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Abstract 

Analyses that test nonzero correlations and incorporate prior information can help 

accumulate knowledge and advance research at a faster pace than typical analyses that 

disregard previous studies and continue to test unreasonable nil hypotheses.  The 

performance of several bootstrap and parametric procedures are evaluated using 

populations that had varying degrees of correlation and nonnormality.  With correlated 

heteroscedastic variables, the parametric procedures produced robust point estimates, but 

showed liberal error rates that worsened as sample sizes grew to NObs = 1,000.  This paper 

proposes two Bayesian univariate sampling bootstrap procedures (the SlotHI and SlotOI) 

that exhibit much better error rates across all evaluated populations and prior 

distributions.  Based on this simulation, we suggest that the univariate sampling 

bootstraps are preferred when testing nonzero correlations in nonnormal populations, 

regardless if prior information is considered.   
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Title: Univariate Sampling Bootstrap Procedures 

using Prior Information 

 

Background 

The procedures described below build directly upon two previous papers.  Lee 

and Rodgers (1998) developed a univariate sampling bootstrap where each X value is 

independently combined with each Y to produce a sampling frame of NObs
2 bivariate 

points.  This approach blends bootstrap characteristics (e.g., scores are resampled with 

replacement) with permutation test characteristics (e.g., the sampling frame reflects the 

hypothesis, not the observed sample).   

Beasley et al. (2007) described how the sampling frame can be diagonalized to an 

arbitrary correlation value, which then can be exploited in two ways.  In one procedure, 

the imposed correlation reflects a nonzero hypothesis value; thus the Lee and Rodgers 

bootstrap was generalized to accommodate a nonzero null hypothesis.  In a second 

procedure, the imposed correlation mimics the observed value; in a sense, the typical 

bivariate sampling bootstrap is expanded to consider NObs
2 scores instead of NObs.  The 

relevant conceptual and procedural details are in the ‘Likelihood Distributions’ section. 

Bayesian statistics can address some important questions that Frequentist statistics 

cannot.  The current paper describes how the univariate sampling bootstrap can 

accommodate Bayesian analysis.  The bootstrap’s sampling distribution represents the 

probability of observing a correlation rObs, after the statistician has assumed the 

population has a fixed hypothesized correlation of ρHyp.  This distribution is also known 

as a likelihood distribution, p(rObs | ρHyp), and is the foundation of Frequentist inference.  
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The new bootstrap procedures partition the range of ρHyp into many non-overlapping sets.  

When this discretized likelihood information is combined with prior information, p(ρHyp), 

the product is a Bayesian posterior distribution, p(ρHyp | rObs).  The relevant conceptual 

and procedural details are in the ‘Posterior Distributions’ section.  The motivations for 

using a bootstrap for Bayesian inference are described next. 

Leveraging Previous Research 

Building on previous research can be beneficial for a field, but contemporary 

psychological research misses at least two opportunities, both of which are related to 

statistical issues.   

Incorporating Prior Information 

One opportunity is missed when a statistical analysis neglects to incorporate prior 

knowledge formally into an experiment’s analysis.  The consideration of existing 

research can stabilize the field’s collective opinion.  Howard, Maxwell & Fleming (2000, 

p. 316) wrote, “it is rarely the case in psychology that a single study can be viewed as 

providing a definitive test of a scientific hypothesis. Instead, multiple studies are almost 

always necessary.  However, a serious limitation of the doctrinaire NHST [null 

hypothesis significance testing] approach is that it does not provide a useful foundation 

for accumulating evidence over multiple studies.”   

In contrast to Frequentist NHST, Bayesian analyses can coherently synthesize 

recent experimental data with subjective expectations and previously observed data.  This 

is beneficial because (a) spuriously strong findings can be dampened and (b) correlations 

that corroborate previous findings, but are small or moderate, are more likely to be 

significant because the CIs are narrower.   
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Testing Non-Nil Hypotheses 

Psychologists typically miss a second opportunity to advance existing knowledge.  

Frequently, a study tries to establish only that there is some relationship among variables, 

and “this goal accounts for most of the explicit formal use of statistics in psychological 

research” (Krantz, 1999, p. 1376).  In the context of t tests and ANOVAs, this “nil” 

hypothesis states that there is no difference between groups; in the context of correlations 

and regressions, the nil hypothesis is rejected when the CI excludes ρ = 0 (Cohen, 1994).  

We believe that it is important to evaluate this “no effect” hypothesis initially, but believe 

that the field can further benefit by testing specific values subsequently.  As a field 

matures, the ability to test non-nil hypotheses becomes not only beneficial, but critical or 

even mandatory. 

Suppose a developmental psychologist has observed a correlation of r = .5 

between vocabulary and intelligence among some subgroup (say, males on welfare).  

After some evidence is found that the population correlation is most likely positive and 

doesn’t include zero, the analysis usually stops.  But the data can be further leveraged, 

and the knowledge can be sharpened if subsequent experiments address questions such as 

“does this subgroup have a correlation that is stronger than the general population?” or 

“is this relationship stronger than the relationship between reading and intelligence?”1 

We don’t believe that nil hypotheses and Frequentist inference should never be 

used, but rather that they shouldn’t always be used exclusively –in many situations, 

psychology can capitalize by supplementing conventional analysis with Bayesian 

inference and non-nil hypotheses.  This paper develops and evaluates two procedures that 

                                                 
1 For the sake of illustration, we are assuming there general population correlations are 
known well enough that sampling error can be ignored. 
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allow a statistician to (1) incorporate prior information and (2) test specific nonzero 

correlations, while (3) providing more robust inferences than the conventional parametric 

procedures. 

Robustness 

Parametric procedures have been used in Bayesian analysis and to test non-nil 

values for decades (Jeffreys, 1939; Fisher, 1915).  However, these procedures are not 

always robust when the assumption of normality is violated.  Beasley et al. (2007) 

reported that conventional parametric procedures had acceptable (Frequentist) Type I 

error rates when nonzero correlations were tested if the variables were normally 

distributed, but not when the variables were skewed. 

Within Bayesian practices, Boos and Monahan (1986) remarked that while the 

prior distribution receives a lot of discussion and scrutiny, the appropriateness of the 

likelihood distribution is often conceded without explicit concern.  They suggested that 

the assumptions of the likelihood model deserved increased attention, and developed a 

bootstrap that was more robust to violations than its parametric counterparts. 

When the sample size is small, prior information is most influential (and arguably 

at its most useful).  Knowledge about the populations’ distributional characteristics is less 

certain using small samples, so it is even more important to use robust procedures that are 

more protected from deviations from normality and homoscedasticity.   

Scenario 1: Expertise in a field with no previous data.   

Suppose your research team has an expert with years of clinical experience.  

Although data haven’t been collected in your novel experiment, she believes that it is 

likely that a weak relationship exists between the two considered variables 
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(operationalized with questionnaires).  Fifteen subjects are piloted and a strong 

correlation is observed.  Furthermore, the scores seem to suggest that the population joint 

distribution is not bivariate normal (but this is difficult to determine with only 15 points). 

Team members discuss what the population correlation might be before writing 

the upcoming grant proposal.  This important conversation will influence the power 

analysis, and therefore influence the budget for recruiting subjects.  It might even dictate 

whether different questionnaires should be included.  Although the sample correlation is 

strong, your group remains skeptical of the unexpected results and decides that the 

population correlation is more likely to be moderate than strong.  This paper describes 

statistical procedures that allow the inference to reflect the two sources of information, 

while being robust to violations of nonnormality.  

Scenario 2: Incorporating prior research.   

The prior information in the previous scenario came from personal judgments.  

Previously observed data are a valid source of prior information as well.  Suppose you 

revive a study that your lab conducted several years ago.  The expensive protocol hasn’t 

changed, so you want to take advantage of the previous information.  For various reasons, 

you hesitate combining the 24 previous subjects with the 30 new subjects without any 

adjustment. 

One compromise is to include the previous subjects as prior information in your 

current analyses.  The influence of the previous subjects could be reduced by, say, 50%.  

In effect, the information of 12 subjects is being added to your current experiment of 30 

(the relationship between the prior distributions and the previously observed sampled size 

is discussed later).   
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Alternatively, suppose that you want to use the information from all subjects in a 

previously published study, but you don’t have access to their raw scores, only the 

sample correlation.  The procedures evaluated here allow a researcher to do this, while 

testing non-nil hypotheses. 

Likelihood Distributions 

Univariate Sampling Bootstraps.  In previous work, Beasley et al. (2007) evaluated 

correlation bootstrap procedures that allowed nonzero point hypotheses to be tested with 

Frequentist inference.  We briefly review this procedure, before we describe its 

application with Bayesian inference. 

The hypothesis imposed univariate sampling bootstrap (HI) allows a researcher to 

create a confidence interval (CI) to compare to a point hypothesis, ρHyp.  The five stages 

are described below and represented in the second column in Figure 1.  
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1) Collect a sample of NObs bivariate 

points: ((X1, Y1),…,(XNobs, YNobs)).   

2) Construct the sampling frame:  

a) Combine every xi with every yi. 

b) Standardize the X and Y variables 

in this rectangular sampling. 

௜ݔ
ᇱ ൌ ሺݔ௜ െ ;௫ݏ/ҧሻݔ ௜ݕ

ᇱ ൌ ሺݕ௜ െ  .௬ݏ/തሻݕ

c) Impose the value ρHyp on the 

Nobs
2 points to create a 

diagonalized sampling frame.  

For example2 transform yi’ to 

௜ݕ
ᇱᇱ ൌ ௜ݔ

ᇱ ൈ ρH୷୮ ൅ ௜ݕ
ᇱට1 െ ρH୷୮

ଶ . 

This sampling frame now has a correla-

tion of ρHyp, and is used to represent the 

hypothesized population when creating 

the bootstrap distribution. 

Stage 3 is repeated for B cycles. 

                                                 
2 Kasier & Dickman (1962) show that 
any decomposition of the correlation 
matrix will impose the designed 
correlation on the sample, assuming it 
has a mean of zero and unit variance.  
For this paper, we have chosen a 
bivariate simplification of the Cholesky 
decomposition.  See the discussion for 
alternative diagonalization approaches. 

3) Draw NObs points randomly with 

replacement to create one bootstrap 

sample. 

4) Calculate r* for each of the B 

bootstrap samples, which forms a 

bootstrap distribution of B bootstrap 

statistics. 

Figure 1. Stages 1 and 2 of the SlotHI.  
The observed points are solid green.  
The created points are open circles. 
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This bootstrap distribution can estimate p(rObs | ρHyp), which is the probability of 

drawing rObs from the population, given a population correlation of ρHyp.  If ρHyp 

represents a null hypothesis, a Frequentist hypothesis can be tested in a fifth stage by 

comparing rObs to the 95% CI of [r*
(.025), r

*
(.975)], (these endpoints are the 2.5th and 97.5th 

percentiles of the bootstrap distribution).  More relevant to this paper is that the bootstrap 

distribution also can be used as the likelihood distribution in Bayesian inference.  We will 

return to this point in the next section. 

