπ∗(e,∆K) > 0 and S̊π∗ 6= {∅}, and it follows from the proof of Theorem 2.3

that V̇ (e,∆K) > 0, (e,∆K) ∈ Sπ∗ . Therefore, if Sπ∗ is not a proper subset of

29

C̊ and (e(T),∆K(T)) ∈ Sπ∗ for some T ≥ t0, then (e(·),∆K(·)) may violate the

user-defined constraints captured by C. The condition Sπ∗ ⊂ C̊ can be enforced by

minimizing the diameter of Sπ∗ [36, p. 16], that is, choosing α and σ sufficiently large,

providing accurate estimates of K so that ε is small, and designing h(·, ·) so that,

using Landau’s notation, ‖eTV (e,∆K)he(e
TWe,∆KΓ−1∆KT)‖ = O(‖e‖k), where

k = max{2, p}. The condition Sπ∗ ⊂ C̊ can be also enforced by minimizing ξmax.

Specifically, unmatched uncertainties, which are captured by ξ(·) in (2.36), derive

both from unknown external disturbances and those terms in the system’s dynami-

cal model that are not be captured as matched uncertainties by mean of a regressor

vector. The diameter of Sπ∗ can be minimized also employing, for instance, neural

networks to capture the system’s nonlinearities as matched uncertainties and hence,

minimizing ξmax [7, Ch. 12].

Note that the adaptive law (2.56) involves the term [1m − V (e,∆K)hX(eTWe,

∆KΓ−1∆KT)]−1, (e,∆K) ∈ C̊. The identity matrix 1m is positive-definite, V (e,∆K),

(e,∆K) ∈ C̊, is positive-definite, and (2.46) is verified by assumption. Therefore,

[1m − V (e,∆K)hX(eTWe,∆KΓ−1∆KT)], (e,∆K) ∈ C̊, is positive-definite, hence

invertible, and the right-hand side of (2.56) has is well-defined.

30

Chapter 3: Equations of Motion of a Tilt-Rotor Quadcopter

3.1. Problem Statement

In this section, the equations of motion of a tilt-rotor quadcopter with H-configuration,

such as the one shown in Figure 3.1 are presented and analyzed. The tilt-rotor quad-

copter is considered as composed of a frame, modeled as a rigid body, and four

propellers that can be tilted independently so that the vehicle can move forward or

exert horizontal forces without pitching. The aircraft transports some payload of

known mass that is not rigidly connected to the vehicle’s frame and whose inertia

matrix is unknown. The aerial vehicle and its payload are considered as a whole

mechanical system, which henceforth is referred to as the quadcopter. In this paper,

it is assumed that, due to the presence of a swinging payload, variations both in the

position of the quadcopter’s center of mass and inertia matrix are not negligible.

To uniquely identify the position and orientation of the quadcopter’s frame in

space, consider the orthonormal reference frame I = {O;X, Y, Z} fixed with the

Earth, centered in O ∈ R3, and with axes X, Y, Z ∈ R3. The reference frame I

is chosen so that F I
g = −mgZ, where m > 0 denotes the vehicle’s mass and g >

0 denotes the gravitational acceleration. Also, consider the orthonormal reference

frame J(·) = {A(·);x(·), y(·), z(·)} fixed with the vehicle’s frame, centered at a point

A : [t0,∞) → R3 conveniently chosen, and with axes x, y, z : [t0,∞) → R3; in this

paper, we refer to J(·) as the body reference frame. The reference frame J is chosen

31

ΩP,2

ΩP,1

x

y
z

T2 T1

C
X

Y

Z

O

−mgZ

I

J
rC

α1

A

Figure 3.1: Schematic representation of the tilt-rotor quadrotor pulling a cart.

so that the propellers’ arms are aligned to the y(·) axis; for details, see Figure 3.1.

If a vector a ∈ R3 is expressed in the reference frame I, then it is denoted by aI; if

a vector is expressed in J(·), then no superscript is used. Since quadcopters move at

low speed and low altitude, we assume that the reference frame I is inertial.

The position of the vehicle’s reference point A(·) with respect to O is denoted by

rIA : [t0,∞) → R3 and the velocity of A(·) with respect to the reference frame I is

denoted by vIA : [t0,∞)→ R3. Using a 3-2-1 rotation sequence, the orientation of the

reference frame J(·) with respect to the inertial reference frame I is captured by the

roll angle φ : [t0,∞) → [0, 2π), the pitch angle θ : [t0,∞) →
(
−π

2
, π

2

)
, and the yaw

angle ψ : [t0,∞) → [0, 2π) [37, pp. 11]. The angular position of the ith propeller

about its spin axis is denoted by Ωi : [t0,∞) → R, and the angular displacement of

the ith propeller’s spin axis, i = 1, . . . , 4, about the y(·) axis and measured from the

z(·) axis is denoted by αi : [t0,∞) → R; for purposes of this formulation, αi(·) is

referred to as the ith propeller’s tilt angle.

32

3.2. Kinematic and Dynamic Equations

The vector of independent generalized coordinates

q =
[(
rIA
)T
, φ, θ, ψ

]T

(3.1)

captures the position and orientation of the vehicle’s frame. The angular velocity of

the reference frame J(·) with respect to I [37, Def. 1.9] is denoted by ω : D×R6 → R3,

where D , R3 × [0, 2π)×
(
−π

2
, π

2

)
× [0, 2π), and is such that [37, Th. 1.7]

ω(q(t), q̇(t)) = Γ−1(q(t))
[
φ̇(t), θ̇(t), ψ̇(t)

]T

, t ≥ t0, (3.2)

where

Γ(q) ,

1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 , q ∈ D.

It is worthwhile to recall that Γ(q) is invertible, since θ ∈ (−π
2
, π

2
) [37, pp. 18-19].

It follows from (3.2) that the kinematic equation of a tilt-rotor quadcopter is given

by

q̇(t) =

 vIA(t)

Γ(q(t))ω(q(t), q̇(t))

 , q(t0) =

rIA,0

φ0

θ0

ψ0

, t ≥ t0. (3.3)

33

Proceeding as in [38], one can prove that the translational dynamic equation of a

tilt-rotor quadcopter is given by

mv̇IA(t)−mR(q(t))r×C (t)ω̇(q(t), q̇(t))

= R(q(t))

u5(t)

0

u1(t)

+

0

0

−mg

−mR(q(t))
[
r̈C(t) + 2ω×(q(t), q̇(t))ṙC(t)

+ω×(q(t), q̇(t))ω×(q(t), q̇(t))rC(t)
]
, vIA(t0) = vIA,0, t ≥ t0,

(3.4)

where

R(q) ,

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 , q ∈ D,

(3.5)

u5, u1 : [t0,∞) → R denote the components of the forces produced by the propellers

along the x(·) and z(·) axes, respectively, and rC : [t0,∞)→ R3 denotes the position

of the vehicle’s center of mass with respect to the reference point A(·); see Figure 3.1.

Lastly, proceeding as in [38], one can also prove that the rotational dynamic equation

34

of a tilt-rotor quadcopter, whose propellers are modeled as thin disks, is given by

I(t)ω̇(q(t), q̇(t)) +mr×C (t)RT(q(t))v̇IA(t)

=

u2(t)

u3(t)

u4(t)

− ω
×(q(t), q̇(t))I(t)ω(q(t), q̇(t))− İ(t)ω(q(t), q̇(t))

− ω×(q(t), q̇(t))
4∑
i=1

IPi
(t)ωPi

(t)−
4∑
i=1

[
IPi

(t)ω̇Pi
(t) + ω×Pi

(t)IPi
(t)ωPi

(t)
]

+ r×C (t)Fg(q(t)), ω(t0) = ω0, t ≥ t0,

(3.6)

where [u2, u3, u4]T : [t0,∞) → R3 denotes the moment of the force produced by the

propellers, Fg(q) = RT(q)[0, 0,−mg]T, q ∈ D, the matrix function

I(t) , −
∫
V r
×
mA(t)r×mA(t)dm, t ≥ t0, denotes the inertia matrix of the vehicle with

respect to the reference point A(·), V ⊂ R3 denotes a volume containing the quad-

copter, rmA : [t0,∞) → V denotes the position of an infinitesimal mass dm with

respect to the reference point A(·), IPi
(t) , −

∫
Pi
r×mA(t)r×mA(t)dm denotes the inertia

matrix of the ith propeller, i = 1, . . . , 4, with respect to the reference point A(·),

and Pi ⊂ R3, i = 1, . . . , 4, denotes a volume containing exclusively the ith propeller.

The inertia matrix I(·) is considered as a function of time because the payload is not

rigidly connected to the vehicle’s frame. The inertia matrix IPi
(·) is considered as a

function of time, since the propellers’ spin axes’ tilt angles vary in time.

The translational dynamic equation (3.4) and the rotational dynamic equation

35

(3.6) are equivalent to

M(t, q(t))

 v̇IA(t)

ω̇(q(t), q̇(t))

 =

fdyn,tran(t, q(t), q̇(t))

fdyn,rot(t, q(t), q̇(t))

+ Ĝ(q(t))u(t),

vIA(t0)

ω(t0)

 =

vIA,0
ω0

 , t ≥ t0,

(3.7)

where

u = [u5, u1, . . . , u4]T (3.8)

denotes the control input,

M(t, q) ,

 m13 −mR(q)r×C (t)

mr×C (t)RT(q) I(t)

 , (t, q) ∈ [t0,∞)×D, (3.9)

denotes the generalized mass matrix,

fdyn,tran(t, q, q̇) , [0, 0,−mg]T −mR(q)
[
r̈C(t) + 2ω×(q, q̇)ṙC(t) + ω×(q, q̇)ω×(q, q̇)rC(t)

]
,

(3.10)

fdyn,rot(t, q, q̇) , −ω×(q, q̇)I(t)ω(q, q̇)− İ(t)ω(q, q̇)−
4∑
i=1

[
IPi

(t)ω̇Pi
(t) + ω×Pi

(t)IPi
(t)ωPi

(t)
]

− ω×(q, q̇)
4∑
i=1

IPi
(t)ωPi

(t) + r×C (t)Fg(q), (3.11)

36

and

Ĝ(q) =

R(q)

1 0

0 0

0 1

 03×3

03×2 13

. (3.12)

In this paper, we refer to (3.3) and (3.7) as the quadcopter’s equations of motion.

3.3. Analysis of Equations of Motion

In the following section, the propellers’ angular velocities ωPi
(·), i = 1, . . . , 4,

and the quadcopter’s inertia matrix I(·) are modeled as functions of the propellers’

angular position Ωi(·) and tilt angles αi(·). The invertibility of the generalized mass

matrixM(·, ·) is also analyzed. For the statement of the results in this section, define

the rotation matrix

R2(α) ,

cosα 0 sinα

0 1 0

− sinα 0 cosα

 , α ∈ R. (3.13)

Consider a tilt-rotor quadcopter, let Ωi : [t0,∞) → R, i = 1, . . . 4, denote the

angular displacement of ith propeller about its spin axis, and let αi : [t0,∞) → R

denote the tilt angle of the ith spin axis. Then, the propeller’s angular velocity with

37

respect to the reference frame J(·) is given by

ωPi
(t) = R2(αi(t))

0

0

Ω̇i(t)

+

0

α̇i(t)

0

×
0

0

Ωi(t)

 , i = 1, . . . , 4, t ≥ t0,

(3.14)

where R2(·) is given by (3.13), and the propeller’s angular acceleration is given by

ω̇Pi
(t) = R2(αi(t))

0

0

Ω̈i(t)

+ 2R2(αi(t))

0

α̇i(t)

0

×
0

0

Ω̇i(t)

+R2(αi(t))

0

α̇i(t)

0

×
0

α̇i(t)

0

×

+

0

α̈i(t)

0

×

0

0

Ωi(t)

 . (3.15)

Since the angular displacement of the ith propeller about its spin axis is captured

by [0, 0,Ωi(·)]T, i = 1, . . . , 4, and the angular displacement of the ith spin axis with

respect to the z(·) axis is captured by [0, αi(·), 0]T, (3.14) directly follows from The-

orem 1.3 of [37]. Since the angular acceleration is the time derivative of the angular

velocity [37, Th. 1.10] and, as shown by [39, p. 366],

Ṙ2(αi(t)) = R2(αi(t))
(

[0, α̇i(t), 0]T
)×

, i = 1, . . . , 4, t ≥ t0, (3.16)

38

equation (3.15) directly follows from (3.14). �

The next result characterizes both the inertia matrix I(·) of a tilt-rotor quadcopter

and its time derivative, which appear in (3.6). For the statement of this result, let

Iquad : [t0,∞) → R3×3 denote the inertia matrix of the quadcopter, excluding its

propellers, with respect to A(·). This matrix is modeled as a function of time to

account for payloads that are not rigidly connected to the vehicle’s frame. Each

propeller is modeled as a thin disk of mass mprop > 0, radius ρprop > 0, and inertia

matrix [40, p. 102]

Idisk = mprop

ρ2
prop

4

1 0 0

0 1 0

0 0 2

 . (3.17)

The matrix Idisk is computed with respect to a principal reference frame that is

fixed with the disk and rotated of an angle αi(·), i = 1, . . . , 4, with respect to the

z(·) axis. The matrix function R2(αi(t))IdiskR
T
2 (αi(t)), t ≥ t0, captures the inertia

matrix of the disk in the reference frame J(·), where R2(·) is given by (3.13) [39,

p. 337]. Thus, assuming that the propellers are centered at rprop,1 = [Lx, Ly, Lz]
T,

rprop,2 = [−Lx, Ly, Lz]T, rprop,3 = [−Lx,−Ly, Lz]T, and rprop,4 = [Lx,−Ly, Lz]T with

respect to the reference point A(·), where Lx, Ly, Lz ≥ 0 and LxLy > 0, it follows

from the parallel axis theorem [41, p. 167] that the inertia matrix of ith propeller is

given by

IPi
(t) = R2(αi(t))IdiskR

T
2 (αi(t)) +mpropr

T
prop,irprop,i13 −mproprprop,ir

T
prop,i,

39

i = 1, . . . , 4, t ≥ t0.

