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Abstract 
 
 

Bacteria grow when nutrient availability supports basic biochemical 

requirements and remain in stationary phase when basic needs go unmet.  

This deceptively simple phenomenon requires the orchestrated expression 

of thousands of genes.  Free-living bacteria use a nucleotide second 

messenger, ppGpp, as a physiological signal and effector to appropriately 

coordinate global gene expression according to the nutritional quality of 

the environment.  Over the last four decades, expression of many 

individual genes has been tied to the absence or presence of ppGpp, yet 

the full scope of gene expression mediated by ppGpp remained undefined.  

This dissertation defines the role of ppGpp in regulating global gene 

expression in a model bacterium, Escherichia coli. 
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Chapter 1: Literature review and thesis overview 
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Historical perspective 

 The work presented in this thesis is rooted in fundamental principles of 

bacterial physiology elucidated by such pioneers as François Jacob, Jacques 

Monod, Neils Kjeldgaard, Ole Maaloe, and their coworkers (19, 28).  Bacteria 

grow when environmental conditions allow for their replication, and remain 

quiescent in environments that do not.  When presented with several nutritional 

options, bacteria structure their metabolism to preferentially use the best 

resources first (19, 31).  In rich medium, individual bacterial cells are large and 

maintain a high number of ribosomes (28, 31).  Conversely, when grown in 

minimal medium or growth arrested, cells are small and contain a proportionately 

lower number of ribosomes (28, 31).  Simple as these relationships might seem, 

we now know that each of these phenotypes requires the coordinated expression 

of hundreds of genes (11, 12, 27).  How do bacteria, relatively ‘simple’ 

organisms, execute and balance these complex responses? In essence, the 

experiments done here are an effort to evaluate the regulation of these long-

standing principles at a global scale by using high-throughput technologies.  The 

results suggest that the regulatory molecule ppGpp lies at the apex of the 

systems that govern these fundamental aspects of prokaryotic physiology.     

In the four decades since its discovery, the ‘magic spot’ aka ppGpp 

(guanosine-5’, 3’ -bispyrophosphate) has proven to be one of the most 

challenging bacterial genetic regulators to understand (36).  Even now, central 

questions endure regarding its mechanism of action and role in regulating cell 



 
3 

physiology (36, 44).  ppGpp was first discovered by Michael Cashel in 1969 as a 

mysterious hyperphosphorylated compound which accumulated after Escherichia 

coli cells were starved for amino acids (8).  At that time, the so-called ‘stringent 

response’ to amino acid starvation was known to include the rapid down-

regulation of stable RNA (tRNA and rRNA) production (28).  Cashel also found 

that ‘relaxed’ mutants, which continued to make rRNA in the face of amino acid 

starvation, also failed to synthesize ppGpp (10). Thus, the connection was made: 

ppGpp is the arbiter of the stringent response.  In the ensuing years, a great deal 

has been learned regarding ppGpp metabolism and its role in regulating a 

panoply of cellular processes (9).       

 

Control of ppGpp metabolism 

 E. coli has two enzymes that govern the intracellular ppGpp concentration; 

RelA and SpoT (48).  The ribosome-associated RelA monitors tRNA traffic at the 

ribosomal A site (47).  Upon introduction of an unaminoacylated tRNA into the A 

site (as happens during amino acid starvation), RelA catalyzes the formation of 

one molecule of ppGpp from GDP and ATP, or one molecule of pppGpp from 

GTP and ATP (16). pppGpp is converted into the physiologically relevant ppGpp 

via the activity of GppA (15).  At the time of catalysis, RelA, ppGpp, and the 

uncharged tRNA all dissociate from the ribosome, priming the system for another 

cycle and allowing RelA to potentially interact with other stalled ribosomes (47).  

Thus when intracellular amino acid concentrations fall below the threshold 
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required by the current translation rate, ribosomes stall and ppGpp accumulates 

rapidly.   

 SpoT is a bifunctional enzyme, capable of both ppGpp synthesis and 

degradation (48).  In contrast to RelA, SpoT is important for determining the 

ppGpp level in response to a variety of starvation conditions, including starvation 

for carbon (48), phosphate (40), and iron (43).  The ppGpp synthetic activity of 

SpoT is weaker than that of RelA, thus RelA is considered the primary source of 

ppGpp, while SpoT’s role in setting the ppGpp level comes mainly from 

determining the rate of ppGpp degradation (36).  Structural studies suggest that 

the two active sites in SpoT (one for ppGpp synthesis, the other for ppGpp 

degradation), may be active at different times, depending on the overall 

conformation of the enzyme (18).  Thus, one conformation corresponds to 

synthase ON/hydrolase OFF, and the other conformation corresponds to 

synthase OFF/hydrolase ON (18, 36).   

The signals governing SpoT activity are only now beginning to be 

understood.  The location of SpoT in the cytoplasm and whether or not it 

interacts with the ribosome has been controversial.  Most recently, at least one 

report has shown that SpoT can be isolated from immature ribosomes (a pre-50s 

particle), but not active ribosomes, depending on the preparation technique (21).  

SpoT has also been found to interact with at least one GTPase, CgtA (21, 37).  A 

model put forth for Vibrio cholera suggests that CgtA functions to hold SpoT in 

the hydrolase ON state when nutrient availability is high (37).  Even more 

recently, SpoT has been found to interact with the acyl carrier protein, ACP (5),  
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which functions as a carrier for carbon units in the synthesis of fatty acids (29).  

The current model is that the ratio of acylated ACP to unacylated ACP influences 

the activity of SpoT such that fatty acid starvation triggers SpoT-dependent 

ppGpp synthesis (5).  This model is particularly attractive since it provides an 

explanation for how SpoT might sense carbon starvation (5). 

 

Mechanism of action of ppGpp 

Though much progress has been made regarding the mechanism of 

action of ppGpp, fundamental questions remain unresolved.  Fairly early on, it 

was recognized that the target protein affected by ppGpp was RNA polymerase 

(RNAP) itself (42).  This suggested that ppGpp might have the capacity to 

influence transcription at virtually all promoters.  As the primary cellular reaction 

to amino acid starvation is the down-regulation of rRNA production, it was 

hypothesized that the binding of ppGpp to RNAP causes this down-regulation 

(38).  ppGpp-dependent down-regulation of transcription from rRNA promoters 

has been demonstrated in vivo and in vitro (8, 32, 38, 42).  It was also noted that 

amino acid biosynthetic genes were induced in response to amino acid 

starvation, concomitant with stringent down-regulation of rRNA genes (9, 38, 41).  

This induction of amino acid biosynthetic genes was also found to require ppGpp 

(41).  The idea that amino acid biosynthetic genes require ppGpp for their 

induction was further bolstered by the observation that a strain lacking ppGpp (a 

ΔrelA, ΔspoT double knockout, also called ppGpp0) is auxotrophic for multiple 

amino acids (48).   
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For many years, in vitro attempts to stimulate down-regulation of rRNA 

promoters by adding ppGpp to in vitro transcription systems yielded only a ~2-3 

fold down-regulation, compared to the ~20 fold down-regulation observed in vivo 

(17). A major breakthrough was the discovery that a small RNAP binding protein, 

DksA, allowed for robust down-regulation of rRNA promoters with ppGpp and 

RNAP in vitro (32).  The structure of DksA is similar to that of the Gre factors 

(GreA and GreB), which posses a long coiled-coil finger domain that inserts into 

the secondary channel of RNAP (the secondary channel serves as the entry 

portal for free rNTPs to reach the active site of RNAP) (35).  Crystallographic 

studies also placed the binding site of ppGpp in the secondary channel of RNAP, 

near the active site (1).  Thus, the proposed model was that ppGpp was held in 

place inside RNAP by DksA, which occupied the secondary channel (1).  DksA is 

understood to potentiate the effect of ppGpp on RNAP.  However, the binding 

site of ppGpp within RNAP has recently been called into question, as point 

mutations of the RNAP amino acid residues purported to interact with ppGpp did 

not affect regulation by ppGpp in an in vitro system (44). 

ppGpp and DksA have been shown to regulate gene expression in several 

ways.  This includes directly, passively, and indirectly via sigma factor 

competition.  Each of these is considered in kind below.  

 

Direct regulation by ppGpp        

Current models for how ppGpp and DksA directly modify RNAP behavior 

require a detailed understanding of the normal steps that occur as RNAP initiates 
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transcription [for a review see (17)].  After the promoter sequence on DNA is 

recognized and bound by the sigma (σ) subunit of RNAP (an arrangement known 

as the closed complex), a series of conformational changes leads to the 

separation of the two DNA strands such that the transcriptional start site is 

positioned at the active site of RNAP.  At this stage the RNAP/DNA complex is 

said to be in the ‘open complex.’  Ultimately, transition to the transcription 

elongation complex requires the addition of several rNTPs to the growing RNA 

chain and the dissociation of the σ-promoter DNA contacts (17).  Accumulating 

evidence suggests that ppGpp and DksA work together to destabilize the open 

complex itself or some intermediate along the way to open complex formation 

(32).  This destabilization results in the down regulation of promoters that form 

intrinsically unstable, short-lived open complexes, such as strong rRNA 

promoters (34).  In contrast, promoters that form longer-lived open complexes, 

such as those found upstream of amino acid biosynthesis genes, are less prone 

to destabilization (2, 3).  Direct induction by ppGpp and DksA of amino acid 

biosynthesis genes occurs in vitro via a mechanism that is not understood (33).  

The hypothesis advanced by the authors is that ppGpp/DksA may lower the free 

energy required for the conformational changes that accompany conversion from 

the closed to open complex (17, 33).  Kinetic parameters determined by the 

sequence of a given promoter would then dictate whether the progression to 

open complex formation or open complex collapse is favored in the presence of 

ppGpp/DksA (17, 33). 
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Passive induction by ppGpp 

During rapid growth, 60-80% of RNAP is devoted to transcription of rRNA 

genes (34).  This high level of rRNA synthesis leads to production of the large 

number of ribosomes needed for rapid protein synthesis to support a maximal 

growth rate (28).  Such a large sequestration of RNAP engaged in stable RNA 

synthesis allows only a relatively small amount of RNAP to undertake mRNA 

synthesis across the remainder of the genome (7, 45).  When stress is 

encountered, such as during starvation, ppGpp accumulates rapidly, resulting in 

down-regulation of stable RNA synthesis and the liberation of the majority of 

sequestered RNAP (2, 7, 27).  Thus ppGpp passively allows for induction of 

various promoters across the genome by liberating RNAP from stable RNA 

synthesis.  This model makes intuitive sense given that the majority of RNAP is 

thought to be engaged in transcription at all times, leaving a relatively small pool 

of free RNAP (34, 45).  Furthermore, many relatively weak promoters with 

longer-lived open-complexes require higher levels of RNAP when in competition 

with rRNA promoters in vitro (2). 

 

Indirect regulation via sigma factor competition          

In E. coli one housekeeping sigma factor, RpoD (σ70), is responsible for 

mediating transcription from the overwhelming majority of promoters.  However, 

E. coli has six other alternative sigma factors, each of which controls transcription 

of a discreet regulon [reviewed in (14)].  The alternative sigma factors include 

RpoS (σ38), mediator of the general stress response, RpoN (σ54), active during 
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nitrogen starvation, RpoE (σ24), which responds to envelope stress, RpoH (σ32), 

manager of the heat shock response, RpoF (σ28), involved in flagella synthesis, 

and FecI (σ19), regulator of ferric citrate uptake.  Alternative sigma factors 

therefore compete with each other and σ70 to engage the RNAP core enzyme (E) 

and activate gene expression.   

The first indication that this competition was not strictly influenced by the 

relative levels of each sigma factor came from an investigation with RpoS (24).  

Perhaps is not surprising that RpoS, which activates ~100 genes during almost 

any stressful situation (25, 46), is intimately linked to ppGpp (13, 26). RpoS is 

known to be controlled at the levels of transcription and protein stabilization by 

ppGpp (6, 13, 26).  However, it was found that RpoS-dependent promoters also 

require ppGpp for their induction, even if the level of RpoS itself is normal (24).  

One possibility was that ppGpp somehow made RpoS more competitive for 

RNAP core enzyme.  It was subsequently shown that ppGpp destabilizes the 

interaction between E and σ70, thus affording more opportunity for RpoS to gain 

access to E (22).  Such a scenario implies that all alternative sigma factors would 

be favored against σ70, in the presence of ppGpp.  This hypothesis seems to be 

correct as subsequent experiments showed that ppGpp enhanced the 

competitiveness of both RpoH and RpoE for E against σ70 (22, 30).      

 

Outstanding questions 

 At the onset of the work presented in this thesis, there were many open 

questions regarding ppGpp.  Moreover, ppGpp as a model physiological system 
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offered an opportunity to study several topics of keen interest to me.  

Fundamentally, I am interested in how bacteria make decisions based on 

environmental conditions.  Bacterial responses are mostly limited to modifying 

expression of their genes at the transcriptional level.   

Expression of each gene or operon is controlled through the interaction 

between regulatory proteins and DNA operator sites usually present in the 

upstream promoter region.  In essence, the cells integrate information through 

these regulatory elements to ‘compute’ whether a given gene should be turned 

on or off (39).  Examination of a wide range of bacterial genetic systems has 

shown that in some cases regulation is a relatively localized event, wherein a 

regulator controls expression of a single gene or operon in response to a single 

environmental attribute (i.e. sugar catabolism operons) (23).  However, it is also 

clear that bacteria utilize global regulators to consider a single environmental 

condition at the promoters of a large number of genes (20, 23).  Thus, bacteria 

utilize complex transcriptional networks to optimize their gene expression at a 

global scale (4, 20).  As I became acquainted with the available literature, it 

became clear to me that ppGpp probably affected more systems than any other 

single regulatory system.  Perhaps for this very reason, that is, ppGpp seemed 

control such a huge number of genes, the extent of gene expression mediated by 

ppGpp remained poorly defined.  Endeavoring to answer this question became a 

major part of the work described here.  Moreover, advances in microarray 

technology offered an exciting and unprecedented avenue for examining these 

questions.  As the impact of ppGpp on global transcription is so large, ppGpp 
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itself probably rarely acts in isolation.  Thus, another important question is: where 

does ppGpp fit in the context the global transcriptional network?  The role of 

ppGpp in gene regulation vis a vis other global regulators is the other major 

question which underlies the experiments described here in three major 

chapters: 

 

Preamble to Chapter Two:  ppGpp coordinates global gene expression during 

glucose-lactose diauxie in Escherichia coli 

 When I entered Dr. Conway’s lab as graduate student in the spring 

semester of 2003, three members of the lab had just published an important 

paper in Molecular Microbiology entitled: ‘Gene expression profiling of 

Escherichia coli growth transitions: an expanded stringent response model’ (11).  

The work presented in that paper was conducted mostly by a postdoctoral 

researcher, Dr. Dong-Eun Chang.  Dr. Chang showed that two very different 

physiological conditions that caused temporary growth arrest (glucose-lactose 

diauxie and H2O2 treatment) both triggered the stringent response.  In the first 

case, WT cells were grown in minimal medium containing glucose and lactose.  

Under these classic experimental conditions first examined by Jacques Monod 

and coworkers, E. coli selectively grows on the glucose first, undergoes a pause 

in growth (called diauxie), and then resumes growth on lactose (19).  In his 

analysis of microarray data collected from multiple time points during transient 

growth arrest, Dr. Chang noted that gene expression within three major networks 

responded: genes of the general stress response, genes involved in carbon 
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scavenging, and genes involved in ribosome biosynthesis.  The work described 

in the second chapter of this thesis is an effort to understand how the RpoS 

(stress) and Crp (carbon scavenging) neworks are integrated within the stringent 

response controlled by RelA/ppGpp.  This work culminated in the development of 

a model which describes the timing and physiological components of the 

response to transient growth arrest.  Results from this chapter are published 

(PMID: 16467149), and have been reformatted here for consistency.  

 

Preamble to Chapter Three: The global, ppGpp-mediated stringent response to 

amino acid starvation in Escherichia coli 

 Having examined the role of ppGpp in response to carbon starvation, I 

wanted to consider the role of ppGpp in the cellular response to amino acid 

starvation, especially since amino acid starvation is the archetypal condition 

known to trigger the stringent response (9).  I also felt that it was important to 

make sure that the experiments conducted could be applied equally to both the 

WT and the multiauxotrophic ppGpp0 strain.  To this end, I developed an 

experimental system based on starvation for isoleucine that met this criterion.  As 

I began to gather array data for the WT, ppGpp0 strain, and several other 

regulatory mutants, it became clear that before an analysis involving several 

regulatory players could be interpreted, the actual physiological extent of the 

ppGpp-dependent stringent response would need to be defined.  This became 

the goal of the research presented in Chapter 3.  We found that the ppGpp-

mediated stringent response encompassed down-regulation of virtually all types 
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of macromolecular biosynthesis including genes involved in protein, nucleic acid, 

and fatty acid biosynthesis.  We also found that metabolic gene expression was 

broadly restructured.  In this experimental system, we also noted that the ppGpp0 

strain produced 50% more biomass than the WT, despite producing the same 

amount of total protein.  Taken together these results suggested that ppGpp 

plays a fundamental role in calibrating virtually all macromolecular processes to 

the translational capacity of the cell.  A model that integrates this information at 

the level of gene expression is presented.  Results from this chapter are 

published (PMID: 18430135), and have been reformatted here for consistency. 

          

Preamble to Chapter Four: Architecture of the stringent response 

 After having defined the physiological extent of gene expression mediated 

by ppGpp, I wanted to explore the regulatory hierarchy responsible for executing 

the global response to amino acid starvation.  This is the focus of Chapter 4.  

Transcriptional patterns observed in the data collected for Chapter 3 suggested 

that the regulators RpoS and Lrp were active in developing the observed 

response to isoleucine starvation.  Thus, the experimental system I designed in 

Chapter 3 served as a starting point for analyzing the contribution of these two 

regulators.  After experimentally defining the RpoS and Lrp regulons, the 

activation time (response time) for each of these regulons was obtained using a 

large microarray time series of isoleucine starvation.  This analysis, along with 

ppGpp measurements suggested a model in which low amounts of ppGpp are 

sufficient to allow activation of metabolic genes (such as amino acid biosynthetic 
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promoters), while genes controlled by RpoS (the general stress response) 

require a comparatively high amount of ppGpp for their activation.  Experiments 

testing two predictions of this model offered an initial confirmation of the 

proposed regulatory framework.  Implications of such a model for partitioning of 

metabolic and stress responses are discussed.     
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Escherichia coli: Evidence for regulation by guanosine 5’,3’-

bispyrophosphate (ppGpp)  
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Abstract 

 

Guanosine 5’3’-bispyrophosphate (ppGpp), also known as “magic spot”, 

has been shown to bind prokaryotic RNA polymerase to down-regulate 

ribosome production and increase transcription of amino acid biosynthesis 

genes during the stringent response to amino acid starvation.  Since many 

environmental growth perturbations cause ppGpp to accumulate, we 

hypothesize ppGpp to have an overarching role in regulating the genetic 

program that coordinates transitions between logarithmic growth (feast) 

and growth arrest (famine).  We used the classic glucose-lactose diauxie as 

an experimental system to investigate the temporal changes in 

transcription that accompany growth arrest and recovery in wildtype 

Escherichia coli and in mutants that lack RelA (ppGpp synthetase) and 

other global regulators, i.e., RpoS and Crp.  In particular, diauxie was 

delayed in the relA mutant and was accompanied by a 15% decrease in the 

number of carbon sources utilized and a 3-fold overall decrease in the 

induction of RpoS and Crp regulon genes.  Thus the data significantly 

expand the previously known role of ppGpp and support a model wherein 

the ppGpp-dependent redistribution of RNA polymerase across the 

genome is the driving force behind control of the stringent response, 

general stress response, and starvation-induced carbon scavenging.  Our 

conceptual model of diauxie describes these global control circuits as 

dynamic, interconnected, and dependent upon ppGpp for the efficient 
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temporal coordination of gene expression that programs the cell for 

transitions between feast and famine.  
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Introduction 

 

The fitness of free-living organisms depends on their ability to withstand 

environmental insults and grow as rapidly as possible when conditions allow.  

Consequently, the coordination of growth control processes constitutes a 

fundamental level of regulation in prokaryotes.  For this reason, the bacterial 

existence is often thought to be one of “feast and famine”(21).  In the laboratory, 

nutritional conditions which cause biphasic growth provide a unique opportunity 

to investigate this most basic of bacterial behaviors.  When cultured on a mixture 

of glucose and lactose, E. coli grows preferentially on glucose until the glucose is 

exhausted, resulting in growth arrest while the cells adjust to growth on lactose, 

i.e., diauxie.  The genetic basis for biphasic sugar catabolism, elucidated by 

Jacob and Monod(18), is exemplified by lac operon induction, which is a textbook 

paradigm for illustrating genetic control.  However, transcriptome analysis 

revealed that diauxie involves much more than induction of the lac operon, that 

diauxie is accompanied by a global response to growth arrest that apparently 

ensures recovery when conditions allow growth to resume(8).  The purpose of 

this study is to dissect the regulatory networks that govern diauxie as a means 

for understanding how the cell integrates the response to growth arrest. 

