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ABSTRACT 

 

Indium antimonide (InSb) is a narrow band gap material which has the smallest electron 

effective mass (0.014m0) and the largest electron Lande g-facture (-51) of all the III-V 

semiconductors. Spin-orbit effects of III-V semiconductor heterostructures arise from two 

different inversion asymmetries namely bulk inversion asymmetry (BIA) and structural 

inversion asymmetry (SIA). BIA is due to the zinc-blende nature of this material which 

leads to the Dresselhaus spin splitting consisting of both linear and cubic in-plane wave 

vector terms. As its name implies SIA arises due to the asymmetry of the quantum well 

structure, this leads to the Rashba spin splitting term which is linear in wave vector. 

Although InSb has theoretically predicted large Dresselhaus (760 eVÅ3) and Rashba (523 

eÅ2) coefficients there has been relatively little experimental investigation of spin-orbit 

coefficients. Spin-orbit coefficients can be extracted from the beating patterns of 

Shubnikov–de Haas oscillations (SdH), for material like InSb it is hard to use this method 

due to the existence of large electron Lande g-facture. Therefore it is essential to use a 

low field magnetotransport technique such as weak antilocalization to extract spin-orbit 

parameters for InSb.  

The main focus of this thesis is to experimentally determine the spin-orbit parameters for 

both symmetrically and asymmetrically doped InSb/InxAl1-xSb heterostructures. During 

this study attempts have been made to tune the Rashba spin-orbit coupling coefficient by 

using a back gate to change the carrier density of the samples. Dominant phase breaking 

mechanisms for InSb/InxAl1-xSb heterostructures have been identified by analyzing the 

temperature dependence of the phase breaking field from weak antilocalization 
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measurements. Finally the strong spin-orbit effects on InSb/InxAl1-xSb heterostructures 

have been demonstrated with ballistic spin focusing devices.   
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INTRODUCTION 

 

Operations of conventional electronic devices rely on the charge of the carriers 

transported through their active region. These conventional electronic devices have 

ignored the spin of charged carriers although the existence of spin has been known for a 

long period of time. The spin of the charged carriers in addition to their charge holds 

potential for device applications for both metal and semiconductor based spintronic 

devices. 

Although metal based spintronic devices such as giant magneto resistor (GMR) devices 

are commercially available, semiconductor based hybrid devices have more versatility 

due to their ability to control the motion of charged carriers via spin-orbit interaction, 

which arises due to lack of inversion symmetry of the crystal structure and growth. 

Recently there has been considerable amount of interest in spin-orbit interaction in 

semiconductor heterostructures for various device applications.   

It has been theoretically predicted that InSb has strong spin-orbit effects. This interesting 

property makes InSb a promising material for spintronic applications. Additionally a high 

mobility at room temperature makes this material a viable candidate for fast switching 

field-effect transistors and ballistic transport devices. 

In this thesis we report experimental measurements of Dresselhaus and Rashba 

coefficients via weak anti-localization on InSb quantum wells. The samples are 

InSb/AlxIn1-xSb heterostructures grown on GaAs substrates using molecular beam epitaxy 

(MBE). In order to measure the effects of Dresselhaus and Rashba spin-orbit interactions 

separately we use two series of samples (symmetrically and asymmetrically doped) in 
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which each series has samples with different electron densities. Our experiment involves 

measuring low field magneto-conductance in which strong spin-orbit coupling leads to 

destructive interference. The last part of this thesis reports spin filtering current focusing 

devices due to strong spin-orbit coupling in InSb. The organization of this thesis as 

follows. 

Chapter 1: Fundamentals of spin-orbit coupling in two-dimensional electron 

systems 

The origin of spin-orbit interaction is introduced starting from the Dirac equation for spin 

1 2  particles. The concept was extended to semiconductor heterostructures paying 

attention to the local electric fields arising from lack of inversion symmetries namely 

bulk inversion asymmetry and structural inversion asymmetry. 

Chapter 2:  Quantum interference effect 

The main focus of this thesis is to investigate the strength of spin-orbit interactions in 

InSb/AlxIn1-xSb heterostructures using weak antilocalization. In this chapter we discuss 

the fundamental concepts of weak antilocalization, the characteristic lengths and the 

theoretical modeling. 

Chapter 3:  Material system 

Weak antilocalization strongly depends on the mobility and carrier density of the 

structure considered. Also in order to understand the relative strength of Rashba spin-

orbit interaction, it is important to know the parameters such as quantum well width, 

spacer layer thickness and information about -doping etc. In this chapter a brief 

description of quantum well structures used in our experiments will be discussed. 
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Chapter 4: Device fabrication 

To produce nanometer scale semiconductor devices, proper use of sophisticated 

processing techniques are required. Since InSb is not so common compared to materials 

like Si or GaAs, standard processing recipes for InSb are rare in literature. Virtually for 

every processing step, we had to develop recipes suited for InSb/AlxIn1-xSb systems.  

This chapter introduces various processing techniques and recipes used to fabricate our 

devices.  

Chapter 5: Weak antilocalization in InSb quantum wells 

In this chapter we discuss the results of our experimental investigations on weak 

antilocalization. This chapter also includes the interpretation of experimental data using 

appropriate theoretical models and details on extracted spin-orbit parameters for 

InSb/AlxIn1-xSb heterostructures.    

Chapter 6: Spin polarized magnetotransport on InSb quantum well structures 

Experimental efforts to demonstrate spin polarization and spin filtering through cyclotron 

motion of electrons under the influence of spin-orbit interaction are discussed in this 

chapter. Also an attempt has been made to estimate the strength of spin-orbit interaction 

from the spin resolved focusing peaks. 

Chapter 7: Conclusions and future work 

This chapter includes a summary of the experiments we performed for this thesis and 

future work which has to be done in order to improve upon these experiments.  
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Chapter 1 

Fundamentals of spin-orbit coupling in two-dimensional electron 

systems 

 

1.1 Introduction 

The spin-orbit interaction is responsible for lifting the degeneracy of electron energy 

levels in many atoms, molecules and solids. The origin of spin-orbit coupling is due to 

the relativistic nature of electron motion. This can be derived from the Dirac equation of 

spin1 2  particles and appears in the Schrödinger equation as a first order relativistic 

correction. To get an expression for the spin-orbit interaction one starts with the Dirac 

equation using the relativistic expression for the kinetic energy of electrons [1]. 

                                                    2 2 2 2 4H c m c p                                                          1.1       

For the non-relativistic Hamiltonian, electric and magnetic potentials   and A can be 

introduced by the substitutions 
 q

c
 

  
 

p p A  and H H q   where q  is the 

electron charge e . With the relativistic kinetic energy correction the Hamiltonian in 

equation 1.1 is modified as follows; 

                                                 2 2 2 4H q c - q m c  p A                                              1.2 

One can obtain the relativistic wave equation for an electron in an external electric and 

magnetic field by representing H and p  in terms of their quantum mechanical 
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operators H i
t





 ; i  p in equation 1.2  and then acting on the electron wave 

function  . 

In the case of a free electron, the relativistic wave equation can be obtained by applying 

the same procedure to equation 1.1 and has the following format  

                                          

 2 2 2 2 4

2
2 2 2 2 2 4

2

0

or

H c p m c

c m c
t




  

  


    





 

                                             1.3    

Here  , ,x y zp p p p  are the components of the momentum operator. This is a second 

order differential equation in t  and therefore initial values of   and 
t



 
are required to 

solve it whereas the Schrödinger equation only needs the initial value of  . 

Dirac approached this problem by splitting this expression into a product of two linear 

equations and considered them individually. The Dirac formalism for the force free form 

of equation 1.3 has the following format 

                              2 2 0H c p mc H c p mc    
                             1.4 

The constant coefficients  and   satisfy the relations in equation 1.5 

' ' '

2

2

0

1

    

 

    

  



 

 



                                                        1.5 

One can easily verify this by multiplying the product in equation 1.4 and substituting the 

relations in 1.5. Equation 1.4 can be solved by solving the first part of the product which 

is shown in equation 1.6, 
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 2 0H c p mc 
                                                         1.6 

This is a first order differential equation in t  and is referred to as the linearized version of 

the Dirac equation.  

 To compare the Dirac equation with the Schrödinger equation in an external 

electromagnetic field, we must again use the substitutions  q
c p p A and 

H H q   for p and H and use the non-linearized version of equation 1.4. It then has 

the following form.  

                   2 2. . 0H q c q mc H q c q mc                p A p A          

1.7   We can simplify equation 1.6 by defining electric and magnetic field strengths in 

terms of the potentials
1

and 
c t


    


A

E B A  .  

Using 2H = W + mc  and assuming that the kinetic and potential energies are small 

compared to rest mass energy 2mc , two components of the spin function can be neglected. 

Under this condition equation 1.7 simplifies to the following form. 

       
2

2 2 2 2

1
. . .

2 2 4 4

q q q q
q i W

m c mc m c m c
  

          
   

  
p A B + E p E p             1.8 

where are the Pauli spin matrices. In the above expression the first two terms are 

exactly as those of the non-relativistic Schrödinger equation for an external 

electromagnetic field. The third term represents the interaction energy . B  between a 

magnetic dipole   and the external magnetic field B . The magnetic dipole moment can 



 4  

be represented by the operator  2
q

mc
  

 
. The fourth term does not have a 

classical analog and it is the relativistic correction to the energy.  

Using the principles of classical electrodynamics, it can be shown that the vectors of the 

electromagnetic field are dependent on the frame of reference [3]. An observer in a 

reference frame moving with velocity v  relative to an electric field E  finds a magnetic 

field B . This Lorentz transformed magnetic field has the form  

                                                   

 
1

2

1

c

v
c

 
 



v E
B                                                            1.9 

By neglecting the higher order terms of v
c  one can approximate the effective magnetic 

field as 

                                                   1 1

c mc
    B v E E p                                           1.10    

The energy of an electron moving relative to a static electric field can be written as. 

                                 2 2

1
. . .2 2

qq- mc mc m c
           

  B = E p E p               1.11 

Therefore it is quite evident that the last term in equation 1.8 is a direct consequence of 

the coupling of the electron spin with the effective magnetic field generated from the 

Lorentz transformed electric field and hence is known as the spin-orbit energy.  

