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Abstract 
 
The current study is focused on the dynamic behavior of an idealized highway bridge 

structure subjected to moving heavy vehicular loads using simplified representative 

models such as Euler beams and Kirchhoff plates. The study also successfully 

implemented the application of a numerical procedure called Differential Quadrature 

Method (DQM) to solve transient dynamic systems using conventional and generalized 

DQ schemes. A semi-analytical (modal method) DQ procedure proved computationally 

very effective to study the vehicle-bridge dynamic system. 

 

Three types of models were used to represent the vehicle-bridge system i.e. moving force, 

moving mass and moving oscillator systems. The dynamic behavior of the vehicle-bridge 

system is discussed with reference to vehicle speed, damping characteristics of the 

bridge, vehicle to bridge frequency ratio, vehicle to bridge mass ratio for a single axle 

load system, including inter-load spacing for a two axle load system. The dynamic 

amplification factor (DAF), characterizing the dynamic behavior of a bridge structure, 

was found to increase with the speed of moving vehicles. The vehicle-bridge dynamic 

behavior is unclear in the low speed parameter range to sufficiently address the 

differences in the moving force, moving mass and moving oscillator models. For a single 

axle load system with speed parameters ranging above 0.1, the moving mass model 

appeared conservative with higher DAF’s, the moving oscillator yielded reduced DAF’s 

and the moving force model predicted DAF’s in between the above models. However, for 

a two axle load system with speed parameters ranging above 0.1, a moving oscillator 

model predicted higher dynamic responses than a corresponding moving force model. 



 

1 
 

Chapter 1: Introduction and Background 

 

1.1 Introduction: 

Moving loads are defined as those loads that vary both in space and time. One of the most 

common examples for moving loads is the passage of vehicular loads such as 

trains/automobiles over rail/road tracks. Other interesting engineering areas where 

moving load problems are encountered include high speed machining tools, rotating 

magnetic disk drives, transportation cables, aircraft carriers, etc. A moving load amplifies 

the structural response that otherwise would be experienced due to a static load of the 

same magnitude at similar conditions. The dynamic nature of moving loads acting on 

structures is being investigated by researchers for its far-reaching impact on structural 

responses such as displacements and stresses. The present work focuses on the dynamic 

behavior of idealized highway bridge structures subjected to moving loads. 

 

The moving load effects can be either due to only the moving force, or both the moving 

force and the inertial load associated with it, if any. The latter case is categorized as 

moving mass, and in general, the whole problem is referred to as ‘moving force-moving 

mass’ problem. In both the above cases, the vibrations of the moving vehicles themselves 

(i.e. bouncing actions) are neglected compared with the vibration of a bridge structure. 

When vehicle to bridge interactions are included in the moving force-moving mass 

problem, the problem is referred to as ‘moving oscillator’ problem. 

 

This study is focused on the dynamic behavior of idealized bridge structures subjected to 

moving vehicular loads, with and without the inclusion of inertia effects of the vehicles. 
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This study is also intended to extend the application of the Differential Quadrature 

Method (DQM) to solve transient dynamic problems. The Vehicle to Bridge Interaction 

(VBI) phenomenon using a beam model is also studied as a part of this project. 

 

The following sections discuss the significance of the moving mass problem, current 

design procedures and practices, and provide a brief literature survey on moving load 

problem and a short note on key aspects of the research tasks such as field tests and 

analyses of two highway bridges carried out by the Dynamic Structures Sensing & 

Control (DySSC) center at the University of Oklahoma (OU). 

 
1.2 Significance of moving masses: 

In the early years, due to lesser traffic loads moving at lower speeds than today, the 

significance of the dynamic impact of vehicular loads was not realized, and bridge design 

protocols developed and practiced by the American Association of State Highway and 

Transportation Officials (AASHTO) [1] mainly relied on static load calculations. The old 

bridge design procedures employed higher safety factors (via the dynamic amplification 

factor, to be discussed later) to substitute for the computational expenses and efforts 

associated with the application of numerical tools required to analyze a moving load 

problem. 

 

The safety criteria of a bridge structure are assessed by evaluating the relation [2], 

 

appliedstructure PR >          (1.1) 
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where structureR  is the resistance of the structure and appliedP  is the applied load on the 

structure. The safety factor is applied to the resistance side of the above relation which 

then becomes appliedsafetystructure PFR >)/(  where safetyF  is the safety factor assigned. This 

procedure is generally referred to as Allowable Stress Design (ASD) and assumes 

deterministic applied loads to evaluate the safety criteria. 

 

Only a few decades earlier, with the increased usage of heavy truck vehicles, high speed 

automobiles (and high speed trains in railway infrastructure), and with the need for 

optimizing infrastructure costs associated with increased numbers of bridges to 

accommodate growing traffic, moving load problems drew our attention. Heavy truck 

loads add lumped mass to the location of contact with the bridge deck and, hence, are 

expected to change the modal properties of the bridge. Heavy truck vehicles also produce 

bouncing effects due to the suspension system at places of road deck unevenness 

resulting in a pronounced vibration response of the bridge system, and this increased 

response is dependent mainly on the mass and speed of the vehicles passing over, and 

their suspension system parameters. These issues required subsequent studies on the 

dynamic behavior of bridge structures with the inclusion of mass (inertia) effects of the 

moving load as well as its bouncing effects. One of the many reasons to call for moving 

mass and VBI calculations comes from the fact that the level of vibration of bridges 

observed due to the passage of long and heavy trucks was so phenomenal that it induces a 

psychological effect of fear on pedestrians and observers. 
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The increased dynamic response of bridge structures associated with heavy moving 

vehicular loads also results in increased structural stresses in the bridge structure. Not 

only do the vehicular loads impart stresses on the bridge components but they also 

introduce fatigue effects owing to the dynamic nature of the loads involved. Hence, it 

becomes an inevitable task to assess the dynamic response of bridge structures under 

moving vehicles with due consideration for the vehicles’ inertia effects on bridge 

response. Also, prior knowledge of the magnitudes of the stresses experienced by the 

structural components due to moving masses helps us determine the remaining life of the 

structure using fatigue life estimation techniques. 

 

Among the moving load problems, the magnitude of the structural response is expected to 

increase in the following representative models: 1) moving force, 2) moving mass and 3) 

moving oscillator. The moving oscillator model is expected to be an effective 

representation of a moving vehicle with a suspension system, and a system of connected 

multiple oscillators that includes both the translational and rotational degrees of freedom. 

It offers opportunities to address several aspects of the vehicle-bridge coupled system 

such as identification of influential parameters and their effects on the vibration response 

of the bridge system. 

 

It is also worthwhile to note that by identifying the influential parameters of the moving 

mass problem, we can effectively reduce the detrimental impact of moving vehicles on 

bridge structures either by suitably adjusting vehicle and bridge parameters or by 

updating highway guidelines for allowable vehicular loads for a bridge, i.e., load entry 
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specifications, and corresponding speed limits. The vehicle and bridge parameters to be 

adjusted may include bridge design parameters such as geometry, material, weight, etc., 

and vehicle parameters such as chassis weight and suspension system parameters 

(stiffness of the springs and damping coefficient of the damper). Of these, the bridge 

design, i.e., geometry and material parameters, and the vehicle mass are fixed and, hence, 

the only feasible option available for control during traverse (other than the vehicle 

speed) are the vehicle suspension system parameters. Thus the vehicle suspension 

parameters could be modified in real time to suitably reduce the instantaneous vibration 

response of vehicles and eliminate any resulting vehicle-bridge interactions. 

 

The issue of vehicle bouncing effects and their influence on the vibration response of 

bridges boosted research initiatives in modern transportation systems such as controllable 

hardware attachments to structures (forming a part of Structural Health Monitoring 

(SHM) and Control), and reliable bridge design standards and load specifications using 

improved design models. A study on developing coordinated control of vehicle 

suspension characteristics from bridge response data using a wireless network system is 

being pursued by the DySSC center at OU through its novel Intelligent Vehicle Bridge 

System (IVBS) program, thus, addressing the two-fold objectives of health monitoring 

and control of structural members. 

 

1.3 Bridge design procedures and parameters – An overview: 

Bridges can be broadly classified by the functional requirements (type of traffic like 

highway, railroad, etc), material resource types (wooden, metal, stone/concrete, etc), 
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design details (cantilever, simple span, multi-span, arch or truss type, skewed, etc.) and 

application of technology (suspension bridges, slab, girder, etc) but any given bridge 

structure is always associated with a mix of the above factors such as multi-span slab-

girder bridge, single span simply supported slab-girder bridge, etc. 

 

This thesis is limited to the discussion of the development of numerical models for 

analyzing the dynamic behavior of beam and slab type bridges only. Also, it is interesting 

to note that the present design codes are based on beam models and work well, because in 

spite of ignoring the vehicle mass and vehicle-bridge interaction effects, most of the 

bridges designed and built as per this design code are in healthy operating conditions 

(probably due to higher safety factors). However, a better estimate of the dynamic 

behavior of bridge structures including vehicle mass and vehicle-bridge interaction 

effects allows bridge designers to assign appropriate safety factors. The safety factor 

specified applies only to the structural resistance parameter as discussed in the previous 

section (refer to Equation 1.1), i.e., the Allowable Stress Design (ASD) approach. Bridge 

design codes were updated recently by the AASHTO that replaced the traditional 

Allowable Stress Design (ASD) concept with the Load and Resistance Factor Design 

(LRFD) procedure [2]. The LRFD procedure applies multiplication factors on both sides 

of the Equation 1.1, i.e., for both the structural resistance and applied loads. 

 

Bridge loads are typically classified into permanent and transient loads. Permanent loads 

include those that stay with the bridge structure for its lifetime (mostly) such as self-

weight of the deck, girders, curbs, and other attachments. Transient loads includes all 
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types of time varying loads such as vehicle loads, pedestrian loads, loads due to winds, 

earthquakes, temperature variations, etc. 

 

The recent version of the AASHTO standard specifications classifies the vehicular design 

loads into design truck, design tandem and design lane loads, and requires that the load 

effects of the design truck and design tandem be superimposed with the load effects of 

design lane loads unlike in the previous AASHTO standard specifications where the 

loads were considered separately. The design truck is a typical semi-trailer truck and has 

the configuration of HS20-44, one of the standard specifications that AASHTO used 

since 1944. Here, ‘20’ in HS20-44 stands for the total weight of the first two axle loads in 

US customary units, i.e., 20 tons. The total weight of HS20-44 including the trailer is 36 

tons approx. with 4 tons in the front axle, and 16 tons each at the remaining two axles 

(here, second and third axle load actually mean a vector sum of two consecutive axle 

loads). The design tandem is a two axle load specification with each axle weighing 12.36 

tons (110 kN) approx. The design tandem closely resembles another AASHTO standard 

configuration H20-44 whose total weight is 20 tons. However, in the H20-44 the loads 

are distributed as 4 tons in the front and 16 tons in the rear axle. The design lane load is a 

uniformly distributed load of 9.3 N/mm. 

 

The AASHTO assesses the dynamic load effects due to moving loads using a dynamic 

load allowance factor ( DLA ) given by 

(max)st

dyn

D
D

DLA =          (1.2) 
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where (max)stD  is the maximum static deflection and dynD  is the additional deflection due 

to dynamic effects, i.e. (max)(max) stdyndyn DDD −=  where (max)dynD  is the maximum dynamic 

deflection at the point of maximum static response. The DLA  factor varies for the same 

load with different load positions but is usually measured at the mid-span location. 

Another way to express the dynamic load effects is to define the dynamic increment 

factor ( DI ) as  

 

max

maxmax}{

st

stdyn

D
DD

DI
−

=          (1.3) 

 

The basic difference is that the point of measure of maximum dynamic deflection may be 

different from the point of occurrence of maximum static deflection but both these 

definitions yield similar values. In this study, the dynamic effects are measured using the 

dynamic amplification factor ( DAF ) which is simply the ratio of maximum dynamic 

deflection to the corresponding static deflection of the bridge, i.e., 

 

st

dyn

D
D

DAF max}{
=            (1.4) 

 

and is measured usually at the center of the beam. 

 
1.4 Literature Review: 

The problem of moving loads is believed to have been identified early in the nineteenth 

century concurrent to the design and construction of railway bridges. In those days, the 

dynamic nature of moving loads and its consequences on foundation structures as the 
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loads passed by were not fully understood owing to limited engineering resources 

available for experimental observations. The collapse of the Chester Railway Bridge in 

1849 and the subsequent efforts by Willis [3] and Stokes [4] drew the engineers’ attention 

to note the impact of moving loads on the underlying structures.  

 

In the initial stages of development of the theory and practice of moving load problems, a 

few assumptions were considered to simplify the original moving load problem to simple 

cases such as massless beam carrying moving mass, or a beam carrying massless load 

(force), etc. Several of the studies (conducted in the late nineteenth century and early 

twentieth century) based on these assumptions promoted our understanding of the 

dynamic nature of moving loads and contributed further research related to the moving 

load problem. Early investigations on highway bridge vibrations resulting from moving 

vehicles with and without the effect of vehicle bridge interactions, and/or those in the 

presence of wind and seismic activity were reviewed by Wright and Green [5] in 1959, 

Ting et al. [6] in 1975, Huang [7] in 1976, and Venancio Filho [8] in 1978. 

 

Very few monographs exist on this special subject of moving loads, the earliest being a 

collection of case studies on vibrations of railway bridges by Inglis [9] published in 1934. 

Another popularly referred monograph is due to Fryba [10], first published in 1972 (3rd 

edition, 1999), which briefly reviews the research carried out from the late nineteenth 

century until recently, with concise discussions including several case studies on various 

aspects of moving loads. Another popular monograph on the moving load problem 

published in 2004, also targeted at the application to railways, was written by Yang et al. 
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[11]. In this book, the authors treated the vehicle-bridge interaction using a new method 

called dynamic condensation technique. 

 

1.4.1 Literature Survey Classifications: 

One of the criteria to classify moving load and VBI studies could be the representative 

model, i.e., whether the model used to represent the system is a continuous/distributed 

system (infinite degrees of freedom) or a discrete/lumped system (finite degrees of 

freedom). Another representative model classification in case of VBI problems could be 

quarter-car (single oscillator), half-car (two oscillators) and full-car (four oscillators) 

models, with and without the trailers, and their defined degrees of freedom, etc. 

 

Based on the type of governing equations of motion for the bridge vehicle system, we 

have two forms, namely, a coupled and an uncoupled form of the equations. The 

advantage of the uncoupled form is that we can solve the equations separately for the 

bridge and the vehicle starting with some valid initial assumptions. The solution for the 

vehicle system is independent of the bridge system, and it is easy to solve and takes less 

time. The equations, although said to be uncoupled, are in fact coupled by the interaction 

forces. The interaction forces govern the equations of motion of the bridge and vehicle 

system, and since they are defined explicitly in the equations of motion, they offer more 

information on bouncing of the vehicle, and any possible loss of contact between bridge 

and vehicle wheels. 

 

On the other hand, the coupled equation system takes a longer time to solve since the 

responses of vehicle and bridge are directly coupled. In the coupled equations, we have 



 

11 
 

no explicit term to define the interaction forces that govern the equations of motion for 

vehicle and bridge system. Thus, the coupled equations may not yield a solution (the 

solution will diverge if a direct time integration procedure is employed) when there is a 

loss of contact between bridge and vehicle wheels. This can be avoided in the case of the 

uncoupled set of equations by allowing only a non-zero positive value for the interaction 

forces acting from vehicle to bridge. In other words, the uncoupled set of equations offers 

control over the solution during solution processing whereas the coupled set of equations 

allows control of the solution procedure (like time step values, etc) only at the beginning 

of the solution process. 

 

Based on the formulation of governing equations of motion for the vehicle and bridge 

system, we observe that the following classification is possible: 1) Lagrange multiplier 

scheme – yields equations of motion with multipliers (interaction force terms) that can be 

eliminated (coupled) or solved as is (uncoupled), 2) Equilibrium of forces – Euler 

Bernoulli or Timoshenko equations for beam, and corresponding Kirchhoff or Mindlin 

equations for plate structures, 3) Weak form generation for FEM using governing 

differential equations obtained from Equilibrium or Energy methods through a variational 

formulation. 

 

We can also classify the nature of the work based on the solution method such as the use 

of 1) Modal decomposition methods – assumed modes or generalized mode 

decomposition, 2) Laplace or Fourier Transform techniques, 3) Direct time integration 

of the differential system (and this includes vastly different schemes such as the 
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Newmark’s scheme [12, 121], the Houbolt’s [12] scheme, Precise integration methods 

[122], Wilson-θ [12], Runge-Kutta-Nyström [10], Finite Difference schemes, the 

Differential Quadrature method), 4) Perturbation methods (multiple scales method 

[123]), and 5) the  Finite Strip method [45], and 6) Finite Element methods. 

 

Recently, Nassif and Liu [72] nicely summarized some of the past key research work 

carried out in moving load analysis using a tabular representation. The following section 

presents the literature survey on the moving load problem in chronological order. The 

references on research contributions by some of the non-English authors were taken from 

Fryba’s [10] monograph citations. References on some of the methods and concepts used 

in the study of the dynamical behavior of structures can be seen in Humar [12] and other 

texts on structural dynamics. 

 

1.4.2 Chronological Survey: 

The first known attempts at solving a moving load problem were made in the year 1849 

by Willis [3] and Stokes [4]. Willis published a case study on the collapse of the Chester 

Railway Bridge in which he formulated a differential equation to study the vibration 

involved, and in the same year, Stokes provided a closed form solution of that differential 

equation using a power series method. 

 

Zimmermann [13] also solved the Willis differential equation [3] independently and 

proposed a similar closed form solution. It is interesting to note that they assumed a 

massless beam traversed by a point mass. The opposite case wherein the load mass is 
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neglected when compared to the beam mass, was examined for a simply supported beam 

under the action of a constant concentrated force by Kryloff [14] in 1905, and later by 

Timoshenko [15] in 1908 who also studied the effects of moving harmonic forces due to 

counterweights on the locomotive driving wheels driven at constant speed. 

  

The analysis of moving loads becomes more complicated when both the beam mass and 

the moving mass are taken into consideration. This case was first analyzed by Saller [16] 

in 1921 and by many researchers since then. A satisfactory solution method was worked 

out in 1937 by Schallenkamp [17] who used Fourier series with unknown coefficients to 

analyze the effects of a constant point load moving over a beam. In all of the above 

mentioned investigations, the transit mass (vehicle) was designated as a point mass to 

simplify the calculations. 

 

Jeffcott [18] used the method of approximations to solve the moving load problem. 

According to this method, initially, the vertical displacement of the beam due to the 

moving load is calculated by ignoring any inertia effects of the beam, i.e., a massless 

beam as shown in Equation 1.5. 
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where W , E , and I  represent lateral (or vertical) deflection at location (x, t), Young’s 

modulus and area moment of inertia of the beam, respectively, and )(⋅δ  is the Dirac 

Delta function; ct denotes the distance traveled by the load P in time t. Then, the 
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displacement solution is substituted back into Equation 1.6 that includes the inertia 

effects of the beam and moving load, and a new displacement solution is found. 
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where μ  is the linear density (mass per unit length) of the beam and M  is the 

representative mass of the load P. This iteration is continued until the solution converges. 

Jeffcott’s solution was the first successful numerical attempt to solving the moving load 

problem with mass effects of both the beam and load included. The sprung and unsprung 

mass effects were not considered in his approach. 

 

In 1934, Inglis [9] published a treatise on the dynamic analysis of railway bridges and 

included most of the important cases of moving load problems using harmonic analysis. 

He used the term, ‘crawl deflection’ to denote the moving force problem, and used a 

Fourier sine series to approximate the effect of a moving point load, i.e., replaced the 

hard to handle Dirac Delta function with a Fourier sine series. Thus, according to his 

treatment, the governing equation of a beam subjected to a moving force is given by 
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The above equation can then be solved as a regular partial differential equation without 

requiring integral transformation techniques. Inglis showed that the maximum 

contribution to the dynamic displacement solution comes from the first mode only, and 
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that the error introduced in the displacement solution is less than 0.5 % if higher modes 

are neglected in the calculations. Inglis included “hammer-blows” due to balance weights 

attached to locomotive driving-wheels with a moving harmonic force model (similar to 

Timoshenko [15]), and obtained the same solution as Timoshenko but with less difficulty. 

 

Inglis also extended this study by considering the combined effects of the harmonic force 

and the associated inertia of a moving mass. Here, he assumed the mass to be 

concentrated at a fixed point (preferably at the center of the beam) which would result in 

an upper bound of the displacement solution for the moving mass problem and produce 

conservative stress results. This idea of assuming a lumped mass centered at the beam is 

covered later in the third chapter, section 3.2. He also treated the bouncing effects of the 

locomotive body using a simplified 2 DOF sprung and unsprung mass system. He 

accounted for the effect of damping using a viscous damper model, i.e., the resistance to 

motion due to damping is proportional to the velocity of the moving load. 

 

In 1951, Hillerborg [19] studied the motion of sprung masses on a simply supported 

beam using Fourier’s method and the method of numerical differences. Hillerborg 

assumed that the dynamic deflection of the beam due to a moving load at any given time 

is proportional to its instantaneous static deflection due to the moving load. Biggs et al. 

[20] using Inglis’s method, and Tung et al. [21] using Hillerborg’s approach solved the 

problem on digital computers, and applied this traditional railway bridge problem to 

highway bridges. Other notable contributors of the 1950s and 1960s, in the study of the 
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dynamic response of a structure due to a moving load, include Bolotin [22], Kolousek 

[23], Filippov [24], and Bondar [25]. 

 

Wen [26] investigated the dynamic response of beams traversed by a two-axle load 

system with an assumption that the dynamic deflection is proportional to the static 

deflection caused by the beam weight and loads. This assumption is based on 

Hillerborg’s assumption but also takes into account the weight of the beam to express the 

dynamic deflection. Wen also considered the surface waviness using a sinusoidal function 

for the initial beam profile. 

 

In 1966, Walker and Veletsos [27] studied the differences in dynamic behavior of beams 

subjected individually to a moving constant force and to a moving sprung mass. They 

observed that the vehicle-bridge interaction phenomenon is dependent on frequency ratio 

(ratio of natural frequency of vehicle to natural frequency of bridge vibration), and 

concluded that bridge-vehicle interaction can safely be neglected for frequency ratios less 

than 0.3. 

 

Fryba [28] also studied the dynamic behavior of a uniform beam under a moving two-

axle load system containing sprung and unsprung masses. Both, Wen [26] and Fryba 

included the effect of rotary inertia of the vehicle (sprung mass) in their studies. Wen 

obtained the differential equations governing the dynamic behavior of a beam from an 

energy formulation (using Lagrange’s equations [12]) while Fryba obtained them using 

force equilibrium conditions.  Wen used Newmark’s [12] method to numerically integrate 
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the system of equations. Fryba used the finite Fourier sine integral transformation 

method for the analytical solution, and a Runge-Kutta-Nyström scheme for the numerical 

solution. Fryba’s solution also included damping effects and the surface waviness of the 

beam in the dynamical behavior due to moving loads. 

 

In 1968, Fryba [28] extended the study to include the loss of contact between the load 

system and the beam due to non-uniform surfaces. Thus, the governing equations of 

motion for the beam and mass system are written separately but are coupled together by 

contact forces at the points of contact. The inclusion of Hertz contact forces into the 

moving load problem makes it a nonlinear problem. However, in order to simplify the 

analysis, Fryba introduced linear springs to represent the contact forces between tires and 

bridge, i.e., he linearized the otherwise non-linear Hertz contact forces. 