We showed previously(8) that during steady-state logarithmic growth, 

gene expression in E. coli is quasi-steady state.  In contrast, when glucose is 

exhausted and growth of the culture is arrested a major component of the 

transcriptome‘s adjustment to diauxie is the stringent response, which includes 
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down-regulation of a large number of transcription and translation apparatus 

genes, inhibition of ribosome synthesis, and induction of amino acid biosynthesis 

genes(6, 7).  Also induced are general stress response and carbon scavenging 

genes, which apparently ensure survival during growth arrest and switching to 

alternative carbon sources.  These genes are controlled primarily by the 

stationary phase sigma factor, RpoS(10, 14), and the cAMP receptor protein 

(Crp), which governs catabolite repression, a response to sugar limitation(20, 

33).  There is strong evidence for a connection between stringent control and the 

general stress response: ppGpp is required for RpoS accumulation(11) and 

ppGpp-bound RNA polymerase preferentially binds alternative sigma factors(22, 

27, 29).  Likewise, a connection between carbon scavenging and the general 

stress response is manifested as an RpoS-dependent tradeoff between induction 

of genes in the RpoS and Crp regulons(20).  These published studies are 

indicative of a larger emerging theme in global gene regulation in prokaryotes: 

large scale regulatory circuits do not function independently of one another, but 

instead are finely calibrated to coordinate bacterial cell functions in response to 

environmental cues.   

On the basis of the behavior of the transcriptome during diauxie and 

dependence of the general stress response on ppGpp, we(8) and others(27) 

hypothesized that ppGpp controls not only the stringent response, but also the 

regulatory networks that coordinate survival during stationary phase and 

resumption of growth following growth arrest.  To dissect the roles of individual 

regulators of this process, we now compare the transcription profiles of mutants 
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lacking RelA, RpoS, and Crp across the diauxic time course.  We show here that 

efficient induction of all genes that are significantly induced during diauxie, 

including primarily the Crp and RpoS regulons, is RelA-dependent, implying that 

ppGpp is at the apex of global regulation during times of carbon starvation.  We 

incorporate these results into a conceptual model of glucose-lactose diauxie that 

places at the center of growth transitions the ppGpp-mediated balance between 

stringent-controlled repression of the translation apparatus and induction the 

general stress response and carbon scavenging regulons.   

 

Results 

 

Systematic regulatory mutant analysis during diauxie 

K-means cluster analysis of the transcriptome dataset of wildtype E. coli 

during glucose-lactose diauxie(8) revealed three regulatory networks (RpoS, Crp, 

and RelA) that dominated the transcription profile (Supplementary Fig. 1).  To 

further elucidate their role in diauxie, we cultured rpoS, crp and relA mutants on 

minimal medium containing a mixture of glucose and lactose as sole carbon 

sources.  Total RNA was isolated during logarithmic growth in the glucose phase 

of diauxie and at approximately 10 min intervals during diauxie, and was 

analyzed in triplicate using whole-genome E. coli MG1655 oligonucleotide glass 

microarrays.  The RNA control for all microarrays was from an early logarithmic 

phase culture of wildtype E. coli MG1655 on minimal glucose medium.  The 
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datasets are available on the Internet (www.ou.edu/microarray).  We consider the 

transcriptome analysis of these regulatory mutants, as follows.  

 

Transcriptome of rpoS and crp mutants 

Under diauxie conditions, the strain lacking RpoS grew normally, as 

shown previously(10).  The strain lacking Crp was unable to resume growth on 

lactose, as expected(28).  Figure 1 shows a transcriptome comparison for the 

mutant strains during the diauxic lag period with that of the wildtype strain.  In the 

wildtype, exhaustion of glucose was accompanied by diauxie and a whole-

genome expression profile characteristic of release from catabolite repression 

and induction of the general stress response; the Crp regulon was induced in the 

10 min interval immediately preceding diauxie, while induction of the RpoS 

regulon occurred within the first 10 min following growth arrest.  These results 

are consistent with the known diauxie-dependent kinetics of RpoS protein 

accumulation, which is slow(10), and cAMP accumulation, which is rapid(28) 

(Fig. 1).   

To identify genes regulated by RpoS and/or Crp during diauxie we used K-

means cluster analysis (K=22) of the entire dataset shown in Fig. 1a.  This 

analysis revealed four clusters containing 97 highly regulated genes, which are 

shown in Fig 1b.  The constituent genes of the Crp or RpoS regulons were not 

induced in the respective mutants (Fig 1b).  Fourteen genes were not induced in 

the rpoS strain during the diauxic lag, including genes that are typically 

associated with the general stress response and known to be induced in an 



 
28 

RpoS-dependent manner, such as bolA, dps, wrbA, and mscL(37).  Thirty-one 

genes were not induced in the crp strain when glucose was exhausted during 

diauxie, including genes such as lacZA, mglBA, lamB, glpFK, and rbsD that are 

known to depend on Crp for their expression(41).  Finally, another 14 genes were 

not induced in either the rpoS or crp strains during diauxie, including glgS which 

is known to be regulated by both RpoS and Crp(15).  The analysis also revealed 

repression of 37 genes, shown in Fig. 1b, that are known to be associated with 

the stringent response(8).  Repression of these genes was not affected to a large 

extent by mutation of rpoS or crp.  Taken together, these results are consistent 

with diauxie in the wildtype being accompanied by the stringent response and 

induction, simultaneously, of the RpoS-dependent general stress response and 

Crp-dependent scavenging for alternative carbon sources.  The remaining genes 

that were not regulated to a large extent during diauxie are shown in grey in Fig. 

1a.    

 

Transcriptome of relA mutant 

Since accumulation of RpoS and transcription of RpoS-dependent genes 

requires ppGpp(11), we wanted to determine whether a defect in ppGpp 

synthesis would affect expression of RpoS-dependent genes under diauxic 

conditions.  There are two ppGpp synthetase enzymes to consider.  The dogma 

is that ribosome-associated RelA synthesizes ppGpp in response to amino acid 

starvation and SpoT, which has both weak synthetase and ppGpp hydrolase 

activities, is responsible for ppGpp accumulation in response to carbon 
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starvation(7, 25).  Upon growth arrest, regardless of whether it is synthesized by 

RelA or SpoT, ppGpp accumulates rapidly in the cell, binds to RNA polymerase 

(RNAP), and stimulates the down-regulation of the translation apparatus that 

characterizes the stringent response(1).  The rapid accumulation of high levels of 

ppGpp during glucose lactose diauxie has been reported previously(13). 

Ideally, this experiment should compare diauxie in the wildtype with that of 

a strain that is completely devoid of ppGpp.  However, spoT mutants are only 

viable in a relA background and relA spoT strains are multiply auxotrophic for 

nine amino acids(34).  Thus, we tested the wildtype and relA spoT strains with 

amino acids added to the growth medium and found they did not exhibit glucose-

lactose diauxie (data not shown).  Presumably this is because the amino acids 

served as carbon sources to support growth during the period of time when the 

lac operon was being induced.  Regardless of the cause, it was not possible to 

culture the relA spoT strain under glucose-lactose diauxie conditions because of 

the amino acid requirement of this strain.  However, the relA strain is able to 

grow on minimal medium without added amino acids.  Therefore, we investigated 

the impact on the transcriptome of a relA mutation, which has been shown to 

extend diauxie in E. coli strains(7, 13, 16, 23).  We observed large-scale 

differences in both the timing and extent of differential gene expression in the 

relA mutant during diauxie (Fig. 2).  The down-regulation of the transcription and 

translation apparatus genes (listed in Fig. 1 and Supplementary Table 1) was 

delayed, reaching a minimum in the 26-36 min interval of diauxie, as opposed to 

the 0-10 min interval for the wildtype strain.  Thus, the results are consistent with 



 
30 

the known role of ppGpp in stringent control of ribosome synthesis during growth 

arrest. 

 

Altered induction of RpoS and Crp regulons in relA mutant   

All members of the RpoS regulon exhibited delayed induction in the relA 

mutant, with the exception of one gene (bolA).  The amplitude of the ‘burst’ of 

gene induction normally seen at the onset of diauxie in the wildtype was 

lessened 3-fold in the rpoS strain (compare Fig. 2b and Fig. 2d).  Since relA 

mutants delay ppGpp accumulation during nutrient downshifts(2, 23) and the 

RpoS-dependent general stress response requires ppGpp(11, 22, 27), the data 

are consistent with a model which places ppGpp in control of the general stress 

response. 

The relA mutant also exhibited diminished induction of the Crp regulon 

(Fig. 2b), with an average peak expression of Crp-activated genes that was 3-

fold lower than that observed in the wildtype (Fig. 2d).  In the wildtype strain 

induction of some Crp-dependent genes was immediate, occurring during the 10 

min interval prior to diauxie, and constituted a first wave of gene induction in 

response to glucose starvation.  Other Crp-dependent genes, including the lac 

operon, were not induced in the wildtype until the onset of diauxie.  By contrast, 

in the relA mutant induction of the lac operon was delayed by 25 min 

(Supplementary Table 1).  This likely is the ultimate cause of the lengthened 

diauxie of the relA strain.  Thus, the relA mutation generally dampened 

expression of all CRP-dependent genes that normally are induced in the wildtype 
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during diauxie (Supplementary Table 1), as well as rmf (Supplementary Fig. 2), 

which is known to be outside control of both Crp and RpoS(17).  Since relA 

strains are known to have higher than normal cAMP levels following nutrient 

downshifts(2) and normal cAMP levels following amino acid starvation(30), this 

argues that the RelA-dependent effect on Crp-dependent gene activation is not 

mediated by the intracellular cAMP concentration.  Rather, in vitro transcription 

assays demonstrated that ppGpp is required for maximal induction of the lac 

operon and it has been suggested that this might also be the case for other 

catabolic genes and operons(31).  The results shown in Fig 2. are consistent with 

the idea that maximal induction of Crp-activated genes depends on ppGpp.  

In further support of the assertion that ppGpp is required for induction of 

carbon catabolism genes, phenotype arrays (Biolog GN2 microplates) showed a 

15% decrease in the number of carbon sources used by the relA and relA spoT 

mutants (Supplementary Fig. 3). Specifically, we observed that alpha-

hydroxybutyric acid, alpha-ketobutyric acid, propionate, D-saccharic acid, 

lactulose, Tween 40, and Tween 80 were not consumed by these mutants 

(Supplementary Table 2).  These results are consistent with a model wherein 

RelA-dependent adjustment of intracellular ppGpp levels in response to 

starvation is required for normal induction of survival genes, including the Crp 

regulon.  

 

Discussion 

 



 
32 

E. coli is a comparatively simple model system, yet a full understanding of 

the regulatory connections which shape prokaryotic physiology remains elusive.  

The strategy of iteratively examining the roles of several transcription factors in a 

single, complex physiological transition (i.e., growth arrest) provided a conceptual 

framework for integrating diverse cellular processes.  This general strategy and 

the datasets generated here should be of value for systems biology. 

To derive a conceptual model of diauxie that accounts for the global 

redistribution of gene expression in response to growth arrest, such as that 

caused by diauxie, we propose a simple RNAP switch model that is consistent 

with known biochemical parameters (regulatory mechanisms) of the stringent 

response (Fig. 3).  To our knowledge, all growth perturbations result in rapid 

accumulation of ppGpp(7, 36), which binds to RNA polymerase (RNAP) and 

causes the down-regulation of the translation apparatus that characterizes the 

stringent response(7).  Given that stable RNA synthesis constitutes up to ~80% 

of transcription in rapidly growing cells(3, 5), reduced transcription from these 

stringent promoters, which has been proposed to result from various 

mechanisms, including destabilization of the RNAP-promoter open complex or 

inactive dead-end promoter complexes(1, 24, 29), should greatly increase the 

availability of free RNAP(3, 7).  The indirect or so called passive model 

postulates that the increased availability of RNAP caused by inhibition of rRNA 

transcription frees RNAP to bind to other promoters, i.e., amino acid biosynthetic 

genes and those shown in this study to be activated.  Alternatively, the direct 

model of RelA-dependent activation proposes that ppGpp and DksA act directly 
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to stimulate RNAP at promoters of amino acid biosynthesis genes(7, 29).  These 

models are not mutually exclusive and may in fact both contribute to the 

observed changes in gene expression caused by ppGpp.  Since gene expression 

profiles reflect the distribution of RNAP at promoters across the genome(38), our 

data suggest that reprogramming of RNAP by binding ppGpp increases the 

transcription initiation frequency at many more promoters than had been 

recognized previously, including the CRP and RpoS regulons.  Also, it was 

recently shown that growth arrest is accompanied by RelA-dependent, physical 

redistribution of RNAP(5).  Thus, regardless of whether the ppGpp effect is direct 

or indirect, gene expression profiling of E. coli during diauxie supports the 

proposed switch model (Fig. 3), wherein ppGpp not only controls the down-

regulation of stringent promoters, but also the activation of stress survival and 

carbon catabolism genes.  We propose that ppGpp-dependent reprogramming of 

RNAP is the driving force behind differential gene expression during diauxie. 

Our conceptual model of diauxie, based on the microarray data presented 

above and incorporating the RNAP switch model (Fig. 3), is given in Fig. 4.  

Diauxie involves much more than induction of the lac operon.  Before the lac 

operon is induced, the general stress and stringent responses are induced and 

catabolite repression is released.  Through the use of regulatory mutants, we 

show that the large-scale changes in the transcriptome during diauxie, including 

induction of the Crp and RpoS regulons and adaptation to metabolism of a less-

preferred carbon source, requires RelA for efficient and timely control.  By 

accounting for the ppGpp-dependent system that controls ribosome number in 
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bacteria(7, 12, 19, 26, 27, 35), our model incorporates one of the fundamental 

principles of bacterial physiology, i.e., that bacterial cell growth rate is determined 

by the number of ribosomes active in protein synthesis(19).  Also, the model is 

consistent with the recently discovered roles of DksA in mediating physical 

interactions of ppGpp with RNAP(29) and ppGpp-dependent RpoS 

accumulation(4).   

Our data bring to light a controversy regarding the roles of the two ppGpp 

synthetase enzymes in regulating the stringent response.  The prevailing notion 

is that RelA responds to amino acid starvation, while SpoT governs ppGpp 

accumulation during carbon starvation(7).  The data presented here indicate that 

starvation for glucose in the wildtype induces the stringent response.  In addition, 

our results indicate that mutation of relA alters this response.  However, our 

experiments do not distinguish whether this effect is mediated directly by RelA or 

indirectly, i.e., glucose starvation leads to amino acid starvation.  We also note 

that the relA strain exhibits prolonged diauxie (Fig. 2) and diauxie is abolished in 

both the wildtype and mutant strains when amino acids are present (data not 

shown).  Another possibility is that RelA, along with SpoT, can sense carbon 

starvation independently of amino acid pool fluctuations.  However, this seems 

unlikely given the strong evidence for physical association of RelA with the 

ribosome, allowing it to monitor translational pausing and hence the amino acyl-

tRNA pool(39).  Thus, the model shown in Fig. 4 attributes ppGpp accumulation 

to amino acid starvation brought about indirectly from exhaustion of glucose, 

rather than directly by carbon starvation.  Direct measurement of the amino acid 
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pool should provide insight into the physiological state caused by carbon 

starvation under diauxic conditions. 

ppGpp is known to affect the overall physiological state of the cell through 

transcriptional regulation of a large number of promoters.   Processes affected 

include stable RNA synthesis, amino acid biosynthesis, sigma factor competition, 

and induction of the σs-dependent stress response genes.  The lac operon has 

been shown to require ppGpp for maximal expression(31).  The results 

presented here extend the influence of ppGpp beyond control of lac to the larger 

Crp regulon and therefore to catabolite repression and carbon catabolism in 

general.  As such, ppGpp signals the nutritional quality of the environment and 

coordinates adjustments to gene expression across a continuum that ranges 

from maximum growth and metabolism to complete growth arrest and damage 

control.  Accordingly, our conceptual model (Fig. 4) places ppGpp at the apex of 

the stimulus-response pathways that allow E. coli to successfully negotiate 

growth arrest during diauxie.  This regulatory network includes ppGpp-dependent 

control of the general stress response, carbon scavenging, and ribosome 

synthesis.  The benefit of their coordinated regulation during growth transitions is 

critically important, as the energy that would otherwise have been spent on 

growth functions(12, 26) is now conserved while the cell diverts its attention to 

survival in stationary phase until conditions allow growth to resume.  Thus, 

ppGpp controls the feast and famine existence and may therefore profoundly 

influence the activities of microbes in a host as well as survival between hosts. 
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Materials and Methods 

 

Strains and growth conditions 

 E. coli MG1655 and isogenic mutants were cultured in a 2 l Biostat B 

fermentor (B. Braun Biotech International) containing 1 liter of 

Morpholinepropanesulfonic acid (MOPS) minimal medium with 0.5 g/l of glucose 

and 1.5 g/l of lactose, as described(8).  The temperature was maintained at 37ºC 

and pH was kept constant at 7.2 by the addition of 2 M NaOH.  The dissolved 

oxygen level was maintained above 20% of saturation by adjusting the agitation 

speeds in the range of 270-500 rpm with fixed 1 l/min air flow. Growth was 

monitored as absorbance at 600nm.  E. coli ΔrelA251::kanR was a gift from M. 

Cashel, constructed as described(40).  The E. coli Δcrp::kanR and ΔrpoS::kanR 

strains were constructed by allelic replacement(9) of the entire genes.  These 

mutant strains are isogenic with E. coli MG1655. 

 

Microarray analysis   

Microarray analysis was carried out essentially as described(38).  Total 

RNA was extracted from cells, diluted (1:1) in ice-cold RNAlater (Ambion) and 

purified using RNeasy columns (Qiagen), as described(8).  RNA was labeled by 

first strand cDNA synthesis using reverse transcriptase, random primers, and 

aminoallyl-dUTP incorporation; Cy-3 and Cy-5 dyes were chemically coupled in 

vitro to the aminoallyl-derivatized cDNA.  The oligonucleotide microarrays used in 

this study were printed on GAPS II slides (Corning) with a probe set containing 
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70 base oligonucleotide probes for all E. coli MG1655 genes (Operon 

Biotechnologies) using a Molecular Dynamics Gen III Array Spotter (Amersham 

Biosciences).  Slides were hydrated and flash-dried, UV-cross-linked, and 

blocked with succinic anhydride, then equal amounts of the Cy-3 and Cy-5 

labeled samples were hybridized in triplicate to microarrays using a Discovery 

system and ChipMap reagents (Ventana Medical Systems).  For all microarrays, 

the experimental sample was labeled with Cy-5 and the control, from early 

logarithmic growth of E. coli MG1655 wildtype on minimal glucose medium, was 

labeled with Cy-3.  Hybridized slides were scanned on a GenePix4000 scanner 

(Axon), the data collected using GenePix (ver. 5.0) software, and uploaded to our 

database for analysis (http://www.ou.edu/microarray).  The data were normalized 

by a local Lowess algorithm(32) implemented on our database and the replicate 

arrays averaged for analysis.  Clustering algorithms were implemented in 

Spotfire DecisionSite for Functional Genomics software.   
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Figure Legends 

 

Fig. 1.  Transcriptome analysis of the diauxic lag in E. coli MG1655 wildtype, 

rpoS, and crp strains.  (a) Log2 ratio plot of time series microarray data.  K-means 

cluster analysis (K=22) of the dataset revealed 4 clusters containing 97 

significantly regulated genes (60 induced and 37 repressed genes).  The induced 

genes belonged to two regulons: RpoS (cluster 2, red) and Crp (cluster 3, green), 

and cluster 4 contained genes regulated by both RpoS and Crp (purple). The 

repressed genes include the RelA/stringent response (cluster 1, yellow).  All 

other genes are shown in the background (grey).  (b) Hierarchical cluster 

analysis of significantly regulated genes.  Ratios are displayed colorimetrically in 

a heatmap: blue indicates genes with >2.5 log2-fold higher expression (~3 

standard deviations) and yellow indicates <2.5 log2-fold lower expression in the 

experimental condition compared to the control; the colors darken to black to 

indicate no change in expression.  Strains and time points (min) are shown 
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above (a) below (b). Diauxie began at 0 min.  The gene names are shown on the 

left, together with the corresponding K-means clusters. 

 

Fig. 2.  Transcriptome analysis of the diauxic lag in E. coli MG1655 wildtype and 

relA strains.  Expression of RpoS and Crp regulons (identified as being 

significantly regulated in Fig. 1) for the wildtype (a and b) and relA (c and d) 

strains, shown as log2 ratio plot of time series microarray data for individual 

genes (a and c) and the average log2 expression ratios for regulons (b and d); 

RpoS (red), Crp (green), both RpoS and Crp (purple), transcription/translation 

apparatus genes (blue), and growth curve (black).   