The construction of the observed imposed univariate sampling bootstrap (OI) 

differs from the HI in two ways.  In Stage 2c, the rectangular sampling frame has the 

observed correlation, rObs imposed upon it (instead of ρHyp).  Consequently, (instead of 

rObs) the value of ρHyp is compared to [r*
(.025), r

*
(.975)] in the fifth stage when testing a 

Frequentist hypothesis.3   

The inferential performance of the HI and OI is very similar.  In previous 

research, the OI performed slightly better than the HI, although both were preferable to 

parametric procedures when nonzero Frequentist hypotheses were tested in samples 

drawn from nonnormal populations (Beasley et al., 2007).  The OI’s bootstrap 

distribution also will be used as a likelihood distribution later in the paper. 

We believe the term ‘univariate sampling bootstrap’ is more appropriate than 

‘univariate bootstrap’.  The distinguishing feature isn’t the number of variables 

considered in a dataset, but the independence of the sampling of (the multivariate) points. 

                                                 
3 Even though the procedure of the OI fixes the diagonal to rObs and creates r*s that are 
compared to ρ, this provides a Bayesian posterior of p(ρ | rObs) only if the researcher 
(implicitly or explicitly) assigns a uniform prior, which is discussed below. 
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Other Bootstraps.  The bivariate sampling bootstrap (Biv) was introduced in the 

initial bootstrap article (Efron, 1979).  Only one procedural difference distinguishes it 

from the OI.  In Stage 2, the observed sample serves as the sampling frame; no values are 

recombined, standardized or diagonalized.  Like the OI, its angle is robs; unlike the OI, 

there are only NObs points in the sampling frame. 

The five stages of the parametric bootstrap are identical to the OI and Biv, 

except that the sampling frame is constructed differently in Stage 2.  Parametric 

assumptions must be made about the population and typically it is assumed that X and Y 

have a bivariate normal distribution with a correlation of rObs (Efron, 1982, Section 5.2; 

Efron & Tibshirani, 1993, Section 6.5).   

ቀܺ
ܻ
ቁ~ܰቆቀ0

0
ቁ , ൬

1 Oୠୱݎ
Oୠୱݎ 1 ൰ቇ 

This convention is followed in our simulation, but we note that another valid 

variation could be to set the correlation to ρHyp in Stage 2, and compare rObs to the CI in 

Stage 5.  The distinction between these variations would mirror the distinction between 

the OI and HI.  If the parametric sampling frame had been diagonalized to ρHyp, the 

procedure could be considered a conventional Monte Carlo procedure (see Beasley & 

Rodgers, 2009, p. 368-372 for more discussion of these relationships). 

With apologies to Efron, we will refer to the parametric bootstrap as the posit 

bootstrap (Pos, in the sense that the set sampling frame reflects some type of judgment).  

Our study includes two other procedures that are also ‘parametric’, so we use ‘posit’ for 

distinction.  We are not proposing that this term needs to be changed in other contexts.   

In Beasley et al. (2007), the inferential performance of the Biv was noticeably 

worse than the HI or OI, especially at NObs = 5.  One explanation could be that the HI and 
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OI sampling frames provide 118,755 (= nCr for (n = N2+N-1, and r = N)) unique 

bootstrap samples, while the Biv sampling frame provides only 126 (= nCr for 

(n = N+N-1, and r = N)) unique samples (Tucker, 1984, p. 188, Theorem 2).  With small 

samples, this discrepancy means that the Biv bootstrap distribution is more jagged and 

discontinuous than the HI and OI bootstrap distributions.  If the number of unique 

samples is much smaller than B, the Pos will be the smoothest of all the bootstraps, 

because the number of unique samples with continuous variables is theoretically infinite. 

Parametric Procedures.  Parametric procedures also are available to model the 

sampling distribution of a correlation.  Fisher’s r-to-z transformation uses the function 

tanh-1 to transform correlation values into a pivotal statistic on the z scale (Fisher, 1915; 

1919)4.  This approximation permits the Gaussian distribution to describe the probability 

of observing the statistic, given a point hypothesis of ρHyp.  The hypothesis is typically 

tested by calculating a standardized test statistic,  

 zTest = (zObs – ζHyp) / σObs (1),  

where zObs = tanh-1(rObs), ζHyp = tanh-1(ρNull)), and σObs = 1/√(NObs - 3).  The p-value is the 

area in a N(0, 1) distribution that is more extreme than zTest (Hays, 1994, Section 14.21).  

Later we describe a procedure where the relationship is restated slightly: the probability 

is the area in a N(zObs, σ
2) distribution that is more extreme than ζHyp.   

                                                 
4 Beasley et al. (2007) evaluated a similar procedure that describes the sampling 
distribution with a non-central t (instead of a normal distribution).  Although it performed 
slightly better than Fisher’s procedure with small samples, we are not including it for two 
reasons.  First, Fisher’s transformation performs acceptably with small samples.  Second, 
when the normal distribution is used, several aspects of the study are more familiar and 
more concisely described to readers. 
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Prior Distributions 

The simulation includes the four proper priors shown in Figure 2.  One is a 

bounded uniform distribution, U(-1, 1).  The other three are Normal distributions that are 

later transformed to the ρ metric.5  On the z metric, the three distributions are N(0, 7-.5), 

N(tanh-1(.4), 7-.5) and N(tanh-1(.8), 7-.5).  On the r metric, these priors are centered on 

different correlations (i.e., 0, .4, and .8) and are skewed toward zero.  We refer to these 

priors as Gauss00, Gauss04, and Gauss08. 

Recall that the standard deviation in Fisher’s r-to-z transformation is 1/√(N - 3).  

The value 7-.5 was chosen to be equivalent to an observed sample size of N = 10.  In other 

words, when NObs = NPrior = 10, rObs is equally as influential as ρPrior, and their 

corresponding zs are simply averaged in the analytic procedure (described below).   

 

Figure 2.  Prior distributions examined.  One uniform and three informative distributions 
were evaluated with each procedure.  

 

The Slot procedures described below can accommodate any prior distribution.  A 

(transformed) normal prior was used to provide a meaningful comparison with the 

existing analytic parametric procedure.   

                                                 
5 A nonuniform scaling factor accounted for the nonlinear r-to-z transformation.  See the 
H( ) function later in the SlotParametric description. 
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We are intentionally not calling the uniform prior the reference prior.  The 

decision that all values of ρ are equal can be considered a prior judgment in itself –and in 

many situations, it’s not plausible that p(ρ = -.97) = p(ρ = 0).  Furthermore, this prior is 

uniformly distributed on the ρ metric, but unimodal on the ζ metric.  If we had used a 

prior that was uniform on ζ, it would be “U” shaped when transformed to ρ; we didn’t 

desire a “reference” prior that implied p(ρ = .8) > p(ρ = 0). 

Posterior Distributions 

The bootstrap and parametric approaches described above are commonly used to 

produce a sampling distribution, which is an essential component in Frequentist 

inference.  For example if rObs = .672, a bootstrap distribution can provide the p-value of 

a one-tailed hypothesis, p(.672 ≤ rObs ≤ 1 | ρHyp = .4) by counting the proportion of r* 

values that are greater than rObs.   

As stated before, a Frequentist inference fixes ρHyp to a hypothetical null point 

value and the resulting likelihood sampling distribution describes the probability of 

observing rObs (or a range of potential rObs values).  In contrast, Bayesian inference 

conditions on a fixed rObs, and the resulting posterior distribution describes the 

probability of observing a ρHyp (or a range of ρHyp).  The posterior distribution, which 

merges information from the likelihood sampling distribution and the prior distribution, 

can provide information such as the probability of a one-tailed hypothesis, 

p(-1 ≤ ρHyp ≤ .4 | rObs = .672), or a two-tailed hypothesis.  We evaluate two approaches of 

creating posterior distributions: a numerical integration approach and an analytical 

approach. 
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Bayesian CIs, which are formed from the posterior, have a different and more 

intuitive interpretation than Frequentist CIs; we defer to other sources for a more 

complete explanation.6  As with Frequentist inference, when a hypothesized value falls 

outside as 95% CI, it is equivalent to having a (Bayesian) p-value less than .05.7 

Slot: Numerical Integration.  The range of ρ (i.e., -1 to +1) is divided into S 

nonoverlapping intervals we call slots.  S was fixed to 200, so the slots’ midpoints were -

.995, -.985,…, .985, .995.  Each slot has a specific prior and likelihood value; these are 

multiplied to produce the slot’s value in the posterior distribution.   

After the posterior distribution is discretized, the proportional relationship is 

p(ρi | rObs)  p(rObs | ρi) × p(ρi), where i = 1,…,200 and ρi = -.995, -.985,…, .995.  In other 

words, the slot’s posterior probability is proportional to the product of its likelihood and 

prior probability.  If that value is divided by the sum of the products of all 200 slots, the 

relationship becomes an equality:  

Oୠୱሻݎ|ሺρ௜݌  ൌ
௣ሺ௥Oౘ౩|஡೔ሻ௣ሺ஡೔ሻ

∑ ሾ௣ሺ௥Oౘ౩|஡ೖሻ௣ሺ஡ೖሻሿ
ೄ
ೖసభ

 (2).  

Because the distributions are discretized, the value of rObs actually is not a point, but a 

small slot too, which we informally call the ‘observed slot’.  For instance, if rObs = .607, 

                                                 
6 Introductions to Bayesian analysis are available in several recent books that are 
accessible and balanced, such as Carlin & Louis (2009), Albert (2009) and Gill (2008).  
In short, a Bayesian 95% CI contains the population parameter with 95% probability 
(given the observed sample and the prior information).  In contrast, a Frequentist 95% CI 
represents an interval that should contain the population parameter 95% percent of the 
time for similarly constructed CIs (given the observed sample).  Pruzek (1999, p. 288) 
points out, “this conclusion leaves out reference to the specific numerical interval 
obtained with the extant sample.”  
7 Again the Bayesian approach has a different and more intuitive interpretation here.  For 
example, see the “posterior predictive p-values” sections in Gelman, Carlin, Stern & 
Rubin (2004, p. 162 & p. 175-176).  Bayesian CIs are also called ‘credible intervals’ or 
‘credible sets’.  Also see Carlin & Louis (2009, Section 2.3.2) for the related ‘highest 
posterior density’ credible set. 
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the relevant likelihood is p(.60 < rObs ≤ .61 | ρi).  In other words, when the HI sampling 

frame is diagonalized to ρi, the estimated likelihood is the number of bootstrapped stats 

between .60 and .61. 

