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Abstract

This work presents the main implications of simultaneously considering the Peccei-

Quinn solution to the Strong CP Problem and the supersymmetric solution to the

Hierarchy Problem. We focus our discussion on the cosmological consequences of the

resulting low energy effective theory, the Minimal Supersymmetric Standard Model

augmented with the axion supermultiplet or PQMSSM. Here we review the main

ideas and concepts necessary for discussing the PQMSSM cosmology and apply these

to particular PQMSSM scenarios, such as the axino LSP and the neutralino LSP

cases. In particular we discuss how these scenarios can be made consistent with

cosmological constraints, such as the observed Dark Matter relic density and Big

Bang nucleosynthesis. The implications for collider and dark matter experiments are

also presented.
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Introduction

The Standard Model (SM) is frequently labeled as the most successful theory of the

history of science. Despite its indisputable achievements in describing and predicting

an amazing and ever-growing amount of experimental data, there are several theoreti-

cal and experimental motivations for considering Beyond the Standard Model (BSM)

theories. Amongst these is the notorious fine-tuning problem in the Higgs and elec-

troweak sector of the SM, also known as the Hierarchy Problem. Another less well

known, but equally important fine-tuning problem is the Strong CP Problem, which is

found in the quantum chromodynamics (QCD) sector of the Standard Model. Several

solutions for both the electroweak and strong fine-tuning problems have been exten-

sively discussed in the literature. The most compelling ones are the supersymmetry

(SUSY) solution to the Hierarchy Problem and the Peccei-Quinn (PQ) solution to the

Strong CP Problem. These can also explain the observed value for the Dark Matter

relic density, which can not be accommodated within the Standard Model. When

simultaneously considered, supersymmetry and the PQ mechanism have several im-

portant consequences for the cosmological history of the universe. Here we discuss

such implications in the context of the PQMSSM, the low energy effective theory

that implements both the PQ and the SUSY solutions for the fine-tuning problems

mentioned above.

In the first part of this work we briefly review the motivations for considering the

PQMSSM, which is defined in detail in Section 3. In this section we also present some

general properties for this class of models. Particular realizations of PQ models and
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their supersymmetric version are presented in Appendix A. In Part II we discuss the

main subject of this work, the Cosmology of the PQMSSM. Section 4 reviews the basic

cosmological framework necessary to discuss the standard MSSM cosmology, which is

then extended to include the axion supermultiplet in Sec.5. Due to its very distinct

phenomenology, we divide the PQMSSM models into two scenarios: models with an

axino as the lightest supersymmetric particle (LSP) and models with a neutralino LSP.

The first case is discussed in Sec.6, while the second is presented in Sec.7. Finally,

in Section 8, we discuss a class of PQMSSM models related to grand unified and

string theories. Some analytical expressions necessary for discussing the axion and

neutralino relic densities in the PQMSSM framework are derived in Appendix B.

An exhaustive review of supersymmetry and PQ models is beyond the scope of this

work and can be found in several text-books and published reviews. Instead, we aim

here to collect several concepts and ideas pertaining to the cosmology of the PQMSSM

models, which are scattered in the literature, many times with conflicting conclusions

and/or notation. However, we also point out that the cosmology of the PQMSSM is

not an exhausted topic and although some of the results presented here have not been

discussed before, some scenarios still need to be investigated and are not contained

in this work. Whenever possible we try to explicitly present our assumptions and

possible extensions and/or exceptions to the scenarios presented here.
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Part I

PQMSSM: An Introduction
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The first Part of this work briefly reviews the theoretical motivations for the super-

symmetric PQ model (PQMSSM). In Sec.1, we present the main motivation behind

the introduction of the PQ symmetry, known as the Strong CP Problem, as well as

the original solution proposed by Peccei and Quinn. The Strong CP Problem can

be viewed as a fine-tuning (or naturalness) problem in the strong sector. A distinct

fine-tuning problem in the electroweak sector, known as the Hierarchy Problem, con-

stitutes the main theoretical argument for weak scale Supersymmetry (SUSY) and is

discussed in Sec.2. Since both supersymmetry (as well as the minimal supersymmetric

version of the Standard Model or MSSM) and the PQ solution have been discussed

at length in the literature, we will just present the basic ideas necessary to moti-

vate our subsequent discussion of the PQMSSM cosmology. In Sec.3 we summarize

the main consequences of simultaneously considering the PQ solution to the Strong

CP Problem and the supersymmetric solution to the Hierarchy problem. The basic

characteristics of the resulting (PQMSSM) model are presented. A more detailed dis-

cussion of particular realizations of the PQMSSM scenario is discussed in Appendix

A.
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Chapter 1

The Strong CP Problem

In the early 70’s, it was realized that non-abelian gauge theories admit a non-trivial

vacuum structure[1, 2]. Before this realization, perturbative quantum field theory

was constructed as perturbations on the vacuum state φ(x) = 0, where φ represents

all the fields in the theory. Thus, gauge invariant terms such as

Tr(FµνF̃
µν) = ǫµνρσ∂µ

(
Aa

νF
a
ρσ − 2

3
ifabcA

a
νA

b
ρA

c
σ

)
≡ ∂µK

µ (1.1)

could be neglected when computing the action, since it corresponds to a surface term,

which vanishes since Aa
µ

x→±∞−−−−→ 0. In Eq.(1.1) above Aµ are the gauge fields, Fµν

is the gauge strength tensor, F̃ µν ≡ ǫµνσρFσρ/2 its dual and fabc the gauge group

structure constants. However, the condition Aµ = 0 is not gauge invariant. Instead,

the physical condition for defining the vacuum state of gauge theories is:

Fµν
x→±∞−−−−→ 0 , (1.2)

which implies

Aµ
x→±∞−−−−→ U−1∂µ , U (1.3)

where U is a unitary gauge transformation and Aµ = Aa
µT

a. Here T a are the genera-

tors of the gauge group. The existence of these non-trivial vacuum solutions implies

that surface terms, such as the one in Eq.(1.1), can not be neglected, except in abelian

theories, where fabc = 0 results in Kµ
x→±∞−−−−→ 0.

The non-triviality of vacuum solutions in non-abelian theories has important con-

sequences for the Standard Model (SM), since it contains the unbroken SU(3)C sym-
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metry. The QCD vacuum structure is closely related to the homotopy classes of

SU(3)[3]. It has been shown[1, 2] that non-abelian theories can have an infinite num-

ber of nonequivalent vacuum states, which give rise to distinct physical theories. In

QCD, all the possible gauge invariant vacua can be parametrized by their phase (θ)

under gauge transformations. Assuming a specific gauge invariant vacuum for the

theory and expanding the gauge fields in the gauge invariant vacuum (|θ〉) gives:

〈θ|O|θ〉 = lim
t→∞(1−iǫ)

∫
DφO exp[i

∫
d4xLeff ]∫

Dφ exp[i
∫

d4xLeff ]
(1.4)

where O represents a time ordered operator and

Leff = LQCD + αs
θ

8π
Tr(GµνG̃

µν) (1.5)

where Gµν is the gluon field tensor and αs = g2/4π is the strong coupling constant.

Therefore, unless θ = 0, the non-trivial QCD vacuum will contribute with the effective

interaction term in Eq.(1.5).

The above picture can significantly change once quark fields are considered. As-

suming massless quarks, the Standard Model is invariant under the global chiral

symmetry:

qf → eiαf γ5

qf (1.6)

where f labels quark flavor and αf is the U(1) transformation parameter. Although

the above symmetry is clearly violated by quark masses, even in the massless case, it

is not conserved at the quantum level, since it is not anomaly free. It is well known

that applying the above transformation for the quark fields induces the following

6



terms in the SM Lagrangian:

LSM → LSM +
∑

f,f ′

(Mq)ff ′ q̄fe
i(αf+αf ′ )γ5

qf ′ − 2

(
∑

f

αf

)
g2

32π2
GµνG̃

µν (1.7)

where Mq is the quark mass matrix. Therefore, in the limit that at least one of the

quark flavors is massless, we can choose
∑

f αf = θ/2 and eliminate the θ dependence

in the SM. This is simply a reflection that, for a (classically) conserved chiral sym-

metry, all distinct QCD vacua are related by chiral transformations and consequently

equivalent. In this case θ is an unphysical parameter. On the other hand, for massive

quarks, the chiral transformation can be used to eliminate phases in the quark mass

matrix and rotate the quark fields to the mass basis. In this basis, αf is fixed by the

phases in the quark mass matrix Mq, resulting in a redefinition of the θ parameter:

θ → θ̄ = θ +
∑

f

αf = θ + Arg[Det(Mq)] . (1.8)

Since most of the SM computations are done in the mass basis, θ̄ is the physical

parameter to be considered. Furthermore, from the electroweak interactions, we

know that the quark mass matrix in the interaction basis is not real, hence we see

that, even if θ = 0 in the interaction basis, θ̄ is non zero, as seen from Eq.(1.8).

A non zero θ̄ has important physical implications. As an example, consider the

transformation of the θ̄ term under time reversal (T ):

G0i
T−→ G0i and Gij

T−→ −Gij

G̃0i
T−→ −G̃0i and G̃ij

T−→ G̃ij

⇒ GµνG̃
µν T−→ −GµνG̃

µν .

Hence Leff violates T and consequently CP , for θ̄ 6= 0. This clearly shows that

theories with distinct vacua (parametrized by distinct θ̄ values) have distinct physics

7



(if all quarks are massive). An important example of the consequences of strong CP

violation is the contribution of the θ̄ term to the neutron electric dipole moment (dn),

which is estimated as[4]

dn = gNNπḡNNπ ln(
MN

mπ

)
1

4π2MN

(1.9)

where MN and mπ are the neutron and pion masses and, for mu,d ≪ ms,

gNNπ ≃ 13.4

ḡNNπ ≃ mumd

mu + md

θ̄(MΞ − MN)
2ms − mu − md

fπ

∼ 0.038θ̄ . (1.10)

The above expression clearly shows that if one of the light quarks is massless, θ̄

has no physical consequences, as expected from the above discussion. However, for

mumd 6= 0, the above result gives[4]:

dn ≃ 5.2 × 10−16θ̄ ecm . (1.11)

But experimental measurements constrain dn to[5]:

dn < 2.9 × 10−26 ecm . (1.12)

which requires θ̄ < 10−10. Such a tiny value would require an enormous fine-tuning

between the θ and Arg[Det(Mq)] terms in Eq.(1.8). This is known as the Strong CP

Problem. An obvious solution for eliminating the θ̄ contribution to dn is to assume a

massless quark. However this seems to be strongly disfavored by current experimental

data. In the next section we discuss an alternative solution, initially proposed by

Peccei and Quinn[6].

8



1.1 The Peccei-Quinn Solution

The Peccei-Quinn[6] solution for the Strong CP Problem relies on the fact that, if

the Standard Model has an anomalous chiral symmetry (U(1)PQ), the θ parameter

can be rotated away, as discussed in the previous Section. However, such symmetry

is clearly not present at low energies and must be broken. The importance of Peccei

and Quinn’s work was to show that θ̄ is naturally zero if U(1)PQ is spontaneously

broken. As a consequence, a Goldstone boson must appear in the low energy theory,

commonly named the axion (a)[7, 8], which transforms under U(1)PQ as:

a → a + ξ . (1.13)

As shown in Appendix A, the PQ symmetry induces the following effective axion-

gluon-gluon interaction:

LaGG = αs
a

8πfa

GµνG̃
µν , (1.14)

where fa is related to the PQ breaking scale. Neglecting the electroweak sector for

now we have:

Leff =
1

2
(∂µa)2 +

∑

f

q̄f (iγ
µDµ − mf )qf −

1

4
GµνG

µν

+
αsθ̄

8π
GµνG̃

µν +
αsa

8πfa

GµνG̃
µν . (1.15)

Now consider the effective potential for the axion field in Euclidean space (t → it):

exp

[
−
∫

d4xVeff (〈a〉)
]

=

∫
Dφ exp

[
−
∫

d4xL̄(〈a〉)
]

, (1.16)

where L̄ is the Euclidean Lagrangian, with t → it:

L̄(〈a〉) =
1

4
GµνG

µν +
∑

f

q̄f (γ
µDµ + mfqf ) −

iαs(〈a〉 + faθ̄)

8πfa

GµνG̃
µν . (1.17)

9



After integrating out the quark fields, it can be shown[9] that Eq.(1.16) can be written

as:

exp

[
−
∫

d4xVeff (〈a〉)
]

=

∫
DAµ

∏

f

Det(γµDµ + mf ) (1.18)

× exp

[
−
∫

d4x

(
1

4
GµνG

µν − iαs(〈a〉 + faθ̄))

8πfa

GµνG̃
µν

)]

where Det(γµDµ + mf ) > 0 in Euclidean space. Therefore, since the GµνG
µν term is

real and i(〈a〉 + faθ̄)GµνG̃
µν is pure imaginary:

exp

[
−
∫

d4xVeff (〈a〉)
]
≤
∫

DAµ

∏

f

Det(γµDµ + mf )|eA+iB| (1.19)

where

A = −1

4

∫
d4xGµνG

µν and (1.20)

B = − αs

8πfa

(〈a〉 + faθ̄)

∫
d4xGµνG̃

µν .

Hence:

exp

[
−
∫

d4xVeff (〈a〉)
]

≤
∫

DAµ

∏

f

Det(γµDµ + mf )e
A (1.21)

= exp

[
−
∫

d4xVeff (〈a〉 = −θ̄fa)

]

⇒ Veff (〈a〉) ≥ Veff (〈a〉 = −faθ̄) . (1.22)

This shows that the minimum of the potential always happens for 〈a〉/fa + θ̄ = 0.

Therefore, the PQ axion acquires a vacuum expectation value that exactly cancels the

original θ̄ term, guaranteeing that the CP violating term (GG̃) vanishes to all orders.

Clearly, this can only be achieved if the theory contains the U(1)PQ Goldstone boson,

10



which allows the θ̄ + 〈a〉 angle to become a dynamical variable. Although the above

result only holds for the QCD Lagrangian, it has been shown that the electroweak

sector only results in corrections to θ̄ of order 10−14[10, 11], still well below the

experimental constraints.

From the above results, we see that the PQ solution to the Strong CP Problem

only requires the introduction of a spontaneously broken axial symmetry and a aGG̃

effective coupling. There are several different ways of introducing the U(1)PQ sym-

metry in the SM. The minimal model, proposed by Peccei and Quinn[12] in 1977,

requires two Higgs doublets, which transform under U(1)PQ as

φ1 → eiQ1αφ1 and φ2 → eiQ2αφ2 (1.23)

with Q1 6= Q2. This minimal scenario was studied in detail by Weinberg[7], who

showed that the spontaneous breaking of U(1)PQ and the electroweak symmetry hap-

pen simultaneously, as the φi fields acquire non zero vacuum expectation values (vi).

As a result, the axion couplings with leptons and quarks are completely fixed and

must be of order mf/v, where v ≡
√

v2
1 + v2

2 ∼ 240 GeV. Furthermore, the axion

mass is generated due to the anomalous violation of the U(1)PQ symmetry and is

given by:

ma ≃ fπmπ0

v
∼ 100 keV . (1.24)

The existence of such a light particle with order mf/v interactions has been long ruled

out by constraints on hadronic decays such as K+ → π+ + a[11].

Since the original PQ-Weinberg-Wilczek model, several other SM extensions have

11



been proposed in order to accommodate the U(1)PQ and avoid the experimental

constraints. The most studied scenarios are the KSVZ[13, 14] and DFSZ[15, 16]

models. In these, extra scalars and/or heavy quark fields are introduced in such a

way that the breaking of U(1)PQ is no longer related to the SU(2)L×U(1)Y breaking

and it is assumed to happen at a much higher scale, fa ≫ v. As a result, the axion

mass and interactions are now suppressed by 1/fa and can evade the experimental

constraints. These models are also known as invisible axion models.

Despite the very distinct UV completion of the KSVZ and DFSZ models, at low

energies (≪ fa), both scenarios share the same basic properties. Here we present the

most relevant ones for our subsequent discussion. More details about the KSVZ and

DFSZ models are discussed in Appendix A.

In both models, the effective axion Lagrangian assumes the form[17]:

La,eff =
1

2
∂µa∂µa

+
cq
1

fa

∂µaq̄γµγ5q − (
1

fa

mq q̄LqReicq
2a/fa + h.c.)

+
cl
1

fa

∂µal̄γµγ5l − (
1

fa

ml l̄LlReicl
2a/fa + h.c.) (1.25)

+
csαs

8πfa

aGµνG̃
µν +

cW αW

8πfa

aWµνW̃
µν +

cY αY

8πfa

aBµνB̃
µν

where we have omitted generation indices, q (l) represents a quark (charged lepton)

spinor and Gµν , Wµν and Bµν are the SU(3)C , SU(2)L and U(1)Y tensor fields, re-

spectively. The constants ci depend on the particular axion model. For the KSVZ

model, cq,l
1 = cq,l

2 = 0 and cs 6= 0, while for DFSZ, cq,l
1 = 0, cd

2 = cl
2 6= 0, cu

2 6= 0 and cs

is only generated at the one loop level, as shown in Appendix A.
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Requiring La,eff to be invariant (at the classical level) under the PQ transforma-

tion

q → eiγ5αQqq, l → eiγ5αQll and a → a + faα (1.26)

implies

cq
2 + 2Qq = 0, cl

2 + 2Ql = 0,

cs − 2Qq = 0, cW − 6Qq − 2Ql = 0,

and cY − 6Y 2
q Qq − 2Y 2

l Ql = 0 (1.27)

where Yq and Yl are the hypercharge of the quark and charged lepton, respectively.

The fa constant is usually defined such that cs = 1. Furthermore, in most models

cq
2 = cl

2, so the above constraints fix all the model dependent coupling constants ci

and the charges Qq, Ql. However, if the lepton masses can be neglected (which is

always a good approximation in our case), the second constraint no longer applies

and we can always rotate the lepton fields by a chiral transformation so that cW = 0

or cY = 0. For our purposes it is convenient to work in the basis where cW = 0, which

will be assumed from now on. This arbitrariness in choosing the value of cW (or cY )

is analogous to the massless quark case discussed at the end of Sec.1, where θ̄ is no

longer physical if one of the quarks is massless and therefore can be chosen as zero.

We also point out that the effective axion Lagrangian given in Eq.(1.25) is only valid

above the QCD chiral symmetry breaking scale (ΛQCD) and must be modified below

ΛQCD[18]. However, Eq.(1.25) will be sufficient for our subsequent discussion.

As in the PQ-Weinberg-Wilczek model, the axion mass is suppressed by the PQ

13



breaking scale (fa) and is generated by the U(1)PQ anomaly. However, in the KSVZ

and DFSZ models, fa ≫ v, so[19, 7]:

ma =
mπfπ

fa

√
Z

1 + Z
(1.28)

where mπ ≃ 135 MeV and fπ ≃ 93 MeV are the pion mass and structure constant

and Z = mu/md ≃ 0.56. Hence:

ma ≃ 6 eV
106 GeV

fa

≪ 100 keV . (1.29)

Furthermore, the anomalous axion coupling to the gluon field tensor generates the

following axion effective potential[18, 20, 21]:

Veff (a) ≃ m2
af

2
a [1 − cos(a/fa)] . (1.30)

The above equation shows that the minimum of the potential is at a = 0, as expected

from the discussion leading to Eq.(1.22). Astrophysical constraints on invisible ax-

ion models arising from stellar energy loss via axion radiation[11] usually require

fa & 109 GeV. Therefore, despite its tiny mass, production of axions in laboratory

experiments is extremely suppressed. Thus, for most purposes, the axion field com-

pletely decouples from the SM at low energies. An exception is the possible detection

of axions through the a− γ − γ coupling in microwave cavity experiments[22, 23, 24].

Nonetheless, the axion has important consequences in cosmology, as discussed in

Sec.II. Furthermore, the introduction of the axion field implies an upper cut-off for

the Standard Model of the order fa, where the new degrees of freedom introduced in

the DFSZ or KSVZ models must be included. This leads us to another well known

14



fine-tuning problem in the SM, known as the Hierarchy Problem, discussed in the

next Section.
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Chapter 2

The Hierarchy Problem

In Sec.1, we presented the Strong CP Problem, which is essentially a fine-tuning

problem in the QCD Lagrangian, since θ̄ is required to be unnaturally small. The

electroweak sector of the Standard Model also has another notorious fine-tuning prob-

lem, known as the Hierarchy Problem.

In the SM, it is assumed that the SU(2)L × U(1)Y symmetry is spontaneously

broken by one Higgs doublet (φ), giving mass to the fermions and W± and Z gauge

bosons. Therefore, all the mass scales in the SM are given by one single parameter

〈φ〉 = v ≃ 240 GeV. All the mass hierarchies are then due to distinct Yukawa or gauge

couplings between the fermions or gauge bosons and the Higgs doublet. Although this

is a tree level result, the higher order corrections to the fermions and gauge masses

obey:

δm2
f,V = (m0

f,V )2(c ln Λ + d) (2.1)

where Λ is the UV cut-off of the theory, m0
f,V are the tree level fermion (f) and gauge

(V ) masses and c and d are constants. The logarithmic dependence on the cut-off

is due to the broken chiral and gauge symmetries of the SM. The first is restored at

v → 0 and (except for small anomalous corrections) implies that mf = 0 at all orders

in perturbation theory. Thus, higher order corrections to mf must be proportional

to v. The same is true for the gauge bosons, which are massless at all orders if v = 0,

due to the gauge symmetry. In this sense, the fermion and gauge masses are protected
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by the approximate chiral and gauge symmetries. On the other hand, in the SM, the

Higgs mass is not protected by any symmetry and higher order corrections to its mass

are not restricted to a logarithmic dependence on the cut-off:

δm2
h = aΛ2 + bΛ + c ln Λ + d (2.2)

As discussed in Sec.1.1, if we want to solve the Strong CP problem through the

PQ solution, the SM is an effective theory at energies smaller than the PQ breaking

scale (fa). Therefore, the SM will necessarily have a cut-off at Λ ∼ fa ≫ v. Although

this only introduces corrections of order m0
f,V to the fermion and gauge boson masses,

the Higgs mass receives corrections of order Λ ≫ m0
h, where m0

h is the Higgs tree level

mass. However, experimental data and unitarity arguments require mh < 1 TeV. In

order to obtain this relatively light Higgs mass in the SM model, it is necessary to

fine-tune the bare Higgs mass (m0
h), so it almost exactly cancels the large radiative

corrections, resulting in a physical mass of order v. This electroweak fine-tuning

problem in the Standard Model is commonly known as the Hierarchy Problem.

2.1 The Supersymmetric Solution

As discussed in Sec.2, the Hierarchy Problem is only present in the SM because there

are no symmetries protecting the Higgs mass from quadratic radiative corrections.

Therefore, a natural solution to the problem is to enlarge the SM symmetry in order

to protect the Higgs mass. This can be achieved (at least at 1 loop) with an extended

gauge symmetry, such as in Little Higgs models[25]. Another compelling solution is
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Supersymmetry (SUSY).

Unlike an internal (gauge) symmetry, SUSY is an extension of the space-time

symmetry of the SM. It introduces new quantum (anti-commuting) dimensions (θa),

extending the four dimensional Minkowski space-time (xµ) to a 8-dimensional space,

known as superspace (xµ, θa). The usual 4-dimensional fields are then extended to

superfields, which are functions of (xµ, θa) and now include both fermionic and bosonic

degrees of freedom. In the same way that three dimensional rotations relates the spin

components of a field, rotations in superspace relates the spin-half and spin-0 (for

chiral superfields) or spin-1 (for vectorial superfields) of a superfield.

Since under supersymmetry the Higgs field is related to a fermionic field, the chiral

symmetry that protects the fermion masses is extended to the Higgs field, forbidding

quadratic corrections1. This clearly solves the Hierarchy Problem if supersymmetry

is exact.

However, SUSY cannot be an exact symmetry at low energies, since this would

imply low energy sparticles, such as a 0.5 MeV scalar electron (or selectron), clearly

not seen in low energy data. Nonetheless, the Hierarchy Problem can still be solved

in the broken SUSY regime, since in this case the radiative corrections for the Higgs

mass are given by[27]:

δm2
h = a(m2

f − m2
f̃
) ln

m2
f

m2
f̃

+ b(m2
V − m2

Ṽ
) ln

m2
f

m2
f̃

+ c (2.3)

where mf̃ ,Ṽ are the matter fermion and gauge boson superpartners, also known as

sfermions and gauginos, respectively. From the above expression, we see that the

1It can be shown that, for unbroken SUSY, all corrections to the Higgs mass cancel at all orders
in perturbation theory. This is a particular consequence of the Non-Renormalization Theorem[26].
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corrections to m0
h are still suppressed as long as mf̃ ,Ṽ is not much larger than mf,V .

In this, case a small fine-tuning usually requires mf̃ ,Ṽ . 1 TeV[28].

Several realistic SUSY breaking models have been constructed in order to satisfy

all experimental bounds on sparticle masses and at the same time solve the Hierarchy

Problem[27]. The minimal supersymmetric version of the Standard Model (MSSM)

and its phenomenological implications have been discussed at length in the literature

and is beyond the scope of this work. However, we mention that, in most of the

viable MSSM scenarios, the lightest supersymmetric particle is a stable neutral bino

(superpartner of the U(1)Y gauge boson), wino (superpartner of the SU(2)L neutral

gauge boson) or higgsino (superpartner of the Higgs scalar) and can be a viable

candidate for Dark Matter. This important feature of the MSSM will be essential

for our further discussion of the PQMSSM cosmology and will be discussed in more

detail in Sec.4. To conclude, we list in Table 2.1 the MSSM superfields (particles and

sparticles), in the interaction (SU(3)C × SU(2)L × U(1)Y ) basis and their respective

sparticle mass eigenstates.
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Superfields SU(3)C SU(2)L U(1)Y Sparticle Mass Eigenstates

L = L(l̃, l) 1 2 -1 Sleptons (ẽ1, ẽ2)
and Sneutrinos (ν̃)

EC = EC(ẽC , eC
L) 1 1 2

Q = Q(q̃, q) 3 2 1/3

Squarks (ũ1, ũ2, d̃1, d̃2)UC = UC(ũC , uC
L) 3* 1 - 4/3

DC = DC(d̃C , dC
L) 3* 1 2/3

Hu = Hu(h̃u, hu) 1 2 1

Charginos (W̃1, W̃2)
and Neutralinos (Z̃1, Z̃2, Z̃3, Z̃4)

Hd = Hd(h̃d, hd) 1 2* -1

V a = V a(W̃ a,W a) 1 3 0

V ′ = V ′(B̃, B) 1 1 0

G = G(g̃, g) 8 1 0 Gluinos (g̃)

Table 2.1: MSSM fields and their representations. The last column shows the respec-

tive sparticle mass eigenstates.

20



Chapter 3

PQMSSM

In the last two Sections, we discussed how the Standard Model requires a large amount

of fine-tuning in the QCD Lagrangian in order to satisfy the experimental constraints

on strong CP violation and in the Higgs sector in order to stabilize the electroweak

potential at the weak scale. We also presented two possible solutions for these issues,

both involving an extension of the symmetries of the Standard Model: the inclusion

of the global U(1)PQ symmetry and supersymmetry. Here we discuss what are the

implications of simultaneously requiring these two symmetries, so both the strong

CP and Hierarchy Problems are solved. We label the minimal class of models which

accommodates both SUSY and the PQ symmetry, the PQMSSM.

In order to implement the PQ mechanism in supersymmetric theories, PQ charges

have to be assigned to the MSSM fields and new PQ superfields must be introduced.

The axion superfield is a singlet under the MSSM gauge group and in most scenarios

is mainly composed of linear combinations of other elementary (non-MSSM) fields.

Even though the full field content of the PQMSSM is highly model dependent, it must

contain an axion superfield composed of a complex scalar field (φ) and a Majorana

fermion (ã). The complex scalar field is usually divided into its axion (a) and saxion

(s) components:

φ =
s + ia√

2

and the fermionic component is named axino.
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In order to solve the strong CP problem, the axion field must have effective cou-

plings to the SU(3) gauge fields of the form

LaGG̃ =
αs

8πfa

aGµνG̃
µν . (3.1)

Furthermore, as shown in Appendix A, an anomalous interaction with the Bµν is also

present in most models1:

LaBB̃ =
αY cY

8πfa

aBµνB̃
µν . (3.2)

Also, as seen in Eq.(1.25), other non-minimal interactions are possible, but since they

are strongly model dependent, they will be neglected here.

The supersymmetric version of Eqs.(3.1) and (3.2) implies the following couplings

for the saxion and axino fields:

Leff =
αs

8π

s

fa

(GµνG
µν + 2i¯̃gγµDµg̃) + i

αs

16π

¯̃a

fa

γ5[γ
µ, γν ]g̃Gµν

+
αY cY

8π

s

fa

(BµνB
µν + 2i

¯̃
BγµDµB̃) + i

αY cY

16π

¯̃a

fa

γ5[γ
µ, γν ]B̃Bµν (3.3)

where terms of order O(α
3/2
s ) and O(α

3/2
Y ) were neglected.

