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Abstract

The estimation of weather parameters such as attenuation and rainfall rates from

weather radar data has been based mainly on deterministic regression models. The

applications of a Bayesian approach to weather parameters classification and esti-

mation have also been limited by a single Gaussian assumption. A computational

intelligence model, i.e., Gaussian mixture model (GMM), is introduced in this work

to characterize the prior distribution of weather parameters and the corresponding

radar observation variables. Since a GMM would converge to any given distribution

as the number of mixture increases, it provides an efficient way to accommodate ex-

tra information from antenna and frequency diversities and an ‘omnipotent’ solution

to extract and model the ‘knowledge’ from training data. Hydrometeor classifica-

tion and weather parameters estimation through a Bayesian approach are also made

possible by the precisely represented prior distribution. A linear Bayesian estimator

based on GMM, namely the Gaussian Mixture Parameter Estimator (GMPE), is then

developed and tested in applications such as drop size distribution (DSD) retrieval,

rainfall rate estimation and attenuation correction. The advantages of GMPE in-

clude 1) it is a ‘best’ estimator in terms of minimum-variance, unbiased performance;

2) it can easily include/exclude different radar observation variables and remains a

‘best’ estimator; 3) it provides a general framework that is applicable to different

radar-meteorological applications. GMPE is further extended to explore the spatial

relations with a Kalman Filter structure. Applications of the Kalman filter GMPE

to rainfall rate estimation at X-band are analyzed and discussed.
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Chapter 1

Introduction

1.1 Introduction

Radar, which is short for Radio Detection And Ranging, is a term for devices that

detect, track and locate targets of interests by transmitting electromagnetic (EM)

waves and analyzing the echo wavse scattered by different targets. Early radars were

mainly used by military to monitor aircrafts and missiles. Usage of modern radars

have been extended to civilian applications such as navigation and collision avoidance

radars for airplanes, air traffic monitoring radars for airports and weather monitoring

radars.

The first meteorological application of radar to observe the atmosphere was made

by Ian C. Browne and Peter Barratt in England a half century ago where an inco-

herent pulsed-Doppler radar was used (Doviak and Zrnić 1993). After the pioneering

attempt, various weather radars were built and employed in different meteorological

applications (Atlas 1990).

Due to its ability to cover a large area, Doppler weather radars have been an im-

portant tool for severe weather monitoring and quantitative precipitation estimation

(QPE). Many phenomenological models that link the weather radar observations and

underlying weather parameters such as drop size distribution (DSD), rainfall rate

and hydrometeor attenuations, have been developed and used extensively in practical
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operations. Such models are mainly deterministic and derived from curve fitting or

empirical interpretations. For example, a power law relation (PLR) between radar

reflectivity factor Z and rainfall rate R, such as Z = 300R1.4 (Doviak and Zrnić 1993)

or Z = 250R1.2 (Rosenfeld et al. 1993), has been implemented mainly in conventional

QPE approaches. A similar situation can be found in rain attenuation correction,

where a PLR between Z and specific power attenuation A is widely used. A com-

mon source of error for those methods is that PLR coefficients are often customized

to particular longer-term climatology or seasonal/regional precipitation regimes and

therefore are not universally applicable (e.g., Bringi et al. 2004; Cifelli et al. 2011;

Fulton et al. 1998; Ryzhkov et al. 2005a; Wang and Chandrasekar 2010). Space-time

variability in the DSD is believed to contribute the most to such apparent diversity

in power law coefficients (Lee and Zawadzki 2005).

The advancement of weather radar sensors with polarization and frequency diver-

sity has greatly increased the incorporations of physical models. Weather radars with

dual polarization capability provide additional insights into the precipitation medium

and can help resolve some uncertainties from DSD variability and additional sources

(Seliga and Bringi 1976). For example, the dual-polarized radar measurements such as

differential reflectivity (Zdr) and specific differential phase (Kdp) are highly sensitive

to microphysical parameters including the size, shape and orientation of hydrometeor

(e.g., Hogan 2007; Cao et al. 2010; Marzano et al. 2010). Dual-frequency operation

also provides additional insights into the evolution phases of hydrometeors. New

algorithms based on advanced and diversified measurements have been proposed in

many studies (e.g., Haddad et al. 2006; Rose and Chandrasekar 2006). Algorithms

that utilize polarimetric radar measurements (PRM) show significant improvement

over traditional R(Z) relations and lessened sensitivity to DSD variability and partial

attenuation in rain (e.g., Bringi et al. 2004; Ryzhkov et al. 2005a).
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Most of the polarimetric weather parameter estimators are still deterministic

PRLs, where Zh, Zdr and Kdp are used in different combinations or the most appro-

priate estimator is selected for a given set of PRM. Deterministic estimators usually

fail to account for the fact that microphysics vary in space and time even within

the same precipitation regime, leading to estimates that are less than optimal. For

handling uncertainties in observation conditions and improving estimation accuracies,

Bringi et al. (2004) derived a new R(Z) where PLR coefficients can vary in space and

time. Hogan (2007) presented a spatially variational method where coefficients in

R(Z) are iteratively refined. Vulpiani et al. (2005) developed a constrained iterative

technique for dual-polarization radar correction of rain path attenuation based on a

neural network. Some initial applications of Bayesian approach (e.g., Hogan 2007;

Marzano et al. 2008; Cao et al. 2010) have started to appear, although they are still

limited to simple Gaussian assumptions. For example, in Cao et al. (2010) only Zh

and Zdr are used due to the assumption of single Gaussian distribution of the joint

distribution of Zh and Zdr given DSD parameters.

In this dissertation study, a Gaussian mixture model (GMM) is introduced to

characterize the prior distribution of weather parameters and the corresponding radar

observation variables. Ensured by the convergence of the GMM to any specific dis-

tribution as the number of mixtures increase, microphysics variation in space and

time can be learned and embedded in the model. The convergence capability of

the GMM also provides a general framework to accommodate extra information not

only from dual-polarization diversities, but also from other diversities such as mul-

tiple frequencies and multiple observation sources, for instance, measurements from

different radars or measurements from radar and satellite-based microwave sensors.

Statistically optimized hydrometeor classification and weather parameters estimation

through a Bayesian approach are made possible by the precisely represented prior

distribution.
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Figure 1.1: Structure of this study.

A Bayesian hydrometeor classifier is constructed based on GMM and tested using

simulated PRM from numerical weather prediction (NWP) model in this study. Com-

pared with the fuzzy logic approach (Marzano et al. 2007), where the critical step is

to design membership function for each class, the crucial step for a Bayesian classifier

is to model the a-posteriori probability density function (PDF) for each class, which

can be computed from GMM-based a-prior PDF. The GMM-based Bayesian classifier

has several advantages: 1) Cross correlations among different dimensions/variables

can be properly modeled; 2) PDF of the occurrence of each hydrometeor class can

also be precisely approximated by GMM; 3) The Classification result is statistically

optimal.

Based on the GMM and Bayesian estimation method (Lewis et al. 2006, Chap-

ter. 16), a linear Bayesian estimator for weather parameter estimation, namely the

Gaussian Mixture Parameter Estimator (GMPE), is developed and applied to appli-

cations such as DSD retrieval, rainfall rate estimation and attenuation correction. As

the detailed discussions in the following sections will point out, GMPE also has sev-

eral advantages over conventional PLR approaches and other Bayesian approaches:

GMPE is a best estimator in terms of minimum-variance and unbiased performance;

GMPE is a flexible approach where different radar observation variables can be in-

cluded/excluded from inputs and remains a best estimator; GMPE is applicable to
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different radar-meteorological applications and estimation of different parameters can

be done at the same time.

GMPE is further extended to explore spatial relations with a sequential Kalman

Filter structure. The Kalman filter GMPE is configured to take into account the path-

integrated attenuation effects. It is an iterative estimator that performs estimation

from the first range bin until the last range bin of a radar range beam. While Kalman

filter GMPE enjoys the benefits of optimized estimation, the number of mixtures

needed in the GMM increases dramatically from one radar bin to the next. The

major challenge in using Kalman filter GMPE efficiently is keeping the number of

mixtures as small as possible without losing significant information. Two different

types of mixture reduction algorithms are discussed. Applications of the Kalman

filter GMPE to path-integrated attenuation correction and rainfall rate estimation at

X-band are analyzed.

1.2 Organization of the Dissertation

This study is organized as follows:

• Chapter 2 describes basic concepts of weather radar systems and dual-polarization

measurements. The emphasis is placed on definitions of dual-polarization vari-

ables and how to calculate them from dual-polarization measurements.

• Chapter 3 introduces single cell Monte-Carlo simulation and the physical models

used in the simulation. Different DSD models and DSD-related hydrometeor

variables are described, followed by drop shape models and melting models of

different hydrometeors. Particle Scattering theories including Rayleigh, Mie

and T-Matrix are then discussed, followed by simulations of radar variables in

S-, C- and X-band. At the end of this chapter, the single cell simulation is
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extended to work with NWP model outputs, where the simulated radar scans

are presented.

• In Chapter 4, the Gaussian mixture model is introduced and training GMMs

using Expectation-Maximization algorithm is emphasized. At the end of this

chapter, a Bayesian hydrometeor classifier is constructed based on GMM and

tested using simulated PRMs from numerical weather prediction (NWP) model

outputs.

• In Chapter 5, a linear Bayesian estimator (GMPE) is formulated and derived

from prior distribution characterized by the GMM. Applications of GMPE to

DSD retrieval, rainfall rate estimation and attenuation correction are demon-

strated. Validation of GMPE is achieved by comparing the performance of

GMPE and other existing approaches from both simulations and the Joint Po-

larization Experiment (JPOLE) data sets.

• In Chapter 6, GMPE is further extended to a Kalman filter structure. Theoret-

ical derivation of the algorithm is demonstrated. Methods for mixture number

reduction are discussed. Applications of the Kalman filter GMPE to rainfall

rate estimation at X-band are presented at an the end of this chapter.

• Chapter 7 summarizes works in this study and outlines future work.
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Chapter 2

Weather Radar Systems and Measurements

2.1 Introduction to Weather Radar Systems

2.1.1 Transmit and Receive Waveform

Most weather radars are coherent and pulsed-modulated Doppler radars which trans-

mit a series of short-duration pulses that are spaced at the pulse repetition time

(PRT) Ts interval. Each pulse is identical and has an amplitude of At and duration

τ as given in the following equation.

Vt(t) = Atexp[j2πft+ jψt]U(t), (2.1)

where f is the frequency of radar waveform, ψt is a constant phase shift from the

waveform generator and U(t) is defined as

U(t) =


1 0 ≤ t ≤ τ ,

0 otherwise.

(2.2)

Note that, the pulsed radar waveform is usually generated at baseband then modu-

lated to the radio frequency. A list of radio frequencies that are commonly used by

weather radars is shown in Table 2.1. Additionally, the peak power of each pulse is

proportional to A2
t . Since a radar is actively transmitting a pulse over τ and remains
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inactive to receive any echo signals over Ts−τ , the duty cycle of a radar’s transmitter

is defined as τ/Ts and average power of each power is A2
t τ/Ts.

Table 2.1: Radar Frequencies and Wavelengths

Band Frequencies Wavelengths

L 1-2 GHz 30-15 cm

S 2-4 GHz 15-7.5 cm

C 4-8 GHz 7.5-3.75 cm

X 8-12 GHz 3.75-2.5 cm

Ku 12-18 GHz 2.5-1.67 cm

K 18-27 GHz 1.67-1.11 cm

Ka 27-40 GHz 1.11-0.75 cm

If there is a point scatterer at range r, the voltage of the echo signal Vr(t) received

by the radar is proportional to the transmitted waveform and can be written as

Vr(t, r) = Arexp[j2πf(t− 2r

c
) + jψt + jψs]U(t− 2r

c
), (2.3)

where c is the speed of light, ψs is the phase shift produced by the scatterer and 2r

is the total path traveled by the incident and scattered electromagnetic wave. If the

received waveform is down converted to baseband, the phase term of the received

waveform becomes

ψe = −4πr

λ
+ ψt + ψs. (2.4)

As can be seen in Eq. (2.4), ψe is time independent if the scatterer is stationary. If

the scatterer is moving, ψe is dependent on time. The time rate of phase change,

dψe
dt

= −4π

λ

dr

dt
= −4π

λ
vr = ωd, (2.5)

is the Doppler shift in [rad s−1]. From ωd = 2πfd, Doppler frequency fd = −2vr/λ. If

the scatterer is moving toward the radar (vr is negative), frequency of the echo signal

is higher than that of the transmitted signal (fd is positive). If frequency of the echo
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signal is lower than that of the transmitted signal, the scatterer is moving away from

the radar.

2.1.2 Weather Radar Measurements

Doppler radars often output both the in-phase component I(t) and the quadrature

component Q(t) of the echo signal Vr(t) for better detection of Doppler frequency

shift. From Eq. (2.3),

I(t) =
|Ar|√

2
U(t− 2r

c
)cos[

4πr

λ
− jψt − jψs], (2.6a)

Q(t) =
−|Ar|√

2
U(t− 2r

c
)sin[

4πr

λ
− jψt − jψs]. (2.6b)

I(t) and Q(t) are sampled first at sample time t = (m−1)τs and then at t = (n−1)Ts,

where range time τs is the time delay between any transmitted pulse and its echo.

The samples are labeled as I(mτs, nTs) and Q(mτs, nTs) and grouped into a two-

dimensional matrix with two indexes: the range index m whose sample interval is

cτs/2 and the time index n whose sample interval is Ts. The range index is often

dropped and the notation becomes I(nTs) and Q(nTs) assuming they are sampled at

every range gate. Therefore, the echo voltage can be constructed from

Vr(nTs) = I(nTs) + jQ(nTs). (2.7)

If the unbiased estimate of the autocorrelation function (ACF) of Vr(nTs) is defined

as

R̂(kTs) =


1

N − |k|

N−|k|−1∑
n=0

V ∗r (n)Vr(n+ k) |k| ≤ N − 1,

0 otherwise

(2.8)

the power estimate can be obtained from the ACF at lag 0 as

Ŝ = ˆR(0)− N̂ . (2.9)

Note that, in Eq. (2.9), the estimate of noise power is required. To avoid the zero lag

ACF with noise contamination, the power estimate may be obtained from the ACF
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at lag 1, i.e. Ŝ = R̂(Ts), though the estimate would be lower than the actually value.

The Mean velocity can be also calculated from ACF at lag 1,

v̂r = −
(

λ

4πTs

)
arg[R̂(Ts)]. (2.10)

Eq. (2.10) is also known as the pulse pair processor. Mean velocity may be obtained

from other methods related to the power spectrum S(f), which is defined as the

Fourier transform of the ACF (Doviak and Zrnić 1993).

2.1.3 Sampling and Aliasing Effects

From the sampling strategy that was described in section 2.1.2, range resolution of

the radar is given by

∆r =
cτs
2

(2.11)

and the maximum unambiguous range can be computed from

Ru =
cTs
2
. (2.12)

If the true range of a target is r and r > Ru, the estimated range of the target from

the radar is modRu(r), which means the range of targets located outside of Ru will

be always estimated to fall within Ru. For example, if the unambiguous range for a

radar is 150 km and a target located at 400 km, the estimated range for the target is

100 km (third trip echo).

Similarly, from the Shannon sampling theorem, the maximum unambiguous ab-

solute Doppler frequency |fD| =
1

2Ts
. According to Eq. (2.5),

|vr| ≤ va =
λ

4Ts
, (2.13)

where va is called the aliasing velocity. When |vr| ≥ va, aliasing occurs and the

estimated vr will always fall within [−va, va]. Combine Eq. (2.12) and Eq. (2.13),

the Doppler dilemma can be shown in Eq. (2.14), which implies that the maximum
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unambiguous range and Doppler frequency cannot be improved at the same time.

When the maximum Doppler frequency is increased, Ru will decrease. The opposite

is also true when Ru is decreased.

Ru × |fD| ≤
c

4
(2.14)

2.1.4 Weather Radar Equation

The radar range equation is a basic equation that describes the radar environment

and connects the power transmitted by radar, power intercepted and scattered by

scatterers and power received by radar. For a single point target at range r with

radar cross section σb(D) and a radar with transmit antenna gain Gt and effective

aperture Ae, the range equation can be expressed as (Skolnik 2001)

Pr =
PtGt

4πr2l
× σb(D)

4πr2l
× Ae, (2.15)

where Pr is the received signal power, Pt is the transmitted power and l is the prop-

agation loss. In the right hand side of Eq. (2.15), the first term describes the power

density at the target and the second term describes the power density back at the

radar which depends on the target characteristics. The third term describes how

much power is captured by the radar antenna. For weather radar observations, there

are usually large number of hydrometeors/scatterers in the radar resolution volume.

Eq. (2.15) is further then written by Doviak and Zrnić (1993) as

P̄r ≈
PtGt

4πr2l
× η∆V

4πr2l
× Grλ

4π
, (2.16)

where P̄r is the average received power, η is the average radar cross section per unit

volume given in Eq. (2.17) and ∆V is the radar resolution volume. Note that, effective

aperture Ae has been replaced with the general value
Grλ

4π
, where Gr is the receive

antenna gain and λ is the wavelength.

η =

∫ ∞
0

σb(D)N(D)dD (2.17)
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In Eq. (2.17), N(D) is the drop size distribution of hydrometeors. Detailed descrip-

tion of different DSD models is given in section 3.1. If radar resolution volume is

approximated by the volume of a cylinder, ∆V =
cτπr2θ2

1

8
with the one-way half-

power beamwidth θ1, Eq. (2.16) can be further simplified to a standard form (Le

2009).

P̄r ≈
Ptλ

2GtGr

(4π)3r2l2
η
cτπθ2

1

8
(2.18)

Eq. (2.18) can be considered as the weather radar equation for distributed targets

(Doviak and Zrnić 1993). It is worth mentioning that η in Eq. (2.17) is called re-

flectivity and it is often related to a term that has more meteorological significance,

which is reflectivity factor Z as given by

η =
π5

λ4
|Kw|2Z, (2.19)

where Kw is the dielectric factor of water. Kw = (εw − 1)/(εw + 2) and εw is the

dielectric constant of water. The unit of Z is [mm6 m−3] but it is usually transferred

to dBZ [10log10(mm6 m−3)] for a smaller dynamic range. Eq. (2.19) is called the

Rayleigh approximation which is valid when diameters of hydrometeors are small

compared to radar wavelengths (Doviak and Zrnić 1993).

2.2 Polarimetric Radar Measurements

Natural hydrometeors have different shapes rather that simple spheres which lead to

different wave scattering properties at orthogonal polarizations. Weather radars with

dual-polarization capability not only provide power measurement at horizontal (H)

and vertical (V) polarizations but also other measurements such as phase difference

between two polarizations and correlations between two polarizations. With the ad-

ditional insights into the precipitation medium, dual-polarization measurements can

help resolve some uncertainties from DSD variability and additional sources (Seliga

and Bringi 1976). Operational WSR-88D radars are being considered to be updated
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to employ simultaneous transmission of H and V polarized waves (Doviak et al. 2000).

This section addresses the commonly used polarimetric radar variables, including re-

flectivity factor (Zh,v), differential reflectivity (Zdr), specific differential phase (Kdp)

and correlation coefficient (ρhv).

Assuming Xh(nTs) and Xv(nTs) are well-calibrated timeseries measurements from

H polarization and V polarization, similar to Eq. (2.8), the estimates of autocorrela-

tion function and cross correlation function of H and V channel are define as

Ĉh,v(kTs) =
1

N − |k|

N−|k|−1∑
n=0

X∗h,v(n)Xh,v(n+ k), (2.20a)

Ĉhv(kTs) =
1

N − |k|

N−|k|−1∑
n=0

X∗h(n)Xv(n+ k). (2.20b)

Dual polarization variables can be obtained using either or both Eq. (2.20a) and

Eq. (2.20b). Definitions of the variables and how to calculate them from timeseries

data are introduced as follows:

• Reflectivity factor

As shown in Eq. (2.19), reflectivity factor is associated to reflectivity and radar

wavelength. Reflectivity factor is often called reflectivity for convenience. Re-

flectivity factors for horizontal polarization, Zh, and vertical polarization, Zv,

are defined as (Bringi and Chandrasekar 2001)

Zh,v =
4λ4

π4|Kw|2

∫
|fhh,vv(π,D)|2N(D)dD, (2.21)

where fhh(π,D) and fvv(π,D) are complex scattering amplitudes of a particle

with equivolume diameter D at horizontal and vertical directions, respectively. π

refers to the angle between incident wave and scattering wave. 0 means forward

scattering and π means backscattering. In this study, reflectivity factor in [mm6

m−3] is denoted as Zh,v assuming unit of ZH,V is dBZ. As shown in Eq. (2.21),

the integral over drop size distribution transfers point scattering properties of

each particle (fhh,vv) to the average scattering properties of all particles (Zh,v),
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given a distribution within the volume (N(D)). It also suggests that Zh,v are

sensitive to the number and size of hydrometeors which are characterized by

DSD. Under Rayleigh scattering assumption (Bringi and Chandrasekar 2001),

reflectivity factor can be approximated by the 6th DSD moment (Eq. (3.9)).

Estimates of Zh,v can be obtained from

Ẑh,v = Ĉh,v(0) =
1

N

N−1∑
n=0

|Xh,v(n)|2. (2.22)

The typical variance of the measurement error/noise of ZH and ZV may be

around 1 dB but it is different for different radar systems (Bringi and Chan-

drasekar 2001).

• Differential reflectivity

Differential reflectivity is defined as the ratio between Zh and Zv as shown in

Eq. (2.23a).

Zdr =
Zh
Zv
, (2.23a)

ZDR = ZH − ZV . (2.23b)

Differential reflectivity measures the backscattering difference between H and V

directions, therefore, it is sensitive to the shape and canting angle (Bringi and

Chandrasekar 2001) of hydrometeors within the radar resolution volume. Since

different hydrometeors have different shapes and shows different canting angle

behavior, differential reflectivity helps to distinguish them from each other as

shown in some hydrometeors classification studies (e.g., Ryzhkov et al. 2005b;

Marzano et al. 2008). Differential reflectivity can also help to distinguish inten-

sity of rains due to the fact that heavy rains have more large raindrops than

light rains where there are mainly small raindrops and large raindrops are more

oblate than small raindrops which are close to a sphere. Differential reflectivity

is also very sensitive to measurement noise since value of differential reflectivity
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is mainly within 5 dB which is relatively small compared to the variance of the

measurement error of ZH and ZV .

Estimate of Zdr can be obtained using Ẑh and Ẑh from Eq. (2.22).

Ẑdr =
Ẑh

Ẑv
. (2.24)

The typical variance of the measured ZDR is around 0.3 dB (Bringi and Chan-

drasekar 2001) but it depends on different radar systems.

• Specific differential phase

Specific differential phase is defined as the rate of change in one-way phase

difference between H and V polarizations along a propagation path. It is given

by

Kdp = 10−3 180λ

π

∫
<[fhh(0, D)− fvv(0, D)]N(D)dD, (2.25)

where fhh(0, D) and fvv(0, D) are the complex forward scattering amplitudes

of a particle with equivolume diameter D at horizontal and vertical directions,

respectively. The unit of Kdp is [deg km−1] in Eq. (2.25). Kdp is also sensitive

to shape and canting angle of hydrometeors within the radar resolution volume.

Since propagation phase is independent of attenuation and calibration effects,

Kdp plays an important role in correcting attenuation for power measurements

and precipitation estimation.

Estimation of Kdp cannot be obtained directly from time series data. However

it can be calculated from the range derivative of differential phase (φdp) which

is the accumulated phase difference between H and V polarizations along a

propagation path. The estimate of φdp can be obtained by

φ̂dp =
1

2
arg[C∗h(1)Cv(1)], (2.26)

and the estimate of Kdp can be computed from

K̂dp(rm) =
φ̂dp(rm+1)− φ̂dp(rm)

rm+1 − rm
, (2.27)
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where rm and rm+1 are the mth and (m+1)th range bin. It is worth mentioning

that effects of backscattering differential phase δhv (defined in Eq. (2.28b)) has

to be eliminated by an effective iterative filter from φ̂dp before estimating Kdp.

It is usually done by averaging phase measurements over multiple range gates

as suggested by Ryzhkov et al. (2005a). Note that, in this dissertation study,

specific differential phase is denoted as both Kdp and KDP . They are all in [deg

km−1].

• Correlation coefficient

Correlation coefficient is defined as the correlation between backscattering sig-

nals at H and V polarizations. It is computed from

ρhv =

∫
f ∗hh(π,D)fvv(π,D)N(D)dD√∫

|fhh(π,D)|2N(D)dD
√∫
|fvv(π,D)|2N(D)dD

(2.28a)

= |ρhv|ejδhv . (2.28b)

Correlation coefficient is sensitive to objects that have irregular shapes. Rain-

drops have high ρhv values that are close to 1 since the shape of raindrops are

close to spherical. Hail and snow normally have a lower ρhv than raindrops due

to their irregular shapes. Mixed phase hydrometeors and melting ice particles

also have relatively low ρhv. Value of ρhv is a common indicator to separate

meteorological radar returns from non-meteorological ones, since ρhv of meteo-

rological returns are usually above 0.75.

The estimate of ρhv can be obtained from

ρ̂hv =
|Ĉhv(0)|√

|Ĉh(0)|
√
|Ĉv(0)|

=
|Ĉhv(0)|√
ẐhẐv

. (2.29)

The dual-pol variables previously introduced can be directly estimated from radar

measurements. There are other important variables that cannot be obtained directly

from measurements but are frequently applied to represent attenuation in the pre-

cipitation medium. Those variables are specific attenuation at H and V polarization
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(Ah,v) and specific differential attenuation Adp. Definitions of those variables are

shown in the followings:

• Specific attenuation

Specific attenuation is defined as the rate of change in attenuation along a prop-

agation path. It is associated with the imagine part of the forward scattering

amplitudes.

Ah,v = 8.686× 10−3λ

∫
=[fhh,vv(0, D)]N(D)dD. (2.30)

• Specific differential attenuation Specific differential attenuation is defined as the

difference between specific attenuation at H and V polarizations.

Ah,v = 8.686× 10−3λ

∫
=[fhh(0, D)− fvv(0, D)]N(D)dD (2.31a)

= Ah − Av. (2.31b)

The unit of Ah, Av and Adp are all [dB km−1].
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Chapter 3

Monte-Carlo Simulation and Physical Models

Algorithms that use polarimetric radar measurements can be developed either through

simulations or real radar measurements.

Development of intelligent processing algorithms based on real radar measure-

ments faces some issues. 1) Real measurements are not ‘clean’ data. Measurements

contain noise and other radar calibration errors. Also, measurements are often con-

taminated by attenuation. And there are usually more than one hydrometeor species.

2)Real measurements are usually lack of ground truths. It is hard to relate real mea-

surements to the underlying microphysics parameters of interests. Algorithms devel-

oped from measurements are usually optimized for specific radar and regions but less

suitable for others since radars may have different calibration errors and noise levels,

and different regions have different climatologies.

On the other hand, data from simulations are ‘clean’ data without noise or other

contaminations. Scenarios with different numbers, sizes and types of hydrometeors

can be simulated. More importantly, ground truths are precisely known. Algorithms

developed from simulations are more general and less sensitive to measurement error,

but they depend on different assumptions used in the simulation. Due to the natural

variability of hydrometeor size, shape, canting angle and terminal velocity, there

is no ‘perfect’ deterministic model to precisely describe all the polarimetric radar

measurements.
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To avoid unreliable assumptions or losing generality, many variables including

hydrometeor shape, canting angle and drop size distribution are allowed to have

uncertainties (randomness) in this study. Monte-Carlo simulation, which provides

statistical samplings of a complex system, is an efficient approach to incorporate all

the random variables and extract knowledge from those variables (e.g., Metropolis

and Ulam 1949; MacKeown 1997; Robert and Casella 2004; Rubinstein and Kroese

2007). Different from other simulation techniques that usually output mean value

or ensemble average value, each realization from Monte-Carlo simulation is a specific

sample given certain input parameters. These outputs will better embody the vari-

able distributions other than just a mean value, thus contain important statistical

information, and are more suitable for GMM training.

In this chapter, different physical models that are employed in Monte-Carlo simu-

lation are introduced, followed by simulations of radar variables in different frequen-

cies and simulated radar scans from NWP model outputs.

3.1 Drop Size Distribution (DSD)

3.1.1 DSD Models

Similarly to probability density function (PDF), number and size of hydrometeors

in a volume are characterized by DSD which are usually represented by distribution

models that contain some free parameters. The following DSD models are widely

used in meteorology community:

• Marshall-Palmer (M-P) DSD model (Marshall and Palmer 1948)

N(D) = 8000exp(−ΛD) (3.1)

With only one free parameter (slope parameter Λ), the M-P DSD model is

easy to implement and has been widely used in rainfall rate estimation from
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single-polarization weather radar and bulk-scheme rain parametrization since it

is proposed by Marshall and Palmer (1948).

