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Abstract

Since the resolution of the virtual Haken conjecture in the theory of hyperbolic 3-manifolds, there

has been much attention devoted to CATp0q cube complexes. These non-positively curved metric

spaces are powerful tools for understanding in�nite, �nitely generated groups in part because of

their �cubical� combinatorics. Simply knowing that a group is cubulable (acts geometrically �

properly and cocompactly by isometries � on a CATp0q cube complex) is su�cient to unlock a

good deal of structural information about it, and cubulating groups has become an important

goal of modern geometric group theory.

In 2013, Lauer and Wise showed that a one-relator group with torsion whose de�ning relator

has exponent at least 4 is cubulable. To achieve this, they build a system of nicely-behaved

codimension-1 subspaces (�walls�) in the universal cover and invoke a construction due to Sageev.

In this thesis, we achieve a generalization of this result to one-relator products with torsion,

namely, that a one-relator product of locally indicable groups whose de�ning relator has exponent

at least 4 admits a geometric action on a CATp0q cube complex if the factors do. Our results

are framed in the more general context of �staggered� quotients of free products of �nitely many

locally indicable and cubulable groups. The main tools are geometric small-cancellation results

for van Kampen diagrams over these groups, which allow us to argue that walls are plentiful

and geometrically well-behaved in the universal cover. Relative hyperbolicity of these one-relator

products and relative quasiconvexity of wall stabilizers both play a central role.

Using Agol's theorem that a hyperbolic, cubulable group is virtually special, we obtain as a

corollary that the one-relator products we consider are virtually special provided that the factors

are hyperbolic in addition to the other assumptions.
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Chapter 1

Introduction

1.1 Background

The source of motivation for the questions which are asked and answered in this dissertation comes

from 3-manifold topology. A classi�cation of the possible geometries of closed 3-dimensional

manifolds was boldy outlined by Thurston several decades ago [Thu82]. It took 30 years, but in

2012, Agol and Wise, building on the work of many others, �nally proved the longstanding virtual

Haken conjecture (VHC), thereby placing the last piece of the puzzle of a realization of a large

portion of Thurston's vision [Ago13, BW12, KM12, Per03, Per02, Thu82].

Much of the theory that went into the proof of the VHC was developed by Wise, who had

been studying objects called CATp0q cube complexes, simply-connected and non-positively curved

topological spaces which are built by gluing cubes of various dimensions together along their faces

(see Chapter 7 for the de�nition). The proof of the VHC involves replacing a given hyperbolic

3-manifold with a CATp0q cube complex on which the fundamental group of that manifold acts,

using a construction of Sageev [Sag95]. It was by working cleverly with the combinatorics of this

cube complex which allowed Agol to �nish the proof of the VHC.

The resolution of the VHC brought cube complexes into the awareness of mathematicians all

over the world. As it turns out, simply knowing that a group admits a proper, cocompact action

on a CATp0q cube complex is su�cient to unlock a good deal of structural information about

that group. For instance, these groups (henceforth referred to as cubulable groups) satisfy a

Tits alternative [SW05], admit a quadratic-time solution to the word problem [Bri02], and satisfy
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the Novikov and Baum-Connes conjectures [HP84, CCJ�01]. Groups which have the stronger

property of being virtually special, i.e., possess a �nite index subgroup which embeds into a right-

angled Artin group, enjoy stronger properties still, including separability of quasiconvex subgroups

and linearity [Wis12, HW99]. Thus, cubulating groups has become an important goal of modern

geometric group theory.

1.2 Summary of results

We will be concerned with one-relator products in this dissertation, i.e., groups of the form A�B
xxRyy

where xxRyy denotes the normal closure of an element R in A � B. These groups generalize

one-relator groups, groups which admit a presentation of the form xa1; : : : ; am | Ry. One-relator

groups with torsion of exponent n ¥ 4 (i.e., R � wn) were cubulated by Lauer and Wise in 2013

[LW13]. These groups satisfy the so-called C 1p1
6
q small-cancellation condition when n ¥ 6, so

this result is also covered in [Wis04]. An extension of Wise's result for C 1p1
6
q groups was pursued

by Martin and Steenbock in 2014 when they successfully cubulated C 1p1
6
q small cancellation free

products of cubulable groups [MS17] (see also [JW17]). In this thesis, we generalize Lauer and

Wise's cubulation results for one-relator groups with torsion to the free product setting.

A group is locally indicable if every �nitely generated subgroup admits Z as a homomorphic

image. The following is our main theorem.

Theorem 1.2.1. Let A and B be locally indicable, cubulable groups, w a word in A � B which

is not conjugate into A or B, and n ¥ 4. Then G � A � B{xxwnyy is cubulable.

We remark that this is implied by the results of [MS17] when n ¥ 6 and [JW17] when n ¥ 20.

To prove Theorem 1.2.1, we are motivated to pass to a broader class of groups; namely, we

consider �staggered� quotients of free products of �nitely many locally indicable, cubulable groups.

The topological models for these groups are staggered generalized 2-complexes. See Chapter 2

for the de�nition of such a complex X and its minimal exponent npXq. We obtain the following:

2



Theorem 1.2.2. Let X be a compact staggered generalized 2-complex. Suppose that X has

locally indicable, cubulable vertex groups and that npXq ¥ 4. Then ı1pXq is cubulable.

Wise uses his theory of quasiconvex heirarchies to prove a strong generalization of the main result

in [LW13], namely that all one-relator groups with torsion are virtually special [Wis09, Corollary

18.2]. One-relator groups with torsion are Gromov hyperbolic, so when the exponent of the

de�ning relator in a one-relator group is at least 4, Wise's result also follows from [LW13] and

Agol's theorem that a hyperbolic, cubulable group is virtually special [Ago13, Theorem 1.1].

Local indicability of A and B also implies that G � A �B{xxwnyy is hyperbolic relative to tA;Bu

(this can be deduced from [DH91, Theorem 3.3]). Thus if A and B are hyperbolic themselves,

then so is G [Osi06, Corollary 2.41], and [Ago13, Theorem 1.1] gives the following as a corollary

to Theorem 1.2.1:

Corollary 1.2.3. Suppose that A and B are locally indicable, hyperbolic, and cubulable. Let w

be a word in A � B which is not conjugate into A or B, and n ¥ 4. Then G � A � B{xxwnyy is

virtually special.

Though we suspect that Theorem 1.2.2 is true when npXq ¥ 2, we unfortunately �nd it necessary

to impose the restriction that npXq ¥ 4, just as Lauer and Wise do, when seeking to prove

properness of the action. In contrast to Lauer and Wise's setting, it also appears that the

condition that npXq ¥ 4 is necessary for the cocompactness argument.

Question 1.2.4. Do Theorems 1.2.1 and 1.2.2 hold when npXq P t2; 3u?

In view of the fact that one-relator groups with torsion are virtually special, the following question

is intriguing (but well beyond the scope of this thesis).

Question 1.2.5. Let A and B be locally indicable, virtually special groups, w a word in A � B

which is not conjugate into A or B, and n ¥ 2. Is G � A � B{xxwnyy virtually special?

3



1.3 A naive approach

Our methods are topological, and the following is what might be described as a naive approach

to proving Theorem 1.2.1 that nonetheless captures many of the main ideas. First build a model

space X for G � A � B{xxwnyy by starting with a dumbell space XA _ XB of non-positively

curved cube complexes with ı1pXAq � A and ı1pXBq � B, and then attaching a 2-cell to a path

corresponding to the word wn, so that ı1pXq � G. See Figures 1.1 and 1.2. The task, then, is

to build a G-invariant collection of walls in the universal cover, invoke a construction of a dual

cube complex with a G-action due to Sageev [Sag95], and prove that the walls are geometrically

nice enough to conclude properness and cocompactness of the action.

A prerequisite for this method to work is to get good control over the geometry of X. It is

in doing so that we are motivated to pass to the staggered generalized 2-complexes mentioned

previously, of which dumbell spaces are a particular example.

Figure 1.1: A pre-
sentation complex for
G. The boundary path
of the pentagonal cell
corresponds to a word
of the form w5.

Figure 1.2: The universal cover of this pre-
sentation complex. We build our walls in this
space by combining the Lauer-Wise walls con-
sidered in [LW13] (in the pentagonal cells)
with the natural hyperplanes in the CATp0q
cube complex factors X̃A and X̃B.

4



1.4 Outline

We follow the outline of [LW13] whenever possible. We de�ne staggered generalized 2-complexes

in Chapter 2. We also de�ne the notion of a tower in this chapter, a fundamental tool for

studying these complexes. Here we also establish results which illustrate the connections between

staggerings, towers, and local indicability. The work in this chapter and the next is based heavily

on work of James Howie [How81, How82, How87].

Let G be the fundamental group of a staggered generalized 2-complex X with locally indicable,

cubulable vertex groups and minimal exponent npXq ¥ 2. We prove geometric small cancellation

results about exposed and extreme 2-cells in generalized van Kampen diagrams over G in Chapters

3 and 4. These are strong statements about the local geometry of staggered generalized 2-

complexes on which the rest of this work depends. These chapters are direct generalizations of

the work of [LW13].

In Chapter 5, we prove statements about the local geometry of a space X̄ which is essentially the

universal cover of X, and we develop a tool called patchings for producing the kinds of diagrams

we can work with to prove results in later chapters.

In Chapter 6, we recover relative hyperbolicity of G using Osin's idea of linear relative Dehn

functions [Osi06], which will be important for later arguments. The results up to this point in

the outline do not depend on the fact that X has cubulable vertex groups.

We de�ne the walls in X̄ in Chapter 7, combining the Lauer-Wise walls of [LW13] with the natural

walls in the portions of the universal cover which are already CATp0q cube complexes. Ladders

are de�ned as well � these are a convenient way to focus our study of the walls on the 2-skeleton

of X̄. We prove that walls embed and separate in Chapter 8.

At this point in the outline, we restrict to staggered generalized 2-complexes X with minimal

exponent npXq ¥ 4.

We establish necessary conditions for the action on the dual cube complex to be cocompact in

5



Chapter 9. Here the present work diverges from [LW13] signi�cantly in order to deal with the

fact that G is not a Gromov hyperbolic group, in general. We prove that wall stabilizers satisfy

a property called relative quasiconvexity ; this turns out to be the key to cocompactness of the

action. Importantly, this argument involves attaching combinatorial horoballs (de�ned in [GM08])

to X̄ to obtain a ‹-hyperbolic space.

In Chapter 10, we show that the walls in X̄ satisfy a criterion called linear separation, implying

that the action on the dual cube complex is proper. This roughly means that the number of walls

separating two points grows linearly in the distance between them.

We put everything together in Chapter 11. We use the Sageev construction to produce a dual

cube complex with a G-action. Since our group is hyperbolic relative to the factors and our walls

are relatively quasiconvex, a little more work allows us to apply a theorem of Hruska and Wise

[HW14, Theorem 7.12] and prove cocompactness in this more general setting. Linear separation is

used to show that the action is proper. Theorem 1.2.2 is proved in Theorem 11.0.5 and Theorem

1.2.1 is Corollary 11.0.6.

In Chapter 12, we provide concluding remarks and discuss some further directions.
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Chapter 2

Preliminaries

We will be working extensively with graphs of spaces. We de�ne them here following [SW79].

De�nition 2.0.1. (Abstract graph/graph of spaces/total space/dumbell space).

An abstract graph Γ consists of a vertex set V pΓq, edge set EpΓq, involution �̄ : EpΓq Ñ EpΓq

sending each edge to its inverse, and boundary map ‹0 : EpΓq Ñ V pΓq. We de�ne ‹1peq � ‹0pēq

and say that e joins ‹0peq to ‹1peq. A graph of spaces with underlying graph Γ is a collection of

based spaces pXv ; xv q and pXe ; xeq for each v P V pΓq and e P EpΓq (with pXe ; xeq � pXē ; xēq) and

continuous maps fe : pXe ; xeq Ñ pX‹0peq; x‹0peqq. Let I � r0; 1s. The total space XΓ of a graph

of spaces with underlying graph Γ is the quotient of
�
tXv | v P V pΓqu Y

�
ttXe � I | e P EpΓqu

by the identi�cations

Xe � I Ñ Xē � I by px; tq Ñ px; 1 � tq

Xe � 0 Ñ X‹0peq by px; 0q Ñ fepxq:

A dumbell space is the total space of a graph of spaces whose underlying graph Γ is the graph

with two vertices and single edge joining them.

De�nition 2.0.2. (Regular map). Let X be a CW complex. A continuous map S1 Ñ X is

called regular if there is a cell structure for S1 such that the map takes vertices to vertices and

edges to edges.

De�nition 2.0.3. (Cyclically reduced edge path). Let X be the total space of a graph of

spaces where each vertex space is a CW complex and each edge space is a point. A cyclically

reduced edge path is a regular edge path in Xp1q with no backtracking and with the property that

7



if it contains a path of the form e‚e�1 or e�1‚e where e is an oriented edge not contained in a

vertex space and ‚ maps to a single vertex space, then ‚ represents a nontrivial element of the

fundamental group of that vertex space.

The following is a more topological de�nition of a staggered generalized 2-complex than that

given in [HP84].

De�nition 2.0.4. (Staggered generalized 2-complex). A staggered generalized 2-complex

X is a topological space with some additional structure as speci�ed by the following data:

• The total space Xtot: The total space of a graph of spaces where each vertex space is a

CW complex and each edge space is a point. Let EpXq denote the set of edges of Xtot

corresponding to the edge spaces in the underlying graph.

• A set of 2-cells CpXq, each of whose boundaries is attached to a cyclically reduced edge

path in Xtot and contains an edge of EpXq in its image.

• A staggering :


 A linear order on CpXq,


 A linear order on EpXq,


 For c; c 1 P CpXq, if c   c 1 then maxpcq   maxpc 1q and minpcq   minpc 1q, where

minpcq is de�ned to be the least edge from EpXq occurring in the attaching map for

c , and similarly for maxpcq.

We call CpXq the essential 2-cells of X and EpXq the essential edges. When comparing cells of

X we will sometimes use the notation  X to refer to the linear orders in the staggering. We will

also sometimes write maxXpcq instead of maxpcq to emphasize the staggering to which we are

referring.

De�nition 2.0.5. (Exponent/proper power/minimal exponent npXq). For an essential

2-cell ¸ of CpXq, the assumptions on the attaching map of ¸ imply that R � B¸, viewed as an

8



element of ı1pXtotq for some choice of base point, is not conjugate into the fundamental group

of any vertex space. This implies that R acts loxodromically on the Bass-Serre tree corresponding

to Xtot, i.e., it has positive translation length. This implies that R is not in�nitely divisible in

ı1pXtotq. Thus there is a well-de�ned exponent m � mp¸q � maxtk | R � w k for some w P

ı1pXtotqu. If mp¸q ¥ 2 we say that ¸ is attached by a proper power. We de�ne the minimal

exponent npXq � mintmp¸q | ¸ P CpXqu.

For any cell ¸ P CpXq, we are free to adjust the attaching map by free homotopy in X without

a�ecting ı1pXq. If the exponent of ¸ is m, then the attaching map of ¸ is freely homotopic to

a cyclically reduced edge path of the form pm. We thus adopt the convention that the attaching

map of each ¸ P CpXq is periodic with period mp¸q.

De�nition 2.0.6. (Indicable/locally indicable). A group is called indicable if it has Z as a

quotient, and locally indicable if every nontrivial �nitely generated subgroup is indicable.

De�nition 2.0.7. (Tower/tower lift/maximal). A tower is a map f : Y Ñ X between

connected CW complexes such that f � i0 � p1 � i1 � � � � � pk � ik where each ii is an inclusion

of a �nite subcomplex and each pi is an in�nite cyclic cover. Let K and X be connected CW

complexes and  : K Ñ X be a map. A tower lift is a map ffi : K Ñ Y such that there is a

tower f : Y Ñ X and  � f � ffi. The map ffi is called maximal if any tower lift ffi1 : K Ñ Y 1 of

ffi has the property that the associated tower f 1 : Y 1 Ñ Y is a homeomorphism.

The following remark is straightforward, since it is easily veri�ed for in�nite cyclic covers and

inclusions of �nite subcomplexes (even with the free homotopy considerations following De�nition

2.0.5).

Remark 2.0.8. If the attaching map of a 2-cell ¸ in X is a proper power of exponent k , then

for any 2-cell ˛ in Y with f p˛q � ¸ under a tower f : Y Ñ X, the attaching map of ˛ is a

proper power of exponent k .

9



2.1 The interplay between staggerings, towers, and lo-

cal indicability

Convention 2.1.1. In what follows, when we refer to a k-cell ¸ of a CW complex, it should be

understood that ¸ refers to the image of the interior of that k-cell under the characteristic map.

When we need to explicitly refer to the closure of a cell ¸, we will use the notation ¸.

Let K be compact and  : K Ñ X be a combinatorial map between connected CW complexes,

that is, the restriction of  to the interior of each cell is a homeomorphism. Howie shows [How81,

Lemma 3.1] that  has a maximal tower lift ffi : K Ñ Y . For us, K will be an object similar to

a van Kampen diagram, and we will use maximal tower lifts to study its geometry.

Note that a tower lift ffi : K Ñ Y is not maximal if ı1pKq is not indicable (e.g., if K is simply

connected) and ı1pY q is. Indeed, for any nontrivial homomorphism g : ı1pY q Ñ Z, Y admits an

in�nite cyclic cover Y 1 Ñ Y corresponding to kerpgq, and ffi lifts since ffi�pı1pKqq lies in kerpgq

by the fact that ı1pKq is not indicable.

It is precisely this phenomenon which connects towers and local indicability. Informally, the map

K Ñ X may be hard to study because the image of K in X will be highly non-injective. By

considering a maximal tower lift K Ñ Y , we will have e�ectively �unwound� the image of K in

Y in an iterative manner, using local indicability of vertex spaces to produce in�nite cyclic covers

at each step. Once at the top of the tower, we can draw conclusions about the topology of K

using maximality of the tower lift.

On the other hand, the property of having a staggering is a �exible notion because it is preserved

under towers:

Lemma 2.1.2. (cf [How87, Lemma 2]). If f : Y Ñ X is a tower and X is a staggered generalized

2-complex, then so is Y .