3.1 The Axion

Since the axion field is the U(1)PQ pseudo-Goldstone boson, it is massless, except for

anomalous corrections coming from the QCD chiral anomaly. For temperatures well

above ΛQCD (the QCD chiral breaking scale), the axion is essentially massless, while

for T ≪ ΛQCD the QCD chiral anomaly induces a non-zero mass for the axion field.

1As discussed in Sec.1.1, interactions with the SU(2)L tensor field can always be rotated away
in the approximation that the lepton Yukawa couplings are zero.
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The temperature dependent axion mass is approximately given by[21]:

ma(T ) =





m0
a , if ΛQCD > T

m0
a × b

(
ΛQCD

T

)4

, if ΛQCD < T

, (3.4)

where b ≃ 0.018, m0
a = 6.2 × 10−3 GeV/fa, ΛQCD = 200 MeV and T always refers

to the thermal bath temperature. Therefore the effective thermal potential for the

axion field becomes:

Veff (a) = ma(T )2f 2
a [1 − cos(a/fa)] (3.5)

Due to its small mass and suppressed interactions, the axion lifetime (axions can

decay to γγ) is much larger than the age of the universe, hence the axion can be

considered stable for all purposes.

3.2 The Axino

From Eq.(3.3), we have the following (minimal) couplings for the axino field :

Lã = i
αs

16π

¯̃a

fa

γ5[γ
µ, γν ]g̃Gµν + i

αY cY

16π

¯̃a

fa

γ5[γ
µ, γν ]B̃Bµν (3.6)

where cY = 8/3 in the DFSZ model and cY = 0, 2/3 or 8/3 in the KSVZ model, as

shown in Appendix A.

If supersymmetry is unbroken, the axino is degenerate with the axion field, hence

massless, except for the tiny QCD anomaly contribution. Furthermore, since the

axino is the Majorana component of a chiral superfield, it cannot receive tree level

soft masses. Hence, any mass operator for the axino field has to be non-renormalizable,

which makes the axino mass highly dependent on the supersymmetric PQ model and
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on the SUSY breaking mechanism. In particular, the supersymmetric DFSZ model

gives[29]:

mã ≃
kv2 + bm2

3/2

fa

(3.7)

where k . 10−7, m3/2 is the gravitino mass and b is a model dependent constant.

Thus, in this case, the axino mass is at most 10 MeV and the axino will likely be

the lightest supersymmetric particle (LSP). However, depending on the axion super-

multiplet couplings with the SUSY breaking (hidden) sector, the axino mass can

receive large corrections at 1-loop. For the supersymmetric KSVZ model discussed

in Appendix A.3, the axino is massless at tree level, but loop corrections give[30]:

mã ≃ m3/2 . (3.8)

As seen from the above arguments, in the most common models, the axino is expected

to be extremely light or of order the other SUSY particle masses. Nonetheless, for

most of the subsequent analysis, we will consider mã as a free parameter.

Since the axino has 1/fa suppressed interactions with gauge bosons and gauginos,

as seen from Eq.(3.6), it will be a long lived particle if it is not the LSP or it will make

the lightest MSSM particle (usually the lightest neutralino) unstable, if the axino is

the LSP. For the latter case, using Eq.(3.6), we obtain the following decay rates:

Γ(Z̃1 → ã + γ) =
α2

Y C2
aY Y cos2 θwZ2

1B

128π3f 2
a

m3
eZ1

(1 − m2
ã

m2
eZ1

)3 (3.9)

Γ(Z̃1 → ã + Z) =
α2

Y C2
aY Y sin2 θwZ2

1B

128π3f 2
a

m3
eZ1

λ1/2(1,
m2

ã

m2
eZ1

,
m2

Z

m2
eZ1

)

·





(
1 − m2

ã

m2
eZ1

)2

+ 3
m eZm2

Z

m3
eZ1

− m2
Z

2m2
eZ1

(
1 +

m2
eZ

m2
eZ1

+
m2

Z

m2
eZ1

)
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where Z1B = 〈Z̃1|B̃〉 is the bino component of the neutralino field. Three-body

decays of neutralinos into quarks have been computed in Ref.[31], including the γ/Z

interference terms and is given by:

dΓ

dµk

(Z̃1 → ã + qq̄) =
αα2

Y C2
aY Y Z2

1B

768π4f 2
a

m3
eZ1

[
Q2 cos2 θw

(1 − µk)
2(2 + µk)

µk

(3.10)

+
(g2

V + g2
A)

cos2 θw

(1 − µk)
2(2 + µk)µk

m2
ZΓ2

Z

m4
eZ1

+ (
m2

Z

m2
eZ1

− µk)2
+ 2gV QRe




(1 − µk)
2(2 + µk)

µk − m2
Z

m2
eZ1

+ iΓZmZ

m2
eZ1





 ,

where the axino and quark masses have been neglected. In the above, gV = T3

2
−

Q sin2 θw and gA = −T3/2, where T3 is the weak isospin of the quark q and Q its elec-

tric charge. The above differential width is integrated over the range µk : 4m2
q/m

2
eZ1

→

1. The quark mass acts as a regulator for the otherwise divergent photon-mediated

contribution.

On the other hand, if the axino is not the LSP, we have:

Γ(ã → g̃g) =
8α2

s

128π3f 2
a

m3
ã

(
1 −

m2
g̃

m2
ã

)3

Γ(ã → Z̃i + γ) =
α2

Y C2
aY Y cos2 θwZ2

iB

128π3f 2
a

m3
ã

(
1 −

m2
eZi

m2
ã

)3

Γ(ã → Z̃i + Z) =
α2

Y C2
aY Y sin2 θwZ2

iB

128π3f 2
a

m3
ãλ

1/2

(
1,

m2
eZi

m2
ã

,
m2

Z

m2
ã

)
(3.11)

·





(
1 −

m2
eZi

m2
ã

)2

+ 3
m eZi

m2
Z

m3
ã

− m2
Z

2m2
ã

(
1 +

m2
eZi

m2
ã

+
m2

Z

m2
ã

)


where ZiB is the bino component of the Z̃i field and λ(1, a, b) = 1+a2+b2−2a−2b−2ab.
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3.3 The Saxion

The saxion is the R-even partner of the axion field. As shown in Appendix A.2, the

saxion receives a soft mass of order m3/2 and couples to gauge bosons and gauginos

through the effective interactions in Eq.(3.3):

Leff =
αs

8π

s

fa

(GµνG
µν + 2i¯̃gγµDµg̃) +

αY cY

8π

s

fa

(BµνB
µν + 2i

¯̃
BγµDµB̃) . (3.12)

The saxion can also have an effective coupling with axions of the form[32, 33, 34]:

Lsaa =
Csaa

fa

s∂µa∂µa (3.13)

where Csaa is a model dependent constant, which can be zero or of O(1).

Using the above interactions we obtain the following decay rates for the saxion

field:

Γ(s → aa) =
C2

saa

32πf 2
a

m3
s (3.14)

Γ(s → gg) =
α2

sm
3
s

32π3f 2
a

Γ(s → g̃g̃) =
α2

smsm
2
g̃

8π3f 2
a

(
1 −

4m2
g̃

m2
s

)3/2

.

Therefore, the saxion, like the heavy axino, is long lived and can have important

cosmological consequences, as discussed later.
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Part II

The PQMSSM Cosmology
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Before discussing the consequences of the axion supermultiplet for the cosmological

evolution of the universe we first briefly review the thermal evolution of the ΛCDM

scenario. A detailed discussion of the thermal history of the universe is out of the scope

of this work and can be found in several standard text books[35, 36, 37]. Here we will

simply present the main ingredients necessary to investigate the PQMSSM cosmology.

Since astrophysical observations undoubtedly point to the existence of a cold Dark

Matter (DM) component in the total energy density of the universe with relic density

ΩDMh2 ≃ 0.11, in Sec.4 we assume the MSSM with a neutralino LSP as our prototype

model; to be extended later, in Sec.5, with the axion supermultiplet2. Sec.4 outlines

the main phases of the early thermal history of the MSSM and introduces the basic

formalism used later to discuss the PQMSSM cosmology. We also present some of

the main challenges faced by the standard MSSM cosmology, such as the Gravitino

Problem and the overproduction of dark matter. Then, in Sec.5, we introduce the

general features of the axion supermultiplet cosmology. Finally, in Secs.6-8, we discuss

particular PQMSSM models and their cosmological implications.

2Once the axino LSP scenario is considered, the neutralino no longer has to be the next-to-lightest
SUSY particle (NLSP) and interesting new possibilities open up, such as a stau NLSP[38]. However,
these cases require a distinct treatment and will not be included in our discussion.
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Chapter 4

Brief Review of the MSSM Cosmology

The ΛCDM picture assumes that at very early times the universe was mainly com-

posed of a extremely hot gas of relativistic particles, coupled through electroweak and

strong interactions. This initial phase was supposedly preceded by a fast expansion

phase (inflation) where the energy density was dominated by the potential energy of

a scalar field (the inflaton). During the inflaton decay, the universe was re-heated to

a temperature TR, given by[35]:

TR ≃ g
−1/4
∗ (TR)

2

√
MPlΓφ (4.1)

where MPl = 1.22× 1019 GeV is the Planck mass, Γφ is the inflaton decay width and

g∗(T ) is the number of relativistic degrees of freedom at temperature T , given by:

g∗ ≡
∑

Bosons

(
TB

T

)4

+
7

8

∑

Fermions

(
TF

T

)4

(4.2)

where TB (TF ) is the temperature of the bosonic (fermionic) relativistic degrees of

freedom.

After the inflaton decay, the energy density of the universe becomes dominated

by the radiation gas, with an expansion rate given by

H ≡ Ṙ

R
=

√
8π

3M2
Pl

ρR (4.3)

and the thermal bath energy density, ρR, evolves according to

ρ̇R + 4HρR = 0 (4.4)
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Using ρR = π2g∗(T )T 4/30, we obtain T ∝ R−1, so the thermal bath cools down as

the universe expands.

The dynamics of the distinct particle species interacting with the radiation gas is

governed by the Boltzmann equation, which in its simplified form reads[35]:

ṅi + 3Hni = −〈σii→jjv〉(n2
i − n̄2

i ) − Γi→Xni + Γj→i+Xnj (4.5)

where i and j label different particle species (j is assumed to be in thermal equi-

librium), n̄i is the equilibrium number density of particle i, 〈σii→jjv〉 is the velocity

averaged annihilation cross-section for the process i + i → j + j and Γi→X , Γj→i+X

are the decay rates for i → X and j → i + X, respectively. For the cases of interest

here, the right-hand side of Eq.(4.5) is dominated either by the annihilation or by the

decay term. In the first case, we have:

1

niH
ṅi = −3 − 〈σii→jjv〉

H
ni(1 − n̄2

i

n2
i

) (4.6)

Therefore, for 〈σii→jjv〉ni/H ≫ 1, the second term dominates and ni = n̄i. As the

temperature decreases and becomes smaller than the particle’s mass, n̄i(T ) ∝ e−mi/T ,

the second term quickly becomes sub-dominant and the number density freezes-out.

The freeze-out temperature (Tfr) can be approximately computed using the freeze-out

condition:

〈σii→jjv〉n̄i(Tfr) = H(Tfr) . (4.7)

Once a particle species decouples, its number density is simply diluted due to

the expansion of the universe, so ni ∝ R−3. In the MSSM with a neutralino LSP,

all heavier sparticle states will eventually decay to the neutralino LSP, which then
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freezes-out at temperatures of order Tfr ∼ m eZ1
/20. Since in the MSSM the neutralino

is stable, its energy density today is given by:

m eZ1
n0

eZ1
= m eZ1

n̄ eZ1
(Tfr)

(
R3

fr

R3
0

)
(4.8)

where n0
eZ1

is the number density of neutralinos today and Rfr (R0) is the scale factor

at freeze-out (today). Assuming conservation of entropy, g∗(T )T 3R3 = const 1, we

have

ρ eZ1
= m eZ1

n̄ eZ1
(Tfr)

(
g∗(T0)T

3
0

g∗(Tfr)T 3
fr

)
. (4.10)

Combining Eqs.(4.7) and (4.10) we estimate the neutralino relic density as:

Ω eZ1
h2 ≡

ρ0
eZ1

ρc/h2
=

H(Tfr)

ρc/h2

m eZ1

〈σv〉
g∗(T0)

g∗(Tfr)

T 3
0

T 3
fr

(4.11)

where ρc = 8.1h2 × 10−47 GeV4 is the critical density and h = 0.73. Assuming

freeze-out during a radiation dominated universe and Tfr ≃ m eZ1
/20, we obtain:

Ω eZ1
h2 ≃

(
1.7 × 10−10 GeV−2

〈σv〉

)
. (4.12)

After neutralino freeze-out the universe is mainly composed of a non-relativistic

neutralino component and the radiation gas, composed only of SM particles in thermal

equilibrium. The neutralino energy density simply scales as R−3, while ρR ∝ R−4.

1This relation is only valid under the assumption that entropy is conserved and g∗S = g∗, so
S = g∗ST 3R3 = g∗T

3R3 = const, where g∗S counts the number of relativistic degrees of freedom
contributing to the entropy and is given by

g∗S ≡
∑

Bosons

(
TB

T

)3

+
7

8

∑

Fermions

(
TF

T

)3

(4.9)

Although the conservation of entropy assumption can be violated in the PQMSSM, as discussed
in Sec.5.3, the approximation g∗S = g∗ is always valid for temperatures above 1 MeV, where the
electroweak and strong interaction rates are sufficiently high to keep all light (relativistic) particles
in thermal equilibrium, so TF = TB = T and g∗ = g∗S (see Eq.(4.2)). Since all of our results only
concern temperatures above 1 MeV, we will always assume g∗S = g∗.
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Therefore, for low enough temperatures (or large enough R), ρ eZ1
> ρR and the

universe becomes matter dominated. Imposing Ω eZ1
h2 = ΩDMh2 = 0.1123 we have:

T eZ1=R ≃ 5.5 eV (matter − radiation equality) . (4.13)

However, for T much above the matter-radiation equality temperature, the neu-

tralino component can be neglected and the universe is radiation dominated. After

neutralino freeze-out the next particle species to decouple from the thermal bath are

neutrons and neutrinos, since these only interact through weak interactions. Neutri-

nos are kept in thermal equilibrium through e+ + e− ↔ ν̄ + ν, while neutrons stay in

equilibrium through e+ + ν ↔ n̄ + p and its associated processes. Assuming T & me,

the cross-sections for the above processes are of order G2
F T 2. Since n̄e,ν ∼ T 3, Eq.(4.7)

gives:

G2
F T 2

fr × T 3
fr = H(Tfr) ⇒ Tfr ∼

(
MPlG

2
F

)−1/3 ∼ 1 MeV . (4.14)

Therefore neutrinos and neutrons decouple at temperatures of order 1 MeV.

For T < 1 MeV, neutrinos will simply evolve as a decoupled relativistic fluid, since

they are stable. On the other hand, neutrons have a lifetime of ∼ 15min and after

decoupling will decay to protons. Thus, from Eq.(4.5), we have that after decoupling

the neutron number will approximately follow:

Nn(T ) = (nnR
3) = (n̄n(Tfr)R

3)e−t/τn (for T ≪ 1 MeV) . (4.15)

The neutron to proton conversion stops once neutrons and protons start to form 4He.

This happens around T = TNC ∼ 0.1 MeV (t ∼ 3min). The abundance of 4He is

largely controlled by the neutron-to-proton ratio at these temperatures. Since the
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total number of nucleons (protons plus neutrons) is conserved, we have:

N̄n(Tfr) + N̄p(Tfr) = Nn(TNC) + Np(TNC) . (4.16)

Combining the above expression with Eq.(4.15) and the neutron and proton equilib-

rium densities (n̄p,n = 2(mp,nT/2π)3/2 exp[−mp,n/T ]), we have:

Np(TNC)

Nn(TNC)
= etNC/τn (1 + exp[(mn − MPl)/Tfr]) − 1 ∼ 7 (4.17)

where we used Tfr = 0.8 MeV. The above result is extremely important for constrain-

ing new physics and will be discussed in more detail in Sec.4.1.

Although 4He is abundantly produced in the early universe, smaller quantities

of 2H, 3He and 7Li are also produced at relevant quantities. The abundance of all

of these are essentially a function of only two parameters, the neutron and proton

number densities at temperatures near 0.1 MeV. If we assume the standard thermal

history described above, the neutron-to-proton ratio is fixed at ∼ 1/7 and all the

light element abundances become a function of a single parameter, the total number

of nucleons, or as more commonly used, the nucleon-to-photon ratio:

η ≡ nN

nγ

= 2.68 × 10−8(ΩBh2) (4.18)

where ΩB is the baryon relic density. The synthesis of light elements (also known as

Big Bang Nucleosynthesis) stops at temperatures of order T ∼ 0.01 MeV (t ∼ 1hr).

Although light elements are still synthesized in stars at much later times, most of

their current abundance is still determined by the primordial nucleosynthesis and

can be obtained from astrophysical data. The fact that all the measured values for
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the light element abundances consistently give the same value for η (within their

experimental and theoretical uncertainties) represents a great achievement of the

standard cosmological picture outlined above. The combined result gives[5]:

η = (6.2 ± 0.2) × 10−10 . (4.19)

The fact that the above number is so small, but not zero, is known as the Matter-

Antimatter Asymmetry Problem, discussed in Sec.4.2.

Although the evolution of the universe after the end of Big Bang nucleosynthesis

(BBN) is an extremely rich subject and still a very active area of research, it is not

relevant for most of our subsequent discussion. This is in part due to the successful

predictions of BBN which strongly constrain the physics at T . 1 MeV to be ”Stan-

dard Model-like” (plus a dark matter component). Therefore, instead of proceeding

with our discussion of the thermal history of the universe, in the next Section we

re-examine BBN in more detail, focusing on how it constrains physics beyond the

Standard Model (or MSSM).

4.1 Big-Bang Nucleosynthesis and New Physics

As discussed in the last section, the abundance of 4He is an important prediction of

BBN. The 4He/H ratio is given by the neutron-to-proton ratio, estimated in Eq.(4.17)

under the assumption that only Standard Model particles (namely γ’s, e’s, p’s, n’s

and ν’s) and a (harmless) cold dark matter component were present at T . 1 MeV.

Here we review the implications of relaxing this assumption and how it affects the
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neutron-to-proton ratio prediction.

New particles present at T ∼ 1 MeV can affect nn/np even if they have already

decoupled at the time of neutron freeze-out. This can happen through their contri-

bution to the total energy density of the universe. The success of BBN predictions

require a radiation dominated universe at T . 1 MeV, since the neutron freeze-out

temperature depends on H(Tfr), as shown in Eq.(4.7). If we parametrize any new

source of energy as:

ρx = ρR
∆g∗(T )

g∗(T )
(4.20)

we have

H(T ) =

√
8π2

90

T 2

MPl

(g∗(T ) + ∆g∗(T ))1/2 . (4.21)

Then the measured 4He abundance requires[39]:

g∗(Tfr) + ∆g∗(Tfr) < 12.25 ⇒ ∆g∗(∼ 1 MeV) < 1.5 (4.22)

where we have assumed three neutrino flavors. If the new particle is a relativistic

boson (fermion), the above constraint implies Tx/T . 1.10(1.14)g
−1/4
x , where gx is

the number of new degrees of freedom and Tx is the temperature of the (decoupled)

new particle gas.

Although extra relativistic degrees of freedom can also be constrained from the

Cosmic Microwave Background (CMB) data since they affect the temperature of

matter-radiation equality, these constraints are usually milder than the BBN one just

discussed. Therefore we will not consider them.

Big Bang nucleosynthesis also provides important constraints on unstable particles
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with lifetimes greater than 10−2s. Late decaying particles can inject high energy

photons, electrons or hadrons into the thermal bath and destroy already formed light

elements or affect their formation. The effects of extra electromagnetic and hadronic

energy injected in the primordial plasma requires a complex calculation, which has

been carried out in detail by several groups[40, 41, 42]. These groups have shown

that the injection of hadronic energy tends to convert protons into neutrons and

results in an overproduction of 4He, 2H, 6Li and 3He. For unstable relics with

lifetimes τx . 102s, the strongest constraints come from overproduction of 4He, while

for 102s . τx . 103s, the most stringent constraint comes from overproduction of

2H[40]. For even larger lifetimes, overproduction of 6Li and 3He requires extremely

small unstable relic densities in order to satisfy the BBN constraints. However, if

the unstable relic has a small branching ratio to hadrons, the constraints are much

milder, since the neutron-to-proton ratio is not significantly altered. Nonetheless,

highly energetic electrons and photons can still destroy light elements and suppress

their formation. In this case, the constraints are only relevant for lifetimes greater

than 104s.

For all our subsequent analysis we will use the BBN bounds obtained in Ref.[40],

where it is assumed that the unstable particle decays into q̄q pairs with branching

ratio Bh and into electrons and photons with branching ratio 1 − Bh. In both cases

the total energy of the final particles is assumed to be Mx, the late decaying particle

mass. For the convenience of the reader, we reproduce in Fig.4.1 the bounds from

Ref.[40], used in Secs.6-8.
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Figure 4.1: BBN constraints on the relic density of late decaying particles as a

function of their lifetime. The area to the right of the curve is excluded. The red-

solid lines corresponds to Mx = 100 GeV, while the dashed-blue lines to Mx = 1 TeV.

For each mass, the distinct curves correspond to hadronic branching ratio (Bh) values

equal to 1, 0.1 and 10−5 (bottom to top). Plot reproduced from Jedamzik, Ref.[40].

4.2 The Gravitino Problem

During the discussion of the thermal history of the MSSM cosmology at the beginning

of Sec.4, we assumed that, by the time of neutralino freeze-out (Tfr ∼ m eZ1
/20), all

other sparticles had already decayed or co-annihilated. Hence, for T < Tfr, the only

consequence of supersymmetrizing the SM was the presence of a cold and decoupled

neutralino DM component. However, this picture ignores an important implication of

the MSSM, the presence of the Gravitino (G̃). This R-parity-odd, spin 3/2 particle is
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the superpartner of the spin 2 graviton and acquires a mass m eG ≡ m3/2 ∼ M2
S/MPl,

where MS is the SUSY breaking scale and MPl is the Planck mass. Since all the

gravitino interactions to the visible sector are suppressed by 1/MPl, it was never in

thermal equilibrium with the primordial plasma. Nonetheless, gravitinos can still be

produced out-of-equilibrium as shown by Eq.(4.5):

ṅ eG + 3Hn eG = −〈σv〉(n2
eG − n̄2

eG) + Γj→ eG+X n̄j (4.23)

where we have assumed high temperatures (early times), so the gravitino decay term

can be safely neglected. The equilibrium value for the gravitino number density (n̄ eG)

is always much smaller than its actual number density (n eG), since 〈σv〉 ≪ 1. Hence:

ṅ eG + 3Hn eG ≃ 〈σv〉n̄2
eG + Γj→ eG+X n̄j . (4.24)

Therefore, although extremely suppressed when compared with the number densities

of other particles in thermal equilibrium, the gravitino will still have a non-zero

number density, given by the integral of Eq.(4.24) from TR to T [43]:

n eG
s

= Y eG ≃ γ

Hs
|T=TR

(for T ≪ TR) (4.25)

where γ = 〈σv〉n̄2
eG + Γj→ eG+X n̄j and s = 2π2g∗(T )T 3/45 is the entropy density. The

production rate γ and the solution to Eq.(4.24) have been computed in Refs.[44, 45,

43]. Here, we use the expression obtained in Ref.[45], which is appropriate for the

case of non-universal gaugino masses:

ΩTP
eG h2 =

3∑

i=1

ωig
2
i (TR)

(
1 +

M2
i (TR)

3m2
eG

)
ln

(
ki

gi(TR)

)( m eG
100 GeV

)( TR

1010 GeV

)

(4.26)
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where ωi = (0.018, 0.044, 0.117), ki = (1.266, 1.312, 1.271), gi are the gauge couplings

evaluated at Q = TR and Mi are the gaugino masses also evaluated at Q = TR.

If the gravitino is the LSP, it is stable and composes part (or all) of the DM relic

density. On the other hand, if the gravitino is not the LSP, it cascade decays to the

LSP particle. In this case, from Eq.(4.5) (with T ≪ TLSP
fr ) we have:

ṅLSP + 3HnLSP = Γ eG→LSP+Xn eG (4.27)

Since for T < m, number and energy density are related by[35] ρ = m×n, the above

equation gives:

ρ̇LSP + 3HρLSP =
mLSP

m eG
Γ eG→LSP+Xρ eG . (4.28)

Therefore, the gravitino contribution to the LSP relic density is given by

Ω
eG
LSP h2 =

mLSP

m eG
Ω eGh2 (4.29)

where the above equation also applies to the gravitino LSP scenario, since in this

case the mass ratio on the left-hand side of Eq.(4.29) is one. Fig.4.2a shows con-

tours of Ω eGh2, given by Eq.(4.26), in the m eG vs. TR plane, with (mg̃,mfW ,m eB) =

(1060, 350, 180) GeV. The gravitino relic density decreases with the gravitino mass

until m eG ∼ mg̃, when it starts to increase, since the M2
i /3m2

eG term in Eq.(4.26) be-

comes suppressed. As we can see, a large portion of the m eG vs. TR plane gives too

much dark matter (Ω eGh2 > 0.1123) for a gravitino LSP. This is still true if the grav-

itino is not the LSP, but mLSP ∼ m eG, as seen from Eq.(4.29). The fact that, for a

large portion of parameter space, Ω
eG
DM exceeds the dark matter relic density consists

the first part of the Gravitino Problem. As we can see from Fig.4.2 and Eq.(4.29)
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it can be solved within the MSSM for low values of the re-heat temperature and/or

heavy gravitino masses and a light LSP.

The second part of the Gravitino Problem concerns the BBN bounds. Since the

gravitino interactions are suppressed by 1/MPl, the gravitino will be long-lived if it

is not the LSP. On the other hand, for models with a G̃ LSP, the NLSP will be

long lived instead. Therefore, in both scenarios we have an unstable relic which

might decay during or after BBN. The gravitino lifetime has been computed for a

generic MSSM model in Ref.[46]. In Fig.4.2b we show the gravitino lifetime versus its

mass, assuming two mSUGRA points, one with a light and one with a heavy SUSY

spectrum. As we can see, unless the gravitino is extremely heavy (m eG & 50 TeV),

its lifetime can easily exceed 10−2s, where the BBN bounds start to apply. Since in

SUGRA models the gravitino mass is expected to be of order the other sparticles,

we expect in this case m eG ∼ 1 TeV, which gives τ eG ∼ 105s. For such long lifetimes,

the BBN constraints require Ω eGh2 . 10−5 (see Fig.4.1). Therefore, from Fig.4.2a,

we see that BBN bounds require m eG & 50 TeV or TR . 105 GeV (for m eG . 1

TeV). Since in supergravity (SUGRA) models we expect m eG ∼ msparticles, the first

condition is in tension with the naturalness arguments from Sec.2.1, which require

msparticles . 1 TeV. The second requirement, a low re-heat temperature, can conflict

with baryogenesis mechanisms, such as thermal leptogenesis, as discussed next.
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Figure 4.2: Upper Frame: Contours of Ω eGh2 in the TR vs. m eG plane ob-

tained using Eq.(4.26). The assumed SUSY spectrum has (mg̃, mfW , m eB) =

(1060, 350, 180) GeV. Lower Frame: Gravitino lifetime as function of the gravitino

mass. The solid blue line corresponds to the mSUGRA point (m0, m1/2, A0, tanβ, µ) =

(350 GeV, 350 GeV, 0, 10, > 0), while the red dashed line has (m0, m1/2, A0, tanβ, µ) =

(800 GeV, 800 GeV, 0, 10, > 0).
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From the arguments in Sec.4, we see that TR has to be at least bigger than the

neutralino freeze-out temperature, so neutralinos were in thermal equilibrium in the

primordial plasma (after inflation). However, a much stronger lower limit on TR comes

from baryogenesis arguments. As mentioned in Secs.4 and 4.1, in order to explain the

observed 4He/H ratio, the number density of baryons has to be extremely small[5]:

η =
nb

nγ

= (6.2 ± 0.2) × 10−10 ⇒ nb = (2.56 ± 0.07) × 10−7 cm−3 . (4.30)

Several mechanisms have been proposed to dynamically explain the above value[47]

and all of them require at least TR & 100 GeV. One of the most attractive ones is

thermal leptogenesis[48].

Thermal leptogenesis is a natural mechanism for dynamically generating a non-

zero baryon density, once the see-saw mechanism is assumed to generate light neutrino

masses. In this scenario, lepton number and CP are violated by the neutrino interac-

tions, since the see-saw mechanism assumes the following Lagrangian:

L = hijL̄iNjφ +
1

2
MiN̄

c
i Ni + h.c. + ... (4.31)

where L and φ are the lepton and Higgs doublets and Ni are heavy Majorana neutrinos.