When this numerical integration approach is combined with one of the likelihood 

approaches described above, we prepend ‘Slot’ to the term.  The Slot procedures we 

evaluated are the SlotHI, SlotOI, SlotBiv, SlotPos, and SlotParametric.   
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SlotHI.  Suppose S = 200, rObs = .607, 

and so the observed slot is (.60, .61].   

A) Partition ρ into S mutually exclusive 

slots.  The ith slot’s midpoint is ρi. 

B) Retrieve the nonnegative prior 

probability associated with each slot.  

When a uniform prior is used, the 

value is a constant .5 (= 1/(1– -1)).   

C) Create the S sampling frames and S 

bootstrap distributions.  Each 

sampling frame has a different 

imposed value of ρi: -.995, -.985,…, 

.995.  Figure 3 portrays seven of 

these sampling frames (also see 

Stage 2 in the HI algorithm).  From 

each sampling frame, draw B 

samples of size NObs.  (In other 

words, repeat HI Stages 2-4 for each 

slot). 

D) Calculate the likelihood associated 

with each slot (i.e., p(rObs | ρi)).  For 

the SlotHI, this is the proportion of 

r*s falling within the observed slot. 

Figure 3. Step C in the SlotHI algorithm.  
The range of ρ is divided into S slots.  
Each slot has a sampling frame that 
diagonalized to a different value of ρHyp.  
The original 5 observed points are green. 
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E) If desired, adjust the bootstrap’s likelihood distribution after correcting for bias and 

acceleration.  See Stages 1-3 in the section below, “Bootstrap Likelihood 

Adjustments”. 

F) Calculate the product of the prior and likelihood for each slot, by dividing each 

product by the sum of the S products (see Equation 2). 

G) If a 95% CI is desired, find the two values of ρ that create 2.5% areas in each tail.  

We used an interpolation technique to compensate for the discrete character of the 

posterior distribution, described in the ‘Interpolating CI Bounds’ section. 

There are two notable differences between the current SlotHI and the previous HI 

(Beasley et al., 2007); one difference is procedural and the other involves the resulting 

sampling distribution.  The procedural difference is that the HI uses one sampling frame, 

and considers the number of r*s in the entire tail; the SlotHI uses many sampling frames, 

and considers the number of r*s falling within the bounds of only the observed slot.  In a 

sense, the HI’s CI is directly accessing the bootstrap distribution’s CDF (in Stage 5), 

while the SlotHI is initially using the PDF (in Step D).  Later, this PDF will be combined 

with the prior to produce the posterior (Step F), and the posterior’s CDF is accessed by 

the CI (Step G). 

The locations of the procedures’ sampling distributions are different.  The HI’s 

distribution is roughly centered at ρNull.  The SlotHI’s likelihood distribution is roughly 

centered at rObs (and its posterior distribution is roughly centered at ρPost).  The 

likelihoods and posteriors of the OI, Biv, Pos, SlotOI, SlotBiv, and SlotPos are also 

centered at these values. 



 17

SlotOI, SlotBiv, and SlotPos.  These three procedures are executed identically to 

the SlotHI, except for two differences in Step C and one in Step D.  First in Step C, 

whereas the SlotHI constructs S sampling frames (i.e., one for each slot), the other 

procedures construct only one.  Second in Step C, the SlotHI’s sampling frames are 

diagonalized to ρi, while the sampling frame of the other procedures has a correlation of 

rObs.   

Each procedure has a different reason why their sampling frame has a correlation 

of robs.  The SlotOI explicitly diagonalizes its rectangular sampling frame to rObs.  The 

SlotPos generates bivariate normal scores that have a rObs correlation.  Finally, the 

SlotBiv’s sampling frame is the observed sample, which of course has a correlation of 

rObs.   

After their sampling frame is constructed, the three procedures follow the same 

steps as each other again, and evaluate the likelihood of each slot in Step D.  For i = 1, 

the number of r*s falling between -1 and -.99 are counted.  For i = 2, the number of r*s 

between -.99 and -.98 are counted, and this is repeated a total of S times.  Notice that 

these three procedures construct 1 sampling frame and bootstrap distribution, but 

consider all S slots.  Whereas the SlotHI constructs S sampling frames and bootstrap 

distributions, but considers only 1 slot (i.e., the slot that robs falls in).  This is a 

considerable computational disadvantage for the SlotHI (however see the Appendix for 

optimizations that reduce the discrepancy).   

SlotParametric.  The SlotParametric is conceptually very similar to the SlotHI, 

but its likelihood is a Gaussian PDF instead of a bootstrap PDF.  Substituting Equation 1 

for the likelihood probability in Equation 2 produces 
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Oୠୱሻݎ|ሺρ௜݌ ൌ
Oୠୱݖ൫ሺܪ െ ζ௜ሻ/ߪ൯݌ሺρ௜ሻ

∑ Oୠୱݖ൫ሺܪൣ െ ζ௞ሻ/ߪ൯݌ሺρ௞ሻ൧
ௌ
௞ୀଵ

 

where ζk = tanh-1(ρk).  If r and z were linearly related, the H() function would be the 

standard normal PDF (e.g., φ(0) = e0(2)-.5).  Since the relationship is nonlinear, the 

different slot widths have to be accounted for with the standard normal CDF, Φ().  On the 

r scale, a slot’s midpoint is ρk, and its upper and lower bounds are ρk,u and ρk,l, while on 

the z scale, they’re ζk, ζk,u, and ζk,l.  The likelihood term is then H((zObs - ζk)/σ) 

= Φሾ(zObs - ζk,u)/σ] – Φ[(zObs - ζk,l)/σ]. 

The SlotParametric and SlotPos conceptually bridge the analytic to the bootstrap 

procedures.  The SlotPos generates bootstrap samples and statistics like the SlotHI, 

SlotOI and SlotBiv, but it assumes a bivariate normal distribution like the SlotParametric 

and the analytic procedures assume.  The SlotParametric is even closer to the analytic 

procedure because it uses the r-to-z transformation, but it discretizes ρ like the slot 

procedures. 

Interpolating CI Bounds.  The bounds of the CI can be estimated after the slots’ 

posterior probabilities are calculated.  To find the lower bound, the probabilities are 

accumulated until the sum exceeds 2.5%.  Then the CI boundary is interpolated after 

comparing the cumulative probability on the slot’s left and right boundary.  For instance, 

suppose the cumulative probability is 2.1% for ρ141,l = .40, and 2.6% for ρ141,u = .41.  The 

estimated critical value would be .4 + (.025 - .021)/(.026 -.0 21) × (.41-.40) = .408.  In 

other words, the cumulative probability of .025 is 80% of the distance between .021 and 

.026, so the interpolated critical value is 80% of the distance between .4 and .41.  The 

process is mirrored for the CI’s upper bound. 
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Analytic Procedure 

The r-to-z transformation accommodates Bayesian inference with three steps.  

First, the correlation values are transformed to the z metric.  Second, the prior and 

observed information are synthesized.  Third, the CI is determined and transformed back 

to the r metric.  This is the only procedure in the simulation that doesn’t partition ρ into 

slots. 

Step 1: The values are transformed to the z metric.  The two location values are 

zObs = tanh-1(rObs), and ζPrior = tanh-1(ρPrior).  The two standard deviations are 

σObs = 1/√(NObs - 3) and σPrior = 1/√(NPrior - 3).  The interpretation of NPrior was discussed 

in the subsection, ‘Prior Distributions’.  Later equations are cleaner if standard deviations 

are converted into precisions.  The precision8 is commonly defined as the inverse of the 

variance, so τObs = (1/√(NObs - 3))-2 = NObs - 3 and τPrior = NPrior - 3.   

Step 2: After the transformation, the likelihood and prior distributions assume a 

normal distribution.  A closed form equation describes the conjugate relationship.  The 

posterior distribution is ~N(zPost, 1/τPost), where the mean and precision are: 

P୭ୱ୲ݖ  ൌ  
ሺ௭Oౘ౩ሻதOౘ౩ାሺ௭P౨౟౥౨ሻதP౨౟౥౨

தOౘ౩ାதP౨౟౥౨
  and τPost = τObs + τPrior = 1 / σPost

2 (3). 

The posterior mean is the average of the observed and prior mean, after weighting by 

their precisions (Carlin & Louis, 2009, Equations 2.3-2.4).  In a sense, zObs and σObs in 

Equation 1 is replaced by zPost and σPost.  A uniform prior distribution is accommodated 

by reducing NPrior to 3, so that the prior precision is zero (and the prior variance is 

infinite).  When the prior is uniform, the equation for zPost reduces to zObs.   

                                                 
8 If NObs (or NPrior) were less than 3, we would restrict τObs (or τPrior) to zero.  However 
NObs is never less than 5 in the simulation. 
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Step 3: On the z scale, the 95% CI is zPost ± 1.96/√τPost.  On the r scale, the interval 

becomes tanh(zPost ± 1.96/√τPost).  A hypothesis can be tested by comparing these 

intervals to ζHyp and ρHyp. 

 
Figure 4.  Example of the analytic procedure.  The purple posterior is a compromise 
between the orange prior and green likelihood distributions.  In this case, ρPrior = 0, 
rObs = .6, NPrior = 10, and NObs = 30.  The top panel is on the z scale, while the bottom is 
on the r scale.  A hypothesis is rejected if ζHyp (or ρHyp) falls in the purple tails of the 
posterior distribution. 
 

 

Bootstrap Likelihood Adjustments 

Effort had been dedicated to improving the accuracy and correctness of the 

bootstrap CIs (for a summary, see Efron & Tibshirani, 1993, Section 22.2).  The same 

principles that adjusted the endpoints of the CI can be applied to the entire bootstrap 

likelihood distribution. 

The bootstrap procedures described have implicitly been using the percentile 

method: the quantile of the bootstrap distribution maps directly to the quantile of the 

inferred population.  When the r*s are sorted, they can be viewed as an empirical 

cumulative distribution function (CDFPerc), ܩ෠, whose values are bounded by [0, 1].  
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Suppose c is a valid correlation value.  If 86% of the r*s are smaller than c, then 

CDFPୣ୰ୡሺܿሻ ൌ ෠ሺܿሻܩ ൌ .86.  The critical values for a (1 – α)% CI can be expressed as  

൬ܩ෠ିଵ ቀ஑
ଶ
ቁ , ෠ିଵܩ ቀ1 െ ஑

ଶ
ቁ൰ ൌ ൬̂ݎL୭୵ୣ୰C୰୧୲

൫ಉమ൯ , U୮୮ୣ୰C୰୧୲ݎ̂
൫ଵିಉమ൯ ൰ 

However the percentile method’s direct mapping does not lead to the best 

population inference in most conditions.  Efron developed two successive adjustments, 

the bias-corrected method (BC; 1982) and the bias-corrected and accelerated method 

(BCa; 1987).  The BC considers the bias in the bootstrap distribution, z0.  The BCa 

additionally considers the acceleration, a, which adjusts for heteroscedasticity in the 

statistic9.  The CDFs for the two adjustments are:10 

 
CDFBCሺܿሻ ൌ ΦቂΦିଵ ቀܩ෠ሺܿሻቁ െ ଴ቃݖ2

CDFBCೌሺܿሻൌ Φ൤ಅ
షభቀಸ෡ሺ೎ሻቁሺభషೌ೥బሻషమ೥బ

ಅషభቀಸ෡ሺ೎ሻቁሺೌሻశభ
൨
  (4). 