 

Stanisic et al. [1968, 29] studied the undamped vibration response of a simply supported 

plate structure under moving multiple masses using a modified Fourier transform 

technique and presented the solution in the form of a convergent series. They used a sine 

series approximation to replace the Dirac Delta term, and neglected the convective terms 

in the governing differential equation of the moving mass problem. They also found that 

the resonance conditions are met earlier for the case of a moving mass system than for the 

moving force system, with the other conditions remaining the same, indicating the 

significance of the mass of the moving load. 
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Steele [30] obtained a series solution for the case of a concentrated load moving over a 

simply supported Euler-Bernoulli beam with and without elastic foundation. 

 

In 1970, Veletsos and Huang [31] discretized the bridge as a linearly elastic beam of 

multiple degrees of freedom (DOF) having lumped point masses and distributed 

flexibility, and analyzed the dynamic response of a vehicle modeled as a three axle 

system having sprung masses. They uncoupled the equations of motion for vehicle and 

bridge (similar to Fryba [10]) and solved the system of equations separately at each 

lumped mass point (node) of the beam using Newmark’s time integration method. They 

used influence coefficients (denoting reaction induced due to unit concentrated force and 

unit deflection) to scale the interaction forces and deflection at each node of the beam. 

They analyzed the dynamic response of three-span cantilever-type continuous bridges 

and compared it to the results obtained from previous research conducted on simple span 

bridges by Walker and Veletsos [27]. Veletsos and Huang concluded that the peak 

variation in interaction forces computed for cantilever type bridges was thrice greater 

than that for simple span bridges under similar combinations of weight ratio, frequency 

ratio and speed parameter. 

 

Nelson and Conover [32] studied the dynamic response of a simply supported beam 

loaded by a continuous series of equally spaced moving mass particles. They used both 

Galerkin’s method and the modal expansion technique to solve for the dynamic response 

of the beam carrying a moving load, and also discussed the stability regions for the same. 
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In 1972, Csagoly et al. [33] used the finite element code ICES STRUDL II to compute 

natural frequencies and the dynamic response of continuous bridges up to 100 ft in length 

with two to five spans. They suggested that the proportioning of bridge span length so 

that the fundamental frequency is greater than 5 cps could reduce resonance with modern 

vehicles. They also carried out field tests on continuous pre-stressed concrete deck 

bridges with a test vehicle of 90,000 lb and observed that the impact factor was 

dependent on the matching frequencies of bridge and vehicle, and the state of excitation 

before the entry of the vehicle. 

 

Shepherd and Aves [34] carried out analytical and experimental investigations on the 

dynamic response of simply supported bridges. They modeled the bridge as a simply 

supported beam and the vehicle as a single sprung mass. By comparing the results 

obtained from field tests on bridges and the analytical results, they found that the 

dynamic impact allowance factor prescribed then was insufficient and it underestimated 

the dynamic effects due to a moving load. The design code for the dynamic impact 

allowance factor was an empirical relation based only on the bridge span length. 

Shepherd and Aves suggested a correction in the impact allowance factor, and included 

the speed parameter and an experimental parameter J such that the corrected impact 

allowance factor is given by the following relation, 
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In 1974, Ting et al. [35] introduced a structural impedance approach to solve for the 

dynamic response of a finite elastic beam under a moving mass. They used influence 
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functions (Green’s functions) to express the equations of motion for a point mass-beam 

coupled system in the form of integro-differential equations. The integral formulation 

eliminates the higher order partial derivatives, the Dirac Delta function and explicit 

boundary conditions. In 1975, Ting et al. [6] also reviewed some of the past research on 

the moving load problem. 

 

Stanisic et al. [1974, 36] proposed as an alternative approach an asymptotic method to 

solve for moving mass problems where modified natural frequency due to the moving 

mass was used to replace the existing governing equation of motion with an equivalent 

free Eigen system, and they also presented a numerically exact solution for the same. 

 

Blejwas et al. [37] studied the moving force-moving mass problem on a Bernoulli-Euler 

beam using Lagrange multipliers, and suggested that the vertical acceleration of the mass 

is not exactly equal to the vertical acceleration of the beam but contained additional or 

convective acceleration terms. The equations of motion obtained from Lagrange’s 

method were solved in uncoupled form with constraints to obtain the interaction forces, 

i.e., the Lagrange multipliers. Since the use of Lagrange multipliers introduced more 

unknowns, the solution procedure involved more computational time and effort. 

 

In 1981, Hamada [38] employed a double Laplace transform to evaluate the response of 

a simply supported damped Euler-Bernoulli beam under the action of moving forces. 

Hamada obtained the forced vibration part of the transient response in closed form 

Fourier summation series. 
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Mulcahy [39] discussed the dynamic response of single span multi-girder bridges due to 

vehicular loads using a finite strip method. Mulcahy used an orthotropic plate model to 

represent the bridge structure as simply supported on two of its opposite sides and free on 

the other pair of edges, and analyzed the dynamic response of a three axle tractor-trailer 

vehicle. He included effects of vehicle acceleration or braking, deck surface waviness 

effects and the effect of eccentric loading due to placement of the vehicle on one side of 

the plate. He used Newmark’s method to numerically integrate the equations of motion in 

time. 

 

In 1985, Olsson [40] used the finite element method to analyze the effect of moving 

forces traversing a simply supported beam at uniform speed. The beam was assumed to 

have a harmonically varying surface profile and the generalized modal coordinate method 

was applied to simplify the solution procedure and Newmark’s method was used to time 

integrate the equations of motion. 

 

Palamas et al. [41] studied the effects of surface waviness on the dynamic response of 

bridges subjected to moving loads using the Rayleigh-Ritz method and demonstrated the 

need for inclusion of dynamic effects into bridge design codes. Hino et al. [42] used a 

Galerkin finite element formulation to calculate beam deflections under the action of a 

moving load. They included the geometric non-linearity associated with the stretching of 

the middle surface due to axial loads. 

 



 

22 
 

In 1987, Sadiku and Leipholz [43] used Green’s functions to present a series solution for 

the dynamic response involving moving masses. They compared the solutions for the 

moving-mass and their corresponding approximated moving force models, and concluded 

that the moving-force solution was not always an upper-bound solution as suggested by 

Timoshenko et al. [15] earlier.  

 

Wu et al. [44] analyzed the dynamic response of a continuous flat plate under various 

moving loads using the finite element method and discussed the effects of eccentricity, 

acceleration, and initial velocity of the moving load, and the plate span length on the 

dynamic response of the system. They claimed that the dynamic behavior of plate 

structures depends on the eccentricity of the applied load on the plate. They also 

concluded that, if the initial velocity of the moving load is kept constant, a larger 

acceleration yielded smaller fluctuations in the dynamic response and, for specified 

system parameters, increased acceleration values resulted in an increased maximum 

central displacement up to a certain initial velocity ( '
0V ) but produced a decreased 

displacement after the initial velocity exceeded '
0V . They also showed that, for a single-

span plate, a larger span length resulted in higher fluctuations of the maximum central 

displacement corresponding to changes in velocity of the moving load. 

 

In 1990, Geannakakes and Wang [45] applied a finite strip method to analyze moving 

load problems involving arbitrarily shaped plates. They used B3-splines (for the long 

direction) in combination with Hermitian polynomials (for the short direction) to 

interpolate the displacement function. Further, the governing equation of motion was 
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numerically integrated using Houbolt’s [12] and Zienkiewicz et al. [126] time integration 

methods. The plate was assumed to be simply supported on all sides, with the load 

traveling along the plate’s center-line, and hence, by the use of symmetry, only half the 

plate was included in the analysis. This work is one of the few studies based on finite 

strip techniques to perform moving load analysis.  

 

In 1990, Mackertich [46] studied the dynamic response of a simply supported 

Timoshenko beam subjected to moving force. He used the modal superposition method to 

compute the deflections of the Timoshenko beam under a moving constant force and 

compared the solutions with those for Euler-Bernoulli beams. A couple of years later, 

Mackertich [47] also studied the Timoshenko beam under the action of a moving mass 

wherein he approximated the total time derivative of the vertical displacement of the 

mass using its partial time derivative so as to remove the mixed derivatives in the 

acceleration expression. 

 

In 1992, Ahmed H. Kashif [48] in his studies discussed the formulation of bridge design 

procedures using the relationships between the major parameters affecting the bridge 

response for both single and two-axle vehicle models. Kashif investigated the response of 

a bridge structure modeled as a rectangular plate (both isotropic and orthotropic) under 

the action of multiple moving bodies, each of them represented by a single sprung mass. 

Kashif also studied the forced vibration response of a box girder bridge under the action 

of moving vehicle loads, and found that the dynamic response of the bridge is dependent 

on the frequency ratio (φ), the mass ratio (κ), the speed parameter (α), the aspect ratio, 
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and the flexural and torsional rigidity distribution of the bridge. In all the cases above, 

Kashif ignored the effect of damping in the bridge and the vehicle. 

 

In 1993, Nassif [1993, 49] and his group experimentally investigated the static and 

dynamic responses of slab bridges due to truck loads with weigh-in-motion (WIM) and a 

dynamic data acquisition system. A couple of years later, Nassif and Nowak [1995, 50] 

and their group conducted field tests to experimentally determine the dynamic load factor 

(DLF) of slab-on-girder bridges. 

 

Green and Cebon [1994, 51] evaluated the dynamic response of a bridge system with a 

convolution integral expressed in terms of modal responses and then solved it in the 

frequency domain using a discrete Fourier transform. They also treated the vehicle-

bridge interaction with an iterative scheme in which the initial set of vehicle wheel loads 

calculated from the vehicle response is used for deducing the displacement response of 

the bridge, and the bridge response is added to modify the vehicle response (so that new 

wheel loads can be predicted) for further iteration. They also carried out experimental 

investigations on two highway bridges in the UK (one being a four span pre-stressed 

concrete box-girder bridge and the other a three-span slab-on-girder pre-stressed concrete 

bridge) and validated the measured bridge response data with those predicted from the 

convolution integral formulation. The mode shapes recorded during the experimental 

procedure were used in the validation model. 
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In 1995, Yang and Lin [53] applied a sub-structuring procedure (based on the modified 

condensation technique proposed by Paz [52]) to divide the vehicle and bridge system 

such that the model consists of vehicle-bridge interaction elements at places of contact 

between vehicle and bridge, and only bridge elements at the rest of the points. The 

vehicle-bridge interaction element is a condensed form of the vehicle suspension unit and 

the bridge element. The equations of motion for the suspension unit and the bridge 

element at the point of contact were coupled through the contact force that varies in time 

and space (position along bridge). Also, constraint conditions were developed such that 

there is no loss of contact between the vehicle and the bridge. The substitution of the 

contact force from the suspension unit governing equation (in terms of the constraint 

conditions) into the bridge element modifies the bridge element at the points of contact. 

They also treated the bridge deck road roughness in the VBI studies using a power 

spectral density (PSD) function. 

 

In 1996, Michaltsos et al. [54] used a similar approximation as Mackertich and obtained a 

series solution for the beam deflection in terms of normal modes. They used an Eigen 

solution to reduce the governing differential equation to contain only modal coordinates 

and found the first approximate solution to the reduced modal equation by neglecting the 

additional term due to inertia of the moving load. By iterating the solution in the reduced 

modal equation, they obtained an exact solution that addresses the mass effects of the 

load. 
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 Ali Al-Sowaidi [55] studied the vehicle-truck interaction using the finite element method. 

Al-Sowaidi included viscous damping in the bridge and vehicle, and used beam elements 

to model the bridge. He found that increased axle weight, stiffness coefficient of the 

wheel, bridge span length, and wheel damping coefficient resulted in increased transverse 

displacement of the bridge as well as a higher interaction force between vehicle and 

bridge. 

 

Lee [56] presented a numerical solution based on the Runge-Kutta-Nyström  method for a 

clamped-clamped beam acted upon by a moving mass using the assumed mode method. 

Lee also showed, using calculations, the possibility for the mass separating from the 

beam for certain slow speed and low mass combinations. The study also agreed with 

Sadiku and Leipholz [43] that the approximation using a moving force model is not 

always conservative. 

 

Yang and Fonder [1996, 57] studied bridge-vehicle systems by uncoupling the bridge and 

vehicle equations of motion, and solving them separately using an iterative procedure 

based on the Newmark time integration method. They included a specific relaxation 

coefficient for the iterative scheme and claimed that their iterative scheme coincides with 

the Green and Cebon [1994, 51] procedures for a relaxation coefficient of 0.5. They also 

pointed out that a relaxation coefficient close to 0.85 is needed for a good iterative 

scheme, i.e., for a better convergence rate. They also applied Aitken’s acceleration 

method [127] to this iterative scheme as an alternative to the relaxation procedure. Both, 

the relaxation coefficient and the Aitken acceleration procedures were used to control 
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(increase) the convergence of the iteration process. Both these methods can be applied 

instead of direct time integration methods to solve for the dynamic response of bridge and 

vehicle systems. They also concluded that Aitken’s acceleration method works better than 

the relaxation coefficient method. 

 

In 1997, Green and Cebon [58] conducted parametric studies on the effects of several 

bridge-vehicle parameters on the dynamic response of bridges to assess the importance of 

vehicle to bridge interaction, and showed the maximum error in the dynamic response, 

when vehicle interaction is ignored, to be around 11 % and 22 % for speed parameters 

2.0 and  1.0=α , respectively. They concluded that vehicle interaction can be safely 

ignored in bridge response calculations either if both 1.0<α   and vehicle to bridge mass 

ratio 3.0≤κ  are valid, or if the vehicle to bridge frequency ratio is 5.0<γ . 

 

In 1997, Xu et al. [59] formulated coupled equations of motion governing the transverse 

and longitudinal displacements of a finite beam subjected to a moving mass using 

Hamilton’s principle and then solved the resulting boundary value problem using the 

finite difference method combined with perturbation techniques. They found that, within 

the elastic limits, the coupling between the longitudinal and transverse motion doesn’t 

differ significantly from that of pure bending with no friction and that the friction factor 

influences the longitudinal motion. 

 

Yang and Yau [60] improved the dynamic condensation method introduced by Yang and 

Lin [53], and proposed a vehicle-bridge interaction element formed by condensing the 
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sprung mass element discretized in Newmark’s finite difference scheme to the bridge 

elements at contact points. 

 

Pesterev and Bergman [61] presented a series solution for the response of a conservative 

1D elastic continuum carrying a moving oscillator by reducing the governing equation of 

the system to a Volterra equation of the second kind. 

 

In 1998, Foda and Abduljabbar [62] improved the application of Green’s function 

proposed by Ting et al. [35] to evaluate the dynamic response of a simply-supported 

beam under the effects of a moving mass. They presented a dynamic Green’s method 

which reduced the complexity involved in computing the deflection using the original 

Green’s function. 

 

Henchi et al. [63] treated the dynamic interaction between bridge and vehicle using a 

coupled finite element formulation which was then solved by a central difference scheme. 

The coupled system consists of modal components of the bridge and physical 

components of the vehicle. They also treated the bridge surface waviness using a power 

spectral density function. 

 

Kai Deng [64] discussed the dynamic response of a vehicle moving over skew slab 

bridges, skew slab-on-girder bridges and multi-span continuous and cantilever bridges 

using the finite element method. The vehicle was modeled as a single axle sprung mass, 

the skew slab was modeled by plate elements and the girders by beam elements, and 
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damping in both the bridge and the vehicle was neglected. Deng concluded that skew 

bridges with different aspect ratios yield similar responses if they have the same 

frequency ratio (φ), speed parameter (α), skew angle (θ), and mass ratio (κ). Deng also 

showed that the first and second frequencies of the skew bridges get close to each other 

as the skew angle is increased. 

 

Tan et al. [65] used 2D grillage to model the bridge structure and analyzed the vehicle 

bridge interaction with a full car model of seven DOF (one vertical displacement motion 

each for the four wheels, and roll, pitch and vertical motions for the vehicle chassis), and 

concluded that the vehicle response reaches steady state along its traverse after an initial 

excitation and is unaffected for a wide range of speeds but the bridge response is highly 

influenced by the vehicle speed. 

 

Marchesiello et al. [66] studied the moving load problem by modeling the bridge as a 

continuous multi-span isotropic plate and obtained the response using the mode 

superposition principle. The study included both the flexural and torsional mode shapes, 

and used the Rayleigh-Ritz method to compute the modes. 

 

In 2000, Huan Zeng [67] proposed a semi-analytical method using the mode 

superposition principle to study the vibration of bridges under moving vehicles, where 

the bridges were modeled as orthogonally stiffened skewed plates and a three-axle 

vehicle model was chosen to represent the moving load. Zeng used a pb-2 Rayleigh-Ritz 

function to solve for the mode shapes and natural frequencies. 
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Yang et al. [68] discussed the asymptotic behavior due to a change in stiffness of the 

suspension spring in an undamped 1-DOF oscillator traversing a 1D elastic continuum, 

and showed that, as the stiffness approaches infinity, the moving oscillator model reduces 

to a moving mass model. They also provided an exact integral formulation for the 

response solution of the coupled system which required integration only in the time 

domain, and proposed a direct integration approach to solve for the response. They also 

demonstrated their direct integration procedure by solving for the displacement response 

of a taut uniform string and a simply supported beam subjected to moving loads. 

 

Zhu [69] analyzed the dynamic behavior of a continuous bridge deck under moving loads 

and included influence factors such as road surface waviness of the bridge and presence 

of multiple vehicles and their relative positions on the track, braking (deceleration) and 

acceleration effects, using computational simulations and laboratory tests. Zhu also 

addressed two new methods based on a regularization technique to identify the time 

varying loads from moving vehicles. 

 

Yang Lee [70] proposed a method using complex eigenfunction expansion to evaluate 

coupled dynamic vehicle-bridge interaction problems. Lee based his technique on 

Galerkin’s method of Eigenvalue estimation using complex Eigenfunctions and 

concluded that this method is effective when large numbers of trial functions are used. 

 

Nassif et al. [2003, 71] developed a computational model based on the Newmark 

algorithm to evaluate the DLF’s of the bridge system. They validated their computational 
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procedure using experimental data obtained previously [1993 49 and 1995 50]. They also 

compared their computed and experimental DLF values to the DLF data suggested in the 

AASHTO-LRFD (1998) specifications. Recently, Nassif and Liu [2004, 72] discussed the 

effect of road waviness using a randomly (Gaussian) generated profile as well as 

measured actual road waviness profile data. In their three dimensional vehicle bridge 

interaction system, they used a grillage model loaded with a five axle vehicle system 

having eleven degrees of freedom to analyze the dynamic behavior of a slab-on-girder 

bridge under a moving semi-tractor-trailer. They also included a brief summary of 

research performed on slab-on-girder bridges. One interesting feature is the summary of 

selected research in table form with associated key aspects. 

 

Recently, Bilello et al. [73] presented their experimental observations on a small-scale 

bridge model under a moving mass. They determined a set of static and dynamic 

similitude conditions using a selected prototype bridge structure and studied the bridge 

response using a similitude-maintained small-scale model (especially mass similitude). 

They confirmed the experimental results using an analytical series expansion method 

with Eigenfunctions. 

 

Other literature references related to the moving load problem but not included in the 

survey are in the area of vehicle axle load identification from bridge responses [Law et al. 

2004, 74, Pinkaew 2006, 75], extraction of bridge frequencies from the vehicle response 

[Yang et al. 2004, 76], damage detection of bridge structures under moving loads [Zhu 

and Law 2007, 77], etc. 
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1.4.3 Selected Works – A short note on the research program at OU: 

The studies related to bridge life enhancement at the University of Oklahoma were 

initiated by Patten and associates/coworkers [1996 [78], 1999 [79]] at the Center for 

Structural Control, Norman Campus. Other studies on the dynamic response of bridge 

structures under moving loads carried out at OU include Taheri et al. [80, 81], who used 

structural impedance and the finite element method, and Bert and Zeng [82], who used 

pb-2 Rayleigh-Ritz functions. 

 

The application and installation of structural vibration mitigation mechanisms on 

highway bridge structures was suggested earlier by Abdel-Rohman et al. [83] and Lin and 

Trethewey [84] but their models were based on an active structural control system. Patten 

et al. [1996 [78], 1999 [79]] proposed a semi-active mechanism to reduce the vibration 

response of bridge structures subjected to vehicular loads through their Intelligent 

Stiffeners for Bridge (ISB) concept, i.e., through the use of intelligent stiffeners 

retrofitted to an existing bridge, allowing varying the stiffness appropriately as traffic 

loads over the bridge vary. The stiffness regulation is possible through an adjustable 

semi-active vibration absorber (SAVA) system energized by a 12 volt automobile battery 

supply. The SAVA offers a good trade-off between a fully passive or fully active 

controller, i.e., the semi-active controller uses only little power (battery supplied) but 

behaves adaptively and provides control for stiffness regulation. 

 

As a preliminary step to install and test the ISB at an existing bridge, Patten et al. [1999, 

79] performed drop hammer tests on the I-35 north bound Walnut Creek bridge located at 
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Purcell, Oklahoma, to get modal properties of the bridge, and also to validate their finite 

element model built using I-deas. 

 

 

 

Figure 1.1: Intelligent Stiffener for Bridge (ISB) attached to Walnut Creek Bridge 

 

The Walnut Creek bridge is a four span skewed bridge supported by three concrete piers 

at intervals of 30.5 m. The bridge has four lanes, two each for north and south bound 

traffic, with the north bound side measuring approximately 10.4 m in width. The bridge 

superstructure consists of a reinforced 0.19 m thick concrete deck resting on five 

continuous steel girders weighing 196.5 kg/m (mass per unit length or linear density) with 

an external attachment of a set of 12 piezo-resistive accelerometers each along the girders 

at two ends and center such that three accelerometers are available to record the 

acceleration data per girder per span. The other attachments includes a string 

potentiometer at the center point of each span (along the center girder) for measuring 



 

34 
 

absolute displacement of the superstructure, and strain gages for measuring mid-span 

strain of the girders. 

 

 

Figure 1.2: Walnut Creek Bridge details (Courtesy: Patten et al. [79]) 

 

 

Figure 1.3: Front view (Cross-section) of Walnut Creek Bridge (Courtesy: Patten et al. [79]) 

 

Two types of trucks were considered for the bridge tests, of which the heavier type 

carried rocks and gravel and weighed about 36,320 kg (or 40.036 tons force ≡ 80.1 kips in 

US units), and had five axles with a 9.8 m wheel base. The other truck type was a tandem 
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load type (steering and tandem axle only) vehicle with a permissible load of 25,880 kg (or 

28.5 tons force  ≡ 57.1 kips) and a 4.3 m wheel base. 

 

Patten et al. [1999, 79] concluded that their proposed ISB model could reduce the peak 

stresses by over 50%, and extend the service life of bridge structures by 50 years. Some 

of the key findings of this research work included 1) the extraction of modal frequencies 

of the bridge from drop hammer tests, 2) a successful finite element validation model 

matching closely with the experimentally recorded modal frequencies, 3) recorded data 

showing the presence of a dynamic coupling phenomenon between heavy trucks and 

bridge response, and 4) an experimentally observed substantial reduction in the vibration 

response of the bridge system with a passive ISB (open SAVA control valves) 

immediately after the passage of a heavy truck compared to that of a bridge system 

without ISB, and a similar reduction in bridge response even during the passage of heavy 

trucks at high speeds with active ISB (closed SAVA control valves). 

 

They also confirmed that the dominant responses of the bridge were limited to modal 

frequencies below 10 Hz which indicated the optimum range for the required bandwidth 

of the controller hardware. Because the natural frequencies of heavy truck-trailer systems 

also lie in the above frequency range (first natural frequency of the truck may likely be in 

the range 3-5 Hz), more dynamic effects due to vehicle-bridge interaction were observed. 

The SAVA implementation is complete but not included in standard bridge design 

practice probably due to concerns that the SAVA is an external attachment to the bridge. 
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The patented work is now owned by the firm Scrub Oak Technologies Inc., Norman, 

Oklahoma. 