From the above interactions we see that, if the heavy neutrino states were present in

the primordial plasma, after decoupling their decays into leptons and Higgs scalars

would violate lepton number and CP, resulting in 〈L〉 6= 0, as shown by the diagrams in

Fig.4.3. Then sphaleron effects can partially convert the non-zero lepton number into

baryon number, dynamically generating a non-zero η. As we can see from Eq.(4.31),

the interesting feature of thermal leptogenesis scenarios is that the same parameters
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that control the amount of lepton number violation are related to the light neutrino

masses (mν ∼ h〈φ〉2/M).

N1

L

φ

N1

φ

L

L

Ni

φ

Figure 4.3: Diagrams for heavy neutrino decays leading to CP and Lepton Number

violation in the early universe.

Assuming that at least the lightest Ni state (N1) was in thermal equilibrium at

T = TR, the baryon number density is given by[48]:

η ≃ 0.96 × 10−2ǫ1κf (4.32)

where ǫ1 parametrizes the amount of CP violation in the neutrino Yukawa couplings

(hij) and κf is an efficiency factor given by:

kf = (2 ± 1) × 10−2

(
0.01 eV

m̃1

)1.1±0.1

(4.33)

where m̃1 is the effective light neutrino mass, expected to be of order of mν . The

parameter ǫ1 is strongly model dependent, since it is given by the phases of hij.

However, the maximum value of ǫ1 can be estimated as[48]:

ǫ1 . 10−6

(
M1

1010 GeV

)
(4.34)
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where M1 is the mass of the lightest heavy neutrino state. Combining Eqs.(4.32),

(4.33) and (4.34), we have:

η . 3 × 10−31 M1

m̃1

. (4.35)

Imposing η > 6.2 × 10−10 and m̃1 > 8 × 10−3 (the solar neutrino mass scale), we

obtain the following lower limit on M1:

M1 & 1010 GeV . (4.36)

Since we assumed that N1 was in thermal equilibrium after inflation, the above

lower limit on M1 implies a lower limit on TR. Although it is always sufficient to

impose TR > M1, it can be shown that this limit can be relaxed, depending on the

parameters of the model. In the general case, the minimum TR value consistent with

thermal leptogenesis is[48]:

TR > 2 × 109 GeV . (4.37)

From Fig.4.2, we see that the above constraint on the re-heat temperature gives

Ω eGh2 & 1 for any value of m eG. Therefore, in the thermal leptogenesis framework,

both the first (too much dark matter) and second (violation of BBN bounds) parts

of the Gravitino Problem can only be solved for a very heavy gravitino (to suppress

its lifetime) and a much lighter LSP particle (to suppress Ω
eG
DM). As already men-

tioned before, in most MSSM scenarios this is a rather unnatural condition, since the

sparticle masses (including the LSP’s) are expected to be of order the gravitino mass.

Possible solutions for this problem in the PQMSSM framework will be discussed in

Sec.6.
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4.3 Neutralino Dark Matter

As shown by Eqs.(4.12) and (4.29), for the case of a neutralino LSP we have:

Ω eZ1
h2 ≃

(
1.7 × 10−10 GeV−2

〈σv〉

)
+

mLSP

m eG
Ω eGh2 , (4.38)

where we have included the contribution from gravitino decays. Therefore, in order

to satisfy the measured value of ΩDMh2( = 0.1123), we need:

〈σv〉 & 1.7 × 10−9 GeV−2 . (4.39)

However, for a bino Z̃1, which is the most natural scenario in most of the MSSM

parameter space, we have:

〈σ(Z̃1 + Z̃1 → X)v〉 ∼
(

α2

m2
eZ1

)
∼ 6 × 10−9

(
100 GeV

m eZ1

)2

(4.40)

where we have assumed T ≪ m eZ1
, which is a reasonable approximation for tem-

peratures near freeze-out, since Tfr ∼ m eZ1
/20. Although the above result satis-

fies Eq.(4.39) for m eZ1
. 100 GeV, more detailed calculations usually give 〈σv〉 .

10−10 GeV−2 for a bino Z̃1. Therefore, in order to satisfy the dark matter relic den-

sity constraint, the neutralino cross-section has to be enhanced by new processes.

This is a longstanding issue with the bino LSP scenario, but several models have

been found where 〈σv〉 is enhanced due to resonances, co-annihilations or through

a wino/higgsino neutralino. Nonetheless, these requirements strongly constraint the

MSSM parameter space, as shown in Ref.[49]. To illustrate this problem, we re-

produce results from Ref.[50], where a scan over all the pMSSM (phenomenological

MSSM[51]) parameter space was performed. The result can be seen in Fig.4.4, where
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the number of models is plotted against their respective Ω eZ1
h2 values. As we can

see, most models indeed give too much dark matter, since they usually have a bino

LSP, unless there is a significant fine-tuning of parameters. On the other hand, a

considerable fraction of models have a wino or higgsino LSP and give too little dark

matter, as seen in Fig.4.4. We also see that the measured dark matter relic density

value lies in the ”least probable” region. This shows that in general, MSSM models

satisfying the dark matter constraint can be considered unnatural.

Figure 4.4: Projection of the number of models generated by a linear scan over

the pMSSM parameters, versus neutralino relic density. Models with mainly bino,

wino, higgsino or a mixture are indicated by the various color and symbol choices. All

models are required to have m eZ1
< 500 GeV to avoid too large fine-tuning in the SUSY

parameters. Plot reproduced from Ref.[50]
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Chapter 5

General Implications of the PQMSSM

The cosmology of PQMSSM models is very rich and has to be carefully examined.

In Sec.4, we briefly reviewed the relevant aspects of the MSSM cosmology. Here we

extend the previous discussion to include the axion supermultiplet, which contains

the axion, saxion and axino. As we will see below, the simple inclusion of these three

weakly interacting particles opens up a number of different cosmological scenarios,

depending on the PQMSSM parameters.

In Secs.5.1 and 5.2, we present two mechanisms for production of axions, saxions

and axinos: Thermal Production and Coherent Oscillations. A third possibility is

non-thermal production of axinos from sparticle decays (if the axino is the LSP) or

non-thermal production of axions from saxion decays (if the decay width of Eq.(3.14)

is not suppressed). However, these are model dependent and will be discussed within

the specific models presented in Secs.6-8.

Sec.5.3 discusses a possible deviation from the standard cosmological scenario

described in Sec.4, where axinos or saxions may come to temporarily dominate the

energy density of the universe at early times. Since in this scenario the expansion of

the universe is no longer governed by the radiation component, we will briefly review

the necessary ingredients required to describe the evolution of the neutralino and

axion superfield in this case. Finally, in Sec.5.4 we summarize the results presented

in the previous sections, which will then be applied to the particular models of Secs.6-
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8.

5.1 Thermal Production

In a way very similar to the gravitino case discussed in Sec.4.2, axions, saxions and

axinos can be produced in the early thermal plasma from scattering of particles in

equilibrium. Their relic density can then be computed using Eqs.(4.24) and (4.25)

with n eG → ni and the appropriate cross-sections (γ terms). However, unlike the

gravitino, the axion superfield may also be in thermal equilibrium at early times, if

the re-heat temperature (TR) is higher than its decoupling temperature[29]:

Tdec = 1011 GeV

(
fa

1012GeV

)2(
0.1

αs

)3

. (5.1)

In this case, their thermal abundances are simply given by the equilibrium value[35]:

n̄a = n̄s =
ξ(3)

π2
T 3 and n̄ã =

3ξ(3)

2π2
T 3 . (5.2)

Combining these two results, the axion, saxion and axino thermal yields are estimated

as[52, 53, 54]:

Ya =
na

s
≈





1.2 × 10−3 , if TR > Tdec

18.6g6
s ln(1.501

gs
)( TR

1014 GeV
)(1012 GeV

fa
)2 , if TR < Tdec

Ys =
ns

s
≈





1.2 × 10−3 , if TR > Tdec

( TR

1014 GeV
)(1012 GeV

fa
)2 , if TR < Tdec

(5.3)

Yã =
nã

s
≈





1.8 × 10−3 , if TR > Tdec

9.2g6
s ln( 3

gs
)( TR

1014 GeV
)(1012 GeV

fa
)2 , if TR < Tdec
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where gs is the strong coupling constant at T = TR. If entropy is always conserved

from TR to T0, the above expressions are still valid at T = T0 and can be used to

compute the thermal relic density today:

ΩTP
i h2 =

s(T0)

ρc/h2
mi

ni

s
≃ 2.741 × 108 mi

GeV
Yi (5.4)

where i = a, s or ã.

5.2 Coherent Oscillation

Besides being produced from scattering of particles in the thermal bath, the saxion

and axion fields can also contribute to the energy density through coherent oscilla-

tions. The theory of cosmological coherent oscillations has been discussed in detail

in Ref.[55]. Here, we present a simplified discussion, but sufficient for the axion and

saxion cases.

The equation of motion for (homogeneous) axion or saxion fields in an expanding

universe is given by:

φ̈ + 3Hφ̇ +
dV

dφ
= 0 (5.5)

where φ = a or s, V (φ) is the scalar potential for φ and H is the expansion rate, as

usual. Eq.(5.5) can also be conveniently written as:

ρ̇ = −3Hφ̇2 +
∂V

∂t
(5.6)

where ρ = φ̇2/2 + V is the energy density of φ. For small values of φ, the scalar

potential is dominated by the mass term: V ≃ m2φ2/2. Thus, in the limit m2φ/φ̇ ≪
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H, Eq.(5.5) gives φ ≃ const. On the other hand, for m2φ/φ̇ ≫ H, we have

φ̈ ≃ −m2φ ⇒ φ ∼ eiωt (5.7)

where ω = m ∼ φ̇/φ. Therefore, for ω ≪ H we have a constant field, while for ω ≫ H

we have a highly oscillatory field.

Since we are interested in the cosmological evolution of φ, which happens at time

scales 1/H, in the highly oscillatory regime we can take the average over oscillations,

so

〈φ̇2〉 = m2〈φ2〉 = 2〈V 〉 ⇒ 〈ρ〉 = 2〈V 〉 = 〈φ̇2〉 . (5.8)

Hence, from Eq.(5.6):

ρ̇ = −3Hρ +
∂V

∂t
(5.9)

where we have dropped the time average brackets for simplicity. Assuming V =

m2〈φ2〉/2 = m2ρ/2 (where m may be time dependent), the above equation gives:

ρ̇ + 3
ρ

R
Ṙ − ρ

m
ṁ = 0 ⇒ d

dt

(
ρR3

m

)
= 0 . (5.10)

If m is time independent, ρ ∝ R−3, so ρ behaves as the energy density of a matter

fluid.

From the above discussion we see that coherent oscillations will approximately

start when

3H = ω ⇒ 3H(Tosc) = m(Tosc) (5.11)

where we have allowed for the possibility of a temperature (or time) dependent mass.

For a radiation dominated universe H(T ) ∼ T 2/MPl, so the oscillations start at
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T ∼
√

MPlm ≫ m. Therefore, ρ behaves as matter density, despite the universe

temperature being much above the field’s mass. We also point out that for coherent

oscillations to take place the field needs to have ∂µφ/φ ≪ 1 and φ 6= 0 at early times

(H ≫ ω). This is definitely not valid for particles produced thermally. The solution

of Eq.(5.10) gives:

ρ = ρosc

(
Rosc

R

)3
m(T )

m(Tosc)
(5.12)

where Rosc is the universe scale factor at T = Tosc and ρosc is the initial energy density:

ρosc =
1

2
φ̇2 + V ≃ 1

2
m2(Tosc)φ

2
0 (5.13)

since φ̇ is supposed to be small before the field starts to oscillate.

Since the saxion mass is approximately fixed as m3/2 after SUSY breaking, apply-

ing Eq.(5.12) for the saxion field gives:

ρCO
s =

1

2
m2

ss
2
i

(
Rosc

R

)3

(5.14)

where si is the initial saxion field amplitude.

On the other hand, the axion field only acquires a mass after the QCD phase

transition (where the chiral anomaly becomes relevant), so its potential is given by

(see Sec.3.1):

Veff (a) = ma(T )2f 2
a [1 − cos(a/fa)] ≃

1

2
ma(T )2a2 (5.15)

where we assumed small axion field values and ma(T ) is given by Eq.(3.4). Hence,

for T < ΛQCD,

ρCO
a =

1

2
ma(Ta)m

0
aθ

2
i f

2
a

(
Rosc

R

)3

(5.16)
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where θifa is the initial axion field amplitude. A more detailed calculation, also valid

for large θi, gives[56, 21]

ρCO
a =

1

2
χf(θi)ma(Ta)m

0
aθ

2
i f

2
a

(
Rosc

R

)3

(5.17)

where χ = 1.44 corrects for the continuous transition from the static to the oscillatory

regime and f(θi) = ln[e/(1 − θ2
i /π

2)]7/6 is a correction factor for large θi values.

A comment is in order about the initial field amplitudes for the axion and saxion

fields (θi and si). In principle these are fixed at very high energies by the specific

form of the PQMSSM scalar potential, which must include supergravity corrections

and the full PQMSSM model, including its heavy PQ modes, such as the heavy

quark superfields in the KSVZ model or the singlet superfields in the DFSZ model.

Nonetheless, in the absence of fine-tuning, the natural value for si and θi is the PQ

scale, fa, since the field amplitudes are fixed at this scale.

Applying Eq.(5.11) for the saxion and axion fields we have:

3H(Ts) = ms and 3H(Ta) = ma(Ta) . (5.18)

To compute Ts and Ta, as well as the R/Rosc factor in Eqs.(5.14) and (5.17), we

need to know H(T ). Assuming a radiation dominated universe and conservation of

entropy,

H(T ) =

√
8π3

90
g∗(T )

T 2

MPl

and g∗(T )T 3R3 = g∗(Tosc)T
3
oscR

3
osc, (5.19)
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gives

Ts =
√

MPlms

(
5

4π3

1

g∗(Ts)

)1/4

Ta =





√
MPlm0

a

(
5

4π3
1

g∗(Ta)

)1/4

, if Ta < ΛQCD

(
MPlm

0
abΛ

4
QCD

)1/6
(

5
4π3

1
g∗(Ta)

)1/12

, if Ta > ΛQCD

. (5.20)

Using the above results and Eq.(5.14) for the saxion energy density we obtain:

ρs

s
= 2.97 × 10−4g∗(Ts)

−1/4
( ms

GeV

)1/2
(

si

fa

)2(
fa

1012 GeV

)2

(5.21)

while for the axion:

ρa

s
=





3.37 × 10−11f(θi)θ
2
i g∗(Ta)

−1/4
(

fa

1012 GeV

)3/2
, if Ta < ΛQCD

4.77 × 10−9f(θi)θ
2
i g∗(Ta)

−5/12
(

fa

1012 GeV

)7/6
, if Ta > ΛQCD

(5.22)

where we used Eq.(3.4) for the temperature dependent axion mass.

There are two possible exceptions for the results obtained above, both coming

from a deviation from a radiation dominated universe at the beginning of oscillations.

The first one concerns saxion oscillations. As discussed just after Eq.(5.11), the saxion

starts to oscillate at Ts ∼
√

MPlms for a radiation dominated universe. However, due

to the (possibly) large saxion mass, we may have Ts > TR. At temperatures above the

re-heat temperature the universe is no longer dominated by the thermal plasma, but

by the inflaton field and Eq.(5.19) no longer applies. Instead, during the re-heating

period, the inflaton-dominated universe satisfies[35]:

H(T ) = H(TR)
g∗(T )T 4

g∗(TR)T 4
R

and
g∗(T )T 4

g∗(TR)T 4
R

=

(
RTR

R

)3/2

. (5.23)

Using the above expressions in Eqs.(5.18) and (5.14) and combining with our previous
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result for Ts < TR (Eq.(5.21)), we obtain1:

ρs

s
=





2.97 × 10−4g∗(Ts)
−1/4

(
ms

GeV

)1/2
(

si

fa

)2 (
fa

1012 GeV

)2
, if Ts < TR

1.9 × 10−8 TR

105 GeV

(
si

fa

)2 (
fa

1012 GeV

)2
, if Ts > TR

. (5.24)

The second scenario, which invalidates Eq.(5.22), is the one where the universe

becomes matter dominated at some temperature 5 MeV . T < TR (the lower bound

comes from the BBN constraints) and the axion starts to oscillate during this era2.

This early matter dominated scenario is discussed below.

5.3 Early Matter Dominated Universe

An interesting possibility in PQMSSM models is the scenario where one of the com-

ponents of the axion supermultiplet is produced at large rates in the early universe

(before BBN) and, as the universe cools down, becomes the dominant form of energy

at some temperature Te. This is possible because, for non-relativistic or coherent os-

cillating particles, the energy density decreases as R−3, while ρR ∝ R−4. Therefore, at

some temperature the former will surpass the latter and dominate the energy density.

It is clear, however, that in order to preserve the successful BBN predictions, this

particle has to decay before light elements start to form at T ∼ 5 MeV. This clearly

excludes an early axion domination, since the axion is stable. Thus we only need to

consider the possibility of an early saxion or axino dominated scenario. Since most

1Eq.(5.24) for the energy density of coherent oscillating saxions differ from the ones computed
in Refs.[57] and [53] by a numerical factor, because these authors assume the oscillation condition
H(Ts) = ms instead of Eq.(5.11).

2In principle, there can also be scenarios where the saxion starts to oscillate in an axino dominated
era. However we will not consider such cases in our subsequent discussion.
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of the discussion is identical to both saxions and axinos, we will generically denote

both fields by X.

To discuss this scenario we define the following relevant temperatures:

• Te: the temperature at which X starts to dominate the energy density. Te can

be calculated imposing ρX(Te) = ρR(Te):

Te =
4

3

ρX

s
. (5.25)

• TS: the temperature at which X starts to decay and inject entropy in the cosmic

soup. An approximate expression for TS is derived in Appendix B, which gives:

TS ≃
(
TeT

4
D

)1/5
. (5.26)

• TD: the temperature at which the matter dominated era ends and the radiation

domination resumes. During the X dominated era, we have, from Eq.(4.5),

ρ̇X + 3HρX + ΓXρX = 0 (5.27)

where ΓX is the axino/saxion decay width. From the above equation we see that,

for H ≪ ΓX , ρX becomes exponentially suppressed and the matter dominated

era ends. Therefore we can estimate TD by:

H(TD) = ΓX ⇒ TD =
√

MPlΓX

(
45

4π3

1

g∗(TD)

)1/4

. (5.28)

From the above discussion, it is clear that in order for the X dominated era to take

place we must have:

TD < Te ⇒
ρX

s
>

3

4

√
MPlΓX

(
45

4π3

1

g∗(TD)

)1/4

. (5.29)
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Therefore, the condition for an early matter dominated universe requires a large initial

energy density and a small decay width, since otherwise X would decay before dom-

inating the energy density. Because saxions and axinos have Γ ∝ 1/f2
a , as shown in

Eqs.(3.11) and (3.14), they are naturally long-lived and Eq.(5.29) can be satisfied if ρX

is large enough. This usually requires large re-heat temperatures for saxions/axinos

produced thermally and large si for coherent oscillating saxions. Assuming that the

above condition is satisfied we now proceed to investigate what are the consequences

of an early saxion/axino dominated era3.

For TS < T < Te the universe is matter dominated (MD) and there is no significant

entropy injection from X decays (entropy is conserved). In this case we have:

H(T ) =

√
8π

3

ρX

M2
Pl

and S ≡ g∗(T )T 3R3 = const . (5.30)

Using Eq.(5.25) we can express ρX in terms of Te:

ρX

s
(T ) =

ρX

s
(Te) ⇒ ρX(T ) =

3

4
Tes =

π2

30
g∗(T )TeT

3 (5.31)

so

H(T ) =

√
4π3

45
g∗(T )

√
TeT 3

MPl

. (5.32)

For TD < T < TS, the universe is dominated by the decaying X particle (DD), so

entropy is no longer conserved[35]. This regime is analogous to the re-heating period

after inflation, discussed at the end of Sec.5.2. Assuming that most of ρX goes into

radiation, ρR obeys:

ρR + 4HρR = ΓXρX (5.33)

3We always assume that either the saxion or axino comes to dominate the energy density. Al-
though this is true for most of the PQMSSM parameter space, in principle there are some scenarios
where both fields dominate the energy density at different times.
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and we have4

H(T ) =

√
8π

3

ρX

M2
Pl

∝ R−3/2 and g∗(T )T 4R3/2 = const , (5.34)

so that

H(T ) = H(TD)
g∗(T )T 4

g∗(TD)T 4
D

=

√
4π3

45

g∗(T )√
g∗(TD)

T 4

MPlT 2
D

. (5.35)

The ratio of entropy before and after X decays can be computed using Eq.(5.34):

r ≡ Sf

Si

=
g∗(TD)T 3

DR3
D

g∗(TS)T 3
SR3

S

=
g∗(TS)T 5

S

g∗(TD)T 5
D

=
g∗(TS)Te

g∗(TD)TD

≃ Te

TD

(5.36)

where we have used Eq.(5.26). Clearly the above expression for r is only valid for

Te > TD (X dominated universe) or r > 1. However, if the X never dominates the

universe, the entropy injection is negligible[58], so we assume r = 1 if Te < TD.

Finally, for T < TD, the universe is once again radiation dominated (RD) and

entropy is conserved:

H(T ) =

√
4π3

45
g∗(T )

T 2

MPl

and S ≡ g∗(T )T 3R3 = const . (5.37)

As already mentioned in Sec.5.2, the energy density for coherent oscillating saxions

and axions depends on H(T ) and will be different if the oscillation starts in a matter-

dominated (MD), decaying-particle-dominated (DD) or radiation-dominated (RD)

universe. Furthermore, the expression for the neutralino relic density also depends on

H(T ) through the freeze-out condition (see Eq.(4.7)), hence Eq.(4.12) is not valid if

the neutralino decouples in a MD or DD universe. The procedure for computing the

axion and neutralino relic densities in a MD and DD is identical to the one already

4We always assume the sudden decay approximation, so ρX ∝ R−3/2 for T > TD and ρX = 0,
for T < TD.
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outlined in the radiation dominated case, so we will not repeat it here. Explicit

analytical expressions for the RD, MD and DD regimes are listed in Appendix B.

To illustrate the cosmological evolution of the early matter dominated scenario,

we show in Fig.5.1a the evolution of the radiation, neutralino, gravitino, axion, saxion

and axino energy densities as well as the entropy ratio as a function of the scale factor

R computed using the system of coupled Boltzmann equations. The gravitino and

axino densities are only shown for T < mã, eG, since their contribution is negligible

at higher temperatures. For simplicity, we also neglected the sub-dominant thermal

axion component. As we can see, at very early times (R ∼ RTR
or T ∼ TR), the energy

density is dominated by radiation with a small contribution of coherent oscillating

saxions (for our choice of parameters saxions start to oscillate with Ts > TR and

the thermal saxion component is always sub-dominant). At R/RTR ∼ 107 (T = Te),

the saxions start to dominate the energy density and the MD era begins. At later

times (R/RTR ∼ 109 or T = Tfr), the neutralino freezes-out and decouples from the

thermal bath. This is an example where the neutralino relic density can no longer be

computed using Eq.(4.12) and the equation for ΩMD
eZ1

h2 from Appendix B has to be

used instead. At R/RTR ∼ 1012 (T = Ta), coherent oscillations of axions start. Since

this happens during the MD era, the axion relic density will be given by the expression

for ΩMD
a h2 from Appendix B. At R/RTR ∼ 1013 (T = TS) the saxion starts to decay

and inject entropy in the thermal bath, as shown by the entropy curve. This is the

beginning of the decaying particle regime (DD), which ends with the complete decay of

saxions at R/RTR ∼ 1016 (T = TD). This is where the radiation dominated (RD) era
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resumes. Finally, neutralinos and gravitinos decay to axinos around R/RTR ∼ 1018

(T = T
eZ1

D ) and R/RTR ∼ 1019 (T = T
eG

D ), respectively. In Fig.5.1b, we show the

same results but as a function of the thermal bath temperature T . As we can see,

the saxion entropy injection between TS and TD relatively re-heats5 the thermal bath

with respect to the other decoupled particles. The resulting effect is a dilution of

the axion, neutralino, gravitino and axino densities as seen in Fig.5.1b. The wiggle

lines around T ∼ 0.5 GeV are due to the QCD phase transition, where the relativistic

degrees of freedom become hadrons and mesons instead of quarks and gluons. We also

note that for the specific choice of parameters used in Fig.5.1, the saxion dominated

era ends at T ∼ 0.3 MeV and would violate the BBN bounds discussed in Sec.4.1.

5Fig.5.1a shows that during the saxion decay period the energy density of radiation never in-

creases, it only decreases with a smaller slope. Since T ∼ ρ
1/4

R , the thermal bath temperature does
not increase either, it only decreases more slowly. That is why the radiation re-heat is only relative
in this case.
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Figure 5.1: Evolution of the radiation, neutralino, gravitino, axion, saxion and axino

energy densities and the entropy ratio as a function of the scale factor R (Upper Frame)

and temperature (Lower Frame). We also show the temperature of saxion-radiation

equality (Te), the neutralino freeze-out temperature (Tfr), the temperature at which

the DD era begins (TS) and the MD era ends (TD), the axion oscillation temperature

(Ta) and the neutralino (T
eZ1

D ) and gravitino (T
eG

D ) decay temperatures. The PQMSSM

parameters are: fa = 1014 GeV, ms = 500 GeV, mã = 100 keV, θi = 1, si = 10fa,

TR = 1010 GeV, m eG = 1 TeV, m eZ1
= 150 GeV and ΩMSSM

eZ1
h2 = 10.
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5.4 Summary

PQMSSM models are an extension of the MSSM, where the axion superfield is in-

cluded, resulting in the introduction of three new weakly interacting particles: the

scalar saxion, pseudoscalar axion and the Majorana fermion axino. All of these

are produced thermally in the early universe with yield proportional to 1/f2
a (for

TR < Tdec), where fa is the PQ scale, as shown in Eq.(5.3). In addition, saxions and

axions can also contribute to the energy density through coherent oscillations if, at

the PQ or SUSY breaking scales, they are displaced from the minimum of their (low

energy) potential, resulting in a non-zero initial field amplitude θi and si.

Axions are extremely light and stable; thus cosmological axions contribute to

the Dark Matter density today. While coherent axions behave as cold DM, thermal

axions are likely warm or hot DM, depending on the axion mass, fixed by the PQ

scale (see Eq.(3.4)). On the other hand, saxions are expected to have a mass of order

m3/2 and decay with lifetime proportional to f 2
a/m3

s (see Eq.(3.14)). Their decay can

inject energy into the primordial plasma or add to the hot axion component, if their

(model dependent) decay into axions is significant. The axino mass is highly model

dependent and can take very small values of order m2
3/2/fa or be at the soft SUSY

scale, as the saxion mass. Light axinos are likely the LSP, hence stable. As the axion,

they may constitute hot, warm or cold DM depending on the value of mã. In the

axino LSP scenario, the thermally produced NLSP decays to ã with the decay rates

shown in Eq.(3.9), adding to the total axino abundance. Thus, the DM today would

consist of a mixture of axinos and axions. On the other hand, if axinos are heavy,
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they cascade decay to the LSP (here assumed to be the lightest neutralino), with the

decay widths listed in Eq.(3.11). In this scenario, DM would consist of a mixture of

axions and neutralinos.

If saxions are produced at large rates in the early universe (due to a large TR, small

fa or large si), they can temporarily dominate the energy density of the universe, as

discussed in Sec.5.3. In this scenario, all other particles decoupled from the thermal

plasma during the saxion decay (such as axions, axinos, gravitinos and in some cases

neutralinos), will have their energy densities diluted, as seen in Fig.5.1b. The same

scenario can also happen for heavy axinos, if they are thermally produced at large

rates in the early universe.

From our previous discussion we see that for most cosmological purposes, the

PQMSSM parameter space can be restricted to:

{
fa, mã, ms, si, θi, TR, ΩMSSM

eZ1
h2
}

+ SUSY spectrum (5.38)

where the dependence on the SUSY spectrum enters indirectly through the axino

or neutralino decay widths, Eqs.(3.11) and (3.9), and the gravitino relic density,

Eq.(4.26). In the next Sections, we present explicit results for the different cosmolog-

ical PQMSSM scenarios mentioned above and discuss what regions of the PQMSSM

parameter space are consistent with the dark matter and BBN constraints.
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Chapter 6

The Axino LSP

PQMSSM models with light axinos can be realized in DFSZ-type models, where

the couplings between the MSSM sector and the axion superfield are very small[29],

suppressing possible large corrections to the axino mass, which is zero at tree level.

Here, we discuss the cosmological implications of this scenario, assuming an axino

LSP and a neutralino or gravitino NLSP. As a first approximation, we will neglect

the saxion component and consider only the axion and axino contributions to the

thermal evolution of the universe. In Sec.6.2, we comment on the implications of

including the saxion field. The discussion presented here follows closely Refs.[31, 59].

