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Abstract

Constant-pH molecular dynamics has recently emerged as a useful technique for

studying the microscopic details underlying pH dependent properties of proteins.

We further develop continuous constant-pH molecular dynamics (CpHMD) in several

ways. First, we benchmark the implicit-solvent based CpHMD approach by calcu-

lating pK a values for a set of over 100 engineered mutants of hyper-stable variants

of staphylococcal nuclease which have titratable residues placed in the hydrophobic

interior of the protein and comparing our results to experiment. We present the

correlation between the calculated and experimental pK a values and correlations of

the calculated pK a error with structural and dynamic quantities of the titratable

residues. This analysis allows us to discern the strengths and limitations of implicit-

solvent CpHMD.

Secondly, we implement the Langevin algorithm to propagate titration coordinates

and develop a pH-based replica exchange protocol to accelerate protonation state

sampling in CpHMD. We test the effects these methods have on the convergence

of the unprotonated fraction of titratable amino acids. We present statistical tests

which allow us to quantify the sampling enhancement. We find that both approaches

speed-up protonation-state sampling significantly.

Next, we develop hybrid-solvent CpHMD to eliminate conformational biases of

the generalized Born (GB) implicit-solvent model. In this method, conformational

dynamics are governed by the explicit-solvent force-field, but protonation state ener-

getics are determined by the GB implicit-solvent model. We calculate pK a values for

a series of proteins using both the GB and hybrid-solvent approaches and compare the

results to experimental values. We compare the conformational states observed using

the GB and the hybrid-solvent approaches and correlate this information with the

accuracy of the calculated pK a values. The results indicate that running dynamics

xi



in explicit solvent, while using the implicit-solvent model to evaluate protonation-

state energetics, yields more realistic conformational sampling which leads to more

accurate pK a calculation.

We then apply hybrid-solvent CpHMD to shed light on the microscopic origins of

the pH-dependent assembly of spider dragline silk. We are able to calculate the pH-

dependent free energy of N-terminal domain dimerization by calculating pK a values of

the N-terminal domain monomer and dimer, and applying linkage thermodynamics.

Combining this with pH-dependent conformational changes of the intact dimer allows

us to rationalize the experimentally observed pH-dependent dimer formation which

is a critical step in silk assembly.

Lastly, we combine the generalized reaction field treament of long-range elec-

trostatics and a charge-neutralization procedure which together allow fully explicit-

solvent CpHMD (ECpHMD) to deliver pK a values that are in good agreement with

experiment. We test our ECpHMD method on a series of dicarboxylic acids and pro-

teins. We find that the calculated pK a values of dicarboxylic using ECpHMD are more

accurate than those from GB-based CpHMD. Overall protein pK a accuracy is on-par

with the hybrid-solvent approach, but difficulty in sampling conformational states

separated by high-energy barriers for residues that participate in strong hydrogen-

bond or salt-bridge interactions can reduce pK a accuracy. Initial data suggest this

limitation can be overcome by combining the method with more effective sampling

techniques. This work paves the way for future application of ECpHMD to study

pH-modulated structure and function in chemistry and biology.
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Chapter 1

General Introduction

Computer simulations, in particular molecular dynamics, of proteins and other bi-

ological macromolecules have become increasingly realistic over the last several decades.

Modern simulation techniques are now able to offer information about molecular mo-

tion and energetics at a level of detail not possible with traditional experimental tech-

niques; however, methods which explicitly include solution pH, a key factor in de-

termining stability and activity of proteins, are just now emerging as practical tools.

These methods are known as constant-pH molecular dynamics. We review the impor-

tance of pH for protein structure and function, the different variants of constant-pH

molecular dynamics which have previously been proposed, and outline our progress

in enhancing the accuracy and efficiency of the continuous constant-pH molecular

technique and our applications of these newly developed methods.

1.1 Background and significance

Proteins are arguably the most important molecules in nature, serving as both

nature’s toolkit and building blocks. Proteins catalyze chemical processes that make

life possible and they serve as structural components giving form to cells, tissues, and

organs. Proteins act as messenger and transport molecules allowing information and

material to pass from one location to another. Also, proteins are important for cell

defense. Specialized antibody proteins allow cells to recognize and respond to foreign

matter. The crucial roles proteins play in the proper maintenance and operation

of cells makes understanding how, and under what conditions, they carry out their

specific functions a desirable goal.

To understand how proteins work in nature, it is necessary to study them in a
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biological context: life does not exist in neat water. The cellular environment is

heterogeneous and crowded [1]. Molecular crowding in a biological context can hinder

protein refolding [2] or can guide protein folding toward more expedient pathways and

lead to an increase in the folding rate [3]. Crowding may induce shape changes in

native proteins [4] and the presence of inert co-solutes can stabilize compact states of

proteins [5,6]. Small, naturally occurring osmolytes, such as trimethylamine N -oxide,

can stabilize the folded state of proteins and the addition of chemical denaturants can

destabilize the native state [7]. Ionic strength and temperature can also dramatically

affect protein stability [8]. Another environmental factor that can drastically alter the

structure and function of proteins is the concentration of protons, or pH.

Solution pH is not consistent in all cellular compartments. For example, the pH

of the cytoplasm, the endoplasmic reticulum and mitochondria is near neutral while

it is acidic in lysosomes, vacuoles, and Golgi and slightly basic in the nucleus and

peroxisomes [9]. There are many examples of proteins that can respond to local pH,

which triggers them to carry out their biological functions. The most well known

example of the modification of protein function local proton concentration may be

the alkaline Bohr effect, where hemoglobin O2 binding is altered by tissue acidity [9].

Other examples include the activation of influenza virus in lysozomes by increased

acidity [10,11] and acid induced unfolding of bacteria effector proteins which is required

for the proteins to enter host cells [12]. Another example is spider-silk formation which

requires acidification [13,14] as part of the chemical processing that transforms the

soluble protein micro-emulsion into the fibrous product. Given the numerous and

varied examples of proteins recognizing changes in pH as a cue for altered activity,

it is clear that to fully understand protein function, we must understand under what

circumstances and by what means pH plays a role.

Proteins can gain or loose protons in response to the pH of solution either at

titratable side chains or the C(carboxy)-terminus or the N(amino)-terminus. The

2



common titratable amino acids are shown in Figure 1.1 in their fully protonated

states.

O

OH
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+
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NH2
+H2N
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O
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+

OHO
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Figure 1.1: Chemical structures of the common titratable amino acids. All amino
acid residues are shown in the fully protonated form.

A change in the number of bound protons alters the net charge of the protein,

as well as how charge is distributed, and affects protein structure, interactions, and

enzymatic activity. Protein stability [15], protein-protein [16], and protein-ligand [17] in-

teractions are affected by changes in solution pH. These effects are manifestations

of linkage thermodynamics [18,19]. Linkage thermodynamics allows one to quantita-

tively understand how chemical forces exerted on one equilibrium process, such as

side chain titration, can have far reaching impacts on structural equilibria, such as

protein-protein binding [20] or denaturation [21].

Protein catalysis is often made possible by titratable amino acids which reside at

the active site; thus, enzymatic activity can be modulated by pH [22]. Although the
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pK a’s (pK a = −log10{[H+][A]/[HA]} for the chemical reaction HA 
 H+ + A) of the

titratable side chains, excluding histidine, are far from the pH normally found within

the cell, protein active-site structure is such that hydrophobic and electrostatic micro-

environments often lead to large pK a shifts (∆pK a= pK a
protein-pK a

solution) [23–27].

The ability of enzymes to tailor active site pK a values to mechanistic specifications,

through the evolution of specialized active-site micro-environments, allows proteins a

much wider palette of amino acids to incorporate in the active site than one would

suspect by a naive inference from standard amino acid pK a values (see Table 1.1).

Table 1.1: Standard pKa values of amino acid side chains

Residue pK a
[28]

Arg 12.10
Lys 10.67
His 6.04
Glu 4.15
Asp 3.71
Tyr 10.10
Cys 8.14

1.2 Constant-pH molecular dynamics

Over the decades, since the pioneering work of Karplus and co-workers [29] who

carried out the first gas-phase simulations of bovine pancreatic trypsin inhibitor,

molecular dynamics (MD) simulation has developed into a mature tool commonly

used to study protein dynamics and energetics. An exhaustive discussion of MD

force field development and simulation techniques is beyond the scope of this work,

but we give a brief introduction for the sake of completeness.

MD simulation attempts to model the motion of a molecule on the electronic

ground state energy surface. Since the direct calculation of electronic ground state

energy surfaces is computationally demanding for macromolecules in solution, we in-

4



stead try to mimic these surfaces by a simple empirically derived energy function [30].

There are several modern force fields that have slight variations in the energy func-

tion and the way experimental data and quantum calculations were combined during

parametrization; to mention a few there are the AMBER [31], OPLS [32], Merck [33],

GROMOS [34], and CHARMM [35,36] force fields. Despite small differences, all of these

force fields calculate the total system energy by summing bonded and non-bonded

energy terms. The bonded energy terms include stretching, angle bending, and rota-

tions about torsion angles while the non-bonded energy terms comprise electrostatic

and van der Waals energies. Thus, the total force field can be written as follows

Etot = Eb + Eθ + Eφ + Eω + EvdW + Eelec (1.1)

where the individual bonded terms are expressed below.

Eb =
∑

kb(r − r0)2 (1.2)

Eθ =
∑

kθ(θ − θ0)2 (1.3)

Eφ =
∑

kφ(1 + cos(nφ− δ)) (1.4)

Eω =
∑

kω(ω − ω0)2 (1.5)

The bond (Eq. 1.2), angle (Eq. 1.3), and improper terms (Eq. 1.5) are harmonic po-

tentials that model the deviation from the minimum energy point, while the torsion

term (Eq. 1.4) is a periodic, four-atom, potential describing the energetics of rotation

of the outer atoms about the axis connecting the two central ones. In the most recent

generation of the CHARMM force field there is also a grid-based correction term to

allow more accurate backbone φ/ψ angle distributions [36,37]. The non-bonded elec-

trostatic energy is treated by Coulomb’s law and a Lennard-Jones (LJ) potential [38]
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models the van der Waals energy. Together they are expressed as

Enb = EvdW + Eelec =
∑

non-bonded pairs

{
εminij

[(
Rmin
ij

rij

)12

− 2

(
Rmin
ij

rij

)6
]

+
qiqj

4πε0εrij

}
(1.6)

where εminij is the well depth, Rmin
ij is the separation distance where the LJ term is

minimum, qi and qj are atomic charges for a non-bonded pair, ε0 is the permittivity of

free space, and ε is the relative dielectric. Non-bonded interactions are calculated for

all pairs of atoms separated by a distance less than a specified cut-off radius and pairs

of atoms that are directly connect via a chemical bond (1,2 interaction), or bond-angle

potential (1,3 interaction) are also excluded from the non-bonded energy. Modern

MD software packages include methods to treat long-range electrostatic interactions

efficiently such as particle mesh Ewald (PME) [39], extended electrostatics [40], and

generalized reaction feild (GRF) [41,42]. Many packages also include implicit solvent

models (generalized Born (GB) [43] and analytical continuum electrostatics (ACE) [44]

for example) which can be viewed as methods for predefining or calculating the relative

dielectric (ε in Eq. 1.6).

With an initial set of coordinates and the energy function, we calculate the force

on each particle by making use of Newton’s second law of classical mechanics

Fi =
∂U(x1, ..., xi, ..., xN)

∂xi
= miai (1.7)

where mi is the mass, and ai is the acceleration. From the acceleration and po-

sition of each particle at a particular time, there are many methods to solve the

equations of motion numerically [39]. The force field, combined with finite-difference

techniques, is used to propagate the system over time and create a simulated trajec-

tory of molecular motion. By including counter ions and making use of pressure and

temperature coupling methods, proteins, DNA, RNA, or other molecules of interest
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can be simulated under conditions which mimic those used in experiment allowing

MD simulation to provide microscopically detailed information that can complement

information gleaned from experiment.

MD is often used to refine models derived from X-ray diffraction data, build

models based on NMR constraints, and to calculate free energy differences that occur

upon side chain mutation [45]. MD can also be used to calculate the free energy of

ligand binding for structure-based drug design [46]. In more recent years, with greater

computational resources available, all-atom folding simulations of mini-proteins in

explicit solvent have been performed [47,48], and simulated folding of larger proteins

using implicit-solvent models [49] has also been carried out.

Traditional MD techniques easily handle environmental conditions such as temper-

ature, pressure, and ion concentration, but solution pH is typically ignored. Although

pH is usually not explicitly considered in MD simulations, there has been consider-

able effort over the years towards the goal of conducting simulations at constant pH.

Possibly the earliest effort in this direction was put forth by Mertz and Pettitt [50].

For the following decade there was very little advancement of constant-pH molec-

ular dynamics (pHMD), but with recent renewed interest several different pHMD

simulation methods have been proposed.

1.2.1 Methods based on discrete protonation states

The most straight-forward procedure for realizing MD simulations at constant pH

is to carry out a standard MD simulation and periodically interrupt the simulation and

attempt to change the protonation state based on the Monte-carlo (MC) criteria [51].

In MC sampling, instead of calculating forces, velocities, and generating an MD

trajectory, one simply generates a new state arbitrarily (by changing atomic positions

or, in this case, protonation state) and calculates the energy difference between the

previous and new state using the energy function (see equation 1.1). The current
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state is accepted or rejected based on the change in energy with a probability that is

given by

P = min[1, exp(−β∆E)] (1.8)

where β = 1/RT . By accepting the move with a probability given by the Boltzmann

factor, after many attempts the average will converge to the desired ensemble, in

this case the canonical ensemble [51]. This mixed sampling approach, running MD to

generate protein conformations and MC to sample different protonation states, has

been proposed several times over the years, with only slight variation. The main

differences being the choice of energy function used for MD (conformation) and MC

(protonation state) sampling. We briefly review these stochastic titration pHMD

methods.

In an early attempt at allowing variable protonation states in an MD simulation,

Baptista and co-workers fashioned a scheme where explicit-solvent MD simulation

was intermittently interrupted and continuum electrostatics (CE), in the form of the

Poisson-Boltzmann (PB) equation, is used to estimate the change in energy upon an

update in the protein protonation state. This energy gap is used to calculate the

probability of accepting the new protonation state. After a MC move is accepted, a

short simulation with rigid solute is conducted to allow solvent to relax and accom-

modate the new protonation state [52]. This method was latter extended by including

an approximate number of counter ions to keep the system close to neutrality and

obtain a salt concentration near experimental conditions. The number of counter ions

needed was estimated by running a short test simulation at a given pH, calculating

the protein net charge, and adding the corresponding counter ions and additional

ions to obtain the desired salt concentration [53]. More recently the method has shown

promise in tests using different methods for treating long-range electrostatics (PME

and GRF) in the MD step, and results for acidic range pKa values of hen egg-white

lysozyme (HEWL) were reported to have root-mean-squared deviation (RMSD) of
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approximately 1 pK unit [54]. In a recent study, using this method and different ver-

sions of the GROMOS force field, it was proposed that different force fields strongly

influence the accuracy of calculated pK a values and that pHMD may be limited by

underlying force field inaccuracies [55]. Another similar attempt was made by Bürgi,

Kollman, and van Gunsteren [56]. Their method did not rely on CE energetics, but in-

stead used thermodynamic integration (TI) to calculate the free energy change upon

a protonation state update.

Thermodynamic integration is a method to calculate free energy difference be-

tween two states, for instance the free energy change upon side chain ionization,

from MD simulations. In thermodynamic integration (TI), the total system energy

is defined as the sum of the energies of the two end points

Utotal = λUinitial + (1− λ)Ufinal (1.9)

where λ is the variable of interpolation that allows one to follow a path between the

end points, and Uinitial and Ufinal correspond to the initial and final state energy

functions [57]. Simulations are conducted at several λ values, under the combined en-

ergy function, and the forces on the interpolation variable (-dUtotal/dλ) are recorded.

The resulting forces from each trajectory are averaged, and the free energy change is

calculated as

∆G =

1∫
0

〈
∂U(λ)

∂λ

〉
dλ (1.10)

where the angled brackets indicate averaging. The integration is carried out by fitting

the data to an assumed functional form, which can be integrated analytically, or using

numerical integration techniques.

In the method of Bürgi, if the protonation state change is rejected, the simulation

is restarted from the previous MD round prior to beginning the TI energy evalu-

ation [56]. Due to the high cost of each TI calculation, very long simulations were
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required and few changes in protonation states were observed. In addition, the cal-

culated pK a values showed large fluctuations (on the order of several pK units) over

the course of the simulation.

In an attempt to reduce the convergence problems plaguing the methods of Bap-

tista and Bürgi, the idea of using MD simulations followed by MC sampling of proto-

nation states was followed by Dlugosz and Antosiewiczs who used an early implicit-

solvent model, ACE [58], for the MD step, but again relied on titration energetics

provided by PB [59]. This departure from explicit-solvent MD helped to alleviate

convergence problems of the TI based MC moves of Bürgi, and inherent problems of

mixing explicit-solvent dynamics with CE protonation state changes as in the method

proposed by Baptista.

A similar protocol was proposed by Mongan and Case [60] that used the more

accurate generalized Born implicit-solvent model for both the MD and MC steps.

The success of this method, like all constant-pH techniques, was hindered by sam-

pling inefficiency, but the recent combination of the method with the commonly used

temperature-replica exchange (TREX) protocol has accelerated convergence signifi-

cantly [61].

Another attempt at mixed MD/MC-pHMD was made by Stern [62]. This method

accepts protonation state updates by considering the change in the total Hamiltonian

(including the kinetic energy), a model compound potential of mean force (PMF)

to offset bonding energy that is not captured by MD, and a pH bias, typical of all

constant-pH techniques, that is taken from simple isolated compound equilibrium

considerations. This method was successful for modeling the protonation equilibrium

of a molecule with a single titratable group, acetic acid, and appealing due to it

simplicity, but application to more complex systems has not been reported.
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1.2.2 Methods based on continuous protonation states

The other approach to include solution pH explicitly in MD simulation, and allow

protonation states to fluctuate over the course of an MD trajectory, is to follow the

route first pioneered by Mertz and Pettitt [50]. Instead of stopping MD simulation

periodically and attempting to abruptly switch protonation states via MC sampling,

the titration event is treated as an additional continuous degree of freedom. This

additional degree of freedom takes the form of a coupling scheme between the two

force field end points in the same spirit of TI (see equation 1.9), but instead of

calculating the average force, a mass is assigned to the additional titration variable,

forces on the titration coordinate are calculated and used to propagated it alongside

spatial degrees of freedom. In the method of Mertz and Pettitt, a chemical potential

term was added to calibrate a chemical-potential difference to a particular pH value.

This general approach, as will be discussed, was later extended by others.

One attempt at continuous constant-pH molecular dynamics (CpHMD) was made

by Börjesson and Hünenberger [63]. In their method, the protonation variable was re-

laxed to a pre-assumed equilibrium value, depending on the pH. Since the protonation

state was pre-assumed this method cannot be used to predict pK a values.

At the same time the stochastic GB-based pHMD method of Mongan was pub-

lished, Brooks and co-workers developed a continuous titration analog. This method

is based on the GB implicit-solvent model, and draws from ideas of previous contin-

uous constant-pH molecular dynamics (CpHMD) approaches: titration is treated as

an additional degree of freedom that is propagated on the same footing as confor-

mational dynamics and the pH is included to reproduce the protonation equilibria

of model compounds. The PMF of a model compound is included to offset missing

bonding energies and calibrate model compound titration equilibria to experimental

data [64]. In addition, a biasing potential is added to reduce the population of inter-

mediate λ values, which correspond to unphysical mixed states. This added barrier
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also allows the transition rate to be adjusted. In follow up papers, the method was re-

fined to include dependence on solution salt concentration via a Debye-Hückel screen-

ing term [65]. Tautomeric inter-conversion of titrating residues was included to allow

titration to occur at either of two quasi-degenerate proton binding sites [66] and the

method was combined with TREX to enhance protonation state sampling [65]. With

these improvements, CpHMD became a viable tool for studying protein ionization

equilibria [65] and the method was subsequently applied the investigate pH-coupled

conformational propensities of small peptides [67,68].

More recently, similar methods have emerged which do not rely on an implicit-

solvent model for driving protonation events. These methods have produced reason-

able results for small peptides [69] and nucleic acids [70]; however, the accuracy of these

explicit-solvent CpHMD approaches have not yet been tested for complex systems

such as protein or RNA.

1.3 Theoretical background

The central theme of this work is the improvement of CpHMD. We investigate

limitations of the underlying GB implicit-solvent model and move CpHMD beyond

the implicit representation of solvent. Here, we present the GB model and outline

the CpHMD framework.

1.3.1 Generalized Born implicit solvent

The widely used GB solvation model is an attempt to cast the PB equations,

which describes electrostatic interactions in a heterogeneous dielectric environment,

into a much simpler form that is fast and can be readily applied to MD simulations.

A full derivation of the GB formalism is not appropriate, but the reader is referred

to the review by Bashford and Case [71]. In the GB theory the electrostatic solvation
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energy is given by

∆Gsolv = −1

2

(
1− 1

εw

)∑
i,j

qiqj
fGB

(1.11)

where qi and qj are the atomic charges, εw is the solvent dielectric, and fGB is an in-

terpolation formula that behaves as a radially dependent dielectric function. At large

separation fGB tends toward rij, but at small separation distances fGB approaches the

“effective Born radii”. The most commonly used form of fGB, proposed by Still [43],

is

fGB(rij) =
√
r2
ij +RiRjexp(−r2

ij/4RiRj) (1.12)

where Ri and Rj are the “effective Born radii” and rij is the separation distance.

In most implementations, the “effective Born radii” are calculated by numerically

integrating the volume within the molecular surface, the definition of which depends

on the particular implementation, excluding the volume of the atom itself. This can

be written as

1

Ri

=
1

ai
− 1

4π

∫
in,r>ai

1

r4
dV. (1.13)

The effects of solution salt concentration can be incorporated into the Born formalism

by replacing (
1− 1

εw

)
(1.14)

with (
1− exp(−κrij)

εw

)
(1.15)

where

κ =
√

2IF 2ε0εRT (1.16)

and I is the ionic strength, F is Faraday’s constant, R is the ideal gas constant, T

is the absolute temperature, ε0 is the permittivity of free space, and ε is dielectric

constant of the surrounding medium.
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1.3.2 Continuous constant-pH molecular dynamics

CpHMD makes use of an extended Hamiltonian formalism to allow the simulta-

neous propagation of spatial and alchemical degrees of freedom. In addition to “real”

particle potential and kinetic energy terms, there is an additional potential energy

term that couples spatial and alchemical coordinates, the kinetic energy of “virtual”

alchemical particles, and biasing energies applied only to the “virtual” particles. The

total Hamiltonian can be written as

H({ra}, {θi}) =
∑
a

maṙ
2
a

2
+
∑
i

miṙ
2
i

2
+ U int({ra}) + Uhybr({ra}, {θi}) + U∗({θi})

(1.17)

where a is the index for spatial coordinates and i is the index for alchemical coordi-

nates. By making use of a change of variables from θ to λ where

λi = sin2(θi) (1.18)

the titration coordinate λ is restricted to the bounds of 0 ≤ λ ≤ 1.

The term U int, which does not depend on titration coordinates, includes all bonded

energy terms as well as non-bonded interactions between pairs of atoms which are

not titrating. The hybrid energy term (Uhybr) includes any non-bonded interaction

involving a titrating atom, which depends largely on the treatment of solvent. For the

GB-based CpHMD method, (Uhybr) includes Coulomb, vdW, and generalized Born

energies, while for our fully explicit-solvent CpHMD method (as described in Chapter

6) we the GB-term with explicit solvent and GRF electrostatics. These energies are

computed by interpolating between the protonated and deprotonated electrostatic

and van der Waals (vdW) interactions. The charge on atom j of titrating residue i

is computed as

qj(λ) = (1− λi)qprotj + λiq
unprot
j (1.19)
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and the vdW interaction for a titrating hydrogen j on titrating residue i is similarly

given by

U vdW
j = (1− λi)U vdW

j . (1.20)

In addition, biasing energies are added that only affect the titration coordinates, and

are written in 1.17 as U∗({θi}) which is a sum of a model compound PMF, a pH

biasing energy, and a barrier potential, together written as

U∗({θi}) = −Umodel(λi) + U barr(λi) + UpH(λi). (1.21)

The pH-biasing energy is taken from simple single model equilibrium considerations

and is given by

UpH(λi) = kbT ln(10)(pH − pKa
mod)λi (1.22)

where pKmod
a is the experimentally determined model compound pKa. The barrier

energy (U barr) is a harmonic potential

U barr(λi) = −4β

(
λi −

1

2

)2

(1.23)

and the model compound PMF, determined by TI (see equation 1.10), can be ap-

proximated by a harmonic potential

Umodel = A(λi −B)2 (1.24)

where A and B are fitting parameters. To determine the parameters A and B, we fit

the derivative of Eq. 6.5 to the mean force calculate at several values of λ(θi). For

residues with two possible proton binding sites, the two-dimensional PMF, having

a titration degree of freedom, λ, and a tautomeric degree of freedom, x, can be
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approximated by a second-order bivariate polynomial of the general form

Umod(λi, xi) = a0λ
2
ix

2
i +a1λ

2
ixi+a2λix

2
i +a3λ

2
i +a4x

2
i +a5λixi+a6λi+a7xi+a8 (1.25)

In the CpHMD approach, the deprotonation free energy of a titration site in a

specific chemical environment (∆Gexp
env e.g. a side chain of a protein) is obtained by

calculating the difference between the deprotonation of the titratable site in the envi-

ronment of interest (∆Gsim
env ) and in solution (∆Gsim

sol ). We can relate the experimental

and calculated deprotonation free energy differences by

∆Gexp
env −∆Gexp

sol ≈ ∆Gsim
env −∆Gsim

sol . (1.26)

If the two sides of Eq. 1.27 were equivalent, the calculated and experimental pK a

values would exactly match. Adding the pH-dependent free energy of the reference

compound (∆Gexp
sol ) to both sides gives the expression

∆Gexp
env ≈ ∆Gsim

env −∆Gsim
sol + ∆Gexp

sol (1.27)

where ∆Gsim
sol is our calculated model compound PMF (Umod), ∆Gexp

sol is the pH-bias

(UpH), and ∆Gsim
env arises as a result of the hybrid-energy term (Uhybr).

The total deprotonation energy can be considered to have two separate compo-

nents: the energy of breaking bonds and the accompanying electronic reorganization

(∆Gquant) which cannot be captured by MD simulations, and the energy difference

that arises due to classical interactions of the titratable site with the environment.

We assume ∆Gquant
env ≈ ∆Gquant

sol ; therefore, they cancel and are omitted.

Instead of calculating ∆Gdeprot directly, we make use of the fact that this free
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energy difference is related to the pK a via

pKa =
1

ln(10)RT
∆Gdeprot (1.28)

and calculate the pKa by running simulations at several pH conditions. We then

calculate the fraction of time spent in each protonation state, and fit the unprotonated

fraction to an appropriate titration model.

1.4 Overview of dissertation

1.4.1 Hypothesis and proposal

Given the importance of pH, the success of the implicit-solvent based CpHMD

approach in calculating pK a values [65] and pH-dependent conformational propensi-

ties [67], and the emergence of explicit-solvent CpHMD, further development of CpHMD

is expected to yield more accurate and informative results in the future. Considering

the need to understand the role of pH and how changes in protonation state can affect

protein dynamics and function, the aim of this work is to further develop CpHMD

by enhancing the level of realism and accuracy. We have tested the limitations of

the implicit-solvent based approach to learn where improvements could be made and

systematically push the method forward toward a fully atomistic representation. By

improving CpHMD and implementing our newly developed methods in widely used

biomolecular software packages, other members of the scientific community inter-

ested in exploring pH-dependent processes in chemistry and biology via computer

simulation will have access to a more robust and accurate CpHMD method. The dis-

semination of these methods, and use by others, will serve to enhance our knowledge

of specific problems in chemistry and biology. As will be described later, an example

of the broad impact these methods may have, by informing about specific problems,

is our application of enhanced CpHMD techniques toward the understanding of pH-
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dependent energetics of spider-silk assembly.

1.4.2 Description of content

The content of next five chapters covers a range of topics related to our interest in

understanding the shortfalls of the current GB-based CpHMD technique and using

that knowledge to make systematic improvement to the method. First, In Chapter 2,

we describe our benchmark study of the GB-based CpHMD technique. In an attempt

to understand the strengths and limitations, we calculated the pK a values for over 100

mutants with titratable side chains introduced into the hydrophobic core of hyper-

stable variants of staphylococcal nuclease (PHS and ∆+PHS). This work was part of

a blind pK a prediction exercise. We find that GB-based CpHMD pK a predictions for

this challenging data set were generally within 1 pK unit of the experimental result.

Analysis of the outliers and correlating the position of the mutation sites with the

overall error at that site indicated that the GB model provides more accurate results

for residues located near the proteins surface than those that are more deeply buried.

We observed that poor convergence of pK a values may limit the pK a prediction

accuracy. Another limiting factor may be an inadequate level of realism in describing

protein conformational dynamics.

Next, to address the issues noted in Chapter 3 related to poor pK a convergence,

we implemented a Langevin integration algorithm for protonation state propagation

and developed a pH-replica exchange (pHREX) technique. We find that each of these

advancements was able to independently provide a significant speed-up of protonation

sampling and, when combined, the uncertainty of the unprotonated fraction for model

compounds was reduced significantly. After addressing the problem of slow pK a value

convergence, we next turn to correcting the energetic deficiencies CpHMD inherited

from the GB implicit-solvent model.

In Chapter 4, we describe our effort to move CpHMD into an explicit represen-
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tation of solvent. Toward this end, we developed and tested a hybrid-solvent scheme

where the explicit-solvent force field was used to drive conformational sampling, while

the GB model was used to evaluate protonation state energetics. We show that by

running dynamics in explicit solvent we are able to eliminate conformational biases of

the GB model. At the same time, by making use of the efficiency of GB in estimating

the protonation-state electrostatic energies, in combination with pHREX, we are able

to obtain greater accuracy than the GB-based CpHMD with short 1 ns trajectories.