 

Baldwin and DeBrunner along with their coworkers [2005, 85], continued the research 

initiatives of Patten et al. [1999, 79] but later shifted their focus from stiffness regulation 

of bridge structures to developing an intelligent vehicle bridge system (IVBS). The IVBS 

consists of two main functional modules, namely, the intelligent bridge system (IBS) and 

smart shock absorbers (SSA). The IBS enables continuous monitoring of the vibration 

response and integrity (health status) of the bridge structure remotely to a central 

monitoring station. The SSA installed on the vehicle reduces the structural damage 

imparted to the bridge structures by the intelligent control of dampers in real time. 

 

Thus, the IVBS objectives are twofold in that it is aimed to reduce the vibration response 

of bridge structures, enhancing their service life, and to improve the riding comfort of 

passengers by the use of smart shock absorbers to be installed at several locations of the 

vehicle. This also eliminates the concern of bridge structural design engineers, who don’t 

want to install additional mechanical vibration controller components on bridge structures 

that interfere with the dynamical response of the bridge structure and that are not 

recommended in current bridge design practice, i.e., in the AASHTO standard 

specifications. However, although external vibration controller mechanisms are avoided 

in the IVBS project, still, some monitoring attachments such as accelerometers and strain 

gages need to be installed on the bridge structures. 
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Smart shock absorbers were designed so as to adjust their stiffness according to the 

vibration response of the bridge structure (data supplied remotely from the bridge) during 

their traverse over the bridge. They use a definite scheme of damper properties at other 

times, i.e., during their traverse over roads before and after passing the bridge. The IVBS 

project is progressing toward the final phase of testing and validation of the IBS and 

SSA. 

 

This thesis is limited to the application of numerical methods to analyze the dynamic 

response of idealized bridge structures under moving loads using simple models. The 

following sections serve as a brief introductory text to the Differential Quadrature 

Method (DQM), and also summarize the organization of this thesis. 

 

1.5 Introduction to Differential Quadrature Method (DQM): 

The Differential Quadrature Method (DQM) was introduced by Bellman and Casti [87] 

in the early 1970s as a numerical technique to approximate the partial derivatives of a 

function in terms of function values. The DQM is primarily used to solve initial and/or 

boundary value problems encountered in several engineering topics. Bert and Malik [88] 

published a review article on the DQ method, demonstrated its capabilities through a 

variety of sample problems and discussed the contributions of several researchers to this 

method since its introduction (in 1971) through 1996. Probably the only monograph 

available to date on this special technique is due to Shu [89] which also discusses the 

historical developments of the method with some demonstrations on the application of 

the method to solve different problems. A brief literature survey on the DQM is included 
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in the next chapter to outline the development and application of DQM over the last 35 

years. 

 

The DQM numerically approximates the partial derivative of a function with respect to a 

space (or time) variable at a given discrete point as a weighted linear sum of function 

values at all discrete points in the domain of that variable. Mathematically, this can be 

explained [88] as follows: - 

 

“If ψ(x, y) is a function defined using space variables (x, y) such that ax ≤≤0 , 

by ≤≤0 , and let the domain be divided into Nx and Ny points along x and y, 

respectively, then a rth-order x-partial derivative of the function ψ(x, y) at a point ixx =  

along any line jyy =  parallel to the x-axis may be written as 
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and a sth order y-partial derivative at a discrete point jyy =  along any line ixx =  parallel 

to the y-axis may be written as 
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where )(r
ikA  and )(s

jlB  are the respective weighting coefficients, and ),( jiij yxψψ = ”.  (The 

above definition is a quote from Bert and Malik [88])  
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 The principal attractive features of the DQM are its simple procedure and 

straightforward implementation in any solver, solution accuracy versus grid density (or 

number of nodes used in 1D), ability to represent mixed derivatives, flexibility to use 

different test functions, one time determination of weighting coefficients, etc. Some of 

the disadvantages include its limited applications to simple geometries such as beams and 

plates, and restrictions on the choice of nodal points. 

 

This study applies DQM to solve the transient dynamic problem involving beams and 

plates subjected to moving loads and masses, and Mathematica 5.2/6.0, is used to 

implement the DQM procedure. The implementation procedure involves choosing test 

functions, determining weighting coefficients, and converting the existing governing 

differential equations, boundary and initial conditions into linear algebraic equations that 

can be solved by any standard method such as the Gauss-Seidel method. 

 

1.6 Moving load analysis using DQM – Scope of present study: 

In the past, the DQM has been primarily used to solve either initial value or boundary 

value problems. Wu et al. [90] applied DQM to solve the forced vibration of an Euler-

Bernoulli beam, an initial boundary value problem with the forcing function sinusoidal in 

time. This thesis study followed their work and applied the DQM to solve moving load 

problems. The methodology was also extended to study vehicle-bridge interactions (VBI) 

phenomenon. 
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One of the difficulties associated with the moving load problem is that the forcing 

function varies in space and time. The versatility of the DQM to simultaneously express 

spatial and temporal derivatives in a partial differential equation (PDE) is utilized to 

solve moving load problems without much difficulty. On the other hand, the application 

of finite element method involves the use of time integration methods such as Newmark’s 

or Houbolt’s scheme in addition to spatial interpolation functions to solve for moving 

load problems. Since the FEM has emerged as a well established procedure to analyze 

irregular/complex geometries, it seems to offer various attractive features like graphical 

interface and matrix reduction techniques. All these features can also be integrated into 

DQM to obtain a similar package as FEM is, and some of the foundation works were 

seen in the Generalized and Extended Differential Quadrature Element Methods 

(GDQEM and EDQEM). 

 

In a moving force model, the forcing function is assumed to be a constant force 

representative of the weight of the moving load, and any contribution to the forcing 

function due to inertia effects of the moving load is neglected. However in a moving 

mass representation, the contribution of inertia effects to the forcing function is included, 

and a solution to such a problem requires the use of an iterative method. A first 

approximate displacement solution is obtained with a moving force model which is then 

used to compute the contribution of inertia terms to the moving mass system, and the 

resultant system with the updated forcing function is solved further to improve the 

previous solution. This process is iterated until the solution converges. 
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The vehicular interactions in the vibration of bridge structures are studied in a similar 

manner. In this case, the vibration responses of the bridge structure and the vehicles are 

coupled, and a moving oscillator model is used to study the VBI. The moving oscillator 

consists of a sprung mass (representing the vehicle chassis load), and an unsprung mass 

(representing the wheel and axle load) which are connected via spring and dashpot 

system. The displacement solution for moving force problem is obtained neglecting the 

inertia effects of both the masses, and is substituted in the governing equation of sprung 

mass to compute the vertical displacement of the sprung mass. Again the above system of 

equations is iterated until the solution converges. 

 

The DQM can be applied either directly to express the spatial and temporal derivatives 

together, or after separating the spatial terms from temporal terms (assumed or 

generalized mode decomposition principle). The latter method is very effective and 

reduces the overall computational time involved. The Lagrange and Spline interpolating 

polynomials can be used for spatial domain, and Lagrange, Spline, and Hermite-Fejér 

interpolating polynomials can be used for temporal domain. 

 

The scope of present study is limited to simple beam and plate structures representative 

of fundamental bridge structures. Thus several design parameters of an actual bridge 

structure are left out, and only those vital parameters such as span length, cross-section 

area, density, etc are taken into account. The effect of multiple moving loads is addressed 

with a two point load system, and then extended to a two axle load system. 
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A simple Euler-Bernoulli beam model is used to represent 1D beam structures. A 

Kirchhoff-Love model representing a uniform isotropic rectangular plate structure is used 

to study the dynamic behavior of 2D structures subjected to moving loads. The effect of 

concentrated moving load is approximated using Fourier sine series representation. The 

use of approximate series representation for a concentrated load eliminates the need for 

application of external time integration (direct integration) methods such as Newmark 

method. 

 

1.7 Overview of dissertation manuscript: 

Since this thesis focuses on the application of DQM to solve moving load problems, a 

brief introduction to the DQM with a sample application of the DQM to solve free 

vibration problems in beams and plates is provided in the second chapter. In the third 

chapter, moving force and moving mass models for beam geometries are discussed with a 

point force and a point mass, respectively. The fourth chapter extends the moving 

constant point force analysis to study the moving two point load scenario. The vehicle 

bridge interaction (VBI) effects using a moving single oscillator model is presented in the 

fifth chapter which is then extended in the sixth chapter to study the two axle moving 

load oscillator system. The last chapter covers the application of DQM to solve moving 

point force problems in 2D structures using Kirchhoff-Love plate model. 
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Chapter 2: Differential Quadrature Method 
 

2.1 Introduction: 

The Differential Quadrature Method (DQM) is used to numerically approximate a partial 

derivative of a function at any point in a domain with a weighted linear sum of function 

values at all points in the respective domain. If ),( yxψ  is the function distributed in x-y 

domain and the whole domain is discretized into NM ×  grids, i.e., with M points along 

x-axis and N points along y-axis, then the function’s rth order x-partial derivative value at 

a point ixx =  along any line jyy =  parallel to x-axis is written in DQ form as, 
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where ijψ represents ),( ji yxψ , ),( rx
ikA  is the x-axis weighting coefficient at kxx =  for the 

rth order. For simplicity, while specifying the weighting coefficients, only the variable of 

differentiation is denoted in the superscript, and the order is identified by alphabetical 

manner, i.e., A, B, C, D represents 1st, 2nd, 3rd, and 4th order coefficients, respectively. The 

weighting coefficients are computed usually by assuming generic polynomials or 

Lagrange polynomials as test functions. 

 

Since the introduction of DQM, a high volume of research papers were published, and the 

following survey on DQM briefs here only a selected few important developments in the 

DQ technique in chronological order. 
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2.2 A brief literature survey on DQM: 

The concept of differential quadrature method appeared in the form of exercise problems 

in a text book by Hamming [86]. The credit for extending this text book example into a 

standard methodology goes to Bellman and Casti [87] who in 1971 proposed the 

differential quadrature method to solve initial value problems. They discussed differential 

quadrature as an alternative to long term integration for providing 1) numerical stability 

against accumulation of error at each time steps, 2) number of time steps required for 

acceptable solution accuracy, and 3) reasonably accurate solution at fewer grid points as 

opposed to highly accurate determination of the entire set of values in the function 

domain. 

 

In 1972, Bellman et al. [91] demonstrated the applicability of differential quadrature 

method in solving partial differential equations governing fluid flow and turbulence 

criterion, and were able to obtain high accuracy in lieu of fewer grid points used. The grid 

points used in this study corresponded to zeros of shifted Legendre polynomials. 

 

In 1977, Mingle [92] studied nonlinear transient heat conduction phenomenon in one 

dimension using differential quadrature, and presented an efficient method to treat the 

boundary conditions, according to which, the governing equation is applied to all the 

inner grid points leaving out the end points of the domain exclusively to represent 

boundary conditions. The differential analogs of boundary conditions are written in a 

similar manner as that of governing equation, and both the governing and boundary 

conditions are assembled together for the whole domain. 
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In the next few years, Civan [93], and Civan with Sliepcevich [94] extended the 

application of differential quadrature to transport phenomena problems. They generalized 

the DQM to consider initial boundary value and boundary value problems defined in 

three dimensions, and successfully applied DQM to solve three dimensional transient and 

steady state problems. They also utilized the concept of domain decomposition to add 

flexibility in the application of differential quadrature to split large domains (that would 

require higher number of grid points and hence computational resources) into smaller 

sub-domains for computational efficiency. Also it is worth mentioning here that Civan [] 

later developed a novel technique called Differential Cubature Method (DCM) intended 

for three-dimensional analyses. 

 

In the year 1987, Jang [95] contributed structural mechanics studies with his successful 

implementation of DQM in static analysis of structural components. Jang et al. [96] 

demonstrated the application of DQM to solve free vibration of structural components, 

and bending of beams and plates. In their work, they used classic power polynomial test 

functions and derived weighting coefficients for 1st, 2nd, 3rd, and 4th derivatives using 3, 4 

and 5 equally spaced nodal points. They defined grid points very close to end points of 

the grid to handle multiple boundary value problems. For example, in case of a beam 

under bending which is a fourth order boundary value problem requiring two boundary 

conditions to be satisfied at each end. This method of implementation of multiple 

boundary conditions by introducing fictitious grid points near the ends is referred as δ-

technique. 
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In 1989, Quan and Chang [97, 98] showed that the general collocation method 

[Finlayson 1972 review] and differential quadrature method are equivalent procedures. In 

their work, they also derived explicit formulae for weighting coefficients considering 

Lagrange and Jacobi polynomial test functions. They also indicated the computational 

comfort achieved when the grid points are symmetrically distributed (for symmetric 

analyses). However one of the advantages of explicit formulae for weighting coefficients 

is that there is no restriction whatsoever on the distribution of grid points. Their work 

demonstrated the advantages of using explicit formulae for determining DQ weighting 

coefficients over the inversion of Vandermonde matrices which was widely followed 

then. 

 

It should be noted that the Vandermonde matrix becomes ill-conditioned and leads to 

erroneous determination of weighting coefficients when the number of grid points is 

increased beyond a certain number. The problem can be alleviated if a special algorithm 

is used to invert the Vandermonde matrices, and one such algorithm by Björck and 

Pereyra [99] is cited in the review paper by Bert and Malik [88] who argued that the use 

of algorithm produced weighting coefficients as good as other procedures. 

 

In 1992, Shu and Richards [100] published similar procedure of determining explicit 

formulae for weighting coefficients, and in that they derived weighting coefficients of 

higher order coefficients using a recurrence relationship, and introduced the method as 

Generalized Differential Quadrature Method (GDQM). It is worth to note that Quan and 

Chang [97, 98] has already expressed a recurrence relationship for 2nd order weighting 
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coefficients in terms of the 1st order weighting coefficients. Shu and Richards also 

claimed that the DQM is equivalent to the highest order Finite Difference Method (FDM) 

which is verified to be true. However DQM is now recognized as a unique method for its 

simplified methodology and easiness in software implementation of the scheme.  

 

In 1994, Striz et al. [101] applied domain decomposition principle and solved truss and 

frame problems using DQM, and called the procedure Quadrature Element Method 

(QEM). Wang et al. [102] and Bert and Malik [103] modified the weighting coefficient 

matrices to implement part of the boundary conditions in a multiple boundary problem, 

and reported improved solution accuracy for specific beam and plate problems. In 1996, 

Bert and Malik [88] reviewed the historical and technical aspects of DQM, and discussed 

the advantages and limitations of DQM as a numerical approximation technique. 

 

In the years 1996 and 1997, Wang et al. [104] and Wang and Gu [105] defined additional 

degrees of freedom to end points for tackling multiple boundary conditions. Wang et al. 

[] called this technique, the Differential Quadrature Element Method (DQEM) as it is an 

extended version of QEM. 

 

In 1999, Chang-New Chen [106] introduced Extended Differential Quadrature (EDQ) 

method that allows to define partial derivatives of function at discrete points which can 

be different from nodes i.e. approximation of function derivatives is possible at any point 

as a weighted linear sum of function values at all nodes. He also applied EDQ based 

GDQ to add flexibility in treating boundary conditions at element interfaces. 
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Chang-New Chen [107] and Wu and Liu [108] independently proposed an improved 

version of DQM and named it Generalized Differential Quadrature (GDQ) and 

Generalized Differential Quadrature Rule (GDQR), respectively. The essence of the 

GDQ and GDQR is derived from the concept of DQEM i.e. inclusion of additional 

degrees of freedom. Thus according to GDQ(R), partial derivatives of a function at any 

point is written as a weighted linear sum of the values of function and/or its possible 

derivatives at all nodes in that domain. The main difference between the DQEM and the 

GDQR is that the GDQR is applicable to any higher order of differential equations while 

the DQEM is developed mainly to solve a fourth order differential equation (which has 

two boundary conditions at each end points) i.e. if an higher ( th4> ) order differential 

equation require satisfying more than two boundary conditions at a point. 

 

In 2000, Chen et al. [109] introduced DQ scheme built on a Galerkin weak formulation 

that increased the convergence rate with only a few grid points, and also discussed the 

influence of collocation points on the solution accuracy. 

 

In 2002-03, Wu et al. [110] and Shu et al. [111] independently showed that DQM can be 

employed to spatial and temporal domains simultaneously. Shu et al. [111] used the 

Lagrange interpolation scheme for determining weighting coefficients, and called the 

method, ‘Block marching technique’ since solution is obtained progressively from the 

initial conditions. Wu et al. [110] showed that GDQR can be applied to define both the 

spatial and temporal derivatives simultaneously, and demonstrated the application by 

solving forced vibration of Euler and Timoshenko beam which is a fourth order in space 
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and second order in time domain initial boundary value problem. They used Hermite-

Fejér interpolation functions to interpolate the deflection function of beam in spatial and 

temporal dimensions. Their work fascinated the authors of this paper to explore the 

application of DQM to solve for moving load problems. Before Shu et al. [111] and Wu 

et al. [110], the methodology to tackle space-time differential equations was to reduce 

them to one variable (time) using DQM and apply time step integration methods 

[Newmark] on the resultant equation to solve for the system. 

 

Karami and Malekzadeh [112] combined the principles of DQEM and GDQ in their 

built-in method and devised a DQ scheme incorporating boundary conditions. They 

considered the displacements as the only DOF within the spatial domain (excluding the 

boundaries), and added additional degrees of freedom specifically second derivatives of 

displacement as independent variables along the boundaries. 

 

2.3 Methodology of DQM: 

The application of DQM to solve any differential equation requires predetermination of 

weighting coefficients and appropriate treatment of boundary and initial conditions. 

Further the determination of weighting coefficients depends on the choice of test 

functions. The DQM can be classified into several categories based on the type of test 

functions/interpolation polynomials are used for finding weighting coefficients, how the 

solution variable is expressed – use of function values (Classic DQM) or both the 

function values and its differentials (Generalized DQM), how the boundary or initial 

conditions are applied, and choice of grid points (equally or unequally spaced grid 
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points). Shu and Richards [100] pre-pended the term “Generalized” to DQM to 

differentiate their approach of using different test functions. Later the term “Generalized” 

also stood for defining additional degrees of freedom and to accommodate a variety of 

boundary conditions (e.g. GDQEM and GDQR) otherwise difficult through traditional 

practices. In the following sub-sections, the power polynomial and Legendre polynomial 

test functions are included as classic DQM, and the Lagrange and Hermite interpolation 

type polynomials are listed as generalized DQM. 

 

2.3.1 Choice of test functions and Classic DQM: 

The test functions for computing DQ weighting coefficients should comply with the 

completeness requirement [88] as per which the chosen test functions should be 

differentiable up to the highest order of differential equation to be solved.  

 

These test functions are used to interpolate the function values in the grid domain, and a 

popular choice is a power polynomial. Bellman et al. [91] used monomial basis 

polynomials and Legendre polynomials as test functions in DQM. In the latter case i.e. 

the Legendre polynomial test functions, grid points are roots of shifted Nth order 

Legendre polynomials, and once N is chosen, the distribution of grid points is fixed. The 

former case i.e. monomial basis power polynomial offers some flexibility in the 

distribution of grid points, and the procedure for determining the weighting coefficients is 

discussed here briefly for monomial basis polynomial test functions. The minimum 

number of grid points (nodes) in any variable coordinate direction is one plus the highest 
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order of derivative of function with respect to that variable appearing in the differential 

equation.  

 

For example, assume that the differential equation to be solved contains differentials of 

)(ξF  with respect to normalized space variable ξ . In this case, a test function 

1)( −= γξξF  is chosen such that M...,,3,2,1=γ  where M is the number of grid points 

along ξ -axis. If there are three grid points in the domain i.e. 3=M , then we have 

monomials of polynomial, },,1{)( 2ξξξ =F . The 1st and 2nd order derivatives of )(ξF  

are approximated as, 
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where )3( 3 and ,2,1 == Mγ . 

 

The superscripts 1 and 2 in terms )1,(ξ
ikA  and )2,(ξ

ikB  denote the 1st and 2nd order 

differential, respectively. Each of the above equations results in a system of MM ×  

linear equations with MM ×  unknowns in A or B when supplied with grid point values, 

and are solved for weighting coefficients, A or B, respectively. Here the weighting 

coefficients for 3rd order derivatives are zero since 3rd order differential of 1−γξ  is zero. In 

general, the weighting coefficients of thM  and higher order derivatives are zero, and so 
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the number of grid points (M) is chosen to be one plus the highest order of derivative 

(with respect to grid variable) appearing in the differential equation. 

 

Similarly for a multi-variable function (say, two variable function dependent on space ξ 

and time τ variables) such that )()(),( τξτξ GFW = . For relevance to our application, let 

us assume that the two variable field function ),( τξW  denotes the lateral deflection of a 

beam which is the solution to governing differential equation Equation 2.2 containing 

partial derivatives with respect to both ξ  and τ , and also let 1)( −= γξξF  and 

1)( −= λττG  be two test functions introduced in spatial and temporal domains, 

respectively. Then the lateral deflection ),( τξW  is expressed as, 

 
11)()(),( −−== λγ τξτξτξ GFW     (2.4) 

 

where M...,3,2,1=γ  and N...,3,2,1=λ . 

 

The DQ analogs of spatial and temporal second derivatives of the function are given by, 
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where ),( jiij WW τξ≡ . 
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Since these weighting coefficients are determined from normalized variables, they can be 

used for any system parameters. However the weighting coefficients are solely dependent 

on the number and distribution of node points, and hence should be used appropriately 

i.e. coefficients determined from equal interval node points should be used only for 

equally spaced distribution. The set of linear equations resulting from Equations 2.5 and 

2.6 forms Vandermonde equations. The Vandermonde equations become ill-conditioned 

for dense grid, and the accuracy of solution is highly dependent on the number of grid 

points and type of solvers used to handle these Vandermonde matrices (authors of [88] 

reported accurate solutions when Bjorck-Pereyra [99] algorithm is used). 

 

2.3.2 Lagrange and Hermite interpolation polynomials and GDQM: 

The Lagrange polynomial based interpolation shape (or test) function is given by  
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The Lagrange polynomial test function is characterized by an identity matrix because 
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where V  stands for spatial (ξ ) or temporal (τ ) field variables. The field function 

),( τξW  is expressed as a double summation of Lagrange interpolation polynomial 

operating on function values available at grid points. 
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Since the Lagrange polynomial function of space and time domain shown above are 

independent of each other, the above relation can also be written as 
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The weighting coefficients for higher order derivatives are then obtained from the 

recursive formulae [97 and 100] given by, 
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Because the above is a recursive relation involving weighting coefficients, small lettered 

alphabet a  is used here to avoid any confusion over the order of weighting coefficients 

i.e. on. so and , )2()1(
ijijijij BaAa ==  Since the use of Legendre polynomials restricted the 

distribution of grid points, and power polynomials resulted in ill-conditioned 

Vandermonde matrices for increased grid points, Shu and Richards [100] proposed the 

use of Lagrange polynomials as generalized DQM as it addressed these limitations. The 

above weighting coefficients based on the Lagrange interpolation polynomials can be 

used for both the spatial and temporal domains, and such an application is demonstrated 

by Shu et al. [111] with their block marching technique.  

 

Another version of generalized DQM called the GDQR, proposed by Wu and Liu [113], 

uses Hermite-Fejér interpolation polynomials for finding weighting coefficients. The 

GDQR considers both the function values and their appropriate derivatives (of possible 

lowest order) as independent variables. According to this method, each nodal point is 

associated with its function values and derivatives up to one less than the number of 

equations defined on that point. This approach handles the multiple boundary conditions 

or multiple initial conditions or both. Wu et al. [110] applied this approach to both the 

spatial and temporal domains. 