The immediate consequence of an axino LSP is that all other SUSY particles

eventually cascade decay to the axino state. Since the decay rates to axinos are

suppressed by 1/fa, we assume that all MSSM sparticles first decay to the lightest

neutralino, which then decays to the axino LSP. As a result, the total dark matter

relic density in this scenario is given by

ΩDMh2 = Ωaãh
2 = Ωah

2 + ΩTP
ã h2 + Ω

eZ
ã h2 + Ω

eG
ã h2 (6.1)

where the last two terms represent the contributions from neutralino and gravitino

decays (see Eq.(4.29))1,

Ω
eZ
ã =

mã

m eZ1

ΩTP
eZ and Ω

eG
ã =

mã

m eG
ΩTP

eG (6.2)

1Here we assume that gravitinos decay after neutralino freeze-out and axino decoupling, which
is always valid for m eG < 103 TeV
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and we neglected the thermal axion component, which consists of hot dark matter.

The axion, axino, neutralino and gravitino relic abundances are given by Eqs. (5.22),

(5.3), (4.11) and (4.26), which give2

Ωaãh
2 ≃ 0.23θ2

i f(θi)

(
fa

1012 GeV

)7/6

(6.3)

+ 3
( mã

1 GeV

)( TR

1014 GeV

)[
1 + 6 × 108

(
1012 GeV

fa

)2
]

+
mã

m eZ1

Ω eZ1
h2

The first term above is the coherent axion contribution, while the term proportional to

the re-heat temperature corresponds to the thermal gravitino and axino contributions.

The last term comes from thermally produced neutralinos.

From Eq.(6.3), we see that the gravitino and neutralino contributions to the dark

matter relic abundance are suppressed by mã/m eG, eZ1
. This naturally ameliorates the

first part of the gravitino problem (overproduction of dark matter) and loosens the

dark matter constraints on the MSSM parameters, since now Ω eZ1
h2 ≫ 1 is allowed

if mã/m eZ1
≪ 1. We also see that the gravitino contribution can be neglected except

for fa ∼ MPl, where the axino interactions become suppressed by the Planck scale.

Therefore, suitable choices of fa, θi, TR and mã can easily satisfy the DM constraint

for almost any values of Ω eZ1
, m eZ1

and m eG. In particular, the neutralino contribution

can always be suppressed for sufficiently light axinos, while the gravitino and axino

contributions can be suppressed by small TR and/or small mã. Finally, the axion

contribution can be suppressed by small fa or θi. The latter option is less desirable,

since an unnaturally small θi value represents a fine-tuned solution.

In Fig.6.1a, we show the contributions from each component in Eq.(6.1) as a

2Here we assume, for simplicity, m eG & Mi in Eq.(4.26) and αs(TR) ∼ 1/15.
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function of fa for mã = 100 keV and θi = 0.05. For each fa value, the value of the

re-heat temperature (TR) is adjusted so Ωaãh
2 = 0.1123. We can see that for low

fa values, the TP axino contribution is dominant. But as fa increases, the axion

component grows until, at fa ∼ 4× 1013 GeV, it becomes dominant. For even higher

fa it saturates the DM relic density and the dark matter constraint can no longer

be satisfied unless we choose a smaller θi value. The value of TR which is needed to

satisfy ΩDMh2 = 0.1123 is shown in Fig. 6.1b. We see that TR grows quickly with

increasing fa. This is because the thermal axino production decreases as the inverse

square of fa, so larger values of TR are needed to keep Ωaãh
2 = 0.1123. We see that

TR can reach ∼ 1011 GeV in the case of mainly axion CDM. In our case here, allowing

a smaller value of θi allows higher values of fa to be found, which in turn requires

much higher values of TR, into the range needed for thermal leptogenesis.
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Figure 6.1: Upper frame: Contribution of axions and TP and NTP axinos to the

DM density as a function of the PQ breaking scale fa, for an mSUGRA point with

m0 = 1000 GeV, m1/2 = 300 GeV, A0 = 0, tanβ = 10 and µ > 0, and fixing mã = 100

keV and θi = 0.05; TR is adjusted such that Ωaãh
2 = 0.1123. Lower frame: the TR that

is needed to achieve Ωaãh
2 = 0.1123 for mã = 0.1 and 1 MeV, for the same mSUGRA

point and θi.
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From the above discussion and Eq.(6.3), we see that a very light axino is desirable

in some cases, in order to accommodate models with large Ω eZ1
h2 and/or large Ω eGh2.

However, very light axinos might constitute warm (WDM) or hot (HDM) dark matter,

depending on their mass. Such cases are severely constrained by the matter power

spectrum and reionization [60, 61]. Since the bounds on the amount of HDM/WDM

are model dependent [62], we do not impose such constraints on our results. However,

as a guidance, we will distinguish cases with

• mã < 100 keV and Ωã/ΩDM > 0.2 (WDM) or

• mã < 1 keV and Ωã/ΩDM > 0.01 (HDM),

where Ωã = ΩTP
ã + Ω

eG
ã + Ω

eZ
ã

3.

So far we have neglected the BBN bounds for the axino LSP case. Since the

axino-NLSP coupling is suppressed by 1/fa (for a neutralino NLSP) or 1/MPl (for a

gravitino NLSP), the next-to-lightest SUSY particle will be long-lived and possibly

conflict with BBN bounds. As shown in Fig.4.1, this can be avoided if the NLSP is

sufficiently heavy, so its lifetime is small, or if ΩNLSP ≪ 1, so the energy injection

during BBN is suppressed. In the axino LSP scenario, both gravitinos and neutralinos

may be long-lived so the BBN constraints will apply to their decays. First we discuss

the constraints on neutralino decays.

In Fig.6.2, we show the neutralino lifetime (τ) as function of m eZ1
for different

values of fa as well as its hadronic branching ratio. As we can see, τ can span a wide

3A rough estimate based on the neutrino mass limit [63] from cosmological data,
∑

mν < 0.41
to 0.44 eV, gives that up to 4–5% HDM contribution could be acceptable.
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range of values depending on the neutralino mass, its bino composition and the value

of the PQ scale. In Fig.6.3, we show the BBN bounds from Ref.[40] (or Fig.4.1) in

the m eZ1
vs. Ω eZ1

h2 plane for different fa/Z1B values. As we can see from Figs.6.2

and 6.3, for a bino Z̃1 (Z1B = 1), fa < 1010 GeV gives τ < 10−2s and the BBN

constraints can be easily avoided for any value of Ω eZ1
h2, except for extremely light

neutralinos. On the other hand, for fa > 1012 GeV, the BBN bounds require a heavy

neutralino and/or Ω eZ1
h2 < 1. In particular, for the choice of parameters in Fig.6.1,

BBN constraints require fa . 2 × 1011 GeV, as indicated in the plot. Therefore,

models with large neutralino relic abundance can still satisfy both the DM and BBN

constraints if fa . 1010 − 1011 GeV.
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Figure 6.2: Upper Frame: Lifetime (in seconds) of a Z̃1 NLSP with a ã as LSP versus
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, for various choices of fa/Z1B, computed using Eq.(3.9). We take CaY Y = 8/3.

Lower Frame: Branching fraction of Z̃1 → ã + hadrons versus m eZ1
, computed using

Eq.(3.10).
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The values of Ω eZ1
h2 above the curves are excluded by BBN constraints.

The discussion of the BBN bounds for the gravitino depends on the m eG − m eZ1

hierarchy. For m eG > m eZ1
(as expected from most SUGRA models), gravitinos cascade

decay to neutralinos4 which eventually decay to axinos. Therefore, in the Z̃1 NLSP

case, the BBN bounds for late decaying gravitinos are identical to the MSSM case

with a neutralino LSP, which has been discussed in Sec.4.2 and constitutes the second

part of the Gravitino Problem. Hence, although the introduction of a light axino

can easily solve the first part of the Gravitino Problem (overproduction of DM),

4The gravitino couplings to all SUSY particles are model independent and of order 1/MPl. There-

fore, direct decays to axino plus axion are suppressed with respect to G̃ → Y → Z̃1 + X simply due
to the multiplicity of final states (here Y represent all the MSSM fields). This is only violated if the
SUSY spectrum is highly compressed or if m eG < m eZ1

.
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as discussed above, the second part of the Gravitino Problem (violation of BBN

constraints) remains the same as in the MSSM. A possible way to avoid the BBN

constraints in this case is to assume low re-heat temperatures, so Ω eG ≪ 1, or heavy

gravitinos, so τ eG . 1s.

A third alternative for solving the second part of the Gravitino Problem in the

axino LSP scenario is to assume mã < m eG < m eZ1
[64], since in this case the G̃ →

Z̃1 +X decay is kinematically forbidden and direct decays to axino plus axion are the

only open channel. Since axions and axinos from gravitino decays have no sizeable

interactions with the thermal plasma during BBN, they do not affect the formation of

light elements and there are no BBN constraints on late decaying gravitinos. Although

this is an elegant solution to the Gravitino Problem in PQMSSM models, it requires a

very specific mass spectrum, with a gravitino NLSP, which may not easily be obtained

in realistic models.

From the above discussion, we see that – although the BBN bounds imposes

severe constraints on late decaying neutralinos and gravitinos – these can be easily

avoided in the axino LSP scenario, if fa . 1010 GeV (so neutralinos are short-lived)

and m eG is in the multi-TeV range (short-lived gravitinos) or m eG < m eZ1
(invisible

decays) or small TR (small ΩTP
eG h2). Furthermore, the PQMSSM model has enough

parameter freedom to satisfy the DM constraints, as shown by the example in Fig.6.1.

However, as seen in this Figure, the BBN consistent region requires low fa/low TR,

which conflicts with the implementation of thermal leptogenesis, discussed in Sec.4.2.

In the next section, we discuss the necessary conditions for thermal leptogenesis to be
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realized in PQMSSM models with an axino LSP and show that the parameter space

becomes highly constrained once we require TR > 2 × 109 GeV.

6.1 Thermal Leptogenesis and the Axino LSP

In order to conciliate high re-heat temperatures (> 2 × 109 GeV, as required by

thermal leptogenesis) with the BBN constrains on late decaying gravitinos, we need

either a multi-TeV gravitino or m eG < m eZ1
, as discussed in the last section. Since the

latter scenario is harder to obtain in most MSSM models, we will first focus on the

heavy gravitino solution. In the following, we assume m eG & 30 TeV, so τ eG . 1s and

the BBN bounds on ΩTP
eG are satisfied even at large TR[46].

To discuss the conditions necessary for achieving high TR in the axino LSP scenario,

we impose Ωaãh
2 = 0.11 in Eq.(6.3) and solve for TR:

TR ≃
[
0.11 − 2.3 × 10−15

(
fa

GeV

)7/6

θ2
i

]
f 2

a

(18 × 1018)mã

(6.4)

where we have neglected the (sub-dominant) neutralino and gravitino contributions

and assumed θi . 1, so f(θi) ≃ 1. If we take fa as a free parameter, the maximum

achievable re-heat temperature is approximately given by:

Tmax
R ≃ 3 × 105 GeV

(
MeV

mã

)
θ
−24/7
i (6.5)

which is achieved at fmax
a ≃ 3.6 × 1011θ

−12/7
i GeV, so

Tmax
R ≃ 2 × 106 GeV

(
MeV

mã

)(
fmax

a

1012 GeV

)2

. (6.6)

From Eqs.(6.5) and (6.6), it is clear that large TR values are only possible at low mã

and θi, with large fa. For mã = 100 keV and θi = 0.05, we obtain from Eq. (6.5):
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Tmax
R ≃ 9× 1010 GeV. As seen in Fig. 6.1b, this result is slightly underestimated, due

to the running of gs, which has been neglected when deriving Eq.(6.5). Nonetheless,

it illustrates the general conditions on fa, θi and mã necessary for obtaining large TR

values.

The above result is clearly in tension with the BBN bounds on late decaying

neutralinos, since the large fa values (& 1012 GeV) necessary to obtain TR > 2 ×

109 GeV result in neutralinos with τ & 0.1s, unless m eZ1
& 300 GeV, as shown in

Fig.6.2. Hence the BBN bounds require small Ω eZ1
h2 (< 1), unless m eZ1

. 300 GeV,

as seen in Fig.6.3. But, as shown by Fig.4.4, most MSSM models have Ω eZ1
h2 >

1. Therefore, imposing high re-heat temperatures strongly constrains the MSSM

sector. In order to illustrate these constraints, we perform a scan over the PQMSSM

parameters over the following range:

mã ∈ [10−7, 10] GeV ,

fa ∈ [108, 1015] GeV , (6.7)

θi ∈ [0, π]

Ω eZ1
h2 ∈ [10−5, 103].

assuming a bino neutralino with m eZ1
= 50 and 500 GeV. The result is seen in Fig.6.4,

which shows, in the Ω eZ1
h2 vs. fa plane, the solutions satisfying ΩDMh2 = 0.1123 and

TR > 2 × 109 GeV. The red dot solutions violate the BBN bounds on late decaying

neutralinos, while the blue ones are allowed. Points in light blue or light red have

too much warm or hot dark matter (mã < 100 keV and Ωã/Ωaã > 0.2 or mã < 1
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keV and Ωã/Ωaã > 0.01). As we can see from Fig.6.4, high re-heat temperatures

with fa . 1012 GeV usually have too much HDM/WDM, since they require very light

axinos, as shown by the approximate formula in Eq.(6.6)5. We also see that models

with light neutralinos require Ω eZ1
h2 . 10−3, while models with heavy neutralinos

admit Ω eZ1
h2 . 1. We point out that these results assume a bino-like neutralino

(Z1B ≃ 1) and would be more constraining for the case of a higgsino or wino Z̃1.

Below, we present a specific example of a non-mSUGRA model which satisfy all the

conditions discussed so far, allowing for high TR values and the implementation of

thermal leptogenesis.

5An alternative are models with very small mis-alignment angles, as shown by Eq.(6.5). However
our random scan strongly disfavors such highly fine-tuned solutions, which do not appear in Fig.6.4.
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Figure 6.4: Model-independent scatter plot of points with TR & 2 × 109 GeV in the

Ω eZ1
h2 vs. fa plane for m eZ1

= 50 GeV (upper frame) m eZ1
= 500 GeV (lower frame).

The blue points respect the Z̃1 → ã+hadrons BBN bound, while the red points violate

the BBN constraint. Points shown in light blue or light red have > 20% WDM or > 1%

HDM, as discussed in the text.
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A type of gravity mediation model which would be consistent with ∼ 30 TeV

gravitinos is effective SUSY, or ESUSY[65, 66]. In Ref.[66], these models were ex-

plored with GUT scale soft SUSY breaking boundary conditions. For ESUSY mod-

els, first/second generation scalars have mass m0(1, 2) in the multi-TeV range at the

GUT scale, while third generation scalar masses m0(3) are in the few TeV to multi-

TeV range. Upon evolution through the renormalization group equations (RGE),

first/second generation scalars remain in the multi-TeV range, while third generation

scalar masses are suppressed by both the contributions from Yukawa couplings and

two-loop RGE terms, and are sub-TeV at the weak scale. Since only third genera-

tion scalars and gauginos significantly contribute to the fine-tuning in the Higgs sec-

tor, this class of models conciliate a multi-TeV first/second generation and gravitino

with a low value of electroweak fine-tuning. In Table 6.1, we present a benchmark

point for the ESUSY scenario, which has a mixed bino-higgsino NLSP with mass

m eZ1
= 414 GeV. The Z̃2 and W̃1 are quite close in mass to the Z̃1, followed by t̃1

and b̃1 which are just 60% heavier. This leads to Ω eZ1
h2 ∼ 0.04 due to simultaneous

mixed bino-higgsino-wino enhanced annihilation, and also a contribution from stop

and sbottom co-annihilation. The low Ω eZ1
h2 value allows Z̃1 lifetimes up to ∼ 200 sec,

corresponding to fa values as high as 1013 GeV.

As shown by Fig.6.1, such high fa values suppress the thermal production of

axino dark matter, while low values of θi suppress the axion relic abundance. Re-

peating the same scan over PQMSSM parameters performed for Fig.6.4, but now

with m eZ1
= 414 GeV and Ω eZ1

h2 fixed at 0.04, reveals that re-heat temperatures
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above 1012 GeV can be generated while avoiding overproduction of dark matter and

maintaining consistency with BBN bounds, as seen in Figs.6.5-6.6. The light points

correspond to very light axinos (mã < 100 keV) and can give the maximum TR values,

as shown by Eq.(6.6). The maximum value of TR (for a fixed fa value) obtained in

this region comes from the minimum mã value considered in our scan (mã = 0.1 keV).

However, these light axino solutions likely violate the bounds on WDM/HDM, as

discussed in Sec.6. If we only consider solutions with cold axinos (mã > 100 keV),

Eq.(6.6) gives:

TR . 2 × 107

(
fa

1012 GeV

)2

. (6.8)

The above expression describes well the CDM-WDM transition line seen in Fig.6.5.

The few dark blue points above this line simultaneously have large values of θi and

very small mã, so the axino contribution to ΩDMh2 is highly suppressed and the

fraction of WDM (HDM) is below 20% (1%).

Once we impose TR > 2× 109 GeV, shown by the dotted gray line in Figs.6.5-6.6,

we see that most solutions require mã . 200 keV to suppress the axino contribution

and θi . 0.5 to suppress the axion contribution. These conditions can also be seen

from the approximate expression for Tmax
R obtained in Eqs.(6.5) and (6.6). Further-

more, we see from Fig.6.6 that solutions consistent with thermal leptogenesis have

the DM relic abundance dominated either by axions or by axinos. Thus, ESUSY

models with a low abundance of neutralinos, mixed axion/axino dark matter with

a high PQ scale and low θi can apparently reconcile thermal leptogenesis with the

gravitino problem, although most of the solutions for the benchmark point chosen
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have a potentially dangerous fraction of HDM/WDM (light blue points). We point

out, however, that the BBN bounds will be less severe for similar scenarios with a

bino Z̃1 or smaller Ω eZ1
h2; examples are discussed in Ref.[66].
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Figure 6.5: Scan over PQ parameters for the ESUSY benchmark point discussed in

the text, plotted in the TR vs. fa (upper frame) and TR vs. mã (lower frame) planes.

Same color code as in Fig.6.4.
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Effective SUSY

Input Parameters (GeV) Masses (GeV) Other Observables

m eG [TeV] 30

m0(1, 2) 20575.6

m0(3) 2922.94

m1/2 1457.17

A0 2177.84

mHd
3099.42

mHu 2783.53

tan β 6.87475

µ 418.6

mg̃ 3507.1

mũL
20739.8

mt̃1 652.8

mb̃1
671.7

mfW1
428.0

m eZ1
414.2

mh 117.5

∆aµ 2.4 × 10−13

BF (b → sγ) 2.9 × 10−4

BF (Bs → µµ) 3.8 × 10−9

Z1B 0.14

Ωh2
eZ1

0.04

σ(Z̃1p) [pb] 6.6 × 10−9

Table 6.1: Masses and parameters in GeV units for the Effective SUSY benchmark

point, computed with Isajet 7.81 using mt = 173.1 GeV.
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Gravitino NLSP

We now discuss the gravitino NLSP scenario, first proposed in Ref.[64]. As discussed

in the last section, a gravitino NLSP decays invisibly into axions and axinos, thus

avoiding all BBN constraints. Therefore, as in the m eG = 30 TeV case presented above,

we can once again ignore the BBN bounds on late decaying gravitinos. Nonetheless,

neutralinos (assumed to be the next-to-next-to-lightest SUSY particle or NNLSP)

still directly decay to axinos, since decays to gravitinos are suppressed by 1/MPl
6.

Furthermore, the relic DM density in the gravitino NLSP scenario still is (approx-

imately) given by Eq.(6.3). Therefore, all the results presented for the neutralino

NLSP case are still valid if m eZ1
> m eG > mã. To illustrate this, we once again per-

form a scan over the PQMSSM parameter space over the range in Eq.(6.7), but now

assuming m eG = m eZ1
/2, Ω eZ1

h2 = 0.04 and m eZ1
= 430 GeV. Also, to illustrate how

the results obtained for the ESUSY point would change for a bino-like neutralino,

we now assume Z1B = 1 (pure bino). The results are presented in Fig.6.7 and are

identical to the ESUSY case shown in Fig.6.5, once the BBN constraint on fa for the

ESUSY point is re-scaled for a bino-like neutralino (fa → fa/Z1B . 6 × 1013 GeV).

The same results obtained for the θi and mã parameters in Figs.6.5 and 6.6 are also

valid in the gravitino NLSP scenario, so we do not repeat them here.

6If m eZ1

≫ m eG, the neutralino lifetime can be considerably reduced and the decay to gravitino
can become the dominant mode. However, here we only consider cases where m eG . m eZ1

.
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Figure 6.7: Allowed and disallowed points in the fa vs. TR plane for the gravitino

NLSP case, with m eZ1
= 2m eG = 430 GeV and Ω eZ1

h2 = 0.04, including BBN constraints

on late Z̃1 decay. Same color code as in Fig. 6.4.

In order to illustrate how imposing TR > 2 × 109 GeV along with the BBN

and WDM/CDM bounds constrains the MSSM sector of PQMSSM models (here

parametrized by Ω eZ1
h2, m eZ1

and Z1B), we include Ω eZ1
h2 and m eZ1

in our scan over

the PQMSSM parameter space and select all solutions satisfying TR > 2 × 109 GeV.

The result is shown in Fig.6.8. The blue points are BBN-allowed, while red points

violate BBN bounds. Once m eZ1
and Ω eZ1

h2 are fixed, then the BBN bounds just

forbid fa from rising above some (m eZ1
and Ω eZ1

h2 dependent) maximum value.

The dashed line indicates the boundary below which 99% of the CDM/BBN con-

sistent solutions lie and can be interpreted as a natural upper bound for Ω eZ1
h2 as
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a function of m eZ1
. From this, we see that models with m eZ1

. 10 GeV require

Ω eZ1
h2 . 10−3, while values of Ω eZ1

h2 as high as 103 can be consistent with thermal

leptogenesis if the neutralino is in the TeV range. Although these limits assume

the gravitino NLSP scenario, the results are also valid for the heavy gravitino case

(m eG & 30 TeV) discussed at the beginning of this Section.

Figure 6.8: Allowed and disallowed points in the Ω eZ1
h2 vs.m eZ1

plane for a general

scan over SUSY models with a bino Z̃1. For all points, we require TR > 2×109 GeV and

assume m eG = m eZ1
/2. Dark blue points are consistent with BBN and have mainly CDM

with at most 20% WDM and/or 1% HDM admixture. The region below the dashed

line represents the MSSM parameter space where 99% of the CDM/BBN consistent

solutions lie.
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6.2 The Saxion Effect

Up to this point, we have neglected an important element of the axion supermultiplet,

namely the spin-0 saxion field s(x). As discussed in Sec.5, saxions can be produced in

thermal equilibrium (if TR > Tdec) or out of equilibrium from scatterings of particles

in the plasma (if TR < Tdec) and can also contribute to the energy density in the form

of coherent oscillations. Unlike axinos or axions, saxions are always expected to be

heavy (ms ∼ m3/2) and unstable, with decay widths given by Eq.(3.14). Since the

decay into axions is strongly model dependent, we will neglect it here. In Fig.6.9 we

show the saxion decay width into gluons and gluinos as a function of the gluino mass,

for ms = 1 TeV and fa = 1012 GeV. As we can see, the decay into gluinos is always

sub-dominant. Hence, for simplicity, from now on we assume BR(s → gg) = 1. Thus,

saxions will not enhance the LSP relic abundance. Nonetheless, saxion decays inject

energetic gluons into the thermal plasma and the BBN bounds shown in Fig.4.1 (with

Bh = 1) will apply, if τs & 10−2s.
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Figure 6.9: Decay widths for s → gg and s → g̃g̃ as a function of mg̃ for fa = 1012

GeV and ms = 1 TeV.

The saxion lifetime can be computed from Eq.(3.14), which gives (assuming

BR(s → gg) = 1):

τs ≃ 6.5 × 10−5

(
103 GeV

ms

)3(
fa

1012 GeV

)2

(6.9)

while the saxion thermal abundance is given by Eq.(5.3):

ΩTP
s h2 ≃





2.7 × 1011
(

TR

1014 GeV

) (
ms

103 GeV

) (
1012 GeV

fa

)2

, if TR < Tdec

3.3 × 108
(

ms

103 GeV

)
, if TR > Tdec

. (6.10)

Armed with the above expressions for Ωsh
2 and τs, we can translate the BBN

bounds in Fig.4.1 into limits for TR, fa and ms, once the BBN constraints are applied

to late decaying saxions. In Fig.6.10, we show the BBN bounds for thermally produced

saxions in the fa vs. TR plane (red curves) for different values of the saxion mass. As
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we can see, the bounds can be easily satisfied if fa . 1011 GeV and ms & 50 GeV.

Therefore, the inclusion of thermal saxions does not introduce extra constraints on

PQMSSM models, if fa . 1011 GeV. However, as discussed in the last section, thermal

leptogenesis requires TR > 2×109 GeV which can only be obtained for fa & 1012 GeV.

In this case, the BBN bounds on saxion decays can only be satisfied for ms & 500 GeV.

This condition is easily satisfied in the ESUSY (or heavy gravitino) scenario, since

ms ∼ m3/2 ∼ 30 TeV. On the other hand, in the gravitino NLSP scenario, besides

giving a light gravitino, the SUSY breaking mechanism would have to generate a

saxion mass ms ≫ m eG. We also point out that for ms > 10 TeV, thermal saxions

always decays before BBN or have too small relic density, hence there is no upper

limit on fa from BBN, as seen in Fig.6.10.
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Figure 6.10: BBN bounds for thermally produced saxions (red curves) in the

fa vs. TR plane for ms = 10, 102, 103 and 104 GeV. We also show the same bounds af-

ter the inclusion of the coherent oscillation component assuming si = fa (blue curves).

The region to the right of the curves is excluded by BBN constraints on s → gg decays.

So far we have neglected the contribution from coherent oscillating saxions. While

thermal saxions are always present in PQMSSM models, coherent oscillations depend

on the saxion initial field amplitude (si) and can be neglected if si ≪ fa, as discussed

in Sec.5.2. The expression for the energy density of coherent oscillating saxions is

given by Eq.(5.24). In Fig.6.11, we show the contributions from thermal and coherent

oscillating saxions to the total saxion yield as a function of fa, for TR = 109 GeV and

ms = 0.1 and 1 TeV. As we can see, for fa . 1012 GeV, the saxion yield is dominated

by its thermal component and decreases with fa. For larger fa values, the coherent
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oscillation component becomes dominant and increases with fa, since we assume

si = fa. Therefore, for the large fa values relevant for thermal leptogenesis, we

cannot neglect the coherent oscillation contribution, unless si ≪ fa. In Fig.6.10, we

show in dashed blue lines the BBN bounds including the coherent oscillating saxion

component for distinct ms values. As we can see, the coherent oscillation component

only affects the bounds on fa and TR for ms > 1 TeV. The main consequence of

assuming si = fa is that the BBN bounds on very heavy saxions become much

stronger, as shown by the ms = 1 and 10 TeV curves in Fig.6.10. This is simply

due to the fact that for such large fa values (& 1013 GeV), the thermal production

of saxions is negligible, while the coherent oscillation component is greatly enhanced.

Nonetheless, the upper limit on fa still is high enough to allow thermal leptogenesis

in the ESUSY point discussed in the last Section, where ms ∼ 30 TeV. For this point,

the BBN bounds on late decaying neutralinos are more constraining, as shown by

Fig.6.5.
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Figure 6.11: Saxion yield Ys versus fa for TR = 109 GeV and ms = 0.1 and 1 TeV.

We assume si/fa = 1.

As mentioned at the beginning of this section, saxions do not contribute to the

DM relic abundance, since they decay predominantly to gluon pairs. However, the

inclusion of the saxion field may still indirectly affect the axion and axino relic abun-

dances. As discussed in Sec.5.3, if the production of saxions in the early universe is

large enough, these might come to temporarily dominate the energy density of the

universe, which then becomes matter dominated until the saxions decay. If this hap-

pens, during the saxion decay, significant entropy is injected and the energy densities

of gravitinos, axinos, axions, neutralinos and baryons may be diluted with respect to

ρR, as illustrated by the example in Fig.5.1b. The condition for a saxion-dominated

90



universe is given by Eq.(5.29):

TD < Te or
ρs

s
>

3

4

√
MPlΓs

(
45

4π3

1

g∗(TD)

)1/4

(6.11)

where Te is the temperature at which ρs = ρR and TD is the saxion decay temperature.

In Fig.6.12, we show the value of TD (blue horizontal lines) and the value of Te

(red lines) for fa = 1012 and 1014 GeV. For TR greater than the r = 1 intersection

points, the universe has a saxion dominated era and significant entropy injection can

occur.
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Figure 6.12: Temperatures TD and Te versus TR for fa = 1012 and 1014 GeV and for

ms = 1 TeV.