After demonstrating the pK a calculation accuracy of hybrid-solvent CpHMD, we

next turn to applying the technique to an interesting problem in biology: this work

is described in Chapter 5. We sought to understand the molecular origin of the

pH-dependence of spider dragline-silk formation. The protein responsible for this

pH-dependent phenomenon had been previously identified, and it had been shown

that dimerization of the NT-domain of the MaSp1 protein in spider silk was linked to

fiber formation; however, the detailed mechanism by which a drop in pH leads to NT-

domain dimerization was not understood. We hypothesized that the pH-dependent

dimerization is a result of linkage thermodynamics and that burial of acidic residues

at the hydrophobic protein-protein interface may be responsible for the observed acid-

induced dimerization. To test this, we applied hybrid-solvent CpHMD to calculate

pK a values of the NT-domain dimer and monomer. Utilizing thermodynamic linkage

relations, we are able to demonstrate that there is a complex network of electrostatic

interactions at the protein dimerization interface that responds to acidification and

can cause the observed pH-dependent dimerization.

Lastly, in Chapter 6, we again turn toward method development. We attempt to

eliminate all dependence on the GB implicit-solvent model in CpHMD simulation. To

accomplish this, we implemented the GRF method to handle truncated electrostatic

interactions. We also employ a novel procedure to automatically neutralize the net

charge of the system despite protonation state fluctuations. This was accomplished by
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coupling ionization of titratable sites to the simultaneous charging and neutralization

of like charged co-ions. We tested this approach by calculating pK a values of a series

of dicarboxylic acids and proteins. Our results indicate that charge neutralization is

necessar in order to obtain accurate pK a values. The overall accuracy of protein pK a

values using our explicit-solvent CpHMD method is on par with the hybrid-solvent

approach. However, in certain cases, accuracy is limited by slow conformational

rearrangement coupled to protonation events.

1.5 Summary

Solution pH is an extremely important factor that has profound effects on diverse

systems in chemistry and biology. Traditional MD is limited to simulation at constant

protonation state, which in some cases is a gross distortion of reality. The development

of advanced simulation methodologies that explicitly and seamlessly include pH in the

mathematical formulation of the model is extremely important. These methods allow

the dissection and understanding of pH-dependent phenomena at the microscopic level

with atomic resolution, in a quantitative fashion. Described in this work are methods

that push the boundaries of CpHMD simulation techniques. We rigorously tested

the previous GB-based method, found weaknesses and made systematic improvement

to protonation-state convergence, as well as conformational and protonation state

energetics. We developed a hybrid-solvent method which, for the first time, allowed

CpHMD to be combined with explicit-solvent MD, while simultaneously delivering

accurate pK a values. We then used our hybrid-solvent approach to understand the

origin of the pH-dependence of spider silk assembly. Finally, we employed a charge-

neutralization procedure and show for the first time that fully explicit-solvent CpHMD

can deliver accurate pK a values of complex systems. The studies described in what

follows open the door to a deeper understanding of pH-dependent phenomena at

atomic resolution.
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Chapter 2

Toward accurate prediction of pK a values for internal

protein residues: The importance of conformational

relaxation and desolvation energy

In order to improve continuous constant-pH molecular dynamics, it is necessary

to understand it’s limitations. To evaluate the methods strengths and weaknesses, we

tested the method by predicting the pKa values of nearly 100 pKa values of titratable

residues introduced into the hydrophobic core of a protein. This allowed us to identify

several factors which hinder the accuracy of the generalized-Born-based continuous

constant-pH molecular dynamics.

The following content was published in :

Proteins: structure, function, and bioinformatics

volume 79, pages 3364-3373, 2011

2.1 Abstract

Proton uptake or release controls many important biological processes such as en-

ergy transduction, virus replication, and catalysis. Accurate pK a prediction informs

about proton pathways, thereby revealing detailed acid base mechanisms. Physics-

based methods, in the framework of molecular dynamics simulations, not only offer

pK a predictions but also inform about the physical origins of pK a shifts and provide

details of ionization-induced conformational relaxation and large-scale transitions.

One such method is the recently developed continuous constant-pH molecular dy-

namics (CpHMD) approach, which has been shown to be an accurate and robust

pK a prediction tool for naturally occurring titratable residues. In order to further
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examine the accuracy and limitations of CpHMD, we predicted pK a values of 87

titratable residues introduced in various hydrophobic regions of staphylococcal nu-

clease and variants. The predictions gave an root-mean-squared deviation (RMSD)

of 1.69 pK units from experiment and there were only two pK a’s with errors greater

than 3.5 pK units. Analysis of the conformational fluctuations of titrating side chains

in the context of the error of calculated pK a values indicates that explicit treatment

of conformational flexibility and the associated dielectric relaxation gives CpHMD a

distinct advantage. Analysis of the sources of error suggests that more accurate pK a

predictions can be obtained for the most deeply buried residues by improving the

accuracy in calculating desolvation energies. Furthermore, it is found that the gen-

eralized Born implicit-solvent model underlying the current CpHMD implementation

slightly distorts the local conformational environment such that the inclusion of an

explicit-solvent representation may offer improved of accuracy.

2.2 Introduction

Many important biological processes are driven by proton translocation. For ex-

ample, ATP synthesis is driven by a transmembrane proton gradient [72], while repli-

cation of influenza virus requires proton conductance of the M2 proteins [73]. Thus,

knowledge of the protonation states of these biological assemblies is critical for unrav-

eling detailed mechanisms. In order to gain a deeper understanding of such pH-driven

processes it is often desirable not only to predict pK a values correctly, but also to

identify the underlying physical principles guiding these processes. The ability to

report on physical origins of pK a shifts relative to model or solution values gives

physics-based methods a distinct advantage over empirical approaches, although the

latter are more computationally efficient and thus useful in certain applications. In

this paper physics-based methods are referred to those that do not employ parameters

derived from experimental protein pK a values.

22



In recent years a class of methods based on molecular dynamics (MD) have been

developed that offer simultaneous description of conformational dynamics and pro-

ton titration at a specified pH condition. These methods assume an infinite proton

bath and are commonly referred to as constant-pH molecular dynamics (pHMD) [74,75].

pHMD allows pK a values to be calculated by naturally incorporating dielectric re-

laxation due to intrinsic motion of the protein and ionization-induced conformational

changes. The ability to explicitly account for dielectric relaxation of the protein, a

phenomenon which can only be approximately captured by the use of an effective in-

ternal dielectric constant in Poisson-Boltzmann (PB) calculations [76], makes pHMD

approaches, in principle, less dependent on the initial structure since possible side

chain rearrangement as well as the more dramatic conformational changes upon up-

take or release of protons are sampled in the simulation. Although the ability to

include the dynamic nature of proteins is attractive, it also introduces difficulties.

Not only is it necessary to evaluate the free energy of side chain ionization, pHMD

approaches must also produce accurate conformational ensembles at a given pH which

introduces issues with convergence, as well as dependence on a particular molecular

mechanics force field and treatment of solvent. On the other hand, this dependence

comes with the added benefit of providing a means to test and validate force fields,

solvent models, and sampling convergence.

The particular pHMD approach that we focus on here is the CpHMD [64,66] based

on the λ-dynamics technique for free energy calculations [77] and the generalized Born

(GB) implicit-solvent model [78,79]. CpHMD utilizes a set of fictitious λ particles to

describe proton titration. The titration coordinates, bound between 0 and 1, are prop-

agated simultaneously with the conformational degrees of freedom. Combined with

the temperature replica exchange (TREX) conformational sampling protocol [80,81],

CpHMD is a powerful tool not only for pK a calculations [65,82], but also for atomically

detailed simulations of pH-dependent conformational processes such as protein fold-
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ing [67,68,83]. Previous benchmark studies based on a dozen proteins of various folds

have demonstrated that TREX-CpHMD titrations can reliably predict pK a’s with

simulation lengths of 1 ns per replica [65,82]. The root-mean-square deviation (RMSD)

from experimental data is consistently below 1 pK unit for surface residues and 1.5

pK units for deeply buried ones. In a recent work we demonstrated the accuracy of

TREX-CpHMD titrations for predicting pK a’s of intrinsically flexible proteins such

as α-lactalbumin and deeply buried residues such as those in the designed mutants

of staphylococcal nuclease (SNase) [82].

Blind pK a prediction for internal residues offers perhaps the most stringent test

of the ability of pK a prediction methods to describe microscopic electrostatics in

proteins. Let us consider the three energetic contributions to a pK a shift: desolvation

of the titrating site, and Coulomb interaction with the neutral protein background

and other titratable sites [84]. In order for physics-based methods, to provide accurate

prediction of the pK a shift, all three terms, which are subject to the effects of dielectric

relaxation, in principle, need to be calculated accurately. For an ionizable residue

deeply buried in the hydrophobic core, desolvation energy favoring the charge-neutral

form is very large. Due to the lack of solvent dielectric screening, the absolute energy

due to interaction with nearby charged residues, if any, is also very large. In naturally

occurring proteins, the latter interaction is stabilizing for the charged form, which at

least partially offsets the pK a shift due to desolvation and leads to error cancellation

in the evaluation of the total energy. However, charge stabilizing interactions in

the hydrophobic core are not always present in designed proteins, such as the single

mutants of SNase and its hyper-stable variants from the current blind prediction

set. In these designed mutants, a hydrophobic residue is substituted by a titratable

one which may or may not have a partner for charge-charge interaction [85,86]. In

many cases, as evident from experimental data [86] and which will be discussed in this

work, the desolvation factor dominates, leading to an extremely large pK a shift. In

24



these cases the pK a of the buried residue is very challenging to predict, because a

small percentage error in a large desolvation energy can result in a large error in the

calculated pK a shift.

The accuracy of existing electrostatic methods such as PB or GB to calculate the

desolvation energy is limited because of the sensitivity to the location of the dielectric

boundary and the need to account for the effects of dielectric relaxation. Thus, the

current prediction data set is truly challenging for physics-based methods.

By allowing microscopic coupling between protonation equilibrium and confor-

mational dynamics, TREX-CpHMD titrations offer pK a predictions in very good

agreement with experiment, typically within 1 pK unit, without the need for the use

of an effective dielectric constant for protein interior and, in principle, without the

need for a high-resolution structure. In this paper we will first give an overview of the

performance of the CpHMD method in the context of the prediction set. We will then

discuss the strengths of the method by examination of the prediction performance, lo-

cal conformational relaxation and simulation convergence. We will demonstrate that

the major source of error is related to the inaccuracy of the underlying GB model

in the calculation of desolvation energy for deeply buried sites and the description of

local conformational environment. Finally, we will outline future directions for the

improvement of CpHMD for accurate pK a calculations.

2.3 Methods

2.3.1 pK a calculation

CpHMD simulations performed at a specified pH condition result in the deproto-

nated fractions (S) for all titrating residues. By fitting the S values at a single pH to
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the Henderson-Hasselbach equation

S =
1

1 + 10n(pKa−pH)
(2.1)

or its generalized form, where n deviates from 1, at multiple pH values, the pK a of

the titrating residue of interest can be calculated.

2.3.2 Simulation details

The proteins studied in the prediction data set are single mutants of three par-

ent proteins related to SNase, the wild type (PDB ID: 1STN [87]), PHS (PDB ID:

1EY8 [88]) with three substitutions (P117G, H124L, S128A), and ∆+PHS (PDB ID:

3BDC [89]), which contains two more substitutions (G50F, V51N) than PHS and a

deletion (residues 44–49). Initial structures were taken directly from the Protein

Data Bank when available or were generated by computationally mutating the de-

sired residues of the parent protein using the MOLDEN program [90]. The rest of

the protocol utilized the CHARMM program [39] and MMTSB Tool Set [91]. Hydrogen

atoms were added using the HBUILD facility in CHARMM followed by 50 steps of

steepest descent and then 30 steps of adopted basis Newton-Ralphson energy min-

imization. All heavy atoms were constrained during minimization. Starting from

the prepared structures, CpHMD titration simulations were performed employing

the CHARMM22/CMAP force field [35,36]. To enhance sampling, the TREX proto-

col [80,81] was applied with 16 replicas occupying exponentially-spaced temperatures

ranging from 298 to 400 K. Exchanges between adjacent temperature replicas were

attempted every 2 ps. The actual exchange ratio was 40–50%. Each replica was

subjected to Langevin dynamics with a collision frequency of 5 ps−1. The SHAKE

algorithm was applied to all bonds and angles involving hydrogen atoms to allow an

integration step of 2 fs. Solvent was implicitly modeled by GBSW [79] with all param-
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eters identical to those in the previous work [65,82]. The salt concentration was set to

100 mM in accord with experiment.

pK a values were first estimated by running TREX-CpHMD simulations at several

pH conditions for about 100 ps per replica. The TREX-CpHMD simulation at the

pH condition which gave a deprotonated fraction closest to 0.5 was then extended to

1 ns per replica. Spatial and titration coordinates were saved every 2 ps, resulting in

1000 snapshots of conformational and protonation states.

The final pK a’s reported were obtained from the 298 K replica of the single

1-ns TREX-CpHMD simulation, by inserting the deprotonated fraction into the

Henderson-Hasselbach equation (Eq. 2.1).

2.4 Results and Discussion

2.4.1 Performance of continuous constant-pH molecular dynamics for

pK a predictions

Using the GBSW based TREX-CpHMD titration simulations, we calculated the

pK a values for 95 titratable residues introduced at various interior hydrophobic sites of

SNase and the stabilized variants, PHS and ∆-PHS. The data set consists of Asp, Glu,

Lys, and Arg residues substituted for the wild type hydrophobic residues at 25 sites.

Of these, 87 residues are blind predictions, without knowledge of experimental pK a

values at the time of calculation. The total data set (experimental and predicted pK a

values) are in the appendix. The total root-mean-square deviation (RMSD) of the

calculated pK a’s from the experimental data for these residues is 1.69 pK units, which

is comparable to the previous benchmark calculations for naturally occurring buried

residues [65]. The RMSD by residue type is 1.63, 1.48, and 1.78 for Asp, Glu, and Lys,

of which there are 22, 23, and 19 residues, respectively. Thus, the performance of

CpHMD predictions does not depend heavily on the identity of the titrating side chain.
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For residues which do not have precisely determined experimental pK a’s, but rather

only bounds, the CpHMD method predictions are within the experimental bounds in

24 out of the 31 cases (77%). Considering the large number of these residues, and

the fact that these residues are the only cases where burial in the hydrophobic core

appears to anomalously stabilize the charged form relative to the solvent-exposed

form of the residue, precisely determined experimental pK a’s would offer additional

information about the accuracy and limitation of the CpHMD method. For the cases

where our prediction is outside the experimentally determined range, the absolute

difference between the predicted pK a and experimental bound is on average 1.8 pK

units, the largest of which (L37K and A132K) is about 3 pK units.

We plotted the predicted versus measured pK a values (see upper panel of Fig-

ure 2.1). Most data points fall above the diagonal line which represents perfect

prediction, indicating that there is a systematic underestimation of the pK a’s. The

pK a’s are shifted to favor the neutral form for residues which have precisely measured

values. This is expected since all mutation sites are not exposed to solvent. Conse-

quently, the pK a’s of Asp and Glu residues are shifted higher than the model values

of 4 and 4.4, respectively, while the pK a’s of Lys and Arg are shifted lower than the

model values of 10.4 and 12.5, respectively. As a result of the opposite direction in

pK a shifts, the calculated and measured pK a values tend to cluster around pH 7,

which makes it difficult to analyze the correlation between calculation and experi-

ment. Therefore, we plotted the predicted and measured pK a shifts (see lower panel

of Figure 2.1). The pK a shift (∆pKa), which is the difference between the model pK a

and that measured or calculated in the protein environment, has been suggested to be

a more informative measure of the accuracy of pK a prediction methods [76], because it

reflects the difference in the free energy of charging the residue in the protein environ-

ment and in solution. Linear regression of the predicted pK a shifts versus measured

values gives a correlation coefficient of 0.88 with a slope of 0.93, which reveals that
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Figure 2.1:
Comparison of predicted and experimental pK a values of SNase mutants.

Comparison between the predicted and experimental pK a values. Data are divided
into three categories: blind predictions with precisely determined experimental

pK a’s (red circles); those with experimentally determined upper or lower bounds
(green triangles); and calculations with previously published experimental data
(blue circles)(upper). Comparison between the predicted and experimental pK a

shifts ( the difference between the model pK a and that measured or calculated in
the protein ) for residues with precisely determined experimental pK a’s. Arg

residues are not included because experimental measurements only gave upper or
lower bounds of the pK a values. Residue types are shown separately: Asp (red),
Glu (green), and Lys(blue). Model pK a’s for Asp, Glu, Lys, and Arg are 4.0, 4.4,

10.4, 12.5, respectively [92](lower).
Linear regression is performed and shown as solid line. Correlation coefficient and

slope are also given on the plot.
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the prediction is in good agreement with experiment, although there is a systematic

underestimation of the magnitude of pK a shifts.

This systematic error is most likely attributable to underestimation of the desol-

vation penalty for atoms in the protein interior which is a well-known weakness of GB

models using overlapping spheres to calculate the solvent-solute dielectric boundary.

Underestimation of the desolvation energy is manifested in an underestimation of the

pK a shift. We will return to the discussion of this and other limitations of GB-based

CpHMD later.

For Asp and Glu the CpHMD method underestimates the magnitude of the pK a

shift for 36 out of a total of 45 residues, while for Lys the pK a shift is underestimated

for 11 out of a total of 19 residues. Since the pK a shifts of Asp and Glu residues

are all positive, underestimation of the shift leads to underestimation of the absolute

pK a’s as seen in the upper panel of Figure 2.1. Figure 2.2 shows the histogram of

the absolute errors in the prediction. 14 or 22% of predictions have an error within

0.5 pK units, and 41 or 64% of predictions have an error within 1.5 pK units. The

CpHMD method consistently gives pK a values in good agreement with experiment.

Only 2 predictions have an error above 3.5 pK units with the largest being 4.8 pK

units. In our attempt to correlate the prediction errors with the characteristics of

the titrating site, we found that the only common feature that can be linked to the

magnitude of error is how deep the mutation site is buried in the protein. Therefore,

we averaged the absolute prediction errors for all residues located at a particular

mutation site, and compared the calculated average errors with the distances from

the mutation site to the center of the protein. Mutation sites which have an average

absolute error above 1.5 pK units are generally more deeply buried, while mutation

sites with an average error below 1.5 pK units are found to be located closer to the

protein surface, although none of the mutation sites are exposed to solvent. This

finding is illustrated in Figure 2.3.
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Figure 2.2: Histogram of SNase mutants pK a prediction absolute error. Histogram
of the absolute errors of predictions for SNase mutants with precisely determined
experimental pK a values.

Figure 2.3: Location of mutation site in SNase three-dimensional structure. Location
of mutation sites which have an average absolute error for all residues above 1.5 pK
units (red) and below 1.5 pK units (blue). Mutation sites with larger errors are
generally more deeply buried. Image was rendered using the VMD program [93].
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The correlation between the prediction errors and depth of burial can be mainly

attributed to the inaccuracy of the generalized Born (GB) implicit-solvent model

that underlies the CpHMD simulations as will be discussed later in detail. In what

follows we investigate the strengths and limitations of the CpHMD method for pK a

predictions. We discuss the physical origins of the inaccuracy in the CpHMD-based

pK a predictions.

2.4.2 Strengths of continuous constant-pH molecular dynamics for pK a

predictions

Prediction accuracy and conformational relaxation

A major strength of the CpHMD method for pK a prediction is that it explicitly

accounts for the effects of conformational dynamics [82]. Based on the prediction data,

set we found that the CpHMD method performs equally well for rigid and flexible

residues. Table 2.1 shows the root-mean squared fluctuations (RMSF) for residues

Table 2.1: Comparison of pK a accuracy and conformational fluc-
tuation of titratable residues

Mutant RMSF CpHMD Expt. Abs Error
V23D 0.78 6.7 6.8 0.1
L38D 1.00 6.6 6.8 0.2
A58D 2.26 6.3 6.8 0.5
A90D 1.19 7.1 7.5 0.4
A109D 1.55 7.1 7.5 0.4
N118D 3.36 6.6 7.0 0.4
T41E 2.54 6.3 6.5 0.2
T62E 0.82 7.3 7.7 0.4
A109E 1.55 7.4 7.9 0.5
A132E 1.29 6.8 7.0 0.2

RMSF (Å) refers to the root-mean-squared fluctuation averaged
over all atoms in the residue. All root-mean-squared fluctuation
(RMSF) values were calculated from TREX-CpHMD trajecto-
ries collected at pH 7.

with very accurately predicted pK a’s (errors less than 0.5 pK units). The RMSF
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values range from below 1 Å (more rigid) to over 3 Å (more flexible), suggesting that

the extent of local mobility does not affect the accuracy of pK a calculations using

the CpHMD method. It has been intensively discussed in the literature as to what

is the optimal protein internal dielectric constant (εp) one should use in PB calcula-

tions [76,89,94,95]. Assignment of a protein internal dielectric constant is necessary to

implicitly account for the dielectric relaxation due to intrinsic dynamics and charging-

induced conformational relaxation [94]. By contrast, in CpHMD and other MD-based

methods, the internal dielectric constant is set to one while dielectric relaxation of the

protein is explicitly captured by the direct coupling between conformational dynamics

and protonation equilibria.

We noticed that different mutations have different effects on the conformational

flexibility of the protein. Since all mutants in this data set are the result of re-

placement of a hydrophobic side chain in a solvent-excluded site by an ionizable one,

flexibility generally increases in the mutation site.

Convergence of TREX-CpHMD simulations

As noted in the previous work, based on 9 proteins of different fold and size [65], in-

corporation TREX to enhance conformational sampling [80,81] significantly accelerates

the convergence of protonation-state sampling, allowing calculated pK a values to con-

verge within 1 ns per replica. To examine the convergence in the current prediction

set, we evaluated the cumulative fraction of unprotonated state (S value) for all titra-

tion simulations. In the majority of the simulations, the cumulative S value plateaus

after 600 ps, consistent with our previous estimate [65]. The only exceptions are in

the simulations of mutants G20D, T41D, T41E, A90K, N100E, V104D, A109E, and

N118E, where the S value continues to change after 1 ns. The time evolution of the S

values reveals that prolonged simulations would increase the pK a’s for G20D, A90K,

N100E, and A109E, and decrease those for T41D, T41E, and N118E, all of which
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would bring the calculation in closer agreement with experiment. For example, Fig-

ure 2.4 shows the cumulative unprotonated fractions for the four T41 mutants. The

unprotonated fractions for T41K and T41R stabilized within the first one-hundred

exchange cycles while for T41D and T41E the values increase over the duration of

the simulations.
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Figure 2.4: Time series of unprotonated fractions of T41 mutants. Cumulative un-
protonated fractions of T41 mutants of ∆+PHS. S values were calculated from 298
K replica at pH 7 for T41D and T41E, pH 8.5 for T41K, and pH 14.0 for T41R.

Except for N118E, where the titrating residue is located in a loop, all other titrat-

ing residues in the mutants are located in a more rigid secondary structure element

and deeply buried in the hydrophobic core of the protein, where local conformational

rearrangement is slower as compared to residues that are closer to the surface.

2.4.3 Sources of prediction error

In recent years GB implicit-solvent models have become a powerful tool in theo-

retical studies of protein dynamics and folding [74]. However, a number of applications

have revealed that GB simulations tend to overestimate stability of salt bridges and
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protein compaction while underestimating hydrophobic interactions and protein mo-

bility as compared to simulations conducted with explicit water models [83,96,97]. These

and other deficiencies in GB models pose limitations on the accuracy of pK a calcula-

tions using the GB-based CpHMD simulations. In an early work [66], it was found that

the salt-bridge problem leads to overestimation of the absolute pK a (down) shifts for

solvent-exposed acidic residues. Subsequently, it was shown that this deficiency can

be largely overcome [65] through fine tuning the GB input radii for more accurate de-

scription of solvent-mediated polar and charged interactions in proteins [98] as well as

improvement of protonation-state sampling using the TREX for enhanced conforma-

tional sampling [80,81]. Here we investigate two other issues that need to be addressed

in order to further enhance the accuracy of CpHMD-based pK a predictions.

Desolvation energy of deeply buried residues

In the prediction data set, all titrating residues are mutations of hydrophobic

internal sites, most of which are deeply buried in the protein. The pK a shifts of buried

residues are dominated by the desolvation energy, which is the reduction in the self-

solvation energy, as compared to contributions from the cross term which describes

the interactions with the neutral protein background and other titratable residues

(see Eq. 1.11). The desolvation energy favors the neutral form, resulting in positive

pK a shifts for acidic residues such as Asp and Glu and negative pK a shifts for basic

residues such as Lys and Arg, as can be seen from the experimental data presented

in Figure 2.1. As discussed earlier, our predictions systematically underestimate the

absolute pK a shifts, which suggests an underestimation of the desolvation energy. To

test this hypothesis, we used the more accurate GBMV model to estimate the effective

Born radii of the titrating atoms (carboxylate oxygen of Asp/Glu or amine nitrogen

of Lys) for the structures extracted from the TREX-CpHMD simulations [78,99] and

examined the correlation with the degree of burial of the titration site. GBMV offers
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more accurate Born radii because it uses the solvent-excluded molecular surface in the

integration of solute volume (see later discussions). Figure 2.5 shows the correlation

between the calculated relative Born radius using the generalized Born with simple

switching function (GBSW) and GBMV model and the depth of burial, measured as

the distance, averaged over the trajectory, from the titration site, nitrogen for lysine

and the average carboxylate oxygen position for Asp and Glu, to the center of mass

of the protein. The relative Born radius is defined as the ratio between the effective

4 8 12
Distance to center (Å)

0

2

4

6

R
el

at
iv

e 
B

or
n 

ra
di

us

Figure 2.5: Comparision of degree of burial and relative Born radius calculated using
two GB models. The degree of burial is measured as the distance from the titration
site, nitrogen (Lys) or average carboxylate oxygen position (Asp and Glu) , to the
center of mass of the protein. The relative Born radius is defined as the ratio between
the effective Born radius of the titration atom and the same atom fully exposed
to solvent. Data from the GBSW-based TREX-CpHMD simulations are shown as
circles. GBMV calculations (triangles) were performed using the structures from the
298 K replica of the TREX-CpHMD simulations.

Born radius in the protein and the solvent-exposed value. Surprisingly, while the

distance to the center covers a wide range, from 3 to 14 Å, the relative Born radius

from the GBSW model varies only from 1.1 to 1.7 and does not show a significant

correlation with the former. In sharp contrast, the relative Born radii from the GBMV
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calculation span a wide range, from 1.5 to 6.4, and are clearly correlated with the

depth of burial. We also notice that for atoms with a large distance to the protein

center (close to the protein surface), the relative Born radii from both models are

similar, while for atoms with a small distance to the protein center (deeply buried),

the GBMV model gives relative radii that are 2 to 4 times the values from the GBSW

model.

As the self solvation energy is inversely proportional to the effective Born radius,

a larger radius means a smaller (absolute) self-solvation energy and larger absolute

pK a shift relative to the model value. Thus, the analysis based on Figure 2.5 demon-

strates that the use of a more accurate implicit-solvent model such as GBMV would

likely improve the prediction of pK a shifts for deeply buried residues. We note that

although adjustment of the GB input radii greatly reduces the errors in the calcula-

tion of solvent-mediated interactions [98], underestimation of the effective Born radii

for buried atoms remains a major problem in GBSW and other GB models which use

overlapping van der Waals spheres to represent the solute-solvent dielectric bound-

ary [100]. In these models, the solvent-inaccessible crevices between van der Waals

spheres are excluded in the calculation of solute volume leading to underestimation

of effective Born radii. The GBMV model, which uses molecular surface, incorpo-

rates the solvent re-entrant regions and therefore offers more accurate calculation of

effective Born radii.

Local conformational environment of residues close to surface

Although adjustment of the solute-solvent dielectric boundary can largely reduce

errors in the description of solvent-mediated interactions, there is a limit to the im-

provement using the current forms of GB models, as demonstrated previously by

others [96] and recently by us [101]. This aspect can be sensitively tested in the pK a

calculations of solvent-exposed residues or those close to the solute-solvent interface
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using GB-based CpHMD simulations. We examine here the pK a of A132K. The

titrating residue Lys132 is close to the protein surface, and therefore, according to

our previous analysis (Figure 2.5), should have a small error in the calculated desolva-

tion energy. The X-ray crystal structure of the background protein shows one water

within 4 Å and another water molecule within 7 Å from the mutation site. Given the

fact that lysine is larger than alanine, Lys132 of A132K should be more solvated.

Thus, it seems puzzling that the calculated pK a is around 7.4, 3 units below the

experimentally estimated lower bound. To understand the large pK a error, we ex-

amined the conformational environment of Lys132. Lys132 is near the end of the

C-terminal helix. As compared to a control simulation with the TIP3P water model,

which gives more accurate conformational sampling than GB models, Lys132 and

its adjacent residues in the C-terminal helix show significantly increased mobility.

The heavy-atom RMSD with respect to the starting structure increased to above

2.5 Å after 500 ps in the CpHMD simulation based on the GBSW model. In con-

trast, the RMSD was small and remained stable in the explicit-solvent simulation

(data not shown). The pronounced mobility of the C-terminal helix in the GBSW

based CpHMD simulation may be related to the less accurate representation of the

interaction between Lys132 and Glu129 which is expected to stabilize the helix.

In the GB-based simulation, Lys132 and Glu129 form a salt-bridge interaction

until Lys132 rotates away (via a switch in χ3 angle) at 900 ps. In the explicit-solvent

simulation, by contrast, the distance between Lys132 and Glu129 samples both salt-

bridge like contact and solvent-separated interaction, and the switch in χ3 angle does

not occur.