 

Fig. 3.  RNAP switch model in E. coli (wildtype).  Cells programmed for growth 

(left) have low intracellular levels of ppGpp and 80% of active RNAP is engaged 

in stable RNA synthesis, resulting in balanced growth; RNAP availability, cAMP, 

and RpoS levels are low, repressing transcription of Crp- and RpoS-dependent 

carbon scavenging and stress response genes.  Cells programmed for arrest 

(right) accumulate high intracellular levels of ppGpp, which binds to RNAP, 

perhaps synergistically with DksA, causing a genome-wide redistribution of 

transcription because stable RNA promoters are most sensitive to repression by 

ppGpp-reprogrammed RNAP; by a passive mechanism, RNAP availability 

increases significantly, as do cAMP and RpoS levels, leading to induction of Crp- 

and RpoS-dependent genes, as well as other stringent response induced genes.   
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Fig. 4.  Conceptual model of glucose-lactose diauxie in wildtype E. coli MG1655.  

During the -10 to 0 min interval, a cascade of responses stimulated by glucose 

exhaustion results in rapid accumulation of ppGpp, which binds to and 

reprograms RNAP, culminating in flipping of the RNAP switch, shown in Fig. 3 

(see text).  Concomitantly, the liberation of RNAP by repression of stable RNA 

synthesis, and accumulation of cAMP and the RpoS sigma factor, combine to 

activate transcription of the carbon scavenging and general stress response 

genes, respectively, which peaks at ~20 min.  Transcription of the lac operon is 

first observed in the 0-10 min interval and remains high until lactose is 

exhausted.  Metabolism of lactose during the 10 to 20 min interval leads to a 

return to pre-stimulus conditions, consistent with replenishment of the charged 

tRNA pool and degradation of ppGpp, which causes the RNAP switch to program 

the cells for growth.  Growth resumes in the 20-30 min interval and transcript 

levels for the carbon scavenging and general stress response genes begin to fall, 

while those for the transcription and translation apparatus genes rise, reaching 

pre-diauxie levels by approximately 50 min.   
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Chapter 3: The global, ppGpp-mediated stringent response to 

amino acid starvation in Escherichia coli  
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Abstract 

 

The stringent response to amino acid starvation, whereby stable RNA 

synthesis is curtailed in favor of transcription of amino acid biosynthetic 

genes, is controlled by the alarmone ppGpp.  To elucidate the extent of 

gene expression effected by ppGpp, we designed an experimental system 

based on starvation for isoleucine, which could be applied to both wild-

type Escherichia coli and the multi-auxotrophic relA spoT mutant (ppGpp0).  

We used microarrays to profile the response to amino acid starvation in 

both strains.  The wildtype response included induction of the general 

stress response, down regulation of genes involved in production of 

macromolecular structures, and comprehensive restructuring of metabolic 

gene expression, but not induction of amino acid biosynthesis genes en 

masse. This restructuring of metabolism was confirmed using kinetic 

Biolog assays.  These responses were profoundly altered in the ppGpp0 

strain.  Furthermore, upon isoleucine starvation, the ppGpp0 strain 

exhibited a larger cell size and continued growth, ultimately producing 50% 

more biomass than the wildtype, despite producing a similar amount of 

protein.  This mutant phenotype correlated with aberrant gene expression 

in diverse processes including DNA replication, cell division, and fatty acid 

and membrane biosynthesis.  We present a model that expands and 

functionally integrates the ppGpp-mediated stringent response to include 



 
51 

control of virtually all macromolecular synthesis and intermediary 

metabolism. 
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Introduction 

 

When nutrients become limiting for growth, E. coli cells adjust their gene 

expression program from one that supports growth to one that allows for 

prolonged survival in stationary phase.  In many bacteria, a key potentiator of this 

physiological switch is the accumulation of the alarmones guanosine 5’,3’ 

bispyrophosphate and guanosine pentaphosphate (ppGpp and pppGpp: 

collectively referred to here as ppGpp) (12).  When amino acids become limiting, 

uncharged tRNAs bind to the ribosomal A site, signaling ribosome-associated 

RelA to synthesize ppGpp (61).  Aided by DksA, ppGpp binds in the secondary 

channel of RNA polymerase (RNAP) near the active site (2); the immediate 

consequence is the cessation of transcription of stable RNAs (ribosomal and 

transfer RNAs), termed the stringent response(12, 34).  ppGpp decreases the 

half-life of the open complex at most promoters tested thus far; the physiological 

result is the strong down regulation of promoters with intrinsically short half-lives, 

such as those of stable RNA genes (4).  Since expression of ribosomal protein 

genes is controlled by rRNA levels, the stringent response includes a large-scale 

down regulation of the translation apparatus (43). As transcription of the 

translation apparatus genes and stable RNAs can account for a large percentage 

(60-80%) of the transcription occurring in rapidly growing cells, the liberation of 

RNAP from these genes is thought to passively allow up regulation of diverse 

promoters activated at the onset of stationary phase (3, 4).  Also, ppGpp in 

concert with DksA has been shown to directly stimulate transcription from 
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promoters of several amino acid biosynthesis genes (42).  In support of the 

‘passive mechanism’, we recently showed that a ΔrelA mutant is constrained in 

its ability to up regulate genes in diverse regulatory networks during carbon 

starvation (52).   

In addition to RelA, ppGpp is also produced by SpoT, apparently in 

response to diverse signals including carbon (64), iron (57), and fatty acid 

starvation (5).  The synthase activity of SpoT is not as robust as that of RelA, and 

SpoT also contains ppGpp hydrolase activity, which mediates ppGpp turnover 

and thus is important for determining the intracellular ppGpp concentration (64).  

Mutants lacking relA and spoT are completely devoid of ppGpp (ppGpp0), a state 

that results in a pleiotropic phenotype (64).  Most notably, ppGpp0 strains exhibit 

a ‘relaxed’ phenotype, i.e., stable RNA synthesis continues after exhaustion of 

amino acids (47).  ppGpp0 strains are also auxotrophic for eleven amino acids, 

apparently because ppGpp is required for effective transcription of amino acid 

biosynthetic genes (64).  Additionally, relaxed strains exhibit a prolonged period 

of growth arrest after amino acid starvation has been relieved (55).  Years of 

experimentation have linked ppGpp to a wide variety of physiological processes 

beyond translation and amino acid biosynthesis, including catabolite 

(de)repression (31, 52), DNA synthesis (14, 24), fatty acid metabolism (19, 23), 

general stress response (20), surface organelle production (fimbriae and flagella) 

(1, 36), and virulence (35).  Such wide-ranging regulation suggests ppGpp is a 

critical element of the response network that allows cells to adapt their 

physiology to their surroundings; however, the manner in which these processes 



 
54 

are integrated within the stringent response remains unclear.  Furthermore, the 

role of ppGpp in controlling intermediary metabolism beyond that of amino acid 

biosynthesis has not been experimentally defined.   

To address these questions, we sought to examine the extent of the 

stringent response under conditions of amino acid starvation.  To do so, we 

exploited a long-known metabolic anomaly characteristic of E. coli K12 strains, 

whereby starvation for isoleucine is caused by excess valine (32).  To determine 

the extent of regulation by ppGpp we obtained transcription profiles of the 

wildtype (WT) and ppGpp0 strains, using whole genome microarrays.  In 

comparison to the WT, the strain lacking ppGpp was crippled in its ability to 

regulate genes involved in diverse areas of metabolism, including central 

metabolism, amino acid biosynthesis/degradation, and nucleotide biosynthesis.  

We also conducted a number of experiments that provide a context for 

interpreting these transcription profiles, including measurements of metabolites in 

the culture medium, changes in the metabolic proteome, viability assays, and 

measurements of total protein, RNA, and biomass.  Based on these data, we 

present a model that expands and integrates our view of the metabolic and 

structural rearrangements that accompany the stringent response, which is at 

once more massive and finely tuned than previously appreciated.  

 

Results 

 

Experimental system for eliciting the stringent response to amino acid starvation 
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We were severely constrained in our choice of experimental systems 

because ppGpp0 strains are multiply auxotrophic and because the stringent 

response is thought to broadly impact amino acid biosynthesis (12).  To elicit the 

stringent response to amino acid starvation, many studies have utilized serine 

hydroxamate, which binds to and interferes with seryl-tRNA synthetases.  While 

this strategy is excellent for inducing ppGpp accumulation, it falls short of 

modeling the concerted response to depletion of the intracellular amino acid pool 

because little or no new protein can be produced, post-treatment (51).  Thus, 

after serine hydroxamate treatment, no reorganization of the proteome can 

occur.   

Another widely used experimental system is based on the vulnerability of 

K-12 strains to valine toxicity (32).  The first dedicated reaction in branched chain 

amino acid biosynthesis is catalyzed by acetohydroxy acid synthase (AHAS), 

which forms α-acetolactate from two molecules of pyruvate during the synthesis 

of valine or the formation of α-acetohydroxybutyrate from one molecule of 

pyruvate and one molecule of α-ketobutyrate during the synthesis of isoleucine, 

(for review, see (54).  E. coli has three different AHAS enzymes:  AHAS I (ilvBN) 

uses pyruvate exclusively for the production of valine, AHAS II (ilvGM) uses 

pyruvate and α-ketobutyrate for the production of isoleucine, and AHAS III (ilvIH) 

catalyzes both reactions but favors pyruvate and α-ketobutyrate as substrates.  

Both AHAS I and III are feedback inhibited by valine.  K-12 strains of E. coli 

harbor a frame-shift mutation in the ilvG gene, which renders the AHAS II 

enzyme inactive.  Thus, when isoleucine is limiting and valine is in excess, AHAS 
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I and III are inhibited, resulting in an inability to biosynthesize isoleucine.  While 

starvation for isoleucine can be induced by dosing cells with valine in minimal 

medium (i.e., isoleucine absent) (32), this strategy was not available to us 

because of the limitations imposed by the multiple amino acid auxotrophy 

associated with lack of ppGpp in E. coli MG1655 ΔrelA ΔspoT (ppGpp0). 

To circumvent this problem, we retroverted the valine-dosing strategy by 

imposing isoleucine starvation in the presence of the other 19 amino acids, 

including valine, which we reasoned would inhibit isoleucine biosynthesis, as 

described above.  We grew the cells in MOPS medium containing glucose (0.2%) 

plus all 20 amino acids (60), except that isoleucine was provided at 60 µM 

instead of 400 µM, which allowed WT cells to reach an OD of 0.6-0.7 (Fig. 1A).  

At this OD, isoleucine was exhausted, but valine was still in excess (Fig. 1), and 

as expected, growth was arrested; this could be alleviated by re-addition of 

isoleucine (data not shown).  

While we favored isoleucine starvation over serine hydroxamate 

treatment, this system is not without potential confounding factors.  The growth 

arrest caused by excess valine has been attributed to metabolic consequences 

other than isoleucine starvation, namely α-ketobutyrate accumulation.  This 

conclusion is based on valine inhibited cells grown on glucose minimal medium 

having a slightly above normal (144%) physiological intracellular level of 

isoleucine (25).  Mathematical modeling predicted an accumulation of α-

ketobutyrate (65), which is known to inhibit the glucose PTS transporter (16), 

leading to the idea that valine toxicity should be attributed to carbon starvation-
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induced growth arrest (65).  To test the possibility that glucose transport was 

inhibited in our experiments, we examined the array data, but could find no 

evidence for glucose starvation, i.e., catabolite derepression (discussed in detail 

below), as we previously observed for carbon starved cells (13, 52).  Moreover, a 

microarray time course showed that the first genes induced in this experimental 

setup are those of the branched chain amino acid biosynthetic pathways (data 

not shown), implying that from a physiological stand point, the cells acutely 

sensed the depletion of isoleucine.  A second potential complication was also 

considered: α-ketobutyrate accumulation, concomitant with high expression of 

the leucine biosynthetic pathway, leads to production of norleucine, a methionine 

analog (7).  Norleucine can be incorporated into protein in place of methionine 

(15).  However, the incorporation of norleucine into protein was found to be 

completely prevented by supplementation with exogenous methionine (7).  Since 

our medium contained exogenous methionine, we expect any negative effects of 

norleucine accumulation to be minimized.  Thus, we interpret our results in the 

context of isoleucine starvation.  

 

Growth and pattern of ppGpp accumulation in isoleucine starved cultures 

To maximize reproducibility, cultures were grown in 1 L volumes in a 

fermenter under steady pH and O2 saturation levels.  To examine the response 

to isoleucine starvation, isogenic E. coli MG1655 wild type (WT) and ppGpp0 

strains were grown in isoleucine-limited medium and samples were taken in log 

phase and following growth arrest.  The WT and ppGpp0 strains grew at similar 
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rates in logarithmic phase.  However, the ppGpp0 strain exhibited a prolonged lag 

phase before achieving robust growth; this accounts for the differences in the two 

growth curves (Fig 1).  The response to limiting isoleucine was evident by an 

initial slowing of growth followed by growth arrest.  Growth began to slow in the 

WT at OD of ~0.4 and growth arrested at OD of ~0.6.  In the ppGpp0 strain 

growth began to slow at OD ~0.5 and arrested at OD ~0.8  ppGpp began to 

accumulate in the WT before growth slowed, and was first detectable at OD ~0.3.  

The ppGpp level increased over the next 100 minutes, leveling off in growth 

arrested cells (OD ~0.6 at about 500 min in Fig. 1).  ppGpp was undetectable in 

the ΔrelA ΔspoT mutant.   In our assays, the level of ppGpp that ultimately 

accumulated in the WT was ~800 pmoles/ml/OD, which equates to an 

intracellular concentration of ~0.9 mM.  A similar intracellular concentration was 

observed after isoleucine starvation was provoked by addition of valine to cells 

growing in minimal media (56) . 

 

Altered flux through amino acid degradative and biosynthetic pathways in 

response to isoleucine starvation is ppGpp-dependent 

We sought to characterize the pattern of amino acid utilization under the 

experimental conditions described above to allow for better interpretation of the 

high-throughput data described in subsequent sections.  During the course of 

growth and entry into growth arrest, culture samples were harvested, filtered, and 

the filtrates were immediately frozen.  Samples were then analyzed by capillary 

electrophoresis-mass spectrometry (CE-MS) to measure the concentrations of 19 
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amino acids at each time point (cysteine could not be measured).  The results for 

selected amino acids are shown in Fig 1.  Concentrations of the 8 amino acids 

not shown in Fig. 1 did not change significantly over the course of the 

experiment.  At an OD of ~0.4 in both cultures, isoleucine levels dropped below 

detectable limits, leading to growth arrest of the WT at OD ~0.6 and in the 

ppGpp0 strain at OD ~0.8 (Fig. 1B). Starved WT cultures immediately resumed 

growth upon addition of isoleucine, accompanied by depletion of oxygen; these 

responses were significantly delayed in the ppGpp0 strain (the period of delay 

depended on the length of growth arrest; data not shown).     

The next three amino acids consumed from the medium were aspartate, 

followed by glutamine, followed by serine.  Serine was included in the medium at 

a much higher level (10 mM) than the other amino acids since it also serves as a 

carbon source that is co-metabolized with glucose (60).  In both strains, the 

usage of serine in the medium accelerated approximately 2-fold at the onset of 

growth arrest concomitant with a 2.8-fold decrease in the rate of glucose 

consumption in the WT (discussed below) (Fig. 1C-D).  As the cells transitioned 

into growth arrest, we observed that the saturation of O2 in the medium increased 

by approximately 20%, implying that the cells consumed less oxygen (Fig. 1C-D).  

Acetate accumulated steadily over the entire time-course.  Taken together, these 

results imply that amino acid starvation causes aerobic metabolism of glucose to 

be curtailed in favor of fermentation of serine to acetate via pyruvate.   

We observed a large difference in the pattern of glutamate 

production/consumption between the WT and ppGpp0 strains (Fig. 1E-F).  In the 
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WT, the level of glutamate in the medium increased across the time series, a 

trend that accelerated noticeably at the onset of growth arrest.  In contrast, the 

level of glutamate in the ppGpp0 culture decreased significantly over time, 

starting at the onset of growth arrest and dropping below detection by the 

conclusion of the experiment.  Another observable trend was seen in the 

utilization of glycine, alanine, and leucine.  In the WT culture, the levels of these 

three amino acids remained tightly associated, showing a modest decrease by 

the end of the experiment.  In the ppGpp0 culture, the levels of glycine, alanine, 

and leucine diverged at the onset of growth arrest, with the glycine level 

increasing to a much higher level than in the WT culture. 

Overall, these results suggest that the metabolic response to isoleucine 

starvation is complex and involves the rerouting of flux through multiple 

pathways.  Most notably these adjustments entailed the apparent conversion of 

serine to acetate as the primary energy-generating process and diminished 

metabolism of glucose.  Differences in the patterns of amino acid 

utilization/formation between the WT and ppGpp0 cultures suggest that the 

mutant strain was defective in its ability to restructure its metabolism.  

Specifically, the aberrant production of glycine by the ppGpp0 strain suggests 

heteroclitic metabolism of serine, the precursor of glycine (46).  Finally, the 

depletion of glutamate observed in the ppGpp0 culture suggests a potential 

problem in maintaining the balance of glutamate and α-ketoglutarate, and thus 

has profound implications for the ability of the ppGpp0 strain to fulfill the many 
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needs met by glutamate in redox homeostasis, as a metabolic precursor, and as 

an amine donor.  

 

Overview of microarray datasets  

To test the transcriptional response to isoleucine starvation, we extracted 

RNA from growth arrested WT and isogenic mutants (OD ~0.6 at 500 min for the 

WT and OD ~0.8 at 640 min for the ppGpp0 strain).  In the WT, this corresponded 

to the time of maximum ppGpp accumulation (Fig. 1A).  The control RNA was 

extracted from exponentially growing WT cells in identical medium replete with 

isoleucine.  Since the stringent response is known to inhibit stable RNA 

synthesis, it is likely that the proportion of mRNA to stable RNA is different in the 

WT compared to the ppGpp0 strain.  However, it is not possible to estimate these 

differences using the microarrays employed in this study because they do not 

contain probes for stable RNA transcripts.  Moreover, the normalization strategy 

(RMA) used for the data processing offsets differences in total RNA and/or the 

relative proportion of mRNA and stable RNA.  Hence, the data allow direct 

comparison of mRNA levels between strains and growth conditions, but do not 

compensate for gross differences in RNA content.  The WT transcriptional 

response to isoleucine starvation was extensive, with 1024 genes differentially 

regulated >2-fold (log2 = 1).  A list of these genes is shown in Supplemental table 

T1.  Of the 532 genes that were induced >2-fold in the WT strain, about one-third 

are involved in metabolism (174 genes), 139 are involved in the RpoS-dependent 

general stress response, and >200 have unknown functions.  The WT down 
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regulated 492 genes, including many genes associated with the translation 

apparatus (>40 ribosomal protein genes and 19 accessory translation genes), a 

hallmark of the stringent response. 

Global comparison of the WT and isogenic ppGpp0 mutant transcriptional 

responses to isoleucine starvation revealed profound differences between them 

(Fig. 2A).  In fact, when the transcription profiles of the two strains were 

compared directly, 1427 genes (>30% of the genome) showed expression levels 

that deviated 2-fold or more in the ppGpp0 strain.  A list of these genes is 

available in Supplemental table T2.  While both the WT and ppGpp0 strain 

induced over 500 genes in response to isoleucine starvation, only 133 genes 

were commonly induced in both strains (Fig. 2B).  Moreover, both strains down 

regulated over 450 genes >2-fold, but only 198 of these genes were down 

regulated in both. The comprehensive down regulation of translation apparatus 

genes observed in the WT was essentially absent in the ppGpp0 strain, and 

induction of the RpoS-dependent general stress response was severely 

diminished (Fig. 2C).  Overall, these results suggest that the response to 

isoleucine starvation is fundamentally altered in the ppGpp0 strain.  

We also obtained a transcription profile of an isogenic ΔrelA strain starved 

for isoleucine and found that its response was strikingly similar to the ppGpp0 

strain, indicating a minimal role for SpoT in the stringent response to isoleucine 

starvation (Fig 2A lower panel).  Genes which were expressed differently in the 

ΔrelA and ppGpp0 strain are listed in Supplementary table T3. Based on the 

similarity of the transcription profiles of the ΔrelA and ppGpp0 strains, it is 
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reasonable to assume that the differences observed between the WT and 

ppGpp0 strain qualitatively hold true also for the ΔrelA strain.  Thus, we focused 

our analysis on the ppGpp0 strain, so the results could be interpreted in the 

complete absence of ppGpp.  

 

The WT response to isoleucine starvation involves regulation of diverse 

metabolic pathways at the transcriptional level.                           

To interpret microarray data in a metabolic context, log2 gene expression 

ratios were overlaid onto metabolic maps (Figs. 3 and 4).  This analysis shows a 

large number of genes in multiple pathways were differentially regulated in 

response to isoleucine starvation.  We interpret these data with the caveat that 

the relationship between simple induction or repression of a pathway at the 

transcriptional level does not necessarily reflect the level of flux or active 

enzymes in these pathways.  However, general correlations between gene 

expression and metabolic activity have been observed (40).   