Proof. We induct on the number of maps f comprises, so it su�ces to assume that f is an
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inclusion of a connected subcomplex or an in�nite cyclic cover. The essential cells of Y are exactly

those which map to essential cells of X. In case f is an inclusion of a connected subcomplex, note

that the staggering of X restricts to a staggering of any subcomplex of X. In case f is an in�nite

cyclic cover, let  be a generator of the deck group of the cover, and de�ne a �lexicographic�

staggering on both the 1-cells and 2-cells of Y by the prescription that ¸   ˛ if f p¸q   f p˛q or

kp¸q � ˛ for some positive integer k . It is easy to check that this gives a staggering of Y .

In general, there are multiple ways to stagger Y . Whenever Y Ñ X is a tower, we make the

convention that the staggering on Y arises in the manner just described.

It may be useful to record here the basic observation that the following are equivalent for any

topological space Y :

• ı1pY q is indicable.

• H1pY;Zq � 0.

• Y has an in�nite cyclic cover.

Lemma 2.1.3. (cf [How87, Lemma 3]; [HW01, Lemma 2.6]). Suppose that X is a compact

staggered generalized 2-complex with locally indicable vertex groups. Suppose additionally that

X has no in�nite cyclic cover and that ¸ is the greatest essential 2-cell of X. If ¸ is not attached

along a proper power in ı1pXtotq, then X collapses across ¸ with free edge max¸, i.e., X is

homotopy equivalent to the complex obtained after removing ¸ and max¸ from X through a

homotopy supported on ¸.

Proof. We follow Howie's proof in [How87] � only minor changes are necessary.

Note that if some essential 2-cell ˛ is attached by a path of the form pm in Xtot for some m ¥ 2,

then replacing ˛ with the 2-cell ˛1 attached by p will not a�ect H1pXq, and giving ˛1 the same

position as ˛ in the ordering of the 2-cells will not a�ect the staggering of X. So we may assume

no essential 2-cell is attached by a proper power.
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We induct on the number of essential 2-cells in X. If there is only one, then the rank of H1pXtotq

is at most one, since H1pXq � 0. If the underlying graph of Xtot is a tree, then at most one

vertex space can have nontrivial �rst cohomology by the Mayer-Vietoris theorem. Also, since the

attaching map of ¸ is cyclically reduced and has positive length, there exists a closed subpath p1

of the attaching map p of ¸ which lies in a vertex space V of Xtot for which H1pV q � 0. Since

p is reduced and cyclically reduced, p1 represents a nontrivial element g of ı1pV q. Since ı1pV q

is locally indicable and �nitely generated since X is compact, we obtain a surjective map from

ı1pV q to Z, giving us an in�nite cyclic cover of V and contradicting that H1pV q � 0. On the

other hand, if the underlying graph of Xtot is not a tree, then we must have H1pV q � 0 for each

vertex space and there is a unique simple cycle in the underlying graph of Xtot. The attaching

map of ¸ must travel exactly once around this cycle, so that it uses max¸ exactly once, and we

can see that X collapses across ¸ with free edge max¸.

For the inductive step, consider the Mayer-Vietoris sequence

� � � Ñ H1pXq Ñ H1pXz¸q `H1pD2q Ñ H1pS1q Ñ � � �

associated to attaching ¸ to the rest of X. Exactness shows that the rank of H1pXz¸q is at

most one. Let X 1 be the subcomplex of X formed by removing ¸ and max¸ from X. If X 1 is

connected, then H1pXz¸q � H1pX 1q ` Z, so H1pX 1q � 0. Otherwise X 1 has two components

X1 and X2 (say), and H1pXz¸q � H1pX1q ` H1pX2q; assume without loss of generality that

H1pX1q � 0. In this case, note that X1 must contain at least one essential 2-cell whose attaching

map lies entirely inside it. If not, then H1pX1q � 0 implies that X1 is a tree of spaces, with each

vertex space having trivial �rst cohomology. Then since the attaching map p of ¸ uses X1 and

is cyclically reduced, there exists a closed subpath p1 of p lying in some vertex space V of X1

such that p1 represents a nontrivial element g of ı1pV q. As before (using compactness of X),

indicability of ı1pV q gives rise to an in�nite cyclic cover of V , contradicting that H1pV q � 0.
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Thus we may apply the inductive hypothesis either to X 1 (in case X 1 is connected) or X1 (in

case X 1 is not connected), but using the staggering opposite to that inherited from X (i.e., the

orderings of the 1-cells and 2-cells are reversed). By induction, the complex in question collapses

across its least essential 2-cell ˛ (in the original ordering) with free edge min˛. But the attaching

map of ¸ does not use min˛ since ˛   ¸, so X also collapses across ˛ with free edge min˛.

Let X2 � Xzt˛;min˛u be the result of this collapse.

Now X2 has fewer essential 2-cells than X, so again apply the inductive hypothesis to X2 (using

the original ordering) to see that X2 collapses across ¸ with free edge max¸. But the attaching

map of ˛ does not use max¸ since ˛   ¸. Thus X � X2 Y t˛;min˛u also collapses across ¸

with free edge max¸.

Lemma 2.1.4. (cf [LW13, Lemma 3.10]; [HW01, Lemma 2.7]). Suppose that X is a compact

staggered generalized 2-complex with locally indicable vertex groups. Suppose additionally that

X has no in�nite cyclic cover and that ¸ is the greatest essential 2-cell of X. Then ¸ is attached

along a path pm where p is a closed path in Xtot passing through maxp¸q exactly once. Moreover,

no other 2-cell has the edge maxp¸q in the image of its attaching map.

Proof. The proof is identical to the proof of [HW01, Lemma 2.7], except that we appeal to

Lemma 2.1.3 rather than [HW01, Lemma 2.6].
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Chapter 3

Van Kampen diagrams and extreme

2-cells

3.1 The topology of van Kampen diagrams over X

Throughout this chapter, let X be a staggered generalized 2-complex.

We will now prove some helpful results about van Kampen diagrams over X. For our purposes

it will be useful to allow diagrams which are not planar. In what follows, the boundary of a

2-complex E, denoted BE, is the closure of the set of 1-cells in E which occur in the attaching

map of at most one 2-cell of E.

Let E Ñ X be a combinatorial map. We refer to cells of E as essential or not according to

whether or not their images in X are essential.

De�nition 3.1.1. (Cancelable pair/reduced/diagram). Let Y be a CW complex and E

a 2-complex. Let ffi : E Ñ Y be a combinatorial map. Let ¸ and ˛ be a pair of 2-cells of

E with attaching maps Φ¸ and Φ˛. We say that ¸ and ˛ form a cancelable pair if there is a

decomposition of B¸ as a loop e1ff1 for some edge e1 and a decomposition of B˛ as a loop e2ff2

for some edge e2 such that Φ¸pe1q � Φ˛pe2q and ffi �Φ¸pff1q � ffi �Φ˛pff2q. The map ffi is called

reduced if E does not contain a cancelable pair. It is called a diagram if E is compact and simply

connected.

The following remarks are straightforward.

14



Remark 3.1.2. Let Y be a CW complex,  : D Ñ Y a diagram, and ffi : D Ñ Z a lift of  to

a cover Z Ñ Y . Then ffi is reduced if and only if  is reduced.

Remark 3.1.3. Let Y be a CW complex,  : D Ñ Y a diagram, and ffi : D Ñ T a maximal

tower lift. Then ffi is reduced if and only if  is reduced.

The following fundamental result is due to van Kampen:

Theorem 3.1.4. Let Y be a CW complex and let u be a closed path in Y p1q. Then u is null-

homotopic if and only if there exists a diagram D Ñ Y with D a planar 2-complex such that

there is a parametrization of BD mapping to u.

In the above theorem, we may assume D is reduced if u is a cyclically reduced path, as there are

standard moves which modify D to make it reduced without a�ecting BD.

3.1.1 Finding exposed essential 2-cells

De�nition 3.1.5. (Position). Let ffi : E Ñ X be a combinatorial map. Let ¸ be an essential

2-cell of E such that ffip¸q is of exponent m and attached by a path of the form pm in X. Two

consistently-oriented 1-cells e1 and e2 on the boundary of ¸ are in the same position in ¸ if

a subpath ‚ of B¸ running from the terminal 0-cell of e1 to the terminal 0-cell of e2 has the

property that ffip‚q is a cyclic conjugate of pj for some j P Z. For a 1-cell e in B¸, we let res¸

denote the collection of the m 1-cells in the same position as e in ¸.

De�nition 3.1.6. (External/internal/exposed). Let ffi : E Ñ X be a combinatorial map.

An essential 2-cell ¸ in E is external if there is an essential 1-cell in B¸ X BE; otherwise it is

called internal. An essential 2-cell ¸ in E is exposed if there is an essential 1-cell e in B¸ such

that every 1-cell in res¸ lies in BE. In this case we also say e is an exposed edge.

We emphasize that only essential edges can be exposed. Note that if ffi : E Ñ X is a combinatorial

map, then any total order  X of a set of cells of X (such as those coming from the staggering)

induces an order of the preimages of those cells of X in E, which we will also denote by  X .
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Since two cells of E may map to the same cell of X, it may be the case that ¸ �X ˛ for cells

¸ and ˛ of E. In this sense,  X is a quasi-order. Note that by our convention for staggerings

associated to towers, if E Ñ T is a tower lift of ffi and ¸  X ˛ for essential cells ¸ and ˛ of E,

then ¸  T ˛ .

De�nition 3.1.7. (Adjacent/adjacent along). Let E be a CW complex. We say that 2-cells

¸ and ˛ are adjacent (along e) if there is an edge e belonging to B¸XB˛. For a path ‚ : I Ñ E

in Ep1q, we say ¸ is adjacent to ‚ along e if e lies in imp‚q X B¸.

Lemma 3.1.8. (cf [LW13, Lemma 4.7]; [HW01, Lemma 4.1]). Suppose X has locally indicable

vertex groups. Let ffi : D Ñ T be a maximal tower lift of a reduced diagram  : D Ñ X. If ¸

is a greatest (resp. least) 2-cell of D (under  T ), then ¸ is exposed with exposed edge maxT ¸

(resp. minT ¸). In particular, every reduced diagram D Ñ X with at least one essential 2-cell

has an exposed essential 2-cell.

Proof. Note that T is compact since D is. Let ¸1 be the unique greatest 2-cell of T . By Lemma

2.1.4, ¸1 is the unique 2-cell whose attaching map uses the edge max¸1, and it uses it exactly

m times if m is the exponent of ¸1. Let e be an essential 1-cell of ¸ mapping to max¸1 under

ffi. Assuming ¸ is not exposed in D, there is a 2-cell ˛ of D adjacent to ¸ along some essential

1-cell e 1 belonging to res¸ which also maps to max¸1. Since ¸1 is the unique 2-cell using max¸1,

we must have ffip˛q � ¸1. Since the attaching map of ¸1 uses max¸1 exactly m times and is a

proper power of exponent m, we must have that ff¸, the longer path from the terminal to the

initial vertex of e 1 in B¸, and ff˛, the analogous path in B˛, must map to the same path in T .

This shows that ¸ and ˛ form a cancelable pair and contradicts that the map ffi is reduced (by

Remark 3.1.3).

3.1.2 Essential 2-cells embed in diagrams

Let ¸ be an essential 2-cell of X which is attached to a closed path p. Our next goal is to use

known results to prove that no proper closed subpath of p is nullhomotopic in X. This fact is
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stated as Lemma 3.1.12 below.

De�nition 3.1.9. (Magnus subcomplex) (cf [LW13, De�nition 3.6]). A Magnus subcomplex

Z � X is a subcomplex with the following properties:

(i) The subcomplex Z contains the disjoint union of all vertex spaces.

(ii) If ¸ is an essential 2-cell of X with the property that all essential boundary 1-cells of ¸ lie

in Z, then ¸ lies in Z.

(iii) The essential 1-cells of X contained in Z form an interval.

The following lemma is equivalent to Howie's �locally indicable� Freiheitssatz [How81, Theorem

4.3]. We will reprove it for completeness.

Lemma 3.1.10. (cf [HW01, Theorem 6.1]). Suppose that X has locally indicable vertex groups.

If Z is a Magnus subcomplex of X, then the inclusion i : Z Ñ X is ı1-injective for any choice of

base point in Z.

Proof. We follow the proof in [HW01] � minimal modi�cations are necessary.

Let g P ker i�. Then any loop u representing i�pgq is nullhomotopic in X, so we may apply

Theorem 3.1.4 to construct a reduced diagram  : D Ñ X where D is a disk and  pBDq � u.

We will show that every 2-cell of D maps to Z; this will imply u is nullhomotopic in Z and so

g � 1 in ı1pZq.

If every essential 1-cell in D maps to Z (or no essential 1-cells appear in D), then conditions

(i) and (ii) imply that every 2-cell in D maps to Z and we are done. So suppose there is an

essential 1-cell in D not mapping to Z (for brevity, say �D has a 1-cell not in Z�). Reversing the

staggering of X if necessary, we may assume by condition (iii) that D has a 1-cell not in Z which

is greater than any essential 1-cell in Z. Let ffi : D Ñ T be a maximal tower lift of  . Note that

for any edge e P D with the property that e is greater (under  X) than any essential 1-cell in

Z, e is greater (under  T ) than any essential 1-cell of T mapping to Z by the tower T Ñ X.
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Thus the greatest essential 1-cell of T , which we call e 1, does not map to Z. Therefore no edge

in ffi�1pe 1q lies in BD.

Since e 1 is in the image of the surjective map ffi, this last fact implies that e 1 must lie on the

boundary of some essential 2-cell in T . Thus e 1 is maxT ¸ for the greatest essential 2-cell ¸ of

T . Applying Lemma 3.1.8, any essential 2-cell in D mapping to ¸ under ffi is exposed with some

exposed edge e2 in ffi�1pe 1q. This contradicts that no edge in ffi�1pe 1q lies in BD.

Recall the following fact, the proof of which is technical but requires only Bass-Serre theory and

Howie's Freiheitssatz (see [How82]):

Lemma 3.1.11. [How82, Corollary 3.4] Let pG; Y q be a graph of groups with trivial edge groups

and locally indicable vertex groups. Let w be a cyclically reduced closed word of positive length

in pG; Y q, and let N be the normal closure of the subgroup generated by w . Then no proper

closed subword of w represents an element of N.

A topological interpretation of this gives the following:

Lemma 3.1.12. (cf [LW13, Corollary 3.9]). Suppose that X has locally indicable vertex groups.

Let p be a nontrivial proper subpath of the attaching map of an essential 2-cell ¸, and suppose

that p is a closed path in X. Then p is not nullhomotopic in X.

Proof. Let Z be the Magnus subcomplex of X consisting of all vertex spaces and the 2-cell ¸.

Let Z 1 be the component of Z containing ¸. Then ı1pZ
1z¸q decomposes as a graph of groups

satisfying the hypotheses of Lemma 3.1.11. Let w � rB¸s. Since B¸ is cyclically reduced, we

realize rps as a proper closed subword of w . Applying Lemma 3.1.11, p is not nullhomotopic in

Z 1. But ı1pZq � ı1pZ
1q for appropriate choice of base point, and ı1pZ

1q injects into ı1pXq by

Lemma 3.1.10. Thus p is not nullhomotopic in X.

Corollary 3.1.13. Suppose X has locally indicable vertex groups. Let D Ñ X be a reduced

diagram, and ¸ an essential 2-cell of D. Then B¸ is embedded in D. In particular, ¸ is a simply
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connected subset of D.

3.1.3 Other simply connected subdiagrams

We now observe some consequences of Corollary 3.1.13.

De�nition 3.1.14. (Internally intersects and other notation for paths). Let Z be a subspace

of a space Y and ‚ : I Ñ Y a path. We say ‚ internally intersects Z if ‚pintpIqq X Z � H.

We will frequently abuse notation and refer to ‚pIq as ‚ and ‚pintpIqq as intp‚q. In case ‚ is an

edge path in a CW complex, we will also use |‚| to mean the number of edges in ‚.

The following basic topological fact will be quite useful throughout. The proof is straightforward.

Lemma 3.1.15. (Snipping Lemma) Let E be a simply connected 2-complex. Let ‚ be an

embedded, locally separating arc in E between two points x and y in BE, and suppose that

‚ does not internally intersect BE. We call ‚ a snipping arc. Then Ez‚ is disconnected (i.e,

‚ is separating). In particular, suppose intp‚q X E is contained in a single 2-cell ¸, and �x a

parametrization p : S1 Ñ B¸. Let v and w be two points of S1 which lie in distinct components

of S1zp�1p‚q. Then there is no path from ppvq to ppwq in Ez‚.

Lemma 3.1.16. (cf [LW13, Lemma 4.9]). Suppose that X has locally indicable vertex groups.

Let D Ñ X be a reduced diagram. Suppose an essential 2-cell ¸ of D is external. Let B be a

component of Dz¸. Then B X ¸, B, and B Y ¸ are all simply connected.

Proof. By van Kampen's Theorem and Corollary 3.1.13, it su�ces to prove that B and B X ¸

are simply connected.

Observe that B X ¸ is connected. To see this, suppose that B X ¸ is disconnected and pick

points v and w in distinct components therein. Also choose two points v 1 and w 1 in distinct

components of B¸zB. Connect v 1 and w 1 by a snipping arc ‚ through the interior of ¸. The fact

that there is a path from v to w in B (thus avoiding ‚) contradicts the Snipping Lemma. Thus

B X ¸ is connected.
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Since ¸ is external, and by Corollary 3.1.13, B X ¸ is homeomorphic to an interval and is thus

simply connected.

To prove that B is simply connected, note that D is the union of B and DzB, and that BXDzB �

B X ¸. Since D and B X ¸ are simply connected, so is B by van Kampen's Theorem.

3.2 Branches, extreme 2-cells, and a Spelling Theorem

De�nition 3.2.1. (Branch). Let D Ñ X be a reduced diagram. If ¸ is an exposed 2-cell of

D with exposed edge e, then the components of Dz¸ which contain at least one essential 2-cell

are called the branches of D at p¸; eq.

Lemma 3.1.16 implies the following:

Lemma 3.2.2. Let D Ñ X be a reduced diagram, and suppose ¸ is an exposed 2-cell of D

with exposed edge e. Let B be a branch of D at p¸; eq. Then B Y ¸ is simply connected.

De�nition 3.2.3. (Auxiliary diagram/extreme). Let ffi : E Ñ X be a combinatorial map.

