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Abstract 

Turbulent flows in plane channel and plane Couette are investigated using a direct 

numerical simulation in conjunction with Lagrangian scalar tracking of trajectories of 

thermal markers. The flow is for an incompressible Newtonian fluid with constant 

physical properties. In plane channel, the flow is driven by a constant mean pressure 

gradient in the channel.  In plane Couette, the flow field is created by two infinite planes 

moving at the same velocity, but in opposite directions, forming a region of constant total 

shear stress. Heat markers are released into the flow from the channel wall, and the 

ground level temperature is calculated for dispersion from continuous line sources of 

heat. In addition, the temperature profile across the channel is synthesized from the 

behavior of these continuous line sources. It is found that the heat transfer coefficient for 

Couette flow is higher than that in channel flow for the same Prandtl numbers. 

Correlations are also obtained for the heat transfer coefficient for any Prandtl number 

ranging from 0.1 to 15000 in fully developed turbulence.  

The behavior of elevated sources in turbulent channel flow and in turbulent plane Couette 

flow is also studied. It is found that the molecular Pr has negligible effects in the 

evolution of the marker cloud for Pr ≥ 3, when the point of marker release is away from 

the viscous wall sublayer. However, when the markers are released close to the wall, the 

molecular effects on dispersion are strong. It is also found that total effective dispersion 

is higher in the case of plane Couette flow, where the total stress across the channel is 

constant.  

Scaling of turbulent transport was examined based on two approaches, different than the 

currently widely used scaling based on viscous wall parameters. The first work on heat 
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transfer scaling was done by Wei et al. (2005a). Their approach was based on analysis of 

the averaged heat equation. The turbulent flow domain was decomposed into layers, each 

with its characteristic transport mechanism. The applicability of this analysis for different 

turbulent velocity fields (plane Couette and plane Poiseuille flow) is investigated. The 

second approach was explored by Churchill and coauthors (Churchill and Chan, 1995; 

Churchill, 2000; Yu et al., 2001; Churchill, 2002). They proposed an algebraic model for 

the prediction of mean turbulence quantities. According to the Churchill model, fully 

developed flow and convection can be expressed as fractions, respectively, of shear stress 

and heat flux density due to turbulent fluctuations. The mean temperature profile can then 

be predicted when the velocity profile and the turbulent Prandtl number are given. The 

theoretical predictions have been found to agree with the data quite well for a range of 

Pr, but there are deviations at very high Pr.  

The present study also investigates the mechanism of heat transfer away from the wall. 

The effects of the velocity field on the thermal field are studied. Characteristic length 

scales for heat transfer are calculated for fluids with Prandtl numbers between 0.1 and 

100. Structures of larger scales are found to contribute to the transport of heat as the 

distance from the wall increases. Turbulent Prandtl numbers are calculated, showing that 

the turbulent Prandtl number is a function of the distance from the wall, but it does not 

depend on the fluid Prandtl number for high Prandtl numbers.  
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Chapter 1: Introduction  

1.1 Introduction 

Most flows are turbulent in the environment and in industrial processes. The ability to 

rapidly mix and diffuse fluid scalar properties like chemical species and temperature, 

make turbulent flows an appealing subject to study. Turbulent heat or mass transport is 

important for applications in several processes, such as mixing, pollutant dispersion in 

atmosphere and in riverbeds, heat exchange, etc. However, in turbulent flows, the 

vortices, eddies and wakes make the flow unpredictable. The complete description is still 

an unsolved problem in physics. It is said about this matter that Werner Heisenberg, a 

famous German theoretical physicist, once said: “When I meet God, I am going to ask 

him two questions: Why relativity? and Why turbulence? I really believe he will have an 

answer for the first.” (http://www.eng.auburn.edu/users/thurobs/Turb.html Turbulence) 

The irregular fluctuations of velocity, pressure and other flow quantities in space and 

time are the characteristics of turbulent flows. In study of turbulence, the long-time 

averages, such as the mean velocity in a boundary layer or the mean drag of submarine, 

are of main interest. When the Navier-Stokes equations are written in form of long-time 

averages or mean, the fluctuations are perceived to be in the form of additional stress, 

known as the Reynolds stress. These additional stresses contain unknown fluctuations in 

quadratic form. The process of averaging and the nonlinearity of the problem cause the 

nonclosure problem in turbulent flows. Therefore, turbulent flows have been explored 

mostly by either exploratory experiments or numerical simulations of the Navier-Stokes 
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equations at low Reynolds number. Turbulence scaling have been attempted and 

presented based on the results from those experiments.  

In this study, turbulent flows were studied using direct numerical simulation in 

conjunction with the Lagrangian Scalar Tracking method. This type of work was started 

in the 1990s, with development of high-end computers. Heat/mass transport in Poiseuille 

channel flow and in Couette flow was studied. The problem considered was scalar, 

passive heat convection. By restricting consideration to a passive release into the flow 

field, problems associated with natural convection, such as changes in the behavior of the 

fluid due to buoyancy, were avoided.  

Chapter 2 presented turbulent heat transfer in plane channel flow from wall sources. The 

heat transfer coefficient and the Nusselt number ratio, Nu(x)/Nu(x→∞), downstream 

from a step change in the wall flux were determined for the range of Pr or Sc fluids from 

0.01 to 50,000. Relations between the heat and mass transfer coefficient at the fully 

developed part of the channel and Pr or Sc were proposed for low and high Pr or Sc 

cases. Finally, unified correlations, which provided the heat or mass transfer coefficient 

for all Pr or Sc, in the Reynolds number range examined, were proposed.  Also, the 

exponent of the asymptotic dependence of the eddy diffusivity close to the wall was 

obtained. 

Chapter 3 showcased turbulent heat transport in plane Couette flow from wall sources. 

Fluids with Prandtl numbers from 0.1 to 15,000 for plane Couette flow were studied. The 

flow field was created by two infinite planes moving at the same velocity, but in opposite 

directions, forming a region of constant total shear stress. Heat markers were released 

into the flow from the channel wall, and the ground level temperature was calculated for 
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dispersion from continuous line sources of heat. In addition, the temperature profile 

across the channel was synthesized from the behavior of these continuous line sources. It 

was found that the heat transfer coefficient for Couette flow was higher than that in 

channel flow for the same Prandtl numbers. Correlations were also obtained for the heat 

transfer coefficient for any Prandtl number ranging from 0.1 to 15000 in fully developed 

turbulence.  

Elevated sources in plane channel and plane Couette flow were discussed in Chapter 4. 

The fluids spanned several orders of magnitude of Pr (or Sc), Pr = 0.1, 0.7, 3, 6, 10, 100, 

200, 500, 1000, 2400, 7500, 15000, 50000, (liquid metals, gases, liquids, lubricants, and 

electrochemical fluids). It was found that the molecular Pr had negligible effects in the 

evolution of the marker cloud for Pr ≥ 3, when the point of marker release was away 

from the viscous wall sublayer. However, when the markers were released close to the 

wall, the molecular effects on dispersion were strong. It was also found that total 

effective dispersion was higher in the case of plane Couette flow, where the total stress 

across the channel was constant.  

Based on the data generated from Chapter 2 to Chapter 4, different approaches of 

turbulent scaling were studied in Chapter 5 and Chapter 6. In chapter 5, a new scaling for 

fully developed turbulent channel flow with constant heat flux at the walls proposed by 

Wei et al. (2005) was studied. Their analysis was based on the description of the physical 

layer structure of the thermal energy field in wall turbulence using the unintegrated form 

of the mean energy equation. Chapter 5 examined the applicability of this analysis for 

different turbulent velocity fields (plane Couette and plane Poiseuille flow). The data, 

obtained using a Lagrangian computational method, showed good agreement with the 
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Wei et al. approach and extend the range of Peclet numbers that Wei and coauthors have 

investigated. 

Chapter 6 talked about temperature predictions at low Reynolds turbulent flow using the 

Churchill turbulent heat flux correlation. According to this new model, suggested by 

Churchill and co-workers (Churchill and Chan, 1995; Churchill, 2000; Yu et al., 2001; 

Churchill, 2002), fully developed flow and convection could be expressed as local 

fractions of the shear stress and the heat flux density due to turbulent fluctuations, 

respectively. The fully developed temperature profile could be predicted if the velocity 

field and the turbulent Prandtl number were known. Temperature profiles for Pr between 

0.01 and 50,000 have been obtained theoretically and with simulations through the use of 

Lagrangian methods for both planes Poiseuille flow and plane Couette flow. The half 

channel height for all simulations was h =150 in wall units. The theoretical predictions 

have been found to agree with the data quite well for a range of Pr, but there were 

deviations at very high Pr.  

Chapter 7 investigated the correlation between the velocity and the temperature field in 

wall turbulence. Characteristic length scales for heat transfer were calculated for fluids 

with Prandtl numbers between 0.1 and 100. Structures of larger scales were found to 

contribute to the transport of heat as the distance from the wall increases. Turbulent 

Prandtl numbers were then calculated, showing that the turbulent Prandtl number was a 

function of the distance from the wall, Chapter 8 summarizes main conclusions drew 

from this work and recommends future studies within overall direction of this research.  
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1.2 Direct Numerical Simulation (DNS) 

The behavior of a scalar source was determined by following the paths of a large number 

of scalar markers in a flow field created by a DNS (see Lyons (1989), Lyons et al. (1991), 

and Günther et al.(1998), for the validation of the channel flow DNS used in this study, 

and Papavassiliou and Hanratty (1995) for the methodology implemented for the Couette 

flow DNS used in this study). The flow was for an incompressible Newtonian fluid with 

constant physical properties. In the case of channel flow, it was driven by a constant 

mean pressure gradient, and for the case of plane Couette flow it was driven by the shear 

motion of the two moving walls of the channel, as presented in Figure 1.1 and Figure 1.2, 

for plane channel and plane Couette flow, correspondingly. The Reynolds number, 

defined with the centerline mean velocity and the half-height of the channel for the 

Poiseuille flow channel, and defined with half the velocity difference between the two 

walls and the half channel height for the Couette flow channel, was 2660 for both. For the 

Poiseuille channel, the simulation was conducted on a 128 x 65 x 128 grid in x, y, z, and 

the dimensions of the computational box were 4πh x 2h x 2πh, where h = 150 in wall 

units. For the Couette flow channel, the simulation was conducted on a 256 x 65 x 128 

grid, and the dimensions of the computational box were 8πh x 2h x 2πh, where h = 153. 

The flow was regarded as periodic in the x and z directions, with the periodicity lengths 

equal to the dimensions of the computational box in these directions. The Couette flow 

channel was chosen to be longer than the Poiseuille channel in order to minimize the 

effects of the large scale structures known to be present in Couette flow simulations. 

DNS for the specific studies will be described in each chapter.  
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The model formulation, governing equations and boundary conditions are briefly 

documented in Appendix D. More details can be found in a thesis by Lyons (1989). 

  

Figure 1.1: Plane channel flow configuration 

 

 

 

 

 

 

 
 
Figure 1.2: Plane Couette flow configuration  
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1.3 Lagrangian Scalar Tracking method (LST) 

Taylor (1921) described turbulent diffusion, in the Lagrangian framework, as the 

dispersion of fluid particles from a point source in homogeneous, isotropic turbulence. 

Saffman (1960) extended this theory for dispersion in the case of heat or mass markers by 

considering that the markers can move off of a fluid particle as a result of molecular 

diffusion.  

The basic concept of Lagrangian scalar tracking is that a heated surface is formed by an 

infinite number of continuous sources of heat markers, such as those described by 

Saffman (1960), and a cooled surface is formed by an infinite number of continuous sinks 

of heat, or, alternatively, sources of cold (i.e., negative) heat markers. Hanratty (1956) 

introduced this concept to describe theoretically the transfer of heat from a hot to a cold 

wall in a turbulent channel flow. His analysis assumed a homogeneous and isotropic 

velocity field, even though the channel walls introduce anisotropies. Due to the 

difficulties of conducting laboratory experiments that can accurately follow trajectories of 

individual heat or mass markers in a flow field, the calculation of the behavior of wall 

scalar sources, and the study of heat transfer in different configurations using these ideas, 

was revived with the appearance of supercomputers. Papavassiliou and Hanratty (1995) 

used a direct numerical simulation in conjunction with the tracking of scalar markers to 

study heat transfer based on direct calculations of the behavior of such wall sources. 

 Details about the implementation and validation of the LST methodology can be found 

in previous publications (Papavassiliou and Hanratty, 1995; Ponoth and McLaughlin, 

2000; Papavassiliou, 2002a, Mito and Hanratty, 2001; Mitrovic and Papavassiliou, 2002). 

However, because LST is not a mainstream, widely used approach, a brief description of 
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the method will be presented in subsequent sections, as it is necessary to evaluate the 

accuracy of the results.  

The LST methodology includes the stochastic tracking of heat or mass markers in a 

turbulent flow field, and the statistical post-processing of the results to obtain scalar 

profiles. For this study, the particles are assumed to have no particle-particle interaction. 

Trajectory of a marker does not affect the trajectories of other markers, and it does not 

affect the flow. Therefore, the case of what is called “passive scalar transport” is 

simulated. 

Besides the common error due to discretization, the numerical error with the LST 

methodology can be caused by the number of markers considered. Papavassiliou and 

Hanratty (1997) and Papavassiliou (2002a, 2002b) have address this issue by examining 

the statistics of marker trajectories with databases of 16,129 markers and repeating the 

calculations with half the markers. They have found that results of acceptable accuracy 

can be obtained with half the markers. Mitrovic (2002) has furthered the investigation 

with a set of 16,129 markers and a set of almost one order of magnitude larger (145,161 

markers). He has shown that the average difference in the statistical behavior of runs with 

the same Pr and different number of markers is less than 1.5%. He stated that the use of 

samples with on the order of 104 markers can provide accurate results for the generation 

of first order statistics. A balance between the computational cost that is associated with 

the creation of large data sets and the acceptable accuracy of the results should be 

considered when employing LST methodology. 
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Chapter 2: Turbulent heat transport from wall sources in Poiseuille 

channel flow 

2.1 Background and Theory 

The dependence of the heat transfer coefficient, K+, on the fluid Prandtl number, Pr, in 

wall turbulence has both theoretical significance and practical interest. There has been a 

considerable difference in opinion as to what is the proper relation between K+ and Pr. 

Textbooks (Bird and Stewart, 1960, Hinze, 1987, Welty, 2001) usually present the heat 

transfer coefficient for fully developed flow (i.e., when K+ is independent of entry 

effects), with the Deissler asymptotic prediction, K+ ∼ Pr-3/4, with the Sieder-Tate 

prediction, K+ ∼ Pr-2/3 for Pr → ∞, or with the Dittus-Boelter prediction, K+ ∼ Pr-0.6 . 

These two relations are deduced from plausible limiting expressions for the eddy 

diffusivity close to a wall. However, based on very accurate measurements for turbulent 

mass transfer, Shaw and Hanratty (1977) suggested that K+ ∼ Sc-0.704, where Sc is the 

Schmidt number. Other laboratory measurements (Incropera et al, 1986; Hubbard and 

Lightfoot, 1966; Van Shaw, 1963) have also shown differences from the Deissler and 

Sieder-Tate predictions. The problem of finding the correct exponent for Pr or Sc, 

however, has not been conclusively resolved due to the disagreements among the 

experimental results of different investigators, and due to the difficulty of obtaining 

consistent data for a range of Pr or Sc number fluids. 

The contribution of the present chapter is to provide a statement regarding the Pr or Sc 

dependence of the heat/mass transfer coefficient by using results obtained from a 

Lagrangian method coupled with a DNS of turbulent flow in a channel. The Eulerian 

DNS approach has not been able to give an answer to this issue, since it is limited by the 
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capabilities of high performance computers to simulations for a relatively narrow range 

of fluids (0.025 ≤ Pr ≤ 49) (Kim and Moin, 1989; Lyons, Hanratty and McLaughlin, 

1991; Kasagi, Tomita and Kuroda, 1992; Kasagi, Shikazono, 1995; Kawamura et al, 

1998; Na, Papavassiliou and Hanratty, 1999; Na and Hanratty 2000; Tiselj et al, 2001; 

Schwertfirm and Manhart, 2007). Hasegawa and Kasagi (2009) uses the hybrid DNS and 

large eddy simulation (LES) scheme to study fluids up to Pr=400. In the Lagrangian 

approach, the behavior of a wall source is determined by following the paths of a large 

number of scalar markers in a DNS of turbulent flow in a channel. The mean scalar field 

can be synthesized from such information (Papavassiliou and Hanratty, 1995; 

Papavassiliou, 2002a; Mito and Hanratty, 2001). In the present work, results for the 

transport of a passive scalar are presented for Prandtl numbers that span seven orders of 

magnitude (0.01 ≤ Pr ≤ 50,000) and describe heat transfer behavior of liquid metals, 

gases, liquids, lubricants and electrochemical fluids.  

The problem considered in this chapter is passive heat transfer downstream from a step 

change in wall heat flux introduced at one or at both walls of a channel with fully 

developed turbulent flow. This is a variation of the usually named “Graetz problem,” 

which describes heat transfer from the wall of a vessel with constant heat flux (Schiesser 

and Silebi, 1997, Bird and Stewart, 1960). The mean temperature profiles for different Pr 

that are calculated using the LST method are compared with results from laboratory and 

numerical experiments. Heat transfer coefficients and the Nusselt number ratio 

Nu(x)/Nu(x→∞) downstream from a step change in wall heat flux are determined for the 

different Pr fluids examined. Finally, relations between the heat transfer coefficient at the 

fully developed part of the channel and Pr are proposed for low and high Pr number 
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cases. Furthermore, the asymptotic behavior of the eddy diffusivity as the distance from 

the wall tends to zero is obtained.  

2.2 Turbulent transport of heat and mass in an Eulerian framework 

The scalar field in the rest of this chapter is mostly referred to as the temperature, and the 

dimensionless number as the Prandtl number. The discussion can be applied to the case 

of turbulent mass transfer without chemical reaction by replacing temperature with 

concentration and Prandtl number with Schmidt number. In an Eulerian description of 

turbulent transport, the temperature is decomposed as θ+= TT , where T is the mean 

temperature and θ  is the temperature fluctuation. The temperature is usually made 

dimensionless by using the friction temperature T*, T* = qw /(ρ Cpu*), where ρ and Cp are 

the density and the specific heat of the fluid, u* is the friction velocity and qw is the heat 

flux at the wall defined in terms of the thermal conductivity of the fluid k as 

w
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where υ+ is the velocity fluctuation in the normal direction made dimensionless with wall 

parameters. A dimensionless heat transfer coefficient, K+, can be defined as 

* uC
KK

pρ
=+ ,       (2.4) 

with K defined by the relation 

( )wbw TTKq −= ,       (2.5) 

where bT is the bulk temperature of the fluid and wT is the mean temperature at the wall. 

Previous reports of K+ with the use of Lagrangian methods (Papavassiliou, 2002a, 

Papavassiliou and Hanratty, 1997) used the mean temperature of the channel at the 

centerline, instead of the bulk temperature, for the definition in Equation (2.5). However, 

in order to compare the current results to results obtained theoretically for the dependence 

of K+ on Pr, the bulk temperature is used. The above equations and definitions can be 

used to derive the following relation: 
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The heat transfer coefficient is found in numerous research papers and technical 

textbooks to be given in the form of a correlation for the Nusselt number (Nu=KL/k, 

where L is an appropriate length scale) 

Nu=C1ReaPrb         (2.7)  

where C1,a,b are constants that depend on the type of flow (e.g., flow in a pipe or a 

channel, flow around an immersed object, etc.). This type of correlation originates from 
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the first applications of dimensional analysis in transport phenomena. However, 

experimental data demonstrate scatter around this correlation, implying that there is 

another functional relationship between the dimensionless numbers, Nu=f(Re,Pr), (see 

Churchill’s (2000) very insightful discussion about this issue). Regarding Pr dependence, 

there is a controversy in the literature among investigators that argue for a heat transfer 

coefficient K+ that goes as K+ ~ Pr -3/4 and those that argue for K+ ~ Pr -2/3. This argument 

is closely associated with the fundamental issue of the asymptotic behavior of the eddy 

diffusivity very close to the wall. 

At high Pr, the thermal sublayer is very thin, so that the velocity field inside the thermal 

sublayer can be described using a Taylor series expansion in terms of the dimensionless 

distance from the wall y+. The root mean square of the velocity fluctuations in the normal 

direction (i.e., the y direction) changes with (y+)2, as y+→0, and the root mean square of 

the velocity fluctuations in the streamwise direction changes with y+, as y+→0 (Monin 

and Yaglom, 1965; Gad-El-Hak and Bandyopandhay, 1994). The analogy between 

momentum transfer and heat or mass transfer suggests that the root mean square of the 

temperature or concentration fluctuations should change with the velocity fluctuations in 

the streamwise direction, which means that θ+ changes with y+, as y+→0.  According to 

Equation (2.3) then, the eddy diffusivity close to the wall is given as 

( )m
c yCE ++ = 2         (2.8) 

where C2 is a constant and m is an integer greater than or equal to 3.  

Son and Hanratty (1967) have shown that the solution of the mass/heat balance equation 

at high Sc or Pr numbers gives the mass/heat transfer coefficient when entry effects are 

not present (i.e., fully developed heat transfer) as   
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where C2 and m correspond to the power law equation for eddy diffusivity (Equation 

(2.8)). 

Therefore, the exponent in the power law relation for K+, given by 

K+ =C1Prb,        (2.10) 

depends on the asymptotic behavior of the eddy diffusivity. If Ec ~ (y+)3 as y+→0 (see 

Monin and Yaglom’s monograph, 1965), then Equations (2.9) and (2.10) yield b=-2/3, 

but if Ec ~ (y+)4 as y+→0 (see Levich, 1962), then b=-3/4, and K+ ~Pr -2/3 or K+ ~Pr -3/4, 

respectively. There is experimental evidence, however, that the exponent is neither of the 

above; instead it has a value between –3/4 and –2/3 (Shaw and Hanratty, 1997). There is 

also evidence based on the LST method (Papavassiliou and Hanratty, 1997) that agrees 

with the experimental measurements. Several other researchers have also found 

differences from Deissler’s and Sieder-Tate’s predictions (Incropera et al., 1986, 

Hubbard and Lightfoot, 1966, Petty, 1975). However, the LST work included data for 

only three high Pr points (Pr=100, 500 and 2,400); a definite statement about the value of 

the exponent b could not be made at that time. 

2.3 Scalar marker tracking 

The behavior of a wall source is determined by following the paths of a large number of 

scalar markers in the flow field created by a DNS. The particular DNS code used in this 

work simulates fully developed channel flow. It is based on a pseudospectral fractional 

step method, and has been thoroughly validated in previous work (Lyons, Hanratty and 

McLaughlin, 1991; Guenther et al, 1998). The flow, which is driven by a constant mean 



15 
 

pressure gradient in the channel, is for an incompressible Newtonian fluid with constant 

physical properties. The Reynolds number, Re, defined with the centerline mean velocity 

and the half-height of the channel, h, is 2,660. The simulation is done on a 128 x 65 x 128 

grid in x, y, z. The streamwise direction is x, the spanwise is z, and the direction normal to 

the channel wall is y. The dimensions of the computational box are 4πh x 2h x 2πh, 

where h+ = 150. The flow is regarded as periodic in the x and z directions, with the 

periodicity lengths equal to the dimensions of the computational box in these directions.  

The numerical method for the stochastic particle tracking is described in a thesis by 

Kontomaris (1991). A tracking algorithm (Kontomaris, Hanratty and McLaughlin, 1993) 

is used to monitor the space/time trajectories of the markers. The motion of the 

contaminant markers is decomposed into a convective part and a molecular diffusion 

part. The convective part can be calculated from the fluid velocity at the particle position 

(using the velocity calculated with the DNS). The equation of particle motion then is 

t
txXtxV o

o
∂

∂
=

),(),(           (2.11) 

where ),( txV o is the Lagrangian velocity of a marker that is released at location ox , 

given as ]),,([),( ttxXUtxV oo =  where U  is the Eulerian velocity of the fluid at the 

location of the marker at time t.  

The effect of molecular diffusion follows from Einstein's theory for Brownian motion 

(Einstein, 1905), which relates the rate of molecular dispersion in a laminar field to the 

molecular diffusivity D, as 

D
dt
Xd 2

2

=         (2.12) 



16 
 

The diffusion effect is simulated by adding a 3D random walk on the particle motion, the 

size of which takes values from a Gaussian distribution with zero mean and a standard 

deviation, σ, that depends on the Pr of the fluid. The random walk is added on the 

convective part of the motion after each time step, Δt+, and the standard deviation is 

found using Equation (2.12) to be Pr2 +Δ= tσ , in wall units. Thus, effects of Pr on 

the process can be studied by modifying σ. Note that with LST the number of grid points 

in the hydrodynamic simulation does not have to increase with Pr3/2, which is the main 

reason that Eulerian DNS have not yet been accomplished for very large Pr. The markers 

are assumed to have no effect on the flow, so that transport of a passive scalar is 

simulated.  

There are two kinds of numerical error associated with the stochastic tracking of markers. 

The first is the error associated with the discretization scheme (Kontomaris, Hanratty and 

McLaughlin, 1993), and the second is the error associated with the number of markers 

used in the calculations. Previous work, which utilized databases that tracked 16,129 

markers per Pr, addressed this issue by examining the statistics of the marker trajectories 

by repeating the calculations with half the markers (Papavassiliou, 2002a, Papavassiliou 

and Hanratty, 1997). Mitrovic and Papavassiliou (2002) obtained results with one order 

of magnitude more markers for each Pr simulation (145,161 markers). Their work 

showed that results of acceptable accuracy can be obtained with the sample size of 

16,129 markers, but it also showed that when more markers are tracked, the statistics that 

characterize the marker trajectories become smoother.   