The adjustments are made to the likelihood distribution, before the prior is applied.   

1) The bootstrap distribution is accumulated to create a cumulative distribution: 

CDFPୣ୰ୡሺܿሻ ൌ CDFPୣ୰ୡ
ሺ௜ሻ ൌ ∑ Oୠୱ|ρ௞ሻݎሺ݌

௜
௞ୀଵ , for i = 1, 2,…, S.   

The CDFPerc values corresponding to the left and right boundary of the ith slot are 

CDFPୣ୰ୡ
ሺ௜ିଵሻ and CDFPୣ୰ୡ

ሺ௜ሻ .  There are S + 1 CDF values, beginning and ending with 

CDFPୣ୰ୡ
ሺ଴ሻ ൌ 0, and CDFPୣ୰ୡ

ሺௌሻ ൌ 1. 

2) After substituting CDFPerc for ܩ෠ in Equation 4, CDFBC and CDFBCa are calculated. 

  

                                                 
9 Positive acceleration indicates that, as ρ increases, so does its standard error (Efron & 
Tibshirani, 1993, Sections 14.3 & 22.2) 
10 This uses the standard Gaussian CDF and its inverse (e.g., Φ(1.96) ≈ .975 and 
Φ-1(.975) ≈ 1.96). 
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3) The CDFs are transformed back into PDFs: 

PDFPୣ୰ୡሺρ௜ሻ ൌ  Oୠୱ|ρ௜ሻݎሺ݌

PDFBCሺρ௜ሻ ൌ CDFBCሺρ௜ሻ െ CDFBCሺρ௜ିଵሻ 

PDFBCೌሺρ௜ሻ ൌ CDFBCೌሺρ௜ሻ െ CDFBCೌሺρ௜ିଵሻ, for i = 1,…,S.  

These steps are unnecessary for the percentile CI, because PDFPerc is simply the 

likelihood produced by the bootstrap.  When the estimated bias and acceleration are zero, 

CDFBC and CDFBCa reduce to CDFPerc. 

We experimented with a second type of BCa we tentatively call the BCa straddle 

(BCas).  The CDF equation is the same (Equation 4), but the acceleration term is 

estimated differently.  Details are found in the Appendix.   

Notice that there are two unrelated occasions during the Slot algorithm that a PDF is 

accumulated to produce a CDF.  The first occasion is in Step E, when the likelihood PDF 

is transformed into a likelihood CDF, which facilitates the BC and BCa adjustments.  In 

Step G, the posterior PDF is transformed into a posterior CDF, which determines the CI 

boundaries. 

Point Estimates 

In addition to constructing CIs, the posterior distributions were used to estimate 

ρPost.  The analytic procedure’s estimate is rPost (= tanh-1(ζPost)).  The slot procedures’ 

estimate is the value of each slot, weighted by the slot’s posterior probability, ݎP୭ୱ୲ ൌ

∑ ሾρ௞ ൈ Oୠୱሻሿݎ|ሺρ௞݌
ௌ
௞ୀଵ .  The bias and mean squared error (MSE) were assessed for these 

estimates. 

The correlation sampling distribution is biased when ρ  0; the bias decreases as 

NObs grows.  In addition to rPost, we evaluated an adjustment for r (Olkin & Pratt, 1958, 
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Equation 2.6) that is intended to decrease the bias.  However in our simulations, it 

typically produced estimates with larger bias and MSE than the unadjusted rPost, so the 

results are not presented here. 

Distinction from Rubin’s Bayesian Bootstrap 

The procedures described in this paper are operationally different than the 

procedure Rubin broadly called a Bayesian bootstrap (1981; Efron, 1982, Section 10.7).  

Rubin’s procedure assigns a prior distribution to the observed scores.  However the Slot 

procedures assign a prior distribution to the parameters (as do the procedures in Boos & 

Monahan, 1986; Efron & Tibshirani, 1993, p. 358, also mentioned combining a bootstrap 

with a parameter’s prior distribution). 

We propose that direct interaction with the parameters is frequently more useful 

to behavioral research than interaction with the observed scores.  Theoretically, if a well-

defined prior distribution of the observations exists, a prior distribution of the 

parameter(s) can be derived; however we don’t think this approach practical.  Rubin 

himself wasn’t fond of the Bayesian bootstrap.  The final section of his 1981 article, 

which could be described as a deliberate reduction to absurdity, intentionally argues 

against his procedure’s relevance.  We feel that the researcher is more likely to have 

helpful and reliable prior information about the parameters than the observed scores, 

especially when multivariate questions are addressed. 

Evaluations of Inferential Procedures, not of Inferential Philosophies 

The procedures included in this study are tools that can be used by different 

schools of inference.  Our goal is not to evaluate the arguments in these debates (e.g., CIs 

vs. p-values, Bayesian vs. Frequentist, or hypothesis tests vs. point estimation), but to 
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evaluate the relevant statistical properties of the procedures.  From a statistical 

perspective, the conclusions of the different philosophies were equivalent sometimes 

(e.g., the procedures with desirable Type I error rates also will have desirable CI 

coverage).  The conclusions were related sometimes (e.g., the procedures with robust 

Bayesian inferences typically had robust Frequentist inferences).  And other times the 

conclusions were divergent (e.g., the procedure that produced the best point estimates 

sometimes produced the least robust CIs).   

To address the characteristics relevant to these different philosophies, we 

evaluated six statistical procedures using twenty-seven unimodal populations.  Five 

outcomes are summarized: bias, MSE, Type I error rates, Type P error rates and 

statistical power. 
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Method 

Before describing the factors used in the simulation, we first describe how the 

procedures were evaluated. 

Bias and MSE 

Bias and MSE are assessed by comparing the estimated posterior mean, rPost, to 

the ideal value, ρPost.  The value of ρPost is a combination of ρPop and ρPrior; it is calculated 

using the closed-form parametric procedure, except rObs is replaced with the population 

value, ρPop.  With a uniform prior, ρPost will equal ρPop.  Three Gaussian priors are shown 

in Figure 2.  Figure 5 shows the relationship between ρPost, ρPop, and NObs when ρPrior = .4.  

When the prior distribution is centered on the population value, the ρPop and ρPost are 

equal for all sample sizes (e.g., the middle panel of Figure 5). 

 

Figure 5.  The value of ρPost as a function of NObs and ρPop.  The prior is Gaussian with 
ρPrior = .4 and NPrior = 10.  As NObs increases, ρPost (solid line) approaches ρPop (dashed 
line).   
 

 

Type I and Type P Error Rates 

Type I error rate is the proportion of times the ρPop is incorrectly excluded by a CI, 

which reflects the likelihood distribution only.  Its nominal value is α, and αObs is 

estimated with simulation studies.  However, in this evaluation of Bayesian procedures, 
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we want to identify procedures that reliably incorporate observed and prior information 

with nonnormal populations.  We are tentatively calling the incorrect rejection of ρPost the 

‘Type P error rate’, and its nominal and simulation values are γ and γObs.   

The value of γ asymptotes to α as NObs grows infinitely large and NPrior is held 

constant to a positive value.  It also will equal α when no prior information is considered 

(i.e., NPrior ≤ 3 and τPrior = 0).  However γ will be zero when there is no observed 

information11 (NObs ≤ 3 and τObs = 0).  This is because sampling variability does not exist, 

and the CI already is centered at ρPrior = ρPost.   

For values of NObs and NPrior between 3 and infinity, the false rejection rate of ρPost 

is: 

ߛ ൌ Φ ቂΦିଵሺαሻ ൈ ஢Oౘ౩
஢P౥౩౪

ቃ ൌ Φ ቈΦିଵሺαሻ ൈ ට
ఛP౥౩౪
ఛOౘ౩

቉ ൌ Φ ൤Φିଵሺαሻ ൈ ට
ఛOౘ౩ାఛP౨౟౥౨

ఛOౘ౩
൨ 

When prior information is considered, the posterior distribution will have greater 

precision (i.e., be narrower) than the likelihood distribution.  Therefore ±CritObs, which 

cuts off α of the likelihood distribution, will cut off less than α of the posterior 

distribution (in Figure 6, compare the larger orange tails of the likelihood distribution to 

the smaller blue tails of the posterior distribution). 

When a uniform prior is used, the variability in the posterior and likelihood are 

equal, so γ = α and therefore Type P and Type I error rates are equal.  Another 

perspective is that ρPost = ρPop when a prior is uniform; because Type P is the rejection o f 

ρPost and Type I is the rejection of ρPop, the two error rates are equivalent. 

                                                 
11 When both NObs, NPrior ≤ 3, the Type P rate and ρPost are undefined, since the 
denominator of Equation 3 is zero.  However, you could argue that in the combination of 
no observed information and a uniform prior distribution (which weights all value of ρ 
equally), ρPost = 0. 
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Figure 6.  Comparison of Type I and Type P error rates (α and γ) when NObs = 30, 
NPrior = 10, and ρPrior = ρPop = 0.   

 

Simulation Factors 

Overall Design.  Our experimental design consists of six completely crossed 

factors and one partially nested factor.  Each factor has 4 to 8 levels, with a total of 

11,648 cells.  The factors are: (1) population distribution (8 levels), (2) population 

correlation: ρPop (4 levels), (3) hypothesized correlation: ρHyp (3 levels), (4) observed 

sample size: NObs (3 levels), (5) statistical procedure (6 levels), (6) CI method (4 levels), 

and (7) prior distribution (4 levels). 

Population Distribution (Factor 1).  Population scores were generated by an 

approach developed by Headrick (2010).  The populations of the primary simulation were 

built from combinations of a normal distribution, two skewed distributions (χ2(df=1) and 

χ2(df=3)), and a negatively kurtotic distribution (Beta(α=2,β=2)).  The seven bivariate 

distributions were (a) NormalXNormalY, (b) Chi1XChi1Y, (c) NormalXChi1Y, (d) 

Chi1XNormalY, (e) Chi3XChi3Y, (f) Beta22XBeta22Y, (g) NormalXBeta22Y, and (h) 

Beta22XNormalY.  Figures 7 and 8 show the marginal distributions and some of the joint 

distributions. 

We initially examined a pool of 11 univariate (and 27 bivariate) distributions in a 

small simulation with 20,000 replications.  These were chosen to represent the range of 
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nonnormal unimodal distributions identified by Micceri (1989) that applied researchers 

commonly encountered.  Their distributional properties and Frequentist performance are 

summarized in Beasley et al. (2007, Table 6).   