The WT induced genes in all branches of central metabolism (Fig. 3), 

including the pentose phosphate pathway, glycolysis, TCA cycle, and the 

glyoxylate shunt.  Within the pentose phosphate pathway three genes were 

induced, including two in the non-oxidative branch, tktB and talA, which are 

known members of the RpoS regulon.  Among glycolytic genes, three were 

induced, including two whose products catalyze the formation of metabolic 

intermediates known to exert feedback control of glycolytic flux (fbaB and pykA).   

Many genes encoding enzymes involved in pyruvate metabolism were induced in 
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the WT, suggesting that pyruvate is a critical nexus in the metabolic adjustment 

to isoleucine starvation.  sdaA, which encodes the major serine deaminase, was 

induced 2.6-fold.  This induction correlates well with increased serine uptake 

from the medium (Fig 1).  When considered together, these observations are 

consistent with increased flux from glycolytic intermediates and serine to 

pyruvate.  Expression of genes involved in the TCA cycle was complex with the 

induction of acnA, genes of the glyoxylate shunt, and the gene encoding malate 

synthase G, maeB and the down regulation of genes involved in the conversion 

of succinate to oxaloacetate.  Together these alterations in gene expression 

suggest that carbon entering the TCA cycle from acetate or β-oxidation of fatty 

acids may be channeled to the production of pyruvate, as well as α-ketoglutarate, 

the precursor of glutamate, which accumulated in the medium under these 

conditions (Fig. 1). 

Isoleucine starvation triggered induction of genes directly involved in the 

branched chain amino acid pathways as well as genes in pathways which 

generate precursors for branched chain amino acid biosynthesis.  E. coli 

synthesizes isoleucine from two precursor metabolites: pyruvate and 

oxaloacetate, (for review, see (41)).  Oxaloacetate from the TCA cycle is 

converted in one step to aspartate.  Aspartate can also be made from asparagine 

in a single reaction.  Aspartate is converted to threonine in five steps (Fig. 3).  

Threonine is then deaminated to form α-ketobutyrate, which is a substrate for 

AHAS II and III.  Thus, from a physiological standpoint, the cell can convert 

asparagine aspartate threonine isoleucine in 11 steps, 10 of which were up 
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regulated under the experimental conditions examined here.  IlvGM (AHAS II) 

was the only one of the three AHAS enzymes whose genes were induced by 

isoleucine starvation in the WT (ilvG 22-fold and ilvM 25-fold).  While not 

enzymatically effective, the up regulation of ilvG and ilvM likely represents the 

cells’ attempt to induce valine insensitive AHAS II.  In addition to ilvG and ilvM, all 

of the genes for enzymes involved in synthesis of the branched chain amino 

acids valine and isoleucine were strongly induced: ilvC (2.3-fold), ilvE (8.0-fold), 

and ilvD (11-fold).  The genes of the leuABCD operon, which are responsible for 

leucine biosynthesis, were up regulated (8.5- to 26-fold).  Collectively, this strong, 

comprehensive induction constitutes a direct, albeit impotent, response to 

isoleucine starvation.   

                  

The ppGpp0 metabolic response to isoleucine starvation deviates from WT at the 

transcriptional level. 

The transcriptional differences observed in the profiles of the WT and 

ppGpp0 strains in response to isoleucine starvation are far-reaching.  It is long 

known that ppGpp is required for stringent induction of genes involved in amino 

acid biosynthesis (12).  This trend is observed in the data presented here, 

wherein the ppGpp0 strain failed to induce genes associated with biosynthesis of 

the branched chain amino acids, as well as threonine and glutamate (Fig. 4).  

The transcription profiles show that induction of multiple genes involved in the 

metabolism of arginine, alanine, serine, and glutamate is contingent upon ppGpp.  

Most notably, the data presented here also establish that the expression of many 
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metabolic genes beyond the scope of amino acid biosynthesis is also ppGpp-

dependent.  These include genes of glycolysis, the pentose phosphate pathway, 

the TCA cycle and the glyoxylate shunt.  The strong repression of numerous 

central metabolism genes observed in the ppGpp0 strain implies a 

comprehensive down-shift in metabolic potential.  Diminished carbon flux through 

glycolysis would be expected to impact production of precursor metabolites, and 

ultimately, the flux of carbon into other central metabolic pathways.  Additionally, 

normal regulation of genes involved in pyruvate metabolism, a metabolic focal 

point, also required ppGpp.  While the regulation of many of the metabolic genes 

discussed here may be indirectly regulated by ppGpp, taken together these 

results suggest that ppGpp plays a larger role in regulating intermediary 

metabolism than previously recognized. 

    

Biolog analysis shows diversification of carbon source utilization in response to 

isoleucine limitation. 

In light of the metabolic rearrangements shown in the transcription 

profiles, we sought a strategy to measure the response to isoleucine starvation 

with respect to changes in the overall metabolic capacity of the cells.  To do this, 

we harvested cells for Biolog GN2 microplate analysis from the isoleucine-

starved cultures and immediately added chloramphenicol to inhibit protein 

synthesis and preserve their metabolic capacity, as described elsewhere (26).  

Thus, the pattern of carbon sources utilized represents a metabolic snapshot of 

the enzymes present in the cells at the time of sampling.  It should also be noted 



 
67 

that because the cells are washed and incubated in basal, minimal medium, the 

allosteric constraints applied by the components of the growth medium were 

relieved, theoretically allowing for an uninhibited display of metabolic capacity.  

Cells where harvested for Biolog analysis at times corresponding to active growth 

(OD 0.3), the onset of growth arrest, and 1.5 hours after the onset of growth 

arrest (Fig 5).  The cells were incubated in Biolog plates for 24 hours in an 

Omnilog system, and the amount of reduced tetrazolium violet dye in each well 

was quantified every 15 min.  The amount of dye reduced corresponds to the 

extent of carbon source oxidized.  Dye reduction was plotted vs. time, and the 

area under each resulting kinetic curve was used as an overall measure of the 

cells’ ability to utilize each carbon source.  

Hierarchical cluster analysis of the WT Biolog data indicated that the 

number of carbon sources used increased as the cells progressed into growth 

arrest.  Distinct groups of carbon sources were utilized at each of the three time 

points.  The first group of carbon sources was utilized strongly at all time points 

and consisted mainly of carbohydrates that are assimilated directly into 

glycolysis.  These included mannitol, gluconate, glycerol, fructose, mannose, N-

acetyl-glucosamine, and glucose.  Serine was the only amino acid that fell into 

this group.  This is not surprising given the concomitant consumption of serine 

and glucose observed in Fig. 1C.  The next cluster of carbon sources represents 

those that were utilized in the second and third time points, but not the first.  

Compounds in this category were diverse and included TCA cycle intermediates 

(α-ketoglutarate, succinate, and derivatives thereof), nucleotides (uridine, 
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inosine, and thymidine), and others (L-alanine, lactate, galactose, trehalose, 

psicose, etc.)  Several intermediates of branched chain amino acid biosynthesis 

(L-threonine, α-ketobutyrate, α-hydroxybutyrate) were also utilized at the second 

time point, reflecting the specific induction of this pathway in response to 

isoleucine starvation.  The third cluster of substrates, which was only utilized 

after 1.5 hours of growth arrest, was comprised of mainly amino acids and their 

derivatives including L-alaninamide, L-proline, D-alanine, L-asparagine, Glycyl-L-

asparate, L-glutamate, Glycyl-L-glutamate, D-serine and also dextrin and 

glycogen.  The induction of pathways indicated by these Biolog assays correlated 

well with the pattern of metabolic gene induction noted in the transcriptome 

profiles.  

We considered whether the pattern of carbon source utilization in the WT 

reflected a foraging strategy, the induction of pathways to re-route internal flux, or 

both.  The expanded metabolic capacity of the WT did not resemble Biolog 

results from carbon starved cells described elsewhere (26).  Nor did we observe 

in our microarray experiments expression patterns of induced transporter genes 

consistent with known patterns of carbon or nitrogen foraging (13, 21, 33).  The 

transporter expression pattern was not directly predictive of carbon sources 

readily utilized in the Biolog assays (data not shown).  For these reasons, we 

think the WT Biolog assay results probably do not represent a foraging response 

alone, but are also indicative of a re-routing of intracellular flux through newly 

induced pathways.  Thus, we interpret the expansion of the WT metabolic 

capacity as evidence for a large-scale reorientation of metabolism from 
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anabolism and macromolecular synthesis to reassimilation of carbon back into 

central metabolism and amino acid biosynthesis pathways.  The observed 

metabolic rearrangement is a ppGpp-dependent process, as described below. 

The ppGpp0 strain was radically impacted, by comparison to the WT, in 

substrate utilization (Fig. 5).  The only substrates readily metabolized by the 

ppGpp0 strain were a subset of those found in the first cluster of carbon sources 

used by the WT, namely, L-serine, glucose, and a few other substrates that are 

directly assimilated into glycolysis.  Furthermore, the number of carbon 

substrates utilized by the ppGpp0 strain did not increase in response to growth 

arrest, rather, the ability of the cells to metabolize those substrates that were 

used during active growth actually declined.  This result suggests that the 

metabolic capacity of the ppGpp0 strain diminished in response to isoleucine 

starvation.  The extreme nature of the ppGpp0 Biolog phenotype prompted us to 

consider whether or not these results were artifactual.  However, we think that 

the Biolog phenotype observed here is accurate because the transcriptome of 

the ppGpp0 strain is consistent with a large-scale metabolic shut-down and the 

ΔrelA strain had a nearly identical transcription profile and Biolog phenotype 

(data not shown).  These data demonstrate that the transcriptional impairment 

observed in the ppGpp0 strain leads to compromised ability to expand metabolic 

potential at the proteomic level.  

 

The ppGpp0 cells are viable and enlarged during isoleucine starvation  
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One possible explanation for the decreased metabolic activity exhibited by 

the ppGpp0 strain in response to isoleucine starvation is simply that the cells had 

died.  Plate counts of isoleucine starved ppGpp0 strain indicated a ~1 log lower 

number of colony forming units across the entire time course (even during rapid 

growth) by comparison to the WT (data not shown).  A several-fold lower plating 

efficiency (64) and filamentous morphology (36, 64) have been demonstrated 

previously for strains lacking ppGpp.  To directly check whether or not the 

ppGpp0 strain suffered a decrease in viability due to amino acid starvation, we 

stained culture samples with a live-dead stain and observed them using confocal 

microscopy (Fig. 6).  This technique stains cells with compromised membrane 

integrity red (via propidium iodide) while intact (viable) cells are stained green 

(SYTO-9) (48).  Samples were checked across the entire time-course.  WT cells 

were large and rod-shaped during rapid growth and became coccoid as growth 

ceased (Fig. 6D).  No increase in non-viable cells was observed during 

isoleucine starvation, with non-viable cells making up a negligible portion of the 

population.  The ppGpp0 cells were observed to be as long as or longer than the 

WT during rapid growth, with occasional filamentation (Fig. 6E).  There was no 

decline in viability of the ppGpp0 culture upon isoleucine starvation (< 1% die-off).  

However, we observed that the ppGpp0 cells remained large and rod shaped, 

even 1.5 hours after growth had stopped.  Stationary phase ppGpp0 cells 

routinely ranged from 4- to 10-fold longer than WT stationary phase cells and in 

the most extreme cases, filaments up to ~200 µm long were observed (data not 
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shown). These results point to a larger role for ppGpp in modulating cell division, 

as has been suggested (45, 58). 

 

The ppGpp0 strain has altered macromolecular composition. 

We also observed that the WT isoleucine-limited cultures routinely 

reached an OD of ~0.7, whereas the ppGpp0 strain reproducibly reached a 

higher OD of ~0.9 (Fig. 6A vs.6B).  Theoretically, the total amount of protein 

produced by both cultures is dictated by the amount of isoleucine included in the 

growth medium.  However, precursors of other major cell components that 

contribute to biomass might still be formed from glucose, serine, etc., which were 

not limiting.  Keeping in mind these possibilities, we measured total protein, 

biomass, and RNA production for both the WT and ppGpp0 strain (Fig. 7).  Both 

strains produced a comparable amount of protein (~150 µg/ml culture by 1.5 

hours into stationary phase).  In contrast, the ppGpp0 strain produced an average 

of ~50% more biomass than the WT under identical conditions.  From these 

findings, we conclude that ppGpp is required to maintain a normal 

protein:biomass ratio, and that during times of amino acid starvation, ppGpp 

plays a critical role in keeping the production of macromolecular components in 

line with the translational capacity of the cell.  Since the defining phenotype of 

relaxed strains is continued stable RNA synthesis in times of starvation, we 

determined the RNA content of the WT and ppGpp0 strains (Fig. 7).  The WT 

RNA level did not increase significantly after an OD of 0.3, which correlates with 

the onset of ppGpp accumulation.  As expected, the ppGpp0 strain did not curtail 
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RNA synthesis, ultimately producing ~2.5-fold more RNA compared to the WT 

1.5 hours after growth arrest.  This increase in RNA accounts for ~45% of the 

mutant’s extra biomass.  Since only about one-half of the excess biomass 

produced by the ppGpp0 strain was RNA, we conclude that ppGpp accumulation 

in the WT also limits production of other macromolecular cell components, i.e., 

cell membranes, cell wall, and DNA.         

 

The ppGpp0 strain shows deviations in gene expression for major physiological 

processes 

Prompted by observations that cells lacking ppGpp are much larger than 

WT stationary phase cells, and that this likely contributes to a larger biomass 

yield, we interrogated the microarray data to look for abnormal expression of 

genes that could account for this phenotype.  Accordingly, we considered genes 

in various functional categories whose difference in expression between the WT 

and the ppGpp0 strain was ≥2-fold.  These differences are summarized in Table 

1.  Heat maps and comparative expression values are available for these 

functional groups in supplementary Fig 1 with an accompanying note.  

In general, the data presented in Table 1 show a trend in which genes 

involved in macromolecular synthesis/biomass production were consistently 

expressed at higher levels in the ppGpp0 strain than the WT.  This included some 

92 genes involved in cell division, DNA replication, and the biosynthesis of 

nucleotides, fatty acids, cell wall, and LPS/outer membrane.  Interestingly, the 

WT strain did not exhibit increased expression of genes associated with the SOS 
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response to DNA damage, however, 20 genes involved in DNA repair were 

expressed higher in the ppGpp0 strain.  Taken together with the higher 

expression of genes involved in DNA replication, this result suggests that 

chromosome replication continued abnormally in the ppGpp0 strain, ultimately 

resulting in DNA damage.  Another trend evident in Table 1 is that whereas the 

WT induced genes involved in catabolism of macromolecular precursors, the 

ppGpp0 strain did not.  This included the lower expression in ppGpp0 strain of 11 

genes involved in nucleotide catabolism and fatty acid β-oxidation.  The ppGpp0 

strain also expressed six genes more highly that are involved in the salvage of 

endogenous nucleotide precursors for the production of new nucleotides. This 

trend suggests that the ppGpp0 strain actively attempted to salvage nucleotides 

in keeping with continued synthesis of nucleic acid.  Finally, the ppGpp0 strain 

failed to induce genes involved in glycogen metabolism as observed in the WT, 

suggesting that glycogen probably does not contribute to the higher biomass 

produced by the ppGpp0 strain.   

 

Discussion 

 

Summary of results 

We sought to examine the extent of the stringent response to amino acid 

starvation.  To do so, we used isoleucine starvation as a model system.  Global 

transcriptome profiling showed that isoleucine starvation of the WT resulted in 

changes in expression of genes in many metabolic pathways, curtailed 
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expression of genes involved in macromolecular synthesis, and initiated the 

general stress response.  In stark contrast, the ppGpp0 strain failed to make 

these changes.  To further examine the transcriptional response to isoleucine 

starvation, snapshots of the metabolic capacities of the WT and ppGpp0 mutant 

were determined using Biolog GN2 microplates in a protocol that prevented 

changes to the functional metabolic proteome.  The results showed that the WT 

greatly expanded its repertoire of active metabolic pathways, while the ppGpp0 

strain failed to diversify its metabolic capacity and showed diminished ability to 

utilize pathways that were active before the onset of isoleucine starvation.   

Noting that the ppGpp0 strain showed greatly diminished metabolic 

activity, we also checked for a possible decrease in viability as a result of amino 

acid starvation through differential staining/confocal microscopy.  Although we 

noted no decrease in cell viability based on membrane integrity, we did observe 

that ppGpp0 mutant cells were considerably longer than WT isoleucine-starved 

cells at all time points and ppGpp0 cultures routinely reached a higher density.  

We found that although the two strains produced similar amounts of protein, the 

ppGpp0 strain continued to grow unchecked, producing 50% more biomass than 

the WT.  Nearly one-half of this extra biomass was composed of RNA.  

Furthermore, we found that this mutant phenotype correlates with aberrant gene 

expression in diverse cellular processes including cell division, DNA replication, 

and nucleotide, fatty acid, cell wall, and LPS/outer membrane biosynthesis.  The 

comprehensive deficiencies of the ppGpp0 strain, as evidenced by the global 

measurements presented here, imply that ppGpp is the pivotal signal required to 
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successfully develop virtually all physiological responses to amino acid 

starvation. 

A recent study described the transcriptional changes resulting from serine 

hydroxamate treatment (18).  This report compared the WT transcriptional 

response to that of a relAΔ251 strain.  Though the strains and conditions differ 

from ours, several overlapping trends are evident.  These include down 

regulation of genes involved in translation and induction of the RpoS-dependent 

general stress response.  However, we note that in these cases the response to 

isoleucine starvation was more robust, with >40 ribosomal protein genes down 

regulated compared to only 5 genes down regulated in response to serine 

hydroxamate treatment.  Also, >130 RpoS regulon members were induced in 

isoleucine starved cells compared to ~20 RpoS regulon members induced by 

serine hydroxamate.  The latter difference may be attributable to inhibited 

translation caused by serine hydroxamate and therefore decreased accumulation 

of RpoS.  Global defects in regulation were observed for the relAΔ251 strain in 

response to serine hydroxamate treatment, but the defects were far less 

comprehensive than those observed here for the ppGpp0 and ΔrelA strains 

starved for isoleucine.  Differences in the transcriptomes of isoleucine starved 

ppGpp0 cultures and the serine hydroxamate treated relAΔ251 strain likely result 

from the residual ppGpp present as result of having an intact spoT allele in the 

latter strain, as well as physiological differences between isoleucine starvation 

and serine hydroxamate induced translation inhibition.  
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Metabolic restructuring during the stringent response to isoleucine starvation 

Often the stringent response to amino acid starvation is thought of as a 

general reorganization of transcription involving down regulation of stable RNA 

synthesis and large-scale induction of amino acid biosynthetic operons.  While 

the basic elements of this paradigm are clearly correct, the data presented in this 

report suggest that the response to starvation for a given amino acid leads to a 

more complex pattern of transcription than previously thought, especially with 

respect to metabolic genes.  Instead of a general stimulation of amino acid 

biosynthetic genes, we observed induction of a range of amino acid biosynthetic 

and catabolic pathways, which, given the composition of the growth medium, 

would best allow the cell to route metabolic flux into formation of the limiting 

amino acid.  The transcriptome data obtained for the mutant lacking ppGpp 

showed radically impacted ability to appropriately regulate expression of genes 

involved in almost all areas of metabolism, from central metabolism to disparate 

biosynthetic pathways.  We therefore suggest that the transcriptional program 

initiated by ppGpp accumulation is a larger framework within which the pathways 

specific for the limiting amino acid are readily induced, accompanied by changes 

in expression of central metabolic genes as necessary to maximize the 

production of the required precursor metabolites.  While it remains to be tested 

whether alternative metabolic rearrangements occur when cultures are starved 

for other amino acids, we envision the stringent response to be a global response 

to nutritional stress that halts growth processes and makes those resources 
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available for the cell to specifically remediate the offending stress, as described 

in the model outlined below. 

The temporal unfolding of a complex global response likely requires 

continued feedback between the changing transcriptome and the resulting 

proteome for its appropriate development.  Under the conditions employed here, 

since isoleucine is not replenished once it is depleted, translation which occurs 

after the exhaustion of exogenous isoleucine is likely made possible through the 

recycling of amino acids liberated from turnover of existing cellular proteins.  

Indeed, significant reorganization of the proteome was found to occur in the WT 

after the exhaustion of isoleucine, as evidenced by the cells’ changing metabolic 

capacities measured by kinetic Biolog assays.  This did not happen in the 

ppGpp0 strain.  In keeping with the constrained expression of metabolic genes 

observed in our array experiments, the ppGpp0 strain displayed no ability to 

diversify its repertoire of readily metabolized carbon sources in our Biolog 

assays, further implicating ppGpp in the large-scale restructuring of metabolism 

in response to amino acid starvation. 

 

Functional integration of the stringent response 

The array data presented here must be considered in the larger context of 

metabolic and structural trends evident in stationary phase cells.  The medium 

used in our experiments contains both glucose and serine as carbon sources as 

well as all amino acids necessary for translation.  During growth under these 

conditions, glucose may be used primarily for production of precursor metabolites 
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that originate in the pentose phosphate pathway and glycolysis, i.e. nucleotides 

and membrane/cell wall components, while serine, in addition to being integrated 

into protein and providing one-carbon units for nucleotide biosynthesis, might be 

used primarily to drive energy generation via acetate overflow metabolism.  