In the current work, seven sets of tracking experiments were examined, as presented in 

Table 2.1. The typical procedure was to follow four or five different Pr markers using the 
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same hydrodynamic field. For runs A, B, C and F a total of 16,129 markers were released 

instantaneously from a uniform 127x127 rectangular grid that covered the bottom wall of 

the channel. Markers were tracked up to the time at which the resulting cloud was 

distributed uniformly across the channel. The velocities and positions of these markers 

were stored at every wall time unit for statistical post-processing. In order to estimate the 

statistical variation of the results and to assess the effect of the number of markers on the 

statistics, tracking experiments for Pr = 0.01, 0.025, 0.05, 0.1, 0.7, 3, 6, 10 and 100 (runs 

D, E and G) were conducted by following a total of 145,161 instantaneously released 

markers from a uniform 381x381 rectangular grid at the bottom wall of the channel. 

Table 2.1 also shows the final simulation time, the computational time required for each 

run, and the computer on which it was completed. The time step for both the 

hydrodynamics simulation and the marker tracking in simulations A through E was 

Δt+=0.25. For simulation F, which simulated very small Pr cases, a variable time step 

was used that ensured that the molecular jump of the markers did not move them to grid 

cells that were not neighboring to each other. Simulation F was started with Δt+=0.002 

for times (t-to)+ ≤ 2, where to is the time at which the markers were released in the flow. 

The time step was gradually increased as follows:  Δt+=0.004 for 2 < (t-to)+ ≤ 6; Δt+=0.02 

for 6 < (t-to)+ ≤ 46; Δt+=0.1 for 46 < (t-to)+ ≤ 246; Δt+=0.2 for 246 < (t-to)+. Simulation G 

was started with Δt+=0.002 for times (t-to)+ ≤ 1. Then, the time step was gradually 

increased as follows:  Δt+=0.004 for 1 < (t-to)+ ≤ 3; Δt+=0.02 for 3 < (t-to)+ ≤ 11; Δt+=0.1 

for 11 < (t-to)+ ≤ 51; Δt+=0.2 for 51 < (t-to)+.  
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2.4 Synthesis of temperatures profiles 

The building block for the Lagrangian formulation is the behavior of an instantaneous 

line source of markers located at the wall of the channel. This behavior is expressed as 

the probability function P1(x-xo,y,t-to| ox ,to), which represents the joint and conditional 

probability density function for a marker to be at a location (x, y) at time t, given that the 

marker was released at xo at time to. For each numerical experiment, the trajectories of all 

the markers were used as an ensemble to obtain the probability function P1. This 

probability can be interpreted physically as concentration (Cermak, 1963, Hunt, 1985) 

and thus as a snapshot of a cloud of contaminants released instantaneously from xo = 0. 

Papavassiliou (2002b) studied the characteristics of P1 and the effects of Pr on the 

evolution of the marker cloud for 0.1 ≤ Pr ≤ 50,000 using the data from simulations A, B 

and C (see Table 2.1). 

Probability P1 can be used to generate the behavior of a continuous line source at xo by 

adding over time 

( ) ( )∑
=

−=−
f

o

t

tt
oooo txtyxxPyxxP ,|,,, 12     (2.13) 

Mitrovic and Papavassiliou (2002) calculated the turbulent transport properties for the 

plume that results from a continuous line source. They also modeled P2 as a function of 

Pr and of the channel geometry for 0.1 ≤ Pr ≤ 50,000 using the data from simulations A, 

B, C, D, and E.  

For the calculation of P2, the number of markers that were used increased with the 

number of discrete time steps. For example, for run C, the integration to time t+ = 13,000 

involved the calculation of 16,129 x 13,000 = 2.09677x108 positions of markers. For run 
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E, the integration to time t+ = 4,000 involved the calculation of 145,161 x 4,000 = 

5.80644x108 positions of markers. Note also that assuming that the same number of 

markers enters the flow field per time step is equivalent to the assumption that the source 

has constant strength. The probability P2 was calculated for each Pr using a grid that 

covered the flow domain and counting the number of markers that were present in each 

one-grid cell. The grid in the normal direction was constructed either by dividing the 

width of the channel uniformly in 300 bins (when Pr ≤ 10), or by using Chebyshev 

collocation points to generate 300 bins (when 100 ≤ Pr ≤ 500) or 400 bins (when 2,400 ≤ 

Pr) in order to increase the resolution closer to the wall. In the streamwise direction, the 

grid was stretched, in order to take measurements at long distances downstream from the 

source. The stretching in the streamwise direction followed the relation Δxn=1.06nΔx(n-1) 

with Δxo=5 in wall units. 

The behavior of a heated plane was described with a series of a continuous line sources 

covering the plane. Therefore, the mean temperature profile in a channel, where heat is 

added to the fluid from the bottom wall at a constant rate (isoflux condition), can be 

synthesized from P2 by integrating P2 over the streamwise direction (Papavassiliou, 

2002a)  

∑∑∑
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tf → ∞ and xf → ∞       (2.14) 

Similarly, the behavior of heat transport over a plane that has a step change in heat flux at 

xo can be also synthesized from P2 as follows: 
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(Note that since the velocity field is fully developed when the heat markers are released 

in the flow, only the thermal field is under development). The mean temperature for the 

case of heat flux from both planes at a long distance (x1 → ∞) downstream from the step 

change in heat from the wall, therefore, can be calculated using  

)2,(),()( 11 yhxTyxTyT −+=  as  x1 → ∞   (2.16)               

and assuming that the temperature is symmetric around the center-plane (i.e., the plane 

y=h).  
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Table 2.1: Performed tracking experiments. The computational time is given in Service 

Units (SU), which are roughly equivalent to CPU hours. 

Run Pr number Number 
of 
markers

Simulation 
Time 
(t+)

Computational
Time (SU) 

 a b c d e    
 

A 
 
 

100 

 
 

10 

 
 

1 

 
 

0.1 

  
 

16,129 

 
 

2,750 

 
Convex C-3 

C3880 
600 SU 

 
 

B 
 
 

0.7 

 
 

3 

 
 

500 
 

 
 

2,400 

 
 

1 

 
 

16,129 

 
 

2,750 

 
Convex C-3 

C3880 
600 SU 

 
C  

 
200 

 
 
2,400 

 
 

7,000 

 
 

15,000 

 
 

50,000

 
 

16,129 

 
 

13,000 

 
HP/Convex 

Exemplar SPP-
2000 

1050 SU 
 

D  
 

0.1 

 
 

0.7 

 
 

3 

 
 

10 

  
 

145,161 

 
 

1,600 

 
SGI/CRAY 

Origin 2000 
1180 SU 

 
E  

 
0.1 

 
 

0.7 

 
 

6 

 
 

10 

 
 

100 

 
 

145,161 

 
 

4,000 

 
SGI/CRAY 

Origin 2000 
3390 SU 

 
F  

 
0.01 

 
 

0.025 

 
 

0.3 

 
 

3 

  
 

16,129 

 
 

4,646 

 
HP/Convex 

Exemplar SPP-
2000 

700 SU 
 

G  
0.01 

 
0.025 

 
0.05 

   
145,161 

 
1,850 

SGI/CRAY
Origin 2000 

1660 SU
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2.5 Results and Discussion 

Figures 2.1(a) and 2.1(b) present the mean temperature profiles for low and high Pr 

number fluids, respectively, for the case of step change in the heat flux applied to one of 

the channel walls. The mean temperature was calculated in accordance to Equation 

(2.14), and then it was made dimensionless using Equation (2.2). The profiles predicted 

by Kader (1981) using a semi-empirical formulation for a fully developed turbulent 

boundary layer are also included. As shown in the figures, the agreement between the 

LST results and Kader’s formula is remarkable, especially for higher Pr. The DNS results 

obtained by Tiselj et al. (2001) for Pr = 1 and 5.4 are also presented for comparison in 

Figure 2(a). The agreement is quite good for Pr = 1, as well as for Pr = 5.4, taking into 

account that our results are for Pr = 6. 

The LST results are also compared with Kader’s formula and available laboratory 

measurements for the case when both walls are heated at the same constant heat flux, as 

shown in Figures 2.2(a) and 2.2(b). Similar to the case of one heated wall, the agreement 

is excellent with Kader’s approximation.  Measurements by Zhukauskas and 

Shlanchauskas (1973) for Pr = 2.7 and by Perepelitsa (1971) for Pr = 5.5, are also 

included for comparison. The calculated mean temperature profile for Pr = 100, also 

agrees closely with the experiments performed by Neumann (1968) for Pr = 95. Figure 

2.3, where (Tw-T)+ is shown in semi-logarithmic coordinates, compares the calculated 

mean temperature profile for Pr = 0.7 with the measurements made by several 

investigators (Zhukauskas and Shlanchauskas, 1973; Gowen and Smith, 1967; Taccoen, 

1968; Taranov, 1970; Fulachier, 1972; Belov, 1976; Teitel and Antonia, 1993a) for the 

same Pr. The DNS results obtained by Kim and Moin (1989) and Kasagi, Tomita and 
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Kuroda (1992) for Pr = 0.71 are also included in Figure 2.3. As it can be seen, the 

computed LST temperature profile is in good agreement with both experimental data and 

DNS results. 

Agreement with experimental data also demonstrates that the assumption that the 

physical properties of the fluid are not affected with the change in temperature is realistic 

for small temperature changes (like those applied in the experiment). Even though the 

difference between the temperature of the wall and the temperature at the half-channel 

height is large in wall units, the actual temperature differences are small in terms of small 

Kelvin. The assumption of constant fluid properties is applicable for temperature 

differences of 5 degrees Kelvin for liquids and 10 degrees Kelvin for gases. The 

temperature gradient (dT/dy+)w are calculated to be less than 3 for high Pr (engine oil, Pr 

between 100 and 50,000), less than 10 for medium Pr (water, Pr = 6 and some gas 

mixtures), less than 20 for low Pr (noble gases and liquid metals).  

The heat transfer coefficient can be calculated using Equation (2.6). The calculation 

depends on the measurement of the gradient of the mean temperature profile (calculated 

based on the results from Equations (2.14)-(2.16)) at the wall. Since the mean 

temperature profile is found at the center of a bin by counting the number of markers 

present within a bin, there is a need to have appropriately small bin widths near the wall, 

and to extrapolate the temperature profile to the wall. The temperature profile inside the 

convective transport sublayer is given as 

++ = yT Pr         (2.17) 

Inside the conductive wall sublayer, therefore, a linear extrapolation is accurate. It is 

necessary, however, to make sure that several bins lie within the conductive sublayer, 
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whose thickness y1 depends on the Pr. Kader (1981) suggested that y1
+ ≅ 12 / Pr1/3 for Pr 

>> 1, y1
+ ≅ 2 / Pr for     Pr << 1 and that y1

+ is similar to the thickness of the velocity 

viscous sublayer for Pr = 1. Table 2.2 presents the values of y1
+ calculated by Kader’s 

suggestion, and the values of the bin widths used for the extrapolation for different Pr 

runs. 

The actual heat transfer coefficients as a function of the distance downstream from xo, for 

the case where one wall is heated, are presented in Figures 2.4(a) and 2.4(b) for low and 

high Pr, respectively.  Papavassiliou (2002a) presented such comparisons for the cases or 

runs A and B (16,129 markers); here all available data sets are used giving preference to 

the results for the larger number of markers, when there is a Pr duplication in runs. The 

values decrease with Pr for every case. The dashed line in Figure 2.4(b) is the asymptotic 

solution for small x+, derived theoretically by Son and Hanratty (1967)  

( ) 3/23/1 Pr81.0 −−++ = xK       (2.18) 

It appears that this approximation fits well the calculated heat transfer coefficients 

approximately up to x+/h+ = 10, which is also in agreement with the results of Shaw and 

Hanratty (1977), and corresponds to the entry length for the scalar exchange region. For 

very large distances x downstream from the point of step change in heat flux ((x-x0)+/h+ > 

100), the temperature profile becomes fully developed and the temperature gradient in the 

x direction is constant. In the Lagrangian sense, these are the distances where the heat 

markers are uniformly distributed over the cross section of the channel. Therefore, for a 

constant driving force (temperature gradient) and constant heat flux, the heat transfer 

coefficient is also constant for large x+ in accordance to Equation (2.5), and it is denoted 

with K∞
+. The experimental measurements of Shaw and Hanratty (1977) for Pr = 2,210 
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are also presented for comparison in Figure 2.4(b). The agreement is quite good with the 

LST results for Pr = 2,400. 

The computed heat transfer coefficients downstream from the point of a step change in 

heat flux applied from both channel walls are presented in Figures 2.5(a) and 2.5(b). 

Comparing Figures 2.4(b) and 2.5(b), it can be seen that for high Pr fluids, heating the 

second wall of the channel has a small effect on the heat transfer coefficient as a function 

of the x direction. The Lagrangian interpretation of this observation is related to the fact 

that at high Pr the cloud of markers is mostly located close to the wall of the channel. 

This cloud configuration persists for all distances downstream from xo and thus there is 

no significant interference between the two clouds of markers that are formed on the two 

walls, when both walls are heated. On the other hand, for a low Pr cloud, the markers 

leave the viscous wall layer sooner due to large molecular jumps, and the cloud becomes 

more disperse in the vertical direction as the distance (x-xo)+ increases. Therefore, for low 

Pr, the cloud that originates from the top wall interferes with the cloud that originates 

from the bottom wall. As the Pr decreases, this interference happens closer to the entry of 

the heated section. Thus, the constant heat flux applied to the opposite wall of the channel 

results in significant changes in the heat transfer coefficient.  

Figures 2.6(a) and 2.6(b) present the fully developed heat transfer coefficient K∞
+ as a 

function of Pr for the cases of a step change in the heat flux applied to one and to two 

walls of the channel, respectively. For the case of the one heated wall, the following 

relations are obtained: 

510.0Pr0465.0 −+
∞ =K   for Pr ≤ 10    (2.19) 

690.0Pr0835.0 −+
∞ =K   for Pr ≥ 100    (2.20) 
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It can be seen that for the high Pr cases, the value of the exponent is different than the 

Deissler asymptotic prediction of K+ ∼ Pr-3/4 or the Sieder-Tate prediction K+ ∼ Pr-2/3, but 

is closer to the value measured by Shaw and Hanratty (1977) (K+ ∼ Sc-0.704 for 700< Sc < 

33,700), as shown in Figure 2.6(a).  

For the case when the isoflux condition was imposed on both walls, the following 

relations are found: 

612.0Pr0625.0 −+
∞ =K   for Pr ≤ 10    (2.21) 

693.0Pr0865.0 −+
∞ =K   for Pr ≥ 100    (2.22) 

As expected, the value of the exponent for the low Pr cases differs from the case when 

only one wall is heated. For the high Pr cases, the value of the exponent remains almost 

the same.  

The heat transfer coefficient for the whole Pr number domain can be calculated by using 

a correlation of the form 

ba

ba

BA
ABK

PrPr
Pr )(

+
=

+
+

∞        (2.23) 

where a and b correspond to the exponents in Equations (2.19) and (2.20) for one heated 

wall or to the exponents in Equations (2.21) and (2.22) for the case when both walls are 

heated. By fitting the pre-exponential coefficients A and B, the following correlations are 

derived: 

690.0510.0

200.1

Pr1175.0Pr0718.0
Pr0084.0

−−

−
+

∞ +
=K  1 heated wall  (2.24) 

693.0612.0

305.1

Pr1513.0Pr1048.0
Pr0159.0

−−

−
+

∞ +
=K  2 heated walls  (2.25) 
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Another way to calculate the heat transfer coefficient for the whole Pr number domain is 

to use the generalized equation proposed by Churchill and Usagi (1972) for all 

phenomena that have different asymptotic behavior at two limits. This generalized 

equation is of the following form: 
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where f∞ (w) and fo (w) represent asymptotic expressions for large and small values of w. 

In our case those functions represent K∞
+(Pr) for large and small Pr number fluids, 

expressed through Equations (2.19) – (2.22). Hence, Equation (2.24) becomes  
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Substitution of Equations (2.19)-(2.20) and (2.21)-(2.22) into Equation (2.27) yields 
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The left-hand sides of Equations (2.28) and (2.29) should be unity for all Pr ≥ 100, since 

K∞
+ for this range of Pr is approximated by the relations in the denominators. In order to 

satisfy this condition with 99% accuracy for all Pr ≥ 100, the exponent n should be 

negative with high absolute value (n ≤ -10). A similar result is obtained for Pr ≤ 10 by 

rearranging Equation (2.27). The exact solution for n cannot be found due to the lack of 

data for the range 10 < Pr < 100. However, assuming the convenient exponents n = -
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11.12 and n = -12.3 for Equations (2.28) and (2.29) respectively, the following 

expressions are derived, which give excellent approximations with the data for Pr ≤ 10 

and Pr ≥100, and presumably reliable approximations for 10 < Pr <100 

090.02
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Figure 2.7(a) presents the fully developed heat transfer coefficient as a function of Pr for 

the case when one wall is heated, fitted in accordance to Equations (2.24) and (2.30). It 

can be seen that both correlations give very good fit with the data for the whole Pr 

number range. Similar comparison is shown in Figure 2.7(b) for the case when a constant 

heat flux is applied to both channel walls. 

Regarding the asymptotic behavior of the eddy diffusivity as the distance from the wall 

goes to zero, Equations (2.20) and (2.9) yield 

( ) 23.3000563.0 ++ = yEc       (2.32) 

Shaw and Hanratty (1977) pointed out that a relation like this cannot represent the 

limiting behavior of eddy diffusivity close to the wall, since m is not an integer (they 

measured m=3.38). However, they argued that this is of no consequence because the 

limiting behavior of the eddy diffusivity for small y+ is applicable only for a vanishingly 

small part of the temperature field as Pr → ∞. Shaw and Hanratty also argued that a non-

integer exponent is preferable to assuming that the coefficient C2 in Equation (2.8) is a 
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function of Pr, because as    Pr → ∞ the eddy diffusivity should not exhibit Pr 

dependence. 

The Nusselt number ratio Nu(x+)/Nu(x+→∞) as a function of the distance downstream 

from one heated edge is presented in Figures 2.8(a) and 2.8(b) for low and high Pr fluids, 

respectively. The experimental results obtained by Teitel and Antonia (1993) for Pr = 

0.72 are also shown for comparison in Figure 2.8(a). For low Pr (when Pr < 100), as the 

Pr increases, the value of the Nusselt number ratio decreases for the same position 

downstream from the location of the step change in the wall heat flux, xo. The opposite 

behavior is observed for high Pr (Pr > 100), i.e., as the Pr increases, the value of the 

Nusselt number ratio also increases. This type of behavior can be explained based on 

Equation (2.18). For small distances from xo, Equation (2.18) states that K+ is 

proportional to Pr-2/3, while at long distances Equation (2.20) shows that this relation 

changes to Pr-0.69. Therefore, for the entry region (x ≤ 10) and high Pr number fluids we 

have: 

( ) ( ) 023.03/1

69.0

3/23/1

Pr
Pr

Pr
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+

+

+
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xx
K
K

xNu
xNu

  (2.33) 

Consequently, we would have a higher Nusselt number ratio for higher Pr at the same x+, 

although the Pr effect is very small. At long distances, this ratio becomes independent on 

Pr and it goes to 1. On the other hand, for small Pr numbers, the exponent for K∞
+ at long 

distances from xo is smaller than the exponent for the entrance region, and the Nusselt 

number ratio becomes inversely proportional to Pr. Therefore, Nu(x+)/Nu(x+→∞) 

decreases with a corresponding increase of Pr. Similarly, Figures 2.9(a) and 2.9(b) 

present the Nusselt number ratio for the case where the isoflux condition is imposed on 
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the two walls. It should also be noted that the same qualitative behavior is observed with 

laboratory measurements. When the experimental values measured by Shaw and Hanratty 

(1977) for K+ in the entry region for turbulent mass transfer were divided with the Shaw 

and Hanratty approximation for K∞
+ (K∞

+ = 0.0889 Sc-0.704), they showed and increase in 

the Nusselt number ratio with Pr at the same x location. 

2.6 Conclusions 

The present chapter utilized the Lagrangian scalar tracking method to obtain Eulerian 

results for the case of a modified Graetz problem, where a step change in wall heat flux 

takes place in turbulent channel flow. The results demonstrated the validity of LST as a 

method of analysis with good agreement to available experimental and DNS 

measurements. Of particular interest is the demonstration that it is possible to use this 

technique at very high Pr, where the application of Eulerian direct numerical simulations 

is not feasible. The results presented here do not account for the Reynolds number effects 

on the transport properties. However, it has been shown experimentally (Shaw and 

Hanratty, 1977) that a change in Re even by a factor of five does not affect the mass 

transfer coefficient for low Re.  

Mean temperature profiles for the cases with a step change in the heat flux applied to one 

or both channel walls were calculated for different Pr. The dependence of the heat 

transfer coefficient on the distance from the thermal entry region for different Pr fluids 

was examined, as well as the dependence of the Nusselt number on this distance. 

Relations between the heat transfer coefficient K∞ for fully developed heat transfer and 

Pr were proposed for low and high Pr number cases, and for the cases with one and two 

heated walls. This issue has theoretical significance, because the value of the exponent 
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depends on the asymptotic dependence of the eddy diffusivity close to the wall on the 

distance from the wall. It also has practical engineering interest, because such 

correlations are implemented in the development of models for turbulent transport. 

Finally, two generalized correlations that provide the functional dependence of K∞ on Pr 

for a range of Pr that covers seven orders of magnitude (0.01 ≤ Pr ≤ 50,000) were 

developed for the case of one or two heated walls.  
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Table 2.2: Estimated conductive sublayer thickness at different Pr and bin size close to 

the wall. 

Pr Estimated y1 

according to 
Kader (1981) 

 

Bin width

Δy 
ymax used for the 

calculation of 

(dT/dy)w 

0.01 200 1 25 
0.025 80 1 25 
0.05 40 1 14 
0.1 20.0 1 20 
0.3 16.67 1 7 
0.7 7.14 1 4 
1 5.0 1 4 
3 5.0 1 4 
6 6.60 1 2 
10 5.57 1 2 
100 2.58 1 2 
200 2.05 0.008172-0.187460 1.174960 
500 1.511 0.008172-0.154978 0.816268 
2400 0.896 0.008172-0.057176 0.130704 
7000 0.627 0.004623-0.032213 0.073644 
15000 0.487 0.004623-0.023022 0.041431 
50000 0.326 0.004604-0.013814 0.018409 
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Figure 2.1a: Mean temperature profile for the case with a step change in the heat flux 

applied to one channel wall for low Pr runs (Pr ≤ 10) 
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Figure 2.1b: Mean temperature profile for the case with a step change in the heat flux 

applied to one channel wall for high Pr runs (Pr ≥ 100) 

 

  



35 
 

0.01

0.1

1

10

100

1000

0.1 1 10 100 1000

LST Data

Kader (1981)

Pr = 2.7 Zhukauskas (1973)

Pr = 5.5 Perepelitsa (1971)

(T
w
-T

)+

y+

Pr = 10

Pr = 6

Pr = 3 Pr = 0.7

Pr = 0.1

Pr = 0.025

 

Figure 2.2a: Mean temperature profile for the case with a step change in the heat flux 

applied to both channel walls for low Pr runs (Pr ≤ 10) 
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Figure 2.2b: Mean temperature profile for the case with a step change in the heat flux 

applied to both channel walls for high Pr runs (Pr ≥ 100) 
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Figure 2.3: Comparison of the LST results for the mean temperature profile for Pr = 0.7 

with experimental measurements and other DNS results 
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Figure 2.4a: Heat transfer coefficient as a function of the distance downstream from the 

step change in the heat flux applied to one channel wall for low Pr runs (Pr ≤ 10)  
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Figure 2.4b: Heat transfer coefficient as a function of the distance downstream from the 

step change in the heat flux applied to one channel wall for high Pr runs (Pr ≥ 100) 
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Figure 2.5a: Heat transfer coefficient as a function of the distance downstream from the 

step change in the heat flux applied from both channel walls for low Pr runs (Pr ≤ 10) 
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Figure 2.5b: Heat transfer coefficient as a function of the distance downstream from the 

step change in the heat flux applied from both channel walls for high Pr runs (Pr ≥ 100) 
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Figure 2.6a: Fully developed heat transfer coefficient as a function of Pr for one heated 

wall   
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Figure 2.6b: Fully developed heat transfer coefficient as a function of Pr for two heated 

walls   
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Figure 2.7a: Comparison of the LST results for the fully developed heat transfer 

coefficient with fitted correlations one heated wall   
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Figure 2.7b: Comparison of the LST results for the fully developed heat transfer 

coefficient with fitted correlations for two heated walls   
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Figure 2.8a: Change of the Nusselt number ratio with the distance downstream from the 

step change in the heat flux applied to one channel wall for low Pr runs (Pr ≤ 100) 
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Figure 2.8b: Change of the Nusselt number ratio with the distance downstream from the 

step change in the heat flux applied to one channel wall for high Pr runs (Pr ≥ 100) 
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Figure 2.9a: Change of the Nusselt number ratio with the distance downstream from the 

step change in the heat flux applied to both channel walls for low Pr runs (Pr ≤ 100) 
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Figure 2.9b: Change of the Nusselt number ratio with the distance downstream from the 

step change in the heat flux applied to both channel walls for high Pr runs (Pr ≥ 100) 
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Chapter 3: Turbulent heat transport from wall sources in plane Couette 

flow 

3.1 Introduction 

Turbulent heat or mass transport is important for applications in several processes, such 

as mixing, pollutant dispersion, heat exchange, etc. The transport of heat in turbulent 

channel flow has been studied with both experimental (Zhukauskas and Shlanchauskas, 

1973; Gowen and Smith, 1967; Kader, 1981; Taranov, 1970; Fulachier, 1972; Belov, 

1976; Teitel and Antonia, 1993a, 1993b) and direct numerical simulation (DNS) 

approaches (Kim and Moin, 1989; Lyons et al., 1991; Kasagi et al., 1992; Kasagi and 

Shikazono, 1995; Kawamura et al., 1998, 1999). However, plane Couette flow has not 

been investigated as fully and as deeply as plane channel flow. The main reason is its 

special configuration, in which one channel wall moves, or two walls travel in opposite 

directions, forming a constant total shear stress region across the flow field. 

Even though plane Couette flow is a simple flow conceptually, it is difficult to construct 

an experimental procedure to accomplish it. Previous investigators have set up 

experiments using a running belt, a second fluid, or a moving plane to explore the 

characteristics of plane Couette flow. In 1956, Reichardt (1956) used a running belt to 

study Couette flow with two moving walls. Oil and water were employed as the fluids. 