If r > 1, TD must satisfy TD & 5 MeV, so the universe becomes radiation domi-

nated before BBN starts (see the discussion in Sec.4.1). As discussed in Sec.5.3, the

91



ratio of entropy injection before and after the saxion decay can be approximated by

r =
Sf

Si

≃ Te

TD

. (6.12)

Since, if the saxion never dominates the energy density of the universe (Te < TD), the

injection of entropy is negligible, we assume r = 1 (no entropy injection) for Te < TD.

We plot in Fig. 6.13a the value of r in the fa vs. TR plane for ms = 0.1, 1 and 10 TeV,

assuming si/fa = 1 (for production from coherent oscillations). The solid lines all

maintain TD > 5 MeV, while dashed lines violate this constraint. The various con-

tours of constant r initially increase with TR. In this case, the saxion production is

dominantly thermal. When the curves turn over, saxion production is dominated by

coherent oscillations. In this case, as fa increases, the saxion field strength also in-

creases (since si/fa is fixed to 1), and much lower TR values are allowed for substantial

entropy production. The region above the solid gray line, where TR > fa, has the PQ

symmetry broken only after inflation. In this case, the universe breaks into domains

of different θi and si values at T . fa and a modified treatment of dark matter is

needed. Since this scenario seems disfavoured by the uniformity of the CMB, we only

consider regions with TR < fa. We also see that significant entropy production only

occurs for TR & 108 GeV or fa & 1013 GeV. Therefore, all the DM and BBN allowed

scenarios at low fa/low TR discussed in Sec.6 are not modified by the inclusion of the

saxion field. However, the same is not valid for the large TR/large fa region necessary

by thermal leptogenesis.

Finally, when we compare Figs.6.5 and 6.7 to Fig. 6.13, we see that the range of

TR ∼ 109 − 1011 GeV for fa ∼ 1012 − 1014 implies that entropy dilution from saxion
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decay needs to be included in our calculations, if si/fa & 1.
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Figure 6.13: Ratio of entropy r before and after saxion decay in the fa vs. TR plane

for ms = 0.1, 1, 10 TeV and for si/fa = 1 (upper frame) and si/fa = 0.1 (lower

frame). The dashed lines correspond to TD < 5 MeV, when the entropy from saxion

decay is injected after the beginning of BBN; these regions are likely excluded.
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In Fig. 6.13b, we plot again the entropy ratio contours, but this time taking

si/fa = 0.1. In this case, saxion production from coherent oscillations is suppressed

by the smaller initial saxion field strength value. This expands the range of large TR

at high fa where entropy injection is negligible. In cases such as these, the results of

the previous section remain viable and entropy injection from saxion decay would be

a negligible effect. For the remaining of this Section, we will assume si/fa = 1.

If r > 1, the energy densities of neutralinos (before their decay) and axions are

modified according to the discussion in Sec.5.3 and are given by Eqs.(B.6) and (B.13).

As shown in Fig.6.12, Te is usually in the GeV range or below, so axinos and grav-

itinos are already decoupled by the time the universe becomes saxion dominated. In

this case, their energy densities are simply diluted by 1/r. Furthermore, since most

baryogenesis mechanisms generate the matter-antimatter asymmetry at temperatures

T ≫ Te, the baryon number density (η) will also be diluted by 1/r. In this case, for

the thermal leptogenesis mechanism discussed in Sec.4.2, Eq.(4.35) becomes:

η(T0) . 3 × 10−31 M1

m̃1

× 1

r
(6.13)

so, for r > 1, we need (see Eq.(4.36))

M1/r & 1010 GeV ⇒ TR/r > 2 × 109 GeV . (6.14)

Hence larger re-heat temperatures are required if r > 1. We also point out that,

although Ω eGh2 gets diluted by 1/r, the Gravitino Problem is not ameliorated by the

saxion entropy injection, since the re-heat temperature required by thermal leptoge-

nesis is also increased by exactly the same factor.
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To illustrate the entropy dilution effect, in Fig.6.14 we show the relic abundance of

thermally produced axinos (red), axions (blue), gravitino produced axinos (lavender)

and neutralino produced axinos (magenta) for the same parameters used in Fig.6.1,

but now including the saxion field with ms = 1 TeV and si = fa. Once again, the

value of TR is always adjusted to maintain Ωaã = 0.1123. As we can see, for low

values of fa, the relic abundance curves track the values shown in Fig. 6.1. In this

case the saxion is short-lived and decays before dominating the energy density, so no

significant entropy production occurs. As fa increases, the thermal axino production

drops, and the value of TR must compensate by increasing the thermal yield of axinos

so that Ωaãh
2 = 0.1123 is maintained. At around fa ∼ 5× 1012 GeV, the value of TD

drops below Te (r > 1) and significant entropy production from saxion decay occurs.

The entropy injection dilutes the thermal axino and also axion production, so that a

sharp increase in TR is needed to offset the dilution effect: the dark matter abundance

remains dominated by thermal axino production. However, the axion abundance is

independent of TR, so its dilution due to saxion decay is plain to see in Fig.6.14a.

We also see that the neutralino relic density is diluted, once r > 1. On the other

hand, the gravitino density is practically unaffected by the saxion entropy injection,

since the dilution is compensated by the increase in TR. For fa & 3 × 1013 GeV, the

required TR value to satisfy the DM constraint is above fa, as seen in Fig.6.14b. For

such high values of TR, the PQ symmetry is restored during re-heat, and re-broken

during subsequent cooling. The universe should break into domains of different θi

and si values and a modified treatment of dark matter is needed. Therefore we
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restrict our results to the TR < fa region. We also note that, for the Ω eZ1
h2 and m eZ1

values chosen in Fig.6.14, the BBN bounds on late decaying neutralinos are always

more constraining than the bounds on saxion decays, as shown by the dotted line in

Fig.6.14.

The upshot of Fig.6.14b is that, for fa slightly above 1013 GeV, the value of TR

has increased to over 1011 GeV while maintaining Ωaãh
2 = 0.1123. Although the

saxion entropy injection leads to higher values of TR (when compared to Fig.6.1b),

the allowed range for the relevant temperature for leptogenesis (TR/r) is practically

unaltered. Comparing Figs.6.1 and 6.14 we can see that, at least for this case, the

range of fa values which accommodates thermal leptogenesis is actually reduced when

the saxion entropy injection effect is included, due to the TR < fa condition.
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Figure 6.14: Same as Fig.6.1, but including the saxion contribution with ms = 1 TeV

and si = fa.

In order to discuss the effects of including the saxion field for other choices of
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PQMSSM parameters, we re-do the same scan performed over the PQMSSM param-

eters for the heavy gravitino (ESUSY point) scenario, but now including the saxion

with si = fa and ms = m eG = 30 TeV. Furthermore, we differentiate solutions ex-

cluded by the BBN bounds on late decaying saxions (green points). Since in this case

the relevant temperature for thermal leptogenesis is TR/r, we show in Fig.6.15 the

results in the fa vs. TR/r plane. As we can see, the region with r > 1, where the

effect of saxion entropy injection is relevant, only affects points with fa & 1013 GeV,

which are excluded by the BBN constraints on late decaying neutralinos. Also, due

to its heavy mass, BBN constraints on late decaying saxions are only relevant for

fa & 1015 GeV, as seen in Fig.6.10, and do not appear in Fig.6.15. Furthermore, we

see that, even in models where fa & 1013 GeV is allowed by the BBN bounds, the

saxion entropy injection does not have a significant effect. Therefore we conclude that,

for the heavy gravitino scenario (here illustrated by the ESUSY point from Table 6.1),

the inclusion of the saxion field does not significantly change the results obtained in

the last Section.
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Figure 6.15: Scan over PQ parameters for the ESUSY benchmark point discussed in

the text, plotted in the TR/r vs. fa plane, including the saxion field with ms = 30 TeV

and si = fa. Same color code as in Fig.6.4.

However, as shown by Figs.6.13 and 6.14, if ms . 1 TeV, significant entropy may

be produced and, if fa > 1013 GeV, there will be extra constraints from the BBN

bounds on saxion decays, as shown by Fig.6.10. Since a lighter saxion is compatible

with models with a NLSP gravitino, we now consider the effects of including a 1 TeV

saxion in the PQMSSM models of Fig.6.7, where m eG = m eZ1
/2. The results are shown

in Figs.6.16-6.18.

By including dilution of DM from saxion production and decay, the allowed points

can now reach to TR as high as ∼ 1013 GeV for fa ∼ 1.5 × 1013 GeV, although the

value of TR/r reaches only as high as ∼ 1011 GeV. These points with TR/r & 2× 109
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GeV evidently reconcile thermal leptogenesis with the gravitino problem even in the

presence of entropy injection from saxion decay.
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Figure 6.16: Same as Fig.6.7, but now including the saxion field with ms = 1 TeV

and si = fa. Points in green are excluded due to BBN constraints on late decaying

saxions.

In Fig.6.17, we plot the axion mis-alignment angle θi. Unlike the previous results

in Fig.6.6 with no entropy injection, the allowed values of θi with TR/r > 2×109 GeV

span a range from 0 to ∼ 1 radians: for higher values of TR, larger values of θi can be

tolerated since the relic abundance of axions is now diluted by saxion decay. Therefore,

in this case, the axion mis-alignment angle is not required to take unnaturally small

values, as opposed to the case without the saxion dilution, shown in Fig.6.6.
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Figure 6.17: Allowed and disallowed points in the θi vs. TR/r plane for Ω eZ1
h2 = 0.04

and m eZ1
= 430 GeV, with ms = 1 TeV.

To see whether axinos or axions dominate the DM density including entropy from

saxions, in Fig.6.18 we plot the same points, but this time versus axion relic density

Ωah
2. We see that the bulk of points with TR/r > 2×109 GeV that are BBN-allowed

indeed have mainly axion CDM. Note that the point shown in Fig.6.14, which has

θi = 0.05 and mainly axino DM (at TR > 2×109 GeV), corresponds to the few points

of Fig.6.18 at low Ωah
2 and is not the most common scenario, since it requires quite

small values of the mis-alignment angle.
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Figure 6.18: Allowed and disallowed points in the Ωah
2 vs. TR/r plane for Ω eZ1

h2 =

0.04 and m eZ1
= 430 GeV, with ms = 1 TeV.

To conclude this section we present model independent constraints on MSSM

models imposed by the TR/r > 2 × 109 GeV requirement. We re-do the same scan

performed in Fig.6.8, but now including a 1 TeV saxion with si = fa. The results

are shown in Fig.6.19, where the red points are excluded due to the BBN constraints

on Z̃1 decays; no green points due to constraints from BBN on saxion decay are

visible. By comparing Figs. 6.8 and 6.19, we see that due to the saxion dilution

of the neutralino relic density, the BBN bounds on Ω eZ1
are less severe and a larger

portion of the MSSM parameter space can be consistent with thermal leptogenesis.
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Figure 6.19: Allowed and disallowed points in the Ω eZ1
h2 vs.m eZ1

plane for a general

scan over SUSY models with a bino Z̃1. For all points, we require TR > 2×109 GeV and

assume m eG = m eZ1
/2. Dark blue points are consistent with BBN and have mainly CDM

with at most 20% WDM and/or 1% HDM admixture. The region below the dashed

line represents the MSSM parameter space where 99% of the CDM/BBN consistent

solutions lie.

Although we have assumed a gravitino NLSP for the results in Figs.6.16-6.19, we

stress that the same results are valid in the heavy gravitino (m eG & 30 TeV) case,

as long as we keep ms = 1 TeV. This is simply due to the fact that gravitinos

do not significantly contribute to Ωaãh
2 in the axino LSP scenario, as shown by

Eq.(6.3). Furthermore, the BBN bounds on gravitino decays can always be neglected

if m eG & 30 TeV or m eG < m eZ1
.
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6.3 Summary

The axino LSP scenario discussed here has the important property of providing a

solution for the first part of the Gravitino Problem (overproduction of DM) as well

as loosening the dark matter constraints on the MSSM sector of the theory. We have

shown that almost any values of Ω eZ1
h2 and m eZ1

are allowed if:

• fa . 1011 GeV, so neutralinos decay before BBN,

• TR . 106 GeV, so thermal axinos are not overproduced and

• ms & 100 GeV, so saxions decay before BBN.

As discussed in Sec.6.2, the above conditions also assure that the saxion field does

not have a significant impact on the thermal evolution of the universe, since, for the

above range of fa and TR values, saxions are never produced in enough abundance to

dominate the energy density of the universe (see Fig.6.12).

The second part of the Gravitino Problem (violation of BBN constraints) can be

solved if:

• m eG & 30 TeV or TR . 106 GeV (this solution is independent of the PQ sector

and also works within the MSSM) or

• mã < m eG < m eZ1
, so gravitino decays are invisible and do not affect BBN; this

solution is clearly only possible within the PQMSSM.

The conditions listed above are quite general and, for a suitable choice of the other

PQ parameters (mã, θi,ms, si), can make almost any MSSM model with a neutralino
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LSP (or NLSP for the case of m eG < m eZ1
) consistent with DM and BBN constraints

once the axion supermultiplet is introduced.

In Fig.6.20, we show the evolution of the relic densities as a function of temperature

for a choice of PQMSSM parameters that satisfies all the above conditions and has

ΩDMh2 = 0.115. The thermal saxion, axino and gravitino components are only

shown after they have become non-relativistic. For the parameters chosen, the saxion

starts to oscillate during the decay of the inflaton field, at T > TR, as discussed

in Sec.5.2. For T > ms (1 TeV), we just show the coherent oscillation component

and at T = 1 TeV we add the non-relativistic saxion contribution, which causes the

jump seen in Fig.6.20. As we can see, for such low fa and TR, the saxion energy

density is dominated by its thermal component and it is always much smaller than

ρR, so the universe is always radiation dominated. Although neutralinos and saxions

decay before BBN, the gravitino decays at T ∼ 3 keV, after the formation of light

elements. However, due to the low re-heat temperature, the gravitino relic density

(before decay) is Ω eGh2 ≃ 10−5, so its decay does not violate the BBN bounds, shown

in Fig.4.1. For the parameters chosen, Ωãh
2 = 0.11 and Ωah

2 = 0.004, so dark matter

is predominantly composed of axinos.
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Figure 6.20: Evolution of the radiation, neutralino, gravitino, axion, saxion and

axino energy densities and the entropy ratio as a function of the temperature. We also

show the neutralino freeze-out temperature (Tfr), the axion oscillation temperature

(Ta), the saxion decay temperature (TD) and the neutralino (T
eZ1

D ) and gravitino (T
eG

D )

decay temperatures. The PQMSSM parameters are: fa = 1011 GeV, ms = 1 TeV,

mã = 100 keV, θi = 0.5, si = fa, TR = 4 × 105 GeV, m eG = 1 TeV, m eZ1
= 250 GeV

and Ω eZ1
h2 = 10.

The low TR necessary to suppress axino overproduction required by the above con-

ditions does not allow for the implementation of the thermal leptogenesis mechanism,

which requires TR/r > 2 × 109 GeV. As discussed in Sec.6.1, requiring large re-heat

temperatures significantly constrains the PQMSSM parameters space. From Figs.6.5,

6.7 and 6.16 we see that TR/r > 2× 109 GeV requires fa & 1012 GeV and neutralinos

and saxions will be long-lived (τ & 10−2s), unless m eZ1,s & 0.5 TeV. As shown in
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Sec.6.2, the range of PQMSSM parameters required to implement thermal leptogen-

esis strongly depends on the saxion sector, since for such large TR and fa values, the

universe may become temporarily saxion dominated. In this case, significant entropy

injection and dilution of the neutralino, gravitino, axion and axino relic densities can

occur. However, we have shown that, if ms & 10 TeV, the inclusion of the saxion

field has no relevant consequences (see Fig.6.15). Thus in the multi-TeV saxion case,

the conditions for achieving TR/r > 2 × 109 GeV are the same as the ones for when

the saxion is neglected, shown in Figs.6.5-6.6:

• mã . 200 keV to suppress the contribution of thermal axinos to ΩDMh2,

• θi . 0.5 to suppress the axion contribution to ΩDMh2,

• Ω eZ1
. 0.1(1), for m eZ1

. 100(500) GeV in order to avoid the BBN bounds on

late decaying neutralinos and

• m eG & 30 TeV or m eG < m eZ1
to avoid the BBN bounds on late decaying graviti-

nos.

In Fig.6.21, we once again show the evolution of the energy densities, but now for a

point consistent with thermal leptogenesis and satisfying the above conditions with a

multi-TeV saxion. Also, to give an example of the gravitino NLSP scenario, we choose

m eG = 100 GeV. As we can see, due to their large mass, saxions decay just before ρs

becomes larger than the radiation energy density, so the universe is always radiation

dominated. While saxions decay before BBN (TD ≃ 5 MeV), due to the large fa

value, neutralinos decay during the formation of light elements (T
eZ1

D ≃ 0.1 MeV), but
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the BBN bounds are not violated due to its small relic abundance. Gravitinos decay

after BBN, but since they decay exclusively into axions and axinos, the abundance of

light elements is not affected7. Finally, we note that for the parameters chosen, dark

matter is almost exclusively composed of axions.
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Figure 6.21: Evolution of the radiation, neutralino, gravitino, axion, saxion and

axino energy densities and the entropy ratio as a function of the temperature. We also

show the neutralino freeze-out temperature (Tfr), the axion oscillation temperature

(Ta), the saxion decay temperature (TD) and the neutralino (T
eZ1

D ) and gravitino (T
eG

D )

decay temperatures. The PQMSSM parameters are: fa = 3×1013 GeV, ms = 30 TeV,

mã = 100 keV, θi = 0.1, si = fa, TR = 2 × 109 GeV, m eG = 100 GeV, m eZ1
= 250 GeV

and Ω eZ1
h2 = 0.1.

7Here we neglect possible bounds on ρ eG from the CMB spectrum.
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From Fig.6.21, we see that a multi-TeV saxion decays before it can dominate the

energy density of the universe, even for large values of fa and TR. On the other hand, if

ms . 1 TeV, saxions will have larger lifetimes and the entropy injection from saxion

decays may significantly dilute the axion, axino, neutralino and gravitino energy

densities. Furthermore, saxions may decay during BBN, so the BBN constraints on

late decaying saxions impose an upper bound on the PQ scale, which depends only

on ms and TR, as shown by Fig.6.10. In particular, for a 1 TeV saxion and si = fa,

we have shown that thermal leptogenesis can be made viable if

• fa . 2 × 1013 GeV to avoid the BBN bounds on saxion decays,

• mã . 2 MeV to suppress the contribution of thermal axinos to ΩDMh2,

• θi . 1 to suppress the axion contribution to ΩDMh2,

• Ω eZ1
. 1(10), for m eZ1

. 100(500) GeV in order to avoid the BBN bounds on

late decaying neutralinos.

Furthermore, as discussed in Sec.6.2, the inclusion of the saxion has no effect on the

Gravitino Problem, hence the conditions on the gravitino mass are the same as before:

• m eG & 30 TeV or m eG < m eZ1
to avoid the BBN bounds on late decaying graviti-

nos.

From the above conditions on the PQMSSM parameters, we see that – once a TeV

scale saxion is included – the entropy dilution effect allows for a wider range of

mã, θi and Ω eZ1
h2 values. On the other hand, due to the BBN constraints on late
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decaying saxions, there is now an upper limit on the PQ scale: fa . 2×1013 GeV, for

ms = 1 TeV. We point out that this upper limit is distinct from the one imposed by

the BBN constraints on neutralinos (red points in the scatter plots), since the latter

can be relaxed without affecting any of the previous results if MSSM models with

smaller neutralino relic densities are considered.

In Fig.6.22, we show the same evolution of energy densities shown in Fig.6.21, but

now assuming a light saxion (ms = 500 GeV). In this case, the universe becomes

saxion dominated for TD < T < Te, as seen in Fig.6.22. We choose fa = 1013 GeV,

so TD ≃ 5 MeV and the saxion-dominated era ends before neutron decoupling, thus

avoiding the BBN constraints discussed in Sec.4.1. For the parameters chosen, the

entropy production factor is r ≃ 11 and since the axion starts to oscillate before

the saxion dominated era begins (Ta > Te), its relic abundance is diluted by 1/r

(see Eq.(B.6)). As a consequence, a larger θi value (when compared to Fig.6.21) is

required to satisfy ΩDMh2 = 0.11, which again is dominated by the axion component.

The neutralino, gravitino and axino abundances are also diluted by 1/r.
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Figure 6.22: Evolution of the radiation, neutralino, gravitino, axion, saxion and

axino energy densities and the entropy ratio as a function of the temperature. We also

show the neutralino freeze-out temperature (Tfr), the axion oscillation temperature

(Ta), the temperature when the universe becomes saxion dominated (Te), and the

saxion (TD), neutralino (T
eZ1

D ) and gravitino (T
eG

D ) decay temperatures. The PQMSSM

parameters are: fa = 1013 GeV, ms = 0.5 TeV, mã = 100 keV, θi = 0.57, si = fa,

TR = 2 × 109 GeV, m eG = 100 GeV, m eZ1
= 250 GeV and Ω eZ1

h2 = 0.1.

To conclude this Section, we illustrate the bounds on MSSM models in the axino

LSP scenario, assuming TR/r > 2× 109 GeV and m eG > 30 TeV or m eG < m eZ1
, so the

BBN bounds on gravitinos can be neglected. In Figs.6.8 and 6.19, the dashed lines

approximately show the region in the m eZ1
vs. Ω eZ1

h2 plane consistent with thermal

leptogenesis, once the other PQMSSM parameters are free to variate in the range

of Eq.(6.7). Fig.6.8 shows results for a very heavy saxion or si ≪ fa (so the saxion

111



component can be neglected), while 6.19 shows the result for a 1 TeV saxion with

si = fa. We may then translate this into a contour in the m0 vs. m1/2 plane of

mSUGRA for A0 = 0, µ > 0 and constant tanβ, as shown for the cases of tan β = 10,

50 and 55 in Fig. 6.23. The gray regions are excluded because they violate the LEP2

limits on Higgs or sparticle masses8; the green-shaded regions contain a τ̃1 as NNLSP,

for which a different treatment is needed[38].

First, we consider the heavy saxion scenario, where the saxion decays at very early

times and can be neglected. In Fig.6.23a, we show the mSUGRA m0 vs. m1/2 plane

for tan β = 10. The strips of dark blue and purple points show the regions that allow

for TR > 2 × 109 GeV, while maintaining Ωaãh
2 = 0.1123 and respecting bounds

from BBN. The subset of purple points at low m1/2 satisfies in addition the following

constraints on low energy (LE) observables:

1. ∆aSUSY
µ = (7.90 − 37.39) × 10−10 ,

2. BR(b → sγ) = (2.79 − 4.3) × 10−4,

3. BR(Bs → µ+µ−) < 4.7 × 10−8,

4. 0.55 < BR(Bu → τ+ντ )
MSSM/BR(Bu → τ+ντ )

SM < 2.71

where 1.− 3. were calculated using Isajet/Isatools[68, 69] and 4. was calculated using

SuperIso.

8The LEP2 limit on a SM-like Higgs scalar h is mh > 114.4 GeV. Here, we use mh > 111 GeV
allowing for an approximate 3 GeV error on the theory calculation of mh. For the SUSY mass limits
we use those implemented in SuperIso[67].
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We see that the consistent regions, although broader, are very similar to the classic

mSUGRA regions with neutralino dark matter: the stau co-annihilation region at

low m0 and the light Higgs resonance region where Z̃1Z̃1 → h at m1/2 ∼ 150 GeV.

The reason is that a rather low abundance of thermal neutralinos is required in this

scenario to satisfy BBN constraints on late decaying Z̃1s. For comparison, the classic

mSUGRA strips where the neutralino relic density Ω eZ1
h2 = 0.1123±0.0105 are shown

as yellow/orange points.

Invoking next the Ω eZ1
vs. m eZ1

contour of Fig.6.19, which includes the effect of

entropy generation from a 1 TeV saxion, the consistent regions broaden out consid-

erably. The region with TR/r > 2 × 109 GeV is denoted here by light blue points,

and expands to fill the lower m0 portion of the m0 vs. m1/2 plane along with a band

around m1/2 ∼ 400 where turn-on of the Z̃1Z̃1 → tt̄ annihilation channel reduces the

neutralino abundance. The portion of the leptogenesis-consistent region including

saxion decays and LE constraints is colored in pink and requires m1/2 . 550 GeV

and m0 . 500 GeV, so as to allow for a significant contribution to (g − 2)µ by light

charginos and sneutrinos. The remaining unshaded (white) region of the mSUGRA

plane does not allow for thermal leptogenesis because the relic density of neutralinos

is so large that the BBN constraints on late decaying Z̃1 are violated.
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Figure 6.23: Regions in the m0 vs. m1/2 plane of the mSUGRA model with A0 = 0 and

µ > 0 which satisfy 1. TR > Tmin
R = 2×109 GeV (dark blue), 2. TR > Tmin

R and LE constraints

(purple), 3. TR/r > Tmin
R with saxion entropy injection (light blue) and 4. TR/r > Tmin

R with

saxion entropy injection and LE constraints (pink). For comparison, the yellow/orange points

indicate the classic mSUGRA regions with Ω eZ1

h2 = 0.1123 ± 0.0105. We show frames for

a) tanβ = 10, b) tanβ = 50 and c) tanβ = 55.
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Frame b of Fig.6.23, shows the analogous plot for tanβ = 50. In this case, b- and

τ -Yukawa couplings increase greatly, while the value of mA drops, enabling efficient

annihilation of neutralinos via stau co-annihilation or s-channel A exchange. The neu-

tralino abundance Ω eZ1
h2 is severely reduced, and less constrained by BBN. The area

of leptogenesis-consistent regions increases. Furthermore, the SUSY contributions to

b → sγ and (g − 2)µ increase with increasing tan β, and so the region which is consis-

tent with LE constraints moves to higher m1/2 values. If saxion entropy production

is added, almost the whole plane is allowed.

Finally, frame c shows the case of tan β = 55, where the A-resonance dominates

the Z̃1Z̃1 annihilation amplitudes. Here, we see that a huge swath of parameter space

is consistent with thermal leptogenesis, even without the effect of saxion decays. By

including entropy from saxion decay, the entire m0 vs. m1/2 plane is allowed. The

part which is consistent with LE constraints follows suit, leading to a large region of

parameter space that is consistent with all constraints.
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Chapter 7

The Neutralino LSP

In the last Section, we discussed the axino LSP scenario, which can greatly expand

the MSSM parameter space consistent with the BBN and DM constraints as well as

thermal leptogenesis, as illustrated by Fig.6.23. Here, we discuss the possibility of

the heavy axino scenario, which can happen in KSVZ-type models, as discussed in

Sec.3.2. The main consequence of a heavy axino is that it will cascade decay to the

LSP (here assumed to be the neutralino) and consequently enhance the neutralino

relic abundance. Therefore, we expect that MSSM models with Ω eZ1
h2 & 0.11 will not

be consistent with the DM constraints, once the axion superfield with a heavy axino

is included. Another possible consequence of the heavy axino scenario is that the

universe may become temporarily dominated by the axino field, in a way analogous

to the light saxion case, discussed in last Section. The discussion here follows closely

Ref.[70].

In the heavy axino scenario, the universe may have both an early saxion and/or

axino dominated phases, so the early thermal history of the universe may become

quite involved. The appropriate treatment in this case requires the use of the full set

of coupled Boltzmann equations describing the axion supermultiplet, the neutralino,

the gravitino and the radiation components. For simplicity, we will not pursue this

approach here. Instead, we neglect the saxion field throughout this Section. This is

justified in the heavy saxion limit (ms & 10 TeV), where saxions decay before the
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neutralino freeze-out and the start of axion coherent oscillations. In this case, the only

possible effect of the saxion field is to dilute the thermal gravitino and axino densities

by 1/rs, where rs is the entropy production from saxion decays. Since ρ eG,ã ∝ TR, the

entropy dilution by (heavy) saxion decays is equivalent to re-scaling TR by 1/rs. In

the following we simply assume rs = 1, with the understanding that if a heavy saxion

dominates the early universe, TR should be rescaled. Obviously this is not valid for

the light saxion scenario, where saxion decays may directly affect the neutralino and

axion relic abundances. However, we will not consider such cases here.

Before discussing the heavy axino cosmology, we make one last simplifying as-

sumption. In the neutralino LSP scenario, gravitinos cascade decay to neutralinos,

hence the Gravitino Problem in this case is identical to the MSSM scenario, discussed

in Sec.4.2. The only distinction is the possible dilution of gravitinos from axino (or

saxion) decays. However, as discussed in Sec.6.2, this does not affect the Gravitino

Problem (see discussion following Eq.(6.14)). Therefore, the conditions necessary for

solving the Gravitino Problem in the PQMSSM with a neutralino LSP are identical

to the solution within the MSSM: m eG & 30 TeV or TR . 106 GeV. For the remainder

of this Section, we assume m eG & 30 TeV, so gravitinos can be neglected1.