We note that the distance between Lys132 and Glu129 has a significant impact on

the protonation state of Lys132. Thus, we suggest that the large prediction error for

the pK a of Lys132 is due to the limited accuracy of the GB model in representation

of the local conformational environment of the titratable side chain.
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2.5 Conclusion

Prediction of pK a shifts of internal residues offers a stringent test of the ability

of pK a prediction methods to describe energetic contributions from desolvation and

Coulomb interactions with the environment as well as the effects due to dielectric

relaxation. The blind prediction targets comprising buried residues of designed mu-

tants of SNase and variants are particularly challenging because, unlike in naturally

occurring proteins, desolvation of the titrating residue is not always compensated

by stabilizing Coulomb interaction with nearby charged sites resulting in extremely

large pK a shifts. The data presented shows that TREX-CpHMD titration provides

calculated pK a values for buried residues that are typically within 1.5 pK units. For

87 residues that are blind predictions, the total RMSD from the experimental data

is 1.69 pK units, with the majority (64%) of predictions having errors below 1.5

pK units. There are only two outliers giving errors of 4 and 5 pK units, demon-

strating the consistency of the method. The performance revealed from the blind

prediction data is consistent with the previous benchmark studies based on naturally

occurring buried residues [65,82]. Our analysis of the prediction accuracy and conforma-

tional relaxation of the titration site supports the notion that dielectric heterogeneity

and relaxation need to be explicitly taken into account in a physics-based method

in order to quantitatively predict pK a’s of internal residues [76,89,94]. Because of si-

multaneous protonation and conformational sampling, the CpHMD method has the

advantage of allowing the observation of conformational reorganization upon titra-

tion, thus providing a dynamic view of the causes of pK a shifts in proteins, and the

observation of mutation-induced conformational relaxation. Our data also demon-

strates that, in most cases (see below), the convergence of protonation-state sampling

in the TREX-CpHMD simulation is rapid and within 1 ns per replica, in agreement

with our previous studies [65,82].

Benchmarking a large number of pK a’s has allowed identification of two ma-
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jor limitations of the current CpHMD implementation. The GBSW implicit-solvent

model overestimates the solvation energy of deeply buried sites, resulting in the sys-

tematic under-prediction of pK a shifts for the most deeply buried residues. While

most of large errors occur at the deeply buried sites, we also noticed large deviations

from experimental pK a’s for surface residues such as in A132K. A close examina-

tion of the conformational sampling has revealed a second limitation of the CpHMD

method, namely, the inaccurate representation of local conformational environment

of the titrating site, which is another prerequisite for accurate pK a calculation using

microscopic approaches such as CpHMD. Analysis of pK a convergence has revealed

that the conformational rearrangement of deeply buried sites is slow and prolonged

simulations (beyond 1 ns per replica) can improve the pK a prediction. This observa-

tion suggests that further enhancement of conformational sampling may be necessary.

On the other hand, slower conformational dynamics of hydrophobic cores may also

be related to the crude approximation of the non-polar solvation energy in the cur-

rent GB implementation. Recent studies of protein dynamics and folding have shown

that GB models with a surface-area dependent term for non-polar solvation can not

accurately model hydrophobic interactions [97,102], which is perhaps the major reason

for over-compaction [83] and reduced diffusivity in proteins and other hydrophobic as-

semblies [101]. While progress is being made (see recent development by Levy and

coworkers [103]) it remains to be seen whether these deficiencies can be overcome.

In conclusion, we have demonstrated that TREX-CpHMD titration is a reliable

tool for prediction of protein pK a values, but there is still room for improvement. To

address the limitation due to the underlying solvent model, we have recently developed

a hybrid approach where solvent is modeled explicitly in order to provide more ac-

curate conformational sampling, while the free-energy of protonation/deprotonation

is estimated using the GB model to provide efficiency and convergence [104]. Ongo-

ing test results are encouraging. We find that by using the explicit-solvent model
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for conformation sampling, the errors of pK a prediction for the worst cases in the

blind prediction data set are drastically reduced. We have also developed a two-

dimensional replica-exchange scheme where a random walk in both temperature and

pH space is possible. Ongoing tests suggest that this approach can reduce random

errors, which are estimated to be about 0.4 pK units, by a factor of five. These

improvements will further enhance the accuracy of CpHMD-based pK a predictions

and provide atomically-detailed insights into pH-dependent electrostatic phenomena

that are difficult to obtain by experimental measurements.
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Chapter 3

Improving protonation state sampling of continuous

constant-pH molecular dynamics

One of the limitations of continuous constant-pH molecular dynamics is slow

pKa convergence. To address this issue, we outline two methods to accelerate the

convergence of pKa values.

3.1 Abstract

Comparison of pK a values calculated from continuous constant-pH molecular dy-

namics (CpHMD) and experimental data is the most direct method for validating

continuous constant-pH molecular dynamics (CpHMD); however, in order for such

comparison to be useful, the calculated values must be converged. Two methods for

enhancing protonation state sampling in CpHMD are proposed, implemented, and

tested on single amino acids.

First, we test the Langevin algorithm in propagating titration coordinates. We

find that the stochastic forces introduced in the Langevin approach enhance proto-

nation state convergence for amino acids.

We then apply a pH-replica exchange (pHREX) sampling protocol and analyze

convergence of the protonation state populations for amino acids. We use determin-

istic or Langevin titration with and without pHREX and find that pHREX enhances

convergence regardless of which method is used for titration coordinate propagation.

The methods proposed accelerate protonation state sampling for amino acids, a

result which will likely carry over to more complex systems such as proteins and make

CpHMD simulations a more efficient and useful technique.
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3.2 Introduction

In simulations of complex systems, such as proteins, where there are multiple min-

ima separated by energy barriers, it is difficult to accumulate accurate conformational

distributions. In CpHMD simulations, this multiple-minima problem is compounded

because, in addition to the protein and solvent degrees of freedom, the variability of

titrating groups adds additional protonation degrees of freedom. In CpHMD, we are

left the challenge of accurately calculating probabilities of each residue being pro-

tonated and deprotonated at a certain pH value while simultaneously sampling all

energetically accessible conformations.

The problem of accurately and reproducibly sampling distributions of protonation

states in the context of CpHMD simulation was recognized early-on. In the initial

report of CpHMD simulation of proteins, it was found that even with 1 ns of sampling,

some protein pK a values differed by more than 1 pK unit between separate trials [64].

Because pK a values are logarithmic quantities, a deviation of 1 pK unit translates

to an order of magnitude change in the relative concentration of protonated versus

deprotonated states. The origin of this imprecision was attributed to difficulties in

overcoming energy barriers associated with side chain packing and hydrogen-bonding

patterns [64].

In an attempt to address the protonation-state sampling issue, which is a specific

example of the difficulties encountered when attempting to derive quantities from

molecular dynamics (MD) simulations by sampling, CpHMD was extended to allow

side chains with equivalent (carboxylate side chains) or quasi -equivalent (histidine)

proton binding sites to compete for proton uptake [66]. This procedure allowed more

rapid interconversion between equivalent protonated forms of these groups and allevi-

ated some of the problems associated with high energy barriers of rotation. Another

improvement came with the application of the temperature-replica exchange (TREX)

sampling protocol [80,81] to CpHMD which was shown to enhance barrier crossing and
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provide more accurate sampling and pK a calculation [65]. With TREX, the root-mean-

squared deviation (RMSD) between 5 trials was reduced to 0.16 and 0.12 pK units

for aspartic acid and histidine residues [65].

Although TREX was successful in reducing the deviation between independent

trials, this method is computationally expensive. The number of required replicas

scales as O(f 1/2) for a system with f degrees of freedom [105]. Thus, for large systems,

and especially for simulations in explicit solvent, TREX quickly becomes prohibitively

expensive.

To address the need to increase protonation state sampling, and provide more pre-

cise pK a values without resorting to brute-force TREX, we implemented and tested

two separate modifications to the CpHMD technique. The first is the implementa-

tion of a Langevin integrator for the propagation of titration coordinates. Langevin

dynamics has been shown to accelerate interconversion between equatorial and axial

conformations of N-acetylalanyl-N’-methylamide [106]; therefore, we expected that in-

terconversion between protonated and unprotonated states will be enhanced similarly.

The second modification is the implementation of a pH-based Hamiltonian replica ex-

change (pHREX) protocol which specifically targets titration degrees of freedom [104].

Hamiltonian replica exchange [107] has been shown to enhance free-energy calculation

convergence in many contexts including the calculation of the association of small

molecules to surfaces [108], the calculation of absolute hydration and binding free en-

ergies [109,110], and protein folding [111,112]. Hamiltonian replica exchange has also been

used for loop modeling and protein structure refinement [113]. This method has the

advantage over TREX in that only certain targeted degrees of freedom are excited.

This reduces the number of replicas required for efficient exchange between replicas.

We find that both modifications systematically improve the convergence of protona-

tion state populations, a result which will be useful in simulations of complex systems

such as proteins where obtaining converged protonation state distributions is espe-
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cially challenging.

3.3 Methods

3.3.1 Langevin dynamics

In the Langevin dynamics approach to simulate molecular motion, Newton’s equa-

tion

mẍ = F (t) (3.1)

is replaced with Langevin’s stochastic differential equation [114]

mẍ = F (t)− ζẋ+R(t). (3.2)

The influence of a heat bath is modeled as a random force R(t), which is independent

of the particle position or velocity, is Gaussian with a zero mean and variance of

〈R(t)R(t′)〉 = 2mγkbTδ(t− t′) (3.3)

where kb is Boltzmann’s constant, T is the absolute temperature, δ(t− t′) is the Dirac

delta function, and γ = ζ/m.

3.3.2 pH-replica exchange

We outline the general replica exchange approach , but more detailed explanations

can be found elsewhere [80,81,107]. In replica exchange, N non-interacting copies, or

replicas, of the system are simulated at a ladder of conditions. These conditions may

be different temperatures or different force-fields. At each condition, regular molecular

dynamics is run and periodically interrupted and an exchange of conditions between

a pair of (usually neighboring) replicas is attempted. In the exchange move, detailed

balance (the requirement that probability of forward and backward are equivalent)
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is imposed so that the process will converge to an equilibrium distribution. The

Metropolis-criteria is applied and the exchange probability is defined as

P =

 1 if ∆ ≤ 0

exp(−∆) otherwise,
(3.4)

where ∆ is the exchange energy. For the case of replicas being simulated at different

pH values, the only portion of the total energy that changes is the pH-bias; therefore,

∆ = β(UpH({θi}; pH′) + UpH({θ′i}; pH)− UpH({θi}; pH)− UpH({θ′i}; pH′)). (3.5)

Here β = (RT )−1, the first two terms are the pH-biasing potential energies (see

Eq. 1.22) for the first and second replica after the exchange, and the last two terms

are the corresponding energies before the exchange.

3.3.3 Analysis

To quantify the convergence of the unprotonated fractions, which are used to

calculate pK a values, we make use of correlation-time analysis and block standard-

error analysis.

Correlation-time analysis. The autocorrelation function describes the simi-

larity, or correlation, of a quantity, f at time t, f(t), with the quantity at a later

time, f(t′). The value can be calculated for a time-ordered trajectory for all values of

t′− t = ∆t ≤ T , where T is the total simulation length. The autocorrelation function

is defined by

cf (t
′) =

〈[f(t)− f̄ ][f(t+ t′)− f̄ ]〉
σ2
f

(3.6)

where 〈. . . 〉 indicates an average over all ∆t intervals considered, f̄ is the average of

the quantity of interest and σ2
f is the variance of f . The autocorrelation function is

at a maximum at cf (0) = 1, and tends toward zero as ∆t increases and f(t′) looses
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memory of f(t) [115].

The correlation time, τf , quantifies the amount of time required for f(t′) to loose

all correlation with f(t) and is defined as

τf =

∞∫
0

cf (t
′)dt′ (3.7)

where the integration is typically accomplished numerically or the autocorrelation

function is fit to an assumed analytic function and a decay rate is extracted from the

fitting procedure [115]. In this work the correlation time is calculated by numerically

integrating the autocorrelation function.

Block standard-error analysis. In block standard error (BSE) analysis, we

attempt to extract an estimate of the statistical error of an average value from a

single simulation. This is accomplished by breaking the simulation into M blocks of

length n snapshots. The average value is calculated for each block resulting in M

values for the average of interest, f̄ . Next, the standard deviation among the averages

is calculated, σn, and used to estimate the overall error using the expression

BSE(f, n) =
σn√
M
. (3.8)

At long block-length, the BSE function plateaus and gives a reliable estimate of the

error when the block-length becomes significantly greater than the correlation time

of f [115,116].

3.3.4 Simulation details

All simulations were carried out using the CHARMM simulation package [39] and

the all-atom CHARMM22/CMAP force-field for proteins [36]. The GBSW implicit-

solvent model [79] was used with a refined set of atomic input radii [98,117] to define

the molecular boundary for the GB calculation. The surface tension coefficient was
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set to 0.005 kcal mol−1 Å2. The SHAKE algorithm was applied to all bonds and

angles involving hydrogen to allow a 2 fs time step, and conformational dynamics

was propagated by the Langevin algorithm with a collision frequency of 5 ps−1 at

300 K. For titration simulations using Langevin propagation of titration coordinates,

the collision frequency was set to 5 ps−1. In simulations where titration dynamics

was propagated by deterministic (non-Langevin) dynamics, a Nosé-Hoover chain was

used for temperature control of titration degrees of freedom using the default settings.

The Langevin integrator was implemented in the PHMD module of CHARMM, and

pHREX was implemented in the MMTSB Tool Set [91]. All simulations were run for 2

ns. Single pH simulation were run at pH 4.0, 4.4, 6.5, and 10.4 for Asp, Glu, His, and

Lys, respectively. For pHREX, three pH conditions were used. The pH conditions

were 4.0(±1.0), 4.4(±1.0), 6.5(±1.0), and 10.4(±1.0) for Asp, Glu, His, and Lys,

respectively. Exchanges were attempted every 500 steps or 1 ps. For each simulation,

10 trials were run with a unique set of initial velocities.

3.4 Results and Discussion

3.4.1 Langevin titration

We begin by examining the convergence of all model compounds using Langevin

propagation of titration coordiantes and compare the convergence behavior to simula-

tions using deterministic propagation. Arguably the most robust and straightforward

approach for evaluating sampling quality and convergence is to evaluate the deviation

between repeated trials [115]. The standard deviation of the unprotonated fractions,

σ(S), between 10 trials is shown in Figure 3.1 over the course of the 2 ns simula-

tion. For all four residues, at < 0.75 ns, Langevin titration has deviations lower than

those from the deterministic integrator. This improvement is especially pronounced

for aspartic acid and histidine for which Langevin titration reduced the deviations
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by a factor of approximately two compared to the deterministic results. For all four

residues, it is clear that Langevin titration significantly improves sampling for sub-

nanosecond simulation times. The improvement for lysine however is marginal and

the deviations at 2 ns are equivalent. For histidine and glutamic acid, which have two

competing proton binding sites, the deviation is 0.05 from Langevin titration which

is at the same level as the residue having a single-proton binding site, lysine, from

deterministic titration.
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Figure 3.1: Standard deviations of unprotonated fractions using deterministic and
Langevin titration. Standard deviations of 10 trials for each model compound as a
function of simulation time for simulations using deterministic (black) and Langevin
(red) titration coordinate propagation.

For single pH titration simulations which have a continuous trajectory, we can

perform correlation-time analysis to examine the rate at which the titration coordi-

nates sample the available protonation states. Autocorrelation functions for the four

model compounds are shown in Figure 3.2. In agreement with the previous analysis

of the standard deviations, there is little improvement in sampling for lysine using

the Langevin titration approach, but for the two-proton binding residues, we see au-

tocorrelation functions which decay much more quickly when titration if performed

with Langevin titration. This indicates more rapid sampling of different protonation

states, an observation that is made quantitative by calculating the correlation time
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(see Eq. 3.7). The correlation times, calculated from the autocorrelation functions

shown in Figure 3.2, are listed in Table 3.1. The correlation time for aspartic acid

is reduce by a factor of 30, that for glutamic acid is reduced by a factor of 3, and

the correlation time for histidine is reduced by an order of magnitude. Again, ly-

sine shows little improvement as the correlation times are indistinguishable given the

magnitude of the uncertainty.
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Figure 3.2: Autocorrelation functions of unprotonated fractions using deterministic
and Langevin titration. Average autocorrelation function of 10 trials for each model
compound as a function of simulation time for simulations using deterministic (black)
and Langevin (red) titration coordinate propagation.

Table 3.1: Correlation times using deterministic and Langevin
titration.

Residue Correlation time (ps)
Deterministic Langevin

Asp 87 ± 8 3 ± 2
Glu 43 ± 4 13 ± 2
His 110 ± 5 13 ± 2
Lys 0.2 ± 2 0.3 ± 1

Correlation times are defined by equation 3.7 and calculated
by numerically integrating the autocorrelation functions of Fig-
ure 3.2. Errors given are the standard deviation between corre-
lation times calculated for 10 separate trials.
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3.4.2 pH-replica exchange with deterministic titration

We next examine convergence behavior when we apply pHREX. Figure 3.3 shows

the standard deviation between the 10 trials over the course of the 2 ns simulation

using deterministic titration with and without pH-exchange. Similar to the results

from Langevin titration, for the residues that have two competing protonation sites

pHREX reduces the deviation significantly for sub-nanosecond simulation time. As-

partic acid and glutamic acid benefit the most from pHREX sampling. At 2 ns the

deviation between trials is reduced by approximately one-half for both of the acidic

model compounds. The deviation resulting from pHREX simulation of lysine shows

no improvement, and at the end of the 2 ns simulation the same is true for histidine.
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Figure 3.3: Standard deviations of unprotonated fractions from deterministic titration
with and without pH-replica exchange. Standard deviation of 10 trials for each model
compound as a function of simulation time for simulations using without pHREX
(black) and with pHREX (red).

Since pHREX does not result in a continuous trajectories, application of correla-

tion time analysis is not appropriate; however, we can make use of BSE analysis. The

results from BSE analysis for pHREX simulations using deterministic titration are

shown in Figure 3.4. With BSE, the error is estimated from the limiting value of the

BSE curve. We first note that for lysine pHREX appears to offer no improvement.

For the other residues which have two protonation sites, the error from BSE analysis
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indicates that pH-exchange reduces the deviation by a factor of two.

Comparing the error estimates from the standard deviation between the trials

(Figure 3.3) and the BSE analysis (Figure 3.4), we find that both methods give

results that are encouragingly similar. This suggests that BSE is a reasonably reliable

method for estimating error the statistical error without resorting to running multiple

separate simulations.
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Figure 3.4: Block error analysis of unprotonated fractions from deterministic titration
with and without pH-replica exchange. Average BSE of 10 trials for each model
compound for simulations using deterministic propagation without pHREX (black)
and with pHREX (red).

3.4.3 pH-replica exchange with Langevin titration

Finally, we examine the convergence behavior of model compounds when we com-

bine Langevin titration with pHREX by employing the same analysis as before. As

shown in Figure 3.5, the results using Langevin titration with and without pHREX

are virtually identical for glutamic acid and lysine. Histidine has slightly greater de-

viation between trials with pHREX, while deviation for aspartic acid is significantly

reduced when using Langevin titration with pHREX.

However, the results from BSE, shown in Figure 3.6, suggest that the combination

of Langevin titration with pHREX slightly reduces the statistical uncertainty for all
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Figure 3.5: Standard deviations of unprotonated fractions using Langevin titration
with and without pH-replica exchange. Standard deviation of 10 trials for each model
compound as a function of simulation time for simulations using Langevin titration
without pHREX (black) and with pHREX (red).

four model compounds.
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Figure 3.6: Block error analysis of unprotonated fractions using Langevin titration
with and without pH-replica exchange. Average BSE of 10 trials for each model
compound for simulations using Langevin titration without pHREX (black) and with
pHREX (red).

3.5 Conclusion

In this work we have extended the CpHMD method [64,66,82] to allow Langevin

propagation of titration coordinates and have implemented a variant of Hamiltonian
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exchange specific to CpHMD simulations where the applied pH is used as the biasing

coordinate. We have tested these techniques on four model compounds (Asp, Glu,

His, and Lys) in implicit solvent.

We find that Langevin titration reduces the correlation time of the titration co-

ordinates significantly for the three model compounds which have two competing

proton-binding sites (Asp, Glu, and His), but for Lys, which has only a single titrat-

ing proton, we see no change in the correlation time. Langevin titration also reduces

the standard deviation between replicate trials for residues with two proton binding

sites. The application of pHREX reduces the deviation between trials for all four

models compounds, but for aspartic acid and lysine the deviation between trials is

similar at the end of the 2 ns simulation time. BSE analysis indicated reduced un-

certainty for all residues except lysine when pHREX is applied. Combining Langevin

titration with pHREX results in final standard deviations of around 0.05 calculated

between the 10 trials for all four model compounds and slightly less when calculated

using BSE. By combining Langevin titration with pHREX, the deviation between

trials was reduced by approximately one-half when compared to the initial results

using single-pH deterministic titration.

The modifications to CpHMD described, a Langevin integrator and pHREX, have

been shown to improve the methods’ ability to provide converged protonation-state

populations of model compounds. Future work will be focused on using these methods

for the calculation of pK a values in proteins.
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Chapter 4

Continuous constant-pH molecular dynamics in explicit

solvent with pH-based replica exchange

In our tests of generalized Born based continuous constant pH molecular dy-

namics, one of the deficiencies of the method identified was a structural bias toward

compact and rigid conformations that was inherited from the implicit-solvent model.

In order to alleviate this problem, we developed a hybrid-solvent method that derives

conformational states from the more accurate explicit-solvent representation while us-

ing the generalized Born model for protonation state energetics.

The following content was published in :

Journal of Chemical Theory and Computation

volume 7, pages 2617-2629, 2011

4.1 Abstract

A computational tool that offers accurate pK a values and atomically detailed

knowledge of protonation-coupled conformational dynamics is valuable for elucidat-

ing mechanisms of energy transduction processes in biology such as enzyme catalysis,

electron transfer, as well as proton and drug transport. Towards this goal we present

a new technique of embedding continuous constant-pH molecular dynamics within

an explicit-solvent representation. In this technique we make use of the efficiency of

the generalized Born (GB) implicit-solvent model for estimating the free energy of

protein solvation, while propagating conformational dynamics using the more accu-

rate explicit-solvent model. Also, we employ a pH-based replica exchange scheme to

significantly enhance both protonation and conformational state sampling. Bench-
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mark data of five proteins including HP36, NTL9, BBL, HEWL, and SNase yield an

average absolute deviation of 0.53 and a root-mean-squared deviation of 0.74 from

experimental data. This level of accuracy is obtained with simulation lengths of 1

ns per replica. Detailed analysis reveals that explicit-solvent sampling provides in-

creased accuracy relative to the previous GB-based method by preserving the native

structure, providing a more realistic description of conformational flexibility of the

hydrophobic cluster, and correctly modeling solvent mediated ion-pair interactions.

Thus, we anticipate that the new technique will emerge as a practical tool to capture

ionization equilibria while enabling an intimate view of ionization-coupled conforma-

tional dynamics that is difficult to delineate with experimental techniques alone.

4.2 Introduction

Solution pH has a profound effect on the stability and function of proteins by

changing the protonation states of titratable groups. Proteins can become denatured

under extreme pH conditions. Enzymes are often catalytically active in a narrow

pH range [22]. Protein-protein interactions [16] and protein-ligand binding [17] are also

modulated by the protonation states of titratable groups. Accurate determination of

active-site pK a values informs about the catalytic mechanism of proteins [118]. Knowl-

edge of the native- and denatured-state pK a values can be used to quantify electro-

static effects on protein stability [119].

Although the importance of solution pH has long been recognized, molecular sim-

ulation techniques have traditionally neglected it. In a standard molecular dynamics

(MD) simulation the protonation states of ionizable side chains are set at the begin-

ning of the simulation based on the comparison of the desired pH condition and the

solution or model compound pK a values. This fixed protonation scheme can be a

source of error in several instances. For example, if the pK a values are near the pH

of interest the protonated and deprotonated states should coexist, which obviously
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is not reflected in simulation with fixed protonation states. Additionally, even when

reasonable protonation states may be set for the initial conformation, conformational

rearrangement may favor an entirely new set of protonation states.

In recent years, considerable effort has been made to develop methodologies that

explicitly include pH as an external parameter in MD simulations, similar to tem-

perature, allowing protonation states of ionizable groups to respond to changes in

the chemical environment and external pH [52,54,56,60,63,64]. These constant-pH tech-

niques differ in the way protonation states are updated. In the discrete methods,

protonation states are periodically updated using Monte-Carlo sampling, while in

the continuous approach titration coordinates are introduced and propagated simul-

taneously with the spatial coordinates (see a most recent review [82]). One of the

most promising constant-pH techniques, termed continuous constant-pH molecular

dynamics (CpHMD) [64,66] is based on the λ-dynamics approach to free-energy calcu-

lations [77], allowing ionizable groups to switch continuously between protonated and

unprotonated forms. Protonation and deprotonation is accomplished in a manner

similar to many free energy simulation techniques, where an alchemical coordinate,

λ, is introduced. The novelty of the λ-dynamics approach lies in the fact that the

alchemical coordinate is assigned to a fictitious λ-particle and the force on the par-

ticles is derived analytically. CpHMD has been shown to give accurate and robust

predictions for protein pK a values [82] and has opened a door to theoretical studies of

pH-dependent protein dynamics and folding [67,68,120].

In the aforementioned CpHMD method, the generalized Born (GB) implicit-

solvent model is used to calculate forces on both spatial and titration coordinates.

The major advantage of using GB models in constant-pH methodologies is that con-

vergence of pK a’s can be achieved with a reasonable amount of sampling time, which

has not been demonstrated feasible with explicit-solvent models (see more discussions

later). Another benefit of using GB models within the CpHMD framework is that

57



forces on the titration coordinates can be computed analytically. However, as CpHMD

and other GB-based constant-pH techniques are maturing into practical tools, prob-

lems inherited from the underlying GB models are becoming the limiting factor for

further improvement of accuracy. Recent GB simulation studies have revealed sev-

eral problems that seem difficult to overcome. Specifically, attractive electrostatic

interactions are overestimated [98,121], and improvement through adjustment of GB

input radii that define dielectric boundary [98,121] is limited [96]. Also, due to the lack

of solvent granularity, GB simulations cannot reproduce the solvation peaks seen in

the interaction free energy profiles from explicit-solvent simulations [98]. Furthermore,

there have been noted problems with the stability of hydrophobic interactions [97,102],

and overly compact and rigid unfolded states [83,122], which are likely due to the ap-

proximate nature of the non-polar solvation term based on solvent-accessible surface

area (SA model). Finally, the inaccuracies of the GB/SA model in the representation

of electrostatic and non-polar energetics result in a more favorable sampling of helical

relative to extended states [83,123].

The limitations of GB models affect the accuracy and applicability of the CpHMD

method in several ways. First, a small error in the electrostatic solvation energy cal-

culated by the GB model alters the relative deprotonation free energy in reference to

solution and therefore the pK a shift. This type of “electrostatic” error is typically

small for solvent-exposed residues, because the GB model, in particular GBSW used

in this work, has been tuned to reproduce the explicit-solvent data of solvent-exposed

polar or charged interactions [98]. However, the “electrostatic” error becomes signifi-

cant for deeply buried residues [65,82] because the inaccuracy in the desolvation energies

of deeply buried atoms remains an unsolved problem in GB models. Nonetheless, the

electrostatic error is systematic [124] and a post correction may be introduced if nec-

essary. The second type of GB-related error which affects the accuracy of ∆∆Gdeprot

arises from the small distortion in the conformation or distribution of conforma-
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tions. The impact of this “conformational” error on the protonation-state sampling

is typically not systematic and the extent of the error is unpredictable. Finally, the

dependence of conformational sampling on the GB model also hinders the application

of the CpHMD method to poly-ionic systems such as DNA and RNA for which GB

models are not well suited.

In light of the above considerations, we introduce here a method to extend the

CpHMD framework to explicit-solvent simulations. In principle, forces on both spa-

tial and titration coordinates can be derived from explicit-solvent sampling. However,

the latter is not practical because a lengthy simulation time is required to accurately

compute solvation-related forces based on explicit-solvent sampling. Consequently,

we devise a method which takes advantage of the efficiency of the GB model to

compute solvation forces on titration coordinates while propagating conformational

dynamics via all-atom interactions in explicit solvent. Additionally, we implement

a replica-exchange protocol based on the pH biasing energy to significantly acceler-

ate the convergence of the simultaneous sampling of protonation and conformational

space. Thus, by making use of the more accurate explicit-solvent sampling, the new

method aims to improve the accuracy of CpHMD by reducing the aforementioned

”conformational” error and to allow applications to many problems where implicit-

solvent models are not feasible.

The rest of the chapter is organized as follows. First, we describe the explicit-

solvent CpHMD method and the pH-based replica-exchange protocol. We then ex-

amine potential artifacts due to the use of both explicit- implicit-solvent schemes and

the response of solvent molecules to titration. Next, we present and discuss results

of model compound titrations and analyze the convergence behavior with the new

sampling protocol. Finally, we benchmark the accuracy of the new method by calcu-

lating pK a values of five proteins including HP36, NTL9, BBL, HEWL, and SNase.

We compare the results with the GB-based CpHMD simulations and experiment. We
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find that the explicit-solvent CpHMD offers slightly more accurate pK a predictions

but significantly deeper physical insights. Surprisingly, convergence of the explicit-

solvent CpHMD titrations is achieved for all proteins with a simulation length of 1 ns

per replica, suggesting that the new method will emerge as a powerful and practical

tool for theoretical studies of electrostatic phenomena.

4.3 Methods

4.3.1 Continuous constant-pH molecular dynamics in explicit solvent

The key to CpHMD and other continuous titration methods is to simultaneously

derive forces on the spatial and titration coordinates. While it is straightforward to

compute forces on spatial coordinates in explicit-solvent simulations, there is inher-

ent difficulty in the latter due to the need for very accurate estimate of the electro-

static desolvation free energy. In fact, attempts to directly calculate the free energy

of charging titratable residues repeatedly during molecular dynamics by considering

explicit interactions between solvent molecules and solute have encountered severe

convergence problems in the context of both discrete [56] and continuous constant-pH

MD methods [63,125]. Our own tests revealed that the variance in the instantaneous

forces on the titration coordinates are up to an order of 100 kcal/mol per lambda

unit, whereas the forces exerted from the pH biasing energy 1 pH unit away from the

model compound pK a is only 1.3 kcal/mol per lambda unit. Therefore, we decided

to use a “mixed-solvent” scheme, where the GB model is used to derive forces on

the titration coordinates, while the explicit-solvent model is used to propagate the

spatial coordinates. To enable a direct coupling between solvent dynamics and proton

titration of solute, we retain the λ-dependent scaling of van der Waals interactions

involving titrating hydrogens and solvent molecules. An analogous “mixed-solvent”

scheme has been developed by Baptista and coworkers and applied in the context of
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the discrete constant-pH MD for protein titration studies [52]. One important differ-

ence is that their scheme does not include a direct (van der Waals) coupling between

solvent dynamics and solute titration.