Reichardt was able to measure the mean velocity profile, and to determine the critical 

Reynolds number for transition to turbulent Couette flow. Later on, Robertson and 

Johnson (1970) set up an apparatus with one stationary wall and one moving wall, and 

reported streamwise turbulence intensity and streamwise energy spectra for Couette flow. 
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Aydin and Leutheusser (1979, 1987, 1991) used a plane suspended above a straight 

stationary bench that was moving with the help of a towing carriage, and measured the 

mean and the fluctuating streamwise velocity. Other experiments used a moving belt and 

a rigid wall (El Telbany and Reynolds, 1982) or used a plastic band moving between 

vertical glass surfaces in water (Tillmark and Alfredsson, 1991, 1992). These 

experiments obtained measurements of the mean velocity, and most of them were limited 

to measurements of the root mean square of the velocity fluctuations in the streamwise 

direction.   

Several papers have reported on the velocity structure of plane Couette flow with 

simulations (Lee and Kim 1993; Komminaho et al., 1996; Papavassiliou and Hanratty, 

1997). Liu (2003) and Debusschere and Rutland (2004) reported results for heat transfer 

in plane Couette flow using DNS for fluids with Prandtl number, Pr, equal to 0.7. In 

these publications, several scalar quantities were reported, in addition to velocity field 

data, for heat transport in plane Couette flow. Similar to the method described in chapter 

2, in the present chapter, dispersion and heat transport from the wall in plane Couette 

flow are investigated using DNS/LST method. A range of fluids with different Pr (Pr = 

0.1, 0.7, 6, 10, 100, 200, 500, 2400, 7500 and 15000) was studied. The main 

contributions of this work are (a) the investigation of the effects of the velocity boundary 

conditions on the mechanism of heat transfer by comparing the Couette flow results to 

those for plane channel flow, and (b) the development of predictive correlations for the 

heat transfer coefficient, +K , as a function of Pr based on results from a consistent 

methodology for a wide range of Pr. It is found that +K  is higher in plane Couette flow 



52 
 

compared to plane channel flow, a result that may have important applications in mixing 

processes.  

3.2 Background and Methodology 

Chapter 2 has described the turbulent transport of heat and mass transfer in a Poiseuille 

flow channel using a Lagrangian method in conjunction with DNS of the fluid flow. For 

the simulation of plane Couette flow, and for the calculation of temperature profiles and 

heat transfer coefficients, the same methodology is employed. Turbulent transport of heat 

and mass transfer in Eulerian framework has been introduced in section 2.2.  

The configuration of the problem is visualized in Figure 1.2 from Chapter 1. The top wall 

of the channel is moving in the positive x direction with velocity U+ = 17.7386 in wall 

units, and the bottom wall is moving to the negative x direction with velocity U+ = -

17.7386 in wall units. The Reynolds number, Re, defined with the velocity of one of the 

moving walls and the half channel height, h, is 2660. Previous simulations have been 

done on plane Couette flow using different choices of computational domain size and 

number of grid points. Lee and Kim (1993) used a computational box with 192x129x288 

grid points and dimensions (4πh, 2h, 8/3 πh) in the x, y, and z directions. They observed 

large scale structures of the velocity that were persistent in space and time. These 

structures were also observed in simulations done by Papavassiliou and Hanratty (1997) 

using a computational box with 128x65x128 grid points and dimensions (4πh, 2h, 2πh), 

and in simulations by Kominaho et al. (1996) and by Bech et al. (1995).   

In this current work, the DNS methodology for the initiation and the development of the 

Couette flow simulation was similar to that in Papavassiliou and Hanratty (1997). The 

moving walls were taken into account by changing the Dirichlet boundary conditions. 
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The simulation was conducted on a 256x65x128 grid in the x, y, z directions, 

respectively. The length of the streamwise direction was double of that used in 

Papavassiliou and Hanratty (1997) in order to capture the large turbulent structures in 

plane Couette flow. The dimensions of the computational box were (8πh, 2h, 2πh), with 

h=153 in viscous wall units (the wall units are used to create dimensionless parameters by 

normalizing with the friction velocity u*, friction length l*= ν/u* and friction time 

t*=l*/u*). The flow was periodic in the streamwise and spanwise directions, with 

periodicity lengths equal to the dimensions of the box in the respective directions.  

The Lagrangian scalar tracking (LST) method was used to track the heat markers in 

conjunction with direct numerical simulation A total of 145,161 markers were released 

uniformly into the flow field from a rectangular grid covering the xz plane at the bottom 

wall of the channel. The algorithm used for the tracking of these heat markers is based on 

the algorithm developed by Kontomaris et al. (1993).  More about the implementation 

and validation of the LST methodology for channel flow can be found in Chapter 2. 

Data from two runs are used in the present work: Run A tracked particles with Pr = 0.1, 

0.7, 6, 10, and 100 until t+ = 3000, and Run B tracked particles with Pr = 200, 500, 2400, 

7500 and 15000 until t+ = 13000. The trajectories and velocities of the particles were 

stored at every time unit, and the time step was 2.0=Δ +t  (equal to the time step for the 

advancement of the velocity field). 

Similar to chapter 2, the building block for the implementation of LST is the probability 

function P1(x-xo,y,t-to| ox ,to). This function represents the joint and conditional probability 

density function for a marker to be at location (x,y) at time t, given that the marker was 
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released at ox  and at time to. Snapshots of the cloud resulting from an instantaneous 

source, which is usually called a puff, are captured over time. By integrating (or, in the 

discrete case, summing up) P1 from time to to a final time tf, the behavior of a continuous 

line source, represented by the probability function P2, can be obtained as shown in 

Equation (2.13). The cloud from this continuous source, called a plume, is a series of 

instantaneous clouds, each of which is released at every time unit. The calculation of this 

function P2 involves calculations of 145,161 x 3,000 = 4.35483 x 108 particles for run A 

and of 145,161 x 13,000 = 1.88709 x 109 particles for run B. The probability P2 was 

calculated for each Pr using a grid that covered the flow domain and counting the number 

of markers that were present in each one-grid cell. The grid in the normal direction was 

constructed either by dividing the width of the channel uniformly into 300 bins (when Pr 

≤ 100), or by using Chebyshev collocation points to generate 400 bins (when 200 ≤ Pr) in 

order to increase the resolution closer to the wall. In the streamwise direction, the grid 

was stretched around the point of origin of the plume, in order to take measurements at 

long distances from the source. The stretching in both the positive and negative 

streamwise directions followed the relation Δxn=1.06nΔxo with Δxo=5 in viscous wall 

units.  

3.3 Results and Discussions 

3.3.1 Intensity measurements and comparisons 

Figure 3.1 presents the spanwise average of the root-mean-square values of the velocity 

fluctuations. Papavassiliou and Harranty (1997) reported the turbulent intensities at the 

same Reynolds number of 2660. Results from the present work agree with the data of 

Papavassisilou and Harranty (1997) at the same Reynolds number, and show a very close 
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agreement with data from other authors taken at various Reynolds numbers. Figure 3.1 

also shows the difference between plane Couette flow and plane channel flow. In plane 

channel flow, the intensities go up to a peak, then decrease to below 1 as they approach 

the center line. In plane Couette flow, the intensities are larger than those of plane 

channel flow, and show a large region of constant intensities around the center line. This 

behavior reflects the constant stress region mentioned before that appears in plane 

Couette flow. 
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Figure 3.1: Intensity of plane Couette flow compared to plane channel flow. P&H: 

Papavassiliou and Hanratty (1997a); L&K: Lee and Kim (1991); A&L:  Aydin and 

Leutheusser (1991); R&J: Robertson and Johnson (1970); T&R: El Telbany and 

Reynolds (1982). 
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3.3.2 Development of a puff 

Figures 3.2 and 3.3 present the streamwise mean cloud position for a puff and the 

streamwise mean velocity, respectively. Both the positions and the velocities are shown 

relative to a moving reference frame that moves with the velocity of the bottom plane of 

the Couette flow channel. The velocity in the streamwise direction can be divided into 

three different zones.  Zone I is characterized by the puff of markers staying together near 

the wall, forming a rather compact cloud. As the Pr increases, this zone is extended. The 

reason is that the molecular part of the marker motion is smaller as the Pr increases. In 

zone II, markers get away from the compact cloud and move into a outer region of the 

flow field. This is a transition zone between the region that marker movement is 

dominated by molecular effects, and the region where the marker motion is dominated by 

convection effects. The third zone is where the particles have been distributed almost 

uniformly across the channel, and the particles’ motion is dominated by turbulent 

convection.  Papavassiliou (2002) has observed similar behavior for puff dispersion from 

wall sources in Poiseuille channel flow. He found that for plane channel flow, zone I is 

dominated by transfer with molecular means and characterized by X ∝ t3/2  and Vx ∝ t1/2. 

Though the positions and velocities show a similar trend in the current work, the 

exponentials are different for plane Couette flow. 

At large times, the cloud of markers is expected to cover the channel width uniformly. At 

that point, the mean position of the cloud in the normal direction will be at the centerline 

of the channel, i.e., y=h=150. Lower Pr number markers have higher molecular 

diffusion; they get away from the viscous wall region, zone I, and into the region with 

higher turbulent fluctuations, zone II, sooner than the high Pr markers. Therefore, lower 
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Pr clouds become uniform at very early times, as it shows in Figure 3.4. The higher Pr 

fluids remain for a longer time in zone I; the particles stay together and take up to 13,000 

time units to become uniformly distributed. This behavior of Couette flow is similar to 

that of plane channel flow.  
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Figure 3.2: Logarithmic plot of the streamwise cloud position as a function of Pr. 
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Figure 3.3: Logarithmic plot of the streamwise cloud velocity. 
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Figure 3.4: Mean marker position in the normal direction. 
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Figures 3.5(a) and 3.5(b) present the standard deviation of the probability of the marker 

location with time in the streamwise direction for low and high Pr numbers. Initially, 

when the particles are released, the lower Pr markers, with a higher molecular diffusion 

jump, get away from the viscous wall region and into a high velocity fluctuation zone 

faster. Therefore, they become widely distributed, while the high Pr markers still stay 

together and move downstream. That explains a lower standard deviation of higher Pr 

markers at the beginning. At larger times, the lower Pr markers have already been 

uniformly distributed across the channel, while the high Pr markers are mainly separated 

in two regions. Some of the high Pr markers still reside within the high mean velocity 

region of the channel, and move fast downstream, while others are getting away from the 

wall into the lower mean velocity zone and are moving slower, causing a large variance 

in streamwise direction. The standard deviation, therefore, is higher for higher Pr 

markers at large times.  

Figure 3.6 shows the standard deviation of the particles’ position in the normal direction 

for various Pr numbers. It increases with time, and it is expected to stabilize at a constant 

value of (3002/12)1/2=86.6 at large times (i.e., the value of the standard deviation for a 

uniform distribution between 0 and 300). It takes longer for higher Pr number markers to 

get to this predicted value, because it takes longer for the high Pr markers to escape from 

the viscous wall region.    
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Figure 3.5: Root mean square of the marker position relative to the cloud centroid in the 

streamwise direction: (a) low Pr; (b) high Pr. 
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Figure 3.6: Root mean square of the marker position relative to the cloud centroid in the 

normal direction. 
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3.3.3 Development of a plume 

The behavior of the plume can be described by the probability function P2 (Equation 

(2.13)). In the present work, the plume is seen in two frames of reference: (a) as it is 

formed in the frame of reference that is stationary with respect to the center of the 

channel (i.e., the two moving walls move in opposite directions in this frame of reference 

– see Figure 3.7(a) ), and (b) as it is formed in a moving frame of reference that moves 

with the bottom wall of the channel (i.e., the plume is seen by an observer moving with 

the bottom wall – see Figure 3.7(b) ). The purpose of studying the plume with the moving 

frame of reference is to compare it with the corresponding plume in Poiseuille channel 

flow, and to other previous studies of Couette flow using a configuration with one 

moving wall.  

Prediction of ground level temperature/concentration 

The behavior of the plume in the first frame of reference, which is stationary with respect 

to the center of the channel, is shown in Figure 3.8(a). The ground level temperature Tmax 

is normalized with the strength of the source (i.e., the total number of markers released 

per time step). The temperature (or equivalently, the ground level concentration, if one 

considers the analogy between passive heat and passive mass transfer) is highest at the 

location x=0, where the particles are released continuously. Since the bottom plane is 

moving in the negative x-direction, the mean velocity in the region near the wall is 

negative, and, thus, the maximum temperature is higher in the negative direction and 

lower in the positive direction. When Pr increases, the markers stay together longer, 

forming a compact cloud and resulting in higher temperature close to the wall. On the 

other hand, lower Pr numbers have higher dispersion rate at the early stages after their 
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release from the wall (note that the value of σ increases with decreasing Pr). They move 

quickly out of the viscous wall region and go into the bulk of the flow field, becoming 

more and more uniformly distributed. Therefore, the ground level 

temperature/concentration is lower for lower Pr.  

Note that there are also markers in the positive x-direction that are moving by the leaking 

of particles due to the random motion. It is also seen in Figure 3.8(a) that at short x 

distances from the source, the ground level temperature/concentration is higher for low 

Pr markers and at longer distances from the source the ground level 

temperature/concentration is higher for higher Pr markers. In general, as Pr decreases, 

the total number of markers that can be found in the positive x-direction is higher, 

because the lower Pr markers have larger random motion movements and can leak 

towards the positive x-direction at farther distances (this was confirmed by counting the 

markers in the positive x-direction, and finding that the total number of particles is higher 

for lower Pr). Therefore, the concentration is higher for lower Pr for a short distance. 

However, dispersion in the normal direction is also stronger for lower Pr markers, so at 

farther distances in the positive x-direction the ground level concentration decreases 

quickly, while the markers for high Pr fluids are still staying together in the near wall 

region. This phenomenon of the leaking of heat markers in the streamwise direction is 

similar to the phenomenon discussed (in its Eulerian analog) by Weigand et al. (2002) for 

small Peclet numbers and heat transfer in a duct, where it was  referred to as streamwise 

conduction. 

The logarithmic plot of the ground level temperature Tmax as a function of streamwise 

position for the case where the frame of reference for the plume moves with the bottom 
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wall is shown in Figure 3.8(b). The decay of the ground level concentration is clearly 

distinguished into two zones. Similar to the behavior of the puff, as Pr increases, zone I is 

extended. The value of Tmax is found to be dependent on the Pr and on the streamwise 

position. Based on Bachelor’s prediction (1964) that xT /1~max , Tmax for this case will be 

estimated to be proportional to ( )ax +Pr/  and ( )bx +Pr/ in zones I and II, respectively. 

Then the normalized temperature can be calculated at any downstream location using the 

following correlation  
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The values of A1, B1, a, and b are calculated with regression and are reported in Table 3.1 

for Pr = 0.1-15000.  

The dispersion of a plume can be characterized by the plume half-width, which is defined 

to be the distance from the wall at which the temperature of the plume becomes half of its 

maximum. The half-plume width for the plume formed between the two moving walls is 

shown in Figure 3.9(a). For low Pr, the dispersion is high, the markers are quickly 

distributed across the channel, and the half-plume width increases very fast. For high Pr, 

there are still a lot of particles close to the wall; half the maximum temperature lies very 

close to the wall. The half-plume width for the plume that is seen relative to the bottom 

moving wall has a trend similar to the trend seen in channel flow (Figure 3.9(b) ). For Pr 

= 0.7 in channel flow, Poreh and Hsu (1971) reported that yδ  changes with x0.8, based on 

experimental measurements. Later on, Fackerell and Robins (1982) found that 75.0~ xyδ , 
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and other DNS/LST results by Mitrovic and Papavassiliou (2003) reported that yδ  is 

proportional to x0.72 . The half-plume width, yδ , for Pr = 0.7 in the Couette flow 

configuration increases with x0.82, higher than what was found for channel flow in both 

experiments and simulations, meaning that the dispersion of a plume in Couette flow is 

faster than in channel flow.   

3.3.4 Prediction of mean temperature profiles across the Couette flow channel  

Calculations of temperatures profiles are presented in Section 2.4. In the conductive wall 

sublayer, the mean temperature profile is expressed by Pr++ = yT . Therefore, a linear 

extrapolation inside this region was used to determine the slope of the mean temperature 

at the wall that can be used in Equation (2.2) for the calculation of the mean temperature 

in wall units. The bins used for the calculation of temperature, and thus the slope 

wdydT )/( + , were located within the conductive sublayer region. Kader (1981) suggested 

that the thickness of the conductive sublayer, +
1y , can be estimated by 3/1

1 Pr/12≅+y  for 

Pr >> 1 and Pr/21 ≅+y  for Pr << 1. The number of bins used for the calculation of 

wdydT )/( + is shown in Table 3.2. The number of bins is varied so that the maximum 

ymax in wall units is equal to or less than the value of +
1y  calculated by Kader’s 

suggestion to make sure that the bins are within the conductive sublayer. These values are 

also reported in Table 3.2.                                                 

The mean temperature profiles for all Pr fluids in the case of heat flux applied to one 

channel wall are shown in Figures 3.10(a) and 3.10(b), and the mean temperature for heat 

flux from two channel walls is shown in Figure 3.10(c). These temperature profiles were 

calculated using a frame of reference that moves with the bottom wall. All the quantities 
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are in wall units. In the conductive sublayer, the dimensionless temperature follows the 

correlation Pr++ = yT , as expected. The temperature profile of low Pr fluids for one 

heated wall is presented in Figure 3.10(a). The temperature profile for  Pr = 0.7 is 

compared with the results provided in Liu (2003) showing good agreement (note that the 

Re in Liu (2003) is different than the Re of the present study – it is roughly three times 

smaller than the Re used here). As Pr increases, the temperature in the center of the 

channel increases.  

The logarithmic region for the velocity field in Couette flow is more extended than the 

logarithmic region for plane channel flow, because the whole Couette flow channel is a 

constant stress region.  However, we can now compare the logarithmic region for the 

temperature profile for channel and for Couette flow. The temperature profile in the 

logarithmic region is given  by  ByAT += ++ ln , where A depends on the flow field and 

B depends on the Pr Liu (2003). The coefficients A and B are shown in Figures 3.11(a) 

and 3.11(b), respectively. The A coefficient is smaller in Couette flow than in channel 

flow. It reaches almost a constant value for Pr 10≥ . In this high Pr range, the conductive 

thermal sublayer is very thin close to the wall and the distance from the wall at which the 

logarithmic layer starts is short. For Poiseuille channel flow (using the data of Mitrovic et 

al. (2004)), the average coefficient A for high Pr (and, thus, well observable temperature 

logarithmic layers) is 4.21 with a standard deviation of 0.42, and, for Couette flow, this 

value is 3.02 with a standard deviation of 0.17. For low Pr fluids, the coefficients are 

lower. Liu (2003) found A to be 2.63 and B to be 1.2 for Pr = 0.71 for Couette flow in 

which one wall was heated and the other wall was cooled. Kasagi et al. (1992) found 

A=2.78 for Pr = 0.7 in forced channel flow.  For Pr = 0.7 in the current work, A is found 
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to be 2.37 for Poiseuille flow and 1.35 for Couette flow.  If A depends on the flow field, 

B depends strongly on the Pr number. A very small difference between the coefficients B 

for Couette and Poiseuille flow is seen in Figure 3.11(b). The difference in the B 

coefficients from Liu (2003) might be due to the difference in Re; h+ = 52.8 in Liu (2003) 

versus 150 in the present study).  

The heat transfer coefficient, +K , can be calculated with Equation (2.6) using the average 

bulk temperature. The heat transfer coefficient as a function of the streamwise position 

for all Pr fluids for the case of one heated wall is shown in Figure 3.12(a), and a system 

of reference that moves with the bottom heated wall. The results are compared with the 

asymptotic solution for small x+ and high Pr fluids that was derived theoretically by Son 

and Hanratty (1967) 

3/23/1 Pr)(81.0 −−++ = xK       (3.2) 

Similar to the case reported for a Poiseuille channel flow in Mitrovic et al. (2004), the 

results agree with this solution for 10/ <++ hx , corresponding to the entry length of a 

scalar exchange region. As the heat markers travel downstream, the temperature across 

the channel becomes more uniform, and the heat transfer coefficients keep decreasing 

until they get to constant values, at which point the temperature profiles are fully 

developed. It is also seen that as Pr increases, the heat transfer coefficient decreases, 

indicating a better mixing in lower Pr fluids.  

The heat transfer coefficients for the case where heat flux is applied to both channel walls 

are presented in Figure 3.12(b) (specifically, the heat flux is applied to both walls at 

points x+ ≥ 0, and the system of reference is stationary with respect to the center plane of 

the channel). The heat transfer coefficients start from lower values than the values in 
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Figure 3.12(a) at the entry region. The reason is that the marker plumes that compose the 

temperature profile close to the point of step change in wall heat flux are dispersed 

mainly in the negative x-direction (see discussion about plumes in Section 3.3.3). As a 

result, the temperature profile, even at small distances downstream from the point of step 

change in heat flux, is very close to a fully developed temperature profile, which 

corresponds to lower K+ (see for example the values of K+ at large x+/h+ in Figure 

3.12(a)). For higher Pr, the value of K+ does not change much with x. 

The heat transfer coefficients are mostly of interest at a well-mixed state, very far 

downstream from the entry region, where they stay constant. These coefficients are noted 

as +
∞K . Plots of +

∞K  as function of Pr, for one heated wall and two heated walls, are shown 

in Figure 3.13. The fully developed heat transfer coefficient decreases as Pr increases. 

The values can be fitted with a power function according to Equation (2.7). The trend for 

heat flux applied at only the bottom wall is shown in Figure 3.13. The fully developed 

heat transfer coefficient is estimated to be 

10Pr ≤ : 532.0Pr0634.0 −+
∞ =K   , 999.02 =R     (3.3) 

100Pr ≥ : 690.0Pr0997.0 −+
∞ =K  , 999.02 =R     (3.4) 

For a similar case in a Poiseuille channel flow, the power values were found to be –0.510 

and –0.690 (Mitrovic et al., 2004). This indicates a similar dependence of the heat 

transfer coefficient on the Pr for Couette flow and for plane channel flow at high Pr. 

However, the moving wall helps to increase the fully developed heat transfer coefficients, 

since the pre-exponential coefficients are higher in both cases for Couette flow.  

For the case of heat flux applied at both walls, K+ is found to be  

10Pr ≤ : 612.0Pr0735.0 −+
∞ =K  , 999.02 =R     (3.5) 
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100Pr ≥ : 693.0Pr103.0 −+
∞ =K  , 999.02 =R     (3.6) 

In general, heat transfer coefficients in the case of heat flux applied at both channel walls 

are higher than those with heat flux applied at one channel wall (this difference is more 

pronounced at lower Pr – it can be within 4% for Pr ≥ 100). Similar to the case of heat 

flux applied to one channel wall, the power values are the same as in Poiseuille flow 

(Mitrovic et al., 2004) and the pre-exponential coefficients are higher in Couette flow. 

The interpretation of this observation is that the mechanism of turbulent transport from 

the wall is the same in both cases, i.e., only a part of the spectrum (the smaller wave 

numbers part) of the turbulent velocity field contributes to turbulent transport from the 

wall and this part depends on the fluid Pr (as Pr increases, a smaller part of the spectrum 

contributes, see Mitrovic and Papavassiliou, 2003, Na and Hanratty, 2000). However, the 

turbulent velocity field is different in Couette and Poiseuille flow, with turbulence 

intensities being higher in Couette flow, and this fact manifests itself as a larger pre-

exponential factor.   

The power values for high Pr in Equations (3.4) and (3.6) are close to the values 

measured by Shaw and Hanratty (1977), who found  +K ~Sc-0.704 from accurate 

experimental measurements for turbulent mass transfer. However, the Pr dependence 

suggested by Equation (3.4), i.e., K+~ Pr-0.690,   is different than other frequently used 

correlations. For channel flow with two fixed planes, the heat transfer coefficient for fully 

developed flow is usually reported with the Deissler asymptotic correlation, +K ~Pr-3/4, 

or with Sieder-Tate’s prediction, +K ~Pr-2/3 for high Pr, in textbooks like Bird et al. 

(1960) and Hinze (1987), or the Dittus-Boelter’s prediction, +K ~Pr-0.6  (Welty et al., 

2001) for heating of the fluid. It should be noted that several other researchers have also 
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found differences from Deissler’s and Sieder-Tate’s predictions (Incropera  et al., 1986, 

Hubbard and Lightfoot, 1966, Petty, 1975).  

In order to develop a predictive correlation for K+ over the whole range of Pr, one can 

use a correlation similar to that for Tmax (Equation 3.1). A regression analysis for K+ 

results in the following equations: 

(a) For heat flux applied to one channel wall  

690.0532.0

222.1

Pr0875.0Pr255.0
Pr0233.0

−−

−
+

∞ +
=K        (3.7) 

R2 = 0.991 

(b) For heat flux applied to both channel walls 

693.0612.0

305.1

Pr0784.0Pr25.2
Pr176.0

−−

−
+

∞ +
=K      (3.8) 

R2 = 0.996 

Generalized equations for heat transfer coefficients can also be obtained by using 

Churchill and Usagi (1972)’s method, which was described in Chapter 2, equation (2.26).  

Using this method, the heat transfer coefficient correlation can be expressed as 
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where )10(Pr ≤+
∞K and )100(Pr ≥+

∞K represent the asymptotic expressions for heat 

transfer coefficients for small Pr and large Pr. For one heated wall, these two expressions 

are Equations (3.3) and (3.4), respectively.  Combining these two expressions into 

Equation (3.9) results in the following equation for one heated wall:  
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The n-value is fitted in order to achieve the best results. Furthermore, the left-hand side 

of Equation (3.10) should be unity for all Pr ≥ 100, since K∞
+ for this range of Pr is 

approximated by the relations in the denominators. In order to satisfy this condition, the 

exponent n should be negative with high absolute value. If we assume the convenient 

exponent n = -6.33 for the one heated wall case, then Equation (3.10) becomes     

158.0
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Pr
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⎡
⎟
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⎜
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⎛+
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−

+
∞K       (3.11) 

with R2 = 0.999 

This equation gives an excellent fit with the LST data. It is also better than the correlation 

predicted using the method suggested by Equation (3.7). Comparisons between the LST 

data and the heat transfer coefficients calculated by Equations (3.7) and (3.11) are shown 

in Figure 3.14. 