• Exponential DSD model

N(D) = N0exp(−ΛD) (3.2)

Exponential DSD model depends on two parameters, intercept parameter N0

[mm−1m−3] and slope parameter Λ [mm−1], thus it is more flexible than M-P

DSD model which can be considered as a exponential DSD model with a fixed

N0 = 8000. Besides raindrops, exponential DSD model are also applicable to

model size distributions of snow particles and ice particles. Slope Λ is uniquely

determined if N0 and water content W is known as given in the following equa-

tion:

Λ =
πN0ρx
W

, (3.3)

where ρx can be the density of water, snow or ice.

• Gamma DSD model (Ulbrich 1983)

N(D) = N0D
µexp(−ΛD) (3.4)

As can be seen in Eq. (3.4), a shape parameter µ is added to exponential DSD

model. With three free parameters, the Gamma DSD model is widely accepted

in meteorology community and considered to be able to account for most the

variability of DSD in nature. Note that, unit of N0 in Eq. (3.4) is µ-dependent,

therefore, N0 is not physically meaningful when µ 6= 0. A normalized Gamma

DSD model, given in Eq. (3.7), is introduced and applied in some recent studies

(e.g., Testud et al. 2001; Vulpiani et al. 2005; Gorgucci et al. 2002; Park et al.

2005).

N(D) = Nwf(µ)

(
D

D0

)µ
exp

[
−(3.67 + µ)

D

D0

]
(3.5)
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In Eq. (3.5), D0 is the median volume drop diameter, Nw is the normalized drop

concentration and the function f(µ) is defined by

f(µ) =
6

(3.67)4

(3.67 + µ)µ+4

Γ(µ+ 4)
. (3.6)

It is worth mentioning that Nw and D0 in Eq. (3.5) have specific physical mean-

ings. Nw equals to the intercept parameter of an exponential DSD (N0 in

Eq. (3.2)) that has the same W and D0 and can be calculated as a function of

W and D0 as given in the following equation:

Nw =
(3.67)4

πρw

(
W

D4
0

)
, (3.7)

where ρw is the density of water. Although Gamma distribution is flexible rep-

resenting natural DSDs, its three parameters may not be mutually independent.

Derived from disdrometer dataset, Zhang et al. (2001) introduced a constraint-

gamma (C-G) DSD model, which had a constraint µ − Λ relation as given in

Eq. (3.8).

µ = −0.016Λ2 + 1.213Λ− 1.957 (3.8)

The C-G DSD model has also been used in some recent studies (e.g., Zhang

et al. 2001; Brandes et al. 2004; Cao et al. 2010).

Fig. (3.1) shows an example of the DSD models mentioned above. Among those

DSD models, Gamma DSD model generally has the best performance in modeling

observed DSDs. This is because with more free parameters, the DSD model would

have more freedom adapting to different DSD shapes. However, every DSD model

has its own advantages and limitations. It is inevitable that model error will be

introduced no matter which DSD model is used.
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Figure 3.1: Example of different DSD models. DSD models are fitted from observa-

tions from a 2D disdrometer.
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3.1.2 DSD Moments and Related Variables

Since DSD characterizes number and size of hydrometeors in a volume, microphysics

properties of hydrometeors can be learnt from DSD. If the nth DSD moment is defined

as

Mn =

∫ Dmax

Dmin

DnN(D)dD, (3.9)

where Mn is in [mmnm−3], water content W [g m−3] (shown in Eq. (3.10)), total

number concentration NT = M0 [m−3], reflectivity factor Z ≈ M6 [mm6 m−3] and

effective diameter De = M3/M2 [mm] are all linked to different DSD moments.

W =
π

6
× 10−3M3. (3.10)

Other important hydrometeor variables that are associated with the DSD include

rainfall rate R [mm hr−1] as shown in Eq. (3.11) and median volume diameter D0

[mm] as shown in Eq. (3.12).

R = 6× 10−3π

∫ Dmax

Dmin

D3v(D)N(D)dD (3.11)

∫ D0

Dmin

D3N(D)dD =

∫ Dmax

D0

D3N(D)dD (3.12)

In Eq. (3.11), v(D) is the terminal velocity of raindrops.

3.2 General Hydrometeor Models

Natural hydrometeors have different shapes rather than simple spheres (Straka et al.

2000). The utility of dual polarizations in weather radar is based on the fact that an

electromagnetic wave scatters and propagates differently for horizontal and vertical

polarizations when it is incident on a hydrometeor (Zhang et al. 2001) (geometry of

particle scattering is shown in Fig. (3.2)).

Observations show that the larger the raindrop, the more oblate the shape is

(Brandes et al. 2002). The oblateness of a raindrop is determined by its axis ratio
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Figure 3.2: Particle scattering geometry.

which is defined as the ratio of the diameter of vertical axis to the diameter of hori-

zontal axis (illustrated in Fig. (3.3)). The relation between equivalent diameter and

axis ratio of a raindrop has drawn many attentions, such as the empirical relations

proposed in Pruppacher and Beard (1970), Chuang and Beard (1990), Andsager et al.

(1999), Keenan et al. (2001) and Brandes et al. (2002). A plot of the above empirical

relations is shown in Fig. (3.4). Different raindrop shape models may lead to a dis-

tinct difference in dual-pol variables, especially for ZDR (Brandes et al. 2002). Due

to the large variance in raindrop shape observations, none of the empirical relations

is universally applicable.

Raindrops in this study are modeled as oblate spheroids with the polynomial

relation between the axis ratio ra and the equivalent diameter D (detailed definition

in Green (1975)) given in Brandes et al. (2002).

ra = 0.9951 + 0.02510D − 0.03644D2 + 0.005303D3 − 0.0002492D4. (3.13)
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Figure 3.3: Axis raio for an oblate spheroid.

Supported by agreement between measurement from radar and gauges, this relation

yields more spherical shapes for drops with 1 ≤ D ≤ 4 mm than other previous

studies. Randomness between [−0.12(1 − ra) 0.12(1 − ra)] is added to ra to make it

more general for different kind of raindrops. Region of ra with randomness is shown

in Fig. (3.5). Some observational and theoretical studies suggest that the standard

deviation of the canting angles (φ in Fig. (3.2)) of rain drops is likely not 0o but

between 7o and 8o (Huang et al. 2008) or 5o and 15o (Ryzhkov et al. 2002). Standard

deviation (SD) of the canting angle in this study is assumed to be 10o, which should

cover most situations. The mean canting angle is assumed to be 0o, as suggested

by observations (Hendry and McCormick 1976). Terminal velocity of raindrops is

assumed to follow the polynomial relation given in Brandes et al. (2002):

v(D) = −0.1021 + 4.932D − 0.9551D2 + 0.07934D3 − 0.002362D4. (3.14)

Snow has a large variety of shapes from approximately spherical to extremely

oblate (aggregates), or from extreme prolate and oblate to essentially spherical (crys-

tals). However, they tend to fall with the major axis horizontally oriented (Straka

et al. 2000), and, can be modeled as spheroid with axes a and b where a is the axis

of rotation. Axis ratio ra is randomly selected from 0.5 to 2 so that both oblate and

prolate spheroid are covered. The density of snow also varies from 50 to 900 [kg

m−3], depending on the mixing ratio of ice and air. Dry Snow density (ρs) is fixed at

100 [kg m−3] in this study, consistent with the Advanced Regional Prediction System
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Figure 3.4: Different raindrop axis ratio models.

Figure 3.5: Axis ratio ra with randomness.
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(ARPS) model which will be introduced in section 3.6. When snow melts, its density

increases as the melted portion grows, and eventually reaches 1000 [kg m−3] (becomes

water). The melting effect will be discussed in section 3.3. The mean canting angle

of snow is assumed to be 0o, and standard deviation is assumed to be 20o (Jung et al.

2008).

Similar to snow, hail is observed as oblate to some degree or conical, with lobes

and other protuberances on the surface. Straka et al. (2000) shows that larger hail,

with D ≥ 10 [mm], tends to be more irregular, whereas small hail is less oblate and

closer to spherical. Therefore, we model hail as spheroid, with the axis ratio ra (minor

to major axis) randomly chosen from 0.8 to 1 for small hail (D ≤ 10 [mm]) and 0.6 to

1 for large hail (10 ≤ D ≤ 50 [mm]) (Knight 1986). Falling hail may exhibit gyrating

and tumbling motions (Knight and Knight 1970), which makes the orientation of

falling hail somewhat questionable. Therefore, a large standard deviation of canting

angles of hailstone should be expected. In this study, the mean canting angle of hail

is assumed to be 0o while SD is assumed to be 60o. Also, a fixed density (ρh) of 913

[kg m−3] is used, which is consistent with the ARPS model.

3.3 Melting Models and Effective Dielectric

Constants of Mixtures

The study of the radar signature of melting hydrometeors is important because the

melting layer radar scattering has significant differences from the general, “dry” hy-

drometeors (Liao and Meneghini 2005). Melting snow and hail are often modeled as

two layered models, with dry snow or ice cores surrounded by water or a wet snow

mixture, or modeled as uniform mixtures of air-ice-water or ice-water (e.g., Fabry

and Szyrmer 1999; Bringi et al. 1986; Aydin and Zhao 1990). Both types of par-

ticle models can be characterized by an effective dielectric constant εe. There are
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many formulas to calculate εe of the mixture, however, the various dielectric formu-

las yield very different results not only from different mathematical expressions, but

also from different ways of forming a mixture (background and inclusion issue) (e.g.,

Meneghini and Liao 1996, 2000). One of the most commonly used formulas is the

Maxwell-Garnett (MG) mixing formula (Maxwell Garnett 1904):

εe =
1 + 2fvyp
1− fvyp

εb (3.15a)

yp =
εi − εb
εi + 2εb

, (3.15b)

where εe, εb and εi are the dielectric constant of the mixture, the background species

and the inclusion species, respectively. fv is the fractional volume of the inclusion

and yp is the polarizability factor given in Eq. (3.15b).

To study the natural polarimetric hydrometeor scattering signatures, an experi-

mental approach was designed with the assistance of a controlled laboratory environ-

ment. An advanced vector network analyzer-based scatterometer system has been de-

veloped together with an environmentally-monitored anechoic chamber configured for

hydrometeor measurements. The polarimetric Radar Cross Section (RCS) of various

natural and man-made icy hydrometeor samples are measured across wide X-band

frequencies and compared with theoretical modeling results. The instrumentation

setup is illustrated in Fig. (3.6). The dual-polarized radar variables and hydrom-

eteor melting parameters are derived from the RCS measurements with interesting

observations obtained (Zhang et al. 2010).

Recent theoretical studies (e.g., Meneghini and Liao 1996, 2000) indicate that

the predictions from the MG formula for a water-ice mixture with ice as background

and water as inclusion agree with realistic melting hails, especially when the fraction

of water is low. A preliminary result for lab measurement of melting ice spheres

compared with such theoretical predictions as shown in Fig. (3.7). Water at the

surface of a melting hailstone tends to shed off due to different falling speeds and

water portion of a melting snowflake tends to break up from ice portion, which both
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Figure 3.6: The instrumentation setup for hydrometeor scattering measurement.

result in smaller melting ratio of melting particles (Rasmussen and Heymsfield 1987).

Thus, maximum melting ratios of snow and hail have been limited to 0.5 in this study

(melting ratio is defined as the ratio of water weight to the hydrometeor weight in

a melting process). Therefore, the effective dielectric constant εe for melting hail is

calculated from mixing water and ice with ice as background. For melting snow, εe

is calculated from mixing air and snow with snow as background and then mixing

water with air-snow mixture as background.

Dielectric constants of water and ice vary with temperature. In this study, dielec-

tric constants of water and ice at a particular temperature are obtained by applying

the equations introduced by Ray (1972). In the melting process, both water and ice

dielectric constants are calculated at 0oC no matter what the environment temper-

ature is. Table. 3.1 and Table. 3.2 give the dielectric constants of ice and water at

different frequencies and temperatures.
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Figure 3.7: Comparison between measured and theoretically predicted scattering

cross-section curves of melting ice spheres with ice as background and water as inclu-

sion.

Table 3.1: Dielectric constants of ice (εi) at different frequencies and temperatures

−20oC −10oC 0oC

2.705 GHz (KOUN) 3.1684 + j0.0009 3.1686 + j0.0013 3.1700 + j0.0041

5.510 GHz (OU-PRIME) 3.1682 + j0.0005 3.1683 + j0.0008 3.1692 + j0.0025

9.73 GHz (RaxPol) 3.1682 + j0.0004 3.1682 + j0.0005 3.1688 + j0.0016

Table 3.2: Dielectric constants of water (εw) at different frequencies and temperatures

0oC 10oC 20oC

2.705 GHz 81.1430 + j23.1731 80.4632 + j16.6259 78.3412 + j12.0251

5.510 GHz 65.1406 + j37.1941 70.9023 + j29.4124 72.7890 + j22.4553

9.73 GHz 42.9297 + j41.3297 53.7770 + j38.2775 61.0809 + j32.6422
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Considering that the density of hail increases during melting, fractional volume

for water (fw) in melting hail given melting ratio γw is calculated from

fw =
γwρi

γwρi + (1− γw)ρw
, (3.16)

where ρw and ρi are densities for water and ice(hail) in [kg m−3]. As a special case

of dry hail, γw = 0; therefore, fw = 0, effective dielectric constant is the dielectric

constant of pure ice.

Calculations of the fractional volumes of air (fa), ice (fi) and water (fw) in melting

snow are more complicated since snow itself is a mixture of ice and air. Assuming

the density of the dry portion of snow in a melting snowflake is unchanged (100 [kg

m−3]), while the density of the whole melting snowflake increases when the melting

ratio increases. Eq. (3.17) provides how fa, fi and fw are obtained given the melting

ratio γw, with ρs, ρw and ρi being densities for snow, water and ice (hail) in [kg m−3],

respectively.

fw =
γwρs

γwρs + (1− γw)ρw
(3.17a)

fi =
(1− fw)ρs

ρi
(3.17b)

fa = 1− fw − fi. (3.17c)

A new relation between temperature and melting ratio is developed in this work

based on a model introduced by Yokoyama and Tanaka (1984), which is shown in

Eq. (3.18) and depicted in Fig. 3.8. Random fluctuation of [−0.2γx 0.2γx] is added

to simulate various situations.

γx =


0.5(t/tx)

1.8 0 ≤ t ≤ tx

0.5 tx < t.

(3.18)

In Eq. (3.18). tx(x = s, h) is the temperature that snow or hail reaches their maximum

melting ratio. Because hailstones usually fall faster than snowflakes, ts is set to 5o

for snow and th is 8o for hail. As melting continues, part of the water from melted
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snow/hail would shed from the original particle and become a rain drop. To include

those effects, the maximum melting ratio of snow and hail are set to 0.5 in order to

avoid too much water in a melting hydrometeor without shedding off or breaking up.

As the hydrometeors melt, the diameter of the particle would shrink due to the

density difference between snow/hail and water. Fig. 3.9 shows how the melting ratio

affects the diameter and the water fraction of snow and hail particles by assuming

diameter of a particle is the cubic root of its volume (Eq. (3.19)). The size of a

hailstone does not shrink significantly if it does not breakup. On the other hand, the

snow particles diameter will reduce to 80% when the melting ratio reaches 0.5. The

fraction of water for hail changes at the same pace as the melting ratio, but for snow,

the fraction of water remains below 0.1 when the melting ratio reaches 0.5.

Dmx = D(
γwρx
ρw

+ (1− γw))
1
3 (3.19)

In Eq. (3.19), ρx stands for density of snow or hail. Accordingly, Dmx stands for

diameter for melting snow or hail.

3.4 Scattering Theory

When electromagnetic waves are incident on a particle, the particle may absorb a

portion of the radiation energy and scatter the rest of the energy. The scattered energy

can be described in terms of scattering amplitudes. Fig. 3.2 shows the scattering

geometry of a single particle. Assuming the incident polarization of the wave aligned

along the major and minor axis of the particle, the scattering amplitude of the major

and minor axes, fa and fb, can be calculated from Rayleigh scattering approximation

as given in Eq. (3.20) if the diameter of the particle is much less than radiation

wavelength (e.g. D/λ < 1/16).

fa,b(0, D) = fa,b(π,D) =
π2D3

6λ2

ε− 1

1 + (ε− 1)La,b
. (3.20)
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Figure 3.8: Relations between temperature and melting ratios for hail (top) and snow

(bottom).
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Figure 3.9: Relationships among melting ratio, fractional water content and particle

diameter change, for snow and hail. From top to bottom, (a) Melting ratio changes

versus fraction of water changes for snow and hail. (b) Melting ratio changes versus

fraction of diameter changes for snow and hail.
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In Eq. (3.20), ε is the dielectric constant of the particle and La,b can be calculated

from

g =
1

r2
a

− 1 (3.21a)

Lb =
1 + g2

g2

(
1− 1

g
arctang

)
(3.21b)

La =
1

2
(1− Lb). (3.21c)

Rayleigh scattering approximation may be applied in S-band. For higher frequency

such as C-band and X-band, Rayleigh scattering approximation is no longer accu-

rate for the hydrometeors models since the diameter-to-wavelength ratio is already

in Mie scattering region, where fluctuation, instead of monotonic increasing, of the

scattering amplitude of a single particle should be expected, as the diameter of a

particle increases. The T-Matrix method, also called the extended boundary con-

dition method, is an effective numerical solution for electromagnetic scattering by

homogeneous, rotationally symmetric nonspherical particles. In this study, fa and

fb, along with the cross-polarization terms, are computed from T-matrix calculations

using the T-Matrix code for nonspherical particles in a fixed orientation introduced

in Mishchenko (2000).

For hydrometeor scatterings, the incident polarization of the wave often does

not align along the major and minor axis of a hydrometeor. Then the scattering

amplitudes of those particles with a canting angle (φ) are calculated from:

f =


fhh fhv

fvh fvv

 =


facos2φ+ fbsin

2φ (fa − fb)sinφcosφ

(fa − fb)sinφcosφ fasin
2φ+ fbcos2φ

 (3.22)

Note that, the dependency on scattering direction and particle size of scattering

amplitude f is implicit in Eq. (3.22).
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3.5 Single-Cell Monte Carlo Simulation and

Simulated Radar Variables

A single-cell Monte Carlo simulation can be considered as a single radar resolution

volume (cell) filled with uniformly distributed hydrometeors as illustrated in Fig. 3.10.

The total number and size of hydrometeors in the volume are controlled by the DSD

as given in Eq. (3.23). Melting behavior of ice species is controlled by temperature

as given in Eq. (3.18).

Nt =
Dmax∑
Dmin

V N(D)∆D (3.23)

In Eq. (3.23), ∆D is the diameter interval between two adjacent size bins. Dmin and

Dmax specify the diameter ranges of hydrometeors. Table 3.3 shows the details of

diameter sizes used in the simulations.

Table 3.3: Sizes of Particles Used in Simulations for Different Species (all in [mm])

Dmin Dmax ∆D

Rain 0.5 8 0.1

Snow 1 20 0.2

Hail 1 50 0.5

Outputs from the simulation are the composite of echoes scattered by hydrome-

teors. If V is the size of the volume in [m3], reflectivity factor defined in Eq. (2.21)

and specific differential phase defined in Eq. (2.25) can be rewritten as

Zh,v =
4λ4

π4|Kw|2V
∑
|fhh,vv(π)|2, (3.24)

Kdp = 10−3 180λ

πV

∑
<[fhh(0)− fvv(0)], (3.25)

where
∑

indicates summation over all hydrometeors in the volume. Similarly, specific

attenuation defined in Eq. (2.30) can be computed from

Ah,v = 10−3 8.686λ

V

∑
=[fhh,vv(0)]. (3.26)
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Figure 3.10: Concepts of single-Cell Monte Carlo simulations.

3.5.1 Scattering Plots of Hydrometers at X-band

One of the advantages of the Single-Cell Monte Carlo simulation is that the number,

size, types and even the melting behavior of the hydrometeors in the volume can be

controlled by artificially setting the model parameters. For example, a scenario where

there is only a certain amount of hailstones with 10% melting and nothing else in the

volume may be created. By creating many scenarios and calculating the returns,

radar signatures for all the species and all kinds of melting levels can be obtained.

Since the intercept parameter of DSDs and melting ratio are both random variables

within a reasonable range, different types of precipitation can also be emulated.

DSDs of rain, snow and hail are assumed to have an exponential form to match the

bulk microphysics scheme of ARPS model which is introduced in 3.6. Inputs to the

simulation including mixing ratio of rain, snow and hail (qr, qs and qh) also matches

ARPS outputs. The slope parameter Λ is calculated from Eq. (3.28) while mixing

ratio and intercept parameter of each species are randomly generated according to

Table 3.4 and Table 3.8. The scattering map generated in Monte-Carlo simulation
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can serve as the knowledge base for the advanced airborne development introduced

in section 3.6. Details of the airborne radar parameters can be found in Table 3.7.

Table 3.4: Mixing and Melting Ratio Ranges used in the Single-Cell Simulations. (M

for Melting)

Rain Snow Hail Msnow Mhail Rain and Hail

Mixing ratio [g kg−1] 0 - 10 0 - 10 0 - 10 0 - 3 0 - 5 0 - 3/0 - 3

Melting ratio 0 0 0 0 - 0.3 0 - 0.5 0/0 - 0.5

Additional cautions should be taken for the following issues. 1) The created

scenarios must be reasonable and realistic. In other words, the mixing ratio of each

species must be within a certain range to ensure that there are not too many hailstones

or snowflakes in a single volume. 2) The size of the volume used in simulation must

be large enough, so that there are enough particles presenting. For the first issue,

a statistical study has been performed on ARPS model outputs. The results show

that the mixing ratios of rain, snow and hail can reach as high as 15 [g kg−1]. Thus

the mixing ratio of rain, snow or hail is generated as a random number uniformly

distributed at range 0 to 10 [g kg−1], which covers most situations. For melting

hail and snow, a random melting ratio is also generated besides hail or snow mixing

ratio, Table 3.4 lists the detailed mixing ratio and melting ratio ranges used in the

simulations. For the second issue, a compromise needs to be made between the size

of the volume and the required computational load in the simulation. The size of the

volume is set at 100×100×100 [m3]. A set of 6000 scenarios for six species including

rain, snow, hail, melting snow, melting hail and mixed rain and hail have been carried

out in order to have a statistical significance. In each scenario, only one out of the six

species is generated according to the mixing ratio and melting ratio randomly chosen

within its range. The scattering plots of the result are shown in Fig. 3.11.

Compared with the results from other simulations and observations, the regions

for these six species from scatter plots seem to be consistent with those in Straka et al.
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Figure 3.11: Scatter plots of hydrometeor species at 10 GHz. From top to bottom,

(a) ZH and ZDR plot, (b) ZH and KDP plot.
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(2000) and Marzano et al. (2007) except that the scale is different, which is due to

different radar frequencies. Rain tends to have higher ZDR than hail or snow. Water

species including rain, melting snow and melting hail would have a significantly larger

Kdp than dry species (snow and hail). As expected, the signatures of mixed rain and

hail reside in between the signatures of hail and rain, and the higher the mixing ratio

of hail in the rain/hail mixture, the closer the signature region to that of dry hail.

Due to the random canting angles of the particles, the range of ZDR in this X-band

radar is smaller compared with the results in Straka et al. (2000) and Marzano et al.

(2007) (C band). As shown in Fig. 3.11(b), the range of Kdp is much larger than

that in Straka et al. (2000) and Marzano et al. (2007) especially for rain and melting

snow. This is because wavelength in X-band is small compared to particle size, which

leads to high KDP . Another important reason is that these outputs are ’clean’ data

without noise. In a real radar system, phase measurements are contaminated by

noise, which may lead to lower Kdp. Mixing ratios of all species are much higher

than their normal values in the Monte Carlo simulations. However, a larger mixing

ratio range is valuable to cover some extreme scenarios. Knowledge gained from the

radar signature scatter plots will assist in the development of the hazard detection

system designed to distinguish rain, snow, hail and mixtures. To keep the processing

efficient, correlation coefficient (ρhv) and linear depolarization ratio (LDR) are not

included at the current stage, while similar plots of these variables can be generated

in the same way. Table 3.5 shows the general decision regions derived from scatter

plots for the six species.

Table 3.5: General Decision Regions for Hydrometeors at 10 GHz (M for Melting)

Rain Snow Hail Msnow Mhail Rain and Hail

ZH [dBZ] 20 - 65 15 - 60 20 - 65 15 - 65 20 - 65 15 - 60

ZDR [dB] 0 - 5 0 - 0.5 -1 - 0.5 0 - 1 -0.5 - 0.5 0 - 4

KDP [deg km−1] 0 - 45 0 - 4 0 - 3 0 - 10 0 - 4 0 - 15
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3.5.2 Dual-Pol Variables of Rain at S-, C- and X-band

Quantitative precipitation estimation (QPE) and quantitative precipitation forecasts

(QPF) demand better knowledge of dual polarization signature of rain at different

radar frequencies. To better support and serve the development of polarimetric rain

attenuation correction algorithms and rainfall rate estimation algorithms, dual-pol

variables of rain at S-, C- and X-band are obtained using single-cell Monte Carlo

simulations.

DSD of rain is assumed to be normalized gamma distribution as defined in Eq. (3.5).

Parameters of the normalized gamma distribution are randomly generated within the

ranges specified by Ulbrich (1983) and Bringi and Chandrasekar (2001) as shown in

Eq. (3.27). Those ranges are widely used and belived to cover most natural rain

DSDs. Note that while the range in Eq. (3.27) may match local precipitation clima-

tology, the frequency of individual data points probably does not. Details are list in

Table 3.6.

0.5 ≤ D0 ≤ 3.5 [mm] (3.27a)

102 ≤ Nw ≤ 105 [mm−1m−3] (3.27b)

−1.0 ≤ µ ≤ 5.0. (3.27c)

It is worth mentioning that all three parameters have a uniform distribution within the

given range, which leads to equal probability for different rain types. This assumption

may not hold in reality since smaller rainfall (R < 40 [mm hr−1]) is more frequent

than heavier rainfall intervals/cases. All datasets are limited to rainfall values up to

300 [mm hr−1] and ZH up to 55 [dBZ]. A total of 6000 scenarios has been carried

out. Note that, simulations at different frequencies are performed at the same time

using the same scenario/DSD, which means those dual-pol variables can be combined

and assist the development of dual-frequency and/or dual-polarization rainfall rate

estimation algorithms.
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Figure 3.12: Simulated dual-pol variable scatter plots of rain for KOUN (S-band).

From top to bottom, (a) ZH and ZDR plot, (b) ZH and Kdp plot.
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Figure 3.13: Simulated dual-pol variable scatter plots of rain for OU-PRIME (C-

band). From top to bottom, (a) ZH and ZDR plot, (b) ZH and Kdp plot.
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Figure 3.14: Simulated dual-pol variable scatter plots of rain for RaxPol (X-band).

From top to bottom, (a) ZH and ZDR plot, (b) ZH and Kdp plot.
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Table 3.6: Key Parameters of the Single Cell Monte-Carlo Simulation for Rain.

Radar frequency (S-band) 2.705 GHz (KOUN)

Radar frequency (C-band) 5.510 GHz (OU-PRIME)

Radar frequency (X-band) 9.730 GHz (RaxPol)

Radar elevation angle 0o

Volume of the single cell 1000 m3

Temperature Uniformly between 5oC to 20oC

Raindrop size [mm] 0.5 to 8 (step size 0.1)

Canting angle distribution Gaussian with mean 0 and SD 10o

Scattering model T-Matrix

Axis ratio of raindrops Brandes et al. (2002) with randomness

Terminal velocity of raindrops Brandes et al. (2002)

Scatter plots are shown in Fig. 3.12, Fig. 3.13 and Fig. 3.14. While regions of ZH

and ZDR plots are similar among the three frequency bands, value of Kdp significantly

increases as frequency increases.

3.6 Radar Simulations with ARPS Model Outputs

Recent advances in numerical weather models have made it possible to simulate a

weather field at fine scales over a broad range of environmental scenarios. Thus,

developing a software radar simulator based on high-resolution weather simulation is

feasible.

The Advanced Regional Prediction System (ARPS) used by Jung et al. (2008),

Cheong et al. (2008) and May et al. (2007) in weather radar simulations, is a multi-

scale nonhydrostatic atmospheric simulation and prediction model whose prognostic

state variables include potential temperature, pressure, mixing ratios for rainwater,
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snow and hail (qr, qs and qh), plus 3D wind components and the turbulent kinetic

energy used by the 1.5-order subgrid-scale turbulent closure scheme (e.g., Xue et al.

2000, 2001, 2003). A simulated-high-resolution atmospheric field produced by the

ARPS model has a horizontal grid spacing of 100 [m] and vertical spacing of 400 [m]

over a 64×64×12 [km3] volume. This simulated field was for a supercell thunderstorm

which was initiated by a thermal bubble in a horizontally homogeneous environment

defined by the 20 May 1977 Del City, Oklahoma sounding reported in Ray et al.

(1981).