(3.18)

The inertia matrix of a tilt-rotor quadcopter is given by

I(t) = Iquad(t) +
4∑
i=1

IPi
(t), t ≥ t0, (3.19)

where IPi
(·) is given by (3.17), and it holds that

İ(t) = İquad(t) +
4∑
i=1

R2(αi(t))

0

α̇i(t)

0

×

Idisk − Idisk

0

α̇i(t)

0

×RT
2 (αi(t)), t ≥ t0,

(3.20)

where Idisk is given by (3.17). Equation (3.19) directly follows from the fact that the

inertia matrix of a compound body with respect to a given reference point is the sum

of the inertia matrices of the body’s components computed with respect to the same

reference point, and (3.20) directly follows from (3.19), (3.18), and (3.16). �

The effect of the propellers’ motion on a conventional quadcopter’s dynamics is

captured in (3.6) by
∑4

i=1 IPi
(·)ω̇Pi

(·), which is known as inertial counter-torque, and

ω×(·)
∑4

i=1 IPi
(·)ωPi

(·), which is known as gyroscopic effect. However,∑4
i=1 ω

×
Pi

(t)IPi
(t)ωPi

(t) = 0, t ≥ t0, for conventional quadcopters [38], since αi(t) = 0,

i = 1, . . . , 4, IPi
(·) is a diagonal matrix, and the propellers’ thrust force is exerted

along the z(·) axis of the reference frame J(·). For the tilt-rotor quadcopter considered

40

in this paper, it holds that ω×Pi
(t)IPi

(t)ωPi
(t) 6≡ 0, t ≥ t0, i = 1, . . . , 4, since αi(t) 6≡ 0

and LxLy > 0 by assumption. To the authors’ best knowledge, existing results on

tilt-rotor quadcopters do not account for the inertial counter-torque, the gyroscopic

effect, or
∑4

i=1 ω
×
Pi

(·)IPi
(·)ωPi

(·). Indeed, this last term is not identified by a specific

name and henceforth, it will be referred to as the tilt-rotor gyroscopic effect. In the

literature on conventional quadcopters, the inertial counter-torque is often neglected,

whereas the gyroscopic effect is rarely ignored [42].

Next, the generalized mass matrix (3.9) is proven to be invertible; recall that gen-

eralized mass matrices are nonnegative-definite [43, p. 58] and hence, not necessarily

invertible. For the next result, let IC(t) , −
∫
V r
×
mC(t)r×mC(t)dm denote the inertia

matrix of the vehicle with respect to the center of mass C(·), where rmC : [t0,∞)→ V

denotes the position of an infinitesimal mass dm with respect to C(·). Note that it

follows from the parallel axis theorem [41, p. 167] that I(t) = IC(t) −mr×C (t)r×C (t),

t ≥ t0, since rmC(t) = rmA(t)− rC(t).

Theorem 3.1 The generalized mass matrix M(t, q), (t, q) ∈ [t0,∞) × D, given by

(3.9) is invertible.

Proof: The matrixM(t, q), (t, q) ∈ [t0,∞)×D, is in the same form as (3.22) with

n1 = 3, n2 = 3, A = m13, B = −mR(q)r×C (t), C = BT, D = I(t). Since m13 is

invertible,

D − CA−1B = I(t) +mr×C (t)RT(q)R(q)r×C (t) = IC(t), (t, q) ∈ [t0,∞)×D,

(3.21)

41

and IC(·) is invertible, the conditions of [30][Prop. 2.8.3] are verified and it follows

from (3.23) that rank (M(t, q)) = 3 + rank (IC(t)) = 6, which proves the result. �

The next result concerns the block matrix

M =

A B

C D

 , (3.22)

where A ∈ Rn1×n1 , B ∈ Rn1×n2 , C ∈ Rn2×n1 , and D ∈ Rn2×n2 .

Theorem 3.2 ([30, Prop. 2.8.3]) Consider the matrix M given by (3.22), and as-

sume that A is invertible. Then,

rank(M) = n1 + rank(D − CA−1B). (3.23)

42

Chapter 4: Control Design for a Tilt-Rotor Quadcopter

4.1. Underactuation of Mechanical Systems

Next, we provide a definition of underactuated mechanical system. To this goal,

consider the second-order differential equation

q̈(t) = f(t, q(t), q̇(t)) +G(t, q(t))u(t), q(t0) = q0, q̇(t0) = qd,0, t ≥ t0,

(4.1)

where q(t) ∈ D ⊂ Rn denotes the vector of independent generalized coordinates [41,

Ch. 2], u(t) ∈ Rm denotes the control input, f : [t0,∞) × D × Rn → Rn, G :

[t0,∞) × D → Rn×m, both f(·, ·, ·) and G(·, ·) are continuous in their arguments,

f(t, ·, ·) is locally Lipschitz continuous in q and q̇ uniformly in t in compact subsets

of [0,∞), and G(t, ·) is locally Lipschitz continuous in q uniformly in t in compact

subsets of [0,∞). Recall that all mechanical systems can be expressed in the same

form as (4.1); for details, see [44].

Definition 4.1 ([18, Def. 2.9]) Consider the nonlinear dynamical system (4.1). If

rank(G(t, q)) = n, (t, q) ∈ [t0,∞)×D, then (4.1) is fully actuated with respect to the

the vector of independent generalized coordinates q(·) and the control input u(·). Al-

ternatively, if rank(G(t, q)) < n, (t, q) ∈ [t0,∞)×D, then (4.1) is underactuated with

respect to the the vector of independent generalized coordinates q(·) and the control

input u(·).

43

4.2. Control Strategy for Tilt-Rotor Quadcopters

In this section, the robust adaptive control law presented in Section 2.3 is applied

to design control laws for tilt-rotor quadcopters, and compute the thrust force each

propeller must produce to realize the desired control inputs. In order to design control

laws for tilt-rotor quadcopters, it is essential to determine whether the vehicle is

underactuated and define a suitable control strategy accordingly. To this goal, note

that the equations of motion (3.3) and (3.7) of a tilt-rotor quadcopter can be expressed

in the same form as (4.1) with n = 6, m = 5, q(·) given by (3.1), u(·) given by (3.8),

f(t, q, q̇) =

13 0

0 Γ(q)

M−1(t, q)

fdyn,tran(t, q, q̇)

fdyn,rot(t, q, q̇)

+

 03×1

Γ̇(q)ω(q, q̇)

 ,
(t, q, q̇) ∈ [t0,∞)×D × Rn,

(4.2)

G(t, q) =

13 0

0 Γ(q)

M−1(t, q)Ĝ(q), (4.3)

q0 =
[(
rIA,0
)T
, φ0, θ0, ψ0

]T

, (4.4)

qd,0 =
[(
vIA,0

)T
, ωT

0 ΓT(q0)
]T

, (4.5)

and Ĝ(·) is given by (3.12).

Theorem 4.1 A mechanical system, whose equations of motion are given by (4.1)

with f(·, ·, ·), G(·, ·), q0, and qd,0 given by (4.2)–(4.5), is underactuated with respect

to the vector of independent generalized coordinates (3.1) and the control input (3.8).

44

Proof: The result follows from Definition 4.1. Specifically, since Γ(q), q ∈ D, is

invertible it holds that rank

13 0

0 Γ(q)

 = 6. It follows from Theorem 3.1 that

rank (M−1(t, q)) = 6, (t, q) ∈ [t0,∞)×D, and, since
∥∥R(q)[1, 0, 0]T

∥∥ =
∥∥R(q)[0, 0, 1]T

∥∥
= 1, it holds that rank

(
Ĝ(t, q)

)
= 5. Therefore, it follows from Corollary 2.5.10 of

[30] that rank
(
G(t, q)

)
= 5, and the result follows from Definition 4.1. �

Remark 4.1 Some authors consider
[
uT(·), α1(·), . . . , α4(·)

]T
as the control input

for a tilt-rotor quadcopter and, since the number of control inputs is larger than the

number of independent generalized coordinates, they consider tilt-rotor quadcopters

are overactuated vehicles. However, considering [uT(·), α1(·), . . . , α4(·)]T as the con-

trol input, it is impossible to reduce the equations of motion (3.3) and (3.7) to the

same form as (4.1) and verify whether the vehicle is underactuated, fully actuated, or

overactuated employing to the rank condition provided in Definition 4.1.

The next theorem proves that the dynamical system

q̈(t) = Uf(t, q(t), q̇(t)) + UG(t, q(t))u(t),
[
qT(t0), q̇

T
(t0)
]T

= U
[
qT

0 , q
T
d,0

]T
, t ≥ t0,

(4.6)

where q(t) ,
[(
rIA(t)

)T
, θ(t), ψ(t)

]T

, U ,

 13 03×1 03×2

02×3 02×1 12

 f(·, ·, ·), G(·, ·), q0, and

qd,0 are given by (4.2)–(4.5), is fully actuated with respect to the vector of independent

generalized coordinates q(·) and the control input u(·) and hence, it is possible to

design control inputs u(·) to steer q(·) =
[(
rIA(·)

)T
, θ(·), ψ(·)

]T

at will.

45

Theorem 4.2 The dynamical system (4.6) is fully actuated with respect to q(·) and

u(·).

Proof: The result follows by proceeding as in the proof of Theorem 4.1. �

In practice, Theorem 4.2 proves that there exist control inputs that allow to steer

at will the position, the pitch angle, and the yaw angle of a tilt-rotor quadcopter

with H-configuration. Proceeding as in Theorems 4.1 and 4.2, one can prove that

the vehicle’s rotational dynamics is fully actuated with respect to the independent

generalized coordinates (φ, θ, ψ) ∈ [0, 2π) ×
(
−π

2
, π

2

)
× [0, 2π) and the control in-

put [u2, u3, u4]T ∈ R3. Therefore, the following control strategy is proposed. The

continuously differentiable reference trajectory rIref : [t0,∞) → R3, the continuously

differentiable reference pitch angle θref : [t0,∞)→
(
−π

2
, π

2

)
, and the continuously dif-

ferentiable reference yaw angle ψref : [t0,∞)→ [0, 2π) are considered as user-defined.

The translational equivalent control input vtran : [t0,∞) → R3 and the reference roll

angle φref(·) are defined as

vtran(t) , R(qref(t)) [u5(t), 0, u1(t)]T , t ≥ t0, (4.7)

φref(t) , − tan−1 ṽtran,2(t)

ṽtran,3(t)
, (4.8)

where R(·) is given by (3.5),

qref ,
[(
rIref

)T
, φref , θref , ψref

]T

(4.9)

46

denotes the vector of reference generalized coordinates,

tan−1 α

β
,

tan−1 α

β
, β > 0,

tan−1 α

β
+ π, α ≥ 0, β < 0,

tan−1 α

β
− π, α < 0, β < 0,

π/2, α > 0, β = 0,

−π/2, α < 0, β = 0,

0, α = 0, β = 0,

(4.10)

denotes the signed inverse tangent function, and

ṽtran,1(t)

ṽtran,2(t)

ṽtran,3(t)

 =

cos θref(t) 0 − sin θref(t)

0 1 0

sin θref(t) 0 cos θref(t)

cosψref(t) sinψref(t) 0

− sinψref(t) cosψref(t) 0

0 0 1

 vtran(t).

(4.11)

In this case, it follows from (4.2), (4.3), and (4.7) that the equations of motion (3.3)

and (3.7) are equivalent to

M(t, q(t))

13 0

0 Γ−1(q(t))

 q̈(t) =

fdyn,tran(t, q(t), q̇(t))

fdyn,rot(t, q(t), q̇(t))

+
[
Ĝ(q(t))− Ĝ(qref(t))

]
u(t)

+M(t, q(t))

 03×1

Γ−1(q(t))Γ̇(q(t))ω(q(t), q̇(t))

+ v(t),

[
qT(t0), q̇T(t0)

]T
=
[
qT

0 , q
T
d,0

]T
, t ≥ t0,

(4.12)

47

and the equivalent control input

v(t) , [vT
tran(t), u2(t), u3(t), u4(t)]T (4.13)

is designed so that q(·) tracks qref(·) within user-defined bounds. In this control strat-

egy, qref(·) captures the state of an ideal quadcopter, and v(·) must be computed

so that the actual vehicle, whose dynamics captured by q(·), mimics qref(·). Equa-

tion (4.8) captures a constraint for the vector of reference generalized coordinates

and implies that an ideal quadcopter, whose state qref(·) must be tracked by q(·), is

underactuated.