Together, nucleic acids and membrane/cell wall components comprise about 

38% of the dry weight of growing cells, while protein makes up about 50% (39).  

Upon isoleucine starvation, the WT efficiently stops growing, shuts down 

ribosome synthesis, and assumes a coccoid morphology.  In addition, the 

microarray data presented here and elsewhere (13) show a concomitant 

inhibition of DNA replication, and macromolecule biosynthesis, i.e., 

membrane/cell wall components.  The starved cells switch from a primarily 

anabolic mode devoted to generating building blocks for biomass production, to a 

catabolic mode which re-assimilates unused nucleotides and fatty acids back into 

central metabolism (as evidenced by gene expression and Biolog assays).  

Accordingly, glucose consumption slows as demand for these components is 

reduced, while serine consumption accelerates to allow for continued energy 

production via fermentation to acetate.  The observed changes in the expression 

of central metabolic genes may both reflect and effect this metabolic 

reorientation.  Moreover, virtually all of these metabolic changes require ppGpp 

for their manifestation. 

The data presented in this report substantiate a wide range of 

observations made over many years implicating ppGpp in diverse processes 

including peptidoglycan synthesis (28), cell division (45, 64), DNA replication (24, 
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59), fatty acid and phospholipid biosynthesis (23, 44, 49), nucleotide biosynthesis 

(53), and glycogen metabolism (50).  In most cases, the connection of one of 

these processes to the stringent response was established through the activity of 

a given enzyme (peptidoglycan and DNA replication), synthesis of a given 

enzyme (nucleotide and glycogen biosynthesis), or indirectly (cell division).  Our 

transcriptome profiles show that all of these previous observations are parts of 

larger trends, which are evident at the transcriptional level.   

A data-driven model of the constituent processes encompassed by the 

ppGpp-dependent stringent response is presented in Fig. 8.  We assume the 

changes in gene expression observed here result from two basic signal inputs: i) 

ribosome stalling which leads to ppGpp accumulation and ii) starvation for 

isoleucine, which results in allosteric and transcriptional control of branched 

chain amino acid biosynthetic pathways.  In this model, ppGpp accumulation in 

response to isoleucine starvation leads to stringent down regulation of several 

processes including repression of DNA replication, ribosome synthesis, 

nucleotide biosynthesis, phospholipid biosynthesis, cell envelope synthesis, and 

cell division.  Processes requiring ppGpp for their induction include the general 

stress response, central metabolism, nucleotide catabolism, fatty acid β-

oxidation, and amino acid biosynthesis/catabolism genes.  Down regulation of 

macromolecular synthesis, and induction of stationary phase morphogenes, 

cause stationary phase cells to take on their classical coccoid morphology.  

Metabolic restructuring leads to a reversal of anabolic flux (i.e., into biomass) to 

re-assimilation of carbon previously allocated to nucleotide and fatty acid 
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synthesis.  Flux into central metabolism combined with changes in expression of 

central metabolic genes serves to accommodate the redistribution of metabolites 

into amino acid biosynthetic pathways.  We also note that this extensive 

metabolic restructuring is accompanied by the induction of the general stress 

response, which prepares the cells for long-term survival in stationary phase.  

We expect that other regulators, especially cAMP/Crp and Lrp likely play a role in 

controlling the transcriptional response to isoleucine starvation.  However, since 

the manner in which isoleucine starvation may trigger signaling through these 

pathways is unclear, we have not attempted to integrate them into the model 

presented here.   

 

Global transcription patterns and the regulatory mechanism of ppGpp 

With the data presented in this report, we now have transcriptome profiles 

for cells impacted in their ability to accumulate ppGpp under two very different 

starvation conditions, i.e., carbon starvation (52) and amino acid starvation (this 

study).  A qualitative comparison reveals two trends present in both data sets: 

down regulation of translation apparatus genes typical of the stringent response 

and induction of the RpoS-dependent general stress response.  Beyond these 

shared responses, starvation for carbon or amino acids elicited induction of 

different condition-specific stimulons (i.e., carbon foraging or isoleucine 

biosynthesis genes, respectively).  Moreover, under both starvation conditions, 

the induction of the corresponding stimulon was ppGpp-dependent.  Based on 
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these observations, we hypothesize that efficient global induction of all 

starvation-specific stimulons requires ppGpp. 

ppGpp, along with DksA, is thought to exert control over global gene 

expression via multiple mechanisms.  These include alterations in sigma factor-

core RNAP interactions (35), direct down regulation (37, 43), passive induction 

by increased RNAP availability (3), and direct activation (42).  Here, we consider 

each of these mechanisms in light of the genome-wide expression data.   

Induction of the general stress response involves ppGpp accumulation in 

several ways, and the data presented here (i.e., Fig. 2C) are compatible with 

each of them.  First, ppGpp enhances the competitiveness of core RNAP for 

alternative sigma factors (30), resulting in poor expression of genes controlled by 

alternative sigma factors in strains lacking ppGpp. Second, expression of the 

rpoS gene was induced 6.9-fold in the WT compared to 2.3-fold in the ppGpp0 

strain (data not shown).  Third, yaiB (renamed iraP) was recently found to 

encode a protein that stabilizes RpoS via binding to the anti-sigma factor RssB in 

response to carbon and phosphate starvation (9).  Moreover, induction of iraP 

transcription was shown to be ppGpp-dependent (8).  Our array data confirm that 

ppGpp is required for iraP induction, i.e., iraP was induced 10.7-fold in the WT 

compared to 2.2-fold in the ppGpp0 strain (Supplementary Table T1).  Thus, poor 

induction of the RpoS regulon in the ppGpp0 strain likely results from lower 

induction of the rpoS gene, weak stabilization of RpoS by IraP, and poor 

competition of core RNAP for RpoS. 
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Perhaps the best understood mechanism of gene regulation by 

ppGpp/DksA applies to the direct down regulation of rRNA transcription (43).  

Extensive work has demonstrated that rRNA promoters form open complexes 

that are intrinsically unstable, which makes them particularly prone to open 

complex collapse, as occurs with ppGpp/DksA-bound RNAP (22, 43).  Thus, 

when ppGpp accumulates, there is a rapid and robust cessation of stable RNA 

synthesis (43).  An alternative model for direct down regulation was recently 

suggested, whereby ppGpp-bound RNAP forms dead-end complexes at 

stringently-controlled promoters, leading to occluded transcription (37).  Since 

transcription of ribosomal protein genes is regulated directly by rRNA levels, we 

take the comprehensive down regulation of the translation apparatus as evidence 

of the cessation of stable RNA synthesis.  As expected, this down regulation was 

ppGpp-dependent (Fig. 2C).  The down regulation of translation apparatus genes 

observed here is compatible with both proposed mechanisms of direct down 

regulation of rRNA synthesis; we cannot distinguish between the two models 

based on transcriptional output alone. 

One way ppGpp might contribute to induction of the many genes observed 

here is by mediating the balance between RNAP engaged in transcription of the 

translation apparatus versus transcription of all other genes (3).  According to this 

passive model, the increased availability of RNAP for transcription of stringently 

induced promoters results from the liberation of RNAP previously sequestered in 

stable-RNA synthesis.  We previously showed that global expression patterns 

observed during carbon starvation were consistent with this model (52).  
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However, the WT and ppGpp0 strains induced transcription of a similar number of 

genes in response to isoleucine starvation (Fig. 2B), despite the absence of 

down regulation of translation apparatus genes in the strain lacking ppGpp.  

Thus, we hypothesize that the slower onset of growth arrest during isoleucine 

starvation (about 100 min compared to <10 min for carbon starvation) relaxes the 

tight relationship between transcription of the translation apparatus and other 

genes across the genome.  While the passive mechanism allows for global 

transcriptional flexibility during times of sudden starvation, this constraint may be 

loosened when starvation is encountered over longer time scales (as occurs in 

complex nutrient mixtures).  If the passive mechanism was the driving force 

behind the WT transcriptional response to isoleucine starvation, the ppGpp0 

strain would exhibit a similar transcriptional response if given enough time, 

possibly through reduced transcription initiation at rRNA gene promoters due to 

depletion of transcription initiating NTP pools (43).  However, the transcriptional 

response of the ppGpp0 strain did not approximate that of the WT (Fig. 2A), 

suggesting an active role for ppGpp in gene induction in response to isoleucine 

starvation, as discussed below.   

ppGpp, in concert with DksA, is known to be sufficient for direct induction 

of transcription of several amino acid biosynthetic operons in vitro, (42).  

However, we did not observe stimulation of amino acid biosynthesis genes en 

masse during isoleucine starvation, suggesting that the specific induction of 

amino acid biosynthesis genes requires ppGpp and the action of specific 

regulators (i.e., Lrp, LeuO, and/or IlvY, etc.).  Thus, we favor a synergistic model 
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that requires ppGpp-bound RNAP acting together with other transcription factors 

at a wide range of promoters to produce the stressor-specific response observed 

in the WT.  Alternatively, the patterns of transcription observed in the WT may be 

the product of a regulatory cascade initiated by ppGpp accumulation and 

accomplished ultimately (or in part) by other transcription factors.  These 

mechanisms are not mutually exclusive, and experiments to delineate the 

regulatory architecture of the stringent response are ongoing.   

 

Concluding remarks 

In this report, we examined the global response to amino acid starvation, 

including changes in the transcriptome, metabolic proteome, and composition of 

the growth medium.  Our results indicated that the adjustments made by the WT 

in response to isoleucine starvation entail a large-scale restructuring of cellular 

metabolism that includes differential expression of genes involved in, and flux 

through, central metabolism, amino acid catabolism/anabolism, nucleotide 

biosynthesis/catabolism, and fatty acid metabolism.  These responses were 

totally dependent on the alarmone ppGpp and profoundly absent in the ppGpp0 

strain.  We observed that cells lacking ppGpp produced significantly more RNA 

and biomass (but not more protein) than the WT during amino acid starvation.  

This observation, considered in light of the extremely aberrant patterns of 

transcription observed in the ppGpp0 strain, highlights the vital role of ppGpp in 

relaying information about the translational status of the cell not only to genes 

involved in translation and amino acid biosynthesis, but also to genes involved in 
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intermediary metabolism and macromolecule synthesis. The comprehensive 

deficiencies of the ppGpp0 strain, as evidenced by the global measurements 

presented here, suggest that ppGpp is the primary signal used by E. coli cells to 

adjust their reproductive potential to that defined by their nutritional environment.   

 

Materials and Methods 

  

Bacterial strains and growth conditions 

All strains used in this study were derivatives of E. coli K-12 strain 

MG1655.  The ΔrelA, and ΔrelA ΔspoT (ppGpp0) strains were constructed for this 

study using a modified version of the method described by Datsenko and 

Wanner (17).  The ΔrelA, and ppGpp0 strains were made marker-less by removal 

of antibiotic cassettes using surrounding FRT sites and confirmed by sequencing 

and PCR.   The WT and isogenic mutants were cultured in a 2-liter Biostat B 

fermentor (Braun Biotech) containing 1 liter of morpholinepropanesulfonic acid 

(MOPS) medium (38) with 2.0 g/liter glucose and amino acids at the 

concentrations described in (60), with the exception that isoleucine was included 

at 60 µM instead of the usual 400 µM. The growth medium did not contain uracil, 

which has been shown to stimulate growth of E. coli MG1655, which has an rph 

frameshift mutation (29).  However, inclusion of uracil had no effect on 

logarithmic growth, growth arrest caused by isoleucine starvation, or rescue of 

growth by addition of isoleucine (data not shown).  The temperature was 

maintained at 37°C, and pH was kept constant at 7.4 by the addition of 1 M 
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NaOH. The dissolved oxygen level was maintained above 40% of saturation by 

adjusting the agitation speeds in the range of 270–500 rpm with fixed 1.5 liter/min 

air flow. Growth was monitored as absorbance at 600 nm with a Beckman-

Coulter DU 800 spectrophotometer. 

 

Amino acid analysis 

Media samples were withdrawn from the bioreactor directly into a 10 ml 

syringe and then filtered through 0.4 μm filters.  Samples were then frozen 

immediately.  Amino acid concentrations in the filtered culture media were 

determined using capillary electrophoresis-mass spectrometry (CE-MS) with a 

sheath-fluid electrospray interface.  This method was modified from a similar 

method described previously (62).  Briefly, CE-MS was performed using an 

Agilent G1600 capillary electrophoresis connected to an Agilent 1946A single 

quadrupole mass spectrometer with an electrospray ionization source using the 

Agilent capillary electrophoresis spray needle adapter (Palo Alto, CA, USA).  

Fused-silica capillaries were used for the separation (Polymicro Technologies, 

Phoenix, AZ, USA).  All capillaries used in the CE-MS analysis were 50 mm I.D. 

and had a total length of 70 cm.  Sheath liquid composed of a 1:1 (v/v) mix of 2-

propanol and HPLC-grade water with 5 mM formic acid was supplied to the co-

axial sheath-fluid interface at a flow rate of 4 µl/min.  The nebulizer pressure was 

maintained at 3 psi.  The separation was performed using a +25 kV potential, 

which produced a current of 47 µA.  Samples were injected hydrostatically, at 

250 mbar*s (6.1 nl).  Mass spectral data was collected in the selected-ion 
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monitoring (SIM) mode using the [M+H]+ m/z for each amino acid.  The drying 

gas temperature was set to 70°C with a drying gas flow rate of 12.0 l/min.  The 

potential on the MS capillary was maintained at 3800 V and the fragmentation 

voltage was set to 70 V.  The running electrolyte was 1.0 M formic acid prepared 

in HPLC-grade water with no pH adjustment.   

All samples and standards were diluted 1:1 in 10 mM HCl containing 200 

µM ethionine (internal standard).  The method of internal standards calibration 

was applied to each amino acid.  Standards containing 10, 100, 250, and 1000 

µM of each amino acid were analyzed in triplicate.  All standards were 

commercial amino acids (Sigma Chemical, St. Louis, MO, USA).  All amino acid 

calibration curves displayed a linearity of 0.995 or greater. 

 

Nucleotide extraction and ppGpp quantification 

Nucleotides were extracted as described, with minor modifications (6).  

Five ml of culture was sampled directly into a 15 ml falcon tube containing 0.5 ml 

of 11M formic acid.  The sample was vigorously mixed and chilled on ice.  One 

ml aliquots of this mixture were incubated at 0° C on ice for 30 min.  These one 

ml samples were centrifuged at 4° at 10000 RPM for 5 min.  The supernatant 

was then filtered through 0.2 µm filters and stored at -20° until HPLC analysis. 

ppGpp was quantified by anion exchange HPLC using a Mono Q 5/50 GL 

column (GE Healthcare).  250 µl of supernatant was injected under initial 

conditions of 95% 20mM Tris (pH 8.0) and 5% 20mM Tris + 1.5 M sodium 

formate (pH 8.0).  This initial condition was maintained for 5 min.  Absorbance at 



 
88 

260nm was used to detect eluted nucleotides.  Over a period of 30 min, the level 

of sodium formate buffer was ramped up to 60%.  ppGpp was identified as a 

peak which eluted at ~30.9 min.  Samples were run in duplicate for three 

separate WT time course experiments.  Representative results are shown in Fig 

1A.  ppGpp standard was purchased from TriLink Biosciences.  Standard curves 

established that the linear range of detection of ppGpp is 50nM to 100µM.    

 

Microarray analysis 

Cells were sampled directly from the fermenter into an equal volume of 

ice-cold RNAlater (Ambion) and total RNA was extracted using Qiagen RNeasy 

Minikits with optional DNAse treatment steps.  RNA was checked for integrity by 

gel electrophoresis and maintained in a 2:1 dilution of EtOH at -80°C until 

labeling.  RNA was converted to cDNA by first strand synthesis using Superscript 

II (Invitrogen) and random hexamers, according to the manufacturer’s 

specifications.  The cDNA was fragmented and biotinylated (Enzo Kit, Roche 

Diagnostics) according to the Affymetrix prokaryotic labeling protocol.  The 

microarrays used in this study were custom built Affymetrix GeneChips 

containing probes for several prokaryotic genomes including E. coli K12 

MG1655, E. coli O157:H7 EDL933, Bacteriodes thetaiotaomicron VPI-5482, 

Enterococcus faecalis V583, Salmonella typhimurium LT2, and Bacillus 

anthracis.  Biotinylated samples were prepared according to the manufacturer’s 

instructions and hybridized for 16 hours at 60°C.  Hybridized arrays were stained 

using Affymetrix protocol ProkGE_WS2v2_450. Stained microarrays were 
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scanned and the raw data files (.cel) were further analyzed using RMA 

processing with quartile normalization (27). All samples were duplicated 

biologically and technically; r2 was >0.95 for all WT and ppGpp0 replicates.  We 

considered genes to be significantly induced or repressed if the absolute value of 

the expression ratio was >2-fold (63).  Hierarchical clustering algorithms were 

implemented in DecisionSite for Functional Genomics (Spotfire). The microarray 

data were deposited at Array Express (http://www.ebi.ac.uk/miamexpress/), 

accession # E-MEXP-1370. 

 

Kinetic Biolog assays 

Biolog assays were carried out essentially as described (26).  Briefly, a 

volume of cells sufficient to inoculate 2 Biolog plates was harvested from the 

fermenter and placed in 50 ml falcon tubes containing chloramphenicol (final 

concentration 25 µg/ml).  Samples were kept warm (37°C) through all 

manipulations.  Cells were washed 3 times with 15 ml MOPS medium (without 

carbon sources) containing chloramphenicol (25 µg/ml), by centrifugation at 

~3700 rpm for 8 min.  After washing, cells were resuspended in the same 

medium to an OD 600nm of ~0.3.  Biolog GN2 microplates were then loaded 

(150 µl in each well) and incubated for 24 hours in an Omnilog system.  Dye 

reduction was monitored every 15 minutes.  The areas under the resulting curves 

were then averaged as an overall indicator of substrate utilization.  All Biolog 

measurements reported are the averages of 2 biological, and 4 technical 
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replicates.  Hierarchical clustering algorithms were implemented in DecisionSite 

(Spotfire).   

 

Confocal microscopy 

WT and ppGpp0 strains were grown under isoleucine starvation conditions 

as described above.  At the indicated time points, 1 ml of culture medium 

containing living cells was harvested and stained by adding 20 µl of 1.0 mg/ml 

propidium iodide and 1.2 µl of 5mM SYTO 9.  Samples were incubated for 15 

minutes in darkness.  Five μl of stained sample was placed in a wet mount and 

visualized using a Olympus FluoView 500 confocal microscope with Blue Argon 

(488 nm) and Green Helium Neon (543 nm) lasers for excitation of SYTO 9 and 

propidium iodide fluorophores, respectively.  FITC and Propidium Iodide filter 

settings were used for fluorescence detection.      

 

Biomass, Protein, and RNA quantification 

For biomass quantification, cultures were grown as described above.  Two 

25 ml samples were taken at an OD of ~0.33, three 15 ml samples at the onset of 

stationary phase (corresponding to time point C in Fig 6 for each strain), and 

three 15 ml samples were taken 1.5 hours into growth arrest (corresponding to 

time point E in Fig 6 for each strain).   Cells were chilled on ice immediately after 

sampling and then centrifuged for 20 min at 3700 rpm at 4° C.  Supernatant was 

removed and the remaining biomass was resuspended in 1 ml of deionized 

water.  The samples were transferred to pre-weighed aluminum weigh-boats.  
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Samples were desiccated at 105° C overnight, and dry weights were obtained.  

The biomass values shown in Figure 6 are averages of three independent 

cultures for each of the WT and the ppGpp0 strains.   

For protein quantification, 5 ml of living cells were harvested directly into 

15 ml falcon tubes containing chloramphenicol (final concentration was 25 µg/ml) 

at the same time points described for biomass quantification.  One ml of cells 

was pelleted by centrifugation for 10 min at 14000 rpm and supernatant was 

removed. Cells were resuspended in 1 ml of sonication buffer (10mM Tris-HCl, 

0.1mM EDTA, 5% glycerol, 150mM NaCl, pH 7.65), and frozen at -20° C until 

further use.  Thawed samples were intermittently sonicated and cooled on ice at 

5 sec intervals, 3 times.  Sonicated samples were pelleted by centrifugation and 

supernatant containing protein was assayed according to the Bradford method of 

protein quantification (10).  Standard curves for the Bradford assay were done 

using BSA in sonication buffer.  The protein values shown in Figure 6 are 

averages of three independent cultures for each of the WT and the ppGpp0 

strains.  The assay was replicated in quadruplicate at each time point for each 

culture. 