Advanced aviation hazard detection and monitoring require the capabilities to

discriminate different types of hazards including hydrometeors. To assist modern air-

borne radar development and evaluate radar performance in extreme scenarios like

flying close by a storm or other severe weather conditions, the single-cell simulation

is then applied to the entire radar scanning volume supported by ARPS outputs.

The basic concepts and data-flow of this approach are summarized in Fig. 3.15 and

Fig. 3.16. This study emphasizes on ‘snap-shot’ type hazard imaging, which are

enabled by a fast-scanning array antenna system design. In other words, airborne

platform can be considered at fixed position within one scan. Dual-polarization air-

borne radar signatures corresponding to a mixed-phase storm case from both plan

position indicator (PPI) and range height indicator (RHI) scan schemes are gen-

erated, and the results are compared with the simulated weather field truth data.

For computation efficiency, the simulated aircraft flies at different altitudes near the

most intense portion of the severe weather, which is a small part of the simulated

atmospheric field.

Key parameters of the airborne radar used in the simulation are lists in Table 3.7.

DSDs of rain, snow and hail are assumed to have an exponential form as given in

Eq. (3.2), which matches the bulk microphysics scheme of LFO83 used in ARPS
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Figure 3.15: Basic concepts for airborne polarimetric radar sensing simulations.

Figure 3.16: The simulation data-flow diagram.
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model. Given ARPS model output qr, qs and qh, the slope parameter Λ can be

diagnosed by following Smith’s work (Green 1975)

Λx =
πNxρx
ρaqx

, (3.28)

where ρa is the air density in [kg m−3], ρx is the density of rain, snow or hail in

[kg m−3], qx is the mixing ratio of each species from ARPS outputs in [kg kg−1].

Typical intercept parameter for an exponential DSD is Nr = 8.0 × 106 [m−4] for

rain, Ns = 3.0 × 106 [m−4] for snow, and Nh = 4.0 × 104 [m−4] for hail. A fixed

intercept parameter is widely used for representing warm rain (Kessler 1969) and

ice (e.g., Lin et al. 1983; Hong et al. 2004) microphysics. A number of observational

studies (e.g., Waldvogel 1974; Zhang et al. 2008) indicate that, for different rain types

and intensity, the intercept parameter is far from constant. Even within the same

precipitation, the intercept parameters can vary spatially. The empirical range of the

intercept parameter is 106 to 108 [m−4] for rain (Joss and Waldvogel 1969), 105 to

108 [m−4] for snow (Tong and Xue 2008) and 102 to 108 [m−4] for hail (Gilmore et al.

2004). In this work, the intercept parameter is randomly chosen from 1/10 to 10

times its typical value, as shown in Table 3.8.

Table 3.7: Key Parameters of the Simulated Airborne Radar Sensor

Radar frequency (wavelength) 10 GHz (3 cm)

Pulse width 0.5 µs

Pulse repetition frequency (PRF) 4000 Hz

Range resolution 75m

Antenna beamwidth 5o

Unambiguous range (PPI) 37,500m

Unambiguous range (RHI) 22,500m

Simulated radar signatures from scenarios where an Unmanned Aerial Vehicle

(UAV) flies through different layers of the atmosphere and performs PPI and RHI
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Table 3.8: Parameters Used in Simulations for Different Species

Typical N0 [m−4] N0 used in this study

Rain 8.0× 106 8.0× 105 to 8.0× 107

Snow 3.0× 106 3.0× 105 to 3.0× 107

Hail 4.0× 104 4.0× 103 to 4.0× 105

scans are used to evaluate weather-sensing capabilities. The detailed geometries of

airborne sensing are shown in Fig. 3.17. As discussed previously, the input weather

field produced by the ARPS system includes mixing ratio of rain, snow and hail qr,

qs, qh plus the potential temperature pt and pressure pr. The ground speed of the

aircraft is set to a constant of 100 [m s−1], while its position in the atmosphere is

updated every second. The key parameters of the radar are listed in Table 3.7. For

computational efficiency, only one scan is taken in each position/second and there is

no overlap between adjacent beams. Since the platform moves less than 1 m during

the time of one scan, the aircraft is treated as in fixed position during one scan. Once

the aircraft arrives at a position, it points its beam to one direction, transmits two

pulses, and scans its beam to the next direction, until the entire scan is finished.

Radar return at one beam direction is simply the average of two pulses. The range

of intercept parameters for DSDs of rain, snow and hail are given in Table 3.8, and

are randomized from scan to scan. In other words, the intercept parameters for all

species are fixed during one scan and randomly generated again in next scan. The

size of the single cell for the Monte Carlo simulation is 100 × 100 × 400 m3, which

matches the grid sizes from the input weather field. If the radar resolution volume

contains more than one single cell, the parameter inputs to Monte Carlo simulation

are the averaged values across the entire radar resolution volume.
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Figure 3.17: Geometries of airborne volume scanning observation of hazardous

weather regions with PPI and RHI scanning schemes, PPI-I and RHI scans are per-

formed at 12.2 km height, PPI-II scan is performed at 9 km height around melting

layer.
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3.6.1 Scenario I

An aircraft is enroute at an altitude around 10-13 km within the stratosphere where

the atmospheric conditions are relatively stable. As the temperature can be far below

0oC at this layer, there exists supercold liquid and ice mixtures (snow and hail),

resulting in potential hazards. A simulated aircraft flying at about 12 km altitude

with both electronic PPI and RHI scans is assumed. Table 3.9 lists the detailed

information for this scenario. Fig. 3.18 and Fig. 3.20 show the weather fields for the

PPI scan and RHI scan, respectively.

As shown in Fig. 3.18(a), although snow mixing ratio is not high, there is plenty

of snow ahead of the aircraft. Meanwhile, Fig. 3.18(b) shows that the mixing ratio of

hail is very high within the region to the right to the aircraft.

Fig. 3.19 shows the simulated radar signatures for the PPI scan. The reflectivity

plot (Fig. 3.19(a)) doesnt show much information about what is ahead of the aircraft

except for the moderate level of ice mixture. However, in the ZDR plot, there is a

region where ZDR value is very small (even lower than 0), while the other regions

around have much higher values. This is an indication of a high density of hail.

Though the Kdp plot (Fig. 3.19(c)) also shows the relatively high value in the same

region, its not a typical sign of hail content, since a large mixing ratio of snow can

also cause similar Kdp features. Combining these observations, the aircraft/pilot will

be able to adjust the flight path for weather hazard avoidance.

Table 3.9: Information for Scenario I

Ground speed 100 [m s−1]

Altitude 12.2 [km]

Temperature −32oC

Wind speed Less than 35 [m s−1]

PPI scan range −30o to 30o azimuth

RHI scan range 0o to −30o elevation
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Figure 3.18: Weather field for PPI scan at altitude 12.2 km. From left to right, (a)

Mixing ratio of snow - qs, (b) Mixing ratio of hail - qh

An RHI scan simulation is also performed at the same altitude, but at different

horizontal locations, in order to observe the melting effects. As shown in Fig. 3.20, the

melting layer is located at a height of 9 km. Snow mainly appears above the melting

layer and almost completely disappears at the boundary of the melting layer. The

distribution of hail is similar to snow, except that there is plenty of hail at the melting

layer, as hail melts slower than snow. On the other hand, besides this very small

amount of hail, only rain exists below the melting layer. Fig. 3.21 shows the simulated

radar signatures for this RHI scan. The melting effects can be observed, as both

reflectivity and differential reflectivity show a bright-band at the melting layer, and

decrease gradually outside the melting layer (shown in Fig. 3.21(a) and Fig. 3.21(b)).

Another observation is that high Kdp values occur at the regions containing high

mixing ratio of liquid water.

3.6.2 Scenario II

Weather conditions are much more complicated within a melting layer than in the

stratosphere. As both icy mixtures and liquid water exist in this layer, it is even

more dangerous to aviation. A simulated aircraft flying within a melting layer with
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Figure 3.19: Simulated radar returns for PPI scan at altitude 12.2 km. From left to

right and top to bottom, (a) Reflectivity - ZH , (b) Differential reflectivity - ZDR, (c)

Specific differential phase - KDP
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Figure 3.20: Weather field for RHI scan at altitude 12.2 km. From left to right and

top to bottom, (a) Mixing ratio of rain - qr, (b) Mixing ratio of snow - qs, (c) Mixing

ratio of hail - qh.
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Figure 3.21: Simulated radar returns for RHI scan at altitude 12.2 km. From left to

right and top to bottom, (a) Reflectivity - ZH , (b) Differential reflectivity - ZDR, (c)

Specific differential phase - KDP
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PPI scan is assumed to validate the potential hazard detection ability of the radar

system. Table 3.10 lists detailed information for this scenario. The truth weather

field for this scenario is depicted in Fig. 3.22.

Table 3.10: Information for Scenario II

Ground speed 100 [m s−1]

Altitude 9.2 [km]

Temperature Around 0oC

Wind speed Less than 25 [m s−1]

PPI scan range −30o to 30o azimuth

The mixing ratio of snow is low at this altitude while the mixing ratio of rain is very

high. Simulated radar signatures for this PPI scan are shown in Fig. 3.23. Attention

has been focused on the hazardous region where melting hail and rain co-exist (the

highlighted region with a black circle in Fig. 3.23(a), Fig. 3.23(b) and Fig. 3.23(c)).

In this region, reflectivity is high while ZDR is low, indicating a large mixing of hail.

Also, the high values imply a large content of liquid water, which in turn means a

high melting ratio of hail. At the same time, a low KDP indicates the region where

the melting ratio of hail is low. Again, the above observations can potentially lead to

an automatic monitoring algorithm which both detects the presence of mixed-phase

hazards, and performs an analysis about the content and levels of the threats.
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Figure 3.22: Weather field for PPI scan at altitude 9.2 km. From left to right and

top to bottom, (a) Mixing ratio of rain - qr, (b) Mixing ratio of snow - qs, (c) Mixing

ratio of hail - qh.
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Figure 3.23: Simulated radar returns for PPI scan at altitude 9.2 km. From left to

right and top to bottom, (a) Reflectivity - ZH , (b) Differential reflectivity - ZDR, (c)

Specific differential phase - KDP
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Chapter 4

Gaussian Mixture Model (GMM) and Classifier

Radar observation variables such as Zh, Zdr and Kdp as well as the underneath mi-

crophysics parameters such as R, W , N0 and Λ of a radar resolution volume (bin)

can be combined and considered as an unknown and random vector x, such as

x = [Zh, Zdr, Kdp, ρhv] or x = [N0,Λ, Zh, Zdr, Kdp, Ah, Adp]. Hydrometeor classifi-

cation and weather parameters estimation through a Bayesian approach are possible

if the distribution of x is precisely modeled. A Gaussian mixture model (GMM), is

introduced in this Chapter to characterize such distribution.

4.1 Definitions

A Gaussian Mixture Model (GMM) is a weighted sum of Gaussian densities that

represents a probability density function as given by

f(x) =
M∑
i=1

αiN (x;µi,Σi), (4.1)

where N (µ,Σ) is Gaussian distribution with mean µ and covariance matrix Σ as

defined in Eq. (4.2), where d is the dimension of variable y, M is the number of

Gaussian mixtures used and αi, µi and Σi are the weighting, mean and covariance

matrix for the ith Gaussian mixture.

N (y;µ,Σ) =
1√

(2π)d|Σ|
e−

1
2

(y−µ)T Σ−1(y−µ). (4.2)
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Note that, µi ∈ Rn, Σi ∈ Rn×n is symmetric positive definite (Σi > 0), αi > 0 and∑M
i=1 αi = 1. The mean of a Gaussian mixture is

µ = E[x] =
M∑
i=1

= αiµi (4.3)

and the covariance is

Σ = V AR[x] =
M∑
i=1

αi(Σi + µiµ
T
i )− µµT (4.4a)

=
M∑
i=1

αi(Σi + (µi − µ)(µi − µ)T ), (4.4b)

where E[.] and V AR[.] are the expectation operator and variance operator, respec-

tively. A complete GMM is parameterized by mixture weights αi, means µi and

covariance matrices Σi. These parameters are collectively noted as

θ = {αi, µi,Σi} i = 1, ...,M. (4.5)

There are several forms of GMM depending on the choice of parameters shown in

Eq. (4.5). Parameters can be tied or shared among the Gaussian mixtures/components,

such as having a common weight or common covariance matrix for all components.

Parameters may also be constrained, such as having all covariance matrices to be di-

agonal (Celeux and Govaert 1995). Number of mixtures is also flexible depending on

different applications. The choice of GMM configuration is often determined by how

GMM parameters are estimated and how GMM is used in particular applications.

It is worth mentioning that the overall density function represented by a GMM are

modeled by all components in the GMM acting together. Even with the diagonal co-

variance matrices, the correlations between different dimensions can still be modeled

by GMM. In other words, the effect of having a GMM with full covariance matrices

can be equally obtained by having a GMM with diagonal covariance matrices. The

difference is that having a GMM with diagonal covariance matrices may need a larger

number of mixtures. In this study, the general form of GMM is used.
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The GMM would converge to any specific distribution as number of mixtures

increases. An intuitive proof is given as follows: a Gaussian component with zero

covariance matrix is like a spike from the delta function. Having a GMM with an

infinite number of such components equals to having infinite delta functions. Since

any specific distribution can be represented by infinite delta functions, it can also be

represented by a GMM with infinite mixtures. The convergence of the GMM ensures

that a large and complex multidimensional distribution can be precisely characterized

by a GMM with a large number of mixtures, such as the Universal Background Model

(UBM) in speaker recognition systems (Hasan and Hansen 2011).

Another important attributes of the GMM is its ability to form smooth approxi-

mations to arbitrarily shaped densities. With the smoothing capability, the GMM is

capable of discovering general distribution from an incomplete data set with a finite

number of samples.

The convergence and smoothing capabilities of the GMM are illustrated in Fig. 4.1

where a total of 500 samples are generated from 0.6N (5, 1.5)+0.4N (15, 3). Shown in

Fig. 4.1(a), GMM with 2 mixtures is able to smooth all the fluctuations and discover

two main peaks. In this case, the GMM keeps the main shape but ignore local details

of the probability density. As number of mixture increases in Fig. 4.1(b)-(d), GMM

converges closer to the details. In these cases, while the convergence capability of

GMM can be seen, effects of over-fitting are also shown. So, smoothing and conver-

gence of the GMM depend on number of mixtures used in the model. Insufficient

number of mixtures may lead to bad approximation while too many mixtures may

risk over-fitting to the particular training data set.

GMMs are commonly used to model the probability distribution of continuous

features or measurements where there are multiple peaks. For example, vocal spectral

features in a speaker/speech recognition system and is often modeled by GMM (e.g.,
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Figure 4.1: Example of GMM with different number of mixtures. Data set is generated

from 0.6N (5, 1.5)+0.4N (15, 3). From left to right and top to bottom, (a) GMM with

2 mixture; (b) GMM with 5 mixture; (c) GMM with 10 mixture; (d) GMM with 20

mixture;

62



Gomez and Kawahara 2010; Du et al. 2011). GMMs are also widely used in tracking

and navigation systems (e.g., Alspach and Sorenson 1972; Ali-Loytty 2008).

4.2 Training GMMs

4.2.1 The Expectation-Maximization Algorithm

GMM may be trained from any data set. Given a training data set and a GMM

configuration which refers to number of mixtures, M , in this study, training GMM

is a learning process during which GMM parameters θ = {αi, µi,Σi} are estimated

from the training data set. The goal is to find θ which in some sense best matches

the distribution embodied in the training data set. In other words, finding θ that

specifies the GMM from which the data points in the training dataset are most likely

to be drawn. Among the techniques available for estimating the parameters of a

GMM (McLachlan and Basford 1988), the most popular and well-established one is

the maximum likelihood (ML) method.

The ML method measures the global likelihood of a particular model given the

set of data points and maximize it, through a likelihood function Λ(X; θ) where

X = {x1,x2, ...,xN} is the set of data points. Λ is maximized for θ such that the

GMM f(x; θ) is mostly to generate the set of data points, X. Assuming that each

data point in the set is independent from others, the likelihood function can be defined

as follows:

Λ(X; θ) =
N∏
n=1

f(xn; θ) (4.6a)

=
N∏
n=1

M∑
i=1

αiN (xn;µi,Σi). (4.6b)

Then, the estimation problem can be written as

θ̂ = arg max
θ

Λ(X; θ). (4.7)
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To better present the ML method, q(i, n) is defined as

q(i, n) = αiN (xn;µi,Σi), (4.8)

which is the probability of data point xn from the ith mixture. The conditional prob-

ability that point xn was generated by the ith mixture component can be calculated

from

p(i|n) =
q(i, n)∑M
i=1 q(i, n)

. (4.9)

It can be easily shown that
M∑
i=1

p(i|n) = 1, therefore, p(i|n) is also considered as

the estimated weighting of the ith mixture component given data point xn. To

characterize the maximum of Λ(X; θ), derivatives of the logarithm of Λ with respect

to θ are taken and set to zero as shown in Eq. (4.10).

∂log[Λ]

∂αi
= 0 (4.10a)

∂log[Λ]

∂µi
= 0 (4.10b)

∂log[Λ]

∂Σi

= 0 (4.10c)

Note that, the derivative of log[Λ] with respect to weightings αi of each component

(Eq. (4.10a)) cannot be performed directly, since the weightings are constrained to

being positive and adding up to one. So, instead of taking derivative with respect

to constrained αi, αi is written in turn as a function of an unconstrained variable bi

and the derivative of log[Λ] is taken with respect to bi as shown in Eq. (4.11) and

Eq. (4.12).

αi =
ebi∑M
i=1 e

bi
(4.11)

∂log[Λ]

∂αi
=
∂log[Λ]

∂bi
· ∂bi
∂αi

= 0 (4.12)
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Solving Eq. (4.10b), Eq. (4.10c) and Eq. (4.12), the estimations of the weightings, the

means, and the covariance matrices of the GMM are obtained as

α̂i =
1

N

N∑
n=1

p(i|n) (4.13a)

µ̂i =

∑N
n=1 p(i|n)xn∑N
n=1 p(i|n)

(4.13b)

Σ̂i =

∑N
n=1 p(i|n)(xn − µ̂i)(xn − µ̂i)T

d
∑N

n=1 p(i|n)
, (4.13c)

where d is the dimension of variable x.

All three expressions in Eq. (4.13) can be easily understood. Estimated weighting

for the ith component α̂i is the mean/expectation of the conditional probabilities that

the set of data points X were generated by the ith mixture. µ̂i and Σ̂i for the ith

component are the mean and covariance of the data set, weighted by the conditional

probability that point xn was generated by the ith mixture component. However,

these three equations are not mutually independent, because GMM parameters α̂i, µ̂i

and Σ̂i are estimated based on the values of p(i|n) which depends on those parameters.

Since Eq. (4.13) cannot be solved directly, the Expectation-Maximization (E-M)

Algorithm, an iterative optimization method, provides a solution. The basic idea is

to start with a first guess of θ, calculate p(i|n), refine θ̂, calculate new p(i|n) and

so forth. The algorithm will stop until the global likelihood Λ cannot be increased.

Proof of the convergence of the E-M algorithm can be found in Dempster et al. (1977)

and McLachlan and Krishnan (2008). Detailed procedures of the E-M algorithm are

summarized as follows:

Assume that the kth estimates of parameters θ are available and noted as α
(k)
i ,

µ
(k)
i and Σ

(k)
i , conditional probabilities p(k)(i|n) are obtained in the E step and new

estimates of α
(k+1)
i , µ

(k+1)
i and Σ

(k+1)
i are obtained in the M step.
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• E Step:

p(k)(i|n) =
α

(k)
i N (xn;µ

(k)
i ,Σ

(k)
i )∑M

i=1 α
(k)
i N (xn;µ

(k)
i ,Σ

(k)
i )

. (4.14)

• M Step:

α
(k+1)
i =

1

N

N∑
n=1

p(k)(i|n), (4.15a)

µ
(k+1)
i =

∑N
n=1 p

(k)(i|n)xn∑N
n=1 p

(k)(i|n)
, (4.15b)

Σ
(k+1)
i =

∑N
n=1 p

(k)(i|n)(xn − µ̂i)(xn − µ̂i)T

d
∑N

n=1 p
(k)(i|n)

. (4.15c)

Given an initial estimate α
(0)
i , µ

(0)
i and Σ

(0)
i , E-M iterates the E step and M

step until it reaches the situation where the logarithm of the new global likelihood

Λ(X; θ(k+1)) equals to the logarithm of the previous global likelihood Λ(X; θ(k)). In

this study, E-M is considered converged if Eq. (4.16) is satisfied.

log[Λ(X; θ(k+1))]

log[Λ(X; θ(k))]
< 1− 10−10 (4.16)

Note that, smooth approximations to arbitrarily shaped densities from GMM may

be achieved by choosing a larger threshold than the one (10−10) used in Eq. (4.16). Ex-

ample of training GMMs using E-M with different thresholds is illustrated in Fig. 4.2.

With the same configuration (6 mixtures), the GMM with larger threshold 10−4 in

Fig. 4.2(a) managed to preserve the general shape of the probability density while the

GMM with smaller threshold 10−10 converged much closer to the details. Depends

on training data sets and applications, different thresholds may be used in E-M for

different purposes. In this study, threshold is fixed at 10−10 but number of mixtures

varies while training GMMs.

It can be proven that E-M would reach a local maximum in likelihood. In same

rare cases, it could reach a local minimum (Russell and Norvig 2009). Since how
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Figure 4.2: Example of training GMMs with different thresholds. Data set is gener-

ated from 0.6N (5, 1.5) + 0.4N (15, 3). From left to right, (a) GMM with 6 mixture

and threshold 10−4; (b) GMM with 6 mixture and threshold 10−10.

E-M converges depends on the initial values α
(0)
i , µ

(0)
i and Σ

(0)
i , initial clustering of

the data set is essential in training GMMs. Better initial clustering would lead to

better initial guess of θ which leads to faster convergence to better local maximum or

even global maximum point. In this study, the k-means clustering algorithm is used

in initial clustering of the training data sets. Details of the k-means algorithm are

given in section 4.2.2. There is another point to notice. The log likelihood for the

final trained GMM may exceed that of the original model, from which the data were

generated. It simply reflects the fact that incomplete data set with a finite number

of data points might not provide an exact reflection of the underlying model (Russell

and Norvig 2009).

4.2.2 The k-means Clustering Algorithm

Data clustering is to group objects in such a way that objects in one group are more

similar than objects in other groups. Data clustering is different from classification.

In data clustering, there is no predefined class though classes may be defined after
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clustering. Clustering algorithms vary for different data types and different mea-

surement of similarity between objects. The k-means clustering algorithm, which is

one of the most famous clustering algorithms, falls in to the center-based clustering

algorithm category.

The k-means algorithm is an iterative approach, where two phases are involved:

the initialization phase and the iteration phase. In the initialization phase, data

points are randomly assigned into k groups/clusters. In the iteration phase, distance

between each data point and the mean of each group is computed and each data

point is then assigned to the nearest group. Mean of a group is updated after all data

points have been assigned. The algorithm will stop until no further changes of group

membership after one iteration. Details of the k-means algorithm go as follows:

Same as section 4.2.1, let X = {x1,x2, ...,xN} be a data set with n data points.

Let g1, g2,..., gk be the k disjoint group/cluster of X and µ(gi) is the center/mean

of cluster gi. dn,i is denoted as the distance between data point xn and center µ(gi).

The choice of distance measures is flexible, depending on different data sets. In this

study, the Euclidean distance is used.

• Initialization

1. Randomly assign data point xn into group gi.

2. Compute µ(gi).

• Iteration

3. Compute dn,i for all data points and groups.

4. Find cn = arg min1≤i≤k dn,i.

5. Assign data point xn to a group according to cn

6. Recompute µ(gi).

7. Repeat 3-6 until no further changes of group membership after one iteration.

The k-means algorithm has some important properties (Gan et al. 2007): (1) it

is efficient and fast; (2) it often terminates at a local maximum and its performance
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depends on the initial groups; (3) the clusters have convex shapes, such as a ball in

three-dimensional space. As a result of the dependence on the initialization, selecting

good initial centers/groups are crucial for the k-means algorithm. Pena et al. (1999)

compares four initialization methods and shows that the random and the Kaufman

initial values (Kaufman and Rousseeuw 1990) outperform the rest of the compared

methods as they make the k-means more effective and more independent on initial

clustering and on instance order. In this study, the random initialization method is

used. Since the k-means algorithm is fast, it is possible to perform k-mean clustering

several times, compare the outputs, such as the total distance or total variance, and

choose the best result. In this study, the best result which is the one with least total

distance is chosen from 5 k-means clustering replicates.

Fig. 4.3 shows an example of clustering using k-means algorithm. Four clusters

are generated from Gaussian distribution with variance 1 at both dimensions. The

centers of the four clusters are [2, 0], [−2, 0], [0, 2], [0,−2], respectively. As shown in

Fig. 4.3(b), the k-means algorithm does a good job as the centroid of each cluster is

close to the original one despite there are some points that are grouped into a wrong

cluster.

It is easy to see that the k-means algorithm and the E-M algorithm share a lot

in common, such as their dependency on initial values and the way they update the

clusters/Gaussian mixtures in one iteration. Actually, the E-M algorithm can be

considered as one of the variation forms of the k-means algorithm (Gan et al. 2007).

4.3 GMM-based Hydrometeor Classification

Dual-polarized weather radar systems can offer the capability to detect and identify

different classes of hydrometeors (e.g., Vivekanandan et al. 1999; Zrnić et al. 2001;

Lim et al. 2005; Ryzhkov et al. 2005b; Marzano et al. 2007). Most hydrometeor clas-

sification techniques are developed based on fuzzy logic approach which is flexible and
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Figure 4.3: Example of clustering using k-means algorithm. Four clusters are gener-

ated from Gaussian distribution with variance 1 at both dimensions. The centers of

the four clusters are [2, 0], [−2, 0], [0, 2], [0,−2], respectively. From top to bottom,

(a) Original Clusters; (b) Clusters from k-means.
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able to adapt to different membership functions (MBF), either developed from exper-

imental evidences or simulations. The GMM may be considered as a superset of the

fuzzy logic approach, since MBFs in a fuzzy logic approach can be approximated and

modeled by a GMM. Thus, the performance of a GMM-based hydrometeor classifier

would at least match the performance of any fuzzy logic approach.

The classification problem can also be approached by different techniques, such

as the Bayesian approach and the Neural Network (NN) approach. The Bayesian

approach is based on the maximum a posteriori (MAP) probability decision rule.

Compared with the fuzzy logic approach, the Bayesian approach is capable of mod-

elling the joint distribution of different variables while fuzzy logic approach cannot

properly model the cross correlations among different variables/dimensions. Being

able to model the cross correlations among different variables, the Bayesian approach

processes the polarimetric radar measurements more efficient than the fuzzy logic ap-

proach, which would lead to better performance. Shown in Marzano et al. (2008), the

Bayesian approach has better accuracy than their previously developed fuzzy logic

approach (Marzano et al. (2007)) for C-band. Note that, both the Bayesian approach

in Marzano et al. (2008) and Marzano et al. (2007) are developed from the same data

set generated from simulations.

Same as the MBF for each hydrometeor class, the crucial step is to model the

prior probability density function (PDF) for each class. A multidimensional Gaussian

PDF is usually used, as it may simplify the mathematical treatment of the Bayesian

problem (e.g., Richards and Jia 1999; Lillesand 2006). The Gaussian assumption

does not have a theoretical foundation nor observational foundation. The choice of

the Gaussian PDF is based on the assumptions that the polarimetric signatures of

hydrometeor classes are hyperellipsoids in the multidimensional observation space.

Shown in Fig. 3.11, the polarimetric signatures of hydrometeor classes tend to have

arbitrary shapes other than hyperellipsoids and may vary if different physical models
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are used. Thus, the Gaussian assumption may not hold especially when more dual-pol

variables are included. GMM-based Bayesian classifiers are not limited by the Gaus-

sian assumption. While enjoying the mathematical benefits from Gaussian density

function, the prior PDFs of each hydrometeor class can also be precisely modeled by

the GMM.

Most hydrometeor classification algorithms are developed from simulations (e.g.,

Straka et al. 2000; Zrnić et al. 2001; Lim et al. 2005). A polarimetric radar simula-

tor can provide physically representative training data sets for different hydrometeor

classes if proper models are used. Compared with measurement data sets, simulation

data sets are often clean data with ground truth, without noise and contaminations

from other species. Though simulation data sets may suffer from the physical mod-

els/assumptions that has been used, they have the freedom to choose specific models

that are suitable for special applications. While there is no explicit boundary in na-

ture, four rain classes may be defined, such as large drops, light rain, medium rain and

heavy rain, for rainfall rate estimation applications. Different physical models, such

as different DSD models, raindrop shape models and terminal velocity models, may be

adopted to generate polarimetric signatures for those four rain classes. Similarly, two

classes may be defined for hail, such as large hail and small hail/graupel. According

to different melting levels and shapes, snow may be group into dry snow, wet snow

or ice crystals. Moreover, mixing species may be defined, such as rain/hail mixture.