The auxiliary diagram qE associated to E is obtained from E by collapsing all regions of E which

map to vertex spaces of X to points. For any subset S of E, denote the image of S in qE by qS.
Let ¸ be an essential 2-cell of E of exponent m. We say that ¸ is extreme if there is a subpath

‚ of B¸ (called an extreme subpath) such that ‚ contains the union of all m elements of res¸ for

some exposed edge e in ¸, and q‚ does not internally intersect q̨ for all essential 2-cells ˛ � ¸ of

E.

Remark 3.2.4. All extreme 2-cells are exposed. When m � 1 the de�nitions of exposed and

extreme coincide.

Lemma 3.2.5. Suppose that X has locally indicable vertex groups and let  : D Ñ X be a

reduced diagram. Let ¸ be an exposed essential 2-cell in D with exposed edge e, and suppose

that there is at most one branch of D at p¸; eq. Then ¸ is extreme.
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Proof. This is obvious if there are no branches of D at p¸; eq, so assume there is exactly one

and call it B. By Lemma 3.1.16, B X ¸ is contained in an arc of B¸ between two consecutive

elements of res¸, e1 and e2. Let ‚ be the arc of B¸ containing e1 and e2 which does not intersect

B. Note that ‚ contains res¸. Collapse D to the auxiliary diagram qD. Let ˛ be an essential

2-cell of B. Since ‚ does not internally intersect B, q‚ does not internally intersect the closure of

q̨. Thus ¸ is extreme.

We can now prove our �rst diagram result:

Proposition 3.2.6. (cf [LW13, Theorem 4.11]). Suppose that X has locally indicable vertex

groups. Let  : D Ñ X be a reduced diagram and suppose that D contains at least two essential

2-cells. Then D contains at least two extreme essential 2-cells.

Proof. The proof is quite similar to that of [LW13, Theorem 4.11].

To prove the Proposition, we induct on the number of essential 2-cells in D. Let ffi : D Ñ T be

a maximal tower lift of  with associated tower f : T Ñ X, and note that T is compact since D

is.

First suppose there are exactly two essential 2-cells in D, ¸ and ˛. Then ¸ and ˛ are both either

greatest or least essential 2-cells (under  T ), and so Lemma 3.1.8 implies that they are both

exposed. We claim that ¸ and ˛ are both extreme. To see ¸ is extreme, let e be an exposed

essential edge of ¸ and note that there is a single branch B of D at p¸; eq. By Lemma 3.2.5, ¸

is extreme. An identical argument shows that ˛ is extreme.

For the inductive step, note �rst that we can �nd two exposed 2-cells ¸ and ˛ in D. Indeed, if T

has only one essential 2-cell, then every essential 2-cell of D is a greatest 2-cell and so is exposed

by Lemma 3.1.8, so choose ¸ and ˛ arbitrarily. On the other hand, if T has two or more essential

2-cells, and since ffi is surjective, we can �nd a 2-cell in D (¸, say) mapping to the greatest 2-cell

of T , and a 2-cell in D (˛, say) mapping to the least 2-cell of T ; Lemma 3.1.8 implies that ¸

and ˛ are exposed. If ¸ and ˛ are extreme we are done, otherwise assume without loss that ¸ is
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not extreme. Then for an exposed edge e of ¸, there are at least two branches of D at p¸; eq by

Lemma 3.2.5. Call them B1 and B2. Now B1
1 � B1 Y ¸ and B1

2 � B2 Y ¸ are simply connected

by Lemma 3.2.2, and thus f � ffi|B1
i
is a reduced diagram for i � 1; 2 with fewer essential 2-cells

than  . By induction, there is an extreme essential 2-cell ¸1 � ¸ in B1
1. Observe that ¸1 is also

extreme in D since ¸ separates B1 from all other branches of D at p¸; eq. Similarly, we can �nd

an extreme cell ¸2 � ¸ in D which lies in B1
2. They are distinct since ¸1 lies in B1 and ¸2 lies

in B2.

Note: This generalizes part of the Spelling Theorem of Howie and Pride [HP84, Theorem 3.1(iii)],

since the diagrams considered in that paper are planar.

The following is a simple criterion for identifying when an essential 2-cell in a diagram is not

extreme. We will not use it until later.

Lemma 3.2.7. Let ffi : E Ñ X be a combinatorial map and let ¸ be an essential 2-cell of E

mapping to an essential 2-cell of X of exponent m with boundary path pm, where the loop p is

not a proper power. Suppose that there are two vertices x and y lying in B¸ with the following

properties:

(i) Both paths from x to y in B¸ contain at least as many edges as p.

(ii) Each of the vertices qx and qy lies in the closure of at least two essential 2-cells in qE.
Then ¸ is not extreme in E.

Proof. Let ‚ be a subpath of B¸ such that ‚ contains every 1-cell in res¸ for some essential edge

e in ¸. Condition (i) implies that either x or y lies in intp‚q, and condition (ii) implies that q‚
internally intersects the closure of some 2-cell of qE other than the closure of q̧. Thus ¸ is not

extreme.
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Chapter 4

Additional extreme 2-cells

In this chapter, let X be a staggered generalized 2-complex with locally indicable vertex groups.

In this chapter, we will prove additional statements about extreme essential cells in reduced

diagrams D Ñ X.

Recall the main theorem from [How82]:

Lemma 4.0.1. [How82, Theorem 4.2] Let A and B be locally indicable groups, and let G be

the quotient of A � B by the normal closure of a cyclically reduced word w of positive length.

Then the following are equivalent:

(i) G is locally indicable;

(ii) G is torsion free;

(iii) w is not a proper power in A � B.

Howie sketches the following corollary [How82], which we prove here for completeness:

Corollary 4.0.2. (cf [How82, Corollary 4.5]). Suppose X is such that the attaching map of each

essential 2-cell is not a proper power. Then ı1pXq is locally indicable.

Proof. Consider the set of all staggered generalized 2-complexes X 1 which have all of the same

data as X, except that CpX 1q is a �nite subset of CpXq. Then the set of the groups ı1pX
1q forms

a directed system for which ı1pXq is the direct limit. Since a direct limit of locally indicable

groups is locally indicable, it su�ces to assume CpXq is �nite.

Induct on the number of essential 2-cells in X.
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For the base case, note that if there are no essential 2-cells in X, then ı1pXq is locally indicable

as the free product of locally indicable groups (by, e.g., the Kurosh subgroup theorem).

For the inductive step, let ¸ be the greatest essential 2-cell of X and let e � max¸. Then no

other essential 2-cell uses e. If e separates Xz¸, then let XA and XB be the two components.

Let A � ı1pXAq, B � ı1pXBq, and w � rB¸s. Now XA and XB are staggered generalized

2-complexes with locally indicable vertex groups and fewer essential 2-cells, and so A and B are

locally indicable by induction. Now apply Lemma 4.0.1. On the other hand, if e does not separate

Xz¸, we can see that ı1pXz¸q decomposes as a free product A � xty, where A � ı1pXzt¸; eu)

and t corresponds to a loop with winding number 1 over e, since no essential 2-cell uses e

except ¸. Again observe that A is locally indicable by induction. Lemma 4.0.1 again applies with

B � xty and w � rB¸s to give the result.

We can use this fact to get a strong ampli�cation of Remark 3.1.3:

Lemma 4.0.3. (cf [LW13, Lemma 4.6]). Let  : D Ñ X be a reduced diagram. Let ffi : D Ñ T

be a maximal tower lift of  . If ¸ and ˛ are adjacent essential 2-cells of D then ffip¸q � ffip˛q.

Proof. The proof is in the same spirit as that of [LW13, Lemma 4.6].

Suppose that ffip¸q � ffip˛q and let e be a 1-cell in ¸ X ˛ (essential or not). Observe that

 p¸q �  p˛q. Let pm be the boundary path of  p¸q �  p˛q, where p is not a proper power.

By Remark 2.0.8, the boundary path of ffip¸q � ffip˛q is of the form p̂m where p̂ is a lift of p

to T . Let fi be the path of length |p̂| in B¸ which begins at the initial point of e and traverses

e in the positive direction. The path ffipfiq is a closed loop, and we claim that there is a proper

closed subpath of ffipfiq in T . To this end, assume that fi is embedded in D except possibly at its

endpoints. Consider the set S of edges in ffi�1pffipeqqX B¸ which belong to fi , which is nonempty

since it contains e. If this set has exactly one element, then res¸ is the only orbit of edges in

B¸ mapping to the edge  peq. Since  p¸q �  p˛q, this implies that  �1p pres¸qq X B˛ � res˛

so that ¸ and ˛ form a cancelable pair, which contradicts that D is reduced. Thus S contains
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at least two distinct elements, and so there are two distinct edges of fi which become identi�ed

under ffi. This proves the claim. Thus there is a proper closed subpath ‚ of p̂ in T . See Figure

4.1.

Figure 4.1: Proving the claim: The fact that S contains two distinct edges e and f implies that the path q
contains the desired path ‚, since e and f (in fact, all red and green edges) become identi�ed under ffi.

Let X 1 be the 2-complex associated with X having nonperiodic attaching maps, and consider

the map X Ñ X 1 which is the identity on the 1-skeleton of X, and an m-fold branched cover

on each essential 2-cell if m is the exponent of that 2-cell. Let ‚1 be the image of ‚ in X 1.

By Lemma 3.1.12, ‚1 represents a nontrivial element of ı1pX
1q. Thus, via ffi�, ı1pT q maps

homomorphically to a nontrivial subgroup of ı1pX
1q, and that subgroup is �nitely generated

since T is compact. Since ı1pX
1q is locally indicable by Corollary 4.0.2, there exists a surjective

homomorphism ı1pT q Ñ Z. Thus T has an in�nite cylic cover and the tower lift D Ñ T is not

maximal, a contradiction.

Now we can study connected subdiagrams of a reduced diagram:

Lemma 4.0.4. (cf [LW13, Lemma 5.1]). Let D Ñ X be a reduced diagram. Let D1 be a

connected subcomplex of D, and let ¸ be a greatest 2-cell of D1. Then ¸ is exposed in D1.

Note: The proof below is slightly more complicated than Lauer and Wise's proof of [LW13,

Lemma 5.1]. There, the authors seem to assume that the subcomplex B de�ned in the proof

25



below is simply connected without justi�cation.

Proof. Let D Ñ T be a maximal tower lift of the diagram D Ñ X. By Lemma 4.0.3 applied

to the map D Ñ T , each essential 2-cell adjacent to ¸ in D1 is strictly below ¸ (under  T ).

Let B be the smallest subcomplex of D1 containing ¸ and all 2-cells adjacent to ¸. Let B1 be a

minimal simply connected subcomplex of D containing B (under inclusion). Let B1 Ñ T 1 be a

maximal tower lift of the composition B1 ãÑ D Ñ T , and let ¸1 be a greatest essential 2-cell of

B1 under  T 1 . Now Lemma 3.1.8 implies ¸1 is exposed in B1. Note that since all essential 2-cells

in Bz¸ are below ¸ under  T , they are also below ¸ under  T 1 . Thus ¸1 R Bz¸. If ¸1 � ¸,

then consider the component of B1z¸1 containing ¸. This subcomplex of D contains B, is simply

connected (by Lemma 3.1.16), and it is strictly contained in B1. This violates minimality of B1.

Thus ¸1 � ¸, so ¸ is exposed in B1. But B1 contains all 2-cells in D1 adjacent to ¸, so ¸ is also

exposed in D1.

Let D Ñ X be a reduced diagram. Let V be the preimage in D of the disjoint union of the vertex

spaces of X, and let ¸ be an essential 2-cell of D. De�ne the following subcomplexes of D:

xG¸ �¤t˛ P D|˛ ¥X ¸u Y V

xL¸ �¤t˛ P D|˛  X ¸u Y t¸u Y V

Let G¸ and L¸ be the components of xG¸ and xL¸, respectively, containing ¸.
Lemma 4.0.5. (cf [LW13, Lemma 5.3]). The components of xG¸ and xL¸ are simply connected.

Proof. The proof is nearly identical to that of [LW13, Lemma 5.3]. We obtain xG¸ by successively

removing the closure of a least essential 2-cell from D and passing to components of the closure

of what remains. Reversing the staggering, Lemma 4.0.4 ensures that each successive essential

2-cell will be exposed, and Lemma 3.1.16 implies that removing each successive cell leaves simply
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connected components. In �nitely many steps we obtain xG¸, and the argument is essentially the

same for xL¸.
We are ready to prove our second main diagram theorem:

Proposition 4.0.6. (cf [LW13, Theorem 5.4]). Let D Ñ X be a reduced diagram. If D has an

internal essential 2-cell that maps to an exponent m 2-cell of X, then D contains at least 2m

extreme 2-cells.

Proof. The proof is essentially the same as that of [LW13, Theorem 5.4].

Let D Ñ T be a maximal tower lift of D Ñ X, and let ¸ be an internal essential 2-cell of D

of exponent m. De�ne xG¸ and xL¸ with respect to  T . Now Lemma 4.0.4 implies that ¸ is

exposed in both G¸ and L¸, so there exist essential 1-cells eG and eL in ¸ such that each 1-cell in

reGs¸ lies in BG¸ and each 1-cell in reLs¸ lies in BL¸. Since ¸ is internal, this implies that reGs¸

and reLs¸ must be distinct. Since the m elements of reLs¸ are internal in G¸, and because each

branch of G¸ at p¸; eGq intersects B¸ in an arc (Lemma 3.1.16), there are exactly m branches of

G¸ at p¸; eGq. Call them B1; : : : ; Bm. Let Gi be the component of xL¸ Y Bi containing ¸. Note
that Gi contains at least one essential 2-cell strictly greater than ¸ since Bi contains an essential

2-cell adjacent to ¸ (applying Lemma 4.0.3 to D Ñ T ). So any greatest 2-cell of Gi lies in Bi .

Now Lemma 4.0.4 implies that there exists an essential 2-cell ¸1 in Bi which is exposed in Gi .

Note that ¸1 is exposed in D since if ˛ is a 2-cell of D adjacent to ¸1 and ˛ doesn't lie in xL¸,
then ˛ is essential and ˛ ¥ ¸, so ˛ lies in Gi . Thus we obtain m distinct exposed 2-cells in D,

one in each Bi , and all strictly greater than ¸.

We repeat almost the same argument for L¸ to obtain m more distinct exposed 2-cells in D,

all strictly less than ¸ (in this case, the argument is actually simpler, as we don't need to apply

Lemma 4.0.3). Thus we obtain 2m exposed 2-cells in D. This completes the proof in the case

m � 1, as the de�nitions of exposed and extreme coincide.

Thus assume m ¥ 2, and let ¸1; : : : ; ¸2m be the 2m exposed 2-cells of D identi�ed above. If ¸i
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is not extreme, then D has at least two branches at p¸i ; eiq for some ei by Lemma 3.2.5. Let B

be a branch not containing ¸, and note that B Y ¸i is simply connected by Lemma 3.2.2. By

Proposition 3.2.6, there are at least two extreme essential 2-cells in B Y ¸i ; any one of these

not equal to ¸i is extreme in D. Repeating for each i , we obtain 2m extreme 2-cells. They are

distinct since for j � i , ¸j lies in the branch of D at p¸i ; eiq containing ¸.
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Chapter 5

Geometry of the universal cover

Throughout this chapter, let X be a staggered generalized 2-complex with locally indicable vertex

groups. From now on, we also assume that each essential 2-cell of X is attached by a proper

power, that is, npXq ¥ 2.

We will soon be assuming that the vertex groups of X are cubulated. This chapter contains a

collection of results about the geometry of X which do not depend on this assumption. In what

follows, we will be working in a space X̄ which is closely related to X̃, the universal cover of X.

Let Y denote the preimage of Xtot in X̃.

By Lemma 3.1.10, ı1pV q embeds naturally in ı1pXq for each vertex space V of X, and thus Y

may be viewed as a collection of CATp0q cube complexes (each of which is Ṽ for some vertex space

V of X, and to which we also refer as a vertex space by slight abuse of notation) with essential

edges running between them. Let X̄ be the space obtained from X̃ by identifying elevations of

essential 2-cells of X which have the same boundary; it may be viewed as a subcomplex of X̃

which contains Y . Give Y p1q the combinatorial metric in which every edge has length 1. All of

the metric statements in this chapter are really about Y p1q � X̄p1q, and all paths of interest are

edge paths. From now on, let d be the graph metric on X̄p1q.

We may assume that X has the property that for each essential 2-cell ¸ of X, any lift of a

maximal subpath of B¸ mapping to a vertex space V is a shortest path in the copy of Ṽ p1q to

which it lifts. To achieve this, we argue as follows: Suppose that the exponent of ¸ is m, so the

boundary B¸ is a path of the form pm, where p is a loop in Xp1q
tot . For each maximal subpath

pV of p mapping entirely to a vertex space V of X, note that pV is a loop. We modify p by
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replacing pV by a loop p1V in V p1q with the properties that p1V has the same basepoint as pV , p1V

and pV represent the same element of ı1pXq, and p1V uses a minimal number of edges. Let p1 be

the result of modifying p in this way. Replace ¸ by a 2-cell ¸1 with attaching map pp1qm. Doing

this for all essential 2-cells does not a�ect ı1pXq or the staggering, and the resulting staggered

generalized 2-complex has the desired property.

5.1 Admissible pseudometrics and relative geodesics

We will work with paths in X̄ which generalize geodesics. The idea of relative geodesics as de�ned

below is that they allow for the possibility that paths can be �shorter than they look,� but only

in vertex spaces. At certain times in what follows, we will be �augmenting� X̄ and allowing for

this sort of behavior.

De�nition 5.1.1. (Admissible pseudometrics/relative length/relative geodesic). Let d

denote the metric on X̄p1q where every edge has length one. For each vertex space Ṽ , choose a

pseudometric dṼ on Ṽ p0q. We require that this choice of pseudometrics is invariant with respect

to the action of G on X̄. If this holds we say the choice of pseudometrics is admissible.

Let ‚ : I Ñ X̄ be an edge path whose endpoints are 0-cells x and y of X̄. Decompose ‚ as a

concatenation ‚v1e1 : : : ‚vkek‚vk�1
, where each ‚vi is a (possibly degenerate) maximal edge path

mapping to a vertex space Ṽi of X̄, and the ei are essential edges. We de�ne the relative length

of ‚, ‘r p‚q, by the following formula:

‘r p‚q � k �
k�1̧

i�1

dṼi pip‚vi q; tp‚vi qq;

where ip–q and tp–q denote the initial and terminal vertices, respectively, of a path or edge –.