 

Similarly, for two heated walls, using Equations (3.5) and (3.6) for small and large Pr 

numbers into Equation (3.9) gives 
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Assuming the convenient exponent n = -12.3, the equation becomes 
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with R2 = 0.999. 

The differences between LST data and calculations from Equations (3.8) and (3.13) are 

also shown in Figure 3.14. Both of these two methods agree well with the data, however 

Churchill and Usagi’s method gives better accuracy. 

The Nusselt number ratio ∞NuNu/ with respect to the downstream distance x+/h+ from a 

step change in heat flux from the wall is also calculated and shown in Figure 3.15. The 

ratio for low Pr and high Pr for heat flux applied to only the bottom wall are presented in 

Figures 3.15(a) and 3.15(b), respectively. The same behavior is observed in the current 

work and in Poiseuille channel flow (Mitrovic et al., 2004). For Pr 100≤ , the ratio 

decreases as the Pr increases; and for Pr 100≥ , the ratio increases as the Pr increases. 

Mitrovic and Papavassiliou (2003) suggested that this behavior can be explained by the 

correlations of +K as a function of Pr. At small distance, i.e., in the entry region, +K is 

proportional to Pr-2/3 for small x+. For high Pr, at fully developed thermal layer (large x+)

+K  is proportional to Pr-0.690. Therefore, the Nusselt number ratio for high Pr number 

fluids is:  

023.03/1

69.0

3/23/1

Pr)(

Pr
Pr)(

)/(
)/(

−+

−

−−+

+
∞

+

++

++

∝

∝∝
∞→

x

x
K
K

hxNu
hxNu

    
(3.14)  

Initially, the ratio is higher for higher Pr numbers. As x+ increases, the Pr effect is 

negligible and the ratio becomes independent of Pr, and goes to 1. For low Pr number 

fluids, +K is proportional to Pr-0.532 for one heated wall. The Nusselt ratio, therefore, will 
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go with  135.03/1 Pr)( −−+x , and is expected to  decrease as the Pr increases at the same 

location.  

Even though this behavior is similar to that of  Poiseuille flow, the Nusselt number ratio 

goes to 1 faster in Couette flow than in Poiseuille flow.  For example, at x+/h+ = 5 and Pr 

= 0.7 the value of Nu/Nu∞  is 1.3 for Couette flow and 1.7 for Poiseuille flow (from 

Mitrovic et al., 2004). For a higher Pr number, Pr = 500, Nu/Nu∞  is 1.1 and 1.3 for 

Couette and Poiseuille flow, respectively, at x+/h+ = 5.  

3.4 Conclusions 

The present work used direct numerical simulation in conjunction with a Lagrangian  

method, a convenient tool to study turbulent heat/mass transfer in a range of Pr. The 

effects of the velocity boundary conditions on the mechanism of heat transfer through the 

ground-level temperatures  downstream from a continuous source of heat markers and 

through the half-plume widths of the plumes were observed. Together with prior 

investigation on the dispersion of the puff, it is found that the Couette channel flow leads 

to an increase to the rate of development of the thermal plume, showing a better mixing 

compared to mixing in Poiseuille channel flow. 

Mean temperature profiles across the channel at fully developed turbulence were also 

presented for an extensive range of Pr numbers. Heat flux was applied at one wall or at 

both channel walls. Predictive correlations for the heat transfer coefficients, +K , for the 

case of heat transfer from one and two heated planes were determined. The heat transfer 

coefficients for Couette channel flow show the same trend as for Poiseuille channel flow. 

The exponential values are the same or close to those in Poiseuille channel flow, but the 

pre-exponential factors are higher.  
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Table 3.1: Coefficients for the correlation that provides the ground-level temperature 

downstream from a plume (Equation 3.1). 

 

 

Pr A1 a R2 B1 b R2 

0.1 0.415 0.619 0.999 0.629 0.685 0.999 

0.7 0.557 0.689 0.999 1.435 0.891 0.999 

6 0.335 0.710 0.999 1.679 1.079 0.999 

10 0.363 0.705 0.999 1.106 1.164 0.998 

100 0.454 0.617 0.996 0.857 1.541 0.996 

200 0.441 0.723 0.999 0.803 1.926 0.997 

500 0.444 0.703 0.999 0.615 2.880 0.998 

2400 0.429 0.699 0.998 0.030 3.634 0.998 

7500 0.424 0.696 0.998 1.732x10-5 6.678 0.995 

15000 0.411 0.698 0.999 1.989x10-6 7.063 0.993 
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Table 3.2: Estimated conductive sublayer thickness at different Pr and bin size close to 

the wall. 

 
 

  

Pr Estimated 

+
1y  

according to 

Kader (1981) 

Number of bins 

used for calculation 

of 
wdy

dT
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

Bin width Δy+ +
maxy used for 

the calculation 

of 
wdy

dT
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

0.1 20 20 1 20 

0.7 7.14 7 1 7 

6 6.604 3 1 3 

10 5.570 3 1 3 

100 2.585 2 1 2 

200 2.052 16 0.004626-0.143063 1.182793 

500 1.512 14 0.004626-0.124678 0.905855 

2400 0.896 10 0.004626-0.087819 0.462399 

7500 0.613 5 0.004626-0.041629 0.115644 

15000 0.487 4 0.004626-0.032380 0.074016 
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 (a) 

            

(b) 

 

 

Figure 3.7: Contour plots for (a) a plume relative to a stationary frame of reference, and 

(b) a plume relative to a moving frame of reference. In both cases Pr =100 and t+ =3000. 
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Figure 3.8: Maximum temperature (concentration of markers) as function of streamwise 

position for: (a) original plume and (b) plume relative to the velocity of the bottom 

moving wall. 
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Figure 3.9: Half-plume width as a function of streamwise position for: (a) original plume 

and (b) plume relative to the velocity of the bottom moving wall. 
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Figure 3.10: Mean temperature profile with a step change in the heat flux applied to (a) 

one channel wall (Pr ≤ 10); (b) one channel wall (Pr ≥ 100), and (c) two channel walls. 
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Figure 3.11: Mean temperature log-law coefficients for plane Couette flow and plane 

channel flow (the values for plane channel flow are calculated from the data of Mitrovic 

et al. (2004): (a) coefficient A, and (b) coefficient B with an inset for low Pr. 
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Figure 3.12: Heat transfer coefficient as a function of the distance downstream from a 

step change in heat flux applied to (a) one channel wall, and (b) two channel walls.
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Figure 3.13: Fully developed heat transfer coefficient as function of Pr for one heated 

wall and two heated walls. 
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Figure 3.14: Comparison of the LST results for the fully developed heat transfer 

coefficient with fitted correlations for one heated wall and two heated walls.  
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Figure 3.15: Change of Nusselt number ratio with the distant downstream from a step 

change in heat flux applied to the bottom channel wall: (a) low Pr runs (Pr ≤ 10) and (b) 

high Pr runs (Pr ≥ 100). 
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Chapter 4: Turbulent Dispersion from Elevated Line Sources in Channel and 

Couette Flow 

4.1 Introduction 

The prediction of turbulent dispersion of a scalar contaminant emitted from sources 

above a surface is a problem that gained importance recently due to its application in 

atmospheric pollution and in the dispersion of bio-agents in the case of a terrorism act. 

The statistical description of turbulent dispersion from a Lagrangian point of view has 

been introduced by G.I. Taylor (1921). Taylor described the rate of dispersion of fluid 

particles from a point source in homogeneous, isotropic turbulence as  

( )∫=
t Lf dRu

dt
Xd

0

2
2

2 ττ       (4.1)  

where Xf is the displacement of a fluid particle relative to its source, 2u is the mean-

square of the x-component of the velocity of the fluid particles, and RL is the Lagrangian 

correlation coefficient. Taylor’s equation can be seen as an extension of Einstein’s 

relation (Einstein, 1905) for the dispersion of particles with Brownian motion, given as 

DdtXd p 22 =         (4.2)  

where Xp is the displacement of a particle relative to its source and D is the molecular 

diffusivity.  Saffman (1960) studied the effects of molecular diffusion on turbulent 

dispersion and developed a relation for dispersion in this case by defining a material 

autocorrelation function, which correlated fluid velocity components along the 

trajectories of scalar markers instead of fluid particles. Saffman argued that scalar 

markers can move off a fluid particle as a result of molecular diffusion, and thus the 

effect of molecular diffusion is to diminish turbulent diffusion because the markers do 
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not follow the chaotic turbulent fluid motion. Regarding anisotropic turbulent flows, 

Batchelor (1964) developed a theory for the prediction of the statistical behavior of a 

source in a turbulent boundary layer. Batchelor argued (based on similarity) that the 

Lagrangian velocity within the constant stress region depends only on the friction 

velocity u* and time so that  

 *ub
dt
YdV y =≡         (4.3) 

where b has to be an absolute constant, independent of molecular diffusion effects.  

Laboratory measurements for turbulent dispersion have been reported for the case of 

continuous elevated sources of a passive scalar (Shlien and Corrsin, 1976, Fackrell and 

Robins, 1982).  Shlien and Corrsin (1976) examined turbulent dispersion of heat in a 

wind tunnel, downstream from a heated wire, and Fackrell and Robins (1982) studied 

turbulent mass dispersion with emphasis on the concentration fluctuations using propane 

as a tracer gas. More recently, direct numerical simulations (DNS) of turbulent flows in 

conjunction with tracking of scalar markers have been used for the investigation of scalar 

dispersion in anisotropic turbulent flows (Kontomaris and Hanratty, 1994; Papavassiliou 

and Hanratty, 1997; Mitrovic and Papavassiliou, 2003). However, emphasis has been 

given to sources located at the solid surface. Papavassiliou (2002) has studied the effects 

of the molecular Prandtl number, Pr, on the evolution of a cloud of markers released 

instantaneously from a line source at the wall of a channel (i.e., a puff) for 0.1 ≤ Pr ≤ 

50000.  The puff was found to develop in the following three stages: Zone I, in which 

molecular diffusion dominates dispersion, Zone II, which is a transition zone, and Zone 

III, in which turbulent convection dominates dispersion. The extent of Zones I and II 

depends on the Pr; it becomes longer as the Pr increases. Mitrovic and Papavassiliou 
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(2003) have calculated the turbulent transport properties for the plume that results from a 

continuous line source at the wall, and modeled its behavior for 0.1 ≤ Pr ≤ 50000. They 

found that the behavior of the plume exhibits three zones of development, which 

correspond directly to the three stages of development of a puff. The behavior of both 

puffs and plumes that are emitted from wall sources was found to be Pr dependent.  

This chapter explores the effects of molecular diffusion on turbulent transport for the case 

of elevated sources from the wall, and the effects of turbulence structure on turbulent 

dispersion. The effects of molecular diffusion are explored by changing the Pr of the 

fluid, and the effects of the turbulence structure are investigated by placing the sources in 

a plane channel flow and in a plane Couette flow. In plane Couette flow, the driving force 

for the flow is the shear effect of the two channel walls moving in directions opposite to 

each other. The total stress is constant across the whole channel creating a very extensive 

constant stress region, similar to the logarithmic region in Poiseuille channel flow. Thus, 

we can achieve a wide logarithmic layer that is computationally difficult to obtain 

otherwise (i.e., with a DNS of plane channel flow). A tracking algorithm is used to 

monitor the trajectories of scalar markers in space and time as they move in the 

hydrodynamic field created by a DNS. The fluids span several orders of magnitude of Pr 

(or Sc), Pr=0.1, 0.7, 3, 6, 10, 100, 200, 500, 1000, 2400, 7000, 15000, 50000, (liquid 

metals, gases, liquids, lubricants and electrochemical fluids).  

4.2 Methodology  

The DNS/LST method was used to track the heat or mass markers. The Reynolds 

number, defined with the centerline mean velocity and the half-height of the channel for 

the Poiseuille flow channel, and defined with half the velocity difference between the two 
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walls and the half channel height for the Couette flow channel, was 2660 for both. For the 

Poiseuille channel, the simulation was conducted on a 128 x 65 x 128 grid in x, y, z, and 

the dimensions of the computational box were 4πh x 2h x 2πh, where h = 150 in wall 

units. For the Couette flow channel, the simulation was conducted on a 256 x 65 x 128 

grid, and the dimensions of the computational box were 8πh x 2h x 2πh, where h = 153. 

The flow was regarded as periodic in the x and z directions, with the periodicity lengths 

equal to the dimensions of the computational box in these directions. First and second 

order turbulence statistics for the flow fields are presented in Figure 4.1. The mean 

velocity profile is shown in Fig. 4.1a, and the turbulence intensities are shown in Fig. 

4.1b for the x, y, and z directions. Experimental and numerical data obtained in other 

previous studies for the case of Couette flow are included in these figures to demonstrate 

the behavior of that simulation. The time step for the calculations of the hydrodynamic 

field and the Lagrangian tracking was Δt=0.25 and Δt=0.2 for the Poiseuille and Couette 

channels, respectively. Both simulations were first allowed to reach a stationary state 

before the heat markers were released.   

4.3 Results and Discussions 

Table 4.1 presents a summary of the runs conducted for the current study. Runs P1 to P14 

tracked markers in a Poiseuille flow channel with Pr = 0.1, 0.7, 3, 6, 10, 100, 200, 500, 

1000, 2400, 7500, 15000 and 50000 up to time t=300. In each one of these runs, a total of 

16129 markers were released instantaneously from a uniform rectangular grid that 

covered the xz plane of the computational box at different distances from the wall. The 

choices of these distances were the edge of the thermal sublayer (i.e., yo = 5 for Pr ≤ 

1000, yo = 1 for Pr > 1000), the region of transition between the viscous sublayer and the 
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logarithmic velocity layer (i.e., yo = 15), a point at yo/h ≈ 0.2 in order to compare with the 

experimental measurements of Fackrell and Robins (1982) for elevated sources at 

Pr=0.7, a point in the logarithmic region (i.e., yo = 75), and a point at the center of the 

channel. Runs C1 to C12 tracked markers for similar conditions in a plane Couette flow, 

with the main difference being that 145161 markers were tracked. 

The initial marker positions were on a uniform 127x127 grid and a 381x381 grid for the 

Poiseuille flow and Couette flow, respectively. For plane channel flow, Mitrovic and 

Papavassiliou (2003, 2004) have found that using more markers than the 127x127 case 

(one order of magnitude more) in the flow improves the calculation of statistics only 

slightly, so the use of 16129 markers is sufficient for the plane channel case. The 

computational box is twice as large for the plane Couette flow, and one order of 

magnitude more markers are used in that case.  

4.3.1 Instantaneous line source behavior 

The cloud that results from an instantaneous source of a scalar is usually called a puff and 

the cloud that results from a continuous source of a scalar is called a plume. Figure 4.2a 

presents the mean the puff trajectory in the normal direction for the marker cloud of runs 

P2 and P3, and Figure 4.2b for the marker cloud of run C2 (Pr = 0.7 in these cases, 

corresponding to dispersion of heat in air). Physically, this is the trajectory of the centroid 

of a puff of markers released from an instantaneous line source located at different 

distances yo from the channel wall. It is observed that the marker clouds tend to move 

away from the wall in both cases. The reason for this effective diffusion of markers away 

from the wall, even though the probability of moving towards the wall or away from it is 

the same for each marker, is that there are initially many more markers close to the wall. 
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Thus, the number of markers that can go away from the wall is larger than those going 

towards the wall from the outer region, since there are not that many markers in the outer 

region of the flow. As a result, the net number of markers moving away from the wall is 

positive, and the cloud centroid moves away from the wall.  It is also observed that the 

centroid of the puff in the Couette flow environment is moving away from the wall much 

faster than in the Poiseuille flow environment. Figure 4.1b shows that the root mean 

square of the vertical velocity fluctuations is higher in Couette flow than in channel flow, 

meaning that stronger fluctuations can take markers away from the wall. Na et al. (2001) 

have studied large scale structures that produce Reynolds stresses and look like sheets 

extending well into the logarithmic region (which they called super-bursts). Since 

Couette flow is a very large constant stress region, such structures are also present in 

Couette flow resulting into higher rates of dispersion away from the wall. This appears to 

be a difference in the fundamental mechanism of heat convection in the log layer and in 

channel flow. 

The density of the cloud of the markers is represented by the probability, P1( x ,t | ox ,to), 

of a marker to be at a location x  = (x,y,z) in the flow field at time t, given that it was 

released at location ox = (xo,yo,zo) at time to.  This probability can be interpreted 

physically as concentration  (Saffman, 1960) and thus as a snapshot of a cloud of 

contaminants released instantaneously from ox . Figures 4.3 and 4.4 present contours of 

the puff concentration for Poiseuille and Couette flow, respectively, and for Pr equal to 

0.7 and to 200 (runs P2, P8, C2 and C6). The point of release is yo = 28.5 in both cases. In 

both types of flow the effect of increasing the Pr is similar; the cloud of markers is more 

concentrated around the point of release. For small Pr the markers disperse faster to other 
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areas of the flow field due to bigger molecular jumps, while for higher Pr, a larger 

percentage of markers stay close to the point of release for longer times. However, for 

sources at higher elevations (not shown here) there are no major differences in the puff 

concentration for different Pr number fluids. The behavior of the Poiseuille flow markers 

and the Couette flow markers is similar in this respect. Figure 4.4 shows that the 

dispersion of the puff in the normal direction is higher for Couette flow than for plane 

channel flow. The reason is the same as for the case of the faster Y  movement away from 

the wall observed in Figure 4.2, i.e., larger velocity fluctuations in the vertical direction 

for Couette flow and larger scale flow structures extending in the outer region result into 

higher dispersion.  

The mean cloud trajectories in the normal direction are shown in Figure 4.5 for different 

Pr. Figures 4.5a and 4.5b present the trajectories of clouds released at the edge of the 

thermal conductive sublayer for channel and Couette flow, respectively. The effects of 

the fluid Pr are evident in these figures; the plane channel puffs become Pr independent 

for Pr ≥ 6 and the plane Couette flow puffs for Pr ≥ 1000. Figures 5.5c and 5.5d present 

the trajectories of clouds released within the transition region. For both channel flow and 

Couette flow, the effects of Pr are negligible for release locations in the outer region of 

the flow. Only the case of Pr = 0.1 in channel flow behaves differently than the other 

cases. The same behavior is found for puffs released at locations farther from the wall 

(not shown here).  The reason for this behavior can be explored, if one considers the 

relative magnitude of the eddy diffusivity and the molecular diffusivity. Fluids with 

molecular Pr on the order of magnitude of one (or less) have molecular diffusivities that 

are comparable or higher than the eddy diffusivity, and, therefore, Pr effects are expected 
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to be observed. In order to illustrate this point, we can review published values of the 

turbulent Pr and estimate the order of magnitude of the eddy diffusivity using them. 

Results from direct numerical simulations for turbulent heat transfer in a channel (Lyons 

and Hanratty, 1991; Kasagi and Shikazono, 1995; Kawamura et al., 1999; Kasagi et al., 

1992)  from large eddy simulations (Dong et al., 2002)  and from modeling correlations 

(Weigand et al., 1997; Churchill, 2000) suggest that the value of the  turbulent Pr is on 

the order of one for different molecular Pr. The turbulent Pr for wall turbulence is a 

function of the distance from the wall (as are the eddy viscosity and the eddy diffusivity), 

but in terms of order of magnitude it does not vary by a lot for y+>10. The eddy viscosity 

for the flow field under consideration here is on the order of ten (Papavassiliou and 

Hanratty, 1997) in the outer region of the flow (y+>30), which means that the eddy 

diffusivity is on the order of ten as well. Both DNS (Lyons and Hanratty, 1991) and 

experiments (Page et al., 1952) agree with this estimation (in terms of order of 

magnitude). Since the fluid viscosity is one, a fluid with molecular Pr equal to one has 

diffusivity on one and a fluid with molecular Pr equal to 0.1 has diffusivity of ten, which 

is comparable to the eddy diffusivity.  

The mean streamwise velocity of the puff, xV , is shown in Figure 4.6 for different 

elevations and Pr=0.7. This velocity is expected to reach the value of the bulk mean 

velocity of the flow field (which is 15.1 in wall units for channel flow and 0 for Couette 

flow) at large times, because the markers are expected to disperse uniformly across the 

channel at large times. Figure 4.6a shows that the mean puff velocity drops for elevations 

higher than yo=10, because the markers start to disperse to regions where the mean 

velocity is smaller than the mean velocity at the point of release. Similarly, for Couette 
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flow, the mean puff velocity shows a maximum for elevations between the viscous 

sublayer and the center of the channel because the markers disperse to areas of higher 

mean velocity before covering the channel uniformly.   

Figures 4.7a and 4.7b present the mean streamwise velocity as a function of Pr for the 

case of Couette flow and for source location in the viscous sublayer and in the outer 

region, respectively. The conclusions reached above based on the puff trajectories also 

apply here; the effects of Pr are important for sources within the viscous sublayer, as seen 

in Figure 4.7a, while they are not for sources farther away unless the Pr is small (Pr < 

10). Figure 4.7a shows the first two zones of plume development for high Pr, similar to 

those observed by Mitrovic and Papavassiliou (2003) for sources on the channel wall. In 

the first zone, the markers move due to molecular dispersion and in the second zone the 

contributions of convection begin to appear. The transition point between these zones is 

Pr dependent.  

Figures 4.8a and 4.8b present the mean normal velocity as a function of Pr for the 

Couette flow case and for source locations in the viscous sublayer (yo=1) and in the outer 

region (yo=75). Figure 4.8 shows that the velocity yV  is a function of time and of Pr. It 

is observed that yV  reaches a maximum when the movement of the markers is restricted 

by the channel wall, and beyond that point tends to the value of 0. It is also observed that 

the assumption that the Lagrangian velocity of scalar markers is constant within the 

constant stress region and independent of Pr is not accurate, and therefore a universal 

constant b (see Eqn. 4.3) cannot describe all dispersion cases.  
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4.3.2 Continuous line source behavior 

The behavior of a plume originating at ox  and emitting markers from time to to time tf 

can be simulated by integrating the probability density function that describes the 

behavior of the puffs  

( ) ( )∑
=

−=−
f

o

t

tt
ooofo txtYxXPtYxXP ,|,,,, 12 .    (4.4) 

The probability P1 was calculated for each Pr using a grid that covers the flow domain 

and counting the number of markers that are present in each grid cell (Papavassiliou, 

2002). The grid in the normal direction was constructed by dividing the width of the 

channel uniformly into 300 bins. In the streamwise direction, the grid was stretched in 

order to take measurements at long distances downstream from the source. The stretching 

in the streamwise direction followed the relation Δxn=1.06nΔx(n-1) with Δxo=5.  

The DNS/LST methodology has been validated with experimental data for the case of 

continuous wall sources as presented in Chapter 2 and Chapter 3. Here, we present 

comparisons with experiments for the case of elevated scalar sources. Fackrell & Robins 

(1982) measured mean concentration profiles for a passive plume from an elevated 

source within a turbulent boundary layer. The source location was at yo/h ≈ 0.2 (note that 

h is the boundary layer thickness at the source location for the Fackrell and Robins 

experiments) and the source gas consisted of a mixture of propane and helium, the former 

being used as a trace gas for concentration measurements. They calculated the plume 

half-width, δy, which is defined to be the distance from the location of maximum 

concentration at which the concentration falls to half of its maximum. Figure 4.9 presents 

a comparison of the experimental measurements with the DNS/LST results showing very 
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good agreement between the two cases. Figure 4.10a presents the mean concentration 

profile normalized with the maximum concentration at different distances downstream 

from the source. The agreement between the experiments and the DNS/LST results is 

also quite good. Figure 4.10b presents, a comparison with the experiments of Shlien and 

Corrsin (1976), in which dispersion within a turbulent boundary layer was measured 

downstream of a heated wire located at different elevations from the wall. Heat was 

supplied to the wire at a constant rate, so that their case is equivalent to the calculation of 

P2 profiles using LST. They scaled the distance from the wall and the distance 

downstream from the source with the displacement thickness of the momentum turbulent 

boundary layer, δd, at the location of the tagging wire. In order to calculate the 

appropriate length scale for the channel flow DNS, the mean centerline velocity of the 

channel is used in place of the free stream velocity for the calculation of the boundary 

layer thickness. The calculated value for the DNS is δd = 23.2.  Figures 4.9 and 4.10 

indicate that the DNS/LST data are reliable for the calculation of the properties of 

elevated scalar sources. 

Figure 4.11a-c shows the plume half width for plane channel flow and different source 

elevations for all Pr considered. It appears that the Pr affects the development of the 

plume for sources within the viscous wall region, but the plume becomes Pr independent 

for sources farther from the wall. The reason for this is that turbulent dispersion is 

dominant in the outer region relative to the molecular diffusion. The development of δy 

follows a relation of the form  

( )c
y hxah =δ .       (4.5) 
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According to the statistical theory of turbulent dispersion (Pasquill, 1974), the dispersion 

of the plume in the normal direction is predicted to be ( )
2

2

2
2 x

U

vY =  for small times and 

( ) x
U

vY L 2

2
2 2τ=  for large times, where τL is the Lagrangian time scale and 2v  is the mean 

square of the velocity fluctuations in the normal direction. Thus, one would expect the 

exponent in Equation (4.5) to be c=1/2 (because in the present case the plume is allowed 

to develop for long times). However, the turbulence in channel flow is not homogeneous, 

and ( )22 Uv  can be assumed to change with the distance from the wall according to a 

function (y/h)b with b>0 up to y+ ≈ 50, implying that c=1/(2-b) ≥ 1/2.  