4.3. Control Laws for Tilt-Rotor Quadcopters

In this section, adaptive control laws are provided for the equivalent control input

v(·) given by (4.13) and hence, for the control input u(·) given by (3.8), so that the

vector of independent generalized coordinates q(·) given by (3.1) tracks the vector

of reference generalized coordinates qref(·) given by (4.9) within user-defined bounds

on the trajectory tracking error, despite uncertainties in the dynamical model and

external disturbances. Furthermore, the adaptive control laws employed in this sec-

tion allow to enforce user-defined constraints on the adaptive gains. In particular,

the equations of motion of a tilt-rotor quadcopter given by (4.12) are first feedback-

linearized so that the trajectory tracking error dynamics is reduced to the same form

as (2.49), and then the adaptive law presented in Theorem 2.3 is applied to a virtual

control input introduced in the feedback linearization process. To feedback linearize

48

(4.12), the following assumption is needed.

Assumption 4.1 Consider a tilt-rotor quadcopter, whose equations of motion are

given by (4.12). The quadcopter’s mass m, each propeller’s mass mprop, the position

of the center of the ith propeller rprop,i, i = 1, . . . , 4, the angular displacement of the

ith propeller about its spin axis Ωi(·), and the tilt angle αi(·) are known at all time.

Assumption 4.1 is verified in numerous problems of practical interest. Indeed, the

mass of a quadcopter and its payload can be readily determined, the reference point

A(·) can be conveniently chosen so that the position of the center of each propeller

with respect to A(·) is known, and both Ωi(·), i = 1, . . . , 4, and αi(·) can be either

measured or deduced, as shown in Section 4.4 below. However, if the payload is

not rigidly connected to the vehicle’s frame, then the position of the center of mass

and its inertia matrix are unknown. Assumption 4.1 involves neither rC(·), that

is, the position of the center of mass with respect to the reference point A(·), nor

Iquad(·), that is, and the inertia matrix of the quadcopter, excluding its propellers.

For this formulation, consider both rC(·) and Iquad(·) as unknown, and define the

twice continuously differentiable functions rC : [t0,∞)→ R3 and ∆rC : [t0,∞)→ R3

so that

rC(t) = rC(t) + ∆rC(t), t ≥ t0. (4.14)

The function rC(·) can be accurately estimated using analytical models of vehicle such

that it is considered as known, whereas ∆rC(·) is unknown. In a similar manner, define

49

the continuously differentiable and symmetric matrix functions Iquad : [t0,∞)→ R3×3

and ∆I : [t0,∞) → R3×3 with Iquad(·) positive-definite such that (3.19) and (3.20)

can be expressed as

I(t) = I(t) + ∆I(t), t ≥ t0, (4.15)

İ(t) = İ(t) + ∆İ(t), (4.16)

respectively, where

I(t) , Iquad(t) +
4∑
i=1

IPi
(t), (4.17)

İ(t) = İquad(t) +
4∑
i=1

R2(αi(t))

0

α̇i(t)

0

×

Idisk − Idisk

0

α̇i(t)

0

×RT
2 (αi(t)). (4.18)

The matrix function Iquad(·) denotes an estimate of the quadcopter’s inertia matrix,

is considered as known, and is deduced using, for example, analytical models of the

vehicle’s configuration. The ith propeller’s inertia matrix IPi
(·), i = 1, . . . , 4, given

by (3.18) is known, since each propeller’s mass mprop, the propeller’s location rprop,i,

and the tilt angle αi(·) are known according to Assumption 4.1. The matrix ∆I(·) is

unknown.

To feedback linearize (4.12), define e(t) ,
[
qT(t)− qT

ref(t), q̇
T(t)− q̇T

ref(t)
]T

, t ≥ t0,

50

where q(·) is given by (3.1) and qref(·) is given by (4.9), define

M(t, q) ,

 m13 −mR(q)r×C(t)

mr×C(t)RT(q) I(t)

 , (t, q) ∈ [t0,∞)×D, (4.19)

∆M(t, q) ,

 03×3 −mR(q)∆r×C (t)

m∆r×C (t)RT(q) ∆I(t)

 , (4.20)

so that M(t, q) =M(t, q) + ∆M(t, q) and M(·, ·) is invertible, define

fdyn,tran(t, q, q̇) , [0, 0,−mg]T (4.21)

−mR(q)
[
r̈C(t) + 2ω×(q, q̇)ṙC(t) + ω×(q, q̇)ω×(q, q̇)rC(t)

]
,

∆fdyn,tran(t, q, q̇) , −mR(q)
[
∆r̈C(t) + 2ω×(q, q̇)∆ṙC(t) + ω×(q, q̇)ω×(q, q̇)∆rC(t)

]
,

(4.22)

fdyn,rot(t, q, q̇) , −ω×(q, q̇)I(t)ω(q, q̇)− İ(t)ω(q, q̇)− ω×(q, q̇)
4∑
i=1

IPi
(t)ωPi

(t)

−
4∑
i=1

[
IPi

(t)ω̇Pi
(t) + ω×Pi

(t)IPi
(t)ωPi

(t)
]

+ r×C(t)Fg(q), (4.23)

∆fdyn,rot(t, q, q̇) , −ω×(q, q̇)∆I(t)ω(q, q̇)−∆İ(t)ω(q, q̇) + ∆r×CFg(q), (4.24)

so that

fdyn,tran(t, q, q̇) = fdyn,tran(t, q, q̇) + ∆fdyn,tran(t, q, q̇), (4.25)

fdyn,rot(t, q, q̇) = fdyn,rot(t, q, q̇) + ∆fdyn,rot(t, q, q̇), (4.26)

51

and define

β(t, q, qref , v2) ,M(t, q)

 13 03×3

03×3 Γ−1(q)

(
q̈ref −

 03×1

Γ̇(q)ω(q, q̇)

−KP [q(t)− qref(t)]

−KD [q̇ − q̇ref] + w

)
−

fdyn,tran(t, q, q̇)

fdyn,rot(t, q, q̇)

 ,
(4.27)

where w ∈ R6 and the matrices KP and KD ∈ R6×6 are symmetric and positive-

definite.

If v(t) = β(t, q(t), qref(t), w(t)), t ≥ t0, then (4.12) is feedback linearized and the

trajectory tracking error dynamics is given by

ė(t) =

 06×6 16

−KP −KD

 e(t) +

06×6

16

w(t) + ξ̂(t),

e(t0) =

 q0

qd,0

−
qref(t0)

q̇ref(t0)

 , t ≥ t0, (4.28)

where w(t) ∈ R6 denotes the virtual control input, ξ̂(t) =
[
01×6, ξ̂

T
dyn(t)

]T

∈ R12, and

ξ̂dyn(t) =

 13 03×3

03×3 Γ(q(t))

M−1
(t, q)

∆fdyn,tran(t, q, q̇)

∆fdyn,rot(t, q, q̇)

+
[
Ĝ(q(t))− Ĝ(qref(t))

]
u(t)

−∆M(t, q)

 13 03×3

03×3 Γ−1(q(t))

 q̈(t)
 . (4.29)

52

In order to account for matched uncertainties on the trajectory tracking error dy-

namics due to systematic errors in the location of the center of mass rC(·) and the

inertia matrix I(·), (4.28) is modified so that the trajectory tracking error dynamics

is captured by

ė(t) =

 06×6 16

−KP −KD

 e(t) +

06×6

16

 [w(t) + ΘTΦ(q(t), q̇(t))
]

+ ξ̂(t),

e(t0) =

 q0

qd,0

−
qref(t0)

q̇ref(t0)

 , t ≥ t0,

(4.30)

where ΘT =

Θtran 03×30

03×9 Θrot

, Φ(q, q̇) =
[
ΦT

tran(q, q̇),ΦT
rot(q, q̇)

]T
, (q, q̇) ∈ D × R6,

Θtran = MW (rC , 3), (4.31)

Θrot =
[
MW

(
WM(I), 3

)
, r
×
C

]
, (4.32)

Φtran(q, q̇) = −mWM(R(q)ω×(q, q̇)ω×(q, q̇)), (4.33)

Φrot(q, q̇) =
[
−WT

M

(
ω×(q, q̇)MW (ω(q, q̇))

)
, FT

g (q)
]T
, (4.34)

rC ∈ R3 and I ∈ R3×3 are unknown and denote systematic errors in the estima-

tion of the aircraft position of the center of mass and inertia matrix, respectively,

MW (·, ·) is given by (1.4), and WM(·) is given by (1.5) so that ΘtranΦtran(q, q̇) =

−mR(q)ω×(q, q̇)ω×(q, q̇)rC and ΘrotΦrot(q, q̇) = −ω×(q, q̇)Iω(q, q̇) + r
×
CFg(q).

53

The next theorem is the main result of this section and applies the adaptive law

(2.56) to regulate the equations of motion (4.12) of a tilt-rotor quadcopter, whose

inertial properties are partly unknown, and bound both the trajectory tracking error

e(·) and the estimated adaptive gains’ error ∆K(·) within a user-defined constraint

set. For the statement of the next result, note that if

w(t) = ∆K(t)π(t), t ≥ t0, (4.35)

where π(t) =
[
qT(t), q̇T(t), 01×6,−ΦT(q(t), q̇(t))

]T
, ∆K(t) = K̂(t)−Ke, K̂ : [t0,∞)→

R6×57, Ke = −
[
KP, KD, 06×6,Θ

T
e

]
, and Θe ∈ R39×6 denotes an estimate of Θ, that is,

‖Θe −Θ‖ ≤ ε with ε ≥ 0 arbitrarily small, then (4.30) is in the same form as (2.49)

with n = 12, m = 6, N = 39, ∆̃K(t) = ∆K(t) +Ke−K, K = −
[
KP, KD, 06×6,Θ

T
]
,

ξ(t) = ξ̂(t) +

 06×1

(Θ−Θe)
T Φ(q(t), q̇(t))

 , (4.36)

x0 =
[
qT

0 , q
T
d,0

]T
, Aref =

 06×6 16

−KP −KD

, and B =

06×6

16

. Furthermore, the matching

conditions (2.38) and (2.39) are verified with A =

06×6 16

06×6 06×6

, Bref = 012×6, KT
x =

− [KP, KD], and Kr = 06×6.

Theorem 4.3 Consider the equations of motion of a tilt-rotor quadcopter given by

(4.12) with v(t) = β(t, q(t), qref(t), w(t)), t ≥ t0, where β(·, ·, ·, ·) is given by (4.27) and

54

w(·) is given by (4.35). Furthermore, consider the trajectory tracking error dynamics

is given by (4.30) and the constraint set given by (2.42). If K̂(·) verifies (2.56)

for some σ > 0 and p ∈ N and the conditions of Theorem 2.3 are verified, then

(e(t),∆K(t)) ∈ C̊, t ≥ t0.

Proof: The result is a direct consequence of Theorem 2.3 applied to the trajectory

tracking error dynamics (4.30) with w(·) given by (4.35). �

4.4. Realization of Control Inputs

Once the virtual control input v(·) has been computed applying Theorem 4.3 and

the control input u(·) has been computed applying (4.7) and (4.13), the forces and

moments needed for q(·) to track qref(·) must be realized by generating the appropriate

thrust forces Ti(·), i = 1, . . . , 4 and tilting the propellers’ axes by αi(·). To achieve

this, the thrust force generated by the ith propeller is modeled as

Ti(t) = kΩ̇2
i (t), i = 1, . . . , 4, t ≥ t0, (4.37)

where k > 0 [45], [46, Ch. 2]. The moment of the aerodynamic drag induced by the

ith propeller is modeled as

Di(t) = kTTi(t), i = 1, . . . , 4, (4.38)

where kT > 0 [45]. Hence, assuming that adjacent propellers spin in opposite direc-

tions, it holds that

u(t) = MT (t), t ≥ t0, (4.39)

55

where T (t) , [T1,c(t), T1,s(t), T2,c(t), T2,s(t), T3,c(t), T3,s(t), T4,c(t), T4,s(t)]
T denotes the

vector of thrust forces, Ti,c(t) , Ti(t) cosαi(t), i = 1, . . . , 4, denotes the component of

the ith propeller’s thrust force along the z(·) axis of the reference frame J, Ti,s(t) ,

Ti(t) sinαi(t) denotes the component of the ith propeller’s thrust force along the x(·)

axis, and

M ,

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

Ly kT Ly −kT −Ly kT −Ly −kT

−Lx Lz Lx Lz Lx Lz −Lx Lz

kT −Ly −kT −Ly kT Ly −kT Ly

. (4.40)

Since LxLy > 0 and kT > 0 by assumption, the matrix M given by (4.40) is

full-rank and the Moore-Penrose inverse of M is given by M+ = MT
[
MMT

]−1
[30,

Prop. 6.1.5] which is computed as

M+ =
1

4

Lz

Lx
1 Ly

L2
y+k2T

−1
Lx

kT
L2
y+k2T

L2
x+L2

z

L2
x
− L2

z

Lx
0 kT

L2
y+k2T

0 −Ly

L2
y+k2T

−Lz

Lx
1 Ly

L2
y+k2T

1
Lx

−kT
L2
y+k2T

L2
x+L2

z

L2
x
− L2

z

Lx
0 −kT

L2
y+k2T

0 −Ly

L2
y+k2T

−Lz

Lx
1 −Ly

L2
y+k2T

1
Lx

kT
L2
y+k2T

L2
x+L2

z

L2
x
− L2

z

Lx
0 kT

L2
y+k2T

0 Ly

L2
y+k2T

Lz

Lx
1 −Ly

L2
y+k2T

−1
Lx

−kT
L2
y+k2T

L2
x+L2

z

L2
x
− L2

z

Lx
0 −kT

L2
y+k2T

0 Ly

L2
y+k2T

.