We say ‚ is a relative geodesic if the restriction of ‚ to each vertex space is a geodesic in the

one-skeleton of that vertex space, and ‘r p‚q is minimal among all paths from x to y . If we have

not made an explicit choice of admissible pseudometrics on vertex spaces, the statement that ‚
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is a relative geodesic should be taken to mean that there is a choice of admissible pseudometrics

which makes ‚ a relative geodesic.

Some examples of admissible choices of pseudometrics are as follows (provided that the choices

are made in a G-invariant manner):

• Make no change: For some/all Ṽ , de�ne dṼ px; yq � dpx; yq for some/all x; y P Ṽ p0q. Thus

geodesics are relative geodesics.

• �Electrify� some/all Ṽ by de�ning dṼ px; yq � 0 for all x; y P Ṽ .

• �Cone o�� some/all Ṽ by adding a new vertex and connecting all vertices of Ṽ to it by an

edge of length 1/2, and de�ne dṼ by the metric this procedure induces, so that dṼ px; yq � 1

for all distinct x; y P Ṽ .

• For some/all Ṽ , choose dṼ so that there is a constant C such that

|dṼ px; yq � 2 logpdpx; yq � 1q|   C

for all x; y P Ṽ . This is the choice we will make later on when we attach so-called

combinatorial horoballs to each Ṽ .

5.2 Local geometry of essential 2-cells

The following fact is a crucially important statement about the boundaries of essential 2-cells in

X̄.

Lemma 5.2.1. Suppose X is a staggered generalized 2-complex with locally indicable vertex

groups and npXq ¥ 2. Let ‚ a relative geodesic in X̄. Let e be an essential edge of an essential

2-cell ¸. Then there exists an element of res¸ not contained in ‚.

Proof. Suppose that the lemma is false. Among all triples p¸; e; ‚q with the property that all

31



members of res¸ lie in the relative geodesic ‚, choose one for which the number of edges in ‚ is

minimal. Note that ‚ will contain at least two edges.

Label the elements of res¸, e1; : : : ; em (where m ¥ 2 is the exponent of ¸) in the order that

they occur along ‚, and orient them consistently with ‚. Let ipejq and tpejq be the initial and

terminal vertices, respectively, of ej for j P t1; : : : ; mu. By minimality, the initial point of ‚ is

ipe1q and the terminal point is tpemq. Let ffj be the subpath of ‚ between tpejq and ipej�1q, for

j P t1; : : : ; m� 1u. Choose ff P tffju such that ‘r pffq is minimal. See Figure 5.1. Decompose the

image of B¸ in X as a path pm where p is not a proper power. The closed path p corresponds

to an order m element w of ı1pXq which acts on X̄ by �rotation� through a point in the interior

of ¸. Consider the paths tw jffu for j P t0; : : : ; m � 1u. Each path will connect two elements of

res¸ and the orbits will chain together to form an m-pointed star shape with corners on members

of res¸ (there are two cases according to whether the tw jffu meet at their endpoints or have

endpoints separated by the elements of res¸).

Figure 5.1: Decomposition of ‚ into the ffj .
Suppose that ff � ff4.

Figure 5.2: In this example, – is
made up of two orbits of ff and the
edges e1 and e2.

Now, �nd a shortest relative path – in X̄ connecting ipe1q to tpemq using only w -orbits of ff and

members of res¸. See Figure 5.2. It is clear that ‘r p–q ¤ m
2
‘r pffq �

m
2
� 1. On the other hand,

since ‚ is a relative geodesic with the same endpoints as –, we have that ‘r p–q ¥ m‘r pffq �m.
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Unless m � 2, this contradicts the inequality

m

2
L�

m

2
� 1   mpL� 1q;

which holds when L ¥ 0 and m ¥ 3.

Thus we have reduced to the case m � 2. We may also assume that ff connects antipodal points

of B¸, for otherwise wff connects ipe1q to tpe2q and ‘r pwffq   ‘r p‚q since wff avoids e1 and e2.

Corollary 3.1.13 tells us that B¸ embeds in X̄, so the two paths –1 and –2 of B¸zte1; e2u do not

intersect in X̄ (labeled so that tpe1q P –1). Since ff starts in –1 and ends in –2, we can �nd an

innermost subpath ff1 of ff whose endpoints lie in –1 and –2, respectively, and which does not

internally intersect B¸zte1; e2u. Note that ff1 does not cross e1 or e2, as this would provide an

obvious way to decrease the relative length of ‚.

Consider the compact subcomplex E � ¸ Y ff1 of X̄. By choice of ff1, ı1pEq � Z. Let q be a

reduced path in X̄ which represents a generator of ı1pEq, and D1 Ñ X̄ a reduced disk diagram

with boundary q. Let D � E YD1. If D is not reduced, then there is an essential 2-cell ˛ of D1

such that ¸ and ˛ form a cancelable pair and share an edge f in their common boundary. If this

happens, then �fold� ˛ over ¸ by identifying the paths B˛ztf u and B¸ztf u and deleting ˛ from

D. This is a homotopy equivalence and has the e�ect of modifying q and deleting an essential

2-cell from D1. This process terminates after �nitely many steps, so we may assume that D is

reduced. We may also assume that BD is contained in B¸Y ff1, since any 2-cell contributing an

edge g to BD not in B¸Yff1 may simply be removed from D along with g without a�ecting that

D is simply connected. Note that at most one of e1 and e2 lies in BD. Otherwise, connect a

point of e1 to a point of e2 by a snipping arc running across the interior of ¸, and observe that

the path ff1 contradicts Lemma 3.1.15. Without loss of generality, assume that e1 is internal in

D. Thus e1 lies in the boundary of at least two distinct essential 2-cells of D.

Thus there exist at least two essential 2-cells in D. Consider the natural reduced map D Ñ X. By
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Proposition 3.2.6, there is an extreme essential 2-cell ˛ of D distinct from ¸ with exposed edge

f , say. Since BD is contained in B¸ Y ff1, all elements of rf s˛ are contained in this subcomplex

of X̄ as well. In fact, all elements of rf s˛ are contained in ff1 since they lie on the boundary of

D. Thus p˛; f ; ff1q is a counterexample to the lemma. The fact that ‘r pff1q   ‘r p‚q contradicts

minimality of p¸; e; ‚q, and the lemma is proved.

5.3 Patchings

The following construction is of critical importance for later arguments. It shows that certain

non-simply connected subcomplexes of X̄ can be made simply connected without introducing

extra exposed or extreme 2-cells, as follows.

De�nition 5.3.1. (Patching). Let ffi : E Ñ X̄ be reduced, where E is compact but not

necessarily simply connected. A patching for ffi is a simply connected 2-complex E# and a

reduced diagram ffi# : E# Ñ X̄ such that E# contains E as a subcomplex, ffi#|E � ffi, and none

of the essential 2-cells of E#zE are exposed in E#.

Remark 5.3.2. In view of the composition X̄ Ñ X̃ Ñ X, where the �rst map is any inclusion

of X̄ into X̃, reduced diagrams D Ñ X̄ give rise to reduced diagrams D Ñ X and vice versa

by Remark 3.1.2. Whenever we have a patching E# Ñ X̄, we will casually confuse it with the

corresponding diagram E# Ñ X in order to apply Propositions 3.2.6 and 4.0.6.

An isolated edge of a CW complex is one which is not in the boundary of any 2-cell.

Lemma 5.3.3. Let ffi : E Ñ X̄ be an inclusion of a compact connected 2-complex. Suppose

that there is a path – in E with the property that – contains every isolated edge of E and maps

to a relative geodesic in X̄. Then a patching for ffi exists.

Proof. If E is simply connected, then ffi is a reduced diagram, so set ffi# � ffi and we are done.

Otherwise let g1; : : : ; gk be generators of ı1pEq. Let E0 � E and ffi0 � ffi. For each i , Let pi be

a reduced path in Ep1q such that rpi s � gi . Let i : Di Ñ X̄ be a reduced disk diagram such
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that ipBDiq � ffippiq. Inductively de�ne Ei � Ei�1 \pi Di , and observe that there is a natural

combinatorial map ffii : Ei Ñ X̄. The map ffi0 is reduced, and we can make ffii reduced by the

following inductive procedure: If ffii is not reduced, then by induction and the fact that Di is

reduced, there is a cancelable pair of 2-cells ¸ and ˛ in Ei�1 and Di , respectively. Let e denote

the shared edge between ¸ and ˛, and let ff¸ and ff˛ be the paths in B¸ze and B˛ze, respectively,

from the terminal to the initial vertex of e, which are identi�ed under ffii . Modify Ei and ffii by

replacing Di with Dizt˛; eu and identifying ff¸ with ff˛. Note that this process preserves E as a

subcomplex of Ei , and that, although we are modifying BDi , ipBpDizt˛; euqq is homotopic to pi

in ffii�1pEi�1q. It preserves homotopy type of Ei because it is a homotopy equivalence. Repeating

as many times as necessary, we may assume that there is no cancelable pair between Ei�1 and

Di , and thus that ffii is reduced. Now E# � Ek contains E, and since E# is simply connected,

ffi# � ffik is a reduced diagram. By construction, it is also clear that ffi#|E � ffi.

Observe that for each i , all isolated edges of Ei belong to –.

It remains to prove that any essential 2-cell ¸ belonging to E#zE is not exposed in E#. To that

end, let ¸ be an essential 2-cell belonging to E#zE. Then ¸ belongs to the complex Di for some

i ¥ 1. Now, if ¸ is exposed in E#, then there is some exposed edge e in B¸ such that res¸ lies

in BEi . Since each edge of res¸ also lies in BDi , it must be the case that every edge of res¸ is an

isolated edge of Ei�1, and thus belongs to – by the observation above. This contradicts Lemma

5.2.1.

5.4 More local geometry of essential 2-cells

With patchings as the fundamental tool, we now prove some other statements about the local

geometry of essential 2-cells.

Lemma 5.4.1. Let ¸ and ˛ be distinct essential 2-cells of X̄. Let e be an essential edge of ¸.

Then at most one element of res¸ lies in B˛.
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Proof. Suppose that two elements e1 and e2 of res¸ lie in B˛. Then the complex E � ¸ Y ˛

satis�es the hypotheses of Lemma 5.3.3, so let E# Ñ X be a patching (writing X instead of X̄

in the abuse of notation justi�ed by Remark 5.3.2). By Proposition 3.2.6, ¸ is extreme in E#

with exposed edge f . Note that f R res¸ since e1 and e2 are internal in K#. Thus there are two

elements of rf s¸, f1 and f2, lying in distinct components of B¸zte1; e2u. Connect midpoints of f1

and f2 by a snipping arc running through the interior of ¸, and observe that any path between

e1 and e2 through the interior of ˛ contradicts Lemma 3.1.15.

The following strong statement rules out several more pathologies for a relative geodesic which

intersects the boundary of an essential 2-cell in X̄.

Lemma 5.4.2. Let ¸ be an essential 2-cell of X̄, and let ‚ be a relative geodesic which uses

at least 2 essential edges of B¸. Index the essential edges of ‚ from e1 to ek , where e1 and ek

are the �rst and last essential edges in ‚ which lie in B¸, and the labels are with respect to an

orientation of ‚. The following statements hold:

(i) Each ei lies in B¸.

(ii) For i P t1; : : : ; k � 1u, there is a path –i in B¸ connecting ei to ei�1 which does not use

any essential edges.

(iii) The orientations of the ei are consistent with either orientation of B¸.

Proof. Let E � ¸Y ‚. Then E satis�es the hypothesis of Lemma 5.3.3, so let E# be a patching

for E. By Proposition 3.2.6, there is only one essential 2-cell in E#.

(i): Assume that some ei does not lie in B¸. In particular, i R t1; ku. The fact that E# is

simply connected implies ei is contained in an essential 2-cell of E# distinct from ¸, but this is

a contradiction.

(ii): Assume that every path in B¸ connecting ei to ei�1 uses at least one essential edge. Let

–1 and –2 be the two subpaths of B¸ connecting ei to ei�1 which do not internally intersect ei
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or ei�1. Note that at least one of –1 or –2 has the property that all essential edges therein lie

in the interior of E#, otherwise we may join two boundary essential edges of –1 and –2 by a

snipping arc running across the interior of ¸, and observe that the portion of ‚ between ei and

ei�1 contradicts Lemma 3.1.15. Without loss of generality, we may assume –1 has this property.

By the initial assumption, –1 contains an essential edge. By Corollary 3.1.13, there is an essential

2-cell of E# distinct from ¸, a contradiction.

(iii): If this statement is false, then there is a pair of edges ei and ei�1 which have opposite

orientations in B¸. Now, observe that at least one of ei or ei�1 is internal in E#. Indeed, if this

is not the case, then connect ei and ei�1 together by a snipping arc running across the interior

of ¸. Because of the opposite orientation of ei and ei�1 in B¸, the portion of ‚ between ei and

ei�1 now contradicts Lemma 3.1.15. Thus at least one of ei or ei�1 is internal. As in (ii), there

is an essential 2-cell in the diagram distinct from ¸, a contradiction.

Let rxs be the smallest integer greater than or equal to x . The following is also useful:

Lemma 5.4.3. Let ¸ be an essential 2-cell in X̄ of exponent m and boundary path pm in X,

and let ‚ be a relative geodesic. Let e be an essential edge of B¸. Then ‚ contains at most rm
2
s

elements of res¸.

Proof. The path p is a loop in X which corresponds to an order m element w of ı1pXq which

acts by �rotation� of X̄ through a point in the interior of ¸. Assume for contradiction that ‚

contains k elements of res¸, where k ¥ rm
2
s� 1. After possibly replacing ‚ by a path with fewer

edges, we may assume that the �rst and last edges of ‚ are elements of res¸. Let e1; : : : ; ek be

the elements of res¸ lying in ‚. By Lemma 5.4.2, there is an orientation of ‚ such that ‚ traverses

each of e1 through ek in the positive direction, in turn, and wei � ei�1 for i P t1; : : : ; k � 1u

(after possibly replacing w by w�1).

Now ‚ runs from ipe1q to tpekq, and since k ¥ rm
2
s � 1, w k�1‚ runs from ipekq to tpek 1q for

some k 1 P t1; : : : ; k�1u. The observations of the previous paragraph imply that w k�1‚ contains

37



the points tpekq and ipe1q in its interior. Let ‚1 be the subpath of w k�1‚ running from tpekq

to ipe1q. Note that ‘r p‚1q   ‘r pw
k�1‚q since w k�1‚ uses ek and e1 but ‚1 does not. Since

‘r pw
k�1‚q � ‘r p‚q by G-invariance of ‘r , the path ‚1 is an �‘r -shortcut� between ipe1q and tpekq.

This contradicts that ‚ is a relative geodesic.

5.5 Convexity of vertex spaces

The following fact will also be useful.

Lemma 5.5.1. The vertex spaces of X̄ are convex.

Reminder: We are using the path metric on X̄p1q.

Proof. Let ‚ be a geodesic edge path between vertices x and y of a vertex space Ṽ . By passing

to an innermost subpath outside of Ṽ , we may assume that ‚X Ṽ � tx; yu. Let ‚1 be a shortest

path from x to y in Ṽ . Note that neither ‚ nor ‚1 backtrack. Also, the �rst edges of ‚ and ‚1

are not identi�ed by the innermost subpath assumption; neither are the last edges. Thus the loop

‚p‚1q�1 is cyclically reduced, so we may �ll it with a reduced diagram D by Theorem 3.1.4. If

D contains an essential 2-cell, then by Lemma 3.1.8, there as an exposed essential 2-cell ¸ with

exposed edge e. Since ‚1 consists only of edges which are not essential, all elements of res¸ lie

on ‚. This contradicts Lemma 5.2.1. Thus D contains no essential 2-cells and so ‚ also maps

to Ṽ , which is also a contradiction.
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Chapter 6

Relative hyperbolicity

Let X be a staggered generalized 2-complex with locally indicable vertex groups and npXq ¥ 2.

From this point onward, assume that the underlying graph of the total space Xtot is �nite. Note

that this does not imply that Xtot is compact as vertex spaces may not be. However, it does imply

that CpXq is �nite. A result of crucial importance later on is that ı1pXq is relatively hyperbolic

with these assumptions. We prove this fact in this chapter.

By way of motivation, recall that ‹-hyperbolic groups are a class of groups de�ned by Gromov

in terms of a ‹-thin triangle condition. This is a property de�ned for a general geodesic metric

space Y which can be concisely stated as follows: There is a ‹ ¡ 0 such that for any geodesic

triangle in Y , the ‹-neighborhood of any two sides contains the third side. It is a coarse negative

curvature property which, when it appears in the Cayley graph of a given �nitely generated

group, is independent of generating set (after possibly modifying ‹). See [Bow06] or [Sis14] for

a synopsis.

For a group G with a �xed �nite presentation P , it is well-known (see [Bri02] for example) that

the Cayley graph of G with respect to P is ‹-hyperbolic for some ‹ if and only if G has a linear

Dehn function for P , which means, roughly, that the maximum area of a van Kampen diagram

in the Cayley 2-complex for G with respect to P grows linearly in its perimeter.

In this spirit, we will use a de�nition of relative hyperbolicity in terms of linear relative Dehn

functions, as de�ned below (following [Hru10]).

De�nition 6.0.1. (Finite relative presentation/�nite relative generating set). Suppose
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P is a �nite collection of in�nite subgroups of a countable group G (called peripheral subgroups)

and let P be the union of all P P P. We say that pG;Pq has a �nite relative presentation with

�nite relative generating set S if S is �nite and symmetrized (S � S\S), SYP is a generating

set for G, and the kernel of the natural map from F pSq � p�PPPP q Ñ G is �nitely normally

generated, where F pSq denotes the free group on the set S.

De�nition 6.0.2. (Linear relative Dehn function). Suppose pG;Pq has a �nite relative

presentation with �nite relative generating set S � S \ S. Let P be the union of all P P P. Let

H � F pSq � p�PPPP q and R be a �nite normal generating set for the kernel of the natural map

H Ñ G. For any word W over S Y P representing the identity of G (called a trivial word), we

have an equation in H of the form W � Π
k
i�1h

�1
i Rihi where Ri P R and hi P H for each i . The

smallest such k (ranging over equations of this form) is called the area of W and denoted by

ApW q. We say pG;Pq has a linear relative Dehn function for this relative presentation if there is

a linear function f : N Ñ N such that for each trivial word W of length at most m in S Y P,

ApW q ¤ f pmq.