The caveat of the “mixed-solvent” scheme is that no formal Hamiltonian exists

and potential artifacts may occur. Since the solvation-related force on titration co-

ordinates is treated in a mean-field manner without explicitly accounting for the

electrostatic interactions with nearby water molecules, inadequate or lagged response

of solvent to the change in the charge state of the titrating site may occur. We expect

this undesirable side effect to be minimal because of the aforementioned van der Waals

coupling between solute protonation and solvent dynamics, and because in continu-

ous evolution of titration coordinates, the energy change is small at each time step.

Nevertheless, a preventive fix is to decrease the update frequency for λ coordinates

(currently the same as spatial coordinates), thereby allowing relaxation of surround-

ing solvent molecules. Such a strategy has been demonstrated to be very effective in

the discrete constant-pH molecular dynamics simulations using the “mixed-solvent”

scheme [52]. Another source for potential artifacts in this and other “mixed-solvent”

simulations is related to the fact that the total energy is no longer strictly conserved,

which may result in a drift or pronounced fluctuation in temperature and energy of

the system. We will examine these potential artifacts later in detail.

4.3.2 pH-replica exchange

It has been noted previously [60,64,66] that in constant-pH molecular dynamics the

convergence of protonation-state sampling and resulting pK a values is slow due to

the tight coupling of conformational dynamics and protonation equilibria. To address

this issue the temperature-replica exchange (TREX) protocol [80,81,126] was applied

to enhance conformational sampling in the GB-based continuous [65] and discrete [61]

constant-pH methods which has led to significant improvement in the convergence of
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calculated pK a values. A straightforward implementation of the TREX protocol in

explicit-solvent simulations is however not effective because of the large number of

replicas needed to account for the solvent degrees of freedom [127]. Recently, Simmer-

ling and coworkers have proposed a mixed-solvent scheme to reduce the number of

replicas [128], which may be incorporated into the explicit-solvent CpHMD presented in

this work. One issue that was noted [128] and is currently being addressed [121], is the

distorted conformational distribution due to inaccuracy of the underlying implicit-

solvent model. To avoid this problem we decided to enhance the sampling of pro-

tonation space directly by making use of a replica exchange protocol based on the

pH-biasing energy (Eq. 1.22). This protocol is a specific application of the reaction-

coordinate replica-exchange method [107]. The reader is referred to Chapter 3 for a

description of the pH-based replica exchange method.

4.3.3 Simulation details

Model compounds

As in the previous work [65,66], model compounds for Asp, Glu, His, and Lys side chains

are single amino acids acetylated at N-terminus (ACE), and N-methylamidated at C-

terminus (CT3). The model pK a values (used in Eq. 6.4) were 4.0, 4.4, and 10.4 for

Asp, Glu, and Lys, respectively [92]. The model pK a of His was taken as 6.6 and 7.0

for the Nδ and Nε sites, respectively [129]. The model compound for the C-terminus

attached to phenylalanine (CT-Phe) in HP36 was the acetylated C-terminal hexapep-

tide (KEKGLF) from HP36 with a measured pK a of 3.2 [130]. The parameters in the

potential of mean force function Umod were determined using thermodynamic inte-

gration (TI) in explicit solvent. [66]. Parametrization simulations at each combination

of λ, and x for double-site titratable residues, were run for 1 ns. In the TI procedure,

the protonation states of other titratable residues in the model peptide for CT-Phe

were fixed because their pK a’s are at least 1 pH unit higher than the C-terminus.
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Except for CT-Phe the ionic strength in the GB calculation was set to zero during

the TI simulations following the previous protocol [66]. For CT-Phe the ionic strength

was 150 mM in accord with experiment [130].

Proteins

Five proteins were studied in this work: the 45-residue binding domain of 2-oxoglutarate

dehydrogenase multi-enzyme complex, BBL (PDB: 1W4H), the 36-residue subdomain

of villin headpiece, HP36 (PDB: 1VII), the 56-residue N-terminal domain of ribosomal

L9 protein, NTL9 (PDB: 1CQU), the 149-residue, of which 129 residues were resolved

in the crystal structure, hyper-stable variant of staphyloccal nuclease ∆+PHS, SNase

(PDB:3BDC), and the 129-residue hen egg white lysozyme, HEWL (PDB:2LZT).

For all structures, the HBUILD facility of CHARMM [39] was used to add hydrogens.

Unless otherwise specified, no explicit ions were added in the pHREX simulation be-

cause of the small simulation box and low ionic strengths used in experiment. See

later discussions. The ionic strengths in the GB calculations were set to 200, 150, 100,

100, and 50 mM for BBL, HP36, NTL9, SNASE, and HEWL, respectively, consis-

tent with the experimental conditions [89,130–133]. Unless otherwise noted, both N- and

C-termini of proteins were left in the free, charged form. For SNase, the published

crystal structure was missing residues 1-6 and 142-149. To avoid potential errors, the

structure was acetylated at N-terminus and amidated at C-terminus. For NTL9, the

C-terminus was amidated in accord with experiment [132].

Simulation protocol

We have implemented the explicit-solvent CpHMD method in a developmental version

of CHARMM (c35b3) [39], and the pHREX sampling scheme in the MMTSB Tool

Set [91]. All of the simulations described in this work were performed with the all-atom

CHARMM22/CMAP force field [36] and the modified CHARMM version of the TIP3P

water model [134] The solvation forces on the titration coordinates were calculated

using the GBSW implicit-solvent model [79] with the refined [98] atomic input radii
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of Nina et. al. [117]. The SHAKE algorithm was applied to all bonds and angles

involving hydrogen to allow a 2-fs time step. Non-bonded electrostatic interactions

were calculated using the particle-mesh Ewald summation with a charge correction

to reduce pressure and energy artifacts for systems with a net charge [135]. In the GB

calculation, all input parameters were identical to the previous work [65].

All simulations were performed under ambient pressure and temperature condi-

tions using the Hoover thermostat [136] with Langevin piston pressure coupling algo-

rithm [137]. Proteins and model compounds were built and then placed in a truncated

octahedron water box of a size such that the distance between the solute and edges

of the box was at least 14 Å. Water molecules within 2.6 Å of any heavy atom of

the solute were deleted. Energy minimization was carried out in three stages. First,

a harmonic restraint with a force constant of 50 kcal/(mol·Å) was applied to solute

heavy atoms and the structure was energy minimized with 50 steps of the steepest

descent (SD) and 200 steps of the adoptive basis Newton-Ralphson (ABNR) methods.

Then the force constant was reduced to 25 kcal/(mol·Å) and the same minimization

protocol was applied. Finally, the force constant was reduced to 10 kcal/(mol·Å) and

the structure was energy minimized with 5 SD and 20 ABNR steps.

In the pHREX simulation of a model compound, three pH replicas, one at the

reference pK a and two at 1 pH unit above and below the reference value were used.

Three independent pHREX simulations were conducted, where each simulation lasted

1.2 ns per replica and the first 200 ps was discarded in the pK a calculation. For pro-

teins, one pHREX simulation was performed. In the pHREX protocol, the pH spacing

was 1 pH unit and the pH range extended at least 1 unit above and below the highest

and lowest experimentally determined pK a value for the protein. Specifically, for BBL

the pH range is 2 to 9, for HP36, NTL9, and SNase it is 0 to 7, and for HEWL it is

0 to 9. Each pH replica was subjected to 4 ps of restrained equilibration without pH

exchange, where a harmonic potential with the force constant of 10 kcal/(mol·Å) was
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applied to all solute heavy atoms. Following equilibration, unrestrained simulation

with the pHREX protocol was performed. The exchange in pH was attempted every

100 dynamic steps or 0.2 ps for model compound and 500 steps or 1 ps for protein

simulations. The success rate for exchanges was at least 40%. Protein simulations

lasted 2 ns and the first 0.25 ns was discarded in the analysis and pK a calculation.

Simulation of HP36 was run for 4 ns in order to observe pK a behavior at longer

simulation times.

Calculation of pK a values

To calculate the pK a of a titratable site, we first recorded the population of protonated

(λ < 0.1, Nprot) and unprotonated (λ > 0.9, Nunprot) states from simulations of

different pH replicas. The resulting unprotonated fractions S at multiple pH values

were then fitted to the following modified Hill equation, in accord with the commonly

used model for fitting pH-dependent NMR chemical shifts [89],

S(pH) =
sA− + sHA10n(pKa−pH)

1 + 10n(pKa−pH)
, (4.1)

where n is the Hill coefficient, which represents the slope of the transition region of

the titration curve [89], sA− and sHA are fitting parameters, which represent the extrap-

olated S values at extreme acidic and basic pH conditions for the observed titration

event. Equation 4.1 becomes the Hill equation when protonation or deprotonation

is complete in the simulated pH range, e.g., sA− = 1 and sHA = 0, which was the

case for nearly all residues. Occasionally, for acidic residues with significant negative

pK a shifts, sHA deviated significantly from 0 as a result of incomplete protonation at

the lowest pH condition. Finally, to account for the small systematic deviations of

calculated pK a’s of model compounds relative to the reference values, we made the

following post-corrections, Asp (+0.2), Glu (+0.3), and His (-0.3) to the pK a values

of proteins.
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4.4 Results and Discussion

4.4.1 Trajectory stability

Before applying explicit solvent CpHMD to titration simulations, it is important

to examine potential artifacts due to caveats in the mixed scheme and the change in

total net charge. As mentioned earlier, the proposed method does not conserve en-

ergy because the protonation states of titratable groups are changed using an implicit

description of the electrostatic interactions with solvent, which may lead to drift or

increased fluctuation in temperature and energy of the simulated system. Another

source for potential artifacts is related to the fluctuating net charge of the system

during proton titration. In the default implementation of Ewald summation a neu-

tralizing plasma, which is a uniform distribution of a charge equal and opposite to

the net charge, is added to the summation to avoid divergence in Coulomb energy for

periodic systems [138]. This background plasma has been noted to introduce pressure

artifacts for small net-charged systems, which could dramatically affect the dynamics

of simulations at constant pressure [135]. Brooks and coworkers showed that the ar-

tifacts are drastically reduced by invoking a charge correction term [135]. We applied

this correction term in all of our simulations.

To assess the extent of the spurious effects, we examined the temperature, pres-

sure, and total potential energy of the system along the trajectory using two protocols.

In the first protocol, a blocked lysine was subjected to CpHMD titration at pH 10.4.

In the second protocol, a fixed-charge simulation was conducted using a neutral lysine

with an otherwise identical simulation setup. As shown in Figure 4.1, the time series

for temperature, pressure, and potential energy in the CpHMD titration of lysine

(with 1:1 protonated and deprotonated states) is virtually indistinguishable from the

conventional simulation of neutral lysine with fixed protonation state. The pressure

fluctuations are quite large for both systems, but this is expected because of the small
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Figure 4.1: Comparison of pressure, energy, and temperature from fixed charged and
continuous constant-pH molecular dynamics in explicit solvent simulations. Instan-
taneous pressure, potential energy, and temperature in the explicit-solvent CpHMD
simulation of lysine at pH 10.4 (blue) and in the simulation of the neutral lysine with
fixed protonation state (red).
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size of the simulation box. Also, any energy leaking into or out of the system due

to the non-conservative change in protonation state is not readily apparent as there

is no visible drift in the total potential energy for this system. To further verify

the stability of pressure, temperature, and potential energy, we performed CpHMD

titrations for other model compounds and proteins. No systematic drift or increased

fluctuation was observed in any of the three quantities at the simulation timescales

(several nanoseconds) for either model compounds or proteins. Thus, we conclude

that, with the net-charge correction and the Hoover thermostat, potential artifacts

in pressure, temperature and potential energy are negligible.

4.4.2 Response of explicit solvent to titration

Although the van der Waals interactions between titratable hydrogen atoms and

solvent molecules are explicitly described, the lack of explicit treatment of electrostatic

interactions may have an undesirable effect such that water molecules cannot adjust

quickly to a low energy position following a change in the titration coordinate. This

could result in an unrealistic arrangement of solvent around the titrating site. To

examine the response of explicit water molecules to solute titration, we calculated

the radial distribution function (radial distribution function (RDF)) for the charged

(protonated) and neutral (unprotonated) lysine from the (conventional) simulations

(one for charged and one for neutral) and compared them with the RDF’s from one

CpHMD titration simulation. The latter simulation was conducted at a pH condition

such that the charged and neutral populations are almost equal. As seen in Figure 4.2,

the positions of maxima and minima in the RDF’s of the charged and neutral forms

of Lys are identical in the conventional simulations and CpHMD titration, which

demonstrates that the water structure is qualitatively indistinguishable. To further

investigate the reorientation of water molecules in response to titration, we took a

closer look at the solute-solvent interactions that give rise to the peaks of the RDF’s.
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Interestingly and reassuringly, the relative orientation of lysine and the nearby water

is identical in the conventional simulations and CpHMD titration. Figure 4.2 also

shows the representative snapshots of the charged and neutral lysines interacting

with an adjacent water molecule. When lysine is charged, it acts as a hydrogen-bond

donor, interacting with the oxygen atom of water. When lysine is neutral, it acts as

a hydrogen-bond acceptor, interacting with the hydrogen atom of water.

Figure 4.2: Response of explicit solvent molecules to explicit-solvent using continuous
constant-pH molecular dynamics in explicit solvent. Radial distribution function for
the titratable nitrogen atom of lysine to the hydrogen (blue) or oxygen (red) atom of
water. Dashed lines are from the simulation with the fixed protonation state; solid
lines are from the CpHMD titration with protonated (charged) and deprotonated
(neutral) states coexisting. Snapshots of the interacting water and lysine are shown.
The charged lysine donates a hydrogen bond to water (upper), while the neutral lysine
accepts a hydrogen bond from water (lower). Simulations with fixed protonation
states were run for 1 ns. The CpHMD titration time was 2 ns and the deprotonated
fraction was about 0.5. The in-set gives RDFs when a very stringent cut-off (λ >
0.99) is used to define the deprotonated state (green) and when λ values are updated
every 10 MD steps in addition to the stringent cut-off (orange). Images were rendered
using the VMD program [93].

Despite the remarkable agreement in the positions of maxima and minima of

the RDF’s, the amplitude of the peaks from the CpHMD titration is reduced as
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compared to those from conventional simulations. This reduction in the amplitude

of RDF can be mainly attributed to the slight lag in water equilibration following a

switch in protonation state, and to a lesser extent the cut-off chosen in our definition

of protonated and deprotonated states. The in-set in Figure 4.2 shows that with

a very stringent cut-off (λ > 0.99) there is small improvement in the amplitude of

the RDF. If we use the stringent cut-off combined with the λ-update of every 10

MD steps the amplitude of the RDF is dramatically increased to nearly superimpose

on the result from the simulation with fixed protonation state. If the frequency of

switching protonation state is much slower, the RDF’s would exactly match those

calculated from the simulations at fixed charge. Baptista and coworkers showed that

in the MD simulation, the reorganization time of water following the most dramatic

protonation event from the fully neutral to doubly charged state of succinic acid is

1-3 ps [52]. Considering the average residence time at either protonation state in our

simulation was on average about 1 ps and the transition between protonation states

is continuous, water molecules have sufficient time to rotate to a favorable position

following titration. Nevertheless, the data of lysine titration shows that the update

frequency or time step for propagation of titration coordinates (currently set to be

the same as the propagation of conformational dynamics) can be increased to ensure

the full extent of water relaxation. A drawback is the slow down of protonation-state

sampling.

4.4.3 Convergence and accuracy of model compound titrations

Before attempting to perform titration simulations of proteins, it is important to

assess the required simulation time to reach converged values for the unprotonated

fraction (S) of model compounds as well as the accuracy and precision of the calcu-

lated pK a’s. We first examine titration simulations conducted at a single pH value.

Explicit-solvent CpHMD titration of a blocked lysine was performed at the pH equal
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to the reference pK a of 10.4. The S values stabilized at about 5 ns and there was

little change over the remainder of the 10-ns simulation. We repeated the simulation

twice with different randomly assigned velocities and observed a similar convergence

time. Similar results were also found for the blocked Asp, Glu, and His which have

two titration sites. The lengthy simulation time (5 ns) required for the convergence

of pK a values for single amino acids indicates the need for accelerated sampling. To

directly enhance the protonation-state sampling, we applied the pH-based replica-

exchange protocol with three replicas placed at pH values of 9.4, 10.4, and 11.4 in the

lysine titration. The S values were converged within 1 ns for all model compounds,

demonstrating significant acceleration over the single-pH simulation. We summarize

these results in Table 4.1.

The uncertainty, or random error, in the calculated model compound pK a’s ranges

from 0.02 to 0.11, which is similar to the range found in potentiometric and NMR

titration experiments (see Table 4.1). To further assess convergence, we examine

the reproducibility of S values and quality of fitting to the Henderson-Hasselbach

equation. In Figure 4.3, results of three independent pHREX simulations (1 ns per

replica) for Asp, Glu, His, and Lys are shown. The error in the S value ranges

from 0.02 to 0.12, and the χ-square values of the fitting is virtually zero. Thus, the

above data demonstrate that 1-ns pHREX titrations offer converged sampling for

protonation equilibria.

Next we examine the accuracy of the calculated pK a’s of model compounds. As

compared to the target reference values, the pK a’s of Asp, Glu and Lys are under-

estimated by 0.2–0.3 pH units while that of His is overestimated by 0.3 pH units

(Table 4.1). There are two possible sources for the systematic deviations. The first

possibility has to do with artifacts in simulations of net-charged periodic systems

using Ewald potential. Even with the net-charge correction, Brooks and coworkers

noted that the charged form may be slightly favored in the free energy simulation of a
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Figure 4.3: Titration curves for the blocked model compounds from continuous
constant-pH molecular dynamics in explicit solvent simulations. Three independent
pH-REX simulations were performed. Each REX simulation utilized three pH replicas
with each replica running for 1 ns. The average unprotonated fractions S (calculated
from the three runs and shown as circles) at three pH values were fit to the Henderson-
Hasselbach equation and shown as lines. At each pH, an error bar indicates the range
of the calculated S values, which is the largest at the pH closest to the pK a value.
These ranges are 0.10, 0.12, 0.10 and 0.02 for Asp, Glu, His, and Lys, respectively.
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Table 4.1: Calculated and experimental pK a values of model
compounds

Residue Calca Calcb Refc Pace labd

Asp 3.79±0.09 3.77±0.02 4.0 3.67±0.04
Glu 4.09±0.11 4.05±0.01 4.4 4.25±0.05
His 6.89±0.08 6.89±0.01 6.6/7.0 6.54±0.04
Lys 10.21±0.02 10.41±0.02 10.4 10.40±0.08
CT-Phe 3.38±0.06 3.2e -

a Results using the standard simulation protocol where the λ
value was updated every MD step and simulation length was 1.2
ns per pH replica. The average pK a’s obtained by fitting S data
from three independent pHREX titrations are listed along with
one half the difference between the highest and lowest calculated
values. b Results from test simulations where the λ value was
updated every 10 MD steps and the simulation length was 10 ns
per pH replica. c Measured pK a’s based on the blocked single
amino acids from Nozaki and Tanford [92]. These model pK a’s
were used in the pH-biasing energy (Eq. 6.4). For His, the listed
pK a’s are the microscopic values for δ and ε sites. The resulting
macroscopic pK a is 6.45 [66]. Errors in the measurements are typ-
ically ±0.1–0.2 [139]. d The most recent data from Pace lab based
on potentiometric titrations of alanine pentapeptide Ac-AA-X-
AA-NH2 where X denotes the titrating residue [139]. e Measured
pK a of the C-terminal carboxylic acid in the C-terminal peptide
of HP36 (sequence KEKGLF) based on the NMR titration data
from Raleigh lab [130].
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single ion and this deviation depends on the size of the simulation box [135]. Our tests

however showed that increasing the box size did not affect the pK a results for model

compounds. We further ruled out the net-charge related artifact because the same

systematic errors, e.g., underestimation of the pK a’s for Asp and Glu and overestima-

tion of the pK a for His were also observed in the GB-based CpHMD simulations [65].

The systematic errors in pK a’s indicate that the deprotonation free energy based

on the potential of mean force function which is determined by the thermodynamic

integration (TI) procedure does not exactly match that in the titration simulation.

One possible reason for the discrepancy is the difference in water relaxation because

in the TI simulation water has more time to relax at a specific λ value than in the

titration simulation. To investigate this issue, we repeated the titrations with slower

λ dynamics, updating λ value every 10 MD steps. Interestingly, the deviation for the

pK a of Lys is abolished but the deviation for Asp, Glu and His remains. Examination

of the λ and x trajectories revealed that the two degenerate protonation states (doubly

deprotonated in the case of Asp or Glu and doubly protonated in the case of His)

occasionally experience prolonged residence time. In the absence of extensive analysis

and consideration, we suggest that one route for correcting this bias is to make the

barrier in the x (tautomeric) dimension a function of λ such that when λ approaches

the degenerate protonation state interconversion becomes increasingly difficult. This

is clearly a limitation that needs to be addressed in our future work. Nevertheless,

since this bias is present in both model compound and protein titrations, the effect

on the calculated pK a shifts is negligible. To correct for the systematic deviations, we

added post corrections for all the calculated pK a values of proteins (see Simulation

details).
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4.4.4 Enhanced sampling of protonation and conformational states of

proteins

We have demonstrated that the pHREX protocol significantly accelerates the pK a

convergence for model compounds. Now we show that the pHREX protocol signifi-

cantly enhances sampling in both protonation and conformational space for proteins.

Take the titration of HP36 as an example. Figure 4.4 displays the time series of the

unprotonated fraction for Asp44 from one pHREX simulation and three single-pH

simulations. In the single-pH simulations, Asp44 was trapped in the unprotonated

form at pH 2.3 as a result of a persistent salt-bridge interaction with Arg15. In the

pHREX simulation however, both protonated and unprotonated forms of Asp44 were

sampled at pH 2 and pH 3, because the simulation was able to capture both formation

and disruption of the salt bridge. Thus, by making use of the direct coupling between

protonation events and conformational dynamics, the pHREX protocol allows the

protein to overcome local energy barriers, while retaining the correct thermodynamic

distribution. In this regard, pHREX has a similar effect as the TREX protocol, which

significantly accelerates the sampling convergence of both protonation and conforma-

tional states in the GB-based CpHMD simulations [65].

4.4.5 Convergence and overall accuracy of protein titrations

In order for titration simulations to be practical, protonation-state sampling needs

to converge within a reasonable amount of time. While we have shown that 1 ns of

pHREX titration is sufficient for obtaining converged pK a’s for model compounds,

we also observed that 1-ns titration also yields converged pK a’s for proteins, despite

the fact that the degrees of freedom in a protein system may be orders of magnitude

greater as compared to a model compound. This seemingly surprising observation

is consistent with data from the GB-based CpHMD simulations [65,82], and can be

attributed to the fact that pK a’s are mainly determined by local environment. To
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Figure 4.4: Enhancement of protonation-state and conformational sampling of protein
pH-replica exchange. Cumulative unprotonated fraction of Asp44 of HP36. Data from
the pHREX simulations are shown in red for replica at pH 2 and orange for replica
at pH 3. Data from three independent single-pH simulations at pH 2.3 are shown in
blue.

illustrate the rapid convergence in protein titrations, we monitor the times series of

the S value and pK a as well as the quality of fitting. In Figure 4.4 we can see that the

S values for HP36 stabilize at 1 ns. The small fluctuation after 1 ns does not cause

noticeable change in the pK a value because of the logarithmic relationship between S

and pK a. Figure 4.5A shows that, after only a few hundred ps the calculated pK a’s

of the two histidines in BBL become stable and do not change in the remaining

simulation time. This is encouraging given the fact that one of the histidines is

buried and as such may require more sampling. Another indication of convergence

is the quality of fitting to the HH equation. Figure 4.5B shows nearly perfect fits

(R2 > 0.95) for both residues based on the 1-ns titration data.

To assess the overall accuracy of the explicit-solvent CpHMD method, we per-

formed titration on five test proteins, HP36, BBL, NTL9, SNase, and HEWL, and

compared the calculated pK a’s with experiment as well as the GB-based simulations,

where the latter used the same pHREX protocol and salt as well as temperature con-
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Figure 4.5: Convergence of pK a values of BBL using continuous constant-pH molecu-
lar dynamics in explicit solvent. A. Time series of the calculated pKa’s for BBL from
the explicit-solvent CpHMD simulations with pHREX protocol. The S values at pH
7 and 6 are used for His144 and His166, respectively. B. Titration data based on the
1-ns simulation and best fits to the modified HH equation (Eq. 4.1).
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Figure 4.6: Comparison between calculated and experimental pK a values and pK a

shifts relative to model values. Calculated pK a values from the explicit-solvent and
GB-based titrations are shown in A and B, respectively. Calculated pK a shift from
explicit-solvent and GB-based titrations are shown in C and D, respectively. Regres-
sion line (solid), slope, and R2 value are shown on each plot as wells as y=x line
(dashed) to facilitate visual comparison.
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ditions. The results are presented in Table 4.2, 4.4, and 4.5 along with the estimates

of statistical uncertainty, which was calculated as half of the difference between the

pK a’s calculated from the first and last half of the 750 ps simulation. The total

simulation length was 1 ns and the data from the first 250 ps was discarded. As a

validation of convergence, the pK a’s calculated using 2-ns simulations are also listed.

In reference to experimental data, the overall root-mean-squared deviation (RMSD)

from the explicit-solvent titrations is 0.57, which is slightly lower than the RMSD

from the GB-based titrations (0.68). As a more informative measure of calculation

accuracy, linear regressions of the calculated versus measured pK a shifts are shown in

Figure 4.6 for the explicit-solvent and GB simulations. While the R2 value and slope

are 0.50 and 0.80 respectively from the explicit-solvent titrations, they are 0.24 and

0.45 from the GB titrations. Since the correlations are relatively low, we repeated the

regression analysis by removing the data points with the four largest absolute pK a

shifts. The R2 value from the explicit-solvent titrations dropped from 0.48 to 0.25,

while R2 from the GB simulations also dropped dramatically, from 0.23 to 0.06. Thus,

the results show that the improvement due to explicit solvent is robust. Since the

data set comprised of mainly acidic residues, the slopes being below 1 suggests that

both simulations overestimate the negative pK a shifts or underestimate the pK a’s.

A close examination of the correlations reveals that the significantly improved agree-

ment with experiment in the explicit-solvent titrations is due to reduction of relatively

large errors for several groups. Thus, overall the explicit-solvent simulations offer in-

creased accuracy for predicting protein pK a’s. The reasons in specific cases will be

delineated next.

Small proteins BBL, HP36, and NTL9

We first examine the performance of the explicit-solvent CpHMD titrations for

three small proteins with 36 to 56 residues and all-α as well as mixed α-β topologies.

The results are listed in Table 4.2 along with the GB titration data. The convergence
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of both explicit- and implicit-solvent titrations is excellent. The largest difference

between the pK a’s calculated from the first and last half of the simulation is 0.3 units.

Extending the explicit-solvent simulations to 2 ns leads to a pK a change below 0.15

units and does not improve the agreement with experiment. Overall, the explicit-

solvent data is similar to the GB data. The RMSD as well average absolute and

maximum deviations from experiment in the explicit-solvent titration are 0.50, 0.44

and 0.87, respectively, similar to the GB titration. The deviations from experiment

arise from the overestimation of the negative pK a shifts of acidic residues in both

explicit- and implicit-solvent titrations.

We examine two cases where the pK a’s from the explicit-solvent titration are at

least 0.6 pH units different from the GB titration. In both cases, the explicit-solvent

titration improves agreement with experiment. Asp23 is a residue where the explicit-

solvent titration reduces the overestimation of the pK a downshift of Asp23 from 0.9 to

0.3 units. This is because the salt-bridge interaction with the nearby amino terminus

was over-stabilized in the GB simulation, a known problem in GB models [66].

His166 is the only buried residue in this data set. While being excluded from

solvent, it also interacts with three nearby lysines. Thus, both desolvation and elec-

trostatic repulsion destabilize the protonated or charged form of His166, leading to a

downward pK a shift relative to the model value. This is reflected in the experimental

pK a of 5.39, about 1.1 pH units lower than the model value. In the explicit-solvent

titration the pK a shift is underestimated by 0.41 pH units while it is overestimated

in the GB titration by 0.55 pH units. Detailed analysis of the trajectories reveals

the major cause of the difference to be structural. Figure 4.7A shows that in the

explicit-solvent simulation, the conformations stayed close to the starting structure

with the backbone RMSD centered at 2 Å. In the GB simulation, however, a con-

formational cluster developed that significantly deviates from the initial structure

with the backbone RMSD centered at 4.9 Å. Figure 4.7B shows that while His166 is
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Table 4.2: Calculated and experimental pK a values of HP36,
BBL, and NTL9

Residue Explicit solventb GB Expta

BBL
His142 6.94 ± 0.06 (6.83) 6.47 ± 0.03 6.47 ± 0.04
His166 5.78 ± 0.04 (5.90) 4.84 ± 0.19 5.39 ± 0.02
HP36
Asp44 2.66 ± 0.09 (2.77) 3.17 ± 0.11 3.10 ± 0.01
Glu45 3.36 ± 0.31 (3.28) 3.49 ± 0.09 3.95 ± 0.01
Asp46 3.03 ± 0.09 (3.12) 3.51 ± 0.03 3.45 ± 0.12
Glu72 3.50 ± 0.21 (3.45) 3.53 ± 0.10 4.37 ± 0.03
CT-Phe 3.31 ± 0.20 (3.16) 3.16 ± 0.14 3.09 ± 0.01

3.24 ± 0.12
NTL9
Asp8 2.83 ± 0.07 (2.80) 3.19 ± 0.20 2.99 ± 0.05
Glu17 3.57 ± 0.14 (3.50) 3.67 ± 0.13 3.57 ± 0.05
Asp23 2.75 ± 0.16 (2.82) 2.11 ± 0.11 3.05 ± 0.04
Glu38 3.38 ± 0.30 (3.40) 3.70 ± 0.19 4.04 ± 0.05
Glu48 3.47 ± 0.17 (3.42) 3.74 ± 0.20 4.21 ± 0.08
Glu54 3.65 ± 0.22 (3.49) 3.64 ± 0.08 4.21 ± 0.08
Avg abs dev 0.44 (0.45) 0.36
RMSD 0.50 (0.52) 0.47
Max abs dev 0.87 (0.92) 0.99

a pK a’s determined by NMR titration for BBL [131], HP36 [130],
and NTL9 [132]. b Values in parentheses were obtained from the
2-ns simulation.
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slightly exposed to solvent in the explicit-solvent simulation it is fully enclosed in the

GB simulation. Examination of the average distances to the nearby lysines reveals

that the Coulomb interactions in both explicit-solvent and GB simulations are simi-

lar. Therefore, we suggest that the overestimation of the pK a shift for His166 in the

GB simulation is mainly due to the overestimation of desolvation penalty as a result

of exaggerated cloistering of His166. Reduced mobility especially of buried sites has

been also observed in other GB simulations [83].