From the pool, 4 univariate (and 8 bivariate) distributions were selected as the 

most challenging.  In other words, they revealed the liberal behavior of the examined 

procedures; the 18 distributions that were not selected for the primary simulation had 

rejection rates closer to α and γ than those that were selected.  It is not surprising that 

Chi-Square(df = 1) has the largest skew and positive kurtosis, while Beta(2,2) has the 

largest negative kurtosis of the pool.  The heteroscedastic Chi1XChi1Y distribution was 

very problematic for some procedures, so we included a less severe heteroscedastic 

distribution that used Chi-Square(df=3).  The procedures were robust with sharply peaked 

symmetric distributions like the Laplace (also called the double exponential). 

 

Figure 7. The standardized univariate distributions of the simulated populations: Normal, 
Chi1, Chi3 and Beta22. 
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Figure 8.  Simulated populations.  For each cell, the contours were calculated from 105 
points and 103 points are plotted.  The calculated and theoretical correlations are (almost 
indistinguishable) dashed lines, while the loess curve is solid.  Axes of Normal marginals 
extend from -3.5 to 3.5.  Axes of the standardized Chi-Square(1) and Beta(2, 2) extend 
from-1 to 6 and from -2.5 to 2.5, respectively.  

   

 0.001 

 0.01 

 0.05 

 0.1 

Pop  0

N
or

m
al

X
 N

or
m

al
Y

 0.001 

 0.01 

 0.05 

 0.1 

Pop  0.4

 0.001 

 0.01 

 0.05 

 0.1 

Pop  0.8

Y

 0.05 

 0
.1

 

 0.5 

C
hi

D
f1

X
 C

hi
D

f1
Y

1 

 0.05 

 0.3 

 0.001 

0.01 

 0.05 

0.1
 

Y

 0.01 

 0.05 

 0
.1

 

N
or

m
al

X
 C

hi
D

f1
Y

 0
.0

1 

 0.05 

 0.1  0.3 
 0.01 

 0
.05

 

 0
.1 

Y

 0.001 

 0.01 

 0.05 

 0.1 C
hi

D
f3

X
 C

hi
D

f3
Y

 0.001 

 0.01 

 0.05 

 0.1 

 0.001 

 0.01 

 0.05 

 0.1 

Y

 0.001 

 0
.0

01
 

 0.01 

 0.05 

 0.1 

B
et

a2
2X

 B
et

a2
2Y  0

.0
01

 

 0.001 

 0.01 

 0.05 

 0.1 

 0.001 

0.001 

 0.01 

 0
.05

 

 0.1 

Y

 0
.0

01
 

 0
.0

01

 0.01 

 0.05 

 0.1 

N
or

m
al

X
 B

et
a2

2Y

X

 0
.0

01
 

 0.001 

 0.01 

 0.05 

 0.1 

X 0 001

 0.01 

 0.05 

 0.1 

Y

X



 30

Table 1 
Summary of the different definitions of correlations used in the paper. 
 
ρPrior  Center of the prior (on the z scale); Factor 7. 

Specified by researcher. 
ρPop Theoretical and generated value in the population; Factor 2. 

Unknown to researcher. 
ρPost Theoretical center of posterior (synthesis of ρPrior and ρPop); determined by Factors 

2 & 7. 
Unknown to researcher.

ρHyp Hypothesized value that is compared to the CI; Factor 3. 
Specified by researcher. 

rObs Estimate of ρObs. 
Calculated by researcher. 

rPost Estimate of ρPost (synthesis of rPrior and rPop). 
Calculated by researcher (it is influenced by the specified ρPrior). 
 

Population ρPop (Factor 2) and Hypothesized ρHyp (Factor 3).  Four 

correlations were used to generate population distributions, ρPop = 0, 0.4, 0.6, and 0.8.  

Four correlations were simulated as the null hypothesis, ρHyp = 0.0, 0.4, 0.6, and 0.8.  We 

note that results would be symmetric (except for sampling error) for negative ρPops.  

These are two of the six different types of correlations defined in this paper; they are 

summarized in Table 1. 

Sample Size (Factor 4).  Eight different observed sample sizes were generated, 

NObs = 5, 10, 15, 30, 60, 200, 500, 1,000.  We initially included only NObs ≤ 60, because 

they represent experiments and nested studies with small-to-moderate sample sizes in 

which statistical procedures are thought to be most vulnerable to violations of the 

normality assumption.  However some of the error rates remained very liberal at 

NObs = 60 and we were then interested if αObs would stabilize and approach α with larger 

samples.  All 8 samples sizes are displayed in Figures 9-15, while Table 2 contains only 

NObs = 10, 60, and 1,000. 
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Statistical Procedure (Factor 5).  This factor is the core feature of the study.  Six 

procedures were examined: (a) SlotHI, (b) SlotOI, (c) SlotBiv, (d) SlotPos, (e) 

SlotParametric, and (f) the parametric.  Our basic goal is to allow these procedures to 

compete in their power and control of Type I and Type P errors, as well as bias and MSE.  

These procedures tested the same batch of generated samples, which provides better 

comparisons between the procedures.  For instance, all procedures tested the same 

500,000 samples of size NObs = 15 drawn from the NormalXSkewY population where 

ρPop = 0.4.  

Statistical and CI Methods (Factor 6).  This is the only (partially) nested factor 

of the design.  Some bootstrap procedures were not crossed with all four CI methods.  

The SlotOI and SlotBiv were tested with the percentile, BC, BCa and BCas.  The SlotPos 

used the percentile and BC, while the SlotHI used just the percentile.  No adjustments 

were used with the two parametric procedures.   

The estimated values informing the BC, BCa, and BCas (i.e., z0 and a) are 

calculated from a sampling frame.  Currently it is not clear to us how these estimates are 

conceptually related to the SlotHI, because it has a different sampling frame for each of 

its slot.12   

To minimize the stochastic effects of bootstrapped distributions, all CIs were 

calculated from the same bootstrap distribution for a given procedure and sample, which 

provides better comparisons between the CI methods.  To reduce the complexity of the 

results, only the best CI method is reported for each procedure.  The BC was the best for 

                                                 
12 One possible solution is to adjust each slot (and thus each estimated likelihood for a 
given ρ) independently.  Another possibility is using each Slot (which represents values 
of ρ from -1 to 1) to estimate how the standard error of ρ changes linearly with its value.  
Ultimately, the SlotHI was found to be very robust, even with a percentile CI. 



 32

SlotBiv (although the BCa and BCas were very similar) and for SlotPos.  The BCas was 

best for the SlotOI. 

Prior Distributions (Factor 7).  The four prior distributions described in the 

Introduction were examined with each procedure (see Figure 2). 

Apparatus / Computer Architecture 

The simulation code was written in C# 3.0, which called the bootstrap code 

written in C++ with SSE4.1 intrinsics.  Up to 14 instances of the simulation ran 

independently on 5 single-socket processors.  Results were saved to Microsoft SQL 

Server 2008.  The simulation took 30 days to create 500,000 replications in each cell.  

For the SlotOI, SlotPos and SlotBiv, each bootstrap distribution contained 9,999 r*s.  For 

the SlotHI when NObs ≤ 60, each of its 200 slots contained 1,999 r*s; when NObs ≥ 200, 

each of its 400 slots contained 4,999 r*s.13  Regarding variability in the simulation 

estimates, nominal error rates of αObs = .05 have a 95% CI of [.0494, .0506] (i.e., .05 

±1.96 × √(.05 × .95 / 500,000)).   

Two types of random number generators (RNG) were used.  Bootstrap routines 

used a 59-bit multiplicative congruential generator (Intel, 2009) because the randomness 

and period length requirements for selecting 9,999 indices (or 2×9,999 continuous values 

for each SlotPos) are not very demanding.  A cryptographically strong RNG generated 

the population scores; unlike conventional RNGs, it does not accept a seed and does not 

                                                 
13 As the width of the observed slot decreases, we suspect it’s important to increase B in 
the SlotHI.  For example, when S = 200 and rObs = .672, the likelihood is partially 
determined by the proportion of r*s falling in the interval (.67, .68].  Increasing S to 400 
shrinks the bounds of the observed slot to (.670, .675] and potentially decreases the 
stability of the estimate p(rObs| ρ) (which is operationalized as p(.670 ≤ rObs <.675 | ρ)). 
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produce a predictable sequence of values (Toub & Farkas, 2007).  Values from this RNG 

produced seeds that initialized the bootstrap RNGs. 
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Results 

The procedures were evaluated by their performance on Type I error rates, Type P 

error rates, power, bias and MSE.  Each statistic is based on the average across 500,000 

replications.  For example, Type I, Type P, and power statistics are based on average 

rejection rates across 500,000 replications.   

Type I (and Type P) Error with a Uniform Prior 

Figure 9 shows Type I error with a uniform prior.  The upper left panel indicates 

the rate of incorrectly rejecting ρPost = 0 in a NormalXNormalY population.  The nominal 

α was set to .05.  Because the procedures are exposed to many nonideal situations (such 

as small samples and correlated, nonnormal populations), their performance can be 

expected to deviate from the ideal .05.  Under these nonideal conditions, we consider a 

procedure’s error desirable if it is less than .075.  Each panel in Figure 9 has a gray band 

covering .025 < α < .075.  A thin white line marks α = .05.  Recall that when the prior is 

uniform, ρPost = ρPop, so Type P and Type I error rates are equal. 

In the top left panel, no procedure exceeds the upper limit of the gray band, 

indicating none are excessively liberal for this specific condition.  In a sense, this panel is 

the ‘easiest’ test for an inferential procedure, and thus good performance is expected.  

Moving down a column changes the population distribution.  For the first column, ρPop 

and ρHyp are zero, so the vertical axis is the proportion of times the researcher incorrectly 

rejects the hypothesis that there is no linear relationship in the population.  In the second 

column, ρPop = ρHyp = 0.4, so this panel represents incorrectly rejecting the hypothesis that 

there is a moderate correlation.  The third and fourth columns represent ρPop = ρHyp = 0.6 

and ρPop = ρHyp = 0.8. 
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Consistent with Beasley et al. (2007), all evaluated procedures behave desirably 

when the population is bivariate normal (i.e., panels in the first row) or when the 

variables are uncorrelated (i.e., panels in the first column).  Otherwise, control of Type I 

and Type P error is not assured for the parametric procedures.  They are very liberal in 

heteroscedastic populations, such as Chi3XChi3Y and Chi1XChi1Y, always exceeding 

α = γ = .09 when NObs ≥ 10.  The liberalness is evident with correlations as low as 

ρPop = .4.  The error rates did not return to acceptable levels as sample size increased –the 

control deteriorated further, in fact.  When NObs = 1,000 in the Chi3 and Chi1 

distributions, αobs reached .14 and .27 (the values in Figures 9-10 are truncated at a 

ceiling of γ = .2). 