However the energy term in equation 1.11 is a factor of two greater than the last term in 

expression 1.8. The change of the precession frequency of the electron spin in the 

magnetic field has not been taken into consideration when changing the frame of 

reference and hence the factor of two. 
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If the motion of the electron takes place in a spherically symmetric potential  r such as 

for the orbital motion of an electron under the influence of the electric field of an atomic 

nucleus, the resulting electric field E  is given by; 

                                                   
 1 ˆ

d r
q

dr

  
   

 
E r                                                     1.12 

Then the spin-orbit term for the central potential can be obtained in the following form  

       1
2 2 2 2 2 2

ˆ ˆ. . .
4 4 4

d r d rq q
q

m c m c dr m c dr

 
                        

    E p r p r p     1.13 

This expression represents the interaction of the magnetic moment of the electron with 

the effective magnetic field. From equation 1.13, it can be seen that the contribution to 

the Hamiltonian due to the spin orbit interaction has the form, 

                                              
   ˆ~ .so

d r
H

dr

 
 

 
r p                                                   1.14 

However in the case of semiconductor heterostructures electric fields can be generated in 

two ways, one due to the lack of inversion symmetry of the crystal structure and the other 

due to the asymmetry of confinement potential of the growth structure as shown in figure 

1.1. 

z
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z

z
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Figure 1.1 Schematic of potential profile for a heterostructure 
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1.2 Dresselhaus spin-orbit interaction 

The majority of III-V compound semiconductor materials have a zincblende crystal 

lattice structure. The zincblende structure consists of two interpenetrating face centered 

cubic (FCC) sub lattices, one containing group III atoms and the other containing group 

V atoms. The two sub-lattices are shifted relative to each other by  4, 4, 4a a a  where 

a  is the cubic lattice constant. 

Dresselhaus S-O coupling is due to the lack of inversion symmetry between the two 

different types of atoms [4]. Treating this S-O coupling as a perturbation the Hamiltonian 

for spin splitting in the conduction band for a bulk material has the following form [5]. 

 

                                        
 2 2

1 2

, , 3

so i i i i
i

H k k k

i x y z and i i

    

  


                                                      1.15 

 

where   is the Dresselhaus S-O coupling constant. For a semiconductor quantum well 

(QW) grown in the  001 direction, the confinement gives rise to quantization of zk  

resulting in 0zk   and hence the Hamiltonian in equation 1.15 becomes 

                                                 
2

. .
2

k
H

m    x x y y                                   1.16 

where  ,x yk k k is the in-plane wave vector  and  ,x y   is the spin orbit 

frequency vector in the plane of the quantum well which can be expanded from 

orthogonal spherical harmonics as shown in equation 1.17. The magnitude of the vector 
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2   represents the frequency of spin precession and its direction defines the axis of 

precession. The resulting spin splitting is given by 2 . 

                          

     

     

 

2 2
1 3

2 2
1 3

2 2 2

3
2 2

1 3

2 2 2

cos cos 3

sin sin 3

tan ;

1
;

4 4

x x y z D D

y y z x D D

x
x y

y

D z D

x y

k k k

k k k

k
k k k

k

k
k k k

  

  



 

       
       

  

       
  

                             1.17 

The terms 1D  and 3D  are the so called linear and cubic Dresselhaus terms and 2
Zk

 
 

is the average squared of the wavevector in z direction.  

 
1.3 Rashba spin-orbit interaction 

The Rashba spin-orbit interaction is generated by the asymmetry of the layer structure. 

This can include asymmetric doping, gating on one side and an asymmetry at the 

interfaces of the quantum well. In the case of asymmetric doping, the electric field 

generated is perpendicular to the 2DEG [5]. The Rashba S-O Hamiltonian has the form 

                                                  zRH k σ                      1.18 

This term can be included in the Hamiltonian in expression 1.16 by adding the following 

terms to spin precession frequency 2
 . 

 

                                           
   

1

sin , cosx R y R

R k

 



     

 
                             1.19 

The spin-splitting parameter  is known as the Rashba coefficient and has two different 

contributions from the layer structure. The main contribution is from the electric field in 
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the quantum well. There is a second contribution from leakage of the electron wave 

function into the barriers due to finite barrier heights of the layer structure [6]. 

However if we consider the only the electric field then can be written in terms of 

electric field as shown in equation 1.19 [7]. 

                                             

  

0

2

0

2

2 3 2

Z

g

g g g

E

E
e

m E E E

 

 



 


   



                                   1.20 

where gE the band is gap energy and   is the split-off energy. Unlike the Dresselhaus 

terms, the Rashba contribution only has a k-linear dependence. The Rashba spin-orbit 

coupling constant   can be changed by applying an external electric field, a desirable 

effect for device applications.  

 

EgEg

 

Figure 1.2 Band diagram of a direct band gap zincblende structure 
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Chapter2 

Quantum interference effect. 

 

2.1 Introduction 

The quantum mechanical description of an electron wave function  r requires both an 

amplitude  A r  and a phase factor  which can be written as     ir A r e   , while the 

phase factor has no effect on classical transport, it plays an important role in quantum 

interference which is the underlying principle of the Aharonov-Bohm (AB) effect, weak 

localization (WL) and weak antilocalization (WAL) [8,9]. I will start with a description 

of some characteristic length scales and then return to the role of phase in quantum 

transport. 

 

2.2 Characteristic length scales  

 

2.2.1 Elastic mean free path ( el ) 

In a real electronic system electrons are scattered by defects in the crystal, impurities and 

phonons. The elastic mean free path is the average distance electrons travel before 

undergoing elastic scattering events. It can be expressed in terms of a Fermi 

velocity Fv and tr the transport relaxation time 

                                                      e F trl v                                                                        2.1 

                      tr

1
where is determined by 1 cos

tr

W d   


                                     2.2     
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Here  W   is the probability that the electron wave vector changes direction by an angle 

  per unit time due to elastic scattering [5]. It is customary to refer el  as the transport 

length trl . 

2.2.2 Phase breaking length  l  

As mentioned in the introduction, the wave function also requires a phase factor. An 

electron moves without losing its phase over a characteristic length, l  
[10]. Beyond this 

length electrons lose their initial phase by inelastic scattering. Inelastic scattering events 

such as those due to scattering by phonons, electron-electron collisions and spin-flip 

scattering and which break the time reversal symmetry are responsible for phase 

relaxation. In between single phase breaking scattering processes, electrons can suffer 

many elastic scattering events hence the expression for l  uses the diffusion constant D  

along with phase breaking time  , instead of Fv . 

                                                              
21

2  where 
2

F trv
l D D 

                                                     2.3 

At low temperature where electron-electron scattering is dominant, l  depends on the 

temperature of the system. 

2.2.3 Magnetic length ( Bl ) 

In the presence of an external magnetic field, there is another length scale to consider, the 

magnetic length. This characteristic length is the spatial extent of the wavefunction in a 

field and is given by [10] 

                                                
2

1









eB
lB


                                                                       2.4 
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2.3 Weak localization 

Weak localization (WL) is a quantum correction to the classical conductivity due the 

coherent nature of scattering events. This was first predicted by Anderson in 1958 [11, 

12]. For a system without any spin-orbit interaction, the presence of disorder results in a 

non-zero probability for the electron to return to the initial position after a number of 

scattering events. For every clockwise trajectory shown below, there will be a 

counterclockwise trajectory in which the electron travels in the same path, but in the 

opposite direction (see Figure 2.1) [13].  

 

Figure 2.1 Electron transport paths with impurity scattering in the absence of spin-

orbit interaction 

According to time reversal symmetry, two electron waves traveling on such identical but 

reversed trajectories acquire the same phase factor resulting constructive interference 

when they combine at the origin. This can be explained more rigorously if one considers 

the probability amplitudes Af and Ab of two time reversed trajectories, then the coherent 

back scattering probability has the form [14]: 

                                            

2
2 *

2 2 2 * *

i i i j
i i i j

f b f b f b b f

A A A A

A A A A A A A A



 

          

  
                               2.5 
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Time-reversal invariance guarantees that the forward and backward probability 

amplitudes around a closed path are identical, 2.5 then reduces to  
2 2

4f b fA A A    

which is twice the classical result. This increase of back scattering probability is known 

as weak localization, because the conductivity is reduced over the classical result. This 

constructive interference can be destroyed by breaking the time reversal symmetry by 

means of an applied external magnetic field.   

 

2.4 Weak antilocalization 

The presence of the spin-orbit interaction does not affect time reversal symmetry, 

however now the spin rotation acquired by an electron traveling on a closed path 

trajectory is opposite to that acquired on the time reversed trajectory. Assuming the initial 

spin state is s , the final spin states 's and ''s  of electrons on the time reversal paths 

can be expressed in terms of the spin rotation operator R [15]. 

                                                   
sRs

sRs

1''

'




                                                                 2.6 

R has the property  1RR  , hence the interference term becomes ' 2 '' 1 2s R s   . The 

negative sign is due to the opposite spin rotation along the two paths. Compared to WL 

this quantum contribution has the opposite sign and is half as much. This correction 

decreases the coherent back scattering probability resulting an increase in conductivity 

at 0B  . The phenomenon is known as weak antilocalization (WAL) and like WL can 

also be destroyed by applying an external magnetic field which introduces an additional 

phase accumulation around the closed loop.  When discussing systems with spin-orbit 
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interaction, it is appropriate to introduce yet another length scale, sol  the spin orbit length, 

which is defined as the length over which the spin acquires a shift of the order of  due to 

the coupling between the spin and the orbital motion.  

 

Figure 2.2 (a) Electron transport paths with impurity scattering with spin-orbit 

interaction. (b) Characteristic length scales under the influence of the spin-orbit 

interaction    

Figure 2.2 provides a schematic description of WAL in the diffusive limit where all 

relevant length scales are greater than ltr.  If there is a closed path for the electron 

trajectory of the scale of bsl  which satisfies the condition bs sol l l   [13], then the path 

contributes to WAL. For lbs>l  electrons lose their phase information and the paths do 

not contribute any quantum correction. In the limit so bs trl l l  , the path length traversed 

is not sufficient to result in much phase rotation and the overall quantum correction yields 
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constructive interference (WL). For a 2DEG of low mobility and high spin-orbit 

interaction the characteristic length scales preserve the order so trl l l   as shown in 

Figure 2.2 (b), therefore WAL can be observed in the magnetoconductance 

measurements. The introduction of a weak magnetic field introduces yet another length 

scale, lB. For trajectories of this scale, the phase shift generated by the vector potential 

compensates that acquired by the spin-orbit interaction. For larger magnetic fields, lB 

becomes even shorter and once lB is shorter than lSO, the phase shift is no longer sufficient 

to generate a destructive contribution and the magnetoconductance becomes positive. For 

tr Bl l  electron cyclotron motion comes into play and the magnetoconductance starts to 

oscillate. 