De�nition 6.0.3. (Relatively hyperbolic) [Hru10, De�nition 3.7]. Suppose pG;Pq has a

�nite relative presentation. If pG;Pq has a linear relative Dehn function for some �nite relative

presentation of pG;Pq, then we say pG;Pq is relatively hyperbolic (or G is hyperbolic relative to

P).

Note: The de�nition above was introduced in a more general form by Osin in [Osi06]. Hruska

shows it is equivalent to no fewer than �ve others in the case that the set of peripheral subgroups

is �nite [Hru10].

Lemma 6.0.4. Suppose X is a staggered generalized 2-complex with locally indicable vertex

groups, npXq ¥ 2, and the underlying graph of the total space Xtot is �nite. Let P be the

collection of vertex groups of X. Then pı1pXq;Pq is relatively hyperbolic.

Remark: This result seems to be known, though we were unable to �nd a suitable reference in

the literature. However, the isoperimetric inequality proved in [DH91, Theorem 3.3] implies that
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the pair p A�B
xxwmyy

; tA;Buq (for A and B locally indicable, w not conjugate into A or B, and m ¥ 2)

is relatively hyperbolic, which certainly covers the case that GpXq is a dumbell space.

Proof. We �rst construct a �nite relative generating set for G � ı1pXq. Choose a maximal

spanning tree T of essential edges in Xtot. De�ne S as follows. Fix a base point in T and orient

the essential edges of XtotzT . Each edge ei therein contributes an element to S corresponding to

a reduced path which starts and ends at the base point, traverses ei exactly once in the positive

direction, and otherwise does not leave the tree T . Then S � S\S is a �nite relative generating

set (where S is the collection of inverses of elements of S). Moreover, by van Kampen's Theorem,

a normal generating set R for the kernel of the natural map from F pSq � p�PPPP q Ñ G may be

identi�ed with the set of boundary paths of essential 2-cells of X.

Let P be the union of all P P P. Let p be a reduced, cyclically reduced edge path in Xtot

such that rps represents the trivial element of G. We may also view p as a trivial word over

S Y P. Let Lppq denote the word length of p in S Y P, and note that we can compute Lppq

by counting the number of essential edges of p in XtotzT plus the number of nontrivial maximal

subloops of p which lie entirely in a single vertex space. Let D Ñ X be a planar reduced diagram

for p which uses a minimal number of essential 2-cells, and call the number of essential 2-cells

in such a diagram Appq. There is standard one-to-one correspondence (see [Bri02, Theorem

4.2.2], for example) between planar diagrams with k essential 2-cells and equations of the form

W � Π
k
i�1h

�1
i Rihi for Ri P R and hi P H, so Appq � Appq. Thus, having a linear relative Dehn

function with respect to the �nite relative generating set above is equivalent to requiring that

there exist constants a; b such that Appq ¤ am � b for each trivial word p with Lppq ¤ m.

To �nd such constants, we will also need to consider the Bass-Serre length of p, denoted by ‘ppq

and de�ned for arbitrary paths in X̄p1q, which is just the number of essential edges occurring in

p. We claim that:

(1) ‘ppq is bounded above by a linear function of Lppq, and
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(2) Appq is bounded above by a linear function of ‘ppq.

To see the �rst claim, note that since T is �nite, there is a constant d such that any reduced

path which stays entirely inside it (using only essential edges) can use at most d essential edges.

In particular, any reduced path p1 in Xtot with ‘pp1q ¡ d will either use an essential edge of

XtotzT or contain a subloop representing a nontrivial element of some vertex space. Thus if p1 is

a subpath of p with ‘pp1q � d � 1, p1 contributes at least one unit of length to Lppq. This shows

that

‘ppq

d � 1
� 1 ¤ Lppq;

i.e.

‘ppq ¤ pd � 1qLppq � pd � 1q:

For the second claim, use Dehn's algorithm: Let D Ñ X be a reduced diagram for p which

uses a minimal number of essential 2-cells. Suppose �rst that D contains at least two essential

2-cells. Then D contains an extreme essential 2-cell ¸ by Proposition 3.2.6. Since npXq ¥ 2, ¸

has exponent at least two, and thus strictly more than half of the essential edges of B¸ lie on

BD. Let D1 be the unique component of Dz¸ which contains essential 2-cells (it is unique since

¸ is extreme). The path p1 � impBD1q has the property that ‘pp1q ¤ ‘ppq � 1. Also, D1 uses

a minimal number of essential 2-cells since D does. By induction on ‘ppq, we may assume that

there exist positive constants a1 and b1 such that App1q ¤ a1‘pp1q � b1. Assume without loss of

generality that a1; b1 ¥ 1. We have that

Appq � App1q � 1 ¤ a1‘pp1q � b1 � 1 ¤ a1‘ppq � a1 � b1 � 1 ¤ a1‘ppq � b1

as well. On the other hand, if D contains one or fewer essential 2-cells, then Appq ¤ 1. In
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particular, we again have that Appq ¤ a1‘ppq � b1.

Stacking the inequalities from claims (1) and (2) gives the required linear relative Dehn function.
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Chapter 7

Walls and ladders

In this chapter, we will assume our vertex groups are cubulated and de�ne walls as codimension-1

immersed hyperspaces in X̄. The construction of [Sag95] will be used to obtain an action of

G � ı1pXq on an associated dual cube complex.

We �rst de�ne the notion of a CATp0q cube complex, following [Man16].

De�nition 7.0.1. (Cube complex/midcube/NPC cube complex/CATp0q cube com-

plex/hyperplane). Let I � r0; 1s. An n�cube is a copy of In metrized as a subset of Euclidean

space. A k�dimensional face of In is a subset in which all but k of the coordinates are held

constant at either 0 or 1, and a midcube of a cube is obtained by setting exactly one coor-

dinate equal to 1
2
. A cube complex is a metric space built from a disjoint union of cubes of

various dimensions, glued together by isometries of faces. The 0�cubes will also be referred to

as vertices; the 1�cubes as edges. The link of a vertex is the boundary of an "-neighborhood for

some 0   "   1
2
, viewed as a ∆-complex. A simplicial complex is called �ag if, whenever the

one-skeleton of a k-simplex is present in the complex, that k-simplex is present. A cube complex

is called non-positively curved (NPC) if the link of each vertex is a �ag simplicial complex. It is

called CATp0q if it is NPC and simply connected. A hyperplane of a CATp0q-cube complex is

a nonempty, closed, connected subspace whose intersection with each cube is either empty or a

midcube. Hyperplanes are simply connected, 2-sided, divide the CATp0q cube complex into two

components, and are themselves CATp0q cube complexes (see [Sag14]).

There is another meaning of CATp0q for a general geodesic metric space Y (originally de�ned

by Cartan, Alexandrov and Toponogov whose names form the acronym) which is stated in terms
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of comparison triangles, and says roughly that geodesic triangles in Y are no �fatter� than their

Euclidean counterparts. See [BH99]. As outlined by Sageev in [Sag14], CATp0q cube complexes

are CATp0q in this more general sense by work of Bridson, Gromov, and the Cartan-Hadamard

Theorem. The name is therefore justi�ed since they possess this notion of non-positive curvature.

From now on, assume that the staggered generalized 2-complex X with npXq ¥ 2 and locally

indicable vertex groups has the additional property that each of the vertex groups of X admits a

proper and cocompact action on a CATp0q cube complex. We also continue to assume that the

underlying graph of Xtot is �nite. In this setting, this is equivalent to the assumption that X is

compact, as outlined below.

Indeed, since locally indicable groups are necessarily torsion free, our assumption that the vertex

groups are cubulable implies that each vertex group acts freely on its associated cube complex.

We may thus assume that each vertex space V is a compact non-positively curved (NPC) cube

complex, and each copy of the universal cover Ṽ in X̄ is a CATp0q cube complex. Note that this

implies in particular that each vertex group is �nitely presented, since V is a �nite KpG; 1q for

its vertex group. Since CpXq is �nite, this also implies that the complex X̄ is locally �nite and

X is compact.

In what follows, for metric statements about copies of Ṽ in X̄ for a vertex space V of X (to

which we also refer as vertex spaces by slight abuse of notation), we will use the ‘1 metric in the

1-skeleton of Ṽ unless otherwise speci�ed.

Similarly to the description in [Man16], we de�ne walls as components of a �midcube complex,�

MpX̄q. The cube complex MpX̄q and its natural map to X̄ are de�ned as follows.

We �rst describe the disjoint union of the cubes of MpX̄q. Fix 1
2
¡ " ¡ 0. Each cell of X̄ is

either a cube of some dimension or an essential 2-cell. Each k-dimensional cube C of X̄ contains

k midcubes of codimension 1 obtained by setting exactly one coordinate equal to 1
2
. For us, each

of these midcubes C 1 will give rise to exactly two pk � 1q-dimensional cubes of MpX̄q equipped

with homeomorphisms to two parallel copies of C 1 distance " from C 1 on opposite sides of C 1.
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On the other hand, each essential 2-cell ¸ of X̄ contributes edges to MpX̄q as follows. Suppose

that ¸ is of exponent m. Each edge e in B¸ is either an essential edge or a 1-dimensional cube

in some Ṽ . In either case, consider two points in the interior of e which are distance " from the

midpoint of e. After choosing an orientation of B¸ we may label them v�e and v�e . There are

an analogous pair of points in each edge of res¸, and we add m edges (1-dimensional cubes) to

MpX̄q where each edge maps to a path in ¸ running from the v�e in each edge of res¸ to the v�e

in the next edge of res¸ through intp¸q, and such that the images of these n edges are disjoint.

Moreover, we arrange that the image of edges of MpX̄q mapping to essential 2-cells is invariant

with respect to the action of ı1pXq on X̄.

Now identify faces of cubes of MpX̄q as follows: Whenever one of the face identi�cations of X̄

identi�es the images of two faces of cubes of MpX̄q, we identify those faces in MpX̄q. The walls

of X̄ are de�ned as the components of MpX̄q. Figure 7.1 shows an illustration of some portions

of walls in X̄.

Figure 7.1: Some portions of walls in X̄.

Note that the action of ı1pXq on X̄ preserves the system of walls just de�ned. Also note that

there are two types of walls in X̄:

(i) The walls which are dual to essential edges and do not intersect any Ṽ ; these walls are
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graphs.

(ii) The walls which nontrivially intersect some Ṽ . These walls may be higher dimensional.

More precisely, these walls are graphs of hyperplanes, i.e., they consist of hyperplanes of

vertex spaces which are joined to each other by edges crossing essential 2-cells, with the

property that the endpoints of each edge are connected to vertices of hyperplanes.

A straightforward observation about walls is that they are locally determined:

Lemma 7.0.2. For any cell ! and walls Λ and Λ1 of X̄, if impΛqX! is nonempty and impΛqX! �

impΛ1q X !, then Λ � Λ1.

However, it is not clear that the walls we have just de�ned are well-behaved in X̄. For example,

a priori, a wall could travel in some vertex space Ṽ , leave the space through some essential 2-cell

¸, and later come back to that same vertex space so that its image in X̄ intersects itself.

On the other hand, it is clear that portions of walls behave well in vertex spaces. We make

the following basic observations about walls, vertex spaces of X̄, and how walls behave therein.

A square is a 2-cell which is not essential. These facts follow directly from the de�nition of a

CATp0q cube complex and the well-known behavior of the standard hyperplanes therein, and the

proofs are omitted. See [Sis14], for example.

Lemma 7.0.3. Let Ṽ be a vertex space of X̄. Let Λ í X̄ be a wall and let ΛV be a maximal

connected component of the preimage of Ṽ in Λ. Let ‚ be a geodesic edge path in Ṽ and let s

be a square of Ṽ . Then

• Λ is an NPC cube complex.

• Bs embeds in X̄.

• ΛV embeds in X̄.

• s X ΛV is either empty or a single edge of ΛV .

• ‚ X ΛV is either empty or a single point.
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Since each wall is an NPC cube complex, it makes sense to speak of a local geodesic in the

1-skeleton of a wall.

De�nition 7.0.4. (Carrier/wall segment/ladder). For a wall Λ í X̄, the carrier of Λ is the

smallest subcomplex of X̄ containing the image of Λ. A wall segment – in a wall Λ is a local

geodesic in Λp1q, embedded except possibly at its endpoints. The ladder associated to – is the

smallest subcomplex of X̄ containing the image of –.

Note that ladders are necessarily at most 2-dimensional subcomplexes of X̄.
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Chapter 8

Walls embed and separate

In [LW13], ladders turn out to be simply connected. This is not necessarily true in our case, but

they can be patched:

Lemma 8.0.1. Let H be the ladder associated to a wall segment. Then H contains at most

two extreme essential 2-cells, and there is a patching H# Ñ X̄ for H.

Proof. Consider the inclusion of H into X̄, which is a reduced map. Note that the �rst and

last essential 2-cells of H are the only candidates for extreme 2-cells. Indeed, let – be the wall

segment for which H is the associated ladder, and observe that Lemma 3.2.7 may be applied

to any essential 2-cell ¸ of H which is not the �rst or last (taking the points x and y to be

respective endpoints of the two edges of B¸ dual to – and on opposite sides of – in ¸). Note

also that H has no isolated 1-cells unless H is a single edge, so the hypotheses of Lemma 5.3.3

are satis�ed and H# Ñ X̄ exists.

The fact that walls embed and separate is a consequence of the following lemma.

Lemma 8.0.2. Let ¸ be a 2-cell of X̄ (essential or not). If – is a wall segment with both

endpoints mapping to ¸, then imp–q is contained in ¸.

Proof. Let H be the ladder associated to – and let K � ¸ Y H. Note that B¸ embeds in X̄

by either Corollary 3.1.13 or Lemma 7.0.3. We will show that K contains no 2-cells besides ¸,

which proves the lemma.

If K contains a 2-cell besides ¸ then we may choose distinct points u and v in B¸X imp–q such
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that the portion of – (of positive length) whose image is a path from u to v (which we denote

by –1) does not have image internally intersecting ¸. Let H1 be the ladder associated to –1, and

note that K 1 � ¸ Y H1 is itself a ladder (by possibly extending –1 across ¸ if necessary). By

Lemma 8.0.1, K 1 has a patching K 1
# Ñ X̄.

First suppose that ¸ is a square. Then the image of –1 passes through an essential 2-cell by

Lemma 7.0.3. Let u1 and v 1 be the �rst points along imp–1q from u and v , respectively, which

lie in the boundary of some essential 2-cells ¸u and ¸v , which may or may not be distinct. Note

that ¸u and ¸v are the only candidates for extreme essential 2-cells of K 1
# by Lemma 8.0.1. On

the other hand, u1 and v 1 become identi�ed in the auxiliary diagram, so in fact neither ¸u nor

¸v can be extreme by Lemma 3.2.7. The complex K 1
# contradicts Proposition 3.2.6.

Now suppose ¸ is an essential 2-cell. By extending –1 through ¸ if necessary, we see that ¸ is

both the �rst and last essential 2-cell through which – passes. Since ¸ is the only candidate for

an extreme 2-cell of K 1
# by Lemma 8.0.1, Proposition 3.2.6 implies that ¸ is the only essential

2-cell of K 1
#. Thus H

1 is made entirely of squares. Let eu and ev be the edges of B¸ containing

u and v . Let ff and ff1 be the two arcs of B¸ztu; vu. Suppose one of these arcs, say ff, contains

no essential edges. The arc eu Y ff Y ev is a geodesic in a CATp0q cube complex, and the wall

segment –1 shows that some wall segment (lying entirely in that CATp0q cube complex) crosses

it twice. This contradicts Lemma 7.0.3. Thus there are essential edges e and e 1 in ff and ff1

respectively. On the other hand, e and e 1 lie on BK 1
# by the fact that ¸ is the only essential 2-cell

of K 1
# and Corollary 3.1.13. Connect midpoints of e and e 1 by a snipping arc running through the

interior of ¸ and observe that the wall segment –1 furnishes a contradiction to Lemma 3.1.15.

It follows that K contains no 2-cells besides ¸, and the lemma is proved.

Proposition 8.0.3. (cf [LW13, Theorem 7.4]). Each wall is a tree of hyperplanes and embeds

in X̄.

Proof. If some wall Λ is not simply connected, then there exists a wall segment – of positive
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length in Λp1q which is a loop. Let H be the ladder associated to –. Note that H contains at

least two 2-cells by since the boundaries of 2-cells of X̄ embed by Lemma 7.0.3 and Corollary

3.1.13. Pick a 2-cell ¸ in H. Note that we may �nd an arc of – with endpoints mapping to B¸

whose image does not internally intersect ¸. This contradicts Lemma 8.0.2.

Thus Λ is simply connected. Since it is an NPC cube complex, it is in fact a CATp0q cube

complex. We thus see that Λ is a tree (a tree of trivial hyperplanes) if it is a wall of type (i), and

a tree of hyperplanes if it is a wall of type (ii).

Now suppose that a wall Λ does not embed in X̄. Then Λ intersects itself in some essential 2-cell

¸ or some cube c . In the latter case, there is some 2-dimensional face of c in which we will

witness the intersection of Λ with itself. Thus we may choose a wall segment – which intersects

itself exactly once in a 2-cell ¸ (essential or not) and let H be the ladder associated to –. Note

that H contains at least two 2-cells since the boundaries of 2-cells of X̄ embed by Lemma 7.0.3

and Corollary 3.1.13. Thus, we may �nd an arc of – with endpoints mapping to B¸ whose image

does not internally intersect ¸. This contradicts Lemma 8.0.2.

This result permits us to casually confuse a wall Λ with its image in X̄, a liberty we will take

freely in what follows.

Corollary 8.0.4. Each wall in X̄ is separating.

Proof. For any point p in a wall Λ, Λ separates a neighborhood of p into exactly two components,

by Lemma 8.0.3 and construction. Thus each wall is locally separating and has an I-bundle

neighborhood. And since each wall is a tree of hyperplanes (also Lemma 8.0.3), each wall is

contractible. Thus each I-bundle neighborhood is actually a product Λ � I. Thus for each wall,

X̄ decomposes as a graph of spaces with a single simply connected edge space. Since H1pX̄q � 0,

this graph of spaces is a dumbell space (not a loop), and each wall is separating.

