
 

UNIVERSITY OF OKLAHOMA 
 

GRADUATE COLLEGE 
 
 
 
 
 
 
 

INTEGRATED GEOPHYSICAL STUDIES OF THE FORT WORTH BASIN 

(TEXAS), HARNEY BASIN (OREGON), AND SNAKE RIVER PLAIN (IDAHO) 

 
 
 
 
 
 

A DISSERTATION 
 

SUBMITTED TO THE GRADUATE FACULTY 
 

in partial fulfillment of the requirements for the 
 

Degree of 
 

DOCTOR OF PHILOSOPHY 

 
 
 
 
 
 
 
 
 

By 
 

MURARI KHATIWADA 
 Norman, Oklahoma 

2013 



 
 
 
 
 
 
 
 

INTEGRATED GEOPHYSICAL STUDIES OF THE FORT WORTH BASIN 
(TEXAS), HARNEY BASIN (OREGON), AND SNAKE RIVER PLAIN (IDAHO) 

 
 

A DISSERTATION APPROVED FOR THE 
CONOCOPHILLIPS SCHOOL OF GEOLOGY AND GEOPHYSICS 

 
 
 
 
 
 
 
 

BY 
 
 
 

    ______________________________ 
Dr. G. Randy Keller, Chair 

 
 

______________________________ 
Dr. Kurt J. Marfurt 

 
 

______________________________ 
Dr. May Yuan 

 
 

______________________________ 
Dr. Jamie Rich 

 
 

______________________________ 
Dr. Benjamin J. Drenth 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by MURARI KHATIWADA 2013 
All Rights Reserved. 

  



This dissertation is dedicated to my father, who taught me the value of determination 

towards achieving goals, to my mother for teaching me the essence of hard work and to 

my beloved wife for her endless support and selflessness during this study. 

  



iv 

Acknowledgements 

I would like to express my deepest gratitude to my supervisor Dr. G. Randy 

Keller, Professor in geology and geophysics department, University of Oklahoma and 

Director, the Oklahoma Geological Survey. Without, your suggestions, guidance, and 

unwavering continuous support during these four years, this work would not have come 

to this form. Thank you for believing in me during this research and continuously 

funding me during these years. The knowledge and motivation you shared will be 

lifetime tonics for me. My sincere thanks go to Dr. Kurt J. Marfurt for his invaluable 

guidance and suggestions during my PhD. I would also like to thank my committee 

members Dr. May Yuan, Dr. Jamie Rich, Dr. Benjamin J. Drenth, and Dr. Deepak 

Devegowda for their continuous support and cooperation.  

 Many thank to Marathon Oil Company for providing 3D seismic data for the 

Fort Worth Basin. USGS, PACES, and EarthScope EARS were the free online data 

resources. Without these data, this dissertation would never exist. Special thanks to Dr. 

Hersh Gilbert for making receiver function data available of the western US. I used 

FMTOMO package by Dr. Nick Rawlinson for tomographic modeling. He also helped 

to interpret some tomographic result and provided with extra codes that helped in the 

tomographic inversion process. I am cordially thankful to him. 

I am much obliged to NSF and ConocoPhillips School of Geology and 

Geophysics (CPSGG) for the funding. SEG, Anadarko Petroleum, ConocoPhillips, OU, 

Geological Society of Oklahoma City, Aubra Tilley, Charles C. McBurney, and Cleo 

Cross provided personal scholarships during these years. Many thanks to BP America 



v 

for giving me chance to gain hand on experiences through summer internship 

opportunity. I am also thankful to CPSGG staffs for their support and guidance. 

 I am grateful to Dr. Kevin Crain, Dr. Tim Kwiatkowski, Stephan Holloway, and 

Galen Kaip for all sorts of technical supports as well as help during field works. Special 

thanks go to Dr. Vikram Jairam for helping collecting gravity data in the field and 

helping me run MATLAB codes and tide correction programs. I appreciate the time and 

help form my colleagues Xiao Xu, Christopher Toth, Atish Roy, Nabanita Gupta, 

Hamed Alrefaee, Jon Buening and Jefferson Chang while running different software, 

and proofreading my writing.   

I would like to thank Jefferson, Gaurang, Rachel, Sam, Vikram, Steve, Kevin, 

Travis, Mark, Nick, and Calvin for their help in collecting gravity data in Oregon. Dr. 

Spencer Wood and Lee Liberty from Boise State University were helpful during the 

fieldwork in Idaho. 

I owe my deepest gratitude and heartfelt devotion to my family. Thank you to 

my father, mother, and all family members for those long distant calls and chats during 

these years. Though you reside thousands of miles away from me, you and your prayers 

have always shown me a right path towards the progress.  

Last but not the least,  to my dearest wife Yamuna and lovely daughter Khusi, 

without your support, patience, diligence, smiles, and endless love, that has filled my 

life with joy, this work would have been incomplete. Words will not be enough to 

express my feeling towards you. I owe this dissertation to you.  

 

 



vi 

Table of Contents 

 
Acknowledgements …………………………………………………………………….iv 

Table of Contents ………………………………………………………………………vi 

List of Tables …………………………………………...……………………………..viii 

List of Figures ............................................................................................................... viiii 

Abstract .......................................................................................................................... xiii 

Introduction ...…………………………………………………………………………...1 

Chapter 1: A window into the Proterozoic: integrating 3D seismic, gravity, and 

magnetic data to image sub-basement structures in the southeast Fort 

Worth Basin………………………………………………..………………2   

Chapter 2: Integrated geophysical imaging of the upper crustal features in the Harney 

Basin, southeast Oregon …………………..………………...…………...51 

Chapter 3: Crustal scale integrated geophysical study of the Snake River Plain, 

Idaho……………………………………………………….……………121 

Conclusions….……………………………………………………….…….………....162 

 

 

 

  



vii 

List of Tables 

Chapter 2: Integrated geophysical imaging of the upper crustal features in the 

Harney Basin, southeast Oregon 

Table 2.1: Table showing the combination of source-receiver geometry chosen from 

the High Lava Plains active seismic experiment, 2008. ……………...……81 

Table 2.2: Velocity nodes along depth, used for generating initial velocity grids with -

ve depth indicating below mean sea level. ……………………………..….82 

Table 2.3: Results obtained from the iterative tomographic inversion from the 

FMTOMO program. …………………….…………………………………83 

 Table 2.4: Instruments used to collect gravity data and the processing applied to them 

in various programs and software.  ……..………………………………….84 

 



viii 

List of Figures 

Chapter 1: A window into the Proterozoic: integrating 3D seismic, gravity, and 

magnetic data to image sub-basement structures in the southeast Fort 

Worth Basin 

Figure 1.1. Figure 1.1: Index map of the study area showing Fort Worth Basin and 

major tectonic units surrounding it. .............................................................. 28 

Figure 1.2: Generalized stratigraphic column in the Fort Worth Basin…………...…...29 

Figure 1.3: Interpreted seismic section across line AA′ as shown in the inset Figure…30 

Figure 1.4: Illustration of geometric attributes using a 3D chair diagram……………..31 

Figure 1.5: Display of karst, collapse features, and faults in the seismic data using 

coherence and curvature attributes and arbitrary seismic section………….32 

Figure 1.6: Combined dip and azimuth attributes co-rendered with arbitrary seismic 

section at line CC′ as shown in inset Figure ……….....……………………33 

Figure 1.7: Time slice through the reflector rotation…………………………………..34 

Figure 1.8: 3D perspective view of the picked faults and horizons on the seismic 

volume ……………………………………………………………………..35 

Figure 1.9: Complete Bouguer anomaly (CBA) maps of the study area……………….36 

Figure 1.10: Residual CBA map of the study area after applying 40 km upward 

continuation filter…………………………………………………………..37 

Figure 1.11: Residual total magnetic intensity (TMI) maps of the study area after 

reducing to magnetic pole………………………………………………….38 

Figure 1.12: Regional gravity model across the OOB on profile AA’ across the seismic 

survey………………………………………………………………………39 



ix 

Figure 1.13: Depth to basement solution derived from Euler deconvolution with the 

structural index value of 0………………………………………………….40 

Figure 1.14: Standard Euler solutions from Figure 1.13 are plotted on top of tilt and 

total horizontal derivatives…………………………………………………41 

Figure 1.15: Comparing fault locations between seismic data and Euler solutions……42 

Chapter 2: Integrated geophysical imaging of the upper crustal features in the 

Harney Basin, southeast Oregon 

Figure 2.1: Index map of the study area showing major tectonic units around the High 

Lava Plains (HLP)….……………………………………………………...85 

Figure 2.2: Experimental layout for the High Lava Plains active seismic project 

conducted in September, 2008…….…………………………….…………86 

Figure 2.3: An example of the raw super-shot gather for shot point 24 from the High 

Lava Plains seismic experiment…………………...…………………….…87 

Figure 2.4: Flowchart used for the integrated geophysical interpretation of the Harney 

Basin region………………………………………………………………..88 

Figure 2.5: Seismic index map showing source receiver geometry chosen from the 

larger HLP seismic experiment…………………………….………………89 

Figure 2.6: Idealized areal ray coverage map from the chosen source-receiver 

geometry…………………………………………………………………....90 

Figure 2.7: Example shot gather for shot point 14 on line 1………………….………..91 

Figure 2.8: Example shot gather for shot point 15 on line 3………………………...…92 

Figure 2.9: resolution (checkerboard) test in FMTOMO program before and after 

inversion …………………...………………………………………………93 



x 

Figure 2.10: Comparison of the pre- and post-inversion velocity models in FMTOMO 

program. ……………………………………………………………………94 

Figure 2.11: Complete Bouguer anomaly (CBA) map of the area…………….……….95 

Figure 2.12: Interpretation of major features from gravity anomalies…...……...……..96 

Figure 2.13: Residual Bouguer anomaly map after subtracting the 15 km upward 

continued surface…………………………………………………………...97 

Figure 2.14: Reduced-to-pole total magnetic intensity map of the study area ………...98 

Figure 2.15: slices through the inverted velocity model of the Harney Basin area…….99 

Figure 2.16: Vertical slices through the inverted velocity model of the Harney Basin 

area shown along latitudinal slices ……………………………………….100 

Figure 2.17: Inverted velocity model of the Harney Basin area shown along depth  

                    slices ………………………………………………..……..…………….101 

Figure 2.18: Gravity model of the upper crust across the Harney Basin area along 

43.250N latitude…………………………………………………...………102  

Figure 2.19: Gravity model of the upper crust across the Harney Basin area along 

43.600N latitude……………………………………………………….…..103 

Figure 2.20: Gravity model of the upper crust across Harney Basin area along 118.80W 

longitude…………………………………………………………………..104 

Figure 2.21: A block diagram illustrating the relationship between the major crustal 

structures in the Harney Basin using residual Bouguer anomaly and seismic 

velocity at 1190W longitude………………………………………..……..105  



xi 

Figure 2.22: A block diagram illustrating the relationship between the major crustal 

structures in the Harney Basin using residual Bouguer anomaly and seismic 

velocity at 43.10N latitude………………………………….…....………..106  

Figure 2.23: A block diagram illustrating the relationship between the major crustal 

structures in the Harney Basin using reduced-to-pole TMI anomaly and 

seismic velocity at 1190W longitude………………………….…………..107  

Figure 2.24: The Harney Basin features in multiple datasets………………………....108 

Figure 2.25: Integrated geophysical interpretation of the Diamond Craters area…….109 

Figure 26: Integrated geophysical interpretation of the central lake area…………….110 

Figure 27: Integrated geophysical interpretation of the northern caldera…………….111 

Chapter 3: Crustal scale integrated geophysical study of the Snake River Plain, 

Idaho 

Figure 3.1: Index map of the study area showing major tectonic units and geographic 

provinces………………………………………………………………...141 

Figure 3.2: Bouguer anomaly maps of the study area…………………...……………142 

Figure 3.3: Bouguer anomaly profiles along the axial Snake River Plain………..…..143 

Figure 3.4: Filtered Bouguer anomaly maps of the study area………………………..144 

Figure 3.5: Filtered magnetic maps of the study area………………………………...145 

Figure 3.6: Gravity and magnetic maps of the Western Snake River Plain……...…...146 

Figure 3.7: CBA and RBA gravity maps of the Western Snake River Plain…………147 

Figure 3.8: Filtered gravity maps of the WSRP area…………………………………148 

Figure 3.9: Filtered magnetic map of the WSRP area……………………………...…149 



xii 

Figure 3.10: Gravity maps around the northwestern edge of the Snake River 

Plain……………………………………………………………………..150 

Figure 3.11: Crustal thickness map of the WSRP area……………………..………...151 

Figure 3.12: Gravity model across the Western Snake River Plain from Owhyee Plateau 

(OwP) through Oregon-Idaho Graben (OIG) to the Idaho batholith…... 152 

Figure 3.13: Gravity model across the Western Snake River Plain sub-parallel to Hill 

and Pakiser (1967) seismic refraction line………………………...……153 

Figure 3.14: Alternate gravity model across the Western Snake River Plain sub-parallel 

to Hill and Pakiser (1967) seismic refraction line………………...….…154 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

Abstract 

Geophysical methods such as seismic, gravity, magnetics, electric, and 

electromagnetics are capable of identifying subsurface features but each has a different 

spatial resolution. Although, each of these methods are stand-alone tools and have 

produced wonderful and reliable results for decades to solve geological problems, 

integrating geophysical results from these different methods with geological and 

geospatial data, adds an extra dimension towards solving geological problems. 

Integration techniques also involve comparing and contrasting the structural and 

tectonic evolution of geological features from different tectonic and geographic 

provinces. I employed 3D and 2D seismic data, passive seismic data, and gravity and 

magnetic data in three studies and integrated these results with geological, and 

geospatial data. Seismic processing, and interpretation, as well as filtering techniques 

applied to the potential filed data produced many insightful results. Integrated forward 

models played an important role in the interpretation process. 

The three chapters in this dissertation are stand-alone separate scientific papers. 

Each of these chapters used integrated geophysical methods to identify the subsurface 

features and tectonic evolution of the study areas. The study areas lie in the southeast 

Fort Worth Basin, Texas, Harney Basin, Oregon, and Snake River Plain, Idaho.  

The Fort Worth Basin is one of the most fully developed shale gas fields in 

North America. With the shallow Barnett Shale play in place, the Precambrian 

basement remains largely unknown in many places with limited published work on the 

basement structures underlying the Lower Paleozoic strata. In this research, I show how 

the basement structures relate to overlying Paleozoic reservoirs in the Barnett Shale and 
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Ellenburger Group. I used high quality, wide-azimuth, 3D seismic data near the 

southeast fringe of the Fort Worth Basin. The seismic results were integrated with 

gravity, magnetic, well log, and geospatial data to understand the basement and sub-

basement structures in the study area. Major tectonic features including the Ouachita 

thrust-fold belt, Lampasas arch, Llano uplift, and Bend arch surround the southeast Fort 

Worth Basin. The effects of these tectonic units in the basement were imaged in form of 

faulted and folded basement and sub-basement layers. Euler deconvolution and 

integrated forward gravity modeling were employed to extend the interpretations 

beyond the 3D seismic survey into a regional context. 

The Harney Basin is a relatively flat lying depression in the northeast portion of 

the enigmatic High Lava Plains volcanic province in eastern Oregon. In addition to the 

High Lava Plains active source seismic data, I also employed gravity, magnetic, digital 

elevation, geologic maps, and other geospatial data in this integrated study. I generated 

an upper crustal 3D seismic tomographic model of the Harney Basin and surrounding 

area using the active source seismic data. I then integrated it with gravity, magnetic, and 

geologic data to produce a geophysical model of the upper crustal structure, which 

reveals that the basin reaches as deep as 6 km in the central areas.  I observed two major 

caldera shaped features within the basin. These calderas reveal seismic low velocity 

areas along with low gravity and magnetic anomalies. I interpreted the extent of these 

calderas with the help of integrated geophysical results. I propose a nested caldera 

complex in the northern Harney Basin and another caldera in the southern part. 

The Snake River Plain is an arcuate-shaped topographic low that lies in southern 

Idaho. This rifted valley is filled by large volume of mafic magma with numerous 
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exposures of silicic volcanic centers. The scientific discussion on the structural 

complexities and evolution of the Snake River Plain and the role of extension in its 

formation has been going on for decades. Similarly, high gravity and magnetic 

anomalies are associated with the Snake River Plains, and their possible causes are still 

the subject of many studies. Numerous recent passive seismic studies specifically focus 

on the deep mantle structures of the Eastern Snake River Plain. However, crustal scale 

studies in the Western Snake River Plains are limited.  In this research, I used gravity 

and magnetic data in the area and integrated the results with seismic, geospatial data, 

and receiver function results. I identified the major differences and similarities in the 

structures and tectonics of the Western and Eastern Snake River Plain based on the 

gravity and magnetic anomalies. With the help of processed receiver function results, 

2D seismic refraction and reflection data, interpreted well logs, and geospatial data, I 

generated 2D gravity models across the Western Snake River Plain. A mid-crustal 

mafic intrusion is the main reason for high gravity anomaly in the Western Snake River 

plain. Alternate gravity model along a profile showed underplating as a possible 

additional source for the gravity high along the Western Snake River Plain. 
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Introduction 

Scientists have used geophysical methods to solve geological problems for 

centuries. Geophysical methods are generally scale independent. In this dissertation, I 

used 2D and 3D active seismic, passive seismic, gravity and magnetic data and 

integrated the results with well log data, geological maps, and digital elevation data to 

study subsurface features. Three different areas in different tectonic provinces in the 

United States were chosen, which are: the southeast Fort Worth Basin, Texas, the 

Harney Basin, Oregon, and the Snake River Plain, Idaho. In the Fort Worth Basin, I 

studied the shallow reservoirs and tectonic setting of the Barnett Shale and its relation to 

the underlying basement. In the Harney Basin and Snake River Plain, my studies 

primarily focused on upper to deep crustal structures and tectonic evolution of these 

areas. The main aims of this study are to integrate available geophysical datasets with 

geological data and to identify the tectonic and structural features of the subsurface of 

the study areas and their tectonic evolution. 

This dissertation includes three different chapters, and each chapter is a stand-

alone scientific paper. These chapters are at different stages of publication. Chapter 1 on 

the southeast Fort Worth Basin has been accepted for publication by the Interpretation 

Journal of the Society of Exploration geophysicists. Chapter 2 on the Harney Basin is 

almost ready to submit to Geosphere that is published by the Geological Society of 

America. Chapter 3 on the Snake River Plain will also be submitted to Geosphere and is 

currently in preparation. 
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Chapter 1: A window into the Proterozoic: integrating 3D seismic, 

gravity, and magnetic data to image sub-basement structures in the 

southeast Fort Worth Basin 

 

Abstract: The Fort Worth Basin is one of the most fully developed shale gas fields in 

North America. Although there are hundreds of drilled wells in the basin, almost none 

of them reach to the Precambrian basement. Imaged by perhaps one hundred 3D seismic 

surveys, the focus on the relatively shallow, flat-lying Barnett Shale objective has 

resulted in little published work on the basement structures underlying the Lower 

Paleozoic strata. Subtle folds and systems of large joints are present in almost all 3D 

seismic surveys in the Fort Worth Basin. At the Cambro-Ordovician Ellenburger level, 

these joints are often diagenetically altered and exhibit collapse features at their 

intersections. In this research, we show how the basement structures relate to overlying 

Paleozoic reservoirs in the Barnett Shale and Ellenburger Group. In support of our 

investigation, the Marathon Oil Company provided a high quality, wide-azimuth, 3D 

seismic data near the southeast fringe of the Fort Worth Basin. In addition to the seismic 

volume, we integrated the seismic results with gravity, magnetic, well log, and 

geospatial data to understand the basement and sub-basement structures in the southeast 

Fort Worth Basin. Major tectonic features including the Ouachita thrust-fold belt, 

Lampasas arch, Llano uplift, and Bend arch surround the southeast Fort Worth Basin. 