 

2.5 Transport regimes in weak antilocalization 

Since WAL depends on the strength of spin-orbit interaction, we can use the 

magnetoconductance data to extract spin-orbit parameters. WAL data can be acquired in 

two different regimes, namely “diffusive” and “ballistic”. These regimes are defined by 

the relative magnitudes of the magnetic length Bl and the electron mean free path trl [16]. 

For the diffusive regime B trl l whereas the opposite limit is the case for the ballistic 

limit. 

 

 2.6 Theoretical modeling and fitting parameters 

For symmetrically doped III-V quantum wells grown in the  001  direction, Iordanskii, 

Lyanda-Geller, Pikus (ILP) [17] developed a theoretical model for weak antilocalization 
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conductivity correction for the case of a weak spin-orbit interaction. The weak 

localization correction is expressed in terms of Cooperon amplitude by taking only the 

Dresselhaus spin-orbit coupling into consideration and solving the Cooperon amplitude 

using perturbation theory. In depth analysis of the derivation of the ILP model is beyond 

the scope of this thesis. I only report the final solution here. This model consists of three 

different fitting parameters namely H , soH  and '
soH . The expression to the conductivity 

correction has the following form. 
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 
           2.8                           

In here C is the Euler constant and  3,2,1, nn  is the phase relaxation time of the 

respective components of the distribution function 1 ( )(1 cos )n W n d       where 
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( )W   is the probability distribution function of scattering by an angle  . The two 

parameter WL conductivity correction pioneered by Hikami, Larkin-Nagoaka (HLN) [18] 

can be obtained from ILP model by neglecting 
'
soH

B   in expression 2.7, and has the 

following form 

   
2

2

21 1 1 1

2 2 2 2
0

2 21 1
ln ln ln

2 2

so so

so so

H H HH H

B B B B Be
B

H H HH H

B B B B B

  
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  
 



      
            

          
                


    2.9 

 

Both the ILP and HLN models are only valid for the diffusive regime and only one type 

of spin-orbit interaction can be taken into account. Depending on the relative strength 

between Dresselhaus and Rashba spin-orbit interaction one chooses the dominant effect 

to fit. When both spin-orbit interaction terms are comparable, a numerical diagonalization 

is required for the Hamiltonian in order to get the WAL conductivity correction [19]. 

In the ballistic regime the electron spin will rotate considerably between elastic scattering 

events [20]. Theoretical models have been developed [16,21] to treat the ballistic case by 

introducing an operator p  for the probability of an electron to move forward and 

backward in a closed path using advanced and retarded Green’s functions. The Cooperon 

has been calculated from p in order to get the weak localization correction as shown in 

2.10.  

                                      
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                      2.10 
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 Where, 
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Here  NL z  are Laguerre polynomials. The fitting parameters for this model are shown 

in equation 2.11. 
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In here n  is the carrier density of the 2DEG. Both Rashba and Dressulhaus spin-orbit 

coupling constants can be extracted from these two fitting parameters.In the analysis 

section on chapter 5 of this thesis I only use equation 2.9 to evaluate the 

magnetoconductance data in the diffusive regime. 
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Chapter 3 

Material system 

 

3.1 Introduction 

InSb has the smallest electron effective mass and the largest electron Lande g-factor of all 

the III-V semiconductors. These properties have long made InSb a promising material for 

fast switching field-effect transistors [22, 23], sensitive magnetoresistors [24] and 

ballistic transport devices, however, the large spin-orbit effects predicted for InSb 

heterostructures have been largely overlooked and make InSb additionally interesting for 

spintronic applications [25,26]. 

 

3.2 InSb quantum well structure 

Growth of InSb quantum wells on lattice matched InSb substrates is not feasible for 

device applications due to the small InSb band gap, which results in a large intrinsic 

carrier concentration at room temperature [27]. The most appropriate practical option is 

to grow InSb heterostructures on lattice mismatched semi-insulating substrates like GaAs.  

The molecular beam epitaxy (MBE) group at University of Oklahoma has done a 

remarkable job in growing these types of structures for both low temperature (s-series) 

and room temperature (t-series) device applications [28]. The layer structure of a typical 

s-series quantum well structure is shown in figure 3.1, depending on the nature of 

application, the structures have been doped symmetrically or asymmetrically using 

silicon (Si) -doped layers. 
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Figure 3.1 Schematic of s-series sample structure (not to scale) (a) symmetrically 

doped and (b) asymmetrically doped 

 

The typical s-series structures starts with a GaAs (001) substrate. Because of the lattice 

mismatch of 14.6% between InSb and GaAs the growth initiates with a nucleation layer 

of AlSb followed by a thick relaxed layer of AlxIn1-xSb. Further filtering of dislocations is 

achieved by the strained InSb/AlxIn1-xSb superlattice layer. The quantum well itself is 

sandwiched in between two AlxIn1-xSb layers where the x percentage varies from 9% to 
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15%. The well width ranges from 20 nm to 30 nm to stay below the critical strain 

relaxation limit of the InSb layer. For symmetrically doped structures, carriers are 

supplied by two equally spaced Si -doping layers on either side of the quantum well and 

for asymmetric structures, carriers to the well are supplied through a single Si -doping 

layer on top of the quantum well. The additional Si -doped layer near the surface is to 

provide electrons to surface states. The topmost InSb cap layer prevents oxidation of the 

underlying AlxIn1-xSb layer. For s-series samples, the quantum well is typically located at 

a distance d1 (150 nm) below the top surface. Further details of growth structure for s-

series structures can be obtained from reference 29 and 30. 

Key modifications have been adopted in the t-series layer structures (Figure 3.2) to 

improve defect filtering and quantum confinement. The structure starts with a GaAs 

(100) substrate cut 2° off toward <110>, to enhance the reduction of micro-twin defect 

density in the epilayers. The growth initiates with alternating Al0.1In0.9Sb and Al0.2In0.8Sb 

layers to minimize defect propagation through the structure. The 20nm quantum well is 

sandwiched in between Al0.2In0.8Sb barrier layers to achieve a higher degree of quantum 

confinement than the max 0.15x  s-series well. Like s-series samples, the carriers are 

supplied by Si -doped layers. The structure terminates with an Al0.1In0.9Sb layer and Si 

-doped layer close to the surface to again provide electrons to the surface states traps. 

The quantum well is located at a distance d2 (50 nm) below the top surface of the t-series 

samples which should improve top gating. References 28 and 31 contain further details of 

the design of t-series structures.     
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Figure 3.2 Schematic of t-series sample structure (not to scale)  (a) symmetrically 

doped and  (b) asymmetrically doped 

 

3.3 Physical properties of InSb    

The main focus of this thesis is to investigate the strength of the spin-orbit parameters for 

InSb. As mention in chapter 1, for quantum wells, the spin-orbit interaction effects arise 

from the inversion asymmetry of the crystal structure (Dresselhaus effect) and the 

inversion asymmetry of the as grown structure (Rashba effect). In addition if the crystal 
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structure is uniaxially deformed, there is a Rashba like SOI due the deformation of the 

InSb unit cell [19].  

In order to evaluate experimental results, it will be important to know the theoretically 

predicted values for spin-orbit coupling along with some fundamental physical quantities 

for InSb. In Table 3.1 a comparison has been made for theoretically predicted spin-orbit 

parameters for InSb with GaAs and InAs along with important fundamental parameters at 

room temperature.  

 

Property GaAs InAs InSb 

 Lattice constant  Å  5.653 6.058 6.479 

 Band gap energy  Eg  eV  at 300 K 1.424 0.354 0.17 

 Effective mass 
*

e

m
m

  
 

 0.063 0.023 0.014 

 S-O gap  0 eV  0.34 0.41 0.8 

 Electron Lande g-factor -0.44 -17.5 -50.6 

 Dielectric constant 
0




  
 

  12.9 15.15 16.8 

 Dresselhaus S-O constant   3eVÅ  27.58 27.18 760.1 

 Rashba S-O constant 0  2eÅ  5.21 117.1 523.0 

 Deformation-potential constant C3  eVÅ 2.08 6.8 134.5 

 
Table 3.1 Comparison of basic parameters of InSb with other III-V semiconductor 

materials [27, 32]  
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Chapter 4 

Device fabrication 

 

4.1 Introduction 

There are two different experiments covered in this thesis, the first is low field 

magnetoconductance measurements on AlxIn1-xSb/InSb quantum wells for weak 

antilocalization conductance studies and the second part is the study of mescoscopic 

current focusing devices, more details about these experiments will be discussed in 

chapters 5 and 6 respectively. The basic building block for both experiments is a standard 

Hall bar geometry, with additional processing required for current focusing devices. This 

chapter will cover the various fabrication and measuring techniques which were common 

to both experiments.  

 

4.2 Photolithography 

Standard photolithography was used for Hall bar fabrication. The process starts with 

cleaving the wafers to match the Hall bar array dimensions on the optical mask. In order 

to prevent any contamination, processing was done in a class 1000 clean room. Samples 

undergo a pre-cleaning step of acetone, methanol and isopropanol followed by a 

dehydration bake at 150°C in a conventional oven before the spin coating process. 

Image reversal AZ5214E photoresist was used due to its versatility [33]. A 1.4 m thick 

resist layer was deposited on the sample using a spin coater. To achieve the desired 

thickness, the spin coater operated at 5000 rpm with time duration of 50 seconds. The 

sample was baked for 60 seconds at 95°C on a hot plate to get rid of excess photoresist 
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solvents generated during the coating process. Karl Suss MJB3 mask aligner was used to 

align the sample with the Hall bar mesa pattern using positive photolithography. Ultraviolet 

(UV) light illuminated the sample through Hall bar photomask pattern for 6.5 sec from a 

300W UV source. The pattern was developed for 60 seconds with MIF 319 developer 

solution followed by a de-ionized water rinse and then blown dry with dry nitrogen gas. A 

hard bake followed at 120°C for 60 seconds to evaporate any excess solvents from the 

development process. A schematic of the alignment, exposure and development process is 

shown in figure 4.1. 
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Figure 4.1 Schematic (not to scale) of typical positive photolithography steps 
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The AZ5214E photoresist has a positive side wall profile for conventional positive 

photolithography, which is not suitable for liftoff processes. A negative side wall profile 

is crucial for ohmic contact and gate metal depositions in order to have proper liftoff.  

The image reversal aspect of AZ5214E can be used to generate negative side wall 

profiles. The image reversal process is same as for positive lithography up to the initial 

exposure, after the first 6.5 sec exposure with the resist; the sample undergoes an image 

reversal bake at 120°C for 60 seconds. During this step the photoresist on the previously 

exposed area will be cross linked and lose its photosensitivity. A 60 second flood 

exposure is then done in order to make previously unexposed areas soluble in the 

developer solution (Appendix A). The rest of the process is same as for positive 

lithography. The resulting pattern is the inverse of the photomask pattern and the resist 

walls will now have a negative side wall profile. 