Different classes and physical models may be adopted to serve different interests. In

this study, five classes of hydrometeors are considered to assist the development of

the All-Weather Sense-and-Avoid radar for unmanned aero-vehicles (UAV). They are

rain, snow, melting snow, hail and melting hail.
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4.3.1 Bayesian Classification Theory

A Bayesian classifier assigns a hydrometeor class according to its conditional posterior

probabilities p(ci|x) where ci refers to hydrometeor classes and x is a radar observation

vector that consists of dual-pol variables. The classification rule, which is also known

as maximum-likelihood rule, is quite intuitive, as the hydrometeor class is obtained

by the index ci that maximizes the conditional posterior probability

x ∈ ci <=> p(ci|x) > p(cj|x) ∀j 6= i. (4.17)

However, conditional posterior probabilities are usually unknown. From Bayes theo-

rem, posterior probabilities can be calculated from prior probabilities and conditional

likelihood PDF, which is

p(ci|x) =
p(ci)p(x|ci)

p(x)
. (4.18)

Prior probability of hydrometeor class ci, p(ci), is set equal here for all classes, even

though they are likely different from each other in different temperatures and environ-

ment. Also, p(x) is assumed constant with respect to ci. p(x|ci), which is the priori

PDF of hydrometeor class ci, is approximated here using multidimensional GMM as

given by

p(x|ci) =
M∑
m=1

α(i)
mN (x;µ(i)

m ,Σ
(i)
m ), (4.19)

where N (µ,Σ) is Gaussian distribution defined in Eq. (4.2), M is total number of

Gaussian mixtures and α
(i)
m , µ

(i)
m and Σ

(i)
m are the weighting, mean and covariance

matrix for the mth Gaussian mixture of hydrometeor class ci. Therefore, the classifier

assigns each observation a class by maximizing the conditional prior probability, as

given in Eq. (4.20).

x ∈ ci <=> p(x|ci) > p(x|cj) ∀j 6= i. (4.20)
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4.3.2 Hydrometeor Hazard Detection for Airborne Sense and

Avoid Radar

Sense-and-Avoid is becoming a key capability for the future operations of unmanned

aero-vehicles (UAV). Although the GPS and satellite links can provide relayed ground

radar data, the space and time resolutions are not sufficient for critical safety applica-

tions. Also, the pilots (human or automatic) need a comprehensive picture of hazard,

including both weather and collision objects, in order to make timely and efficient

decisions. Using multiple frequency bands, different antenna polarizations and other

diversities is the solution to achieve fast-scanning, multiple functions, and deeper in-

sight into hazard physics (Zhang et al. 2008). On the other hand, the diversities of

antenna system raise a true challenge on how to calibrate, interpret, and understand

these data intelligently. This study assumes airborne radar with multiple receiving

channels and dual-polarization is used as the key sensor for hazard detection. The

proposed airborne radar system also has to perform in various situations where types,

shapes and sizes of hydrometeors may vary significantly, like in summer rain environ-

ment or winter storm environment, or in low altitude as well as high altitude, bringing

more challenges to the hazard detection system.

One well-known difficulty for aerospace hydrometeor hazards detection is the lack

of knowledge of radar signatures for different kind of hydrometeor hazards at X-band,

which is widely used by airborne weather radar. The single-cell Monte Carlo simu-

lation introduced in Chapter 3 is used to generate realistic radar signatures for five

hydrometeor classes including rain, snow, melting snow, hail and melting hail. Ta-

ble 4.1 lists the detailed mixing ratio and melting ratio ranges used in the simulations

and Table 3.8 lists the details of DSD parameter for different hydrometeor species.

Frequency of the simulation is set at 9.41 GHz to match the hardware system under

development, and it can be easily changed or extended to dual-frequency applica-

tions. Outputs of the simulation are equivalent reflectivity factor at both horizontal
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and vertical polarization (ZH,V ), differential reflectivity (ZDR), specific differential

phase (Kdp), correlation coefficients (ρhv) and specific attenuation (Ah,v). In order

to have a statistical significance, a set of 10,000 scenarios for each species have been

carried out. Only one species out of the five species is generated in each scenario.

In other words, simulation outputs of each case are clear data for that particular

hydrometeor species. Scatter plots of ZH and ZDR as well as ZH and ρhv are shown

in Fig. 4.4.

Table 4.1: Mixing and Melting Ratio Ranges used in the Single-Cell Simulations. (M

for Melting)

Rain Snow Hail MSnow MHail

Mixing ratio [g kg−1] 0 - 12 0 - 12 0 - 12 0 - 3 0 - 5

Melting ratio 0 0 0 0 - 0.3 0 - 0.5

The GMM-based detection and classification scheme introduced in 4.3.1 has been

applied here for hydrometeor hazard detection. Radar observation vector is set as

x = [ZH , ZDR, Kdp, ρhv]
T , class index ci where i = 1, ..., 5 refers to the five hydrometeor

classes. Five GMMs, one for each hydrometeor class, are used. Number of mixtures

in each GMM is M = 4. α
(i)
m , µ

(i)
m and Σ

(i)
m for each hydrometeor class are trained

by using the E-M algorithm introduced in section 4.2.1. Fig. 4.5 shows the GMM

model for rain in ZH and ZDR dimensions. By comparing it with the scatter plot

(Fig. 4.4(a)), it can be seen that GMM model well presents the original distribution.

Data from simulation has been randomly divided into two parts. 80% data for training

and 20% data for testing. Table 4.2 lists the accuracy of this classifier. As is shown,

the classifier does a good job in distinguishing rain, snow and hail but makes some

mistakes when telling if snow/hail is melting. This situation may be improved by

including temperature information as input to the GMM-based classifier.
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Figure 4.4: Scatter plots of hydrometeor species at 10 GHz. From top to bottom, (a)

ZH and ZDR plot, (b) ZH and ρhv plot.
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Figure 4.5: Approximate distribution from GMM for rain (ZH and ZDR).

Table 4.2: Classification accuracy of GMM model for airborne radar system (X-band).

(M for Melting)

Rain Snow MSnow Hail MHail

Rain 0.9855 0.0075 0.005 0 0.002

Snow 0 0.798 0.202 0 0

MSnow 0.044 0.3515 0.6045 0 0

Hail 0 0 0.002 0.6695 0.3285

MHail 0.0005 0 0.001 0.161 0.8375
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4.3.3 Hail Hazard Detection

Detection accuracy shown in Table 4.2 is results for ‘clear’ data, which means only one

species existing in a radar resolution volume. However, in a real weather field, there

are usually more than one species considering the huge size of one radar resolution

volume. Therefore, performance of the system needs to be inspected in simulated

weather field where different species mixes with each other. As attenuation in X-band

cannot be ignored, how attenuation affects the system also need to be examined. Since

the hazards detection system is expected to detect dominant hail species from rain

or snow background, only three species including rain, snow and hail are considered

(melting hail or melting snow are considered as hail or snow, respectively).

Figure 4.6: Weather field at about 11 km within the stratosphere for case one. From

left to right, (a) Mixing ratio of snow; (b) Mixing ratio of hail.

As airplane would fly in different layers in the atmosphere, two cases generated

from ARPS model (section 3.6) are studied. Simulated radar returns includes ZH ,

ZDR, Kdp and ρhv are used as input to hazards detection system. Plots of ZH with

and without attenuation are shown in Fig. 4.7 and Fig. 4.10. In case one, A PPI

scan is generated at about 11 km within the stratosphere where only snow and hail

exist. Fig. 4.6 shows the weather field for this case. In case two, simulated PPI scan

is generated within a melting layer where weather conditions are more complicated.
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Figure 4.7: Simulated PPI scan for case one (with and without attenuation). From

left to right, (a) Simulated reflectivity; (b) Simulated reflectivity with attenuation.

Not only rain but also hail and wet melting hail exist in this layer. Fig. 4.9 show the

weather field for case two.

In case one, in front of the radar there is a large snow mixing hail area. Although

the snow-mixing ratio is not high, at about 15 km ahead of the airplane, there is a

region with very high hail density as shown in Fig. 4.6(b). In simulated PPI scans

with and without attenuation (Fig. 4.7), attenuation effects that lead to 3 to 5 dB

difference in reflectivity are shown. As shown in the hazard detection results (Fig. 4.8),

the classifier performs very well in this case. When no attenuation in radar returns,

the classifier picks up almost all the region where hailstone exists and labels out other

snow area. Results completely match the underneath weather field. Even when radar

returns are affected by attenuation, though it makes some mistakes (labels some area

as rain), the classifier is still able to identify most of the hail regions.

In case 2, in front of the radar there is a large rain mixing hail area. Rain mainly

locates at the left side while hail is everywhere. Both mixing ratios of rain and hail

are very high at about 15 km ahead of the airplane as shown in Fig. 4.9. Shown in

simulated PPI scans with and without attenuation (Fig. 4.10), reflectivity attenuates

greatly after the high rain-hail density area. There is about 20 dB difference. As
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Figure 4.8: Hazards detection results for case one (with and without attenuation).

From left to right, (a) Hazard detection results with no attenuation; (b) Hazard

detection results with attenuation.

Figure 4.9: Weather field for case two. From left to right, (a) Mixing ratio of rain;

(b) Mixing ratio of hail.
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Figure 4.10: Simulated PPI scan for case two (with and without attenuation). From

left to right, (a) Simulated reflectivity; (b) Simulated reflectivity with zttenuation.

shown in Hazards detection results (Fig. 4.11), the classifier also performs well for

this case. When no attenuation in radar returns, the classifier identifies most regions

where hail is the dominant species except the high rain-hail density area. This is

acceptable since the model is trained from ‘clear’ data. It works well in areas where

one species is dominant but it is hard to predict when no dominant species exists.

Similar conclusion may be drawn from Fig. 4.12 where hail hazard detection ratio at

different hail mixing ratio levels is shown. It can be seen that, the GMM classifier is

able to detect hail hazard even at very low hail mixing ratio level. Since in this case,

there is a large high rain-hail density area where mixing ratios of rain and hail are

both high, hail detection ratio decreases as hail mixing ratio increases. This problem

may be solved by defined a rain-hail mixture class where both hail and rain are mixed

at different mixing levels. Performance of the GMM classifier is degraded when radar

measurements are contaminated by high attenuation. Attenuation correction using

the Gaussian mixture parameter estimator (GMPE) is discussed in Chapter 5.
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Figure 4.11: Hazards detection results for case two (with and without attenuation).

From left to right, (a) Hazard detection results with no attenuation; (b) Hazard

detection results with attenuation.

Figure 4.12: Hail hazards detection ratio at different hail mixing ratio levels for case

two with and without attenuation.
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Chapter 5

Gaussian Mixture Parameter Estimator (GMPE)

If polarimetric radar measurements are denoted as vector z, the weather parameter

estimation problem can be simplified as finding the connections between observation z

and parameters of interests x. There are mainly three kinds of estimation approaches.

Many conventional polarimetric approaches assume PLRs between z and x and use

linear regression models (e.g., Gorgucci et al. 2002; Bringi et al. 2004; Cifelli et al.

2011; Ryzhkov et al. 2005a). Neural network approaches consider a black box that

has z as input and x as output (e.g., Vulpiani et al. 2006, 2009). Bayesian probability

approaches try to estimate x from maximizing the posterior probability p(x|z) (e.g.,

Evans et al. 1995; Di Michele et al. 2005; Chiu and Petty 2006; Cao et al. 2010).

Gaussian mixture parameter estimator falls into the third category. Different from

other Bayesian approaches, the prior distribution of x can be precisely modeled by a

GMM in the GMPE approach. Thus, the GMPE approach is a “best” estimator in

terms of minimum-variance and unbiased performance.

5.1 Theoretical fundamentals

5.1.1 Derivation

Microphysics parameters such as R, W , N0 and Λ and the corresponding radar vari-

ables such as Zh, Zdr and Kdp of a radar resolution volume (bin) can be combined
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and considered as an unknown and random vector (called state vector) x, such as

x = [R,Zh, Zdr] or x = [N0,Λ, Zh, Zdr, Kdp, Ah, Adp]. The prior knowledge of x (or

prior distribution) is denoted as p(x). As shown in Chapter 4, p(x), can be learned

and represented by the Gaussian mixture model as follows:

p(x) =
M∑
i=1

αiN (x;µi,Σi), (5.1)

where N (µ,Σ) is Gaussian distribution with mean µ and covariance matrix Σ as

defined in Eq. (4.2), M is the number of Gaussian components and αi, µi and Σi

are the weighting, mean and covariance matrix for the ith Gaussian component. If

x ∈ Rn, then µi ∈ Rn and Σi ∈ Rn×n.

If radar measurements are denoted as observation vector z, such as z = [Zh, Zdr, Kdp]

or z = [Zdr, ρhv], the estimation problem can be formulated based on a linear rela-

tionship:

z = Hx + v, (5.2)

where v is sensor noise vector. If z ∈ Rm, then v ∈ Rm and H ∈ Rm×n. Normally,

m < n. Matrix H links state vector to observation and can be easily modified to

accommodate different observation variables.

According to Bayesian theorem, conditional distribution p(x|z), also known as the

posterior distribution, yields

p(x|z) =
p(z|x)p(x)

p(z)
. (5.3)

Since p(x) is known, p(x|z) can be obtained if p(z) and p(z|x) are acquired. Assume

state vector x and noise vector v are uncorrelated, which is usually true, p(z|x) equals

p(z|x) = p(Hx + v|x)

= p(v) = p(z−Hx|v). (5.4a)

If measurement noise v is modeled as white Gaussian noise from N (0,R) then p(z|x)

yields

p(z|x) = N (z−Hx; 0,R) = N (z; Hx,R). (5.5)
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According to linear transformation property of Gaussian distribution, p(Hx) follows

p(Hx) =
M∑
i=1

αiN (Hx; Hµi,HΣiH
T ). (5.6)

Since
∑M

i=1 αi = 1 (section 4.1), p(v) can be written as

p(v) = N (v; 0,R) =
M∑
i=1

αiN (v; 0,R). (5.7)

Therefore, according to linear addition property of Gaussian distribution, p(z) yields

p(z) = p(Hx + v) =
M∑
i=1

αiN (z; Hµi,Pi), (5.8)

where Pi = HΣiH
T + R is the covariance matrix for ith Gaussian component in

p(z). As it can be seen from Eq. (5.8), p(z) is also a Gaussian mixture with the same

number of mixtures as p(x).

Plugging p(z|x), p(x) and p(z) into Eq. (5.3) yields

p(x|z) =
N (z; Hx,R)

∑M
i=1 αiN (x;µi,Σi)∑M

i=1 αiN (z; Hµi,Pi)
. (5.9)

Since the product of two Gaussian distributions is still Gaussian (proof is given in

section 5.1.2),

N (z; Hx,R)N (x;µi,Σi) = N (z; Hµi,Pi)N (x; µ̂i, P̂i), (5.10)

where µ̂i = µi + Ki(z−Hµi), P̂i = (I−KiH)Σi and Ki = ΣiH
TP−1

i . Eq. (5.9)

becomes

p(x|z) =

∑M
i=1 αiN (z; Hµi,Pi)N (x; µ̂i, P̂i)∑M

i=1 αiN (z; Hµi,Pi)
. (5.11)

If βi is set to be

βi =
αiN (z; Hµi,Pi)∑M
i=1 αiN (z; Hµi,Pi)

, (5.12)

Eq. (5.11) can be further written as

p(x|z) =
M∑
i=1

βiN (x; µ̂i, P̂i). (5.13)
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As shown in Eq. (5.13), posterior p(x|z) is also a Gaussian mixture with the same

number of mixtures as p(x) and βi is the weighing of the ith Gaussian mixture in

p(x|z).

Bayes’ least square estimate of x is given as the conditional mean (proof is given

in section 5.1.3):

x̂ = E[x|z] =
M∑
i=1

βiµ̂i, (5.14)

where E[.] is the expectation operator. x̂ is considered the “best” estimate of x in

terms of minimum-variance and unbiased performance.

5.1.2 Proof of Eq. (5.10)

Assume:

N (z; Hx,R)N (x;µi,Σi) =
1√

(2π)
(m+n)√|R| · |Σi|

e
− 1

2
||z−Hx||2

R−1−
1
2
||x−µi||2

Σ−1
i

=
1√

(2π)
(m+n)√

C2

e−
1
2
C1

= N (z; Hµi,Pi)N (x; µ̂i, P̂i)

According to Sherman-Morrison-Woodbury formula (Lewis et al. 2006):

P−1
i = (HΣiH

T + R)−1

= R−1 −R−1H(HTR−1H + Σ−1
i )−1HTR−1

= R−1 −R−1HP̂iH
TR−1

Then
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C1 = ||x− µ̂i||2P̂−1
i

+ ||z||2
P−1

i
− 2µTi HTP−1

i z + ||µi||2HT P−1
i H

= ||x− µ̂i||2P̂−1
i
− 2µTi ΣT

i P̂iH
TR−1z− ||HTR−1z||2

P̂i
− ||Σ−1

i µi||2P̂i
+ ||z||2R−1 + ||µi||2Σ−1

i

= ||x− µ̂i||2P̂−1
i
− ||HTR−1z + Σ−1

i µi||2P̂i
+ ||z||2R−1 + ||µi||2Σ−1

i

= ||x− P̂iΣ
−1
i µi − P̂iH

TR−1z||2
P̂−1

i
− ||HTR−1z + Σ−1

i µi||2P̂i
+ ||z||2R−1 + ||µi||2Σ−1

i

= ||x||2
Σ−1

i +HT R−1H
+ ||z||2R−1 + ||µi||2Σ−1

i
− 2zTR−1Hx− 2µTi Σ−1

i x

= ||z−Hx||2R−1 + ||x− µi||2Σ−1
i

and

C2 = |R| · |Σi|

= det(

R 0

0 Σi

)

= det(

 I 0

H I


R 0

0 Σi


I HT

0 I

)

= det(

 Σi ΣiH
T

HΣi HΣiH
T + R

)

= det(

I Ki

0 I


 P̂i 0

HΣi Pi

)

= det(

P̂i 0

0 Pi

)

= |Pi| · |P̂i|

5.1.3 Proof of Bayes’ Least Square Estimate

Bayes’ least square estimate, which is the conditional mean of the posterior distribu-

tion, is a minimum-variance and unbiased estimate.

• Unbiasedness: Let

x̂ = E[x|z].
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Using the iterated law of conditional expectation (E {E[x|z]} = E[x]), E[x− x̂]

can be written as

E[x− x̂] = E {E[x− x̂|z]}

= E {E[x|z]− E[x̂|z]}

= E[x̂− x̂]

= 0.

• Minimum-Variance: Let

µ = E[x|z].

V AR[x̂] can be formulated as

V AR[x̂] = E[(x− x̂)T (x− x̂)]

= E[(x− µ+ µ− x̂)T (x− µ+ µ− x̂)]

= E[(x− µ)T (x− µ)] + E[(µ− x̂)T (µ− x̂)] + 2E[(x− µ)T (µ− x̂)]

Using the iterated law of conditional expectation, the third term in last equation

can be written as

2E[(x− µ)T (µ− x̂)] = 2E
{
E[(x− µ)T (µ− x̂)|z]

}
= 2E

{
E[(x− µ)|z]T (µ− x̂)

}
= 2E

{
(E[x|z]− µ)T (µ− x̂)

}
= 0.

Therefore, V AR[x̂] becomes

V AR[x̂] = E[(x− µ)T (x− µ)] + E[(µ− x̂)T (µ− x̂)].

Since both two terms in V AR[x̂] are non-negative, its minimum point is reached

when the second third is zero leading to

x̂ = µ = E[x|z].
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5.1.4 Definitions of Error Terms

To better analyze the performance of GMPE and compare with other approaches,

four error terms including bias, root mean-square error (RMSE), fractional standard

error (FSE) and correlation coefficient are considered. If X is the parameter (such

as R, N0 or Ah) being estimated, X̂ is the estimated value of the parameter and

estimation error is defined as

εX = X̂ −X. (5.15)

Thus the bias is the mean of estimation error, ε̄X , RMSE can be calculated from

RMSE =
√
ε̄2X + σ2

X , (5.16)

and FSE (expressed as percentage) yields

FSE = 100
RMSE

X̄
, (5.17)

where σX is the standard deviation (SD) of the estimation and X̄ is mean of the

parameter. Moreover, the correlation coefficient is defined as

r(X̂,X) =
Cov(X̂,X)√

Cov(X̂, X̂)Cov(X,X)
, (5.18)

where Cov is the covariance operator.

5.2 Performance Evaluation for GMPE

In this section, performance of GMPE is evaluated through two applications: attenua-

tion estimation for different hydrometeors (section 5.2.1) and rainfall rate estimation

using dual-frequency polarimetric radar measurements (section 5.2.2). A training

dataset has been constructed using the single-cell Monte Carlo simulation described

in section 3.5 for the performance evaluation.

Three hydrometeor species including rain, snow and hail are considered. Inputs

into the simulator are mixing ratios of rain (qr), snow (qs) and hail (qh). Outputs
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Table 5.1: Key Parameters of the Radar Simulator.

Radar frequency (wavelength) 5 GHz (6 cm) and 10 GHz (3 cm)

Volume of single cell 1000 m3

Mixing ratio of rain (qr) 0-10 [g kg−1]

Mixing ratio of snow (qs) 0-10 [g kg−1]

Mixing ratio of hail (qh) 0-10 [g kg−1]

Drop size distribution (DSD) N(D) = N0exp(−ΛD)

include exponential drop size distribution (DSD) parameters N0 and Λ, water content

W (for all species), rainfall rate R (only for rain) and dual-polarized variables Zh, Zdr,

Kdp, as well as attenuation factors Ah and Av in both C-band and X-band. Parameters

to be estimated, such as R or Ah for each resolution cell, are related to corresponding

radar signatures of this volume. The GMM approximates the joint-distribution of all

the variables and extracts the relationships underlying them. As a visual example

and comparison, Fig. 5.1(a) and 5.1(b) show the scatter plots for radar observation

variables (ZH and ZDR) for the three hydrometeor species at different frequencies, and

Fig. 5.1(c) and 5.1(d) show the approximate distribution from trained GMMs. A set of

6000 simulations with all the output parameters are carried out for each hydrometeor

type in order to be statistically significant (Total=18000). Noisy measurements are

obtained from adding random noise to clean observations. Noise is assumed to be

zero mean, uncorrelated Gaussian noise with standard deviation 1 [dB], 0.5 [dB] and

0.5 [deg km−1] forZH , ZDR and Kdp, respectively. Selections of these noise levels

are mainly for demonstration purposes and to set up a performance boundary of

estimators, and they should be adjusted based on the signal-to-noise ratio (SNR) and

radar parameters in practical applications.
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Figure 5.1: Scatter plots and Monte-Carlo simulated distributions of dual-polarized,

dual-frequency radar signatures. From left to right and top to bottom, (a) Scatter

plot of ZH and ZDR at C-Band, (b)Scatter plot of ZH and ZDR at X-Band, (c)

Approximate distribution from G3 at C-Band, (d) Approximate distribution from G4

at X-Band.
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5.2.1 Attenuation Estimation for Rain, Snow and Hail

Hydrometeors cause significant attenuation at C-band and X-band (e.g., Vulpiani

et al. 2008; Anagnostou et al. 2006). As a consequence, radar measured reflectivity

(Zh and Zdr) must be corrected before they can be used quantitatively. Researchers

have been using PLRs (e.g., Anagnostou et al. 2006; Bringi and Chandrasekar 2001;

Gorgucci et al. 2006; Gorgucci and Baldini 2007), such as Ah/v = aKdp, Ah/v = aZb
h/v,

Ah/v = aZb
h/vZ

c
dr and Ah/v = aZb

h/vZ
c
drK

d
dp ( Zh in [mm6 m−3], Zdr being dimensionless

and Kdp in [deg km−1]), to estimate and correct attenuations. Such relations, mainly

used for rain, have been extended to other hydrometeor species (Marzano et al. 2010).

As an example of C-band observations, regression coefficients (a, b, c, d) are derived

from the simulated dataset and the root mean square errors (RMSE) of each PLR for

Ah estimation based on clean and noisy measurements are given in Table 5.2. RMSEs

of each PLR for Av are similar

Table 5.2: RMSEs in [db km−1] for Ah Estimations Based on PLRs.

A(Kdp) A(Zh) A(Zh, Zdr) A(Zh, Zdr, Kdp)

Clean Noisy Clean Noisy Clean Noisy Clean Noisy

Rain 0.459 0.461 0.229 0.294 0.171 0.235 0.125 0.205

Snow 0.522 0.523 0.53 0.532 > 1 > 1 > 1 > 1

Hail 0.219 0.497 0.137 0.152 0.136 0.155 0.127 0.139

All Three 0.470 0.472 0.476 0.477 > 1 > 1 > 1 > 1

As more variables are used in power law relations, better results are obtained,

except that Zdr measurements of snow have a negative impact.

To evaluate and compare performance of GMPE, three different estimators are

trained, namely G1, G2 and G3. For G1, state vector x = [Ah, Av, Kdp]
T and only the

rain data are used in training. For G2, state vector x = [Ah, Av, Zh, Zdr, Kdp]
T and
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only the rain data are used in training. ForG3, state vector x = [Ah, Av, Zh, Zdr, Kdp]
T

and all the data (rain, snow and hail) are used in training.

The approximate distribution of ZH and ZDR form G3 is shown in Fig. 5.1(c),

while the RMSEs of G1, G2 and G3 for Ah estimation are shown in Fig. 5.2 and

Fig. 5.3. The RMSEs for Av, which are not shown here, are slightly better than

that of Ah. Compared to PLRs, GMPEs have significantly better accuracies in all

scenarios.

Figure 5.2: Performance of G1 and G2 for estimating Ah of Rain.

Given the same weather radar observations such as Z = [Kdp]
T , both G1 (smaller

model) and G2 (larger model) can be used for rain attenuation correction, whereas

H = [0, 0, 1] for G1 and H = [0, 0, 0, 0, 1] for G2. The two GMPEs perform almost the

same for clean and noisy observation, assuming six mixtures are used, as shown in

Fig. 5.2. If the radar observation is given as Z = [Zh, Zdr, Kdp]
T instead, either G2 or
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Figure 5.3: Performance of G3 for estimating Ah of Rain (Z = [Zh, Zdr, Kdp]
T ).
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G3 can be used for rain attenuation correction. However, G3 needs more (11) mixtures

to reach the same performance as G3 (which uses 7 mixtures). This is because G3 is

used to model a much more complex distribution that includes rain, snow and hail,

while G2 only converges to the distribution of rain. In real-world applications, a small

model can be trained and used in platforms such as mobile radars, and a large model

can be trained and used in ground-based radars with more computing resources. Due

to the convergence of GMM, there is no negative impact if more observation variables

are incorporated into GMM. Furthermore, a ‘super-model’ for all seasons, areas and

hydrometeor species may be trained and readily tuned for specific applications with

different observations by selecting different H.

In addition, GMPE is able to include path attenuation correction techniques, such

as the constrained parameter technique (e.g., Bringi and Chandrasekar 2001; Gorgucci

et al. 2006), to optimize the attenuation correction along a radar bin. The detailed

discussion is given in section 5.5.

5.2.2 Rainfall Rate Estimation Through Dual-Frequency and

Dual-Polarized Radar Measurements

DSD variability is well recognized as the major source of the diversity of conventional

R(Z) relations. Dual-frequency and dual-polarized measurements provide more in-

formation on DSD, and as a result, approaches that use such radar data have im-

proved rainfall rate estimation (e.g., Ryzhkov et al. 2005a; Cao et al. 2010; Rose and

Chandrasekar 2006; Vulpiani et al. 2006). Those existing approaches are still mostly

PLRs, such as R(Zh, Zdr) = aZbZc
dr and R(Zh, Zdr, Kdp) = aZb

hZ
c
drK

d
dp. According

to Ryzhkov et al. (2005a), R(Zh, Zdr, Kdp) outperforms other relations in most cate-

gories. Although there are some studies that compare rainfall rate estimation in differ-

ent frequencies (Testud et al. 1992) and retrieve DSD (e.g., Haddad et al. 2006; Rose

and Chandrasekar 2006), none of the existing work has used both dual-polarization
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and dual-frequency radar observations. In this sudsy, regression coefficients (a, b, c,

d) are derived from the simulation dataset, and RMSE of R(Zh, Zdr, Kdp) based on

clean and noisy measurements are given in Table 5.3 for both X and C-bands. A

combined state vector x = [R,ZX
h Z

X
dr, K

X
dp, Z

C
h , Z

C
dr, K

C
dp]

T (superscript (.)X and (.)C

denote measurement from X-band and C-band, respectively) is used for GMM. A

GMPE, G4, is trained from simulated rain data with the combined state vector x.

The approximate distribution of ZH and ZDR form G4 is shown in Fig. 5.1(d), and

the performance of G4 with respect to different numbers of mixtures is presented in

Fig. 5.4. Again, GMPE outperforms R(Zh, Zdr, Kdp) in both X-band and C-band for

all the scenarios. For combined ‘clean’ X-band and C-band observations, RMSE of

the R estimation is only 2.7 [mm hr−1] for G4 estimator (72% improvement from the

PLR estimator).