Under the assumptions described above, we only need to consider the neutralino,

axion and axino components when discussing the BBN and DM constraints on the

neutralino LSP scenario. The BBN constraints apply to late decaying axinos and de-

pend on the axino decay temperature (TD). The axino lifetime is given by Eq.(3.11)

1The gravitino contribution to Ω eZ1

is neglegible for most of the TR and m eZ1

values assumed in
this Section.
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and is strongly dependent on the SUSY spectrum, since the Z̃2,3,4 and g̃ decay

modes are kinematically allowed only if the axino is sufficiently heavy. Therefore

it is necessary to choose a specific MSSM model when discussing the decay proper-

ties of axinos. Here we will present results for a mSUGRA point (SUGRA1) with

(m0,m1/2, A0, tan β, µ) = (4525 GeV, 275 GeV, 0, 10, > 0), which has a LSP neu-

tralino with mass 87.9 GeV, while the calculated freeze-out abundance of neutralinos

in the MSSM, obtained from IsaReD[71], is ΩMSSM
eZ1

h2 = 0.05. Many sparticle masses

and low energy observables are listed in Table 7.1. Since the weak-scale value of the

superpotential µ term is only 137.2 GeV, the Z̃1 is of mixed higgsino-bino-wino type.

The axino decay widths for this model are shown as a function of the axino mass in

Fig.7.1 for fa = 1012 GeV. We see that for very low axino masses (mã ∼ m eZ1
), only

the decay ã → Z̃1γ is open, and Γã is very small. As mã increases, additional decay

modes become allowed and contribute to Γã. Once the decay to g̃g opens up, this

mode is dominant. In this case the axino lifetime can be approximated by:

τã ≃ 3 × 10−5s

(
fa

1012 GeV

)2(
103 GeV

mã

)3(
1 −

m2
g̃

m2
ã

)−3

(for mã > mg̃) . (7.1)

Thus, if mã > mg̃ and mã & 1 TeV, the axino is short-lived and will decay before

BBN (τã . 10−2), unless fa & 1014 GeV. The BBN bounds on late decaying axinos

are shown in Fig.7.2 in the mã vs TR plane for fa = 1010 − 1014 GeV. Comparing

with Fig.6.3, we see that the BBN bounds in the neutralino LSP scenario are more

naturally avoided than in the axino LSP case, since, for the latter, neutralino decays

to axinos are suppressed by the weak coupling constant and the smaller neutralino

mass. The axino decay temperature can be obtained from the axino width using

118



Eq.(5.28):

TD =
√

MPlΓã

(
45

4π3

1

g∗(TD)

)1/4

. (7.2)
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Figure 7.1: Partial and total decay width of axinos versus mã for the SUGRA1 point

with (m0, m1/2, A0, tan β, sign(mu)) = (4525, 275, 0, 10, +). We take fa = 1012 GeV.
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the curves is excluded by BBN constraints on axino decays.

As mentioned above, if the axino is produced at large rates in the early universe,

it may dominate the energy density before it decays. Once again, the condition for

an early axino dominated universe is given by Eq.(5.29):

TD < Te or
ρã

s
>

3

4

√
MPlΓã

(
45

4π3

1

g∗(TD)

)1/4

(7.3)

where Te is the temperature at which ρã = ρR, given by Eq.(5.25):

Te =
4

3
mãYã , (7.4)

and Yã is the axino thermal production yield, given by Eq.(5.3). While TD depends on

the axino mass, the SUSY spectrum and fa, Te depends on the axino mass, the re-heat
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SUGRA1 (HB/FP)

Input Parameters (GeV) Masses (GeV) Other Observables

m0 4525

m1/2 275

A0 0

tan β 10

µ 137.2

mg̃ 810.4

mũL
4517.0

mfW1
121.1

m eZ4
273.4

m eZ3
149.8

m eZ2
143.1

m eZ1
87.9

mA 4458.1

mh 119.6

∆aµ 12.5 × 10−8

BF (b → sγ) 3.1 × 10−4

BF (Bs → µµ) 3.8 × 10−9

Z1B 0.65

Ω eZ1
h2 0.05

Tfr m eZ1
/23.2

〈σv〉 [GeV−2] 2.3 × 10−9

σ(Z̃1p) [pb] 3.3 × 10−8

Table 7.1: Masses and parameters in GeV units for the HB/FP (SUGRA1) bench-

mark point computed with Isajet 7.81 using mt = 173.3 GeV. The value of 〈σv〉 shown

corresponds to small relative velocities (v ≃ 0).
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temperature and fa. In Fig.7.3, we show the neutralino freeze-out temperature, as well

as TD and Te as a function of the axino mass for fa = 1012 GeV and TR = 106 GeV and

1010 GeV. As we can see, for values of TD . 5 MeV (dashed curves), the parameters

are likely excluded because axinos would inject entropy during the neutron freeze-out

and affect the BBN results, as discussed in Sec.4.1. For TD > Tfr– the high mã

region– axinos decay to neutralinos before freeze-out. In this case, the neutralinos

from axino decays thermalize and the neutralino relic abundance is given as usual

by the standard calculation of WIMP thermal abundance in the MSSM. The region

where Te > TD is where axinos can dominate the universe. This occurs for mã ∼ 10

TeV in the TR = 1010 GeV case. Furthermore, the ratio between the Te and TD curves

gives an approximate measure of the entropy injection from axino decay. We also see

that, for TR = 106 GeV, axinos never dominate the universe, since their thermal

production is suppressed by the low re-heat temperature and they decay prior to the

point where the axino energy density exceeds that of radiation.
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Figure 7.3: Plot of TD, Te and the neutralino freeze-out temperature (Tfr) versus

mã in the SUGRA1 benchmark model with fa = 1012 GeV.

In order to see how large the increase in entropy due to axino decay can be,

we plot in Fig.7.4 curves of constant r = Te/TD ranging in value from 1 to 100 in

the fa vs. TR plane for mã = 1 TeV in the SUGRA1 scenario. The region with

fa & 8 × 1013 GeV is likely BBN excluded since the axino decay temperature TD

drops below ∼ 5 MeV. From Fig.7.4, we see that when TR < Tdec (below dashed gray

line), axinos are produced out-of-equilibrium and r decreases with increasing fa, since

in this region TD ∝ 1/fa and Te ∝ 1/f2
a , so r ∝ 1/fa. Also, r increases with increasing

TR due to enhanced thermal production of axinos. In contrast, when TR > Tdec, the

axinos are produced in thermal equilibrium and the production rate is independent

of fa or TR. In this case, Te is independent of TR and fa, while TD ∝ 1/fa, so the r
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contours increase with increasing fa and are independent of TR. We also see that the

entropy production from axino decays is limited from above by the upper bound on

the re-heat temperature, TR < fa. As discussed previously, for re-heat temperatures

above fa, the PQ symmetry would be broken after inflation and a distinct treatment

would be required.
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Figure 7.4: Plot of r values in the fa vs. TR plane for the HB/FP model SUGRA1

with mã = 1 TeV.

We can now discuss the axino contribution to the DM relic density, composed of

axions and neutralinos. In the axino LSP case, the neutralino contribution to the DM

relic density was simply given by (mã/m eZ1
)Ω eZ1

, if there was no significant entropy

dilution from saxion decays. Thus, naively, we expect that, in the neutralino LSP

scenario, the contribution from axino decays is given by (m eZ1
/mã)Ωã. However, if

axinos decay at temperatures above the neutralino freeze-out (Tfr), the Z̃1’s injected
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from axino decays thermalize to their equilibrium value and axinos do not affect the

neutralino relic abundance. On the other hand, if the axino decay temperature (TD) is

below Tfr, the number density of neutralinos suddenly increases after the axino decays

and new re-annihilations may occur, reducing the final neutralino relic abundance2.

To compute the final neutralino relic abundance including the effects described

above, we must consider the Boltzmann equation for the neutralino number density,

Eq.(4.5):

ṅ eZ1
+ 3Hn eZ1

= −〈σv〉
(
n2

eZ1
− n̄2

eZ1

)
+ Γãnã . (7.5)

If axinos decay before freeze-out (TD > Tfr), then, for Tfr < T < TD, Eq.(7.5) reduces

to the MSSM case, discussed in Sec.4:

ṅ eZ1
+ 3Hn eZ1

= −〈σv〉
(
n2

eZ1
− n̄2

eZ1

)
(7.6)

and the neutralino freeze-out proceeds as in the MSSM (without the axino field), thus

giving the MSSM value for Ω eZ1
h2 (= 0.05 for the SUGRA1 point). Note that this

result is valid even if there is an early axino dominated era (r > 1), as long as TD > Tfr.

In Fig.7.5, we show as dotted-dashed lines the evolution of the neutralino and axino

energy densities as a function of temperature for mã = 50 TeV, fa = 1012 GeV and

TR = 106 GeV. Once again we assume the SUGRA1 point for the MSSM sector. As

we can see, for such large mã, the axino decays before the neutralino freeze-out and

the neutralinos from axino decays thermalize to their equilibrium value. Therefore

ρ eZ1
tracks the MSSM evolution (gray dotted curve).

2The same effect was not present in the axino LSP scenario since axinos interact very weakly and
their annihilation rates are always extremely small.
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However, if TD < Tfr, Eq.(7.5) gives (for T < TD):

ṅ eZ1
+ 3Hn eZ1

= −〈σv〉n2
eZ1

(7.7)

with the initial condition:

Y eZ1
(TD) = Y fr

eZ1
+ Y ã

eZ1
(7.8)
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where Y fr
eZ1

is the thermal freeze-out contribution given by Eq.(B.13)3 and Y ã
eZ1

=

Yã/r is the non-thermal contribution from axino decays. The entropy dilution factor

(1/r) must be included if the universe becomes temporarily axino dominated (r > 1).

Eq.(7.7) can be rewritten in terms of the neutralino yield as

dY eZ1

dt
= −〈σv〉Y 2

eZ1
s . (7.9)

Since after the axino decay the universe is radiation dominated, we have T ∝ R−1

and s = 2π2g∗(T )T 3/45, so the above equation becomes:

dY eZ1

dT
= Y 2

eZ1

√
g∗(T )π

45
MPl〈σv〉 . (7.10)

Therefore, for T ≪ TD, the solution for the above equation gives:

Y −1
eZ1

(T ) ≃ Y −1
eZ1

(TD) +

√
g∗(TD)π

45
〈σv〉MPlTD . (7.11)

From this result, we see that the neutralino yield is suppressed at low temperatures

(Y eZ1
(T ) ≪ Y eZ1

(TD)), if:

Y −1
eZ1

(TD) ≪
√

g∗(TD)π

45
〈σv〉MPlTD ; (7.12)

otherwise, the neutralino yield is approximately given by the sum of the thermal

freeze-out and axino contributions (Y eZ1
(T ) ≃ Y eZ1

(TD)). The suppression of Y eZ1
(T )

(if Eq.(7.12) is satisfied) happens when neutralinos from axino decays, injected at

T ∼ TD, re-annihilate. This is more clearly seen if we rewrite Eq.(7.12) as

〈σv〉n eZ1
(TD) ≫ H(TD) . (7.13)

3After the axino decay entropy is conserved, so Y fr
eZ1

(for T ≤ TD) can easily be obtained from

Eq.(B.13), using Y fr
eZ1

= (Ω eZ1

ρc)/(m eZ1

s(T0)) ≃ (Ω eZ1

h2)/(2.741 × 108 GeV−1m eZ1

).
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The above condition simply means that re-annihilations will occur at T ∼ TD if the

number of injected neutralinos from axino decays is sufficiently large to make the

annihilation rate exceed the expansion rate at T = TD. This effect is illustrated

by the solid curves in Fig.7.5, which show the evolution of the neutralino and axino

energy densities for mã = 1 TeV, fa = 1012 GeV and TR = 106 GeV. As seen from

Fig.7.3, for these parameters we have TD ∼ 0.07 GeV < Tfr, so axinos decay after

neutralino freeze-out and add to its final relic abundance, which, for T < TD becomes

much larger than the MSSM value (dotted gray curve). For comparison purposes, we

also show the neutralino relic abundance given by Y fr
eZ1

+Yã, where the re-annihilation

effect has been turned off (dotted magenta curve). As we can see, re-annihilations

significantly reduce the final neutralino relic abundance by a factor of ∼ 200 and can

not be neglected in this case.

We also point out that, if Y ã
eZ1

is sufficiently large, the second term on the righ-

hand side of Eq.(7.11) dominates and the final neutralino relic abundance becomes

independent of the axino and thermal freeze-out yields:

Y eZ1
(T ≪ TD) ≃

√
45

g∗(TD)π

1

〈σv〉MPlTD

=
H(TD)

s(TD)〈σv〉 (7.14)

⇒ Ω eZ1
h2(T ≪ TD) ≃ H(TD)

ρc/h2

m eZ1

〈σv〉
g∗(T0)

g∗(TD)

T 3
0

T 3
D

.

Comparing the above result with Eq.(4.11) we see that, in this case, the final neu-

tralino relic abundance is given by the thermal freeze-out abundance, but with the

freeze-out temperature replaced by TD.

We can summarize all the previous results with the following expression for the
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neutralino yield in the heavy axino scenario:

Y eZ1
=





Y fr
eZ1

, if TD > Tfr

Y fr
eZ1

+Yã/r

1+

q
g∗(TD)π

45
〈σv〉MPlTD(Y fr

eZ1
+Yã/r)

, if TD < Tfr

(7.15)

where Y fr
eZ1

is given by Eq.(B.13) and Yã by Eq.(5.3). As usual we take r = 1 if there

is no early axino dominated era (Te < TD). In Fig.7.6 we show, in the TR vs. mã

plane, several regions relevant for the discussion of the neutralino relic abundance. We

take fa = 1012 GeV and consider the SUGRA1 point shown in Table 7.1. The solid

blue lines show contours of r = 1, 10 and 100, where axinos temporarily dominate

the energy density of the universe. For mã > 9 TeV (to the right of dashed blue

line), axinos decay before neutralinos freeze-out and do not affect the neutralino relic

abundance. The region to the right of the yellow contour and to the left of the dashed

blue line has TD < Tfr < Te, so neutralinos decouple during the axino dominated era

and their freeze-out relic abundance is given by Eq.(7.15)b. The BBN excluded region

is shown by the dotted blue lines at mã . 400 GeV (TD < 5 MeV). Finally, the brown

area at low mã and low TR shows the region where Eq.(7.13) is not satisfied and the

re-annihilation effect is negligible (Y eZ1
(T ) > Y eZ1

(TD)/2). At small TR, the thermal

production of axinos is suppressed and the number of neutralinos injected from axino

decays are not sufficient for re-annihilations to take place. At small axino masses,

the decay temperature (TD) is small and suppresses the right-hand side of Eq.(7.12),

once again suppressing re-annihilations. Nonetheless we see that, for most of the

parameter space, neutralino re-annihilations at T ∼ TD occur at large rates.
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Figure 7.6: Plot of regions of mã vs. TR plane where Tfr < Te (right of yellow con-

tour) and where no additional neutralino annihilation occurs (brown), in the SUGRA1

(HB/FP) benchmark model. We also show regions of entropy generation r.

In the neutralino LSP scenario, the total DM relic density is given by

ΩDMh2 = Ω eZ1
h2 + Ωah

2 (7.16)

with Ω eZ1
h2 computed using Eq.(7.15) and Ωah

2 given by Eq.(B.6). In Fig.7.7, we

plot the neutralino abundance, Ω eZ1
h2, the axion abundance, Ωah

2, and their sum,

Ωa eZ1
h2, versus mã for fa = 1012 GeV, with TR = 1010 GeV. For these parameters,

the universe has an axino-dominated era for mã . 16 TeV and the re-annihilation

condition, Eq.(7.13), is always satisfied (for TD < Tfr). We take the initial axion field

value θi = 0.498, which tunes the total dark matter abundance to the WMAP value

for the case where there is no axino contribution (TD > Tfr). The region to the left of
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the dashed gray line (mã . 400 GeV) is excluded by BBN constraints on late decaying

axinos, since TD < 5 MeV. For mã values just beyond the BBN constraint, the large

thermal axino production rate is followed by decays to neutralinos at T = TD. As relic

neutralinos fill the universe, they proceed to re-annihilate so their final abundance

is determined by Eq.(7.15)b. Since in this region Ω eZ1
h2 ∼ 1/TD (see Eq.(7.14)),

and since TD ∼ m
3/2
ã , we find the neutralino abundance decreasing with increasing

mã. The kink at mã ∼ 900 GeV occurs due to turn-on of the ã → g̃g decay mode,

which increases Γã, thus decreasing Ω eZ1
h2 even further. While Ω eZ1

h2 is decreasing

with increasing mã, it reaches 0.11 at mã ∼ 6 TeV and continues dropping until TD

exceeds Tfr. At this point, the thermal Z̃1 abundance assumes its MSSM value of

Ω eZ1
h2 = 0.05 since now axinos decay before freeze-out. For mã & 8.5 TeV, the CDM

is a nearly equal mix of axions and neutralinos, due to our choice of θi. While TD & 1

GeV (mã & 3 TeV), axinos decay before the beginning of axion oscillations and the

axion abundance assumes the form given in Eq.(5.22). However, for lower values of

mã, TD < 1 GeV and the axion abundance is diluted by entropy production from

axino decay and is given by Eq.(B.6).
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Figure 7.7: Plot of neutralino and axion relic densities Ωh2 versus mã for fa = 1012

GeV and TR = 1010 GeV for the SUGRA1 model.

In Fig. 7.8, we show the mixed aZ̃1 abundance versus fa for mã = 1 TeV, TR =

1010 GeV and θi = 0.498, once again assuming the SUGRA1 model. We see that for

low fa, the axino width Γã is large, and TD exceeds Tfr, so that axinos decay before

freeze-out and the neutralino relic density assumes its MSSM value (Ω eZ1
h2 = 0.05).

Meanwhile, the axion density is extremely small due to the low value of fa. Since

TD ∼ 1/fa, as fa increases, TD decreases. For fa . 1010 GeV, TD > Tfr and TD >

1 GeV, so the neutralino abundance remains constant (Eq.(7.15)a), while the axion

abundance, given by Eq.(5.22), increases with fa. Around fa ∼ 8 × 1010 GeV, TD

falls below Tfr and the neutralino abundance is then given by Eq.(7.15)b. For higher

fa values, TD continues to fall and since Ω eZ1
h2 ∼ T−1

D in this region, the neutralino
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abundance steadily increases. For 2.5×1010 GeV < fa < 8×1011 GeV, TD < Ta < Te

and axions starts to oscillate in the matter dominated (MD) regime (see Sec.5.3). In

this case, due to entropy injection from axino decays, the axion relic density slowly

increases with fa, as shown by Eq.(B.7). For fa & 1012 GeV, axinos only dominate

the energy density after the axion oscillation has started (Te < Ta ∼ 1 GeV), so

Ωah
2 is once again given by Eq.(5.22), but now diluted by 1/r (see Eq.(B.6)). Since

1/r = TD/Te ∝ fa, the entropy dilution makes Ωah
2 increase with fa at a faster rate.

Finally, at fa ∼ 1013 GeV, Te < TD and there is no longer an axino-dominated era. In

this case, r = 1, so the axion relic abundance is no longer diluted by entropy injection

and its slope decreases, as seen in Fig.7.8. The BBN excluded region is shown by the

dotted lines (fa & 1013 GeV).
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Figure 7.8: Plot of neutralino and axion relic densities Ωh2 versus fa for mã = 1 TeV

and TR = 1010 GeV for the SUGRA1 model.

In Fig.7.9, we show the mixed dark matter relic abundance versus TR for fa = 1012

GeV and mã = 1 TeV. In this case, TD is fixed throughout the plots and, as seen from

Fig.7.6, the neutralino relic density is given in the re-annihilation regime, Eq.(7.15)b.

Since in this case Ω eZ1
h2 ∝ 1/TD, the neutralino relic abundance is nearly constant

everywhere except at low TR ∼ 104 GeV, where thermal axino production is somewhat

suppressed, and fewer neutralinos are produced at TD to enter the re-annihilation

process. Since fa is fixed, the axion abundance is also constant throughout much

of the plot. At TR ∼ 109 GeV, we enter the region where axinos can dominate the

universe (r > 1), and entropy production from axino decay diminishes the axion

abundance. For 109 GeV . TR . 1010 GeV, Ta > Te, so the axion relic density is
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simply diluted by 1/r. For larger TR values, Ta < Te and axions start to oscillate in

the MD regime. At TR ∼ 7 × 1010 GeV, TR > Tdec and the axino production rate

becomes independent of TR (see Eq.(5.3)), hence Te and r become constant with TR.

While the neutralino abundance always dominates the axion abundance in Fig.7.9,

this is just a reflection of the value of mã chosen; for higher mã, TD will increase,

leading to a diminution of Ω eZ1
h2.
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Figure 7.9: Plot of neutralino and axion relic densities Ωh2 versus TR for mã = 1

TeV and fa = 1012 GeV for the SUGRA1 model.

We have seen that over most of the parameter space with TD < Tfr, Ω eZ1
h2 ∼

1/TD ∼ Γ
−1/2
ã ∼ fa/m

3/2
ã , with little dependence on TR. Hence, a good way to display

the relic density of dark matter in the mixed aZ̃1 CDM scenario is to display it in

the mã vs. fa plane. This is shown in Fig.7.10 for the SUGRA1 point, where we
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take θi = 0.498 so as to normalize the relic density Ωa eZ1
h2 to the measured value

0.1123 when TD > Tfr and fa = 1012 GeV. The black contour denotes the line where

TD = Tfr: below and right of this contour, the neutralino relic density is given by

its MSSM thermal abundance (Ω eZ1
h2 = 0.05). In this region, the axion abundance

increases with increasing fa, so Ωa eZ1
h2 = 0.1123 at fa = 1012 GeV by design, with

a roughly even admixture of mixed higgsino and axion dark matter in the narrow

azure-shaded region. In the region to the left of the TD = Tfr contour, the neutralino

abundance rapidly increases, and we have regions of dominantly WIMP CDM.

Figure 7.10: Regions of neutralino plus axion relic density Ω
a eZ1

h2 in the mã vs. fa

plane for TR = 1010 GeV for the SUGRA1 model. The unshaded (white) regions are

excluded by BBN bounds since TR < 2 MeV.
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7.1 Summary

From the above results, we see that the aZ̃1 scenario can be classified into two main

cases:

• A): decoupled axino (TD > Tfr)

• B): axino enhanced DM (TD < Tfr) .

Case A) happens for high TD values, which are obtained at low fa and/or high

mã, as seen in Figs.7.7, 7.8 and 7.10. In this scenario, the axino has no effect on the

DM relic density, which can be a mixture of axions and neutralinos. Since the axion

mis-alignment angle (θi) can always be adjusted so that Ωah
2 = 0.1123, there is no

lower bound on Ω eZ1
h2. Nonetheless the neutralino relic density must still satisfy:

Ω eZ1
h2 = ΩMSSM

eZ1
h2 ≤ 0.1123 (TD > Tfr) (7.17)

where ΩMSSM
eZ1

h2 is the standard neutralino freeze-out relic density in the MSSM,

since there is no axino dilution or contribution in this case. Therefore, in Case A, any

MSSM model satisfying Eq.(7.17) is allowed. For models where ΩMSSM
eZ1

h2 < 0.1123,

the remainder of the DM is composed of axions.

For Case B), TD < Tfr, which is obtained at high fa and/or low mã. In this case,

for most of the parameter space, the neutralino relic density is dominated by the

second (annihilation) term in Eq.(7.11) and the relic density can be approximated by

(see Eq.(7.14)):

Ω eZ1
h2 ≃ ΩMSSM

eZ1
h2 × Tfr

TD

. (7.18)
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Assuming4 Tfr ∼ m eZ1
/20 and using Eqs.(7.2) and (7.1), we obtain:

Ω eZ1
h2 ≃ 25 × ΩMSSM

eZ1
h2
( m eZ1

100 GeV

)( fa

1012 GeV

)(
1 TeV

mã

)3/2(
1 −

m2
g̃

m2
ã

)−3/2

(7.19)

where we assumed mã & mg̃. Now imposing the DM relic density constraint, we

obtain:

ΩMSSM
eZ1

h2 . 4×10−3

(
100 GeV

m eZ1

)(
1012 GeV

fa

)( mã

1 TeV

)3/2
(

1 −
m2

g̃

m2
ã

)3/2

(TD < Tfr).

(7.20)

Therefore, in this case, the MSSM relic density has to be considerably suppressed in

order to satisfy the above bound. Although the bound decreases with fa and increases

with mã, for sufficiently low fa and/or high mã, we have TD > Tfr and the bound in

Eq.(7.17) must be used instead. Both cases can be easily combined in one expression:

ΩMSSM
eZ1

h2 . min

[
0.1123, 4 × 10−3

(
100 GeV

m eZ1

)(
1012 GeV

fa

)( mã

1 TeV

)3/2
(

1 −
m2

g̃

m2
ã

)3/2
]

.

(7.21)

In the case where TD < Tfr, the DM will likely be composed mainly of relic neutrali-

nos, unless ΩMSSM
eZ1

h2 is much smaller than Eq.(7.20). We also point out that the

approximate bound in Eq.(7.20) is a conservative one, since, if mã < mg̃, the bound

would be more strict. As discussed at the beginning of Sec.7, the above constraint can

in principle be relaxed if the saxion field is included and decays after the neutralino

freeze-out and axino decay, diluting Ω eZ1
h2. Such an example is presented in Sec.8.

4As shown in Appendix B, the freeze-out temperature is weakly dependent on the values of Te

and TD.
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Chapter 8

The Large fa Scenario

In the last Sections, we discussed the axino and neutralino LSP scenarios. In both

cases, the dark matter relic density has an axion component, which, ignoring possible

entropy dilution from saxions or axino decays, is given by Eq.(5.22):

Ωah
2 =





9.23 × 10−3f(θi)θ
2
i g∗(Ta)

−1/4
(

fa

1012 GeV

)3/2
, if Ta < ΛQCD

1.32 f(θi)θ
2
i g∗(Ta)

−5/12
(

fa

1012 GeV

)7/6
, if Ta > ΛQCD

. (8.1)

If we assume θi ∼ 1, the DM constraint, Ωah
2 < 0.1123, implies fa . 1012 GeV.

Furthermore, as discussed in Sec.1.1, low energy and astrophysical constraints on fa

require fa & 109 GeV. Therefore it is commonly assumed that the PQ scale lies in

the interval:

109 GeV < fa < 1012 GeV . (8.2)

It has been noticed early on[72] that the above interval falls within the desired range

for the SUSY breaking scale (mSUSY ) in gravity-mediated SUSY breaking models:

m3/2 ∼ m2
SUSY /MPl ∼ 1 TeV ⇒ mSUSY ∼ 1011 GeV ∼ fa (8.3)

As shown in Appendix A.3, it is possible to connect the SUSY and PQ breaking

scales if the axion supermultiplet has tree level interactions with the hidden sector

responsible for breaking SUSY (see Eq.(A.18)).

However, once a grand unified theory is assumed, the U(1)PQ symmetry can ap-

pear as an accidental global symmetry of the theory, as naturally occurs in several

SUSY GUTS[73]. In this case, fa will naturally be of order MGUT and will strongly
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violate its 1012 GeV upper limit. It is possible to protect fa from obtaining MGUT

contributions, either by breaking the PQ symmetry at a lower scale or artificially

suppressing the vacuum expectation value of the axion supermultiplet. Nonetheless,

such mechanisms always requires the introduction of new superfields or fine-tuned

parameters only for this purpose.

Furthermore, a survey of a variety of string models[74] indicates that while the

PQ mechanism is easy to generate in string theory, the associated PQ scale tends to

occur at or near the GUT scale rather than at some much lower intermediate scale.

This is in apparent conflict with the simple limits on fa from overproduction of dark

matter as discussed above.

One solution to the apparent conflict which allows for fa ∼ MGUT is to invoke

a tiny initial axion mis-alignment angle θi ∼ 0.003. In this case, one must accept a

highly fine-tuned initial parameter which might emerge anthropically.

An alternative solution has already appeared in Sec.6.2, where the entropy in-

jection from saxion decays significantly dilutes the axion density, allowing for larger

values of fa, as shown by Fig.6.14. This idea was initially proposed in one of the

original papers calculating the cosmic abundance of relic axions[75], where it was sug-

gested that additional massive fields may be present in the theory, whose late decays

can inject substantial entropy into the universe at times after axion oscillations begin.

In Ref.[75], it was proposed that the gravitino might play such a role. Several subse-

quent works have also explored the issue of dilution of (quasi)-stable relics via entropy

injection[76, 77, 78, 79, 80]. Here we discuss the case of an early saxion dominated
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universe, which occurs naturally in the large fa scenario, as discussed below.

Assuming fa to be of order the GUT scale (∼ 1016 GeV) has several important

consequences for the PQMSSM cosmology:

• The thermal production of all the components of the axion supermultiplet will

be strongly suppressed by the large value of fa (see Eq.(5.3)).1 Therefore, the

axino and thermal axion contributions to the DM density are negligible and the

saxion and axion densities are dominated by the coherent oscillation component.