Euler deconvolution and integrated forward gravity modeling helped us extend our 

interpretation beyond the 3D seismic survey into a regional context. 
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Keywords: geophysical integration, 3D seismic, gravity, magnetic, basement, Euler 

deconvolution 

Introduction 

 The Fort Worth Basin (FWB) is a Late Paleozoic foreland basin that is 

associated with the Ouachita orogenic belt (OOB) and occupies an estimated area of 

about 15000 sq. miles (~38000 km2) (Montgomery et al., 2005; Pollastro et al., 2007; 

Bruner and Smosna, 2011).  Major tectonic units that bound the Fort Worth Basin 

include the Muenster arch that is related to the Southern Oklahoma aulacogen (SOA), 

the Llano uplift (LU), the Ouachita thrust-fold belt (OTFB), and the Bend arch (Fig. 

1.1). The FWB was primarily developed during the Early and Middle Pennsylvanian in 

front of the advancing Ouachita fold belt (Walper, 1982; Kruger and Keller, 1986; 

Pollastro et al., 2007). 

Tectonic studies of the FWB and its surrounding regions, such as the OOB, and 

the LU, dates back as early as 1857 (Viele, 1989). Flawn (1961) published a notable 

summary about the geological and tectonic history of the entire OOB. After the 

emergence of plate tectonics, studies of the region escalated and numerous regional 

analyses of the tectonic and geological evolution of the Ouachita system were 

undertaken (e.g., Nicholas and Rozendal, 1975; Kruger and Keller, 1986; Arbenz, 1989, 

2008; Denison, 1989; Keller et al., 1989; Nicholas and Waddell, 1989; Viele 1989; 

Viele and Thomas, 1989). The Llano uplift (LU) is important because it is the only 

Precambrian basement outcrop in the region; studies of its structure and evolution 

include Carter (1989), Mosher et al., (2008), Barker and Reed (2010), Levine and 

Mosher (2010). Regional geophysical studies of the FWB region include Nicholas and 
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Rozendal (1975) who employed 2D seismic, gravity, and geological data to interpret the 

subsurface structures within the Ouachita fold belt and their relation to the Paleozoic 

cratonic margin. Kruger and Keller (1986) used gravity, drilling, and geologic data to 

study the crustal structure of Ouachita Mountains and FWB region. The crustal scale 

structure of the region was synthesized by Mickus and Keller (1992) who used 2D 

seismic refraction and reflection profiles from COCORP and PASSCAL scientific 

experiments, well data, and gravity data to interpret the lithospheric structure of the 

Ouachita frontal thrust belt (OFTB) across the Gulf coastal plain, to the Gulf of Mexico.  

The geological framework, history, and tectonic evolution of the FWB is 

discussed in many publications such as Henry (1982), Walper (1982), Meckel et al. 

(1992), Thomas and Texas (2003), Erlich and Coleman (2005), Montgomery et al. 

(2005), Loucks and Ruppel (2007), Pollastro et al. (2007), and Bruner and Smosna 

(2011). Hardage et al. (1996) used 3D seismic data to study the relationships between 

the karst and collapse features and overlying clastic stratigraphy. Since these study, 

potential field data, drilling results, and volumetric seismic attributes such as dip and 

azimuth, curvature, coherence, and reflector parallelism of convergence are widely used 

to identify and interpret small to mega scale structural features in the subsurface and 

their relation to the bounding rock units. For example, Sullivan et al. (2006) 

successfully employed volumetric seismic attributes such as curvature, coherence, and 

reflector rotation to map chimneys, collapse, and karst features of the Ellenburger 

Group in the FWB and showed that these features are controlled by tectonic processes. 

Aktepe et al. (2008) used volumetric attributes such as coherence and curvature to map 

and analyze basement faulting and showed their involvement with the observed collapse 
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features in the Paleozoic strata above the basement.  Elebiju et al. (2010) used 

volumetric seismic attributes and high-resolution aeromagnetic data to successfully 

establish links between the Precambrian basement structure and sedimentary structures 

of overlying Paleozoic strata in the northern part of FWB.  

Most of the recent geophysical studies in the FWB are focused on the northern 

part because of the presence of thicker Barnett Shale and other oil and gas bearing 

carbonate units. Geophysical studies and published works in the southern FWB are 

limited because of the reduced thickness of the Barnett Shale and absence of the key 

Paleozoic carbonate units such as the Viola, Simpson, and Forrestberg Limestone 

(Montgomery et al., 2005; Pollastro et al., 2007; Bruner and Smosna, 2011).  Although 

there are hundreds of oil and gas exploration and production wells, most are focused on 

the shallow Barnett Shale production such that we lack well data below the Cambro-

Ordovician Ellenburger Group. There is even less data and fewer published studies on 

the basement structures of the southern FWB.  

This study is focused on the data sparse southern Fort Worth Basin, where 

Marathon Oil Company collected 3D seismic data in a small area of Hamilton County, 

Texas in 2006 (Fig. 1.1). We used these 3D seismic data to identify and interpret 

basement and sub-basement structures and their relationship with the overlying 

Paleozoic and Late-Paleozoic sequences. We augmented this proprietary data volume 

with publically available gravity, magnetic, and geospatial data. We integrated the 

results obtained from these geophysical methods to understand the details of the 

Precambrian basement in the southeast FWB. We also constructed an integrated 

forward gravity model across the FWB and OFTB and performed Euler deconvolution 
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of the magnetic data. Afterwards, we integrated the results to interpret the tectonic and 

structural history of the basement and its relationship with the overlying basin. 

Geological and tectonic background 

The Phanerozoic evolution of the area started with Early Paleozoic continental 

rifting in the context of a Wilson Cycle that formed the SOA and the Early and Middle 

Paleozoic continental margin along which the OOB developed in the Late Paleozoic 

(e.g., Keller, 2009). The FWB was part of the southern Laurentian passive margin when 

Laurentia collided with Gondwana in the Mid Paleozoic (Dalziel et al., 1994; and 

Dennie, 2010).  The Paleozoic Ellenburger Group, Simpson Group, and Viola 

Limestone lie beneath a major unconformity and are overlain by the Forrestberg 

Limestone, Barnett Shale, and Marble Falls Limestone Group. Pennsylvanian strata 

subsequently filled the Fort Worth Basin. Today, Proterozoic rocks are exposed in the 

Llano uplift area. The west and northwest portions of the FWB are covered with the 

Paleozoic rocks whereas the OOB, eastern FWB, and the GCP (Gulf Coastal Plain) are 

all covered with Cretaceous and Quaternary sediments (Fig. 1.1). Walper (1982) 

interpreted some high angle normal faults and graben structures in the FWB mostly 

associated with the Ouachita orogenic fold-thrust belt and the Llano uplift. Some of 

these faults are exposed, but most of them are buried under the Quaternary sediments. 

The FWB is bounded on the east by the OOB, which is the most prominent 

structure in the periphery of the basin and forms the approximate boundary between the 

transitional crust of the Gulf of Mexico and the cratonal North America (e.g. Kruger 

and Keller, 1986; Keller et al., 1989; Gao et al., 2008).  The Ouachita Mountains have 

limited exposure in Texas and are buried beneath the younger Cretaceous and 
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Quaternary sediments (e.g. Keller and Cebull, 1973; Keller et al., 1989; Viele, 1989; 

Viele and Thomas, 1989). The Ouachita orogeny started in the Late Paleozoic when a 

southern continent collided with North America; the tectonic activity migrated 

westward and ended by the Early Permian (Keller and Hatcher, 1999; Kruger and 

Keller, 1986). The inboard side (side toward the FWB) of the OFTB contains 

unmetamorphosed to slightly metamorphosed pre-orogenic offshore and syn-orogenic 

deep-water rocks, whereas the outboard side contains higher-grade metamorphic rocks 

(Flawn, 1961; and Viele, 1989). The north border of the basin, the Muenster arch, is a 

fault bounded basin uplift related to the SOA, which was reactivated during the 

Ouachita orogenic compression (Walper, 1982; Keller et al., 1989; Pollastro et al., 

2007; Elebiju et al., 2010).  The FWB is bounded by the Bend arch in the west. that is a 

subsurface structural high that extends north of the LU. In the Late Mississippian, the 

FWB subsided and tilted westward, which is one of the reasons for the formation of the 

Bend arch (Tai, 1979; Walper, 1982; Pollastro et al., 2007). The FWB is terminated on 

the south by the LU, which is a dome shaped structural feature that exposes 

Mesoproterozoic-Paleozoic rocks (Montgomery et al., 2005; Pollastro et al., 2007; 

Mosher et al., 2008). The rocks in the northeast portion of the LU are deformed and 

metamorphosed with many NE-SW trending normal faults related to the Ouachita 

orogenic event (Smith, 2004; Mosher et al., 2008). The Lampasas arch is another 

prominent structure in the southern FWB that extends northeast from the LU and 

follows the orientation of other major faults related to the Ouachita frontal zone 

(Pollastro et al., 2007). In addition to these major structures, many basement related 

normal faults, thrust faults, fractures, karst, and collapse features are abundantly found 
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in the Cambrian to Pennsylvanian units throughout the FWB. These structures relate to 

multiphase tectonic events. Some of these structures were reactivated in the north and 

northeast part of the basin, however, the direction and orientation of these structures 

changes rapidly from place to place (Flawn, 1961; Henry, 1982; Pollastro et al., 2003; 

Montgomery et al., 2005; Pollastro et al., 2007). Due to these different tectonic events, 

the FWB formed as an asymmetrical and wedge-shaped basin that pinches out toward 

the south (Figure 1.1). 

General stratigraphy 

The generalized stratigraphy of the FWB is shown in Figure 1.2. The basement 

of the FWB is made up of structurally complex Precambrian meta-sediments, granite, 

diorite, gneiss, and schist (Preston et al., 1996; Pollastro et al., 2003). However, in most 

of the cases, no well data penetrate below the Ellenburger Group. Above the basement, 

unconformably lie the Cambrian rocks of Wilberns and Riley Formations (Denison, 

1989). The Riley Formation consists of the oldest Hickory Sandstone Member, Cap 

Mountain Limestone Member, and the youngest Lion Mountain Sandstone Member, 

whereas, the Wilberns Formation is made up of (from oldest to youngest) the Welge 

Sandstone Member, Morgan Creek Limestone Member, Point Peak Member, and San 

Saba Limestone Member (Fig. 1.2). These rocks were deposited in shallow marine 

environments, which were often sub-aerially exposed (Preston et al., 1996; and Smith, 

2004). Their thickness ranges from about few meters to 915 m (~3000 ft) in the south 

and southeast area near the Llano uplift (Preston et al., 1996; Smith, 2004; Pollastro et 

al., 2007). The Cambro-Ordovician Ellenburger Group conformably overlay the 

Wilberns Formation. It predominantly consists of porous dolomite and limestone with 
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abundant chert and occasional sandstone units. These rocks are characterized by 

numerous karst, solution-collapse, and brecciated structures (e.g. Loucks, 2003; 

Montgomery et al., 2005; Sullivan et al., 2006; Loucks and Ruppel, 2007; Dennie, 

2010). In the central part of the FWB, basement faults have influenced the Ellenburger 

sub aerial karst features, and these features have helped to reactivate the faults (Sullivan 

et al., 2006). Above the Ellenburger Group, the Middle and Upper Ordovician Simpson 

Group, Forrestberg Limestone, and Viola Limestone were deposited, but these units are 

absent on the southeast area (Bruner and Smosna, 2011). In the south and southeast 

area, the Mississippian Barnett Shale unconformably overlays the Cambro-Ordovician 

Ellenburger Group (Pollastro et al., 2003; Montgomery et al., 2005; Dennie, 2010; 

Bruner and Smosna, 2011). The absence of the Devonian and Silurian rocks indicates 

an erosional surface (unconformity) above the Ellenburger Group. The thickness of the 

Barnett Shale varies across the basin. It is as thick as 213 m (~700 ft) in the northeast 

corner whereas the thickness decreases to about 9 m (~30 ft) in the south and southeast 

corner (Montgomery et al., 2005; Loucks and Ruppel, 2007; and Bruner and Smosna, 

2011). The Barnett Shale is overlain by the Mississippian Marble Falls Limestone, 

which in turn is covered with the Atokan conglomerate and sandstone (Bruner and 

Smosna, 2011). Above these Paleozoic units, lies a relatively thin cover of the 

Cretaceous and Quaternary sediments. 

Geophysical data preparation, processing, and interpretation 

In this study, we analyzed 3D seismic data, gravity, and aeromagnetic data and 

integrated the results with other geospatial data including well logs, geological maps, 

fault maps, and digital elevation models to interpret the basement structures. In the 
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following sections, we discuss the details of these methods, basics of the processing 

techniques, and the interpretation. 

Seismic data 

3D seismic data preparation:  

The 3D seismic survey covered approximately 220 km2 (~ 85 Sq. miles) and has 

1189 inlines and 1119 crosslines with spacing of 16.76 m (~55 ft) each. We used the 

pre-stack time-migrated seismic volume for interpretation purposes. The data 

processing was focused on imaging the shallow Barnett Shale objective, leaving some 

low frequency migration artifacts in the deeper portion of the seismic data. In an ideal 

case, one should pre-stack depth migrate the data to image the basement. Here, we 

applied a bandpass Butterworth filter (10-15-24-30 Hz) to reduce the migration artifacts 

and higher band frequency related multiples. We picked some of the key Paleozoic 

horizons and faults along with some of the strongest sub-basement reflectors (Fig. 1.3). 

Given the flat nature of the Paleozoic section, these dipping reflectors represent geology 

of the area rather than multiples. These reflectors are discontinuous in places but are 

trackable. Below these strongest reflectors, there are various discontinuous and weaker 

reflectors. These reflectors truncate upward and terminate into the sub-basement 

reflectors. These sub-basement reflectors form bounding envelopes (Fig. 1.3).  We also 

mapped some of the major fault patterns, which exhibit NNE-SSW trends. 

Another major technique applied to the seismic data was attribute analysis. 

Volumetric seismic attribute analysis not only helps to delineate and identify major 

structural features such as faults, karst, and collapse features, but also aids visualization 

of dip and azimuth variations and reflector rotation. The volumetric attributes, such as 
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amplitude variation, coherence, curvature, dip and azimuth variation, reflector rotation, 

and structurally oriented filters are routinely used in the 3D seismic interpretation 

(Brown, 1996; Chopra and Marfurt, 2005, 2007a, b).  We used an internally developed 

software package to generate numerous volumetric seismic attributes. Among them, 

coherence, curvature, reflector rotation, and dip and azimuth variation of the reflectors 

were the most useful in this study.  The results from the volumetric attributes analysis 

are shown in Figures 1.4 through 1.7. The discussion of the mathematical details and 

theoretical background of these methods is beyond the scope of this paper, with the 

details found in Brown (2011), Chopra and Marfurt (2007a).  

Seismic data interpretation:  

Although, the seismic data covers only a small part of the study area, its spatial 

resolution helped to easily identify major subsurface features. We identified and 

mapped major faults, key Paleozoic horizons, the top of the Precambrian basement, and 

sub-basement reflectors in the seismic volume. Figure 1.3 shows the main structural 

features observed in the seismic data on a representative vertical slice through the 

central portion of the survey. The top of the Precambrian basement is clear throughout 

the seismic volume. Above the basement, Wilberns and Riley Formations were clear, 

and we mapped the Ellenburger Group and the Marble Falls Limestone horizons. The 

Barnett Shale lies between these units and thins from A towards A′ (eastward). 

Montgomery et al. (2005) and Bruner and Smosna (2011) discussed the absence of the 

Viola Limestone, Simpson Group, and the Forrestberg Limestone in the southern part of 

FWB. We can confirm this in the seismic section (Fig. 1.3). Four major faults namely 

F1, F2, F3, F4 are mapped (Fig. 1.3). These normal faults have a regional trend of 
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NNE-SSW. Fault F1, is shallow but has the largest offset, which is about 0.25 s. Fault 

F2, has a small offset of a few milliseconds. We traced this fault to a depth of about 1.4 

s. Fault F3, cuts across the Paleozoic sequences as well as the Precambrian basement. 

This fault can be trace down to about 1.5 s. Below this depth; it is faintly visible and is 

shown by a dashed white line in Figure 1.3. Deep in the seismic section, we observe 

other potential faults (dashed white lines). We suspect these features are probably 

normal and thrust faults that trend NNE from the eastern LU and are most likely related 

to faults associated with the Ouachita orogeny (e.g. Ferrill and Morris, 2008; Mosher et 

al., 2008; Levine and Mosher, 2010). Fault F4, has a smaller offset and is mapped to 

about 1.1 s. Below 1.3 s, we also picked some strong and continuous intra-basement 

reflectors (denoted as sub-basement 1 and sub-basement 2 in Fig. 1.3). They are 

irregular, curved and truncated in 3D perspective view. The irregular shapes, truncation 

and curvature of the basement are the product of the complex history of Ouachita 

tectonics and multi-phase uplift in the Llano area that is related to Grenville orogeny 

and subsequent erosional unconformity (e.g. Freeman and Wilde, 1964; Mosher et al., 

2008; Levine and Mosher, 2010). At about 2.0 s and below, there are more intra-

basement reflectors (dashed black lines in Fig 1.3). They are discontinuous through the 

seismic volume and hence are more difficult to pick. We interpret these events as 

possible intrusive bodies, sills, and dikes mostly related to the magmatism that is 

observed in the eastern LU and are probably related to the Grenville orogeny. 

We used different volumetric attributes to aid the seismic interpretation process 

including curvature, coherence, combined dip and azimuth, and reflector rotation. Co-

rendering these attributes and the seismic data together is a very useful technique to 
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visualize subtle geological features that may not be readily observed in the traditional 

seismic amplitude display. Coherence attributes measure the similarity of the 

neighboring seismic traces along the dip and azimuth of the seismic reflectors (Chopra 

and Marfurt, 2007a). This attribute is a useful tool to visualize faults, river channels, 

reefs, karst features, and collapse features. Curvature approximates local seismic 

reflectors with a quadratic surface and highlights folds, flexures along the fault planes, 

collapse, and karst features. Figure 1.4 shows a time slice through co-rendered 

coherence, most positive and negative principal curvature near the approximate top of 

Precambrian basement with vertical slice through seismic amplitude co-rendered with 

the two curvatures. Blue areas (such as indicated by the cyan arrow) highlight valleys 

and bowls while red areas (such as indicated by the white arrow) highlight ridges and 

domes.  Some of these valleys and ridges cut across the Barnett Shale and Ellenburger 

Group and extend at least to the basement. Note the complex deformation of the 

basement that controls the collapse features in the shallower Ellenburger Group (such as 

area indicated by the red and blue ellipse). In the NW corner of the survey, we also 

observed a pop-up block throughout the Paleozoic sequences.  This indicates the 

presence of transpressional tectonic setting and complex deformation history. To find 

the vertical extent of karst and collapse features observed in the Marble Falls Limestone 

and Ellenburger Group, we analyzed co-rendered times slices of coherence, most-

positive and negative principal curvature at different depth ranging from 0.75 s to 1.1 s 

and plotted them against the seismic data (Fig. 1.5). The slice at t=0.75 s approximates 

the top of the Ellenburger Group where we see all of the picked faults F1, F2, F3, and 

F4 and significant numbers of the collapse and karst features (indicated by cyan 
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arrows). We observe that some of these karst and collapse features align well with faults 

as in F2 and F3 forming a “string of pearls” as seen in other FWB surveys (Schuelke, 

2011). At t=0.9 s, these collapse and karst features are not clearly visible (except in the 

southwest corner). At this level, we are at one of the sandstone units of the Riley or the 

Wilberns Formation. At t=1.0 s time slice, some of these karst and collapse features 

(indicated by cyan arrows) reappear in the southeast corner of the survey. We interpret 

this time slice as cutting to one of the limestone members of the Riley or the Wilberns 

Formation. At t=1.1 s, none of these karst or collapse features are visible. At this depth, 

we are looking into the Precambrian basement in the area, which is mainly composed of 

granite and diorites as shown in Figure 1.2 and reported by Smith (2004), Sullivan et al. 

(2006), and Bruner and Smosna (2011).  