The error rates of the SlotHI and SlotOI were usually within .01 of each other and 

under .075.  The notable exception occurred when Beta22XBeta22Y was strongly 

correlated at ρPop = .8.  For the SlotHI, α peaked at .114 before falling to .086 when 

NObs = 1,000; the SlotOI stayed slightly above αObs = .10 for NObs ≥ 60.  When ρPop ≤ .6, 

neither had an αObs exceed .083. 

The SlotBiv performed desirably in the heteroscedastic populations, but exhibited 

serious problems in populations with strong nonlinear relationships (e.g., NormalXChi1Y 

and NormalXChi3Y). 

The procedures with parametric distribution assumptions (i.e., the analytic, 

SlotParametric, and SlotPos) performed very similarly.  In Figures 9-12, the red cross, the 

blue cross, and the purple diamond usually are on top of each other.  This suggests the 

Slot’s discretization was an acceptable approximation of the continuous parameter.  
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Figure 9. Type P error with a uniform prior.  Because the prior is uniform, these are also 
Type I error rates.  The columns represent population correlations, while the rows are the 
population distribution.  Vertical locations are truncated to α = .2. The panel replaced by 
the legend is replicated in the middle panel of Figure 11. 
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Based on the results above, we narrowed our attention to the analytic and SlotHI 

procedures, which are shown in Table 2.  These are the same values used to create the 

plots in Figure 9.  Rates that exceeded .075 (marked by the top of the gray band in Figure 

9), are indicated in blue.  Rates that exceeded .090 are red.  If liberal error rates are a 

concern, these results suggest the SlotHI is more robust than the parametric procedure. 

 
Table 2 
Rates for incorrectly rejecting ρPost (and ρPop) for the two best performing procedures.  
The nominal rate is .050.  Rates exceeding .075 are blue, and rates exceeding .10 are 
red; the corresponding row headers are bolded. 
 

NormalXNormalY  ρPost 
NObs = 10 .0 .4 .6 .8 
Analytic  .051 .050 .050 .048 
SlotHI  .032 .038 .052 .075 
NObs = 60 
Analytic  .050 .051 .050 .050 
SlotHI  .047 .050 .053 .060 
NObs = 1,000 
Analytic  .050 .050 .050 .050 
SlotHI  .056 .058 .048 .060 
Chi3XChi3Y   ρPost 
NObs = 10 .0 .4 .6 .8 
Analytic  .052 .078 .090 .101 
SlotHI  .044 .035 .048 .077 
NObs = 60 
Analytic  .050 .093 .111 .128 
SlotHI  .060 .058 .051 .053 
NObs = 1,000 
Analytic  .050 .099 .120 .137 
SlotHI  .058 .058 .045 .036 
ChiXChi1Y  ρPost 
NObs = 10 .0 .4 .6 .8 
Analytic   .059 .128 .165 .194 
SlotHI  .068 .031 .047 .079 
NObs = 60 
Analytic  .048 .167 .211 .243 
SlotHI  .080 .068 .051 .048 
NObs = 1,000 
Analytic   .049 .195 .242 .275 
SlotHI  .058 .075 .044 .026 

NormalXChi1Y  ρPost 
NObs = 10 .0 .4 .6 .8 
Analytic  .051 .046 .037 .039 
SlotHI  .033 .025 .018 .002 
NObs = 60 
Analytic   .051 .041 .029 .023 
SlotHI  .047 .022 .008 .004 
NObs = 1,000 
Analytic  .050 .041 .030 .034 
SlotHI  .056 .016 .003 .001 
Beta22XBeta22Y  ρPost 
NObs = 10  .0 .4 .6 .8 
Analytic  .052 .052 .053 .054 
SlotHI  .034 .041 .056 .082 
NObs = 60  
Analytic   .050 .052 .053 .055 
SlotHI  .047 .058 .073 .103 
NObs = 1,000 
Analytic  .050 .052 .053 .056 
SlotHI  .056 .062 .061 .086 
NormalXBeta22Y  ρPost 
NObs = 10 .0 .4 .6 .8 
Analytic  .051 .050 .049 .047 
SlotHI  .032 .039 .050 .072 
NObs = 60  
Analytic  .051 .049 .048 .044 
SlotHI  .047 .051 .059 .066 
NObs = 1,000 
Analytic  .050 .049 .048 .044 
SlotHI  .056 .058 .047 .070 
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Type P Error with Nonuniform Priors 

Figure 10 shows the rejection rates of ρPost when a nonuniform prior is used.  The gray 

band marks the values of γ that correspond to .025 < α < .075.  Recall that as NObs grows, 

the precision of the likelihood approaches the precision of the posterior, so γ asymptotes 

to α.  The white lines in the center of the gray band designate the γ corresponding to 

α = .05. 

The results of the nonuniform priors were fairly consistent with the uniform prior.  

Typically the Bayesian inference was liberal only if the Frequentist inference was liberal 

(and we mention the exceptions below).  Furthermore, the Type P error rates of the three 

Gaussian prior distributions closely resembled each other.  Gauss04 was chosen to 

represent the nonuniform priors in Figure 10 partly because it is the worst-case scenario 

for the SlotHI.  We think it controlled γ and α well with Gauss04, and it was controlled 

even better with the other Gaussian distributions. 

Among the univariate sampling bootstraps, there were two panels where γ 

exceeded the curved gray bands.  With an uncorrelated Chi1XChi1Y, γObs was .055 and 

.071 (instead of .053 and .064).  A larger violation occurred with a Beta22XBeta22Y 

when ρPop = .8.  The Type P error of the SlotOI (gray circle in Figure 10) jumped to a 

much higher rate with the nonuniform prior.  It peaked at .11 when NObs was 30 and 60, 

and slowly declined to .083 when NObs grew to 1,000.  This cell was also the weakest 

performance for the SlotHI, whose rates reached .100. 

The error rates of the three parametric procedures were very similar with 

Gaussian priors as they were with a uniform prior.  Error rates were very inflated in 
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heteroscedastic populations with nonzero correlations.  Otherwise, their control of γ was 

very good, and arguably even better than with a uniform prior. 

The SlotBiv again was very liberal when the NormalXChi1Y population was 

strongly correlated.  In all populations at NObs = 5, the SlotBiv had much more trouble 

with the Gaussian priors than with the uniform prior.  We don’t have a good explanation 

for this; perhaps it’s related to its unsmooth bootstrap distribution with small samples.   
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Figure 10. Type P error with Gaussian prior of ρPrior = .4.  The columns represent 
population correlations, while the rows are the population distribution.  See the Figure 9 
legend.
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Power 

Statistical power is the probability of correctly rejecting ρPop.  In our opinion, 

there was no procedure that consistently showed stronger or weaker power than others.  

In all conditions, power was virtually 1 when NObs ≥ 200; in some panels it reached 1 by 

NObs = 15.  Figures 11 and 12 display the rates of rejecting ρHyp.  Each row represents a 

different ρHyp value, and each column is a different ρPop.  The diagonal panels (i.e., when 

ρHyp = ρPop) contain Type I error rates; gray bands cover .025 < α < .075.  The off-

diagonal panels (i.e., when ρHyp  ρPop) contain power rates; gray bands cover rates above 

.95.  The diagonal cells in Figure 11 are scaled re-expressions of Figure 9’s first row (the 

vertical axis now extends from 0 to 1.0).  The diagonal cells in Figure 12 re-express 

Figure 9’s fourth row. 

Figure 11 contains NormalXNormalY rejection rates.  When NObs ≥ 10 and 

ρHyp = 0, the procedures perform very similarly; the analytic (red plus) has barely more 

power than the SlotHI (turquoise square).  Dropping to the second row when ρHyp = .4, 

the SlotHI has more power than the analytic when ρPop = 0, but the analytic is stronger 

when ρPop = .8.  This pattern continues for the third row, where the SlotHI is again more 

powerful than the analytic when the population correlation is smaller than the 

hypothesized correlation. 

Figure 12 contains NormalXChi1Y rejection rates, which follow the previous 

pattern.  The analytic is stronger than the SlotHI when ρHyp > ρPop, but then the SlotHI is 

more powerful when ρHyp < ρPop. 

In the conditions where Type P and Type I error rates were low (such as with the 

nonlinear relationships in NormalXChi1Y with ρ ≥ .6), the power was not substantially 
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lower than in NormalXNormalY (in Figures 11 and 12, compare the cells in the 3rd 

column).  Incidentally, the other procedures had substantially higher power than in the 

equivalent NormalXNormalY cells (although SlotBiv’s power comes at the expense of 

liberal error rates).  We examined the likelihood distributions from the different 

procedures.  When ρPop = .8 in the NormalXChi1Y population, it appears the SlotHI 

consistently keeps the CI’s left boundary too low.  
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Figure 11. Rejection rates with a uniform prior and a NormalXNormalY population.  
Columns represent different population correlations, while rows are the tested 
correlations.  The diagonal panels are Type I error rates; a gray band indicates .025 < α 
< .075.  The off-diagonal panels are power rates; a gray band indicates rates above .95.  
See the Figure 9 legend. 
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Figure 12. Rejection rates with a uniform prior and a NormalXChi1Y population.  See the 
Figure 11 caption. 
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Bias 

The bias results are more difficult to summarize than the error and power results.  

In our opinion, no procedures were remarkably worse than others.  From our perspective, 

no procedure was consistently negatively or consistently positively biased, and all 

quickly approached zero as NObs increased. 

With a uniform prior, the reported procedures showed very little bias when 

ρPop = 0.  The r statistic itself is biased when ρPop is nonzero (Olkin & Pratt, 1958), and 

this is evident in the last two columns of Figure 13 (although there are a few exceptions 

in the nonlinear population). 

Surprisingly, poor Type I and P performance did not usually correspond to large 

biases.  For example, the worst Type I error was seen when the parametric procedures 

tested samples from the Chi1XChi1Y population.  However in the same condition, their 

bias was remarkably good and outperformed the bootstrap procedures.  Similarly, 

although the SlotHI showed its worst control of α in the strongly correlated 

Beta22XBeta22Y population, its bias in that population was comparable to the parametric 

procedures.  

MSE 

Despite differences in error, power and bias, the procedures had very remarkably 

similar MSEs, regardless of the prior.  Results with a Gauss04 prior are shown in Figure 

15. 
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Figure 13.  Bias with a uniform prior. 
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Figure 14.  Bias with a Gauss04 prior. 
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Figure 15.  MSE with a Gauss04 prior. 
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Discussion 

Performance: Power and Error Rates 

Our impressions are similar to Beasley et al. (2007): the analytic procedure (i.e., 

the closed-form parametric procedure) is recommended if ρHyp = 0 or if bivariate 

normality is assured.  Otherwise, the SlotHI and SlotOI should be strongly considered 

because they are more robust to nonnormality, especially heteroscedasticity.  When the 

parametric procedures tested nonzero correlations in heteroscedastic populations, their 

inferences were very liberal, with Type I and Type P error rates consistently exceeding 

.15.  Unfortunately, this problem always worsened with larger sample sizes, and even 

appeared with correlations as low as ρPop = .4.  Skewed distributions like the Chi1 

(skew = 2.8) and Chi3 (skew = 1.6) are not uncommon.  As of 1989, Micceri estimated 

that 11% of studies used distributions where the skew exceeded 2.0. 