(4.41)

56

Thus, given u : [t0,∞)→ R5, the vector of thrust forces are computed as

T ∗(t) = M+u(t), t ≥ t0, (4.42)

and the propellers’ tilt angles are computed as

αi(t) , tan−1
T ∗i,s(t)

T ∗i,c(t)
, i = 1, . . . , 4, (4.43)

where the signed inverse tangent function tan−1(·) is given by (4.10). It is worthwhile

to recall that, given the control input u(·),

T ∗(t) = arg min ‖MT (t)− u(t)‖2, t ≥ t0, (4.44)

and hence, (4.42) captures the vector of thrust forces that most closely realizes some

u(·) [47, p. 153], [30, Prop. 6.1.5].

For conventional quadcopters, it holds that αi = 0, i = 1, . . . , 4, and Ti(t) = Ti,c(t),

i = 1, . . . , 4, t ≥ t0, Ti,s(t) = 0. Hence, it follows from (4.39) that u5(t) = 0, (4.40)

reduces to

M =

1 1 1 1

Ly Ly −Ly −Ly

−Lx Lx Lx −Lx

kT −kT kT −kT

, (4.45)

whose determinant is det(M) = 16LxLykT , which is full-rank since both LxLy > 0

57

and kT > 0 by assumption, and (4.42) reduces to

T ∗1 (t)

T ∗2 (t)

T ∗3 (t)

T ∗4 (t)

=

1

4

1 L−1
y −L−1

x k−1
T

1 L−1
y L−1

x −k−1
T

1 −L−1
y L−1

x k−1
T

1 −L−1
y −L−1

x −k−1
T

u1(t)

u2(t)

u3(t)

u4(t)

; (4.46)

for details, see [48].

58

Chapter 5: Experiment Design and Results

This chapter starts by describing the components on the tilt-rotor shown in Fig-

ure 1.2 and used to test the robust adaptive control technique in Chapter 2 and the

control strategy presented in Chapter 4. Next, a thorough description of the labo-

ratory and the setup for the experiment is given including descriptions of all of the

communications to and from the vehicle and the motion capture system. Finally, the

results of flight experiments are provided and discussed.

5.1. Tilt-rotor Components and Parameters

5.1.1 Frame and Body

Figure 5.1: Computer Aided Design (CAD) model of the main frame of the tilt-rotor
quadcopter

59

The main frame of the tilt-rotor, depicted as a SolidWorks rendering in Figure 5.1,

was entirely custom designed by the Army Research Lab (ARL). The main supports

are 10mm diameter braided carbon fiber rods, which are very strong and lightweight.

All of the connector pieces and the main plates, which hold all of the onboard elec-

tronics, are 3D printed plastic parts. While these parts are not as sturdy as the

carbon fiber, they can be rapidly replaced due to being 3D printable. This entire

frame is 0.50m by 0.35m long and weighs in at approximately 0.65kg.

5.1.2 Pixhawk Autopilot and Odroid XU4

For the experiments performed on this research, it was desirable to have an au-

topilot which could act as both the inertial measurement unit (IMU) and as a backup

flight controller as a fail safe while tuning the new adaptive law. The Pixhawk au-

topilot [49], developed by 3D Robotics, is the solution to this issue. The main chip is

a 180MHz single core chip which contains a real-time operating system. There are

several fully integrated sensors including a 16 bit gyroscope, a 14 bit accelerometer

and magnetometer, and a barometer. The Pixhawk also contains 5 serial port con-

nections for communication and a Spektrum DSM compatible radio input. Moreover,

it contains 8 pulse-width modulation (PWM) out ports for doing motor control as

well as 4 additional auxiliary ports for controlling servos.

The flight stack code that is currently used on this Pixhawk is the PX4 stack,

version 1.6.5. The PX4 stack has the capability of blending all of the sensor data

using an Extended Kalman Filter (EKF), and it allows for switching the position

60

Figure 5.2: The Pixhawk Autopilot used on the platform.

inputs from a global positioning system (GPS) to inputs from the Vicon Motion

Capture System located in the lab. This flight stack also has its own control code,

running proportional-integral-derivative (PID) control.

61

φ, θ, ψ
p, q, r

u1, u2, u3, u4

x, y, z
ẋ, ẏ, ż

User-interface

Vicon

ODroid XU4 Pixhawk

Figure 5.3: The current setup for Odroid, Pixhawk, and Vicon communication. Vicon

cameras deduce the position and velocity of the drone and a ground station computer

streams that data over WiFi to the Odroid onboard. The Odroid receives the attitude

data from the Pixhawk’s IMU and computes the control inputs.

In addition to the Pixhawk, an Odroid XU4 is also used as part of the autopilot

structure. The Odroid is a single board computer with a 2Ghz processor and 64GB

embedded multi-media chip (eMMc) flash storage. For this autopilot, the Odroid

receives the attitude of the vehicle courtesy of the Pixhawk’s EKF filter which is

transmitted to the Odroid via serial communication. The global position and velocity

of the drone is deduced using a Vicon Motion Capture System and is transmitted from

62

a ground station to the Odroid via a dedicated UDP stream over WIFI. With the

full state data, the Odroid then runs the control algorithm as described in 4 and

transmits the final control signals to both the mux board and Pixhawk for actuation.

For details on how to set up the Odroid for the current flight architecture, see A.1.

5.1.3 Propulsion System

Figure 5.4: The Castle DMR 30-40 electronic speed controllers (ESC’s) used for this

vehicle.

The propulsion system for small multi-rotor vehicles usually consists of three main

components, namely electronic speed controllers (ESCs), brushless DC motors, and

propellers. The ESC’s chosen for this vehicle are the Castle DMR 30-40 [50] as shown

in Figure 5.4. These specific ESCs can handle up to 40A of current and up to 25.2

Volts, or the equivalent of a 6s Lithium Polymer (LiPo) battery. Both are well above

what is run on this vehicle as the current configuration only includes a 4 cell 14.8V

battery, and the system rarely pulls above 30A. This means that if more thrust is

63

needed on this vehicle, the ESCs won’t be the limiting factor.

Figure 5.5: Tiger-Motor MN2212 920KV motors.

Motors and propellers are almost always chosen in tandem for small UAVs. In this

case, the vehicle was estimated to weigh approximately 2.0kg, and a typical design

specification for small UAVs is to require at least a 1.5-1 thrust to weight ratio for the

vehicle. This would require at least 3.5kg of thrust, and for additional safety margin,

there should be a small buffer. For this reason, the chosen motors were the Tiger

Motor MN2212 940KV motors [51], see fig. 5.5, paired with the T-Motor 9×3 carbon

fiber propellers [52]. The thrust of this motor/propeller combination was estimated

using manufacturer provided experimental data. The results of plotting the provided

data for 1 motor/propeller shows a maximum thrust of just under 9N . This gives

an estimated total thrust of the vehicle of 35N or 3.6kg for a thrust to weight ratio

of 1.8. In addition, for computing the desired angular velocity of the propeller as in

eqn. (4.37), the thrust coefficient should be known. Using a linear fit as shown in fig.

5.6, the thrust coefficient of this combination was found to be k = 1.73e−7N/Hz2.

64

1.5 2 2.5 3 3.5 4 4.5 5 5.5

107

2

4

6

8

10

Figure 5.6: The thrust curve fitting plot showing the thrust coefficient, k, was found

using bench top thrust data provided by the manufacturer of the motors.

5.1.4 Battery

To power the vehicle, the chosen battery was the MaxAmps 14.8V 3250mAh

version. It is common nowadays for small UAVs to run anything from 3-6 cell LiPo

batteries, but for this case the 4 cell was chosen. The reason for this is mutlifold.

Firstly, the motors chosen are not capable of running on the higher voltage of 6s

batteries, so they would have to be upgraded to do so. In addition, the chosen

battery weighs approximately 0.327kg whereas a comparable 6s battery weighs twice

as much at 0.692kg, and while cost is not a limiting factor, the 6s battery costs three

times more and would provide very little additional flight time.

65

Figure 5.7: The 14.8V 3250mAh battery from MaxAmps chosen for this setup.

5.1.5 Servos for Thrust Vectoring

To actuate the motors and propellers, the AX-18A Dynamixel servos are used

[53]. According to the servo’s manual, they have a resolution of less than 1/3 of a

degree, and they have a stall torque of 18.3kg · cm which should be more than enough

for UAV applications. In addition to having a high resolution, these servos also have

a large range having more than 300 degrees of total freedom. This is desired since

one of the future desired experiments is to fly the vehicle at a 90 degree pitch angle.

Figure 5.8: The AX-18A Dynamixel servos mounted on the tilt-rotor.

There is very little setup required for the Dynamixels. They are pre-calibrated

by the manufacturer, and the user is only thing required to number them correctly

according to Figure 3.1. This operation is performed by using a usb2Dynamixel cable

66

as shown in Figure 5.9 and downloading the Dynamixel Wizard (link). In particular,

after having plugged the cable into the Dynamixels and a USB port on a computer,

load the Dynamixel Wizard, and then change the “ID Number” of the Dynamixel to

the same number as the motor it is connected to in the vehicle diagram.

Figure 5.9: The usb2Dynamixel cable that allows for connecting the Dynamixel servos

to a USB port on a computer.

5.1.6 Actuation Selection – Mux and Maestro Boards

Figure 5.10: The mux board used is custom built by the Army Research Lab. It
is used to select whether to use the custom flight controller on the Odroid or the
Pixhawk flight controller for vehicle actuation.

To actuate the vehicle from the custom flight code, a mux and Maestro board are

both used. The control inputs are first sent from the Odroid to the mux board. This

mux board is custom built at ARL, and it takes in desired PWM motor commands

67

from the Pixhawk’s PID controller and the custom MRAC controller on the Odroid

and selects which signals to pass on depending on the state of the auxilliary switch

on the DX9 radio. This way, the user is given the option to choose what control

algorithm to use. Furthermore, the user is given manual control of the vehicle in case

of failures in the autopilot. After the signal passes the mux board, it goes into the

Maestro board, a Mini Maestro 12-Channel USB Servo Controller, which converts

the desired PWM commands into actual PWM signals to be sent to the ESCs. A

diagram depicting this architecture is shown in Figure 5.11.

Odroid XU4

Custom Flight Controller

Pixhawk – PID Controller

Control
Signal

Mux Board Passes only
Desired Control Signals

User selects whether to use Pixhawk
or Odroid as flight controller in Real-
Time using Spektrum DX9 radio

Maestro Board Generates
Desired PWMs for Actuation

Control Signal Generation

Control
Signals

Selection Signal

PWMs

PWMs actuate all 4
propellers and all 4 servos

Figure 5.11: This diagram shows how the mux and maestro boards along with user

inputs from the DSM radio determine which flight controller has control of the vehicle.

68

5.2. Experimental Results

In this section, an experiment is performed to show the ability of the robust

MRAC control algorithm from Section 2.3 using the vehicle described in Section 5.1

to accomplish a challenging mission scenario, while imposing user-defined constraints

on both the trajectory tracking error and the estimated adaptive gain’s error at

all time. This experiment involves the custom-made tilt-rotor quadcopter with H-

configuration connected to a cart by a thin rope (a fishing wire); see Figure 3.1 for a

schematic representation of the test configuration. The aircraft’s mass is 2.0 kg and

the cart’s mass is 6.2 kg so that m = 8.2 kg.

0 5 10 15 20 25 30
-2

-1

0

0 5 10 15 20 25 30

0

0.04

0.08

0 5 10 15 20 25 30

1

1.1

Figure 5.12: This figure shows both the vehicle and reference trajectories for the

experiment.

The inertia matrix of the cart is unknown and the aircraft inertia matrix is esti-

69

0 5 10 15 20 25 30

-6

-4

-2

0

2

4

6

Figure 5.13: This plot shows the pitch angle, θ(·), for the mission. The θ(·) angle
oscillates around the desired point, 0, and never exceeds 6.5 degrees.

mated using a CAD (computer aided design) model so that

Iquad(t) =

0.0208 0.0000 0.0000

0.0000 0.0468 0.0000

0.0000 0.0000 0.0303

 kg ·m2, t ≥ t0. The quadcopter’s propellers are

modeled as thin disks of mass mprop = 0.0057 kg and radius ρprop = 0.1145 m. The

body reference frame is centered at a conveniently located point A(·) so that the

propellers are located at rprop,1 = [−0.1625,−0.1958, 0.0183]T m,

rprop,2 = [0.1625,−0.1958, 0.0183]T m, rprop,3 = [0.1625, 0.1958, 0.0183]T m, and

rprop,4 = [−0.1625, 0.1958, 0.0183]T m, respectively.

The quadcopter’s mission is to hover for t ∈ [0, 7] s, travel two meters in the

negative X axis direction for t ∈ [7, 15] s, hover for t ∈ [15, 22] s, travel one meter

in the positive X axis direction for t ∈ [22, 26] s, and hover for t ∈ [26, 30] s, while

maintaining a constant altitude of one meter and zero pitch angle at all times. The

70

challenges for this mission are multifold. Firstly, for t ∈ [0, 10.1] s, the rope is not

taut and hence, initially the controlled mechanical system consists of the aircraft

only. At t = 10.1 s, the controlled mechanical system’s inertia properties vary almost

instantly, and the control algorithm must produce satisfactory results despite sub-

stantial uncertainties in the location of the center of mass and the overall system’s

inertia matrix introduced by the cart. Moreover, the friction between the cart and

the floor is not modeled. Lastly, the rope is not connected to the tilt-rotor’s center

of mass and hence, when the rope is taut, the cart induces a pitching moment on the

vehicle.