The combined dip and azimuth attributes help us identify and interpret the 

orientation of dipping seismic reflectors, faults, and folds. We co-rendered the 

combined dip and azimuth attribute and seismic amplitude values and show the result in 

Figure 1.6. Faults F1, F2, F3, and F4 are all observed with brighter (higher 

intensity/luminosity) color indicating steeper dips of about 150-200. Faults F1, F2, F3 

are dipping toward the NNW, whereas F4 dips SSE. Reflector rotation is a more 

recently introduced attribute (Marfurt and Rich, 2010) that estimates the non-quadratic 

features of the local surfaces. Mathematically, the mean curvature is the divergence of 

the vector dip while the reflector rotation is the curl of the reflector dip. At t=0.7 s and 

t=1.0 s we observe strong NNE-SSW trending fabrics as shown in Figures 1.7A and 

1.7B. These fabrics match well with the structural trend of Balcones fault and the thrust 

faults of the OOB (Fig 1.1 and 1.10). We also observed possible Reidel shear (?) 
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structures in between faults F1 and F2 (Fig. 1.7A). The presence of these shear zones 

indicates the transpressional tectonic setting in the area during the Paleozoic. We also 

extracted vertical slices along the arbitrary lines AA′ and BB′ and show these seismic 

sections in Figures 1.7C and 1.7D.  We identified key Paleozoic horizons and some of 

the Proterozoic reflectors. These sub-basement Proterozoic reflectors are probably 

igneous sills and intrusions related to the Grenville orogeny similar to those observed in 

the nearby eastern LU (Carter, 1989; Mosher et al., 2008; Barker and Reed, 2010). 

There are some unidentified reflectors (marked by white block arrows; Figs. 1.7C and 

D). We believe these reflectors either are faults related to the Ouachita orogeny or are 

some meta-sedimentary or meta-volcanic Proterozoic horizons.  

With the help of all these interpretations, we constructed the 3D perspective 

view of the time-structure map with the major basement structures, mapped faults, and 

key Precambrian horizons shown in Figure 1.8. The top of the Precambrian basement is 

relatively flat and continuous. The Proterozoic sub-basement surfaces are irregular and 

truncated. These surfaces resemble the shape of intrusive igneous bodies such as sills or 

plutons. Faults F2 and F3 are deep seated and cut across the entire Proterozoic and 

Paleozoic sequences in the area whereas faults F1 and F4 are shallow and are mapped in 

the Paleozoic sequences and in the shallower portion of the Precambrian basement. 

Gravity and magnetic data 

Gravity and magnetic data preparation and processing:  

The terrestrial gravity and aeromagnetic data for the continental United States 

are freely accessible online at Pan American Center for Earth & Environmental Studies 
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(PACES) [http://research.utep.edu/paces/]. We downloaded the regional gravity and 

magnetic data for an area of about 2 degrees out on each side of the seismic survey.  

One of our goals is to determine if the regional potential field data relates the basement 

structures mapped on the seismic volume with the large scale OOB, Lampasas arch and 

the LU tectonic units in the study area. The regional data covers the area between 300N-

340N latitudes and 950W-990W longitudes (Figs. 1.1, 1.9, and 1.11). We used complete 

Bouguer anomaly (CBA) gravity values from the PACES database for further mapping 

and processing and used the Texas state magnetic data to analyze magnetic anomalies. 

These latter data were collected as part of the National Uranium Resource Evaluation 

(NURE) program in 1973 and is freely available online at USGS website 

[http://pubs.usgs.gov/ds/2006/232/]. We used a 2 km (~6562 ft) grid spacing for both 

CBA and total magnetic intensity (TMI) grids. We also reduced the TMI data to the 

magnetic North pole so that the resulting residual magnetic anomalies will lie directly 

above the magnetic source (Blakely, 1996) unless there is a strong remanent 

magnetization present. This reduced-to-pole residual TMI grid was used for further 

processing and filtering the magnetic data. Geosoft® software was used for processing 

and analyzing the potential field data. 

To enhance the visualization of gravity and magnetic anomalies, their shapes, 

and boundaries, we used various wavelength filters. We applied upward continuation 

filter to the CBA to estimate the regional anomalies and subtracted the result from the 

CBA map to obtain a residual CBA map (Fig. 1.9A). We also applied the directional 

derivative, tilt derivative, and total horizontal derivative filters to both the gravity and 

magnetic data, to delineate boundaries of intrusive bodies, faults, and other lateral 
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changes using edge detection techniques.  The discussions of the mathematical and 

theoretical details of these filters are found in Miller and Singh (1994), Blakely (1996), 

and Verduzco et al. (2004).  

In addition to the wavelength and edge detecting filters, we also applied Euler 

deconvolution techniques to the magnetic data to determine the depth to the basement 

of the magnetic anomalies. The Euler deconvolution method relates the vertical and 

horizontal gradients of the residual TMI values with help of geometry of the magnetic 

bodies given by the structural index (SI) (e.g. Thompson, 1982; and Barbosa et al., 

1999). In addition to estimating basement depth, solutions obtained from the Euler 

deconvolution help to delineate source geometry and boundaries and can map fault if 

the proper SI value is used for the given fault offset depth, and location of the fault. 

Shallow faults with larger offsets and irregular contacts are assigned an SI value of 0, 

whereas deeper faults with small offsets are assigned an SI value of 1 (Reid et al., 

1990). Although the solution form Euler deconvolution techniques help us to locate the 

anomaly of isolated magnetic bodies with the appropriate SI, solutions in areas with 

multiple source and complex geometry can be problematic (Blakely, 1996).  In this 

paper, we used SI values of 0 to map deeper faults and 0.5 and 1 to map the top of the 

Precambrian basement. 

Interpretation of gravity and magnetic data:  

In a study such as this, potential field data like gravity and magnetic surveys 

have lower spatial resolution than seismic reflection data. However, they are very 

helpful for understanding regional geological and tectonic setting of the area. The CBA 

anomaly in the area varies by about 100 mGal.  We observed major tectonic units 



18 
 

surrounding the FWB such as the LU, OOB, and SOA, which are associated with 

regional gravity highs. A prominent gravity low is associated with the FWB basin. We 

focused on the local area that contains the seismic data and analyzed gravity features 

(Fig. 1.9B). The seismic survey area lies within a series of local gravity high anomalies 

(G1, G2, G3; marked by dashed blue polygons, Fig. 1.9B) with a NE-SW regional 

trend. Two major gravity lows lie to the NW and SE sides of these features (marked by 

dashed red polygons).  

To aid in the interpretation, a residual gravity anomaly map was constructed by 

subtracting the surface resulting from upward continuing the data to 40 km (Fig. 1.10). 

Major tectonic units are identified on this map, including the approximate boundaries of 

the FWB, LU, SOA and OOB interior zone. Inside the FWB, two major gravity lows 

are observed. To the northwest, a large linear gravity minimum is known as Abilene 

gravity minima (AGM). Adams and Keller (1996) interpreted its source to be 

potentially a Precambrian granitic batholith that is similar to the size of Sierra Nevada 

batholith. Northeast of the LU, another gravity minimum (G4) of similar intensity of the 

AGM but of smaller extent is observed. We interpret this minimum as similar to that of 

the AGM in its origin. We hypothesize that the encroaching Ouachita frontal thrust in 

the Late Paleozoic played an important role in creating elliptical shape of the gravity 

minimum (G4), with its longer axis parallel to the direction of the Ouachita frontal 

thrust zone. The analogy can be drawn from the Sudbury structure, Ontario, Canada, 

where the impact structure was intensely deformed by the Grenville orogeny (Boerner 

et al., 2000). 
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We also analyzed the magnetic data and a reduced-to-pole residual TMI map is 

shown in Figure 1.11. Magnetic highs related to the OOB and SOA are observed 

(shown by sets of white and yellow arrows respectively, Fig. 1.11A) Within the FWB 

itself, there are several magnetic bodies giving rise to interfering anomalies. The 

localized TMI map with a focus on the seismic survey area is shown in Figure 1.11B. 

Two positive local magnetic anomalies (M1 and M2) are observed in vicinity of the 

seismic survey. These anomalies are related to the folded and bulged structures (sub-

basement 1 and sub-basement 2) shown in Figures 1.3 and 1.8, which we interpret to be 

igneous intrusions related to the eastern LU. We also observe a local magnetic 

minimum, M3 in the residual TMI map. This minimum is partly related to the thicker 

Cambrian sediments to the northeast side of the LU (Preston et al., 1996; and Smith, 

2004) and probably partly due to the felsic intrusive bodies from the Grenville orogeny 

(Carter, 1989; Mosher et al., 2008; Barker and Reed, 2010; Levine and Mosher, 2010). 

We modeled a 272 km (~169 mi) long residual CBA gravity profile AA’ (Fig. 

1.10) across the OOB using seismic, drilling, and geologic data as constraints. The 

density model along the profile is shown in Figure 1.12. We chose this profile in such a 

way that it crosses the 3D seismic data and the most important tectonic units in the area. 

A few of the interpreted well logs lie in the profile but none penetrates through the 

shallow Ellenburger Group. The average Moho depth in the area has been estimated to 

be about 40 km (e.g. Kruger and Keller, 1986; Keller et al., 1989; and Gao et al., 2008). 

Based on this model, we interpret the Moho depth to range from about 42 km in the 

FWB to about 37 km in the GCP. The mantle and the lower crust were assigned typical 

average densities of 3.3 and 3.0 g/cm3 respectively. At about 3 km depth, we modeled 
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shallow igneous body with density of 2.65 g/cm3, which we interpret to be a granitic 

sill. A prominent local gravity minimum (G4) is located at the center of profile (Fig. 

1.10). Some researchers have interpreted G4 to be related to thick sedimentary units of 

the FWB. This contradicts the well log data, which, show the top of the Ellenburger 

Formation in this area is rather flat (Montgomery et al., 2005; and Bruner and Smosna, 

2011). To model the gravity low of G4, we took an alternative modeling approach by 

thickening the Cambrian units of Riley and Wilberns Formation to some extent (Preston 

et al., 1996) and emplacing a low-density (2.6 g/cm3) granitic batholith in the upper 

crust. The density variation for granite at the given depth is as suggested by Oliver 

(1977) for the Sierra Nevada granites. We used seismic data, well logs, and geospatial 

database to constrain the upper few kilometers of the model. To determine the densities 

of the Paleozoic units from the seismic data, we used Gardner’s empirical relation 

(Gardner et al., 1974) between the density and P-wave velocity. We compared and 

confirmed these densities with the aid of well logs in the area. In the FWB, the top of 

the Precambrian basement is at the depth of about 2.5 to 3.5 km (~8000 - 11500 ft.) 

whereas the depth of the Cambrian unit ranges between 1.4 -1.8 km (~4500 - 5800 ft.). 

The Ellenburger Group overlies the Cambrian units. The top of Ellenburger Group is 

relatively flat and is overlain by the Barnett shale and Marble Falls Limestone. 

Cretaceous and Quaternary sediments unconformably overlie the Paleozoic sequence.  

To the southeast side of G4, lies the OOB. We modeled the Ouachita frontal zone and 

Ouachita interior zones with densities of 2.64 and 2.71 g/cm3. The difference in 

densities is based on the rock types they contain. The frontal zone mostly consists of 

pre-orogenic off-shelf and syn-orogenic deep-water rocks, whereas, the interior zone 
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mostly contains metamorphosed rocks from of the interior metamorphic belt (Viele, 

1989). Our model suggests that the root of the OOB is as deep as 10 km and deepens 

southward which matches other estimates for the area (Kruger and Keller, 1986; 

Arbenz, 1989; Keller et al., 1989). Under the OOB, a mafic intrusion was also included 

to model prominent gravity high and may mark the Cambrian margin of North America 

as is indicated further to the east by Keller et al. (1989) and Mickus and Keller (1992). 

Further to the south lies the GCP. The magnetic anomalies across the profile are 

complex due to presence of the multiple magnetic sources in the basement of the area 

and uncertainty of the remnant magnetization values. For this reason, we did not model 

magnetic data. However, we compare the gravity and magnetic anomalies along profile 

A-A’ (Fig. 1.12). 

In order to extend our mapping of the top of the basement beyond the seismic 

survey, we performed Euler deconvolution on the reduced-to-pole residual TMI data. 

The results of the standard Euler solutions obtained are shown in Figures 1.13-1.15. In 

Figure 1.13A, we show the standard Euler solution computed with a structural index of 

0 and a tolerance error less than 12% plotted on top of the reduced-to-pole TMI map. 

The solutions clustered around the magnetic anomalies. Next, we generated a depth to 

the top of basement map (Fig. 1.13B) of the area using the solutions obtained from 

Figure 1.13A and compared these two maps. The top to the magnetic basement ranges 

from about 400 m to 5300 m (~1250 to 17000 ft). The sets of the block arrows with 

same colors are used in both maps (Figs. 1.13A and B). The positive and negative 

magnetic anomalies from Figure 1.13A are related to the deeper and shallower depth to 

the top of basement on 1.13B respectively as shown by the black arrows. However, the 
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area shown by the white arrow shows the opposite result with positive magnetic high 

anomaly related to shallower top of the basement. The depth to the top of magnetic 

basement within the seismic survey ranges from about 1500-2800 m (~5000 - 9100 ft). 

This basement depth interpretation lies within the error range of Euler deconvolution of 

magnetic data while compared with the result from the seismic data. 

Next, we plotted the Euler solutions on the filtered magnetic maps. Figures 

1.14A and B show the standard Euler solutions plotted on the tilt derivative and total 

horizontal derivative of reduced-to-pole residual TMI maps respectively. The solutions 

are clustered along the edges of the magnetic anomalies on the tilt derivative maps 

where the zero values of the anomalies are observed. In Figure 1.14B, the Euler 

solutions are clustered at the center of the magnetic anomalies. Verduzco et al. (2004), 

and Lahti and Karinen (2010) explained that the tilt derivative has its zero values close 

to the edges of the magnetic bodies. In case of the total horizontal derivatives, the 

maxima are generally sharper and are directly above the edges of the anomalies.  

We also compared the faults mapped in seismic data with the results from the 

Euler solution to see if they correlate. The results are presented in Figure 1.15.  Figures 

1.15B and C show windowed Euler solutions with structural index of 0 and 1 

respectively with tolerance error of 12%. Trend and location of mapped faults F1 and 

F3 in Figure 1.15A matches with the location of these faults in Figure 1.15B and 1.15C 

respectively. From the seismic section, we know F1 is a large offset irregular fault, 

whereas fault F3 is smaller offsets planer fault suggesting the use of SI values of 0 and 

1 respectively as explained. However, the standard Euler solutions do not capture faults 

F2 and F4 that were mapped in the seismic section. We explain this either because of 
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the inadequate fault offsets or due to the insufficient difference in the magnetic sources 

across these faults. 

Geological and geospatial database 

  In addition to the seismic, gravity, and magnetic data, we also considered 

information obtained from other sources such as geological maps, tectonic maps, fault 

databases, DEM data, interpreted well logs, and interpreted 2D deep seismic refraction 

profiles to generate a regional gravity model (Fig. 1.11). The geological maps, DEM 

data, and fault map are available online in the USGS websites. Well locations and 

digital well log data are accessible at no cost for download via the Texas Rail Road 

Commission (TRRC) website [http://www.rrc.state.tx.us/data/online/gis/index.php]. All 

these data have been integrated to aid our interpretation of the geological structure and 

tectonic setting of the southeast FWB region. 

Integrated discussion of the results 

After analyzing the seismic, gravity, magnetic, and geospatial data, we 

integrated these results and placed them in a tectonic context. We divide the tectonic 

evolution of the southeast FWB and its surrounding into the following two broad 

categories. 

The Proterozoic evolution 

From the rocks exposed in the core of LU area and eastern LU, we now know 

that there existed a Mesoproterozoic terrane and orogenic belt along the southern 

margin of Laurentia during the Grenville orogeny (Mosher et al., 2008). During this 

orogeny, the southern margin of the Laurentia collided with an oceanic arc that was 
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followed by the continental-continental collision, crustal thickening, and uplift (Mosher 

et al., 2008; Barker and Reed, 2010).  During these processes, metamorphism and 

considerable magmatic activity took place, and granitic batholiths, sills and dykes were 

emplaced in the area. We observed some of these Precambrian sub-basement reflectors 

in the deeper section of our seismic data as shown in Figures 1.3, 1.7, and 1.8. We relate 

these reflectors to the granitic intrusions or some of the metamorphosed units that 

resulted from these events. Our integrated gravity model (Fig. 1.12) also includes 

batholiths and sills in the middle crust. 

During the Neoproterozoic and Early Cambrian, the Rodinian supercontinent 

broke up to form a shallow-marine, passive margin that the Ouachita orogenic belt 

approximately followed and where the shallow marine and continental shelf deposits 

took place (Arbenz, 1989; Viele and Thomas, 1989). Extensional basins formed along 

the passive margin during this time. The shallow continental margin was bounded by 

oceanic crust until the Late Paleozoic (e.g., Keller et al., 1989). From exposures in the 

Ouachita Mountains and Marathon uplift and subsurface data, we know pre-orogenic 

Ouachita strata were deposited during the Late Proterozoic-Early Paleozoic and 

depositional environments ranged from deep-water to continental shelf to the shallow 

marine environment (Viele and Thomas, 1989).  The pre-orogenic rocks include shale, 

sandstone, cherts, limestone, and dolomites. These rocks are identified as the lower unit 

of Ouachita facies. We included these units in the gravity model (Fig. 1.12) with 

appropriate rock densities. 
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The Paleozoic and Mesozoic evolution 

 During the Cambrian, the whole area was still under a shallow ocean, when the 

Wilberns and Riley Formation were deposited as sandstone, shale, and limestone. The 

area was often sub-aerially exposed and sometimes submerged (Preston et al., 1996), 

and hence, we see karst and collapse features in the Cambrian units on the seismic data 

(Figs. 1.4 and 1.5). In the Ordovician, carbonate rocks such as Ellenburger, Viola, and 

Simpson Groups were deposited. The presence of karst and collapse features in the 

seismic data (Figs. 1.3-1.7) indicates its sub-aerial exposure during this time as well. 

During the Late Mississippian and Early Pennsylvanian, compressional tectonics started 

and the ocean closed. Inboard from this tectonic activity, the Barnett Shale with 

frequent limestone layers was deposited during this period. Early Pennsylvanian syn-

orogenic deposits formed in the Ouachita frontal zone in a deltaic environment (Walper, 

1982; Viele, 1989). Meanwhile regional metamorphism occurred in the pre-orogenic 

Ouachita facies.  The post-orogenic Late Pennsylvanian Units (Strawn, Canyon, and 

Cisco Groups) are predominantly shale, sandstone, conglomerate, and red beds, which 

indicate a fluvial depositional system. The seismic section and analyzed seismic 

attributes (Figs. 1.3-1.8) show these strata. The metamorphosed interior zone of the 

OOB is associated with regional gravity and magnetic high anomalies as shown in 

Figures 1.9-1.15.  

The orogenic activity continued into the Early Permian forming the foreland 

FWB. Due to north-northwestward compression, the Bend arch, Muenster arch, and 

Lampasas arch formed around the FWB. We interpret faults F3 and F4 to bound a 

structural high related to the Lampasas arch (Figs. 1.3, 1.5A, and 1.8). Many of the 
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normal and reverse faults were active during the post-orogenic phase. Most of these 

faults are buried, but can be mapped in the seismic data (Figs 1.3-1.8). We also mapped 

some of these faults with help of the Euler deconvolution of magnetic data (Fig. 1.15). 

The general trends of these faults match with the principal stress direction of the area 

during the Ouachita orogeny. Some of these faults like F2 and F3 cut across the entire 

Paleozoic section and Precambrian basement (Figs. 1.3, 1.6, 1.7, and 1.8) and the karst 

and collapse features observed in the Paleozoic sequences align along these faults (Figs. 