Table 5.3: RMSEs in [mm hr−1]for R estimation based on PLRs.

R(ZX
h , Z

X
dr, K

X
dp) R(ZC

h , Z
C
dr, K

C
dp)

clean 9.82 15.35

Noisy 31.58 26.44

5.2.3 Conclusions on Performance of GMPE

GMM provides an efficient way to accommodate extra information from antenna

and frequency diversities and an ‘omnipotent’ solution to model the ‘knowledge’ in

training data. The GMPE also provides minimum variance estimations for weather

parameters, without the limitation of deterministic models or simple Gaussian models.

By utilizing both measurement data and Monte-Carlo simulation data in training, the

GMM approach establishes a framework to merge the advantages of phenomenological

models and physical models and therefore achieves better accuracies and flexibilities

than existing methods. GMM/GMPE can be applied to other radar-meteorological
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Figure 5.4: Performance of G4 for rainfall rate estimation.
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applications such as DSD retrieval, water content estimation or other parameters

(wind, temperature, etc.) associated with radar observations. Also it can incorporate

more observation variables such as linear depolarization ratio (LDR) and correlation

coefficients (ρhv) and improve estimation accuracy, and can be extended to using more

complex measurement noise models. Furthermore, a ‘super model’, or a global GMPE

for parameter estimations based from multiple-sensor observations, is possible. The

structure of the GMPE also makes it easy to extend to explore the spatial or temporal

relations (Hogan 2007) in a Kalman Filter structure (Lewis et al. 2006). GMPE with

a Kalman Filter structure is discussed in Chapter 6.

5.3 S-band DSD Retrieval Using GMPE

The GMPE is applied to retrieve DSD parameters using S-band polarimetric radar

measurements in this section. Retrieval results are compared with those from two

physically based polarimetric algorithms, which have been recently proposed. The

first one is known as the β method which is introduced by Gorgucci et al. (2002)

and later improved in Bringi et al. (2004). The β method is based on the normalized

Gamma DSD (defined in Eq. (3.5)). The basic idea assumes raindrop axis ratio to

be of the form ra = 1− βD, treats raindrop shape as a variable and tries to retrieve

β from ZH , ZDR and KDP . After β is estimated, the intercept parameter Nw and

median diameter D0 are estimated by means of the retrieved β, ZH and ZDR. The

shape parameter µ is computed as a function of the retrieved D0 and β as well as

ZDR. The details of the β method are present as follows:

β = 2.08Z−0.365
h K0.380

DP Z0.965
dr (5.19a)

log10Nw = 3.29Z0.058
h Z−0.023β−1.389

dr (5.19b)

D0 = 0.56Z0.064
h Z0.024β−1.42

dr (5.19c)

µ =
200β1.89D2.23β0.039

0

Zdr − 1
− 3.16β−0.046Z0.374β−0.355

dr (5.19d)
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where Zh in [mm6 m−3], Zdr being dimensionless and Kdp in [deg km−1]. Rainfall rate

R is given by (Bringi et al. 2004)

R = 0.105β0.865Z0.93
h Z−0.585β−0.703

dr . (5.20)

The second one is known as the C-G method which is introduced by Zhang et al.

(2001) and improved in Brandes et al. (2004). The C-G method is based on the

constrained-Gamma DSD (given in Eq. (3.8)), where a constraint µ − Λ relation is

added to a Gamma DSD (defined in Eq. (3.4)). The constraint µ − Λ relation from

Brandes et al. (2004) yields

Λ = 0.0365µ2 + 0.735µ+ 1.935. (5.21)

This constraint reduces the three-parameter Gamma DSD to a two-parameter model.

By assuming the raindrop axis ratio follows the one proposed in Brandes et al. (2002),

the shape parameter µ is estimated from Zdr. After µ is retrieved, D0 is calculated

from Eq. (5.21) and Λ is computed by making use of the constrained relationship and

Zh. Rainfall rate R from the C-G method is given by:

R = 0.00760Zh × 100.165Z2
DR−0.897ZDR , (5.22)

where Zh in [mm6 m−3] and ZDR is in [dB].

Table 5.4: Performance of DSD Retrieval from the β Method. (All in [mm hr−1])

Parameters Bias STD RMSE FSE

log10Nw 0.20 0.48 0.52 15.88%

µ -0.41 2.21 2.25 110.89%

D0 -0.12 0.27 0.29 16.63%

The S-band simulation dataset generated in section 3.5.2 is used in this study.

Scatter plots of this dataset is shown in Fig. 3.12. The dataset has been divided into

two portions: 4000 cases are used to train GMM and the other 2000 cases are used to
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Table 5.5: Performance of DSD Retrieval from GMPE with 20 mixtures. (All in [mm

hr−1])

Parameters Bias STD RMSE FSE

log10Nw -0.01 0.24 0.24 7.52%

µ 0.01 1.6 6 1.66 82.12%

D0 0 0.18 0.18 10.02%

test all three algorithms. A zero mean random fluctuation of the polarimetric variables

has been introduced to realistically reproduce the testing dataset, resulting in a noise

standard deviation of 1 [dB] for ZH , 0.2 [dB] for ZDR, and 0.32 [deg km−1] for Kdp.

The state vector for GMPE is constructed as x = [R, log10Nw, µ,D0, ZH , ZDR, Kdp]
T ,

therefore, DSD parameters and rainfall rate can be retrieved at the same time from

GMPE. Number of mixture in the GMM is 20. Results of DSD retrieval by the β

method and GMPE are shown in Table 5.4 and Table 5.5. GMPE outperforms the β

method in every error category. Results of rainfall rate retrieval by the C-G method,

GMPE and the β method are shown in Fig. 5.5, Fig. 5.6 and Fig. 5.7, respectively.

Again, GMPE has the best performance in every error category.

Figure 5.5: Results of rainfall rate retrieval by the C-G method. (All in [mm hr−1])
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Figure 5.6: Results of rainfall rate retrieval by GMPE with 20 mixtures. (All in [mm

hr−1])

Figure 5.7: Results of rainfall rate retrieval by the β method. (All in [mm hr−1])
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5.4 Gaussian Mixture Rainfall Rate Estimator

In this section, the GMPE approach is applied to polarimetric radar-based rainfall rate

estimation. To distinguish from general GMPE, it is renamed the Gaussian Mixture

Rainfall-rate Estimator (GMRE). The flowchart of the GMRE approach is shown in

Fig. 5.8. The GMRE approach was validated by using data collected during the Joint

Polarization Experiment (JPOLE) from the well-gauged central Oklahoma region and

S-band radar data from the KOUN radar (Doviak et al. (2002), polarimetric prototype

of the WSR88D) over a multi-year period (Ryzhkov et al. 2005b). Performance of

GMRE will be compared to other rainfall rate estimators that were developed and

tested on the JPOLE dataset.

Figure 5.8: Flowchart of Gaussian Mixture Rainfall-Rate Estimator.
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5.4.1 Training Dataset Construction

This study adopted the sing-cell Monte Carlo simulation technique introduced in

section 3.5 to construct a training dataset for GMRE. An exponential distribution

(defined in Eq. (3.2)) is used to represent raindrop size distribution:

N(D) = N0exp(−ΛD).

This distribution depends on two parameters: the intercept parameter N0 [m−3mm−1]

and slope parameter Λ [mm−1]. Slope is uniquely determined if N0 and water content

W are known when given by

Λ = (
πN0ρw
W

),

where ρw is the density of water. Since N0 and W have physical meaning, the dynamic

range of both are well-studied and only a weak correlation is found between those

parameters (Zhang et al. 2008). Even though the exponential distribution may not

represent very small or large raindrops as well as the Gamma distribution (three

free parameters), selecting this distribution helps reduce the number of unrealistic

parameter cases.

Shown by many observation studies, intercept parameter and water content vary

for different rain regimes (e.g., Waldvogel 1974; Zhang et al. 2008). Reciprocally,

different types of rain may be emulated from randomly generating N0 and W . The

empirical range of N0 is from 101.5 to 106 [m−3mm−1], while W can reach 10 [g m−3]

(Zhang et al. 2008). While the ranges of N0 and W are well studied, the distribution

of N0 and W remains less certain. In some studies (e.g., Li et al. 2011; Vulpiani

et al. 2006), a uniform distribution of DSD parameters is assumed, which leads to

equal probability for different rain types. This assumption may not hold in general

since smaller rainfall (R < 30− 40 [mm hr−1]) is more frequent than heavier rainfall

intervals/cases.

In this study, prior distributions of N0 and W are designed to favor rainfall lower

than 40 [mm hr−1] and marginalize the probability of extreme rain cases by setting
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Figure 5.9: Distribution of rainfall rate (R) in Monte Carlo Simulation.
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Table 5.6: Key Parameters of the Single Cell Monte-Carlo Simulation used in the

GMRE Study.

Radar frequency 2.705 GHz (matching KOUN frequency)

Radar elevation angle 0o

Volume of a single cell 1000 m3

Temperature Uniformly distributed between 5oC to 20oC

Raindrop size 0.5 mm to 8 mm with step size 0.1 mm

Canting angle distribution N (0, 10)

Scattering model T-Matrix

Axis ratio of raindrops Brandes et al. (2002) as shown in Eq. (3.13)

Terminal velocity of rain drops Brandes et al. (2002) as shown in Eq. (3.14)

Intercept parameter N0 [m−3mm−1] Uniformly between 101.5 to 104

Water Content W [g mm−3] One-sided N (0, 2)

W from a one-sided Gaussian distribution and N0 from a uniform distribution with

a smaller upper bound. Table 5.6 gives details of the simulation. Outputs of the

simulation includes rain microphysics parameters N0, Λ, R and the corresponding

dual-polarization variables Zh, Zdr, and Kdp. It is worth mentioning that 8,000 cases

have been generated to help provide statistical significance. As illustrated in Fig. 5.9,

in the majority of the cases R is lower than 40 [mm hr−1] and the number of oc-

currences decreases significantly as R increases. Even though the prior distribution

input into the Monte-Carlo simulation emphasizes smaller rainfall, a broad range of

rainfall is still covered as R reaches as high as 180 [mm hr−1]. Fig. 5.10(a) and 5.10(b)

show the scatterplots of ZH and ZDR as well as ZH and Kdp from the MC simula-

tion. According to the NEXRAD R(Zh) relationship (Eq. (5.23)), R = 20 [mm hr−1]

corresponds to approximately 43 [dBZ] for observed reflectivity. Combined with R

distribution in Fig. 5.9, where 70 percent of the occurrences are R > 20[mm hr−1],
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the majority of cases concentrated between 43 [dBZ] to 60 [dBZ] can be explained.

Due to a large amount of big and oblate raindrops caused by a combination of large

R and N0 as well as randomness added to the axis ratio relation, there are some

extreme cases where ZH > 55 [dBZ], ZDR > 5 [dB] and KDP > 2.5 [deg km−1] in

the simulation dataset. An advantage of the Monte-Carlo simulation is that it can

provide the relative possibility of occurrence for extreme cases. The incorporation of

extreme cases are necessary for training the GMM and it will not influence the per-

formance of GMRE, since the GMM always converges to the true distribution as the

number of mixtures increases (GMM and number of mixtures is defined in Eq. (4.1)).

Fig. 5.11(a) and 5.11(b) present the approximate distribution of ZH and ZDR from

one trained GMM with five mixtures and another one with 20 mixtures. The approx-

imate distribution from the GMM with 20 mixtures clearly shows more details and

is much closer to the original distribution in the simulation dataset (Fig. 5.10(a)).

In contrast, the approximate distribution from the GMM with five mixtures ignores

some details while preserving the ‘key portions’ of the original distribution.

5.4.2 Training of GMREs

Since rainfall rate R can be estimated directly from radar observations or recovered

from DSD parametersN0 and Λ, the state vector is set as x = [R,N0,Λ, ZH , ZDR, Kdp]
T

to compare the performance of both approaches. Even though other dual-polarization

variables such as the linear depolarization ratio (LDR) and correlation coefficients

(ρhv) are not included in the state vector in this study, GMRE can discover and

use “hidden” relationships among different variables, and additional variables would

generally lead to a better performance.

Simulation datasets are divided into 2 portions. 7000 cases are used for training

and the remaining 1000 cases are used for testing GMRE. Once the GMRE has been

constructed, it is ready to be tuned and perform in different scenarios. For example,
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Figure 5.10: Scatter plots of S-band dual-polarized radar signatures From Monte-

Carlo simulation. From top to bottom, (a) ZH and ZDR plot, (b) ZH and Kdp
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if only reflectivity factor ZH is available, such as with the legacy WSR-88D, GMRE

can be used with H = [0, 0, 0, 1, 0, 0]. The rainfall rate retrieved by GMRE with ZH

will be denoted as RG(ZH). For dual-polarized radar without (or with low quality)

differential phase measurements, input to GMRE becomes z = [ZH , ZDR]T and H

yields

H =

0 0 0 1 0 0

0 0 0 0 1 0

 .
The rainfall rate retrieved with z = [ZH , ZDR]T will be denoted as RG(ZH , ZDR).

For radars with full dual-polarization capabilities (z = [ZH , ZDR, Kdp]
T ), the same

GMRE also can be applied. With z = [ZH , ZDR, Kdp]
T , R can be directly estimated

from GMRE (denoted as RG) or calculated from retrieved DSD parameters (N0 and

Λ) using Eq. (3.11) (denoted as RDSD) as follows:

RDSD = 6× 10−3π

∫ Dmax

Dmin

D3v(D)N(D)dD.

Table 5.7: Rain parameters retrieved by GMREs with 5 mixtures for the simulation

dataset. N0 [mm−1m−3], Λ [mm−1], all rainfall rate R [mm hr−1]

log10(N0) Λ RG(ZH) RG(ZH , ZDR) RDSD RG

Bias 0.17 0.01 -0.16 -0.27 0.2 0.07

STD 1.47 0.11 10.07 6.66 4.31 1.65

RMSE 1.48 0.11 10.07 6.66 4.32 1.65

FSE 2.96% 12.96% 30.93% 20.47% 13.26% 5.08%

Fig. 5.12 illustrates the RMSEs of GMRE with different inputs and number of

mixtures. In general, more observation variables input into GMRE would lead to

better performance. As the number of mixtures increases, the RMSEs of RG(ZH),

RG(ZH , ZDR) and RG improve slowly while the RMSE of RDSD significantly lowers

from more than 4 [mm hr−1] to less than 2 [mm hr−1]. Table 5.7 and Table 5.8
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Figure 5.11: Approximate distribution from GMM for simulated radar signatures.

From top to bottom, (a) Approximate distribution from GMM with 5 mixtures, (b)

Approximate distribution from GMM with 20 mixtures. In both plots, warmer color

represents higher probability density.
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Table 5.8: Rain parameters retrieved by GMREs with 20 mixtures for the simulation

dataset. N0 [mm−1m−3], Λ [mm−1], all rainfall rate R [mm hr−1]

log10(N0) Λ RG(ZH) RG(ZH , ZDR) RDSD RG

Bias 0.08 0 -0.05 -0.01 0.12 0.03

STD 0.68 0.07 9.74 6.1 0.98 0.65

RMSE 0.69 0.07 9.74 6.1 0.98 0.65

FSE 1.37% 8.31% 29.9% 18.75% 3.02% 2.01%

compare the performance of GMRE with five and 20 mixtures. The GMRE with 20

mixtures is better than the GMRE with five mixtures in basically every category.

As mentioned in last section, GMRE is a minimum-variance, unbiased estimator as

long as GMM converged to prior distribution p(x). More mixtures in GMM lead to

a closer approximate distribution to p(x) (as can be seen in Fig. 5.11(a) and 5.11(b))

and better estimation performance, which would eventually reach minimum-variance

and unbiased estimations. Therefore, the question becomes how many mixtures are

appropriate for GMRE, and the answer varies for different applications. For RG(ZH)

and RG(ZH , ZDR), GMRE with five mixtures would be sufficient to perform near

its optimal point (minimum-variance and unbiased estimation), while RG needs 15

mixtures and RDSD may need more than 20 to reach their optimal performance on

the simulation dataset. Fig. 6 illustrates the plots of the rainfall rate estimation

from RG and RDSD with five and 20 mixtures versus the simulated truth data. Given

the same weather radar observations z = [ZH , ZDR, Kdp]
T , RG performs significantly

better than RDSD when GMRE has five mixtures because RDSD is calculated from

the retrieved N0 and Λ, where the estimation error of N0 and Λ accumulates and

magnifies, therefore leading to larger RMSE for RDSD. For GMRE with 20 mixtures,

the better performance of RDSD is obtained due to more accurate estimates of N0

and Λ. As the number of mixtures increases, the performance of RDSD improves, but

it will not surpass RG. Therefore, RDSD will not be considered in later discussion.
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Figure 5.12: RMSEs of GMRE with different inputs as number of mixtures Increases.
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Figure 5.13: Plots of estimated rainfall rate and true rainfall rate for simulation

dataset. From left to right and top to bottom, (a) RG retrieved by GMRE with 5

mixtures, (b) RDSD retrieved by GMRE with 5 mixtures, (c) RG retrieved by GMRE

with 20 mixtures, (d) RDSD retrieved by GMRE with 20 mixtures. Bias and RMSE

are in [mm hr−1] for all plots.
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The above simulation results indicate that if GMRE is trained from a dataset

whose distribution matches that of the testing dataset, the GMRE with more mixtures

has better performance since GMM converges closer to the “true” distribution as

the number of mixtures increases. Also, these simulation results assume a noise-free

environment which means noise covariance matrix R = 0. In terms of the performance

of the GMRE in a noisy environment, it has been shown that estimation from GMRE

is robust when the observations contain Gaussian noise (Li and Zhang 2011). As long

as the Gaussian noise assumption holds, GMRE would remain a minimum-variance

and unbiased estimator.

5.4.3 JPOLE Dataset Description

The JPOLE dataset is a polarimetric radar dataset collected between 2002 and 2005

in central Oklahoma using the KOUN WSR-88D-quality radar. A total of 43 events

of various precipitation types, including warm-season convective storms containing

hail, mesoscale convective systems (MCS) with intense squall lines and trailing strat-

iform precipitation, widespread cold-season stratiform rain, and select tropical storm

remnants, are observed and selected for analysis (Giangrande and Ryzhkov 2008).

Concurrent gauge observations from the densely spaced Agricultural Research Ser-

vice (ARS) and Oklahoma Mesonet (MES) network stations located at 50-150 km

(e.g., Fiebrich et al. 2006; McPherson et al. 2007; Shafer et al. 2000) from the KOUN

radar are also included with this dataset.

Dual-polarized measurements (ZH and ZDR) from KOUN have been compared

and calibrated using cross-comparison with disdrometer, the nearby KTLX radar

(Oklahoma City WSR-88D) and polarimetric signatures of dry aggregated snow above

the melting level. Attenuation correction in rain has been performed on ZH and ZDR

using differential phase Φdp. Non-meteorological echoes are filtered by a ρhv > 0.85

threshold. To mitigate hail contamination, the ZH < 53 [dBZ] and 0 < ZDR < 5
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Figure 5.14: Scatter plots of measurement dataset. From top to bottom, (a) Scatter

plot of measured ZH and ZDR at ARS gauges. (b) Scatter plot of measured ZH and

ZDR at MES gauges.
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[dB] threshold were applied. Gauges further than 150 km from the radar have been

removed to avoid/reduce partial beam filling and melting layer effects. Figs. 5.14(a)

and 5.14(b) show scatter plots of the ZH and ZDR measured at ARS and MES gauges.

Compared to the scatter plots from the simulation, clear differences in distributions

can be observed. There are extensive observations between 10 to 40 [dBZ] in the

JPOLE dataset and the majority of the KOUN pairings have ZDR < 3 [dB].

If hourly radar accumulations are defined as an hourly rainfall estimate centered

on a gauge, validation of GMRE can be performed by comparing hourly gauge and

radar rainfall accumulations over gauge locations. Since usually only 8-9 radar scans

are available over the same gauge location within one hour, the nearest neighbor

interpolation method is used to calculate hourly radar accumulations.

5.4.4 Results and Comparisons

For a performance comparison of the GMRE approach, three rainfall rate retrieval

algorithms are selected. These relations are PLR-form, based on an empirical regres-

sion of the measured gauge (or, video disdrometer) and radar data. The first one,

with Zh as the only input, is the inversion of the standard NEXRAD rainfall formula

for continental (nontropical) application (Fulton et al. 1998).

R(Zh) = 1.7× 10−2Z0.714
h (5.23)

The second one, with Zh and Zdr as inputs, had optimized performance for rain in

central Oklahoma during the JPOLE field campaign (Ryzhkov et al. 2005a).

R(Zh, Zdr) = 1.42× 10−2Z0.77
h Z−1.67

dr (5.24)
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The third, proposed in Ryzhkov et al. (2005b), combines the merits of different algo-

rithms for various rain intensities and uses different combinations of radar variables

Zh, Zdr and Kdp based on rainfall rate estimated from equation (18):

RSY N =


R(Zh)/(0.4 + 5.0|Zdr − 1|1.3) R(Zh) < 6

44.0|Kdp|0.822sign(Kdp)/(0.4 + 3.5|Zdr − 1|1.7) 6 < R(Zh) < 50

44.0|Kdp|0.822sign(Kdp) R(Zh) > 50

(5.25)

Note that the polarimetric algorithms Eq. (5.24) and Eq. (5.25) have been optimized

to perform well over the entire JPOLE dataset and were proven in later studies to

be solid references for Oklahoma precipitation climatology. In comparison, since the

GMRE is constructed from a simulation dataset generated from general microphysical

parameterization, it can be applied to other precipitation regimes.

Two GMREs, one with 5 mixtures (G5) and the other with 20 mixtures (G20), are

tested using this JPOLE dataset. Since noise properties of different dual-polarization

variables in the JPOLE dataset are unknown, R is set to be zero in the current imple-

mentation. As FSE statistics are heavily weighted toward small hourly precipitation

accumulations, they are not examined during this test. Table 5.9 and Table 5.10

summarize the results and comparisons of all retrieval algorithms over the ARS and

MES gauges.

Table 5.9: Performance comparison of rainfall retrieval algorithms for the ARS

dataset. All in [mm hr−1]

R(Zh) R(Zh, Zdr) RSY N RG5(ZH) RG5(ZH , ZDR) RG5 RG20

Bias 1.68 -0.01 -0.24 -2.12 -0.80 -0.04 -0.49

STD 5.36 3.03 2.90 4.26 3.52 2.76 2.87

RMSE 5.62 3.03 2.91 4.76 3.61 2.76 2.91

With reflectivity ZH as input, RG5(ZH) outperforms conventional NEXRADR(Zh)

in terms of RMSE for both datasets. With ZH and ZDR as inputs, RG5(ZH , ZDR)
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Table 5.10: Performance comparison of rainfall retrieval algorithms for the MES

dataset. All in [mm hr−1]

R(Zh) R(Zh, Zdr) RSY N RG5(ZH) RG5(ZH , ZDR) RG5 RG20

Bias 1.58 0.31 -0.3 -1.76 -0.57 0.19 -0.27

STD 5.24 4.44 3.12 4.56 4.05 2.98 3.30

RMSE 5.47 4.45 3.13 4.88 4.09 2.99 3.31

performs slightly worse than the JPOLE R(Zh, Zdr) relation for the ARS dataset, but

better for the MES dataset in terms of RMSE. With full polarimetric inputs ZH , ZDR

and Kdp, RG5 has the best performance in every category for both datasets. RG20

is comparable to RSY N for the closer ARS dataset, but slightly worse than RSY N

for the MES dataset. All estimates but one from the GMREs show a negative bias,

probably due to the fact that they are trained from a dataset that favors smaller

rainfall. From the previous section, the GMRE with 20 mixtures converges closer to

the distribution of the simulation dataset (denoted as ps(x)), while the GMRE with

five mixtures is only able to represent a general outline of ps(x) without many details.

However, since ps(x) does not precisely match the distribution of the KOUN-based

measurement dataset (denoted as pm(x)), the GMRE with 20 mixtures is apparently

over-fitted to ps(x) and prohibits optimal performance in pm(x). However, the GMRE

with five mixtures can outperform the JPOLE-tuned synthetic RSY N relation in terms

of bias and RMSE, even though it represents a less detailed ps(x) as highlighted in

Fig. 5.15 and Fig. 5.16.

It is interesting to compare the performance of the simulation dataset-trained

GMRE in this study with the neural network approach introduced in Vulpiani et al.

(2009) for the same ARS dataset. For these particular events (table 2 in Vulpiani et al.

(2009) and Table 5.9 in this study), both the neural network and GMRE approach

outperformed the synthetic relation, with the five-mixture GMRE showing a slightly

better performance overall in terms of bias, STD and RMSE.
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Figure 5.15: Comparison plots of radar-gauge hourly accumulated rainfall rate for

ARS dataset. From top to bottom, (a) RSY N retrieved from ARS dataset. (b) RG

retrieved by GMRE with 5 mixtures from ARS dataset. Bias, STD and RMSE are

in [mm] for both plots.
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Figure 5.16: Comparison plots of radar-gauge hourly accumulated rainfall rate for

MES dataset. From top to bottom, (a) RSY N retrieved from MES dataset. (b) RG

retrieved by GMRE with 5 mixtures from MES dataset. Bias, STD and RMSE are

in [mm] for both plots.
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These results confirmed that if GMRE is trained from a dataset whose distribution

does not precisely match (but approximates) the distribution of the testing dataset,

GMRE is still able to perform very well. When ps(x) 6= pm(x), the GMRE with less

mixtures may perform even better than the GMRE with more mixtures, which could

be over-fitted to ps(x). However, depending on how ps(x) approximates pm(x) and

how much ps(x) and pm(x) resemble, the optimal number of mixtures may vary. For

example, comparing the dark blue area and light blue area where ZH is between 15

[dBZ] and 50 [dBZ] in both Fig. 5.11(a) and 5.11(b) with the same areas in Fig. 5.14(a)

and 5.14(b), the distribution of G5 (Fig. 5.11(a)) at this area is clearly much closer to

the same area of Fig. 5.14(a) and 5.14(b) than G20 (Fig. 5.11(b)). This explains why

RG5 outperforms RG20 in both ARS and MES datasets. It also explains why extreme

cases in the training dataset will not affect the performance of GMRE since only the

relative probabilities of cases at areas of interest matter. As a consequence, GMRE

should be trained from a “large” ps(x) that covers a broader range of occurrences

than pm(x) (such as the extreme cases covered in the simulation of this study), to

ensure that it is capable of handling not only a particular dataset, but also the radar

observations from different seasons/regions.

5.4.5 Discussion and Conclusions for GMRE Study

This study develops a Gaussian Mixture Rainfall-rate Estimator for polarimetric

radar-based rainfall rate estimation. Theoretically, GMRE is the optimal estima-

tor in terms of minimum-variance and unbiased performance. It is also a general and

flexible approach that can be adapted easily to different observation variables and

rain types without compromising its performance. The training dataset for GMRE

is constructed from a single cell Monte-Carlo simulation where the parameters of ex-

ponential DSD, N0 and W , are randomly generated from designed distributions that

favor light and moderate rain.
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GMREs with a different number of mixtures are trained and tested using the

general simulation dataset. With more mixtures, the GMM converges more readily

to the simulation distribution, leading to better estimation. For the same radar

observations, the rainfall rate directly estimated from the radar moments (RG) is

more precise than the rainfall rate retrieved from taking an indirect path through

the estimated DSD parameters (RDSD) wherein estimation error accumulates and

magnifies.

Two GMREs, one with 5 mixtures and the other with 20 mixtures, in company

with three PLR algorithms, are tested using the JPOLE dataset. As expected, bet-

ter results are achieved when more radar observation variables are available for both

GMRE and PLR algorithms. While RG5(ZH , ZDR) has a performance comparable

to R(Zh, Zdr), RG5(ZH) performs better than single-parameter R(Zh) and RG5 out-

performs the synthetic RSY N JPOLE relation, which is the standard benchmark for

this JPOLE dataset. RG20 does not perform as well as RG5, which can be attributed

to over-fitting the GMRE to the specific simulation distribution that is dissimilar to

the KOUN radar measurement distribution. Estimates from GMREs generally have

a negative bias that may reflect that these methods were trained from datasets that

favor smaller rainfall over heavier rainfall, and also the fact that KOUN polarimet-

ric radar inputs such as specific differential phase that are smoothed somewhat in

space-time.

In conclusion, GMRE shows great promise over conventional PLR techniques and

provides a statistically optimized solution for rainfall rate estimation.The convergence

capability of GMM provides a general framework to accommodate extra information

not only from dual-polarization diversities, but also from other diversities such as

multiple frequencies. A subject of ongoing research is to combine ground-based radar

measurement with Ku-Ka band satellite radar measurements into the GMRE for
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better quantitative precipitation estimation (QPE). Since GMRE is a “best” estima-

tor in terms of variance and bias performance, as long as the prior distribution is

accurate, the focuses of rainfall rate retrievals may be shifted from developing new

algorithms/coefficients to constructing a better training dataset for GMRE. For ex-

ample, better performance of GMRE may be achieved by tuning the distribution of

N0 and W in Monte-Carlo simulations. If GMRE is trained from a dataset, either

from simulation or measurement, without any climatologically driven optimization, a

global GMRE is possible for all rain types and regions. It is worth mentioning that

applications of GMRE are not limited to S-band. Similarly, a GMRE can also be

built for C-band or X-band radars. Like other rainfall rate estimation techniques,

inputs to GMPE have to be corrected from attenuation before they could be used

especially in C-band and X-band. Attenuation correlations using GMPE are studied

in section 5.5.