 

For example, if we consider a two variable field function ),( τξW , and assuming second 

order initial value problem having two equations (initial conditions) associated with the 

start point, i.e., 11 for2 τ=n , and one equation (governing equation of motion) associated 

with the inner nodal points and the end point, i.e., Nkn kk ...,,3,2, allfor 1 == τ . Hence 
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the independent variables associated with the start point are function values and their first 

derivatives (of time), i.e. MjWW jj ...,,2,1; and '
11 =  and the independent variables 

associated with the rest of the domain are function values themselves, i.e., 

NkW jk ...,,3,2; = . 

 

Now two different schemes are possible namely, 1) Lagrange interpolation in spatial, and 

Hermite-Fejér interpolation in temporal domain, and 2) Hermite-Fejér in spatial and 

temporal domains. In the first case, the field function ),( τξW  is given by, 
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 where T is the time factor used to normalize time 

variable noting that if the normalized variable is expressed as the ratio Tt /=τ  where t  

is the un-scaled or actual time, then tT ∂∂=∂∂ /(.)/(.) τ . The Hermite-Fejér shape 

functions, )( and )( 110 ττ ppk , are derived assuming a linear function on time, i.e., 

)()()( τττ kk lcmp +=  where )(τkl  is the Lagrange interpolation polynomial, m  and c  

are constants found using the relations, 
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The Hermite-Fejér shape functions satisfying the above properties are then given by, 
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)()()( 1111 ττττ lp −=        (2.17) 

 

The differential operation is directly applied to the interpolation function based on the 

respective variable of differentiation to yield appropriate derivatives of field function. For 

example, the second derivative of ),( τξW  w.r.t ξ is given by 
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Since Lagrange interpolation is used for spatial domain, the weighting coefficients of r-th 

order spatial derivatives are given by )()(
i

r
jl ξ  whose explicit formulae are shown in Eq. 

16 and 17. The weighting coefficients of r-th order temporal derivatives are obtained in 

the same manner as [108], and are given by Nkp j
r

k ...,,2,1,0);()( =τ , where 

)()( 110 ττ pp ≡  and )()( 0 ττ kk pp ≡ . For example, if )()()( τττ kk lbap += , then 

)()()()( )1()()( ττττ −++= r
k

r
k

r
k rallbap . 

 

Similarly in an initial boundary value problem (second order in time and fourth order in 

space), we have 2 equations (boundary conditions) at each ends of spatial domain, and 2 
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equations at the start point (initial conditions) of temporal domain, and using Hermite-

Fejér interpolation polynomial, the field function is given by, 
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The Hermite-Fejér shape functions for spatial domain, )(0 ξjh , )(11 ξh  and )(1 ξMh , are 

defined on the same basis as those for temporal domain. 

 

2.3.3 Treatment of boundary conditions: 

Another crucial step in the application of DQM to structural mechanics problems is the 

implementation of various boundary conditions. A variety of new concepts in handling 

boundary and initial conditions have been introduced ever since the introduction of DQM 

to structural mechanics applications, and these approaches were comprehensively 

reviewed by Wang et al. [114] very recently. The boundary conditions for GDQM based 

solution procedures are easily implemented because of the introduction of additional 

degrees of freedom. 

 

In the δ-technique, a dummy grid point is chosen very near a boundary point for 

enforcing multiple boundary conditions at a point. In an initial boundary value problem 

(of fourth order in spatial and second order in temporal distribution), two dummy points 

one each at each boundary point in spatial domain, and one dummy point near the start 
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point in temporal domain are inserted. Thus in a normalized spatial distribution of 

},,...,,,,{ 12321 MMM ξξξξξξ −−  where 01 =ξ  and 1=Mξ , the points are chosen such that 

δξ =2  and δξ −=− 11M  where δ is a very small positive number close to zero. 

 

In the replaced equations approach, we simply replace the DQ analogs of governing 

differential equations at and closest boundary points with the DQ analogs of boundary 

conditions. This is the easiest yet effective method of implementation of boundary 

conditions in case of classic DQ test functions. 

 

In case of GDQR or DQEM, the additional degrees of freedom are introduced and hence 

the number of weighting coefficients is increased by the number of additional degrees of 

freedom i.e. for M grid points in a variable domain, and considering two boundary 

conditions at two end points, the weighting coefficient matrix is of order )2( +× MM . 

The DQ analogs are written from governing equation from all the points except the end 

points where the multiple degrees of freedom defined. The DQ analogs of boundary 

conditions at those end points are also written, and the resultant system of equation is 

solved. 

 

2.4 Application of DQM to free vibration problems: 

This section briefly covers the aspects involved in the application of DQM to solve free 

vibration problems. In the first case, the bridge is modeled as an Euler beam with 

uniform cross-section, and in the second case the bridge is modeled as an isotropic 

Kirchhoff plate. The modal properties of bridge (natural frequencies and mode shapes) 
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obtained from free vibration analysis are helpful in assessing the structures response 

when subjected to general forcing conditions. Hence a free vibration analysis is carried 

out early in the bridge dynamic analysis to determine the possibility of resonance 

phenomenon due to matching bridge and vehicle frequencies. 

 

2.4.1 Free vibration of simply supported Bernoulli-Euler beams: 

The equations of motion governing undamped and damped free vibration of Euler beams 

are given by, 
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where bIE ωμ  and , , ,  are the mass per unit length (linear density), Young’s modulus, 

area moment of inertia, and circular frequency of damping for the beam, respectively and 

W  is the vertical displacement of the beam. The beam is assumed to be simply supported 

at both the ends, and the respective boundary conditions are then given by, 
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where L is the length of beam. The initial conditions are given by .0)0,(
0

=
∂
∂

=
=tt

WxW  

The following properties are assumed for demonstrating the application of DQM for 

solving this free vibration problem. 

 

Length of beam (L) = 25 m, (984.25 in or 82 ft) 

Linear density of the beam (μ) = 2303 kg/m, (129 lb/in) 

Elasticity modulus of the beam (E) = 2.87 x 109 N/m2, (416.26 ksi) 

 Area moment of Inertia of the beam (I) = 12/3bh = 2.9 m4, (6967222 in4) 

 

The lateral deflection ),( txW , if assumed to be of the form )()(),( tTxwtxW =  or its 

equivalent normalized form )()(),( tTwtW ξξ = , where )(tT  is harmonic in time such as 

tCostSin ωω or  , reduces the governing equation to 
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where Lx /=ξ  is the normalized spatial coordinate, )(ξw  or simply w  is the 

normalized mode shape and ω  is the natural frequency of vibrating beam. The DQ 

analog for the above equation is then given by, 
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Thus the spatial and temporal terms are decoupled in the case of undamped free 

vibration. Since the above formulation is free of temporal terms, only boundary 

conditions are needed in addition to governing equation of motion. 

 

If the x-domain is discretized into M nodes, the boundary conditions are applied at the 

boundary nodes 1  and  0=iξ  corresponding to Mi   and  1= , respectively, and the 

respective DQ analogs are written as, 
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The governing equations at the boundary points were trimmed to accommodate the 

boundary DQ analogs i.e. 
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However, the above assumption does not decouple the spatial and temporal terms in case 

of damped free vibration. In such cases, the lateral deflection is expressed in assumed 

modes so that the spatial terms are decoupled from the mode coordinates.  

 

The modal frequency of vibration for a simply supported Euler beam is given by, 
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Table 1.1: First three mode frequencies of SS beam 

 

Frequency 

mode 

Frequency (Analytical 

solution), in rad/sec 

Frequency (DQM), in 

rad/sec 

1 30.0174 30.0174 

2 120.072 120.069 

3 270.278 270.156 

 

 

2.4.2 Free vibration of SS-F-SS-F Kirchhoff-Love plates: 

This section considers the free vibration problem in plates with two opposite edges 

simply supported and the other pair of opposite edges kept free, in short denoted as SS-F-

SS-F. The present DQ model used Karami and Malekzadeh [112] scheme that applied 

two boundary conditions on a boundary node to study the free vibration of a SS-F-SS-F 

plate. The lateral deflection of the plate is a function of spatial and temporal variables i.e. 

),,( tYXWW = . The differential equation governing free undamped vibration of an 

isotropic Kirchhoff plate is given by, 
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where )1(12/ 23 ν−= EhD  is the bending or flexural rigidity of the plate, and hρμ =  is 

the mass per unit area of plate. The above governing equation is decoupled from temporal 

domain using variable separation and is expressed in normalized form as 
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where aXx /=  and bYy /= , ba /=λ  is the aspect ratio of the plate and ω  is its 

dimensional frequency of vibration. 

 

Karami and Malekzadeh [112] suggested treating the second derivative of displacement 

κ  (factor of bending moment) along the boundary as a DOF in addition to the 

displacement DOF for implementing various boundary conditions of plate vibration 

problems. The procedure is similar to that of DQEM or GDQR in that an additional DOF 

is introduced, however the additional DOF is not a first derivative as in GDQR but rather 

a second derivative of the deflection function i.e. 2
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=κ , and it is 

also essential to note that these κ  terms were treated as variables only along the 

boundary i.e. 
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The governing differential equation of motion for the plate in DQ analog is given by, 
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where Da /2 μω=Ω  is the dimensionless frequency. The governing equation is further 

expanded for κ  terms in the inner domain (using Equations 2.32 and 2.33) as given 

below 
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For the SS-F-SS-F boundary condition, 1) the displacements and normal bending 

moments at the x-boundaries are zero, and 2) the normal bending moments and effective 

shear force resultants at the y-boundaries are zero, and thus transform in DQ analog to 

 

1...,,3,2for          0)()(
11 −===== NjWW x

MjMj
x
jj κκ   (2.36) 

 

 

1...,,2,1for 

0
1

)()(2

1
1

)()(
1

2

−=

=+=+ ∑∑
==

Mi

WBWB
M

m
mN

x
im

y
iN

M

m
m

x
im

y
i νκλνκλ

               (2.37) 

 

 

1...,,3,2for 

0)2(

)2(

1 1

)()(

1

)()(2

1 1

)()(
1

1

)()(
1

2

−=

=−+=

−+

∑∑∑

∑∑∑

= ==

= ==

Mi

WBAA

WBAA

M

m

N

n
mn

x
im

y
Nn

N

m

y
im

y
Nm

M

m

N

n
mn

x
im

y
n

N

m

y
im

y
m

νκλ

νκλ

                  (2.38) 

 

The above Equation 2.38 is rewritten as, 
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               (2.39) 

 

The above model is in the normalized form, and applies to plates of any configuration of 

appropriate aspect ratio. The dimensionless fundamental frequency Ω  obtained from the 

present DQ scheme, Bert and Malik [103] DQ model, and Leissa [115] for different 

aspect ratios were listed in the Table 1.2: 

 

 
Table 1.2: Natural frequency of the SS-F-SS-F plate from DQM compared with literature results 

 

Aspect Ratio 
Model / 

Literature 
5
2

=λ  
3
2

=λ  1=λ  
2
3

=λ  
2
5

=λ  

Present DQ 

model 
9.77007 9.6996 9.63005 9.55622 9.4821 

Bert & Malik 9.76013 9.69832 9.63138 9.55818 9.48414 

Leissa 9.76 9.6983 9.6314 9.5582 9.4841 
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The first five modes of dimensionless frequencies at different plate aspect ratios were 

listed in the Table 1.3: 

 

Table 1.3: First 5 mode frequencies of a SS-F-SS-F plate for different aspect ratios 

 

Aspect Ratio 
Frequency 

mode 
5
2

=λ  
3
2

=λ  1=λ  
2
3

=λ  
2
5

=λ  

1 9.77007 9.6996 9.63005 9.55622 9.4821 

2 11.1086 13.0482 16.1913 21.6621 33.6491 

3 15.5858 23.6726 37.6451 40.8791 40.4946 

4 18.7089 33.881 41.1339 57.3943 78.0328 

5 21.5749 41.3356 49.2301 67.1215 88.0572 

 

 

The present DQ model used 5x5 and 7x7 grid nodes for the spatial domain. The data 

shown in the Table 1 and 2 were obtained from a grid distribution of 7x7 and were in 

excellent agreement with the published results of Bert and Malik [103] and Leissa [115]. 

However it is also to be noted here that it took abnormal computational time which could 

probably arise from the efficiency of the algorithm included within Mathematica for 

solving Eigen value problems. The nominal time of computation using a 5x5 grid was 

about 30 seconds while it took an hour for 7x7 grid. 
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The results also included mode coordinates at each grid point with corresponding aspect 

ratio which can be used to plot the appropriate mode shapes which is not discussed here. 

The mode coordinates at grid points were expressed as a fraction of another grid point 

(and usually a common grid point), and mode coordinate at the common grid point is 

assumed a value so that a scaled mode coordinate distribution (and thus a mode shape) is 

obtained. 
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Chapter 3: Moving Force – Moving Mass Problem in Beams 

 
Introduction: 

In this chapter, the dynamic behavior of bridge structures is studied with a simple 1D 

Euler-Bernoulli beam representation using the DQM. The geometric entities of an Euler-

Bernoulli beam can be suitably modified to approximately represent bridge geometric 

and modal properties, and this treatment is expected to give us an approximate estimate 

on the vibration behavior of real bridge structures. This chapter covers the dynamic 

behavior of beam structures subjected to moving forces and masses, i.e., with and without 

inertia effects of moving loads, respectively. Although the ‘moving force-moving mass’ 

model can successfully be used to predict the dynamic behavior of bridges, this 

representation ignores any vibrations of vehicle relative to bridge, and hence it is not 

applicable to vehicle-bridge interactions studies. 

 

The first half of this chapter is focused on the dynamic behavior of an Euler-Bernoulli 

beam subjected to a moving constant point force, and the second half extends to the case 

of an Euler-Bernoulli beam carrying a moving concentrated mass. Analytical solutions 

obtained from previous researches are used to benchmark the solutions obtained using the 

DQM. Several parameters influence the dynamic behavior of bridges (beams) under 

moving vehicles (loads), and the primary candidates among them are speed parameter 

(α), mass ratio (κ), and damping parameter (β). The effect of these variables on dynamic 

behavior of bridges is assessed by plotting the dynamic impact factor for different 

combinations of influence parameters. 
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3.1 Euler-Bernoulli beam subjected to moving constant point force: 

The governing equation of motion/bending for an Euler-Bernoulli beam subjected to a 

point load P  (refer Figure 3.1) moving at a constant speed c  is given by 

 

Pctx
x
WEI

t
W

t
W

b )(2 4

4

2

2

−=
∂
∂

+
∂

∂
+

∂
∂ δμωμ        (3.1) 

 

 

Figure 3.1: Beam subjected to moving constant point force 

 

where W, μ, bω , E, and I represent lateral (or vertical) deflection, linear density (mass 

per unit length), circular frequency of damping, Young’s modulus and area moment of 

inertia of the beam, respectively. Here )(⋅δ  is the Dirac delta function; ct denotes the 

distance traveled by the load in time t. The Dirac delta function )(⋅δ  takes values 

according to 
⎩
⎨
⎧ =

=−
elsewhere    0

    when 1
)(

ctx
ctxδ . The above given differential equation falls in 

the category of fourth order (spatial) hyperbolic partial differential equations. 

 

The beam is assumed to be simply supported at both the ends so that the displacement 

and bending moment at either ends are zero. Also initially the beam is supposed to be 
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undeformed, and hence has zero initial vertical displacement and slope (initial vertical 

velocity). Accordingly, boundary and initial conditions for the beam are given below: - 

Boundary conditions: 

 

0),(),0( == tLWtW        

     (3.1A) 
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where L is the length of the beam. 

Initial conditions: 

 

0
0

),()0,( =
=∂

∂
=

tt
txWxW     (3.1B) 

 

The deflection of the beam ),( txWW =  is then determined by solving the governing 

differential equation, subject to the boundary and initial conditions as shown in Equations 

3.1A and 3.1B, respectively. The above set of equations constitutes an initial boundary 

value problem (or a two point boundary value problem – because of boundary conditions 

involving two end points) and the displacement solution obtained is called the transient 

dynamic response of the beam. 

 

3.1.1 Analytical solution for moving force problem: 

A free vibration analysis (solution to homogenous differential equation counterpart of 

Equation 3.1, i.e., with 0=P ) is carried out to determine the modal parameters of beam 

prior to solving the forced vibration problem involving moving load, and if we denote 
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)( jω  for the jth mode circular natural frequency of vibration of the beam, then we have 

μ
πω EI

L
j

j 4

44
2

)( = . The circular frequency of damped vibration is then given by 

22
)(

2
)(' bjj ωωω −= , where bω  is the circular frequency of damping of the beam. 

 

Then a ‘closed-form’ solution in the form of Fourier sine series [10] is obtained by 

Fourier integral transformation method for the forced vibration problem with a moving 

constant point force P, i.e., Equation 3.1. The Fourier integral transformation method is 

carried out in a two-fold procedure, first by applying the Fourier finite sine integral 

transformation to the Equation 3.1 followed by the Laplace-Carson integral 

transformation on the resultant equation, and then by applying Fourier inverse 

transformation to obtain the displacement solution.  

 

Two dimensionless parameters – speed parameter (α ) and damping parameter ( β ) – as 

shown in Equations 3.2 and 3.3 are used to express the analytical solution in a simple 

form. 
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where Lc /πω =  is the frequency of vibration, f(j) is the natural frequency of jth mode, 

)1()1( /1 fT =  is the time period of the first free vibration, cLT /=  is the total time of 

traverse of moving force over beam, 
2/1

)(2
⎟
⎠
⎞

⎜
⎝
⎛≈=

L
EI

Lj
Lf

c j
cr

π is the critical speed, and 

)1(f
bω

ϑ =  is the logarithmic decrement of damping of the beam.  

 

The analytical solution for transverse beam displacement obtained from the Fourier 

integral transformation method [10] is given by, 
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where sΔ  is the mid-span static deflection of a centrally loaded simply supported beam 

(with a load value same as P ) given by  
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The total beam deflection is expressed as a summation series containing a product of 

decoupled time coordinate and sinusoidal mode shape terms. The dynamic deflection is 

usually expressed in dimensionless form as a fraction of mid-span static deflection, i.e., 

stxWW Δ= /),(),( τξ  where ),( τξW  is the dimensionless deflection of the beam. 

The bending moment and shear force values are found from the displacement solution, 

and are given by, 

2

2 ),(),(
x

txWEItxM
∂

∂
−=      (3.6) 

 

3

3 ),(),(
x

txWEItxQ
∂

∂
−=      (3.7) 

 

where M, Q, E and I represent the bending moment, shear force, elasticity modulus and 

area moment of inertia, respectively. 

 

3.1.2 Application of assumed modes method: 

The analytical solution in Equation 3.4 contains separated spatial and temporal functions, 

and suggests that the same solution could be obtained by using mode superposition 

principle (or variable separation in general) to separate the mode shapes ( LxjSin /π  here 

or orthogonal shape functions in general) and solving only time dependent displacement 

function. This way, the original initial boundary value problem is reduced to an initial 

value problem only, and saves computational time. The mode shape factor is obtained by 

enforcing the boundary conditions on spatial function. Since the beam is simply 

supported (SS) at both the ends, and since one end point of the beam aligns with the 

origin of the coordinate system, the mode shape function is simply LxjSin /π . 
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Hence, by using mode superposition principle, lateral deflection of SS beam is expressed 

as, 

∑
∞

=

=
1

),(),(
j L

xjSintjwtxW π      (3.8) 

 

Although the spatial terms are separated from temporal terms, it is not yet removed from 

the governing equation and the set of equations still remain as an initial boundary value 

problem. In order to get rid of the spatial function from the governing equation, the load 

on the right hand side of the Equation 3.1 can be approximated using Fourier series 

representation [9], i.e., 
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By using mode superposition principle and Fourier series representation for point load 

together, i.e., Equations 3.8 and 3.9, the governing equation of motion (Equation 3.1) 

becomes 
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or simply,  
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where ),()( tjwtw j ≡ . The above equation is simply an initial value problem which is 

relatively easier to solve than an initial boundary value problem. 

 

By normalizing the time variable t using the total time of traverse ( cLT /= ), i.e., 

Tt /=τ , the first and second derivatives of displacement function )(tw j  are given by 

 

τ
τ

d
dw

Tdt
tdw jj )(1)(

=       (3.12) 
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The above equation is re-written in a non-dimensional form using the parameters α, β, 

and Δs, defined in Equation 3.2, 3.3 and 3.5, as given below: 

 

0)(
)(2)( 4

2

2

2

2

=−++ πττ
τ

τ
π
αβ

τ
τ

π
α jSinwj

d
dw

d
wd

j
jj    (3.14) 

 

The above equation is free of spatial terms (and hence no boundary conditions), and is 

solved along with the initial conditions stated in Equation 3.1B. The solution to Equation 

3.14 is then combined with the respective mode shapes to yield the resultant lateral 

displacement of beam at any point of space and time. 

 

Past researches [9, 10] indicated that the first mode solution dominates over other modes, 

and without appreciable loss in solution accuracy, we can obtain the displacement 
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response considering only the first mode shape. In the coming sections, displacement 

responses for both the single mode and multiple modes are discussed. 

 

3.1.3 DQ approach to moving force problem: 

The application of DQM to solve moving load problems can be implemented either by 

using generic polynomial test functions or by using special polynomial interpolation 

schemes such as Lagrange interpolation, Spline interpolation, and Hermite-Fejér 

interpolation schemes. In general, these interpolation or test functions can be applied to 

both the spatial and temporal domains. However the use of spatial interpolation functions 

is not required for the solution procedure involving Equation 3.14 since the spatial terms 

were decoupled. In the forthcoming discussions, the DQM applied to both the spatial and 

temporal domain simultaneously is referred as the direct or space-time DQM, and the 

DQM procedure based on the mode superposition principle is called the semi-analytical 

or modal DQM. 

 

In this section, the use of DQM to approximate both the spatial and temporal derivatives 

simultaneously is demonstrated, and in order to approximate the Dirac Delta distribution, 

either the Fourier sine series or other general distribution functions could be used. In the 

event of not using either of the above approximations for Dirac Delta function, any direct 

time integration methods such as Newmark [121] could also be used. Olsson [67 1991] 

used the first term 
L

tcSin
L
xSin ππ  of the Fourier sine series to approximate the moving 

load, and Inglis [9] also pointed out earlier that less than a 0.5 percent error results due to 
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such approximation. The governing equation of motion of the beam, Equation 1 is then 

given by 
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The independent variables in these equations, x and t, are normalized using the relation, 

Lx /=ξ  and Tt /=τ  where L is the length of the beam and T is the total time of 

traverse, i.e., T = L /c . With the parameters α and β, and the dimensionless variables ξ 

and τ, the governing equation of motion Equation 3.15 becomes, 
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The boundary conditions for a simply supported beam are given by, 

 

  W (ξ,τ ) =
∂ 2W (ξ,τ )

∂ξ 2 = 0     (3.16A) 

 

at any instant of time for both the ends of the beam, i.e., at 1,0=ξ  and the initial 

conditions are given by, 

 

0),(),( ==
∂τ

τξ∂τξ WW      (3.16B) 

 

at time τ = 0 for any point along the beam. 
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Description of study parameters: 

The dynamic behavior of an idealized bridge structure due to a moving force-moving 

mass is studied for the below given beam and load parameters to enable a comparison of 

DQM results with the published literature results. The set of parameters chosen for the 

study is the same as used by Yang and Yau [60] and are given below in SI units (and 

English units within parenthesis). The moving force solution obtained from the DQM is 

compared with the analytical solution available in the form of Fourier series. Both the 

forms of implementation namely, 1) the direct space-time DQM, i.e., applying spatial-

temporal DQ discretization simultaneously, and 2) semi-analytical or modal DQM, i.e., 

applying temporal DQ scheme to Equation 3.14 and obtaining the total displacement 

solution by mode superposition principle, were used and the results obtained were then 

compared for different speed and damping parameters. 