 

4.3 E-beam lithography 

The typical minimum feature size which can be patterned with OU’s Karl Suss MJB3 is 2 

m. To pattern sub-micron features as in current focusing devices, more sophisticated 

electron beam lithography has to be employed. The process involves an electron beam 

scan over a desired surface area coated with an electron beam sensitive film, which is 

commonly known as e-beam resist. A basic e-beam tool consists of a scanning electron 

microscope coupled with a computer to control the scan coils to manipulate the electron 

beam. The capability of high resolution pattern generation, the flexibility to work with a 

variety of materials and the ability generate an infinite number of patterns are definite 



 26  

advantages of this technique [34]; nevertheless it a slow, expensive and complicated 

process. Figure 4.2 shows a schematic of a typical e beam tool. 

 

Figure 4.2 Block diagram showing the major components of a typical electron beam 

lithography system [34] 

 
In modern e-beam tools, computer control of the column scan coils is responsible for 

forming and controlling the electron beam. Underneath the column is a chamber 

containing a stage for moving the sample around and which also acts as a load lock for 

sample loading and unloading. The computer also handles functions such as setting up an 

exposure job, loading and unloading the sample, aligning and focusing the electron beam, 

sending pattern data to the pattern generator, electron beam blanking and movement of 

the sample stage. 



 27  

We used etch resistive UV113 e-beam resist for e-beam lithography. A 350 nm thick 

layer of UV113 was deposited on top of the mesa (mesa etching will discussed in section 

4.3) using the spin coater, operating at 5000 rpm for 50 second to achieve the desired 

thickness. The sample was then baked at 150°C for 60 seconds to evaporate any excess 

resist solvents. Sample patterning was performed on a RAITH 150 e-beam tool with a 30 

KV beam and an optimum dose of 28 C/cm2. The sample then has a post exposure bake 

of 130°C for 90 seconds before development. Samples were developed in DC 265 

developer solution for 60 seconds followed by a de-ionized water rinse and then blown 

dry with dry nitrogen gas (Appendix B). 

 

4.4 Wet etching 

In wet etching of semiconductor materials, first the chemical species must be transported 

to the surface in order to allow chemical species adsorption. Chemical reactions then 

occur at the surface and the reaction byproducts are released and move away from the 

surface [35]. The basic mechanism of semiconductor wet etching involves formation of 

oxides on the top surface using a strong oxidizer and dissolving them by means of either 

an acid or base. 

For InSb/AlxIn1-xSb quantum well structures, the photolithographically patterned Hall bar 

mesas were etched using a HF base solution made from 6 parts 3% H2O2, 3 parts 2.5% 

HF and 1 part 85% lactic acid. For this solution, the etch rate is 1.3 m/min. For better 

control of desired etch depths, 1 part of this solution was diluted with 3 parts of de-

ionized water. The resulting etch rate is 0.82m/min. The samples were etched 100 nm 

below the last -doped layer to prevent any parallel conduction at low temperatures. After 
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etching the sample for the appropriate time, the etching process can be stopped by 

immersing the sample in de-ionized water for two minutes followed by drying with dry 

nitrogen gas. The protective AZ5214E resist layer on top of Hall bar area can be removed 

with Shipley 1165 photoresist remover. Due to the isotropic nature of wet chemical 

etching the horizontal device dimensions must be greater than the desired etch depth; 

therefore wet etching is not suitable for sub-micron size feature isolation [36]. 

 

4.5 Reactive Ion Etching (RIE) 

Reactive ion etching enables high resolution, anisotropic pattern transfer which is a key 

requirement for sub micron size feature isolation. Reactive ion etching can be categorized 

in the four basic processes as shown in figure 4.3 [37]. 

 

Figure 4.3 schematic diagram of (a) sputtering, (b) chemical, (c) ion-enhanced, and 

(d) sidewall inhibitor etch mechanisms 
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(i) Physical sputtering 

Accelerated ions transfer large amount of energy (>100eV) and momentum to the 

semiconductor surface causing mechanical removal of material. This process causes 

significant surface damage and has low chemical selectivity.    

(ii) Chemical etching 

This process is quite similar to wet chemical etching. The only difference is the 

plasma medium in which the reactions take place. This process involves mostly 

reactive neutral gas species which produce volatile etch products. Due to the low 

level of ion bombardment, the plasma induced damage is minimal, however the etch 

profile tends to be isotropic. 

(iii) Ion-enhanced etching 

Both physical and chemical etching occurs during this process. Anisotropic etch 

profiles can be obtained due the directional nature of ions accelerated through the 

plasma to the semiconductor surface. Energetic ions also assist in the removal of 

volatile etch products. 

(iv) Sidewall inhibitor etching. 

For this process, a polymer forming gas is added to the chamber to initiate the 

formation of a thin layer on the side walls of the etch profile to prevent lateral etching. 

 

4.5.1 High density inductively coupled plasma (ICP) 

As mentioned in chapter 2 for InSb/AlxIn1-xSb quantum well structures, the quantum well 

itself is located very close the surface. Therefore it is essential that relatively low ion 

bombardment is used during the etching process in order to minimize ion induced 
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damage. On the other hand lowering the ion energy will reduce the etch rate. Thus to 

keep the etch rate high, it is important to increase the ion flux [36]. The etch rate only 

depends on the ion power incident on the sample. 

 The ion flux can be increased by using a high density inductively coupled plasma system. 

A schematic of an ICP system is shown in figure 4.4 [37]. The plasma is formed in a 

dielectric chamber which has an inductive coil around it. Radio frequency (RF) power 

applied to this coil will generate an electric filed in the horizontal plane. This results a 

strong magnetic field in the vertical plane confining both electrons and ions in the plasma 

at the center of chamber generating a high plasma density.     

 

Figure 4.4 Schematic diagram of inductively coupled plasma (ICP) etch system 
 

4.5.2 Etching of InSb with CH4/H2/Ar based plasma 

CH4/H2 based plasma etching has been widely used for III-V semiconductor material 

etching [38,39,40,41] which provides isotropic etching with vertical side wall profiles. 

The process starts with plasma formation due to ionization of CH4, H2 and Ar. Since the 
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dissociation potential is only 4.6 eV for 4 3CH e CH H e    , reactive species of 

3CH  and H  can be easily generated. The precursor 2H  contributes to etching in two 

ways, one is by providing an alternate source of H and the other is as a diluting medium 

for the 4CH  plasma. The latter contribution is critical because a high 4CH  concentration 

causes a byproduct polymer deposition on the sample surface and the RIE chamber. An 

additional Ar precursor enhances the ionization and aids in the removal of polymers by 

means of physical sputtering. During the etching process, volatile products such as 

 3 3
In CH  and 3SbH  will be generated, however 3CH -based products are less volatile 

than H-based products resulting in preferential loss of Sb from the surface. 

 

Figure 4.5 SEM micrographs of InSb samples etched with  CH4/H2/Ar RIE with 

CH4/H2 ratio of (a) 15.8%, (b) 30%, (c) 70% 

(a) 

(b) (c) 
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In InSb/AlxIn1-xSb systems we use CH4/H2/Ar gas mixtures use to physically isolate 

2DEGs with submicron trenches. The total gas flow rate and Ar flow rate were kept 

constant at 30 sccms and 8 sccms respectively while changing the CH4:H2 ratio to 15.8%, 

30% and 70% for different trenches. Both RIE and ICP powers were set to 75 W and the 

process was performed at a pressure of 10 mTorr for 20 minutes. As shown in SEM 

micrographs in figure 4.5 the lower CH4/H2 ratio trial resulted in In-rich rough surfaces 

while for higher ratios of CH4/H2 led to excessive polymer deposition. The resulting 

maximum etch rate was 100 Å/min  which corresponds to a CH4/H2 ratio of 15.8% 

(Appendix C), however the unwanted  polymer that was deposited created problems in 

removing the e-beam resist from the sample thus hindering additional processing.  

 

4.5.3 Etching of InSb with BCl3/Ar Based plasma 

Due to the low etch rate, polymerization and rough surface morphologies associated with 

CH4/H2 based RIE on InSb/AlxIn1-xSb semiconductor heterostructures, we also used BCl3 

based RIE. BCl3 RIE is known for its immediate removal of the native oxide on the 

surface and also as a getter for water vapor within the reactor chamber [44].  

BCl3/Ar plasma was used to etch Insb/AlxIn1-xSb heterostructure trenches. The flow rate 

ratio of BCl3: Ar was kept constant (1:4) and the RF power varied while setting the ICP 

power to zero. This process was performed at room temperature with 3mTorr chamber 

pressure for 200 seconds. As shown in the SEM micrographs of Figure 4.6, the trenches 

were covered with a solid material. 
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Figure 4.6 Solid material formation after RIE (RF power = 120W) 
 
 
This is due to higher melting points of In-chloride etch products compared to Al and Sb 

chloride products which results in a tendency for it to remain on the etch surface. 

Relevant boiling points are: InCl = 608 °C; InCl2 = 560 °C; InCl3 = 600°C [45], however 

even with the InCl deposition the etch rate is superior to the CH4/H2 based RIE. The 

graph in Figure 4.7 indicates that even without any ICP power an etch rate of 320 Å/min 

can be achieved with 75W RF power. 
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Figure 4.7 RIE etch rate vs. RF power 
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At higher RF bias the etched trenches show an asymmetry which may have been caused 

by a lack of plasma directionality from the ICP source. SEM micrographs in Figure 4.8 

clearly show the lack of symmetry of etched trenches at higher RF power settings.    

 

 

 

 
Figure 4.8 SEM micrographs of InSb samples etched with  BCl3/Ar RIE with BCl3 = 

2 sccms, Ar = 8 sccms and ICP Power = 0W (a) RF Power = 60W, (b) RF Power = 

120W (c) RF Power = 180W 

The optimized recipe has a 67° side wall angle. It was achieved for an ICP power of 50 

W, RF power of 100 W and BCl3 and Ar flow rates of 3 sccms and 12 sccms, 

respectively, with a total pressure of 3 mTorr (Appendix C). Figure 4.9 indicates the side 

wall profile of a 200nm etched trench. 