Firstly, one can see in Figure 5.12 that the vehicle was successfully able to track the

desired trajectory despite the unknown and unexpected disturbance of the attached

payload. The vehicle is able to adjust to the new mass and track the moving desired

x position while maintaining altitude within 0.15m and y position within 0.09m. At

the end of the simulation, after 22s, the rope is no longer taut, and it can be seen

that the vehicle still maintains accurate tracking. As seen in Figure 5.13, the vehicle

was able to maintain a very small pitch angle while pulling this very heavy cart along

the floor. The absolute value of the pitch angle never grows larger than 6.5 degrees ,

which is something a standard quadrotor could not do while pulling a cart.

In addition to accurate tracking, the novel control law proposed in this thesis

was able to verify the user-defined constraints at all time. To validate the necessity

of having the constrained version of MRAC, both the classical MRAC presented in

Section 2.1 and the e-modification of MRAC presented in Section 2.2 were used to

perform the identical experiment. Figure 5.15 shows how the constraint function

71

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

Figure 5.14: Plot of the norm of the trajectory tracking error norm, ‖e‖, which shows
that the proposed control law outperforms the classical versions of Model Reference
Adaptive Control.

evolves throughout the mission. It can be seen that only the proposed constrained

version of MRAC is able to verify the constraints for the duration of the mission.

Both the classical and e-modification versions significantly violate the constraints

within seconds of takeoff. In addition, while meeting the constraints, the norm of the

trajectory tracking error of the new control law also proved to be consistently lower

than the classical versions. Figure 5.14 shows how the error evolves throughout the

test, and one can see that the biggest disturbance in the experiment is when the rope

gets taut around 12− 15s. While the constrained MRAC has the best performance,

it is worthwhile to not that the e-modification of MRAC does seem to outperform

the classical version when it comes to maintaining a lower state tracking error.

72

0 5 10 15 20 25 30
-6

-5

-4

-3

-2

-1

0

1
104

Figure 5.15: A plot showing the evolution of the constraint function,
h(eTMe,∆KΓ−1∆KT), throughout the experiment. For the proposed control law,
the constraint function stays positive for the duration of the mission, whereas both
of the classical control techniques violate the constraint and go below 0.

73

Chapter 6: Conclusion

As small unmanned aerial systems start encountering more challenging mission

scenarios, the more important having robust control algorithms becomes. In addition,

it may be even more important to have vehicles that can retain guaranteed margins

on the trajectory tracking error as these systems start performing interactions in close

quarters to humans.

In Chapter 2, a form of adaptive control known as Model Reference Adaptive

Control (MRAC) was introduced starting with classical MRAC. This form of control

has adaptive gains and can acheive good performance when there are small uncertain-

ties in the dynamic model or control input. The second form of MRAC introduced

was Robust MRAC which utilized the σ-modification to retain stability even in the

presence of unmatched uncertainty. In the final section, a novel form of MRAC was

formulated which allowed for user-defined constraints to be imposed on both the tra-

jectory tracking error and the error estimate of the adaptive gains. More importantly,

these constraints can be imposed a priori, or before the system is even active. This

control algorithm was formulated and asymptotic convergence was proven.

In Chapter 3, the equations of motion of a tilt-rotor quadcopter with H-configuration

were developed. This type of vehicle is different from the standard quadcopter in that

not all of the thrust force is in 1 plane. This led to a direct coupling between the

kinematic and rotational equations of motion. In addition, due to the thrust vec-

toring capability of the vehicle, this platform can actuate along one of the position

74

coordinates without having to rotate the body frame along that axis. One of the

key assumptions in this formulation involved the idea that the position of the center

of mass and the vehicle’s matrix of inertia could be considered as unknown. This

allowed for a very challenging test case for the new proposed adaptive control law.

In Chapter 4, the constrained MRAC control law is applied to a tilt-rotor quad-

coptor. After writing the equations of motion in a standard form, it is shown that

this vehicle is underactuated. To this end, an outer loop is designed to regulate the

one uncontrollable degree of freedom for this system, the y(·) position, through ma-

nipulation of the vehicle’s roll angle, φ(·). For the main adaptive law, the regressor

vector is chosen such that it contains the uncertainty in the vehicle’s center of mass.

In Chapter 5, all of the components making up the tilt-rotor quadcopter are

discussed. The autopilot architecture includes having a Pixhawk IMU as well as

an Odroid XU4 for calculating the control outputs. These outputs are then used

to actuate all of the motors as well as the Dynamixel servos which allow for thrust

vectoring. A description of the experimental setup is given where it is shown how

the Vicon Motion Capture space is used to deduce the position and velocity of the

UAV, and the Odroid on the vehicle takes in all of the state data and computes the

desired thrusts and tilt angles. To test the control law and the vehicle, an experiment

was performed where the 2kg vehicle is tasked with pulling a 6.2kg cart along the

x axis to introduce a significant uncertainty in the center of mass of the vehicle as

the control algorithm knows nothing of the attached payload. The results of these

experiments show that even with this large uncertainty, the control law still stayed

within a priori defined bounds on the trajectory tracking error and the estimated

75

adaptive gain error. Similar experiments with both classical MRAC and classical

Robust MRAC were performed, and in each case the constraints were violated and

the error tracking norms were much higher indicating worse performance.

6.1. Future Directions

A small vehicle being able to withstand an unsteady center of mass is a major

step towards doing aerial manipulation. The last decade of drone research has largely

been spent focusing on the guidance and navigation part of spectrum. Drones have

mostly been tasked with either surveying or mapping an environment. In the near

future, these UAVs should interact with the enviornment. The goal is to have a small

vehicle that can pick up objects, manipulate objects such as doors or windows, or

even place objects within an environment. Specifically, this research group is looking

to have a vehicle that can autonomously seek and install a surveillance package high

up on a wall. This scenario would include the unsteady center of mass in addition to

the challenges of flying close to hard surfaces, namely the “wall effect.” It is believed

that robust adaptive control laws such as the one presented in this thesis will be

necessary to complete such missions.

This lab is not only interested in the completion of challenging missions, but the

consistency of the performance is equally important. We are interested in looking at

performing the same mission scenario dozens of times, and doing statistical analysis

on these trajectories to help optimize the control gains. As seen in 2.3, there are

dozens of gains from Γ to Kp, Kd, which are all picked by the user. To the author’s

best knowledge, there is currently no scientific method to selecting or tuning these

76

parameters. We are looking at possibly using industrial engineering techniques such

as the Taguchi Method to optimize these gains for the best trajectory tracking error,

which is deduced using a large amount of actual flight experiment data. In addition

to giving the best control gains, this method should also allow us to study the re-

peatability of the experiments as the standard deviations in the tracking error are

one of the key parameters in Taguchi’s method.

77

Chapter A: Appendix 1

This Appendix has been written as a user manual to setup a new Odroid XU4

microcomputer similar to those used to perform flight experiments discussed in this

thesis. The final section of the appendix is the C++ code of the control algorithm of

Section 2.3.

A.1. Setting Up a New Odroid

The Odroid we are using came with Ubuntu 16.04 already preloaded, so this

assumes that you already have Ubuntu installed. The first thing we will do is update,

upgrade, and finally start installing the necessary packages and applications that we

wish to use. For those new to Linux/Ubuntu sudo means ‘superuser’ (similar to

‘admin’ for Windows). The following is a list of commands to run at the terminal

window which can be accessed by pressing ctrl+alt+t. Note when you first get an

Odroid the password is odroid (all lowercase).

• sudo apt-get update

This command updates the Odroid. Windows does this type of thing in the

background each time you login to your computer. We recommend doing this

command almost daily.

• sudo apt-get upgrade

This command that should be done often

78

• sudo apt-get install build-essential

This command installs build-essential which is compilers for c, c++, etc

• sudo apt-get install wireshark

Wireshark is a tool that can be used to help debug and/or set up communica-

tions

• sudo apt-get install default-jdk default-jre

This command installs Java and the Java SDK

• sudo apt-get install eclipse-cdt

This command installs the development environment and code editor that we

use for the flight code

• sudo apt-get install libboost-all-dev

Get the Boost libraries that we use for both communication protocol as well as

numerical integration in the control

• sudo apt-get install git

This will allow for easy access to the github repositories

79

Troubleshooting

If you get an error of “Unable to lock the administration directory,” then run

the following commands in the terminal:

- sudo rm /var/lib/apt/lists/lock

- sudo rm /var/cache/apt/archives/lock

- sudo rm /var/lib/dpkg/lock

If you get an error of “dpkg status database is locked by another process,” then run

the following commands in the terminal:

- lsof /var/lib/dpkg/lock

- kill PID

- #wait

- kill -9 PID

- sudo rm /var/lib/dpkg/lock

- sudo dpkg --configure -a

A.1.1 Eclipse Settings

One of the things we noticed is that not enough memory was allocated for

Eclipse, and it was crashing during code builds. A way to fix the problem is to give

Eclipse more memory as follows:

• Go to the file explorer and navigate to /usr/lib/eclipse.

• Right-click on eclipse.ini and edit as administrator.

80

• Change the Xmx384m line to Xmx1024m (This gives the program significantly

more RAM access).

• Save and close the file.

A.1.2 Installing Flight Code

After these initial updates and installs, copy the flight code onto the Odroid

and save in /home/odroid. Now open eclipse by typing its name at the command

line. Open the workspace in which the flight code is saved, in our case the folder

is /workspace3 BASELINEBUILD. The first time we open this we may have to tell

Eclipse to include a few things before we can compile. Specifically,

• On the left side of the screen under Project Explorer, right-click PixhawkCon-

trol 4 and select properties.

• Hit the drop-down arrow next to C/C++ Build.

• In the center under Tool Settings, look at GCC C++ Compiler, includes. Click

on “include paths” on the right make sure it says

/home/odroid/workspace3 BASELINEBUILD/PixhawkControl 4/src.

• Under the same Tool Settings, look at GCC C++ Linker. On the right under li-

braries you need to add separately boost filesystem, boost system, and pthread.

(insert image to show what result looks like).

The provided C++ flight code is almost ready-to-use. One necessary change is that

the Mavlink libraries which are currently located in the same folder as the workspace3

81

folder need to be moved by following these instructions:

Placing MAVLink Libraries

• Open a file explorer window.

• Navigate to filesystemusr and open the “include” folder as administrator.

• When the new window with the include folder opens, copy the MAVLink folder

from the odroid flight software location to include.

• Now the files are in the correct location, but we need to correct the permissions

access to them.

• Open a terminal and navigate to usrinclude, then type the following

• sudo chmod -R 755 MAVLink/

A.1.3 Set Odroid to Automatically Login When Powering

On

Since the Odroid is run onboard the vehicle, it is beneficial to have it login au-

tomatically when the battery is plugged into the drone. To accomplish this we simply

need to edit one file. Navigate to the folder /usr/share/lightdm/lightdm.conf.d/ and

right click on the file named 60-lightdm-gtk-greeter.conf. Open this file as adminis-

trator and after the line,

greeter-session=lightdm-gtk-greeter

82

A.1.4 Setting Odroid to Performance Mode

Perfomance mode allows the Odroid to run at closer to its full power which

removes an issue where either the data stream or control applications don’t run fast

enough. First install cpufrequtils from the terminal with,

sudo apt-get install cpufrequtils.

Figure A.1: Performance Mode Settings

A.1.5 Set IP Address

To make sure the data is streamed to the Odroid, it must have a known static

IP address on the network. Changing this is fairly straightforward and can be done

by first connecting to the desired network. After connecting, select edit connections

in the same place as you would select a wireless network to join. From the list of

Wi-Fi connections, select the one we wish to change and click edit. From here, go to

the IPv4 settings and add an address that matches your desired IP address as well as

the Netmask and Gateway. Click save and exit.

83

A.1.6 Odroid to Pixhawk Cable

(a) (b)

Figure A.2: Pixhawk to Odroid Connection Cables

This short section covers how to make the cable allowing for communication

between our two main components, the Odroid and the Pixhawk. The first thing

needed is a 3.3 Volt FTDI to USB cable as shown above. Then you need one of the

6 pin connectors used on the Pixhawk for telemetry and serial port connections. To

combine the two, the FTDI cable is cut near the USB side which will remain as the

method for connecting to the computer. solder the wires together as shown in the

figure below. Note only pins 1,4,5 have connections, and the rest of the wires can be

cut.