 

Input Data: 

 

Length of beam (L) = m25 , (∼984.25 in or 82.02 ft) 

Mass density of the concrete slab (ρ) = 3/913.151 mkg , (∼ 3/005488.0 inlb ) 

Linear density of the beam (μ) = mkg /2303 , (∼ inlb /05599.0 )  

Elasticity modulus of the beam (E) = 29 /1087.2 mN× , (∼ ksi416 )  

Base or Cross section width of the beam (b) = 10 m , (∼393.7 in ) 

Cross section height of the beam (h) = 1.516 m , (∼59.685 in ) 

Area moment of Inertia of the beam (I) = 43 9.212/ mbh = , (∼ 46967278 in )  

Weight of the moving point load (P) = 56408 N, (∼12681 lbf or 6.34 tons) 
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Speed of the moving point load (c) = 27.778 m/sec, (∼62 miles/hr or 91 ft/sec) 

Total time of traverse, sec8999.0
778.27

25
===

c
LT  

Frequency of the forced vibration, 
sec

49068.3 rad
TL

c
===

ππω  

Fundamental circular frequency of free vibration, 
sec

02.302

2

)1(
radEI

L
==

μ
πω  

(or the fundamental frequency of vibration is Hz777.4 ) 

Speed parameter, 1163.02

2

)1(

===
EI

L
L
c μ

π
π

ω
ωα  

Frequency of damping, ωb = expressed in fractions of the fundamental frequency, ω(1) 

Damping parameter, ==
)1(ω

ω
β b 0.1 

In the above list of parameters, the material and geometry parameters of beam remain 

fixed, and only the load parameters P and speed c are subjected to change. 

 

3.1.3 a) DQM applied to spatial and temporal domain 
 
The dynamic deflection distribution is discretized using M nodal points along the spatial 

domain, and N nodal points along the temporal domain, and at any location and time, 

( ji τξ , ), the deflection is denoted by ijW  such that Mi ...,,2,1=  and Nj ...,,2,1= . The 

DQ analog for the governing equation, Equation 3.16, is given by 
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Here, the weighting coefficients for the spatial and temporal domains are indicated with 

their superscripts ξ and τ, respectively and A, B, and D represent the 1st, 2nd and 4th order 

weighting coefficients, respectively. The governing equation in DQ form is independent 

of the choice of polynomial test functions. The governing equation in the DQ form is then 

solved along with the boundary and initial conditions. 

 

The displacement solution to Equation 3.17 above is obtained by using different types of 

interpolating polynomials namely, 1) classic polynomial test function (for both space and 

time domain), 2) Lagrange type interpolating polynomials for spatial and temporal 

domains, 3) Lagrange and Hermite-Fejér type interpolating polynomials for spatial and 

temporal domains, respectively, and 4) Spline and Hermite-Fejér type interpolating 

polynomials for spatial and temporal domains, respectively. The working methodologies 

of these procedures are similar except that a different form of polynomial is used for 

interpolation. 

 

The classic polynomial test functions resulted in Vandermonde matrix which posed 

difficulty in finding inverses during computation especially at higher number of nodes. 

The Lagrange type interpolating polynomials is preferred over the classic monomial 

basis polynomial test functions since it adds exact weights at nodal points. The solution 

time in case of the application of spline interpolation is larger than that of other 

interpolation schemes. 
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The Hermite-Fejér method uses both the function values and its derivatives of the 

possible lowest order to interpolate on the given data. This type of interpolation is more 

suitable for initial value problems where the initial conditions are usually a function value 

and its lowest order derivative. For example, in the free vibration study of a 1 DOF 

system given by 0)()( =++ kxtxctxm &&&  where x is the displacement at time t, with the 

initial conditions btxatx ==== )0(;)0( &  the Hermite-Fejér type interpolating 

polynomials can be used. 

 

The displacement solution obtained from the Lagrange and Hermite-Fejér type 

interpolating polynomials are almost same for most of the conditions. Both the Lagrange 

as well as the Hermite-Fejér type interpolating polynomials produce oscillatory behavior 

at higher degree (more number of nodal points) when used to interpolate on equally 

spaced node points. This phenomenon is called Runge phenomenon, and is 

avoided/minimized by choosing Chebyshev-Gauss-Lobatto nodal points for distribution. 

The spline interpolation technique can also be used instead (to avoid Runge phenomenon 

without the use of Chebyshev-Gauss-Lobatto distribution) as it is a piecewise polynomial 

function that increases the number of such piecewise polynomials without increasing the 

degree of the interpolating polynomial function. 

 

The dynamic response of a beam with the above mentioned parameters is plotted at mid-

span beam and is shown below in the Figure 3.2. The dimensionless deflection ratio, i.e., 

the ratio of dynamic vertical displacement due to moving load (P) to the mid-span static 

displacement due to the same load acting at the center of the beam, is plotted versus the 
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normalized time of traverse (ratio of instantaneous time at the point of application of load 

to the total time of traverse). The dimensionless deflection ratio is a very useful measure 

since it is valid for any geometry and material parameters as well as the loading 

conditions. The normalized displacement solution obtained using the direct DQM (DQM 

applied to both the spatial and temporal nodes simultaneously or the space-time DQM) 

shown in the Figure 3.2 included only the first mode of vibration while the analytical 

solution included the first 5 terms of Fourier series, i.e., first 5 modes of vibration. 
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Figure 3.2: Dynamic beam response from analytical & space-time DQM 

(α = 0.116, β = 0, m = 7, n = 31) 

 

The differences in the displacement solution between the space-time DQM and analytical 

procedure, i.e., the error in the displacement solution obtained from the DQM are shown 



 85

in Figure 3.3. Assuming that the maximum range of error to occur in the mid-span of the 

beam, the mid-span displacements of the beam computed from analytical and DQ 

methods were compared. 
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Figure 3.3: Error in displacement solution using space-time DQM 

(α = 0.116, β = 0 with m = 7, n = 31) 

The maximum percentage error in the displacement solution from the DQ method 

amounted to 5.3 % (approx.) in the time zone [0.067, 0.9] (and over 25 % in the time 

zone [0, 0.05] and [0.9, 1.0] which were discarded as the deflections were negligible and 

hence resulting in an abnormal error range). However the displacement predicted by the 

direct DQM in this case is not an upper bound, i.e., the displacement solution is 

underestimated, and hence the solution procedure needed improvements such as addition 

of nodes in the space and/or temporal domains or application of other techniques. The 

modal superposition principle produced accurate solutions and the results were promising 

enough (discussed in the section 3.1.3 (b)) to be used for further analyses. 
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Also as shown in Figure 3.4, the differences in the deflection values obtained from 

analytical methods, for the first mode and up to the first 5 modes were almost negligible, 

and this suggested that the direct DQM solution contained error not because of the first 

mode approximation, but could be due to the coarse discretization of spatial or temporal 

domain. By introducing more number of nodes in the spatial domain, the solution 

improved as shown in Figure 3.5. The spatial domain is discretized into 7 nodes in the 

former case, i.e., Figure 3.2, whereas 15 nodes in the latter case, i.e., Figure 3.5, and in 

both the cases 31 temporal nodes were used. The maximum error in this case dropped to 

less than 4 %.  
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Figure 3.4: Dynamic beam response from analytical solution – Effect of number of modes of 

vibration (α = 0.116, β = 0) 
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Figure 3.5: Dynamic beam response from space-time DQM and analytical solution  

(α = 0.116, β = 0, m=15, n=31) 

 

Though the solution accuracy depended on the number of nodal points used in the 

temporal domain, increasing beyond a certain number did not improve the solution 

accuracy, i.e., the displacement solution converged but differences between analytical 

and numerical procedures remained, say in the range 3-5 %. For example, the 

displacement solution obtained from the direct space-time DQM with less than 24 nodes 

in the temporal domain for this set of data (α = 0.116) contained considerable percentage 

of error (compared to the analytical solution), and the solution improved as the number of 

nodes is increased beyond 24 and up to 35. However increasing the number of nodes in 

the time domain above 35 did not improve the solution much and the displacement 
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solution essentially remained the same for nodes above 35, for example, the solution 

obtained for 61 temporal nodes is shown in the Figure 3.6. The number of nodes in the 

spatial domain was kept at 7 to spare the computational time. Figure 3.7 shows the error 

in the mid-span beam displacement solution obtained from the DQM with respect to the 

analytical solution.  
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Figure 3.6: Dynamic beam response from space-time DQM and analytical solution 

(α = 0.116, β = 0, m=15, n=61) 
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Figure 3.7: Error in mid-span displacement solution obtained from space-time DQM over analytical 

solution (α = 0.116, β = 0, m=15, n=61) 

 

The Runge phenomenon, i.e., oscillations/error in displacement values due to equidistant 

nodal distribution for higher degree interpolating polynomials, is avoided by using the 

Chebyshev-Gauss-Lobatto distribution. It is also interesting to note that the minimum 

number of nodes in the temporal domain required for acceptable displacement solutions, 

say within 5 % error mark (here 31 nodes for the data set used in the Figure 3.2 and 

Figure 3.5) decreased as the speed parameter is increased. Since the number of nodal 

points can be reduced for high speed parameter problems, it is also observed that there is 

no need for Chebyshev-Gauss-Lobatto node distribution at higher values of speed 

parameter. 
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3.1.3 b) DQM applied to temporal domain only (Assumed modes principle): 

The application of DQM to solve moving load problem based on the modal approach is 

recommended since the model is computationally efficient – spatial variation is 

decoupled, and contribution of different modes to the displacement solution can be 

assessed. The application of modal approach to solve for moving load problems is 

outlined in the Section 3.1.2. The DQ analog of the governing equation of motion is 

solved only for temporal variables, and then combined with the mode shape factor (for 

spatial distribution). The normalized displacement solutions obtained from the DQM 

based on the mode superposition principle for the first mode only and up to first 3 modes 

are shown in Figure 3.8 and Figure 3.9, respectively. Figure 3.9 shows that the modal 

superposition results compared well with the analytical solution. 
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Figure 3.8: Dynamic beam response from modal DQM (1st mode only) and analytical solution (3 

modes) 
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Figure 3.9: Dynamic beam response from modal DQM (3 modes) and analytical solution (3 modes) 

 

3.1.4 Discussion on results: 

The mid-span static and dynamic response of an idealized bridge structure is shown in 

Figure 3.10. The static response is considered for the static load of same magnitude as 

that of a moving load but that acts at the mid-span of the bridge structure. The dynamic 

deflection computed from solving Equation 3.1 with appropriate boundary and initial 

conditions is studied for convergence in solution by increasing the number of node points 

in spatial/temporal domain. This is one of the difficult tasks in DQM, since there is no 

well established relationship between the solution accuracy and the number of node 

points. As a result, the DQM with only 7 nodes that produces acceptable solution for a 

problem A (say) could prove to be substandard for a different problem B. In another case, 
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confined to problem A or B, we don’t know if the solution could be in acceptable limits to 

start with a certain number of nodes. The convergence criterion could be any of the 

system parameters such as energy, stress, displacement, etc., and in this study the 

convergence test is performed based on the displacement parameter. The DQ procedure 

was run for different node numbers starting from coarser grids (less node points) toward 

finer grids (more node points) and the results were discussed in the later section. 
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Figure 3.10: Analytical dynamic beam response due to moving force shown with static deflection  

 

The bending moments and shear forces at any section could be calculated from the 

displacement values as given in Equations 3.18 and 3.19, respectively. The bending 

moments and shear forces could be readily obtained from the DQM since both the DQ 
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coefficients as well as the displacement values are known at any node point, and incase of 

the modal method, the bending moment is written in terms of time coordinates as 
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Similarly shear forces are given by, 
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Like the normalized dynamic deflection, bending moments and shear forces were also 

expressed in dimensionless forms using the maximum bending moment 4/0 PLM =  due 

to P acting at mid-span, and shear force P, respectively. Thus the Equations 3.18 and 3.19 

become 
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where stΔ  is the mid-span static deflection of a centrally loaded beam. 

 

As the bending moments are related to displacements using 2nd differentials, and that the 

assumed mode shape is a sine function, the bending moment also distributes similar to 

the dynamic displacement of the beam. The absolute maximum value (for the set of 

parameters given above) of the bending moment due to the moving load P  is 333350 N-

m. The bending moment and shear force parameters at the mid-span of the beam as a 

function of time were shown in dimensionless forms in the Figure 3.11 and Figure 3.12, 

respectively. The absolute maximum value of the shear force due to moving load P is 

48418 N. 
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Figure 3.11: Normalized mid-span beam bending moment due to moving force 
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Figure 3.12: Normalized mid-span beam shear force due to moving force 

 

Similarly the bending stress at any point across a section is calculated as IyM /=σ  

where I  is the area moment of inertia, and y  is the vertical distance from the neutral 

axis to the point where the bending stress is measured. The maximum stress is 

experienced in the top and bottom of the beam and is about 120,700 2/ mN . 

 

3.1.5 Influence of beam and load parameters on vibration response of beam: 

Some of the major parameters that influence the dynamic behavior of bridge structures 

are the speed of the vehicle passing over the bridge, damping characteristics of bridge 

system, vehicle to bridge mass ratio, vehicle to bridge frequency ratio, and others. 

Among these, only speed and damping parameters were applicable to moving force 
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problems, and the influence of these parameters on the dynamic behavior of the bridge 

structures is studied via the dynamic impact factor. 

 

3.1.5 a) Effect of Speed Parameter (α) 
 
The dynamic impact factor is used as a measure of the dynamic behavior of the bridge 

structure and is defined with respect to the mid-span static deflection. A few variations of 

the definition and meaning of the term ‘dynamic impact factor’ exist as discussed in the 

first chapter section 1.3. In this section, the effect of speed and damping parameters on 

the dynamic response of the bridge structure is assessed by studying the changes in the 

dynamic amplification factor for different values of speed and damping parameters. The 

Figure 3.13 shows the variations in dynamic amplification factor with respect to the 

speed parameter for an undamped beam, and also from Figure 3.14 it is observed that the 

dynamic amplification factors obtained from modal DQM compared well with those 

obtained from analytical method except at very low speeds where the DQ method fails to 

capture the oscillating behavior as seen in the analytical solution. 
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Figure 3.13: Effect of speed parameter on DAF of undamped beam due to moving force (Analytical 

solution) 
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Figure 3.14: DAF vs. speed parameter from DQM and analytical solutions for moving force model 

 

The amplification factor increases initially with the increase in the speed parameter up to 

a critical value which is around 0.5, and decreases thereafter. However the real life cases 

of transient dynamic problems involving bridge structures hardly ever reaches the critical 

speed parameter value so that the dynamic response of the bridge structures falls within 

the rising phase of the amplification factor vs. speed parameter curve, and hence it is 

justified to assume that the dynamic behavior is directly proportional to the speed 

parameter. 

 

3.1.5 b) Damping parameter (β): 

The effect of damping parameter on the dynamic response of a bridge structure modeled 

as beam is studied using variations in dynamic amplification factor versus speed 
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parameter for different damping characteristics of the beam, and is shown in the Figure 

3.15. The Figure 3.16 shows the same data but instead directly plots the variations of 

dynamic amplification factor versus damping parameters. As expected, the dynamic 

response of a bridge system decreases with the increase in its damping characteristics. 

Also to be noted is that there is no appreciable direct impact of the damping parameter on 

the dynamic response of the system at low speeds 1.0<α . 
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Figure 3.15: DAF vs. speed parameter at various damping levels for moving force model (Analytical 

solution) 
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Figure 3.16: Effect of damping parameter on dynamic response 

 

In order to validate and compare the DQ solution with the analytical solution, a 

convergence study was performed based on the displacement parameter, and the dynamic 

amplification values for different speed parameter values were plot in the Figure 3.17 

which indicated that the DQ solution obtained from temporal nodes numbering 24 and 

above compared well with the analytical solution for speed parameter values above 0.12. 

 

The analytical and DQ solutions did not match well for low speed parameter values (refer 

to Figure 3.18) especially for less number of nodes. As the number of nodal points is 

increased to 40 and above, the DQ and analytical solutions matched well with the part of 
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the data belonging to low speed parameter zone. Fryba [10] reported a linear variation of 

the dynamic amplification with respect to speed parameter values up to 0.2. 
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Figure 3.17: Effect of number of nodal points on solution accuracy 
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Figure 3.18: Effect of number of nodes on solution accuracy in low speed parameter range 

 

3.2 Treatment of moving mass (Inglis approach): 

Inglis [9] studied the effects of mass of the moving load on the dynamic response of a 

beam by assuming a fixed definite location to associate the point of action of the mass (as 

in a lumped mass model). The moving mass solution is then a combination of the 

response due to the moving force and the stationary mass at a certain point. The 

governing equation of motion for the beam in this case is expressed as 
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The dynamic response of the beam was found to be very similar to the analytical solution 

for the moving force case, i.e., Equation 3.4 with the parameters '
(j))(  and  , ωωω bj  

replaced by '
)()(  and   , jbj ωωω  such that μμωω /2

)(
2

)( jj = , μμωω /bb =  and 

22
)(

2'
)( bjj ωωω −= . Here μ  is the effective linear density given by 

⎟
⎠
⎞

⎜
⎝
⎛ +=

L
xj

Sin
G
P 0221

π
μμ  with G  representing the total weight of the beam. The 

variation of natural frequency of the beam, i.e., the ratio 
)1(

)1(

ω
ω

 is minimal near the center 

of the beam especially for small values of GP /  ratio. This is also the point of action of 

mass where the effective mass μ  assumes its maximum value, i.e., ⎟
⎠
⎞

⎜
⎝
⎛ +

G
P21μ , and 

hence by assuming the mass to be located at the center of the beam, the dynamic response 

of the beam due to moving mass is better approximated. 

 

The moving mass response using Inglis approach is shown in the Figure 3.19 along with 

the analytical solution for the moving force problem under the same conditions. The 

effects of moving mass (due to simplified assumption that the mass is concentrated at the 

center of the beam) showed an increase in the dynamic response of the bridge structure 

and the maximum response at the center of the beam was observed when the load just 

passed the center of the beam, i.e., at time sec4499.0/5.0 == cLt  or 5.0=τ  (data: 

length = 25 m and  speed = 27.778 m/s) which is expected however with a dynamic 

response magnitude that is 1.2 times higher than the dynamic response only due to 

moving force. 
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Figure 3.19: Dynamic beam response due to moving mass using Inglis approach 

 

3.3 Euler-Bernoulli beam subjected to moving mass: 

The moving mass system can either be a moving concentrated mass or an assembly of 

masses, i.e., a system of sprung and unsprung masses connected via a spring and dashpot 

system. The former case is simply termed as moving mass problem, while the latter is 

referred to as a moving oscillator problem. 

 

In this section, we consider only an unsprung concentrated mass moving over an Euler 

beam at a constant speed, with an assumption that the moving mass maintains its contact 

with the beam during the entire traverse period. The moving mass system, just like 

moving force system, is mainly used to study the dynamic behavior of bridge structures, 

and ignores any dynamic behavior of vehicles arising from vehicle-bridge interactions. 
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3.3.1 Analytical solution to moving mass problem: 

Following the usual notations, governing equation of motion for a beam traversed by a 

moving mass at a constant speed is given by, 
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The above governing equation has no exact solution but an equivalent analytical solution 

could be obtained by using iterative schemes. For example, one such iterative scheme 

was used by Michaltsos [54] to solve the moving mass problem where the governing 
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equation, i.e., Equation 3.24 is solved first for moving force case (with the second term 

on the right hand side, i.e., 2

2
22

τ
καπ

∂
∂ WL  kept zero), and later on the second term 

2

2
22

τ
καπ

∂
∂ WL  is determined from the known values of displacement, and a iterative 

solution procedure is used thereafter. 

 

3.3.2 DQM implementation and solution: 

The DQ analog for the above equation becomes 
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If mode superposition principle is used to express the transverse deflection, the spatial 

component is separated from temporal component, and the scheme is reduced to one 

containing only temporal components, as given below:  
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which is further expressed in terms of modal coordinates )(τnY  as 
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where in the Equation 1, ∑
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=
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)(),(
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n L
xnSintYtxWW π  is used to decouple the spatial 

and temporal terms. The actual vertical acceleration of the moving mass includes the 

mixed partial derivatives called convective terms, and the contact force due to moving 

load considering the convective terms (H. P. Lee [moving mass 1995]) is given by,  
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The DQ procedure could be easily extended for the moving mass problem with 

convective terms since the mixed derivatives were expressed in a similar way as were the 

spatial or temporal derivatives. The convective terms are significant only for very high 

speed parameter and were neglected in the above equations, i.e., Equations 3.24-3.27. 

 

3.3.3 Discussion on results: 

The moving mass problem has no exact solution but researchers in the past such as 

Stanisic [29, 36], Mackertich [47] and others were able to represent the solution in series 

form. Michaltsos [54] proposed an iterative scheme resulting in a series solution that is 

similar to the Fourier series solution of a moving force problem. The computational time 

for the solution was found to be excessively higher than the solution time required by the 

DQM for the same set of data. For a set of data with 24 temporal nodes and first 10 

modes, analytical solution given by Michaltsos took about 55 minutes while the DQM 
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took only around 2 minutes. Also, a direct email conversation with Michaltsos helped the 

author (me) to attribute the excessive computational time to Mathematica’s inability to 

handle integration functions applied on the summation of a product of three or more sine 

(trigonometric) functions. Figures 3.20 and 3.21 show the dynamic response of the beam 

for moving force and moving mass models using analytical and DQ methods. The 

moving mass solution indicated that the dynamic response of the bridge structures 

considering inertia effects is slightly higher than the dynamic response due to moving 

forces alone even at low mass ratios. 
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Figure 3.20: Dynamic beam response due to moving mass using DQM and analytical solution 
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Figure 3.21: Dynamic beam response due to moving force and moving mass – comparison of 

analytical and DQM solutions 

 

The Figure 3.22 compares the dynamic response of the bridge structure using moving 

force and moving mass model and the Figure 3.23 presents a closer look on the same at 

low speed parameter ranges. The dynamic amplification factor from a moving mass 

model was found to be higher than that obtained from a moving force model for speed 

parameter range 7.005.0 ≤≤ α . 
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Figure 3.22: DAF vs. speed parameter for moving force and mass models 

(κ = 0.098) 
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Figure 3.23: DAF vs. speed parameter for moving force and moving mass models in low speed 

parameter range 

 

The dynamic response of the beam obtained using moving mass model with different 

mass ratios and speed parameters were plot in the Figures 3.24 – 3.27. The dynamic 

response of the beam increased with the increase in mass ratio, and specifically after the 

load just passed the mid-span of the beam. 
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Figure 3.24: Normalized undamped mid-span beam displacement for moving force and moving mass 

model at α = 0.116, κ = 0.0998 
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Figure 3.25: Normalized undamped mid-span beam displacement for moving force and moving mass 

model at α = 0.116, κ = 0.249 
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Figure 3.26: Normalized undamped mid-span beam displacement for moving force and moving mass 

model at α = 0.116, κ = 0.499 

 

 

The mid-span dynamic response of the beam decreased with the increase in the speed 

parameter at low mass ratios.  
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Figure 3.27: Normalized undamped mid-span beam displacement for moving force and moving mass 

model at α = 0.249, κ = 0.099 

 

The dynamic behavior due to the moving mass was studied for the parameters of 

influence, speed parameter, damping parameter and moving load to bridge mass ratio. 