1.3-1.5).  Elebiju et al. (2010) suggested the reactivation of some of the faults in the 

northeast portion of the FWB during the Ouachita orogeny, but we do not see the sign 

of reactivation of these faults in the southeast FWB. However, the presence of a pop-up 

block (Fig. 1.4) and possible Reidel shear zones (Fig. 1.7A) in the Paleozoic sequences 

of the southern FWB indicate the presence of transpressional tectonics in the area. The 

alignment of the collapse features with the mapped faults (Figs 1.4-1.7) suggests that 

there is some basement control on the overlying Paleozoic sequences and the associated 

reservoirs.  

Conclusions 

Although the basement and sub-basement reflectors are visible in the seismic 

sections, they are hard to trace throughout the seismic volume. To improve the visibility 

of these reflectors, we used volumetric seismic attributes. Some of the basement and 

intra-basement reflectors are dipping and folded. We interpret the intra-basement 

reflectors in the southeast FWB to represent igneous intrusions. The gravity and 

magnetic maps and models agree with these interpretations. The solutions from Euler 

deconvolution for determining top to the magnetic basement provided some useful 
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results and validated the fault interpretation from the seismic data. Some of the normal 

and reverse faults that cut across the Paleozoic sequence are also visible and penetrate 

the basement. The observation of the pop-up block and the possible Reidel shear zones 

within the seismic survey area indicates the presence of transpressional stress and 

complex tectonic deformation of the southeast Fort Worth Basin. Karst features that 

were previously mapped in the northern part of the FWB are also present in the 

shallower section in the southeast FWB. Alignment of these karst and collapse features 

with the mapped faults indicates that the deep-seated faults and the collapse features are 

associated with reservoirs of the Ellenburger Group, Barnett Shale, and the Marble Falls 

Limestone  
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Figure 1.1: Index map of the study area showing Fort Worth Basin and major tectonic 

units surrounding it, modified after Ewing et al. (1990), Pollastro et al. (2007), and 

Keller (2009). The boundaries of the Ouachita orogenic belt, Llano uplift, Southern 

Oklahoma aulacogen (SOA), Ardmore-Marietta Basin (AMB), and Ouachita thrust 

front (OTF) are based on observed gravity anomalies. Contours represent the depth to 

the top of Ellenburger Group with an interval of 1000 ft (~305 m).  
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Figure 1.2: Generalized stratigraphic column in the Fort Worth Basin modified from 

Pollastro et al. (2003) and Smith (2004). The details of the Cambrian stratigraphy are 

based on the Llano uplift area, Central Texas.  
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Figure 1.3: Interpreted seismic section across line AA′ as shown in the inset Figure. 

Four major faults namely F1, F2, F3, and F4, were picked that align NE-SW with the 

regional trend of Ouachita thrust fold belt. Major Paleozoic horizons, the top of 

Precambrian basement, and two sub-basement surfaces are picked (dotted black lines). 

The Paleozoic reflector such as Ellenburger Group, Marble Falls Limestone, and 

Barnett Shale are shown. The Ellenburger Group shows many of the karst and collapse 

features. Some of these collapse features are related to the basement and basement 

faults as identified by the black arrows whereas the others are not related and are shown 

by white arrows. Some unknown strong reflectors (dashed black line) below the 

basement are probably related to the intrusive bodies.  
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Figure 1.4: Illustration of geometric attributes using a 3D chair diagram showing 

vertical slices through seismic amplitude and a time slice at 0.98 s (approximate 

basement) through coherence co-rendered with most-positive and negative principal 

curvature. Blue areas (such as indicated by the cyan arrow) highlight valleys and bowls, 

while red areas (such as indicated by the black arrow) highlight ridges and domes. 

Probable pop-up block is observed in the NW corner of the survey indicating complex 

deformation history of the area.  
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Figure 1.5: Display of karst, collapse features, and faults in the seismic data using 

coherence and curvature attributes and arbitrary seismic section at time: (A) t= 0.75 s, 

approximate Ellenburger top, (B) t= 0.9 s, at a Cambrian Unit (C) t= 1.0 s, approximate 

basement top, and (D) t= 1.1 s in the basement. Cyan arrows indicate collapse features 

whereas sets of yellow arrows shows major faults mapped in the area. 
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Figure 1.6: Combined dip and azimuth attributes co-rendered with arbitrary seismic 

section at line CC′ as shown in inset Figure with time slice at 0.98 s. The brighter color 

represents higher dip (highest dip amount is 200). Blue, red, yellow, and green colors 

represent structures dipping towards the north, east, south, and west respectively. Faults 

F1, F2, and F3 are green and dip toward west-northwest whereas fault F4 is red and dips 

east-northeast. The red arrows represent vertical karst and collapse related linear 

features that cut as deep as the top of Ellenburger Group.  
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Figure 1.7: Time slice through the reflector rotation at (A) t=0.7 s (approximate top of 

the Ellenburger) and (B) t=1 s (approximate top of the basement) showing strong NNE-

SSW trending fabrics. White lineaments are down to the right (clockwise rotation) 

while black lineaments are up to the right (counter-clockwise rotation). Probable Reidel 

shear structures are observed at the top of the Ellenburger Group. Figures C and D are 

vertical slices through seismic amplitude along lines AA′ and BB′. Key Paleozoic 

horizons and some strong Proterozoic reflectors are identified. Yet others are 

unidentified as shown by white arrows in Figures C and D.  
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Figure 1.10: Residual CBA map of the study area after applying 40 km upward 

continuation filter. Major tectonic units and its boundaries are tentatively drawn based 

on the observed gravity anomaly. Acronyms used are: AGM= Abilene gravity minima, 

BFZ= Balcones fault zones, LU=Llano uplift, OFT= Ouachita frontal thrust, and SOA= 

Southern Oklahoma aulacogen. AA′ is a modeled gravity profile across the OOB (Fig. 

1.12). We tentatively draw the OFT (dotted yellow) line based on work by Kruger and 

Keller (1986) and Flawn et al. (1961).  
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Figure 1.12: Regional gravity model across the OOB on profile AA’ across the seismic 

survey as shown in Figure 1.10 starting at Fort Worth Basin to the Gulf coastal plains. 

We used shallow well logs, seismic data, geospatial data, and geological information 

from published literature to model the residual gravity. The density values are in g/cm3. 

VE in the Figure stands for vertical exaggeration showing the third and fourth panels 

have different vertical scales. 
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Figure 1.15: Comparing fault locations between seismic data and Euler solutions. 

Figure (A) shows faults F1, F2, F3, and F4 picked on 3D seismic data with coherence 

time slice at 0.75 s. Windowed standard Euler solutions with SI values of 0 and 1 are 

shown in Figures B and C respectively. Trend and location of faults F1 and F3 from 

Figure A tentatively match with the faults in Figures B and C respectively. 
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Chapter 2: Integrated geophysical imaging of the upper crustal 

features in the Harney Basin, southeast Oregon 

 

Abstract: The Harney Basin is a relatively flat lying depression in the northeast corner 

of the enigmatic High Lava Plains volcanic province in eastern Oregon. A thick blanket 

of volcanics including flood basalts, rhyolites, tuffaceous deposits, ash flows, and 

distinct eruptive centers covers the basin making it very difficult to study the upper 

crustal features.  In addition to the High Lava Plains active source seismic data, we also 

employed gravity, magnetic, digital elevation, and other geospatial data for this 

integrated study. We generated an upper crustal 3D seismic tomographic model of the 

Harney Basin and surrounding area using a sparse grid of 2D seismic lines. We then 

integrated it with gravity, magnetic, and geologic data to construct a geophysical model 

of the upper crustal structure, which reveals that the basin reaches as deep as 6 km in 

the central areas. The tomographic inversion shows some unusually high velocity (>6.5 

km/s) bodies in the upper crust near the central basin area. The presence of several ash-

flow tuffs and voluminous rhyolites in the Harney Basin region indicate the sources of 

these materials are nearby. We observe two major caldera shaped features within the 

basin, which are likely candidates for the source of some of these tuffaceous deposits. 

These potential calderas are associated with seismic low velocity areas, low gravity 

anomalies, and depressed topographic features. We interpret the extent of these calderas 

with the help of integrated geophysical results. We propose a nested caldera complex in 

the northern Harney Basin and smaller caldera in the southern part of the basin.  



 

52 
 

Key words: Harney Basin, seismic tomography, gravity, integrated geophysical 

interpretation, caldera complex 

Introduction 

 The High Lava Plains (HLP) of Oregon is one of the key components of a large 

igneous province of the Pacific Northwest that was formed due to the complex intra-

plate volcanism during the Cenozoic (e.g. Carson and Hart, 1987; Camp et. al, 2003; 

Streck and Grunder, 2008; Druken et al., 2011). The presence of Cenozoic volcanic 

activity in the region with lava flows and pyroclastic material poses a challenge to 

identify older crustal structures and tectonic events (Anderson, 1989). This tectonically 

complex area experienced various tectonic processes including Farallon plate 

subduction, back arc volcanism, ignimbrite flare ups (Lipman et al., 1971), flood basalt 

volcanism (Brueseke et al., 2007), strike slip deformation, Basin and Range extension, 

terrane accretion, and widespread mafic volcanism (Camp and Ross, 2004) in a 

comparatively short period of time. The non-extending accreted Blue Mountains 

terrains and the Columbia River Basalt Plateau lie north of the HLP.  The east side of 

the HLP is bounded by the Sr 0.706 line that separates the North American craton to the 

east from the Mesozoic accreted terrains (Armstrong et al., 1977), whereas to the south 

the HLP is bounded by the northern Basin and Range province. The Cascade Range lies 

on the west side of the HLP. Other major units in the surrounding area are the Steens 

Basalt Dikes, Northern Nevada Dikes, Owyhee Plateau, Oregon-Idaho grabens, 

Brothers fault zones, the Newberry volcanic field, and a few other local volcanic fields 

(Figure 2.1).  
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The Harney Basin is one of the main components of the High Lava Plains (HLP) 

(Figure 2.1). It is bounded to the north and south by parts of the Blue Mountains and the 

Steens Mountain respectively. The eastern and western boundaries are somewhat ill 

defined. The Harney Basin lies in the northeastern part of the HLP. The basin is mostly 

covered with the Quaternary sediments and seasonal lakes with occasional basalt flows, 

tuffaceous deposits, volcanic ash, and some distinct volcanic centers.  

Three voluminous tuff deposits have been mapped in the Harney Basin region. 

The 7.1 Ma old uniformly thick and widespread Rattlesnake Tuff (RST) is the largest 

one and covers about 9000 km2 area (Streck and Grunder, 2008). When reconstructed, 

the areal coverage is estimated to be ~40,000 km2 with a volume of 280 km3 of dense 

rock equivalent (DRE). Based on degree of welding and the pumice size and thickness, 

its source has been inferred to be in the western Harney Basin (Streck and Grunder, 

1995; 2008). The Devine Canyon Tuff (DCT) and Prater Creek Tuff (PCT) are other 

two widespread tuff deposits in the area. The DCT is 9.7 Ma old and covered an area of 

~19000 km2. The DRE volume is estimated to be ~195-250 km3 (Greene, 1973), and the 

source is interpreted to be beneath the Harney Basin lowland based on the thickness and 

distribution of the deposits. Similarly PCT is an 8.4 Ma old deposits that had a DRE 

volume of about 100-150 km3 (Greene, 1973; Ford, 2013). There are numerous small- 

scale ash flow deposits in the area, whose age range from 12 Ma to recent. Overall, 

these tuffs deposits and rhyolite distribution in the Harney Basin region and their 

massively reconstructed volumes indicate that there must be at least some sources for 

these eruptions in the proximity of the Harney Basin. 
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The Harney Basin has been interpreted as a large structural depression possibly 

created due to caldera collapse (e.g. Greene, 1973; Walker, 1979; Walker and Nolf, 

1981, Streck and Grunder, 1995; 2008). In the Late Cenozoic, the depression was filled 

with ash-flow tuffs, tuffaceous sediments, basalt flows, rhyolites, andesites, basaltic 

breccias, detrital alluvial, fanglomerate, playa deposits, and lacustrine sediments 

derived from widespread igneous rocks (e.g. Piper et al., 1939; Baldwin, 1976; Walker, 

1979; Russell, 1984). The evolution and the upper crustal structure beneath the Harney 

Basin are poorly understood due to the thick blanket of multi-phase volcanism. 

The HLP active source seismic experiment in 2008 was primarily conducted to 

image the crustal and upper mantle structures beneath the HLP and Steens Mountain 

region.  The survey consisted of two major long lines across the HLP and some short 

linking lines around the Harney Basin, which provides a modest 3D seismic survey 

(Fig. 2.2). In this study, we used six shots around the basin with five lines of receivers 

(Figs. 2.5 and 2.6). With multiple fan shot-receiver and some typical inline source-

receiver geometry combinations, 26 different shot gathers were generated and used for 

the seismic analysis (Table 2.1).  

In this research, we used the fast marching tomographic (FMTOMO) method for 

tomographic inversion of the seismic data. FMTOMO is capable of using active, 

passive, or both kinds of seismic data for inversion. This method has been successfully 

employed for crustal scale studies (e.g. Rawlinson and Urvoy, 2006; Brikke, 2010; 

Rawlinson et al., 2010; Rockett, 2011), and we created a 3D seismic tomographic image 

of the upper crustal features in the Harney Basin area.  Gravity, magnetic, and 

geospatial data were also used. We collected over 1000 new gravity measurements, and 
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generated magnetic profiles and integrated gravity models across Harney Basin. The 

results from the seismic tomography, gravity models, geospatial data, surface geology, 

and topography were used in an integrated interpretation of the basin structure and 

evolution. Based on these results, we propose multiple caldera locations in the Harney 

Basin that are the probable sources for RST, DCT, and PCT deposits. 

Regional geology 

The HLP track is a bimodal volcanic trend that started at the McDermitt volcanic 

field (Figure 2.1) in southeast Oregon at about ~16 Ma (Pierce and Morgan, 1992). It 

continued in a WNW direction with its youngest volcanic center at the recently active 

Newberry volcano (e.g. Walker, 1974; Christiansen and McKee, 1978; Smith and 

Luedke 1984; Jordan et al., 2004; Meigs et al., 2009). The Brothers fault zone is the 

major structural feature approximately parallel with the HLP trend (Figure 2.1). The 

Brothers fault zone is interpreted as one of the major conduits for bands of rhyolitic 

volcanic deposits in the HLP (Christiansen and Yeats, 1992).  Walker and Nolf (1981) 

suggested that the HLP emerges gradationally from the northern Basin and Range 

Province based on the similarities observed on the fracture patterns and fault structures 

in the northern Basin and Range faults and the Brothers fault zones. 

Another volcanic track started at the McDermitt field and moved NE toward 

Yellowstone through the Snake River Plain (SRP). The Yellowstone trend is also 

bimodal in composition. It has well defined volcanic centers that become younger to 

the northeast with Yellowstone being the youngest (Armstrong et al., 1975; Pierce and 

Morgan, 1992). Even though these two tracks mirror each other and have many 

similarities, key differences are seen in the gravity anomalies along them. The gravity 
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anomalies along the Snake River Plain form a distinct gravity high indicating 

significant magmatic modification of the crust whereas those of the HLP are 

significantly lower and irregular.  

The genesis of the HLP track and its possible relation to the SRP volcanic track is 

highly debated. Among many of the hypotheses, backarc extension is postulated as a 

dominant force (e.g. Eaton, 1984; Carlson and Hart, 1987).  Draper (1991) and Pierce 

and Morgan (1992) suggested that a plume beneath the McDermitt volcanic center 

drove both the HLP and SRP volcanic tracks but in opposite directions. This caused the 

voluminous basalt flow and bimodal volcanism in the HLP. Hooper et al. (2002) 

suggested the extension of the northern Basin and Range province in the HLP region is 

the major cause of volcanism in the HLP. The Steens Basalt and Columbia River Basalt 

erupted at about 16-17 Ma, which was followed by the extensive bimodal rhyolitic and 

basaltic volcanism in the area (Hooper, 1997).  Camp et al. (2003) divided the 

volcanism into two broader phases based on their study done in the Malheur River 

Gorge, Oregon. In the Middle Miocene, the flood basalt volcanism was active and the 

tholeiitic mafic and bimodal basalt erupted initially followed by the early diktytaxitic 

olivine basalt. In the Late Miocene to present, the Basin and Range extension caused the 

wide spread volcanism in the HLP. In this phase, intermediate to felsic calc-alkaline 

rocks were erupted first and were followed by the late diktytaxitic olivine basalt. Hart 

(1985) suggested that the large voluminous basalt eruption in the Late Miocene were 

later replaced by primitive low–K, high Al, olivine tholeiite (HAOT) type of basalts. 

Based on a geochemical analysis of the HLP basalts, the genesis of its magma is 

interpreted to be in the lower crust or upper mantle (Jordan, 2002).  
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Previous geophysical studies of the HLP and Harney Basin 

Most of the recent seismic studies in the region have employed passive seismic 

data from the EarthScope project’s USArray of broadband stations and the High Lava 

Plains project’s local broadband seismic network, along with permanent seismic 

stations for body wave, surface wave, and ambient noise tomography (e.g. Roth et al., 

2008; West et al., 2009; Long et al., 2009). These studies were mainly focused on 

detecting mantle velocity anomalies, anisotropy, and heterogeneity.  

Eagar et al. (2010, 2011) conducted a passive seismic experiment using 206 

broadband seismometers stationed in and around the HLP region to study the crustal 

composition and structure in the region. They found the Moho depth at about 31 km in 

the HLP region. The abnormally high Poisson’s ratio in the western portion of HLP was 

interpreted because of widespread basaltic flows, which probably brought high velocity 

material and melts to the surface through the Brothers fault zones. The Poisson’s ratio 

in the Harney Basin region is ~0.28 (Eagar et al., 2011), which indicates the possibility 

of moderately mafic crustal materials.   

A few crustal-scale active-source seismic studies have been performed in the 

HLP area. Catchings and Mooney (1988) conducted a 180-km long refraction seismic 

experiment from the eastern Cascades to the eastern part of the HLP and generated a 

crustal scale velocity structure of the HLP and Newberry volcanic field. They found the 

near surface volcanic material’s velocity ranges from 1.6 to 4.7 km/s and has a 

thickness of 3-5 km in most places, but in local basins it reaches a thickness of 5-6 km. 

The integrated geophysical study conducted by Lerch et al. (2007, 2008) in the northern 

Basin and Range province south of our study showed the presence of long-lived, large 
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volume volcanism with significantly less extension and tectonism as a key character of 

the northern Basin and Range Province. Moving north into the southern HLP province, 

the extension slowly fades away with increased volcanic activities.  In the HLP region, 

volcanism is dominant over the extension. 

The 2008 HLP active seismic data has been analyzed before (e.g. Okure, 2009; 

Cox, 2011) and interpreted in the form of 2D seismic lines. Okure (2009) used the HLP 

seismic data around the Harney Basin area and tentatively marked the basin boundary 

based on the traveltime delays observed in the seismic data. Cox (2011) also used the 

HLP active seismic data for a crustal scale study and interpreted two long 2D lines 

across the HLP region. A 5-7 km thick upper layer of sediments and volcanics was 

detected in the region. Underplating in the lower crust and magmatic modification 

within the crust was observed beneath the Harney Basin (Cox, 2011).    

 Geophysical data  

Active seismic data collection 

In September 2008, a wide-angle reflection and refraction (WARR) seismic 

experiment was conducted in the HLP and Steens Mountain area, using 15 one-ton 

explosive sources and 2612 Texan recording instruments with 4.5 Hz geophones. 

Average spacing between recording stations was ~800 m with average source spacing 

of ~50 km. In addition to the Texan instruments, 120 RefTek RT 130 receivers were 

also deployed across the Steens Mountain. Two major lines, one about 400 km long in 

NW-SE direction and the other about 350 km in N-S direction, cross each other near 

Burns, Oregon. In addition to these lines, some short linking profiles were deployed in 

and around the Harney Basin (Fig. 2.2) in order to provide some 3-D coverage over this 
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interesting feature. Super shot gathers were generated from the seismic data for each 

shot and consists of 1148 receivers (seismic traces).  Figure 2.3 shows an example of a 

raw super-gather for shot point 24. Our major aim is to create a 3D seismic velocity 

model of the upper crustal features beneath the Harney Basin. The shot-receiver 

geometry in and around the Harney Basin was designed for 3D seismic velocity 

modeling and seismic tomography (Fig. 2.2). We sub-sampled these super-gathers and 

generated five new gathers in the area of interest (Fig. 2.5), and the details are listed in 

Table 2.1. In the following section, we discuss how these gathers were processed, 

picked, and used for tomographic inversion. 