Total RNA quantification was carried out as described previously, with 

minor modifications (11).  Briefly, 15 ml of culture was sampled into a 50 ml 

falcon tube containing 3 ml of 3.0 M ice-cold trichloroacetic acid.  The solution 

was mixed by inversion and cooled briefly on ice.  Three aliquots of the sample 

were processed separately.  Six ml of sample was pipetted onto a glass fiber 

filter atop a vacuum flask.  The filter was then rinsed 3 times with 5 ml volumes of 
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nanopure water.  The dried filter was placed in a screw-top glass vial with 2 ml of  

0.2 M NaOH.  The vials were incubated horizontally at RT with gentle rocking for 

16-18 hours.  Two ml of cold, 0.5 M perchloric acid was added to each vial and 

mixed by inversion.  At least one ml of the resulting mixture was filtered through a 

0.2 µm filter.  The RNA concentration was measured  spectrophotometerically on 

a Beckman-Coulter DU 800 using the ‘RNA’ setting.  The total RNA values 

reported in Fig. 7 are the averages of 3 replicates from 3 independent WT 

cultures (9 total replicates for each timepoint) and two independent ppGpp0 strain 

cultures (6 total replicates for each timepoint). 
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Figure Legends 

 

Fig. 1. Growth curves and selected medium component concentrations for WT 

and ppGpp0 strains.   

A. and B. Growth curves and ppGpp accumulation for WT and ppGpp0 strains, 

respectively, grown at 37° C in MOPS medium with glucose plus all 20 amino 

acids, with a limiting amount of isoleucine. ppGpp was undetectable in the 

mutant strain.  Time points marked in green indicate times of sampling for 

medium component analysis presented in C-F. Black arrows indicate sampling 

times for microarray analysis.  Note the higher OD reached by the ppGpp0 strain 

despite being grown in identical medium.   

C. and D.  Concentrations of carbon sources and acetate, and % O2 saturation 

for WT and ppGpp0 strains, respectively. 

E. and F.  Concentrations of selected amino acids.  Concentrations of amino 

acids not shown did not change appreciably over the course of the experiments.    

    

Fig. 2.  Comparisons of microarray results for WT and ppGpp0 strains.  Control 

RNA was extracted from log phase WT cells at an OD of ~0.4 grown in medium 

with replete isoleucine.  Test RNA was harvested from WT, ΔrelA and ppGpp0 

strains ~40 min after onset of growth arrest.  All test array data were normalized 

to control array data before comparative analysis of strain-specific responses to 

isoleucine starvation.  Array data presented in all figures are log2 expression 

ratios (test:control).  
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A. Upper plot: comparison of isoleucine-starved WT and ppGpp0 strain 

transcriptome profiles.  Lower plot: comparison of isoleucine-starved ΔrelA and 

ppGpp0 strain transcriptome profiles.   

B.  Upper diagram: Venn diagram comparing up regulated genes between the 

WT and ppGpp0 strain.  Lower diagram: Venn diagram comparing down 

regulated genes between the WT and ppGpp0 strain.   

C.  Heat maps of log2 expression ratios for the WT and ppGpp0 strain for 

ribosomal protein genes, other genes involved in translation, and the general 

stress response.  All genes shown in C differed in their expression >2-fold 

between the WT and ppGpp0 strain.  Ribosomal protein and translation genes 

shown were all down regulated >2-fold in the WT, while all the general stress 

response genes shown were induced >2-fold in the WT. 

 

Fig. 3. WT transcriptome data overlaid on selected metabolic pathways.  Genes 

up regulated >2-fold are shown in red, while genes down regulated >2-fold are 

shown in green.  Genes whose expression did not change >2-fold are shown in 

black.  Where multiple gene products are required for a single conversion, the 

corresponding arrow is colored according to the average expression value of the 

corresponding genes.   Amino acids are in blue font.  Background colors are 

intended to delineate various pathways as follows: glycolysis: green (upper 

center), pentose phosphate pathway: dark blue (upper left), TCA cycle: yellow 

(lower right), threonine biosynthesis: light orange (middle left), branched chain 

amino acid biosynthesis: purple (lower left), serine metabolism: dark orange 
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(middle right), acetate metabolism: light blue (middle right), glutamate 

biosynthesis: red (lower center), arginine degradation: light green (bottom right). 

 

Fig. 4.  ppGpp0 strain transcriptome data overlaid on selected metabolic 

pathways.  Color coding is identical to that for Fig. 3. 

 

Fig. 5.  Cluster analysis of carbon sources utilized in kinetic Biolog assays for 

WT and ppGpp0 strains.  White represents negligible utilization, dark blue 

represents maximal utilization, and bright red represents half-maximal utilization, 

as shown by key.  Units are arbitrary.  Column 1 contains data for both strains at 

OD ~0.3, during rapid growth before isoleucine starvation.  Column 2 contains 

data for cells harvested at the onset of isoleucine starvation.  Column 3 contains 

data for cells harvested 1.5 hours into growth arrest.  These sampling times 

correspond to time points T2, T3 and T5 in Fig 6A and 6B.  Clusters A, B, and C 

are described in the text. 

 

Fig. 6.  Growth curves and viability staining of WT and ppGpp0 strains.   

A. Growth curve of WT for viability staining.  Time points where viability was 

tested are marked in green and labeled T1-T5. 

B.  Growth curve of ppGpp0 strain for viability staining.  Labels are as in (A). 

C. Micrographs of differentially stained WT cells harvested at time points T1-T5 

as labeled in (A).  Cells stained green are viable, while cells stained red have 

compromised membranes (non-viable).  Gold scale bar = 50 µm. 
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D. Micrographs of differentially stained ppGpp0 cells harvested at time points T1-

T5 as labeled in (B).  Staining and scale bars are identical to (C). 

 

Fig. 7.   Total protein, biomass, and RNA produced by WT (black bars) and 

ppGpp0 strains (grey bars) during isoleucine starvation.  The first time point (rapid 

growth) corresponds to T2 in (Fig 6A and 6B).  Onset of growth arrest 

corresponds to (T3) in (Fig 6A and 6B).  Final time point (1.5 hrs into growth 

arrest) corresponds to (T5) in (Fig 6A and 6B).  Error bars indicate standard 

deviations.  Both strains produce a similar amount of protein, however, the 

ppGpp0 strain produces 50% more biomass and >150% more RNA than the WT.   

  

Fig. 8.  Physiological model of the ppGpp-mediated response to isoleucine 

starvation.  Solid arrows represent positive regulation while solid lines with flat 

ends indicate negative regulation.  Solid lines ending with both lines and arrows 

denote complex regulation.  Dashed lines indicate functional effects (eg. 

Nucleotide catabolism generates intermediates which are funneled into central 

metabolism).  Regulatory relationships are not necessarily direct. 
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Table 1.  Number of genes in various functional groups differentially expressed in relA 

spoT- strain 

 

Total number 

differentially 

expressed 

Genes 

expressed 

>2 fold 

higher 

Genes 

expressed 

>2 fold 

lower Functional group 

Cell Division 15 9 6 

DNA replication 16 15 1 

DNA repair 23 20 3 

Nucleotide Biosynthesis 27 24 3 

Nucleotide Catabolism 6 0 6 

Nucleotide Salvage 6 6 0 

Fatty acid/Phospholipid Biosynthesis 17 12 5 

Fatty acid B-oxidation 6 1 5 

Peptidoglycan Biosynthesis 13 9 4 

LPS/Outer membrane Biosynthesis 24 23 1 

Glycogen metabolism 7 0 7 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 

a-D-Glucose
L-Serine

N-acetyl-D-Glucosamine
D-Mannose
D-Fructose

b-methyl-D-glucoside
Pyruvic acid methyl ester

Glycerol
D,L,a-glycerol phosphate

D-Gluconic Acid
D-mannitol

D,L,-Lactic Acid
a-ketoglutaric acid

Uridine
D-Galactose

Inosine
D-Psicose

Bromosuccinic Acid
a-ketobutyric Acid

D-Glucose-6-Phosphate
Succinic Acid

Succinic acid mon-methyl ester
Thymidine

a-hydroxybutyric Acid
L-Threonine

a-D-Glucose-1-Phosphate
D-Trehalose

L-Alanine
L-Alanylglycine

Dextrin
D-Serine

Glycyl-L-Glutamic Acid
L-Glutamic Acid

Glycyl-L-Aspartic Acid
L-Asparagine

D-Alanine
Glycogen
L-Proline

L-Alaninamide
D-Cellobiose

g-hydroxybutyric Acid
g-aminobutyric acid

water
1 2 3
WT ppGpp0

A

B

C

1 2 3

No utilization

50% utilization

Max utilization

a-D-Glucose
L-Serine

N-acetyl-D-Glucosamine
D-Mannose
D-Fructose

b-methyl-D-glucoside
Pyruvic acid methyl ester

Glycerol
D,L,a-glycerol phosphate

D-Gluconic Acid
D-mannitol

D,L,-Lactic Acid
a-ketoglutaric acid

Uridine
D-Galactose

Inosine
D-Psicose

Bromosuccinic Acid
a-ketobutyric Acid

D-Glucose-6-Phosphate
Succinic Acid

Succinic acid mon-methyl ester
Thymidine

a-hydroxybutyric Acid
L-Threonine

a-D-Glucose-1-Phosphate
D-Trehalose

L-Alanine
L-Alanylglycine

Dextrin
D-Serine

Glycyl-L-Glutamic Acid
L-Glutamic Acid

Glycyl-L-Aspartic Acid
L-Asparagine

D-Alanine
Glycogen
L-Proline

L-Alaninamide
D-Cellobiose

g-hydroxybutyric Acid
g-aminobutyric acid

water
1 2 3
WT ppGpp0

A

B

C

1 2 3

No utilization

50% utilization

Max utilization

 

 



 
103 

Fig. 6. 
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Fig. 7. 
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Fig. 8. 
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Chapter 4: Discretely calibrated regulatory loops controlled by 

ppGpp partition global gene expression across the ‘feast to 

famine’ gradient 
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Abstract 

 Bacteria profoundly reorganize their global gene expression when 

faced with nutrient exhaustion.  In Escherichia coli and almost all other 

free-living bacteria, the alarmone ppGpp facilitates this massive response 

by directly or indirectly coordinating the down-regulation of genes of the 

translation apparatus, and the induction of amino acid biosynthetic genes 

and the general stress response.  Such a large reorientation likely requires 

the cooperative activities of many different genetic regulators, yet the 

structure of the transcription network that functions below ppGpp remains 

poorly defined.  Using isoleucine starvation as an experimental model 

system for amino acid starvation, we identified genes that required ppGpp, 

Lrp, and RpoS for their induction.  Surprisingly, despite the fact that the 

overwhelming majority of genes controlled by Lrp and RpoS required 

ppGpp for their activation, we found that these two regulons were not 

induced simultaneously.  The data reported here suggest that metabolic 

genes, such as those of the Lrp regulon, require only a low basal level of 

ppGpp for their efficient induction.  In contrast, the RpoS-dependent 

general stress response is not robustly induced until relatively high levels 

of ppGpp accumulate.  We propose a data-driven model that explains how 

bacterial cells allocate transcriptional resources between metabolic and 

stress survival processes by discretely tuning regulatory activities to a 

central indicator of cellular physiology.  The regulatory structure that 

emerges is consistent with a rheostatic model of the stringent response 
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that allows cells to efficiently adapt to a wide range of nutritional 

environments.   
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Introduction 

 

Across a continuum of possible nutritional environments ranging from 

‘feast’ to ‘famine,’ Escherichia coli cells attempt to compensate for environmental 

deficiencies by activating endogenous biosynthetic pathways (12).    Should 

conditions deteriorate to the point that these biosynthetic pathways can no longer 

remedy the situation, the cells transition into stationary phase, a physiological 

state oriented toward protection of cellular structures and long-term survival (21).  

Thus, as the quality of the environment diminishes, the cells must properly 

allocate resources between biosynthetic and stress/survival functions.  The 

structure of the transcription network used by cells to balance these processes 

across this gradient remains incompletely understood.   

In almost all bacteria, growth arrest prompts a restructuring of global 

transcription patterns known as the stringent response (15, 45).  The alarmone 

ppGpp is the arbiter of the stringent response and lies at the apex of the network 

that governs global gene expression in response to nutrient limitation in E. coli 

(15).  This assertion rests on the observation that cells lacking ppGpp exhibit 

profoundly altered global gene expression patterns during carbon and amino acid 

starvation (19, 52, 53).  While these studies suggest that ppGpp controls one of 

the largest transcription networks in the bacterial cell, lingering questions 

regarding the mechanisms underlying regulation by ppGpp and the sheer size of 

the ppGpp regulon have led to the omission of ppGpp from all large-scale, 

computational transcriptional network analyses to date.  Most experiments 
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designed to examine the stringent response/stationary phase physiology utilize 

conditions of ‘feast or famine.’  However, the ppGpp level is inversely 

proportional to the steady-state growth rate, i.e., a condition which supports a 

sub-optimal growth rate leads to an elevated, but not maximal level of ppGpp 

(32, 48-50).  This suggests that the stringent response is rheostatic rather than 

‘all or nothing.’  As ppGpp level serves as a general indicator of the nutritional 

state of the cell, it is a logical signal to which other regulators might key their 

activity.  Indeed, global expression profiles from cells during the stringent 

response suggest that a multitude of other regulators are involved, depending on 

the type and severity of stress encountered (19, 52, 53).  In our previous 

investigations designed to examine the physiological extent of the ppGpp-

mediated stringent response, we observed that many genes known to be 

regulated by the alternative sigma factor RpoS and the DNA binding-protein Lrp 

were induced (53).  Thus, as a step to understanding the larger architecture of 

the stringent response, here we examine the Lrp and RpoS networks as 

components of the ppGpp regulon, and consider how these two networks might 

influence each other as well.     

The primary synthase of ppGpp is RelA, which catalyzes the production of 

ppGpp in response to amino acid starvation (15, 59).  A secondary ppGpp 

synthase, SpoT, produces ppGpp in response to diverse stresses including 

carbon (61), iron (55), and fatty acid starvation (8).  SpoT also contains ppGpp 

hydrolase activity, and thus plays a crucial role in regulating the overall level of 

ppGpp (49, 61).  ppGpp binds directly to RNA polymerase (RNAP) with the help 
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of the RNAP-binding protein DksA (3, 20).  ppGpp and DksA compromise the 

ability of RNAP to form a productive open complex at intrinsically unstable 

promoters (e.g. ribosomal RNA promoters), via a mechanism that is not yet 

completely understood (20, 47, 56).  Conversely, ppGpp and DksA have been 

shown to directly stimulate transcription of amino acid biosynthesis genes, which 

have a much longer open complex half-life.  Thus, when ppGpp accumulates, 

RNAP is liberated from rRNA promoters and becomes available for transcription 

of diverse promoters across the genome (5).  At the level of transcription, we and 

others have found the stringent response to include the down regulation of 

diverse types of macromolecular synthesis (Protein, DNA, RNA, fatty acids, etc.), 

a broad-scale restructuring of intermediary metabolism (including amino 

biosynthesis), and the induction of the RpoS-mediated general stress response 

(1, 19, 53).    

 Lrp (leucine responsive protein) is a global transcription factor known to 

regulate a large number of genes involved in amino acid biosynthesis, uptake, 

and degradation (16, 51).  Current structural models suggest that Lrp binds DNA 

as an octomer, wrapping the DNA around itself (18), however, the molecular 

mechanism underlying the regulatory activity of Lrp is not completely understood 

(13).  A portion of the Lrp regulon displays induction or down-regulation in 

response to the availability of exogenous leucine.  However, other genes are 

regulated by Lrp independently of leucine availability (14, 33, 42).  A recent 

systems-level of analysis of the Lrp network suggested that the different outputs 

regulated by Lrp encompass several coherent physiological states that balance 
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between amino acid uptake, degradation and biosynthesis (16).  Thus, to the 

extent that Lrp regulates induction of amino acid biosynthesis/metabolism genes, 

its role is complementary to that of ppGpp during the stringent response to amino 

acid starvation. 

RpoS is the mediator of the general stress response in E. coli (35).  It is 

known to control >100 genes in response to diverse conditions including 

starvation, oxidative, and osmotic stresses (28, 58).  During times of low stress 

(e.g. nutrient excess), RpoS levels are kept low by submaximal transcription of 

rpoS and by high levels of degradation [reviewed in (22)].  Interplay between a 

suite of proteins (RssB, IraP, IraD, IraM, etc) stabilizes the level of RpoS 

according to the physiological status of the cell by promoting or inhibiting the 

degradation RpoS by ClpXP protease (10, 11, 39).  The RpoS-mediated general 

stress response requires ppGpp for its development (27).  The connections 

between ppGpp and RpoS are several-fold: i)  ppGpp is required for increased 

transcription of rpoS during entry into stationary phase (30), ii) ppGpp facilitates 

competition of alternative sigma factors (including RpoS) with the housekeeping 

sigma (σ70) for core RNAP binding (26), and iii) ppGpp is required for increased 

transcription of the anti-adaptor protein gene iraP, which results in inhibited 

proteolysis of RpoS (11).        

 The observation that genes of both the Lrp and RpoS regulons (which 

control nutritional and stress responses, respectively) appeared to require ppGpp 

for their induction prompted us to consider how these networks/processes were 

integrated as components of the stringent response.  We used whole-genome 
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microarrays to experimentally determine the extent and timing of gene 

expression controlled by ppGpp, Lrp, and RpoS.  Our results suggest a model in 

which genes of the Lrp regulon require a lower threshold level of ppGpp for their 

induction, while RpoS-dependent genes require a relatively high level of ppGpp 

for their induction.  Further experimentation correlating regulon-representative 

promoter activity and ppGpp accumulation patterns validated several aspects of 

our proposed model.  We interpret these results to mean that at a systems level, 

nutritional genes can readily respond when ppGpp is at basal or only slightly 

elevated levels (e.g. sub-optimal conditions which still allow for growth) while the 

general stress response is only fully developed under sustained growth limiting 

conditions (which lead to high levels of ppGpp accumulation).  Our model 

illustrates how a single signal molecule, ppGpp, can drive an independent feed-

back loop coupled in parallel with a feed-forward loop to appropriately balance 

basic biosynthetic and survival processes across the feast to famine gradient. 

 

Results    

 

Overall strategy 

 To investigate the regulatory architecture of the stringent response, we 

developed an experimental system based on starvation for isoleucine which 

could be equally applied to all strains used here, including the multi-auxotrophic 

ppGpp0 strain. This system has been described in detail elsewhere (53).  Briefly, 

E. coli K-12 strains cannot grow in the absence of isoleucine when valine is 
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present due to frame-shift mutation in the ilvG gene which renders the encoded 

protein (valine insensitive acetohydroxy-acid synthase II) inactive  (31).  Thus, 

isoleucine depletion in the presence of excess valine serves as an experimental 

model system for amino acid starvation and the stringent response. 

 

Relative contributions of Lrp and RpoS in response to isoleucine starvation  

 An analysis of transcription profiles of WT and ppGpp0 strains obtained 

during isoleucine starvation suggested that the regulators Lrp and RpoS were 

also activated as many genes known to be regulated by these proteins were 

induced compared to WT under non-growth limiting conditions (53).  To elucidate 

the role of Lrp and RpoS during the stringent response, we grew strains lacking 

these regulators in isoleucine-limiting medium (Fig. 1). This MOPS medium 

includes glucose (0.2%) as a carbon source and all twenty amino acids in the 

amounts described in (57), with the exception that isoleucine was only present at 

a starting concentration of 60 µM.  Under these conditions, the cultures exited 

logarithmic growth around OD 0.3, ultimately achieving a final OD of 0.6-0.7.  

RNA was harvested after the cells had transitioned into stationary phase, an OD 

of ~0.6 (arrows, Fig. 1).  The transcriptomes of the mutant strains were analyzed 

using Affymetrix Genechips.  

 For our analysis, we considered expression profiles from all four strains: 

WT, ppGpp0, Lrp-, and RpoS-.  Transcriptomes from each of these four strains 

starved for isoleucine were compared to the transcriptome of the WT strain 

during logarithmic growth in identical medium, except that isoleucine was replete.  
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Using a simple 2-fold criterion (60), we categorized genes induced in the WT in 

response to isoleucine starvation according to dependence on ppGpp, Lrp, or 

RpoS for their induction (Fig. 2).  This analysis leads to several important 

conclusions: i) the majority of genes induced in response to isoleucine starvation 

require ppGpp for their normal induction (365 required it, vs. 153 that did not), ii) 

Lrp controls a smaller subset of genes than RpoS (39 controlled by Lrp vs 133 

controlled by RpoS, 11 were controlled by both), and iii) the great majority of 

genes in both the Lrp and RpoS regulons also require ppGpp for their full 

induction (153 required ppGpp, 8 did not).  These results suggest a regulatory 

scheme in which ppGpp serves as the apex regulator, with Lrp and RpoS 

functioning to control discrete subsets of the larger ppGpp regulon.          

 

Physiological roles of Lrp and RpoS 

Our data suggest clear physiological roles for Lrp and RpoS based on the 

content of their respective regulons, and these data correlate well with other 

studies which have examined global regulation by these regulators (16, 51, 58).  

Under isoleucine starvation, Lrp was required for induction of a range of 

metabolic genes (Fig. 2B).  This included genes involved amino acid metabolism 

such as leucine biosynthesis (leu genes), threonine biosynthesis (thrA and thrB), 

alanine metabolism (dadAX), and serine metabolism (serA).  Lrp was also 

required for induction of the glyoxylate shunt genes aceA and aceB, as well as 

the malic enzyme maeB.  Taken together, these data suggest that Lrp, along with 
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ppGpp, plays a role in coordinating the metabolic response to isoleucine 

starvation.   