Figure A.3: FTDI Wiring Diagram

84

A.2. Control Code

void Control_code()

{

CMRAC_params.t = CMRAC_params.t / 1000; //scale time from ms to s

//This initialization only runs once, sets up all matrices for the controller

if(CMRAC_params.initialization == 0){

// Input tunable gains into Kp, Kd

Kp(0,0) = Control_Gains_ouCMRAC.kx;

Kp(1,1) = Control_Gains_ouCMRAC.ky;

Kp(2,2) = Control_Gains_ouCMRAC.kz;

Kp(3,3) = Control_Gains_ouCMRAC.kphi;

Kp(4,4) = Control_Gains_ouCMRAC.ktheta;

Kp(5,5) = Control_Gains_ouCMRAC.kpsi;

Kd(0,0) = Control_Gains_ouCMRAC.kx_dot;

Kd(1,1) = Control_Gains_ouCMRAC.ky_dot;

Kd(2,2) = Control_Gains_ouCMRAC.kz_dot;

Kd(3,3) = Control_Gains_ouCMRAC.kphi_dot;

Kd(4,4) = Control_Gains_ouCMRAC.ktheta_dot;

Kd(5,5) = Control_Gains_ouCMRAC.kpsi_dot;

// Input Kp, Kd into Aref Matrix

Aref << MatrixXf::Zero(6,6), MatrixXf::Identity(6,6),

-1*Kp, -1*Kd;

// Bref, B From Matrices on Pg 12

85

Bref << MatrixXf::Zero(6,6), MatrixXf::Identity(6,6);

B << MatrixXf::Zero(6,6), MatrixXf::Identity(6,6);

// Initial guess for Theta_e

Theta_e << MatrixXf::Zero(39,6);

// User-defined, positive-definite, best to go with diagonal matrix

Q << MatrixXf::Identity(12,12);

// Identity

Im << MatrixXf::Identity(6,6);

// Hx, He from pg 4, right column

Hx << -1*MatrixXf::Identity(6,6);//-1*MatrixXf::Identity(6,6);

CMRAC_params.he = 0;

// Weights for trajectory in Constraint function,

//only requirement is positive definite

M << MatrixXf::Identity(12,12);

// Combine Kp, Kd, Theta_e into Ke matrix

Ke << Kp, Kd, MatrixXf::Zero(6,6), Theta_e.transpose();

// Adaptive Gains -- Come from text file

Gamma_x << MatrixXf::Identity(57,57);

Gamma_x(0,0) = Control_Gains_ouCMRAC.gammaxx;

Gamma_x(1,1) = Control_Gains_ouCMRAC.gammaxy;

86

Gamma_x(2,2) = Control_Gains_ouCMRAC.gammaxz;

Gamma_x(3,3) = Control_Gains_ouCMRAC.gammaxphi;

Gamma_x(4,4) = Control_Gains_ouCMRAC.gammaxtheta;

Gamma_x(5,5) = Control_Gains_ouCMRAC.gammaxpsi;

Gamma_x(6,6) = Control_Gains_ouCMRAC.gammaxxdot;

Gamma_x(7,7) = Control_Gains_ouCMRAC.gammaxydot;

Gamma_x(8,8) = Control_Gains_ouCMRAC.gammaxzdot;

Gamma_x(9,9) = Control_Gains_ouCMRAC.gammaxphidot;

Gamma_x(10,10) = Control_Gains_ouCMRAC.gammaxthetadot;

Gamma_x(11,11) = Control_Gains_ouCMRAC.gammaxpsidot;

for (int i = 12; i < 57; i++)

{

Gamma_x(i,i) = Control_Gains_ouCMRAC.gammatheta;

}

// Prepare Gammax_inverse for later

Gamma_x_inv = Gamma_x.inverse();

// Initialize qdesdot and Alpha

qdesddot << MatrixXf::Zero(6,1);

Alpha << MatrixXf::Zero(6,1);

// P: Solution to Lyapunov Eqn, found in Matlab

P << MatrixXf::Identity(12,12);

P(0,0) = 2.633;

P(0,6) = 0.1667;

87

P(1,1) = 2.633;

P(1,7) = 0.1667;

P(2,2) = 1.2083;

P(2,8) = 0.125;

P(3,3) = 2.6833;

P(3,9) = 0.0167;

P(4,4) = 2.4136;

P(4,10) = 0.0227;

P(5,5) = 1.9971;

P(5,11) = 0.02;

P(6,6) = 0.8333;

P(6,0) = 0.1667;

P(7,7) = 0.8333;

P(7,1) = 0.1667;

P(8,8) = 0.2083;

P(8,2) = 0.125;

P(9,9) = 0.0861;

P(9,3) = 0.0167;

P(10,10) = 0.1045;

P(10,4) = 0.0227;

P(11,11) = 0.0743;

P(11,5) = -0.02;

// Input values that don’t change in rotation matrices

R_theta(1,0) = 0;

R_theta(0,1) = 0;

R_theta(1,1) = 1;

88

R_theta(2,1) = 0;

R_theta(1,2) = 0;

R_psi(2,1) = 0;

R_psi(2,0) = 0;

R_psi(0,2) = 0;

R_psi(1,2) = 0;

R_psi(2,2) = 1;

// Inertia guess for Tiltrotor: off diagonal terms seem to cause no difference

Inertia(0,0) = 0.02078;

Inertia(1,0) = 0.0;//-.00004;

Inertia(2,0) = 0.00004;

Inertia(0,1) = 0.0;//-0.00003;

Inertia(1,1) = 0.04682;

Inertia(2,1) = 0.0;//-0.00001;

Inertia(0,2) = 0.00004;

Inertia(1,2) = 0.0;//-0.00001;

Inertia(2,2) = 0.03032;

// Propeller inertia

Inertia_prop = MatrixXf::Zero(3,3);

Inertia_prop(0,0) = 0.0002391;

Inertia_prop(1,1) = 0.0001711;

Inertia_prop(2,2) = 0.0004064;

// Mbar from eqn 47: off diagonal terms are zero

// since we assume rc = 0, ie cg at center of coordinate system

89

Mbar << CMRAC_params.mass*MatrixXf::Identity(3,3), MatrixXf::Zero(3,3),

MatrixXf::Zero(3,3), Inertia;

Omega_cross(0,0) = 0;

Omega_cross(1,1) = 0;

Omega_cross(2,2) = 0;

Gamma_matrix(0,0) = 1;

Gamma_matrix(1,0) = 0;

Gamma_matrix(2,0) = 0;

// Initialize regressor vector

Phi_tran = MatrixXf::Zero(9,1);

Phi_rot = MatrixXf::Zero(30,1);

CMRAC_params.dt_derivative = 0.0;

CMRAC_params.phi_des_prev = 0.0;

CMRAC_params.t_prev_derivatives = 0.0;

CMRAC_params.derivative_counter = 0;

CMRAC_params.xdesdot = 0.0;

CMRAC_params.ydesdot = 0.0;

CMRAC_params.zdesdot = 0.0;

CMRAC_params.phi_desdot = 0.0;

CMRAC_params.theta_desdot = 0.0;

CMRAC_params.psi_desdot = 0.0;

90

CMRAC_params.x_des_prev = 0.0;

CMRAC_params.y_des_prev = 0.0;

CMRAC_params.z_des_prev = 0.0;

CMRAC_params.a1_prev = 0.0;

CMRAC_params.a2_prev = 0.0;

CMRAC_params.a3_prev = 0.0;

CMRAC_params.a4_prev = 0.0;

CMRAC_params.a5_prev = 0.0;

CMRAC_params.a6_prev = 0.0;

CMRAC_params.initialization = 1;

}

// Open File to save variables

if ((CMRAC_params.myfile.is_open() != 1) && (CMRAC_params.t > 45))

{

CMRAC_params.myfile.open("Flight_Data_CMRAC2.txt");

CMRAC_params.counter2 = 30;

CMRAC_params.initial_x = CMRAC_params.x_in;

CMRAC_params.initial_y = CMRAC_params.y_in;

}

CMRAC_params.Lambda_switch = 1;

CMRAC_params.Lambda_switch_tilt = 1;

CMRAC_params.Lambda_integration = 1;

91

// Note the trajectory for now is hard-coded.

// We have had issues with the get trajectory function

// Mission now takes off at whatever location,

// holds for a few seconds, then moves back 2.5m in x,

// moves forward 1m in x, then lands

/**********Initialization************************/

if ((CMRAC_params.t < 50) && (CMRAC_params.t > 0.0))

{

CMRAC_params.refs_temp[0][0] = 0;

CMRAC_params.refs_temp[1][0] = 0;

CMRAC_params.refs_temp[2][0] = 0;

CMRAC_params.refs_temp[3][0] = 0;

CMRAC_params.Lambda_switch = 0;

CMRAC_params.Lambda_integration = 0;

}

/**********Takeoff Phase************************/

if ((CMRAC_params.t > 50) && (CMRAC_params.t < 53))

{

CMRAC_params.refs_temp[0][0] = 0;

CMRAC_params.refs_temp[1][0] = 0;

CMRAC_params.refs_temp[2][0] = (CMRAC_params.t-50)/3.0;

CMRAC_params.refs_temp[3][0] = 0;

//CMRAC_params.Lambda_integration = 0;

}

92

if ((CMRAC_params.t >= 53) && (CMRAC_params.t < 55))

{

CMRAC_params.refs_temp[0][0] = 0.0;

CMRAC_params.refs_temp[1][0] = 0.0;

CMRAC_params.refs_temp[2][0] = 1.0;

CMRAC_params.refs_temp[3][0] = 0;

}

if ((CMRAC_params.t >= 55) && (CMRAC_params.t < 59))

{

CMRAC_params.refs_temp[0][0] = 0.0;//(CMRAC_params.t - 55)/4;

CMRAC_params.refs_temp[1][0] = 0.0;

CMRAC_params.refs_temp[2][0] = 1.0;

CMRAC_params.refs_temp[3][0] = 0;

}

if ((CMRAC_params.t >= 59) && (CMRAC_params.t < 62))

{

CMRAC_params.refs_temp[0][0] = 0.0;

CMRAC_params.refs_temp[1][0] = 0.0;

CMRAC_params.refs_temp[2][0] = 1.0;

CMRAC_params.refs_temp[3][0] = 0;

}

if ((CMRAC_params.t >= 62) && (CMRAC_params.t < 72))

{

CMRAC_params.refs_temp[0][0] = -1*(CMRAC_params.t - 62)/4;

CMRAC_params.refs_temp[1][0] = 0.0;

CMRAC_params.refs_temp[2][0] = 1.0;

93

CMRAC_params.refs_temp[3][0] = 0;

}

if ((CMRAC_params.t >= 72) && (CMRAC_params.t < 77))

{

CMRAC_params.refs_temp[0][0] = -2.5;

CMRAC_params.refs_temp[1][0] = 0;

CMRAC_params.refs_temp[2][0] = 1.0;

CMRAC_params.refs_temp[3][0] = 0;

}

if ((CMRAC_params.t >= 77) && (CMRAC_params.t < 81))

{

CMRAC_params.refs_temp[0][0] = -2.5 + (CMRAC_params.t - 77)/4;

CMRAC_params.refs_temp[1][0] = 0.0;

CMRAC_params.refs_temp[2][0] = 1.0;

CMRAC_params.refs_temp[3][0] = 0;

}

if ((CMRAC_params.t >= 81) && (CMRAC_params.t < 85))

{

CMRAC_params.refs_temp[0][0] = -1.5;

CMRAC_params.refs_temp[1][0] = 0;

CMRAC_params.refs_temp[2][0] = 1.0;

CMRAC_params.refs_temp[3][0] = 0;

}

if ((CMRAC_params.t > 85) && (CMRAC_params.t < 93))

{

CMRAC_params.refs_temp[0][0] = -1.5;

CMRAC_params.refs_temp[1][0] = 0;

94

CMRAC_params.refs_temp[2][0] = 1.0 - (CMRAC_params.t-85)/4;;

CMRAC_params.refs_temp[3][0] = 0;

}

if ((CMRAC_params.t > 106) && (CMRAC_params.t < 1000))

{

CMRAC_params.refs_temp[0][0] = 0;

CMRAC_params.refs_temp[1][0] = 0;

CMRAC_params.refs_temp[2][0] = 0;

CMRAC_params.refs_temp[3][0] = 0;

CMRAC_params.Lambda_switch = 0;

}

CMRAC_params.x_des = CMRAC_params.refs_temp[0][0] + CMRAC_params.initial_x;

CMRAC_params.y_des = CMRAC_params.refs_temp[1][0] + CMRAC_params.initial_y;

CMRAC_params.r[0][0] = CMRAC_params.refs_temp[2][0] -0.2; //z/

CMRAC_params.theta_des = 0.0;

if (CMRAC_params.t > 53){

CMRAC_params.theta_des = 0.09;//0.08;

}

CMRAC_params.r[3][0] = CMRAC_params.refs_temp[3][0]; //yaw (rad)

CMRAC_params.Value_Check(CMRAC_params.x_in, CMRAC_params.xprev);

CMRAC_params.Value_Check(CMRAC_params.y_in, CMRAC_params.yprev);

CMRAC_params.Value_Check(CMRAC_params.z_in, CMRAC_params.zprev);

CMRAC_params.Value_Check(CMRAC_params.phi_in, CMRAC_params.phi_prev);

CMRAC_params.Value_Check(CMRAC_params.theta_in, CMRAC_params.theta_prev);

95

CMRAC_params.Value_Check(CMRAC_params.psi_in, CMRAC_params.psi_prev);

/********** Input the State Vector***********/

CMRAC_params.x[0][0] = CMRAC_params.x_in;

CMRAC_params.x[1][0] = CMRAC_params.xdot_in;

CMRAC_params.x[2][0] = CMRAC_params.y_in;

CMRAC_params.x[3][0] = CMRAC_params.ydot_in;

CMRAC_params.x[4][0] = CMRAC_params.z_in;

CMRAC_params.x[5][0] = CMRAC_params.zdot_in;

CMRAC_params.x[6][0] = CMRAC_params.phi_in;

CMRAC_params.Angles[0][0] = CMRAC_params.phi_in;

CMRAC_params.PQR[0][0] = CMRAC_params.P_in;

CMRAC_params.x[8][0] = CMRAC_params.theta_in;

CMRAC_params.Angles[1][0] = CMRAC_params.theta_in;

CMRAC_params.PQR[1][0] = CMRAC_params.Q_in;

CMRAC_params.x[10][0] = CMRAC_params.psi_in;

CMRAC_params.Angles[2][0] = CMRAC_params.psi_in;

CMRAC_params.PQR[2][0] = CMRAC_params.R_in;