The results indicated similar behavior in the dynamic response of the beam due to 

moving mass as observed in the case of moving force. The Figure 3.28 shows the effect 

of mass ratio on the dynamic amplification factor which is noticeable in case of an 

undamped beam. The Figure 3.29 shows the dynamic amplification factor obtained using 

moving mass model with the mass ratio 1.0=κ  
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Figure 3.28: Effect of mass ratio on DAF of beam with different damping characteristics 
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Figure 3.29: DAF vs. speed parameter for moving mass of κ = 0.1 

 

In general, the dynamic response obtained using moving mass model appeared higher 

than that obtained using moving force model, and Inglis treatment of moving mass 

yielded higher dynamic response than that obtained using moving force and moving 

mass. Also, the application of DQM using various interpolation schemes were tested, and 

Lagrange type interpolation polynomial based DQM was chosen for further studies due 

to its simplicity and effectiveness. 
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Chapter 4: Two Point Moving Force System 

Introduction: 

The preceding chapter addressed the dynamic behavior of an idealized bridge structure 

subjected to a moving concentrated load with and without inertia effects. In this chapter, 

the dynamic behavior of an idealized bridge structure due to multiple moving loads is 

discussed using a two point moving load system. A two point moving load system could 

be used to represent either a two-axle moving vehicle whose total weight is considered to 

be distributed among its two axles (with a further simplification to a 1D model 

representation) or two vehicles (assumed to have each of their weights to be concentrated 

at a point) moving in the same direction. In the former case, both the point loads move at 

the same speed i.e., the separation distance between two moving loads considered is kept 

constant, while in the latter case they may move at same or different speeds. In this study, 

the dynamic effects of a two axle vehicle on a bridge structure is studied using a two 

point load system moving at a constant speed with a simplified beam model. 

 

4.1 Governing equation of motion for beam and its DQ analog 

The Figure 4.1 below shows a system of two moving constant point loads 1P  and 2P  

separated by a constant distance (d), with 1P  acting at a distance ctx =  at time t from 

one end of the beam, and 2P  acting at dctx −= , where c is the speed of either of the 

moving loads. 
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Figure 4.1: A simply supported beam traversed by a two point load at a constant speed 'c' 

 

The governing equation of motion for the above system is given by 

 

      214

4

2

2

)()(),(),(2),( PdctxPctx
x

txWEI
t

txW
t

txW
b +−+−=++ δδ

∂
∂

∂
∂μω

∂
∂μ      (4.1) 

 

The loading scenario for the above dynamic system involved three main phases i.e., 1) 

Only 1P  acts as the moving load system just entered the bridge, 2) Both the loads, 1P  and 

2P , act on the bridge, and 3) Only 2P  acts as the load 1P  just passed the other end of the 

bridge. Another case in which no loads act on the bridge structure i.e., when both the 

loads were yet to enter the bridge deck or when both the loads completely passed the 

bridge structure, were not considered. 

 

The above cases transform into conditions on time parameter i.e. from the case 1 above 

where the load 1P  acts on the beam, we have 0≥ct  from 1P  and 0<− dct  from 2P , or 

simply
c
dt <≤0 . Similarly the case 2 implies 

c
Lt

c
d

≤≤  when both the loads are acting 

on the beam, and case 3 gives 
c

dLt
c
L +

≤<  when only 2P  is acting on the beam. The 



 122

time of traverse for the first load is denoted by T  (where 
c
LT = ), and the total time of 

traverse (Ttot) for both the loads to completely cross the beam is given by 

c
dL

c
dTTtot

+
=+= . 

 

The governing equation of motion for the beam subjected to moving two point load 

system defined by piecewise Dirac Delta forcing functions in accordance with the time 

zone is given by 
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The forcing function in the above governing equation, i.e., 21 )()( PdctxPctx +−+− δδ  

can be expressed as shown in the Equation 4.3 using harmonic approximation suggested 

by Inglis [11]. 
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The space and time variables were normalized using TtLx / and / == τξ , and the 

forcing function in terms of normalized space and time variables is given by 
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The modal DQ procedure with the Lagrange interpolation scheme to generate the DQ 

coefficients was practiced to study the dynamic response of beam under moving two 

point load system. Alternatively a Hermite-Fejér interpolation scheme can also be used in 

place of Lagrange interpolating polynomial procedure.  

 

The DQ analog in discretized, normalized form of the governing equation shown in the 

Equation 4.2 is given by 
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where PPQ /11 = , PPQ /22 =  with 21 PPP +=  and jsw  represents time coordinate 

function of jth mode at time sττ =  such that  
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The equivalent moving two point force model to a two axle vehicle with a sprung mass 

resting on two unsprung masses can be found out by assigning proportionate amount of 

sprung mass to each of the unsprung masses i.e. if sP , 1wP  and 2wP  represent the sprung 

(chassis) and unsprung (wheel and axle) weights of the vehicle with an axle spacing of 

d , then the load parameters 1P  and 2P  used in the moving force system are expressed as 

d
dPPP sw

2
11 +=  and 

d
dPPP sw

1
22 +=  where 1d  and 2d  denote the distances from the 
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point of action of loads 1P  and 2P , respectively to the center of gravity of the sprung load 

sP . 

 

4.2 Results and Discussions: 
 

The term 
L
d  in the Equation 4.5 is sometimes referred to as the normalized inter-load 

spacing (ILS), and plays an important role in determining the dynamic behavior of the 

bridge due to a two-point moving load system. Brady and O’Brien [124] observed the 

effects of ILS on the maximum dynamic amplification factor at different speeds and 

concluded that vehicles with 5.0<ILS  moving at speeds such that 17.0≥α  produced 

maximum dynamic deflections more than 20% of the static mid-span deflection. Though 

Brady and O’Brien reported the above result for the case of two moving vehicles, the 

conclusion is applicable for the case of two point moving force system because the 

speeds of two moving vehicles were kept the same i.e. the separation distance is constant. 

 

This study used a similar set of parameters used by Brady and O’Brien [124] to validate 

the DQ model with their findings. Some of the parameters describing bridge geometry 

and material properties were assumed so as to yield identical dependent (normalized) 

parameters used by Brady and O’Brien. Some of the parameters used were listed below: - 

 

Length of the beam, m 25=L  

Natural frequency of the beam, rad/sec 86.21)1( =ω  

Linear density of the beam, kg/m 2289=μ  
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The dynamic responses of the beam subjected to moving two point loads of same 

magnitude at inter-load spacing of 0.1 and 0.5 are presented in Figures 4.2, 4.3, 4.4 and 

4.5. The two moving point loads representing the front and rear axle loads were taken as 

NPP 2824121 ==  such that the total load is NPPP 5648221 =+= , and since the 

governing equation is normalized, the magnitude of loads does not affect the behavior of 

the system i.e. the static mid-span deflection used to normalize the system variables is 

linearly proportional to the load magnitude. 
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Figure 4.2: Dynamic response at the point of action of loads ( 21 PP = ) and at mid-span beam 

for α = 0.1, ILS = 0.1 and β = 0.03 
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Figure 4.3: Dynamic response at the point of action of loads ( 21 PP = ) and at mid-span beam 

for α = 0.1, ILS = 0.5 and β = 0.03 

 

The dynamic response of the bridge structure due to two equal moving point loads 

decreased with the increase in the ILS at speed parameter 1.0=α . The normalized 

displacement dropped from approximately 1 at 1.0=ILS  to about 0.7 at 5.0=ILS  (see 

Figure 4.2 and 4.3). This behavior of reduced dynamic response for increasing ILS was 

also reported by Kashif [48]. 

 

The dynamic response increased with the increased speed parameter 2.0=α  as shown in 

the Figures 4.4 and 4.5. This increased dynamic effect due to increasing speed parameter 
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can be observed by comparing the Figure 4.2 with Figure 4.4, and Figure 4.3 with 

Figure 4.5. 
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Figure 4.4: Dynamic response at the point of action of loads ( 21 PP = ) and at mid-span beam 

for α = 0.2, ILS = 0.1 and β = 0.03 
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Figure 4.5: Dynamic response at the point of action of loads ( 21 PP = ) and at mid-span beam 

for α = 0.2, ILS = 0.5 and β = 0.03 

 

The dynamic response of the beam subjected to two unequal moving point loads 

3/21 PP =  (with NP 37654= ) for 5.0 and 1.0=ILS  were shown in the Figures 4.6, 

4.7, 4.8 and 4.9. The dynamic response decreased with the increase in the ILS at speed 

parameter 1.0=α  but the variation due to ILS effect seemed little. The normalized 

displacement dropped from approximately 1 at 1.0=ILS  to about 0.8 at 5.0=ILS . The 

dynamic response increased with the increased speed parameter 2.0=α  as shown in the 

Figures 4.8 and 4.9. 
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Figure 4.6: Dynamic response at the point of action of loads ( 3/21 PP = ) and at mid-span beam 

for α = 0.1, ILS = 0.1 and β = 0.03 
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Figure 4.7: Dynamic response at the point of action of loads ( 3/21 PP = ) and at mid-span beam 

for α = 0.1, ILS = 0.5 and β = 0.03 
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Figure 4.8: Dynamic response at the point of action of loads ( 3/21 PP = ) and at mid-span beam 

for α = 0.2, ILS = 0.1 and β = 0.03 
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Figure 4.9: Dynamic response at the point of action of loads ( 3/21 PP = ) and at mid-span beam 

for α = 0.2, ILS = 0.5 and β = 0.03 

 

The deflected beam shape at a few selected normalized time levels for a beam subjected 

to a two equal moving point loads with 1.0=ILS  were shown in the Figure 4.10. Similar 

behavior with a reduced normalized deflection value was seen for the case 5.0=ILS . 
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Figure 4.10: Deflected beam shape at any instant of time (normalized) 

 

From the above presented results, it is observed that the increase in ILS reduced the 

dynamic response of the system. The present study found conforming results on the 

conclusions of Brady and O’Brien [124] on the nature of dynamic response with regard 

to the ILS but also found contradicting results on the comparison of bridge dynamic 

behavior due to a moving point load and two moving point load system. 

 

It is also interesting to note that in their paper [124], Table 1 [124] did not correlate well 

with the inferences from Figure 5 [124], i.e. the Figure 5 [124] shows that 27.0≥α  to 

yield dynamic amplification factors greater than 1.2 for 5.0<ILS . (seems a typo in the 
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Table 1 – 0.17 should be 0.27, but the discussion on Page 251 [124] of the same paper 

also repeated 0.17) 

 

The dynamic response of the bridge was found to reach its maximum in the speed 

parameter range [0.55-0.65] at 1.0=ILS . The dynamic response showed a decreasing 

pattern with the increased ILS from 5.0    to1.0=ILS . For 5.0>ILS  also, the dynamic 

amplification factor decreased with increasing ILS due to the fact that when the second 

wheel is entering the span, the first wheel has already moved past the mid-span of the 

bridge whereas in the case of 5.0<ILS , the dynamic response was found to be a 

resultant of a varied combination of the both the loads acting on the bridge. 

 

A likely justification for the lower dynamic amplification factor with increased ILS is that 

the dynamic amplification factor for a two point load system is defined on the basis of 

maximum static deflection due to equivalent total load acting at the mid-span of the 

beam. While this definition holds reasonable for the case 5.0<ILS , it raises doubts for 

the case 5.0>ILS  since the first load has already crossed the center of the bridge when 

the second load is entering the bridge. Additionally for the case 1=ILS , the two loads 

act in the absence of the other as if it is equivalent to the case of a moving point force 

system for which the normalization of the dynamic response is carried with respect to the 

maximum static deflection due to a point force acting at the mid-span beam. 

 

Brady and O’Brien did not detail their basis for comparing the variation of amplification 

factor on speed parameter for single and two moving point loads. Since Brady and 
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O’Brien discussed the bridge response due to two moving vehicles (and compared them 

with the response due to a moving point load), this study assumed that the single moving 

vehicular load is the same as either of the two moving vehicles’ loads i.e. in this study, 

the single moving point load equals halve the total load of the two axle system. Also it is 

noted that in the other case i.e. taking the single moving point load to be equal to the total 

load of the two axle system, the normalized bridge displacement in the latter case should 

be similar to that in the former since the static mid-span deflection is increased two-fold. 

Differences between these two cases could become noticeable either when the effects due 

to VBI phenomenon are included or when the dynamic response is expressed in absolute 

scale. 

 

The dynamic amplification factor recorded at the mid-span of the beam at different speed 

parameters for a moving point load and two point load system were shown in the Figure 

4.11. The present study found that the dynamic amplification factor for a two point load 

system (with 1.0=ILS ) to be less than that for a moving point load at most of the speed 

parameters (excluding a few local minimums such as the range 25.0  to2.0=α ), which 

contradicted the conclusive remarks of Brady and O’Brien [124]. It is interesting to add 

here that Kashif [48] concluded earlier that the dynamic response for a two axle moving 

load to be lower than that due to moving single axle load. 
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Figure 4.11: Dynamic Amplification factor vs. speed parameter for single and two point loads (ILS = 

0.1) 

 

Another way of looking at the comparison is to reduce the ILS to about 0.05 and notice 

the direction of behavior of the two point load system with respect to the single moving 

load system. The Figure 4.12 shows that when the ILS is reduced to 0.05, the two point 

load system response moved toward the single moving point load system response (with 

the absence of local maximums and minimums presented in the single moving load 

system response). This characteristic hinted that the results obtained seemed satisfactory. 

This inference becomes stronger from the results of amplification factor vs. speed 

parameter provided by Brady and O’Brien [124] for two point load systems at different 

ILS. Because they concluded that at an ILS of 0.1, the response due to moving two point 
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load was higher than that due to a moving point load, and taking in to consideration their 

remarks on the decreasing dynamic amplification factor with increasing ILS (or 

increasing dynamic amplification factor with decreasing ILS), it is expected that the 

dynamic response due to two point load system at an ILS of 0.05 to be higher than that at 

an ILS of 0.1. 
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Figure 4.12: Dynamic Amplification factor vs. speed parameter for single and two point  

load (ILS = 0.05 and 0.1) systems 

 

The dynamic amplification factor plotted against speed parameter (from the present 

study) at different ILS for a two point load system shown in the Figure 13 indicated that 

the dynamic response decreased with the increase in the ILS as expected. 
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Figure 4.13: Dynamic amplification factor vs. speed parameter for two point load system 

at ILS = 0.3, 0.4 and 0.5 

 

This chapter focused on the dynamic behavior of an Euler beam subjected to moving two 

point load system with no interaction effects. The study confirmed some of the findings 

from other past studies on comparison of dynamic responses due to single and two 

moving point loads, and the effect of inter-load spacing and speed parameter on the 

dynamic response of the system. 
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Chapter 5: Vehicle Bridge Interaction using Moving Oscillator 

 

Introduction: 

The moving mass problem discussed in the preceding chapter included inertia effects of a 

moving vehicle, and provided a satisfactory model for studying the vibration response of 

a bridge subjected to a light or heavy vehicular load but with no or little bouncing effects. 

The interaction effects of a vehicle on the bridge system are studied under a special 

category called Vehicle-Bridge Interaction (VBI) phenomenon. The VBI phenomenon 

arises due to track waviness profile, unbalanced vibration effect on wheels due to 

bouncing of vehicle chassis (varying reaction forces between wheels and roads), and 

varying elastic properties of road surface, and also due to braking effects. In this chapter, 

a single axle load system is studied using a moving oscillator solved using the DQM. 

 

5.1 Moving oscillator model description: 

A simple moving oscillator is shown in the Figure 5.1, where the sprung mass sM  

represents the vehicle chassis, and the unsprung mass wM  represents the wheel and axle. 

The masses sM  and wM  are connected to each other through a spring and dashpot 

system having a spring constant C  and viscous damping coefficient bC , and a spring 

constant K  is assumed for the tire stiffness. 
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Figure 5.1: Moving oscillator system on a simply supported beam 

 

The oscillator is assumed to move over a simply supported, uniform Euler beam of length 

L  and mass per unit length μ , at a constant speed c  such that its instantaneous position 

is given by ctx =0 . The moment of inertia, elasticity modulus and the frequency of 

damping of the beam are denoted by I , E  and bω , respectively. 

  

5.2 VBI study for Euler beam carrying moving oscillator: 

 

5.2.1 Governing equations: 

The beam, the masses wM  and sM  were assumed to displace vertically )(tW , )(1 tW  and 

)(2 tW , respectively. The displacement )(2 tW  is measured such that the effects of the 

dead load due to sprung mass sM  on the spring C  is included, i.e. displacement of sM  

is measured from the equilibrium position. The equations of motion for the beam, the 

sprung and unsprung masses are given by 
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where gMMP ws )( +=  is the total vehicle load, and ( ))(),()()( 001 xrtxWtWKtR −−=  

is the interaction force experienced by the beam at the point of contact between the 

unsprung mass and beam (here )(tR  is the same as cf  with reversed sign used by Yang 

and Yau [60] for representing the reactive or contact force between the wheel mass and 

the bridge element). Assuming both the bridge and the wheel displace downwards, and 

since the stiffness K  is always positive, if the vertical displacement of the wheel is larger 

than the sum of vertical displacement of the bridge and the bridge deck surface 

irregularity, then the wheel exerts a positive interactive force on the bridge through the 

tire. 

 

A negative interaction force value indicates that the wheel displaces less than the bridge 

and hence resulting in a separation between the two. In this study, a ‘no separation 

criteria’ between the beam and the oscillator system is assumed, and hence the interaction 

force is always positive or non-negative i.e. 0)( ≥tR , and is assumed zero when 

evaluated negative. Moreover, the interactive force should be sufficiently low in 

magnitude to avoid wheel separation. 
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In general, the tire stiffness K  is considerably higher than the suspension stiffness C  and 

hence prevents frequent unstable vertical oscillations between the wheels and chassis. A 

moving oscillator system of only a sprung mass sM  (and no or negligible unsprung mass 

relative to the chassis weight i.e., 0=wM  or sw MM << ) with very large stiffness 

characteristics (both the K  and C  assumed mkN /107 ) tends to approach the moving 

mass model. 

 

It is worth to note that in the light of Equations 5.2 and 5.3 above, the interaction force 

)(tR  is expressed as, 

 

2
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dt
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dt

tWdMPtR sw −−=         (5.4) 

 

Thus the dynamic behavior of a bridge structure is also influenced by the vertical 

accelerations of the sprung and unsprung masses i.e. the behavior of the suspension 

system of the vehicle. 

 

The boundary conditions for the simply supported beam are represented by zero 

displacement and zero moment at the two ends and are given by 
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The initial conditions for the above set of differential equations of motion are given by 
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5.2.2 Dimensionless form of governing equations of motion: 

A set of dimensionless parameters were introduced to simplify the above set of 

differential equations of motion with the help of a few additional parameters namely 

speed (α ) parameter, vehicle to bridge mass ratio (κ ), wheel/axle to chassis mass ratio 

( wsκ ), frequency parameters for unsprung and sprung masses ( sw γγ  and , respectively), 

and logarithmic decrement for vehicle suspension and bridge damping (   and ϑϑs , 

respectively). These parameter definitions were adopted from Fryba [10] and 

characterize the effects of sprung and unsprung masses on the vibration response of the 

system. 
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The speed parameter is defined as the ratio of the frequency of moving oscillator to the 

natural frequency of the beam, i.e.  

 

Lf
c
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==

ω
ωα            (5.10) 

 

where 
L
cπω =  is the frequency of the moving oscillator. 

 

The vehicle-bridge mass ratio is given by GP /=κ  where gLG μ=  is the total bridge 

weight. The wheel/axle to chassis mass ratio ( wsκ ) is given by swws MM /=κ . 

 

The other parameters that influence the vehicle-bridge interaction phenomenon are the 

frequency parameters for wheel/axle and chassis masses. The frequency parameter for the 

wheel/axle mass is defined as the ratio of natural frequency of wheel/axle to the natural 

frequency of the bridge, i.e., 
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where 
w

w M
Kf

π2
1

=  is the frequency of the wheel/axle. Similarly, the frequency 

parameter for the vehicle chassis is defined as the ratio of natural frequency of the chassis 

to that of the bridge, i.e., 
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where 
s

s M
Cf

π2
1

=  is the frequency of the sprung mass. 

 

The logarithmic decrement of damping for the beam and the vehicle suspension are given 

by )1(/ fbωϑ =  and )2/( ssbs fMC=ϑ , respectively. 

 

The normalized space and time variables are given by Lx /=ξ  and Tt /=τ  where 

cLT /= . The lateral displacements of beam, unsprung and sprung masses were also 

expressed in dimensionless form using the static mid-span deflection parameter stΔ , i.e., 
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The normalized governing differential equations of motion for the beam and the masses 

using the above defined dimensionless parameters are given by,  
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where the interaction force is given by 
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Here, )(τr  is the dimensionless surface waviness computed by normalizing the assumed 

surface waviness profile )( 0xr  using static mid-span displacement stΔ  of the beam. The 

surface waviness parameter is neglected in this study to simplify the model. 
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The beam displacement ),( τξW  is then expressed in sinusoidal modal shape function i.e. 

∑
=

=
m

j
j jSinwW

1
)(),( πξττξ  where )(τjw  is the time coordinate function, and m  is the 

mode number of significance. The governing equation of motion for the beam becomes 
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or further simplified with the approximation 964 ≈π , 
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Since the above governing equation is free of spatial terms, the boundary conditions were 

not required to solve the system. The initial conditions for the above set of equations, 

Equation 5.21 and Equations 5.17 and 5.18, are given by, 
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The initial vertical displacements of both the wheel/axle and vehicle chassis were 

assumed to be same and by allowing them to displace a constant value, both the 

wheel/axle and chassis experience zero initial vertical velocity. The bridge is assumed to 

be at rest initially and hence there were no inertia terms associated with it due to vehicle 

at the point of entrance. Thus the weight of the moving vehicle solely contributes for the 

interactive force i.e., 1)()(
0

0
==

=
=

tP
tRR

τ
τ .  

 

The initial displacement values of the unsprung wheel/axle and the sprung chassis are 

then computed by substituting 0),(
00 =

=τ
τξW  in the Equation 5.19, i.e., 
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. Since both the above initial displacement 

values are time independent quantities, the initial lateral velocity of vibration is zero for 

both the unsprung and sprung masses. Although the above quantity seemed to be defined 

on the basis of modal mass ratio and wheel/axle to chassis mass ratio terms, it could be 

easily verified to be dependent on only the independent parameters μ , L , )1(ω  and K . 

 

5.2.3 DQ implementation and solution: 
 
The governing equations of motion for the moving oscillator system in the DQ form were 

given by 
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where jsw  represents the modal coordinate of jth mode at time sτ , and similarly the 

parameters )( and )(1 ss rW ττ  represent the vertical displacement of the wheel and axle 

system and the road surface waviness, respectively. The beam displacement 
τξ =

W  is 

expressed in terms of modal coordinates, i.e. ∑∑
==

=
==

m

j
sjs

m

j
js jSinwjSinwW

11
πτπξ

τξ
. 

 

The governing equations of motion for the sprung and unsprung masses in the DQ form 

were given by 
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where )2()1(  and WW  denote the displacements of the wheel and axle, and the chassis, 

respectively i.e. )2()1(  and WW  were same as 21  and WW . The parenthesis is included to 

differentiate the variables from their differential quadrature indices. Also the variables 

)2(2)1(1 or   and or  WWWW  are functions of time i.e. )( and )( 2211 ττ WWWW ≡≡ , and in 

other words, 1W  at sττ =  is denoted by sW )1( . 
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In the above relations, the reaction force at the point of contact )(τR  is given by 
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and the initial conditions for the above set of governing equations were given by, 

 

0)0( 1 === jj ww τ  and 0
1

10
== ∑

=
=

n

k
jkkj wAw

τ
&  for the beam,    (5.29) 

 

 0)0(1 ==τW  and 0
1

)1(1 =∑
=

n

k
kkWA  for the unsprung mass, and     (5.30) 

 

 0)0(2 ==τW  and 0
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n

k
kkWA  for the sprung mass.     (5.31) 

 

The system of equations, Equations 5.25 – 5.27, with the initial conditions, Equations 

5.29 – 5.31, were solved similar to the moving mass model i.e. with the moving force 

first and then iterated with the updated vertical displacement, velocity and acceleration 

values of unsprung and sprung masses. 