In the conditions where we do recommend the analytic procedure, its advantage is 

primarily related to convenience and software availability, and not related to power.  As 

seen in the top row of Figures 11 and 12, the power of the SlotHI (turquoise box) was 

competitive with the analytic (red plus) when evaluating ρHyp = 0 in normal populations.  

This surprised us; we expected the parametric procedures to perform better than the 

bootstraps when the parametric assumptions were true.  When rejecting nonzero values of 

ρHyp, the power of the SlotHI won three out of the four cells (see the four off-diagonal 

cells in the last two rows of Figures 11 and 12). 
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We also were surprised to see the SlotHI outperform the HI14 noticeably, even 

when the SlotHI used a uniform prior.  We currently do not have a thorough explanation.  

Procedurally, the only difference is the SlotHI considered 200 different sampling frames 

to estimate the likelihood distribution, while the Frequentist HI considered only one.  In 

other words, one SlotHI sampling frame is responsible for a distance of .01 (e.g., .34 < ρ 

≤.35), while the single HI sampling frame covers a distance of 2 (i.e., -1 ≤ ρ ≤ 1).   

The SlotHI and SlotOI typically had comparable power and error rates, and our 

decision to focus on the SlotHI was almost arbitrary.  Their control of Type I and Type P 

error was roughly equivalent, while the SlotHI arguably had better power.  They had one 

weak area in our simulation: Beta22XBeta22Y, when ρPop = .8.  Type P error of the 

SlotOI reached ~.13, while the SlotHI reached ~.11.  When ρPop ≤ .6 and NObs ≥ 10, the 

Type I error for both procedures never exceeded .083. 

The SlotBiv was very liberal with the NormalXChi1Y population when ρPop = 0.8 

in small and moderate sample sizes (γObs ~ .30).  However its liberalness fell to 

acceptable levels when NObs ≥ 500.  In the other populations, its performance was liberal, 

but acceptable.  Its Type I error frequently was between .05 and .075. 

Performance: Bias and MSE 

The parametric procedures’ point estimates apparently are much more robust than 

their CIs.  Regarding bias, they typically outperformed bootstrap procedures, even in the 

heteroscedastic correlated populations (Figures 13 and 14).   

Regarding MSE, the procedures were almost indistinguishable (Figure 15).  Other 

conditions, such as sample size and prior distribution, were much more influential than 
                                                 
14 The non-Bayesian version that is described in the ‘Building Likelihood Distributions’ 
section and in Beasley et al., 2007. 
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the choice of procedure.  We are very comfortable recommending parametric procedures 

when the researcher requires point estimates. 

Extensions: Sampling Frame 

The current versions of the HI and OI do not treat the X and Y variables 

interchangeably, because the Cholesky imposes the correlation on only the Y variable.  

We think it is a small issue for bivariate conditions, because the difference in 

performance was never substantial in the conditions we tested (e.g., the results for the 

NormalXChi1Y and Chi1XNormalY populations were similar).  However, in applied 

research the decision of designating the X and Y variable is often arbitrary, and we are 

concerned that this arbitrary decision could be more influential when generalized to 

multivariate relationships.  If there are q parameters, there are (q - 1)! arbitrary decisions. 

Although the X marginal is reproduced in the diagonalized sampling frame 

(Figure 1, Stage 2c), the Y marginal is altered (between Stages 2b and 2c; technically, the 

Y” marginal is altered).  As the imposed correlation grows stronger, the Y marginal 

becomes more similar to the X marginal.  When the imposed correlation is 1, then 

Y’’ = X’, so the Y’’ marginal is identical to the X’ values in the observed sample. 

Unlike Cholesky decomposition, spectral decomposition treats the variables 

interchangeably.  However, spectral decomposition does not reproduce the marginal of 

either X or Y.  Unfortunately, the spectral’s performance was disappointing in a previous 

study (Beasley et al., 2007, Appendix).  The SlotPos didn’t reproduce the sample’s 

marginals (and in a sense, neither do the SlotParametric and analytic procedures); their 

failures with the heteroscedastic population might suggest that this feature is important.  
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However, spectral decomposition is the only method we are aware of that treats variables 

interchangeably when imposing a linear relationship.  

A potential solution is to impose a nonlinear relationship in the sampling frame, 

while simultaneously respecting the observed marginals.  Methods by Headrick (2010) 

and Ruscio and Kaczetow (2008) are two good candidates for future versions of the 

SlotHI and SlotOI.  For reference, look at the NormalXChi1Y row in Figure 8.  When the 

points are forced to have normal and skewed marginals, while simultaneously exhibiting 

the imposed linear correlation (i.e., the dashed line), the curvilinear relationship is 

produced.  If a sample can reliably estimate the correlation and marginals, the resulting 

bootstrap inference may be reliable in multivariate settings. 

If a multivariate extension of the SlotHI or SlotOI becomes as robust as the 

bivariate version, we hope a new class of large-sample research scenarios can be served.  

In smaller datasets, robustness is important because little is known about the population.  

Sampling variability not only affects the correlation inference, but also obscures the 

validity of the parametric assumptions.  If a researcher is misled about the population and 

chooses a poor transformation, the inference could be more misleading than if the scores 

had not been altered.  Choosing a bad transformation is less likely in large datasets.  The 

marginal and joint distributions are better defined, so the researcher has better 

information when selecting an appropriate transformation. 

Applications like mediation analyses could benefit as well.  Suppose there is 

heteroscedasticity in the linear relationship between X and Y, but their relationships with 

M are well behaved.  The analyst is reluctant to transform X and Y (with a log or square 

root for example), because their relationship with M would become nonlinear.  Of course 
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if a linear model becomes inappropriate, there are more advanced procedures that address 

this new issue, such as a nonlinear regression.  Alternatively, a generalized linear model 

(with something other than an identity link) can be considered if the variables are not 

transformed.   

However, options like these can introduce additional assumptions and require 

larger samples for estimations that are equally reliable.  If the multivariate SlotHI or 

SlotOI is robust to heteroscedasticity, the analyst can retain the linear model and identity 

link, and won’t have to increase the model’s complexity.  Furthermore, there is typically 

some prior knowledge about the total effect and the direct effect (commonly labeled c 

and c’), so the Bayesian capabilities of these procedures could assist mediation analyses 

too (Yuan & MacKinnon, 2009). 

Extensions: Adaptive Slot Widths 

The widths of the slots do not have to be equal.  If either the prior or likelihood 

distribution is sharply peaked (which will happen if NObs is very large or the prior 

information is very specific), the inference’s accuracy may benefit if smaller intervals are 

concentrated near the peaks.  In the situations we explored, 200 slots seemed adequate 

when NObs ≤ 200.  However when the sample was larger, the SlotHI’s pattern of error 

rates became less stable –the values showed an unsmooth pattern that alternated between 

too liberal and too conservative.  As a result, we increased S from 200 to 400 and B from 

1,999 to 4,999 (recall the other bootstraps used B = 9,999) and the error rates stabilized.  

The power rates were unaffected, because they were already near the asymptote of 1.  

Bias and MSE were unaffected as well. 
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The instability arises because the entire posterior distribution is contained in a 

small number of slots.  For example, with NObs = 1,000, ρTrue = .8, and a Beta22XBeta22Y 

population, the posterior typically is entirely contained in (.77, .85].  It is difficult to 

obtain a reliable resolution of 2.5% when 100% of the distribution is contained in only 8 

of the 200 slots.  The posterior values in the other slots are zero, so in a sense, 96% of the 

SlotHI’s computation was wasted in this situation.  However, the practical importance of 

this issue may be small.  Bias and MSE appear to be stable, and the width of the CI is 

very small when NObs = 1,000 –it can easily discriminate a ρHyp of .75 from a ρPop of .80. 

The previously described interpolation technique alleviated much of the Type I 

instability.  But this linear approximation might be insufficient when the distribution is 

contained in fewer than 8 slots.  The problem cannot be solved by only increasing B.  If 

it’s not feasible to increase the number of slots, or adapt the width of the slots, it could be 

beneficial to smooth the posterior points and allow the neighbors to inform each other.  

Boos and Monahan (1986) used kernel smoothing in this situation; a variation of 

Romberg integration might be another alternative. 

Extensions: Regression 

A correlation centers the variables to have a mean of zero and standardizes the 

slope based on the standard deviations.  In this sense, a correlation ignores information 

that is captured by a regression.   Despite our appeals to incorporate more information, 

we think these correlation procedures have three uses.  First, in the early stages of 

research, an expert’s prior knowledge may be more accurately expressed as a correlation 

than an unstandardized regression slope.  Second, there may be occasions where different 

means and variances should be ignored.  Third, this procedure is a good starting point; 
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and SlotHI and SlotOI regression procedures probably can be generalized and evaluated 

in later research. 

The procedural extension might be as simple as adding a Stage 2d that 

unstandardizes the X and Y variables in the diagonalized sampling frame and restores the 

variable’s mean and variance.  For instance, the diagonalized X and Y sampling frame 

values are first multiplied by sd(X) and sd(Y) and then added to mean(X) and mean(Y), 

respectively.  There might need to be some small adjustment because sd(X) was 

calculated with NObs scores, but the sampling frame has NObs
2 scores.  Later, a 2-

parameter bootstrap distribution would be created as the slope and intercept are 

calculated for each bootstrap sample. 

Conclusions 

Although psychology has fewer than some other disciplines, we do have many 

accepted population point estimates, such as the American mean IQ is very close to 100 

(Lichtenberger & Kaufman, 2009), the comorbidity of depression and substance abuse is 

roughly 25% (Kessler, et al., 2003), and the correlation between social desirability and 

the first component of personality scales is at least .8 (see for a list of these studies, 

Backstrom, Bjorklund & Larsson, 2009, p. 335).  If it is difficult to think of an example 

in a field, it does not necessarily mean that non-nil testing won’t be beneficial.  It could 

mean that previous research hasn’t been motivated to form a consensus about a value, but 

only about a direction.  “But if all we, as psychologists, learn from research is that A is 

larger than B (p < .01), we have not learned very much.  And this is typically all we 

learn.” (Cohen, 1994). 
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Regardless if an informative prior is considered, the SlotHI and SlotOI produced 

CIs that were more robust than the parametric procedures when ρ is nonzero.  Their Type 

I error rates were usually under .06, and they never exceeded .083 when -.6 ≤ ρ ≤ .6.  