RpoS was required for the induction of a range of genes with various roles 

in preparing for long-term survival in stationary phase (Fig. 2E).  These included 

systems for protecting the cell against oxidative stress (sodC, dps, wrbA), 

osmotic stress (several osm genes, treA, otsA, otsB), and metabolic genes 

known to be RpoS-dependent (poxB, talA, and fbaB).  Thus the RpoS-dependent 

general stress response is initiated in response to isoleucine starvation.  The Lrp 

and RpoS regulons are known to overlap.  Eleven genes required both Lrp and 

Rpos for their induction (Fig. 2C).  This group was mostly composed of genes 

involved in acid tolerance (gadA, gadB, hdeA, hdeB, hdeD, xasA, gabP).  From 

these results, we conclude that the Lrp and RpoS networks serve specific 

functions within the larger stringent response to isoleucine starvation: Lrp works 

in conjunction with ppGpp to induce genes involved in amino acid metabolism 

(with the presumed function of initiating amino acid biosynthesis) while RpoS, 

together with ppGpp, ready the cell for survival under prolonged starvation 

conditions.               

 One possible way that ppGpp might influence the Lrp and RpoS regulons 

is by directly regulating the expression of the lrp and rpoS genes.  There are 

conflicting reports regarding the role of ppGpp in affecting transcription of lrp.  

ppGpp was required for a ~5 fold induction of lrp upon transition to stationary 

phase in a rich defined medium (29).  However, lrp transcription was found to 

unaffected in both stringent and relaxed strains in response to arginine starvation 
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(these experiments were done in an arginine auxotrophic genetic background) 

(4).  Under isoleucine starvation conditions tested here, the WT did not 

significantly induce lrp expression and the difference in lrp expression between 

the WT and ppGpp0 strain was ~1.8 fold (Fig. 2D).  Thus, under these conditions, 

we conclude that the failure of the ppGpp strain to induce the Lrp regulon was 

not likely due to impaired transcription of the lrp gene.  In contrast, while both the 

WT and ppGpp0 strain induced rpoS >2-fold, rpoS transcription was much lower 

in the ppGpp0 strain (2.2 induced fold vs. 6.7 fold in the WT).  Thus, impaired 

induction of the RpoS regulon in the ppGpp0 strain can be accounted for, at least 

in part, by poor induction of rpoS at the transcriptional level.   

 

Differential induction times of the Lrp and RpoS regulons 

 Having delineated the Lrp and RpoS regulons induced during isoleucine 

starvation, we sought to determine the timing of these components of the 

stringent response.  To address this question, we conducted a twelve-point 

microarray time-course of WT cells starting during logarithmic growth (OD 0.14) 

and subsequently as they starved for isoleucine.  We then examined the 

behavior of the Lrp and RpoS regulons in the time-course data set (Fig. 3).  

Several trends were readily apparent when the regulon data was overlaid onto to 

the timecourse data.   First, many genes of the Lrp regulon, including those 

involved in amino acid biosynthesis/metabolism were induced very early on, 

before the culture reached an OD of 0.3.  This finding was somewhat unexpected 

given that the cells were still in logarithmic growth phase at this time.  In contrast, 
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we found that the RpoS regulon was induced later than the Lrp regulon.  To 

quantify these potential differences in timing, we undertook a systems-level 

analysis. 

 The response time of a gene (defined as the time at which expression 

reaches its half-maximal level) offers a quantitative measure of when a gene can 

be said to be induced (2, 38).  To compare the relative response times of the Lrp 

and RpoS regulons, we averaged the expression levels of all the genes in each 

regulon at each time point.  We then plotted a sigmoid regression curve for each 

set of averaged regulon values vs. time (Fig. 4).  We found that the response 

time for the Lrp regulon was ~45 min before the RpoS regulon.  Genes that 

required both Lrp and RpoS for their induction had an intermediate induction 

time, ~30 min after the Lrp regulon, and ~15 min before the RpoS regulon.  

Taken together these data suggest a regulatory and physiological hierarchy 

under the control of ppGpp.  Specifically, the initial reaction to isoleucine 

starvation entails the induction of genes involved in amino acid biosynthesis 

mediated by Lrp; this induction occurs before the cells begin to transition into 

stationary phase.  In contrast, the RpoS-mediated general stress response is not 

induced until later, as the growth rate slows.   

 These observations lead to a central question: How can a single signal 

molecule, ppGpp (which is required for expression of both the Lrp and RpoS 

regulons), differentially dictate the output timing of these two genetic networks?  

We suggest that this question can be most simply and productively considered in 

terms of ppGpp level and regulon output.  We observed previously that ppGpp 
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accumulated over ~100 min in response to isoleucine starvation (53), a relatively 

long time compared to most experimental conditions that provoke robust ppGpp 

accumulation, usually within 10-15-min (32, 48, 54).  The slow ppGpp 

accumulation associated with isoleucine starvation suggests that the cells 

experienced a gradual decline in environmental quality, a situation that might 

approximate a continuum from feast to famine.  We considered the accumulation 

of ppGpp relative to the induction times of the Lrp and RpoS regulons (Fig. 4), 

and noted that the induction time of the Lrp regulon corresponded to a lower level 

of ppGpp ( < 100 pmol/ml/OD), while the RpoS regulon was induced when the 

level of ppGpp was higher (~400 pmol/ml/OD).  This correlation suggests a 

model in which the Lrp and RpoS regulons require different amounts of ppGpp 

for their induction (Fig. 5). 

 

Altering the ppGpp accumulation rate predictably impacts the response times of 

the Lrp and RpoS regulons 

 We sought a way to test if the Lrp and RpoS regulons required different 

threshold levels for their induction.  A key prediction that follows from this model 

is that if the two regulons require different ppGpp levels for their induction, then 

altering the rate of ppGpp accumulation should impact the relative response 

times of the two regulons.  For example, we observed that when ppGpp 

accumulated over ~100 min, the difference in response times between the Lrp 

and RpoS regulons was ~45 min.  We reasoned that if we could accelerate the 
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rate of ppGpp accumulation, then the difference in the response times between 

the Lrp and RpoS networks would be reduced.   

 To test this hypothesis, we needed an experimental system that would 

allow for relatively easy measurement of key parameters (ie gene induction and 

ppGpp accumulation) and would allow for rapid culture manipulation.  To monitor 

gene induction of the Lrp and RpoS regulons, we chose two representative 

genes from each whose promoter activities could serve as behavioral indicators 

for the larger regulons.  For the Lrp regulon we chose the leuL and dadA 

promoters; genes under control of both of these promoters were influenced by lrp 

mutation in our data sets, and are previously known to be controlled by Lrp (33, 

65).  To represent the RpoS regulon, we selected the promoters for the yahO 

and wrbA genes.  Both of these genes responded robustly and were RpoS-

dependent in our array experiments, and both are previously known to be 

controlled by RpoS (23, 28, 62).  These four promoter regions were cloned into 

pUA66, a very low copy plasmid that has been used extensively for similar 

genetic analyses, upstream of a fast-folding GFP allele (46, 63, 64).  Thus, we 

monitored GFP fluorescence as an indicator of the respective promoter activities 

(and Lrp and RpoS regulon induction).  This setup allowed us to grow the four 

reporter strains in parallel in 50 ml cultures that facilitated experimental 

manipulation.   

 We first confirmed that the Lrp regulon was induced before the RpoS 

regulon in our four-flask, GFP system (Fig. 6A).  We found that the Lrp-

dependent promoters were induced an average of 26 min before the RpoS-
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dependent promoters.  While this 26-min difference is shorter than the 45 min 

whole-regulon measurements in our array data, it represents a statistically robust 

difference in timing between the two regulons (p< 0.001).  In our normal 

isoleucine starvation regime, the cells deplete isoleucine from the medium until 

growth can no longer be supported.  To abruptly trigger isoleucine starvation 

(and hence accelerate ppGpp accumulation), we grew the four reporter strains in 

medium with glucose and all twenty amino acids in excess.  When the cultures 

reached an OD of ~0.3-0.4 we rapidly collected the cells on glass fiber filters and 

immediately resuspended them in medium containing glucose, 19 amino acids, 

and no isoleucine.  Under these conditions we found that ppGpp accumulates to 

~800 pmol/ml/OD in ~10 min (Fig. 6B).  Under these abrupt isoleucine starvation 

conditions the average difference in the response times between Lrp-dependent 

and RpoS-dependent genes was reduced to a statistically insignificant 6.6 

minutes (p= 0.224).  Thus, one prediction of our proposed model appears to hold 

true: response times of Lrp and RpoS-dependent gene expression vary in 

accordance with the ppGpp accumulation rate.   

 

Integration of the Lrp and RpoS networks within the stringent response 

In considering other predictions implied by our proposed model (Fig. 5), 

we noted other features which may serve to partition expression of the Lrp and 

RpoS regulons under a range of physiological conditions.  The Lrp and RpoS 

networks triggered by ppGpp constitute different types of physiological/regulatory 

motifs.  The Lrp side of the model contains a physiological feedback loop.  Under 
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amino acid limiting conditions, the series of events in this feedback loop begins 

with ppGpp accumulation.  A relatively low level of ppGpp and Lrp (activated by 

an unknown mechanism) together allow for induction of the Lrp regulon.  The 

physiological result of Lrp regulon induction is biosynthesis of the missing amino 

acids.  Newly synthesized amino acids in turn modulate the ppGpp level.  The 

RpoS side of the model contains a coherent feed-forward loop in which increased 

ppGpp prompts RpoS induction (at the transcriptional level) and stabilization (via 

IraP).  RpoS and ppGpp then work together (via enhanced alternative sigma 

factor competition) to induce transcription of the RpoS regulon.  A critical element 

of this model is that since the Lrp regulon might indirectly influence ppGpp levels, 

Lrp activity has the potential to indirectly modulate the induction of the RpoS 

regulon.  This important connection within the stringent response offers a directly 

testable prediction which we sought to investigate experimentally. 

If our model is correct, then Lrp activity should play a role in setting the 

level of ppGpp under growth conditions that require de novo synthesis of certain 

amino acids.  However, Lrp is a pleitropic regulator and efforts to study it have 

long been frustrated by the lack of a straightforward phenotype (41).  For 

example, one of the few known growth phenotypes of Lrp- mutants is marginally 

slower growth in glucose minimal medium (41, 51).    Thus, while Lrp is clearly 

implicated in regulation of many amino acid biosynthetic genes, Δlrp strains are 

not strict amino acid auxotrophs.  These considerations led us to design an 

experimental regime in which starvation for all amino acids could be abruptly 

triggered.  The experimental system we devised begins with cells in balanced 
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growth with all amino acids in abundance.  Rapid collection and resuspension of 

the cells in glucose minimal medium disturbs the homeostasis previously 

maintained by the cells (i.e. the needs met by the originally available exogenous 

amino acids are suddenly unmet). The onset of amino acid starvation would be 

expected to stimulate robust, transient ppGpp accumulation.  Proper induction of 

the Lrp regulon (along with other metabolic pathways) should eventually lead to 

endogenous biosynthesis of amino acids.  In this framework, Lrp allows the cell 

to efficiently achieve a new homeostatic balance, resulting in the lowering of the 

ppGpp level and the resumption of growth.  Accordingly, the RpoS regulon, 

which would be induced as ppGpp reaches high levels, should also return to a 

low level of expression as growth resumes.  The model also suggests that under 

these amino acid starvation conditions, a strain lacking Lrp would also rapidly 

accumulate ppGpp.  However, Δlrp cells would be impacted in their ability to 

biosynthesize some amino acids and would thus continue to maintain a high level 

of ppGpp.   

To examine the role of Lrp in influencing the ppGpp level in response to 

abrupt amino acid starvation, we grew 50 ml cultures in minimal glucose medium 

containing double the concentration of 18 amino acids (tyrosine and isoleucine 

were also included at normal levels).  At an OD of ~0.3-0.4 we rapidly collected 

the cells on glass fiber filters and resuspended them in glucose minimal medium 

(Fig. 7).  In the WT, this treatment triggered a diauxie of ~160 min.  In contrast, 

growth was arrested in the Lrp mutant (outgrowth occurred only after many 

hours, i.e. overnight).  Under these conditions, downshift resulted in a very high 



 
130 

level of ppGpp accumulation in both strains, peaking at 30 min post-filtration at 

~2,400 pmol/ml/OD.  This high level presumably reflects starvation for all 20 

amino acids, as opposed to a single amino acid in our previously described 

experiments (Fig 4 and 6).  In the WT, growth resumed as the ppGpp dropped to 

a level below ~400, ultimately falling to a level below 100 pmol/ml/OD.  In 

contrast, the Lrp- mutant ppGpp level declined only to ~700 pmol/ml/OD; a level 

comparable to that reached by cells starved for isoleucine (Fig 4).  This level was 

maintained for at least 270 min after amino acid starvation was induced.  Thus, in 

accordance with the proposed model, we observe that under some conditions 

which lead to amino acid starvation, Lrp activity can influence the ppGpp level.  

Moreover, the proposed model not only validated the role of Lrp in modulating 

ppGpp level, but also led to discovery of a new phenotype for Lrp- cells.  

 

Discussion 

 

In this report, we examined the Lrp and RpoS transcription networks as 

components of the stringent response.  We experimentally determined the Lrp 

and RpoS regulons induced in response to isoleucine starvation and found broad 

regulatory overlap between these gene systems and the ppGpp regulon.  Next 

we elucidated the timing of induction of the Lrp and RpoS networks in a 

microarray timecourse obtained as cells starved for isoleucine.  We found that 

the Lrp regulon was induced before the RpoS regulon.  The response times of 

the two networks corresponded to different threshold levels of ppGpp 
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accumulation, suggesting a model in which the Lrp regulon requires a relatively 

low level of ppGpp for its induction compared to the RpoS regulon.  Based on 

this model, we predicted that accelerating the ppGpp accumulation rate would 

reduce the difference in the response times of these two regulons.  We devised 

an experimental system based on GFP production from Lrp and RpoS dependent 

promoters which allowed for ready testing of this hypothesis.  We found that 

when ppGpp accumulates rapidly (in <15 min as opposed to 100 min), the 

difference in response times of the two regulons was irresolvable.  Finally, our 

proposed model also postulates a feedback loop wherein Lrp activity indirectly 

regulates the ppGpp level by controlling expression of amino acid biosynthesis 

genes.  In support of this hypothesis, we observed that an Lrp mutant maintained 

an abnormally high level of ppGpp after a harsh downshift from medium replete 

with amino acids to glucose minimal medium.  Taken together, these data 

suggest a framework for understanding the regulatory structure governing gene 

induction during the stringent response.  

As cells encounter declining environmental quality they must judiciously 

allocate cellular resources.  The model presented in Fig. 5 considers how cells 

might partition their gene expression (and hence manage major cellular 

processes) under three conditions along the feast to famine gradient.  In rich 

environments the ppGpp level is low and both biosynthetic (e.g. amino acid 

synthetic pathways) and stress survival mechanisms are kept at a minimal level 

of activity.  Under intermediate, or ‘hunger’ conditions (such as those found in 

minimal medium) a slightly elevated level of ppGpp is maintained.  The data 
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presented here suggests that biosynthetic processes require only a relatively low 

level of ppGpp for their induction; with this sensitivity being theoretically mediated 

through promoter structure and/or signaling through other regulatory proteins 

(e.g. Lrp).  Under these conditions, biosynthesis of amino acids sets ppGpp at a 

relatively low level, a new homeostatic balance is achieved, and growth can 

continue.  Should a critical nutrient become limiting, starvation occurs, resulting 

in high levels of ppGpp.  Only when ppGpp reaches a high level is the general 

stress response initiated and the cell transitions into survival mode.  Thus, 

biosynthetic and stress responses are tuned to require different levels of ppGpp, 

which in turn signify the overall physiological state of the cell.       

 What threshold levels are required for different components of the 

stringent response to function?  This question must be considered in light of 

ppGpp levels associated with different physiological conditions.  In quickly 

growing cells (~30 min doubling time, with glucose and casamino acids) the 

basal level of ppGpp has been measured at ~20-40 pmols/OD (32, 48, 50).  This 

basal level of ppGpp ranges up to ~80 pmols/OD for slower growing cells (~200 

min/doubling, with alanine as the sole carbon/energy source) (32, 48).  In 

contrast, conditions which lead to growth arrest often prompt ppGpp levels in 

excess of ~800 pmols/OD [(32, 48, 54), and this report].  Our measurements for 

ppGpp under steady state growth conditions are in broad agreement with these 

levels (WT growth in minimal medium, post-diauxie Fig. 7 and data not shown), 

however, our HPLC method is not sensitive enough to reliably distinguish small 

differences in ppGpp associated with different rates of steady state growth.  The 
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overarching conclusion drawn from these measurements is that the range of 

basal ppGpp levels found during growth, even slow growth, is small compared to 

ppGpp levels found during growth arrest.  This distinction is important as it 

implies that even the relatively low level of ppGpp found during slow growth (eg. 

<80 pmols/OD) is sufficient to allow for induction of biosynthetic genes (which 

must be induced in order to grow in minimal medium).  We do not contend that 

the observed ppGpp levels at the times of Lrp and RpoS regulon induction 

represent the exact ppGpp levels required for induction of the respective 

regulons.  Rather we suggest that low basal levels of ppGpp present during 

growth (20-80 pmols/OD) are sufficient to allow for induction of the Lrp regulon.  

Accordingly, we observed that the response time of the Lrp regulon occurred 

while the cells were still actively growing, not during transition to stationary phase 

(Fig. 4).  Thus, we expect that the timing of induction of the Lrp regulon observed 

here is determined primarily by signaling through Lrp.   

 From our measurements we conclude that ppGpp levels of > ~400 

pmols/ml/OD correspond to growth arrest.  Specifically, this is based on our 

observations that cells starving for isoleucine exhibit little growth after this level of 

ppGpp reached (Fig. 4), and that growth resumed after ppGpp dropped below 

this level post-diauxie (Fig. 7).  This level of ppGpp also correlated with the 

response time of the RpoS regulon (Figs. 4 and 6).  Thus, the ‘relatively high’ 

level of ppGpp required for full RpoS regulon induction is likely ~400 pmol/ml/OD.  

The experiments described here do not imply a mechanism for how the 

requirement for a higher amount of ppGpp might be built into the RpoS signaling 
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pathway.  We hypothesize that the manifold levels of control exerted by ppGpp 

on RpoS, including inhibition of proteolysis via IraP (11), and/or at the level of 

sigma factor competition (26), may play a role in defining the threshold level of 

ppGpp required for RpoS activity (considered in detail below).  Since ppGpp is 

also implicated in control of RpoS at a transcriptional level (30), the ppGpp/RpoS 

signaling pathway can be considered a coherent feed-forward loop (ie. ppGpp is 

required for rpoS transcription and for induction of the RpoS regulon).  Such 

feed-forward loops can introduce a time delay between stimulus and response 

and insulate systems from short-lived spikes in stimulus (noise) (38).       

 Our observation that an Lrp mutant had higher levels of ppGpp following 

an amino acid downshift illustrates another critical connection within the 

architecture of the stringent response (Fig. 7).  This finding implies that ppGpp 

accumulation is subject to feedback control resulting from the activity of 

biosynthetic enzymes via the endogenous amino acid pool.  In this scenario, 

when exogenous amino acids first become limiting, ppGpp accumulates and 

works in conjunction with other regulators such as Lrp to activate transcription of 

biosynthetic genes.  The resulting increase in endogenous amino acids lowers 

the ppGpp level until growth can resume.  Since ppGpp level also influences 

induction of the RpoS regulon, the feedback loop proposed above describes  a 

mechanism for homeostatic (metabolic) control of the general stress response.    

Several advantages of the proposed regulatory network structure are 

apparent.  First, the low level of ppGpp required for induction of biosynthetic 

genes allows for rapid and flexible response to metabolic perturbations.  Second, 
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the high threshold level of ppGpp required for induction of the general stress 

response could work to buffer against erroneous activation of a large number of 

stationary phase genes in situations of transient or easily remediated nutritional 

stresses.  Thus, only cells experiencing acute interruption of metabolic 

homeostasis develop a full-fledged general stress response.  The discrete tuning 

of each of the proposed regulatory loops allows for multiple response systems to 

be tethered to a single indicator of cellular physiology.  Moreover, as the 

threshold ppGpp level of the general response is set appropriately high, a range 

of signaling through RpoS is likely possible across levels of ppGpp that still allow 

for active growth.  Indeed such a range of induction of the RpoS regulon is 

observed in the excellent published transcriptome data sets of cells growing at 

several different rates (34).  The evidence presented in this report supplies a 

rationale for how bacterial cells utilize ppGpp to partition global gene expression 

for rapid growth, biosynthetic processes, and stress response across 

environments ranging from feast to famine.  These findings also underscore the 

idea that the stringent response is not an all-or-nothing phenomenon, but a 

rheostatic system that can be dialed up or down depending on the richness of the 

nutritional environment.  