5.5 Correction of Rain Path Attenuation:

A Constrained Iterative GMPE Approach

This section extends the GMPE approach in an iterative form for path-integrated

attenuation (PIA) correction of rain to retrieve both horizontal reflectivity and differ-

ential reflectivity using polarimetric radar measurements. Similar to algorithms that

employ differential phase constraint, PIA of previous range bins is estimated from

GMPE using only differential phase (Kdp) as input. Corrected power measurements

as well as different phase of the current range bin are then input to GMPE again

to acquire more accurate estimations. Performance of the proposed method is evalu-

ated using X-band radar measurements from simulated radar range profiles generated

under different microphysical scenarios.
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5.5.1 Introduction

Polarization diversity of weather radar systems is known to provide valuable informa-

tion for meteorological applications, such as rainfall rate estimation, DSD retrieval

and hydrometeor classification. Affected by path-integrated attenuation (PIA) similar

to single-polarized radar, successful applications of polarimetric radar measurement

have been demonstrated mostly at S-band where rainfall rate estimation algorithms

are well developed (e.g., Gorgucci et al. 2002; Brandes et al. 2002; Vulpiani et al. 2009;

Cao et al. 2010). For frequencies higher than S-band, path attenuation effects caused

by rainfall become significant and need to be corrected before power measurement

can be used quantitatively.

For single-polarized radar, attenuation correction is limited by a power law re-

lation between reflectivity and specific attenuation where the solution of a Riccati

differential equation is obtained and applied to the first range bin that intercepts

the rain cell and iteratively proceeded forward till the last bin. This approach is

often unstable especially in strong precipitation events where PIA is high. Phase

measurement, on the other hand, is immune to attenuation effects, which makes it a

good candidate for correcting attenuation. Algorithms based on polarimetric radar

measurement are greatly improved as total differential propagation phase between

horizontal and vertical polarization is available, which can be linked to total PIA

through a linear relation as a constraint. One of the algorithms that adopt differ-

ential phase constraint, the ZPHI algorithm, is described and evaluated in Testud

et al. (2000). Bringi et al. (2001) further improved this algorithm by introducing a

self-consistent scheme, where Zdr correction is also included. Vulpiani et al. (2005)

replaced the power law relation with a Neural Network approach but still employed

the differential phase constraint. A fully self-consistent approach is introduced in

Gorgucci et al. (2006) where a fixed power low relation between Ah and Zh, Zdr, Kdp

is employed. Though coefficients of the power law relations are adjusted to obtain the
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best performance, a fixed model is often applied to a whole range profile. Problems

with differential phase constraint methods or the fully self-consistent approach come

from the deterministic power law or linear models that have been used as determinis-

tic models fail to account for the fact that microphysics such as drop size distribution

(DSD), drop shape model as well as temperature varies in space and time even within

the same precipitation.

5.5.2 Review of PIA Correction Techniques

Consider a range profile with rain in presence. Let r0 is the beginning of the first

range bin that contains rain and rk represent the end point of the kth range bin.

The two-way copular and differential path-integrated attenuation PIAH and PIADP

(both with unit [dB]) at rk can be calculated from integrating Ah and Adp [dB km−1],

which are the one-way specific power attenuation and differential power attenuation,

over the path (from r0 to rk) as shown in Eq. (5.26).

PIAH(r0, rk) = 2

∫ rk

r0

Ah(s)ds (5.26a)

PIADP (r0, rk) = 2

∫ rk

r0

Adp(s)ds. (5.26b)

Similarly, the incremental two-way differential phase shift between r0 and rk can be

defined as

∆ΦDP (r0, rk) = 2

∫ rk

r0

Kdp(s)ds = ΦDP (rk)− ΦDP (r0). (5.27)

Note that, the effects of backscattering differential phase δhv (defined in Eq. (2.28b))

are neglected assuming an effective iterative filer is applied on ∆Φm
DP (Vulpiani et al.

2008) (superscript m stands for measured). Eq. (5.26) and Eq. (5.27) can further

written in a discrete form as Kdp, Ah and Adp are assumed to be constant within one
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range bin. Under this assumption, Kdp, Ah and Adp may be viewed as the average

quantity over one range bin.

PIAH(rk) = 2
k∑
i=1

Ah(ri)∆r (5.28a)

PIADP (rk) = 2
k∑
i=1

Adp(ri)∆r. (5.28b)

Kdp(rk) =
∆ΦDP (rk−1, rk)

2∆r
. (5.29)

Contaminated by path attenuation, the measured copular reflectivity factor Zm
H (rk)

[dBZ] and differential reflectivity factor Zm
DR(rk) [dB] at rk can be formulated as (mea-

surement noise term is dropped for convenience)

Zm
H (rk) = ZH(rk)− PIAH(rk), (5.30a)

Zm
DR(rk) = ZDR(rk)− PIADP (rk). (5.30b)

From Eq. (5.30), it is clear that path attenuation has to be accurately estimated and

compensated before power measurements can be used quantitatively.

Early attempts to compensate for attenuation assume Ax is related to Zx as

Ax = axZ
bx
x , (5.31)

where x can be h or v polarization. Assuming bx is constant in range, Eq. (5.31) can

be written as a differential equation and solved if proper boundary condition is taken.

This relation is often unstable and easily affected by noise and radar calibration error.

Since phase measurements are not affected by attenuation, parameterizations of Ah,

Av using Kdp are essential in many attenuation correction algorithms as shown in the

following equation (x can be h or v).

Ax = αxK
βx
dp . (5.32)

It is worth mentioning that exponents βh and βv are close to unity between 2.8

to 10 GHz (Park et al. 2005). Therefore, Eq. (5.32) is often approximated by a
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linear form (shown in Eq. (5.33)) and called specific attenuation-differential phase

parameterization (DP) method.

Ax = αxKdp. (5.33)

Combined Eq. (5.26), Eq. (5.27) and Eq. (5.33), cumulative attenuation to the ending

point of the path can be estimated from the total change of differential propagation

phase as shown in the following equation

PIAH(r0, rN) = αh∆ΦDP (r0, rN), (5.34)

where rN is the ending point of the path. A more stable approach (shown in

Eq. (5.35)), which is termed ZPHI, is developed under the constraint that PIAH(r0, rN)

must be consistent with ∆ΦDP (r0, rN) (Testud et al. 2000).

Ah(r) =
[Zm

h (r)]bh [100.1bhαh∆ΦDP (r0,rN ) − 1]

I(r0, rN) + [100.1bhαh∆ΦDP (r0,rN ) − 1]I(r, rN)
. (5.35)

Function I(r1, r2) in Eq. (5.35) is defined as

I(r1, r2) = 0.46bh

∫ r2

r1

[Zm
h (s)]bhds, (5.36)

where coefficient bh is from the parameterization of Ah using Zh (Eq. (5.31)). In ZPHI

algorithm, coefficient αh is fixed. However, it is shown in many studies that αh is not

constant but varies widely with temperature and drop shape. To overcome the impact

of such variability, Bringi et al. (2001) extended the ZPHI algorithm and introduced a

self-consistent with constraints (SCWC) method, where minimum difference between

the filtered Φf
DP (r) and the calculated (or estimated) Φc

DP (r;αh) over the entire path

is obtained while searching an optimal αh value within a predetermined range as

given in Eq. (5.37) and Eq. (5.38). In simulations at X-band performed by Park et al.

(2005), the range for αh is between 0.173 and 0.315. In this study, a larger range for

αh is adopted which is from 0.150 to 0.350.

Φc
DP (r) = 2

∫ r

r0

Ah(s :, αh)

αh
ds. (5.37)
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αopt = arg min
0.15≤αh≤0.35

N∑
i=1

|Φc
DP (r0, ri;αh)− Φf

DP (r0, ri)| (5.38)

In the self-consistent method, ADP is obtained from ADP (r) = γAH(r) where optimal

γ value is determined as

γopt =
1

αopt

|Zm
DR(rN)− ZDR(rN)|

∆ΦDP (r0, rN)
, (5.39)

where ZDR(rN) can be estimated from the corrected ZH(rN) using relation (Park

et al. 2005)

ZDR(rN) =


0 when ZH(rN) ≤ 10 [dBZ]

0.0528ZH(rN)− 0.511 when 10 ≤ ZH(rN) ≤ 55[dBZ]

2.39 when ZH(rN) ≥ 55[dBZ]

(5.40)

Another PIA correction algorithm, the final value (FV) algorithm, is also implemented

in this study as it is claimed to be more accurate than the ZPHI approach when the

radar is well calibrated (Marzano et al. 2010). In FV algorithm, Zh and Zv are

recovered from

Zx(r) =
Zm
x (r)

[100.1bxαx∆ΦDP (r0,rN ) + αx[I(r0, rN)− I(r0, r)]]
1
bx

, (5.41)

where function I(r1, r2) is defined in Eq. (5.36). Required constants for the four

attenuation correction schemes can be found in Table 5.11. Note that, for DP and

FV methods, corrected ZDR is computed from corrected ZH and ZV .

Table 5.11: Required constants for Eq. (5.32) and Eq. (5.31)

Ax = αxKdp Ax = axZ
bx
x

αh αv ah bh av bv

0.3292 0.2827 1.5142× 10−4 0.7840 1.3375× 10−4 0.8169
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5.5.3 Constrained Iterative GMPE Approach

GMPE is set up without considerations of radar beam path. For correction of path

attenuation, Eq. (5.2) is further written in a iterative form as

zk = Hxk + vk (5.42)

to outline the range dependency of observation, state vector and noise vector, where

subscript k stands for the kth range bin. For PIA correction, the state vector is set

at x = [Ah, Adp, ZH , ZDR, Kdp]
T . Similar to DP approach, a direct way of applying

GMRE is to use phase measurement only and set zk = [Km
dp(rk)]. Accordingly, H =

[0, 0, 0, 0, 1]. This method will be referred as DP-GMPE and estimations from DP-

GMPE are denoted as x̂pk. Block diagram of the DP-GMPE technique is illustrated

in Fig. 5.17. According to derivations of GMPE, x̂pk is an unbiased estimate of xk.

Figure 5.17: Block diagram of the DP-GMPE Algorithm.
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While phase measurement Km
dp(rk) does not depend on estimations from previ-

ous range bins, power measurements Zm
H (rk) and Zm

DR(rk) depend not only on path-

integrated attenuation from previous bins but also attenuation of the current bin.

Therefore, Eq. (5.30) can be written as

Zm
H (rk) + PIAH(rk−1) = ZH(rk)− 2Ah(rk)∆r (5.43a)

Zm
DR(rk) + PIADP (rk−1) = ZDR(rk)− 2Adp(rk)∆r (5.43b)

In practical applications, PIAH(rk−1) and PIADP (rk−1) are unknown and have to

be calculated from estimated Âh(ri) and Âdp(ri) (i = 1, ..., k− 1) using Eq. (5.28). If

power measurement are included as input to GMRE, another way of applying GMRE

is to set ẑk = [Ẑm
H (rk), Ẑ

m
DR(rk), K

m
dp(rk)], where

Ẑm
H (rk) = Zm

H (rk) + PIÂH(rk−1) (5.44a)

Ẑm
DR(rk) = Zm

DR(rk) + PIÂDP (rk−1) (5.44b)

According to Eq. (5.43), matrix H becomes

H =


−2∆r 0 1 0 0

0 −2∆r 0 1 0

0 0 0 0 1

 (5.45)

This method will be referred as Simple-GMRE approach and estimations from Simple-

GMRE are denoted as x̂sk. It is worth mentioning that distribution of ẑk in this case

does not match the one shown in Eq. (5.8), therefore, x̂sk is no longer an unbiased

estimate of xk when k ≥ 2. Since PIAs are estimated from previous x̂sk and new x̂sk

is based on estimated PIAs, the cumulative error would become larger and larger.

As a result, this Simple-GMRE approach is extremely unstable even in noise-free

environment.

To overcome the instability of Simple-GMPE approach and incorporate both

power and phase measurements, a Constrained iterative GMPE (CI-GMRE) ap-

proach is developed. The methodology of CI-GMPE is described in Fig. 5.18. In
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Figure 5.18: Block diagram of the CI-GMPE technique

CI-GMPE approach, at range bin rk, path-integrated attenuation from previous

bins PIÂH(rk−1) and PIÂDP (rk−1) are calculated using estimates from DP-GMRE

method and yields

PIÂH(rk−1) = 2
k−1∑
i=1

x̂pi (1)∆r (5.46a)

PIÂDP (rk−1) = 2
k−1∑
i=1

x̂pi (2)∆r. (5.46b)

Similar to Simple-GMPE approach, construct ẑk = [Ẑm
H (rk), Ẑ

m
DR(rk), K

m
dp(rk)]

T (Ẑm
H (rk)

and Ẑm
DR(rk) are from Eq. (5.46 and Eq. (5.44)). In this case, distribution of ẑk still

does not match distribution of zk but it is much closer as E[ẑk] = zk, since the es-

timated PIAs from Eq. (5.46) are unbiased. Therefore, estimations from CI-GMPE,

x̂ck, is close to xk but it is an biased estimate of xk. However, unlike x̂sk, there is

no cumulative error in x̂ck as estimation error of path-integrated attenuation is con-

strained by phase measurement. As a result, CI-GMPE approach is more accurate
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than DP-GMPE approach since both power and phase measurement are incorporated

and is more stable than the Simple-GMPE approach since there is no accumulated

error in estimation.

5.5.4 Simulation Dataset Construction

The singe-cell Monte Carlo simulation (section 3.5) is adopted to generate polarimet-

ric radar measurements at X-band. Raindrop size distribution is represented by a

normalized Gamma DSD (Eq. (3.5)) which is widely used in attenuation correction

studies (e.g., Bringi et al. 2001; Park et al. 2005; Vulpiani et al. 2005; Gorgucci et al.

2006). Observation studies show that DSD parameters for a normalized Gamma DSD

Nw, µ and D0 varies for different rain type and intensity. Reciprocally, different types

of rain may be emulated from randomly generating Nw, µ and D0 in a reasonable

range. In this study, Nw, µ and D0 are assumed to be uniformly distributed, which

leads to equal prior probability for different rain types as in Gorgucci et al. (2006).

Table 5.12 lists details of the simulation. It is worth mentioning that 15,000 cases

have been carried out to have statistical significance in simulated dataset. To elim-

inate unrealistic cases and cover most DSD variability, the dataset is limited to ZH

up to 55 [dBZ] and rainfall rates up to 300 [mm hr−1].

The simulation dataset is divided into 2 portions. 12000 cases are used for training

and the remaining 3000 cases are used for testing GMPE and other polarimetric at-

tenuation correction algorithms. Scatter plot of ZH and ZDR from training dataset is

shown in Fig. 5.19(a) and the approximate distribution from GMPE with 12 mixtures

is shown in Fig. 5.19(b).

Scatter plots of simulated Ah versus Zh and Kdp as well as the fitted power law

curves are illustrated in Fig. 5.20. As it can be seen in Fig. 5.20, relation Ah(Kdp)

(defined in Eq. 5.32) has much smaller variance than Ah(Zh) (defined in Eq. 5.31) in

estimated Ah.
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Table 5.12: Key Parameters of the Single Cell Monte-Carlo Simulation

Radar frequency 9.41 GHz

Volume of the single cell 125 [m3]

Temperature Uniformly between 5oC to 20oC

Raindrop size [mm] 0.5 to 8 (step size 0.1)

Canting angle distribution N (0, 10◦)

Scattering model T-Matrix

Axis ratio of raindrops Brandes et al. (2002) with randomness

log10Nw Uniformly between 3 to 5

µ Uniformly between −1 to 4

D0 [mm] Uniformly between 0.5 to 3.5

Figure 5.19: Simulated scatter plot of X-band dual-polarized radar signature and

approximate distribution from GMM. From left to right, (a) Scatter plot of ZH and

ZDR; (b) Approximate distribution from GMM with 12 mixtures.
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Figure 5.20: Simulated scatter plots of rain and fitted power law relations. From left

to right, (a) Ah and Kdp; (b) Ah and Zh

5.5.5 Numerical Results

Power law relations Ah(Kdp) from Eq. 5.32 and Ah(Zh) Eq. 5.31 as well as GMPE

with different mixtures and inputs are tested using the test dataset. Since the test

dataset is noise-free, the attenuation estimation results can be considered as the upper

bound of performance for all the PLR-based PIA correction algorithms as well as the

two GMPE-based algorithms. Results of GMPE with different inputs and different

number of mixtures are illustrated in Fig. 5.21. As it is shown in Fig. 5.21, a GMPE

with more than 12 mixtures would converge to its best performance. So a 12-mixture

GMPE is constructed for this study. Performance of Ah(Kdp), Ah(Zh) and GMPE

with 12 mixtures are given in Table 5.13.

As shown in Table 5.13, Ah(Zh) has the worse performance among the four tech-

niques. With differential phase Kdp as input, Ah(Kdp) and GMPE perform good,

while GMPE shows a slightly better performance in terms of RMSE. With input

z = [ZH , ZDR, Kdp]
T , GMPE has the best performance due to more variables are

included.

To evaluate the performance of proposed approach in presence of PIA, a total of 20

rain paths are constructed from the test dataset. Each rain path consists of 150 range
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Figure 5.21: RMSEs of GMPE with different inputs as number of mixture increases.

DP-GMPE (z = [Kdp]
T ) and GMPE (z = [ZH , ZDR, Kdp]

T ).

Table 5.13: Performance of PLR algorighms and GMPE with 12 mixtures

Ah [dB km−1] Adp [dB km−1

Bias SD RMSE Bias SD RMSE

Ax = αxKdp -0.0058 0.0783 0.0785 0 0.0304 0.0304

Ax = axZ
bx
x -0.0080 0.3574 0.3575 0.0116 0.1114 0.1120

GMPE(z = [Kdp]
T ) -0.0017 0.0752 0.0752 -0.0006 0.0283 0.0283

GMPE(z = [ZH , ZDR, Kdp]
T ) -0.0006 0.0308 0.0308 -0.0001 0.0072 0.0072
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bins with the range spacing of 150 [m] and each range bin is a simulated case randomly

taken from the test dataset. It can be seem that, such rain paths are not realistic

in nature. However, having a rain path with randomly varying DSD parameters is

the most challenging scenario for every PIA correction approach and effects from

widely varying DSD parameters can be learnt from studying those scenarios. With

different levels of noise added to the test dataset, the lower bound of performance for

each algorithm can be obtained. Since all cases are from the same test dataset, it is

possible to compare the PIA correction performance with single-volume performance

in previous performance evaluation of GMPE. 200 realizations, in which there are 20

random paths in each realization, are generated and tested. Table 5.14 and Table 5.15

show the overall bias, SD and RMSE of all PIA correction algorithms for the 20 paths

in low noise and high noise environments, respectively. Low noise environment refers

to a noise standard deviation of 1 [dB] for ZH , 0.3 [dB] for ZDR and 2o for Φdp. High

noise environment refers to a noise standard deviation of 2 [dB] for ZH , 0.6 [dB] for

ZDR and 4o for Φdp.

Table 5.14: Performance of different path-integrated attenuation techniques in low

noise environment (1 [dB] for ZH , 0.3 [dB] for ZDR and 2o for Φdp). Results are from

averaging over 200 realizations and 20 random generated paths.

ZH [dBZ] ZDR [dB]

Bias SD RMSE Bias SD RMSE

DP -0.1285 1.2200 1.2269 -0.0085 0.3228 0.3230

ZPHI 0.0033 1.1698 1.1711 0.0430 0.4274 0.4311

SCWC -0.0630 1.2975 1.3016 0.0260 0.4301 0.4323

FV 0.0584 1.1303 1.1326 -0.0608 0.3312 0.3368

DP-GMPE 0.1099 1.1099 1.1155 -0.0138 0.3162 0.3165

CI-GMPE 0.1403 1.1155 1.1245 0.0412 0.2704 0.2735
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Table 5.15: Performance of different path-integrated attenuation techniques in high

noise environment (2 [dB] for ZH , 0.6 [dB] for ZDR and 4o for Φdp). Results are from

averaging over 200 realizations and 20 random generated paths.

ZH [dBZ] ZDR [dB]

Bias SD RMSE Bias SD RMSE

DP -0.1303 2.4043 2.4083 -0.0090 0.6316 0.6317

ZPHI -0.0070 2.1687 2.1710 0.0338 0.7414 0.7451

SCWC -0.1072 2.2732 2.2808 0.0186 0.7421 0.7453

FV -0.1511 2.1077 2.1147 -0.0398 0.6208 0.6222

DP-GMPE 0.3923 2.1076 2.1443 0.0156 0.6113 0.6116

CI-GMPE 0.3568 2.0609 2.0920 0.0624 0.3526 0.3581

As shown in Table 5.14 and Table 5.14, CI-GMPE generally has the best overall

performance for recovering attenuated ZH and ZDR in both low noise and high noise

environments. That’s because CI-GMPE is able to take advantage of all the phase

measurements up to the current radar bin and power measurements of the current bin.

Moreover, CI-GMPE performs especially good when correcting attenuation of ZDR in

the high noise environment. DP-GMPE claims the second best overall performance

among the 6 algorithms. DP-GMPE even outperforms CI-GMPE when correcting

attenuation of ZH in low noise environment, which may be the fact that CI-GMPE

includes both power measurements as input bringing in more noise and uncertainties

into the system. With the same differential phase Kdp as input, the DP technique

performs slightly worse than DP-GMPE. The FV algorithm also has very solid per-

forms. It outperforms ZPHI and SCWS algorithms in both low noise and high noise

environments. The ZPHI and SCWC algorithms has the worst overall performance

due to the fact that they are developed under the assumption that ah, which relates to

Nw, is constant along the path. Since Nw is far from constant in the simulated paths.

Large error should expect from these two algorithms. It is worth mentioning that all
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PIA correction algorithms in this study depend on phase measurements. While DP,

SCWC, DP-GMPE and CI-GMPE require differential phase measurement at every

range bin, FV and ZPHI only requires the total differential phase measurement of the

path, which make these two more immune to phase measurement noise.

Average error over range from different PIA correction techniques in low noise and

high noise environments are illustrated in Fig. 5.22 and Fig. 5.23. Since the results

are obtained by taking a average over 20 paths and 200 realizations, it can be seen

from those two figures that, CI-GMPE, DP-GMPE and the DP technique are very

stable and persistant over the range. The RMSEs of these three algorithms stays

around the same level for the whole range. The FV approach and the ZPHI approach

is able to stay at a low RMSE level at the beginning but fail at the end of the path

where RMSEs of those two approaches increase significantly. The SCWC algorithm

is shown very unstable as its RMSE increases as the range increases.

In conclusion, GMPE is successfully extended to correcting path-integrated at-

tenuation. Both proposed GMPE-related approaches, DP-GMPE and CI-GMPE, are

capable in PIA correction application. Shown by simulation results, with the same

input, DP-GMPE outperforms the conventional DP approach. CI-GMPE also has

the best performance in nearly every error category over the ZPHI, SCWC and FV

algorithms. However, both DP-GMPE and CI-GMPE are heavily dependent on Kdp

measurements which are sometimes unreliable. In Chapter 6, GMPE will be further

extended to a Kalman filter structure where not only PIA correction but also esti-

mating rainfall rate in high attenuation environment can be achieved with or without

phase measurement.
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Figure 5.22: Average error over range from different path-integrated attenuation

correction techniques in low noise environment (1 [dB] for ZH , 0.3 [dB] for ZDR

and 2o for Φdp). From top to bottom, (a) Error of corrected ZH over range; (b) Error

of corrected ZDR over range.
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Figure 5.23: Average error over range from different path-integrated attenuation

correction techniques in high noise environment (2 [dB] for ZH , 0.6 [dB] for ZDR

and 4o for Φdp). From top to bottom, (a) Error of corrected ZH over range; (b) Error

of corrected ZDR over range
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Chapter 6

Sequential Gaussian Mixture Parameter Estimator

with a Kalman Filter Structure

GMPE developed in Chapter 5 considers only one radar resolution volume/bin. Mi-

crophysics parameters and the corresponding radar variables of a radar resolution

volume are combined and constructed as state vector x. Radar measurements of a

volume are combined and constructed as observation vector z. The estimation prob-

lem of a volume is formulated as a linear relation between observation z and state

vector x with observation noise v. In other word, GMPE is developed under the

assumption that observation of a volume z is affected by only measurement noise v.

This assumption holds when attenuation effects are small and can be ignored, such

as for S-band radars. This assumption may not hold for radars that have higher

frequency than S-band, such as C-band and X-band, where power measurements are

contaminated not only by noise but also attenuation.

However, attenuation effects do not prevent the uses of GMPE in higher fre-

quency radars, such as C-hand and X-band. Example of applications of GMPE in

X-band is given in section 5.5 where two GMPE-based path-integrated attenuation

correction approaches are introduced. Those two approaches, namely DP-GMPE and

CI-GMPE, are developed based on the fact that phase measurement is immune from
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attenuation effects. The GMPE assumption holds for the DP-GMPE approach as DP-

GMPE utilizes only differential phase measurements (Kdp) as inputs, which makes

the outputs of DP-GMPE minimum-variance and unbiased estimates given the input

Kdp. No power measurements are involved in DP-GMPE. To take advantage of power

measurements, attenuation effects have to be corrected before ZH and/or ZDR can be

used quantitatively. CI-GMPE is developed upon outputs from DP-GMPE. The basic

idea is to recover power measurements from PIA effects using attenuation estmated

by DP-GMPE. The recovered power measurements with differential phase measure-

ment are then combined as inputs. CI-GMPE approach may be more accurate than

DP-GMPE approach since power and phase measurements are incorporated, but the

GMPE assumption does not hold for CI-GMPE, therefore, outputs of CI-GMPE are

no longer minimum-variance, unbiased estimates.

Weather radars sample the atmosphere in a series of resolution volumes/bins

within the radar beam width. Due to attenuation effects, measurements of one

volume are dependent on properties of previous volumes. Even though GMPE is

developed without the considerations of dependency of radar resolution volumes, its

linear structure make it possible to be extended to adopting the Kalman filtering

technique which is the basis for the sequential linear minimum variance estimation.

Due to the unique feature of weather radar observations, GMPE adapts a similar

but different sequential filtering structure. Also due to the introduction of Gaussian

mixture model, new problems may also arise.

This chapter is organized as follows: derivation of the GMPE with sequential filter-

ing structure, namely the sequential Gaussian mixture parameter estimator (SGMPE),

is present in section 6.1, followed by the discussion of Gaussian mixture reductionin

section 6.2. Application of SGMPE to rainfall rate estimation in X-band is given in

section 6.3 as performance evaluation of SGMPE.
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6.1 Sequential Gaussian Mixture Parameter

Estimator (SGMPE)

Weather radar measurements, both phase and power, usually consist of contributions

from three sources: measurements of current bin, cumulative effects from previous

bins and measurement noise. Therefore, the estimation problem can be formulated

as

zk = Hxk + yk + vk, (6.1)

where observation vector for the kth range bin zk ∈ Rm, state vector for the kth range

bin xk ∈ Rn, accumulation vector for the kth range bin yk ∈ Rm and noise vector for

the kth range bin vk ∈ Rm. Compared with definition of GMPE (Eq. 5.2), range bin

denpendency and accumulation vector are added in the definition of the sequential

GMPE. Observation matrix H ∈ Rm×n links state vector to observations.

Similar to GMPE, prior distribution of state vector for the kth range bin can be

approximated by GMM and is expressed as

p(xk) ∼
N∑
i=1

αiN (µi,Σi) for k > 0, (6.2)

where N is the number of Gaussian components and and αi, µi and Σi are the

weighting, mean and covariance matrix for the ith Gaussian component in p(xk). As

it can be seen, same prior distribution has been assumed for all state vectors as no

k dependency exists in the right side of Eq. (6.2). This assumption is usually true

since weather field within a range bin does not depend on the index of the range bin.