Omega(0) = CMRAC_params.P_in;

Omega(1) = CMRAC_params.Q_in;

Omega(2) = CMRAC_params.R_in;

Omega_cross(0,1) = -Omega(2);

Omega_cross(1,0) = Omega(2);

Omega_cross(0,2) = Omega(1);

Omega_cross(2,0) = -Omega(1);

Omega_cross(1,2) = -Omega(0);

96

Omega_cross(2,1) = Omega(0);

CMRAC_params.Angular_velocities_from_PQR(CMRAC_params.PQR,

CMRAC_params.Angles, CMRAC_params.Angular_rates);

CMRAC_params.x[7][0] = CMRAC_params.Angular_rates[0][0];

CMRAC_params.x[9][0] = CMRAC_params.Angular_rates[1][0];

CMRAC_params.x[11][0] = CMRAC_params.Angular_rates[2][0];

for (int i = 0; i < 12; i++)

{

X_states(i,0) = CMRAC_params.x[i][0];

}

//Baseline outer loop

CMRAC_params.Fz = (9.81)*CMRAC_params.mass;

CMRAC_params.xddot = -1.9 * CMRAC_params.x[1][0]

- 1.9 * (CMRAC_params.x[0][0] - CMRAC_params.x_des);

CMRAC_params.yddot = -1.9 * CMRAC_params.x[3][0]

- 1.9 * (CMRAC_params.x[2][0] - CMRAC_params.y_des);

if (CMRAC_params.Fz == 0)

{

CMRAC_params.Fz = 9.81*CMRAC_params.mass;

}

CMRAC_params.ref_angles[0][0] = (CMRAC_params.xddot*sin(CMRAC_params.x[10][0])

- CMRAC_params.yddot*cos(CMRAC_params.x[10][0]))*CMRAC_params.mass / CMRAC_params.Fz;

CMRAC_params.ref_angles[1][0] = (CMRAC_params.xddot*cos(CMRAC_params.x[10][0])

97

+ CMRAC_params.yddot*sin(CMRAC_params.x[10][0]))*CMRAC_params.mass / CMRAC_params.Fz;

// Limit the angle reference values -- raise these values as tuning improves

for (int i = 0; i < 2; i++)

{

if (CMRAC_params.ref_angles[i][0] > 0.12) {

CMRAC_params.ref_angles[i][0] = 0.12;

}

else if (CMRAC_params.ref_angles[i][0] < -0.12) {

CMRAC_params.ref_angles[i][0] = -0.12;

}

}// end for loop

/****************** Adaptive Outer loop ***/

// Generate pie vector

pie << X_states,

MatrixXf::Zero(6,1),

Phi_tot;

// Eqn 93 -- V2 is w

V2 = Delta_k*pie;

for (int i = 0; i < 3; i++)

98

{

Vtrans(i,0) = Alpha(i,0);

}

// Build Rtheta and Rpsi matrices

R_theta(0,0) = cos(CMRAC_params.theta_des);

R_theta(2,0) = sin(CMRAC_params.theta_des);

R_theta(0,2) = -1*sin(CMRAC_params.theta_des);

R_theta(2,2) = cos(CMRAC_params.theta_des);

R_psi(0,0) = cos(CMRAC_params.r[3][0]);

R_psi(1,0) = -sin(CMRAC_params.r[3][0]);

R_psi(0,1) = sin(CMRAC_params.r[3][0]);

R_psi(1,1) = cos(CMRAC_params.r[3][0]);

//Eqn 69

Vtrans_bar = R_theta*R_psi*Vtrans;

CMRAC_params.phi_des = -atan2(Vtrans_bar(1,0),Vtrans_bar(2,0));

CMRAC_params.Value_Check(CMRAC_params.phi_des, CMRAC_params.phi_des_prev);

// --

/* Set q and qdot, qref and qdotref */

q(0,0) = CMRAC_params.x[0][0];

q(1,0) = CMRAC_params.x[2][0];

q(2,0) = CMRAC_params.x[4][0];

99

q(3,0) = CMRAC_params.x[6][0];

q(4,0) = CMRAC_params.x[8][0];

q(5,0) = CMRAC_params.x[10][0];

qdot(0,0) = CMRAC_params.x[1][0];

qdot(1,0) = CMRAC_params.x[3][0];

qdot(2,0) = CMRAC_params.x[5][0];

qdot(3,0) = CMRAC_params.x[7][0];

qdot(4,0) = CMRAC_params.x[9][0];

qdot(5,0) = CMRAC_params.x[11][0];

qdes(0,0) = CMRAC_params.x_des;

qdes(1,0) = CMRAC_params.y_des;

qdes(2,0) = CMRAC_params.r[0][0];

qdes(3,0) = CMRAC_params.phi_des;

qdes(4,0) = CMRAC_params.theta_des;

qdes(5,0) = CMRAC_params.r[3][0];

if (CMRAC_params.phi_desdot > 1.0)

{

CMRAC_params.phi_desdot = 1.0;

}

else if (CMRAC_params.phi_desdot < -1.0)

{

100

CMRAC_params.phi_desdot = -1.0;

}

if (CMRAC_params.xdesdot > 2.0)

{

CMRAC_params.xdesdot = 2.0;

}

else if (CMRAC_params.xdesdot < -2.0)

{

CMRAC_params.xdesdot = -2.0;

}

if (CMRAC_params.ydesdot > 2.0)

{

CMRAC_params.ydesdot = 2.0;

}

else if (CMRAC_params.ydesdot < -2.0)

{

CMRAC_params.ydesdot = -2.0;

}

qdesdot(0,0) = CMRAC_params.xdesdot;

qdesdot(1,0) = CMRAC_params.ydesdot;

qdesdot(2,0) = CMRAC_params.zdesdot;

qdesdot(3,0) = CMRAC_params.phi_desdot;

qdesdot(4,0) = CMRAC_params.theta_desdot;

qdesdot(5,0) = CMRAC_params.psi_desdot;

// Concatenate position and derivate, Concatenate desired with desired derivative

101

qtotal << q,

qdot;

qdestotal << qdes,

qdesdot;

// Define error:

e = qtotal - qdestotal;

// Introduce small deadband for x,y

for (int i = 0; i < 2; i++){

if (abs(e(2*i,0)) < 0.005){

e(2*i,0) = 0.0;

}

}

// ---------------------------- Find h, v, Kdot -------------------------------

// Difference between adaptive gain and initial estimate: pg. 4

Delta_k = K - Ke;

// Next two lines calculate Frobenius norm of Delta_K*Gamma_inverse*Delta_K

Frobenius_mat_gdk = Delta_k*Gamma_x_inv*Delta_k.transpose();

CMRAC_params.trace_dk_gx = Frobenius_mat_gdk.trace();

// (Sqrt of M)*e, M is identity so I dont actually do the square root for now

Root_me = M * e;

102

// Find Norm of (Sqrt(M)*e)

CMRAC_params.root_me_dot = Root_me.dot(Root_me);

CMRAC_params.norm_root_me = sqrt(CMRAC_params.root_me_dot);

// Eqn 21 for constraint function h

CMRAC_params.h = Control_Gains_ouCMRAC.hmax

- CMRAC_params.norm_root_me

- CMRAC_params.trace_dk_gx;

// Dummy value for h, used when testing conventional sigma modification

CMRAC_params.h_sigma = Control_Gains_ouCMRAC.hmax

- CMRAC_params.norm_root_me

- CMRAC_params.trace_dk_gx;

// e^T * P * e

CMRAC_params.epe = (e.transpose()*P*e)(0);

// Calculate Lyapunov function v(): Eqn 23

CMRAC_params.v = (CMRAC_params.epe + CMRAC_params.trace_dk_gx)/CMRAC_params.h;

// Find ||e^TPB||

epb_trans = (e.transpose()*P*B).transpose();

CMRAC_params.epb_dot = epb_trans.dot(epb_trans);

CMRAC_params.norm_epb = sqrt(CMRAC_params.epb_dot);

// Im - v*Hx in Eqn: 37

I_minus_hxv = (Im - CMRAC_params.v*Hx);

103

// Rotational Part of Regressor Vector: Eqn 92

Phi_rot(1,0) = -Omega(2)*Omega(0);

Phi_rot(2,0) = Omega(1)*Omega(0);

Phi_rot(3,0) = Omega(2)*Omega(0);

Phi_rot(5,0) = -Omega(0)*Omega(0);

Phi_rot(6,0) = -Omega(1)*Omega(0);

Phi_rot(7,0) = Omega(0)*Omega(0);

Phi_rot(10,0) = -Omega(2)*Omega(1);

Phi_rot(11,0) = Omega(1)*Omega(1);

Phi_rot(12,0) = Omega(2)*Omega(1);

Phi_rot(14,0) = -Omega(0)*Omega(1);

Phi_rot(15,0) = -Omega(1)*Omega(1);

Phi_rot(16,0) = Omega(0)*Omega(1);

Phi_rot(19,0) = -Omega(2)*Omega(2);

Phi_rot(20,0) = Omega(1)*Omega(2);

Phi_rot(22,0) = Omega(2)*Omega(2);

Phi_rot(23,0) = -Omega(2)*Omega(0);

Phi_rot(24,0) = -Omega(1)*Omega(2);

Phi_rot(25,0) = Omega(2)*Omega(0);

Phi_rot(27,0) = -CMRAC_params.mass*CMRAC_params.g*(sin(CMRAC_params.phi_in)

104

*sin(CMRAC_params.psi_in) + cos(CMRAC_params.phi_in)

*cos(CMRAC_params.psi_in)*sin(CMRAC_params.theta_in));

Phi_rot(28,0) = CMRAC_params.mass*CMRAC_params.g*(sin(CMRAC_params.phi_in)

*cos(CMRAC_params.psi_in) - cos(CMRAC_params.phi_in)

*sin(CMRAC_params.psi_in)*sin(CMRAC_params.theta_in));

Phi_rot(29,0) = -CMRAC_params.mass*CMRAC_params.g*

cos(CMRAC_params.phi_in)*cos(CMRAC_params.theta_in);

// Augment Translational and Rotational part of Regressor Vector

Phi_tot << Phi_tran,

Phi_rot;

// Regenerate PIE

pie << X_states,

MatrixXf::Zero(6,1),

Phi_tot;

/* Adaptive Law -- Eqn 37 */

Kdot_transpose = -Gamma_x * (pie * e.transpose()*(P-(CMRAC_params.v*CMRAC_params.he*M))

*B+ Control_Gains_ouCMRAC.sigma*CMRAC_params.norm_epb*Delta_k.transpose())

*I_minus_hxv.inverse();

Kdot = Kdot_transpose.transpose();

// Numerically calculate the derivatives

CMRAC_params.dt_derivative = CMRAC_params.t - CMRAC_params.t_prev_derivatives;

105

if (CMRAC_params.dt_derivative > 0.003)

{

CMRAC_params.phi_desdot = (CMRAC_params.phi_des -

CMRAC_params.phi_des_prev)/CMRAC_params.dt_derivative;

CMRAC_params.xdesdot = (CMRAC_params.x_des -

CMRAC_params.x_des_prev)/CMRAC_params.dt_derivative;

CMRAC_params.ydesdot = (CMRAC_params.y_des -

CMRAC_params.y_des_prev)/CMRAC_params.dt_derivative;

CMRAC_params.zdesdot = (CMRAC_params.r[0][0] -

CMRAC_params.z_des_prev)/CMRAC_params.dt_derivative;

CMRAC_params.phi_des_prev = CMRAC_params.phi_des;

CMRAC_params.x_des_prev = CMRAC_params.x_des;

CMRAC_params.y_des_prev = CMRAC_params.y_des;

CMRAC_params.z_des_prev = CMRAC_params.r[0][0];

CMRAC_params.t_prev_derivatives = CMRAC_params.t;

}

//-------------------- Calculate Control Law -------------------------------

// Angular velocities of propellers,

Omega_prop(0) = sqrt(prop_angular_vel.w1);

Omega_prop(1) = sqrt(Mixer_functions.get_w2_sq);

Omega_prop(2) = sqrt(Mixer_functions.get_w3_sq);

Omega_prop(3) = sqrt(Mixer_functions.get_w4_sq);

for (int i = 0; i<4; i++){

Gyro_term(2,0) = Gyro_term(2,0) + Inertia_prop(2,2)*Omega_prop(i);

106

}

// Eqn 79, rc is 0 for now, so not all terms are seen

f_tran(0,0) = 0.0;

f_tran(1,0) = 0.0;

f_tran(2,0) = -CMRAC_params.mass*CMRAC_params.g;

// Eqn 81

f_rot = -Omega_cross*(Inertia)*Omega - Gyro_term;

f_total << f_tran,

f_rot;

// From eqn 40

Gamma_matrix(0,1) = sin(CMRAC_params.x[6][0])*tan(CMRAC_params.x[8][0]);

Gamma_matrix(1,1) = cos(CMRAC_params.x[6][0]);

Gamma_matrix(2,1) = sin(CMRAC_params.x[6][0])/cos(CMRAC_params.x[8][0]);

Gamma_matrix(0,2) = cos(CMRAC_params.x[6][0])*tan(CMRAC_params.x[8][0]);

Gamma_matrix(1,2) = -sin(CMRAC_params.x[6][0]);

Gamma_matrix(2,2) = cos(CMRAC_params.x[6][0])/cos(CMRAC_params.x[8][0]);

Inv_Gamma = Gamma_matrix.inverse();

// [I3, 03,03, I3]