In the situations that the SlotHI or the analytic procedure is recommended, we are 

not advocating that all other procedures should be avoided.  We do not think a p-value 

from a single procedure can adequately describe a nontrivial research question.  A better 

understanding is much more likely when multiple procedures are considered (as well as 

multiple models, graphs, and priors). 

Not only can a study use multiple procedures, but it can consider multiple priors 

as well.  A reference prior can be reported to represent the researcher’s best guess of the 

population correlation if no other research is available.  But usually some subjective or 

objective information is available, and in these cases, a field might advance more quickly 

if both a reference and informative priors are considered and reported.    
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Appendix 

Computational Optimizations 

Diagonalization Shortcuts.  The Cholesky decomposition can be expressed as 

௜ݕ
ᇱ ൌ ௜ݔ ൈ ρ ൅ ௜ඥ1ݕ െ ρଶ ൌ ඥ1 െ ρଶ൫ݔ௜ ൈ ൫ρ ඥ1 െ ρଶ⁄ ൯ ൅  ௜൯.  The ρ is constant for the samplingݕ

frame of the HI and OI, so ρ ඥ1 െ ρଶ⁄  can be calculated once and saved as a fixed slope, b.  

This avoids repeating the expensive division and square root operations.  Furthermore, 

the scaling factor ඥ1 െ ρଶ outside the parentheses can be ignored because the correlation 

coefficient is invariant to linear transformations of Y.  The reduced equation (ݕ௜ᇱ ൌ ௜ݔܾ ൅  (௜ݕ

is much cheaper to computer, and even could be completed in one operation if the 

hardware supports a fused multiply-accumulate (‘FMA3’; also see the ‘daxpy’ routine in 

BLAS, Netlib, 2010).  

Reusing SumX and (NObs·SumX 2 - (SumX)2).  When S = 200, the SlotHI must 

account for 200 different sampling frames and bootstrap distributions, while the SlotOI, 

SlotBiv and SlotPar need to account for only 1.  However, the SlotHI doesn’t have to take 

200 times longer.  When a Cholesky decomposition diagonalizes the sampling frame, the 

X values are not affected and therefore can be reused.  When the correlation is expressed 

as 

ݎ ൌ ಿ·S౫ౣ೉ೊషS౫ౣ೉·S౫ౣೊ

ට൫ಿ·S౫ౣ೉మషሺS౫ౣ೉ሻమ൯൫ಿ·S౫ౣೊమషሺS౫ౣೊሻమ൯
, 

only the three terms involving Y (i.e., SumY, SumY 2, and SumXY) need to be calculated 

more than once.  (For the appendix, the term N is used instead of NObs). 

The same strategy was applied to the jackknives in the BCa and BCas.  The five 

sums (i.e., SumX, SumX 2, SumY, SumY 2, SumXY) were calculated once for each sample 
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of N scores, and then reused for the N jackknife samples.  When the ith score was 

excluded, the ith jackknifed statistic is calculated as 

ݎି ௜ ൌ
ሼಿషభሽ൛S౫ౣ೉ೊషೣ೔೤೔ൟష൛S౫ౣ೉షೣ೔ൟ൛S౫ౣೊష೤೔ൟ

ටቀሼಿషభሽቄS౫ౣ೉మషೣ೔
మቅష൛S౫ౣ೉షೣ೔ൟ

మ
ቁቀሼಿషభሽቄS౫ౣೊమష೤೔

మቅష൛S౫ౣೊష೤೔ൟ
మ
ቁ
. 

Without this shortcut, the N jackknifed sums of XY require N × (N – 1) 

multiplications and N × (N – 1) – 1 additions for the bivariate sampling bootstrap; with 

this shortcut, this term requires 2N multiplications and 2N – 1 additions.  The discrepancy 

grows even larger for a univariate sampling bootstrap, because it uses N 2 jackknife 

samples of N 2 - 1 scores.  When the sample contains 1,000 observations, the shorter 

routine uses roughly 1 arithmetic operation for every 500,000 operations used by the less 

efficient routine.  Also, we expect the shortcut produces fewer misses in the CPU’s lower 

cache levels, which further shorten the routine’s duration. 

BCa and BCas 

Two types of jackknifes are relevant to the BCas.  The typical jackknife excludes 

one observation and calculates the plug-in statistic on the samples remaining N – 1 

observations.  This repeats for every observation, producing a jackknife distribution of N 

resampled statistics.  For this paper, the correlation coefficient is the plug-in statistic.  

The positive jackknife is similar to the typical jackknife, but it duplicates the ith point and 

calculates the statistic on the N + 1 points. 

The acceleration term in the BCa, a, estimates the rate of change of the standard 

error of ρ, as ρ increases15.  To understand acceleration, it helps to think of each observed 

                                                 
15 This is described in depth in Efron & Tibshirani (1993, Ch. 22).  In short, the typical 
BCa uses a jackknife to estimate the direction of a line.  This line, which is orthogonal to 
level curves in an N-dimensional space, reduces the space to the one-parameter ‘least 
favorable family’ in order to estimate a. 
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point having a resampling weight in a bootstrap sample; the weight is a proportion 

ranging from 0 to almost 1.  There is a relationship between the resampled statistic and 

the resampled weight for the ith observed point.  A weight of zero means the point wasn’t 

included in a bootstrap sample and the remaining N - 1 points have a weight of N / (N - 1) 

when calculating r*.  In contrast, a weight close to 1 means the point was repeatedly 

sampled almost N times and the remaining points have a weight close to 0.  Figure 16 

displays a hypothetical relationship between the resampling weight of the ith point, and 

the resulting value of r* (see also Efron & Tibshirani, 1993, Figure 20.6).  The blue dot is 

located at (x, y) = (1/N, robs), which represents the observed sample.  For reasons 

described in Efron & Tibshirani, Section 22.5, it is important to find the slope of the 

function for each observation.  The slope for the ith point, shown with a blue line in 

Figure 16, is called the empirical influence component, Ui, and can be difficult to 

calculate analytically with a nonparametric bootstrap.   

 

Figure 16.  Illustration of different acceleration estimates.  The gray line is the value of r* 
as the resampling weight of an observation is increased from 0 to the limit of 1.   

 

 

When analytically calculating the slope is difficult, Efron & Tibshirani (1993, 

Equation 14.15 and p. 290) suggest approximating this slope with Ui = (N – 1)(r(- ·) – r(-i)), 

where r(-i) is calculated from a sample that excludes the ith point (otherwise known as the 
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ith jackknifed statistic).  The mean of the N values of r(-i) is r(- ·), which should be close to 

rObs.  When the mean is the jackknifed statistic, instead of the correlation, r(- ·) = rObs.  The 

estimated acceleration equation is 

 ොܽ ൌ
∑ ௎೔

యಿ
೔సభ

଺൫∑ ௎೔
మಿ

೔సభ ൯
య మ⁄  (5), 

and there are different equations for Ui, as we will discuss. 

This approximated slope using the jackknife is shown with the red dotted line in 

Figure 16.  This approach is sometimes called a 2-point formula, as it passes through the 

jackknifed statistic and the observed statistic (shown as the black dot and blue dot).  A 2-

point formula can be expressed as 

 slope = [f(x0) - f(x0 - h)] / [x0 - (x0 - h)] = [f(x0) - f(x0 - h)] / h (6), 

where f is the function of interest, x0 is the tangent point, and h is the horizontal distance 

between the two points.  In our case, x0 is 1/N and x0 - h is 0/N; f(x0) is rObs (or r(- ·)), and 

f(x0 - h) is approximately the jackknife estimate.  The size, but not the sign, of any 

multiplicative factor that is constant for all N influence components (like h in the 

denominator of Equation 6) can be ignored when estimating acceleration, because it 

cancels itself in Equation 5.  The commonly used formula for Ui in Equation 5 is 

 Ui = r(- ·) - r(-i) (7). 

Another 2-point formula finds the slope between the observed statistic and the 

positive jackknifed statistic (the blue dot and gray dot).  The empirical influence 

component using the positive jackknife is Ui = (N + 1)(r(+i) – rObs) (Efron & Tibshirani, 

1993, Equation 20.22).  Although it shouldn’t make much practical difference, we don’t 

understand why the positive jackknife’s empirical influence component equation uses 
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robs, but the jackknife’s equation uses r(·).  In this case, h is negative in Equation 6, 

because the second point is to the right of 1/N:  

 Ui = (rObs - r(+i)) / -1 = r(+i) - rObs (8). 

The slope estimate is potentially more accurate when informed by points that 

straddle rObs, also known as a 3-point formula.  The purple dashed line in Figure 16 uses 

three points to calculate its slope: the first uses the jackknife estimate (x0 – h1, f(x0 - h1)), 

the second uses rObs (x0, f(x0)), and the third uses the positive jackknife estimate (x0 + h2, 

f(x0 + h2)).  When h1 = h2 = h, the 3-point formula reduces to [f(x0 + h) - f(x0 - h)] / 2h.  

Because the denominator is equal for all N points, it can be ignored and the influence 

component becomes 

 Ui = (r(+i) - rObs) – (rObs - r(-i))= r(+i) - r(-i) (9). 

Equation 9 reflects at least three approximations that theoretically decrease 

accuracy.  First, the positive jackknife isn’t positioned exactly above 2/N; because a 

resampled sample has N + 1 points, the weight is actually 2/(N + 1).  Ideally, the weights 

of the remaining observations should be reduced by (N – 1)/N so that h1 = h2.  Second, 

the typical (or negative) jackknife uses samples of N – 1 points.  If we understand the 

concepts correctly, weights of the remaining observations should be increased by 

N/(N - 1), but apparently its developers believe this discrepancy is small enough that it 

can be ignored.  Third, the x0 value for Equation 7 is the mean of the jackknifed statistics, 

r(- ·), but x0 for Equation 8 is rObs (instead of the mean of positive jackknifed statistics, 

r(+ ·)).  We simplified the routine by replacing r(-i) with rObs in Equation 9, which removes 

rObs from the equation altogether.  These three approximations may lead to less accurate 

values in ideal conditions, but we feel the resulting values won’t be noticeably worse, and 
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might more numerically stable when calculated in nonideal conditions with finite 

precision.   

The BCa and Equation 5 were introduced generally, without being connected 

exclusively to the jackknife (Efron, 1987).  Therefore the BCas is not a new CI 

adjustment, but rather one more type of BCa.  The empirical difference between the two 

types slightly favored the BCas in our simulations; but the difference was small enough 

that we recommend a practitioner use the typical BCa if an existing implementation is 

easily available (and has been thoroughly tested).  The differences in the two estimates of 

a were very small, and judging from the small difference between the BC and BCa’s 

performance, the influence of a on the BCa was small to begin.  The recommendation 

could change when a different statistic is bootstrapped.  We would expect the BCas to do 

better as the second derivative grows (at the blue point in Figure 16).  See Efron & 

Tibshirani (1993, Section 20.6) for more discussion of the different advantages of the 

jackknife and positive jackknife. 

 