Here are some miscellaneous convenient lemmas about the geometry of walls.
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Lemma 8.0.5. Let ‚ be a relative geodesic edge path in a vertex space Ṽ of X̄. Let Λ be a

wall. Then Λ X ‚ is either empty or a single point.

Proof. Since ‚ lies in a vertex space, it is a geodesic. Suppose Λ intersects ‚ in two distinct points

x and y . Let – be a wall segment connecting x to y and let H be the associated ladder. The

subcomplex K � HY ‚ satis�es the hypotheses of Lemma 5.3.3, so let K# be a patching. Note

K# has a maximum of two extreme 2-cells by Lemma 8.0.1 applied to H. If K# has an essential

2-cell, then H contains essential 2-cells and the �rst one ¸ through which – passes is extreme

in K# by Proposition 3.2.6. Let e be an exposed essential edge lying in the boundary of ¸, and

choose two elements e1 and e2 of res¸ which lie on opposite sides of – X ¸. Connect e1 and e2

by a snipping arc across the interior of ¸, and observe that this snipping arc is non-separating,

contradicting Lemma 3.1.15. Indeed we can get from one side to the other by following – to

‚, traversing ‚ from x to y (or y to x), and then going through the other portion of – until

reaching the snipping arc. This works because there are no essential edges in ‚. Thus there are

no essential 2-cells in K#. But this means that a connected component of Λ X Ṽ (which is a

hyperplane in Ṽ by Lemma 7.0.3) crosses the geodesic ‚ twice, which contradicts the behavior

of hyperplanes in CATp0q cube complexes.

We record the following immediate corollary.

Corollary 8.0.6. For each wall Λ and each vertex space Ṽ , ΛX Ṽ is either empty or consists of

a single hyperplane in Ṽ .

Lemma 8.0.7. Let ‚ be a relative geodesic in X̄ and suppose Λ X ‚ consists of at least two

distinct points x and y . If – is a wall segment in Λ connecting x to y , then – passes through at

least one essential 2-cell.

Proof. Let H be the ladder associated to –, and let K � HY‚. Then K satis�es the hypotheses

of Lemma 5.3.3, so let K# Ñ X̄ be a patching. If – does not pass through an essential 2-cell,

then H is made entirely of squares, and thus so is K# by Lemma 3.1.8. This implies that there
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are no essential edges in ‚, because any such edge would be isolated and nonseparating in K#.

Thus K# maps to a single vertex space Ṽ of X̄. Since ‚ is a relative geodesic mapping to a

single vertex space, it is a geodesic in that vertex space. The fact that Λ X Ṽ crosses ‚ twice is

a contradiction to Lemma 7.0.3.
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Chapter 9

Walls are relatively quasiconvex

In [LW13], walls turn out to be quasi-convex. This is used in conjunction with the fact that

one-relator groups with torsion are hyperbolic to apply a theorem of Sageev and conclude that

the action of such a group on its associated dual cube complex is cocompact.

We will use a relative version of this argument. As we argued in Lemma 6.0.4, G � ı1pXq is

hyperbolic relative to the vertex groups. In this chapter, this will be an ingredient in a proof that

each wall stabilizer is quasiconvex relative to the vertex groups, a notion to be made precise in

what follows. This result will be used in Chapter 11 when we apply a generalization of Sageev's

theorem by Hruska-Wise to conclude that the action on the dual cube complex is cocompact.

9.1 Geometric relative quasiconvexity

We will �rst prove the following geometric relative quasiconvexity statement about wall carriers

and then translate it to the algebraic relative quasiconvexity of wall stabilizers. In this lemma,

we only use the metric on X̄p1q.

Lemma 9.1.1. (cf [LW13, Theorem 8.4]). Let X be a compact staggered generalized 2-complex

with locally indicable, cubulable vertex groups. Suppose that npXq ¥ 4. Let Λ be a wall in X̄.

There is a constant W � W pXq such that if ‚ is a relative geodesic in X̄p1q between vertices in

the carrier C of Λ, then every vertex of ‚ which lies in an essential edge is within distance W of

C.

Proof. First note that since the underyling graph of Xtot is �nite, the set CpXq is �nite, and
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there is an upper bound WX on the number of edges (essential or not) in the attaching map of

any element of CpXq. We will show that W � WX satis�es the conclusion of the lemma.

Let ‚ be a relative geodesic in X̄p1q whose endpoints x and y are vertices in C. If ‚ is contained

in C, then we are done. By passing to an innermost subpath of ‚ which lies outside of C, we

may assume that ‚ X C � tx; yu. Since x and y lie in C, there is a ladder H in C containing x

and y with associated wall segment –, and ‚ does not internally intersect H. The subcomplex

K � ‚ YH satis�es Lemma 5.3.3, so let K# Ñ X̄ be a patching. When choosing generators of

ı1pKq to perform the patching, choose them so that there is exactly one generator which uses

the path ‚. Call the disk associated to this generator D and make the choice that this is D1,

the �rst disk, in the patching construction. With this choice we may assume there is a planar

subcomplex D of K#, homeomorphic to a disk, such that ‚ is one arc of BD and the other arc

ff lies in H. Note also that ff has no edges on BK# since H has no isolated edges.

Note that K# has a maximum of two extreme 2-cells since H does (by Lemma 8.0.1). Thus

Proposition 4.0.6 implies that every essential 2-cell of K# is external (since npXq ¥ 2). In

particular, this holds for every essential 2-cell of D, and in fact every essential 2-cell of D has an

essential edge lying along ‚ since H has no isolated edges.

Let A be the union of essential 2-cells of D whose closures intersect H (i.e., their boundaries

intersect ff). Let z be a point in an essential edge e of ‚. These are the points we will show are

uniformly close to H. If z P A, then dpz; Hq ¤ WX

2
. If z R A, let ‹ be the maximal connected

subpath of ‚ containing z such that intp‹q X A is empty. Since every 2-cell of A has an edge on

‚, the complex DzA is a tree of disks. Let D1 be the maximal subcomplex of DzA which contains

z and is homeomorphic to a disk. Let ‹1 be the path BD1zintp‹q (the other boundary arc of D1),

and label the endpoints of ‹1, x 1 and y 1 in such a way that x 1 lies on the subpath of ‚ between

y 1 and x . See Figure 9.1.

We claim that at most two essential 2-cells in A are adjacent to ‹1 along essential edges. Indeed,

if there are three or more let ¸ be one which is not the �rst, ¸1, or the last, ¸2, encountered while
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traversing ‹1 in the positive direction (for a chosen orientation). Since ¸ is external in K# and

lies in D, there is an essential edge f of ¸ on BK#, and f lies on ‚. Without loss of generality,

suppose that f lies in the portion of ‚ between z and x . Because D is planar, whichever of ¸1

or ¸2 intersects the subpath of ‹1 between ¸ X ‹1 and x 1 cannot also intersect ff, contradicting

that it lies in A. This proves the claim.

The above claim shows that ‹1 decomposes as a path ‹1‹2‹3, where ‹1 and ‹3 are (possibly

degenerate) paths, each of which lies along the boundary of an essential 2-cell of A, and ‹2 is a

(possibly degenerate) subpath of ff which does not use any essential edges and maps to a single

vertex space.

Figure 9.1: An illustration of the general case. Because ‹1 and ‹3 are so short, ‹ is a relative geodesic, ‹2

contains no essential edges, and npXq ¥ 4, any candidate ˛ for an extreme essential 2-cell of D1 must have
exposed edges on all of ‹1, ‹, and ‹3. This shows that D

1 contains a single essential 2-cell which contains z and
intersects ‹1 Y ‹3, so that z is close to A.

Next, we claim that D1 contains at most one essential 2-cell. To see this claim, suppose that D1

contains two or more essential 2-cells. Then D1 contains at least two extreme 2-cells ¸ and ˛ by

Proposition 3.2.6, with, say, exposed edges f and g , respectively. Note that all elements of rf s¸

and rg s˛ lie along ‹1 Y ‹ Y ‹3 since ‹2 contains no essential edges. In fact, it must be the case
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that at least two elements f1 and f2 of rf s¸ lie along ‹1 Y ‹3. Indeed, otherwise m � 1 elements

of rf s¸ lie along ‹, where m is the exponent of ¸. Since m ¥ npXq ¥ 4, m � 1 ¥ rm
2
s� 1, but

this contradicts Lemma 5.4.3 since ‹ is a relative geodesic. Similarly, at least two elements g1

and g2 of rg s˛ lie along ‹1 Y ‹3. Now consider the following statements:

• f1 and f2 lie along ‹1.

• f1 and f2 lie along ‹3.

• g1 and g2 lie along ‹1.

• g1 and g2 lie along ‹3.

If none of these statements hold then both ¸ and ˛ have boundary intersecting both ‹1 and ‹3,

so either ¸ or ˛ is internal in K# by planarity of D1. This contradicts Proposition 4.0.6. On the

other hand, if any of these statements hold, we immediately obtain a contradiction to Lemma

5.4.1, since ‹1 and ‹3 both lie in the boundary of a single essential 2-cell. This contradiction

proves the claim.

Since z R A, D1 contains a single essential 2-cell ¸, and z P B¸. By Lemma 3.1.8, ¸ is exposed

in D1 with exposed edge e, say. By Lemma 5.2.1, some element of res¸ lies in ‹1 Y ‹3. This

shows that dpz; Aq ¤ WX

2
and dpz; Hq ¤ WX , so setting W � WX proves the lemma.

Problem: Does Lemma 9.1.1 hold when npXq P t2; 3u? One seems to run into trouble when

trying to rule out the case where D1 contains a �fat� region of squares in its interior. Lauer and

Wise do not experience this di�culty in [LW13].

To apply the Hruska-Wise cocompactness criterion, we also need to know that wall stabilizers

act cocompactly on their associated walls:

Lemma 9.1.2. Let Λ be a wall of X̄. Then H � stabpΛq acts cocompactly on the carrier of Λ,

and thus on Λ.

Proof. Let C be the carrier of Λ in X̄. We claim that there are �nitely many H-orbits of cells
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of C, which implies the result. To see this, let ffi : X̄ Ñ X be the natural map and let ˛ be

any 2-cell of X which intersects ffipCq. Now pffi|Λq
�1p˛q consists of a collection of wall segments

of Λ. Each such segment – has the property that ffip–q separates ˛ into two components, and

ffip–q is one of �nitely many possible images. Enumerate these images –1; � � � ; –k . By Lemma

8.0.2, any 2-cell ¸ of C which maps to ˛ has a well-de�ned type i P t1; � � � ; ku, de�ned to be

the unique index for which ffi�1p–iq X ¸ lies in Λ. Fix i and suppose ¸ and ¸1 are cells of type i .

Since the action of G � ı1pXq on X̄ is essentially a covering space action, there is an element

g P G which takes ¸ to ¸1. Moreover, because these cells are both of type i , ffi�1p–iq X ¸1 lies

in both gΛ and Λ. Now, since walls are locally determined (Lemma 7.0.2), this shows that g in

fact stabilizes Λ, i.e. g P H. Thus the number of H-orbits of ffi�1p˛q X C is bounded above by

k . This proves the claim and the lemma.

9.2 Algebraic relative quasiconvexity

To show wall stabilizers are relatively quasiconvex, we will use the following de�nition of relative

quasiconvexity, which we quote from [Hru10]. In that paper, Hruska shows that this notion of

relative quasiconvexity is well-de�ned and equivalent to no fewer than four others, at least in the

case that the peripheral subgroups are �nitely generated and there are �nitely many of them. See

[Hru10] for the de�nitions of cusp-uniform action and truncated space.

De�nition 9.2.1. (Relatively quasiconvex) [Hru10, De�nition 6.6] (�QC-3�) Suppose G is

countable, P � tP1; : : : ; Pmu is a �nite collection of subgroups, and that pG;Pq is relatively

hyperbolic. A subgroup H ¤ G is relatively quasiconvex (with respect to P) if the following

holds. Let pY; q be a proper ‹-hyperbolic metric space on which pG;Pq has a cusp-uniform

action. Let Y zU be a truncated space for G acting on Y . For some base point x P Y zU, there

is a constant — ¥ 0 such that whenever ‚ is a geodesic in Y with endpoints in the orbit Hx , we

have

‚ X pY zUq � N—pHxq;
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where the —-neighborhood N—pHxq of Hx is taken with respect to the metric  on Y .

We will proceed by �augmenting� the space X̄p1q, which is decidedly not ‹-hyperbolic, in general,

by attaching �combinatorial horoballs� to form a space ApX̄p1qq which is ‹-hyperbolic and on which

G acts in a cusp uniform manner. The space ApX̄p1qq will play the role of Y in the de�nition

above, and the disjoint union of essential edges of X̄p1q will play the role of Y zU.

Proposition 9.2.2. Let X be a compact staggered generalized 2-complex with locally indicable,

cubulable vertex groups and npXq ¥ 4. Then the stabilizer of each wall in X̄ is quasiconvex

relative to the collection of vertex groups of X.

Proof. As in Chapter 6, let P � P1; : : : ; Pm be the vertex groups of X and choose a maximal

spanning tree T of essential edges of Xtot. Let S � S \ S be the set of oriented essential edges

of X not in T and their formal inverses. Then S is a �nite relative generating set for pG;Pq. The

Cayley graph Γ of G with respect to S is disconnected, in general.

Now, attach Groves-Manning combinatorial horoballs to Γ to form the augmented space ApΓq

associated to the data pG;P;Sq. See [Hru10, De�nitions 4.1 and 4.3] for the precise construction.

To each Pi is associated a CATp0q cube complex which induces a natural left-invariant metric

di on it. The rough idea is that for each coset gPi , we take countably many copies of gPi

indexed by the naturals, attach �vertical edges� between each element of gPi in every level and

the corresponding element above and below it, and �horizontal edges� between elements of gPi

in the same level of di -distance less than or equal to 2j , where j is the level. The original coset

gPi sits at level 0. Let HΓpg; iq be the combinatorial horoball above the coset gPi , which by

convention includes the original gPi at level 0, as well as any edges added there. By [Hru10,

Theorem 4.4] (originally proved by Groves and Manning) and relative hyperbolicity of pG;Pq, the

augmented space ApΓq is connected and ‹-hyperbolic.

On the other hand, let Xc be the space obtained by collapsing T to a point. This collapse lifts to

a G-equivariant quotient map f : X̄p1q Ñ X̄p1q
c , where the target is obtained by collapsing each
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copy of T in X̄p1q; this map is a quasi-isometry which is the identity when restricted to vertex

spaces of X̄p1q.

Now, G acts naturally on X̄p1q
c , and each vertex space of X̄p1q

c is stabilized by some gPig�1. We

label this vertex space Ṽ ig . We now form the augmented space ApX̄p1q
c q by building a combinatorial

horoball HXpg; iq above the zero-skeleton of Ṽ ig , again with respect to the cube complex metric,

for each pg; iq (as before, HXpg; iq includes the one-skeleton of Ṽ ig by convention). We can

identify the group elements of gPg�1 with vertices of Ṽ ig via the orbit map (choosing the image

of T in X̄p1q
c as a base point). Thus, HΓpg; iq is a full subgraph of HXpg; iq for each pg; iq.

Observe now that the Cayley graph Γ includes naturally inside of X̄p1q
c via the orbit map, with

edges of Γ mapping bijectively to essential edges of X̄p1q
c . By the observation of the previous

paragraph, there is also a natural inclusion ApΓq ãÑ ApX̄p1q
c q, which we now claim is a quasi-

isometry. Assuming this claim, we have that ApX̄p1q
c q is ‹-hyperbolic (after possibly modifying

‹).

To see the claim, �rst choose K ¡ maxipdiamdi pPiqq. It is clear that ApΓq is K-cobounded in

ApX̄p1q
c q. It remains to show that ApΓq is quasi-isometrically embedded. For points x and y of

ApΓqp0q, it is also clear that d
ApX̄

p1q
c q
px; yq ¤ dApΓqpx; yq. It remains to �nd a constant K 1 such

that dApΓqpx; yq ¤ K 1d
ApX̄

p1q
c q
px; yq �K 1. Let ‚ be a geodesic in ApX̄p1q

c q between x and y . Then

‚ decomposes as a path of the form ‚0e1‚1e2 : : : ek‚k where each ej is an essential edge and

each ‚j is a (possibly empty) edge path in some HXpg; iq. By [GM08, Lemma 3.10], we may

assume that each ‚j consists of at most two vertical segments and a single horizontal segment

of length at most 3. Moreover, since the endpoints of ‚j lie in the image of the orbit map,

these vertical segments also lie in HΓpg; iq. Now, the horizontal segment hj may not belong to

HΓpg; iq, but because its endpoints are connected by a path of length at most 3, there is a path

h1j of length 5 in HΓpg; iq between its endpoints, where h1j consists of two vertical segments of

length 2 and a single horizontal edge two levels above hj . Replacing each hj by h1j , we obtain a

path ‚1 between x and y in ApΓq, and since |h1j | ¤ |hj |� 4, we have that |‚1| ¤ |‚|� 4pk � 1q.
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But also dApΓqpx; yq ¤ |‚1| and k ¤ |‚| � d
ApX̄

p1q
c q
px; yq, so dApΓqpx; yq ¤ 5d

ApX̄
p1q
c q
px; yq � 4.

Setting K 1 � 5 proves the claim.

Finally, build the augmented space ApX̄p1qq. For each vertex space Ṽ ig of X̄ which is stabilized

by gPig�1, build a combinatorial horoball above its zero-skeleton using the cube complex metric

as in the case of Xc . In fact, since the map f is the identity on the one skeleton of Ṽ ig , the

horoball just added will be an isometric copy of HXpg; iq. The map f thus extends to a quasi-

isometry f̃ : ApX̄p1qq Ñ ApX̄p1q
c q which is the identity on combinatorial horoballs, so that ApX̄p1qq

is ‹-hyperbolic (after possibly modifying ‹).

Now, we claim that G has a cusp-uniform action on ApX̄p1qq with truncated space the disconnected

union of all essential edges of X̄p1q. In other words, the vertex spaces of X̄p1q, along with their

combinatorial horoballs, form a collection of disjoint G-equivariant horoballs (in the cusp-uniform

sense) centered at the parabolic points of G. It is clear that G acts coboundedly on this truncated

space with quotient the edges of S.