(a) (b) 

(c) 
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Figure 4.9 SEM micrograph of 200 nm RIE trench with the optimized recipe 

 

4.6 Ohmic contacts, deposition and annealing 

Satisfactory ohmic contacts for n-type InSb/AlxIn1-xSb heterostructures are often 

provided by Indium [46]. After Hall bar mesa fabrication, another photolithography step 

was performed for contacts. An Edwards model E306A vacuum coating system was used 

to thermally evaporate Indium on Hall bar contact pads. The thickness of the deposited 

Indium layer is measured by a quartz crystal monitor. The crystal monitor reading for a 

typical Indium evaporation was around 700 nm. Profilometer measurements on witness 

samples indicate a tooling factor of 0.5 for Indium, which corresponding to an actual 

thickness of 350 nm.Samples were annealed at 230 °C for 5 minutes in a forming gas 

environment (N2-80%, H2-20%) to diffuse the deposited Indium into the quantum well. 

 

4.7 Sample mounting and wire bonding 

After all the relevant fabrication steps were performed on an array of Hall bars, the array 

has to be separated. The array was first scribed with the aid of alignment markers on the 

wafer using a Tempress-1713 manual scriber. Before making scriber marks the tool 
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height has to be adjusted to match the sample thickness. After scribing, a home built 

cleaving station was used to cleave the sample into individual Hall bars without 

damaging the mesa and contacts. See figure 4.10. 

 

Figure 4.10 Schematic of sample cleaving steps 
 

The Hall bars were then mounted on a 28-pin plastic leaded chip carrier (PLCC-

CCJ02803 from Spectrum semiconductor materials INC) with two component EPO-TEK 

H20E silver epoxy. A curing time of 45 minutes at 120 °C in an oven is required to 

harden the epoxy. Samples were wire bonded using K&S 4500 digital series manual 

wedge bonder with high purity 25m gold wire. Wire bonding was performed in an 

unconventional manner due to the softness of Indium (Appendix D). The first bond was 

made on PLCC gold pad and then moved to Indium pad to finish up the bonding cycle.   

Figure 4.11 shows three Hall bars mounted and wire bonded on a PLCC. 
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Figure 4.11 28-Pin PLCC with three wire bonded Hall bars 
 
 
 
 
4.8 Sample thin down 

For back gating the samples were thinned down to 100 m from the back side. The 

sample is first mounted on a polishing plate using crystalbond-509 wax. The initial thin 

down to ~500 m was performed by 2500 grit size sandpaper paper using a lapping and 

polishing machine. Diamond polishing papers with grit sizes varying from 50 m to 10 

m were used to thin down the samples from 500 m to 100 m. Finally the sample was 

carefully removed from the polishing plate by soaking the assembly in Acetone for 20 

minutes. Thermal evaporation was used to deposit chromium and gold metal layers for 

the back gates.     
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4.9 Low temperature magnetotransport measurements 

Low temperature magnetoconductance measurements were obtained using a home built 

3He cryostat. The superconducting magnet can generate a maximum field of 9T at 4.2K. 

Four-terminal electrical measurements were taken using standard AC lock-in 

measurements by a Stanford SRS 830 lock-in amplifier as well as by a Linear Research 

LR 700 AC resistance bridge. Low noise measurements were made by with a 100 nA 

current with a frequency of 13 Hz and measuring the voltage difference between desired 

voltage probes. 
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Chapter 5 

Weak antilocalization in InSb Quantum wells  

 

5.1 Introduction 

Although weak antilocalization has been observed previously for heterostructure systems 

such as GaAs/AlGaAs [5,21,47,48], InP/GaInAs [49,50], and GaN/AlGaN [51,52], to the 

author’s best knowledge there has not been any complete investigation of weak 

antilocalization on InSb/AlInSb heterostructures. This chapter details experimental 

investigations of weak antilocalization in InSb/AlInSb Hall bars along with the relevant 

theoretical interpretation of characteristic length/time scales and the strengths of spin-

orbit coupling parameters. 

 

5.2 Temperature dependence of weak antilocalization 

Hall bar samples from wafers t162 and t256 have been used to analyze the temperature 

dependence of weak antilocalization in InSb/AlInSb heterostructures. Both wafers were 

grown with asymmetric doping. Details of the sample structures including mobility and 

density at 4.2 K are listed in table 5.1. 

 

Sample ID Al% Well Width (Å) 
Carrier Density (ns) 

at 4.2 K (cm-2) 
Mobility () 

at 4.2 K(cm2/V.Sce) 

t162 20 250 3.34 x 1011 102000 

t265 20 200 2.24 x 1011 43000 

 
Table 5.1 Sample parameters for InSb/AlInSb heterostructures 
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During the experiment, longitudinal magnetoresistance measurements were made to 

capture the resistance peak which signifies the weak antilocalization. The resistance data 

is then converted into longitudinal resistivity by using xx xx

W
R

L
   where xxR the 

measured longitudinal resistance, W is the width of the Hall bar and L is the distance 

between the two voltage probes. The magnetoconductivity data were obtained by taking 

the inverse of xx  and normalizing by the factor 
2e

h . The temperature dependence of 

the weak antilocalization signals for samples t162 and t265 for temperatures ranging from 

10 K to 1.5 K are shown in Figure 5.1 and Figure 5.2, where the conductivity correction 

   0B B   is provided versus magnetic field. 
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Figure 5.1 Experimental magnetoconductivity ( ) (0)B  of sample t162 for 

different temperatures  
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Figure 5.2 Experimental magnetoconductivity ( ) (0)B  of sample t265 for 

different temperatures  

 
The large conductivity correction for t162 compared to t256 results from the density 

dependence of the phase breaking length l as will be shown [51, 52]. HLN theoretical 

fittings to the experimental data have been performed up to trB B which is appropriate 

for the weak antilocalization conductivity correction in the diffusive regime [17]. The 

two fitting parameters  ,soH H  program was written in Mathematica version 6.0. The 

program uses experimentally obtained magnetoconductance data and initial values for 

soH and H  as input parameters. To estimate the best fitting parameters, the built-in 

nonlinear regression function was used. 
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The relevant length and times scales extracted from fittings using equations 5.1 are 

shown in table 5.2.   

                                      

1
2

1
2

;
4 4

;
4 4

so so
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l
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l
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 
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 

 
   
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 
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                                                5.1 

 

For both samples the extracted spin orbit time remains roughly constant over the 

considered temperature range while the phase breaking rate 1


 has linear temperature 

dependence as shown in figure 5.3.  

 

Sample 
ID 

Temperature 
(K) 

Phase 
breaking 
length l  

(m) 

Phase 
breaking 
time   

(psec) 

Spin orbit 
length sol  

(m) 

Spin orbit 

time so  

(psec) 

t162 

10 1.29 3.1 0.821  1.24 

6 1.70 5.3 0.80 1.18 

4.2 1.94 6.9 0.79 1.15 

1.5 2.7 14 0.84 1.4 

t265 

10 0.56 1.89 0.56 1.88 

6 0.65 2.53 0.58 2.03 

4.2 0.77 3.53 0.60 2.16 

1.5 0.92 5.05 0.62 2.27 

 
Table 5.2 Important length and time scales obtained from HLN fittings for different 

temperatures 
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Figure 5.3 Phase breaking rate as a function of temperature for sample t162 and 

t265 

At low temperatures where the electron-electron interaction is the dominant temperature 

dependent inelastic scattering mechanism, the temperature dependence of the phase 

coherence rate is given by [53, 54, 55]. 
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where 
*

20
mN    is the 2D density of states. The observed T dependence suggests that 

we are in the 
B tr

T
k 




 range. For t162 the factor 
B trk 


 is 8.8 K and for t265 it is 20.9K. 
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The temperature ranges considered thus generally satisfy the inequality
B tr

T
k 




. 

According to equation 5.2 the phase de-coherence rate with calculated prefactor to the 

linear term should be, 

3 1 1

3 1 1

3.860 10 ( sec ) 1621
9.269 10 ( sec ) 265

p K T for t

p K T for t

  

  

  


                                                               5.3 

However the linear relationship extracted from fits to the data in figure 5.3 have the 

following form.  

2 1 1 2 1

2 1 1 1 1

2.973 10 ( sec ) 2.118X10 ( sec ) 1621
3.997 10 ( sec ) 1.344X10 ( sec ) 265

p K T p for t

p K T p for t

    

    

   
 

                    5.4      

 

The fits not only take into account the temperature dependence  of 1


 but also  the zero 

temperature limit where the intrinsic scattering rate is dominated by electron-impurity 

scattering, which is inversely proportional to mobility and temperature independent. As 

can be seen for sample t162, the temperature dependence of the phase breaking rate is a 

factor of 7.7 larger than theoretically predicted whereas for sample t265 the factor is 4.3. 

A factor of 4 difference has been reported for weak antilocalization measurements on p-

type AlxGa1-xAs/GaAs heterostructures [56]. For the theoretical predictions an electron 

effective mass of 0.015 em  was used.  A number of facts may be responsible to explain 

this discrepancy: we may be in a crossover regime between the T and T2 dependence, and 

the non-parabolicity of the conduction band may contribute to a larger effective mass *m  

than that used in the calculation [56].   
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5.3 Gate voltage dependence of WAL for asymmetric samples 

Unlike silicon, which possesses a high quality native oxide, thermally grown oxides on 

III-V materials have poor performance in top gating applications. Also deposition of 

insulating materials is quite difficult because of the existence of a nominally 3 nm thick 

native oxide layer with a high concentration of interface states [57]. These interface states 

screen the semiconductor by pinning the Fermi level in the conduction band. Due to these 

difficulties we have used back gating to control the carrier density.  