Seismic data processing and preparation for tomographic inversion 

 We used ProMAX® software for basic processing of the super gathers.  After 

analyzing the spectral components of the gathers, we applied a variety of filters to 

enhance the signal-to-noise ratio. Specifically, we used spiking deconvolution, trace DC 

removal, and trace equalization before applying a 1-4-12-15 Hz Ormsby bandpass filter. 

Afterwards, we applied crooked line geometry and sorted the receivers in such a way 

that the new gather would have only the desired receivers for the given shot.  The goal 

was to establish the best 3D coverage of the upper crust of the basin possible with the 

data available, and the processing flow used in ProMAX® is shown in Figure 2.4. We 

used 6 sources out of 15 and 524 receivers out of 1148 to generate 26 different shot 

gathers (Table 2.1). The position of the six sources and five different lines of receivers 

(G1, G2, G3, G4, and G5) are shown in Figure 2.5. We chose the source-receiver pairs 

in such a way to maximize ray coverage in the upper crust, and the idealized ray path 
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diagram for the chosen source-receiver pairs is shown in Figure 2.6. The 26 new gathers 

were exported as separate SEGY files for travel-time picking.  

To read the newly generated SEGY gathers, “zp” was employed. The zp 

program (http://www.soest.hawaii.edu/users/bzelt/zp/zp.html) is a freely available 

routine used for plotting and picking seismic refraction data in SEGY format (Zelt and 

Smith, 1992).  We applied bottom mute, bad trace editing, velocity reduction, and AGC 

(automatic gain control) to enhance the seismic data quality (Fig. 2.4). The first arrival 

zero crossing before peaks were picked and exported with the picking uncertainty 

values for all of the SEGY files.  Figures 2.7a and 2.8a show some examples of the 

newly generated SEGY gathers for shot points 14 on line 1 and shot point 15 on line 3 

respectively (Fig. 2.5) before applying any filtering.  Figures 2.7b and 2.8b are 

examples of the corresponding SEGY gathers after applying filters, trace editing, and 

AGC in ProMAX® and zp. The first arrival picks are shown in red (Figs. 2.7b and 

2.8b).  The details of the source gathers, first arrival picks, and the picking uncertainties 

associated with these picks are summarized in Table 2.1.   

 Next, we used the fast marching tomographic modeling package (FMTOMO), a 

FORTRAN based program to perform 3D traveltime tomography and generated seismic 

velocity models in and around the Harney Basin area. FMTOMO uses a finite 

difference Eikonal solver and fast-marching method for travel-time prediction. It inverts 

the residual traveltime between the observed and calculated values for a given velocity 

model (De Kool et al., 2006; Rawlinson et al., 2006). This method is capable of using 

3D model space and an initial 3D velocity model. The tomographic inversion is based 

on the iterative non-linear subspace inversion scheme, which is capable of adjusting 
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model parameters in order to satisfy the observed data (De Kool et al., 2006). However, 

local linearity is assumed in each of the inversion steps, and during the repetition of fast 

forward marching, the inversion allows for non-linear relationships between the 

velocity and traveltime perturbation (Rawlinson, 2007).  

 The FMTOMO uses several text files as input for tomographic inversion. The 

source related text file contains the latitude, longitude and the elevation information of 

the sources. The receivers related text file contains longitude, latitude, and elevation of 

the receivers. It also contains the traveltime picks and associated uncertainty values for 

these picks. A separate text file with velocity information is created, which contains the 

velocity values for given depth positions. The model space was set up between 42.50- 

440N latitude, 1180 to 120.250W longitude, and 1.9 km above mean sea level (msl) to 15 

km depth below the sea level. We used a two-interface model, with grid cell size of 

5.2x4.6x0.85 km in the northing, easting and vertical directions respectively. We used 

14 velocity nodes along depth (Table 2.2) with continuous velocity variation between 

these nodes. Source, receivers, and velocity related text files were used to run the 

forward and inverse modeling. For ray tracing purpose from source to receivers, the 

guided waves were used. 

 A checkerboard test for the model was performed to identify the solution 

robustness of the tomographic inversion. In the checkerboard test, a cell size of 

9.5x7.25x1.40 km was used. The checkerboard test models contained 4224 cells. Figure 

2.9 shows the results from a resolution test where we compared the initial velocity 

model before inversion and final velocity models after inversion. Figures 2.9a, c, and f 

are the initial velocity models at 3 km depth from msl, longitudinal slice at 1190W 
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longitude, and a latitudinal slice at 43.600N latitude respectively. The final inverted 

results at the respective positions are shown in Figures 2.9b, d, and f. We observed that 

the solution is robust in and around the Harney Basin area up to a depth of ~10 km 

below mean sea level. 

Seismic tomography 

After the successful checkerboard test, we ran the forward and inverse model in 

FMTOMO.  We used 17,280 propagation grid each with cell size of 2.6x2.3x0.55 km 

and 28,800 velocity grids each with the size of 5.2x4.6x0.85 km. A propagation grid is 

used by the waves to propagate from source to receivers whereas the velocity grids are 

based on the velocity models and the number of propagation grids within an interval. 

An initial velocity model and interface model were generated for the model space. At 

the same time, rays were traced with help of the fast forward marching diving waves 

from the given source to receiver pairs. An iterative inversion process was applied, 

which produced the inverted velocity models. The residual values (differences between 

the observed (picked) and modeled traveltimes) were analyzed to see the degree of 

convergence from the inversion result. If the convergence was not within a satisfactory 

margin, we ran another routine that separates outliers from the picks to be used. In this 

study, we set the outlier’s threshold value at >0.5 s. Once the outliers are identified, 

they can either be corrected in the pick files or can be excluded for the next round of 

tomographic inversion. The process of forward and inverse modeling was repeated until 

satisfactory convergence values were obtained. The process and work flow to run the 

FMTOMO is shown in the flowchart in Figure 2.4. 
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We used seven iterations for inverting the model. The residual traveltime results 

obtained from the inversion are shown in Table 2.3.  For the first six iterations, the 

solutions showed convergence, but in the seventh iteration, the solutions did not 

converge any further. The inversion results significantly improved the traveltime fit. 

The RMS traveltime residuals decreased by ~72% from 376.30 ms to 108.72 ms. The 

variance of the misfit decreased by ~84% whereas the χ2-misfit values decreased by 

~90% from 40.9780 to 3.9422.  

Afterward, we used the Generic Mapping Tools (GMT) software package 

(http://gmt.soest.hawaii.edu/) to extract various 3D velocity slices, interface slices, and 

the traced ray points along the chosen latitudes, longitudes, and depths. The GMT 

generated data files were read in Python for visualization. Some example slices 

generated are shown in Figure 2.10. Figure 2.10a and b are the initial and final velocity 

slices at 3 km depth below msl. The actual position of sources and receivers are shown 

by yellow stars and white inverted triangles respectively in Figure 2.10a. In Figure 

2.10b, the change in velocity at the given depth is observed where every 100th ray point 

generated during the forward modeling process is shown. Figures 2.10c and d are the 

initial and final inverted velocity model at the longitudinal slice through 1190W. Figure 

2.10d shows the upper crustal velocity variation in the Harney Basin area is significant. 

Every 100th ray point shown in the Figure is sampled from 119.0 ±0.100W longitude. 

Similarly, in Figures 2.10e and f, we show the initial and inverted velocity models at 

43.600N latitude. The ray points shown in the Figure are sampled from 43.60 ±0.100N 

latitude. The inverted velocity models in these selected slices are examples of the 
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velocity information derived in the Harney Basin area, and the tomography results will 

be discussed further below. 

Potential field data 

 In addition to the active source seismic data, we used gravity and magnetic data 

as part of our integrated geophysical interpretation process. The gravity and magnetic 

data for the whole continental US are freely available in the Pan American Center for 

Earth & Environmental Studies (PACES) websites (http://research.utep.edu/) (Keller et 

al., 2006). The state based gravity and magnetic data can be found in the US Geological 

Survey’s database (http://pubs.usgs.gov/ds/355/). We also used digital elevation model 

(DEM), geological maps, fault databases, aerial photos, and tectonic maps of the area as 

controls for the integrated interpretation (Fig. 2.4). In addition to these databases, 

additional gravity data were collected in and around the Harney Basin in 2008 and 

2012. The details of the gravity data collection, corrections applied and processing 

techniques are shown in Table 2.4 and discussed below.  

Gravity data collection and preparation 

 In August 2012, 998 gravity points were collected with average station spacing 

of ~1.5 km in and around the Harney Basin area. Three gravimeters (two SCINTREX 

CG5 AUTOGRAV and a LaCoste & Romberg) and students from three different 

universities collected these data over three weeks. Similarly, 271 gravity data points 

were collected in 2008 in the same area using LaCoste and Romberg (L&R) meter. We 

used differential GPS data from TOPCOn® and Leica® systems to obtain the spatial 

coordinates and elevations of the gravity stations with sub-meter accuracy of ~30 cm in 

vertical direction and 10 cm in horizontal directions.  
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The differential GPS data were processed with the help of Online Positioning 

Users Service (OPUS), an online GPS data processing website affiliated with the 

National Geodetic Survey (https://www.ngs.noaa.gov/OPUS/) and were tied to the 

corresponding gravity stations. We applied drift correction to all of these data. The 

gravity data collected with L&R meter were first calibrated using an instrument specific 

dial correction. Then the drift and earth tide corrections were applied. The tide 

correction is not necessary for the gravity data collected using CG5 gravimeters because 

these instruments have built-in tide correction programs. These drift and tide corrected 

data were tied with the local gravity base stations at Burns, Oregon to obtain the 

absolute gravity values for total of 1269 gravity stations. 

We used gravity reduction spreadsheet (Holom and Oldow, 2007) to obtain the 

standardized free air and Bouguer anomaly values for these stations. The complete 

Bouguer anomaly (CBA) values for these stations were obtained after applying terrain 

correction to the data in Geosoft® software and adding the terrain results to the 

Bouguer anomaly values. These data were merged with the PACES database in the area 

between 42.00-44.50N latitudes and 116.50-120.50W longitudes. The merged dataset 

contains 6654 gravity stations in total.  

Gravity mapping 

 After the data preparation, we use a 2 km grid spacing to generate a CBA 

gravity map of the area (Figure 2.11). The black dots in the map represent new gravity 

data points collected in 2008 and 2012 whereas the white dots are the station from the 

PACES database. The physiographic boundary (we manually derived from the digital 

elevation map) of the Harney Basin is shown by the yellow polygon. The newly 
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collected data are mostly from the Harney Basin, Diamond Craters, and Steens 

Mountain areas. The anomaly values across the region vary by ~90 mGal. Key tectonic 

units in the area such as the Western Snake River Plain, High Lava Plains, Steens 

Mountains, Owyhee Plateau, and the Blue Mountains are easily identified in the 

resulting map.   

 In order to focus on the Harney Basin, the study area was reduced the area that 

surrounds the physiographic Harney Basin and a new CBA grid of the area was 

generated. A series of wavelength and edge-detecting filters were applied in the 

frequency domain using fast Fourier transform (FFT) techniques.  Figure 2.12a shows 

the CBA map of the Harney Basin area. The CBA anomaly varies by about ~50 mGal 

with lowest values in the Steens Mountain area. A semi-circular gravity low is observed 

in the northeast corner of the basin, and is possibly the signature of a caldera.  The 

Diamond Craters area is also located in a gravity low.  Figure 2.12b is a tilt derivative 

of the CBA map in the area. The tilt derivative filter helped enhance the edges of major 

features such as possible craters and calderas in the Harney Basin. Besides that, this 

filter helped to enhance subtle features in the Steens Mountain area. A circular shaped 

feature, possibly a buried crater or caldera rim, of ~8 km diameter is clearly visible. 

This previously unnoticed feature could be one of the eruptive centers for the Steens 

Basalt.  The edges of the possible calderas and Diamond Craters are also enhanced.  We 

also applied an upward continuation filter to the CBA grid, and generated a 15 km 

residual CBA map of the Harney Basin area as shown in Figure 2.13.  The anomaly 

varies by ~25 mGal in the area. The black lines are the mapped Quaternary surface 
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faults. Gravity models across the basin along XX′, YY′, and ZZ′ were generated and 

discussed below.  

Magnetic data processing 

 The USGS state magnetic databases for Oregon and Idaho from the USGS data 

repository were employed for magnetic data analysis. The details of the data 

acquisition, survey parameters, and processing applied to these grids are available in the 

USGS data repository webpage (http://pubs.usgs.gov/ds/355/). We merged these two 

grids and produced the reduced-to-pole total magnetic intensity (TMI) map of the area 

shown in Figure 2.14a. The TMI values vary over a range of ~800 nT. Black lines 

represent the mapped Quaternary faults in the area. The key tectonic components such 

as the HLP, WSRP, accreted terranes of the Blue Mountains, Steens Mountain, and the 

Steens Dikes are identified and shown (Fig. 2.14a). The E-W trending streaks observed 

are the artifacts due to survey boundaries. We confined our study area around the 

Harney Basin (42.50N-440N and 1180W-120.250W). The reduced-to-pole TMI map of 

the Harney Basin area is shown in Figure 2.14b.  In the northeast corner of the Harney 

Basin, we observed the low magnetic semi-circular anomaly that aligns with the low 

gravity anomaly in the same area as shown in Figure 2.12. The shape of this anomaly 

indicates the presence of caldera features, but due to the geological complexity in the 

area and uncertainty of the magnetic polarity signatures, we did not strongly depend on 

the magnetic data to interpret shallower features. However, the magnetic data helped us 

for the completeness of integrated geophysical interpretation. The northern Steens 

Mountain area is associated with a N-S trending linear magnetic high, which is probably 

related to the Steens Dikes. 
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Discussion of the results  

After analyzing the results obtained from different geophysical and geological 

datasets, we present our integrated discussion of the subsurface structures and evolution 

of the upper crustal features in the Harney Basin area.  

Seismic tomographic results 

The seismic tomography results successfully imaged the upper crustal features 

of the area to ~8 km depth from msl. Figure 2.15 shows the inverted velocity models of 

the Harney Basin area along longitudinal slices. The upper layer basin fill has a velocity 

of ~3-3.5 km/s and is about 1.5 km thick in the central area whereas the whole basin is 

~6 km deep from msl in the central area. The basin shallows rapidly outward on its 

western side. On the east, the longitudinal slice 118.600W shows that the basin thickens 

to ~5 km from msl in a narrow area that extends to the SE.  

A series of latitudinal slices are shown in Figure 2.16. The basin thickness 

reaches to ~5 km in the central area and is shallower outward to the south and north. 

Figure 2.17 shows the depth slices ranging from 2 km to 7 km from msl. The velocity 

normally ranges from about 5 km/s at about 2 km depth to about 6.3 km/s at the depth 

of 7 km.  The first two layers (yellow and green) represent sedimentary fill and 

widespread tuffs deposits.  The third layer (blue) from top is most probably the volcanic 

rocks (basalt, rhyolites, andesites, and tuffs that form the bottom of the basin.  Near the 

central part of Harney Basin (1190W longitude and 43.30N latitude), we observed an 

anomalously high velocity (>6.5 km/s) body (bright pink color) at ~5.5 km depth from 

msl. This body can be observed in the latitudinal, longitudinal, and depth slices (Figs. 

2.15, 2.16, and 2.17). It lies close to the Diamond Craters beneath the Harney Lake and 
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Mud Lake and is about (25x20x1.5) km3 in size. We interpret this feature as an intrusive 

body associated with the low–K, high Al, olivine tholeiite (HAOT) basalts in the 

Diamond Craters discussed by Hart et al. (1984) and Hart (1985). The velocity of >6.5 

km/s for this body, at the given depth for HAOT basalt is in the suitable range as 

suggested by Song (1997) from their lab experiments. 

Gravity models across the basin 

We modeled three gridded gravity profiles across the Harney Basin namely, XX′, YY′, 

and ZZ′ as shown by dashed white lines in Figure 2.13, to explore the upper crustal 

features in the Harney Basin area. The seismic velocity model generated by 

tomographic inversion along these profiles, surface geology, and the geospatial 

information are used as the key basis for the gravity models. To find the density (ρ) of 

the modeled units, we used the relation between P-wave velocity (Vp) and density 

postulated by the Nafe-Drake curve and given by Brocher’s relation (2005): 

ሺ݃ߩ ܿ݉ଷሻ ൌ 1.6612 ௉ܸ െ 0.4721 ௣ܸ
ଶ⁄ ൅ 0.0671 ௣ܸ

ଷ െ 0.0043 ௣ܸ
ସ ൅ 0.0000106 ௣ܸ

ହ 

All of these profiles are modeled to a depth of 15 km. Figure 2.18 is a gravity 

model along X-X′ (43.250N latitude).  The upper two layers with density ranging from 

2.43 to 2.54 g/cm3 are the Quaternary sediments with occasional ash flow, tuffs, and 

flood basalt. These layers reach as deep as ~3 km from msl. The third and the fourth 

layers with density of 2.64 and 2.69 g/cm3 are mostly mixed lithologies of flood basalt, 

rhyolites, and sedimentary units.  The fourth layer is modeled as deep as 8 km and is 

interpreted to be the crystalline basement. Beneath the Harney Lake area, at ~7 km 

depth, we modeled a body with density of 2.79 g/cm3. We interpret this body as 

possible residual magma from the conduit that created the Diamond Craters and 
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possibly consists of HAOT type basalt.  A horst block related to the Brothers fault zone 

is also modeled.  

Figure 2.19 is a gravity model along Y-Y′ (43.600 N latitude). This line passes 

through a caldera shaped feature (Figure 2.13) in the eastern portion of the model. This 

area is covered by a thick upper layer with a density of 2.43 g/cm3. The caldera feature 

reaches as deep as ~4 km from msl. In the area at about 8 km depth, we modeled a body 

with density of 2.79 g/cm3. This body is possibly a high-density alkaline basalt 

intrusion.  

Figure 2.20 is a density model along Z-Z′ in Figure 2.13 (118.800W longitude). 

This line crosses two interpreted calderas, a northern caldera in the northeast Harney 

Basin and a southern caldera to the west of Diamond Craters (Fig. 2.13) and are as deep 

as ~5 km from msl. These interpreted calderas are separated by a gravity high anomaly 

near Harney and Malheur Lakes.  This gravity high is caused by a high-density (2.78 

g/cm3) mafic body at about the depth of ~4 km from msl. These gravity models show 

the extent of the Harney Basin and match approximately with the results from the 

seismic tomographic models. The magnetic profiles in Figures 2.18, 2.19, and 2.20 

mostly match with the modeled subsurface lithologies. 

Based on these geophysical results and geological observations, we present 

additional evidence in support of the caldera interpretations. The presence of  

voluminous Late Miocene (10-5 Ma) Rattlesnake Tuffs, Devine Canyon Tuffs, Prater 

Creek Tuffs and other numerous smaller tuffs deposits in the area raise a questions, 

where do these tuff and ash flow deposits come from? Their source has to be 

somewhere close by these deposits. The circular to semi-circular topographic low 
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features and the abundance of tuffaceous deposits, ash-flow, scoria, and rhyolites makes 

Harney Basin a suitable place to contain the sources of these deposits. Previous 

researchers have also interpreted that the sources of these tuffaceous deposits are within 

the Harney Basin (e.g. Parker, 1974; Walker, 1974; 1979; Macleod et al., 1976; Walker 

and Nolf, 1981, Streck and Grunder, 1995; 2008, 2012; Ford et al., 2013). The source 

locations of the tuffs were based on the degree of welding, the changing thickness of the 

tuffs, decrease in pumice size, and rheomorphic features. After the large volume of the 

material erupted, the bimodal magmatism and sedimentation continued in the area 

increasing the surface load. This must have lead to the gradual subsidence of the basin 

forming calderas in the area. The presence of hot springs in the center of the basin can 

yet be seen as other evidence for presence of calderas. When combined with this 

geologic information, we conclude that the gravity and seismic tomographic data from 

our study strongly suggests the presence of calderas in the area. 