Table 4.3: Effects of adding explicit ions on calculated pK a

values of NTL9

Residue Calcb Ionsc Expta

Asp8 2.83 ± 0.07 2.91 ± 0.31 2.99 ± 0.05
Glu17 3.57 ± 0.14 3.38 ± 0.19 3.57 ± 0.05
Asp23 2.75 ± 0.16 2.98 ± 0.16 3.05 ± 0.04
Glu38 3.38 ± 0.30 3.48 ± 0.04 4.04 ± 0.05
Glu48 3.47 ± 0.17 3.42 ± 0.34 4.21 ± 0.08
Glu54 3.65 ± 0.22 3.52 ± 0.25 4.21 ± 0.08
Avg abs dev 0.41 0.40
RMSD 0.48 0.49
Max abs dev 0.73 0.78

a pKa’s determined by NMR titration [132]. b Calculated pK a’s
from explicit-solvent titrations without counter ions (as listed in
Table 4.2). c Calculated pK a’s from simulations with an identi-
cal set up except for the addition of Cl− ions such that the net
charge of the protein at all pH conditions was minimized.

Although for these small proteins the explicit-solvent pKa calculations are quite

accurate, it is important to further discuss another issue concerning the explicit-

solvent CpHMD method. Since the net charge is changing and may become large

depending on the protonation state of the protein, we examined the effect of adding

an approximate number of counter ions to minimize the net charge of the system in

all pH conditions. Because of the large number of basic residues of NTL9 and the

resulting net positive charge, NTL9 is an ideal test case to quantify the magnitude

of the effect. As shown in Table 4.3 the calculated pK a values in the simulations
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Figure 4.7: Comparison of BBL conformations from explicit- and implicit-solvent sim-
ulation. Structural comparison of BBL from explicit-solvent (solid) and GB (dashed)
simulations at pH 5 A. Probability distributions of backbone RMSD. B. Ratio of
the solvent accessible surface area (SASA) of His166 in BBL relative to the solvent-
exposed value.
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with neutralizing counter ions are virtually identical to those where no net-charge

neutralizing ions were added. Thus, at least for the short simulation time required

to obtain converged pK a values, the data indicates that it is not necessary to include

neutralizing ions.

SNase

The calculated pK a’s for a larger protein, a hyper-stable variant of the 149-residue

SNase, are summarized in Table 4.4. SNase is a good test system because the

structure-based continuum calculations gave very poor agreement with experiment

presumably due to the lack of explicit treatment of protein flexibility [89]. Overall, the

explicit-solvent titration offer a better agreement with experiment. The RMSD as

well as the average absolute and maximum deviations in the explicit-solvent titration

are 0.86, 0.46, and 3.09, respectively, while they are 0.96, 0.63, and 2.95 in the GB

titration. Extending the explicit-solvent simulations to 2 ns give results that are very

similar.

We first examine Asp95, for which the explicit-solvent titration was able to reduce

the overestimation of pK a from the GB-based titration from 1.21 to 0.55 units. The

major reason for the improvement is related to the strength of the interaction with

Lys70. In the crystal structure obtained at pH 8 the minimum distance between the

charge centers on Asp95 and Lys70 is 4.7 Å, which suggests a salt-bridge interac-

tion. Figure 4.8 shows the probability distribution of the minimum distance between

the charge centers from the explicit-solvent and GB simulations. Although the av-

erage distance is identical at 6.1 Å, the difference lies in the distribution. The GB

simulation sampled a uni-modal distribution centered around 7 Å. By contrast, the

explicit-solvent simulation sampled two distinct populations, one centered at 2.8 Å,

representing the conformations where Asp95 and Lys70 are closely associated, and an-

other one centered at 7.1 Å, representing the conformations where the two side chains

are rotated away from each other. The minimum region between the two populations
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corresponds to the solvent-bridged conformations. The bimodal distribution seen in

the explicit-solvent simulation is a direct result of including discrete solvent molecules

and reflects a more realistic description of the ion pair interaction. However, the GB

simulation neglects solvent granularity and models the ion-pair interaction in a mean-

field manner, which results in a less tight salt-bridge pairing and an underestimation

of the pK a shift for Asp95.
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Figure 4.8: Comparison of Lys70-Asp95 of SNase salt-bridge distribution from
explicit- and implicit-solvent simulation. Probability distribution of the minimum
distance between the carboxylate oxygens of Asp95 and amino nitrogen of Lys70 of
SNase from the explicit-solvent (solid) and GB (dashed) titrations at pH 3.

Another case where the inclusion of explicit solvent resulted in the more accurate

pK a calculation is for Asp77. The experimental measurement provides an upper

bound of 2.2 for the pK a. In the explicit-solvent simulation, the pK a was calculated

to be in the correct range, but in the GB simulation the pK a shift was underestimated

by at least 1 pH unit. Asp77 is within a hydrogen-bond distance of two backbone

amide hydrogens of Asn119 and Thr120, which are located in a loop connecting

a β-sheet motif to an α-helix (Figure 4.9, upper left snapshot). In Figure 4.9 we

monitor the minimum distance between the carboxylate oxygens of Asp77 and the
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Table 4.4: Calculated and experimental pK a values of SNase

Residue Explicit Solventc GB Expta

Glu10 3.14 ± 0.09 (3.33) 3.47 ± 0.01 2.82 ± 0.07
Asp19 2.29 ± 0.15 (2.49) 3.51 ± 0.02 2.21 ± 0.07b

6.54 ± 0.06
Asp21 3.45 ± 0.28 (3.55) 3.59 ± 0.00 3.01 ± 0.01

6.54 ± 0.02b

Asp40 3.13 ± 0.23 (3.35) 3.37 ± 0.09 3.87 ± 0.09
Glu43 3.83 ± 0.08 (3.76) 3.45 ± 0.00 4.32 ± 0.04
Glu52 3.92 ± 0.01 (3.88) 3.52 ± 0.02 3.93 ± 0.08
Glu57 3.67 ± 0.16 (3.64) 3.52 ± 0.01 3.49 ± 0.09
Glu67 3.66 ± 0.06 (3.67) 3.45 ± 0.06 3.76 ± 0.07
Glu73 3.53 ± 0.11 (3.54) 3.36 ± 0.13 3.31 ± 0.01
Glu75 3.54 ± 0.27 (3.58) 3.40 ± 0.06 3.26 ± 0.05
Asp77 < 0.0 (< 0.0) 3.14 ± 0.03 < 2.2
Asp83 2.54 ± 0.12 (2.84) 3.50 ± 0.04 < 2.2
Asp95 2.71 ± 0.57 (2.97) 3.37 ± 0.06 2.16± 0.07
Glu101 3.64 ± 0.11 (3.67) 3.51 ± 0.01 3.81± 0.10
Glu122 3.61 ± 0.03 (3.75) 3.57 ± 0.01 3.89± 0.09
Glu129 3.74 ± 0.11 (3.71) 3.57 ± 0.12 3.75± 0.09
Glu135 3.39 ± 0.20 (3.44) 3.56 ± 0.03 3.76± 0.08
Avg abs dev 0.46 (0.48) 0.63
RMSD 0.86 (0.85) 0.96
Max abs dev 3.09 (3.00) 2.95

a pK a determined by NMR titration [89]. b The major transi-
tion when the experimental data was fit to a two-pK a model. c

Values in parantheses were obtained from the 2-ns simulation.
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backbone amide hydrogen of Asn119 or Thr120. In the explicit-solvent simulation

the distance was stable, fluctuating around 2 Å during the entire trajectory, revealing

that the backbone hydrogen bonding between Asp77 and Asn119/Thr120 was intact.

However, in the GB simulation, this interaction was disrupted as a result of the high

mobility of the aforementioned loop (see Figure 4.9, upper right snapshot). This

analysis suggests that the underestimation of the pKa shift for Asp77 in the GB

simulation is due to the distortion of local structure.

Figure 4.9: Comparison of Asp77 of SNase backbone hydrogen bond from explicit-
and implicit solvent simulation. Comparison of the local environment of Asp77 of
SNase from the explicit- and implicit-solvent titrations at pH 3. Upper. In the
initial structure Asp77 forms backbone hydrogen bonds with Asn119 and Thr120 (left
snapshot). These interactions were broken in the GB simulation (right snapshot).
Lower. Time series of the minimum distance between the carboxylate oxygens of
Asp77 and the backbone amide hydrogen of Thr119 or Asn120 from the explicit-
solvent (red) and GB (blue) simulations at pH 3. Images were rendered using the
VMD program [93].

The largest pK a error from the explicit- and implicit-solvent titrations is for
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Asp21, which interacts with Asp19 on the other end of the β-hairpin. NMR titration

data showed two distinct transitions for the two residues [89]. The major transitions

have the pK a of 2.21, assigned to Asp19, and 6.54, assigned to Asp21 [89].

The latter is the only upward shifted pK a relative to the model value for SNase.

Both the explicit- and implicit-solvent titrations were not able to reproduce the di-

rection of the pKa shift for Asp21 and underestimated the pK a by about 3 pH units,

although the explicit-solvent simulation was able to differentiate between the two

pK a’s. During the explicit-solvent simulation at pH 3, the average distance between

the carboxylate oxygens of both residues was 3.7 Å. This close proximity was stabi-

lized by a persistent hydrogen bond between the carboxylate oxygen of Asp19 and

the backbone amide nitrogen of Asp21. However, the coupled titration behavior with

two transitions was not observed when fitting the data for either Asp19 or Asp21.

The only indication of coupling was a low Hill coefficient (0.56) for Asp19, which in-

dicates anti-cooperativity, consistent with experiment [89]. We also examined the GB

titration data. The interaction between Asp19 and Asp21 was very strong but both

residues titrated with the same pK a and the Hill coefficients were about 1. Thus,

compared to the GB titration, the explicit-solvent simulation was able to provide,

to some extent, the description of the coupled proton binding events for Asp19 and

Asp21. However, the explicit-solvent simulation was not able to fully capture the

negative cooperativity, which may be due to insufficient sampling.

HEWL

The last protein we consider is hen egg white lysozyme (HEWL), which has been

used as a standard test system for many pK a prediction methods [75,140]. Also, the

most recent study of Nielsen and coworkers, where a consensus set of pK a’s were

derived from pH-dependent chemical shifts of different nuclei, makes HEWL the most

vetted protein pK a benchmark system available [133]. Table 4.5 lists the calculated

pK a’s from the explicit- and implicit-solvent titrations. Overall, the calculated pK a’s
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from the explicit-solvent titration are closer to experiment than the GB titration.

The RMSD as well as the average absolute and maximum deviations in the explicit-

solvent titration are 0.84, 0.70, and 1.50, respectively, while they are 0.93, 0.72, and

1.75, respectively, in the GB titration. Below we examine the cause for the significant

differences between the explicit- and implicit-solvent titration data for residues Glu35

and Asp52.

Table 4.5: Calculated and experimental pK a values of HEWL

Residue Explicit Solventb GB Expta

Glu7 2.67 ± 0.01 (2.69) 2.58 ± 0.06 2.6 ± 0.2
His15 6.64 ± 0.10 (6.60) 5.34 ± 0.47 5.5 ± 0.2
Asp18 3.05 ± 0.13 (3.15) 2.94 ± 0.01 2.8 ± 0.3
Glu35 7.19 ± 0.15 (6.83) 4.35 ± 0.18 6.1 ± 0.4
Asp48 1.57 ± 0.48 (1.77) 2.84 ± 0.15 1.4 ± 0.2
Asp52 2.88 ± 0.08 (3.21) 4.56 ± 0.02 3.6 ± 0.3
Asp66 1.47 ± 0.60 (0.46) 1.15 ± 0.43 1.2 ± 0.2
Asp87 1.48 ± 0.41 (1.46) 2.03 ± 0.07 2.2 ± 0.1
Asp101 2.99 ± 0.09 (3.06) 3.27 ± 0.32 4.5 ± 0.1
Asp119 2.85 ± 0.05 (2.98) 2.45 ± 0.13 3.5 ± 0.3
CT-Leu 1.95 ± 0.37 (1.89) 2.20 ± 0.14 2.7 ± 0.2
Avg abs dev 0.70 (0.70) 0.72
RMSD 0.84 (0.80) 0.93
Max abs dev 1.50 (1.44) 1.75

a Consensus pK a’s based on NMR titration using multiple nu-
clei [133]. b Values in parantheses were obtained from the 2-ns
simulation.

The catalytic residues of HEWL are Glu35 and Asp52, which reside at the inter-

face between two domains, and have the consensus pK a’s of 6.1 and 3.6, respectively.

The experimental range of pK a’s calculated from chemical shifts of different nuclei

were 6.0–6.8 for Glu35 and 3.4–4.0 for Asp52 [133]. The pK a’s from the explicit-solvent

simulation are 7.19 and 2.88, while those from the GB simulation are 4.35 and 4.56,

respectively. Thus, considering the model values of 4.4 and 4.0 for Glu and Asp, the

calculated pK a shifts are in the correct direction in the explicit-solvent simulation

but wrong in the GB simulation. Since the optimum pH for the activity of HEWL is
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around 5 [24], the pK a calculation using the explicit-solvent CpHMD method is able to

offer the correct protonation or charge states for the catalytic residues, which is not

the case with the GB-based method. We note that the previous GB-based CpHMD

simulations with the temperature-based replica-exchange protocol gave a correct di-

rection of the pK a shift for Glu35 [65]. We examined the trajectory to delineate the

cause for the significantly different pK a’s. In the GB simulation, there is a signif-

icant rearrangement of the native structure. We plot the radius of gyration versus

the heavy-atom RMSD using the explicit- and implicit-solvent simulation data (Fig-

ure 4.10). The conformations in explicit solvent have RMSD values, with respect

to the crystal structure, ranging from 1.1 and 1.6 Å, and Rg values ranging from

14.1 to 14.4 Å. However, the conformations in the GB simulation have much larger

RMSD (1.6–2.8 Å) and much smaller Rg (13.8–14.2 Å), which suggests a significant

compaction and global deviation from the crystal structure. This global rearrange-

ment of structure is propagated to the local conformational environment around the

active-site residues, which can be seen from the differences in the solvent exposure of

side chains.

At pH 6, Glu35 has an average solvent accessible surface area (SASA) of 18.9 Å2

in the explicit-solvent simulation, which is similar to the value of 10 Å2 based on the

crystal structure but much smaller than the value of 38.9 Å2 from the GB simulation.

The significant increase in solvent exposure for Glu35 in the GB simulation leads to an

overestimation of the self-solvation energy of Glu35, and thus an underestimation of

the upward pK a shift. For Asp52 the story is exactly reversed. The solvent exposure

of Asp52 is underestimated in the GB as compared to the explicit-solvent simulation.

At pH 4, the average SASA of Asp52 is 2.4 Å2 in the GB simulation, whereas it is 25.4

Å2 in the explicit-solvent simulation, which much closer to the initial value of 26.6 Å2.

Therefore, the self-solvation energy of Asp52 is underestimated in the GB simulation

leading to a calculated pKa value that is too high. Thus, HEWL is a clear case where
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Figure 4.10: Comparison of conformational states of HEWL from explicit- and
implicit-solvent simulations. Conformational states are described by root-mean-
squared deviation (RMSD) and radius-of-gyration (Rg) of HEWL sampled in the
explicit-solvent (red) and GB (blue) simulations at pH 6.

elimination of the “conformational” error introduced by GB can dramatically improve

the accuracy of pKa calculations for residues of biological significance.

4.5 Conclusion

Like temperature and pressure, solution pH is another important experimental

condition that needs to be taken into account in molecular simulations in order to ac-

curately capture physical reality. Motivated by the recent success of the GB implicit-

solvent based CpHMD method in the accurate pK a predictions and mechanistic stud-

ies of pH-dependent conformational dynamics of proteins, we have developed a robust

approach to extend the CpHMD framework to explicit-solvent molecular dynamics

simulations. In this approach, the explicit-solvent force field is used to drive conforma-

tional dynamics, while the GB model is used to efficiently estimate the role of solvent

in modulating the cost of electrostatic free energy for protonation/deprotonation. The

resulting explicit-solvent CpHMD method offers an increased accuracy and wider ap-

plicability as compared the GB-based CpHMD method, while retaining the efficiency
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and robustness of the capability for proton titration. To overcome a critical hurdle

related to the slow convergence of pK a calculations, which has plagued CpHMD and

other constant-pH methodologies, we have implemented a replica-exchange protocol

based on the pH-biasing energy to directly accelerate protonation-state sampling. Re-

markably, due to the tight coupling between titration and conformational degrees of

freedom, this protocol also led to significant enhancement in conformational sampling,

allowing pK a to converge within 1 ns for small model compounds and large proteins.

The random errors in the calculated pK a’s for model compounds were about or below

0.1 pH units.

To benchmark the accuracy of the explicit-solvent based CpHMD method, we

have calculated pK a’s for five proteins and compared with results from the GB-based

method and experiment. We found that the explicit-solvent titrations resulted in an

average absolute error of 0.53 and RMSD of 0.74, on par with those from the GB-

based titrations. However, by bringing the outliers closer to experimental values, the

explicit-solvent method offers significantly improved correlation with experiment as

compared to the GB-based method. Detailed analysis revealed that this improvement

is due to more accurate conformational sampling in explicit solvent. For example,

the explicit-solvent simulation preserved the structural integrity of the loop region,

bringing the calculated pK a of Asp77 from SNase closer to experiment. Compaction

of HEWL in the implicit-solvent simulation caused distortion of the active site and

large deviations in the calculated pK a values for Glu35 and Asp52, while explicit-

solvent simulation preserved the native conformation leading to a correct prediction

of the protonation states at the optimum pH value for catalytic activity. Including

solvent granularity enabled a more realistic description of ion-pair interactions, as

was the case for Asp95 of SNase, where the explicit-solvent simulation gave a bimodal

distribution representing both the close-range and solvent-separated interactions with

Lys70, which resulted in a more accurate estimate of pKa.
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Finally, in the explicit-solvent simulation the hydrophobic cluster in BBL showed

an increased mobility relative to the GB simulation, allowing His166 to be partially

exposed to solvent, which resulted in a reduction in the pK a shift due to desolvation

penalty. The latter aspect is somewhat surprising, but is compatible with previous

GB simulation studies revealing overly rigid hydrophobic assemblies [83,122]. It is also

consistent with the experimental evidence [141] and previous simulation study [142] sug-

gesting water penetration into the hydrophobic core of SNase. Although in the pre-

sented cases, the differences between the explicit-solvent and GB-based pK a results

are small (all within 0.5 pH units), our unpublished data shows that the explicit-

solvent method offers improvement as high as 4 pH units for the worst prediction

cases in the engineered mutants of SNase (Wallace and Shen, unpublished data).

While the results demonstrated in this work are encouraging, we note that several

potential issues merit attention. First, a potential delay in the response of solvent

reorganization to protonation/deprotonation may lead to unfavorable interactions or

inaccuracy in the solvation energetics of the titration site. This problem can be effec-

tively avoided by allowing a few additional dynamics steps between titration updates

to allow relaxation of solvent around the titrating site, as has been demonstrated in

the discrete constant-pH techniques [54]. Also, we identified a small bias towards the

charged form in the titration of Asp, Glu and His residues due to the occasionally

prolonged residence time of the two degenerate protonation states (doubly deproto-

nated in the case of Asp or Glu and doubly protonated in the case of His). Although

the effect of this systematic error on the calculated pK a shifts is likely minimal, it

is clearly a limitation that needs to addressed in the future. Finally, the accuracy of

pK a calculations is still limited by the accuracy of the GB model to determine the

deprotonation free energy. The largest deviation and the single outlier found in this

work is Asp21 in SNase, where both explicit- and implicit-solvent simulations were

not able to reproduce the direction of the positive pKa shift, and underestimated the
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pK a by 3 pH units.

NMR data showed that the titration of Asp21 is coupled to that of Asp19, which

has a negative pK a shift. Although the explicit-solvent simulation was able to dif-

ferentiate between the two pK a’s, it could not quantitatively reproduce the extent of

the negative cooperativity in proton binding. One possible cause is that more exhaus-

tive sampling may be required to fully capture coupled titration events. This issue

deserves further investigation in our future studies. Another aspect that deserves

further investigation is related to the effect due to ions. In the current work and pre-

vious GB-based CpHMD studies, an approximated Debye-Hückel model is applied

in the GB electrostatic calculation to account for the bulk effect of salt screening,

which may not be accurate for highly charged systems such as nucleic acids where

local charge density can be very high. Finally, in order to apply the explicit-solvent

CpHMD to studies of large-scale conformational changes, it may become necessary to

combine with a method for global enhancement of conformational sampling such as

the temperature-based replica-exchange scheme. Despite these remaining limitations,

the current accuracy and precision of the explicit-solvent based CpHMD technique

are encouraging, considering the fact that experimentally determined pK a’s can de-

viate by 0.5-1 pH units depending on the nuclei monitored [133]. Thus, we anticipate

that explicit-solvent CpHMD simulations will emerge as a practical tool for gaining

novel insights into protonation-related phenomena that are ubiquitous in biology and

chemistry. Examples include the mechanism of proton channels, drug-efflux pumps,

pH-dependent catalytic reactions of ribozymes, as well as titration behavior of mixed

micelle systems.
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Chapter 5

Unraveling a trap-and-trigger mechanism in the pH-sensitive

self-assembly of spider silk proteins

We use hybrid-solvent CpHMD simulation to probe the pH-dependence of spider

silk assembly, and find that there are twin electrostatic mechanisms that work in

concert to control silk assembly. This atomically detailed mechanistic information

may be useful for the design of novel silk based materials for engineering or biomedical

applications.

The following content was published in :

Journal of Physical Chemistry Letters

volume 3, pages 658-662, 2012

5.1 Abstract

When the major ampullate spidroins (MaSp1) are called upon to form spider

dragline silk, one of nature’s most amazing materials, a small drop in pH must oc-

cur. Using a state-of-the-art simulation technique, constant-pH molecular dynam-

ics, we discovered a few residues that respond to the pH signal in the dimerization

of the N-terminal domain (NTD) of MaSp1 which is an integral step in the fiber

assembly. At neutral pH the deprotonation of Glu79 and Glu119 leads to water

penetration and structural changes at the monomer-monomer binding interface. At

strongly acidic pH, the protonation of Asp39 and Asp40 weakens the electrostatic at-

traction between the monomers. Thus, we propose a “trap-and-trigger” mechanism

whereby the intermolecular salt-bridges at physiologically relevant pH conditions al-

ways act as a stabilizing “trap” favoring dimerization. As pH is lowered to about 6,
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Glu79 and Glu119 become protonated, triggering the dimerization and subsequent

silk formation. We speculate that this type of mechanism is operative in many other

pH-sensitive biological processes.

5.2 Introduction

Spider dragline silk is one of nature’s most spectacular materials. The toughness

of spider silk surpasses synthetic rubber and its strength is comparable to high-tensile

steel [143]. These exceptional properties, combined with incompatibility, make silk and

silk biomimetics attractive materials for future bio- and material engineering applica-

tions. Silk based products have been envisioned as drug delivery systems [144] and scaf-

folds for tissue engineering [145,146], adhesives, and microfluidic devices [147]. Dragline

silk is made of proteins known as the major ampullate spidroins 1 and 2 (MaSp1 and

MaSp2) which are stored in the major ampullate gland of spiders as a microemul-

sion [148,149]. The MaSp’s are comprised of a repetitive domain containing polyalanine,

glutamine- and glycine-rich motifs as well as the non-repetitive C-terminal and N-

terminal domains [148,149]. During silk spinning the spidroins pass from the gland,

through the exit duct, while being subjected to several chemical and physical forces

leading to nano-composite fibers [148]. A major factor contributing to the transition

from soluble proteins to silk fibers is acidification [13]. While solution pH drops from

7.2 in the gland to 6.3 within the first millimeter of the 20 mm exit duct [150], the pH

at the distal end of the duct may be substantially lower [13,151]. Acidification has been

found to increase the rate at which soluble silk proteins from Euprosthenops australis

spiders [14] and Bombyx mori silkworms [152] aggregate suggesting this acid-bath treat-

ment is a general method employed by nature for producing the delicate, yet durable,

silk fibers.

Recently, several experiments have demonstrated that the NT domain of MaSp1

(NTD) is the pH sensing portion, which dimerizes, allowing spidroins to self-assemble
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by a relay-like mechanism into silk fiber [14,149,153,154].

However, a detailed mechanism of the pH-dependent assembly process remains

unclear. Askarieh et al. solved a crystal structure which showed that the NTD from

Euprosthenops australis exists as a stable homodimer [14]. However, experiments based

on electrospray ionization mass spectrometry with the same protein [154] and NMR

with the protein from Latrodectus [155] indicated that NTD is mainly monomeric at

neutral pH. The dimeric form is more stable at acidic pH and low concentrations of

salt, consistent with the pull-down experiments using NTD’s from both Latrodectus

and Nephila [149]. Moreover, the interpretation of a pH-dependent red shift of trypto-

phan fluorescence differs as to whether it is the result of the conformational change

in the dimer [14] or monomer [149].

The aforementioned inconsistency has prompted us to investigate the pH effect

on the dimerization of NTD using a state-of-the-art simulation technique, continuous

constant-pH molecular dynamics (CpHMD) [64,66] with conformational sampling in

explicit solvent and pHREX [104], which allows us to determine the pK a values of

all ionizable side chains and probe the pH-dependent conformational dynamics in

atomistic details. Our data indicates that the dimer becomes destabilized as the pH

is increased above 6, as a result of the ionization of key residues Glu79 and Glu119

which leads to water penetration into the monomer-monomer interface.

5.3 Methods

5.3.1 Structure preparation

The initial structure of the dimeric NTD-MaSp1 was prepared by removing all

hetero-atoms and adopting the first of the two side-chain orientations based on the

crystal structure (PDB ID: 3LR2). Missing residues were built with the program

Modeller [156]. Hydrogens were added with the HBUILD facility in the CHARMM
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program [39] and the structure was placed in a truncated octahedral water box with

dimensions 18 Å greater than the largest dimension of the protein. Sodium chloride

was added such that the solvent ionic strength was 100 mM. Water molecules within

2.6 Å of any heavy atom were deleted and the system was energy minimized in several

stages with progressively smaller harmonic restraint applied to heavy atoms of the

protein.

5.3.2 Simulation details

The structures of the dimer and corresponding subunits as prepared above were

used to initiate the pHREX titration simulations of the dimer and monomers, re-

spectively. All simulations were conducted using the PHMD module [64,66,104] in the

CHARMM program (version c35b3) [39]. The most recent extension [104] of the PHMD

module which includes conformational sampling in explicit solvent and the pH-based

replica-exchange (pHREX) protocol to accelerate barrier crossing and convergence

was applied. The all-atom force fields, CHARMM22/CMAP [36] and TIP3P [134], were

used to represent the protein and water atoms, respectively. Molecular dynamics sim-

ulations were run at ambient temperature and pressure using Hoover thermostat [136]

and Langevin piston pressure coupling [137]. The SHAKE algorithm was applied to all

bonds and angles involving hydrogen to allow a time-step of 2 fs. The electrostatic

interactions were calculated using the particle-mesh Ewald summation. The van der

Waals interactions were calculated with a switching function starting at 10Å and

ending at 14 Å. The generalized-Born (GB) implicit model, GBSW [79], with a Debye-

Hückel term for taking into account salt screening (ionic strength was set to 100 mM),

was applied to calculate solvent-modulated electrostatic energies for the propagation

of titration coordinates [104]. The implicit-solvent model GBSW [79] was employed with

a refined set of atomic radii [98] to define the dielectric boundary. The GB calcula-

tion and update of titration coordinates were executed every 10 dynamic steps. In a
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pHREX simulation, independent replicas are subject to molecular dynamics runs at

ambient temperature and pressure but different pH conditions. An exchange between

adjacent pH conditions was attempted every 500 dynamic steps. The pHREX pro-

tocol was enabled through a Perl package, MMTSB Tool Set [91], which provides an

interface with the CHARMM program. A total of 14 and 17 replicas was used for the

monomer and dimer simulations, respectively. Simulations were carried out for 5500

exchange attempts (5.5 ns) per replica, resulting in the cumulative simulation time

of 77 ns for the monomers and 93.5 ns for the dimer. To optimize the exchange fre-

quency between neighboring pH replicas, trial 1 ns pHREX simulations were carried

out with pH conditions 0–10 with 1 pH unit intervals. The exchange success ratios

were examined, and additional replicas were added at 0.5 pH unit intervals between

replicas with exchange ratios below 20%. For monomer simulations, there were 14

replicas at pH values of 0.0, 1.0, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, and

10.0. For the dimer simulation there were 17 replicas at pH values of 0.0, 1.0, 1.5,

2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, and 10.0. The coordinates

and titration states were recorded after each exchange attempt. In the data analysis,

the first 500 exchange cycles (0.5 ns per replica) were discarded.