 

5.3 Discussion on VBI study results: 

To facilitate the validation of results obtained from the DQM, some of the literature 

results on moving oscillator systems were taken as references, and the solution 
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characteristics were discussed and qualitatively compared in the following section i.e. no 

attempt was made to reproduce their results but the results were compared for the salient 

behavior of the dynamical vehicle-bridge system. 

 

5.3.1 Comparison of DQM results using literature results: 

 

5.3.1 (a) Validation of model using Yang and Yau VBI results: 

Yang and Yau [60] recently introduced a condensation technique to develop a vehicle-

bridge interaction element and compared the results with those for single mode solution 

of the sprung mass model given by Biggs [20]. The values of parameters used by Yang 

and Yau [60] were listed below and were used to qualitatively validate the DQM results 

with respect to the vehicle bridge interaction element method, or in general to assess the 

dynamical behavior of the vehicle-bridge system. The author also found an extraneous 

term in the Equation 33 of Yang and Yau [60], mass ratio 
L

M v

μ
 term in 

L
ctSin

L
M v

v
π

μ
ω 2− . 

 

Data used for the analysis: 

Beam’s span length, mL 25=  

Elasticity modulus for the beam, 29 /1087.287.2 mNGPaE ×==  

Poisson’s ratio for the beam, 2.0=υ  

Area moment of inertia, 49.2 mI =  

Beam’s mass per unit length, mkg /2303=μ  

Suspended mass, kgM v 5750=  
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Suspension stiffness, mkNkv /1595=  

Speed of the moving oscillator, smhkmc /778.27/100 ≡=  

Natural frequency of the bridge (beam), srad /02.30)1( =ω  

Natural frequency of the sprung mass, sradv /66.16=ω  

 

The final governing equations were written in a normalized form so that only those 

parameters such as speed parameter, damping parameter, mass ratio, etc. were considered 

necessary to characterize the dynamic behavior of the vehicle-bridge system. Since these 

parameters were defined using independent variables such as span length, mass per unit 

length, natural frequency, etc., the effect of variations within independent variables on the 

dynamic behavior of the system is studied by suitably modifying the dependent 

parameters. The normalization procedure is useful to compare the dynamic behavior of 

different vehicle-bridge systems. The normalized or dimensionless parameters 

corresponding to the set of data presented above are given below:- 

 

Speed parameter, 116.0
)1(

==
ω
ωα  

Damping parameter, 0
)1(

==
ω
ω

β b  

Vehicle to Bridge Mass ratio, 1.0==
L

M v

μ
κ  

In addition to the above dimensionless parameters, the dynamic displacement of the beam 

and masses were expressed as a fraction of the mid-span deflection of the beam under a 

static load of same magnitude acting at the center of the beam. The mid-span static 
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deflection for the Euler beam of the given geometry and specified load conditions was 

computed to be 0.00217464 m, and hence the actual measure of dynamic deflection under 

a moving load is obtained by multiplying the dimensionless deflection solved from the 

DQM with the mid-span static deflection. 

 

The dynamic response characteristics of vehicle-bridge system modeled as a beam 

carrying a moving oscillator with the above parameters are presented in the Figures 5.2 – 

5.5.  Figure 5.2 shows the absolute dynamic displacement of the beam obtained for 

moving force problem using analytical procedure compared with that obtained for 

moving oscillator system using DQM. 
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Figure 5.2: Mid-span beam (absolute) displacement for moving force and moving oscillator models 

(α = 0.116, β = 0, κ = 0.1) 
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Figure 5.3 shows the normalized mid-span dynamic displacements of the beam obtained 

using moving force, moving mass and moving oscillator systems. The dynamic response 

obtained from the moving mass model suggested a time delay of the effect of mass on the 

dynamic response however no other significant differences existed among the three 

models for the given beam geometry and loading conditions. 
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Figure 5.3: Mid-span beam dynamic response using moving force, moving mass 

and moving oscillator models (α = 0.116, β = 0, κ = 0.1) 

 

The displacements computed from solving the linear system of equations were then 

interpolated on space and time to enable easy computation of velocity and acceleration 

data. The computed vertical acceleration data at the mid-span beam and for the sprung 
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mass were shown in Figures 5.4 and 5.6, respectively. Yang and Yau [60] reported 

vertical acceleration data at the mid-span beam using analytical as well as their dynamic 

condensation technique. The acceleration data at mid-span beam for moving oscillator 

system obtained from the DQM matched with the analytical data reported by Yang and 

Yau but did not match the acceleration response at mid-span beam using Yang and Yau’s 

dynamic condensation technique. 
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Figure 5.4: Mid-span beam (absolute) vertical acceleration response using moving force and 

oscillator models (α = 0.116, β = 0, κ = 0.1) 

 

The sprung mass displacement data shown in the Figure 5.5 suggested that for a smooth 

track, the sprung mass displaces to a maximum near the mid-span of the beam at which 
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point also the mid-span beam retracts from the point of maximum displacement. This was 

an expected behavior since no loss of contact between the vehicle and the bridge was 

assumed a priori. The displacement and the acceleration response of the sprung mass 

shown in Figures 5.5 and 5.6, respectively agreed well with the results reported in Yang 

and Yau [60]. Figure 5.6 compares the acceleration data obtained for sprung mass by 

considering only a mode and up to 3 modes of significance for the beam. 
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Figure 5.5: Sprung mass vertical (absolute) displacement response (1 mode vs. 3 modes solution) 
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Figure 5.6: Sprung mass vertical (absolute) acceleration (1 Mode vs. 3 Modes solution) 

 

The dynamic response of the beam at the point of action of moving load over the time of 

load traverse is shown in the Figure 5.7. The Figures 5.2 and 5.7 showed similar 

maximum dynamic responses occurring at around the same time i.e. at the normalized 

time 425.0=τ . The mid-span dynamic response of the beam was at the peak even before 

the dynamic response of the beam at the point of action of moving load reaches its 

maximum, and when the dynamic response at the point of action of load reaches the 

maximum, the mid-span dynamic response of the beam started to decrease, at the above 

mentioned beam parameters and load conditions. This characteristic grows stronger for 

increased speeds i.e., at increased speeds, the mid-span dynamic response reaches peak 

value well before the dynamic response at the point of action of load could reach its 
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maximum. The interactive force experienced by the wheel at the point of contact will also 

follow the same variation as the dynamic response of the beam at the point of action of 

moving load shown in the Figure 5.7. The deflected beam shape at instants of time i.e. at 

1/5th, 2/5th, 3/5th and 4/5th of the total normalized time, is shown in the Figure 5.8. 
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Figure 5.7: Dynamic beam response at the point of action of load for moving force and moving 

oscillator systems at α = 0.116 
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Figure 5.8: Deflected beam shape at specific instants of (normalized) time for moving oscillator 

 

5.3.1 (b) Validation of model using Green and Cebon results: 

Green and Cebon [58] studied the vehicle-bridge interaction and commented on the error 

involved in the computation of dynamic response of the bridge structure neglecting any 

possible vehicle-bridge interaction phenomena based on the speed parameter, frequency 

ratio, modal mass ratio, and vehicle and bridge damping ratio. Green and Cebon defined 

the error involved in computing dynamic response neglecting VBI as, 

 

st

in txWtxW
t

Δ
−

=
),(),(

)( 00ε       (5.32) 
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where ),( 0 txW  is the iterated mid-span displacement solution i.e. dynamic response 

including vehicle-bridge interaction phenomenon, ),( 0 txWin  is the initial mid-span 

displacement solution i.e. dynamic response considering only the moving force, and stΔ  

is the mid-span static displacement. This definition is slightly different from the dynamic 

amplification factor but one could easily see that the error above is the difference in the 

amplification factors for moving oscillator and moving force problems discussed before. 

 

They noted the heavy vehicles typically were able to generate higher bridge responses at 

low frequencies due to sprung mass bouncing and pitching motions. This characteristic 

was observed at some of the tests conducted at the four-post vehicle shaker structural test 

system at the OU’s north campus facility, where resonance phenomenon is spotted at 

frequencies close to 2 Hz (for a vehicle weighing around 40 ton), however the test set up 

was limited to identify the lower frequencies of importance that resulted in higher vehicle 

response without having a knowledge on the impact of this effect over bridge structures, 

and also that only the front axle and intermediate axle were tested in the vehicle shaker 

system. 

 

Green and Cebon [58] defined the modal mass ratio to be the ratio of twice the mass of 

the vehicle over the bridge mass whereas other literature works defined it to be the ratio 

of vehicle mass over the bridge mass. The author found slightly contradicting results for 

the dynamic response due to moving oscillator with those published by Green and Cebon 

[58] while Yang and Yau [60] results (and other literature results) were quite in 

agreement. 
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Green and Cebon [58] did not mention about the initial conditions for the sprung mass 

which could significantly affect the solution. The usual initial conditions were that both 

the lateral displacement and slope (speed) are zero i.e. sprung mass displacement due to 

its own weight is already taken into account, or to assume that the sprung mass is yet to 

take its equilibrium position in which case the displacement is given by 
K
PW =20  or in 

the normalized form, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 220

1
2
1

s

W
γκ

. 

 

While Green and Cebon concluded that at a frequency ratio of 1=γ , the dynamic 

response under moving point force ignoring VBI phenomenon seemed higher than that 

observed including VBI, the current study observed that both of the models i.e. with and 

without VBI produced same or similar maximum dynamic response but occurring at 

different times as shown in the Figures 5.9 and 5.10. The mid-span dynamic response in 

the case of moving oscillator system reached the peak value ahead of the moving force 

scenario. In fact, the response of the mid-span beam for the moving oscillator was found 

to be higher than that observed for moving force at increased speeds, 2.0=α  shown in 

the Figure 5.10, which contradicts the results reported by Green and Cebon. 
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Figure 5.9: Dynamic beam response to moving point force and oscillator system 

at α = 0.098, γ = 1, κ = 0.16 and β = 0.02 
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Figure 5.10: Dynamic beam response to moving point force and oscillator system 

at α = 0.196, γ = 1, κ = 0.16 and β = 0.02 

 

The deflected beam shapes for the above cases i.e. at 1.0=α  and 2.0=α  at a given 

instant of normalized time were shown in the Figure 5.11 and 5.12, respectively. 
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Figure 5.11: Deflected beam shape at specific instants of normalized time 

for α = 0.098, γ = 1, κ = 0.16 and β = 0.02 
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Figure 5.12: Deflected beam shape at specific instants of (normalized) time 

for α = 0.196, γ = 1, κ = 0.16 and β = 0.02 

 

The sprung mass displacement was found to increase with higher speeds as shown in the 

Figure 5.13. This follows directly from the fact that there is no loss of contact and more 

the beam displaces, the larger is the sprung mass displacement. The interaction (reaction) 

force between the oscillator and the beam is shown in the Figure 5.14. The Figures 5.13 

and 5.14 suggested that the sprung mass displaced to a maximum value when the 

interaction force also reached a maximum. The interaction force should always be non-

negative to avoid loss of contact from the beam but it also should be sufficiently low so 

as to not to induce upward force on the moving oscillator. 
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Figure 5.13: Sprung mass displacement response at κ = 0.16 and γ = 1 
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Figure 5.14: Vehicle Bridge Interaction force at κ = 0.16 and γ = 1 

 

The Mathematica code for the moving oscillator can be modified to include variable 

stiffness surface for the bridge deck by redefining the constant stiffness parameter 

originalK , for example ])2[3.01( πτCosKK original +=  in accordance with input parameters 

presented in Table 8.1 of [10]. Similarly, track irregularities can also be included as a 

sinusoidal function of space variable at the point of contact. Both the track stiffness 

variability and track waviness were not included in the current study. 

 

5.3.2 Effect of Parameters on VBI: 

The effect of speed parameter on the dynamic amplification factor obtained for moving 

force and moving oscillator system at a vehicle to bridge mass ratio 1.0=κ  is shown in 
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the Figure 5.15. For speed parameters 2.0<α , dynamic response obtained from both the 

moving force and moving oscillator models seemed almost the same.  

 

The moving force model predicted higher dynamic amplification factors for speed 

parameters 2.0>α . This observation also agreed with the Green and Cebon [58] 

conclusions on the results obtained using the moving oscillator model. The effect of 

damping parameter on the dynamic amplification factor using moving oscillator is very 

similar to that obtained from moving force model. 
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Figure 5.15: Effect of speed parameter on the dynamic amplification factor for moving force, moving 

mass and moving oscillator models 
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The Figure 5.16 shows the variation in dynamic amplification factor over frequency ratio 

at different speed parameter values. However it did not show any resonance due to 

frequency match at 1=γ , rather the dynamic amplification decreases near 1=γ  

implying that the oscillator absorbs energy at or near the resonance zone. Green and 

Cebon [58] noted that the resonance phenomenon occurred at 1=γ  while also concluded 

that the dynamic response of the bridge structure using moving oscillator model to be 

lower than that obtained from the moving force model. The Figure 5.17 shows the effect 

of unsprung to sprung mass ratio on the dynamic amplification factor at 

25.0125.0,063.0 and=α . The dynamic response of the system increased with the 

increase in mass ratio at higher speed parameters.  
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Figure 5.16: Effect of frequency ratio on the dynamic amplification factor at various speeds (n = 61) 
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Figure 5.17: Effect of unsprung to sprung mass ratio on the dynamic amplification factor at different 

speeds 

 
The dynamic behavior of a bridge-vehicle system using moving force, moving mass and 

moving oscillator models were discussed with respect to the dynamic amplification 

factors across the speed parameter range. The moving force model seemed conservative 

when compared to the moving oscillator model. The moving mass model produced the 

most conservative results among the three models used. 
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Chapter 6: Two Axle Moving Load System Using Oscillator Model 

 

Introduction: 

This chapter discusses the dynamic behavior of an idealized bridge structure modeled as 

an Euler beam subjected to a moving vehicular load represented by a two axle load 

system i.e. a half car model. The vehicle system is considered as four degrees of freedom 

system i.e. two unsprung masses representing front and rear wheel & axle loads with only 

vertical displacement degree of freedom, and one sprung mass representing vehicle 

chassis weight with one vertical displacement and one rotational degree of freedom as 

shown in the Figure 6.1. The sprung mass (chassis mass) is connected to the unsprung 

masses (wheel and axle mass) through linear springs and dashpot systems. 

 

 

Figure 6.1: Beam under moving two axle load system 
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6.1 Model description and parameter definitions: 
 
The front and rear wheel tires were assumed to carry a constant stiffness of 1K  and 2K , 

respectively and were separated by an axle spacing of d . The parameters 1d  and 2d  

represent the distance from the center of gravity of sprung mass (chassis) to the front and 

rear axle load points, respectively. Other parameters used in the analysis were listed with 

their descriptions below. 

 

Unsprung weight of vehicle (front wheels/axle) due to mass ( fwM ), gMP fwfw =  

Unsprung weight of vehicle (rear wheels/axle) due to mass ( rwM ), gMP rwrw =  

Sprung weight of vehicle (chassis) due to mass ( sM ), gMP ss =  

Total weight of the vehicle, gMMMPPPMgP srwfwsrwfw )( ++=++==  

Spring constant of the suspension system at front axle = 1C  

Spring constant of the suspension system at rear axle = 2C  

Viscous damping coefficient of suspension system at front axle = 1bC  

Viscous damping coefficient of suspension system at rear axle = 2bC  

Natural frequency of the beam at  jth mode of vibration, 
μ

π EI
L

jf j 2

2

)( 2
=   

Sprung mass frequency at front wheel, 
M
C

f s
1

1 2
1
π

=  

Sprung mass frequency at rear wheel, 
M
Cf s

2
2 2

1
π

=  

Unsprung front axle mass frequency, 
M
Kf fw

1

2
1
π

=  
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Unsprung rear axle mass frequency, 
M
Kfrw

2

2
1
π

=  

 

The damping ratio or the damping parameter (β) for the beam is defined as the ratio of 

frequency of damping for the beam to its natural frequency i.e. 
)1(ω

ω
β b= , and the 

logarithmic damping decrements for the front and rear axle suspension systems are given 

by 
1

1
1 2 s

b

fM
C

=ϑ  and 
2

2
2 2 s

b

fM
C

=ϑ , respectively. Also the static mid-span deflection of 

the beam due to load P acting at the center of the beam is given by, 
EI

PL
st 48

3

=Δ . 

 

The lateral deflection of the beam at any location x and time t is represented by ),( txW  

and that of front and rear unsprung masses by )(1 tW  and )(2 tW , respectively. Similarly 

the deflection of the sprung mass is represented by )(3 tW , and the angle of clockwise 

rotation of the sprung mass about its center of gravity is given by )(tφ . 

 

The forces experienced by the suspension springs due to stiffness 1C  and 2C  are given 

by )]()()([)( 11311 tWtdtWCtZ −+= φ  and )]()()([)( 22322 tWtdtWCtZ −−= φ , 

respectively. Similarly the damping forces associated with viscous damping coefficients 

1bC  and 2bC  of the dashpots are given by, )]()()([)( 11311 tWtdtWCtZ bb
&&& −+= φ  and 

)]()()([)( 22322 tWtdtWCtZ bb
&&& −−= φ , respectively, where the dots indicate the time 

derivatives of the respective parameters. 
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Several dependent parameters were defined to normalize the resultant deflection 

parameters. The following relations for normalization of primary variables were practiced 

by several researchers including Fryba [10]. Assuming dimensionless space and time 

parameters, τξ   and   such that Lx /=ξ  and Ltc /=τ , then the dimensionless primary 

deflection parameters as shown in Equations 6.1 – 6.5. 

 

st

txWW
Δ

=
),(),( τξ           (6.1) 

 

st

tWW
Δ

=
)()( 1

1 τ            (6.2) 

 

st

tWW
Δ

=
)()( 2

2 τ           (6.3) 

 

st

tWW
Δ

=
)()( 3

3 τ           (6.4) 

 

st

dt
Δ

=
)()( φτφ            (6.5) 

 

A few derived dimensionless parameters were introduced to measure the effects of 

fundamental quantities such as speed and weight of the moving vehicle, weight of the 
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bridge, etc. on the vibration characteristics of a coupled bridge and vehicle system, and 

are listed below. 

 

Vehicle to bridge mass ratio, 
G
P

=κ  

 

Front axle to vehicle mass ratio, 
P

Pfw=1κ  

 

Rear axle to vehicle mass ratio, 
P

Prw=2κ  

 

Dimensionless inertia parameter, 2dM
I p=λ , where pI  is the polar moment of inertia of 

sprung mass about its centroid and d  is the axle spacing or separation distance. 

 

Dimensionless speed parameter, 
Lf

c

)1()1( 2
==

ω
ωα  

 

Sprung frequency parameter at front wheel, 
)1(

1

)1(

1
1

/
ω

γ
MC

f
f s

s ==  

 

Sprung frequency parameter at rear wheel, 
)1(

2

)1(

2
2

/
ω

γ
MC

f
f s

s ==  
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Unsprung frequency parameter at front wheel, 
)1(

1

)1(
1

/
ω

γ
MK

f
f fw

w ==  

 

Unsprung frequency parameter at rear wheel, 
)1(

2

)1(
2

/
ω

γ
MK

f
frw

w ==  

 

The dimensionless terms associated with the spring forces of the front and rear 

suspension system are given by, )()()()()( 1
1

3
1

1
1 ττφττ W

d
dW

C
tZz

st

−+=
Δ

=  and 

)()()()()( 2
2

3
2

2
2 ττφττ W

d
dW

C
tZz

st

−−=
Δ

= , respectively and associated damping forces 

are given by )()()()( 1
1

31 ττφττ W
d
d

Wz &&&& −+=  and )()()()( 2
2

32 ττφττ W
d
d

Wz &&&& −−= , 

respectively.  

 

6.2 Governing equations of motion for two axle load system: 
 

6.2.1 Governing equations in dimensionless form: 

The equations of motion governing the rotational and vertical displacements of the 

sprung mass in terms of the above defined dimensionless parameters are given by 

Equations 6.6 and 6.7, respectively. 
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The governing equations of motion for the two unsprung masses are given by, 
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where 
P

ddPP
Q sfw )/( 2

1

+
=  and 

P
ddPP

Q srw )/( 1
2

+
=  represent the dimensionless static 

axle loads, ( )),()(
24

)( 11

2
1

4

1 τξτ
γκπ

τ WWR w −=  and ( )),()(
24

)( 22

2
2

4

2 τξτ
γκπ

τ WWR w −=  

represent the reaction forces experienced at the points of contact of front and rear axle 

loads. 

 

The governing equation of motion for the beam is given by 
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where 
⎩
⎨
⎧ <<

=
otherwise0

10 if1 1
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The governing differential equation of motion for the beam is further simplified as 

 

    2211
4
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2

2

2

)()(2 πξτπξτ
τπ

αβ
τπ

α jSinRjSinRwj
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using ∑
=

=
n

j
j jSinwW

1
)(),( πξττξ  where n  is the number of modes of significance. The 

governing equation in the time coordinate system required only initial conditions since 

the spatial term was decoupled. Also, the initial conditions for the beam, i.e., 0)0,( =ξW  

and  0)0,(
=

∂
∂

τ
ξW  transforms to 0)(

0
=

=τ
τjw  and 0

)(

0

=
=τ

τ
τ

d
dw j  for nj ...,,2,1=  at 

any arbitrary location of the beam. 

 

Since the governing differential equations of beam, unsprung and sprung masses are of 

second order, two initial conditions are required as given by 

 

0)0,( =ξW  and 0)0,(1
=

∂
∂

τ
ξW

T
 for the beam, 

 

101 )0( WW =  and 10
1 )0(1 W

d
dW
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τ
 for the unsprung front axle/wheel load, 
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202 )0( WW =  and 20
2 )0(1 W

d
dW

T
&=

τ
 for the unsprung front axle/wheel load, 

 

303 )0( WW =  and 30
3 )0(1 W

d
dW

T
&=

τ
 for the vertical movement, and 

 

0)0( φφ =  and 0
)0(1 φ

τ
φ &=
d

d
T

 for the rotational motion of sprung chassis load. 

 

In the above descriptions, cLT /=  is the normalization factor for time, and some of the 

initial values to be input were shown with an additional subscript ‘0’. 

 

6.2.2 DQ analog of the governing equations: 

The DQ analog of the governing equation of motion for the beam in mode coordinates is 

given by 
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The DQ analog of the equation governing the rotational and vertical motion of sprung 

mass are given by 
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where )(11 jj zz τ= and )(22 jj zz τ= . 
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where )(33 jj WW τ= . 

 

The DQ analog governing the vertical motion of the unsprung masses are given by, 
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where )(11 jj WW τ= . 
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where )(22 jj WW τ= . 

 

In the above set of equations Equations 6.13-6.16, it should be further noted that the 

terms involving )(1 τz  and )(2 τz  included the definitions of appropriate DQ analogs i.e. 

jjjjj W
d
dWzz 1

1
311 )( −+== φτ   and jjjjj W

d
dWzz 2

2
322 )( −−== φτ . 

 

6.3 Discussion of Results: 

The results obtained for a two axle load system using a moving two point force model 

and moving system of two connected oscillators cannot be effectively compared i.e. the 

parameters defining the dynamic characteristics of a two axle load oscillator system are 

many, and a slight change in the choice of these parameters could affect the comparison. 

For this reason, this section discusses the dynamic behavior of an Euler beam due to a 

two axle load system using moving force and moving oscillator models by fixing a set of 

parameters on the moving oscillator except the speed parameter and inter-load spacing 

parameter which are then varied to study the differences in the results obtained from the 

two models. 