To see the claim, one can construct explicit horofunctions on these horoballs. For each vertex

space Ṽ of X̄p1q, let HṼ be the combinatorial horoball above it. Let dA be the natural metric on

ApX̄p1qq. De�ne a function ṽ : ApX̄p1qq Ñ R by

ṽpxq �

$'&
'%
dApx; Ṽ q : x P HṼ

�dApx; Ṽ q : otherwise

It is easy to check using elementary hyperbolic geometry that ṽ is a horofunction centered at the

parabolic point in the Gromov boundary of ApX̄p1qq which can be identi�ed with any geodesic

ray starting in Ṽ p0q and using only vertical edges. This proves the claim.

For each vertex space Ṽ of X̄, de�ne dṼ px; yq � dApx; yq for all x; y P Ṽ p0q. The property of

G-invariance is clear, so this is an admissible choice of pseudometrics.

To complete the proof, pick a base point vertex x in the carrier C of Λ and let H � stabpΛq, so

61



that Hx lies in C. Let x 1; y 1 in Hx , and let ‚1 be a relative geodesic in X̄p1q between x 1 and y 1

(with respect to the admissible choice of pseudometrics above). Let ‚ be a geodesic in ApX̄p1qq

which agrees with ‚1 on essential edges (it is clear by the construction of the pseudometrics that

such a geodesic exists). Note that the intersection of ‚ with the truncated space is precisely the

set of essential edges of ‚. Applying Lemma 9.1.1 to ‚1, we see that every essential edge of ‚1

lies uniformly close to C, and thus to HX . Thus the same is true for ‚, and the Proposition is

proved.
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Chapter 10

Walls satisfy linear separation

In this chapter, continue to assume that X is a compact staggered generalized 2-complex with

locally indicable, cubulable vertex groups and npXq ¥ 2.

In order to conclude that the action of G � ı1pXq on its associated dual cube complex is proper,

we will argue that the walls in X̄ satisfy the linear separation property, which roughly means that

the number of walls separating pairs of points in X̄ grows at least linearly with their distance.

Hruska and Wise describe how the linear separation property leads to properness of the dual cube

complex action in [HW14, Theorem 5.2].

The precise statement we will prove is as follows:

Proposition 10.0.1. Suppose that npXq ¥ 4. Let d be the graph metric on X̄p1q as before.

There are constants » ¡ 0 and " such that for any vertices x; y P X̄, the number of walls

separating x and y is at least »dpx; yq � ".

We will be assuming for contradiction that walls frequently double-cross geodesics. We will use

the following de�nition.

De�nition 10.0.2. (Double-crosses/double-crossed ladder). Let ‚ be a geodesic in X̄p1q

between two 0-cells x and y of X̄. For every edge e of ‚, there are two dual walls to e which

intersect e in the points v xe and v ye , labeled so that dpx; v xe q   dpx; v ye q. Call the wall which

passes through v xe , Λxe , and the wall passing through v ye , Λye . We say that Λxe double-crosses ‚

if there is a wall segment –xe in Λxe between v xe and another distinct point uxe along ‚. If this

behavior occurs we will pass to an initial such wall segment emanating from v xe and assume that
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Λxe does not cross ‚ between v xe and uxe . There is a unique ladder Hx
e associated to –xe . Let ‚xe

be the subsegment of ‚ connecting the edges containing v xe and uxe . Let Y � Y xe � ‚xe Y Hx
e .

We call the subcomplex Y xe a double-crossed ladder of ‚ at pe; xq, if it exists. See Figure 10.1

for an illustration.

Figure 10.1: Some double-crossed ladders. The ladder Hx
e bends in the direction of x , and Hx

f bends in the
direction of y . Here the rank of ı1pY

x
e q is 2. Some pathologies for double-crossed ladders may be ruled out

immediately. For example, the depicted half-twist in Hx
f is ruled out by Corollary 8.0.4.

De�nition 10.0.3. (Returns). Let Y xe be a double-crossed ladder of ‚ at pe; xq, with associated

ladder Hx
e . We say that Y xe (or Hx

e ) returns through an essential 2-cell if that 2-cell is the �rst or

last essential 2-cell of Hx
e through which the wall segment –xe passes, as we traverse –xe starting

from v xe . We use the notation ¸xe for the �rst 2-cell through which Y xe returns, and !xe for the

last.

Lemma 8.0.7 implies that whenever Y xe is a double-crossed ladder, ¸xe and !xe always exist, and

they are clearly unique. It is possible that ¸xe � !xe .

De�nition 10.0.4. (Bends in the direction of). Let z P tx; yu. Let Y ze be a double-crossed

ladder of ‚ at pe; zq with associated ladder Hz
e . We say that Y ze (or Hz

e ) bends in the direction

of x if dpuze ; xq   dpv ze ; xq. Otherwise we say that Y ze (or Hz
e ) bends in the direction of y .

The following lemma allows us to determine the direction in which walls bend, but only when
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npXq ¥ 4. The lemma is false for npXq P t2; 3u.

Lemma 10.0.5. Suppose that npXq ¥ 4. Let ‚ be a geodesic in X̄p1q between two 0-cells x

and y of X̄. For some edge e of ‚, suppose that the wall Λxe double-crosses ‚. Then there is a

double-crossed ladder Y xe of ‚ at pe; xq with associated ladder Hx
e which bends in the direction

of x .

Proof. Suppose that every double-crossed ladder Y xe bends in the direction of y . Let Y � Y xe be

a double-crossed ladder with the property that Λxe does not cross ‚ between v � v xe and u � uxe .

By Corollary 8.0.4, X̄zΛxe decomposes into two components X̄in and X̄out, labeled so that ‚1 � ‚xe

maps to X̄in.

Let ¸ � ¸xe and let e1 and e2 be the edges of B¸ which are dual to – � –xe (they may be essential

or not), labeled so that there is a path from e1 to e inside – which does not internally intersect ¸.

Orient e1 so that it crosses – in the same direction that e crosses it, and extend this orientation

to B¸. Let ffin and ffout be the two subpaths of B¸zte1; e2u, oriented consistently with B¸, and

labeled so that ffin maps to X̄in and ffout maps to X̄out (we may do this since ¸XΛxe consists only

of the arc ¸X – by Lemma 8.0.2). Thus no point of ffout lies along ‚1.

Note that Y satis�es the hypotheses of Lemma 5.3.3 and let Y# be a patching for Y . By Lemma

8.0.1, ¸ and !xe are the only essential 2-cells of Y# which can be extreme, and in fact ¸ is exposed

by Lemma 3.1.8 or Proposition 3.2.6. We claim that ffout is not internal in Y#. To see this, let f

be an exposed essential edge of ¸. Suppose impB¸q � pm in X, where p is not a proper power.

Since ffout has length |p| � 1, either some element of rf s¸ lies along ffout, in which case we are

done, or e1 and e2 belong to rf s¸. In the latter case, ¸ � !xe and both e1 and e2 lie along ‚1.

Lemma 5.4.2 implies that every element of rf s¸ lies along ‚1, which contradicts Lemma 5.2.1.

This proves the claim.

Since e1 and e2 do not lie in rf s¸, we may choose f to be the element of rf s¸ which lies in ffout.

The other m � 1 elements of rf s¸ lie in ffin. Note that every such element must lie along ‚1.
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Indeed, if this is not the case then given an element f 1 P rf s¸ which lies in ffin but not along ‚1,

we may join f and f 1 by a snipping arc running through the interior of ¸. The graph Y Xp‚Y–q

now furnishes a contradiction to Lemma 3.1.15. Thus the geodesic ‚1 visits m � 1 elements of

rf s¸. Since m ¥ 4, m � 1 ¥ rm
2
s� 1. This contradicts Lemma 5.4.3.

The following de�nition describes an impossible con�guration of a pair of double-crossed ladders

in X̄. We will show that if linear separation fails we can �nd such a con�guration.

De�nition 10.0.6. (Double-crossed pair of ladders). Let ‚ be a geodesic in X̄p1q with

endpoints 0-cells x and y . Let ea and eb be adjacent edges along ‚. Suppose that Ya and Yb

are double-crossed ladders at pea; zaq and peb; zbq, respectively, where za; zb P tx; yu. Suppose

further that Ya and Yb bend in the same direction and that ¸a � ¸zaea and ¸b � ¸zbeb are distinct.

In this case we call the subcomplex Y � YaYYb of X̄ a double-crossed pair of ladders. We denote

by !a the last essential 2-cell through which Ya returns, –a the wall segment associated to Ya,

and Ha its associated ladder. Similarly de�ne !b, –b, and Hb.

Lemma 10.0.7. There does not exist a double-crossed pair of ladders in X̄.

Remark: This lemma is true when npXq P t2; 3u. This is what makes the following proof so

technical.

Proof. Let Y � Ya Y Yb be a double-crossed pair of ladders. Suppose without loss of generality

that Ya and Yb bend in the direction of x . Note that Y satis�es the hypotheses of Lemma 5.3.3,

and let Y# be a patching. By Lemma 8.0.1, the only candidates for extreme 2-cells of Y# are ¸a,

!a, ¸b, and !b. We also know that Y# contains at least two essential 2-cells since ¸a and ¸b

are distinct. Observe that Ha and Hb embed in Y#, but they may overlap with each other.

We will prove the following statements:

(i) If ¸a � !a, then ¸a is not extreme.

(ii) If ¸b � !b, then ¸b is not extreme.
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(iii) If !a � !b, then at most one of !a and !b can be extreme.

Taken together, these statements imply that Y# contains at most one extreme essential 2-cell.

This contradicts Proposition 3.2.6.

To see statement (i), temporarily orient ea and eb so that their terminal points coincide. Let

fa and ga be the edges of B¸a which are dual to –a (they may be essential or not), labeled so

that there is a path from fa to ea inside –a which does not internally intersect ¸a. Suppose

impB¸q � pm in X, where p is not a proper power. Orient fa so that it crosses –a in the same

direction that ea crosses it, and extend this orientation to B¸a. Now the terminal points tpfaq

and tpgaq of fa and ga are the length of p apart in B¸a. Moreover, in the auxiliary diagram qY ,
}tpfaq lies in |̧b and ~tpgaq lies in q̨ for some essential 2-cell of Ya distinct from ¸a, since ¸a � !a.

Lemma 3.2.7 proves the claim. Note that this argument does not depend on the direction in

which –a bends. Switching the symbols a and b, an identical argument shows that ¸b is not

extreme if ¸b � !b, and statement (ii) is proved. See Figure 10.2.

Figure 10.2: Proving statements (i) and (ii). The point is that ¸a and ¸b prevent each other from being
extreme, provided that Ha and Hb both contain at least two essential 2-cells.

The following claim will be useful in proving statement (iii): Suppose !a is extreme with exposed
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essential edge fa. Then some element of rfas!a lies along ‚. To see this, �rst note that the

claim is obvious if some element of rfas!a contains the terminal point of –a along ‚. Otherwise,

we may pick two elements from rfas!a on opposite sides of –a, neither of which lies along ‚,

for contradiction. Connect these two edges by a snipping arc running across !a. This arc is

non-separating in Y#, since there is a path from one side to the other in the graph p‚Y–aqX Ya;

this contradicts Lemma 3.1.15. Similarly, if !b is extreme with exposed essential edge fb, then

some element of rfbs!b
lies along ‚.

We now prove statement (iii). Suppose for contradiction that !a � !b, but both are extreme.

Among all exposed essential edges e 1 of !a (meaning that all members of re 1s!a lie on the boundary

of Y#), choose the one which is on ‚ and closest to x along ‚, and call it fa. De�ne fb similarly.

Note fa � fb since all elements of both rfas!a and rfbs!b
lie in BY#. There are two cases according

to whether fb is closer to x than fa or vice-versa.

Suppose �rst that fb is closer to x than fa. In this case we will show that there are two edges

in B!a X BY# which can be connected together by a non-separating snipping arc through !a,

contradicting Lemma 3.1.15. Orient fa so that it points towards x along ‚ and extend this

orientation to B!a. Let ga be the next element of rfas!a after fa. Note that ga does not lie along

‚. Indeed, if it does, then by choice of fa, ga lies closer to y along ‚ than fa by Lemma 5.4.2.

Lemma 5.4.2 also implies that every element of rfas!a lies along ‚, which contradicts Lemma

5.2.1.

Connect midpoints of fa and ga together by a snipping arc that runs across !a and let S be a

closed neighborhood of this arc which includes the vertices ipfaq, tpfaq, ipgaq, and tpgaq but is

small enough so that BSXB!a � faY ga. Orient S by declaring that the edge of S running from

tpfaq to ipgaq is the front edge of S, and the edge running from ipfaq to tpgaq is the back edge.

Let va denote the �rst point (with respect to the orientation of –a) in !a X –a. Note that va

does not lie in S, for otherwise –a runs through the center of S connecting ga to fa, but because

ga lies on the boundary of Y# this would mean ga � ea, contradicting that ga does not lie on ‚.
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Note also that ea � fa, as this scenario implies ¸a � !a and forces ga to lie on ‚ (after possibly

applying Lemma 5.4.2), which we have already ruled out.

There are now some cases to consider.

• Case 1: The vertices va and tpfaq lie in di�erent components of !azS. This case is illustrated

in Figure 10.3. In this case we �nd a path from tpfaq to the back edge of S in Y#zS as

follows:

Starting from tpfaq, travel along ‚ until reaching fb. From ipfbq, travel inside the interior

of !b to reach –b. Next, travel backwards along –b all the way through Hb until reaching

eb. If at any point we cross S, then it means that !a is identi�ed with an essential 2-cell in

the ladder Hb distinct from !b, but this cannot happen since we already know that none of

these 2-cells are extreme. Once arriving at eb, travel within ebYea to –a. Here, we will not

touch S because ea � ga and eb � ga since ga does not lie on ‚, eb � fa since ¸b � !a but

fa lies on the boundary of Y#, and ea � fa as previously observed. Finally, continue along

–a all the way through Ha until entering !a through va and reaching the back edge of S

in !a (we will not touch S in any other essential 2-cell since Ha is a subcomplex of X̄).

The path we have found connects the front and back edges of S in Y#zS and contradicts

Lemma 3.1.15.

• Case 2: The vertices va and tpfaq lie in the same component of !azS. This case further

breaks into two subcases. Note that ea � fa as previously observed.

• Subcase 1: The edge ea is strictly closer to y along ‚ than fa is. This subcase is

illustrated in Figure 10.4. In this case we �nd a path from tpfaq to the back edge of

S in Y#zS as follows:

Starting from tpfaq, travel along ‚ to ipfbq, and then through the interior of !b to

reach –b. Travel backwards through –b to reach eb (for the same reasons as the

previous case, this path does not touch the interior of S). Since eb is adjacent to ea
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Figure 10.3: An example of what could happen in case 1. The highlighted blue path gives the contradiction to
Lemma 3.1.15.

and eb � fa (as in the previous case), it is the case that eb is strictly closer to y along

‚ than fa is. Thus there is a path in ‚ from the initial point of –b to ipfaq which

avoids S. We have again contradicted Lemma 3.1.15.

• Subcase 2: The edge ea is strictly closer to x along ‚ than fa is. This subcase is

illustrated in Figure 10.5. Let e 1a be the edge of ‚ which is dual to the terminal edge

of –a, and oriented so that it points in the direction of x . Note that ea � e 1a by

Lemma 8.0.2, and e 1a is strictly closer to x along ‚ than ea. Let w front
a and wback

a be

the vertices of S X –a, labeled according to whether they are on the front or back

edge of S. In this case we �nd a path from wback
a to w front

a in Y#zS as follows:

Travel from wback
a to e 1a along –a in the forward direction, and travel backwards along

‚ from e 1a to ea. Then simply travel forward along –a through Ha until reaching w front
a .

This again contradicts Lemma 3.1.15.

For the case in which fa is closer to x than fb, the argument is identical, except that we exchange
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Figure 10.4: An example of subcase 1. The highlighted blue path gives the contradiction to Lemma 3.1.15.

Figure 10.5: The general picture in subcase 2. The highlighted blue path gives the contradiction to Lemma
3.1.15.
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the roles of a and b in the above argument. Note that the above argument does not depend on

the order in which ea and eb occur along ‚, but only uses that these edges are adjacent in ‚.

The following lemma now easily implies linear separation.

Lemma 10.0.8. There is a constant W � W pXq so that the following holds. Let ‚ be a

geodesic in X̄p1q with endpoints 0-cells x and y . Suppose that npXq ¥ 4. For any 1-cell e of ‚,

there exists a wall that intersects ‚ exactly once, and the point of intersection is within W edges

of e.

Proof. As in the proof of Lemma 9.1.1, let WX be an upper bound on the number of edges

(essential or not) in the attaching map of any element of CpXq. We will show that W � WX � 1

satis�es the conclusion of the lemma.

If either wall dual to e does not double-cross ‚, then we are done. Thus, assume that Λxe double-

crosses ‚. Fix a wall segment –xe associated to this double crossing and let Y xe be the associated

double-crossed ladder. By Lemma 10.0.5, we may assume that Y xe bends in the direction of x . Let

¸a � ¸xe . Let ‚x be the subsegment of ‚ between e and x , including e. Consider the sequence of

successive edges of ‚x starting with e and moving towards x , te � e1; e2; e3; : : :u. Let k be the

largest integer with the property that Λxek double crosses ‚ and such that ¸a is the �rst essential

2-cell through which some wall segment –xek in Λxe returns. Since there are at most WX wall

segments passing through ¸a, k ¤ WX . De�ne Ya to be the double-crossed ladder associated to

–xek . By Lemma 10.0.5, we may assume Ya bends in the direction of x . In particular, ek�1 exists.

Now, observe that the wall Λxk�1 crosses ‚ exactly once. Indeed, if not, then there is a double-

crossed ladder Yb � Y xk�1 at pek�1; xq which bends in the direction of x by Lemma 10.0.5, and

¸a � ¸b by de�nition of k . Thus Ya Y Yb is a pair of double-crossed ladders. This contradicts

Lemma 10.0.7. Thus W � WX � 1 satis�es the conclusion of the lemma.