Integrated geophysical interpretation 

 The gravity anomalies represent density variations of subsurface bodies and thus 

have a direct relation with the P-wave velocities. In order to understand the 

relationships between the observed gravity and magnetic anomalies and the velocity 

model, we generated a series of 3D block diagrams.  Figure 2.21 illustrates a 15 km 

upward continued residual Bouguer anomaly map on the top and a seismic velocity 

slice through 119.00W longitude in the cross-sectional view. The physiographic 

boundary of the Harney Basin is shown by the yellow polygon, and its southern 

boundary is associated with an upwarp of high velocity values that indicates a structural 

boundary. We observed a high velocity (>6.5 km/s) body near the center of vertical 
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slice at about a depth of 5 km below msl. This feature coincides with a gravity high 

anomaly (G1; in Fig. 2.21) in the Harney Basin beneath the Mud Lake and Harney Lake 

area. The northern part of the basin has lower gravity values, which coincides with the 

thicker post-caldera basin fill deposits shown by the dashed black lines in Figure 2.21. 

The dashed white line is the base of the subsided basin that formed the base of caldera 

 Figure 2.22 is another block diagram with 15 km upward continued residual 

Bouguer anomaly map on the top and a seismic velocity slice through 43.100N latitude 

in the cross-sectional view. In map view, the physiographic Harney Basin boundary is 

shown by a yellow polygon. We observed two circular gravity lows. The shape of these 

features resembles that of calderas in other volcanic provinces. We refer to these 

calderas as the northern caldera and the southern caldera hereafter (Fig. 2.22). The 

northern caldera has dimensions of ~50 km in E-W and ~25 km in N-S, whereas the 

southern one is ~25 km in E-W and ~10 km in N-S. We also observed a high velocity 

anomaly at ~4 km depth beneath the Diamond Craters area indicating the presence of a 

mafic intrusion.   

Figure 2.23 is another block diagram showing the 15 km upward continued 

reduced-to-pole total magnetic intensity map in the top view with a juxtaposition of 

119.00 W longitude velocity slice in the sectional view. The Quaternary Brothers fault 

zone is also shown in the top view. The Harney Basin shows relatively coherent 

magnetic signatures in comparison to the surrounding area. The magnetic high marked 

by M1 (Fig. 2.23) is associated with the high velocity anomalous body seen in the cross-

sectional view at about the depth of ~5 km. This feature is close to the Harney and Mud 
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Lake area in the central part of the basin and coincides with gravity high (G1) as shown 

in Figure 2.21.  

For a detailed integrated geophysical interpretation within the Harney Basin, we 

compared the results from gravity, seismic data, and DEM as well as magnetic data as 

shown in Figure 2.24. Figure 2.24a, b, c, and d are a 15 km residual Bouguer anomaly 

map, a 15 km upward continued residual RTP TMI map, a 10 m resolution DEM map, 

and a seismic velocity slice at 4 km depth from msl respectively. The black dots in 

Figure 2.24a are the gravity stations and white polygons in Figures 2.24a, b and c are 

the physiographic boundary of Harney Basin drawn based on 10 m resolution DEM 

map (Fig. 2.24c). The residual gravity anomaly map in (a) shows two semi-circular 

negative gravity lows bounded by highs that are interpreted as the northern and the 

southern caldera as shown by dashed yellow and white polygons respectively. These 

calderas possess anomalously low seismic velocity, lies on low topography, as well as 

have low negative magnetic anomalies, (Figs. b, c, and d). These data support the 

caldera interpretation. We interpret the NW-SE trending linear gravity high (Fig. a), a 

magnetic high (Fig. b) and a linear velocity high (Fig. d) shown by a pair of black 

arrows as indicating the presence of mafic dikes. The trend of this feature is close to 

that of the Brothers fault zone. We interpret this feature as one of the possible sources 

for magmatic activity in the Harney Basin area and as an axis of the igneous Harney 

Basin province.  

In order to investigate the caldera features and some anomalously high gravity 

and magnetic features in the central area of the basin, we further subdivided the basin 

into three different areas. These areas are described in the following sections. 
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Diamond Craters and southern caldera 

 The Diamond Craters is a basaltic lava flow of the Late Pleistocene to recent 

age that lies in southern part of the Harney Basin and covers ~60 km2 areas (Piper et al., 

1939; Peterson and Groh, 1964). The eruption was caused by deep fissures produced in 

the earth’s crust, and the olivine rich lava made its way to the surface. Due to multiple 

and complex volcanic activity in the area, the sources of these volcanoes are hard to 

determine and are believed to be beneath the central crater area (Peterson and Groh, 

1964). We used gravity, magnetic, seismic, and DEM data for detailed integrated 

geophysical interpretation of the area and show the results in Figure 2.25.  Figure 2.25a 

is a residual Bouguer anomaly map of the area draped on a 10 m resolution DEM map. 

The Diamond Craters location is shown by a red dotted polygon that lacks positive 

gravity anomalies. To the west of the Diamond Craters, we observe a significant gravity 

low with a semi-circular shape shown by the dotted yellow polygon. We plotted the 

seismic velocity slices at 4 km depth from msl, a longitudinal slice through 118.900 W 

longitude, and a latitudinal slice through 43.100 N latitude as shown in Figures 2.25b, c, 

and d respectively. The low velocity basin fills reach as deep as ~4.5 km from msl in the 

area indicating the presence of a caldera. This interpretation is also supported by the 

topographic features, surface geology, and magnetic data (Figs. 2.17 and 2.24b). We 

propose this caldera to be the possible source for 9.7 Ma old Devine Canyon Tuffs. The 

source location is close to one proposed by Greene (1973) and Walker (1974; 1979).  

Beneath the caldera, we observed ~1 km thick high velocity body at depth of ~6 km. 

This is possibly the residual source material of the Diamond Craters volcanoes.  
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 Based on these results, we propose a three-stage evolution of the Diamond 

Craters and southern caldera area. At about 10-8 Ma the area was covered with active 

felsic volcanism (e.g. Walker, 1979; Christiansen and Yeats, 1992; Jordan, 2002). Due 

to extensive volcanism and overloading in the crust, the volcanic center subsided and 

the southern caldera formed. The caldera was later filled by basin sediments, tuffaceous 

deposits, and ash-flows. Later, due to the faulting in the Brothers fault zone, the olivine 

rich basaltic magma that formed in the lower crust to the upper mantle (Russell and 

Nicholls, 1987) rose along these fissures. During the Pleistocene, this magma made its 

way to the surface in the eastern portion of the caldera and the Diamond Craters were 

formed.  Some of the residual magma might have solidified in the upper crust at about 

~6 km depth in the nearby area. Meanwhile the sedimentation and volcanism continued 

to form the present day landscape in the area forming a buried caldera beneath the 

Diamond Craters.   

The central lake area 

 The lowest elevation in the Harney Basin lies in the central portion. This part is 

occupied by Malheur Lake in the eastern side, the relatively small Mud Lake in the 

center, and Harney Lake in the western side. This area contains Miocene tuffs, basaltic 

flows, ash-flow tuffs, and an abundance of locally fluviatile sedimentary and volcanic 

rocks with high PH (acidic scale) values (Sheppard, 1994). Although separated by only 

few hundred meters of flat-lying land, Harney Lake has high salinity water whereas the 

other two lakes are fresh water. The gravity and magnetic signatures in the area are 

anomalously high and these anomalies separate the northern caldera from the Diamond 
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Craters and southern caldera area. For detailed study, we analyzed the gravity, 

magnetic, and seismic data of the area and show the results in Figure 2.26.  

 Figure 2.26a is a residual Bouguer gravity map after applying 15 km upward 

continued filter draped on a 10 m resolution DEM map. We observed a relatively high 

gravity anomaly in the low-lying lake area as shown by the dotted yellow polygon. The 

same areas also show high positive magnetic anomalies (Figs. 2.17 and 2.24b). Figures 

2.26b, c, and d are the seismic velocity slices at 4 km depth from msl, a longitudinal 

slice at 1190 W longitude, and a latitudinal slice at 43.250 N latitude respectively. From 

the seismic data, we observed that the basin deposit thickness ranges from about 2.5-4 

km from msl in the area. A high seismic velocity body lies at ~5-6 km depth as seen in 

Figures c and d. The presence of high gravity and magnetic anomalies and presence of a 

high velocity zone can be inferred to the presence of some intermediate-mafic body in 

the upper crust.  Some of the sources for Harney Lake water are hot springs that lie on 

the southeast side of the lake. The spring water dissolves and carries alkaline minerals 

with it from the subsurface (Sheppard, 1994). This is one of the reasons for high salinity 

water in Harney Lake.  

The northern caldera 

The northern caldera lies in the northeast corner of the Harney Basin and covers 

the northern half of Malheur Lake. It is bounded to the north and east by topographic 

highs. The west and south sides are somewhat flat topographically.  The area is covered 

by fluvial, fluvio-lacustrine, and volcanic sediments.  

 We analyzed the gravity, magnetic, DEM, and seismic data of the area for 

detailed study. Figure 2.27a shows the 15 km upward continued residual Bouguer 



 

77 
 

anomaly draped over a 10 m DEM map. The caldera boundary is delineated with the 

dotted yellow polygon. The caldera is semi-circular in shape with dimensions of ~50 

km in east-west direction and ~30 km in north south direction.  Within the northern 

caldera, we can see two distinct depressions shown by C1 and C2 (Fig. 2.27a). They are 

separated by a moderate linear gravity feature (Fig. 2.12b). This is probably due to the 

nested calderas features as suggested by Kane et al., (1976) for the Long Valley caldera 

area and by Cole et al., (2005) for Masaya caldera in Nicaragua.  

Figures 2.27 c and d are seismic velocity slices at 4 km depth from msl, a 

longitudinal slice at 118.90 0W longitude and a latitudinal slice at 43.55 0N latitude. The 

low velocity material has thickness of ~4-5 km (Figs. c and d). This indicates the 

sediments and volcanic material filled the caldera after it was formed. Thus, the surface 

geology, topographic features, and geophysical data suggest the presence of caldera in 

the area. Greene (1973); Walker (1974) and Ford et. al. (2013) also suggested the 

source of the 8.4 Ma old Prater Creek Tuffs in the same area.    

In magnetic maps of the area, we observed that C1 has low negative magnetic 

anomaly but C2 correlates with high positive magnetic anomalies (Figs. 2.17 and 

2.24b). The higher magnetic anomaly of C2 could be somehow related to the 

reactivation of the caldera in the area. This could be the result of asymmetrical tilting of 

the nested caldera features while it subsided. The eastern rim of the C2 caldera might 

have been tilted and rotated instead of collapsing during the caldera formation. The 

analogy can be drawn from the tilted nested caldera complex in Hong Kong as 

suggested by Sewell et al., (2012).  
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Conclusions 

 Using 2D seismic lines to generate a 3D seismic tomographic model of upper 

crustal structure in the Harney Basin area produced useful and intuitive results. The 2D 

line geometry sources and their pairing with the off-line receivers created multiple fan 

shots for each source.  This approach helped to scan the upper crust several times for 

most of the basin and optimized 3D tomographic results. We successfully delineated the 

upper crustal features and identified two major calderas in the basin.  

 Seismic tomography, gravity and magnetic maps, integrated gravity models, 

surface geology, and other geospatial data were combined to interpret the major 

structural components in the Harney Basin area. This cross validates the seismic 

tomographic interpretation. Newly added gravity data revealed some previously unseen 

features such as a buried crater or caldera in the northwest part of Steens Mountain. The 

integrated geophysical approach helped to image the detailed upper crustal features of 

the Harney Basin area down to a depth of ~8 km below mean sea level.  

 Previous researchers interpreted the presence of calderas in the area (e.g. 

Greene, 1973; Walker 1979; Walker and Nolf, 1981; Streck and Grunder, 1995; 2008, 

Ford et al., 2013) but lacked detailed geophysical data to support their hypotheses. The 

new integrated geophysical results helped us to identify two caldera complexes within 

the Harney Basin, namely the southern and northern caldera. The mechanism of the 

caldera formation is complex because of the multi-phase bimodal volcanism and hard to 

decipher in detail due to thick sedimentation. One possible mechanism can be the 

downward flexure or downward sagging (Roche et al., 2000). This is supported by the 

center ward increase in the dip angle of the tuff beds in the northern Harney Basin. 
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(Ford et al., 2013). The lack of ring faults in the area can be credited to the thick 

sedimentary deposits and volcanic fill that might have covered many faults. The 

mechanism and process of caldera formation such as “downsagging”, “piecemeal”, or 

both could also cause the lack of ring faults (Cole et al., 2005).  However, the presence 

of hot springs and geothermal activity (Cole et al., 2005) in the area is one of line of 

evidence that supports our interpretation for the presence of calderas. The presence of 

tuff deposits and numerous ash flows within the Harney Basin is additional evidence to 

support our interpretation. The complexity of the caldera shape and features suggests 

that there is no single end member mechanism for the caldera-forming processes.  

 One can argue the alternative interpretation to the presence of caldera such as; 

thick basin fill or the presence of a silicic batholith or both that can contribute to the low 

gravity values and seismic velocities as well as magnetic signatures. We ruled out these 

interpretations solely based on the findings from previous research and our study. 

Although sparsely available, the drilling data suggests the sediment fill in the basin in 

not more than few hundred of meters. We do not see any evidence of the Basin and 

Range structures such as fault bounded grabens and significant extension. There is no 

evidence for present or paleo-fluvial systems that could make Harney a fluvial basin. 

The presence of unusually high density and seismic velocity material in shallow crust, 

absence of granitic rocks in the vicinity, presence of higher magnetic materials in the 

caldera area indicates the absence of granitic plutons in the area. The presence of 

abundant rhyolite can raise the question related to its source. Based on the research on 

the Rattlesnake Tuffs, these rhyolite and tuffs deposits are rich in iron and silica 

content, have high parent magma temperatures (>8800C), and have high Ba/Sr ratios 
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(e.g. Streck and Grunder, 1995; 2008; 2012; Ford et al., 2013). These indicate that the 

sources of these deposits were mafic and fractional crystallization created this large 

volume of tuffs and rhyolite deposits, thus ruling out the possibility of presence of 

silicic plutons.   

 To strengthen the proposed geophysical interpretation, more data from the 

scientific drilling of these caldera complexes would be ideal and a detailed 3D seismic 

study of the area would be helpful. Such efforts would help us to further understand the 

complex evolution of the upper crustal features and calderas within the Harney Basin. 
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Shot 
points 

Gathers No. of 
receivers

No. of first 
arrival picks 

Average picking 
uncertainties 

(ms) 
  G1 80 79 0.0708 
sp13 G2 137 99 0.0849 
  G4 113 62 0.0861 
  G1 80 78 0.075 
  G2 137 128 0.0396 
sp14 G3 107 103 0.0270 
  G4 113 105 0.029 
  G5 87 80 0.0306 
  G2 137 94 0.062 
sp15 G3 107 102 0.0646 
  G4 113 104 0.0547 
  G5 87 83 0.0552 
  G1 80 77 0.05649 
  G2 137 129 0.07282 
sp24 G3 107 100 0.06725 
  G4 113 107 0.0549 
  G5 87 78 0.0572 
  G1 80 77 0.0509 
  G2 137 111 0.0725 
sp26 G3 107 79 0.0503 
  G4 113 110 0.0678 
  G5 87 33 0.0783 
  G2 137 71 0.0623 
sp31 G3 107 59 0.0616 
  G4 113 101 0.0589 
  G5 87 64 0.0569 
Total 26 2790 2313   

 

Table 2.1: Table showing the combination of source-receiver geometry chosen from the 

High Lava Plains active seismic experiment, 2008. The number of first arrival picks and 

their associated picking average uncertainties used for tomographic inversion are also 

shown. 
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Velocity interfaces Depth (km) P-wave velocity (km/s) 

1 2.5 3.00 

2 -0 3.51 

3 -0.5 3.64 

4 -1.51 3.76 

5 -1.5 5.37 

6 -2.5 5.44 

7 -3.0 5.49 

8 -3.1 6.1 

9 -4.15 6.11 

10 -7.3 6.14 

11 -11 6.17 

12 -14.10 6.42 

13 -16.21 6.49 

14 -21.0 6.74 

    

Table 2.2: Velocity nodes along depth, used for generating initial velocity grids with -ve 

depth indicating below mean sea level. 
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Number of 

Iterations 

RMS traveltime 

residuals (ms) 

Variance of the 

misfit 

χ2- misfits 

Initial values 376.30 0.07637 40.9780 

1 147.22 0.02168 6.8681 

2 118.47 0.01404 4.6739 

3 116.52 0.01358 4.4913 

4 110.54 0.01222 4.0944 

5 110.44 0.01220 4.0832 

6 108.72 0.01182 3.9422 

7 110.89 0.01230 4.0120 

 

Table 2.3: Results obtained from the iterative tomographic inversion from the 

FMTOMO program. After the sixth iteration, the convergence does not improve any 

further.  
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Figure 2.1: Index map of the study area showing major tectonic units around the High 

Lava Plains (HLP) modified after Brueseke et al (2007); Benford et al. (2010); and Cox 

(2011). The Harney Basin (black polygon) is one of the major features in the HLP and 

lies along the HLP-Newberry volcanic trend. The SR/YS (Snake River/Yellowstone) 

volcanic track contains the Bruneau-Jarbidge (BJ) and Twin Falls (TF) volcanic fields. 

The HLP is bounded to the north by the Blue Mountains and the Columbia Plateau, to 

the east by the Columbia River Basalt (CRB), Steens Basalt (SB), and Northern Nevada 

(NV) feeder dikes (rift). The 0.706 Sr isotope line (green) separates cratonal North 

America to the east from the accreted terranes to the west. The Oregon-Idaho graben 

(OIG) and Owyhee Plateau are also shown. 
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Figure 2.5: Seismic index map showing source receiver geometry chosen from the 

larger HLP seismic experiment, 2008 (shown in inset map). For region of this study, 6 

sources and 5 different lines of receivers (524 receivers) were chosen in such a way that 

most of the Harney Basin area has ray coverage. Table 1 shows the details of the 

source-receiver pair geometry. 
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Figure 2.7: Example shot gather for shot point 14 on line 1. Figure (a) is the raw shot 

gather and Figure (b) is the processed and filtered shot gather for the same line with first 

arrival picks shown in red. 
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Figure 2.8: Example shot gather for shot point 15 on line 3. Figure (a) is a raw shot 

gather and Figure (b) is the processed and filtered shot gather on the same line with first 

arrival picks shown in red. 
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Figure 2.9: Model resolution (checkerboard) test in FMTOMO program before and after 

inversion. Figures (a), (c), and (e) are pre-inversion slices at 3 km depth, 1190W 

longitude, and 43.60N latitude respectively. Yellow stars and white inverted triangles in 

Figure (a) are seismic sources and receivers respectively. Figures (b), (d), and (f) are 

final velocity models after inversion at the respective positions. Figure (b) shows every 

100th ray point in the model space where as figures (d) and (f) shows every 100th ray 

points that lie within the range of ±0.10 along the chosen slices. 
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Figure 2.10: Comparison of the pre- and post-inversion velocity models in FMTOMO 

program. Figures (a), (c), and (e) are pre-inversion slices at 3 km depth, 1190W 

longitude, and 43.60N latitude respectively. Yellow stars and white inverted triangles in 

Figure (a) are seismic sources and receivers respectively. Figures (b), (d), and (f) are 

post inversion slices at the respective positions. Figure (b) shows every 100th ray point 

in the model space where as Figures (d) and (f) shows every 100th ray points that lie 

within the range of ±0.10 along the chosen slices.  