The results show that for sources within the conductive sublayer, the development of δy is 

initially proportional to (x/h)1/2
,  and proportional to (x/h)3/2 at larger distances from the 

source. It is also noted that the (x/h)1/2  region is longer for smaller Pr (Fig. 4.11a). For 

sources within the transition region and for Pr > 10, the behavior of δy is better described 

with two equations (Fig. 4.11b), one for the region near the source (x/h < 10), and one for 

the region far from the source (x/h > 10). For sources outside the viscous wall region, the 

behavior of δy can be described with one equation for Pr ≥ 3 (see Fig. 4.11c). Figure 

4.12a-c presents the plume half width for the Couette flow channel. Similar to Poiseuille 

flow, Equation (4.5) is found to describe the data. For sources within the conductive 

sublayer, δy ~ (x/h)2/3 initially, and δy ~ (x/h)3/2 at larger distances from the source (Fig. 

4.12a). The half-plume growth rate, for Couette flow sources outside the viscous layer, 

exhibits similar exponential dependence on x/h as for the plane channel case. However, 
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as seen on Figures 4.12b and 4.12c, the values of the parameter a are higher for Couette 

flow, indicating a higher dispersion rate for the Couette flow plumes.  

4.3.3 Correlation Coefficients and “Material Time Scale” 

The material autocorrelation coefficient can be calculated similarly to the material 

correlation defined by Saffman (1960) as   

( ) ( ) ( )

( )( ) ( )( ) 2/1
2

2/1
2 ''

''
,

ojoi

ojoi
oVV

tVttV

tVttV
ttR

ji

−

−
=      i,j = x,y,z   (4.6) 

The marker velocity at the time of marker release is used for the calculations of the 

autocorrelation coefficient presented in Figure 4.13. The overbar denotes ensemble 

average over the total number of markers in the flow field and the prime denotes 

Lagrangian velocity fluctuations, ( ) ( )tVtVV iii −=' . Note here that Vi(t) is the velocity of 

a fluid particle that is located at the same point as the scalar marker, as mentioned above 

in the LST section.  

The streamwise-streamwise, ( )oVV ttR
xx

, , the normal-normal, ( )oVV ttR
yy

, , and the spanwise-

spanwise, ( )oVV ttR
zz

, , correlations are shown in Figures 4.13a, 4.13b, and 4.13c, 

respectively, for the case of channel flow and a source within the logarithmic region (yo = 

75). Figure 4.13 shows that the material autocorrelation coefficient does not depend on 

Pr for Pr ≥ 3 for sources in the logarithmic region of the channel flow. A measure of the 

difference between the material autocorrelation coefficient and the usual Lagrangian 

coefficient that can be calculated along the trajectories of fluid particles can be obtained 

by comparing the values in Figure 4.13 with the values of 
iiVVR  for the highest Pr shown 

(Pr = 50000), because fluid particles behave like markers with Pr → ∞. For markers with 
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small Pr, the coefficients are smaller, meaning that molecular diffusion moves these 

markers off large fluid flow structures quickly. In this respect, the effectiveness of 

turbulence mixing is diminished, because the markers do not follow the turbulent flow 

eddies. It is important to note here that although the effectiveness of turbulence to mix is 

diminished, the overall effective dispersion is enhanced when the Pr is small. Saffman’s 

(1960) concept that the overall effective dispersion will be diminished due to molecular 

effects is applicable to very small times, i.e., t → 0. Also, Figure 4.13 shows that total 

dispersion in the normal direction is more rapid, since 
yyzzxx VVVVVV RRR >> . Similar results 

are found for the Couette flow correlation coefficients, shown in Figure 4.14. However, 

the correlation coefficients are smaller for the Couette flow case, indicating more 

efficient total dispersion.  

Figures 4.15a and 4.15b present the Lagrangian time scale as a function of source 

elevation for dispersion in the y-direction that can be calculated as  

( )dtttR
o

yy

t
oVVLy ∫

∞

= ,τ        (4.7) 

for Poiseuille and Couette flow, respectively. This time scale may be called the material 

time scale in order to differentiate from the term Lagrangian time scale, which is usually 

reserved for the time scale of fluid particles moving without molecular diffusion. The 

material time scale in this case (i.e., inhomogeneous, anisotropic turbulence) is expected 

to depend on the source elevation and, to some degree, on the Pr. The material 

correlation coefficient can be written as the material autocorrelation coefficient for the 

case of homogenous turbulence, ( )
HVyVyR , modified by a factor representing the effects of 

inhomogenuity. This factor may be assumed to have two components, one that depends 
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on the location of the source, ( )
yoVyVyR , and a second one that includes the effects of the 

Pr, ( )
PrVyVyR .  The material correlation coefficient may then be written the form of 

( ) ( ) ( )
PrVyVyyoVyVyHVyVyVyVy RRRR =         (4.8) 

The factor ( )
HVyVyR  is usually assumed to follow an exponential function (Hanratty, 1956; 

Pasquill, 1974) 

( ) τ/t
HVyVy eR −= ,       (4.9) 

which gives τ = τLy  when combined with Equation (4.7) for the case of homogeneous 

turbulence. Considering that the term ( ) 2/1
2 )(' oj tV in the denominator of Equation (4.6) is 

equal to the root mean square of the velocity fluctuations in the direction normal to the 

walls of the channel, v, and keeping the first order dependence on the source location of 

the modification factor that accounts for the elevation of the source, one may write 

( )
oy

o
yoVyVy vh

yAAR ⎟
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21       (4.10) 

where A1 and A2 are constants. The physical meaning of A1 is that ( ) 10
AR

yoVyVy =
=

, so that 

Equation (4.8) does not yield a zero value at yo=0. Note also that v depends on the 

distance from the wall, in the form v ~ (y/h)s for small y (i.e., y < 30, note also that for  y 

→ 0 incompressibility implies s = 2), and v is almost constant for large y (i.e., y > 50, see 

Fig. 4.1b). Equation (4.10) can then be written as   
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o
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⎛+=

1

21       (4.11) 

where s is zero at large yo. The Pr dependent factor can be assumed to follow an 

exponential (the exponential form can be justified because a Lagrangian correlation 
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coefficient is related to the eddy diffusivity, and the eddy diffusivity in wall turbulence 

has an exponential dependence on the Pr, see Churchill41, especially for small Pr)  

( ) 2Pr1Pr
b

VyVy bR = .       (4.12)   

Substituting Equations (4.9), (4.11) and (4.12) in (4.8) yields 

( )[ ]s
o

tb
VyVy hyAAebR −− += 1

21
/

1
2Pr τ      (4.13) 

Mito and Hanratty  (2003) have studied the behavior of markers released at different 

elevations in a Poiseuille flow channel in order to calculate the associated material time 

scales (Pr = 0.1, 0.3, 1, and ∞). Their goal was to use these time scales to solve a 

modified Langevin equation for the prediction of the velocity field along the trajectories 

of the markers, and subsequently use that velocity field to predict the marker trajectories 

(in other words, they substituted the DNS velocity in an LST procedure with the velocity 

field resulting from the solution of the Langevin equation).   The results in Figure 4.15a 

are in agreement with Mito and Hanratty’s (2003) findings that there is a Pr effect for 

small Pr and that this effect is more pronounced close to the wall. The Couette flow 

results exhibit similar qualitative behavior. However, the values of the material time scale 

are smaller than for Poiseuille flow. Substitution of Equation (4.13) in (4.7) shows that 

the values of τ Ly can be modeled with an equation of the form  

( )[ ]s
o

b
Ly hyAAB −+= 1

211
2Prτ               (4.14) 

where B1, b2, A1, A2, and s are parameters that can be determined using regression.  For 

medium and high Pr (Pr > 3) there is no Pr dependence (b2=0), and the following 

relations are obtained: 

Poiseuille flow ( ) 87.004.3359.4 hyoLy +=τ  ,  R2=0.988  (4.15a) 
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Couette flow ( ) 58.085.2483.1 hyoLy +=τ  ,   R2=0.993  (4.15b) 

For small Pr, the material time scale exhibits a dependence on Pr, and the following 

relations are obtained: 

Poiseuille flow ( ) ( )[ ]87.013.0 04.3359.4Pr98.0 hyoLy +=τ  ,  R2=0.997 (4.16a) 

Couette flow ( )[ ]58.0083.0 85.2483.1Pr hyoLy +=τ  ,   R2=0.992  (4.16b) 

The regression results are shown in Figure 4.15.  Note that the Pr dependence is stronger 

for Poiseuille flow (b2 = 0.13 in Eqn, 4.16a) than for Couette flow (b2 = 0.083 in Eqn, 

4.16b). Comparing Equation (4.14) with the above, the value of the exponent s is 0.13 for 

Poiseuille flow and 0.42 for Couette flow (a power approximation to the v profile yields 

values of s equal to 0.11 and 0.36 for channel flow and Couette flow, respectively, based 

on the data shown in Figure 4.1b) .    

The differences observed in Figure 4.15 between the two types of flows can be 

investigated further by examining the spectrum of the Lagrangian velocity covariance 

C(t),  

( ) ( )( ) ( )( ) 2/1
2

2/1
2 ''*,)( ojoioVVij tVttVttRtC

ji
−=   i,j = x,y,z (4.17) 

that can be defined as 

∫
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−= dtetCwE iwt*)(1)(
π

      (4.18) 

The spectrum E(w) of the Cyy material covariance for markers released inside the viscous 

wall region is shown in Figure 16a and 16b for the case of channel and Couette flow, 

respectively. Figures 4.17a and 4.17b present the spectrum for the case of markers 

released in the outer region of the channel. As mentioned above regarding Equation (4.9), 
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the Lagrangian autocorrelation coefficient is usually assumed to follow an exponential 

function of the form Ri=exp(-t/τi) that is appropriate for homogeneous, isotropic 

turbulence and gives Ri=0.368 when t = τi. The spectrum that results using this function 

in Eqn. 4.17 is also shown in Figures 4.16 and 4.17 (designated as “analytical”) in order 

to show the effects of the turbulence structure on heat transfer. For release close to the 

wall (Figure 4.16), the differences in the spectra for different Pr are significant for small 

and medium Pr. The spectra become Pr independent for high Pr (>100). There are also 

differences between the actual spectrum and the exponential function, due to the presence 

of the wall and the anisotropies introduced by the wall.  

For release in the logarithmic region (Figure 4.17), the spectrum shows differences at 

small wave numbers for different Pr, indicating differences in the contribution to heat 

transfer due to large turbulence scales. It is seen that the reason for which the mechanism 

of heat transfer depends on the Pr, when it does so, is that the turbulence velocity 

structures that contribute to heat transfer are different in each case. Integrating the 

spectrum E(w) up to the first 10 frequencies (w ≤ 0.078125), and dividing this integral by 

the value of the same integral for Pr=50000, shows a ratio of 0.84 and 0.78 for channel 

flow and Pr=100 and 0.7, respectively, when the point of release is at yo=75. For release 

in the center of the channel (yo=150), the value of the ratio is 0.88 and 0.84 for Pr=100 

and 0.7, respectively. However, such differences are much smaller for Couette flow.  In 

Couette flow, for release at yo=75, the ratio is 1.0 and 0.96 for Pr=100 and 0.7, 

respectively. For release at yo=150, the value of the ratio is 1.0 and 0.97 for Pr=100 and 

0.7, respectively. It appears that within the constant stress region (which covers almost 

the whole channel in the Couette flow case) all the velocity scales contribute almost 
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equally to the dispersion of heat, apart from the case of low Pr, i.e. Pr=0.1. Furthermore, 

the values of the spectral function are higher for the Couette flow case, showing that 

similar frequency structures can be more dispersive in Couette flow than in channel flow. 

The fundamental reason for the observed differences in dispersion between different 

types of flow appears to be the intensity of the large scale velocity events (i.e., the 

magnitude of the fluctuations), but not their duration.  

4.4 Conclusions 

The behavior of instantaneous and continuous line sources of heat or mass at different 

locations of turbulent plane Poiseuille and plane Couette flow has been investigated in 

this work using Lagrangian scalar tracking. The effect of the turbulence structure and of 

different Pr in turbulent transport has also been studied. The range of the fluid molecular 

Prandtl number extended from 0.1 to 50000. The numerical results agreed well with 

previous experimental measurements for the case of a plume, as well as with previous 

Lagrangian simulations for the case of the Lagrangian time scale for channel flow. 

Regarding the turbulent dispersion dependence on Pr, it was found that it is important 

when the molecular Pr is comparable to the turbulent Pr, in agreement with previous 

work and theoretical expectations. The material autocorrelation function and the 

associated material timescale were Pr independent for Pr ≥ 3. However, when the source 

location was close to the wall, and more specifically within the viscous wall sublayer, the 

effects of Pr were significant. The assumption that the Lagrangian velocity of scalar 

markers is independent of Pr within the constant stress region was found to be invalid. 

Descriptive correlations for the material time scale have been calculated (Equations 4.15 

and 4.16) for low and high Pr. It was also found that dispersion is stronger in the plane 
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Couette flow case relative to the plane channel flow, indicating enhancement of turbulent 

dispersion in the constant stress region and, thus, in the logarithmic region. The 

difference is attributed to the large scale velocity events that contribute to heat transfer. In 

general, turbulent dispersion is different in different turbulent velocity fields because the 

large scale structures of these turbulent velocity fields are different.   
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Table 4.1: Summary of the conditions applied to the simulation runs used in this work. 

Each run was for a different Pr and a different flow field (the letter P in the run number 

indicates Poiseuille flow and the letter C indicates Couette flow). Passive markers were 

released at five different elevations in each of the flow fields, indicated by the letters a-e.  

Each simulation was run for 300 viscous time units.  

 

Run 
number Pr  Source elevation from the wall in  

viscous wall units 
Numbers 

of 
markers

  Case a Case b Case c Case d Case e  
P1 0.1 5 15 28.5 75 150 16,129
P2 0.7 5 15 28.5 75 150 16,129
P3 0.7 2 38.5 50 96 125 16,129
P4 3 5 15 28.5 75 150 16,129
P5 6 5 15 28.5 75 150 16,129
P6 10 5 15 28.5 75 150 16,129
P7 100 5 15 28.5 75 150 16,129
P8 200 5 15 28.5 75 150 16,129
P9 500 2 15 28.5 75 150 16,129

P10 1,000 5 15 28.5 75 150 16,129
P11 2,400 1 15 28.5 75 150 16,129
P12 7,500 1 15 28.5 75 150 16,129
P13 15,000 1 15 28.5 75 150 16,129
P14 50,000 1 15 28.5 75 150 16,129
C1 0.1 1 15 28.5 75 150 145,161
C2 0.7 1 15 28.5 75 150 145,161
C3 6 1 15 28.5 75 150 145,161
C4 10 1 15 28.5 75 150 145,161
C5 100 1 15 28.5 75 150 145,161
C6 200 1 15 28.5 75 150 145,161
C7 500 1 15 28.5 75 150 145,161
C8 1,000 1 15 28.5 75 150 145,161
C9 2,400 1 15 28.5 75 150 145,161

C10 7,500 1 15 28.5 75 150 145,161
C11 15,000 1 15 28.5 75 150 145,161
C12 50,000 1 15 28.5 75 150 145,161
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Figure 4.1a: Turbulent flow statistics: mean velocity profile  
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Figure 4.1b: Turbulent flow statistics: turbulence intensity in the streamwise, normal and 

spanwise flow directions. L&K: Lee and Kim (1991); A&L:  Aydin and Leutheusser 

(1991); R&J: Robertson and Johnson (1970). 
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Figure 4.2a: Mean puff normal position for different source elevations as a function of 
time for Pr=0.7 for Poiseuille flow 
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Figure 4.2b: Mean puff normal position for different source elevations as a function of 
time for Pr=0.7 for Couette flow.
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(a) 

 
 
(b) 

 
Figure 4.3: Contour plot for the concentration profile resulting from a puff in channel 

flow for at t+ = 300 and source elevation of yo=28.5: (a) Pr=0.7, (b) Pr=200. 
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(a) 

 
 
(b) 

 
Figure 4.4: Contour plot for the concentration profile resulting from a puff in Couette 
flow for at t+ = 300 and source elevation of yo=28.5: (a) Pr=0.7, (b) Pr=200. 
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Figure 4.5a: Mean puff normal position for different Pr as a function of time for 

Poiseuille flow (* yo=1, no asterisk yo=5)  
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Figure 4.5b: Mean puff normal position for different Pr as a function of time for Couette 

flow, yo=1 
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Figure 4.5c: Mean puff normal position for different Pr as a function of time for  

Poiseuille flow, yo=28.5  

  



117 
 

           

20

40

60

80

100

120

0 50 100 150 200 250 300

0.1
0.7
6
100
2400
50000

Y

t+

Pr

 
 
Figure 4.5d: Mean puff normal position for different Pr as a function of time for Couette 

flow, yo=28.5  
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Figure 4.6: Mean puff streamwise velocity for different source elevations as a function of 
time for Pr=0.7: (a) Poiseuille flow, (b) Couette flow. 
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Figure 4.7: Mean puff streamwise velocity for different Pr as a function of time for 
Couette flow: (a) yo=1, (b) yo=75 
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Figure 4.8: Mean puff normal velocity for different Pr as a function of time for Couette 
flow: (a) yo=1, (b) yo=75. 
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Figure 4.9: Comparison of the plume half width computed with the DNS/LST method 
and experiments. The value of R2 for the line shown is 0.945. 
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Figure 4.10: Comparison of the concentration profile resulting from an elevated source 
with the DNS/LST method and experimental measurements: (a) comparison to the mass 
transfer experiments of Fackrell and Robins (1982), (b) comparison to heat transfer 
experiments by Shlien and Corrsin (1976). 
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Figure 4.11: Plume half-width for Poiseuille channel flow: (a) yo=5, (b)  yo=15, (c) 
yo=28.5 
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Figure 4.12: Plume half-width for Couette flow: (a) yo=5, (b)  yo=15, (c) yo=28.5 
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Figure 4.13: Material correlation coefficients as a function of Pr for markers released in 
Poiseuille flow: (a) VxVxR , yo=75, (b) VyVyR , yo=75, (c) VzVzR , yo=75. 
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Figure 4.14: Material correlation coefficients as a function of Pr for markers released in 
Couette flow: (a) VxVxR , yo=75, (b) VyVyR , yo=75, (c) VzVzR , yo=75. 
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Figure 4.15: Material time scale as a function of the elevation of the point of release: (a) 
Poiseuille flow, (MH designates data from Mito and Hanratty (2003), (b) Couette flow. 
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Figure 4.16: Spectrum of the material autocorrelation coefficient VyVyR  for high Pr and 
markers released inside the viscous wall region (yo=1): (a) Poiseuille flow, (b) Couette 
flow. The lines marked “Analytical” show the spectrum of ( )LyVyVy tR τ−= exp . 
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Figure 4.17: Spectrum of the material autocorrelation coefficient VyVyR  for high Pr and 
markers released inside the logarithmic region (yo=75): (a) Poiseuille flow, (b) Couette 
flow. The lines marked “Analytical” show the spectrum of ( )LyVyVy tR τ−= exp . 
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Chapter 5: Scaling of Heat Transfer Using Thermal Flux Gradients for 

Fully Developed Turbulent Channel and Couette Flows 

5.1. Introduction  

New approaches to the scaling of turbulent heat transfer from the wall have recently been 

explored by two groups. Churchill and coauthors (Churchill and Chan, 1995, Churchill, 

2000, Yu et al., 2001, Churchill, 2002) proposed an algebraic model for the prediction of 

mean turbulence quantities. According to the Churchill model, fully developed flow and 

convection can be expressed as fractions, respectively, of shear stress and heat flux 

density due to turbulent fluctuations. The mean temperature profile can then be predicted 

when the velocity profile and the turbulent Prandtl number are given. The second work 

on heat transfer scaling was done by Wei et al. (2005a) (henceforth in this chapter, this 

contribution will be referred to as WFKM). Their approach was based on an analysis of 

the averaged heat equation. They utilized direct numerical simulation data for channel 

flow to determine the relative dominance of the three terms of the averaged heat 

equation.  The turbulent flow domain was decomposed into layers, each with its 

characteristic transport mechanism. The heat flux gradient ratio was calculated and used 

as a tool to identify these layers.  

Using data obtained with Lagrangian simulations (Lagrangian scalar tracking, LST) for 

both plane Poiseuille flow and plane Couette flow, Le and Papavassiliou (2006) have 

found that the theoretical predictions by Churchill and coworkers agree with the data 

quite well for a range of Prandtl number fluids, but there are deviations at very high 
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Prandtl numbers. The present chapter examines the analysis of WFKM to investigate 

whether it could be used for flows with different structure, such as Poiseuille channel 

flow and plane Couette flow. The same sets of data that was used to study the Churchill 

scaling approach is used herein to examine WFKM’s approach, and to extend the range 

of Peclet numbers studied by WFKM to higher values.  

5.2. Background and Theory 

Prior to developing the scaling system for heat transfer in Wei et al.’s work (2005b), the 

same group of collaborators explored the scaling of wall-bounded turbulent flows (Wei et 

al., 2005c, Fife et al., 2005). They suggested a four-layer description of the turbulent field 

next to a wall. Each of these layers is characterized by the predominance of two of the 

three terms in the governing equations. Based on those findings, they extended the 

momentum transport analysis to the case of fully developed thermal transport for constant 

heat flux supplied at the channel wall. In the following sections, we outline the WFKM 

approach retaining the same terminology – full details are available in the original 

reference.   

5.2.1. Statement of the problem  

For incompressible flow with constant properties and neglecting viscous dissipation 

effects, the averaged energy equation for a 2D, fully developed channel flow is 

( )
+

++

+

+

+

+

+ ∂

−∂
+

∂
∂

+−=
y

uv

y
T

U
U

h B
2

2

Pr
110      (5.1)  

where the classical inner non-dimensionalization has been applied, i.e., the velocity 

normalized with the frictional velocity  */ uUU =+ , the temperature normalized with the 

friction temperature */TTT =+ , the distance from the wall given as )//( *uvyy =+ . 
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Normalizing the distance with half channel height h, hy /=η , one obtains the outer 

normalized heat equation as follows:  
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WFKM defined the variable Φ in addition to U+, η as follows: 
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The effects of the Reynolds number as well as the effects of the Prandtl number in 

turbulent transport are taken into account through Φ. The fully developed condition 

implies no x-dependence, so the variables Φ and  */' TTv +=ψ  will depend only on η. 

The result is  
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where BUUr )()( ηη = . 

The boundary conditions are 

0=Φ , 1=
Φ
ηd

d , 0==
η
ψψ

d
d   at 0=η    (5.5)  

0=ψ , 0=
Φ
ηd

d    at 1=η    (5.6) 

As pointed out in Wei et al. (2005a), the problem defined by Equations (5.4)-(5.6) is 

underdetermined with no unique solution. 

5.2.2. Principal layer structure 

The thermal wall layer for turbulent flow has traditionally been divided into four layers: 

the molecular transport sublayer, the buffer layer, the logarithmic layer and the outer 



133 
 

layer. However, WFKM discussed that the thermal buffer layer is not as clearly defined 

as the momentum buffer layer, and the Pr-dependent coefficients for the logarithmic 

layer provided by Kader (1972) are based mainly on fitting to experimental data. 

Therefore, a revised principal layer structure was proposed. WFKM examined the three 

terms in the mean heat equation that relate the production of heat to molecular diffusion 

transport, turbulent transport and streamwise mean advection (from left to right as they 

appear in Eqn. 5.4), to determine their relative dominance as a function of distance from 

the wall. They proposed the use of the ratio of the gradient of the molecular diffusion flux 

to that of the turbulent transport, RHF, to identify which terms are important, and to 

identify the different mechanisms of heat transfer 

η
ψ
η

θ

α

d
d
d
d

dy
vd

dy
Td

RHF

2

2

2

2 Φ

=
−

=       (5.7) 

For low Peτ (Peτ<20), the magnitude of the molecular diffusion term is larger than the 

turbulent diffusion term in Equation 7 (i.e., RHF < -1 or RHF > 1). For moderate or high 

Peτ, the behavior of the ratio of the heat flux gradient ratio divided the flow domain into a 

four-layer structure:  

• Layer I (Molecular diffusion/mean advection balance layer): The molecular diffusion 

and mean advection are dominant and the turbulent term is negligible in the heat 

equation.  

• Layer II (Heat flux gradient balance layer): Molecular diffusion and turbulent 

transport are main components. In this layer, RHF is equal to -1. 

• Layer III (Mesolayer): All three terms contribute in the heat equation. 
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• Layer IV (Inertial layer): The heat balance is between the advection and the turbulent 

transport term.  

5.2.3. Methodology 

The Lagrangian scalar tracking (LST) method was used to generate the mean temperature 

profiles, by following trajectories of heat markers released in the flow field created by a 

direct numerical simulation (DNS). The flow in both Poiseuille and Couette flow cases is 

for an incompressible, Newtonian fluid with constant properties. In Poiseuille channel 

flow, the flow is driven by the constant pressure gradient, and, in plane Couette flow, the 

flow is driven by the constant shear stress caused by the two channel walls moving in 

opposite directions. For Poiseuille flow, the simulation was done on a 128x65x128 grid 

in the x, y, z directions, respectively. The dimensions of the computational box were 

(4πh, 2h, 2πh) with h =150 in wall units. The flow was periodic in the streamwise and 

spanwise directions. For the plane Couette flow, the simulation was done on a 

256x65x128 grid with computational box dimensions (8πh, 2h, 2πh).  

The building block for the Lagrangian simulation was the probability function P1(X-

xo,Y,t-to| ox ,to) that a heat marker released at the wall of the channel at x = xo at time to is 

going to be at a location (X,Y) in the channel. The physical explanation for this 

probability function is that it represents temperature contours from an instantaneous line 

heat source at xo = 0. By integrating (or, in the discrete case, summing up) P1 from time to 

to a final time tf, the behavior of a continuous line source can be obtained. The mean 

temperature profile can then be synthesized using a series of continuous line sources 

covering one (the bottom), or two walls of the channel (both the top and the bottom). 
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Constant heat flux added to the bottom wall can be simulated by integrating P1 over time 

and over the streamwise direction 

∑∑
= =

−−≡
f

o

f

o

x

xx

t

tt
oooo txttyxXPyT ),|,,()( 1  tf → ∞ and xf → ∞ (5.8) 

The fully developed mean temperature for the case of heat flux from both planes, 

therefore, can be calculated as follows (Le and Papavassiliou, 2006, Mitrovic et al. 2004):  

)2()()( yhTyTyT −+=       (5.9)               

and assuming that the temperature is symmetric around the center-plane (i.e., the plane 

y=h).  