5.3.3 Calculation of pK a’s and pH-dependent dimer stability

pK a values were calculated by fitting the unprotonated fractions (S) at each pH

to the Hill equation given by

S =
1

1 + 10n(pKa−pH)
(5.1)

where n (the Hill coefficient) and the pK a are fitting parameters.

Analytical integration of the Wyman-Tanford linkage equation leads to the fol-

lowing expression for the pH-dependent free energy of dimer dissociation in analogy
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to the pH-dependent protein stability [83],

∆∆G(pH) = ∆G(pH)−∆G(pHref ) = (5.2)

= RT
∑
i

1

nMi
ln

1 + 10n
M
i (pKM

i −pH)

1 + 10n
M
i (pKM

i −pHref )

− RT
∑
i

1

nDi
ln

1 + 10n
D
i (pKD

i −pH)

1 + 10n
D
i (pKD

i −pHref )
,

where the summation runs over all residues. nDi , pKD
i and nMi , pKM

i are the Hill

coefficients and pK a values for the ith residue in the dimeric and monomeric forms,

respectively. In this work we set pHref = 8.0.

5.3.4 Poisson-Boltzmann calculations

Electrostatic potential maps were calculated using the Poisson-Boltzmann (PB)

facility in the CHARMM program [39]. The atomic charges on the titratable residues

at different pH conditions were set as the average charge calculated from the pHREX

titration simulation at the respective pH condition. The PB calculations used a salt

concentration of 100 mM, a 1Å ion exclusion (Stern) layer, an internal dielectric

constant of 4 and an external dielectric constant of 80. Electrostatic potential maps

were rendered using the program VMD [93].

5.3.5 Error estimates

To estimate the uncertainty of the calculated pK a values (fitting parameters k), we

applied the well-known Monte Carlo “bootstrap” method [157]. The method comprises

three steps: (1) generate a large number (we used 100) of independent bootstrap

samples S∗(i), i = 1...N , where S represents the unprotonated fraction; (2) calculate

the quantity of interest, i. e. the fitting parameter k∗(i), for N bootstrap samples; and

(3) calculate the standard deviation of the k∗(i) values. For step (2) we assume that

the probability of selecting a particular S value in each set S∗i is given by a Gaussian
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distribution centered at Sfinal(pH) and having a standard deviation calculated by block

standard-error [115,116] of the unprotonated fraction (see Eq. 3.8). The error associated

with the resulting pH-dependent free energy of dimer dissociation was calculated by

propagating the estimated error in calculated pK a values.

5.4 Results and Discussion

Considering the experimental findings [14,149,154,155], we hypothesized that the ori-

gin of the pH-dependent dimerization may be explained by the intermolecular in-

teractions between monomers, and that ionization of a few residues could shift the

monomer-dimer equilibrium. To test this hypothesis, we carried out pH titration

simulations using the pHREX-CpHMD method in explicit solvent for the dimer and

monomer forms of NTD starting from the crystal structure of the dimer (PDB ID:

3LR2) and two monomer units, respectively. Molecular dynamics at pH conditions of

0 to 10 was performed for 5.5 ns while simultaneously titrating all acidic and histidine

residues and periodically attempting exchanges between pH replicas. The cumulative

simulation time was 77 ns and 93.5 ns for the dimer and monomers, respectively.

These simulations allowed us to determine pK a values and obtain details of the con-

formational dynamics at each pH condition. The convergence of the pK a values is

illustrated in Figure 5.1 which shows that the pK a values are very stable after the

first few-thousand exchange cycles.

Using the pK a values of all titratable residues in the dimer and unbound monomers

(Table 5.1) we calculated the total charge of the dimer and monomers (Figure 5.2a).

Using the pK a shifts upon dimerization we obtained the pH-dependent changes in the

dimer stability (Figure 5.2b) by analytically integrating the Wyman-Tanford linkage

equation [18]

∂∆G/∂pH = ln(10)RT∆Qdiss (5.3)
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Table 5.1: Calculated pK a values of the unbound (monomer)
and bound (dimer)

Residue pK a
unbound pK a

bound ∆pK a

Monomer A
His6 6.83 ± 0.07 6.88 ± 0.07 0.05 ± 0.10
Glu17 4.06 ± 0.02 4.10 ± 0.03 0.04 ± 0.04
Asp39 3.05 ± 0.05 1.31 ± 0.06 -1.74 ± 0.07
Asp40 4.11 ± 0.05 4.62 ± 0.04 0.51 ± 0.06
Glu79 4.42 ± 0.04 6.26 ± 0.05 1.84 ± 0.07
Glu84 4.40 ± 0.04 4.91 ± 0.06 0.51 ± 0.07
Glu85 3.92 ± 0.04 3.89 ± 0.04 -0.03 ± 0.05
Glu119 4.23 ± 0.05 6.12 ± 0.04 1.89 ± 0.05
Asp134 3.83 ± 0.05 3.55 ± 0.07 -0.28 ± 0.08
CT-Ala 3.35 ± 0.04 3.36 ± 0.04 0.01 ± 0.05

Monomer B
His6 7.10 ± 0.04 7.73 ± 0.07 0.63 ± 0.08
Glu17 4.15 ± 0.05 4.15 ± 0.04 0.00 ± 0.06
Asp39 2.80 ± 0.04 2.03 ± 0.06 -0.77 ± 0.07
Asp40 4.19 ± 0.05 3.13 ± 0.10 -1.06 ± 0.11
Glu79 4.43 ± 0.05 6.73 ± 0.06 2.30 ± 0.08
Glu84 4.48 ± 0.07 4.70 ± 0.04 0.22 ± 0.08
Glu85 3.97 ± 0.04 3.88 ± 0.04 -0.09 ± 0.06
Glu119 4.32 ± 0.03 6.71 ± 0.05 2.39 ± 0.06
Asp134 4.22 ± 0.06 3.58 ± 0.04 -0.64 ± 0.07
CT-Ala 3.37 ± 0.03 3.73 ± 0.05 0.36 ± 0.06

pK a values determined by fitting the simulated unprotonated
fractions to the Hill equation. Error bars are the standard
deviation of 100 bootstrap trial fittings. ∆pK a = pK a

bound -
pK a

unbound

Error bars are the standard deviation (σ) of 100 bootstrap trial
fittings.
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Figure 5.1: Time series of pK a values of NTD monomer and dimer. Cumulative pK a

values estimated from the unprotonated fraction (S) at the pH value nearest the pK a

for all residues titrated.

where ∆G is the free energy of dimer dissociation (or dimer stability) and ∆Qdiss is

the change in the total charge as dimer dissociates. The integrated form of Eq. 5.3 is

given by Eq. 5.2.

Our calculated isoelectric point (pI), 4.4 and 4.1 for the dimer and the two

monomers, respectively (Figure 5.2a), are in good agreement with the value of 4.25

for the dimer determined by the measurements of electrophoretic mobility [14]. Ac-

cording to the calculated stability change (black curve in Figure 5.2b), the dimer is

least stable at pH 8. As the solution pH is decreased to 6, the dimer is stabilized

by about 3.5 kcal/mol. The stabilization continues as pH is lowered to near 4 where

dimerization is favored by 11 kcal/mol as compared to pH 8. As the solution pH is

reduced further the dimer is again destabilized.

The stability change of the dimer can be decomposed into contributions from each

titratable residue assuming no coupling between their protonation equilibria. The
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Figure 5.2: pH-dependent change in total charge of NTD monomer and dimer and
stability of the NTD dimer. a) Total charge of the dimer (solid) and the two monomers
(dashed) calculated at different pH conditions. b) Stability change (free energy of
dimer dissociation), ∆∆G) relative to the pH 8 condition calculated using all pK a

values (black), Glu79 and Glu119 (blue), and Asp39 and Asp40 (red). A horizontal
line is drawn at ∆∆G of zero to guide the eye.

contributions from residues Glu79 and Glu119 dominate the stability change in the

pH range of 4 to 8 (blue curve in Figure 5.2b) and they are also the major source for

the change in the total charges upon dimerization in the same pH range (Figure 5.2a).

This is because the pK a’s of Glu79 and Glu119 have the largest positive shifts upon

dimerization. The pK a’s in the monomers are similar to the model value, around 4.4,

but in the dimer they are shifted to above 6. Ionization of these residues significantly

destabilizes the dimer. On the contrary, the pK a values of Asp39 and Asp40 have the

largest negative shifts upon dimerization. Therefore, they are together responsible

for the stability change in the pH range 0-4 (red curve in Figure 5.2b). They are also

major contributors to the change in the total charge upon dimerization.

We next examine in detail how ionization of Glu79 and Glu119 leads to the desta-

bilization of the dimer at elevated pH. According to our calculation, as solution pH

is increased from pH 4 to pH 8, the ionization of Glu79 and Glu119 destabilizes the

dimer by more than 10 kcal/mol. When solution pH is 4 or 5, which is below the pK a

values of Glu79 and Glu119 (between 6.1 and 6.7), these residues are only weakly

solvated. The distribution of the hydration number is centered around 2 (Figure 5.3).
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Figure 5.3: pH-dependent hydration of Glu79 and Glu119 in NTD dimer. Probability
distributions of the hydration numbers for Glu79 and Glu119 in both monomer units
at different pH conditions. Hydration number is defined as the number of water
molecules within 3 Å of the side chain.
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However, as pH is increased, the hydration number increases due to ionization

of the side chains of Glu79 and Glu119. The distribution becomes bimodal at pH

6, while at pH 7 and 8, the maximum probability is shifted to around 6 or 7. The

hydration of Glu79 and Glu119 at the pH above 6 is associated with the entrance

of water molecules into the dimerization interface. The latter can be quantified by

the change in the interfacial solvent accessible surface area (SASA) as a function of

pH (Figure 5.4a). At pH 4 and 5, the interfacial SASA fluctuates around 1200-1300

Å2 but the distribution shifts to larger values as pH is increased to 6. When pH is

further increased to 7 and 8, the maximum probability for SASA is around 1500 Å2.

Thus, an increase of pH from 4 to 8 results in an increased solvent-exposure of the

dimer interface by at least 200 Å2. To further characterize the pH-induced water

penetration, we calculated the radial distribution function (RDF) for water relative

to the dimer center (Figure 5.4b). At pH 8, the RDF shows an increased density

of water near the dimer center as compared to pH 4. The notable accumulation of

water at around 10 Å and 12 Å corresponds to the positions of Glu79 and Glu119,

respectively.
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Figure 5.4: pH-dependent solvent exposure of NTD dimer interface. a) Probability
distribution of the interfacial solvent-accessible surface area (SASA) at different pH
conditions. b) Radial distribution function (RDF) of water to the dimer center (de-
fined as the center of the Cα atoms in Phe73 and Ala74) at pH 4 (purple) and 8
(red).

As water molecules enter and the monomer-monomer interface opens up, confor-
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mational rearrangement occurs. Although our simulation can not describe the full

extent of the conformational change to due to the limited sampling time, it offer

a glimpse at the initial events. At pH 6 and above, the contacts between residues

from the opposite monomer subunits (A and B) are weakened. Most notably, the

contact probabilities for Glu79(A)–Met71(B) and Met71(A)–Glu79(B), as well as for

Glu119(A)–Met126 (B) and Met126(A)–Glu119(B) are significantly reduced (see Fig-

ure 5.5). The general trend of the weakened inter-molecular interactions at elevated

pH conditions is another indication of the destabilization of the dimer. Moreover, we

observe that upon ionization Glu119 rotates out of the binding interface into solution.

The most probable distance between Glu119 and the dimer center is around 12 Å at

pH 4, but at pH 8 the distribution becomes bimodal with a population centered at

just greater than 15 Å (Figure 5.6).

For Glu79 there is a very slight shift outward, which is a result of the expansion of

the dimer structure (Figure 5.8). For Glu119, along with the overall movement of the

dimer, there is a distinct change in the χ2 angle at basic pH and a rotation of Helix

5 towards solution which allows Glu119 to become more solvated (see Figure 5.7).

At pH 4, the χ2 angle of Glu119 samples ±180◦ and there is a minor population

at 70◦, but at pH 8 χ2 is predominately 70◦ and the position at ±180◦ is not sam-

pled. The related conformational rearrangement can be readily seen by comparing

the snapshots taken from the simulation at pH 4 and pH 8 (Figure 5.8).

Our simulated titration data reveals two key residues responsible for the pH-

dependent dimerization of NTD-MaSp1. At slightly acidic pH Glu79 and Glu119 are

protonated, but at pH above 7 these residues become ionized. Burial of these charged

residues in the hydrophobic environment of the dimer interface is unfavorable which

results in a destabilization of the dimer by about 3.5 kcal/mol when pH is raised

from 6 to 8 (Figure 5.2). Thus, according to our data, mutation of Glu79 to a neutral

residue Gln should favor the dimerization at neutral or elevated pH, consistent with
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Figure 5.5: Difference (pH 4 less pH 8) contact probability map of monomer-monomer
side chain interactions. Positive value indicates more probable contact at pH 4,
while negative value indicates contact more probable contact at pH 8. Residues are
considered to be in contact if the geometric centers of the side chain heavy atoms are
within 7Å.
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Figure 5.6: Probability distribution of Glu79 and Glu119 distance to dimer center.
Probability distribution of the distance to the center-of-mass of the dimer from Glu79
(solid) and Glu119 (dashed) at pH 4 (blue) and pH 8 (red).
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Figure 5.7: Probability distribution of Glu119 side chain orientation. Probability
distribution of the χ2 angle of Glu119 at pH 4 (blue) and pH 8 (red).

Figure 5.8: pH-dependent conformational rearrangement of NTD dimer. Top (upper)
and side (lower) views of the snapshots taken from the simulation at pH 4 (left) and
pH 8 (right). Glu79 and Glu119 are explicitly shown. Images were rendered using
the VMD program [93].
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the electrospray ionization mass spectrometry data which showed that mutant D79N

is able to dimerize at pH 6.8 and 7 in contrast to the wild type [154].

Our dynamics data shows that ionization of the interfacial residues Glu79 and

Glu119 at or above pH 7 causes the dimer interface to open up, which allows wa-

ter molecules to enter, thereby weakening the intermolecular interactions that are

responsible for holding the two monomer units together (Figure 5.3, 5.4 and 5.8).

The pH-induced conformational change in the dimer is consistent with the deuterium

exchange data which showed decreased deuteration level at pH 6 relative to pH 7 [154].

The same set of experiments also showed that mutation D40N, E84Q or D40N/E84Q

inhibits the dimer formation at low pH. However, these data do not necessarily im-

ply that ionization of Asp40 or Glu84 promotes the dimer stability at low pH. This

is because Asp39, Asp40 and Glu84 are clustered together in the crystal structure,

and mutation of one side chain likely perturbs the electrostatic interactions of the

other two. To rationalize these experimental data, additional simulation based on

the mutant structures would be necessary, which is beyond the scope of the current

paper.

Our simulation also reveals that the dimer interface is further stabilized by elec-

trostatic interactions. Asp39 forms salt-bridges with Arg60 or Lys65 of the opposite

subunit (see Figure 5.9). These favorable interactions are reflected in the negative

pK a shift of Asp39 upon dimerization. Asp40 also interacts with Lys65 of the other

subunit, although the extent of the pK a shift is less than that of Asp39. As pH is

decreased below 4, Asp39 and Asp40 become protonated, the fraction of the tightly

bound interactions with Arg60 and Lys65 is drastically reduced. Thus, ionization of

Asp39 and Asp40 is responsible for the reduced dimer stability at pH below 4 (blue

curve in Figure 5.2b).
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Figure 5.9: Probability distributions of NTD inter-monomeric salt-bridges. Proba-
bility distribution of the minimum distance between heavy atoms in Asp39-Arg60,
Asp39-Lys65 and Asp40-Lys65 when the acidic residue is fully deprotonated (red)
and fully protonated (blue). The distribution for the pH condition The subunit is
indicated in the parenthesis.
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5.5 Conclusion

In summary, we have identified a pH-modulated electrostatic system that controls

the dimerization of NTD-MaSp1 (see Figure 5.10). In the pH range 4-6, the dimer is

Figure 5.10: pH-dependent electrostatic potential of NTD dimer subunits. Electro-
static surface potential maps are calculated using the average charges derived from
the unprotonated fractions of titratable residues at each pH. The subunits are sepa-
rated and oriented to show the dimer interface. The locations of Glu79 (turquoise)
and Glu119 (green) are circled. Images were rendered using the VMD program [93].

stabilized by the salt bridges (Asp39-Arg60, Asp39-Lys65, Asp40-Lys65) formed at

the opposite poles of the subunits. Glu79 and Glu119 are protonated and buried in

the interface. At pH above 6, these two residues become deprotonated and introduce

a large excess negative potential resulting in a large desolvation penalty for the for-

mation of the homodimer. Thus, we propose that a “trap-and-trigger” mechanism

controls dimerization where the opposite poles at physiologically relevant pH condi-

tions always act as a stabilizing “trap” favoring dimerization. However, the acidic

residues at the hydrophobic interface must be protonated, and protonation of these
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residues is the “trigger” that causes the NTD to dimerize and act as a pH-sensitive

relay during silk formation.
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Chapter 6

Explicit-solvent continuous constant-pH molecular dynamics

with reaction field electrostatics and charge leveling

Spurred by the attempts of others to develop a fully explicit-solvent continuous

constant-pH molecular dynamics (CpHMD) approach, we implemented techniques

that allow the system net-charge to remain neutral as titration proceeds and give

a proper treatment on long-range electrostatic interactions. Our data shows that

explicit-solvent CpHMD can deliver pKa values in good agreement with experiment

when these techniques are applied. This indicates that explicit-solvent CpHMD can be

used as a reliable tool for controlling solution pH in molecular dynamics simulations.

6.1 Abstract

The use of constant-pH molecular dynamics (pHMD) is becoming increasingly

popular. Most pHMD approaches are dependent in part or whole upon an implicit-

solvent model; however, tests of fully explicit-solvent pHMD on small peptides [69]

and nucleotides [70] have recently emerged. Encouraged by these results, we perfect

a method that combines the continuous constant-pH molecular dynamics framework

with a reaction-field treatment of long-range electrostatics and a charge-leveling tech-

nique. We implemented these methods in the CHARMM [39,40] simulation program

and tested them on a series of aliphatic dicarboxylic acids and proteins. We find agree-

ment with experiment is poor if the net charge of the system is allowed to vary, but

coupling ionization of titratable sites to the charging/neutralization of co-ions, which

act as a charge reservoir, allows good agreement with experiment to be obtained.

For protein residues which participate in strong electrostatic and hydrogen-bond in-

teractions, our data indicates that insufficient sampling of the energetically available
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conformations is a major source of difficulty in the calculation of protein pK a values.

6.2 Introduction

Solution pH is an extremely important factor in chemical and biological processes.

Proton uptake and release, driven by pH, can affect the energetics [158] and kinetics [159]

of protein-protein complex formation. Conformational transitions of proteins between

different folded states [160] or between native and denatured states can be modulated by

pH [86,161,162]. Protein-ligand binding [18,163] and enzymatic activity of proteins [164,165]

and ribozymes [166] can be affected by pH. Solution pH can also control morphological

characteristics of large protein complexes such as aggregates of β-amyloid [167,168] and

spider-silk proteins [14]. In solutions of fatty-acids, and other titratable amphiphilic

molecules, changes in solution pH can trigger vesicle-micelle-bilayer transitions [169,170].

Due to the fundamental importance of pH, there have been several molecular dynam-

ics techniques proposed where protonation states are allowed to respond to their local

chemical environment and the specified pH. These methods, broadly referred to as

constant-pH molecular dynamics (pHMD), have been reviewed elsewhere [82,140], but

will briefly be discussed here.

The pHMD approaches fall into two categories: methods which use continuous

protonation states and those that use discrete protonation states. In the discrete

approach, fixed protonation state molecular dynamics (MD) is carried out and pe-

riodically interrupted, then protonation states are updated by Monte-carlo (MC)

sampling. These methods differ in the solvent model used during the MD stage, ei-

ther explicit [52,56,62] or implicit [59,60] and in how the change in energy is calculated

after an update of the protonation states.

In the second continuous approach, additional titration degrees of freedom are

added for every titratable site and are propagated alongside conformational dynam-

ics. These methods are referred to as continuous constant-pH molecular dynamics
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(CpHMD) since protonation states are controlled by continuous variables. The most

widely applied, and arguably most successful, of these methods initially used a gen-

eralized Born (GB) implicit-solvent model for propagating both conformation and

titration coordinates [64–66]. Later, in an attempt to circumvent conformational er-

ror introduced by GB while retaining the ability to efficiently evaluate the energetic

effects of solvation, CpHMD was extended to allow conformational sampling to be

carried out in explicit solvent, while the titration coordinates were propagated via

GB energetics. This hybrid-solvent CpHMD approach, combined with pH-replica ex-

change (pHREX), offered more realistic conformational sampling, and thus delivered

more accurate pK a values for a series of proteins [104].

The more accurate conformational sampling provided by explicit solvent in hybrid-

solvent CpHMD was critical for understanding the origin and direction of pK a shifts

of a probe fatty-acid molecule embedded in cationic, anionic, and neutral micelles in

a comparison of implicit- and hybrid-solvent CpHMD [171]. Hybrid-solvent CpHMD

has been used to investigate the microscopic origins of the pH-dependence of spi-

der dragline silk assembly [172] and to calculate the thermodynamic coupling between

a large-scale conformational transition and the ionization of an internal residue in a

staphylococcal nuclease mutant [173]. Although hybrid-solvent CpHMD shows promise,

there are some inherent limitations of the method. For instance, since conformation

and titration sampling are controlled by different energy models, the energetics of

conformation and protonation state are not strictly coupled. This decoupling may

lead to inaccuracies when simulating pH-dependent conformational transitions [173].

The mixed-energy scheme of hybrid-CpHMD also prevents the method from being

combined with the widely-used temperature-replica exchange (TREX) [104] sampling

protocol. Additionally, the GB model used in hybrid-solvent CpHMD has been shown

to require time-consuming parametrization of the molecular boundary to reproduce

explicit-solvent energetics [98] and there is a limit to how closely GB can match explicit-
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solvent results [101].

Recently there have been reports of CpHMD simulations of proteins [69] and nucleic

acids [70] in explicit solvent where the protonation transitions are driven not by GB,

as in the hybrid-solvent approach, but by forces originating from interactions with

all atoms of the system. True explicit-solvent CpHMD is very attractive because

the conformation and titration energetics are strictly coupled, and parametrization of

GB is avoided altogether. However, in previous reports, although model compound

titration was successful and tests on small derivatives of the model compounds were

carried out, little [70] to no [69] comparison with experimental pK a data was reported.

The comparison of calculated and experimental pK a values is the most direct

way to test how accurately CpHMD can model protonation and pH-dependent con-

formational equilibria of titratable systems. Without such comparisons, whether

explicit-solvent continuous constant-pH molecular dynamics (ECpHMD) can be re-

lied upon as a predictive tool for studying the effects of pH in complex systems, as

have the GB [65,124] and hybrid-solvent approaches [104,171], remains an open question.

In consideration of the emergence of ECpHMD and the lack of comparison to ex-

perimental pK a values, we have extended the CpHMD module of CHARMM [39,40] to

allow ECpHMD simulation in combination with a generalized reaction field (GRF)

treatment of long-range electrostatics [41].

The GRF method is readily adaptable to the CpHMD framework because forces

are calculated from strictly-pairwise interactions; unlike smooth Ewald methods where

the electrostatic force is calculated in part from a convolution over the charge inter-

polation grid [174]. The GRF method has been shown to give results comparable to

the more expensive Ewald methods in simulations of RNA [175], small peptides [176,177],

protein crystals [178], highly-charged proteins [179], as well as the calculation of protein-

folding kinetics [180]. Additionally, in a mixed Poisson-Boltzmann/explicit-solvent

pHMD method, GRF electrostatics gave more accurate pK a values than particle
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mesh Ewald (PME) [54].

We have also implemented a method to circumvent a fundamental problem associ-

ated with finite-system simulations at constant pH; a non-neutral and pH-dependent

net charge. To address this problem, we couple ionization of titratable sites to the si-

multaneous neutralization of co-ions in solution. This approach allows the net-charge

of the system to remain constant and neutral as titration proceeds. Lastly, we mod-

ified the distributed-replica (REPDSTR) module of CHARMM to allow pHREX or

TREX to be combined with CpHMD.

We first present the simulation methods used in our study and then test pHREX-

CpHMD on a series of aliphatic dicarboxylic acids. We calculate the pK a values

of dicarboxylic acids where carboxyl groups are separated by intervening chains of

methylene groups of length two to seven using CpHMD using implicit and explicit

solvent. We compare pK a values calculated using ECpHMD with and without the

charge-leveling procedure.

We find that the difference between the first and second ionization pK a values

is severely overestimated (average absolute deviation of nearly 2 pK units) when

ECpHMD is applied without neutralizing the net charge, but with charge leveling

good agreement with experiment is obtained. The average absolute deviation of the

first-ionization pK a values and the difference between the first and second pK a’s are

both 0.18 pK units (excluding succinic acid) from ECpHMD simulation with charge

leveling, while the average absolute deviation of the first pK a values calculated using

GB is 0.43. We examine pH-dependent conformational propensities and changes in

solvent distributions as a function of pH for the longest dicarboxylic acid (azelaic

acid) which has seven methylene groups separating the titration sites.

We then calculate pK a values of protein side chains. We test the method on two

small proteins (HP36 and BBL) and a moderately sized enzyme (HEWL) which are

known to have pK a values that deviate significantly from model compound values
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due electrostatic and desolvation effects. For the most compact protein (HP36) we

calculated pK a values with and without charge leveling. We also compare the results

obtained using charge leveling at zero ionic strength and at a salt concentration that

matches experiment. We find that the calculated pK a values deviate significantly

(average absolute deviation ≥ 2.1 pK units) without charge leveling, but this devi-

ation is reduced to 1.2 pK units when charge leveling is applied. The addition of

salt to match experiment reduces the average absolute deviation further to 0.7 units.

Results for BBL are in good agreement with experiment, having a root-mean-squared

deviation (RMSD) of 0.3 pK units. For HEWL, the results are mixed. The pK a val-

ues of surface residues are in good agreement with experiment; however, for several

residues which have the ability to form salt bridges and hydrogen bonds, pK a values

deviate by over 1 pK unit as a result of inadequate conformational sampling.

This work represents, to the best of our knowledge, the first test of ECpHMD’s

ability to quantitatively predict pK a values for complex molecules, while demonstrat-

ing the necessity to maintain charge neutrality and sample all relevant conformational

states for the accurate calculation of pK a values.

6.3 Methods

6.3.1 Explicit-solvent continuous constant-pH molecular dynamics with

charge leveling

Although previously outlined in Chapter 1, we describe the CpHMD framework

here for completeness. The CpHMD approach, based on the λ-dynamics technique [77],

uses an extended Hamiltonian to simultaneously propagate spatial (real) and titration

(virtual) coordinates. The total Hamiltonian of the system can be written as

H({ra}, {θi}) =
∑
a

ma

2
ṙ2
a+U

int({ra})+Uhybr({ra}, {θi})+
∑
i

mi

2
θ̇2
i +U

∗({θi}), (6.1)

119



where a = 1, Natom is the index for atomic coordinates, and i = 1, Ntitr is the index

for the continuous variables (θi) which are related to the titration coordinates (λi) by

λi = sin2(θi). (6.2)

Boundaries are naturally imposed on titration coordinates through the sine function,

where λi = 0 corresponds to the protonated state and λi = 1 corresponds to the un-

protonated state. For residues with two competing titration sites, a second continuous

variable is included to allow interconversion between tautomers.

In Eq. 6.1, the first term is the kinetic energy of the real system (atoms), U int is

the internal potential energy which is independent of titration, and Uhybr is the non-

bonded energy involving titration sites which enables coupling between conformation

and titration degrees of freedom. The last term (U∗) comprises a biasing potential

(U barr) to suppress intermediate values of λ (see Eq. 1.23), the model compound

potential of mean force (PMF)(Umod), and the term that imposes pH-dependence

onto the protonation equilibria (UpH). Together they are written as

U∗({θi}) =
∑
i

(−Umod(θi) + UpH(θi) + Ubarr(θi)), (6.3)

where the pH-dependent term is given by

UpH(λi) = log(10)kbT (pKref
a − pH)λi, (6.4)

and pKref
a is the experimentally determined pKa of a reference molecule. For titratable

groups with a single proton-binding site, the model compound PMF is fit with a

harmonic potential given by

Umod(θi) = A(sin2(θi)−B)2 (6.5)
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where A and B are fitting parameters. For residues with two tautomeric states, the

PMF is both second-order in λ and x (an additional tautomeric degree of freedom) [66].

To determine the parameters A and B, we fit the derivative of Eq. 6.5 to the mean

force calculate at several values of θi.

In order to maintain charge neutrality, we couple deprotonation of each acidic site

to neutralization of a chloride ion and deprotonation of each basic site to ionization

of a sodium ion. The net reaction under consideration is

AH + Cl− 
 A[H]− + Cl0 (6.6)

for each acidic site and

BH+ + Na0 
 B[H]0 + Na+ (6.7)

for each basic site. Protons on the product-side of the above chemical equilibria are

in brackets to indicate that their electrostatic and vdW interactions have been turned

off. In the CpHMD approach we do not allow these product-protons to move into

solution, but instead account for the effects of proton concentration by including the

pH-bias energy term (Eq. 6.4). In the proposed charge-leveling procedure, the PMF

for each titration process is the sum of the individual PMFs for the deprotonation

of a reference compound and the ionization or neutralization of a co-ion. Since on

each side of the equilibria (Eq. 6.6 and 6.7) only one species carries a net-charge,

interaction between the titration site and it’s co-ion is minimized.