Noise vk is modelled as zero mean white Gaussian noise from N (0,R). Distribution

of measurement noise also does not have range bin dependency.
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According to Eq. (5.28), the two-way copular and differential path-integrated at-

tenuation at rk can be written as

PIAH(rk) = PIAH(rk−1) + 2Ah(rk)∆r (6.3a)

PIADP (rk) = PIADP (rk−1) + 2Adp(rk)∆r. (6.3b)

Similarly, the incremental two-way differential phase shift between r0 and rk can be

expressed as

∆ΦDP (r0, rk) = ∆ΦDP (r0, rk−1) + 2Kdp(rk)∆r, (6.4)

where r0 is defined as the beginning of the first range bin and rk represents the end

point of the kth range bin. Based on Eq. (6.3) and Eq. (6.4), accumulation vector

can be formulated as

yk = Mxk−1 + yk−1, (6.5)

where accumulation matrix M ∈ Rm×n, transfering state vector to accumulation

vector. Therefore, a complete expression of the sequential Gaussian mixture estimator

is the union of Eq. (6.1) and Eq. (6.5), which can be re-written as

yk+1 = yk + Mxk (6.6a)

zk = yk + Hxk + vk. (6.6b)

Note that, subscript in Eq. (6.6a) is modified to match the expression of the model

forecast equation in a Kalman filter (Lewis et al. 2006). The expression of the SGMPE

is very similar to the expression of a Kalman filter. If xk is considered as some kind of

noise other than measurement noise, xk and vk can be combined as the total system

noise since they are independent. It can be seen that SGMPE is actually a Kalman

filter with state vector yk. Eq. (6.6a) can be considered as the Model Forecast (MF)

step and Eq. (6.6b) can be considered as Data Assimilation (DA) step. It is also worth

mentioning that yk, xk and vk are assumed to be uncorrelated, which is usually true

because white Gaussian noise vk is uncorrelated with yk or xk and xk, which is the
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state vector for the kth bin, is uncorrelated with yk, which is the accumulated effects

from previous bins before the kth bin.

To better derive the SGMPE, let state vector xk = [R,Ah, Adp, ZH , ZDR, Kdp]
T for

a radar-based rainfall rate estimation application. If observation vector is given as

zk = [Zm
H (rk), Z

m
DR(rk),∆Φf

DP (r0, rk)]
T , where superscript m refers to measured and

f refers to filtered, observation matrix H can be constructed as

H =


0 −2∆r 0 1 0 0

0 0 −2∆r 0 1 0

0 0 0 0 0 2∆r

 . (6.7)

Therefore, accumulation vector yk = [−PIAH(rk−1),−PIADP (rk−1),∆ΦDP (r0, rk−1)]T

and accumulation matrix can be constructed as

M =


0 −2∆r 0 0 0 0

0 0 −2∆r 0 0 0

0 0 0 0 0 2∆r

 , (6.8)

where ∆r is the range resolution of the radar in [km]. Plugging zk, yk, xk and H into

Eq. (6.6b) and assume vk = [vH(rk), vD(rk), vK(rk)]
T , Eq. (6.6b) becomes

Zm
H (rk) = ZH(rk)− 2Ah(rk)∆r − PIAH(rk−1) + vH(rk) (6.9a)

Zm
DR(rk) = ZDR(rk)− 2Adp(rk)∆r − PIADR(rk−1) + vD(rk) (6.9b)

∆Φf
DP (r0, rk) = 2Kdp(rk)∆r + ∆ΦDP (r0, rk−1) + vK(rk), (6.9c)

which are the same as Eq. (5.29) and Eq. (5.30). Plugging yk+1, yk, xk and M into

Eq. (6.6a), Eq. (6.6a) becomes

− PIAH(rk) = −2Ah(rk)∆r − PIAH(rk−1) (6.10a)

− PIADR(rk) = −2Adp(rk)∆r − PIADR(rk−1) (6.10b)

∆ΦDP (r0, rk) = 2Kdp(rk)∆r + ∆ΦDP (r0, rk−1), (6.10c)

which also matches Eq. (6.3) and Eq. (6.4). So, a series of weather radar observations

along the radar beam can be presicely modeled by the proposed SGMPE approach.
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To begin the derivation of the SGMPE, initial values of the model need to be

set up. Based on the definitions of xk and yk, at the beginning of the first radar

resolution bin, x0 = 0 and y0 = 0.

When k = 1, plugging y0, x0 into Eq. (6.6a), y1 = 0 can be obtained. Since

y1 = 0, Eq. (6.6b) has the same form as GMPE (defined in Eq. (5.2)). Following

GMPE approach (Eq. (5.13)), p(x1|z1) is a Gaussian mixture with the same number

of mixtures as p(x1) and can be formulated as (Let x̂k be the estimation of xk when

given observation zk)

p(x̂1) = p(x1|z1) ∼
N∑
i=1

β
(1)
i N (µ̂

(1)
i , Σ̂

(1)
i ), (6.11)

where µ̂
(1)
i = µi + K

(1)
i (z1 − u

(1)
i ), Σ̂

(1)
i = (I−K

(1)
i H)Σi and Kalman gain K

(1)
i =

ΣiH
T (P

(1)
i )−1. According to Eq. (5.8), P

(1)
i = HΣiH

T + R and u
(1)
i = Hµi. β

(1)
i ,

which is the weighing of the ith Gaussian mixture in p(x1|z1), yields

β
(1)
i =

αiN (z1; u
(1)
i ,P

(1)
i )∑N

i=1 αiN (z1; u
(1)
i ,P

(1)
i )

. (6.12)

The estimate of x1 from GMPE is

x̂1 =
N∑
i=1

β
(1)
i µ̂

(1)
i . (6.13)

When k = 2, with y1 = 0 and p(x̂1) ∼
∑N

i=1 β
(1)
i N (µ

(1)
i ,Σ

(1)
i ), p(y2) can be

computed from Eq. (6.6a) and expressed as

p(y2) ∼
N∑
i=1

γ
(2)
i N (m

(2)
i ,Q

(2)
i ), (6.14)

where γ
(2)
i = β

(1)
i , m

(2)
i = Mµ

(1)
i and Q

(2)
i = MΣ

(1)
i MT . Since yk, xk and vk are

uncorrelated, the conditional probability of z2 given x2 yeilds

p(z2|x2) = p(z2 −Hx2|y2 + v2)

=
N∑
i=1

γ
(2)
i N (z2 −Hx2; m

(2)
i ,Q

(2)
i + R).

(6.15)

145



According to Bayesian theorem,

p(x̂2) = p(x2|z2) =
p(z2|x2)p(x2)∫
p(z2|x2)p(x2)dx2

, (6.16)

where p(z2|x2)p(x2) yields

p(z2|x2)p(x2) =
N∑
i=1

γ
(2)
i N (z2 −Hx2; m

(2)
i ,Q

(2)
i + R)

N∑
i=1

αiN (x2;µi,Σi)

=
N∑
j=1

N∑
i=1

γ
(2)
j αiN (z2 −Hx2; m

(2)
j ,Q

(2)
j + R)N (x2;µi,Σi)

(6.17)

Since the product of two Gaussian distributions is still Gaussian (proof is similar to

the one given in section 5.1.2),

N (z2−Hx2; m
(2)
j ,Q

(2)
j +R)N (x2;µi,Σi) = N (z2; u

(2)
i,j ,P

(2)
i,j )N (x2; µ̂

(2)
i,j , Σ̂

(2)
i,j ), (6.18)

where u
(2)
i,j = Hµi + m

(2)
j , P

(2)
i,j = HΣiH

T + Q
(2)
j + R, µ̂

(2)
i,j = µi + K

(2)
i,j (z2 − u

(2)
i,j ),

Σ̂
(2)
i,j = (I−K

(2)
i,j H)Σi and K

(2)
i,j = ΣiH

T (P
(2)
i,j )−1. Therefore,

p(z2|x2)p(x2) =
N∑
i=1

N∑
j=1

αiγ
(2)
j N (z2; u

(2)
i,j ,P

(2)
i,j )N (x2; µ̂

(2)
i,j , Σ̂

(2)
i,j ), (6.19)

and∫
p(z2|x2)p(x2)dx2 =

∫ N∑
j=1

N∑
i=1

γ
(2)
j αiN (z2; u

(2)
i,j ,P

(2)
i,j )N (x2; µ̂

(2)
i,j , Σ̂

(2)
i,j )dx2

=
N∑
i=1

N∑
j=1

αiγ
(2)
j N (z2; u

(2)
i,j ,P

(2)
i,j )

∫
N (x2; µ̂

(2)
i,j , Σ̂

(2)
i,j )dx2

=
N∑
i=1

N∑
j=1

αiγ
(2)
j N (z2; u

(2)
i,j ,P

(2)
i,j ).

(6.20)

Plugging Eq. (6.19) and Eq. (6.20) into Eq. (6.16) yeilds

p(x̂2) ∼
N∑
j=1

N∑
i=1

β̂
(2)
i,j N (µ̂

(2)
i,j , Σ̂

(2)
i,j ), (6.21)

where

β̂
(2)
i,j =

αiγ
(2)
j N (z2; u

(2)
i,j ,P

(2)
i,j )∑N

j=1

∑N
i=1 αiγ

(2)
j N (z2; u

(2)
i,j ,P

(2)
i,j )

. (6.22)
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As it is shown in Eq. (6.21), p(x̂2) is still a Gaussian mixture with N2 mixtures.

Eq. (6.21) can be further processed to reduce the number of mixtures in the model.

Details discussion are presented in section 6.2. Assuming the number of mixtures

after mixture reduction is W , p(x̂2) can be simplified as

p(x̂2) ∼
W∑
i=1

β
(2)
i N (µ̂

(2)
i , Σ̂

(2)
i ). (6.23)

Since Bayes’ least square estimate of x2 is given as the conditional mean of p(x2|z2),

x̂2 =
W∑
i=1

β
(2)
i µ̂

(2)
i . (6.24)

Similarly to p(x̂2), if ŷk is the estimation of yk when given observation zk, p(x̂2)

can be formulated as

p(ŷ2) = p(y2|z2) =
p(z2|y2)p(y2)∫
p(z2|y2)p(y2)dy2

. (6.25)

Since yk, xk and vk are uncorrelated, the conditional probability of z2 given y2 yields

p(z2|y2) = p(z2 − y2|Hx2 + v2)

=
N∑
i=1

αiN (z2 − y2; Hµi,HΣiH
T + R).

(6.26)

Therefore,

p(z2|y2)p(y2) =
N∑
j=1

N∑
i=1

γ
(2)
j αiN (z2 − y2; Hµi,HΣiH

T + R)N (y2; m
(2)
j ,Q

(2)
j )

=
N∑
j=1

N∑
i=1

γ
(2)
j αiN (z2; u

(2)
i,j ,P

(2)
i,j )N (y2; m̂

(2)
i,j , Q̂

(2)
i,j ),

(6.27)

where m̂
(2)
i,j = m

(2)
j + K̃

(2)
i,j (z2 − u

(2)
i,j ), Q̂

(2)
i,j = (I− K̃

(2)
i,j )Q

(2)
j and K̃

(2)
i,j = Q

(2)
j (P

(2)
i,j )−1.

Since

p(z2) =

∫
p(z2|x2)p(x2)dx2 =

∫
p(z2|y2)p(y2)dy2,

according to Eq. (6.20),∫
p(z2|y2)p(y2)dy2 =

N∑
i=1

N∑
j=1

αiγ
(2)
j N (z2; u

(2)
i,j ,P

(2)
i,j ). (6.28)
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Plugging Eq. (6.27) and Eq. (6.28) into Eq. (6.25) yeilds

p(ŷ2) ∼
N∑
j=1

N∑
i=1

β̂
(2)
i,j N (m̂

(2)
i,j , Q̂

(2)
i,j ). (6.29)

As it is shown in Eq. (6.29), p(ŷ2) is still a Gaussian mixture with N2 mixtures.

Eq. (6.29) can be also further processed to reduce the number of mixtures in the

model. Assuming the number of mixtures after mixture reduction is L, p(ŷ2) can be

simplified and written as

p(ŷ2) ∼
L∑
i=1

γ̂
(2)
i N (m̂

(2)
i , Q̂

(2)
i ) (6.30)

When k = 3, with p(ŷ2) (given in Eq. (6.30)) and p(x̂2) (given in Eq. (6.23)),

p(y3) can be computed from

p(y3) =

∫
p(y3|ŷ2)p(ŷ2)dŷ2. (6.31)

Since ŷ2 and x̂2 are indenpendent, p(y3|ŷ2) can be formulated as

p(y3|ŷ2) = p(y3 − ŷ2|Mx̂2)

=
W∑
j=1

β
(2)
j N (y3 − ŷ2; Mµ̂

(2)
j ,MΣ̂

(2)
j MT ).

(6.32)

Therefore,

p(y3) =

∫ W∑
j=1

β
(2)
j N (y3 − ŷ2; Mµ̂

(2)
j ,MΣ̂

(2)
j MT )

L∑
i=1

γ̂
(2)
i N (ŷ2; m̂

(2)
i , Q̂

(2)
i )dŷ2

=
W∑
j=1

L∑
i=1

β
(2)
j γ̂

(2)
i N (y3; m

(3)
i,j ,Q

(3)
i,j ),

(6.33)

where m
(3)
i,j = m̂

(2)
i +Mµ̂

(2)
j and Q

(3)
i,j = Q̂

(2)
i +MΣ̂

(2)
j MT . As it is shown in Eq. (6.33),

p(ŷ3) is still a Gaussian mixture with W×L mixtures. Eq. (6.33) are further processed

to reduce the number of mixtures in the model. Assuming the number of mixtures

after mixture reduction is G, p(ŷ3) can be simplified and written as

p(y3) =
G∑
i=1

γ
(3)
i N (y3; m

(3)
i ,Q

(3)
i ) (6.34)
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Following the same procedures, x̂k (k = 1, ..., Ng, Ng is the number of radar range

bins) can be obtained. A summary of the sequential Gaussian mixture parameter

estimator approach is given as follows:

• Models:

p(vk) ∼ N (0,R) for k > 0 (6.35a)

p(xk) ∼
N∑
i=1

αiN (µi,Σi) for k > 0 (6.35b)

p(x̂k) = p(xk|zk) ∼
W∑
i=1

β
(k)
i N (µ

(k)
i ,Σ

(k)
i ) for k > 0 (6.35c)

p(yk) ∼
G∑
i=1

γ
(k)
i N (m

(k)
i ,Q

(k)
i ) for k > 1 (6.35d)

p(ŷk) = p(yk|zk) ∼
L∑
i=1

γ̂
(k)
i N (m̂

(k)
i , Q̂

(k)
i ) for k > 1 (6.35e)

• For k = 0: y0 = 0 and x0 = 0.

• For k = 1: Given observation z1, y1 = 0 and

p(x̂1) ∼
N∑
i=1

β
(1)
i N (µ

(1)
i ,Σ

(1)
i ), (6.36)

where µ
(1)
i = µi + K

(1)
i (z1 − u

(1)
i ), Σ

(1)
i = (I−K

(1)
i H)Σi, P

(1)
i = HΣiH

T + R,

u
(1)
i = Hµi and

β
(1)
i =

αiN (z1; u
(1)
i ,P

(1)
i )∑N

i=1 αiN (z1; u
(1)
i ,P

(1)
i )

.

Estimate of x1 yields

x̂1 =
N∑
i=1

β
(1)
i µ̂

(1)
i . (6.37)

• For k = 2: Given observation z2,

p(y2) ∼
N∑
i=1

γ
(2)
i N (m

(2)
i ,Q

(2)
i ), (6.38)

where γ
(2)
i = β

(1)
i , m

(2)
i = Mµ

(1)
i and Q

(2)
i = MΣ

(1)
i MT , and

p(x̂2) ∼
N∑
j=1

N∑
i=1

β̂
(2)
i,j N (µ̂

(2)
i,j , Σ̂

(2)
i,j ), (6.39)
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where u
(2)
i,j = Hµi+m

(2)
j , P

(2)
i,j = HΣiH

T +Q
(2)
j +R, µ̂

(2)
i,j = µi+K

(2)
i,j (z2−u

(2)
i,j ),

Σ̂
(2)
i,j = (I−K

(2)
i,j H)Σi, K

(2)
i,j = ΣiH

T (P
(2)
i,j )−1 and

β̂
(2)
i,j =

αiγ
(2)
j N (z2; u

(2)
i,j ,P

(2)
i,j )∑N

j=1

∑N
i=1 αiγ

(2)
j N (z2; u

(2)
i,j ,P

(2)
i,j )

.

After reduction of mixtures in p(x̂2),

p(x̂2) ∼
W∑
i=1

β
(2)
i N (µ̂

(2)
i , Σ̂

(2)
i ). (6.40)

Estimate of x2 yields

x̂2 =
W∑
i=1

β
(2)
i µ̂

(2)
i . (6.41)

Refined distribution of y2 given observation z2 is

p(ŷ2) ∼
N∑
j=1

N∑
i=1

β̂
(2)
i,j N (m̂

(2)
i,j , Q̂

(2)
i,j ), (6.42)

where m̂
(2)
i,j = m

(2)
j + K̃

(2)
i,j (z2 − u

(2)
i,j ), Q̂

(2)
i,j = (I − K̃

(2)
i,j )Q

(2)
j and K̃

(2)
i,j =

Q
(2)
j (P

(2)
i,j )−1. After reduction of mixtures in p(ŷ2),

p(ŷ2) ∼
L∑
i=1

γ̂
(2)
i N (m̂

(2)
i , Q̂

(2)
i ). (6.43)

• For k = 3: Given observation z3,

p(y3) =
W∑
j=1

L∑
i=1

β
(2)
j γ̂

(2)
i N (y3; m

(3)
i,j ,Q

(3)
i,j ), (6.44)

where m
(3)
i,j = m̂

(2)
i + Mµ̂

(2)
j and Q

(3)
i,j = Q̂

(2)
i + MΣ̂

(2)
j MT . After reduction of

mixtures in p(y3),

p(y3) =
G∑
i=1

γ
(3)
i N (y3; m

(3)
i ,Q

(3)
i ). (6.45)

...

...

...
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• For k = k: (Model Forecast Step)

p(yk) =
W∑
j=1

L∑
i=1

β
(k−1)
j γ̂

(k−1)
i N (yk; m

(k)
i,j ,Q

(k)
i,j ), (6.46)

where m
(k)
i,j = m̂

(k−1)
i + Mµ̂

(k−1)
j and Q

(k)
i,j = Q̂

(k−1)
i + MΣ̂

(k−1)
j MT . After

reduction of mixtures in p(yk),

p(yk) =
G∑
i=1

γ
(k)
i N (yk; m

(k)
i ,Q

(k)
i ). (6.47)

Given observation zk, (Data Assimilation Step)

p(x̂k) ∼
G∑
j=1

N∑
i=1

β̂
(k)
i,j N (µ̂

(k)
i,j , Σ̂

(k)
i,j ), (6.48)

where u
(k)
i,j = Hµi+m

(k)
j , P

(k)
i,j = HΣiH

T +Q
(k)
j +R, µ̂

(k)
i,j = µi+K

(k)
i,j (zk−u

(k)
i,j ),

Σ̂
(k)
i,j = (I−K

(k)
i,j H)Σi, K

(k)
i,j = ΣiH

T (P
(k)
i,j )−1 and

β̂
(k)
i,j =

αiγ
(k)
j N (zk; u

(k)
i,j ,P

(k)
i,j )∑G

j=1

∑N
i=1 αiγ

(k)
j N (zk; u

(k)
i,j ,P

(k)
i,j )

.

After reduction of mixtures in p(x̂k),

p(x̂k) ∼
W∑
i=1

β
(k)
i N (µ̂

(k)
i , Σ̂

(k)
i ). (6.49)

Estimate of xk yields

x̂k =
W∑
i=1

β
(k)
i µ̂

(k)
i . (6.50)

Refined distribution of yk given observation zk is

p(ŷk) ∼
N∑
j=1

N∑
i=1

β̂
(k)
i,j N (m̂

(k)
i,j , Q̂

(k)
i,j ), (6.51)

where m̂
(k)
i,j = m

(k)
j + K̃

(k)
i,j (zk − u

(k)
i,j ), Q̂

(k)
i,j = (I − K̃

(k)
i,j )Q

(k)
j and K̃

(k)
i,j =

Q
(k)
j (P

(k)
i,j )−1. After reduction of mixtures in p(ŷk),

p(ŷk) ∼
L∑
i=1

γ̂
(k)
i N (m̂

(k)
i , Q̂

(k)
i ). (6.52)
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Figure 6.1: Diagrammatic view of the role of observations and models in SGMPE. In

the figure, MF refers to Model Forecast and DA refers to Data Assimilation.

Fig. 6.1 shows a diagrammatic view of the role of observations and models in the

sequential Gaussian mixture parameter estimator. As it can be seen that the SGMPE

approach is quite straightforward. From the beginning of the radar beam path, yk

is first obtained from estimations of x̂k−1 and ŷk−1 at the previous range bin. This

step is known as the Model Forecast step in Kalman filtering. After observation zk

is acquired, yk is refined and xk is estimated both by maximizing the conditional

probability of yk and xk given zk. This step is known as the Data Assimilation step

in Kalman filtering.

In conclusion, the sequential GMPE approach is able to model the dependency of

weather radar measurements of one bin on properties of previous bins and proceed

in a Kalman filter manner such that the estimation at each range bin is the ‘best’

estimate given the radar measurements of that bin, in terms of minimum-variance

and unbiased performance. The only drawback of SGMPE is the number of mix-

tures in accumulation vector yk increases exponentially from bin to bin. Ways to

reduce mixtures and keep the number of mixtures as small as possible without losing

significant information are introduced and discussed in section 6.2.
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6.2 SGMPE Mixture Reduction

As shown in section 6.1, a possible drawback of the recursive processing of Gaussian

mixture models is the inevitable increase of mixture components at an exponential

rate. How to keep the number of mixtures from growing too large while preserving

significant distribution information has been the focus of many studies (e.g., Williams

and Maybeck 2003; Runnalls 2007; Huber and Hanebeck 2008; Schieferdecker and

Huber 2009). Moreover, the mixture reduction procedure should be computationally

efficient, since many recursive GMM applications require real-time processing.

The simplest way of reducing Gaussian components is to eliminate those ‘unim-

portant’ ones (Blackman 2004). Since the influence of one component on the whole

GMM model is characterized by the weighting of the component, components with

low weightings may be eliminated from the model without losing much fidelity. Such

mixture reduction methods are also known as ‘pruning’ or ‘forgetting’.

Alternatively, another natural way of reducing Gaussian mixture components is to

merge components that are close (Salmond 2009). There are many ways to measure

the similarity between components, such as the distance between their means or the

overlapping area between components. ‘Merging’ is considered more attractive than

‘forgetting’, since ‘Merging’ preserves information in some sense while pruning would

certainly loses those information.

More advanced techniques for mixture reduction are also reported in literature.

They may be classified into two categories: bottom-up approaches that begin with

a single Gaussian mixture and iteratively add additional components until the orig-

inal GMM is approximated appropriately, such as the PGMR (Progressive Gaus-

sian Mixture Reduction) algorithm presented in Huber and Hanebeck (2008), and

top-down approaches that start with the original GMM and iteratively decrease the

number of mixture components according to characteristics of the overall model or

just individual mixtures, such as Williams’s algorithm (Williams and Maybeck 2003)
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and the GMRC (Gaussian Mixture Reduction via Clustering) algorithm introduced

in Runnalls (2007). Crouse et al. (2011) gives a review of Gaussian mixture re-

duction algorithms and compares two of the best algorithms, the GMRC algorithm

from Schieferdecker and Huber (2009) and the COWA (Constraint Optimized Weight

Adaptation) algorithms from Chen et al. (2010), where the GMRC algorithm is shown

to have better performance in terms of Integral Squared Error (ISE).

It is worth mentioning that more advanced and sophisticated mixture reduction

algorithms generally require more computation time. Mixture reduction is always a

compromise between accuracy and computation time. The choice of mixture reduc-

tion algorithm depends on different applications and requirements.

Details of two widely used Gaussian mixture reduction algorithms are shown as

follows:

• Pruning/Forgetting

Many Gaussian mixture reduction algorithms are greedy in nature, such as the

Pruning algorithm. Given a Gaussian mixture consisting of N components,

pruning can be easily done by giving zero weight to mixture components with

weights that are lower than some threshold values, such as 0.01 or 0.001. Num-

ber of mixtures can be limited to a small number by setting a proper threshold,

though there is usually no control of the actually number. If the number of

mixtures needs to be reduced, say, L, one can simply discard the N − L com-

ponents having the lowest weights. Besides weights, pruning may be performed

according to other cost measures (Crouse et al. 2011). Since usually after one

iteration, most of the components in a GMM would have very small weights,

pruning is a simple but efficient way to reduce number of mixture. More im-

portantly, pruning does not require heavy computation.

• Merging
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Mixture reduction may be achieved by merging two or more mixture components

into one component, where the first two moments of the overall mixture are

preserved. Assuming the index of the mixtures being merged are i = 1, ...,M ,

the weighting, mean and covariance of the new Gaussian component are given

by

αnew =
M∑
i=1

αi (6.53a)

µnew =
1

αnew

M∑
i=1

αiµi (6.53b)

Σnew =
M∑
i=1

αi
αnew

(Σi + (µi − µnew)(µi − µnew)T ). (6.53c)

The choice of which components to be merged often depends on distance or

similarity among components. (Salmond 1989) utilizes the following ad hoc

distance definition

d2
ij =

αiαj
αi + αj

(µi − µj)TΣ−1(µi − µj). (6.54)

Runnalls (2007) defined measure of similarity between components i and j as

cij =
1

2
[(αi + αj)log(|Σij|)− αilog(|Σi|)− αjlog(|Σj|)] (6.55)

based on the Kullback-Leibler (Kullback and Leibler 1951) discrimination mea-

sure. In Eq. (6.55), Σij corresponds to the new covariance matrix after two

components are merged. Merging algorithms, though differs in how they mea-

sure distance among components, usually merge two components that has the

lowest distance at a time until the desired number of mixtures has been reached.
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6.3 Rainfall Rate Estimation at X-band Using

SGMPE

Section 5.5 introduced two iterative GMPE approaches, DP-GMPE and CI-GMPE,

for path-integrated attenuation correction of rain. It should be pointed out that cor-

recting PIA is not the final goal but an intermediate stage. The recovered reflectivity

and differential reflectivity are applied to other meteorological applications such as

rainfall rate estimation. Conventional approaches for rainfall rate estimation in C-

band or X-band, where attenuation effects can not be neglected, tend to divide the

job into two separated stages: attenuation correction and rainfall estimation. Those

two stages are independent. Better estimation results may be achieved if rainfall

rate estimation algorithms are able to compensate the error and uncertainties from

attenuation corrections outputs, instead of expecting the outputs from attenuation

correction algorithms to be perfect. If one estimation is made upon another esti-

mation, estimation errors from the previous estimation would be accumulated in the

new estimation. An example can be found in section 5.4, where it is shown that

the rainfall rate directly estimated from the radar moments is more precise than the

rainfall rate retrieved from the estimated DSD parameters.

Differential phase has played an major role in attenuation correction applications

and estimating rainfall rate from high attenuation environment due to its immunity

to attenuation effects. Either use differential phase as the only input or as a con-

straint, the algorithms are heavily dependent on phase measurements. Since phase

measurements are not always available and are easily contaminated by instrumenta-

tion noise, it would be even better if the rainfall rate estimation algorithm for X-band

works with phase measurement when it is available but does not require or depend

on phase measurement.
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The Gaussian Mixture Parameter Estimator (SGMPE) introduced in section 6.1 is

developed for radar meteorological applications in higher frequency bands such as C-

band, X-band, Ku-band and Ka-band. The SGMPE approach is also designed to take

attenuation effects into consideration and make the best use of radar measurements

for different applications.

In this section, a SGMPE is built for rainfall rate estimation in X-band as a

demonstration. Results of SGMPE approach with different inputs are compared

with those from DP-GMPE and CI-GMPE. Gaussian mixture reduction in practical

SGMPE applications is also discussed.

6.3.1 GMPE Construction

The X-band simulation dataset used in the PIA correction study (5.5) is also used

here. Details of the simulation dataset can be found in Table 5.12. The dataset

consists of 15,000 cases that are generated in the single-cell Monte Carlo simulation.

Raindrop size distribution is represented by a normalized Gamma DSD whose pa-

rameters are uniformly distributed in a predefined range used in many studies (e.g.,

Vulpiani et al. 2005; Gorgucci et al. 2006). Similar to the PIA correction study, The

simulation dataset is divided into 2 portions. 12000 cases are used for training and

the remaining 3000 cases are used for testing.

State vector is constructed as x = [R,Ah, Adp, ZH , ZDR, Kdp]
T . Once the prior

distribution of x, p(x) has been approximated by a GMM, it is ready to be adapted

to different radar systems, such as z = [ZH ]T for legacy single polarization radar,

z = [ZH , ZDR]T for dual-polarized radar without (or with low quality) differential

phase measurements and z = [ZH , ZDR, Kdp]
T for radars with full dual-polarization

capabilities. Fig. 6.2 shows the RMSEs of rainfall estimation from GMPE with differ-

ent inputs as number of mixture increases. As shown in Fig. 6.2, if only one dual-pol

variable is input to GMPE, Kdp is much better choice than ZH . More variables input
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to GMPE generally leads to better performance. Performance of GMPE with differ-

ent inputs reach their best performance points when GMM has 6 or more mixtures.

Therefore, a GMM with 6 mixtures is trained and used in both GMPE and SGMPE

for this study.

Figure 6.2: RMSEs of rainfall estimation from GMPE with different inputs as number

of mixtures increases.