As mentioned in chapter 4 samples were thinned down to 100 m from the back side and 

polished for metal gate deposition. Sample t134 was selected for back gating because of 

its moderate carrier concentration of 3.61x1011 cm-2 at 4.2 K. This is an asymmetrically 

doped structure with a 20 nm quantum well and Al0.2In0.8Sb barrier layers. Back gate 

voltages varying from -20V to +20V were applied to the Hall bar resulting in a linear 

density change as shown in figure 5.4. 
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Figure 5.4 Electron densities as a function of back gate voltage for sample t134 
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Although the change in carrier density was small (~10%), the weak antilocalization 

signal changed significantly as shown in figure 5.5. The change in the location of the 

conductivity minima is empirical evidence of the change in spin-orbit coupling with the 

change in carrier density [5, 48].  Under the assumption that the Rashba spin-orbit term 

dominates in asymmetric structures compared to the Dresselhaus term, the HLN theory 

can be applied in order to extract spin-orbit parameters [58]. The fits confirm that the 

sample is in the diffusive transport regime since the phase coherence lengths ( l ) 

obtained from HLN fittings are a factor of three larger than the mean free path ( trl ), and 

the spin-orbit lengths ( sol ) are always greater than trl .  
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Figure 5.5 Weak antilocalization conductivity correction measured at different 

carrier densities for sample t134. The curves have been shifted vertically for clarity 
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Carrier Density, 
Ns (cm-2) 

Mobility 
 

(cm2/V.sec)

Transport 
length, trl  

(m) 

Spin-orbit 
length, sol  

(m) 

Phase breaking  
length, l  

 (m) 

3.43 x 1011 74000 0.51 0.59 2.00 

3.51 x 1011 76700 0.53 0.64 2.17 

3.61 x 1011 80000 0.56 0.66 2.24 

3.71 x 1011 83000 0.59 0.72 2.38 

3.78 x 1011 85000 0.61 0.73 2.51 

 
Table 5.3 Extracted length scales obtained from HLN fittings for different carrier 

densities  

The extracted spin-orbit lengths and times along with other important transport 

parameters are summarized in table 5.3. There is similar trend of variation on density for 

both l  and  sol . The phase breaking length change is due to the changes in both density 

and mobility while the change in spin orbit length is due to the change in the strength of 

spin-orbit coupling of the structure with the carrier density alone.  The values of  sol  at 

different densities are shown in figure 5.6. It is evident that sol  has a linear dependence 

versus the carrier density of the system. 

Using the parameters obtained from HLN fitting routines and zero field resistivity 

measurement values for the Rashba spin precession vector, R  can be calculated. In 

order to extract effective Rashba spin-orbit coupling constants we calculated the in-plane 

wave vector at the Fermi energy using the nonparabolic dispersion relation shown in 

equation 5.5 by putting FE E  [58]. Other relevant values were obtained from table 3.1 

in chapter 3. 
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Figure 5.6 Dependence of spin-orbit length for HLN fittings on the electron density 

of the quantum well   

 
The effective Rashba spin-orbit coupling constant   includes contributions from the  

built-in electric field across the quantum well as well as from the penetration of the 

electron wave function into the Al.xIn1-xSb barrier layers [6]. Experimentally extracted 

 values for different densities are shown in figure 5.7. A monotonic decrease in   with 

increasing carrier density was observed suggesting that the degree of structural inversion 

asymmetry decreases with an increase in density. For the limited gate voltage range we 
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have been able to change    from 3.29 X 10-12 eVm to 2.68 X 10-12 eVm which is a 23% 

change. 
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Figure 5.7 Behavior of   values extracted from HLN fittings on the carrier density  

 

 

5.4 Weak antilocalization of symmetric samples 

Samples from four different wafers were used to analyze spin-orbit effects of 

symmetrically-doped quantum well structures. Details of the sample structures including 

mobility and density at 4.2 K are listed in table 5.4. 
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Sample ID Al% Well Width (Å) 
Carrier Density (ns) 

at 4.2 K (cm-2) 
Mobility () 

at 4.2 K(cm2/V.Sce) 

S372 9 300 3.03 x 1011 190000 

S912 15 230 5.30 x 1011 80000 

S862 15 250 3. 39 x 1011 32000 

S901 15 250 4.45 x 1011 38000 

 
Table 5.4 Sample parameters for symmetrically doped InSb/AlInSb 

heterostructures 

 
For samples from wafers s372 and s912, HLN theory is not appropriate for the extraction 

of spin-orbit parameters because of the high mobility associated with them. Figures 5.8 

and 5.9 clearly indicate the incompatibility of HLN theory for these traces. 
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Figure 5.8 HLN fitting (solid curve) for s372 at 4.2K 



 51  

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
-0.4

-0.3

-0.2

-0.1

0.0

0.1

B
tr

 

(
B

)-
(

0)
 (

e2 /
h

)

B Field (T)

 
Figure 5.9 HLN fitting (solid curve) for s912 at 4.2 

 

Therefore fittings for S372 and must be based on a theory beyond the diffusive regime 

[16], however weak antilocalization signals obtained from sample S862 and S901 were 

well fit by the HLN model as shown in figure 5.10. 

For symmetrically doped samples, an estimate of Dresselhaus spin-orbit coupling 

constant can be calculated from characteristic magnetic field soH obtained from the fitting 

routine for different ratios of relaxation times 1

3


  where n  is defined as  

                                           1
1 cos

n

n W d  


                                                   5.6 

Here  W   is the probability that the electron wave vector changes direction by an angle 

  per unit time due to elastic scattering [5]. One can obtain equation 2.2 in chapter 2 by 

assigning 1n   in equation 5.6. 
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Figure 5.10 Conductivity corrections for s862 and s901 along with HLN fittings 

(black solid line) 

 
The extracted Dresselhaus spin-orbit coupling constant for different 1 3   ratios are 

shown in table 5.5. Despite the incompatibility of HLN fitting for samples s372 and s912, 

we include the fitting parameters to compare them with parameters from samples s862 

and s901. The ratio 1 3   was changed to examine the resulting change in the Dresselhaus 

spin-orbit coupling constant. By comparing it to the theoretically predicted value of 

3760 eVÅ   we can predict the type of scattering involved in the weak localization 

process [59].   
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Sample ID  410H T
   410soH T

1 3   3( )eVÅ  

B
allistic 

S372 0.12 0.57 

1 316 

2 447 

6 774 

B
allistic 

S912 0.44 1.94 

1 327 

2 470 

6 815 

D
iffusive 

S862 1.16 2.48 
1 588 

2 832 

D
iffusive 

S901 0.72 2.29 
2 608 

3 745 

 
 

Table 5.5 HLN fitting parameters along with extracted Dresselhaus spin-orbit 
constants for different 1 3   ratios 

 
Due to the existence of threading dislocations which run through the quantum well 

structure we expected to have large angle scattering (isotropic scattering) [5, 29]. For this 

type of scattering the probability  W   in equation 5.2 is independent of   and the ratio 

of  1 3   will be unity. In the case of small angle scattering, the ratio of 1 3   is 9.  

For samples S862 and S901, the    values extracted are in the range of 3745 832 eVÅ   

for a 1 3   ratio ranges from 2 to 3. This range of 1 3  is quite acceptable for our 

samples and the predicted range for   is in good agreement with the theoretical value of 

Dresselhaus spin-orbit coupling constant for InSb 3(760 )eVÅ . The   values extracted 
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from the fitting parameters obtained from samples s372 and s912 are in the range of 

3774 815 eVÅ  for values of the ratio of  1 3   equal to 6 which is unphysical for our 

samples. This fact further verifies the inadequacy of HLN theory for these samples which 

are in the ballistic regime.  

 

5.5 Conclusion 

In conclusion, we have observed weak antilocalization in InSb/AlxIn1-xSb quantum well 

structures. The linear temperature dependence of the phase breaking rate indicates that 

the electron-electron interaction is the dominant inelastic scattering mechanism for phase 

relaxation from 1K to 10K. Although we have been able to achieve only a small change 

(10%) in carrier density from the back gating, the effective Rashba term changed by 23% 

indicating Rashba spin-orbit coupling is dominant for asymmetrically doped samples. 

This effective Rashba spin-orbit coupling constant contains the contributions from both 

the built-in electric field across the quantum well as well as the penetration of the 

electron wave function into the Al.xIn1-xSb barrier layers. For samples in which isotropic 

scattering is dominant, the extracted Dresselhaus spin-orbit coupling constants are in 

good agreement with theoretically predicted results. For those systems in the ballistic 

regime, a theory beyond the diffusive limit is required. Fitting on data from these ballistic 

systems is a future effort that will require calculations with theorists.     
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Chapter 6 

Spin polarized magnitotransport in InSb quantum well structures 

 

6.1 Introduction 

Transverse electron focusing in a two dimensional electron system (2DES) was first 

reported about twenty years ago by Van Houten et al. [60]. Since then there has been 

considerable interest in electron focusing in different heterostructures and geometries in 

the ballistic electron transport regime [61,62,63].  Fabrication of different geometries 

consisting of both quantum point contacts and quantum dots were made possible by the 

existence of a long mean free path  ~ 40el m  of these 2DES. In these devices both the 

injector and collector can be tuned to emit and accept spin polarized electrons using an 

in-plane magnetic field [61]. This paved the way to produce and detect spin polarized 

currents without using ferromagnetic materials which is one of the goals of spintronics. In 

this chapter we discuss transverse magnetic focusing in the ballistic regime under the 

influence of the Rashba and Dresselhaus spin-orbit interactions.  

 

6.2 Basis of transverse magnetic focusing of electrons 

The transverse magnetic focusing devices discussed in this thesis consist of two narrow 

constrictions separated by a distance L which is smaller than the mean free path of the 

2DES. The schematic of a typical magnetic focusing device is shown in figure 6.1. The 

electron focusing originates from the classical cyclotron motion in a perpendicular 

magnetic field for electrons.  
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Figure 6.1 Schematic of the transverse electron focusing geometry, the black area 

represent trenches in the structure so that electrical contact is possible only through 

the constrictions 

In the presence of a perpendicular magnetic field, electrons injected from the emitter can 

be detected by the collector after zero or more reflections from the boundary between 

them. The electron flux at the collector reaches a maximum whenever the constriction 

separation L is equal to an integer multiple of the cyclotron diameter
2 f

c

k
d

eB




 , hence 

there is a maximum in the collector voltage whenever the applied perpendicular magnetic 

field , 1, 2,........focusB pB p    where:  

                                                        
2 f

focus

k
B

eL 


                                                   6.1 



 57  

where fk  is the Fermi wave vector and e is the electron charge. For a constant injector 

current, the voltage on the collector is proportional to the incident electron flux. This 

implies equidistant peaks in the magnetoresistance traces, these peaks vanish if one 

reverses the direction of the perpendicular magnetic field into the non-focusing 

configuration by reversing the applied perpendicular magnetic field [60]. 

 

6.3 Spin splitting due to spin-orbit interactions 

In systems possessing inversion symmetry, spin degeneracy exists due to the combination 

of spatial inversion symmetry    , ,   
 

E k E k  and time inversion asymmetry 

   , ,   
 

E k E k  which results in    , ,  
 

E k E k , however in the absence of 

inversion symmetry, the spin degeneracy is lifted generating two energy surfaces for 

spin-parallel and spin-anti parallel to the effective magnetic field [59].  