Proof of Proposition 10.0.1. By Lemma 10.0.8, » � 1
WX�1

and " � 1 do the trick.
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Problem: Just as Lauer and Wise ask in [LW13], we wonder � Does X̄ satisfy the linear separation

property relative to its walls when npXq P t2; 3u? It appears di�cult to produce a pair of

double-crossed ladders in this situation, since one has less control over the direction in which

double-crossed ladders bend.
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Chapter 11

Existence of the action

In this chapter we will prove the main theorem, that is that ı1pXq acts properly and cocompactly

on a CATp0q cube complex. We �rst invoke the so-called �Sageev contruction� to obtain an

action of ı1pXq on a CATp0q cube complex.

De�nition 11.0.1. (Wallspace/dual cube complex). Let Y be a metric space and let W

be a collection of closed, connected subspaces of Y (called walls), each of which separates Y

into two components. We call pY;Wq a (geometric) wallspace. If a group G acts properly and

cocompactly on Y preserving both its metric and wallspace structures, then Sageev shows that G

acts on a CATp0q cube complex CpY q, called the dual cube complex [Sag95]. The hyperplanes

of this cube complex are in one-to-one correspondence with the original walls. Very roughly, the

k-dimensional cubes of CpY q correspond to k-element pairwise-transverse subsets of W in Y . A

summary can be found in [HW14, Construction 3.2, Theorem 3.7, Remark 3.11].

Properness of this action in our setting will follow immediately from what we proved in Chapter

10. Cocompactness will follow by an application of [HW14, Theorem 7.12]. We state a simpli�ed

version of this theorem below.

Theorem 11.0.2. (cf [JW17, Theorem 3.1]). Let pY;Wq be a wallspace. Suppose G acts

properly and cocompactly on Y preserving both its metric and wallspace structures, and the

action on W has only �nitely many G-orbits of walls. Suppose G is hyperbolic relative to P

with P �nite. Suppose stabpΛq acts cocompactly on Λ and is relatively quasiconvex for each wall

Λ PW. For each P P P let YP � Y be a nonempty P -invariant P -cocompact subspace. Let CpY q

be the cube complex dual to pY;Wq and for each P P P let C�pYP q be the cube complex dual to
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pYP ;WP q, where WP consists of all walls Λ with the property that diampΛ XNdpYP qq � 8 for

some d � dpΛq.

Then there exists a compact subcomplex K such that CpY q � GKY
�
PPP GC�pYP q. In particular,

G acts cocompactly on CpY q provided that each C�pYP q is P -cocompact.

For us, G � ı1pXq, Y � X̄, W is the collection of walls we de�ned in X̄, and P is the �nite

collection of vertex groups of X. Each vertex group P has an associated vertex space VP in X (a

compact NPC cube complex). Fix a base point in X̄ and let YP to be the copy of the universal

cover of VP in X̄ (a CATp0q cube complex) with stabpYP q � P .

In order to apply this theorem, it remains to show that each C�pYP q is P -cocompact, as we will

see. The following key lemma says, roughly, that a geodesic with large projection to YP comes

very close to YP .

Lemma 11.0.3. Fix YP . Suppose ‚ is a geodesic in X̄p1q with endpoints 0-cells x and y , at least

one of which does not belong to YP . Let ıx and ıy be nearest-point projections of x and y to

the vertex set of YP . For all d ¥ 0, there exists R ¥ 0 such that if dpx; ıxq ¤ d , dpy; ıy q ¤ d ,

and dpıx ; ıy q ¡ R, then there is an essential edge e of ‚ within WX{2 edges of YP (where WX

is an upper bound on the lengths of attaching maps of essential 2-cells in X).

Proof. Let d be given and assume dpx; ıxq ¤ d and dpy; ıy q ¤ d . We claim that the conclusion

of the lemma is satis�ed with R � WX � 4d � 2. Assume that dpıx ; ıy q ¡ R. By the triangle

inequality, this implies that dpx; yq ¡ 2d .

Since either x or y does not belong to YP , note that if any edge of ‚ maps to YP , then ‚ contains

at least one essential edge. In that case, the closest essential edge along ‚ to this edge has

distance 0 to YP , and we are done.

Form a quadrilateral as follows: Let ‚x (resp. ‚y ) be a geodesic edge path from x to ıx (resp. y

to ıy ), and let ‚1 be a geodesic edge path from ıx to ıy . Orient everything so that ff � ‚‚y‚
1‚x

is a closed loop. Note that ‚1 lies in YP by Lemma 5.5.1. Also note that there is no backtracking
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in any of ‚, ‚y , ‚x , or ‚1, so there can only be backtracking where these paths meet at their

endpoints. We make ff cyclically reduced as follows. First note that there is no backtracking of

ff at ıx or ıy by the fact that these points are nearest-point projections of x and y to YP and

‚1 lies in YP . Now, there may be backtracking at x , so let x 1 be the last vertex along ‚ (from x)

in the image of ‚x , and similarly de�ne y 1 to be the last vertex along ‚ (from y) in the image

of ‚y . The fact that dpx; yq ¡ 2d ensures that there will remain at least one edge of ‚ running

from x 1 to y 1. Note also that if x 1 � ıx or y 1 � ıy , then ‚ X YP is nonempty and we are done.

Let ‚0 � ‚|rx 1;y 1s, ‚x 1 � ‚x |rıx ;x 1s, and ‚y 1 � ‚y |ry 1;ıy s. Rede�ne ff � ‚0‚y 1‚
1‚x 1 . It is clear that

there is no folding of ff at x 1 or y 1, so ff is cyclically reduced. See Figure 11.1.

Fill ff with a planar reduced disk diagram D Ñ X̄ using Lemma 3.1.4. If D has no essential

2-cells then all of D maps to YP . In particular ‚0 maps to YP and we are done. Otherwise,

Suppose ¸ is an exposed 2-cell of D with exposed edge e. We make the following observations:

• It cannot happen that there exist e; f P res¸ with e along ‚x 1 and f along ‚y 1 . Indeed, if this

happens, then B¸ o�ers a shortcut between ‚x 1 and ‚y 1 so that dpıx ; ıy q ¤ WX{2�2d   R,

a contradiction.

• For each of ‚x 1 , ‚y 1 , and ‚0, there is an element of res¸ not belonging to it, since all of

these paths are relative geodesics (by Lemma 5.2.1).

• No element of res¸ lies along ‚1 (since by Lemma 5.5.1 no edge of ‚1 is essential).

It may be the case that ¸ straddles x 1 in the following sense: At least one element of res¸ lies in

‚0 and at least one in ‚x 1 , and all elements of res¸ lie in ‚x 1 Y ‚0. Alternatively, ¸ could straddle

y 1. However, these are the only possibilities allowed by the observations above.

Now we claim that D contains at most 2 extreme 2-cells. To see this, �rst note that there is a

natural linear order on the extreme two cells of D induced by the order in which their boundaries

are encountered while traversing ‚0 from x 1 to y 1. If there are three or more extreme essential

2-cells, then we may choose one which is not the �rst or last with respect to this order. Call this
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2-cell ¸ and suppose that ¸ is exposed with exposed edge e. Without loss of generality, we may

assume that ¸ straddles x 1. Let e1 be an element of res¸ along ‚0 and e2 an element of res¸

along ‚x 1 . Let ‚1 and ‚2 be the two minimal paths in B¸ containing e1 and e2, and labeled so

that the component of Dz‚2 which contains x 1 also contains ¸. If pm is the boundary path of the

image of B¸ in X for p not a proper power, then |‚1|; |‚2| ¥ |p| � 1. Also note that the image

of ‚1 in the auxiliary diagram qD internally intersects an essential 2-cell of qD which lies before ¸

in the order determined by ‚0. Similarly, the image of ‚2 in qD internally intersects an essential

2-cell of qD which lies after ¸ in the order determined by ‚0. By Lemma 3.2.7, ¸ is not extreme.

Using this claim and applying Proposition 4.0.6 and Lemma 3.1.8, we see that every essential

2-cell of D is external.

Now, let D1 be the maximal connected subdiagram of D containing ‚1 and mapping to YP . Call

the other arc of BD1 from ıy to ıx , ‚1. Note that no edge of ‚1 lies in ‚x 1 or ‚y 1 since ıy and

ıx are nearest-point projections. If any edge of ‚1 belongs to ‚0, then some edge of ‚ maps YP

and we are done. Thus we may assume that every edge of ‚1 belongs to an essential 2-cell of D

lying in DzD1.

Figure 11.1: The general case in this lemma. The subdiagram D1 maps entirely to YP . By choosing ıx and ıy
su�ciently far apart, we can �nd the essential 2-cell ˛ which does not intersect ‚x 1 or ‚y 1 . Since ˛ is external in
D1, we can �nd the blue essential edge f on ‚, showing that ‚ passes close to YP .

Since |‚1| ¥ |‚1| ¡ R ¥ WX � 2d � 2, we may choose an edge e of ‚1 with the property that

dpe; ıxq ¡ WX{2 � d and dpe; ıy q ¡ WX{2 � d . Let ˛ be the essential 2-cell of D with e in
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its boundary. The observation above implies ˛ is external with essential edge f (say) along BD.

Observe that f does not lie along ‚x 1 , as this would o�er a shortcut through B˛ from e to ıx of

length less than or equal to WX{2�d , contradicting the triangle inequality. Similarly, f does not

lie along ‚y 1 . Thus f lies along ‚0. Now the shorter path along B˛ from e to f maps to a path

in X̄ from YP to an essential edge of ‚ of length less than or equal to WX{2, and we see that R

satis�es the conclusion of the lemma.

Lemma 11.0.4. Each C�pYP q is P -cocompact.

Proof. Suppose that Λ is a wall of X̄ with the property that diampΛXNdpYP qq � 8 for some d .

We claim that Λ passes within distance d 1 � 3WX{2 of YP , where WX is an upper bound on the

lengths of attaching maps of essential 2-cells in X. To see this, note that we may choose vertices

x and y of Λ XNdpYP q with dpx; yq arbitrarily large by assumption. By the triangle inequality,

dpıx ; ıy q grows with dpx; yq, so we may assume that dpx; yq is large enough that dpıx ; ıy q ¡ R,

where Rpdq is chosen according to Lemma 11.0.3. Moreover, we may assume that x does not

belong to YP , for otherwise the claim is obvious. Let ıx and ıy be the projections of x and y to

YP , and let ‚ be a geodesic edge path between them. By Lemma 11.0.3, there is a point z in YP

within distance WX{2 of an essential edge e of ‚. By geometric relative quasiconvexity of wall

carriers (Lemma 9.1.1), the distance from e to the carrier of Λ is bounded by WX , which means

the distance from e to Λ is bounded by 3WX{2 since any point in the carrier is within WX{2 of

Λ. This proves the claim.

Now, since P � stabpYP q acts cocompactly on YP (its action is a covering space action and the

vertex space for P is a compact NPC cube complex), P also acts cocompactly on Nd 1pYP q by

local �niteness of X̄. Since every wall Λ with diampΛXNdpYP qq � 8 for some d meets Nd 1pYP q

as shown above, there are �nitely many P -orbits of such walls. This is exactly what it means for

C�pYP q to be P -cocompact.

Putting everything together, we have the main theorem for staggered generalized 2-complexes
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with locally indicable vertex groups and npXq ¥ 4.

Theorem 11.0.5. Let X be a compact staggered generalized 2-complex. Suppose that X has

locally indicable vertex groups and that npXq ¥ 4. Suppose that for each vertex space V of X,

ı1pV q acts properly and cocompactly on a CATp0q cube complex. Then ı1pXq acts properly and

cocompactly on a CATp0q cube complex.

Proof. As before, let G � ı1pXq. Let W be the collection of walls in X̄ coming from the

construction of Chapter 7. Let C be the cube complex dual to the action of G on the wallspace

pX̄;Wq.

By Proposition 10.0.1, the wallspace pX̄;Wq satis�es linear separation. By [HW14, Theorem

5.2], the action of G on C is proper.

Let P be the �nite collection of vertex groups of X. Each vertex group P has an associated

vertex space VP in X (a compact NPC cube complex). Fix a base point in X̄ and let YP to be

the copy of the universal cover of VP in X̄ (a CATp0q cube complex) with stabpYP q � P .

Observe that all hypotheses of Theorem 11.0.2 are satis�ed. Indeed, it is clear that G acts properly

and cocompactly on X̄ preserving both its metric and wallspace structures, and the action onW

has only �nitely many G-orbits of walls. Relative hyperbolicity of pG;Pq was shown in Lemma

6.0.4. For each wall Λ, Lemma 9.1.2 implies stabpΛq acts cocompactly on it, and we showed

stabpΛq is relatively quasiconvex in Proposition 9.2.2. Finally, each C�pYP q is P -cocompact by

Lemma 11.0.4.

Applying Theorem 11.0.2, the action of G on C is cocompact and the theorem is proved.

Corollary 11.0.6. Let A and B be locally indicable, cubulable groups, w a word in A �B which

is not conjugate into A or B, and n ¥ 4. Then G � A � B{xxwnyy is cubulable.

Proof. We may assume that w is cyclically reduced. Build a model space X for G � A�B{xxwnyy

by starting with a dumbell space XA_XB of non-positively curved cube complexes with ı1pXAq �
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A and ı1pXBq � B, and then attaching a 2-cell to a path corresponding to the word wn, so that

ı1pXq � G. Observe that X is trivially a staggered generalized 2-complex and Theorem 11.0.5

applies.
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Chapter 12

Further directions

As we have hinted throughout, the most pressing question concerns the smallest exponent npXq

for which Theorem 11.0.5 holds. We suspect that Theorem 11.0.5 is true when npXq ¥ 2, mainly

because the main theorem of [LW13] is true in the exponent 2 case in a strong way (see Theorem

12.0.6 below). For our argument, we unfortunately found it necessary to impose the restriction

that npXq ¥ 4, just as Lauer and Wise did, when seeking to prove properness of the action. In

contrast to Lauer and Wise's setting, it also appeared that the condition that npXq ¥ 4 was

necessary for the cocompactness argument.

Question 12.0.1. (Question 1.2.4 in Chapter 1). Does Theorem 11.0.5 hold when npXq P

t2; 3u?

It is well known that one-relator groups with and without torsion (corresponding to groups where

the relator is or is not a proper power, respectively, by Lemma 4.0.1) have very di�erent behavior.

We have focused on generalizations of the proper power case in this dissertation, but one may

also ask what other hypotheses are needed to make Theorem 11.0.5 hold if npXq � 1. It certainly

holds for some groups. For example the fundamental groups of hyperbolic surfaces (which are

cubulable), like all torsion free one-relator groups, decompose as groups of the form A �B{xxwyy

with w not a proper power and A and B free (and thus locally indicable and cubulable). But

there are many one-relator groups for which it does not hold. The Baumslag-Solitar group

xa; b | b�1ab � a2y, for example, (like many torsion free one-relator groups, see [GW19]) has

Dehn function which is not linear or quadratic and thus cannot be cubulable. Thus the npXq � 1

case is very interesting, but would require a more subtle statement and probably very di�erent
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techniques.

In the hyperbolic 3-manifold setting, a signi�cant portion of the story to prove the virtual Haken

conjecture (VHC) involved not only showing that a hyperbolic 3-manifold group G is cubulable,

but that the cube complex C on which it acts has the property of being virtually special. This

condition was originally de�ned by Wise in terms of certain hyperplane pathologies avoided in

some �nite cover of the quotient of C by the G-action, and it is not immediately clear that it

is a property of groups. However, we state the following equivalent de�nition which was also

mentioned in Chapter 1.

De�nition 12.0.2. (Right-angled Artin group/virtually special). A right-angled Artin

group (RAAG) is a group with a presentation of the form xa1; : : : ; am | �y, where � represents

some collection of commutators of the ai 's. A group G is virtually special if it has a �nite index

subgroup which embeds in a RAAG.

Agol's important contribution to proving the VHC was his proof that any cubulable group which

is hyperbolic is virtually special. Beyond the properties enjoyed by cubulable groups listed in

Chapter 1, a virtually special group G enjoys the following strong properties (see, e.g., [Wis12]):

• G is residually �nite.

• If G is hyperbolic, the quasiconvex subgroups of G are separable.

• G is linear (also see [HW99]).

It is thus quite desirable to show that our favorite groups are virtually special, and the following

is a natural question:

Question 12.0.3. Let w be a word in A � B which is not conjugate into A or B, and n ¥ 2.

Under what circumstances is the group G � A � B{xxwnyy virtually special?

To avoid pathological examples, we would like to work in a setting in which the natural maps

A Ñ G and B Ñ G are injective. Thus it seems necessary to require that A and B are locally
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indicable, or at least torsion free. This forces us to assume that A and B are virtually special.

In case A and B are locally indicable, G is hyperbolic relative to tA;Bu (Lemma 6.0.4). Thus if A

and B are hyperbolic themselves, then so is G [Osi06, Corollary 2.41], and Agol's theorem gives

the following as a corollary to Theorem 11.0.6 (which we have already mentioned as Corollary

1.2.3):

Theorem 12.0.4. Suppose that A and B are locally indicable, hyperbolic, and cubulable. Let

w be a word in A � B which is not conjugate into A or B, and n ¥ 4. Then G � A � B{xxwnyy

is virtually special.

But what if the factors are not hyperbolic? Namely:

Question 12.0.5. (Question 1.2.5 in Chapter 1). Let A and B be locally indicable, virtually

special groups, w a word in A � B which is not conjugate into A or B, and n ¥ 2. Is G �

A � B{xxwnyy virtually special?

One strategy of proof would be to generalize Wise's theory of quasiconvex hierarchies to the

relatively hyperbolic setting. In fact, this program is already carried out under the assumption

that the factors A and B are virtually abelian [Wis09]. These hierarchies can be used to directly

show the following strong generalization of cubulability of one-relator groups with torsion:

Theorem 12.0.6. [Wis09, Corollary 18.2] Let H � xa1; : : : ; am | wny where w is cyclically

reduced, and n ¥ 2. Then H is virtually special.

There is also a question in a slightly di�erent direction. One could also consider small cancellation

quotients of free products of virtually special groups. As remarked in Chapter 1, Martin and

Steenbock show that a C 1p1
6
q quotient of A �B, where A and B are cubulable, is itself cubulable.

The natural question is the following:

Question 12.0.7. Let G be a C 1p1
6
q quotient of A � B, where A and B are virtually special. Is

G virtually special?
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These groups are also hyperbolic relative to tA;Bu, and perhaps it is conceivable that a suitable

theory of quasiconvex hierarchies in the relatively hyperbolic setting could be used to tackle this

question as well.
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