The hybrid-energy term (Uhybr) is written as a sum of the non-bonded energy

terms; van der Waals, Coulombic, and generalized reaction field. Each has explicit

dependence upon the titration degrees of freedom and are together written as

Uhybr({ra}, {θi}) = UvdW({ra}, {θi}) + UCoul({ra}, {θi}) + UGRF({ra}, {θi}) (6.8)
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where the latter term (UGRF ) is given by

UGRF = − qaqb
4πε0εin

(
0.5CRF r

2
ab

R3
c

+
1− 0.5CRF

Rc

)
. (6.9)

Here, rab is the distance between two atoms, qa and qb are the respective (possibly

λ dependent) instantaneous partial charges (see Eq. 1.19), and εin is the relative

dielectric constant (typically set to one) within the the non-bonded cutoff radius Rc.

CRF includes ionic strength dependence, governs the magnitude of the reaction field

term, and is given by

CRF =
(2εin − 2εout)(1 + κRc)− εout(κRc)

2

(εin + 2εout)(1 + κRc) + εout(κRc)2
(6.10)

where εout is the relative dielectric constant of the surrounding medium (e.g. the value

for water) and κ is the inverse Debye screening length [41] where κ2 = 8πq2I/ekbT and

I is the ionic strength.

With our charge-leveling procedure, the free-energy difference between the depro-

tonation of the reference compound in solution and that in the environment of interest

includes contributions from the titrating site as well as the co-ion and can be written

as

∆Genv −∆Gsol = (∆Gtitr
env −∆Gtitr

sol ) + (∆Gion
env −∆Gion

sol ). (6.11)

Similar to the quantum mechanical effects (see discussion of CpHMD in Chapter 1),

the co-ion will largely stay in solution and the charging/neutralization process will

not be significantly affected by the presence of the titrating site (∆Gion
env ≈ ∆Gion

sol ).

Thus, the majority of the change in deprotonation free energy will be due to the

titration reaction.
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6.3.2 Data analysis

To test the predictive accuracy of our proposed ECpHMD method, we examine

two sets of test systems. First, we calculate pK a values for a series of dicarboxylic

acids with varying lengths of methylene chains separating the carboxyl moieties. Con-

sidering the stepwise deprotonation equilibria of aliphatic dicarboxylic acids given by

HO2C(CH2)nCO2H
K1−−⇀↽−− HO2C(CH2)nCO−2 + H+ K2−−⇀↽−− −O2C(CH2)nCO−2 + H+,

(6.12)

the total average protonation (〈P 〉) at each pH is given by

〈P 〉 =
10pK2−pH + 2× 10pK1+pK2−2pH

1 + 10pK2−pH + 10pK1+pK2−2pH
(6.13)

where pK1 and pK2 are the first and second deprotonation pK a’s [59,181]. Secondly, we

calculate the pK a values of acidic residues and histidines of three proteins. The pK a

values of proteins are calculated by fitting the unprotonated fraction (S) at each pH

to the Hill equation given by

S =
1

1 + 10n(pKa−pH)
(6.14)

where n (the Hill coefficient) and the pK a are fitting parameters.

To quantify the correlations between two protonation equilibria and between pro-

tonation state and conformation, we make use of cross-correlation analysis. The

normalized cross-correlation function between two time series (x and y) shifted by an

offset (∆r) is defined by

Rxy(∆r) =
∑
i

[x(i)− µx][y(i+ ∆r)− µy]
σxσy

, (6.15)

where µ is the population mean and σ is the standard deviation. Normalized cross-
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correlation values range from -1 (completely anti-correlated) to +1 (completely cor-

related).

6.3.3 Simulation details

All simulations were carried out using CHARMM [39,40]. Modifications were made

to the PHMD module to allow the application of GRF and the charge-leveling pro-

cedure. All simulations used the CHARMM22/CMAP force field [36]. The SHAKE

algorithm was applied to all bonds and angles involving hydrogen to allow a 2 fs

time step. The titration coordinates were propagated using the Langevin algorithm

with a collision frequency of 5 ps−1. All simulations were carried out at 300 K. The

mass of the fictitious lambda particles was set to 10 atomic mass units for dicar-

boxylic acids and amino acids, but 20 atomic mass units for proteins to match slower

conformational dynamics.

We used the GBSW model [79] with the atomic input radii of Nina et. al. [117] and

a surface tension coefficient of 0.005 kcal mol−1 Å2 for all implicit-solvent CpHMD

simulations of dicarboxylic acids. In the GB simulations, conformational dynamics

was propagated via the Langevin algorithm with a collision frequency of 5 ps−1 and

non-bonded interactions were truncated at a cut-off radius of 20 Å using a switching

function.

Our ECpHMD simulations used the modified CHARMM TIP3P water model [134],

an updated sodium vdW radius [182], and a modified sodium chloride vdW interac-

tion distance to reduce sodium chloride contact-ion pair formation in concentrated

solutions [183]. Non-bonded interactions were truncated at 14 Å, beyond which elec-

trostatic effects were treated by GRF. All explicit-solvent simulations were carried

out with periodic-boundary conditions at ambient temperature and pressure using

the the Hoover thermostat [136] and Langevin piston pressure-coupling algorithm [137]

as in previous hybrid-solvent CpHMD simulations [104]. In the GRF term, εin was
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set to 1.0 and εout was set to 80.0. The ionic strength in CRF was set to zero in

dicarboxylic acid simulations as the experimental data was extrapolated to zero ionic

strength. In ECpHMD simulations of proteins, the ionic strength was set to 50 mM

for HEWL [133], 200 mM for BBL [131,184], and 100 mM for for HP36 [130] to match the

experiments. A cubic water-box with 30 Å edge-length was used for all ECpHMD

simulations of dicarboxylic acids, while for proteins, edge-lengths were 14 Å greater

than the longest dimension of the proteins.

We calculated pK a values of three proteins: the 45-residue binding domain of

2-oxoglutarate dehydrogenase multi-enzyme complex, BBL (PDB: 1W4H), the 36-

residue subdomain of villin headpiece, HP36 (PDB: 1VII), and the 129-residue hen

egg white lysozyme, HEWL (PDB: 2LZT). Protein preparation was carried out as

described previously [104], except that C-terminal residues were amidated due to un-

certainty in the reference C-terminus pK a value.

In ECpHMD simulations (where specified), we added a chloride co-ion for each

acidic site and a sodium co-ion for each titrating basic site (i.e. histidine) in order

to maintain charge-neutrality. We then added additional sodium or chloride to neu-

tralize the net charge. Finally, additional sodium chloride was added to reach the

experimental ionic strength. Ions were placed randomly within the simulation box

and the position of each ion was relaxed with 100 MC moves using a constant di-

electric model with ε = 80.0. All water molecules within 2.6 Å of an ion or a solute

heavy atom were then deleted. Water molecules and ions were subjected to energy

minimization with restrained solute prior to starting ECpHMD.

Simulations using pHREX [104,185] and TREX [80,81] were carried out using the modi-

fied REPDSTR module in CHARMM. Exchanges were attempted every 500 MD steps

(1 ps) for all replica-exchange simulations (pHREX or TREX). The pHREX simula-

tions of dicarboxylic acids were carried out for 5 ns per replica with pH conditions

ranging from 3.0 to 7.0 with a pH interval of 0.5 pH units, except for succinic acid
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where the highest pH had to be increased to 10.0. The pHREX simulations of amino

acids are described later (see discussion of amino acid reference PMF calculation).

The pHREX simulations of proteins used the same pH conditions as used in previous

work [104]. Simulations were carried out for 10 ns per replica for the small proteins

(HP36 and BBL) and 7 ns per replica for the larger enzyme (HEWL).

The temperature generator for REMD-simulations website

(http://folding.bmc.uu.se/remd/) [186] was used to estimate the temperature condi-

tions for a target exchange ratio of 0.3 given the size of the protein and the number of

solvent molecules for TREX simulations of proteins. A TREX simulation of HEWL

was carried out at pH 0 with 30 replicas ranging from 300–330 K for 1.5 ns per replica.

Separate TREX simulations were conducted for HP36 at pH 0, 2, 4 and 6. TREX

simulations of HP36 used 16 replicas with temperatures ranging from 300–338 K.

Each TREX simulation of HP36 was run for 2 ns per replica.

6.3.4 Deriving reference compound potential of mean force

Dicarboxylic acids and co-ions

For both implicit- and explicit-solvent simulations of dicarboxylic acids, the ref-

erence deprotonation event was the first ionization of azelaic acid (n = 7) and the

reference pK a was 4.55 [187]. Thermodynamics integration (TI) was carried out at θ

values of 0.2, 0.4, 0.6, 0.7854, 1.0, 1.2, and 1.4 for 500 ps in explicit-solvent and 100

ps in implicit-solvent. For PMF calculations of co-ions in explicit solvent, the same

θ values were used and TI simulations were run for 500 ps. The cumulative-average

force indicated that the TI simulations were converged. The PMFs of azelaic acid

deprotonation and of sodium neutralization and chloride ionization in explicit-solvent

are shown in Figure 6.1.
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Figure 6.1: Potentials of mean force for co-ions and azelaic acid from explicit-solvent
continuous constant-pH molecular dynamics simulations. Average force at each θ
value is shown as circles and the fitting-function are shown as solid lines. The PMFs
(dashed lines) in each plot were obtained by integrating the fitting functions. Average-
force values are denoted by the y-axis label on the left. Values of the PMF are denoted
by the y-axis label on the right: a) Chloride neutralization (red) and sodium ionization
(green) and b) First deprotonation reaction of azelaic acid.
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Amino acids

The molecules used for the calculation of the reference PMFs for protein side

chains were amino acids acetylated at the N-terminus and N-methylamidated at

the C-terminus, as used previously [64–66,104]. Unlike previous work, model compound

parametrization was carried out using an iterative approach. The model compound

PMFs of amino acids in implicit solvent can be fit with the derivative of Eq. 6.5;

however, as noted by others [69], we observed deviation from this functional form us-

ing explicit solvent. Figure 6.2 shows the TI data for lysine deprotonation from our

ECpHMD simulations with the best-fit Umod derivative. As shown in the figure, there

is significant deviation (up to 5 kcal/mol) between the average force and the best-

fit curve. Since the required quantity is the free-energy difference, the actual path

from the protonated to unprotonated state is not critical and only the net change is

important. To derive the reference compound PMFs for amino-acid side chains us-
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Figure 6.2: Average forces for Lys deprotonation from explicit-solvent continuous
constant-pH simulations. Average force at each θ value is shown as a circles best-fit
Umod (Eq. 6.5) derivative is shown as solid line and residuals of the fit are shown as
bars.

ing ECpHMD, we began by using PMF parameters from our previous hybrid-solvent

128



work [104] and calculated the pK a’s using pHREX-ECpHMD. The pHREX-ECpHMD

simulations were carried out using three pH conditions: Asp (4 ± 1), Glu (4.4 ± 1),

His (6.5 ± 1), and Lys (10.4 ± 1). Five separate trials were run and that data was

combined to calculate the pK a values. By relating the deviation in the calculated

pK a value with the error in the deprotonation free-energy, after several rounds we

arrived at a set of parameters for the deprotonation reactions in explicit-solvent that

exactly (within the uncertainty) cancels out ∆Gsim
sol (see Eq. 1.27) and reproduces the

experimental model compound pK a values, as shown in Table 6.1. Titration curves

for the model compounds are shown in Figure 6.3.
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Table 6.1: Calculated and experimental pKa values of amino
acids from explicit-solvent continuous constant-pH molecular
dynamics simulations.

Residue Calc pK a Calc Hill Ref pK a

Asp 4.03 ± 0.07 0.99 ± 0.08 4.0
Glu 4.43 ± 0.10 0.96 ± 0.07 4.4
His 6.54 ± 0.13 (6.76†/7.05‡) 1.03 ± 0.16 6.45∗ (6.6†/7.0‡)
Lys 10.41 ± 0.05 1.14 ± 0.23 10.40

The pK a values were calculated by combining data from five
separate trials. The length of each simulation was 4 ns per
replica. Average values and errors were calculated from 100 trial
bootstrap fittings [157]. Reference pK a’s are taken from Nozaki
and Tanford [92] except for Nδ- and Nε-sites of His [129]. †Nδ site
pK a values. ‡Nε site pK a values. ∗Macroscopic pK a for His [66].
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Figure 6.3: Amino acid titration curves from pH-replica exchange explicit-solvent
continuous constant-pH simulations. Average S values are shown as circles and error
bars indicate the standard deviation between 5 trials. Solid lines are the best-fit Hill
equation (see Eq. 6.14). Data and best fit curves for δ- (triangles and solid black line)
and ε-sites (squares and dashed black line) are shown for histidine.
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6.4 Results and Discussion

6.4.1 Dicarboxylic acids

6.4.1.1 Accuracy of Calculated pK a values

We begin by calculating first and second pK a values for the aliphatic dicarboxylic

acid series described previously (see chemical equation 6.12). This is a classic problem

used to test our understanding of the electrostatic influence on acidic ionization that

was first investigated using analytical theory nearly a century ago [188,189]. This series

of molecules has some attractive qualities as a test case for computer simulation.

There are two interacting titration sites so the accurate calculation of both pK a values

is non-trivial. The small size of the molecules means simulations can be carried out

quickly and adequate sampling of all relevant conformations should not be an issue.

Also, the experimental data is extrapolated to zero ionic strength [187] so the added

complexity in the deprotonation energetics due to salt-screening is not present.

Since we compare the pK a values from GB and explicit-solvent CpHMD, we show

the model PMF parameters and deprotonation free-energy results from the two sol-

vent models in Table 6.2. It is worth noting that the deprotonation free-energy from

ECpHMD is 25% greater than the value obtained using GB-based CpHMD.

The first and second pK a values, as well as the pK a shifts, from experiment and

simulation are shown in Table 6.3. We calculated the pK a values using GB and

ECpHMD. The explicit-solvent simulations were conducted both with (E+CL) and

Table 6.2: Potential of mean force parameters and deprotonation
free energy for azelaic acid

Solvent Parameters ∆Gdeprot(kcal/mol)
A B

GB -62.39 0.18 -39.93
Explicit -56.16 0.05 -50.54
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Table 6.3: Experimental and calculated pK a’s and pK a shifts of
dicarboxylic acids

Acid Expta GB E-CL E+CL
n pK1

succinic 2 4.19 8.08 (0.07) 7.0 (0.04) 7.2 (0.2)
glutaric 3 4.34 3.57 (0.02) 3.7 (0.1) 4.0 (0.3)
adipic 4 4.42 4.04 (0.03) 4.1 (0.1) 4.7 (0.2)
pimelic 5 4.48 4.17 (0.04) 4.2 (0.1) 4.5 (0.4)
suberic 6 4.52 4.19 (0.04) 4.3 (0.1) 4.6 (0.2)
azelaic 7 4.55 4.20 (0.03) 4.2 (0.1) 4.4 (0.2)

pK2

succinic 2 5.48 9.05 (0.05) 9.3 (0.1) 7.7 (0.1)
glutaric 3 5.42 5.05 (0.05) 6.6 (0.1) 5.0 (0.4)
adipic 4 5.41 5.42 (0.04) 7.1 (0.1) 5.4 (0.2)
pimelic 5 5.42 5.25 (0.06) 7.0 (0.1) 5.3 (0.4)
suberic 6 5.40 5.25 (0.05) 7.1 (0.2) 5.2 (0.2)
azelaic 7 5.41 5.18 (0.06) 7.1 (0.1) 5.3 (0.3)

∆pK a

succinic 2 1.29 0.97 (0.09) 2.3 (0.1) 0.5 (0.2)
glutaric 3 1.08 1.48 (0.05) 2.9 (0.1) 1.0 (0.5)
adipic 4 0.99 1.38 (0.05) 2.9 (0.1) 0.7 (0.3)
pimelic 5 0.94 1.08 (0.07) 2.8 (0.1) 0.8 (0.6)
suberic 6 0.88 1.06 (0.06) 2.8 (0.2) 0.6 (0.3)
azelaic 7 0.86 0.98 (0.07) 2.9 (0.1) 0.8 (0.4)

a [187] n refers to the number of methylene groups in the chemi-
cal structure HO2C(CH2)nCO2H. Values in parentheses are the
uncertainty calculated as the standard deviation of pK a values
calculated from 1 ns windows.
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without charge-leveling co-ions (E-CL). The GB and E-CL results both have random

errors significantly smaller than those seen in E+CL, as shown in Table 6.3. We

suspected that the relatively large pK a value uncertainty from E+CL is a result of

slow diffusion of ions. To test this, we analyzed the correlation between the sodium-

ion distribution and pimelic acid pK a values from 1 ns windows. We investigated

this correlation for pimelic acid because it has the greatest pK a value uncertainty.

We combined E+CL trajectories from all pH conditions and calculated the sodium to

carboxylate-oxygen radial distribution functions (RDF) from 1 ns simulation windows

(see Figure 6.4).
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Figure 6.4: Pimelic acid carboxyl-oxygen to sodium radial distribution functions.
RDF of pimelic carboxyl-oxygen to sodium from 1 ns windows. Each trace is the
RDF from a separate 1 ns window.

We then performed linear-regression of the relative intensity of the RDF at a

separation distance of 2.5 Å versus the first and second pK a values. The sodium

to carboxylate-oxygen RDF at 2.5 Å corresponds to the contact-ion pair distance.

Regression of the first pK a gives a slope of -0.97 and an R2 value of 0.74. Similar

results are obtained when we performed regression of the RDF intensity versus the

second pK a (slope = -0.87 and R2 = 0.67). This data demonstrates that over a 1
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ns simulation window, changes in the population of carboxylate-sodium contact-ion

pairs correlates with the observed pK a values. The pK a values decrease as more

sodium and carboxyl-oxygen contact-ion pairs are observed.

Even thought the GB and E-CL results are more precise, the first pK a values

deviate from the experimental value by more than the calculated error, while the

results from E+CL are in agreement (within the calculated error) with nearly all

experimental first pK a values, except for succinic acid. Comparing the accuracy of

the first pK a values, excluding succinic acid, from the three simulations, the average

absolute deviation from E+CL is 0.18, the average absolute deviation from E-CL

is 0.38, while that from GB is the poorest of the three at 0.43. The deviation be-

tween the calculated and experimental first pK a’s of succinic acid is 3-4 units for all

three simulations indicating that the model compound PMF of succinic acid deviates

significantly from that of azelaic acid.

E-CL fails miserably for the second pK a’s, having an average absolute deviation

of 1.6 pK units. This indicates that the electrostatic repulsion between the first and

second carboxyl groups, when ionized, is grossly overestimated when ECpHMD is

conducted without neutralizing the net charge. On the other hand, when including

co-ions which compete for charge with the titration sites such that the net charge of

the systems is neutral, the average absolute deviation is reduced by nearly an order of

magnitude to 0.18 pK units. This data indicates that in order to obtain quantitative

agreement between calculation and experiment, one cannot simply ignore fluctuations

of the net charge.

Our method of adding discrete co-ions that serve as charge reserviors is not the

only possible approach to enforce charge neutrality. For example, instead of adding

additional co-ions, one could imagine a scheme where the excess charge is distributed

to the solvent molecules such that each of them would carry a fractional net-charge.

This approach would be very cumbersome and difficult to implement, because the
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addition and removal of charge from every water molecule would have to be coupled

simultaneously to the titration of all titratable sites. Our approach is straightfor-

ward and provides calculated pK a values for the dicarboxylic acids that are in good

agreement with experiment.

The next quantity to be compared is the difference between the first and second

pK a values. The trend follows as before since this quantity is simply the difference

between the first and second pKa’s. The average absolute deviation is 1.9 from E-CL,

0.24 from GB, and 0.19 from E+CL. The data in Table 6.3 is shown graphically in

Figure 6.5 to facilitate comparison. There is a splitting of the first and second pK a
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Figure 6.5: First pK a’s and pK a shifts of dicarboxylic acids. The first pK a’s and pK a

shifts (pK2-pK1) for dicarboxylic acids with n intervening methylene groups. Error
bars indicate the standard deviation of the pK a values calculated from 1 ns windows.
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values. There are two sources of the splitting. The first source arises from statistical

factors due to the number of equivalent species on each side of the chemical equilib-

ria. Looking at Eq 6.12, it is immediately apparent that K1 = 4K2 in the absence of

charge-charge interactions between the carboxyl groups. Thus, the statistical factor

is responsible for 0.6 units of ∆pK a. The second source of the pK a splitting, which

is more difficult to accurately account for, is electrostatic in nature. Deprotonation

of the first carboxyl group imposes an electrostatic penalty for deprotonation of the

second, and causes the ∆pK a’s to be greater than 0.6 units. Similarly, it is reasonable

to expect that the instantaneous protonation states of the two equivalent carboxyl

groups should be anti-correlated with one another. If one carboxyl group is ionized,

this should favor protonation of the other given that we are at an intermediate pH that

allows both groups to be protonated. We calculated the normalized cross-correlation

function with an offset ranging from -100 to 100 exchange cycles (see Eq. 6.15) for

glutaric acid at pH 4 to examine the extent of correlation, or coupling, between the

two carboxyl groups protonation states. We present the data from the three differ-

ent simulations (GB, E-CL, and E+CL) for glutaric acid (see Figure 6.6), because

the pK a shift of glutaric acid was calculated with good accuracy and the correlation

between protonation states was the greatest of the dicarboxylic acids, excluding suc-

cinic acid. The cross-correlation at zero delay time correlates with the accuracy of

the pK a shift. There is a strong anti-correlation between the two titratable groups

protonation states and the calculated ∆pK a is severely overestimated from E-CL.

The cross-correlation is reduced and the accuracy of ∆pK a improves with GB. From

E+CL, the cross-correlation is virtually nonexistent while ∆pK a is the most accurate.

Thus, it appears that overestimation of the electrostatic repulsion between ionized

carboxyl groups from GB and E-CL causes exaggerated correlation between the car-

boxyl group’s protonation states and the calculated ∆pK a to be overestimated.
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Figure 6.6: Correlation between the protonation states of glutaric acid. Cross-
correlation between protonation states of glutaric acid at pH 4 from GB (blue),
explicit solvent (red), and explicit solvent with charge leveling (green). Baseline
of cross-correlation functions from explicit-solvent with charge leveling and GB have
been shifted for clarity.

pH-dependent protonation, conformation, and solvent distribution of aze-

laic acid

With reasonable pK a values obtained for the dicarboxylic acids (excluding succinic

acid), we move on to analyze the pH-dependent protonated fractions, protonation

state populations, and the exchange-efficiency of pHREX-ECpHMD. These data are

shown for azelaic acid in Figure 6.7. The upper panel of Figure 6.7 shows the average

number of bound protons at each pH, as well as the fit to Eq. 6.13. The data are

fit well by the model as demonstrated by a fitting-correlation of >0.999. The middle

panel of Figure 6.7 shows the fraction of each protonated form. At pH 3, azelaic acid

is almost completely doubly protonated, at intermediate pH the largest population

is singly protonated, and at pH values above the second pK athe molecule is almost

completely in the fully unprotonated form. The lower panel of Figure 6.7 shows that

the exchange ratio (number of successful exchanges divided by the number attempted)

between replicas is at a minimum where the doubly protonated, singly protonated,
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and fully unprotonated states coexist. This indicates that titration events reduce the

number of successful exchanges between neighboring replicas.
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Figure 6.7: Populations and exchange rates of azelaic acid. a) Average protonation
state (〈P 〉) at each pH. Data is shown as circles and best-fit (Eq. 6.13) curve is shown
as a solid line. b) Fraction of population having two (P = 2), one (P = 1), and zero
(P = 0) bound protons at each pH. c) Exchange ratio between neighboring replicas.

Looking at the conformations of azelaic acid at different pH values, we see that

when azelaic acid is doubly protonated it preferentially occupies conformations with a

shorter end-to-end distance when fully unprotonated. The distribution of end-to-end

distance at pH 7 has greater intensity at 9 and 10 Å and reduced intensity at distances

below 8.5 Å, relative to the distribution at pH 3 (Figure 6.8a). This is expected since

there is electrostatic repulsion between carboxylate groups. Considering the solvent

organization at different pH values, at more basic pH there is an increase in the

carboxyl-oxygen and water-oxygen RDF at 3 Å which corresponds to the distance at

which hydrogen-bonding between the carboxyl groups and water occurs (Figure 6.8b).

The decrease in intensity of this peak at basic pH indicates that hydrogen bonding
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when water is the donor is more stable than when the carboxyl group is the hydrogen-

donor. There is an increase in the sodium carboxyl-oxygen RDF at a separation

distance near 2.5 Å at pH 7 that corresponds to the carboxyl-oxygen sodium contact-

ion pair (Figure 6.8c). There is also an increase in the water-hydrogen carboxyl-

oxygen RDF at a separation distance near 2 Å at pH 7 that corresponds to water

donating a hydrogen bond to solvate the carboxyl group (Figure 6.8d).
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Figure 6.8: Conformation and solvent distributions of azelaic acid at different pH
conditions. a) Probability distribution of distances between carboxyl-carbons. b)
RDF between carboxyl-oxygen and water-oxygen. c) RDF between carboxyl-oxygen
and sodium. d) RDF between carboxyl-oxygen and water-hydrogen.

6.4.2 Proteins

The effect of charge leveling on pK a calculation accuracy

With encouraging results for dicarboxylic acids, we tested ECpHMD on a small

protein (HP36) which has several acidic residues with pK a’s downshifted relative

to standard values. We conducted pHREX-ECpHMD using three setups: with-

out charge-leveling co-ions (E-CL), with charge-leveling co-ions (E+CL), and with
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charge-leveling and additional salt (E+CL+Salt) to match experiment [130]. These

simulations allow us to independently probe the effect of an overall change in the net

charge at different pH conditions and the effects of salt-induced electrostatic screen-

ing. The results are shown in Table 6.4.

The calculated pK a order from E-CL is in agreement with the experimental values;

Table 6.4: Experimental and calculated pKa values of HP36

Residue Expta Calc.
E-CL E+CL E+CL+Salt

Asp44 3.10 (0.01) < 0.0 0.75 1.86
Glu45 3.95 (0.01) 2.16 3.82 4.41
Asp46 3.45 (0.12) 1.57 3.92 3.64
Glu72 4.37 (0.03) 3.01 4.26 4.77

RMSD ≥ 2.13 1.20 0.70

a [130]. In the E+CL+Salt simulation, the ionic strength was 150
mM as in experiment. pK a values were calculated using 2 ns
simulations.

however, the magnitudes of the pK a shifts are severely overestimated. Considering

that, without charge leveling, the net charge becomes increasingly positive as the

pH is reduced and successive acidic residues are protonated (first Glu72, then Glu45,

Asp46, and finally Asp44). The overestimation of pK a shifts is in line with our con-

jecture, and our results for dicarboxylic acids, that it is important to neutralize the

net-charge of the system to accurately model bulk-deprotonation equilibria in MD

simulations. Further supporting this argument, the RMSD of calculated pK a values

is reduced to 1.20 pK units when charge leveling is applied. In ES+CL, the pK a

shift of Asp44 is still overestimated as a result of an apparent overestimation of the

Asp44-Arg55 interaction strength (see later discussions). Addition of sodium chlo-

ride to match experiment brings the calculated pK a of Asp44 more in line with the

experimental value, from 0.75 at I = 0, to 1.86 at I = 150 mM. Although these simu-

lations are relatively short, they demonstrate that reasonable protein pK a values can

be obtained using fully explicit-solvent CpHMD. Our data indicate that net charge
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neutralization is necessary in order to obtain good agreement with experiment. Also,

careful and deliberate system setup to more closely match experimental conditions

gives more favorable results.

Accuracy of calculated pK a values

Although calculated pK a values for dicarboxylic acids and HP36 are encourag-

ing, we sought to test how the pK a’s of HP36 vary over longer simulation time.

We also calculated pK a values of proteins with pK a shifts resulting from burial in

hydrophobic environments to further test the reliability of pK a calculation using

pHREX-ECpHMD with charge leveling. Experimental and calculated pK a values for

HP36, BBL, and HEWL from multi-nanosecond simulations are given in Table 6.5.

The RMSD of calculated pK a values using the entire the simulation (where pK a

values were calculable) ranges from 0.3 for BBL to 1.1 for HEWL, while the value

is 0.8 for HP36. The average absolute deviation is below one pK unit for all three

proteins. Overall, this level of accuracy is on par with pK a calculation accuracy from

hybrid-solvent CpHMD [104].

We plot the calculated versus experimental pK a values in Figure 6.9. The slope of

the regression line is 1.1 and the R2 value is 0.83. Although our previous study using

hybrid-solvent CpHMD included results for two additional proteins, our regression

data indicates that a slightly better correlation with experiment is obtained using

ECpHMD. As depicted in Figure 6.9, 3 out of 22 residues have an absolute error of ≥1

pK unit. The maximum pK a errors are 1.6 for Asp44 of HP36 and Asp52 of HEWL

and 1.2 for Glu35 of HEWL. Possible sources of such error will be discussed further

in what follows. It is worth noting that the largest deviation between calculated and

experimental pK a values of BBL is only 0.6 units.
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Table 6.5: Calculated and experimental pKa values of HP36,
BBL, and HEWL

Protein Residue Expta Calcb

8-10 ns 0-10 ns
HP36 Asp44 3.10 (0.01) 1.2 1.5 (0.3)

Glu45 3.95 (0.01) 3.9 4.0 (0.3)
Asp46 3.45 (0.12) 3.8 3.3 (0.5)
Glu72 4.37 (0.03) 4.3 4.2 (0.3)

Avg. abs. dev. 0.6 0.5
RMSD 1.0 0.8

8-10 ns 0-10 ns
BBL Asp129 3.88 (0.02) 3.5 3.3 (0.6)

Glu141 4.46 (0.04) 4.1 4.2 (0.3)
His142 6.47 (0.04) 6.2 6.2 (0.4)
Asp145 3.65 (0.04) 4.0 3.9 (0.7)
Glu161 3.72 (0.05) 4.0 4.0 (0.3)
Asp162 3.18 (0.04) 3.0 3.0 (0.3)
Glu164 4.50 (0.03) 4.8 4.8 (0.3)
His166 5.39 (0.02) 4.8 4.8 (0.3)

Avg. abs. dev. 0.3 0.3
RMSD 0.3 0.3

8-10 ns 0-10 ns
HEWL Glu7 2.6 (0.2) 3.3 3.6 (0.4)

His15 5.5 (0.2) 5.6 5.5 (0.4)
Asp18 2.8 (0.3) 3.2 2.7 (0.7)
Glu35 6.1 (0.4) 7.3 7.3 (0.5)
Asp48† 1.4 (0.2) 0.4 0.08 (0.5)
Asp52 3.6 (0.3) 5.5 5.2 (0.4)
Asp66† 1.2 (0.2) 0.5 0.4 (0.2)
Asp87† 2.2 (0.1) 2.2 1.7 (0.6)
Asp101 4.5 (0.1) 4.7 4.4 (0.4)
Asp119 3.5 (0.3) 3.8 3.4 (0.6)

Avg. abs. dev. 0.7 0.7
RMSD 0.9 0.9

a pK a values determined by NMR titration for HP36 [130],
BBL [131,184], and HEWL [133]. b Uncertainty of the calculated
values, in parentheses, are the standard deviations of the 1ns
windows. † Only includes values from 1 ns windows for which
calculation of pK a values was possible (see Figure 6.12).
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Figure 6.9: Experimental versus calculated pK a values of proteins. Data is shown
for HP36 (red), BBL (blue), and HEWL (green). Regression line (solid), y=x line
(dashed black), and lines showing 1 pK unit deviation from experiment (dotted red)
are shown as well as regression slope and R2 value.