 

95 
 

 

Figure 2.11: Complete Bouguer anomaly (CBA) map of the area. The yellow polygon 

shows physiographic boundary of the Harney Basin. White dots are the gravity stations 

from the PACES database whereas black dots are the gravity stations from our 2012 

gravity survey. The Western Snake River Plain (WSRP) and the Owyhee Plateau are 

associated with high gravity anomalies. Steens Mountain and the Blue Mountains have 

relatively low gravity anomalies whereas the HLP is a broad region of moderate 

anomaly values. 
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Figure 2.13: Residual Bouguer anomaly map after subtracting the 15 km upward 

continued surface. The black lines represent mapped faults in the area. The black 

polygon is the physiographic boundary of the Harney Basin. Dashed white lines XX′, 

YY′, and ZZ′ are three profiles along which the gravity models are generated and shown 

in Figures 2.18, 2.19, and 2.20 respectively. 
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Figure 2.15: Vertical slices through the inverted velocity model of the Harney Basin 

area shown along longitudinal slices arranged from east to west. The areas with bright 

pink color in the figure have velocities greater than 6.5 km/s. Dashed white lines in the 

inset figure are location of these slices on the DEM map. 
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Figure 2.16: Vertical slices through the inverted velocity model of the Harney Basin 

area shown along latitudinal slices arranged from south to north. The areas with bright 

pink color in the figure have velocities greater than 6.5 km/s. Dotted white lines in the 

inset figure shows location of these slices on the DEM map. 
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Figure 2.17: Inverted velocity model of the Harney Basin area shown along depth 

slices. The areas with bright pink color in the figure have velocities greater than 6.5 

km/s. The depth annotations are below mean sea level (msl). 
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Figure 2.18: Gravity model of the upper crust across Harney Basin area along 43.250N 

latitude (X-X′, Fig. 2.13) based on gridded 15 km upward continued residual Bouguer 

anomaly values. Density values are in g/cm3. V.E. stands for vertical exaggeration. 
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Figure 2.19: Gravity model of the upper crust across Harney Basin area along 43.600N 

latitude (Y-Y′, Fig. 2.13) based on gridded 15 km upward continued residual Bouguer 

anomaly values. Density values are in g/cm3. V.E. stands for vertical exaggeration. 
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Figure 2.20: Gravity model of the upper crust across Harney Basin area along 118.800W 

longitude (Z-Z′, Fig. 2.13) based on gridded 15 km upward continued residual Bouguer 

anomaly values. Density values are in g/cm3. V.E. stands for vertical exaggeration. 
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Figure 2.21: A block diagram illustrating the relationship between the major upper 

crustal structures in the Harney Basin area observed in the 15 km residual Bouguer 

anomaly map (on the top) with the inverted velocity model along 1190W longitude. 
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Figure 2.22: A block diagram illustrating the relationship between the major upper 

crustal structures in the Harney Basin area observed in the 15 km residual Bouguer 

anomaly map (on the top) with the inverted velocity model along 43.100N latitude. 
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Figure 2.23: A block diagram illustrating relationship between the major upper crustal 

structures in the Harney Basin area observed in the reduced-to-pole total magnetic 

intensity map (on the top) with the inverted velocity model along 1190W longitude.  
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Chapter 3: Crustal scale integrated geophysical study of the Snake 

River Plain, Idaho 

 

Abstract:  The scientific discussion on the structural complexities and evolution of the 

Snake River Plain and the role of extension in its formation has been going on for 

decades. Similarly, high gravity and magnetic anomalies of the Snake River Plains and 

their causes are still subjects of many studies. Recent passive and active source seismic 

studies have specifically focused on the lithospheric and deep mantle structure of the 

Eastern Snake River Plain and High Lava Plains. However, crustal scale studies of the 

Western Snake River Plain are limited. In this study, we employed gravity and magnetic 

data in the area and integrated the results with seismic, geospatial data, and receiver 

function results to address these issues. We also identified the major differences and 

similarities in the structure and tectonics of the Western and Eastern Snake River Plain 

based on gravity and magnetic anomalies. With the help of processed receiver function 

results, 2D seismic refraction and reflection data, interpreted well logs, and geospatial 

data, we generated 2D gravity models across the Western Snake River Plain. The mid 

crustal mafic intrusion is possibly the main reason for the high gravity anomaly in the 

Western Snake River plain. Alternate gravity model along a profile shows underplating 

as one of the reasons for the high gravity anomaly at the Western Snake River Plain. 

Keywords: gravity, magnetics, tectonics, crustal structures, integrated modeling 
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Introduction 

Many scientific questions about the geological structure and tectonic evolution 

of the Northwestern United States remain unanswered. The Snake River Plain (SRP) is 

an integral part of the Pacific Northwest and is surrounded by many tectonic units such 

as; the High Lava Plains (HLP), Idaho Batholith (IB), Basin and Range Province (BRP), 

Yellowstone (YS), Columbia Plateau (CP), Owyhee Plateau (OwP), and Northern 

Rocky Mountains (NRM) (Fig. 1). The presence of these tectonic units, effects of flatly 

subducting Farallon Plate from the west (Schmandt and Humphreys, 2011), long-lived 

vast Cenozoic volcanic activity in the area, and moving Yellowstone hotspot track make 

the tectonic evolution of the SRP and its relation to the surrounding units interesting and 

even more puzzling.  

The SRP is relatively low-lying topography, which shows high negative 

Bouguer anomaly at its center. We used a pre-existing gravity and magnetic database 

compiled through a community effort. These data are freely available online to 

download at the Pan American Center for Earth and Environmental Studies (PACES) 

(http://research.utep.edu/Default.aspx?tabid=37229). We also used more than 1000 

recently collected gravity points in the HLP area and merged the data with pre-existing 

PACES gravity data.  

In the regional context of the SRP, the Complete Bouguer Anomaly (CBA) 

varies by ~210 mGal across its axis. Total Magnetic Intensity (TMI) data were also 

analyzed. TMI values range over 600 nT with much more complex and erratic magnetic 

signatures that arise from the shallow flood basalts deposits within the region. We used 

some wavelength filters to separate regional and residual anomalies such as upward 
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continuation and bandpass filters for gravity data and reduction-to-pole for the magnetic 

data. We also applied gradient filters to delineate the boundaries of the gravity and 

magnetic anomalies such as, tilt derivative, horizontal gradient magnitude, and total 

horizontal derivative filters. These filters helped us to identify the major structural 

components and tectonic units in the area. The bounding normal faults of the WSRP are 

well observed. In addition, we also analyzed the processed receiver function data 

Gilbert (2012) in the area and generated the crustal thickness map that show slightly 

thicker crust beneath the WSRP. 

We generated an integrated forward gravity model of the subsurface structures 

across the WSRP and OIG, starting from the OwP on the southwest to the IB on the 

northeast (Figs. 3.7b, 3.12). This profile passes close to some of the deepest well logs at 

the center of WSRP (Wood and Clemens, 2002) and is sub-parallel to shallow seismic 

reflection profiles (Liberty, 1998). These data were used to constrain the upper 5 km of 

the model along the profile. Another integrated gravity model across the WSRP was 

generated starting at the northern BRP and ending at the IB (Figs. 3.7b, 3.13, 3.14). This 

line is sub-parallel to the deep seismic refraction profile by Hill and Pakiser (1967) and 

reprocessed by Prodehl (1970). The interpreted seismic section along the line is the key 

constraint for the gravity model for this profile. In both of these models, we modeled 

high-density, mid-upper crustal mafic intrusive body as a prime source for the 

anomalous gravity high of the WSRP. We also present an alternate model for the 

second profile, where we show that the underplating along with a mid crustal mafic sill 

could partly be the source of gravity high anomaly across the WSRP.  
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Geological and tectonic settings  

The SRP is an arcuate feature, which lies in the southern Idaho. It is filled with 

large volume of volcanic material, which involves the emplacement of large amounts of 

mafic magma in the crust. The interaction of the magma is believed to be a major cause 

for rhyolite and ignimbrite eruption in the SRP (Leeman et al., 2008). The SRP can be 

divided into Western and Eastern sections according to the internal structures, bounding 

surfaces, and rock types present in the basins that underlie the plain.  

The Western Snake River Plain (WSRP) is a fault-bounded, complex Neogene 

graben or continental structure trending northwest (e.g. Wood, 1994; Cavanagh, 2000; 

Wood and Clemens, 2002), which meets the southwest trending Eastern Snake River 

Plain (ESRP) near Twin Falls, Idaho. It is ~70 km wide and ~300 km long basin that 

reaches the depth of ~4 km (Wood and Clemens, 2002).  The timing of the formation of 

WSRP has been debated for many years. Mabey (1982) and Malde (1991) suggested 

that the WSRP formed along with the ESRP at ~17-16 Ma being associated with the 

large-scale extension of the Basin and Range Province. According to Wood and 

Clemens (2002), the WSRP basin formation began only after 11 Ma. The silicic 

volcanism in the WSRP took place at ~12-10 Ma, which was followed by basaltic 

volcanism in between ~9-7 Ma and later at ~2-0.1 Ma (McCurry et al., 1997). However, 

the occasional basaltic volcanism continued until several thousand years ago, which are 

interlayered with sediments. 

The ESRP is a ~700 km long, ~100 km wide, and ~5-6 km deep time 

transgressive, large structural downwarp basin with a number of Quaternary volcanoes 

that marks the Yellowstone hotspot track (Smith and Braile, 1994; McQuarrie and 
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Rodgers, 1998; Hughes et al., 1999; Pierce et al., 2002; McCurry and Rodgers, 2009). 

The ESRP is characterized by accumulation of a thick volcanic succession, crustal 

flexures on its southern margin, faults in the northwest margins, and significant 

subsidence along the basin axis (Sparlin et al., 1982). The ESRP has experienced a 

similar kinematic history to that of northern Basin and Range Province (Rodgers et al., 

2002).  The rock layers dip towards the axis of the basin (Shervais et al., 2005). The 

ESRP was formed due to movement of the North American plate over a relatively 

stationary mantle plume, which lies beneath Yellowstone (YS) caldera now. There is an 

abundance of Neogene and Quaternary silicic centers and mafic volcanoes observed 

within the ESRP (e.g. Armstrong et al., 1975; Pierce and Morgan, 1990; Smith and 

Braile, 1994). The ESRP is also interpreted to be formed due to the interplay of 

magmatism and the northern Basin and Range extension (e.g. Parsons et al., 1998; 

McQuarrie and Rodgers, 1998).   

 The Atlanta lobe of the Cretaceous Idaho Batholith (IB) forms the north side of 

the WSRP ( e.g. Beranek et. al., 2006; Foster et. al., 2001) The IB was formed due to 

partial melting of the subducting Farallon Plate beneath the continental crust in the Late 

Cretaceous (Hyndman, 1983). The IB consists of strongly folded metamorphosed 

granitic-gneiss, granite, tonalite, and quartz diorite. Within the IB, there are a number of 

volcanic intrusions and mafic dikes. 

 The Oregon-Idaho Graben (OIG) separates the WSRP from the HLP and OwP 

to the west. The OIG consists of a series of north trending grabens bounded by faults 

with average displacements of greater than 1 km. The grabens are filled with tholeiitic 

basalt sills and dikes, and recent sediments. The basin is also filled with bimodal 
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volcanic materials (Ferns et al., 1993). The OIG is ~16-10 Ma old and lies within the 

Middle Miocene back arc rift system that extends from southern Nevada to southeastern 

Washington (e.g. Cumming et al., 1994; and 2000). 

 The Basin and Range Province (BRP) lies to the south of the SRP and is an 

alternating series of north south trending normal fault bounded valleys and mountains 

that formed during the Cenozoic. The BRP is characterized by comparatively thin crust, 

widespread seismicity, and extensional fault blocks due to continental rifting (e.g. 

Thomson et al., 1989; Dewey et al., 1989). BRP consists of Precambrian and Paleozoic 

rocks often intruded by Cenozoic volcanoes, intrusive rocks, and metamorphic core 

complex.  

 The HLP is a Miocene-Pleistocene aged, complex intra-plate bimodal volcanic 

province, which lies in the west of WSRP (Druken et al., 2011). It is an uplifted plateau 

covered by rhyolite and basalt and has experienced multiple flood basalt volcanisms 

(Brueseke et al., 2007), ignimbrite flare-ups (Lipman et al., 1971), and BRP related 

extension (Camp et. al, 2003). Some hypotheses suggest that the HLP is linked to the 

Yellowstone mantle plume and the Snake River volcanic system, whereas others 

suggest that HLP was formed due to upwelling of residual flood basaltic magma 

(Humphreys et al., 2000). Some others suggest that the HLP could have been developed 

due to propagating shear zones or due to back arc upwelling in response to the changing 

subduction geometry in the Pacific Northwest (Christiansen et al., 2002). 
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Pervious crustal seismic studies 

There are limited crustal scale seismic studies across the SRP area, some of which date 

back as early as 1962. Hill and Pakiser (1967) conducted reversed seismic refraction 

experiments with five shots from Eureka, Nevada to Boise, Idaho cutting across the 

WSRP.  They interpreted thin (~32 km) crust in the northern BRP, which abruptly 

changes to ~43 km thick beneath the WSRP and proposed a high velocity mid crustal 

layer at about 10 km depth beneath the WSRP. This profile was later reprocessed by 

Prodehl (1970, 1979) showing similar results.  The Yellowstone-ESRP seismic profiling 

experiment was conducted in 1978 to image the crustal structures of Yellowstone 

region. The profiles ran along as well as cut across the ESRP and used 15 shots 

covering a distance of 300 km (e.g. Braile et al., 1982; Smith et al., 1982; Sparlin et al., 

1982). They found the crust of the ESRP is highly anomalous due to presence of thick 

volcanic layers, and a high velocity layer (>6.5 km/s) at the intermediate crustal depth. 

The crustal thickness in the area is ~42 km. Besides these two major crustal scale 

experiments, the 2008 HLP seismic experiment covers a smaller part of the Owyhee 

Plateau (OwP), which is close to the WSRP. The crustal thickness in the OwP area is 

~38 km and the mid crustal high velocity layer was also imaged (Cox, 2011). Seismic 

imaging of the Western Idaho- Eastern Oregon (IDOR) experiment was conducted in 

2012. The profile cut across the northwest boundary of the WSRP. The results are not 

available yet, but the key objectives were to find the velocity structure of the entire 

crust, Moho, and uppermost mantle (http://www.geophys.geos.vt.edu/hole/idor/). The 

locations of these profiles are shown in Figure 1. 
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Gravity and magnetic data filtering 

  In addition to the PACES database for gravity mapping, we also used 

more than 1000 recently collected gravity data points in the Harney Basin area that lies 

in the western part of the study area. We gridded the complete Bouguer anomaly (CBA) 

values of the area with 2 km grid spacing using the Geosoft® Oasis Montaj package. 

The CBA map of the study area is shown in Figure 3.2(a). A grid spacing of 5 km was 

used for the magnetic data (Fig 3.5a). 

For the detailed analysis, we applied various wavelength filters, such as upward 

continuation, bandpass, reduction-to-pole, and pseudogravity filters. These filters help 

to separate the regional anomalies from the residual one. We also applied some edge 

detecting filters such as tilt derivative and total horizontal derivative (horizontal 

gradient magnitude) filters to gravity and magnetic data. These filters were useful to 

delineate the boundaries of major tectonic units and mapping major faults and dikes in 

the study area. The details of these filters are explained in the following paragraphs. 

Upward continuation filter is a low pass filter and helps to separate the regional 

low pass long wavelength anomalies from residual short wavelength anomalies. 

Upward continuation transforms the potential field measured on one surface to the other 

surface as if it was measured on that surface farther from the source (Blakely, 1996). 

The higher the upward continuation height is used, the smother the anomalies are. A 

simple upward continuation filter in a Fourier domain is given by (Blakely, 1996): 

߮ሺܺ, ܻ, ∆ܼሻ ൌ െ ଵ

ଶగ

డఝ

డ∆௭௥
  ………………… (1) 

 where,  ݎ ൌ ඥݔଶ ൅ ଶݕ ൅  ଶݖ∆
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A residual Bouguer anomaly map after subtracting 40 km upward continuation 

filter is shown in Figure 3.2b, where major tectonic units in the study area are identified. 

Figure 3.8 shows the upward continued filtered maps as well as corresponding residual 

Bouguer maps after subtracting the upward continued grid from the CBA grid.  

The bandpass filters are used to separate out residual anomalies from the 

regional ones. A band of wavelength is selected in such a way that it enhances the 

anomalies of our interest. One should be very careful in choosing the parameters for 

wavelength filters properly as the wrong choice could produce maps with artificial 

ringing effects. Figure 3.4a shows a 10-300 km Butterworth bandpass filtered gravity 

map, where we observed the gravity anomaly of the SRP as well as other major tectonic 

units. The reduction-to-pole filter is applied to the magnetic data only. It removes the 

distortion and asymmetry in the maps caused by Earth’s magnetic field and helps to 

make the actual inclination vertical (e.g. Silva, 1986; Blakely, 1996). This filter is also 

known as residual filters because it removes the regional effect of the Earth’s magnetic 

field from the magnetic data. Reduced-to-pole total magnetic intensity (TMI) map of 

the area is shown in Figure 3.5a. Pseudogravity filter is applied to magnetic data, which 

converts the magnetic anomaly to gravity anomaly in such a way that the mass with 

magnetic susceptibility would be replaced by the same mass with density (Blakely, 

1996). This filter amplifies broader wavelength anomalies while suppressing the shorter 

wavelength features. Figure 3.5d shows the result obtained after applying pseudogravity 

filter to reduced-to-pole TMI grid (Fig. 3.5a). This filter largely amplified the SRP 

anomaly and helped to delineate the ESRP and WSRP related signatures easily. 
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Total horizontal derivative (THD) filters are edge-detecting filters based on 

gradient method and is given by (Verduzco et al., 2004)  

ܦܪܶ ൌ ටቀడ஺

డ௑
ቁ

ଶ
൅ ቀడ஺

డ௒
ቁ

ଶ
   ……………………….. (2) 

where, A is gravity or the magnetic anomalies from the grid. This filter takes only 

positive values in account, amplifies the signal, and helps to delineate the boundaries 

properly. This filter is also known as horizontal gradient magnitude (HMG) filter. 

Figures 3.5c and 3.9b are examples of THD filters applied to reduced-to-pole TMI 

maps. In both cases, we can easily see the boundary of SRP and the extending northern 

Nevada dikes form the BRP area.  

  Similarly, tilt derivative (TD) is another gradient filter that was applied to the 

gravity and magnetic data and is given by (Verduzco et al., 2004): 

ܦܶ                 ൌ ଵି݊ܽݐ ቀ ௏஽

்ு஽
ቁ ………………..………….. (3) 

where, VD is the vertical derivative of the gravity or magnetic anomalies and is given 

byܸܦ ൌ ቀడ஺

డ௭
ቁ. Tilt derivatives are very useful to map faults and dikes like linear 

anomalies. Figures 3.4b is an example of the use of tilt derivative applied to the CBA 

grid. The results of application of the tilt derivative to the magnetic data are shown in 

Figures 3.5b and 3.9a, where the boundary of the SRP is enhanced. 

Receiver function analysis for crustal thickness mapping 

 Receiver functions usually are analyzed from the teleseismic waves generated 

during the earthquake events around the world recorded by broadband seismic stations 
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(e.g. Ligorría and Ammon, 1999; Langston & Hammer, 2001). In order to produce a 

receiver function, the horizontal component of the seismogram is deconvolved with the 

vertical. It produces a time series function that displays P to S converted phases 

(Burdick and Langston, 1977; Ligorría and Ammon, 1999). After stacking these phases, 

the time domain data is inverted into the depth domain using widely accepted earth 

velocity models. When more receiver functions are used from different events at a same 

station, better crustal properties are estimated. Using the state-of-art statistical tools and 

measures, crustal thickness (Moho depth) and other crustal properties such as Vp/Vs 

ratio and Poisson’s ratio beneath the seismic station are determined.  

US Geological Survey and EarthScope project deployed more than 400 

broadband seismometers in the area between the years of 2006 to 2008. EarthScope 

Automated Receiver functions (EARS) automatically processes and analyzes these 

seismic data and produces the results. These results provide average estimated crustal 

thickness, Vp/Vs ratio, and Poisson’s ratio beneath these seismic stations. These data 

are available online for download and analysis (http://ears.iris.washington.edu/).  