Mat1 << MatrixXf::Identity(3,3), MatrixXf::Zero(3,3),

107

MatrixXf::Zero(3,3), MatrixXf::Identity(3,3);

// Computationally better to set at zero than calculate lots of sin and cos values

Beta = MatrixXf::Zero(6,1);

// Control Law, Eqn 85

Alpha = Mbar*Mat1*(qdesddot - Beta - Kp*(q - qdes) - Kd*(qdot-qdesdot) + V2)

- f_total;

// Checks for bad control data

if (abs(Alpha(0)) < 0.01)

{

Alpha(0) = CMRAC_params.a0_prev;

}

else if (abs(Alpha(0)) > 0.01)

{

CMRAC_params.a0_prev = Alpha(0);

}

if (abs(Alpha(3)) < 0.0000001)

{

Alpha(3) = CMRAC_params.a3_prev;

}

else if (abs(Alpha(3)) > 0.0000001)

{

CMRAC_params.a3_prev = Alpha(3);

}

if (abs(Alpha(4)) < 0.000001)

108

{

Alpha(4) = CMRAC_params.a4_prev;

}

else if (abs(Alpha(4)) > 0.000001)

{

CMRAC_params.a4_prev = Alpha(4);

}

if (abs(Alpha(5)) < 0.000001)

{

Alpha(5) = CMRAC_params.a5_prev;

}

else if (abs(Alpha(5)) > 0.000001)

{

CMRAC_params.a5_prev = Alpha(5);

}

// Input to Controls, U

// Lambda_switch allows me to turn motors off

CMRAC_params.U1 = CMRAC_params.Lambda_switch*Alpha(2);

CMRAC_params.U2 = CMRAC_params.Lambda_switch*Alpha(3);

CMRAC_params.U3 = CMRAC_params.Lambda_switch*Alpha(4);

CMRAC_params.U4 = CMRAC_params.Lambda_switch*Alpha(5);

109

// Check values before storing into previous value

CMRAC_params.Prev_value_check(CMRAC_params.x_in, CMRAC_params.xprev);

CMRAC_params.Prev_value_check(CMRAC_params.y_in, CMRAC_params.yprev);

CMRAC_params.Prev_value_check(CMRAC_params.z_in, CMRAC_params.zprev);

CMRAC_params.Prev_value_check(CMRAC_params.phi_in, CMRAC_params.phi_prev);

CMRAC_params.Prev_value_check(CMRAC_params.theta_in, CMRAC_params.theta_prev);

CMRAC_params.Prev_value_check(CMRAC_params.psi_in, CMRAC_params.psi_prev);

CMRAC_params.Prev_value_check(CMRAC_params.phi_des, CMRAC_params.phi_des_prev);

//cout << CMRAC_params.U3 << endl;

//remap to correct channels for Pixhawk

CMRAC_params.remap_U(CMRAC_params.U1,CMRAC_params.U2,CMRAC_params.U3,CMRAC_params.U4);

CMRAC_params.dt = CMRAC_params.t - CMRAC_params.t_prev;

//cout << CMRAC_params.dt << endl;

CMRAC_params.t_prev = CMRAC_params.t;

CMRAC_params.t=CMRAC_params.t*1000; //rescale time to ms

} // end of Dynamics

110

Bibliography

[1] H. Bouadi, S. S. Cunha, A. Drouin, and F. Mora-Camino, “Adaptive sliding

mode control for quadrotor attitude stabilization and altitude tracking,” in 2011

IEEE 12th International Symposium on Computational Intelligence and Infor-

matics (CINTI). IEEE, 2011, pp. 449–455.

[2] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive control of quadro-

tor uavs: A design trade study with flight evaluations,” IEEE Transactions on

control systems technology, vol. 21, no. 4, pp. 1400–1406, 2013.

[3] A. G. Loukianov, “Robust block decomposition sliding mode control design,”

Mathematical Problems in Engineering, vol. 8, no. 4-5, pp. 349–365, 2002.

[4] E.-H. Zheng, J.-J. Xiong, and J.-L. Luo, “Second order sliding mode control for

a quadrotor uav,” ISA transactions, vol. 53, no. 4, pp. 1350–1356, 2014.

[5] H. K. Khalil, Nonlinear Systems, ser. Pearson Education. Princeton, NJ: Pren-

tice Hall, 2002.

[6] A. L’Afflitto, R. B. Anderson, and K. Mohammadi, “An introduction to non-

linear robust control for unmanned quadrotor aircraft: How to design control

algorithms for quadrotors using sliding mode control and adaptive control tech-

niques,” IEEE Control Systems Magazine, vol. 38, no. 3, pp. 102–121, 2018.

111

[7] E. Lavretsky and K. Wise, Robust and Adaptive Control: With Aerospace Appli-

cations. London, UK: Springer, 2012.

[8] R. B. Anderson, J. Marshall, J. Burke, and A. L’Afflitto, “Robust adaptive

control of a tilt-rotor quadcopter with unknown inertial properties,” in American

Control Conference – To Appear, 2019.

[9] R. B. Anderson, J. Marshall, J.-P. Burke, and A. L’Afflitto, “Robust adaptive

control of a tilt-rotor quadcopter with unknown inertial properties,” IEEE Trans-

actions on Control Systems Technology – Submitted, 2019.

[10] K. Narendra and A. Annaswamy, “A new adaptive law for robust adaptation

without persistent excitation,” IEEE Transactions on Automatic Control, vol. 32,

no. 2, pp. 134–145, 1987.

[11] E. Arabi, B. C. Gruenwald, T. Yucelen, and N. T. Nguyen, “A set-theoretic

model reference adaptive control architecture for disturbance rejection and un-

certainty suppression with strict performance guarantees,” International Journal

of Control, vol. 91, no. 5, pp. 1195–1208, 2018.

[12] Y.-J. Liu, S. Lu, D. Li, and S. Tong, “Adaptive controller design-based ablf for a

class of nonlinear time-varying state constraint systems,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1546–1553, 2017.

[13] B. Peterson and K. Narendra, “Bounded error adaptive control,” IEEE Trans-

actions on Automatic Control, vol. 27, no. 6, pp. 1161–1168, December 1982.

112

[14] P. Ioannou and P. Kokotovic, Adaptive Systems with Reduced Models. New

York, NY: Springer, 1983.

[15] G. Kreisselmeier and K. Narendra, “Stable model reference adaptive control

in the presence of bounded disturbances,” IEEE Transactions on Automatic

Control, vol. 27, no. 6, pp. 1169–1175, 1982.

[16] J. B. Pomet and L. Praly, “Adaptive nonlinear regulation: estimation from the

Lyapunov equation,” IEEE Transactions on Automatic Control, vol. 37, no. 6,

pp. 729–740, 1992.

[17] A. L’Afflitto, “Barrier Lyapunov functions and constrained model reference adap-

tive control,” IEEE Control Systems Letters, vol. 2, no. 3, pp. 441–446, 2018.

[18] I. Fantoni and R. Lozano, Non-linear Control for Underactuated Mechanical Sys-

tems. Berlin, Germany: Springer, 2002.

[19] R. Falconi and C. Melchiorri, “Dynamic model and control of an over-actuated

quadrotor UAV,” in IFAC Symposium on Robot Control, vol. 45, no. 22, 2012,

pp. 192–197.

[20] D. Invernizzi and M. Lovera, “Geometric tracking control of a quadcopter tiltro-

tor UAV,” in IFAC World Congress, vol. 50, no. 1, 2017, pp. 11 565–11 570.

[21] A. Nemati and M. Kumar, “Modeling and control of a single axis tilting quad-

copter,” in American Control Conference, 2014, pp. 3077–3082.

[22] D. Yoo, H. Oh, D. Won, and M. Tahk, “Dynamic modeling and control system

113

design for tri-rotor UAV,” in International Symposium on Systems and Control

in Aeronautics and Astronautics, 2010, pp. 762–767.

[23] P. Segui-Gasco, Y. Al-Rihani, H.-S. Shin, and A. Savvaris, “A novel actuation

concept for a multi rotor UAV,” Journal of Intelligent & Robotic Systems, vol. 74,

no. 1, pp. 173–191, 2014.

[24] A. Sanchez, J. Escareño, O. Garcia, and R. Lozano, “Autonomous hovering of a

noncyclic tiltrotor UAV: Modeling, control and implementation,” in IFAC World

Congress, vol. 41, no. 2, 2008, pp. 803 – 808.

[25] G. Scholz, M. Popp, J. Ruppelt, and G. F. Trommer, “Model independent con-

trol of a quadrotor with tiltable rotors,” in IEEE/ION Position, Location and

Navigation Symposium, 2016, pp. 747–756.

[26] C. Yih, “Flight control of a tilt-rotor quadcopter via sliding mode,” in Interna-

tional Automatic Control Conference, 2016, pp. 65–70.

[27] Y. Yildiz, M. Unel, and A. E. Demirel, “Nonlinear hierarchical control of a quad

tilt-wing UAV: An adaptive control approach,” International Journal of Adaptive

Control and Signal Processing, vol. 31, no. 9, pp. 1245–1264.

[28] E. D’Amato, G. D. Francesco, I. Notaro, G. Tartaglione, and M. Mattei, “Non-

linear dynamic inversion and neural networks for a tilt tri-rotor UAV,” in IFAC

Workshop on Advanced Control and Navigation for Autonomous Aerospace Ve-

hicles, vol. 48, no. 9, 2015, pp. 162 – 167.

114

[29] M.-D. Hua, T. Hamel, and C. Samson, “Control of VTOL vehicles with thrust-

tilting augmentation,” in IFAC World Congress, vol. 47, no. 3, 2014, pp. 2237 –

2244.

[30] D. S. Bernstein, Matrix Mathematics, 2nd ed. Princeton, NJ: Princeton Uni-

versity Press, 2009.

[31] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications

in Statistics and Econometrics. New York, NY: Wiley, 1999.

[32] J. R. Magnus, “On the concept of matrix derivative,” Journal of Multivariate

Analysis, vol. 101, no. 9, pp. 2200 – 2206, 2010.

[33] K. Mohammadi and A. L’Afflitto, “Robust adaptive output tracking for quadro-

tor helicopters,” in Adaptive Robust Control Systems. IntechOpen, 2017.

[34] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and Control:

A Lyapunov-Based Approach. Princeton, NJ: Princeton Univ. Press, 2008.

[35] C. R. Johnson, “Positive definite matrices,” The American Mathematical

Monthly, vol. 77, no. 3, pp. 259–264, 1970.

[36] E. Kreyszig, Introductory Functional Analysis with Applications, ser. Wiley. New

York, NY: Wiley, 1989.

[37] A. L’Afflitto, A Mathematical Perspective on Flight Dynamics and Control. Lon-

don, UK: Springer, 2017, doi:10.1007/978-3-319-47467-0.

115

[38] A. L’Afflitto and K. Mohammadi, “Equations of motion of rotary-wing UAS

with time-varying inertial properties,” AIAA Journal of Guidance, Control, and

Dynamics, vol. 41, no. 2, pp. 559–564, 2018.

[39] H. Baruh, Analytical Dynamics. New York, NY: McGraw-Hill, 1999.

[40] E. DiBenedetto, Classical mechanics: theory and mathematical modeling. Berlin,

Germany: Springer, 2010.

[41] D. Greenwood, Advanced Dynamics. New York, NY: Cambridge University

Press, 2006.

[42] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Design and control of an in-

door micro quadrotor,” in International Conference on Robotics and Automation,

vol. 5, 2004, pp. 4393–4398.

[43] A. Jain, Robot and multibody dynamics: analysis and algorithms. Berlin, Ger-

many: Springer, 2010.

[44] F. E. Udwadia and R. E. Kalaba, “What is the general form of the explicit

equations of motion for constrained mechanical systems?” Journal of Applied

Mechanics, vol. 69, no. 3, pp. 335–339, 2002.

[45] L. R. Garćıa Carrillo, A. E. Dzul López, R. Lozano, and C. Pégard, Vision-Based

Control of a Quad-Rotor UAV. London, UK: Springer, 2013, pp. 103–137.

[46] S. Bouabdallah, “Design and control of quadrotors with applications to au-

116

tonomous flying,” Ph.D. dissertation, École Polytechnique Fédérale de Lausanne,

Lausanne, Switzerland, 2007.

[47] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cam-

bridge University Press, 2004.

[48] I. H. B. Pizetta, A. S. Brandão, and M. Sarcinelli-Filho, “Modelling and control

of a quadrotor carrying a suspended load,” in Workshop on Research, Education

and Development of Unmanned Aerial Systems, 2015, pp. 249–257.

[49] “Pixhawk Autopilot,” http://pixhawk.org/, 2019, [Online; accessed 12-April-

2019].

[50] “Castle DMR 30/40 Dedicated Multi-Rotor ESC,”

http://www.castlecreations.com/en/dmr-3040-4pack-010-0156-00, 2019, [On-

line; accessed 12-April-2019].

[51] “T-Motor MN2212,” http://store-en.tmotor.com/goods.php?id=389, 2019, [On-

line; accessed 12-April-2019].

[52] “T-Motor 9x3 Carbon Fiber Propellers,” https://www.getfpv.com/antigravity-

9x3-carbon-fiber-prop-pair-black.html, 2019, [Online; accessed 12-April-2019].

[53] “Dynamixel AX-18A,” https://www.trossenrobotics.com/dynamixel-ax-18A-

robot-actuator.aspx, 2019, [Online; accessed 12-April-2019].

117