Variation of pK a values over time and exchange efficiency

We calculated pK a values from 1 ns windows to examine pK a stability over the

course of the simulations. These “pK a trajectories” are depicted for HP36 in Fig-

ure 6.10, for BBL in Figure 6.11, and for HEWL in Figure 6.12. There are fluctuations

of 1 pK unit around the mean values, but little drift over the course of the simulations

for most of the residues. Exceptions to this are seen for Asp48 and Asp87 of HEWL

where the pK a values were initially incalculable, then after several nanoseconds the

pKa’s began to steadily increase.

The exchange ratio is at a minimum at pH values where a large number of titrat-

able groups pK a values reside for all three proteins. Thus, it is clear that a linear

spacing of replicas in pH space is suboptimal. This decrease in the number of success-

ful exchanges is analogous to TREX results for protein folding. There is a bottle-neck

in the exchange efficiency at the folding temperature, because there is an energy gap

between the folded and unfolded states and they co-exist at the folding temperature.
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Figure 6.10: Time series of pK a values and exchange ratio for HP36. (Left) pK a

values of each residue calculate from 1 ns windows taken from the 10 ns pHREX
simulation. (Right) Exchange ratios between neighboring replicas calculated from
the entire 10 ns pHREX simulation.
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Figure 6.11: Time series of pK a values and exchange ratio for BBL. (Left) pK a values
of each residue calculate from 1 ns windows taken from the 10 ns pHREX simulation.
(Right) Exchange ratios between neighboring replicas calculated from the entire 10
ns pHREX simulation.
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To overcome this limitation, a feedback loop can be applied to adjust the tempera-

ture of each replica and optimize the flow through the temperature conditions [190].

Such a scheme could be applied to pHREX as well. On the other hand, since the

majority of titratable residues are on the surface of proteins and have pK a values near

the standard values, it may be sufficient to start pHREX simulations with additional

replicas clustered around the model compound pK a values. Further investigation to

determine optimal pHREX parameters such as exchange-frequency and pH distribu-

tion is an important area of research that should be pursued in the future; however,

it is beyond the scope of the present work.
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Figure 6.12: Time series of pK a values and exchange ratio for HEWL. (Left) pK a

values of each residue calculate from 1 ns windows taken from the 10 ns pHREX
simulation. (Right) Exchange ratios between neighboring replicas calculated from
the entire 10 ns pHREX simulation.

pH-dependent protein conformations

In the final section, we look at the ways pH affects conformational states of the

proteins. This analysis allows us to rationalize the observed pK a shifts, identify

possible sources of error, propose routes to correct these errors, and offers a window

to the pH-dependent properties of the proteins.

BBL
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We begin by the analyzing pH-dependent properties of BBL. The calculated pK a

values for this protein are the most accurate. The protein conformation shows lit-

tle pH dependence; however, there is an increase in the solvent accessible surface

area (SASA) for His166 and a decrease in the distance between His166 and nearby

lysine amino groups as His166 is protonated (see Figure 6.13). The side chain is

pulled out of the hydrophobic pocket and into solution due to a more favorable sol-

vation energy as His166 becomes ionized. Also, as pH decreases, electrostatic repul-

sion between His166 and nearby lysine residues (Lys25, Lys40, and Lys44) favors a

greater separation distance. Comparing the solvent exposure calculated here with

our previous hybrid-solvent results, we see that the maximum SASA intensity from

both simulations is centered around a fractional SASA of about 0.1. The pK a shift

from ECpHMD is slightly overestimated, while that from hybrid-solvent CpHMD is

slightly underestimated. This is in line with our data from the benchmark GB study

that GB tends to underestimate the desolvation energy for residues in a hydrophobic

environment (see Chapter 2).
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Figure 6.13: pH-dependent environment of His166 of BBL. (Left) Probability dis-
tribution of fractional solvent-accessible surface area (solvent accessible surface area
divided by that of an isolated His residue). (Right) Minimum distances to the amine
nitrogens of Lys25, Lys40, and Lys44 at different pH values.

HEWL

Two residues of HEWL show noticeable pK a drift over the course of the simulation

(see Figure 6.12). Asp48 was deprotonated even at pH 0 for the first 3 ns, but then
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at 4 ns there was a conformational change that allowed the pK a to be calculated.

The pK a of Asp48 continued to drift upward for the remainder of the simulation,

indicating that further sampling may improve the aggreement with experiment.

In the X-ray structure, the Cγ of Asp48 is only 3.7 Å from the hydroxyl-oxygen of

Ser50 and 3.3 Å from an amino-nitrogen of Arg61. We calculated the cross-correlation

function between the protonation state of Asp48 and the distance from Asp48 side-

chain-oxygen to both the hydroxyl-hydrogen of Ser50 and amino-hydrogens of Arg61.

The cross-correlation values, at pH 0 and zero offset, between the protonation states

of Asp48 and the distance from Asp48 to Ser50 and Arg61 hydrogen-bond donating

hydrogens are -0.22 and -0.1, respectively. Thus, the protonation state of Asp48 is

anti-correlated with the distance from Asp48 to both Arg61 and Ser50. Ser50 and

Arg61 tend to act as hydrogen-bond donors when Asp48 is ionized, but the hydroxyl

group of Ser50 rotates away from Asp48 and the side-chain of Arg61 moves into so-

lution when Asp48 is protonated. Figure 6.14 shows the time series of the distance

between the carboxyl-oxygen of Asp48 to the hydroxyl-hydrogen of Ser50 as well as

the protonation state of Asp48 at pH 0. Although not shown, the trend in the time

series of the Asp48-Arg61 distance is very similar. From this data, it is clear that

hydrogen bonding between these residues and Asp48 stabilizes the ionized form of

Asp48 and contributes to the downward pK a shift. Figure 6.15 shows representa-

tive snapshots taken from pH 0 when Asp48 is ionized and neutral to illustrate the

observed conformational change as Asp48 is protonated.

A similar effect is seen for Asp87. For the first 2 ns, Asp87 is mainly deprotonated

and hydrogen bonded with Thr89. Asp87 is also initially near His15. These hydrogen-

bond and electrostatic interactions favor the ionized form of Asp87, but eventually,

at low pH, Asp87 becomes protonated, allowing it to move away from His15 and

break the hydrogen bond with Thr89. The time series of the Asp87-Thr89 distance

and protonation state of Asp87 at pH 1 are shown in Figure 6.16 and representative

147



0 2000 4000 6000 8000 10000
1

2

3

4

5

A
sp

48
-S

er
50

 d
is

ta
nc

e 
(Å

)

0 2000 4000 6000 8000 10000
Exchange cycle

0

0.2

0.4

0.6

0.8

1
A

sp
48

  λ

Figure 6.14: Correlation between Asp48 protonation state and Ser50 hydrogen bond.
(Upper) Time series of minimum distance from Asp48 carboxyl-oxygen to Ser50
hydroxyl-hydrogen at pH 0. (Lower) Time series of Asp48 protonation state at pH 0.

snapshots when Asp87 is ionized and neutral are shown in Figure 6.17.

Asp66 of HEWL only became protonated at the lowest pH after 7 ns of simulation

due to interactions with multiple residues (side chains of Arg61, Tyr53, Thr51, Ser60,

Thr69, and the backbone NH group of Thr69 and Arg68) that stabilize the ionized

state. Taken together, this data indicates that for side chains with strong interactions

stabilizing specific side chain conformation/protonation states, pHREX suffers from

inadequate sampling. This is in agreement with other’s observations regarding the

efficiency of pHREX; the method is very efficient for sampling protonation states at a

given conformation, but the increase in conformational sampling is less dramatic [185].

After several nanoseconds, we observed transitions from the initial conformations that

strongly favor deprotonation of these residues to conformations that facilitate proto-
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Figure 6.15: pH-dependent orientation of Asp48, Ser50, and Arg61 of HEWL. Rep-
resentative snapshots of conformations of Asp48, Ser50, and Arg61 taken at pH 0.
(Upper) Ser50 and Arg61 readily act as hydrogen bond donor forming hydrogen bond
with Asp48, as is seen in the X-ray structure. (Lower) Protonation of Asp48 is corre-
lated to rotation of Arg61 into solution, and rotation of Ser50 hydroxyl group. Images
were rendered using the VMD program [93].

nation of Asp48 and Asp87, but substantially longer simulations would be required

to accurately calculate conformational distributions and pKa values. We suspected

that the computationally more expensive TREX protocol could be used to acceler-

ate transitions among these ionized and neutral conformational states as has been

observed using GB-based CpHMD [65]. Short test-simulations using TREX at pH 0

confirmed this. Conformations in both the initial hydrogen-bonded and hydrogen-

bond disrupted states for Asp48, Asp66, and Asp87 were observed within the first

few exchange cycles.
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Figure 6.16: Correlation between Asp87 protonation state and Thr89 hydrogen bond-
ing. (Upper) Time series of minimum distance from Asp87 carboxyl-oxygen to Thr89
hydroxyl-hydrogen at pH 1. (Lower) Time series of Asp87 protonation state ( 0 -
protonated ; 1 - deprotonated ) at pH 1.

The last residues of HEWL that we consider in detail are in the active site of

the enzyme. The correct protonation states for Glu35 and Asp52 are critical for

enzymatic activity. Optimal enzymatic activity occurs near pH 5 [24] where Glu35 is

protonated and Asp52 is unprotonated. Our calculated pK a values of 7.2 for Glu35

and 5.1 for Asp52 are both 1 pK unit greater than the experimental values; however,

at pH 5 Glu35 is predicted to be protonated and Asp52 is predicted to be partially

unprotonated, in reasonable agreement with experiment. Cross-correlation analysis of

Glu35 and Asp52 protonation indicates no correlation between the titration equilibria.

This is somewhat puzzling considering that the NMR titration curves (which follow

the chemical shifts of the amide 15N-atoms of Glu35 and Asp52) exhibit two distinct
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Figure 6.17: pH-dependent orientation of Asp87, Thr89, and His15 of HEWL. Rep-
resentative snapshots of conformations of Asp87, Thr89, and His15 taken at pH 1.
(Upper) Thr89 readily acts as hydrogen-bond donor and forms a hydrogen bond with
Asp87, as is seen in the X-ray structure. (Lower) Protonation of Asp87 is correlated
to rotation of Asp87 away from His15 and Thr89. This disrupts the Asp87-Thr89
hydrogen bond and increases the distance between Asp87 and His15. Images were
rendered using the VMD program [93].

titration events [133]. To reconcile the experimental data with our results, we suggest

that since the NMR chemical shift is much more sensitive to the local electrostatic

environment than is the protonation equilibria, the complex titration curves exhibited

by NMR spectroscopy do not necessarily indicate complex titration equilibria. There

are many examples of non-standard titration curves in HEWL that are a result of

“ghost” titrations. So-called “ghost” titrations occur when the chemical shift of an

atom in one residue reports on titration of a spatially distant residue, while titration

of the two is completely independent [133]. Our data suggests that this is the case for

the titrations of Glu35 and Asp52.

We are then left to rationalize the sources of the pK a shifts for Glu35 and Asp52.

The solvent accessibility of these residues is stable over the course of the simulation,
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both are partially buried, but Glu35 more-so than Asp52. Figure 6.18 shows the

SASA for both Glu35 and Asp52 at pH 6 over the course of the simulation, as well

as the probability distribution. The distribution is centered around 25 Å2 for Asp52

and around 15 Å2 for Glu35, in agreement with our previous hybrid-solvent CpHMD

data [104]. We suggest that desolvation of these two residues is solely responsible for

the positive pK a shifts. Since Glu35 is more buried than Asp52, there is a greater

desolvation penalty, and a greater upward pK a shift. A slight overestimation of the

desolvation penalty resulting from one of many possible sources (e.g. force field error,

electrostatic treatment, inadequate sampling, etc.) could then explain the slight

inaccuracy, which is comparable for the two residues.
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Figure 6.18: Solvent accessible surface area of Glu35 and Asp52 of HEWL. (Left)
Time series of SASA of Glu35 and Asp52 and (right) probability distribution of
SASA for these residues at pH 6.

HP36

HP36, the smallest protein we studied, has the most interesting story to tell con-

cerning pH-dependent conformational states, coupled titration, and pK a calculation

error. To familiarize the reader with HP36, we show the NMR model of the pro-

tein in Figure 6.19. HP36 is a 36 residue mini-protein that folds on the microsecond

timescale [191] and is composed of three α-helices. We denote these helices as I to

III from the N- to C-termini. There are three acidic side chains (Asp44, Glu45, and
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Asp46) on helix I. There is another acidic side chain (Glu72) on helix III and sev-

eral basic residues. There is a small hydrophobic core formed by three phenylalanine

residues of helix I and II.

Figure 6.19: NMR structure of HP36. NMR structure of HP36, in cartoon repre-
sentation, showing acidic residues (red) as well as Arg15 and Lys31 (blue). The Cα
atoms of N-(blue) and C-terminal(red) residues are shown as spheres for reference.
The three helices are depicted in different colors and the phenylalanine hydrophobic
core is in cyan. Image was rendered using the VMD program [93].

The residue of HP36 with the largest experimental pK a shift is Asp44. In the

NMR model, the Cγ of Asp44 is 7.9 Å from Cζ of Arg55; however, in our simulations

slight repositioning of the helices and side chain rearrangement quickly (within a few

nanoseconds) reduces this value so that they form a salt bridge. The experimental

pK a of Asp44 is downshifted by one unit relative to the standard value, but in our sim-

ulations the down shift is overestimated by 1.5 units. There is a clear pH-dependence

of the salt-bridge stability. Below the calculated pK a of Asp44 the salt bridge is

broken, but above it the salt bridge is stable as illustrated in Figure 6.20. Overesti-

mation of the pK a shift suggests two possible sources of error: either the force field

(or treatment of electrostatics via GRF) overestimates the strength of the salt bridge

or length of the simulation (much shorter than the lifetime of the salt bridge) causes

apparent over-stabilization. If the latter is the case, this error could be corrected by

153



running longer simulations or utilizing more effective sampling techniques. Regarding

the electrostatics treatment, comparison of salt-bridge strength using GRF and PME

indicates that the strength of a salt bridge is slightly weaker using GRF [192]. This

suggests that overestimation of the salt-bridge strength is not an artifact of GRF

electrostatics. Whether this is a result of force field bias or inadequate sampling is

a more difficult issue. Simulations run at constant protonation state have indicated

that the salt-bridge lifetime in MD simulation may be on the order of hundreds of

nanoseconds [193]. Although, pHREX has been shown to improve sampling when com-

bined with hybrid-solvent CpHMD [104], to accurately sample both salt-bridge formed

and broken states in ECpHMD, it appears that substantially longer simulations than

conducted here may be required. Another method to accelerate sampling is to run

TREX simulations at each pH value. When we conducted TREX for 2 ns per replica

at pH 0, 2, 4 and 6, the calculated pK a value of Asp44 increased by 0.5 pK units to

2.0. This suggests that TREX provides accelerates interconversion between confor-

mational states and this increase in conformational rearrangement can result in more

accurate pK a values. However, the length of these test simulations were admittedly

not long enough to confirm that the use of TREX will lead to better pK a prediction

overall.

In the titration of HP36, we observed correlated protonation events for Glu45 and

Asp46. In the NMR structure, the Cγ of Asp46 is 7.7 Å from Cδ of Glu45. The

normalized cross-correlation between the two residues protonation states at a delay

time of zero is -0.2 at pH 4 and -0.1 at pH 3. The experimental (NMR derived)

titration data also suggests coupled protonation equilibria. The experimental Hill

value is 0.9 for Glu45 and 1.1 for Asp46 [130]. Our calculated Hill value for Asp46 is

1.4±0.5 indicating cooperative proton binding, as was found in experiment. We also

observed very weak correlation between Asp44 and Glu45 titration, although further

comparison to experiment is not appropriate due to the inaccuracy in the calculated
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Figure 6.20: Probability distributions of Asp45-Arg55 distances in HP36. Probability
distributions of the minimum distance from Asp45 carboxyl-oxygen to Arg55 side
chain nitrogen at pH 0 (black) and pH 2 (red).

pK a value of Asp44.

Lastly, we observed partial unraveling of helix III of HP36 at elevated pH. We

calculated the PMF (shown in Figure 6.21) at pH 2 and 4 as a function of segment

A (helix I and II) RMSD and segment B (helix II and III) RMSD to quantify the

extent of the structural distortion. There is only one attractive basin centered at

segment A RMSD of 2.2 and segment B RMSD of 2.5 at pH 2, while at pH 4 an

additional basin is observed at segment B RMSD of 5, indicating a conformational

change of helix III.

We further analyzed the helicity per residue and the overall helical content of

the conformations extracted from the two attractive basins observed at pH 4 (see

Figure 6.22). We see a reduction in the overall helical content in the non-native

basin. The helicity per residue indicates that the end of helix III looses secondary

structure beginning at residue 30.

Figure 6.23 shows the probability distribution of the distances between the carboxyl-

oxygens of Glu32 and amine-nitrogen of Lys31 for conformations extracted from the
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two basins in Figure 6.21. Looking more closely at the conformations extracted from

the two basins in Figure 6.21, in the non-native basin a partial unraveling of helix III

at the C-terminal allows Glu72 and Lys71 to come very close to one another and form

a salt bridge. This salt bridge is not observed in conformations which retain native

secondary structure. This indicates that a non-native salt bridge formed between

Glu32 and Lys31, which is only possible in the partially unfolded state, stabilizes

these non-native conformations.

Chemical denaturation (urea) data at pH 5.0 shows that the native state of the

mutant K71M is slightly more stable than the wild-type protein [130]. Our data can

be used to rationalize this experimental finding. At a pH above the pK a of Glu72,

when Glu72 is ionized, this residue participates in a non-native favorable interaction

with Lys71 when HP36 is partially unfolded. Removing the basic residue involved in

this non-native interaction stabilizes the folded state. Although the purpose of our

simulations is not to exam the unfolded state, but rather to calculate native-state

pK a values, it is encouraging that from only 10 ns of sampling we begin to gather

information regarding initial stages of the unfolding process.

In agreement with experimental stability measurements of the wild-type pro-

tein [130], our data indicates that the folded state becomes less stable at elevated pH

and suggests that helix III is the least stable of the three helices. Experimental evi-

dence indicates that there is significant structure in the unfolded state of HP36 [195]. A

truncated peptide containing only residues of helix I and II displays characteristics

similar to the unfolded state [196] of the full length protein suggesting that the unfolded

state of HP36 represents a loss of structure in helix III. Further, a triplet-triplet en-

ergy transfer study [197] corroborated the idea that the hydrophobic core formed by

phenylalanines of helix I and II remains intact in the unfolded state, while helix

III unravels. Several computational studies of HP36 folding have been undertaken,

but the results are mixed and it is difficult to discern whether these observations
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are governed by kinetics or thermodynamics. Simulations using an implicit-solvent

model suggested helix III forms first [198,199] while explicit-solvent simulations of the

truncated individual helices indicated that, in isolation, helix I is the most stable [200].
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Figure 6.21: Free-energy surfaces of HP36. Two-dimensional free-energy surfaces of
HP36 at pH 2 (Upper) and pH 4 (Lower). The first axis is RMSD of segment A (helix
I and II) while the second axis is RMSD of segment B (helix II and III). The first
nanosecond of the simulation was discarded for this and all subsequent analysis.

158



0 0.2 0.4 0.6 0.8 1
Helical content

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

0 10 20 30 40
Residue number

0

0.2

0.4

0.6

0.8

1

H
e

lic
a
l 
fr

a
c
ti
o

n

Figure 6.22: Secondary structure of HP36. (Upper) Probability density of the helical
content (the fraction of residues that are part of an α-helix) and (Lower) the helical
fraction (the fraction of time a specific residue is part of an α-helix) from structures
extracted from native (blue) and non-native basins (red) in Figure 6.21. Secondary
structure was calculated using the STRIDE program [194].
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Figure 6.23: Distributions of HP36 Lys71 to Glu72 distances from native and non-
native basins. (Left) Probability distribution of HP36 Lys71 amine-nitrogen to Glu72
carboxyl-oxygen minimum distance for conformations at pH 4 with segment B RMSD
> 4 (black) and segment B RMSD < 4 (red). (Right) NMR model of helix III
as cartoon showing Lys71 (blue) and Glu72 (red) with every 50th snapshot having
segment B RMSD > 4 oriented and superimposed onto the native helix and rendered
as transparent image.
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6.5 Conclusion

We propose a variant of ECpHMD that makes use of the GRF treatment of long-

range electrostatics and a charge-leveling procedure that keeps the net charge neutral

by coupling titration to the charging and neutralization of co-ions which act as a

charge reservoir. We tested our method on two series of molecules: aliphatic dicar-

boxylic acids and proteins. Our results from the dicarboxylic acid series and the

small protein HP36 indicate that charge neutralization is necessary in order to obtain

accurate pK a values. The method we propose yields results in good agreement with

experiment for cases where conformational sampling is adequate such as dicarboxylic

acids and the protein BBL. We find that the inclusion of additional ions to match

experiment can improve pK a calculation accuracy for proteins.

Concerning overall accuracy, pHREX-ECpHMD performs on-par with hybrid-

solvent CpHMD. However, in certain cases where there are larger energy barriers

that separate conformations favored by different protonation states, as is the case of

salt bridges and hydrogen bonding, pHREX-ECpHMD suffer from inadequate sam-

pling. Given this limitation, ECpHMD can be combined with the TREX protocol

providing a straightforward route to increase conformational sampling and pK a ac-

curacy.

This work represents, to the best of our knowledge, the most rigorous test of the

accuracy of ECpHMD and paves the way for further development and application of

the method.
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Appendix: Summary of SNase mutant pK a predictions

pK a calculations with published experimental data

Name (PDB ID) Background Res. Type Res. ID Calc. Exp. Error Ref.
V66K(2snm) wild type K 66 7.5 6.4 1.1 I
V66K PHS K 66 6.9 6.4 0.6 II
V66K ∆+PHS K 66 7.0 5.6 1.4 III
V66D(2oxp) PHS D 66 6.8 8.7 -1.9 IV
V66E(1u9r) PHS E 66 8.4 8.5 -0.1 VII

8.4 (8.7) -0.3 V
I92E(1tqo) ∆+PHS E 92 6.9 9.0 -2.1 VII

6.9 (8.7) -1.8 VI
I92K(1tt2) ∆+PHS K 92 6.6 5.3 1.3 VII

6.6 (5.6) 1.0 VI
I92D(2oeo) ∆+PHS D 92 6.8 8.1 -1.3 V

Previously published data are listed in parentheses.
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pK a predictions

Name (PDB ID) Background Res Type Res ID Calc Expt Errora Ref
G20R ∆+PHS R 20 12.9 >10.4 COR VII
G20E ∆+PHS E 20 4.2 <4.5 COR
G20K ∆+PHS K 20 11.3 >10.4 COR
G20D ∆+PHS D 20 2.3 <4.0 COR
V23R ∆+PHS R 23 13.6 >10.4 COR
V23E ∆+PHS E 23 7.5 7.1 0.4
V23D ∆+PHS D 23 6.7 6.8 -0.1
V23K ∆+PHS K 23 7.1 7.3 -0.2
L25K(3erq) ∆+PHS K 25 4.2 6.3 -2.1
L25E(3evq) ∆+PHS E 25 8.4 7.5 0.9
L25D ∆+PHS D 25 7.7 6.8 0.9
L25R ∆+PHS R 25 14.9 >10.4 COR
F34R ∆+PHS R 34 11.8 >10.4 COR
F34D ∆+PHS D 34 6.6 7.8 -1.2
F34K ∆+PHS K 34 7.5 7.1 0.4
F34E ∆+PHS E 34 7.5 7.3 0.2
L36E ∆+PHS E 36 7.1 8.7 -1.6
L36K(3eji) ∆+PHS K 36 8.0 7.2 0.8
L36R ∆+PHS R 36 11.4 >10.4 COR
L36D ∆+PHS D 36 5.6 7.9 -2.3
L37E ∆+PHS E 37 6.1 5.2 0.9
L37K ∆+PHS K 37 7.5 >10.4 >2.92
L37D ∆+PHS D 37 5.1 <4.0 >1.05
L37R ∆+PHS R 37 11.1 >10.4 COR
L38D ∆+PHS D 38 6.6 6.8 -0.2
L38R ∆+PHS R 38 13.5 >10.4 COR
V39R ∆+PHS R 39 14.7 >10.4 COR
V39E ∆+PHS E 39 8.9 8.2 0.7
V39D ∆+PHS D 39 9.8 8.1 1.7
V39K ∆+PHS K 39 8.0 9.0 -1.0
T41R ∆+PHS R 41 14.2 >10.4 COR
T41E ∆+PHS E 41 6.3 6.5 -0.3
T41K ∆+PHS K 41 8.5 9.3 -0.8
T41D ∆+PHS D 41 6.5 <4.0 >2.45
A58E ∆+PHS E 58 5.2 7.7 -2.5
A58R ∆+PHS R 58 13.4 >10.4 COR
A58K ∆+PHS K 58 9.1 >10.4 >1.33
A58D ∆+PHS D 58 6.3 6.8 -0.5
T62R ∆+PHS R 62 14.7 >10.4 COR
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pK a predictions (continued)

Name (PDB ID) Background Res Type Res ID Calc Expt Errora Ref
T62K(3dmu) PHS K 62 6.0 8.1 -2.1 VII
T62D ∆+PHS D 62 6.3 8.7 -2.4
T62E ∆+PHS E 62 7.3 7.7 -0.4
I72K(2rbm) ∆+PHS K 72 9.2 8.6 0.6
I72E(3ero) ∆+PHS E 72 6.7 7.3 -0.6
I72D ∆+PHS D 72 6.3 7.6 -1.4
V74D ∆+PHS D 74 8.3 8.3 0.0
V74K ∆+PHS K 74 8.0 7.4 0.6
V74R ∆+PHS R 74 13.4 >10.4 COR
V74E ∆+PHS E 74 9.8 7.8 2.0
A90D ∆+PHS D 90 7.1 7.5 -0.4
A90K ∆+PHS K 90 7.2 8.6 -1.4
A90E ∆+PHS E 90 9.1 6.4 2.7
Y91D ∆+PHS D 91 4.4 7.2 -2.8
Y91R ∆+PHS R 91 12.2 >10.4 COR
Y91K ∆+PHS K 91 6.9 5.3 1.6
Y91E(3d4d) ∆+PHS E 91 4.9 7.1 -2.2
V99D ∆+PHS D 99 4.6 8.5 -3.9
V99E ∆+PHS E 99 7.6 8.4 -0.8
V99R ∆+PHS R 99 13.7 >10.4 COR
V99K ∆+PHS K 99 7.8 6.5 1.3
N100R ∆+PHS R 100 12.1 >10.4 COR
N100K ∆+PHS K 100 3.8 8.6 -4.8
N100E ∆+PHS E 100 4.6 7.6 -3.0
N100D ∆+PHS D 100 5.9 6.9 -1.0
L103E ∆+PHS E 103 7.8 8.9 -1.1
L103R ∆+PHS R 103 9.5 >10.4 >0.88
L103D ∆+PHS D 103 6.8 8.7 -1.9
L103K(3e5s) ∆+PHS K 103 11.1 8.2 2.9
V104D ∆+PHS D 104 7.8 9.7 -1.9
V104R ∆+PHS R 104 13.5 >10.4 COR
V104E ∆+PHS E 104 7.0 9.4 -2.4
V104K(3c1f) ∆+PHS K 104 9.6 7.7 1.9
A109K ∆+PHS K 109 7.3 9.2 -1.9
A109R(3d4w) ∆+PHS R 109 14.1 >10.5 COR
A109E ∆+PHS E 109 7.4 7.9 -0.5
A109D ∆+PHS D 109 7.1 7.5 -0.4
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pK a predictions (continued)

Name (PDB ID) Background Res Type Res ID Calc Expt Errora Ref
N118E ∆+PHS E 118 5.4 <4.5 >0.94 VII
N118D ∆+PHS D 118 6.6 7.0 -0.4
N118R ∆+PHS R 118 11.1 >10.4 COR
N118K ∆+PHS K 118 9.1 >10.4 >1.27
L125D ∆+PHS D 125 6.7 7.6 -0.9
L125R ∆+PHS R 125 14.3 >10.4 COR
L125E ∆+PHS E 125 7.9 9.1 -1.2
A132D ∆+PHS D 132 5.6 7.0 -1.4
A132K ∆+PHS K 132 7.4 >10.4 >3.05
A132R ∆+PHS R 132 14.1 >10.4 COR
A132E ∆+PHS E 132 6.8 7.0 -0.2

a The uncertainty of experimental pK a measurements using thermodynamic stabilities
is 0.2–0.5 pK units [86]. COR means the calculated pK a is within the experimentally
determined bound.
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