 

The beam and load parameters used in the preceding chapter “Chapter 4: Two point 

moving force system” were also used in this chapter with an additional set of parameters 
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characteristic of the oscillator model, and all the parameters used in the study were listed 

below: - 

Length of the beam, mL 25=  

Natural frequency of the beam, sec/86.21)1( rad=ω  

Linear density of the beam, mkg /2289=μ  

Front unsprung wheel/axle load, NPfw 88.2806=  

Rear unsprung wheel/axle load, NPrw 88.2806=  

Sprung vehicle chassis load, NPs 95.50523=  

Total vehicle load, NPPPP srwfw 7.56137=++=  

Vehicle mass to bridge mass ratio, 1.0=κ  

Unsprung front wheel mass to vehicle mass ratio, 05.01 =κ  

Unsprung rear wheel mass to vehicle mass ratio, 05.02 =κ  

Speed parameter, 1.0=α  

Damping parameter, 03.0=β  

Frequency of sprung mass w.r.t front wheel, Hzf s 19.01 =  

Frequency of sprung mass w.r.t rear wheel, Hzf s 19.02 =  

Frequency of unsprung front wheel mass, Hzf fw 957.0=  

Frequency of unsprung rear wheel mass, Hzfrw 957.0=  

Logarithmic damping decrement of the front and rear end dashpots, 5.021 == ϑϑ  
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Polar moment of inertia of sprung mass pI  is chosen such that the dimensionless inertia 

parameter 2.02 ==
dM

I pλ , i.e. 25.1144 dI p =  where d  is the axle spacing. 

 

6.3.1 Effect of ILS on dynamic response: 

As discussed in the Chapter 4: Two point moving force system, the dynamic response of 

the beam due to moving two axle oscillator decreased with increase in the ILS which is 

expected  in view of the definition of the normalized dynamic deflection. The Figures 6.2 

and 6.3 show the dynamic responses of the beam obtained from moving force and 

moving oscillator models at 3.01.0 andILS = . Both the models, moving force and 

moving oscillator, yielded similar results with the moving oscillator model predicting 

slightly increased response.  

 

The Figure 6.4 compares the dynamic response obtained from the moving oscillator 

model at different ILS values. The maximum normalized dynamic deflection reduced 

from 1.07 at 1.0=ILS  to 0.852 at 4.0=ILS . However, as discussed before, this decrease 

is a result of the definition of the normalized dynamic deflection. 
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Figure 6.2: Dynamic response due to moving two axle load system using moving force and moving 

oscillator models (α = 0.1, κ = 0.1, β = 0.03, ILS = 0.1, NPNPP srwfw 50524,2807 === ) 
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Figure 6.3: Dynamic response due to moving two axle load system using moving force and moving 

oscillator models (α = 0.1, κ = 0.1, β = 0.03, ILS = 0.3, NPNPP srwfw 50524,2807 === ) 



 187

Normalized Time of Traverse

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.40.0 1.0

N
or

m
al

iz
ed

 M
id

-s
pa

n 
B

ea
m

 D
yn

am
ic

 D
is

pl
ac

em
en

t

0.8

0.6

0.4

0.2

1.0

0.0

ILS = 0.1
ILS = 0.2
ILS = 0.3
ILS = 0.4

 

Figure 6.4: Effect of ILS on the beam dynamic response computed using moving oscillator model at 

α = 0.1, β = 0.03 and κ = 0.1 

 

6.3.2 Effect of speed parameter on dynamic response: 

The Figures 6.2 and 6.5 shows the dynamic response resulting from the increase of speed 

parameter from 1.0=α  to 2.0=α  at 1.0=ILS , other parameters being the same. The 

maximum normalized dynamic deflection of the beam predicted from the moving force 

model remained almost same and close to 1. However, the dynamic response computed 

from the moving oscillator model suggested that the increase in speed parameter resulted 

in the increased dynamic response of the beam. 
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Figure 6.5: Dynamic response due to moving two axle load system using moving force and moving 

oscillator models (α = 0.2, κ = 0.1, β = 0.03, ILS = 0.1, NPNPP srwfw 50524,2807 === ) 

 

The Figure 6.6 shows the effect of speed parameter on the dynamic amplification factor 

obtained from moving force and moving oscillator models. The Figure 6.7 gives a closer 

look at the low speed parameter range (which is typical of the highway vehicles). 
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Figure 6.6: Effect of speed on the beam dynamic response due to two axle load system using moving 

force and moving oscillator models (β = 0.03, κ = 0.1, ILS = 0.1) 
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Figure 6.7: Effect of speed on the beam dynamic response due to two axle load system using moving 

force and moving oscillator models (β = 0.03, κ = 0.1, ILS = 0.1) – Closer look at the low speed 

parameter range 

 

The dynamic response predicted from the moving oscillator model clearly exceeded the 

response computed from a moving force model. This behavior is observed for the mass 

ratio of 1.0=κ  which is usually a higher figure compared to the ratio of the mass of an 

actual highway vehicle to the bridge mass. The increased mass ratio is expected to bring 

more differences in the prediction of dynamic responses from both these models since the 

VBI phenomenon becomes significant. 
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The Figures 6.8 and 6.9 compared the effect of speed parameter on the dynamic 

amplification factor for moving force and moving oscillator models at an increased axle 

spacing of 2.0=ILS . The differences seen in the dynamic responses obtained from the 

moving force and moving oscillator models decreased with the increase in the axle 

spacing. The Figure 6.10 also suggested the same behavior i.e. the differences due to use 

of moving force and moving oscillator models becomes insignificant for vehicles with 

larger axle spacing. 
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Figure 6.8: Effect of speed on the beam dynamic response due to two axle load system using moving 

force and moving oscillator models (β = 0.03, κ = 0.1, ILS = 0.2) 
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Figure 6.9: Effect of speed on the beam dynamic response due to two axle load system using moving 

force and moving oscillator models (β = 0.03, κ = 0.1, ILS = 0.2) – Closer look at the low speed 

parameter range 
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Figure 6.10: Effects of speed on the beam dynamic response due to two axle load system using 

moving force and moving oscillator models (β = 0.03, κ = 0.1, ILS = 0.8) 

 

The Figure 6.11 compared the effect of speed parameter on the dynamic amplification 

factor at different ILS values. As expected, the dynamic amplification factor decreased 

with the increase of axle spacing over the range of speed parameter. 
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Figure 6.11: Dynamic amplification factor vs. speed parameter for a two axle load system using 

oscillator model at ILS = 0.1, 0.2 and 0.5 (β = 0.03 and κ = 0.1)  

 

The dynamic response due to two axle load system using moving oscillator model was 

higher than that obtained using moving two point force model. This is a significant 

finding because in the case of single moving force and oscillator systems, the dynamic 

response due to moving oscillator was less that that obtained using moving point force. 
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Chapter 7: Kirchhoff-Love plates under moving loads 

 

Introduction: 

A vast majority of the published research on the moving load problems addressed the 

issue of ‘moving force-moving mass’ using beam models. The beam model and its 

formulation proved quite effective for introducing several new and different 

approaches to solve the same problem. Moreover the closed-form solutions and/or the 

analytical (numerically exact) solutions, if any, could be worked out easily for 

representative beam models including comparisons among different methods for their 

effectiveness i.e. ease of applicability and accuracy.  

 

Beam model representation yields satisfactory results for higher aspect ratio bridge 

structures. Modern bridge structures are built with several lanes to diffuse traffic 

congestion, and it is likely their aspect ratios are low such that the bridge width is of 

the same order as its span length. Since the vehicular loads can no more thought to be 

always applied at the central line of bridge cross-section (which is the only possible 

case for beam models), plate models are necessary to account for transverse flexural 

and torsional modes of vibration. In this section, a simply supported (SS) rectangular 

isotropic Kirchhoff plate is used to demonstrate the application of DQM to solve for 

moving force problems. 
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7.1 Free vibration of isotropic plates: 

A free vibration analysis is performed as discussed in the Chapter 2 (Differential 

Quadrature Method) to extract modal properties of the bridge. This chapter is focused 

on the application of the DQM to study the moving load problem, and for simplicity, 

the results are discussed for an isotropic plate assumed to be simply supported on all 

its sides i.e. SS-SS-SS-SS. The natural frequency of vibration for a simply supported 

plate obtained analytically by variable separable method is given by, 
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where )1(12/ 23 ν−= EhD  is the flexural rigidity of the plate (with E  and h  being 

elastic modulus and thickness of the plate, respectively), hρμ =  is the mass per unit 

area of the plate where ρ  is the mass density of the plate, L  and b  being the plate 

length and width, respectively and nm   and   are mode numbers characterizing mode 

shapes along length and width, respectively and mnω  is the natural frequency 

corresponding to the above modes, nm   and  . Some of the other methods to obtain 

modal properties include Rayleigh maximum energy principle, Ritz and Galerkin 

methods. 

 

7.2 Moving force analysis using DQM: 
 
The governing equation of a rectangular isotropic plate subjected to a moving point 

load P  is given by 



 197

     
Pyyxx

y
W

byx
W

bLx
W

L
DW

T

)()(

121

00

4

4

422

4

224

4

42

2

2

−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂∂

∂
+

∂
∂

+
∂
∂

δδ

τ
μ

           (7.2) 

 

where ),,( τyxWW =  is the normalized transverse displacement of the plate, 

bL /=λ   is the plate aspect ratio, and cLT /=  is the total time of traverse for the 

load to cross the bridge at a speed c , Tt /=τ  is the normalized time and ( )00 , yx  is 

the point of action of the load with ctx =0  and 0y  is assumed to be the center of the 

plate width. 

 

The variable separation principle is employed to decouple the spatial and temporal 

components of transverse displacement, and using the Navier’s solution for a simply 

supported plate, the displacement function is assumed to be in the Fourier series i.e.  

 

∑∑
∞

=

∞

=

==
1 1

)(),,(
m n

mn ynSinxmSinwyxWW ππττ             (7.3) 

 

where w  is the time coordinate function, and nm   and   are the mode numbers. 

The governing equation of motion, i.e., Equation 7.2, is then simplified from a partial 

differential equation (initial-boundary value problem) to an ordinary differential 

equation (initial value problem) as 
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using the assumed displacement function. The time coordinate )(τmnw , if assumed to 

be evaluated at a time jττ = , then the governing equation in its equivalent DQ form 

is given by 
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The governing equation for damped vibration of a plate structure in DQ form is given 

by 
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The analytical displacement solution of an isotropic Kirchhoff SS-SS-SS-SS plate 

subjected to a moving constant force is given by 
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where 
L

cj
j

πω =  is the driving frequency of the load. 
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7.3 Results and Discussion: 

The normalized dynamic deflection computed using plate model was found to be 

slightly larger than that computed using beam model. The dynamic mid-span 

deflection in the speed parameter range [0-0.2] is 20% more than the static mid-span 

deflection. The maximum dynamic amplification was recorded around 1.81 at 

43.0≈α . The dynamic amplification factor vs. speed parameter obtained from the 

analytical solution and the modal DQM using moving force model was shown in 

Figure 7.1 and Figure 7.2.  
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Figure 7.1: Dynamic amplification factor vs. speed parameter using analytical and modal DQM 

(n=31 nodes in temporal domain) 
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Figure 7.2: Dynamic amplification factor vs. speed parameter using analytical and modal DQM 

(n=61 nodes in temporal domain) 

 

The dynamic response obtained from a moving mass model using DQ procedure 

showed sharp and abnormal increase in the DAF at certain values of speed parameter 

as shown in the Figure 7.3. 
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Figure 7.3: Dynamic amplification factor vs. speed parameter from moving force and moving 

mass models 

 

In this chapter, the dynamic response of the bridge structure modeled using plate 

structures were studied with the DQM. However, the study is limited to the 

application of DQM to solve for dynamic response of a plate structure that is simply 

supported in all sides, and is also limited to the scope of moving force and moving 

mass models. The dynamic response obtained using moving mass model was higher 

than that obtained using moving force model. 
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Chapter 8: Conclusion 

 

Introduction: 

The present study successfully applied the Differential Quadrature Method (DQM) to 

study the dynamic behavior of idealized bridge structures under moving vehicular load 

based on three models, i.e., moving force, moving mass and moving oscillator models. 

The dissertation also discussed the effects of speed parameter (α ) and damping 

parameter (β ) on the dynamic behavior of bridge structures. 

 

8.1 Results in brief: 

 
1) The procedures for the application of DQM including the steps to calculate the 

weighting coefficients using different test functions, i.e., power polynomial, 

Lagrange and Hermite-Fejér type interpolating polynomials, were discussed in 

the Chapter 2- Differential Quadrature Method. The DQM was first applied to 

study free vibration problem as an introductory step using beam model, and 

confirmed the results with the frequencies obtained from analytical expression. 

An isotropic Kirchhoff plate with SS-F-SS-F boundary conditions was also 

modeled using DQ method and dimensionless natural frequencies obtained were 

in good agreement with Bert and Malik [103] and Leissa [115]. 

2) The DQ procedure was successfully implemented to study the dynamic behavior 

of beams and plates subjected to moving loads using power polynomials, 

Lagrange, Hermite-Fejér, and Spline type interpolation polynomials. However, 

the results and discussions were limited to the use of Lagrange type interpolation 



 203

polynomials as they were found to be easy and effective. The Chebyshev type 

interpolation polynomial was also used for moving force problem, and the study 

found the weighting coefficients obtained using the Lagrange interpolation 

scheme to be same as those obtained using the Chebyshev interpolation 

polynomials. However, the Lagrange interpolation based DQ scheme took less 

time than the Chebyshev interpolation based DQ scheme for higher number of 

grid points. 

3) For a moving point force, the study applied both the space-time and modal DQ 

methods, and found the modal DQ procedure simple and effective. In the case of 

space-time DQM, the processing time increased with the increase in spatial nodes 

but with no appreciable increase in the solution accuracy.  

a. The dynamic response for an undamped vibration obtained from both the 

space-time and modal DQ procedures compared well the analytical results. 

The maximum error in the case of space-time DQM was about 3 % when 

the number of nodes used were 15 and 61 for spatial and temporal 

domains, respectively. The modal DQ procedure matched excellently with 

the analytical solution with only 31 temporal nodes. 

b. In the moving force analysis, the maximum dynamic amplification factor 

of 1.73 occurred at a speed parameter of about 0.62. 

c. The DAF vs. speed parameter plot showed a wavy pattern at low speed 

parameter (in the range 0-0.2). The bridge dynamic response in this low 

speed parameter range was lower than the static response. Actually this 

low speed parameter corresponds to pretty high highway speeds i.e. for a 
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highway bridge 25 m in length having a typical 5 Hz natural frequency, the 

speed parameter 2.0=α  converts to about 50 m/s or 112 mph. 

d. The oscillations in the DAF at low speed parameter range were missing 

for the damped case, and the dynamic amplification factor (in the low 

speed range) was close to unity i.e. has same effects of a static load. 

e. In the low speed parameter range, the DQ procedure required more 

number of nodal points to yield satisfactory results. This behavior also 

suggested that there could be similar difficulties for other numerical 

procedures to study the dynamic response at low speed parameter range 

because some of the literature works (such as Fryba [10]) did not report 

the wavy pattern observed at low speed parameter range. The author 

speculates that Fryba could have used a marginally higher time increment 

for the direct time integration method. 

f. The dynamic response of a damped bridge structure for different damping 

parameters at the low speed parameter range was similar. The differences 

in the dynamic response due to changes in the damping parameter show up 

when the speed parameter is greater than 0.2. 

g. The dynamic response of the bridge structure subjected to a moving load 

using Inglis model i.e. mass effects of the moving loads were included by 

defining a lumped mass at the center of the beam - was found to be higher 

than that predicted from using either of a moving force or a moving mass 

model. 
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h. For the moving mass problem, the maximum dynamic amplification factor 

of 1.78 occurred at a speed parameter of about 0.54, i.e., at a lower speed 

than observed in a corresponding moving force system. 

4) The dynamic behavior of idealized bridge structures subjected to moving two 

point load system (moving force model) was also studied with the modal DQ 

method. The study found that the bridge dynamic response due to a moving two 

point force system is less than that due to a moving point force system. The 

dynamic amplification factor is found to vary with the inter-load spacing (ILS). 

At 1.0=ILS , the dynamic amplification factor was close to unity for 2.0<α . 

Moreover the oscillations in the dynamic amplification factor, found in the case of 

a moving point force system for 2.0 - 0=α , were missing for the moving two 

point force system. The dynamic response decreased with the increase in the ILS 

which is actually due to the dynamic amplification definition for two point loads. 

5) The VBI phenomenon was also studied using single moving oscillator system. 

The bridge dynamic response using moving oscillator model yielded similar 

results to that in moving force at low speeds and mass ratios. On the time scale, 

the bridge dynamic response obtained from the moving oscillator model precedes 

the dynamic response obtained from the moving force model. The study found 

Green and Cebon [58] results for bridge dynamic response slightly contradictory. 

The present study observed similar and/or higher bridge response predicted from 

moving oscillator model (compared to dynamic response predicted using a 

moving force model) at lower speed parameter range while Cebon and Green [58] 

concluded that the bridge response is higher in case of a moving force model i.e. 
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moving force model is conservative compared with the moving oscillator model – 

which defeats the purpose of importance attached to VBI studies. However, the 

present study results agreed with Green and Cebon conclusive remarks at higher 

speed parameter range i.e. amplification factors obtained from moving force 

model are higher than the amplification factors obtained using a moving oscillator 

model. A maximum dynamic amplification factor of 1.65 approx. was recorded at 

a speed parameter of 67.0≈α . 

6) Results from the dynamic analysis of bridge structures subjected to two axle load 

system modeled using moving oscillator suggested that the differences between 

moving oscillator and moving force models vanish for vehicles with higher axle 

spacing. At lower axle spacing, the moving oscillator model predicted higher 

dynamic response than a moving force model. In general, the DAF decreased with 

the increase in the ILS.  

7) The application of DQM to study the dynamic behavior of bridge structures using 

plate models was also discussed. While the application of DQM to model SS-F-

SS-F looked simple, a few difficulties were encountered in the implementation of 

the algorithm using Mathematica. 

a. Initially the DQ method (based on the Karami and Malekzadeh [112] 

approach to implement boundary conditions) was applied to study the 

Eigen system involving an isotropic SS-F-SS-F plate, and dimensionless 

natural frequencies were obtained for different plate aspect ratios. The 

results obtained matched excellently with the published works of Bert and 

Malik [103] and Leissa [115]. It is important to note that with the Karami 
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and Malekzadeh [112] approach, very accurate results were obtained 

without having to manually incorporate the boundary conditions into the 

governing equations or use δ-technique as suggested by Bert and Malik 

[88, 103]. However, there were issues such as the excessive time to solve 

an Eigen system beyond 11 nodes in spatial domain (along length and 

width of the plate), and physical memory run out issue during the solution 

process in Mathematica. Highly accurate results were obtained even with 

7 nodes in the spatial domain. 

b. The DQM was also applied to study the dynamic behavior of plate 

structures subjected to a moving point force. An isotropic plate simply 

supported on all sides was considered to simplify the procedure, and make 

use of the Navier solution [116] to decouple the spatial components from 

the governing equation. The DAF obtained using the plate model was 

slightly larger than those computed with the beam model. The maximum 

DAF at the mid-span of the plate length was recorded to be 1.81 approx. at 

the vicinity of speed parameter 43.0=α . In the low speed parameter 

range (actual vehicle speeds in state highways), the DAF was around 1.2 

i.e. the mid-span dynamic deflection is 20% more than the static mid-span 

deflection for the same plate configuration. Also the DAF using a plate 

model in this low speed parameter range is higher than that predicted from 

an equivalent beam model. The DAF predicted from a moving mass model 

at low and high speed parameter exceeded a value of 2 i.e. twice the mid-

span static deflection caused due to the same load.  
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8.2 Comments: Advantages and Limitations of DQM: 

The applicability of the DQ procedure was discussed in depth in the Chapter 2 – 

Differential Quadrature Method. The study found the DQM as an effective numerical 

approximation technique because of its direct computation of coefficients, and easy 

implementation of the algorithm on the governing differential equations of the system 

and also because of its higher solution accuracy with only a fewer grid points.  

 

In this study, the DQM is successfully employed on the continuous systems modeled as 

beams and plate elements. However certain modifications are required to enable the 

DQM to be able to study the discrete structures [106, 107]. Though the DQ procedure can 

be extended to analyze irregular domains and/or incorporate weak forms similar to finite 

element procedures [107, 125], the application of the DQ procedure to irregular domain 

problems is not extensively found as it is for a finite element code.  

 

Another issue identified with the application of the DQM observed in this study is the 

convergence issue associated with the number of temporal nodes. Initially the study faced 

difficulties with the number of temporal node points because different number of nodal 

points yielded completely different results. Later it was found that the solution oscillated 

due to Runge phenomenon (covered in Chapter 3 – Moving force-moving mass problem 

for beam models) and the use of Chebyshev-Lobatto distribution eliminated the 

occurrence of oscillations. The study however conceded that there is no established 

method to relate the number of nodal points to the solution accuracy but the efficiency of 
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the method can be evaluated based on the convergence of solution with a certain error 

window. This is also true for other approximation procedures such as finite element 

procedure. 

 

8.3 Concluding remarks: 

Overall the study yielded a good understanding on the DQM and its application to 

transient dynamic problems, and on the vehicle-bridge interaction phenomenon. The 

difficulties involved in the application of the DQ procedure to dynamic analysis were 

discussed, and some alternative approaches were applied to resolve the problem such as 

implementation of Lagrange or Hermite interpolation schemes in lieu of monomial based 

polynomials, use of Chebyshev-Lobatto nodal distribution, etc.  

 

The spline based polynomials were also successfully applied but were left out of the 

discussion in the thesis work. The study also excluded the surface roughness effects on 

the dynamic behavior of bridge structures for simplicity, and the surface roughness can 

be easily included by defining a profile representing the bump or pit which is then added 

to the bridge deflection variable so that the effective interactive forces between wheel and 

bridge can be recalculated. 

 

The subject of dynamic behavior of bridge structures under moving vehicular loads is an 

interesting and assumes significance from the standpoint of design of bridge structures 

anticipating the magnitude of vehicular loads and their passing speeds. It will be 

interesting to study the dynamic behavior of cracked bridge structures under moving 
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loads and assessing the durability and damage tolerance of such cracked structures under 

varying and/or increased loads. 
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Appendix A  

Nomenclature and Abbreviations 

 

Symbol Description 

AASHTO American Association of State Highway and Transportation Officials 

DAF Dynamic Amplification Factor 

DQM Differential Quadrature Method 

QEM Quadrature Element Method 

EDQEM Extended DQEM 

GDQM, 

GDQEM 
Generalized DQM, Generalized DQEM 

IVBS Intelligent Vehicle Bridge System 

VBI Vehicle Bridge Interaction 

c  Speed of the moving load 

D Flexural rigidity of plate 

E Young’s modulus 

I Area moment of inertia 

L Length of beam 

M, N Number of grid points in spatial and temporal domains, respectively 

vM  Representative mass of moving load 

P  Magnitude of moving load 

T  Time factor (ratio of distance traversed by load to time taken) 

),(),,( τξWtxW  Absolute, Normalized lateral bridge displacement 

α  Speed parameter 
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Symbol Description 

β  Damping parameter 

)(⋅δ  Dirac Delta distribution function 

ρ  Mass density of plate 

κ  Vehicle to bridge mass ratio 

)()( , yx κκ  
Factor of bending moment or second derivative of the displacement 

w.r.t x  and y , respectively 

ξ  Normalized space variable 

μ  
Linear density (mass per unit length) of beam 

(or) Area density (mass per unit area) of plate 

λ  Aspect ratio of plate 

ω  Driving frequency of load 

)1(ω  Natural frequency of bridge (beam) 

bω  Frequency of damping for bridge vibration 

τ  Normalized time variable 

)(tw  Time coordinate function 

Ω  Dimensionless natural frequency of vibration of plate 
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