However, automated results are not always accurate and reliable. If there are 

other seismic velocity discontinuities strong enough to produce converted P-S phases, 

the EARS can easily produce false maxima thus creating confusing results specifically 

in determining the crustal thickness. These discontinuities can be present in form of 

mafic mid- lower crustal intrusive sills or underplating also known as 7.xx layers (e.g. 

Rumpfhuber et al., 2009; Shen et al., 2013). These kinds of sub-surface features have 

been previously reported in the study area (e.g. Brott et al., 1981; Braile et al., 1982; 

Smith et al., 1982; Sparlin et al., 1982; Shervais et al., 2006; DeNosaquo et al., 2009).  
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To overcome such issues, we used a secondary database for crustal thickness 

mapping and analysis. Gilbert (2012) manually analyzed the available teleseismic data 

from the EarthScope USArray and some other local seismic networks for the western 

US.  About 485 stations in the study area were processed and analyzed. The USArray 

were ~70 km apart while deployed. In order to combine the receiver function records, 

Gilbert (2012) stacked the data and binned with binning radius depending upon the 

density of the stations. He chose 45 km bin spacing in horizontal directions and 1 km in 

vertical directions. The Moho depths were identified for each station and were 

compared with the adjacent stations to see the differences. This process helped to 

validate the results as well as estimate the errors with the help of the bootstrap 

resampling approach. Gilbert’s (2012) receiver function database for the western US is 

available at http://dx.doi.org/10.1130/GES00720.S1. We downloaded the data and 

created the crustal thickness map of the study area. The result is shown in Figure 3.10, 

where the crustal thickness map shows thin crust (~30 km) in the BRP area with the 

SRP showing relatively thicker crust (~42 km).  

Results and discussions 

 We analyzed the gravity and magnetic data as well as other geospatial database. 

In addition to it, we also used the receiver function data for mapping crustal thickness. 

The integrated gravity models across the WSRP were generated with help of the 

interpreted seismic sections, shallow well logs, digital elevation maps, geological maps, 

and fault databases. The results are shown in Figures 2 through 14 and are discussed in 

the following sections. 

Gravity and magnetic maps 
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The CBA map of the study area is shown in Figure 3.2a. The gravity anomaly 

across the SRP varies by ~210 mGal. The Yellowstone caldera and IB show negative 

gravity anomalies where as the BRP shows alternating series of gravity highs and lows. 

For detailed analysis, we generated a residual Bouguer anomaly (RBA) map (Fig. 3.2b) 

of the area after applying 40 km upward continuation filter. The anomaly in the area 

varies by ~70 mGal with the SRP showing high positive RBA values. Other major 

tectonic units such as Columbia River Plateau, accreted Blue Mountains, highly 

extended BRP, the Northern Rocky Mountains, Idaho Batholith, Yellowstone Caldera, 

and High lava Plains are easily identified based on the gravity signatures. We took a 

gravity profile A-A' (Fig. 3.2b) along the SRP/YS and show the result in Figure 3.3. We 

observed the ESRP gravity anomaly is lower and broader in comparison to that of 

WSRP, which is higher and narrower. The differences can be observed in both the CBA 

profile (Fig 3.3a) and RBA profile (Fig. 3.3b). The YS caldera possesses the lowest 

gravity anomaly in the profile. We applied a 10-300 km Butterworth bandpass filter to 

the CBA grid and showed the result in Figure 3.4a. The long wavelength features have 

been removed. It also sharpened the SRP anomaly shown by dotted white polygon. The 

bandpass filter also amplified the anomalies related to the BRP, Owyhee Plateau, and 

the High Lava Plains. The tilt derivative map of the area is shown in Figure 3.4b where 

the dikes of the northern Nevada rift system are mapped (black dotted lines).  The 

boundaries of the SRP are readily identified. The normal faults extending north from the 

northern BRP (white dashed lines) that cut across the ESRP are also mapped. This filter 

also amplified the SRP boundary. 
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We show a series of filtered magnetic maps of the study area in Figure 3.5. 

Figure 3.5a is a reduced-to-pole total magnetic intensity (TMI) map of the area. The 

SRP shows weakly organized magnetic anomalies with sporadic signatures within the 

basin indicating multiple sources of the magnetic signature. The anomalies vary by 

~600 nT in the area. The SRP related magnetic anomaly is shown by white ellipses. The 

dikes of northern Nevada rift (NNR) system are mapped and shown by dashed white 

lines. We applied Tilt derivative, horizontal gradient magnitude (HGM) and 

pseudogravity filters to the reduced-to-pole TMI map and show the results in Figures 

3.5b, c, and d respectively. The tilt derivative map shows the enhanced boundaries of 

the WSRP and ESRP. It also amplifies the NNR related dikes. The HGM and 

pseudogravity filter enhanced and amplified the SRP related anomalies. The sporadic 

TMI anomaly of the SRP (Fig 3.5a) is more organized and enhanced (Figs. c and d).  

We further focused our analysis in the Western Snake River Plain (WSRP) area.  

Figure 3.6a and b show the CBA and reduced-to-pole TMI map of the WSRP 

respectively. Major tectonic units and geographic provinces in the area are identified 

(Fig 3.5a).  The magnetic anomaly of the WRSP is shown by the black polygon. The 

NW boundary of the WSRP is observed better than in the gravity map. Figure 3.7a is 

the CBA map of the WSRP area with the gravity contour on it. The WRSP shows a 

series of en echelon gravity high anomaly in its center. The anomaly across the WSRP 

varies by ~120 mGal, whereas the Idaho Batholith (IB) shows the lowest gravity value 

in the area. Figure 3.7b is a 40 km upward continued RBA map of the WSRP. The 

residual gravity values in the area range by ~70 mGal. The Quaternary faults (white 

dashed lines) show the WRSP anomaly is bounded by normal faults. B-B' and C-C' are 
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two profiles along which the gravity models are generated. These models will be 

discussed in the later section and are shown in Figures 3.12 through 3.14. We generated 

a series of upward continued maps of the WRSP area with upward continuation heights 

of 10, 20, and 40 km (Figs 3.8a, b, c). Their corresponding residual gravity maps are 

shown in Figure 3.8d, e, and f. These maps show that the central and eastern WSRP 

anomalies are related to either narrower or shallower bodies (Figs. a through f) whereas 

the anomaly in the NW corner of the WSRP is either deep seated or broader (Figs. c and 

f). We show the filtered tilt derivative map and the HGM map of the reduced-to-pole 

TMI grid on the WSRP in Figure 3.9a and b respectively. In both cases, these filters 

highlighted the WSRP boundaries as shown by the dotted black polygons. The WSRP 

anomalies looks more organized in both cased in comparison to the RTP TMI map (Fig. 

3.6b). The tilt derivative filter helped to delineate the dikes of NNR (Fig. 3.9a).   

In order to delineate the NW boundary of the WSRP, we further zoomed in into 

the area. Figure 3.10a and b show 10 km and 40 km upward continued RBA maps 

respectively. Here the WRSP anomaly is narrow and linear as shown by dashed black 

polygons. At the NW corner of WSRP, we observed a broader elliptical anomaly as 

shown by yellow dashed ellipses. We interpret this anomaly to be related to the 

Columbia River Basalt rather than the WSRP. We also show the Oregon-Idaho Graben 

(OIG) by a set of black arrows. The OIG separates the WSRP from the Owyhee Plateau 

and the HLP (Figs. 3.10a and b). 

With the help of filtered gravity and magnetic maps, we have interpreted major 

tectonic units and geographic provinces in the study area. The WSRP anomaly and its 

boundary are identified.  
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Receiver function and crustal thickness 

 We gridded Gilbert’s processed and interpreted receiver function data (Gilbert, 

2012) to generate a crustal thickness map of the area and show the result on Figure 

3.11a. White contours represent Moho depth in the area. The Basin and Range Province 

has shallow crust with thicknesses varying from ~29-34 km in the BRP area. The 

WSRP area has crustal thickness of ~40-43 km with the thickness generally increasing 

toward the southeast. A NE-SW trending linear region of shallow crust (shown by 

dashed red line) is observed to the west of the WSRP and to the north of the BRP. The 

crust is ~34-35 km thick in this linear trend. This feature is sub-parallel to the plate 

boundary and is probably related to the subducting Farallon Plate effect. In order to 

compare the physical location of this feature (red dashed line), we overlaid the depth 

contours on a 10 m resolution DEM map of the area (Fig. 3.11b). The linear shallower 

crustal feature coincides with the Steen’s Mountain scarp in the SW portion of the study 

area. This indicates that there is no deep crustal root present under Steen’s Mountain 

and that Steen’s Mountain is isostatically undercompensated. Steens Mountain is 

located in a broad gravity low (Fig. 3.6) and is associated with only a small positive 

gravity anomaly even though it is composed of massive basalt flows (Fig. 3.6). The 

region of thin crust should be a broad gravity high, but the lack of a gravity high 

suggests that an upper mantle feature must be offsetting the local effects of crustal 

thinning.  

Integrated gravity models across the WSRP 

 Two profiles across the WSRP were chosen (Fig. 3.7b) to generate integrated 

gravity models. Different data sources were used as constraints to generate these 
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models. The key constraint for the gravity model is based on the Eureka- Boise seismic 

refraction profile (Hill and Pakiser, 1967). The data was reprocessed and interpreted by 

Prodehl (1970, 1979).  The seismic velocities from the profile were converted into 

density values using the relation between P-wave velocity (Vp) and density (ρ) 

postulated by the Nafe-Drake curve and given by Brocher (2005): 

ሺ݃ߩ   ܿ݉ଷሻ ൌ 1.6612 ௉ܸ െ 0.4721 ௣ܸ
ଶ⁄ ൅ 0.0671 ௣ܸ

ଷ െ 0.0043 ௣ܸ
ସ ൅ 0.0000106 ௣ܸ

ହ ……. (4) 

In addition, we used interpreted logs from geothermal wells, an exploratory well 

(J.N. James #1) (Wood and Clemens, 2002), and interpreted shallow reflection seismic 

data (Liberty, 1998) to constraint the upper 5 km of the model specifically around the 

WSRP and Boise area. Digital surface geological maps and fault maps from USGS were 

also used to model faults and geological units close to the surface.  Crustal thickness 

estimates from receiver function analysis (Gilbert, 2012) played an important role to 

decide the Moho depth. The data from Yellowstone-ESRP seismic experiment (Sparlin 

et al., 1982) were also useful source for the modeling purpose. 

The gravity model along profile B-B' is shown in figure 3.12. Major tectonic 

units are modeled namely the OwP, OIG, WSRP, and IB. The observed and calculated 

gravity values along the modeled profile match very well with an estimated error of 

about ± 1.81%. The crustal thickness increases from ~35 km beneath the OwP to ~43 

km beneath the IB. A 2.72 g/cm3 mid crustal layer is modeled beneath the OwP and IB 

at the depth of 10-20 km but there exist a high-density (2.92 g/cm3) 8-10 km thick mafic 

intrusive body in the mid-crust beneath the WSRP. This body is probably the source of 
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the mafic material in the upper crust. The OIG, filled with bimodal igneous rocks was 

also modeled that separates the WSRP from the OwP. 

Similarly, the gravity model along profile C-C' is shown in Figure 3.13. This 

profile starts northern BRP cut across the WSRP and end in the IB. The Moho beneath 

the BRP area is ~31 km and jumps to ~41 km beneath the WSRP as suggested by Hill 

and Pakiser, (1967) and Gilbert, (2012). We modeled a high density (2.92 g/cm3) mid to 

upper crustal mafic intrusive body similar to that of profile B-B'. The mismatch error 

between the observed and calculated gravity value in this model is ±1.51. 

The WSRP area contains a series of normal faults, which are associated with 

graben and half graben structures. These grabens are filled with inter-layered sediments 

and flood basalt flows. These faults are terminated by the high-density mafic intrusion 

(Figs. 3.12 and 3.13). In the center of WSRP, a horst block is also observed. The density 

of these sedimentary interlayerings and the flood basalt in these blocks ranges from 

2.34-2.78 g/cm3. The Idaho Batholith is made up of ~8-10 km thick granite, 

granodiorite body with density of 2.65 g/cm3, which is often intruded by mafic 

volcanics (Figs. 3.12 and 3.13). The presence of this high-density body may be 

interpreted as mafic layer that rose from the upper mantle through the fractures crust 

and solidified in the mid crust (e.g. Sparlin et al., 1982; Shervais et al., 2005).  The mid 

crust of the SRP has been interpreted as high density, high velocity body by previous 

researchers also.  Mabey (1976) and Prodehl (1979) proposed a similar model with high 

density mid crustal body for the WSRP whereas Sparlin et al. (1982) and Shervais et al., 

(2005) have proposed similar models for the ESRP. For both of these models we 

showed the gravity high of the WSRP is contributed by the mid crustal layer. 
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We proposed an alternate model along profile C-C' and showed the result in 

Figure 3.14.  Instead of using a high-density massive mafic intrusive body in the mid 

crust, we modeled an underplating layer with a density of 3.10 g/cm3 right above the 

Moho and used a mid crustal dike with density of 2.92 g/cm3. Most of the other layers 

and their densities are similar to that of Figure 3.13. The mismatch error between the 

observed and calculated gravity value in this model is ±1.70. This alternate model 

showed that the gravity high of the WSRP is partially related to the underplating and 

partially to the mid crustal mafic dike. Similar model has been purposed for the ESRP 

by Shervais et al. (2005). 

Conclusions 

 We employed freely available potential field data in an integrated 

analysis to estimate and understand the complex crustal structure of the SRP. Basic 

wavelength filters and derivative filters enhanced the anomalies and helped to identify 

the key tectonic units and geographic provinces. The boundaries of these tectonic units 

were identified being based on the gravity and magnetic signatures on the filtered maps. 

The gravity profiling along the SRP, shows that the anomalies of the WSRP and ESRP 

are slightly different. The WSRP anomalies are narrower and higher indicating possible 

shallower source while the ESRP anomaly are broader and lower, indicating relatively 

deeper sources. With the help of derivative filters, we mapped major dikes such as 

Northern Nevada dikes. Some of the normal faults that extend north from the BRP were 

mapped across the ESRP area as well. We were also able to delineate the boundary of 

the WSRP with help of filtered maps. The crustal thickness map of the area showed that 

the WSRP has slightly thicker crust in comparison to the surrounding units. The NNE-
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SSW trending slightly thinner crust aligns sub-parallel to the plate boundary. We 

interpret this feature as possible underplating due to the subduction of the Farallon 

plate. 

The gravity models show that the WSRP is a fault bounded graben structure. 

These faults are terminated by a high density mid crustal mafic intrusive body.  The 

grabens are filled with interlayers of basalt and sediments. We interpret this mafic body 

as a sill/dike that was formed due to the partial melt rising from the upper mantle 

through the fractured crust. Our alternate gravity model suggests that an underplating 

layer may exist beneath the WSRP. In either case, the mid crustal high density mafic 

body is evident regardless to its size. This indicates that even though the ESRP and 

WSRP look different in their topographic signatures and shallow geological structures, 

there is not much significant difference in terms of the crustal scale features. The crustal 

modification is essential but to decide its depth and size, higher resolution geophysical 

data are required. 
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Figure 3.1: Index map of the study area showing major tectonic units and geographic 

provinces. Major volcanic centers of the Snake River plain/Yellowstone track are 

shown in blue eclipses with their successive ages. Sr 0.706 line separates the Cratonal 

North America from the subducting Pacific Plate. The geospatial information is based 

on the previous works by Wagner et al. (2010) and Eager et al. (2011). Major crustal 

scale seismic studies and their location are also shown by black lines. 
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Figure 3.3: Bouguer anomaly profiles along the axial Snake River Plain along A-A' in 

Figure 3.2b: (a) complete Bouguer anomaly (CBA) and (b) residual Bouguer anomaly 

(RBA) after applying 40 km upward continuation filter.  The ESRP and WSRP show 

some difference in gravity anomaly.  
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Figure 3.5: Filtered magnetic maps of the study area: (a) Residual total magnetic 

intensity (TMI) map after reduction to pole, (b) tilt derivative map applied to the 

reduced-to-pole TMI, (c) horizontal gradient magnitude (HGM) map of the reduced-to-

pole TMI, and (d) pseudogravity map of the reduced-to-pole TMI. The WSRP anomaly 

is linear and confined in comparison to that of the ESRP, which is broad and sporadic. 

The Northern Nevada rift system (NNR) is shown.  
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Figure 3.12: Gravity model across the Western Snake River Plain from Owyhee Plateau 

(OwP) through Oregon-Idaho Graben (OIG) to the Idaho batholith along B-B′( Fig. 

3.7b) based on gridded 40 km upward continued residual Bouguer anomaly. Mid to 

upper crustal mafic intrusive body is modeled as a major source for high gravity 

anomaly across the Snake River Plain. The density values are in g/cm3. 
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Figure 3.13: Gravity model across the Western Snake River Plain sub-parallel to Hill 

and Pakiser (1967) seismic refraction line along C-C′ (Fig. 3.7b) based on gridded 40 

km upward continued residual Bouguer anomaly. Mid to upper crustal mafic intrusive 

body is modeled as a major source for high gravity anomaly across the Snake River 

Plain. The density values are in g/cm3. 
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Figure 3.14: Gravity model across the Western Snake River Plain sub-parallel to Hill 

and Pakiser (1967) seismic refraction line along C-C′ (Fig. 3.7b) based on gridded 40 

km upward continued residual Bouguer anomaly. In addition to mid to upper crustal 

mafic intrusive dike, we modeled some underplating that can produce high gravity 

anomaly across the Snake River Plain. The gravity high is partially related to the 

possible underplating and partially to the mid to upper crustal mafic intrusion. The 

density values are in g/cm3.  
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Conclusions 

 This dissertation showed that the integrated geophysical methods are capable of 

identifying various geological features and their possible tectonic evolution. Integrated 

interpretation has been established as a powerful tool to solve geological problems 

regardless of their scale and tectonic setting.  

3D seismic interpretation from the Fort Worth Basin and seismic attribute 

analysis provided a high-resolution image of the basement structure in a small area. The 

gravity and magnetic maps and models in the area provided information in the regional 

context. Euler deconvolution results were useful to validate the seismic interpretation. 

With my integrated approach, some of the normal and reverse faults that cut across the 

Paleozoic sequence were interpreted. The presence of a pop-up block and the possible 

Reidel shear zones implied complex tectonic deformation in the southeast Fort Worth 

Basin. Alignment of karst and collapse features with the mapped faults indicates that the 

deep-seated faults and the collapse features are associated with reservoirs in the 

Ellenburger Group, Barnett Shale, and the Marble Falls Limestone. 

I optimized the seismic data by using 2D seismic lines to generate a 3D seismic 

tomographic model of upper crustal structure in the Harney Basin. The 2D line 

geometry, the distribution of sources, and their pairing with the off-line receivers 

created multiple fan shots for each source.  This approach helped to scan the upper crust 

several times for most of the basin and optimized 3D tomographic results. Two major 

calderas in the basin were identified using seismic, gravity, and magnetic data. Gravity 

and magnetic maps, gravity models, and magnetic profiles across the Harney Basin 
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helped to interpret major structural components in the area. The integrated geophysical 

approach helped to image the detailed upper crustal features of the Harney Basin area 

up to a depth of ~8 km.  

 The gravity and magnetic methods were main tools used to study the subsurface 

features of the Western Snake River Plain. Various filtered maps, gravity models and 

profiles were helpful in identifying major tectonic units in the area. The integration of 

these results with interpreted well logs, shallow reflection seismic, deep refraction 

seismic, and receiver function results helped to interpret the tectonic evolution of the 

Western Snake River Plain. The differences and similarities between the Eastern and 

Western Snake River plains were also analyzed successfully.  

 Thus, integration of geophysical techniques has produced useful and insightful 

results in these study areas. Even though one geophysical method may produce good 

results to some extent, one should consider using various available databases and 

integrate the results in order to properly address geological problems. 

  