• Assuming si ∼ fa, large fa will result in a large energy density for the coherent

oscillating saxion field as shown by Eq.(5.24).

• Since Te ∝ f 2
a (for coherent oscillating saxions) and TD ∝ 1/fa, large fa will

usually result in a large entropy injection r = Te

TD
from saxion decays.

• The axion field will be extremely light (∼ 10−10 eV).

• Since Γs ∝ 1/f2
a , saxions will be long-lived, potentially spoiling the BBN pre-

dictions.

• For an axino (neutralino) LSP, Γ eZ1(ã) ∝ 1/f2
a and the neutralino (axino) will be

long-lived and a threat to successful BBN.

From the above points, we see that fa ∼ MGUT naturally leads to a long-lived saxion

with large energy density from coherent oscillations. As shown in Sec.5.3, this results

in an early saxion dominated universe with a large dilution of other relics, due to the

1 The thermal production could still be relevant for TR > fa, but as discussed previously, this
scenario requires a different dark matter treatment, so we assume TR < fa.
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entropy injection during saxion decays. Below, we will first discuss the axino LSP

scenario and then present results for the neutralino LSP case.

As shown in Secs.5.3 and 6.2, the early saxion dominated era depends on the

temperatures Te and TD, given by Eqs.(5.25) and (5.28). In Fig.8.1, we show Te as

a function of the reheat temperature for ms = 20 TeV, si = fa and fa = 1015, 1016

and 1017 GeV. As we can see, Te increases with TR until Ts < TR, when the saxion

starts to oscillate after inflation (see Eq.(5.24)). In this regime, the saxion Yield and

hence Te becomes independent of TR. From Fig.8.1, we see that for fa ∼ 1016 GeV

and ms = 20 TeV, Te can be as large as 106 GeV.
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Figure 8.1: Saxion-radiation equality temperature (Te) versus the reheat temperature

after inflation (TR) for fa = 1015, 1016 and 1017 GeV (bottom to top), ms = 20 TeV

and si = fa.

In Fig.8.2, we plot TD as a function of ms for fa = 1015, 1016 and 1017 GeV. We
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see that TD can span a wide range of values, with TD . 0.1 MeV for a sub-TeV saxion

and fa & 1015 GeV. However, if TD < 5 MeV, entropy will be injected during the

neutron freeze-out and the neutron-proton ratio will be significantly diluted, spoiling

the successful BBN predictions, discussed in Sec.4.1. As shown in Fig.8.2, TD >

5 MeV requires ms & 50 TeV for fa ∼ 1016 GeV.
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Figure 8.2: Saxion decay temperature (TD) versus the saxion mass (ms) for fa = 1015,

1016 and 1017 GeV (top to bottom). We also show in grey the BBN constraint on TD

(TD > 5 MeV).

Once the saxion field starts to decay, entropy will be injected and effectively dilute

all other relic densities already decoupled from the thermal bath, such as axinos,

axions, gravitinos and possibly neutralinos. The entropy production during saxion

decays is approximately given by Eq.(5.36), r ≃ Te/TD. Fig.8.3 shows contours of r

values in the TR vs fa plane. We see that, for si = fa and fa ∼ 1016 GeV, values of r
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larger than 104 are easily obtained.
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Figure 8.3: Entropy dilution factor (r) contours in the fa-TR plane for ms = 5 and

50 TeV. The curves have r values 104, 105 and 106 from bottom to top. The dashed

region is excluded by the BBN constraints on TD.

As discussed in Sec.6.2 and Appendix B, the neutralino and axion relic densities

are strongly dependent on the neutralino freeze-out (Tfr) and axion oscillation tem-

peratures (Ta). If Tfr(Ta) < TD, saxion decays have no effect on the neutralino (axion)

relic density. On the other hand, if Tfr(Ta) > TD neutralinos (axions) may freeze-out

(oscillate) in a radiation (RD), matter (MD), or decaying particle (DD) dominated

universe. The explicit expressions for each of these cases are given in Appendix B
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and can be summarized as:

Ωx =





ΩRD
x /r , if Te < Tx

ΩMD
x , if TS < Tx < Te

ΩDD
x , if TD < Tx < TS

ΩRD
x , if Tx < TD

(8.4)

where Ωx represents the axion or neutralino relic densities, ΩRD
x is the corresponding

relic density in a radiation dominated (RD) universe (such as when there is no saxion

dominated era, TD > Te), Tx is the freeze-out or axion oscillation temperature and TS

marks the transition between the matter-dominated phase (MD) and the decaying-

particle-dominated phase (DD) (see Appendix B):

TS =

(
g∗(TD)

g∗(Tx)
TeT

4
D

)1/5

. (8.5)

Since axinos and gravitinos always decouple before the saxion dominated phase, we

have

Ωã, eG =
1

r
ΩRD

ã, eG (8.6)

where ΩRD
ã, eG is the axino/gravitino thermal density given by Eqs.(5.3) and (4.26).

To illustrate the behavior of Ω eZ1
and Ωa in the distinct regions of Eq.(8.4), we show

in Fig.8.4 the relic densities versus Te, with TD = 5 MeV, θi = 0.4 and m eZ1
= 150 GeV,

for fa = 1015, 1016 and 1017 GeV. As we can see, for small values of Te (< Ta,fr),

the axion and neutralino relic densities are simply diluted by 1/r. Once Te ∼ 0.1

(10) GeV, the axion (neutralino) starts to oscillate (decouple) during the matter-

dominated (MD) era. As a result, the relic density is no longer diluted by 1/r, but
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by a smaller factor. Once Te ≫ Ta, the axion starts to oscillate during the decaying-

particle-dominated phase (DD) and becomes independent of Te, despite the increase

of entropy injection. Due to its large freeze-out temperature (Tfr ∼ 7 GeV), the

neutralino never decouples during the DD phase for the range of Te values shown.
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Figure 8.4: The axion and neutralino relic density versus Te, the temperature at

which the universe becomes saxion dominated. The saxion decay temperature is fixed

at its minimum value allowed by BBN (5 MeV), m eZ1
= 150 GeV and θi = 0.4. The

dotted, solid and dashed blue lines corresponds to the axion relic density for fa = 1015,

1016 and 1017 GeV, respectively. We also show the regions where the axion (neutralino)

starts to oscillate (decouple) during the radiation (RD), matter (MD) or decaying

particle (DD) dominated era. The neutralino relic density is normalized by its MSSM

value.

From Fig.8.4, we see that the dilution of the axion relic density saturates once
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Te ≫ TD, Ta. To understand this behavior and to estimated the maximum entropy

dilution of Ωah
2, we consider Eq.(B.6) with Ta & ΛQCD:

Ωah
2 ∝





f
7/6
a × TD/Te , if Te < Ta

f
14/11
a × TD/T

4/11
e , if TS < Ta < Te

f
3/2
a × T 2

D , if TD < Ta < TS.

(8.7)

Since TD ∝ 1/fa and Te ∝ f 2
a (for coherent oscillating saxions), from Eq.(8.7) we see

that the axion relic density actually decreases with fa. In this case, the fa . 1012 GeV

bound can be potentially avoided. On the other hand, if Ta . ΛQCD, Ωah
2 increases

with fa, unless Ta > Te (see Eq.(B.6)). In both cases, we see that Ωah
2 is maximally

suppressed for TD = Tmin
D = 5 MeV. From Fig.8.4, we see that the maximum dilution

occurs in the DD regime with Ta & ΛQCD, which does not depend on Te. The

expression for ΩDD
a h2 is given by Eq.(B.8):

ΩDD
a h2 = 1.72 θ2

i f(θi)
g∗(TD)1/4

√
g∗(Ta)

(
TD

GeV

)2(
fa

1012 GeV

)3/2

(Ta > ΛQCD) (8.8)

which gives the following expression for the dilution of the axion relic density:

reff ≡ ΩRD
a h2

ΩDD
a h2

≃ 0.8
g∗(Ta)

1/12

g∗(TD)1/4

(
GeV

TD

)2(
1012 GeV

fa

)1/3

. (8.9)

Therefore, the axion dilution decreases with fa and increases with TD. Assuming the

minimum BBN allowed value for TD (& 5 MeV) gives:

reff & 2.5 × 104

(
1012 GeV

fa

)1/3

. (8.10)

Thus, for fa = 1016(1015) GeV, saxion decays can dilute the axion relic density at

most by ∼ 1(2.5) × 103. From Eq.(8.8) we can also estimate the maximum θi value
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allowed by the DM constraint:

ΩDD
a h2 < 0.11 ⇒ θi < θmax

i ≃ (69 − 106)

(
5 MeV

TD

)(
1012 GeV

fa

)3/4

(8.11)

The uncertainty on θmax
i comes from the uncertainty on the axion mass at Ta ∼ ΛQCD

(see Eq. (3.4)).

In the large fa regime, the dark matter abundance is dominated by the axion

field, since the other relic densities are strongly suppressed by the entropy dilution.

Therefore, the nature of the LSP (if an axino or a neutralino) is mostly irrelevant

for the discussion of DM constraints. However, as already pointed out in Sec.7,

the BBN bounds are significantly different between the axino and neutralino LSP

scenarios. We first discuss the neutralino NLSP with an axino LSP. In this case,

the neutralino will decay into axinos and SM particles and can be long-lived for

fa ∼ MGUT . Furthermore, the PQMSSM will also contain long-lived gravitinos and

saxions. All or any of these three fields can decay during or after BBN, potentially

spoiling its successful predictions, unless their relic densities are extremely small at

the time of their decay.

The Z̃1 decay width and hadronic branching fraction are given by Eqs.(3.9) and

(3.10). Fig.8.5 shows the neutralino lifetime for a bino-like Z̃1 (Z1B = 1), as a function

of m eZ1
, for fa = 1015, 1016 and 1017 GeV and mã ≪ m eZ1

. From Fig.4.1, we see that

the BBN bounds require:

τ . 0.01s if Ωh2 ≫ 1 or Ωh2 . 10−4 if τ & 104s. (8.12)

From Fig.8.5, we see that unless m eZ1
is in the multi-TeV range, the neutralino life-time
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(τ eZ1
) will be well above 104s. Thus, to maintain sub-TeV values of m eZ1

, extremely

small values of Ω eZ1
h2 are required in order to satisfy the BBN constraints. Since in

almost all of the MSSM parameter space 10−3 < ΩMSSM
eZ1

h2 < 103 (see Fig.4.4), the

BBN constraints would require an enormous fine-tuning of the MSSM parameters.

However, if neutralinos decouple from the thermal bath before saxions have decayed,

their relic density will also be diluted by the saxion decay, according to Eq.(8.4). As

seen in Fig.8.4, the neutralino dilution can exceed 105 for large enough Te. Hence, the

BBN bounds on late Z̃1 decays can be potentially avoided due to the large suppression

of Ω eZ1
h2, without the need for fine-tuned MSSM parameters.
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Figure 8.5: The neutralino lifetime as a function of the neutralino mass for fa = 1015,

1016 and 1017 GeV (bottom to top) and mã ≪ m eZ1
.

Thermal gravitinos are produced out of equilibrium via radiation off of particles in
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the thermal bath (see Eq. (4.26)) and have decay rates suppressed by 1/M2
Pl, decaying

during or after BBN, for m eG . 30 TeV (see Fig.4.2). Therefore, as discussed in

Sec.4.2, if TR is large enough to significantly produce gravitinos in the early universe,

their late decay will spoil the BBN predictions and may overproduce dark matter.

However, since gravitinos always have decoupling temperatures larger than the reheat

temperature, the gravitino relic density is diluted by 1/r, as shown in Eq.(8.6). Since

r can easily exceed 104 for fa ∼ MGUT , as seen in Fig.8.3, the gravitino relic density

will be strongly suppressed. However, as already pointed out in Sec.6.2, this does not

ameliorate the Gravitino Problem, since, to compensate the dilution of the baryon

density, larger re-heat temperatures are required (see Eq.(6.14)). Thus, although the

early saxion dominated scenario allows for larger TR, the relevant temperature for

baryogenesis (TR/r) still is limited by the same exact constraints as in the MSSM.

In the scenario where mã ∼ m3/2 and the neutralino is the LSP, axinos will cascade

decay to neutralinos. In this case, the BBN bounds on late decaying axinos are easily

avoided since Y TP
ã is suppressed for large fa and the axino relic density is diluted

by 1/r. Furthermore, if mã & mg̃, the decay mode ã → g̃g considerably reduces the

axino lifetime.

Finally, as already discussed in Sec.6.2, the BBN bounds on late decaying saxions

in an early saxion dominated universe require TD > 5 MeV. Using Eqs.(3.14)2 and

(5.28), we have:

TD > 5 MeV ⇒ ms & 0.1 TeV

(
fa

1012 GeV

)2/3

. (8.13)

2Once again we neglect decays into axions and gluinos.
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Thus, as already shown by Fig.8.2, BBN bounds on saxion decays require ms &

50 TeV, for fa ∼ 1016 GeV.

In the axino LSP scenario, for large fa, the total dark matter relic density is given

by:

ΩDMh2 = Ωah
2 + ΩTP

ã h2 +
mã

m eZ1

Ω eZ1
h2 +

mã

m eG
Ω eGh2 (8.14)

where we have neglected the sub-dominant contributions from thermal axions. To

compute the above relic densities, we use Eqs.(8.6), (5.3), (4.26), (B.6) and (B.13).

Fig.8.6 shows the axion, axino, neutralino and gravitino relic densities as a function

of fa. For the PQMSSM parameters, we take ms = 50 TeV, si = 10fa, m eG = 1 TeV,

TR = 1011 GeV and mã = 0.1 MeV. We assume m eZ1
= 150 GeV and the neutralino

relic density before dilution to be ΩMSSM
eZ1

h2 = 10. For each fa value, a different value

for θi is chosen so that ΩDMh2 = 0.1123 is satisfied. As we can see from Fig.8.6, the

dilution of the axino, neutralino and gravitino relic densities rapidly increases with fa

due to the increasing rate of saxion production via oscillations. For fa . 7×1014 GeV,

we have Ω eZ1
h2 & 10−4 and BBN constraints on late decaying neutralinos exclude this

region. However, if a smaller value of ΩMSSM
eZ1

had been chosen, smaller fa values

would be allowed. Once fa ∼ 1015 GeV, the entropy injection from saxion decays

dilutes the neutralino relic density to values below 10−4, making these high fa values

consistent with BBN. Finally, when fa ∼ 1016 GeV, the saxion starts to decay at

T = TD < 5 MeV and these solutions become once again excluded by the BBN

constraints. We can also see that the gravitino relic density is strongly suppressed

despite the large TR value, easily avoiding the BBN constraints on late decaying
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gravitinos. Also, despite being the LSP, the axino does not significantly contribute

to ΩDMh2, and the cosmologically allowed region around fa ∼ 1016 GeV has little

dependence on mã.
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Figure 8.6: The axion, axino, neutralino and gravitino relic densities as a function

of fa for m eZ1
= 150 GeV, Ω eZ1

h2 = 10, mã = 100 keV, m eG = 1 TeV, ms = 50 TeV,

TR = 1011 GeV and si = 10fa. The misalignment angle (θi) is chosen such as ΩDMh2 ≃

Ωah
2 = 0.1123. The dashed region is excluded by BBN bounds on neutralino and

gravitino late decays (for fa . 7 × 1014 GeV) or TD < 5 MeV (for fa & 1016 GeV).

In Fig.8.7, we show the values of θi necessary to satisfy the dark matter constraint

for the same PQMSSM parameter values used in Fig.8.6. For fa . 1014 GeV, the

axion oscillates after the saxion has decayed (Ta < TD) and Ωah
2 is not diluted

by the early entropy injection. In this regime, the values of θi required to satisfy

Ωah
2 = 0.1123 rapidly decrease with fa, since the axion relic density increases with

152



fa for Ta < TD. For 1014 GeV . fa . 6×1015 GeV, the axion starts to oscillate in the

decaying particle dominated (DD) regime (TD < Ta < TDD) and Ωah
2 decreases with

fa, as discussed above. As a result, θi increases with fa, although it is still required

to be small (. 0.07). Once fa & 6× 1015 GeV, the axion oscillation still starts in the

DD era, but now with Ta < ΛQCD. As shown by Eq.(B.8), in this case Ωah
2 ∝ fa and

the mis-alignment angle once again decreases as fa increases, although with a smaller

slope than in the RD era.

From Figs.8.6 and 8.7, we see that fa ∼ MGUT can indeed be consistent with the

dark matter and BBN bounds. However, for the above choice of PQMSSM parameters,

the region of parameter space consistent with all bounds is considerably restricted.

Furthermore, θi still has to take small values, as would be the case in the standard

PQ cosmology, where the saxion field is neglected and fa ∼ MGUT can be obtained

if we take θi . 3 × 10−3[81]. Since the main purpose of the PQ mechanism is to

avoid a huge fine-tuning in θQCD, it is desirable to avoid unnaturally small values

for the mis-alignment angle as well. With this in mind, we point out that θi can

take considerably larger values (∼ 0.07) once the saxion and axino fields are included.

Furthermore, the dilution of the neutralino and gravitino relic densities allows for

an elegant way of avoiding the BBN constraints without having to assume extremely

small Ω eZ1
h2, low reheat temperatures or a multi-TeV gravitino.
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Figure 8.7: The misalignment angle required for ΩDMh2 = 0.1123 as a function of

fa for m eZ1
= 150 GeV, Ω eZ1

h2 = 10, mã = 100 keV, m eG = 1 TeV, ms = 50 TeV,

TR = 1011 GeV and si = 10fa. The dashed region is excluded by BBN bounds on

neutralino and gravitino late decays (for fa . 7 × 1014 GeV) or TD < 5 MeV (for

fa & 1016 GeV).

The above arguments are, however, limited by our choice of the PQMSSM pa-

rameters used in Figs.8.6 and 8.7. In order to generalize these results, we perform a

random scan over the following parameters:

fa ∈ [1015, 1017] GeV ,

ms ∈ [103, 105] GeV ,

si/fa ∈ [10−2, 102] , (8.15)

TR ∈ [104, fa] GeV

154



and take m eG = 1 TeV, mã = 100 keV, m eZ1
= 150 GeV and ΩMSSM

eZ1
h2 = 10, as

before. Our results will hardly depend on reasonable variation of these latter param-

eters, due to the enormous suppression of long-lived relics due to saxion production

and decay. For each set of PQMSSM values, the mis-alignment angle is chosen to

enforce ΩDMh2 = 0.1123. The BBN bounds on late decaying saxions, neutralinos

and gravitinos are once again applied and solutions which satisfy all constraints are

represented by blue dots. In order to differentiate the solutions excluded due to late

decaying neutralinos or gravitinos from solutions excluded due to late decaying sax-

ions (TD < 5 MeV), we represent the former by red dots and the latter by green

dots.

Fig.8.8 shows the scan results for the misalignment angle θi versus fa. As we can

see, fa ∼ 1016 requires θi . 0.07. Although small θi values are still required in order

to obtain fa ∼ MGUT , the mis-alignment angle can now be twenty times larger than in

the non-SUSY PQ scenario where the saxion/axino fields are neglected. Furthermore,

if we require fa ∼ 1015 GeV instead, θi can be as large as 0.4. We also point out

that these conclusions are independent of our choice of m eZ1
and ΩMSSM

eZ1
, since the

upper limit on θi comes entirely from the TD > 5 MeV constraint. These results also

verify our estimate for θmax
i in Eq. (8.11), which gives θi . 0.07 − 0.1(0.4 − 0.6) for

fa = 1016(1015) GeV.
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Figure 8.8: The mis-alignment angle versus fa for a scan over the PQMSSM pa-

rameters as discussed in the text. All points satisfy ΩDMh2 = 0.1123, while the

green points are excluded by BBN constraints on late entropy injection from saxion

decays (TD < 5 MeV). The red points are excluded by BBN bounds on late decaying

neutralinos or gravitinos and the blue points satisfy both the BBN and dark matter

constraints.

In Fig.8.9, we show the saxion mass versus fa for the same points exhibited in

Fig.8.8. As already shown by Eq.(8.13), the BBN constraint on late decaying saxions

(TD > 5 MeV) requires ms to be in the multi-TeV range. Since we expect ms ∼

m3/2, models with large m3/2 ∼ 10 − 50 TeV such as Yukawa-unified SUSY[82, 83],

mirage unification[84, 85, 86, 87, 88], effective SUSY[65, 66], AMSB[89, 90] or string-

motivated models such as G2-MSSM[91] would naturally yield such heavy saxions.

We also see that the BBN bounds on late decaying neutralinos do not significantly
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constrain the saxion mass, since allowed (blue) solutions can be found for any ms value

as long as the bound in Eq.(8.13) is satisfied. We also point out that the red points

with saxion masses below the limit in Eq.(8.13) correspond to the case Te < TD,

where saxions decay before dominating the energy density of the universe. All these

solutions have extremely small θi values, which lie in the narrow band at θi ∼ 0.001

seen in Fig.8.8.

Figure 8.9: The saxion mass versus fa for a scan over the PQMSSM parameters

as discussed in the text. All points satisfy ΩDMh2 = 0.1123, while the green points

are excluded by BBN constraints on late entropy injection from saxion decays (TD <

5 MeV). The red points are excluded by BBN bounds on late decaying neutralinos or

gravitinos and the blue points satisfy both the BBN and dark matter constraints.

Fig.8.10 shows the saxion field amplitude si versus fa. As discussed in Sec.5.2, si

parametrizes the details of the transition from the static to the oscillatory regime of
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the saxion field near T = Ts. To compute the value of si, the full saxion potential for

T & Ts needs to be known, which requires assuming a specific PQMSSM model as

well as knowledge of the SUSY breaking mechanism. Nonetheless, natural values for

si are fa or MPl. Fig.8.10 shows that small values of si/fa are disfavored, since they

suppress the entropy dilution of the neutralino and gravitino relic densities, conflicting

with the BBN bounds. However, as seen in Fig.8.10, unnaturally large si/fa values

are not necessary for obtaining fa ∼ MGUT . Furthermore, smaller ΩMSSM
eZ1

h2 values

would allow for smaller si/fa.
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Figure 8.10: The initial saxion field amplitude (si) divided by fa versus fa for

a scan over the PQMSSM parameters as discussed in the text. All points satisfy

ΩDMh2 = 0.1123, while the green points are excluded by BBN constraints on late

entropy injection from saxion decays (TD < 5 MeV). The red points are excluded by

BBN bounds on late decaying neutralinos or gravitinos and the blue points satisfy

both the BBN and dark matter constraints.

Finally– in Fig.8.11– we show the reheat temperature versus fa. As shown by

Eq.(5.24), large TR increases Te
3, resulting in an increase in the dilution of the axion,

neutralino and gravitino fields. From Fig.8.11, we see that TR & 108 GeV is usually

required to satisfy the BBN constraints on late decaying neutralinos and gravitinos.

In the lower frame we show instead fa vs. TR/r, and find that all BBN-allowed

points have TR/r < 106 GeV. This rigid limit comes from the BBN bounds on late

3For the large saxion masses considered here, we have Ts > TR in most of the parameter space.
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decaying gravitinos and is exactly the same as in the MSSM, as expected from the

discussion following Eq.(6.14). Therefore, the unification of the PQ and GUT scales

seems to strongly disfavor thermal leptogenesis scenarios, unless a heavier gravitino

is assumed. In particular, for m eG = 10 TeV, Fig.4.2 gives τ eG ≃ 102s and the BBN

bounds are considerably weaker in this case (Ω eGh2 . 0.1), as seen in Fig.4.1. Hence,

as in the MSSM, for multi-TeV gravitinos we can have TR/r . 109 GeV, which makes

thermal leptogenesis once again viable. We also note that non-thermal leptogenesis

only requires TR/r & 106 GeV[92, 93], while Affleck-Dine leptogenesis allows still

lower TR/r values[94].
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Figure 8.11: Upper Frame: Reheat temperature versus fa for a scan over the

PQMSSM parameters as discussed in the text. All points satisfy ΩDMh2 = 0.1123,

while the green points are excluded by BBN constraints on late entropy injection from

saxion decays (TD < 5 MeV). The red points are excluded by BBN bounds on late

decaying neutralinos or gravitinos and the blue points satisfy both the BBN and dark

matter constraints. Lower Frame: Same as above, but for the effective temperature

TR/r, relevant for thermal leptogenesis.
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Neutralino LSP

So far, our results have focused on the case of the PQMSSM with an axino LSP, so

that dark matter consists of an aã mixture. Our results were largely independent

of reasonable variations in mã since the axino abundance suffers a huge suppression

due both to the large values of fa and to entropy production from saxion decays. A

qualitative difference results if we take mã so high that mã > m eZ1
and the neutralino

Z̃1 becomes the LSP, so dark matter would consist of an aZ̃1 mixture. In this case,

gravitinos and axinos can still be produced thermally at high TR, but now these

states will cascade decay down to the stable Z̃1 state, and possibly add to the thermal

neutralino abundance.

In the mixed aZ̃1 DM scenario, neutralinos are produced via axino decays at

T = T ã
D as well as via thermal freeze-out at T = Tfr, as discussed in Sec.7. The

neutralinos from axino decay may re-annihilate at T = T ã
D, if Yã/r is sufficiently

large. However, in the fa ∼ MGUT case considered here, neutralino re-annihilation is

largely irrelevant because 1. thermal production of axinos is suppressed by 1/f2
a and

2. the axino abundance at T = T ã
D is also highly suppressed by the saxion entropy

production (r ≫ 1). Therefore the condition for re-annihilation, Eq.(7.13), is never

achieved. Thus, for the large fa scenario, the neutralino abundance is given by

Ω eZ1
= ΩTP

eZ1
+

m eZ1

mã

ΩTP
ã +

m eZ1

m eG
ΩTP

eG (8.16)

where ΩTP
eZ1

is evaluated for either a MD, DD or RD universe, and ΩTP
ã and ΩTP

eG are

diluted by entropy production ratio r for r > 1. At the end, we must add in the
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axion abundance Ωa as calculated for a MD, DD or RD universe, with the latter case

diluted as usual by entropy ratio r when Te < Ta.

As already discussed in Sec.7, the heavy axino lifetime is strongly dependent on

the MSSM spectrum. Thus, in order to discuss this case, it is necessary to specify

a MSSM model. In Sec.7, we assumed the gravity-mediated SUSY breaking model

SUGRA1, which has m0 = 4.5 TeV. However, Fig.8.9 shows that PQMSSM models

consistent with fa ∼ MGUT require very large– perhaps uncomfortably large– values

of the saxion mass, with ms typically in the tens of TeV range. In gravity-mediated

SUSY breaking models, a puzzle would then arise as to why the sparticles exist in the

sub-TeV range, while saxions are present at 10-50 TeV. In particular, the SUGRA1

model is inconsistent with fa ∼ MGUT , since it has ms ∼ m0 ∼ 4.5 TeV. However, as

mentioned before, several other possibilities exist, where ms and m eG are naturally at

the tens of TeV scale.

In Sec.7, in order to have a heavy gravitino, we assumed the Effective SUSY

scenario. Another possibility consists of models with mixed moduli-anomaly mediated

SUSY breaking soft terms (mirage unification, or MU)[84, 85, 86]. Since the MSSM

soft terms arise from mixed moduli/anomaly mediation, their magnitude is at the

TeV scale even though m3/2 is naturally in the multi-TeV regime. Furthermore, in

these scenarios we typically have mã ∼ m eG and ms ∼
√

2m eG[88]. The MU soft

terms have been programmed into Isajet/Isasugra[68] and are functions of the mixed

moduli-AMSB mixing parameter α, m3/2, tan β and sign(µ). They also depend on

the matter and Higgs field modular weights ni, which can take values of 0, 1/2 or 1,
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MM1 (Mirage Unification)

Input Parameters (GeV) Masses (GeV) Other Observables

m3/2 40 TeV

α 3

nm 1/2

nH 1

tan β 10

µ 362

mg̃ 877.4

mũL
718.1

mfW1
360.8

m eZ4
711.9

m eZ3
677.6

m eZ2
367.6

m eZ1
352.1

mA 372

mh 114.6

∆aµ 4.2 × 10−10

BF (b → sγ) 3.2 × 10−4

BF (Bs → µµ) 4.1 × 10−9

Z1B 0.1

Ω eZ1
h2 0.026

Table 8.1: Masses and parameters in GeV units for the mirage unification (MM1)

benchmark point, computed with Isajet 7.81 using mt = 173.3 GeV.

depending on if the fields live on a D3-brane, a D7 brane or an intersection.