The energy dispersion due to bulk inversion asymmetry (BIA) for III-V 2DES in a 

quantum well grown in the  001  crystallographic direction is given by; 

                             
2 2 1

2 2 2
1 3 1 3*

4 sin 2
2 D D D D

k
E k

m


        



                            6.2 

where 2 2 2
x yk k k 


 and tan y

x

k
k  . The terms 1D and 3D are the linear and cubic 

Dresselhaus terms, we adopt the same notations used in section 1.2 in equation 6.2. The 

spin-split energy surfaces have four-fold symmetry as shown in figure 6.2. Electrons 

moving in the x direction have spin polarization in x direction and the same for the y 

direction, however for
3 5 7

, , ,
4 4 4 4

      the spin polarization is perpendicular to k 


, 
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therefore we cannot define a simple relationship between the quantization axis of the 

spins and wave vector k 


. 
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Figure 6.2 Fermi surfaces of spin sub bands due to the Dresselhaus spin-orbit 

interaction 

In the case of the structural inversion asymmetry (SIA), the Rashba spin splitting is given 

by; 

                                                     
2 2

1*2 R

k
E k

m  


                                                      6.3 

where 1R is the Rashba spn-orbit energy. Since 1R does not have a dependence on the 

polar angle , the splitting is isotropic in k  Figure 6.3 shows the energy dispersion 

relation of the spin split  bands along with the directions spins and effective Rashba 

magnetic fields.  
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Figure 6.3 Energy dispersion relations for spin sub bands due to Rashba spin-orbit 

interaction 

Unlike the Dresselhaus spin splitting, the spin quantization axis is always perpendicular 

to the wave vector k


 . If both the Rashba and Dresselhaus terms are present, the spin 

split energy contours become more complex, however for small k  
values, the 3k  terms 

in 1D and 3D  can be neglected, resulting 1D is a term linear in k  and 3 ~ 0D . 

This paves the way to isotropic spin splitting which is independent of the direction of k . 

In this limit, the combined effect has a simpler form for comparable Rashba and 

Dresselhaus strengths. Figure 6.4 (b) shows the two Fermi energy contours along with 

spin orientations for each of spin split bands for Dresselhaus spin splitting in small k  

limit. Figure 6.4 (c) illustrates the contribution from both terms with equal strengths. The 

interference between the two isotropic terms results in anisotropic energy contours [60].     
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Figure 6.4 Fermi energy contours and spin quantization directions for spin-split 

bands. (a) Rashba spin-orbit interaction; (b) Dresselhaus spin-orbit interaction; (c) 

Equal amplitudes of Rashba and Dresselhaus terms 

 

In the small k  
limit, the energy dispersion relation under the Rashba or Dresselhaus 

spin-orbit interaction for a 2DEG grown on  001  direction can be written as; 

                                                  
2 2

*2  

 

 k
E k k

m
                                                         6.4 

For the case of the Rashba spin-orbit interaction    and for Dresselhaus spin-orbit 

interaction 2
zk  . Figure 6.5 illustrates the energy dispersion for electrons with and 

without spin orbit effects. Rotation of the curves about the energy axis generates the 

energy surface in two-dimensions.  

For a given k  value there exist two states corresponding to parallel and anti parallel spin 

quantization with respect to effective spin-orbit field. At zero temperature all the states in 

the spin-split bands are filled up to the Fermi energy and have different k  values, k  
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and k . These two wave vectors can be related to the unperturbed wave vector fk  using a 

dimensionless parameter which characterized the differences in Fermi radii [64].  

                                   (1 ) (1 )f fk k k k                                                          6.5 

The dimensionless parameter  can be related to effective spin-orbit splitting parameter 

  using the unperturbed Fermi energy f  and the wave vector fk  by equation 6.6.  
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Figure 6.5 Energy dispersion relations for unperturbed bands (red dotted line) and 

spin spilt bands (green and blue solid lines) 

 

The Fermi velocity the two spin sub bands is given by  1
f

f

Ev k
   . Since the two 

energy contours have the same curvature, the Fermi velocities for the two bands are given 

by  *
f

f

k
v

m



 . 
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6.4 Transformation of cyclotron orbits from momentum space to real 

space 

Now that we have discovered that different spin projections in a system with strong spin-

orbit interaction results different k values, it is necessary understand the transformation 

between k-space and real space orbitals. 

In semi classical limit, the equation of motion of an electron wavepacket in momentum 

space (k-space) in an external magnetic field is given by; 

                                                =
d d

-e = -e
dt dt

  k r
v B B                                                 6.7 

From equation 6.7, it is evident that the motion of real space is closely related to that of 

momentum space. The projection of the real space motion onto a plane perpendicular to 

the external magnetic field is same momentum space trajectory with a 90 degree rotation 

and scaled by a factor eB . 
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Figure 6.6 (a) spin-split energy contours due to spin-orbit interaction linear in 
momentum; (b) Projection of k- space orbits onto real space  
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In magnetic focusing experiments the real space spin dependent orbits have to emit at the 

same location  0 0,x y  into the injector constriction opening at 0t  , additionally only 

those electrons with , 0y xk k k  will pass through the constriction. Figure 6.6 shows the 

effect of these boundary conditions to the spin dependant trajectories in real space. For 

0t   these trajectories evolved along their respective Fermi surfaces giving different 

spin-splitting at different polar angles. 

 

6.5 Spin polarized current focusing of InSb heterostructures  

Due to the existence of a strong spin-orbit interaction in Insb/AlxIn1-xSb heterostructures, 

charge carriers at the Fermi energy have different wave vectors ,k k   for spin parallel 

and anti-parallel to the effective spin-orbit field. Therefore in accordance with equation 

6.1 in the presence of a weak perpendicular magnetic field, spin polarized charge carriers 

injected from a QPC will have different cyclotron diameters [65], 

                                                      
2

c
focus

k
d

eB










                                                               6.8 

 These two trajectories can be selectively focused into the detector with the appropriate 

perpendicular field. Figure 6.7 shows SEM micrographs of magnetic focusing device 

FOC-23 which has a lithographically set constriction width 0.4w m  and constriction 

separation 0.3l m . 
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Figure 6.7 SEM micrographs for a typical electron focusing device FOC-23 

 

The electron focusing measurements were made in a 3He cryostat for temperatures 

ranging from 4.2K to 10K. Four terminal measurements were made by passing through a 

100 nA peak to peak AC current through the injector while measuring the voltage across 

the detector as a function of perpendicular magnetic field. The magnetoresistance traces 

were then generated by dividing the voltage across the detector by the applied AC current 

and plotting them against the perpendicular magnetic field. Figure 6.8 shows typical 

magnetoresistance traces obtained from the magnetic focusing device FOC-41. 

For this particular device, the constriction openings were lithographically set to 

0.3w m  with separation 0.3l m  from each other implying a center to center 

separation of 0.6L m . A closer look at the magnetoresistance data inside the encircled 

region on figure 6.8 reveals that peaks appear at multiples of 0.32focusB T   which is 

consistent with expected value for a carrier density of 3.3x1011 cm-2 and  center to center 

separation of 0.6m. As shown in figure 6.9 the first focusing peak is a doublet while the 

second focusing peak does not contain multiple peaks.  
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Figure 6.8 Transverse magnetic focusing data for Insb/AlxIn1-xSb heterostructures 

at 4.2K for device FOC41. In red trace focusing peaks appear in forward magnetic 

field direction. The blue trace was obtained by exchanging the injector and collector 

hence equivalent to magnetic focusing in reverse magnetic field direction  

 

The higher order peaks are hard to distinguish because they superimposed with the 

characteristic Shubnikov-de Hass oscillations of the 2DES. We believe the doublet 

structure is due the existence of two different Fermi wave vectors at the Fermi energy as 

mentioned in section 6.2. The single second focusing peak is due the spin dependent 
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focusing trajectories after the reflection from the boundary has been predicted to average 

out the special separation between different spins.   
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Figure 6.9 Nature of 1st and 2nd transverse magnetic focusing peaks for 

 InSb/AlxIn1-xSb heterostructures at 4.2K 

 

To isolate focusing peaks from universal conductance fluctuations, transverse magnetic 

focusing was performed at temperatures as high as 10K. The temperature independent 

and robust nature of peaks as shown in figure 6.10 confirms that the peaks are not due to 

universal conductance fluctuations.  
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Figure 6.10Temperature evolution of transverse magnetic focusing peaks for 

 InSb/AlxIn1-xSb heterostructures 

This device was fabricated from wafer S941 which is a symmetrically doped sample and 

hence we expect only the Dresselhaus spin-orbit interaction. The effective spin splitting 

parameter 2
zk   can be calculated from the peak splitting using the equation 6.9. 

                                            *4 focus focus

eL
B B

m
  

  


                                                      6.9 

Using 0.35focusB Tesla
  , 0.3focusB Tesla

  and 0.6L m , the extracted Dresselhaus 

spin-orbit coupling constant 35400 eVÅ  , which is a factor of 7 larger than the 

theoretically predicted value [59]. This calculation was done by neglecting the cubic 
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Dressulhaus term and assuming cyclotron effective mass is same as electron effective 

mass. These assumptions may have attributed to the discrepancy of extracted   value.    

 

6.6 Gate voltage dependence of current focusing peaks 

The trenches used to define constrictions also define in-plane gates to control constriction 

widths as shown in figure 6.1.  
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Figure 6.11 Gate leakage measurements for the constrictions for a typical current 

focusing device   

The in plane gates have fairly good voltage ranges as shown in figure 6.11. The injector 

gate has voltage range of -0.40 volts to +0.50 volts and for the detector it was -0.6 volts 

to +0.75 volts (leakage current, 0.25I nA ).   

Since the application of negative gate voltages to the constrictions only reduces the 

number of channels passing thought them, the focusing peaks must be independent of 

either injector or detector biasing. Figure 6.12 clearly indicates the robust nature of 

focusing peaks for different detector voltages for zero biased injector. 
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Figure 6.12 Robust nature of focusing peaks for different detector gate voltages. 

Traces have been shifter for clarity 

 

6.7. Spin filtering of current focusing devices 

In order to determine if the doublet is due to spin, we applied a parallel magnetic field to 

the sample to modify the energy contours by adding Zeeman energy.  

 In our experimental setup we only have a single superconducting coil to generate the 

magnetic field, hence had to tilt the sample in order to apply an in-plane magnetic fields 

while also providing the proper perpendicular magnetic field for electron focusing. The 

orientation of the magnetic fields with respect to the sample is shown in figure 6.13, the 

perpendicular and parallel magnetic field can be calculated by knowing the angle  . 
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Figure 6.13 Schematic of the sample tilter setup for fixed magnetic field 
  

The sample was mounted in a pivoting sample holder coupled by a Kevlar string to the 

linear displacement unit with Be-Cu spring providing restoring force. More detail about 

tilter assembly and calibration can be found in reference [67].  