Details about all the Lagrangian runs used here were reported in Le and Papavassiliou 

(2006) (also in Chapter 3) and Mitrovic et al. (also in Chapter 2). For Poiseuille channel 

flow, 16,129 markers were released instantaneously at the channel wall for high Pr, and 

145,161 markers were released at a time for low Pr, (these are referred to as run E and 

run C, respectively, in Table 2.1 For plane Couette flow, 145,161 markers were released 

instantaneously at the channel wall for all the Pr, referred as run A and run B in Chapter 

3. Further description and validations of the LST methodology can be found elsewhere 

(Papavassiliou an Hanratty, 1997, Ponoth and McLaughlin, 2000, Papavassiliou, 2002a, 

2002b, Mito and Hanratty, 2003). 

5.3. Results and Discussion 

5.3.1. Heat flux gradient and layer extents 

Figures 5.1(a) and 5.1(b) show the ratio of the gradient of the molecular diffusion flux to 

that of turbulent transport flux in for low Pr and high Pr, respectively. The smaller Peτ , 

corresponding to Pr = 0.7, is 105. As WFKM predicted for Poiseuille flow and for 
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moderate or large Peτ, there is a clear -1 ratio region. This region moves inward as the Pr 

increases. The mesolayer (layer III) also exhibits a trend; as the Pr increases, the region 

extends farther outward. The trend for plane Couette flow is similar to that of plane 

Poiseuille flow. As Pr increases, the  -1 ratio region also moves inward, as was seen in 

plane Poiseuille flow case.  

Figure 5.2 shows the physical extent of the thermal layer structure for plane Poiseuille 

flow and plane Couette flow in comparison with data from Kawamura et al. (2000) and 

Kasagi et al. (1991) as presented in WFKM. The physical extent of the thermal layer 

structure was defined by WFKM as follows: the end of the gradient balance layer when 

RHF = -2, and the end of the mesolayer when RHF = 0.5. Our DNS/LST data for both plane 

Poiseuille flow and Couette flow is at Reτ = 150. WFKM showed that as Reτ increases, 

the gradient balance layer and the mesolayer extend farther. The results in Figure 5.2 

show that for the DNS/LST data at Reτ = 150, the balance layer and mesolayer lie before 

the layers at Reτ = 180 and the next available data at Reτ = 395. The results from the 

present work agree with the Reτ trend, and also expand the range of Peτ by four orders of 

magnitude. Regression analysis of the DNS/LST data using a power law yields the 

equations shown on Figure 5.2. If the coefficients in the power law equations for 

Poiseuille and Couette flow are averaged, the following equations result: 

y+=23.418Pr -0.247  extent of balance layer (layer II)  (5.10a)   

y+=42.771Pr-0.245  extent of mesolayer (layer III)  (5.10b) 

The extent of both layers appears to scale with ~Pr -1/4 
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5.3.2. Characteristic scales for medium and high Peτ 

For small or moderate Peτ, WFKM argued that a single scaling is representative of the 

whole thermal field. This single scaling is the scaling used in Equation 5.4.  

For moderate or high Peτ, there are different scales that characterize the four different 

layers of the thermal field. In order to obtain these scales, the analysis of WFKM was 

based on some reasonable assumptions: (a) The value of RHF  at specified distance from 

the wall is a monotonically declining function of Peτ. This assumption is corroborated by 

the DNS/LST data, as seen in Figure 5.1. (b) For fixed values of h+ and  η , Φ  is also a 

monotonically decreasing function of  Peτ approaching zero as Peτ → ∞ and being of 

Ο(1) as Peτ → 0. This is also confirmed with the LST/DNS data presented here. 

For Peτ >> 1, a new inner scaling was defined by WFKM as yσ = η/σ2 where σ2 is the 

maximum value of Φ, occurring at the center of the channel, η=1 [i.e, σ2 = Φc =Φ (1)]. 

The values of σ2 are presented in Figure 5.3 as a function of Peτ. Since σ2 is monotonic 

and can be described accurately at the two asymptotic limits (Peτ → 0 and Peτ → ∞), the 

best way to represent its functional dependence on Peτ  is to utilize the generalized 

equation proposed by Churchill and Usagi (1972) for all such phenomena. Using this 

method, the correlation for Φc  is of the form 
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( )[ ] 63.75/163.75081.0
317.0 126.21

372.0
)( −

− +=
Φ

τ
τ

τ Pe
Pe
Pec  for Couette flow  (R2 = 0.996) (5.11b) 

The best fit equations, if one uses a simple power expression with exponent -0.5 (as was 

tentatively suggested in WFKM), are 

Φc =Φ2 = 1.455 Peτ
-0.5,  for Poiseuille flow (R2 = 0.996)  (5.12a) 

Φc = Φ2= 1.119 Peτ
-0.5,  for Couette flow (R2 = 0.998)               (5.12b) 

The outer scaling for Peτ >> 1 is η.  The remaining scale is the one appropriate for the 

mesolayer, for which WFKM suggested Φ== ηησσ yŷ . The range where this scaling 

applies is around the location of the point at which T is maximum. The inset in Figure 5.3 

presents the values of η at which ψ = ψmax . This distance scales with Pr-0.23 (which is 

very close to the Pr-0.25 scaling for the extent of the mesolayer) and our data show that it 

is related to σ with a power law, 66.0
max 88.0)( Φ=ψη , instead of the correlation 

Φ= 8.1)( maxψη  suggested in WFKM. In the analysis of WFKM the distance from the 

wall at which ψ = ψmax  is rather important, because it can be used in order to obtain 

ψ and Φ under certain conditions (see equation 28 in WFKM and discussion thereafter).  

5.4. Conclusions 

The scaling of heat transfer in turbulent flows is an area of significant interest. The recent 

publication by Wei et al. (2005a) presented a new approach to address this issue. The 

present communication examined the applicability of the WFKM method in a fully 

developed flow with different structure than the plane channel flow and extended the 

range of Peτ provided by WFKM. It was found that the principal layer structure proposed 

for Poiseuille flow also applies to plane Couette flow. It also appears that the extent of 



139 
 

the heat flux gradient balance layer (layer II) and the extent of the mesoscopic layer 

(layer III) scale with Pr-1/4 for both Poiseuille and Couette flow.  Finally, the data for 

medium and very large Peτ presented in this communication provided the opportunity to 

develop correlations for the outer and mesolayer scalings that can be used to predict the 

temperature and turbulent heat flux profiles.   
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Figure 5.1: Heat flux gradient ratio in plane Poiseuille and Couette flow: (a) Low Pr; (b) 

High Pr. 
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Figure 5.2: The inner normalized extent of the layers in fully developed thermal channel 
flow. The lines represent best fit power equations y+=24.033Pr-0.248 (extent of layer II, 
Poiseuille);  y+=22.803Pr-0.246 (extent of layer II, Couette);  y+=41.044Pr-0.233 (extent of 
layer III, Poiseuille);  y+=44.497Pr-0.256 (extent of layer III, Couette). Data for Reτ=180, 
395, 640 are from Kawamura et al. (2000) and Kasagi et al. (1991) as presented in WFKM. 
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Figure 5.3. Inner scaling as a function of Peτ

 . The inset figure presents the distance form 
the wall at which the turbulent heat flux has its maximum value. The equations that best 
fit the data are  
η(Σmax) = 0.19Peτ

 -0.23
 and η(Σmax) = 0.18 Pe τ

  -0.23 for Poiseuille and for Couette flow, 
respectively. 
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Chapter 6: Temperature Prediction at low Re turbulent Flows using the 

Churchill turbulent heat flux correlation 

6.1 Introduction 

Scaling questions about the law of the wall (a bulwark of turbulence theory) in low and 

intermediate Reynolds numbers (i.e., flow in channels and pipes, instead of infinite 

boundary layers) have been raised for the velocity field (Finnicum and Hanratty , 1988; 

Wei and Willmarth , 1989; Sreenivasan , 1989; Hanratty and Papavassiliou, 1997; 

Barenblatt  et al., 2000a, 2000b; Wei et al., 2005b). It is now argued that turbulence 

quantities do not scale with the viscous wall parameters, as defined conventionally, and 

that a Reynolds number effect is present. Similar issues can be raised for the equivalent 

of the law of the wall for heat transfer. Results from direct numerical simulations have 

shown that scaling with the wall parameters for low Reynolds numbers does not provide 

universal behavior for the fluctuating thermal field (Teitel and Antonia, 1993; Kawamura 

et al., 1998; Kawamura et al., 1999). However, an effort to explore the scaling of heat 

transfer similar to that for momentum has not been vigorously pursued, with the notable 

exception of Churchill and coworkers (Churchill and Chan, 1995; Churchill, 2000, 2002; 

Yu et al., 2001) who suggested the use of the local fraction of the heat flux density due to 

turbulent fluctuations to predict the mean temperature, introducing, thus, the use of a 

scale different than the conventional friction temperature.  

An algebraic model for the prediction of mean turbulence quantities was first introduced 

by Churchill and Chan (1995); it has been suggested to be superior in several aspects 

when compared with other conventional algebraic models that are based on empiricisms 

and approximations. Heuristic concepts, like the eddy diffusivity or the mixing length 



144 
 

that are not fundamentally sound, are totally avoided. According to this new model, fully 

developed flow and convection can be expressed as fractions, respectively, of shear stress 

and heat flux density due to turbulent fluctuations. The mean temperature profile can be 

predicted based on exact equations, given the velocity profile and the turbulent Prandtl 

number. This is a very significant contribution in the area of turbulent convection, 

especially given the semi-empirical predictive capabilities of the past (Kader, 1981). In 

addition, the concept of a scale that is directly associated with turbulence, like the 

fraction of the local heat flux due to turbulence suggested by Churchill, seems more 

natural, when contrasted to scaling based on the wall friction temperature (which is 

dependent only on viscous effects). In other words, since the temperature fluctuations are 

generated due to velocity fluctuations and their production occurs within the conductive 

wall layer but not at the wall, it makes sense to predict turbulent transfer based on a 

turbulence quantity rather than a viscous one.  

Churchill et al. (2005) have recently conducted an analysis of the sensitivity of the new 

algebraic model to the numerical empiricisms and empirical functions that enter into it. 

They found that predictions are rather insensitive to reasonable changes in the empirical 

parameters of the model. On the other hand, comparison of the model predictions to 

either simulation results or experimental measurements for a truly extensive range of data 

has not been reported. This is the space that the present chapter covers: the verification of 

the Churchill model for a range of fluids (i.e., a range of Prandtl numbers) and for 

fundamentally different turbulent velocity fields (i.e., pressure driven and shear driven). 

Our research group has used direct numerical simulation (DNS)  in conjunction with 

Lagrangian scalar tracking (LST) to study turbulent transport for an extensive range of 
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Prandtl numbers (from Pr = 0.01 to 50,000) in Poiseuille channel flow (Mitrovic et al., 

2004; Le and Papavassiliou, 2005) and in Couette flow  (Le and Papavassiliou , 2005; 

2006)  as presented here also from Chapter 2 to Chapter 4. Mean temperature profile 

predictions through this method agree very well with previous experimental and direct 

numerical simulation results, and, quite importantly, they have been obtained with a 

consistent methodology that has been used for a range of cases where conventional 

Eulerian direct simulations are not yet feasible.  

6.2. Background and Theory 

6.2.1 Eulerian heat transfer 

In chapter 2, the Eulerian framework has been introduced. In the Eulerian framework, the 

temperature T can be decomposed into the mean temperature T  and the fluctuation θ. 

The temperature is conventionally made dimensionless by normalizing with the friction 

temperature *T , ( )** / uCqT pw ρ= , where wq  is the heat flux at the wall defined in terms 

of the thermal conductivity of the fluid k as 

w
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Therefore, a dimensionless temperature +T  can be calculated by 
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6.2.2 The Churchill algebraic model 

We present here a brief overview of the model – more details can be found in the original 

publications. Churchill and Chan (1995) have rewritten the time-averaged, once-
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integrated differential representation for the conservation of momentum for fully 

developed turbulent flow field as  

( )+

+

+

+= ''vu
dy
Ud

wτ
τ        (6.1) 

where +y  is the distance from wall in viscous wall units ( ν/*yuy =+ ), +
U is the 

dimensionless mean velocity ( */ uUU =
+ ). They have also derived and introduced the 

dimensionless quantity ( ) ++''vu , which represents the local fraction of the shear stress due 

to fluctuations in velocity. Equation (6.1) therefore was written as  
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where τρ /'')''( vuvu −=++ . 

In analogy to momentum transfer, turbulent heat transfer based on the fraction of the heat 

flux that is due to turbulence has been studied more deeply in recent papers by Churchill 

and coauthors (Churchill , 2000, 2002; Heng et al., 1998; Danov et al., 2000). These 

papers were focused on the temperature predictions in turbulent flow fields, in round 

tubes (Heng et al., 1998) and between parallel plates (Danov et al., 2000). The time-

averaged energy balance for steady, fully developed convection in the turbulent flow of a 

Newtonian fluid between parallel plates was rewritten in terms that utilized the local 

fraction of the heat flux due to fluctuations 
++

'vθ  
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where qvCv p /')'( θρθ −=++ . 
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Churchill and coauthors have also discussed an effect that has been neglected in previous 

research: the deviation of the heat flux density distribution due to the shear stress 

distribution across the channel (Churchill , 1995, 2000, 2002; Heng et al., 1998; Danov et 

al., 2000). They have suggested the use of the correction term γ ,  which can be included 

in the calculation of the heat flux ratio, as shown in the following equations for equal and 

uniform heating from one plate, Equation (6.4a) and two plates, Equation (6.4b), 

respectively:  
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From Equations (6.2), (6.3) and (6.4b), temperature profiles can be calculated by 

integration for the case where two plates are heated uniformly and equally (Danov et al., 

2000) 
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where Prt is the turbulent Pr. Similarly, for one heated wall, the temperature profile can 

be found from the following equation:  
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where the correction term γ for two heated walls is calculated from the following 

equation: 
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For one heated wall, the equivalent correlation is 
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To summarize, one needs empirical equations for ++)''( vu  and Prt, in order to solve for 

the mean velocity and temperature according to this model. 

6.2.3 Heat balance 

  The heat balance equations have been developed by Teitel and Antonia (1993) for fully 

developed turbulent channel flow for different cases of heating as follows:  

Case 1: Both walls are heated at the same constant heat flux uniformly and equally 
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Case 2: One wall (at y+= 0) is heated with constant heat flux uniformly and the second 

wall is kept adiabatic 
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Substituting Equation (6.4) in (6.9) and (6.10) yields the following heat balances when 

the correction γ  for the shear stress across the channel is taken into account: 
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Equations (6.11) and (6.12) apply to case 1 and case 2, respectively.  

6.2.4 Direct numerical simulation  

The DNS of plane Couette flow has been discussed in Chapter 3 and 4. The flow in both 

Poiseuille and Couette cases is for an incompressible, Newtonian fluid with constant 

properties. In Poiseuille channel flow, the flow is driven by the constant pressure 

gradient, and in plane Couette flow, the flow is driven by the constant shear stress caused 

by the two channel walls moving in opposite direction.  

For Poiseuille flow, the Reynolds number, Re, was 2660 (based on the mean centerline 

velocity and the channel half-height). The simulation was done on a 128x65x128 grid in 

the x, y, z directions, respectively. The dimensions of the computational box were (4πh, 

2h, 2πh) with h=150 in wall units. The flow was periodic in the streamwise and spanwise 

directions. For the plane Couette flow, the Reynolds number was also 2660 (based on 

half the relative velocity of the two walls and the channel half-height). The simulation 

was done on 256x65x128 grid with computational box dimensions (8πh, 2h, 2πh).  

6.2.5 Lagrangian scalar tracking method  

The mean temperature profile can be synthesized using a series of continuous line 

sources covering one (the bottom), or two walls of the channel (both the top and the 
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bottom) as discussed in Chapter 2. Heat flux added to the bottom wall can be simulated 

by integrating P2 over the streamwise direction 
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 tf → ∞ and xf → ∞  (2.15) 

The fully developed mean temperature for the case of heat flux from both planes, 

therefore, can be calculated using  

)2()()( yhTyTyT −+=       (2.16)               

and assuming that the temperature is symmetric around the center-plane (i.e., the plane y 

= h).  Details regarding the mean temperature profiles can be found in Chapter 2, 3 and 4. 

6.3. Results and Discussion 

6.3.1 Total shear stress due to turbulence  

The fraction of the total shear stress due to turbulence, ( ) ++''vu , based on the DNS results 

for channel and Couette flow, is presented in Figure 6.1 as a function of the distance from 

the channel wall. This fraction goes from zero at the channel wall to almost one at the 

center of the channel. As shown in Figure 6.1, the fraction of total shear stress due to 

turbulence in channel flow is smaller than that of Couette flow at the same distance from 

the wall.  

 A correlation equation for the turbulent shear stress ( ) ++''vu  has been introduced by 

Danov et al. (2000) in the form of a power mean of three limiting expressions for ( ) ++''vu  

(the asymptotes for y+→0 and y+→h+, and an exponential decay for the logarithmic 
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region 30 < y+ < 0.1h+). The turbulent shear stress is calculated based on the half channel 

height and the distance from the wall as in the following equation:  
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A plot of this correlation varying with the distance from the wall is also presented in 

Figure 6.1. It is close to the profile for Poiseuille flow but it is smaller than the Couette 

flow profile. It should be noted that the coefficients 0.436 and 6.95 in Equation (6.13) 

were obtained based on measurements for pipe flow in the Princeton superpipe (Zagarola 

, 1996) for very high Reynolds numbers. These data have now been updated (McKeon et 

al., 2004), but predictions of   ( ) ++''vu  and of temperature profiles based on updated 

coefficients have not been found to differ significantly than using Equation (6.13) 

(Churchill et al., 2005). 

6.3.2 Normal heat flux 

The normal heat flux is found using Equations (6.11) and (6.12) for one heated wall and 

two heated walls, respectively. The heat flux as a function of y for one heated wall is 

presented in Figures 6.2(a) and 6.2(b). As the Pr increases, the normal heat flux 

increases. As seen in Figures 6.2(a) and 6.2(b), the normal heat flux increases to a 

maximum of 1 for high Pr, and less than 1 for low Pr. For high Pr, such as 2,400 and up, 

this maximum occurs very close to the wall. The normal heat flux is approximately 0.55 

at half channel height for all the Prandtl numbers.  

The normal heat flux in the case where both walls are heated uniformly and equally is 

shown in Figures 6.3(a) and 6.3(b) for Poiseuille flow and Couette flow, respectively. It 

follows the same trends as in the one heated wall case: the normal heat flux increases as 
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Pr increases. The normal heat flux reaches a maximum pretty fast, and then decreases to 

zero at half channel height. The result for Pr = 0.7 shows a very good agreement with 

previously reported normal heat flux by Kasagi et al. (1992). Results from Kawamura et 

al. (1998) and Kim and Moin (1989) for Pr = 0.7 are also shown in Figure 6.3(a). 

The fraction of the normal heat flux due to turbulence is presented in Figures 6.4(a) and 

6.4(b) for one heated wall and Figures 6.5(a) and 6.5(b) for two heated walls.  In Figure 

6.4(a), for Poiseuille channel flow with one heated wall, this fraction increases to 1 

quickly (e.g., y+ ≈ 40 for Pr = 6, 10; y+ ≈ 10 for Pr = 200, 5,000 and y+ ≈ 2 for Pr ≥ 

2,400) and then stays constant. This means that the normal heat flux is only due to 

turbulence. The normal heat flux for Couette flow with one heated wall is shown in 

Figure 6.4(b) exhibits the same trend. However, it increases to 1 faster than in Poiseuille 

channel flow. For low Pr in both cases, the fraction never gets to 1, even at the center of 

the channel. The heat flux is affected by both convection and diffusion throughout the 

channel for low Pr.  

The normal heat flux for the case where both walls are heated uniformly and equally is 

shown in Figures 6.5(a) and 6.5(b). The results look similar to the results in Figures 

6.4(a) and 6.4(b). It does not matter if one wall or two walls are heated; it takes the same 

distance to get to the turbulence effects-only region for all the Pr.  

6.3.3 Mean temperature 

The temperature profiles for the case when one wall is heated constantly are shown in 

Figures 6.6(a) and 6.6(b) for Poiseuille channel flow and Couette flow, respectively, and 

in Figures 6.7(a) and 6.7(b) for the two heated walls case. The temperatures presented in 

the figures were calculated using the following methods:  



153 
 

Method 1: Using DNS/LST method – the mean temperature profiles have been presented 

previously in Chapter 2 and Chapter 3. 

Method 2: Using Churchill’s prediction (Equations (6.5) and (6.6)), where the turbulent 

Prandtl number, Prt, is calculated from our DNS/LST data as follows:  

α

ν

E
E

t =Pr , and 

+

+

+

=

dy
Td

vE )'(θ
α

 and 

+

+

+

=

dy
Ud

vuE )''(
ν   (6.14) 

and ( ) ++''vu is also from DNS/LST data as presented in Figure (6.1).  

Method 3: Using Churchill’s correlation for ( ) ++''vu  as in Equation (6.13), and direct 

calculation of turbulent Prandtl number Prt from our DNS/LST data. 

Method 4: Using the Kays empirical correlation for Prt  (Kays , 1994) and the DNS/LST-

obtained ( ) ++''vu . The correlation suggested by Kays, 85.0
Pr

7.0Pr +=
t

t ν
ν  (where νt is the 

eddy viscosity), has been written in terms of ( ) ++''vu  (using Equation (6.2) and the 

definition of ( ) ++''vu  one can see that ( )( ) ( ) tvuvu νν=− ++++ ''''1 ) in the following form 

(Churchill, 2000):  

[ ] 85.0
)''(Pr

)''(17.0Pr +
−

=
++

++

vu
vu

t       (6.15) 

Since Kays suggested that the coefficient 2.0 works better than 0.7 for low Pr fluids, we 

used 2.0 for Pr < 1. 

Method 5: Using Equation (6.13) for  ++)''( vu  and Equation (6.15) for Prt. 

 For low and medium Pr, the temperature profiles were predicted within reasonable errors 

(hardly seen in the logarithmic scale in Figures 6.6 and 6.7). However, for high Pr (Pr = 
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500 and 15,000 in the plots, and other Pr from 100 and up), Churchill’s prediction gives a 

good agreement with the DNS/LST results. However, if ( ) ++''vu  from Equation (6.13) or 

Kays empirical solution for Prt  from Equation (6.15) is used, the variations are high.  

These variations are shown in Tables 6.1(a) and 6.1(b) (for one heated wall) and in 

Tables 6.2(a) and 6.2(b) (for two heated walls) for Poiseuille flow and Couette flow, 

respectively. When using method 1, the results are consistent and within 10% error. 

When using other methods, the errors are high for very high Pr or very low Pr. These 

methods give reasonable results for low to medium Pr (from 0.1 to 10). The sensitivity of 

these variations to the change of ( ) ++''vu  is high, considering that ( ) ++''vu  is only slightly 

different from the value obtained from DNS.  

The results appearing in Tables 6.1 and 6.2 should not be very surprising. They clearly 

validate the algebraic model predictions when ( ) ++''vu  and Prt are calculated directly using 

our data, instead of employing empiricisms applicable to other, different situations. In 

fact, Churchill’s derivations have been developed for high Re cases (h+ > 300) and for Pr 

applicable to heat transfer (Pr ≤ 100). Equation (6.13) in particular, is expected to work 

better for h+ > 300 – the lower limit for the development of a logarithmic region in the 

mean velocity profile, which is necessary for the derivation of Equation (6.13). It should 

also be noted that Pr on the order of thousands applies to cases of mass transfer rather 

than heat transfer, so one should more accurately think of these cases as high Schmidt 

number cases. Even though it would be very convenient to use Equation (6.13) and 

Equation (6.15) to estimate the temperature in a turbulent flow field, the results for this 

method of calculation are acceptable only for specific cases of Pr.   Calculations that are 

based on publicly available data from Eulerian DNS (Kasagi’s web page) also support the 
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above conclusions (the data are from the University of Tokyo web site, for fully 

developed thermal field in 2D turbulent channel flow, with Pr=0.71, h+=150, Re=2280, 

generated by the code CH122_PG.WL1). Analysis of these data in a similar manner as in 

Table 2 (i.e., using the Eulerian DNS data instead of the LST/DNS data, and comparing 

the results of each method to the Eulerian DNS results) shows an error  of 2.847% when 

using method 2; 4.579% for method 3; 8.003% for method 4; and 8.389% for method 5.  

Since the model predictions appear to deviate from the simulation results mostly at high 

Pr, one could attempt to find a correction for this case. Sensitivity analysis of the 

prediction model (Churchill , 2005) demonstrated that the predictions are not very 

sensitive on the values of the constants appearing in Equation (6.13). It could be then 

practical to introduce a correction factor, Cf, in Equations (6.5) and (6.6) as follows: 
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 for one heated wall.   (6.17) 

The practical advantage of using this correction factor is that now we need to search for 

the values of one parameter, instead of the values for four parameters that appear in 

Equation (6.13). However, by introducing Cf we introduce empiricism in Equations (6.5) 

and (6.6), reducing, thus, their purity. This coefficient Cf is only dependent on Pr 

number. Given this reservation, Table 6.3 shows the values of Cf that can be used with 



156 
 

method 3 and the errors associated with these values. It can be seen that a choice of Cf  at 

around 10 can reduce the errors to less than 1% for the large values of Pr (Pr ≥ 500) 

6. 4. Conclusions 

An investigation of the recent theory for turbulent convection developed by Churchill and 

coauthors has been presented. According to the Churchill model, fully developed flow 

and convection can be expressed as local fractions of the shear stress and the heat flux 

density due to turbulent fluctuations; and the fully developed temperature can be 

predicted if the velocity field and the turbulent Prandtl number are known. In effect, the 

model suggests that the mean temperature scales with the fraction of the heat flux due to 

turbulence. Application of the theory for an extensive range of fluids and for different 

turbulence structures and comparison to Lagrangian simulation results shows a deviation 

of less than 10% for most Pr, even though the model equations were developed for flows 

with higher Reynolds numbers than those employed by DNS. The main contributions to 

these deviations were due to the use of a model for Prt and for ( ) ++''vu . A correction factor 

can be introduced for very high Pr fluids, which can provide model predictions that are 

within 1% of the simulation results.  
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Table 6.1: Errors of predicted temperatures for one heated wall using different methods;  

Percent Error = %100*
1

1

Method

Method

T

TT −
 

(a) Poiseuille channel flow (h+ = 150), and (b) Couette flow (h+ = 150). 