In Table 8.1, we show a benchmark point (MM1) for the mirage-unification model

with moduli/AMSB mixing parameter α = 3, m3/2 = 40 TeV, tan β = 10 and

µ > 0 with mt = 173.3 GeV. We take m eG = m3/2 = 40 TeV, mã = m eG and

ms =
√

2m eG = 56.6 TeV. We further take modular weights nm for matter fields equal

to 1/2 and for Higgs fields nH = 1. The Isajet spectra gives mg̃ = 877.4 GeV and

m eZ1
= 352 GeV and ΩMSSM

eZ1
h2 = 0.026, where Z̃1 is mainly higgsino-like.
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In Fig.8.12a, we show the axion and neutralino relic abundances versus fa for the

MM1 model, with TR = 1011 GeV and si = 10fa. We see that for fa . 1014 GeV, too

much neutralino dark matter is produced due to axino decays and already saturates

the DM constraint, even for Ωah
2 = 0. As fa increases, the axino abundance falls

sharply since the thermal production rate is suppressed by 1/f2
a and the Yield is

diluted by entropy injection from saxion decays. The gravitino abundance also falls,

but not as sharply, since here the diminution is only due to entropy dilution from

saxion decays. The thermal neutralino abundance falls, but less sharply still, since,

for the choice of parameters in Fig.8.12, the neutralino freezes-out in a MD universe,

which results in a dilution smaller than 1/r, as shown in Fig.8.4. The relic axion

abundance grows with fa, but is also diluted. Here, we dial θi to an appropriate value

such that Ωa eZ1
h2 is fixed at the measured value of ∼ 0.11. For fa & 4×1014 GeV, the

dark matter is axion-dominated. Once we reach values of fa & 1016 GeV, then the

saxion decay temperature TD drops below 5 MeV and we consider the model BBN

excluded (dashed curves). When compared to Fig.8.6, we see that the neutralino LSP

case easily avoids the BBN bounds on late decaying axinos, as already mentioned in

Sec.7.

In Fig.8.12b, we show the value of θi which is needed for the same parameters.

We also show the required θi value for m eG = mã = ms/
√

2 = 30 TeV, but keeping the

MSSM spectrum as in Table 8.1. The value of θi is again typically in the 0.04− 0.08

range in order to suppress overproduction of axions.

The main results from the scan over parameter space performed for the axino LSP
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case, shown in Figs.8.8-8.11, still hold for the neutralino LSP scenario, since they are

weakly dependent on the nature of the LSP. However, since the BBN bounds on axino

decays are easily avoided in the heavy axino case, the lower bounds on TR and si/fa

are now relaxed in the neutralino LSP scenario. Nonetheless, the upper bound on

TR/r, relevant for baryogenesis mechanisms, still holds (if we keep m eG = 1 TeV),

since it only depends on the gravitino mass, as discussed in the last Section. On the

other hand, for the MM1 model, where m eG = 40 TeV, the gravitino decays before

BBN and TR/r & 109 GeV is allowed.

We also point out that the large fa regime allows one to avoid the bound on

ΩMSSM
eZ1

for PQMSSM models with a neutralino LSP, shown by Eq.(7.21). As already

mentioned in Sec.7, this bound is only valid for cases where the effects of the saxion

field can be neglected (TD > Tfr).
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Figure 8.12: Upper Frame: The axion, axino, neutralino and gravitino relic densities

as a function of fa for the Mirage Unification model of SUSY breaking shown in

Table 8.1, with TR = 1011 GeV and si = 10fa. The misalignment angle (θi) is chosen

such as Ω
a eZ1

h2 ≃ Ωah
2 = 0.1123. The dashed region is excluded by BBN bounds on

saxion decay: TD < 5 MeV. Lower Frame: The required value of misalignment angle

θi for m eG = mã = ms

√
2 = 30 and 40 TeV.
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8.1 Summary

We have shown the possibility of extending the usual upper bound on the Peccei-

Quinn scale (fa) to values of the order of the Grand Unification scale (MGUT ). We

show that large fa values usually lead to an early universe dominated by coherent

oscillating saxions, which are required to decay before Big Bang nucleosynthesis. The

injection of entropy during the decay of the saxion field results in a dilution of the ax-

ion relic density, which allows us to evade the usual upper bound on fa (. 1012 GeV).

Furthermore, the dilution of the neutralino, axino and gravitino relic densities natu-

rally evade the BBN bounds on late decaying G̃’s and Z̃1’s (ã’s) for an axino (neu-

tralino) LSP. From Eqs.(8.11) and (8.13), verified by the scan over parameter space,

we find that, in order to allow fa ∼ 1016 GeV:

• θi . 0.07 − 0.1 is necessary to satisfy the axionic dark matter relic density

constraint,

• ms & 50 TeV in order to satisfy BBN constraints on late decaying saxions.

Furthermore, for the axino LSP case with a neutralino LSP with m eZ1
= 150 GeV and

Ω eZ1
h2 = 10:

• si/fa & 1 and TR & 108 GeV are required to increase coherent saxion production

and hence increase dilution of the neutralino relic densities and to satisfy the

BBN bounds.

While the first two conditions are quite independent of the SUSY spectrum chosen

(parametrized here by ΩMSSM
eZ1

h2 and m eZ1
), the third condition can be relaxed if
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PQMSSM models with heavier neutralinos and/or smaller ΩMSSM
eZ1

are considered.

We also investigated the case where mã ∼ m3/2 and the neutralino is the LSP,

so dark matter is comprised of an axion/neutralino mixture. Models such as Mirage

Unification or string models based on G2 holonomy naturally give axino and saxion

masses in the tens of TeV range, while maintaining at least some superpartners below

the TeV scale. In these models, if fa ∼ MGUT , then again we expect large amounts

of entropy production from saxion decay, while neutralino, axino and gravitino abun-

dances are all suppressed to tiny levels, thus helping to avoid BBN constraints.

While all our results were calculated assuming the saxion s → gg decay mode at

100%, we note that other model-dependent decay modes such as s → hh or s → aa

may be present. The first of these would contribute to additional entropy production

and decrease the saxion lifetime, thus helping to avoid BBN constraints. In this

sense, we regard our results as conservative. On the other hand, if saxion decays into

axions is significant, such decays inject relativistic axions and increase the effective

value of g∗ during and after BBN, introducing new constraints on ρs. In addition,

the entropy injection from saxion production and decay is greatly diminished, which

would decrease the dilution of the relic axion abundance and require smaller θi values.

As consequences of the fa ∼ MGUT scenario, we would expect the DM of the uni-

verse to be axion-dominated, with a tiny component of either axinos or neutralinos.

The axion mass is expected to lie in the 10−10 eV range which is well below the range

currently being explored by the ADMX experiment[95]. Furthermore, the fa ∼ MGUT

case can accommodate a much wider range of Ω eZ1
h2 values than the pure neutralino
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DM scenario in MSSM models, since, for a neutralino LSP, its relic abundance is sup-

pressed by the entropy injection, while, for an axino LSP, the neutralino contribution

to the DM relic abundance is suppressed both by entropy dilution and mã/m eZ1
.
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Conclusions

In this work, we presented the main consequences of PQMSSM models to the evolution

of the early universe as well as to the nature of Dark Matter. As seen by the examples

discussed in Secs.6-8, the cosmology of the PQMSSM is extremely rich and diverse.

In Secs.6 and 7, we presented the main properties of these models, classifying them

by the nature of their LSP. As shown by the results of these sections, the PQMSSM

requires us to consider a drastically distinct picture of the thermal evolution of the

universe in its early phases (TBBN < T < TR), when compared to the standard MSSM

cosmology.

In the axino LSP scenario we have shown that the Dark Matter constraints on the

MSSM can be easily avoided once the axion supermultiplet is included. In this case,

there is a large region of the PQMSSM parameter space consistent with both BBN

and DM constraints. Such freedom allowed us to consider scenarios consistent with

thermal leptogenesis, which requires large re-heat temperatures. We showed that the

PQMSSM can reconcile thermal leptogenesis with the Gravitino Problem if

• the gravitino is in the multi-TeV scale (m eG & 30 TeV)

• or the gravitino is the NLSP (mã < m eG < m eZ1
).

Furthermore, saxion decays can dilute relic abundances, helping to avoid the BBN

constraints on late decaying relics. In this case, a large region of the MSSM parameter

space can be consistent with all cosmological constraints and still accommodate large

re-heat temperatures, once the above conditions are satisfied.
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This picture is drastically modified if we consider the case of a heavy axino, with

a neutralino LSP, discussed in Sec.7. In this scenario, the neutralino relic abundance

is always augmented by axino decays (if TD < Tfr) or is the same as in the MSSM

(if TD > Tfr), so the Dark Matter constraint significantly restricts the allowed region

of the PQMSSM parameter space. We have shown that, for most cases, we need to

consider models with a higgsino or wino neutralino in order to avoid overproduction

of DM. However, as shown by the Mirage Unification model discussed in Sec.8, such

constraints can once again be relaxed if the effects of saxion entropy injection and

dilution are included. However, in the neutralino LSP scenario, the necessary con-

ditions for reconciling the Gravitino Problem with thermal leptogenesis are identical

to the MSSM case, which requires m eG & 30 TeV. This still holds even in the case of

large entropy dilution from saxion or axino decays.

Finally, we discussed PQMSSM models where the PQ scale is related to the GUT

or string scales. As shown in Sec.8, these models usually imply a universe with an early

saxion dominated era, followed by a large dilution of the other relics. Furthermore, in

this case, DM is composed primarily of axions, with very small LSP abundances. In

order to avoid the BBN constraints on saxion decays we were lead to consider models

with multi-TeV saxions. However, the BBN bounds on the other late decaying relics

(gravitinos, axinos and/or neutralinos) are easily avoided in this scenario, due to the

large dilution of relics from saxion decays. In this scenario, the necessary conditions

for implementing thermal leptogenesis are identical to the ones mentioned above,

depending on the nature of the LSP.
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Appendix A

PQ Models

Here we present two well known examples of PQ models, the DFSZ and KSVZ models.

The axion couplings and mass are strongly dependent on the energy scale we consider,

since below ΛQCD the QCD chiral symmetry is spontaneously broken and the axion

field can mix with the other Goldstone bosons of the theory (π’s and η). For simplicity,

we present the axion couplings for energies well above ΛQCD, which are the relevant

ones for the results presented here.

A.1 DFSZ

The DFSZ model[15, 16] is the minimal extension of the PQ-Weinberg model discussed

in Sec.1.1. It includes two Higgs doublets augmented with a SM singlet field (χ), which

carries PQ charge. The relevant Lagrangian is:

LPQ = λdQ̄Lφ1dR + λuQ̄LφC
2 uR + λdL̄Lφ1lR + h.c − V (φi, χ)

V (φi, χ) =
∑

i=1,2

(
−µ2

i |φi|2 + λi|φi|4
)
− µ2|χ|2 + λ|χ|4 + α|φ1|2|φ2|2 + β|φ†

1φ2|2

+ (a|φ1|2 + b|φ2|2)|χ|2 + (cφ†
1φ2χ

2 + h.c.) (A.1)

where we have omitted generation indices for simplicity. The above Lagrangian is

invariant under the PQ transformation:

uR → eiαQuuR, dR → eiαQddR, lR → eiαQdlR,

φ1 → e−iαQdφ1, φ2 → e−iαQuφ2, χ → e−iα(Qu+Qd)/2χ . (A.2)
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The PQ symmetry is spontaneously broken by a non-zero vacuum expectation value

(vev) of the χ scalar, which we rewrite as:

χ ≡ 1√
2
eiw/ueiθχ(u + η) (A.3)

where u = 〈χ〉, θχ is a constant phase and w and η are the phase and longitudinal

components of χ. However, since the φi fields carry PQ charge, the electroweak

symmetry breaking also breaks the PQ scale and we rewrite φi as:

φi ≡
1√
2
ei~σ.~ξi/vieiθi




0

vi + ηi


 (A.4)

where ~ξi and ηi are the dynamical components and 〈φi〉 = vi. After the breaking of

SU(2)L × U(1)Y , the axion field is obtained after diagonalization of the Goldstone

boson current in the unitary gauge, resulting in:

a =
1

F
(x +

1

x
)(

v1v2

v2
(v2ξ

0
1 − v1ξ

0
2) +

1

2
uw) (A.5)

where x = v1/v2, v =
√

v2
1 + v2

2 and

F = (x +
1

x
)

√
(
v1v2

v
)2 +

u2

4
. (A.6)

In the invisible axion limit (µ ≫ µi or u ≫ vi):

a ≃ w and F ≃ u (A.7)

so the axion completely decouples from the SM sector, except for terms of order v/F .

Therefore the effective axion couplings are given by:

LDFSZ =
i

F
a

(
λuv2xūLuR + λdv1

1

x
d̄LdR + λlv1

1

x
l̄LlR + h.c.

)
+ O(v2/F 2) . (A.8)
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The above couplings generate anomalous aGG̃ and aF F̃ couplings through the 1-loop

diagrams shown in Fig.A.1. These diagrams give:

LDFSZ
eff =

αs

8π

1

F
Nf (x +

1

x
)aGµνG̃

µν +
α

8π

1

F

8

3
Nf (x +

1

x
)aFµνF̃

µν (A.9)

where Nf is the number of generations and Fµν is the electromagnetic field tensor.

Since the PQ scale fa is defined so the coefficient of the aGG̃ is one, we take fa =

F/Nf (x + 1/x), giving:

LDFSZ
eff =

αs

8π

1

fa

aGµνG̃
µν +

α

8π

1

fa

8

3
aFµνF̃

µν . (A.10)

Indentifying Eqs.(A.8) and (A.10) with Eq.(1.25), we have:

cl,q
1 = 0, cl

2 = cd
2 =

1

x
, cu

2 = x, and cY =
8

3
(DFSZ) . (A.11)

a

q

q

q

g

g

a

q, l

q, l

q, l

γ

γ

Figure A.1: 1-loop diagrams for the effective aGG̃ and aF F̃ interactions discussed

in the text.
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A.2 KSVZ

To implement the PQ symmetry in the SM, the KSVZ model[13, 14] introduces a

new (superheavy) quark (Q) and a scalar singlet (χ). The KSVZ Lagrangian is:

LKSV Z = LSM + (λQQ̄LχQR + h.c.) − V (χ, φ)

V (χ, φ) = −µ2|χ|2 + a|χ|4 + b|φ|2|χ|2 (A.12)

where the new quark is a singlet under SU(2)L, but may carry hypercharge. Thus,

in order to avoid a bare mass term for Q, the following discrete symmetry has to be

imposed:

QL → −QL, QR → QR and χ → −χ . (A.13)

Furthermore, the only fields with PQ charge are χ and QR, which transform as:

QR → eiα, χ → e−iα . (A.14)

Assuming µ ≫ v, the scalar field χ acquires a vev 〈χ〉 = F . Thus, we can decompose

χ as:

χ ≡ 1√
2
eia/F eiθχ(F + η) (A.15)

where a is the axion field. The quark Q becomes heavy (mQ = λQF/
√

2) and decou-

ples at low energies (≪ F ). Integrating out the Q fields we obtain the effective axion

Lagrangian in the KSVZ model1:

LKSV Z
eff =

αs

8π

1

fa

aGµνG̃
µν +

αY

8π

6e2
Q

fa

aBµνB̃
µν (A.16)

1This corresponds to computing the loop diagram shown in Fig.A.1a with q → Q at energies
≪ MQ ∼ fa.
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where eQ is the Q hypercharge and Bµν is the U(1)Y field tensor. In order to avoid

fractional electric charges for the Q hadrons, we assume eQ = 0, -1/3 or 2/3. Com-

paring the above equation with the effective Lagrangian in Eq.(1.25) we have:

cl,q
1 = 0, cl,q

2 = 0, and cY = 0,
2

3
or

8

3
(KSVZ) . (A.17)

A.3 Supersymmetric KSVZ

In order to illustrate the main consequences of supersymmetrizing PQ models, here

we discuss the supersymmetric version of the KSVZ model defined in the last section.

We will also present a possible implementation of supersymmetry breaking, which

has the attractive feature of relating the SUSY and PQ breaking scales. The dis-

cussion presented here follows closely Ref. [72]. We start by assuming the following

superpotential:

W = (λ1X̂X̂ ′ + m2)Ẑ + (λ2X̂X̂ ′ + m′2)Ẑ ′ + f
¯̂
Q′Q̂X̂ (A.18)

where X̂, X̂ ′, Ẑ and Ẑ ′ are singlets, while
¯̂
Q′ and Q̂ are SU(3)C triplets. Under the

U(1)PQ, the above superfields transform as:

X̂ → e2iαX̂ , X̂ ′ → e−2iαX̂ ′, Q̂ → e−iαQ̂,
¯̂
Q′ → e−iα ¯̂

Q′ and Ẑ → Ẑ, Ẑ ′ → Ẑ ′ .

(A.19)
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Assuming a canonical Kahler function (K =
∑

i Φ̂
†
i Φ̂i), we have the following super-

gravity potential for the scalar fields 2[27]:

VSUGRA = exp[|Φi|2/M2
Pl]

(
| Φ†

i

M2
Pl

W +
∂W

∂Φi

|2 − 3
|W |2
M2

Pl

)
. (A.20)

At zero order in MPl, we recover the (global) SUSY scalar potential:

V0 = |λ1XX ′ + m2|2 + |λ2XX ′ + m′2|2 + |λ1Z + λ2Z
′|2(|X|2 + |X ′|2) +O(f) (A.21)

where we have omitted the XQ̄Q′ coupling for now. Minimizing the above potential

we obtain

〈Q〉 = 〈Q̄′〉 = 〈λ1Z + λ2Z
′〉 = 0 and 〈XX ′〉 = −M2

S

λ
cos(α − β) (A.22)

where

λ2 = λ2
1 + λ2

2, M4
S = m4 + m′4, tan β = m′2/m2 and tan α = λ2/λ1 . (A.23)

The above minimization conditions are not sufficient to fix the vacuum expectation

values of all fields and we need to include the O(1/MPl) corrections in order to fully

fix the above vevs. The leading order corrections give[72]:

〈X〉 = −〈X ′〉 =

(
M2

S

λ
cos(α − β) − M4

S

λ2M2
Pl

sin2(α − β)

)1/2

〈Z1〉 = 0 (A.24)

〈Z2〉 = − 1√
2
MPl

where we have defined Z1 ≡ cos αZ+sin αZ ′ and Z2 = cos αZ ′−sin αZ for convenience.

The above vevs clearly break U(1)PQ and supersymmetry, since

〈FZ1〉 ≡ 〈∂W

∂Z1

〉 = λ〈XX ′〉 = −λ〈X〉2 6= 0 . (A.25)

2Throughout this section we will use Φ̂ to indicate superfields, Φ to indicate its (complex) scalar
component and Φ̃ to indicate its fermionic component.
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Note that the SUSY and U(1)PQ scales are both given by 〈X〉 ∼ MS. Due to the

SUSY breaking, the gravitino will acquire a mass given by[27]:

m3/2 =
1

M2
Pl

〈W 〉 =
M2

S

MPl

sin(α − β)
1√
2

. (A.26)

Using the above results, we proceed to investigate the spectrum of the broken

phase. The fermion mass matrix in the basis (X,X ′, Z1, Z2) is given by:

(Mf )ij = 〈 ∂2W

∂Φi∂Φj

〉 =




0 0 λ〈X ′〉 0

0 0 λ〈X〉 0

λ〈X ′〉 λ〈X〉 0 0

0 0 0 0




(A.27)

which gives the following mass eigenstates:

Z̃2 (MZ2 = 0)

Ã =
1√
2
(X̃ + X̃ ′) (MA = 0) (A.28)

Ỹ =
1√
2
(Z1 +

1√
2
(X̃ − X̃ ′)) (MY =

√
2λx)

˜̄Y =
1√
2
(Z1 −

1√
2
(X̃ − X̃ ′)) (MȲ = −

√
2λx)

where x ≡ 〈X〉. The Ỹ and ˜̄Y form a Dirac spinor of mass MY ∼ MS, while Z̃2 is

the Goldstino generated from SUSY breaking (since 〈FZ2〉 6= 0) and Ã is the U(1)PQ

Goldstino. Furthermore, the fermion components of the Q̂ and Q̂′ superfields combine

into a Dirac fermion with mass MQ = fx.

To compute the scalar masses we define:

A =
1√
2
(X + X ′), X2 =

1√
2
(X − X ′)

B1 = M2
S cos(β − α)Z1 and B2 = M2

S sin(β − α)Z2 (A.29)
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so the scalar potential can now be written as:

VSUGRA = λ2|Z1|2(|A|2 + |X2|2)

+ |λ1

2
(A2 − X2

2 ) + m2|2 + |λ2

2
(A2 − X2

2 ) + m′2|2 (A.30)

+
1

M2
Pl

(
λ

2
(A2 − X2

2 )Z1 + B1 + B2

)(
3λ

2
(A†2 − X†2

2 )Z†
1 + B†

1 + B†
2

)
+ h.c.

+ O(f)

where we have once again neglected the heavy squark terms, since they do not mix

with the other scalars. Shifting the fields by their vevs, we obtain the following leading

order mass terms:

VSUGRA = 2λ2x2(|X2|2 + |Z1|2) (A.31)

+

(
−x2λ2 + λ1m

2 + λ2m
′2 + 2

〈B2〉2
M4

Pl

)
(A + A†)2

4

+

(
x2λ2 − λ1m

2 − λ2m
′2 + 2

〈B2〉2
M4

Pl

)
(A − A†)2

4

+

(〈B2〉2
M4

Pl

+
M4

S sin2(α − β)

M2
Pl

(2 +
〈Z2〉2
M2

Pl

)

)
|Z2|2 + ... .

Using

x2 =
M2

S

λ
cos(α − β) − M4

S

λ2M2
Pl

sin2(α − β)

〈Z2〉 = − 1√
2
MPl

〈B2〉 = −M2
S sin(β − α)〈Z2〉

m3/2 =
M2

S

MPl

sin(α − β)√
2

(A.32)

we obtain

m2
AR

= 4m2
3/2, m2

AI
= 0, m2

Z2 = 6m2
3/2 and m2

X2
= m2

Z1
= 2λ2x2 (A.33)
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where A = (AR + iAI)/
√

2. Despite having a soft mass, the Z2 scalar has no tree

level couplings with any of the other fields and can be neglected. On the other hand,

the Q, Q′, X2 and Z1 scalars have mass of order the SUSY breaking scale. Assuming

m3/2 ∼ 1 TeV, we have MS ∼ 1011 GeV. Therefore, the low energy effective theory

will simply consist of the A field.

From the above results we see that the low energy theory (at energies ≪ 〈X〉)

consists of the AR, AI , Ã and G̃ fields, which correspond to the saxion (s), axion (a),

axino (ã) and gravitino (G̃) states, respectively. Therefore, for the supersymmetric

KSVZ model presented here, we have:

ms = 2m3/2, ma = 0, mã = 0 and m eG = m3/2 (A.34)

However, the axino mass receives large 1-loop contributions from the diagram shown

in Fig.A.2[30, 29] and acquires a mass of the order of the gravitino mass suppressed

by a loop factor:

mã =
1

62
λ2

Qm3/2 . (A.35)
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ã

Q̃

ã

Q

Figure A.2: 1-loop diagram contributing to the axino mass in the supersymmetric

KSVZ model.
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Appendix B

Axion and Neutralino Relic Densities

Here we derive explicit expressions for the neutralino and axion relic densities for the

case of an early matter-dominated universe. From the discussion in Sec.5.3, we see

that the Hubble parameter in a radiation (RD), matter (MD) or decaying-particle-

dominated (DD) universe can be written as:

H(T ) =

√
4π3

45
g∗(T )

T 2
eff

MPl

(B.1)

where

Teff = T ×





1 , for RD

(
Te

T

)1/4
, for MD

(
g∗(T )

g∗(TD)

)1/4
T

TD
, for DD

with Te, TD as defined in Sec.5.3. To compute the axion relic density, we use Eq.(5.17):

ρCO
a =

1

2
χf(θi)ma(Ta)m

0
aθ

2
i f

2
a

(
Rosc

R

)3

(B.2)

with the oscillation temperature, Ta, given by the oscillation condition (Eq.(5.11)):

3H(Ta) = ma(Ta) . (B.3)

In a MD or RD universe, entropy is conversed so that

(
Rosc

R

)3

=
g∗(T )T 3

g∗(Ta)T 3
a

, (B.4)

while for the decaying particle regime, entropy is injected by the decaying particle,

resulting in:
(

Rosc

R

)3/2

=
g∗(T )T 4

g∗(Ta)T 4
a

. (B.5)
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Using the above results we obtain

Ωa =





ΩRD
a /r , if Te < Ta

ΩMD
a , if TS < Ta < Te

ΩDD
a , if TD < Ta < TS

ΩRD
a , if Ta < TD

(B.6)

where r is the entropy dilution factor given by r = S(T ≪ TD)/S(T ≫ Te) ≃ Te/TD

and1

ΩRD
a h2 =





9.23 × 10−3θ2
i f(θi)

1
g∗(Ta)1/4

(
fa

1012

)3/2
, if Ta < ΛQCD

1.32 θ2
i f(θi)

1
g∗(Ta)5/12

(
fa

1012

)7/6
, if Ta > ΛQCD

ΩMD
a h2 =





7.5 × 10−5 θ2
i f(θi)TD

(
fa

1012

)2
, if Ta < ΛQCD

1.4 θ2
i f(θi)

1
g∗(Ta)4/11

(
fa

1012

)14/11 TD

T
4/11
e

, if Ta > ΛQCD

(B.7)

ΩDD
a h2 =





7.5 × 10−5 θ2
i f(θi)TD

(
fa

1012

)2
, if Ta < ΛQCD

1.72 θ2
i f(θi)

g∗(TD)1/4√
g∗(Ta)

T 2
D

(
fa

1012

)3/2
, if Ta > ΛQCD

. (B.8)

The oscillation temperatures are given by:

TRD
a =





1.23 × 102 1
g∗(Ta)1/4

(
1012

fa

)1/2

, if Ta < ΛQCD

8.71 × 10−1 1
g∗(Ta)1/12

(
1012

fa

)1/6

, if Ta > ΛQCD

TMD
a =





6.1 × 102

(
1√

g∗(Ta)Te

1012

fa

)2/3

, if Ta < ΛQCD

8.6 × 10−1

(
1√

g∗(Ta)Te

1012

fa

)2/11

, if Ta > ΛQCD

(B.9)

TDD
a =





0.11 × 102

(√
g∗(TD)

g∗(Ta)
1012

fa
T 2

D

)1/4

, if Ta < ΛQCD

9.0 × 10−1

(√
g∗(TD)

g∗(Ta)
1012

fa
T 2

D

)1/8

, if Ta > ΛQCD

.

1All dimensional quantities in this Section are in GeV units.
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To compute the neutralino relic density, we use Eq.(4.8)

ρ eZ1

s
= m eZ1

Y eZ1
(Tfr)

(
R3

fr

R3
0

)
(B.10)

where the neutralino yield at freeze-out can be approximated by the equilibrium yield

Ȳ eZ1
(Tfr) =

2

s(Tfr)

(
m eZ1

Tfr

2π

)3/2

e
−m eZ1

/Tfr , (B.11)

and Tfr is determined from the freeze-out condition, Eq.(4.7),

Ȳ eZ1
(Tfr) = κ

H(Tfr)

〈σv〉s(Tfr)
(B.12)

where κ = 1(3/2) for a radiation (matter) dominated universe[96]. Using the H(T )

and R3 expressions for a MD, RD and DD universe discussed above, we obtain:

Ω eZ1
=





ΩRD
eZ1

/r , if Te < Tfr

ΩMD
eZ1

, if TS < Tfr < Te

ΩDD
eZ1

, if TD < Tfr < TS

ΩRD
eZ1

, if Tfr < TD

(B.13)

with

ΩRD
eZ1

h2 = 8.5 × 10−11m eZ1

1√
g∗(Tfr)

1

Tfr

1

〈σv〉

ΩMD
eZ1

h2 =
3

2
× 8.5 × 10−11m eZ1

1√
g∗(Tfr)

TD√
TeT

3/2
fr

1

〈σv〉 (B.14)

ΩDD
eZ1

h2 =
3

2
× 8.5 × 10−11m eZ1

√
g∗(TD)

g∗(Tfr)

T 3
D

T 4
fr

1

〈σv〉

where 〈σv〉 must be evaluated at Tfr and the freeze-out temperatures in each regime
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are given by

TRD
fr = m eZ1

/ ln[
3
√

5

23/2π3
〈σv〉MPlm

3/2
eZ1

1√
g∗(Tfr)Tfr

]

TMD
fr = m eZ1

/ ln[
3
√

5

23/2π3
〈σv〉MPlm

3/2
eZ1

1√
g∗(Tfr)Te

] (B.15)

TDD
fr = m eZ1

/ ln[
3
√

5

23/2π3
〈σv〉MPlm

3/2
eZ1

√
g∗(TD)

g∗(Tfr)

T 2
D

T
5/2
fr

] .

Finally, the temperature TS which marks the transition from the MD to the DD

regime can be estimated by matching the expressions for the relic density for Ta,fr <

TS and Ta,fr > TS. Using the above results we obtain:

TS =

(
g∗(TD)

g∗(TMD)
T 4

DTe

)1/5

(B.16)

where TMD = TMD
a for axions and TMD = TMD

fr for neutralinos.
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