Regardless of the tilt angle the first magnetic focusing peak occurs at same. But the 

doublet nature of the first focusing peak evolves to a single peak at tilt angle of 80 

degrees as shown in figure 6.14. At this angle in- plane magnetic field corresponding to 

0.31focusB  Tesla, was 1.56 Tesla. The Zeeman energy at 1.56B Tesla was 2.3 meV. 

We believe the evolution of the doublet structure to a singlet is due to the modification of 

energy surfaces by the Zeeman energy.  
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Figure 6.14 Evolution of the 1st focusing peak with different in-plane magnetic fields.  
 

 

6.8 Current focusing of asymmetrically doped samples 

Structures similar to the SEM micrographs in figure 6.7 were also fabricated for 

asymmetrically doped quantum wells from wafer S912 with a carrier density of 5.14x1011 

cm-2. Figure 6.15 indicates the magnetoresistance traces obtained for a device which has 

constriction openings 0.3w m  and edge to edge separation 0.3l m from one 

another implying a center to center separation 0.6L m . 
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Figure 6.15 Transverse magnetic focusing data for asymmetrically doped 

Insb/AlxIn1-xSb heterostructures (FOC-76) at 4.2K. In red trace focusing peaks 

appear in forward magnetic field direction. The blue trace is obtained by 

exchanging the injector and collector  

 
With calculated value of 0.27focusB Tesla   for this device, similar the symmetrically 

doped structure discussed in section 6.5, a closer look at the magnetoresistance data 

reveals a doublet first focusing peak around, 0.27focusB Tesla   see figure 6.16. 

However the second focusing peak was not detected on this device. Unlike the previous 

case we used CH4/H2/Ar based RIE recipe to fabricate this device which has a tendency 

to create rough surface morphologies due to deposition of non volatile hydrocarbon 
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compounds. The absence of the second focusing peak could be attributed to surface 

roughness of reflection plane.  
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Figure 6.16 Doublet structure of 1st transverse magnetic focusing peak for 

asymmetrically doped InSb/AlxIn1-xSb heterostructure 

 

Using 0.30focusB Tesla
  , 0.26focusB Tesla

 
 
and 0.6L m , the extracted Rashba spin-

orbit coupling constant 111.98 10 eVm   , during this calculation we neglect the 

contribution from the Dresselhaus contribution. 

Asymmetrically doped InSb/AlxIn1-xSb heterostructures have both Dresselhaus and 

Rashba spin-orbit interactions and the combination of these two contributions result in 

different Fermi contours depending on their relative strengths. The nature of the spin-split 
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Fermi contours under the influence of comparable amounts of Dresselhaus and Rashba 

spin-orbit coupling are shown in figure 6.17. 
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Figure 6.17 Fermi contours of spin-split bands under the influence of Dresselhaus 

and Rashba spin orbit interaction  

 
As mentioned in section 6.5, different amounts of spin separation at the detector end can 

be achieved by orienting the injector and detector constrictions with an angular separation 

of 90 and 135 degrees between them. Based on this, current focusing devices were 

fabricated to achieve different spin separation at the detector. Both 90 and 135 degree 

geometries were fabricated using wafers T134 and T145. Figure 6.18 show SEM 

micrographs of focusing devices fabricated using BCl3/Ar RIE on wafer T145.  
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 a  b a  b
 

Figure 6.18 SEM micrographs of (a) 90 degree (FOC-107); (b) 135 degree (FOC111) 

electron focusing device 

 
The magnetoresistance traces obtained for two 90 degree devices FOC 99 and FOC 100 

are shown in figure 6.19. The first device has constriction opening of 0.3w m  and 

0.3l m  from the center of the reflection surface to the edge of constriction, for the 

second device 0.4w m   and 0.3l m . For these two devices, we expect to have 

focusing magnetic field values of 0.26 Tesla and 0.24 Tesla respectively. 

On both devices there was no clear indication of focusing peaks at the expected 

perpendicular magnetic fields; however there were some prominent peaks present on the 

magnetoresistant traces, whereas for the non focusing configuration, no such peaks 

detected. We observed similar behavior on 135 degree focusing devices fabricated on 

wafer T134. 

We believe these peaks are related to combination of quantum interference and electron 

magnetic focusing. Further experiments have to be carried out in order to verify the 
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isolate magnetic focusing peaks in the magnetoresistance traces such as internal magnetic 

focusing of array of ballistic cavities [68]. 
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Figure 6.19 Transverse magnetic focusing data for asymmetrically doped 90 degree 

focusing device (a) . ; .w m l m  0 3 0 3 (FOC 99): (b) . ; .w m l m  0 4 0 3  at 

4.2K (FOC 100) 
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6.9 Conclusion 

Electron magnetic focusing was observed for both symmetrically and asymmetrically 

doped InSb/AlxIn1-xSb heterostructures. The doublet structure present on the first 

focusing peak is a clear indication of strong spin-orbit interaction persists in these 

systems. The ability of magnetic focusing devices to function as spin filters has been 

demonstrated, this property is quite useful in the area of spintronics since these devices 

can generate non equilibrium spin population without ferromagnetic contacts. In the 

systems which have comparable amounts of Rashba and Dresselhaus spin-orbit 

interactions the interference between the two results in anisotropy of the spin splitting. 

We have not been able to observe magnetic focusing on both 90 and 135 degree current 

focusing devices, to filter out focusing peaks from quantum interference peaks further 

experiments has to be conducted using multiple parallel magnetic focusing devices to 

smear out the interference effects. 
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Chapter 7 

Conclusions and future work 

 

7.1 Introduction 

Implementation of successful semiconductor spintronic device involves efficient spin 

injection to the active region of the device, manipulation of spin orientations in the active 

region and successful detection at the detector end. In semiconductors, the manipulation 

of spin can be achieved in terms of spin-orbit interaction. Datta and Das have proposed 

spin field effect transistor (SFET) [69] which control the spin precession in the active 

region by applying different voltages. It is important to understand the strength of spin-

orbit coupling in order to make functional spintronic devices from semiconductors. This 

thesis reports observation of weak antilocalization on InSb/AlxIn1-xSb for the first time 

and present estimations of the strength of spin-orbit coupling which arises from different 

asymmetries. 

 

7.2 Conclusions    

We have experimentally observed weak antilocalization in both diffusive and ballistic 

regimes. Theoretical data modeling performed for diffusive samples based on HLN 

theory and successfully obtained both Rashba and Dressulhaus spin orbit coupling 

parameters. Although we had a limited range of varying the density of electrons in 2DEG, 

for 10% change in density we observed a 23% change in Rashba coefficient which makes 

InSb a promising candidate for spintronic applications. There is about 20% difference 

between extracted and theoretical Dressuhaus constant. 
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We observed spatial separation of spin dependent trajectories from transverse magnetic 

focusing devices. The calculated spin-orbit parameters are very large compared to the 

values we extracted from weak antilocalization measurements. 

 

7.3 Further work 

In this thesis we only performed the data fitting for weak antilocalization in diffusive 

regime. We are in collaboration with Prof. L. E. Golub for the data modeling in ballistic 

regimes. The lack of credible top gating greatly hinders our experiments in tuning the 

Rashba spin-orbit parameter. A strong effort must be made to make top gates for 

InS/AlxIn1-xSb quantum wells.  

In order to filter out focusing peaks in transverse magnetic focusing experiments we need 

to implement new device geometries consisting with multiple focusing structures in order 

to average quantum interference effects.   
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APPENDIX A 

 

AZ5214 E Image reversal photolithography procedure 

 

1. Clean the samples with acetone, methanol and isopropanol and blow dry with 

nitrogen. 

2. Dehydration-bake at 150°C for 10 minutes. 

3. Cool down the samples for 2 minutes on top an aluminum block. 

4. Spin on AZ5214E resist at 4000 rpm for 40 seconds. 

5. Pre-bake the samples at 95°C for 60 seconds. 

6. Align and expose the pattern for 6.5 seconds (Karl-Suss MJB3 Mask Aligner). 

7. Perform an image reversal-bake at 120°C for 90 seconds. 

8. Cool down the samples for 2 minutes on top of an aluminum block. 

9. Flood exposure for 60 seconds. 

10. Develop pattern with MIF319 developer for 60 seconds. 

11. De-ionized water rinse and blow dry. 

12. After the desired fabrication process, the resist can be removed with an ultrasonic 

bath of 1165 remover (2-5 minutes). 

13. De-ionized water rinse and blow dry. 
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APPENDIX B 

 

UV113 e-beam lithography procedure 

 

1. Clean the samples with acetone, methanol and isopropanol and blow dry with 

nitrogen. 

2. Dehydration-bake at 150°C for 10 minutes. 

3. Cool down the samples for 2 minutes on top of an aluminum block. 

4. Spin on UV113 resist at 5000 rpm for 50 seconds. 

5. Pre-bake the samples at 150°C for 60 seconds. 

6. Pattern the samples with a 30KV e-beam at an optimum dose of 28 C/cm2 (For InSb 

dose optimization was performed on a RAITH 150 e-beam tool).  

7. Post-exposure bake at 130°C for 90 seconds. 

8. Develop patterns with DC 265 developer solution for 60 seconds. 

9. De-ionized water rinse and blow dry. 

10. After the desired fabrication process, the resist can be removed with an ultrasonic 

bath of 1165 remover (2-5 minutes). 

11. De-ionized water rinse and blow dry. 
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APPENDIX C 

 

Reactive ion etching recipes for InSb 

 

 Optimized CH4-H2-Ar Recipe. 

o CH4 flow rate = 3 sccm. 

o H2 flow rate = 19 sccm. 

o Ar flow rate = 8 sccm. 

o Chamber pressure = 10 mTorr. 

o ICP power = 75 W. 

o RF power = 75 W. 

o Etch rate = 100 Å/min. 

 

 Optimized BCl3-Ar Recipe. 

o BCl3 flow rate = 3 sccm 

o Ar flow rate = 12 sccm. 

o Chamber pressure = 3 mTorr. 

o ICP power = 50 W. 

o RF power = 100 W. 

o Etch rate = 700 Å/min. 
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APPENDIX D 

 

Wire bonding parameters for Indium contacts on InSb 

 

 Parameter Bond-1 (on PLCC) Bond-2 (on In contact pad) 

Search 1.44 1.44 

Power 1.91 2.97 

Time 4.9 3.4 

Force 2.0 2.8 

 

Parameter Optimized setting 

Tail 1.4 

Tear 4.0 

Step 0 

Kink 0 

Reverse 0 

Y-speed 0 

Loop 2.5 

 