Table 6.1: Performance of GMPE with 6 mixtures for rainfall rate estimation (all in

[mm hr−1])

Bias SD RMSE FSE

GMPE(z = [Kdp]
T ) -0.1663 9.2998 9.3012 33.39%

GMPE(z = [ZH ]T ) -0.8859 24.5524 24.5684 88.18%

GMPE(z = [ZH , ZDR) -0.5607 8.2415 8.2605 29.65%

GMPE(z = [ZH , ZDR, Kdp]
T ) -0.1495 3.8681 3.8710 13.89%
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Table 6.1 shows the performance of GMPE with 6 mixtures for rainfall rate es-

timation at X-band. Since the test dataset is noise-free, the rainfall rate estimation

results can be considered as the upper bound for the DP-GMPE approach, CI-GMPE

approach and SGMPE approach with same inputs. For example, the best RMSE DP-

GMPE and SGMPE with z = [Kdp]
T may have for rainfall rate estimation is 9.3012

[mm hr−1]. Similarly, for CI-GMPE and SGMPE with z = [ZH , ZDR, Kdp]
T , the best

RMSE is 3.8710 [mm hr−1].

6.3.2 Performance Evaluation for SGMPEs

To evaluate the performance of DP-GMPE, CI-GMPE and SGMPE for rainfall rate

estimation in presence of PIA, a total of 15 rain paths are constructed from the test

dataset. Each rain path consists of 200 range bins with the range spacing of 150

[m] and each range bin is a simulated case randomly taken from the test dataset. It

can be seem that, although such rain paths may not be realistic, having a rain path

with randomly varying DSD parameters is one of the most challenging scenarios for

rainfall rate estimation approaches, especially when the PIA effects are strong. Since

all the cases are from the same test dataset, the lower bound of performance for each

algorithm can be obtained. The expected performance of each algorithm in real-world

environment will be somewhere in between.

As shown in Section 6.1, number of mixtures needed in SGMPE will grow expo-

nentially from bin to bin. Therefore, number of mixtures needed and how to reduce

mixtures to the desired number has to be considered. There are three numbers of

mixtures needed. As shown in Eq. (6.35c), (6.35d) and (6.35e), they are W for p(x̂k),

G for p(yk) and L for p(ŷk). W , G and L can be any number and can be modified

from bin to bin. To facilitate the actual implementations, W , G and L in this study

are set as a same number and fixed over range.
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Weather radar systems usually employ a pulse length at the level of one mi-

crosecond and a pulse repetition time at the level of one millisecond, which means

observations of several hundred range bins can be finished in less than one second. Ac-

cordingly, mixture reduction for SGMPE need to be performed several hundred times

or more within one second. For potential applications of the SGMPE algorithms in

practical radar systems, the choice of Gaussian mixture reduction algorithms has to

take into account the time efficiency of the algorithms. In this study, the ‘pruning’

mixture reduction technique introduced in section 6.2 is used, where the desired num-

ber of mixtures with the largest weights are kept while the rest of the mixtures are

dropped. For comparison purpose, the ‘merging’ mixture reduction technique is also

implemented where the Salmond’s distance definition (Eq. 6.54) is adopted. Note

that, ‘merging’ mixture reduction technique is computationally intense and slow. It

may not be applicable to practical radar systems.

If observation for SGMPE is zk = [Zm
H (rk), Z

m
DR(rk),∆Φf

DP (r0, rk)]
T , the obser-

vation matrix H and accumulation matrix M are given in Eq. (6.7) and Eq. (6.8),

respectively. For SGMPE with zk = [Zm
H (rk), Z

m
DR(rk)]

T , the observation matrix H

and accumulation matrix M are constructed as

H =

0 −2∆r 0 1 0 0

0 0 −2∆r 0 1 0


and

M =

0 −2∆r 0 0 0 0

0 0 −2∆r 0 0 0

 .
Similarly, for SGMPE with zk = [Zm

H (rk)]
T , H = [0,−2∆r, 0, 1, 0, 0] and M =

[0,−2∆r, 0, 0, 0, 0]. If phase is the only input to SGMPE, H = [0, 0, 0, 0, 0, 2∆r]

and M = [0, 0, 0, 0, 0, 2∆r].

To quantify the impacts of mixture reduction, DP-GMPE, CI-GMPE and SGMPE

with different inputs are tested using the 15 randomly generated rain paths. To show

only the impacts of mixture reduction, this test assumes a noise-free environment just
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like the previous GMPE test. It should be pointed out that CI-GMPE and SGMPE

are expected to perform worse than GMPE with the same input while DP-GMPE

is expected to have the same performance. This is because there are only errors of

estimating rainfall rate in previous GMPE test while in this ‘clean’ rain path test,

there are not only errors of estimating rainfall rate but also errors from estimating

and correcting PIAs. Since no power measurement is involved in DP-GMPE, there is

no PIA errors for DP-GMPE. DP-GMPE and GMPE with Kdp should have the same

performance. Fig. 6.3 shows the results of this ‘clean’ rain path test. It is noted that,

mixture reduction does not apply to DP-GMPE or CI-GMPE. They are plotted in

the same figure with SGMPE who shares the same input as reference.

As shown in Fig. 6.3(a), there is not much difference between the performance of

SGMPEs with ‘Pruning’ and ‘Merging’ mixture reduction algorithms as the blue line

and red line pretty much overlap. So for this ‘clean’ rain path test, the ‘Merging’

algorithm who requires intense computation does not show obvious advantage over

the simple ‘Pruning’ algorithm. As number of mixtures increases (after reduction),

the RMSEs of SGMPE do not decrease but increase a little, though the difference

is small, about 0.01 [mm hr−1]. Compared with performance of GMPE with the

same input in Fig. 6.2 (blue line), CI-GMPE has a larger RMSE, about 0.3 [mm

hr−1], which is from the errors of DP-GMPE for estimating PIAs (CI-GMPE uses

the power measurements corrected by CI-GMPE as input). Performance of SGMPE

with the same input is worse for around 0.5 [mm hr−1] which is the combination

of errors from mixture reduction and estimating attenuations. So the impacts of

mixture reduction leads to less than 0.5 [mm hr−1] RMSE in SGMPE with zk =

[Zm
H (rk), Z

m
DR(rk),∆Φf

DP (r0, rk)]
T as input, which is not significant.

Fig. 6.3(b) shows the comparison between DP-GMPE and SGMPE with Kdp as

input. DP-GMPE has the same performance as GMPE(z = [Kdp]
T ) (red line in

Fig. 6.2). SGMPE with Kdp as input performs worse than DP-GMPE by about 0.8

161



Figure 6.3: RMSEs of SGMPEs after mixture reduction for the ‘clean’ rain path test.

From top to bottom, (a) Comparision between ‘Pruning’ and ‘Merging’; (b) Com-

parison between DP-GMPE and SGMPE with Kdp as input; (c) RMSEs of SGMPE

with ZH as input.

162



[mm hr−1] due to the impacts of mixture reduction. For SGMPE with z = [ZH , ZDR,

there is a 1.3 [mm hr−1] performance degradation due to the impacts of mixture

reduction as well as errors from estimating attenuations. It is worth mentioning that,

errors from estimating attenuation in SGMPE with z = [ZH , ZDR are expected to be

larger than errors in SGMPE with zk = [Zm
H (rk), Z

m
DR(rk),∆Φf

DP (r0, rk)]
T as input,

since with more input variables, more precise estimation of attenuation from SGMPE

can be obtained. Similar to SGMPE with zk = [Zm
H (rk), Z

m
DR(rk),∆Φf

DP (r0, rk)]
T , the

RMSEs of SGMPE increase as number of mixtures after reduction increases for both

SGMPE with z = [Kdp] and z = [ZH , ZDR]. However, the variation of RMSEs are

small for both cases when number of mixtures after reduction increases from 3 to 12.

Huge performance difference (10 [mm hr−1]) between GMPE(z = [ZH ]T ) and

SGMPE(z = [ZH ]T ) can be observed in Fig. 6.3(c) and Fig. 6.2(the magenta line).

Such difference are mainly contributed by the large errors of SGMPE(z = [ZH ]T ) from

estimating attenuations as illustrated in Fig. 5.20. In this case, SGMPE performs a

little better when more mixtures are used after reduction.

To further test the performance of DP-GMPE, CI-GMPE and SGMPE with differ-

ent inputs in noisy environments, zero mean Gaussian noise with standard deviation

of 1 [dB] for ZH , 0.3 [dB] for ZDR and 2◦ for Φdp are added to the 15 rain paths. It

should be pointed out that the DP-GMPE approach and the CI-GMPE approach are

expected to have much worse performance in this ‘noisy’ rain path test than in previ-

ous ‘clean’ rain path test, since Kdp measurements will be severely contaminated by

noise considering Kdp for rain in X-band are mostly lower than 10◦. This is the reason

why measurements of Kdp are often unreliable. Rainfall rate estimation results from

this ‘noisy’ rain path test can be considered as the lower bound for the performance

of DP-GMPE, CI-GMPE and SGMPE with different inputs.

As shown in Fig. 6.4(a), there is also not much difference between the per-

formance of SGMPEs with ‘Pruning’ and ‘Merging’ mixture reduction algorithms
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Figure 6.4: RMSEs of SGMPEs after mixture reduction for the ‘noisy’ rain path test.

From top to bottom, (a) Comparision between ‘Pruning’ and ‘Merging’; (b) Com-

parison between DP-GMPE and SGMPE with Kdp as input; (c) RMSEs of SGMPE

with ZH as input.
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even in noisy environment. The RMSEs of SGMPE do not have notable changes

when the number of mixtures after reduction increases. Compared with the results

in Fig. 6.3(a), there is a 13 [mm hr−1] difference for SGMPE with input zk =

[Zm
H (rk), Z

m
DR(rk),∆Φf

DP (r0, rk)]
T due to noise contamination. CI-GMPE is more

sensitive to noise than SGMPE since SGMPE utilizes not only phase measurement

but also power measurements, which are more noise-robust. Despite CI-GMPE and

SGMPE performs similar in ‘clean’ environment, SGMPE shows better RMSE of 2.5

[mm hr−1] than CI-GMPE in this ‘noisy’ rain path test.

Fig. 6.4(b) shows the performance comparison between DP-GMPE and SGMPE

with Kdp as input for this ‘noisy’ rain path test. It may seem surprising that SGMPE

with Kdp outperforms DP-GMPE in noisy environment. SGMPE is capable of refining

Φdp estimation everytime when there is an phase measurement available while DP-

GMPE does nothing but use the measured phase which is affected by noise. Compared

the results with those from the ‘clean’ rain path test, both DP-GMPE and SGMPE

with Kdp perform much worse in this ‘noisy’ rain path test as expected. There is

a 30 [mm hr−1] (300%) degradation in terms of RMSE for DP-GMPE and SGMPE

with Kdp in noisy environment. Also affected by noise, performance of SGMPE with

z = [ZH , ZDR] degrades by about 10 [mm hr−1]. Similar to the ‘clean’ rain path test,

the variation of RMSEs are small for all three algorithms when number of mixtures

after reduction increases from 3 to 12.

It seems that noise does not have much impacts on the performance of SGMPE

with z = [ZH ] as shown in Fig. 6.4(c). Errors from noise are small compared to the

errors of SGMPE with z = [ZH ] when estimating attenuations. SGMPE performs

almost the same for different numbers of mixtures after reduction.

Previous two tests show that the ’Pruning’ mixture reduction algorithm can be

used even when the number of mixture after reduction is as small as three. Using more

number of mixtures after reduction does not necessary lead to better performance
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for SGMPE. To evaluate performance of DP-GMPE, CI-GMPE and SGMPE with

different inputs over range, a total of 50 realizations, in which there are 15 random

paths in each realization, are generated from the test dataset. Zero mean Gaussian

noise with standard deviation of 1 [dB] for ZH , 0.3 [dB] for ZDR and 2◦ for Φdp are

added to all the paths. To be consist with the 6 mixture GMM used, the number

of mixtures after reduction is also set at 6. Results of each approach are shown in

Fig. 6.5.

Figure 6.5: Error of estimated rainfall rate over range. Results are obtained by taking

the average of 750 random paths. In the figure, ’SGMPE - Pruning’ and ’SGMPE

- Merging’ both refer to SGMPE with zk = [Zm
H (rk), Z

m
DR(rk),∆Φf

DP (r0, rk)]
T but

different mixture reduction algorithm.
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As shown in Fig. 6.5, results from ’SGMPE - Pruning’ and ’SGMPE - Merg-

ing’ are overlapped together, which again proves that the computationally expen-

sive ‘Merging’ algorithm shows no advantage over the simple ‘Pruning’ algorithm for

this application. Performance of DP-GMPE, SGMPE with Kdp and SGMPE with

zk = [Zm
H (rk), Z

m
DR(rk),∆Φf

DP (r0, rk)]
T is consistant over rage while the performance

of the rest fo the algorithms are more or less degraded. For CI-GMPE and SGMPE

with z = [ZH , ZDR], there is a 4 [mm hr−1] difference in RMSE between the begin-

ning of the path and the end of the path over a range of 30 km. This is because

the accumulated error from estimating attenuation and mixture reduction. However,

such degradation is acceptable. Assuming there is a long, continuous rain cell over

150 km, the average RMSEs of CI-GMPE and SGMPE with z = [ZH , ZDR] for the

whole path would be around 25 [mm hr−1], which is still not bad. Actually, even

the 150 km long rain cell exists in nature, X-band radar is not able to see through it

since attenuated return signal may be already under the receiver’s noise floor after 40

or 50 km. Performance of SGMPE with z = [ZH ] significantly degrades when range

increases, this is due to the large error of z = [ZH ] for estimating both rainfall rate

and attenuation. So applications of SGMPE with z = [ZH ] should be limited to a

shorter range, such as 50 to 100 km, to avoid significant degradation of performance.

6.3.3 Conclusions

Sequential Gaussian mixture parameter estimator is applied to rainfall rate estimation

at X-band in this study. Results from numerical simulation show that the ’Pruning’

mixture reduction algorithm can be used to limit the number of mixture in SGMPE

without losing much accuracy. Number of mixtures after reduction can be as small as

3 and SGMPE still performs well. With the same inputs, SGMPE outperforms DP-

GMPE and CI-GMPE in noisy environment. While both DP-GMPE and CI-GMPE

are heavily dependent on Kdp measurements which are easily contaminated by noise,
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SGMPE is capable of performing with or without phase measurement. Moreover,

SGMPE provides a general frame work for meteorological applications in frequency

bands where attenuation effects cannot be neglected. SGMPE is also applicable to

other radar systems, such as dual-frequency radars, besides dual-polarized radars.

As the spatial extension of the GMPE approach, SGMPE carries all the proper-

ties from GMPE, for example, estimates from the SGMPE approach are optimized

in terms of minimum variance and unbiased performance given radar observations at

each radar resolution bin. Even with mixture reduction, close to optimum perfor-

mance can still be obtained by SGMPE. The structure of the SGMPE is also possible

to be extended to radar network applications.
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Chapter 7

Conclusions

7.1 Summary

In this dissertation, a Gaussian mixture model (GMM) is introduced to characterize

the prior distribution of weather parameters and the corresponding radar observation

variables. The convergence capability of the GMM not only provides a general frame-

work to accommodate diverse information but also supports statistically optimized

hydrometeor classification and weather parameters estimation through a Bayesian

approach. A Bayesian hydrometeor classifier is constructed based on the GMM and

tested using simulated PRM from numerical weather prediction (NWP) model. A

GMM-based linear Bayesian estimator (GMPE) is developed and applied to applica-

tions such as DSD retrieval, rainfall rate estimation and attenuation correction. The

GMPE approach is further extended to a sequential Kalman filter structure. The

sequential GMPE is applied and evaluated in rainfall rate estimation at X-band.

The overall contributions of this dissertation are summarized as follows:

• A single-cell Monte Carlo simulation is developed based on the idea that mi-

crophysics variables such as hydrometeor shape, canting angle, melting ratio

and drop size distribution are allowed to have uncertainties (randomness) to

avoid assumptions or losing generality. Any microphysics model can be incor-

porated into the framework. Realistic radar returns of different hydrometeors
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at different frequency bands can be generated by the single-cell Monte Carlo

simulation.

• To assist modern airborne radar development and evaluate radar performance in

extreme scenarios, the single-cell simulation is applied to the entire radar scan-

ning volume supported by numerical weather prediction model outputs. Dual-

polarization airborne radar signatures corresponding to a mixed-phase storm

case from both plan position indicator (PPI) and range height indicator (RHI)

scan schemes at different layers of the atmosphere are generated.

• Dual-pol variables of rain at S-, C- and X-band are obtained using single-cell

Monte Carlo simulations to better support and serve the development of po-

larimetric rain attenuation correction algorithms and rainfall rate estimation

algorithms.

• A Gaussian mixture model is adopted to model the prior distribution of micro-

physics variables and the corresponding radar observation variables.

• A GMM-based hydrometeor classifier is developed based on radar signatures

of different hydrometeors simulated from the single-cell Monte Carlo simula-

tion. The classifier is then applied to hydrometeor hazard detection for airborne

Sense-and-Avoid radar. Hail hazard detection by the GMM-based hydrometeor

classifier is performed on PPI scans of snow-hail mixture as well as rain-hail

mixture. Detection results with and without attenuation effects are shown and

discussed.

• Based on GMM and Bayesian estimation theory, a linear Bayesian estimator

(GMPE) for weather parameter estimation is developed and evaluated through

two applications: attenuation estimation for different hydrometeors and rainfall
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rate estimation using dual-frequency polarimetric radar measurements. Con-

struction of state variables and impacts of number of mixtures are discussed

and analyzed.

• The GMPE is applied to DSD parameter retrieval using S-band polarimetric

radar measurements. Retrieval results are compared with those from two po-

larimetric radar DSD retrieval algorithms, the β method and the C-G method.

GMPE shows better performance in every error category.

• A Gaussian Mixture Rainfall-rate Estimator is developed for polarimetric radar-

based rainfall rate estimation. The GMRE is trained from a simulation dataset

that is designed to favor rainfall rate lower than 40 [mm hr−1]. The GMRE

approach is validated by using data collected during the Joint Polarization Ex-

periment from the well-gauged central Oklahoma region and S-band radar data

from the KOUN radar. Performance of GMRE is compared to other rainfall

rate estimators that were developed and tested on the JPOLE dataset. The pro-

posed GMRE approach outperforms the JPOLE-tuned synthetic RSY N relation

in terms of bias and RMSE.

• The GMPE approach is further extended to an iterative form for path-integrated

attenuation correction of rain to retrieve both horizontal reflectivity and differ-

ential reflectivity using polarimetric radar measurements. Two iterative GMM

approaches, the DP-GMPE approach and the CI-GMPE approach, are devel-

oped and tested along with other famous PIA correction algorithms using X-

band radar measurements from simulated rain profiles generated under different

microphysical scenarios. Performance of DP-GMPE and CI-GMPE over range

are also analyzed. Both proposed GMPE-related approaches, DP-GMPE and

CI-GMPE, are capable in PIA correction application and shows better perfor-

mance than conventional PIA correction algorithms with the same inputs.
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• The GMPE approach is reconstructed to adopt the sequential Kalman filter

structure for radar meteorological applications in frequency bands where at-

tenuation effects cannot be ignored. Derivation of the GMPE with sequential

filtering structure is presented. Algorithms for Gaussian mixture reduction are

introduced and discussed. The SGMPE approach with different inputs is ap-

plied to rainfall rate estimation for X-band. Estimation results are compared

with those from the DP-GMPE approach and the CI-GMPE approach. Impacts

of mixture reduction and performance of SGMPE over range are presented and

analyzed. SGMPE is shown to perform better even without phase measurement.

7.2 Major Achievements

The major achievement of this study is the introduction of a Gaussian mixture model

to characterize the prior distribution of radar observation variables and the under-

lying microphysics variables. Ensured by the convergence of GMM to any specific

distribution as number of mixtures increase, microphysics variation in space and time

can be learnt and embedded in the model. The convergence capability of GMM also

provides a general framework to accommodate extra information not only from dual-

polarization diversities, but also from other diversities such as multiple frequencies and

multiple observation sources, for instance, measurements from different radars or mea-

surements from radar and satellite-based microwave sensors. Statistically optimized

hydrometeor classification and weather parameters estimation through Bayesian ap-

proach are made possible by the precisely represented prior distribution. GMMs with

different numbers of mixtures can be used to model distributions with different com-

plexities. Individual radar applications may employ a ‘small’ GMM while a ’larger’

GMM may be constructed for more comprehensive applications.
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Based on Gaussian mixture model, a Bayesian hydrometeor classifier is developed.

Compared with fuzzy logic approaches, the GMM-based Bayesian classifier has sev-

eral advantages: 1) Cross correlations among different dimensions/variables can be

properly modeled; 2) the PDF of the occurrence of each hydrometeor class can also be

precisely approximated by GMM; 3) the Classification result is statistically optimal.

A linear Bayesian estimator for radar-based weather parameter estimation is also

developed based on GMM and Bayesian estimation theory. GMPE also has sev-

eral advantages over conventional PLR approaches and other Bayesian approaches:

GMPE is a ‘best’ estimator in terms of minimum-variance and unbiased performance;

GMPE is a flexible approach where different radar observation variables can be in-

cluded/excluded from inputs and remains as optimum; GMPE is applicable to dif-

ferent radar-meteorological applications and estimation of different parameters can

be done at the same time. Two iterative GMPE, DP-GMPE and CI-GMPE, are

constructed for PIA correction and weather parameter estimation in frequency bands

where attenuation effects cannot be ignored.

GMPE is further extended to explore spatial relations of weather radar observa-

tions with a sequential Kalman Filter structure. The sequential GMPE is configured

to take into account the path-integrated attenuation effects. As the spatial exten-

sion of the GMPE approach, SGMPE carries all the advantages of GMPE, such as

minimum-variance and unbiased estimations for every radar range bin. Even though

the mixture reduction procedure may degrade the performance of SGMPE, close to

optimum performance can still be obtained by SGMPE. Other advantages of the

SGMPE approach includes: 1) SGMPE is capable of performing in high attenua-

tion environment with or without phase measurement while most existing algorithms

heavily rely on phase measurements; 2) The structure of the SGMPE also make it

possible to be extended to radar network applications.

173



Results from the GMM-based hydrometoer classifier, the GMPE approach and the

sequential GMPE approach are statistically optimized as long as the prior distribution

represented by GMM is precise and accurate. Since GMM would converge to any

distribution, the three GMM-based approaches provide a general solution for radar-

meteorological applications such as hydrometeor classification, DSD retrieval, rainfall

rate estimation and attenuation correction at different radar frequencies. It can be

used in different types of radar systems, such as single polarization, dual-polarization

and dual-frequency radars. As such, attentions and interests may be shifted from

developing new algorithms based on phenomenological or empirical relationships to

construct better training dataset from simulations aided by physical knowledge of

radar signatures or real measurements.

7.3 Future Work

A general framework for radar-meteorological applications has been developed in this

study based on Gaussian mixture model. Future work for this study will be focused

on:

• Apply and validate the three GMM-based approaches in practical radar sys-

tems, such as KOUN, OU-PRIME and RaxPol. Construct more specific and

realistic datasets, either from simulation or measurement, with respect to the

practical radar system and application for GMM training. Validate the GMM-

based approaches using real radar measurements of different weather conditions.

Develop GMPEs and SGMPEs for operational use.

• Improve the GMM-based hydrometeor classifier by employing more hydrome-

teor classes and adopting more sophisticated hydrometeor models. This study

only considers rain, snow and hail as well as melting snow and melting hail,

five hydrometer species. For rain, according to different intensities, large drops,
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light rain, medium rain and heave rain may be considered. For hail and snow,

according to their sizes and shapes, hail, graupel/small hail, ice crystals, dry

snow and wet snow may be incorporated. Moreover, a hail/rain mixture species

may also be included. For each hydrometeor species, physical properties such

DSDs, shapes, melting behaviour and falling speeds need to be properly mod-

eled. Temperature information may also be used in addition to radar observa-

tions as inputs to the classifier.

• Apply the sequential GMPE approach to other radar systems, such as the space-

borne radar system where dual-frequency (Ka and Ku) is used and the CASA

radar network systems.
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Appendix A - List Of Symbols

A Specific Attenuation

Ah Specific Horizontal Attenuation

Av Specific Vertical Attenuation

Adp Specific Differential Attenuation

cm Centimeter, 10−2 meters

D Equivalent Diameter

D0 Median Volume Diameter

De Effective Diameter

∆D Diameter Interval

Dmax Maximum Diameter

Dmin Minimum Diameter

exp() Exponential Function

ε Dielectric Constant

εe Effective Dielectric Constant of a Mixture

εi Dielectric Constant of Ice

εw Dielectric Constant of Water

η Reflectivity or Average Radar Cross Section Per

Unit Volume

f Radar Frequency

f Scattering Amplitude Matrix

fv Fractional Volume

fw Fractional Volume of Water
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fa Fractional Volume of Air

fi Fractional Volume of Ice

fd Doppler Frequency

fa,b Scattering Amplitude at Major (or Minor) Axis

of a Drop without Canting

fhh,vv Scattering Amplitude at H or V Polarization

Γ() Gamma Function

γw Melting Ratio

I(t)/Q(t) In-phase/Quadrature Signal

Kdp Specific Differential Phase [deg km−1]

KDP Specific Differential Phase [deg km−1]

Kw Dielectric Factor of Water

λ Wavelength

Λ Slope Parameter

Mn The nth DSD Moment

mm Millimeter, 10−3 meters

µ Shape Parameter

N0 Intercept Parameter

Nw Normalized Drop Concentration

N(D) Drop Size Distribution

Nt Total Number of Hydrometeors Within the Single

Cell

NT Total Number Concentration

φ Canting Angle of Hydrometeors

φdp Differential Phase

r Range

ra Axis Ratio
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R Rainfall Rate

Ru Maximum Unambiguous Range

ρhv Correlation Coefficient

ρa Density of Air

ρh Density of Hail

ρi Density of Ice

ρs Density of Snow

ρw Density of Water

σ Radar Cross Section

Z Reflectivity Factor

Zh Reflectivity Factor at Horizontal Polarization

[mm6m−3]

ZH Reflectivity Factor at Horizontal Polarization

[dBZ]

Zv Reflectivity Factor at Vertical Polarization

[mm6m−3]

ZV Reflectivity Factor at Vertical Polarization [dBZ]

Zdr Differential Reflectivity

ZDR Differential Reflectivity [dB]

τ Pulse Duration

t Temperature

Ts Pulse Repetition Time

va Aliasing Velocity

vr Radial Velocity

v(t) Terminal Velocity of Raindrops

∆V Radar Resolution Volume
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V Size of the Volume/Single Cell

W Water Content

yp Polarizability Factor
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Appendix B - List Of Acronyms and Abbreviations

ARPS The Advanced Regional Prediction System

ARRC Atmospheric Radar Research Center

ARS Agricultural Research Service

ACF Autocorrelation Function

C-G Constrained Gamma DSD Model

CI-GMPE Constrained Iterative Gaussian Mixture Param-

eter Estimator

DFT Discrete Fourier Transform

DP Specific attenuation-Differential Phase Parame-

terization

DP-GMPE Differential Phase Gaussian Mixture Parameter

Estimator

DSD Drop Size Distribution

EM Electromagnetic

E-M Expectation-Maximization

FSE Fractional Standard Error

FV Final Value Algorithm

GMM Gaussian Mixture Model

GMPE Gaussian Mixture Parameter Estimator

GMRE Gaussian Mixture Rainfall-rate Estimator

H Horizontal

JPOLE Joint Polarization Experiment
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KOUN Polarimetric Prototype of the WSR88D Radar

LDR Linear Depolarization Ratio

MAP Maximum A Posteriori

MBF Membership Function

MES Oklahoma Mesonet

MG Maxwell-Garnett Mixing Formula

M-P Marshall-Palmer DSD Model

ML Maximum Likelihood

NEXRAD Next-Generation Radar

NN Neural Network

NSSL National Severe Storms Laboratory

NWP Numerical Weather Prediction Model

OU University of Oklahoma

OU-PRIME Polarimetric Radar for Innovations in Meteorol-

ogy and Engineering

PDF Probability Density Function

PIA Path-Integrated Attenuation

PLR Power Low Relation

PPI Plane Position Indicator

PRM Polarimetric Radar Measurement

PRF Pulse Repetition Frequency

PRT Pulse Repetition Time

QPE Quantitative Precipitation Estimation

QPF Quantitative Precipitation Forecast

RCS Radar Cross Section

RHI Range Height Indicator

RMSE Root Mean Square Deviation of Error
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SCWC Self-Consistent With Constraints Algorithm

SD Standard Deviation

SGMPE Sequential Gaussian Mixture Parameter Estima-

tor

SNR Signal-to-Noise Ratio

S-Pol S-band Polarimetric Radar

UAV Unmanned Aero Vehicles

UBM Universal Background Model

V Vertical

WSR-88D Weather Surveillance Radar-1988 Doppler
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