(a) 
Poiseuille Flow, error (%)  

Pr Method (2) Method (3) Method (4) Method (5) 
0.010 10.241 205.094 16.224 16.076 
0.025 4.234 5.762 13.422 12.689 
0.050 7.959 5.042 14.795 12.964 
0.1 0.587 3.883 1.274 4.033 
0.7 2.601 4.959 7.708 9.494 
1 5.865 4.005 21.892 23.107 
3 0.789 3.264 4.634 4.368 
6 4.558 1.924 6.294 7.910 

10 5.945 1.530 3.119 6.282 
200 8.913 14.924 33.134 6.512 
500 7.428 24.218 52.402 5.371 
2400 5.222 50.012 75.318 17.432 
7000 4.066 69.184 85.576 49.639 

15000 4.295 70.666 91.548 60.165 
50000 5.750 98.809 95.843 77.605 

 
(b) 

Couette Flow, error (%)  
Pr Method (2) Method (3) Method (4) Method (5) 
0.1 8.327 15.277 8.295 27.231 
0.7 5.795 19.420 13.910 33.440 
6 7.747 16.758 12.066 3.022 

10 9.141 14.852 12.456 4.556 
200 14.543 37.544 43.112 20.002 
500 11.467 44.229 62.813 7.808 
2400 9.029 61.573 83.107 16.063 
7500 8.629 80.087 90.685 40.994 

15000 8.751 87.041 93.785 58.640 
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Table 6.2: Errors of predicted temperatures for two heated walls using different methods,  

Percent Error = %100*
1

1

Method

Method

T

TT −
 

(a) Poiseuille channel flow (h+ = 150), and (b) Couette flow (h+ = 150). 

(a) 

Poiseuille Flow, error (%)  
Pr Method (2) Method (3) Method (4) Method (5) 

0.010 29.277 100.663 22.630 22.514 
0.025 5.596 15.553 14.352 13.727 
0.050 4.498 5.780 12.781 11.243 
0.1 1.441 2.212 1.163 3.837 
0.7 0.549 2.890 9.509 9.898 
3 1.411 3.026 3.367 2.821 
6 4.899 1.714 7.676 8.784 

10 6.214 2.276 2.156 4.892 
200 8.907 16.707 33.209 1.233 
500 7.443 24.226 52.458 5.419 
2400 5.227 50.036 75.343 17.449 
7000 4.150 71.813 85.590 39.051 

15000 4.294 70.671 91.556 60.173 
50000 5.751 98.813 95.847 77.612 

 

(b) 
Couette Flow, error (%)  

Pr Method (2) Method (3) Method (4) Method (5) 
0.1 9.881 32.989 5.841 20.486 
0.7 6.053 12.896 13.995 29.063 
6 8.256 14.433 11.099 2.930 

10 9.494 13.066 11.691 4.540 
200 14.546 37.582 43.033 20.163 
500 11.491 44.185 62.801 7.893 
2400 9.042 61.590 83.117 16.052 
7500 8.640 80.067 90.689 40.977 

15000 8.754 87.109 93.782 58.596 
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Table 6.3: Correction factor and percent errors of predicted temperatures when applying 

a correction factor for method (3), Percent Error = %100*
1

1

Method

Method

T

TT −
 

(a) Poiseuille channel flow (h+ = 150), and (b) Couette flow (h+ = 150). 

 

(a) 
  One heated wall Two heated walls 

Pr Cf Error (%) Cf Error (%) 
0.01 1.0 23.098 0.9 12.798 
0.025 1.2 4.121 0.9 9.004 
0.05 1.1 3.602 0.9 2.180 
0.1 1.3 2.009 1.1 1.604 
0.7 1.0 4.959 1.0 2.890 
3 1.0 3.264 0.9 2.810 
6 1.0 1.924 1.0 1.715 
10 1.0 1.530 0.9 1.315 

200 1.7 0.710 1.9 1.203 
500 2.8 0.852 2.8 0.881 

2400 7.2 0.753 7.2 0.748 
7000 6.8 0.519 10.0 0.480 
15000 8.2 0.250 8.2 0.245 
50000 6.0 0.268 6.0 0.267 

 
(b) 

  One heated wall Two heated walls 
Pr Cf  Error (%) Cf Error (%) 
0.1 1.8 8.998 1.2 5.516 
0.7 1.5 7.417 1.4 4.576 
6 1.5 3.505 1.4 2.338 
10 2.4 2.531 1.4 1.587 

200 4.2 1.075 4.2 0.996 
500 6.0 0.795 6.0 0.769 

2400 11.0 0.579 10.9 0.430 
7500 12.3 0.266 12.3 0.232 
15000 10.4 0.208 10.4 0.200 
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Figure 6.1: Local fraction of shear stress due to turbulence in Poiseuille flow and 

Couette flow as a function of normal distance from the wall, compared with Churchill’s 

correlation (Equation (6.13)). The simulations are for h+ = 150.  
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Figure 6.2: Normal heat fluxes as function of normal position for the case of uniform 
heating from one plate for (a) Poiseuille channel, and (b) Couette flow. The simulations 
are for h+ = 150. 
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Figure 6.3: Normal heat fluxes as function of normal position for the case of uniform and 
equal heating from two plates for (a) Poiseuille channel (data points from Kasagi et al., 
1992, Kawamura et al., 1998 and Kim and Moin, 1989), and (b) Couette flow. The 
Lagrangian simulations are for h+ = 150. 
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Figure 6.4: Turbulent heat flux as function of normal position for the case of uniform 
heating from one plate for (a) Poiseuille channel and (b) Couette flow (h+ = 150 for both 
cases). 
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Figure 6.5: Turbulent heat flux as function of normal position for the case of uniform and 
equal heating from two plates for (a) Poiseuille channel and (b) Couette flow (h+ = 150 
for both cases).  
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Figure 6.6: Temperature predictions using different methods compared to DNS/LST data 
for the case of uniform heating from one plate for (a) Poiseuille channel and (b) Couette 
flow (h+ = 150 for both cases). 
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Figure 6.7: Temperature predictions using different methods compared to DNS/LST data 
for the case of uniform and equal heating from two plates for (a) Poiseuille channel and 
(b) Couette flow (h+ = 150 for both cases). 
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Chapter 7: Mixing Lengths and Turbulent Prandtl Numbers 

7.1. Introduction 

Turbulent channel flows have been investigated using numerical methods and results 

have been reported by several researchers during the last two decades due to the fast 

development of high end computing systems. In the review by Robinson (1991), coherent 

motions, or the narrow streaks of velocity in the viscous sublayer and buffer region, were 

found to be responsible for the maintenance of turbulence in turbulent boundary layers. 

Recently, these coherent motions and hairpin vortex structures were possible to study at 

higher Reynolds number (Nagan and Tagawa, 1995; Nagaosa, 1999; Jeong et al., 1997; 

Hanratty and Papavassiliou, 1997; Handler et al., 1999; Marusic, 2001; Abe et al., 2001; 

Ganapathisubramani et al., 2006; Natrajan and Christensen, 2006; Camussi and Felice, 

2006; Hutchins et al., 2007). The significance of turbulence structure in the near wall 

region in turbulent heat transport away from the wall has been explored both 

experimentally and numerically. Results indicate that large-scale motions may dominate 

turbulent transport in all regions except the very near-wall layer (Ganapathisubramani et 

al., 2006). However, the mechanism of passive heat transfer away from the wall has still 

not been explored and interpreted clearly.  

There is some speculation about the correlation between the velocity structure and the 

temperature field (Nagan and Tagawa, 1995; Nagaosa, 1999; Handler et al., 1999). 

Kawamura et al. (1999) and Abe et al. (2004) investigated how the turbulent flow affects 

heat transfer. The instantaneous flow and thermal fields were visualized using direct 

numerical simulations in order to investigate the structure of streaks and vortices for low 

Prandtl number, Pr, fluids in turbulent channel flow. It was found that large-scale 
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structures affect the surface heat-flux fluctuations and that the surface heat-flux 

fluctuations are similar to the streamwise wall shear-stress fluctuations, while a 

noticeable dissimilarity was observed for large positive or negative fluctuations. Kasagi 

and Ohtsubo (1992) presented low and high temperature regions, as well as the 

fluctuating velocity vectors that are associated with these regions.  They showed that 

there was some correlation between the velocity field and the thermal field. The 

magnitude of the velocity fluctuations was higher at low temperature regions.  

Furthermore, the contours of the magnitude of these vectors were related to the shape and 

size of the thermal regions. These prior investigations have found that the velocity and 

the temperature streaks show a strong resemblance to each other, but they do not describe 

how the heat can be carried by the vortices into the flow. 

The contribution of the present chapter is to provide a physical picture of the kinematics 

of the mechanism of heat transfer from the wall and to investigate the importance of the 

velocity structure at the wall by using LST coupled with DNS of turbulent channel and 

plane Couette flow for a range of Prandtl numbers. The velocity structure and the thermal 

field for fluids with Prandtl number, Pr, between 0.1 and 100, as well as the case of 

dispersion of simple fluid particles, were studied and visualized to explore the correlation 

between them. Particles representing heat markers that are released from a single line 

source located at the channel wall were also tracked and studied downstream from the 

point of release, in order to investigate how eddies can carry these heat markers away 

from the wall.  

Turbulent transport results using the DNS/LST method published previously from our 

research group in plane channel flow (Papavassiliou, 2002a, 2002b; Mitrovic and 
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Papavassiliou, 2003; Mitrovic et al., 2004) and in plane Couette flow (Le and 

Papavassiliou, 2005, 2006) for a range of Pr from 0.1 to 50000 have shown agreement 

with data obtained with Eulerian methods in other laboratories. In this present work, the 

characteristic length scales for momentum transfer and for scalar transfer are calculated 

for different Prandtl number fluids across the channel. Similarly to the model of Crimaldi 

et al. (2006), the turbulent Prandtl number can be calculated by finding the ratio of the 

turbulent length scales.  

 

7.2. Length Scales and Turbulent Prandtl Number – Background 

The turbulent Prandtl number, Prτ, is a measure of the relative rate of mixing of 

momentum and a scalar quantity at a given location in the flow. It plays a crucial role in 

modeling turbulent transport. Quoting from Churchill (2000): “the development of a 

comprehensive predictive or correlative expression for the turbulent Prandtl number is 

the principal remaining challenge with respect to the prediction of turbulent forced 

convection.” However, the turbulent Prandtl number is still calculated approximately, and 

available models for its prediction vary a great deal. The simplest model for Prτ is the 

Reynolds analogy (Reynolds, 1975), which yields a Prτ   of 1. Reported experimental data 

indicate that the value of Prτ  is 0.85 (Hollingsworth et al., 1989; Snijders et al., 1978, but 

ranging from 0.7 to 0.9 depending on the fluid in question. The most often used model is 

Kay’s model (Kays, 1994). Churchill and Chan (1995) modified Kay’s formula based on 

turbulence scaling that is defined by the fraction of heat flux due to turbulence, instead of 

the conventional viscous scaling (see equation 6.15).  
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Crimaldi et al. (2006) proposed a model based on simple knowledge of the geometric and 

kinematic nature of the momentum and scalar boundary conditions. They utilized the 

concept of a hypothetical “mixing length” proposed by Prandtl. This model relates the 

Reynolds stress to the mean velocity gradient through the relationship 

y
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y
Ulvu M ∂

∂
∂
∂

−= 2''        (7.1) 

where Ml is an assumed mixing length of momentum. They modeled the behavior of the 

vertical scalar flux 'vθ  in terms of a scalar mixing length as follows: 
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where Tl is the scalar mixing length. The turbulent Prandtl number was then calculated as 
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7.3. Methodology 

Details about DNS in conjunction with LST method has been introduced in Chapter 1 and 

2.  The behavior of a scalar line source was determined by following the paths of a large 

number of scalar markers in the flow field created by the DNS. The time step for the 

calculations of the hydrodynamic field and the Lagrangian tracking was Δt=0.25 and 

Δt=0.2 for the Poiseuille and Couette flow channels, respectively. Both the channel and 

Couette flow simulations were first allowed to reach a stationary state before the heat 

markers were released. The simulated cases were for Pr = 0.1, 0.7, 6, 10, 100 and for the 

case of fluid particles, i.e., markers that do not exhibit the Brownian motion at the end of 
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each time step. In plane Poiseuille flow, 16,129 particles were released for every 

simulation run. In plane Couette flow, where the computational domain is longer, 

145,161 particles were released instantaneously at yo = 0. In the case of fluid particles, the 

point of release was two viscous wall units away from the wall (yo = 2), since particles 

without Brownian motion (and, thus, without a jump in the y direction) cannot escape the 

wall, where the fluid velocity is zero in all directions. The simulations were allowed to 

run up to the time when the average of the normal positions of the cloud is 75, which is 

equal to h/2, because we want to focus on the transfer of heat from the wall. The final 

simulation time for Pr = 0.1, 0.7, 6, 10 is 500 and for Pr = 100 is 1000. Six different runs 

were conducted for each type of flow and for each Pr, in order to obtain meaningful 

statistics for the calculated quantities. Each one of these six runs was initiated with a 

different initial velocity field at stationary state, and each of the initial velocity fields was 

taken at different times, so that the time difference between them was longer than the 

Eulerian integral time scale.  

 

7.4. Results and Discussion 

7.4.1. Mechanism of heat transfer away from the wall 

The behavior of an instantaneous line source of markers located at the wall of the channel 

can be described by the probability density function P1( x ,t | ox ,to), of a marker to be at a 

location x  = (x,y,z) in the flow field at time t, given that it was released at location ox = 

(xo,yo,zo) at time to.  This probability can be interpreted physically as temperature or as 
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concentration (Mito and Hanratty, 2003, Saffman, 1960), and thus as a snapshot of a 

cloud of contaminants released instantaneously from ox . 

The behavior of a continuous line source located at xo that emits markers from time to to 

time tf can be calculated by integrating (or, in the discrete case, summing up) the 

probability density function P1 as follows: 

( )∑
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oooof txtxPtxtzyxP ,|,),|,,,( 12     (7.4) 

where tf is the final time of integration. This probability function 2P  represents the 

temperature profile downstream from the source. An average temperature was then 

calculated as a function of normal position by averaging P2 in the streamwise direction, 

representing the temperature profile (or in the case of mass transfer the concentration 

profile) projected in the y-z plane, as follows: 

∑
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x

xx
oof txtzyxPzyC ),|,,,(),( 2      (7.5) 

Since our simulation followed a finite number of heat markers, the y-z cross-section of 

the channel was divided into uniform, rectangular bins with Ny = 300 bins in the y 

direction and Nz = 100 bins in the z direction. An average temperature was then 

calculated as a function of normal position by averaging C in the spanwise direction 
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where zi is the z location of the center of bin i. A fluctuation, defined as C at a (y,z) point 

minus the z-averaged value of C at that normal location, marks a hot streak if the 

fluctuation is positive, and it marks the location of a cold streak if the fluctuation has a 
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negative value. The locations of these hot and cold streaks can be found by calculating 

this fluctuation as  

)(),(),(' yCzyCzyc −=       (7.7) 

Since C is an average over the x-direction, contours of c′ calculated from Equation (7.7) 

show that the particles are distributed uniformly across the channel (i.e., in the y-z plane) 

as time progresses. The fluctuation contour plots for both plane channel and plane 

Couette flow do not show any structure of hot or cold regions.  

The same analysis was repeated for a subset of the heat markers. This subset included 

only markers that have positive velocity in the vertical direction (v′ > 0), i.e., only the 

markers that are moving away from the bottom wall. These are the markers that transfer 

heat away from the wall region, and contribute to the generation of turbulent heat flux. 

The same analysis was also done for the subset of markers that are moving towards the 

bottom wall (v′ < 0). The fluctuation contour plots for the markers with v′  > 0 are shown 

in Figure 7.1 (a) and (b) for Pr = 0.7 and Pr = 100, respectively. As expected, particles 

move faster into the flow field for lower Pr due to higher molecular diffusivity. Both 

figures show an overall resemblance to the case with fluid particles released at 2=oy , 

shown in Figure 7.1(c). This agrees with findings by Kawamura et al. (1999), Abe et al. 

(2004) and Kasagi et al. (1992) that thermal streaks exist and that momentum streaks are 

related to the thermal streaks. 

In order to further explore the momentum-heat correlation, transport in a different 

velocity field (Couette flow) was simulated. In plane Couette flow, the contour plots of 

fluctuations of particle concentration that are moving away from the wall also show the 

resemblance between the thermal field and the velocity structure. The contour plots of 
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temperature fluctuations for markers moving away from the wall are shown in Figure 7.2 

for (a) Pr = 0.7, (b) Pr = 100, and (c) fluid particles. Plane Couette flow exhibits a 

different velocity structure from plane channel flow, due to the different mechanism that 

generates the flow. In plane channel flow, many small eddies are present at the wall. In 

plane Couette flow, it is common to observe large, streamwise-oriented vortical 

structures that extend longer than eddies in Poiseuille channel flow. As a result, the 

thermal field also shows structures that extend through the height of the channel.  Similar 

observations were done for the case of markers with v′ < 0 (not shown here).  

The picture that emerges from Figures 7.1 and 7.2, i.e., that velocity eddies contribute to 

the transfer of heat from the wall acting as “pumps” of heat, needs to be further 

investigated. How do individual eddies transfer heat, and is the whole eddy structure 

contributing to transfer or only the perimeter of the eddies? Do all eddies contribute 

equally? In order to elucidate the mechanism of heat transfer away from the wall, 

100,000 particles were released from a single instantaneous line source located on the 

Poiseuille channel wall. The runs were repeated using different velocity fields to obtain 

better statistics for each Pr case. The velocities and trajectories of the particles were 

stored. We then focused at a distance downstream of the instantaneous source equal to 

the channel half-height. This is a distance at which, on average, the heat markers move 

out of the thermal sublayer and enter the log-layer (Papavassiliou , 2002b). Therefore, we 

captured the velocities and locations of particles that are moving through the thin interval 

140 ≤ x-xo ≤ 160 (this is equivalent to observing a swarm of markers that are passing by a 

stationary window of observation as time elapses). The time t1, at which the line source 

behavior for each Pr is studied, is different. It is the time at which at least 2000 markers 
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were captured moving through the window 140 ≤ x-xo ≤ 160. As Pr increases, the heat 

markers have smaller molecular diffusion, they move towards the outer flow region 

slower, and therefore, they have on average smaller streamwise velocity and it takes 

longer for the heat markers to move to the same streamwise distance. Times of capture 

and numbers of markers captured are presented in Table 7.1.   

The locations of the particles moving away from the bottom wall are shown in Figure 

7.3(a) and the locations of the particles moving toward the bottom wall at the 

downstream location 140 ≤ x-xo ≤ 160 are shown in Figure 7.3(b). There are 

approximately 6% of the total number of markers present for Pr = 0.7. The corresponding 

figures for Pr = 100 are Figure 7.4(a) and 7.4(b). The markers that are moving away from 

the bottom wall mark the location of 0' >vθ  events, since they indicate heat transferred 

from the hot wall by v′> 0 fluctuations. These quadrant one events (in the θ-v′ space) are 

producers of turbulent heat flux. Similarly, particles that are moving towards the bottom 

wall mark the location of quadrant three events in the θ -v′ space, since they indicate heat 

transferred to the wall from the center of the channel by v′< 0 fluctuations. These events 

are also producers of turbulent heat flux. As the Pr increases, the thickness of individual 

clouds of markers indicating quadrant one events decreases, indicating that a different 

part of a velocity eddy contributes to turbulent heat transfer for different Pr fluids.  

The average thickness of the clouds of markers was calculated and presented in Figure 

7.5 for different distances from the wall (y = 2, 5, and 10). The values are also reported in 

Table 7.1. At a higher normal location, the average thickness is higher for low Pr 

numbers and lower for high Pr numbers. For Pr = 0.1, the thickness is highest at y = 10 

and lowest at y = 2, showing that heat markers were already carried away from the wall. 
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For Pr = 100, the average thickness is highest at y = 2 and lowest at y = 10. The number 

of events that were associated with the upwards movement of markers is also shown on 

Table 7.1. It can be seen that fewer (and, thus, larger) eddies contribute to heat transfer 

for low Pr. For example, 13 events contribute to heat transfer for Pr = 0.1, indicating a 

thermal streak spacing of (2πh/13) ≈ 73 wall units at y = 2 and an average eddy diameter 

of 73/2 = 36.5 wall units. For Pr = 100, the streak spacing is (2πh/18) ≈ 53 and the 

associated eddies have a diameter of about 26 wall units. 

The picture that emerges now is that, as the Pr increases, a smaller percentage of the eddy 

cross-section “pumps” heat from the wall to the outer region. The outer edge of the 

eddies contribute to the transfer of heat at higher Pr. Transport at lower Pr is mostly 

affected by high molecular diffusion, which results in thicker, more diffuse areas of high 

heat transport. However, what happens to the heat markers for both low and high Pr 

when they are already pumped to the outer region? Are the heat markers carried back to 

the channel wall region by the same eddies that take them away (circulating eddies), or 

are the heat markers simply just shot up and away from the channel wall by the eddies? 

This question can be answered by calculating the average normal position as a function of 

time of the heat markers that are moving away from the wall at time t1 (i.e. of those 

markers that are shown in Figures 7.3 and 7.4). This average position is shown in Figure 

7.6, in comparison with the average normal position of all the particles. For Pr = 0.1, the 

two lines are almost on top of each other. As the Prandtl number increases, the average 

normal position of the heat particles that were moving away from the wall at time t1 is 

rising higher than the average normal position of all the particles. This shows that, on 
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average, the particles that are moving away from the wall at time t1 will continue to move 

up into the flow field.  

The marker velocities in the y and the z directions were studied for the same subset of 

heat markers to further verify the findings in Figure 7.6 and to identify velocity structures 

that are related to turbulent heat flux-producing structures. The observations are 

summarized in the schematic of how the eddies carry heat markers away from the wall 

that is shown in Figure 7.7. The physical mechanism of transferring heat away from the 

wall or towards the wall is associated with couples of counter-rotating eddies one next to 

the other. The markers are either carried up or moved down by these two eddies. Low Pr 

fluids, where the molecular diffusivity effects are stronger, can pump heat markers 

upwards easier utilizing larger eddies for this purpose, and the markers reach out to the 

outer region. For higher Pr fluids, the thickness of the clouds of particles decreases, as 

shown in Figure 5, indicating that fewer heat markers are shot upwards. Those markers 

continue moving upwards, towards the center of the channel, in plumes, as they 

disassociate from the circular eddies.   

7.4.2. The turbulent Prandtl number 

A two-point correlation coefficient can be calculated as   

( ) ( ) ( )
( )( ) ( )( ) 2/1
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2/1

2 ''

''
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oo
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zyR
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=Δ           (7.8) 

The overbar denotes average at a particular y location and ( )yCzyCzyc −= ),(),('  as in 

Eq. (7.7). The correlation coefficients for plane channel flow and for temperature fields 

resulting for the heat markers with v′ > 0 (i.e., for fluctuations such as those shown in 

Figure 7.3) are presented in Figure 7.8 for low and high Pr (Pr = 0.7 and Pr = 100). At 
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the same distance from the wall, the coefficients are smaller as Pr increases. The same 

correlation coefficient is shown in Figure 7.9 for plane Couette flow for Pr = 0.7 and 100, 

respectively. The main difference from plane channel flow is that there is a minimum 

followed by a maximum that indicates a very strong correlation between the structures 

that transfer heat. For low Pr, the correlation coefficients are approximately the same at 

all distances. For high Pr, the values of the correlation coefficient are smaller closer to 

the wall.  

Figures 7.10(a) and 7.10(b) present the length scale that is obtained by the correlation 

coefficient as a function of normal distance, which can be calculated as  

( )dZzRL
oz

ccT ∫
∞

=        (7.9) 

for plane channel and plane Couette flow, respectively. The physical meaning of these 

length scales is that they characterize the structures that produce turbulent heat flux. 

These are the length scales that would indicate the thickness of thermal streaks in the case 

of Eulerian analysis of turbulent heat transfer from the wall. The length scales are larger 

in plane Couette flow. In both cases, the length scales are higher in the outer region. In 

plane channel flow, the length scales increase as y increases. The length scales do not 

show a distinctive dependence on Prandtl numbers. In plane Couette flow, the length 

scale shows dependence on Pr closer to the wall.  

Following the analysis of Crimaldi et al. (2006), the turbulent Prandtl number was 

calculated as  

T

M

L
L

≡τPr         (7.10) 
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where LM is the length scale for the fluid particles and LT is the length scale for the heat 

markers, both of which were calculated as in Equation (7.9). Note that Equation (7.10) is 

not the ratio of the mixing lengths, as in the work of Crimaldi et al. (2006), but is the ratio 

of the length scales obtained with a Lagrangian analysis, which are assumed to be 

proportional to the mixing lengths. Furthermore, the ratio of the proportionality constants 

is assumed to be on the order of one, so that Equation (7.10) can yield the turbulent 

Prandtl number.  

The turbulent Prandtl number for plane channel and plane Couette flows as a function of 

the distance from the wall is shown in Figures 7.11(a) and 7.11(b), respectively. A 

statistic Q-test (Dean and Dixon, 1951) with sample size of 6 was conducted in order to 

remove any outlier points at 90% confidence interval. The error bars have a width equal 

to two standard deviations calculated based on the data of the different simulation runs 

excluding the outlier points. As presented in these figures, the average Prτ for all cases 

falls within the error bars. Based on these results, it can be concluded that there is no 

statistically significant dependence of  Prτ  on Pr. There is, however, dependence on the 

distance from the wall.   

Turbulent Prandtl numbers for fluids with Pr = 0.1, 0.7 and 6 are compared with previous 

DNS data by Kawamura et al. (1999), Abe et al. (2004) and by Kasagi’s group (Kasagi’s 

webpage) in Figure 7.12. The results obtained herein agree with these previous DNS data. 

Finding the turbulent Prandtl number using the length scales obtained through a 

Lagrangian analysis has not been accomplished before, but it shows reasonable results 

compared to other methods. 
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7.5. Conclusions 

The correlation between the structure of the velocity field and the thermal field has been 

investigated and visualized. The velocity field has a strong impact on the thermal field. 

The mechanism of heat transfer away from the wall was studied using markers of heat 

emitted from single line sources. The presence of these markers at high concentration in 

specific locations in the flow field marked the location of hot or cold areas. Couples of 

counter-rotating eddies carry heat particles away or towards the wall. The markers that 

move away tend to continue their upwards trajectories towards the center of the channel 

and are not carried back down by the same eddies. For lower Prandtl numbers, the 

thickness of the marker clouds are larger and the particles shoot up further into the outer 

region, indicating that the thickness of the turbulent heat flux producing thermal streaks is 

larger for lower Pr.  

The turbulent Prandtl numbers were calculated by the ratio of the length scales of fluid 

particles to the length scale of heat markers at specific Pr. The results showed a good 

agreement with previously reported DNS data. However, this Lagrangian methodology of 

obtaining the turbulent Prandtl number shows that it has no statistically significant 

dependence on the fluid Prandtl number, but it has a dependence on the distance from the 

wall.  
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Table 7.1: Characteristics of flow structures that move heat markers towards the center of 

the channel downstream from an instantaneous line source of heat, and number of 

velocity eddies associated with them. Each of the two runs (A and B,) involved the 

release of 100,000 heat markers at the wall in a turbulent flow channel. 

 

  Pr = 0.1 Pr = 0.7 Pr = 6 Pr = 10 Pr = 100
Heat markers captured 
at 140 < x-xo < 160       
t1 31 41 51 61 111
Number of particles-Run A 6137 8000 6531 6124 4578
Number of particles-Run B 6175 8812 6700 5970 4667
Average thickness of 
cloud of heat markers 
moving upwards        
y = 2 29.2 31.7 21.3 24.0 22.4
y = 5 31.2 35.6 21.1 24.5 6.5 
y = 10 37.9 36.8 19.4 18.5 0.0 
Number of upwards flow 
events       
Run A        
y = 2 13 13 13 12 20 
y = 5 12 12 15 11 10 
y = 10 12 12 11 10 0 
Run B       
y = 2 13 13 18 19 18 
y = 5 13 10 21 19 12 
y = 10 11 10 13 10 0 
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Figure 7.1: Contour plot of fluctuation of the heat marker concentration given that the 

markers are moving away from the wall (v′ > 0) in plane channel flow at t = 500 for: (a) 

Pr = 0.7, (b) Pr = 100, (c) fluid particles. 
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Figure 7.2: Contour plot of fluctuation of heat marker concentration given that the 
markers are moving towards from the wall (v′ > 0) in plane Couette flow at t = 500 for: 
(a) Pr = 0.7, (b) Pr = 100, (c) fluid particles. 
  



184 
 

 
(a)  

 
 
(b)  

 
 
Figure 7.3: Locations of particles released from an instantaneous line source for Pr = 0.7 
at 140 < x-xo < 160 in channel flow: (a) v′ > 0, (b) v′ < 0. 
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(a)  

 
(b)   

 
Figure 7.4: Locations of particles released from an instantaneous line source for Pr = 100 
at 140 < x-xo < 160 in channel flow: (a) v′ > 0, (b) v′ < 0. 
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Figure 7.5: Average thickness of heat transferring structures downstream from an 

instantaneous line source at different normal position for all Prandtl number fluids. 
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Figure 7.6: Average normal position for heat markers that are moving away from the 
wall. 
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Figure 7.7: Schematic of the mechanism of heat transfer away from the wall. For both 

low and high Pr fluids, heat is transferred from the wall by counter-rotating eddies that 

“pump” heat (marked by red particles) towards the outer region of the flow. As the Pr 

increases, the thickness of the hot areas decreases, as does the height of these areas. 

Markers pumped upwards continue their upwards trajectories. Transfer of heat towards 

the wall (marked by blue particles) occurs at the downwards-moving part of these eddies, 

and it involves markers that have already been in the outer region of the flow.   

L Hi
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Figure 7.8: Correlation coefficient in the spanwise direction for heat transferring 
structures away from the wall in channel flow: (a) Pr = 0.7, (b) Pr = 100.  
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Figure 7.9: Correlation coefficients in the spanwise direction for heat transferring 
structures away from the wall in Couette flow: (a) Pr = 0.7, (b) Pr = 100 
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Figure 7.10: Length scales characteristic of heat transfer for: (a) Channel flow, (b) 
Couette flow. 
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Figure 7.11: Turbulent Prandtl number as  a function of the fluid Prandtl number and the 
distance for the wall for: (a) Channel flow, (b) Couette flow . 
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     Figure 7.12: Comparison with other reported turbulent Prandtl numbers.  
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Chapter 8: Conclusions and Recommendations 

8.1 Conclusions 

Turbulent heat transport in plane channel and plane Couette was successfully investigated 

using the combination of a direct numerical simulation and a Lagrangian scalar tracking 

method. Wall sources and elevated sources in both plane channel and plane Couette flows 

were studied. The results demonstrated the validity of LST as a method of analysis with 

good agreement to available experimental and DNS measurements. Of particular interest 

is the demonstration that it is possible to use this technique at very high Pr, where the 

application of Eulerian Direct numerical simulations is not feasible. 

Mean temperature profiles for the cases with a step change in the heat flux applied to one 

or both channel walls from wall sources were calculated for different Pr for both plane 

channel and plane Couette. The dependence of the heat transfer coefficient on the 

distance from the thermal entry region for different Pr fluids was examined, as well as 

the dependence of the Nusselt number on this distance. Relations between the heat 

transfer coefficient K∞ for fully developed heat transfer and Pr were proposed for low 

and high Pr number cases, and for the cases with one and two heated walls. This issue 

has theoretical significance, because the value of the exponent depends on the asymptotic 

dependence of the eddy diffusivity close to the wall on the distance from the wall. It also 

has practical engineering interest, because such correlations are implemented in the 

development of models for turbulent transport. Finally, two generalized correlations that 

provide the functional dependence of K∞ on Pr for a range of Pr that covers seven orders 

of magnitude (0.01 ≤ Pr ≤ 50,000) were developed for the case of one or two heated 

walls.  
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In elevated sources, the material autocorrelation function and the Lagrangian timescale 

were found to be Pr independent for Pr ≥ 3. However, when the source location was 

close to the wall, and more specifically within the viscous wall sublayer, the effects of Pr 

were significant. The assumption that the Lagrangian velocity of scalar markers is 

independent of Pr within the constant stress region was found to be invalid. Descriptive 

correlations for the Lagrangian time scale have been calculated for low and high Pr. It 

was also found that dispersion is stronger in the plane Couette flow case relative to the 

plane channel flow, indicating enhancement of turbulent dispersion in the constant stress 

region and, thus, in the logarithmic region. The difference is attributed to the large scale 

velocity events that contribute to heat transfer. In general, turbulent dispersion is different 

in different turbulent velocity fields because the large scale structures of these turbulent 

velocity fields are different.   

The scaling of heat transfer in turbulent flows is an area of significant interest. The 

applicability of the WFKM method in a fully developed flow with different structure than 

the plane channel flow and extended the range of Peτ provided by WFKM was examined. 

It was found that the principal layer structure proposed for Poiseuille flow also applies to 

plane Couette flow. It also appears that the extent of the heat flux gradient balance layer 

(layer II) and the extent of the mesoscopic layer (layer III) scale with Pr-1/4 for both 

Poiseuille and Couette flow.  Finally, the data for medium and very large Peτ  presented 

in this communication provided the opportunity to develop correlations for the outer and 

mesolayer scalings that can be used to predict the temperature and turbulent heat flux 

profiles.   
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An investigation of the recent theory for turbulent convection developed by Churchill and 

coauthors has been presented. According to the Churchill model, fully developed flow 

and convection can be expressed as local fractions of the shear stress and the heat flux 

density due to turbulent fluctuations; and the fully developed temperature can be 

predicted if the velocity field and the turbulent Prandtl number are known. In effect, the 

model suggests that the mean temperature scales with the fraction of the heat flux due to 

turbulence. Application of the theory for an extensive range of fluids and for different 

turbulence structures and comparison to Lagrangian simulation results shows a deviation 

of less than 10% for most Pr, even though the model equations were developed for flows 

with higher Reynolds numbers than those employed by DNS. The main contributions to 

these deviations were due to the use of a model for Prτ and for ( ) ++''vu . A correction factor 

can be introduced for very high Pr fluids, which can provide model predictions that are 

within 1% of the simulation results.  

The correlation between the structure of the velocity field and the thermal field has been 

investigated and visualized. The velocity field has a strong impact on the thermal field. 

The mechanism of heat transfer away from the wall was studied using markers of heat 

emitted from single line sources. The presence of these markers at high concentration in 

specific locations in the flow field marked the location of hot or cold areas. Couples of 

counter-rotating eddies carry heat particles away or towards the wall. The markers that 

move away tend to continue their upwards trajectories towards the center of the channel 

and are not carried back down by the same eddies. For lower Prandtl numbers, the 

thickness of the marker clouds are larger and the particles shoot up further into the outer 
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region, indicating that the thickness of the turbulent heat flux producing thermal streaks is 

larger for lower Pr.  

The turbulent Prandtl numbers were calculated by the ratio of the length scales of fluid 

particles to the length scale of heat markers at specific Pr. The results showed a good 

agreement with previously reported DNS data. However, this Lagrangian methodology of 

obtaining the turbulent Prandtl number shows that it has no statistically significant 

dependence on the fluid Prandtl number, but it has a dependence on the distance from the 

wall.  

8.2 Recommendations 

• From the study of elevated sources, the relation for Lagrangian time scale has 

been developed. This could be used towards two-point statistic and fluctuations.  

• Based on the investigations of turbulent scaling and temperature predictions using 

Churchill turbulent heat flux method, an updated turbulent scaling can be studied.  

• Turbulent flows in plane channel and plane Couette can be explored by other 

methods, such as using Computational Fluid Dynamics.  
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Appendix A – Nomenclature 

A, B  constants in the logarithmic law for the mean temperature  

a, b exponentials in the power law relation for the ground level temperature 

(see Equation   (3.1)) 

A1, B1 constants in the power law relationship for the ground level temperature 

(see Equation (3.1)) 

 C  scalar profile 

C′ fluctuation 

C1 constant in the correlation between the Nusselt number and the Prandtl 

and Reynolds numbers (see Equation (2.7) ) 

Cf  correction factor defined in Equations (6.16), (6.17) 

Cp  specific heat at constant pressure ( )/( KkgkJ ⋅ ) 

D  diffusivity ( sm /2  ) 

Eα  eddy diffusivity ( )/( smkg ⋅ ) 

Eν  eddy viscosity ( )/( smkg ⋅ ) 

fo(w)  asymptotic expression for small values of w 

f∞(w)  asymptotic expression for large values of w 

h   half height of the channel  

K  heat transfer coefficient ( )/( 2 KmkW ⋅ ) 

K∞ heat transfer coefficient for a fully developed thermal region (

)/( 2 KmkW ⋅ ) 

k  thermal conductivity ( )/( KmW ⋅ ) 
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ML   length scale characterizing the motion of fluid particles 

TL  length scale characterizing the motion of heat markers, defined in 

Equation (7.9) 

Ml   mixing length of momentum in viscous wall units 

Tl   scalar mixing length in viscous wall units 

l*  friction length, ** / ul υ=  

n  constant in the generalized equation (see Equation (2.27) and (3.9)) 

Ny, Nz  numbers of bins in the y and z directions 

Nu  Nusselt number, Nu=K+ h+ 

Nu∞  Nusselt number for a fully developed thermal region 

p, q constants that appear in the correlation between the Nusselt number and 

the Prandtl and Reynolds numbers (see Equation (2.7) ) 

P1 conditional probability for a marker to be at a location (x, y) at time t, 

given that it was released at a known time from a known location at the 

wall   

P2  joint probability for a marker to be at a location (x, y) 

Pr  Prandtl number, Pr = ν / α 

Prt  turbulent Prandtl number, Prt = Eν / Eα   

qw  heat flux from the wall ( 2/ mkW ) 

R2  coefficient of determination 

Re  Reynolds number, Re = Uc h/ν 

Peτ  Peclet number, Pe = PrReτ 
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RHF   ratio of the gradient of molecular diffusion flux to that of the turbulent 

  transport, defined by Equation (5.7) 

TTR   two-point correlation coefficient 

Sc  Schmidt number, DSc /υ=  

S  standard deviation of the pdf that describes the diffusive motion of the 

heat   markers  

V   Lagrangian velocity vector of a marker ( sm / ) 

T  temperature ( K ) 

T*  friction temperature, ( )** / uCqT pw ρ=  

T   mean temperature ( K ) 

''vT   normal heat flux 

t  time ( s ) 

t*  friction time, *** / ult =  

to  time instant of a marker released ( s ) 

U  velocity ( sm / ) 

UB  bulk velocity  

U   Eulerian velocity vector ( sm / ) 

U   mean velocity ( sm / ) 

u*  friction velocity, u*=(τw/ρ)1/2 ( m / s ) 

''vu   Reynolds stress 

V   Lagrangian velocity vector ( sm / ) 

x, y, z   streamwise, normal and spanwise coordinates 
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x1  streamwise location 

yσ  inner normalized dimension, yσ = η/σ2 

σŷ   mesolayer scale, σŷ =η/σ 

X, Y  Lagrangian displacement of a marker from the source in the x, y directions 

Xs Lagrangian displacement of a marker from the source in x directions in a 

stationary frame of reference 

X   position vector of a marker 

y1  thickness of conductive wall sublayer 

 

Greek symbols 

θ  temperature fluctuation 

α  thermal diffusivity 

γ  correction term defined in Equation (6.4) 

δ  average thickness of heat marker clouds that transfer heat from the wall 

δy  plume half-width 

η  outer normalized distance, hy /=η  

Δt  time step 

Δx, Δy  bin size in the x and  y directions 

ψ  inner normalized turbulence thermal flux  */ TTv +=ψ   

λx  periodic streamwise length 

λz  periodic spanwise length 

ν kinematic viscosity ( sm /2 ) 
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π trigonometric pi ( ...14159.3=π ) 

ρ  fluid density ( 3/ mkg ) 

σ standard deviation  

τ  shear stress (Pa) 

Φ  normalized mean temperature, Φ = (Τw - Τ) / (Peτ Τ∗)  

Φ2  maximum value of Φ 

Φc  centerline value of Φ 

Superscripts and subscripts 

) (   ensemble average 

) (   vector quantity 

( )+  value made dimensionless with the wall parameters 

( )*  friction value 

( )b  bulk value 

( )f  value at the final time step of the simulation 

( )max  maximum value 

( )o  value at the instant of marker release 

( )w  value at the wall of the channel 
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Appendix B – Temperature Scaling 

B.1 Literature Background 

Based on the theory of similarity analysis and the analogy between momentum and 

energy transport equations, Wang et al. (2008) have derived the temperature scaling for 

forced convection turbulent boundary layer. The advantage of their method is the ability 

to remove most of the effects of the Reynolds number dependence and different strengths 

of pressure gradients. Their new temperature scaling is presented in Figure 2 in Wang et 

al.(2008) as  2/12/1 .
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Figure B.1 shows our DNS/LST data that is normalized with Wang et al.’s method. The 

temperature profiles do not scale well. There are variations between the different fluids.  

Figure B.2 shows scaling based on Wang et al.’s paper using Kader’s (1981) semi 

empirical equation. The results also show variations between different Pr numbers.  
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Figure B.1: Normalized temperature profiles from DNS/LST data using Wang et al.’s 

(2008) method.  
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Figure B.2: Normalized temperature profiles from Kader’s (1981) data using Wang et 

al.’s (2008) method.  
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B.2 Temperature Scaling 

As presented in section B.1, the normalized temperature profiles show obvious 

dependence on the Prandtl number. Our proposed method of scaling the temperature 

profiles is +
∞

max)''(
)/(

vt
TT

  vs. +

+

my
y

St 25.0Pr)*(
1  where +

my  is the location at which the value of 

normal heat flux +)''( vt is highest. Figure B.3 is a plot that shows the data from Kader’s 

equation scaled according to this scaling. Figures B.4-B.7 are plots that utilize our 

DNS/LST data scaled as discussed above. 

Overall, this method works better for high Pr numbers. For low Pr, there are still 

variations as y+ increases. 
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Figure B.3: Mean temperature scaling using Kader’s equation (1981) 
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Figure B.4: Mean temperature scaling for the case of uniform heating from one plate for 

plane Poiseuille flow.  
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Figure B.5: Mean temperature scaling for the case of uniform heating from both plates 

for plane Poiseuille flow.  
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Figure B.6: Mean temperature scaling for the case of uniform heating from one plate for 

plane Couette flow.  
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Figure B.7: Mean temperature scaling for the case of uniform heating from both plates 

for plane Couette flow.  
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B.3 Maximum normal heat flux and its normal location 

We have successfully found correlations for the normal position of the maximum of 

normal heat flux. Figures B.8 and B.9 shows the correlations for Poiseuille flow and 

Couette flow, respectively. The power values for all the cases are approximately -1/4. 

The maximum value of normal heat flux has not, however, been correlated well and is 

presented in table B.1.  
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Figure B.8: Normal location at which the normal heat flux is maximized for plane 

Poiseuille flow.  
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Figure B.9: Normal location at which the normal heat flux is maximized for plane 

Couette flow.  
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Table B.1: Maximum values of normal heat flux: (a) Poiseuille flow; (b) Couette flow 

(a) 

Pr 
One heated 

wall 
Two heated 
wall  

0.7 0.85878 0.75867 
3 0.94013 0.88432 
6 0.93452 0.87967 
10 0.94743 0.89852 
100 0.98118 0.9533 
200 0.987 0.961 
500 0.991 0.972 
2400 0.995 0.981 
7500 0.99683 0.98492 
15000 0.99769 0.98733 
50000 0.99861 0.99085 

 

(b) 

Pr 
One heated 

wall 
Two heated 
wall  

0.1 0.889 0.83 
0.7 0.854 0.783 
6 0.92 0.865 
10 0.9455 0.89679 
100 0.98245 0.95906 
200 0.987 0.969 
500 0.991 0.974 
2400 0.995 0.982 
7500 0.99698 0.98658 
15000 0.9976 0.98836 
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Appendix C – Additional graphs 

C.1 Elevated Sources: Puff Behavior 

0

1000

2000

3000

4000

5000

0 50 100 150 200 250 300

2
5
15
28.5
38.5

50
75
96
125
150

X
 - 

x o

t+

y
o

y
o

Figure C.1: Mean streamwise trajectories, X(xo,t)-xo, for the marker cloud of Pr = 0.7 for 

Poiseuille flow.  

Physically, this is the trajectory of the centroid of a puff of markers released from an 

instantaneous line source located at different distances yo from the channel wall. The 

markers move farther downstream in the channel the higher the point of release, because 

they are convected by the mean flow velocity, which is higher in the center of the 

channel. 
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Figure C.2: Mean streamwise trajectories, X(xo,t)-xo, for the marker cloud of Pr = 0.7 for 

Couette flow.  

The markers move farther downstream in the channel the lower the point of release, because 

the mean fluid velocity is higher closer to the wall in Couette flow.  
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Figure C.3: Standard deviation of the probability of the marker location with time in the 

streamwise direction for Pr = 0.7 in Poiseuille channel flow.  

In the streamwise direction, the standard deviation decreases as yo increases, except for 

the case where yo ≤ 15. As the point of release decreases, a larger percentage of markers 

stay close to the wall for longer times, and the puff of markers is sheared by the mean 

velocity. In other words, if the point of release is close to the channel center, all of the 

markers see the same mean velocity. If the point of release is close to the wall, the 

markers that get in the outer region of the flow travel downstream with a mean velocity 

that is much different than the mean velocity that the markers that stay close to the wall 

can see. When the point of release is within the viscous wall layer, then the markers are 

also staying much closer together, because they do not see strong velocity fluctuations in 

the normal direction. In that case, the closer the point of release is to the wall, the closer a 
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cloud stays around its centroid, and the root mean square of the marker dispersion in the 

streamwise directions is smaller. The behavior of the Poiseuille flow markers and the 

Couette flow markers is similar in this respect 
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Figure C.4: Standard deviation of the probability of the marker location with time in the 

streamwise direction for Pr = 0.7 in Couette channel flow.  
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Figure C.5: Standard deviation of the probability of the marker location with time in the 

normal direction for Pr = 0.7 in Poiseuille channel flow.  
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Figure C.6: Standard deviation of the probability of the marker location with time in the 

normal direction for Pr = 0.7 in Couette channel flow.  

Figures C.5 and C.6 show that the dispersion of the puff in the normal direction is higher 

when the source location is farther from the wall. It is also observed that the dispersion is 

higher for Couette flow than for plane channel flow. 
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C.2 Contour plots 

The following plots are contour plots of the fluctuation of the heat marker concentrations 

as defined in Equation (7.7). The plots are additional documentation for the discussion 

and conclusion presented in Chapter 7.  

  

Figure C.7: Contour plot of fluctuation of the heat marker concentration given that the 

markers are moving towards  the wall (v′ < 0) in plane channel flow at t = 500 for Pr = 

0.7.  
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Figure C.8: Contour plot of fluctuation of the heat marker concentration given that the 

markers are moving towards  the wall (v′ < 0) in plane channel flow at t = 500 for Pr = 

200. 
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.  

Figure C.9: Contour plot of fluctuation of the heat marker concentration given that the 

markers are moving towards  the wall (v′ < 0) in plane Couette flow at t = 500 for Pr = 

0.7.  
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Figure C.10: Contour plot of fluctuation of the heat marker concentration given that the 

markers are moving towards  the wall (v′ < 0) in plane Couette flow at t = 500 for Pr 

=200.  
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C.3. Wall Sources: Puff Behavior for plane Poiseuille flow 

The following figures are a summary of the data that characterize the behavior of a wall 

source of heat markers in plane Poiseuille flow. 
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Figure C.11: Mean marker position in the streamwise direction for Run E – Table 2.1.  
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Figure C.12: Mean marker position in the normal direction for Run E – Table 2.1.  
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Figure C.13: Mean marker position in the spanwise direction for Run E – Table 2.1.  
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Figure C.14: Root mean square of the marker position relative to the cloud centroid in 

the streamwise direction for Run E – Table 2.1.  
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Figure C.15: Root mean square of the marker position relative to the cloud centroid in 

the normal  direction for Run E – Table 2.1.  
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Figure C.16: Root mean square of the marker position relative to the cloud centroid in 

the spanwise direction for Run E – Table 2.1.  

 

  



238 
 

Appendix D – Model Formulation  

The following documentation is the governing equations and boundary conditions for the 

DNS. The schematic of the model is presented in Figure 1.1 and Figure 1.2 for plane 

channel flow and plane Couette flow, respectively. The model formulation given below 

pays attention to only aspects relevant to this work. More details can be found in Lyons’ 

thesis (1989). 

The flow is incompressible fluid with nobody forces and is described by the Navier-

Stokes  

vpvv
t
v 21

∇+∇−∇⋅−=
∂
∂

ρ
μ

ρ
     (D.1)  

0=⋅∇ v         (D.2) 

By using the identity 

( )vvvvv ⋅∇+×−=∇⋅
2
1ω       (D.3) 

where 

v×∇=ω         (D.4) 

the Navier-Stokes equation can be written as 

vvv
t
v 2∇+

∇
−×−=

∂
∂

ρ
πω       (D.5) 

where 

vvp ⋅+= ρπ
2
1        (D.6) 

The variables and most of the results are made dimensionless with viscous wall 

parameters, the kinematic viscosity ν, and the friction velocity, u*, defined as 
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ρ
τ wu =*         (D.7) 

where τw is the wall shear stress given by 

wall
w dy

dUμτ =        (D.8) 

The characteristic wall length, time, and pressure scales are given by: 

*
*

u
l ν

=         (D.9) 

2*
*

u
t ν

=         (D.10) 

2** uP ⋅= ρ         (D.11) 

By doing a force balance on the channel, one obtains the following relationship for 

constant mean pressure gradient: 

++

+

=−
hdx

dP 1         (D.12) 

By using Equation (D.12), the dimensionless Navier-Stokes equation takes the form: 

++
+

++++
+

+

∇++∇−×−=
∂
∂ vi

h
v

t
v

x
21πω     (D.13) 

with 

0=⋅∇ ++ v         (D.14) 

++++ ⋅+= vvp
2
1'π        (D.15)  

Term p’ is the fluctuating component of the pressure. Equations (D.13) and (D.14) are the 

model equations that are solved numerically. 
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The boundary conditions in streamwise and spanwise direction are periodic. At the 

channel walls, the no-slip; no-penetration boundary condition is enforced  

),,,(),,,( ++++++++++++
=++ tzyxvtnzymxv zx λλ   (D.15)  

0),,,( =± +++++
tzh xv       (D.16) 

The Navier-Stokes equations are integrated in time using the pseudospectral fractional 

step method originally developed by Orszag and Kells (1980) and the added correction 

suggested by Marcus (1984) to ensure that the proper boundary condition on the pressure 

field exists at the channel walls. This method represents the velocity field in terms of 

truncated Fourier series of the form 
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  (D.17) 

where Nx, Ny+1, Nz are the number of grid points in the x, y, z directions, respectively. 

The n-th order Chebyshev polynomial is defined by 

)cos( θn
h
yTn =⎟

⎠
⎞

⎜
⎝
⎛         (D.18) 

where 

⎟
⎠
⎞

⎜
⎝
⎛= −

h
y1cosθ         (D.19) 

Chebyshev polynomial expansion has rapid convergence properties at the boundaries and 

naturally increases the spatial resolution of the computation in the high shear region close 

to the walls where steep gradients are expected. The pseudospectral method used to solve 

the Navier-Stokes equations is described in details by Lyons et al. (1991).  

 