How does the proposed regulatory framework function in light of the 

demonstrated mechanisms of ppGpp action?  We enter this discussion with 

several key assumptions.  Based on the data presented here, and others’ 

observations (32, 48, 50), rheostat-like function of the stringent response occurs 

with ppGpp concentrations between 20-400 pmol/ml/OD, with doubling times 
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>200 min occurring at [ppGpp] >80 pmol/ml/OD and little or no growth occurring 

at ppGpp concentrations >400 pmol/ml/OD.  If it is assumed that there is a single 

ppGpp binding site on RNAP, then, at the level of RNAP interaction, the ppGpp 

signal is binary (either ppGpp is bound or not).  We expect that rheostatic 

function corresponds to varying the fraction of the total RNAP pool that is bound 

by ppGpp.  In scenarios that lead to ppGpp accumulation of >400 pmol/ml/OD, 

RNAP is probably saturated with ppGpp.  We consider how passive induction, 

direct induction, and sigma factor competition might each function within the 

proposed architecture of the stringent response.   

The passive model of induction suggests that ppGpp is required for 

liberation of RNAP from transcription of stable RNAs; only RNAP freed from 

stable RNA synthesis is available for transcription of other mRNAs  [for reviews 

see (37, 44, 45)].  An attractive feature of this model is that the relative 

proportions of these two populations of RNAP could be easily controlled by 

raising or lowering the ppGpp concentration. ppGpp binding to RNAP is sufficient 

to mediate direct induction of certain promoters, including some promoters for 

amino acid biosynthesis (6, 43).  Both passive and direct control by ppGpp is 

thought to result from altered RNAP-promoter interactions, with the overall effect 

being dictated by the promoter nucleotide sequence (20, 44).  Thus, under 

conditions which allow for growth, a low level of ppGpp is present and a 

correspondingly small pool of free RNAP is available for transcription of 

condition-specific mRNAs.  In this scenario, we suggest that little or no increase 

in ppGpp is required to allow for induction of the small set of promoter that need 
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activation when a single amino acid is exhausted from the environment.  Thus, 

the cumulative effect of both the passive and direct mechanisms might render 

amino acid biosynthesis gene promoters exquisitely sensitive to small increases 

(or simply low levels) of ppGpp.  The timing of this induction would then be 

controlled by signaling through accessory regulators such as Lrp.   

 The data presented here suggest that the RpoS regulon is not maximally 

induced until a relatively high concentration of ppGpp accumulates.  Competition 

for RNAP core enzyme (E) between the housekeeping sigma factor (σ70) and 

alternative sigma factors, such as RpoS, has been shown to be influenced by 

ppGpp (26, 27, 37).  Specifically, ppGpp-bound RNAP is more readily bound by 

alternative sigma factors (26).    ppGpp is proposed to divide the RNAP 

population into two populations (bound and unbound) in the models described 

above.  The sigma competition model suggests that only the ppGpp-bound 

RNAP population would be accessible to RpoS, as dictated by the affinity of 

RpoS for E.  Indeed, even in competition with σ70 for ppGpp-bound RNAP, RpoS 

would be expected to successfully engage only some fraction of ppGpp-bound E.  

Thus, at low levels of ppGpp, the amount of E bound by RpoS would be 

expected to be extremely small (approaching zero).  Superimposed upon this 

framework is the fact that RpoS levels are also subject to control by ppGpp 

[through transcriptional control and indirect control over RpoS proteolysis via IraP 

(11, 30)].  We suggest that the dual control of RpoS level and sigma factor 

competition by ppGpp may play a role in setting the high threshold of ppGpp 

required for robust induction of the general stress response.    
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Transcription network analyses have begun to illuminate how the 

topography large genetic networks can change in response to environmental 

cues (7, 16, 36).  Systems analyses have shown that transcription factors are 

organized into appropriately structured regulatory motifs (2).  The challenge 

going forward is to integrate the two into a framework that allows for ready testing 

of model predictions, and to likewise use data generated by high-throughput 

studies to inform model construction.  The data presented in this report outline 

basic parameters that will hopefully allow for integration of ppGpp-mediated 

transcription control into in silico models of bacterial transcription networks.  

Moreover, the data-driven models we describe for partitioning gene expression 

across the continuum of the stringent response suggested hypotheses which we 

were able to test experimentally.  At a fundamental level, the results illustrate 

how bacterial cells can utilize a single indicator of cellular physiological state in 

combination with discretely calibrated regulatory systems to: a) establish a new 

homeostatic balance, or b) protect the cell in the event that homeostasis cannot 

be maintained (e.g. starvation).   

 

Materials and Methods 

 

Bacterial strains and growth conditions 

All strains used in this study were derivatives of E. coli K-12 strain MG1655.  A 

list of strains and plasmids used appears in Table 1.  All mutant strains were 

constructed for this study using a modified version of the method described by 
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Datsenko and Wanner (17).  The ΔrelA ΔspoT (ppGpp0) and ΔrpoS strains have 

been used in previous studies (52, 53).  Marker-less mutants were made by 

removal of antibiotic cassettes using surrounding FRT sites and confirmed by 

sequencing and PCR.    

For array studies the WT and isogenic mutants were cultured in a 2-liter 

Biostat B fermentor (Braun Biotech) containing 1 liter of 

morpholinepropanesulfonic acid (MOPS) medium (40) with 2.0 g/liter glucose 

and amino acids at the concentrations described in (57), with the exception that 

isoleucine was included at 60 µM instead of the usual 400 µM. The growth 

medium did not contain uracil, which has been shown to stimulate growth of E. 

coli MG1655, which has an rph frameshift mutation (25).  However, inclusion of 

uracil had no effect on logarithmic growth, growth arrest caused by isoleucine 

starvation, or rescue of growth by addition of isoleucine (data not shown).  The 

temperature was maintained at 37°C, and pH was kept constant at 7.4 by the 

addition of 1 M NaOH. The dissolved oxygen level was maintained above 40% of 

saturation by adjusting the agitation speeds in the range of 270–500 rpm with 

fixed 1.5 liter/min air flow. Growth was monitored as absorbance at 600 nm with 

a Beckman-Coulter DU 800 spectrophotometer. 

 For GFP isoleucine starvation experiments, strains were grown in 50 ml 

cultures in 500 ml flasks in medium as described above.  Flasks were incubated 

shaking at 250 rpm at 37° C.  Kanamycin was included at 25 µg/ml to maintain 

pUA66 derivatives.  Fifty ml cultures were inoculated to a calculated starting OD 

of 0.0015 from overnight 5-ml seed cultures (which were not isoleucine limited).  
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To induce abrupt isoleucine starvation, 50 ml cultures were started in medium 

replete with isoleucine (400 µm).  During log growth (OD 0.3-0.4), cells were 

rapidly harvested on a glass fiber filter atop a vacuum tower.  Filters were 

immediately dropped into identical flasks with pre-warmed containing MOPS 

medium with all amino acids except zero isoleucine, and placed into the shaking 

incubator.  Filters were removed after 10 min of shaking incubation.  For 

quantification of ppGpp in the Lrp- mutant (Fig 7), strains were grown in MOPS 

medium with double the normal amount of all amino acids except tyrosine and 

isoleucine (which were provided at normal levels).       

 

Nucleotide extraction and ppGpp quantification 

Nucleotides were extracted as described, with minor modifications (9).  

For fermentor cultures, 5 ml of culture was sampled directly into a 15 ml round-

bottom tube containing 0.5 ml of 11M formic acid.  For 50 ml flask cultures, 1 ml 

of culture was sampled into 1.5 ml eppendorf tubes containing 0.1 ml of 11M 

formic acid.  The sample was vigorously mixed and chilled on ice.  One ml 

aliquots of this mixture were incubated at 0° C in an ice water bath for 45 min 

with periodic vortexing.  These one ml samples were centrifuged at 4° at 6000 

RPM for 5 min.  The supernatant was then filtered through 0.2 µm filters and 

stored at -20° until HPLC analysis. 

ppGpp was quantified by anion exchange HPLC using a Mono Q 5/50 GL 

column (GE Healthcare).  250 µl of supernatant was injected under initial 

conditions of 95% 20mM Tris (pH 8.0) and 5% 20mM Tris + 1.5 M sodium 
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formate (pH 8.0).  This initial condition was maintained for 5 min.  Absorbance at 

254 nm was used to detect eluted nucleotides.  Over a period of 30 min, the level 

of sodium formate buffer was ramped up to 65%.  ppGpp was identified as a 

peak which eluted at ~28min (or ~52% 1.5 M sodium formate buffer).  Samples 

were run in duplicate for at least two separate time course experiments.  

Combined results for at least two experiments are shown in Figs. 6 and 7.  

Representative results are shown in Fig 4.  ppGpp standard was purchased from 

TriLink Biosciences.  Standard curves established that the linear range of 

detection of ppGpp was 10nM to 100µM.    

 

Microarray analysis 

Cells were sampled directly from the fermentor into an equal volume of 

ice-cold RNAlater (Ambion) and total RNA was extracted using Qiagen RNeasy 

Minikits with optional DNAse treatment steps.  RNA was checked for integrity by 

gel electrophoresis and maintained in a 2:1 dilution of EtOH at -80°C until 

labeling.  RNA was converted to cDNA by first strand synthesis using Superscript 

II (Invitrogen) and random hexamers, according to the manufacturer’s 

specifications.  The cDNA was fragmented and biotinylated (Enzo Kit, Roche 

Diagnostics) according to the Affymetrix prokaryotic labeling protocol.   

The microarrays used for single time-point mutant analysis were custom 

built Affymetrix GeneChips containing probes for several prokaryotic genomes 

including E. coli K12 MG1655, E. coli O157:H7 EDL933, Bacteriodes 

thetaiotaomicron VPI-5482, Enterococcus faecalis V583, Salmonella typhimurium 
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LT2, and Bacillus anthracis.  Biotinylated samples were prepared according to 

the manufacturer’s instructions and hybridized for 16 hours at 60°C.  Hybridized 

arrays were stained using Affymetrix protocol ProkGE_WS2v2_450. Stained 

microarrays were scanned and the raw data files (.cel) were further analyzed 

using RMA processing with quartile normalization (24).  WT and mutant samples 

were duplicated biologically and technically; r2 was >0.95 for all replicates.   

For the 12-point WT isoleucine starvation timecourse (Fig. 3-4), Affymetrix 

E. coli 2.0 genome arrays were used as directed by the manufacturer.  Data 

shown is based on a single timecourse.  Array data from two biological replicates 

sampled from rapidly growing WT cells grown in medium replete all amino acids 

were averaged to serve as the control values for comparison to the timecourse 

arrays (r2 = 0.998 for control arrays).  Three-parameter sigmoidal regressions 

were plotted through averaged data points collected for each strain to obtain the 

response times.  Statistical analysis was done using SigmaPlot 8.0.  We 

considered genes to be significantly induced or repressed if the absolute value of 

the expression ratio was >2-fold (60).  Hierarchical clustering algorithms were 

implemented in DecisionSite for Functional Genomics (Spotfire). The microarray 

data were deposited at Array Express (http://www.ebi.ac.uk/miamexpress/), 

accession # E-MEXP-1370. 

 

GFP experiments 

Growth conditions for GFP strains are described under ‘Bacterial strains and 

growth conditions.’  One hundred µl samples for fluorescence reading were 
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pipetted into transparent 96-well microplates (Corning) in triplicate.  Wells 

contained 1 µl of x 25 mg/ml chloramphenicol to quench protein synthesis.  

Fluorescence (485nm excitation and 520nm emission) and optical densities (600 

nm) were read on a FLUOstar Optima  fluorimeter (BMG Labtech).  For each 

fluorescent strain, uninduced control values were obtained as the average 

fluorescence across the time of log growth (OD ~0.2 to ~1.0) in medium with all 

20 amino acids available at non-limiting levels.  Control values were based on 

two biologically replicated growth curves for each strain. Experimental 

fluorescence values were compared to these control values to yield Log2 

expression ratios.  Plots shown in Fig 6 contain data from three experimental 

runs for each strain.  Three-parameter sigmoidal regressions were plotted 

through all data points collected for each strain to obtain the response times.  

Statistical analysis was done using SigmaPlot 8.0.        
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Table 1: Strains used in this study 

Strain  Relevant Genotype Source or Derivation 

MG1655 seq  WT  Sequenced strain 

MFT704  ΔrelA::FRT, ΔspoT::FRT  ref 52

MFT  ΔrpoS::kan ref 53

MFT760  Δlrp::FRT This study 

MFT720  WT MG1655 x pUA66::PleuL This study 

MFT721  WT MG1655 x pUA66::PdadA This study 

MFT722  WT MG1655 x pUA66::PyahO This study 

MFT723  WT MG1655 x pUA66::PwrbA This study 
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Figure Legends 

 

Fig. 1.  Growth curves for isoleucine starved cultures.  Cultures were grown as 

described in materials and methods.  Arrows indicate time points when RNA was 

harvested for microarray analysis. 

 

Fig. 2.  Contributions of Lrp and RpoS-mediated gene induction to the ppGpp-

dependent stringent response.  Only genes which were induced >2-fold in the 

WT were considered for the analysis.  Genes that were expressed at significantly 

higher levels in any of the mutants were also omitted (14 genes).  Thus, the 

genes shown require a given regulator for their full induction. (A) Venn diagram 

of overlapping regulons.  Numbers of genes in each field are shown in red.  Each 

field is labeled 1.1-3.1 for identification in B-E.  ‘Unaffected’ indicates genes that 

were induced in all strains. (B) Heat map of genes that require ppGpp and Lrp for 

their induction.  Gene names are shown to the left and strains are shown at 

bottom.  Color legend for Log2 expression is shown below.  (C) Genes that 

require ppGpp, RpoS, and Lrp for induction.  (D)  Expression of the lrp and rpoS 

genes in array experiments.  (E) Genes that require ppGpp and RpoS for their 

induction.  

 

Fig.  3.  Timecourse (WT) heat maps of genes in the regulons identified in Fig 2 

as cells starved for isoleucine.  Number 2.1, 2.3, and 3.1 refer to Venn fields in 

Fig 2.  Numbers below each heat maps refer to the timepoints identified in Fig 4.   



 
146 

 

Fig. 4.  WT growth curve, average regulon response times, and ppGpp 

accumulation as cells starved for isoleucine.  Numbered timepoints indicate times 

of RNA sampling for array data shown in Fig 3.  Expression of each regulon 

shown in Fig 3 was averaged at each time point and plotted.  Sigmoidal 

regression curves were plotted for each regulon and the response time (time of 

½ maximal induction) is marked as a solid vertical line.   

 

Fig. 5.  Model for regulatory architecture within the stringent response under 

three different environmental conditions. Arrows indicate positive relationships, 

flat ends represent negative relationships.  Green lines indicate active vs. 

inactive (black) pathways.  (A) When nutrients are plentiful, both the metabolic 

Lrp regulon and the stress survival RpoS regulon are inactive.  ppGpp 

accumulation is prevented by exogenously available nutrients (ie amino acids).  

(B)  When an amino acid becomes limiting, ppGpp accumulates.  Signaling 

through a regulatory/sensory protein such as Lrp works in conjunction with a low 

level of ppGpp (x) to activate transcription of amino acid biosynthetic genes.  

Endogenously produced amino acids cause the ppGpp level to decline, 

inactivating the general stress response [which requires a high level of ppGpp 

(y)] and allowing growth to continue.  (C)  When the environment no longer 

supports growth biosynthetic pathways are incapable of yielding necessary 

metabolites.  ppGpp accumulates to a high level, fully activating the general 

stress response. 
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Fig. 6.  Differences in response times of the Lrp and RpoS regulons are reduced 

when ppGpp accumulates rapidly.  (A)  Fluorescence directed by RpoS-

dependent (PyahO and PwrbA) and Lrp-dependent promoters (PleuL and PdadA) under 

conditions wherein culture growth results in exhaustion of exogenous isoleucine.  

ppGpp accumulates slowly (in > 100 min) under such a scenario.  Response 

times are marked as vertical colored lines.  T0 = time of inoculation (B)  

Fluorescence from the same promoters as in A except that cells were grown in 

media replete with all 20 amino acids, collected on filters at T0, and resuspended 

in medium with all amino acids except isoleucine.  ppGpp accumulates rapidly 

and the differences in response times between promoters are reduced.  (C)  

Response times of each promoter from panel A.  Blue lines indicate regulon the 

average time of promoters from each regulon.  (D)  Response times from 

promoters from panel B.  Dotted blue lines indicate that the difference in regulon 

response times is statistically insignificant. 

 

Fig. 7.  Lrp activity influences ppGpp level.  (A) Growth curves of WT (black) and 

Δlrp (blue) strains grown in MOPS medium with 2x the normal amount of 18 

amino acids (tyrosine and isoleucine were included at normal levels).  Cells were 

collected on filters and resuspended in MOPS minimal medium at T0.  Lrp cells 

adhered more readily to glass fiber filters than the WT.  (B)  ppGpp kinetics of 

WT and Δlrp strains.  In the WT, ppGpp accumulated rapidly after filtration and 
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remained high until growth resumed around 150 min.  ppGpp only declined to 

~700 pmol/ml/OD in the Δlrp strain, which did not resume growth for many hours.   
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Fig. 1.  
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 7.  
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Chapter 5: Synthesis and Conclusions 



 
162 

 

Introduction 

The experiments detailed in this thesis have explored the role of the 

signaling molecule ppGpp in regulating global gene expression during carbon 

and amino acid starvation.  Regulation by ppGpp was also considered in light of 

the activity of other global regulators such as RpoS, Crp, and Lrp.  This final 

chapter seeks to consider lessons learned from this work in its totality and place 

them in the context of the larger body of knowledge regarding ppGpp.  Thus, the 

main points from each chapter are reviewed and overarching trends discussed.  

The experimental results are further considered with regards to proposed 

mechanisms of action of ppGpp.  Finally, remaining questions for continued 

inquiry are outlined.      

 

Chapter 2 Summary 

The experiments presented in Chapter 2 examined the role of ppGpp in 

coordinating gene expression in a classic experimental system: glucose-lactose 

diauxie (8).  In this setup, cellular growth leads to the exhaustion of glucose, a 

transitional period of growth arrest (diauxie), and a resumption of growth on 

lactose.  We experimentally defined the RpoS and Crp regulons that were 

induced during diauxie.  This included genes of the general stress response and 

genes involved in carbon scavenging, respectively.  We further found that a 

ΔrelA strain had a compromised ability to induce these responses, concomitant 

with an attenuated ability to down-regulate genes involved in ribosome synthesis.  
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Taken together, the data suggest that ppGpp is required for mounting a rapid 

reorganization of global gene expression in times of sudden nutrient exhaustion.  

A model that places ppGpp at the top of the global regulation network and 

integrates this view with other known aspects of catabolite (de)repression is 

presented.  This work demonstrated a new fundamental connection, namely that 

efficient carbon scavenging, which is managed by cyclic AMP/Crp, also requires 

ppGpp.  Given that Crp controls one of the largest regulons within E. coli, this 

finding illustrates a hierarchy operating at the highest level of global regulation.     

 

Chapter 3 Summary 

Experiments presented in Chapter 3 focus on the extent of gene 

regulation controlled by ppGpp in response to amino acid starvation.  Using 

isoleucine starvation as a model system, we observed that the WT down-

regulated gene expression involved in a range of processes.  These changes 

included the down-regulation of genes related to macromolecular synthesis of all 

kinds (DNA, RNA, protein, peptidoglycan, fatty acids, etc.), and the induction of 

the general stress response.  The WT also comprehensively restructured its 

metabolic gene expression in a way consistent with production of isoleucine.  

This observation was further verified using a high-throughput assay designed to 

examine the metabolic proteome.  In contrast, a ppGpp0 strain was crippled in its 

ability to effect these changes.  ppGpp0 cells were larger than WT cells at all 

times, a phenotype that correlated with aberrantly high expression of genes 

involved in macromolecular synthesis of all kinds.  Despite producing an identical 
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amount of protein to the WT under isoleucine starvation, the ppGpp0 strain made 

50% more biomass than the WT.  Only about of half of this extra biomass was 

attributable to RNA, suggesting that ppGpp plays a central role in limiting the 

production of diverse macromolecular structures to a level compatible with the 

nutritional environment.  

 

Chapter 4 Summary 

Chapter 4 is devoted to understanding the regulatory relationships which 

govern gene induction during the stringent response.  We used the isoleucine 

starvation system developed in Chapter 3 to define the Lrp and RpoS regulons in 

addition to the ppGpp regulon.  The overwhelming majority of both the Lrp and 

RpoS regulons required ppGpp for their induction.  However, despite mutual 

dependence on ppGpp, activation of the Lrp regulon is temporally separated from 

activation of the RpoS regulon.  This observation led us to consider a model in 

which the metabolic genes controlled by Lrp only require a low level of ppGpp for 

their induction while the RpoS regulon might require a higher threshold ppGpp 

level for their activation.  In keeping with this model, we found that accelerating 

the rate of ppGpp accumulation reduced the difference in response times of the 

Lrp and RpoS regulons.  We also found that under harshly introduced amino acid 

starvation conditions Lrp activity can influence the ppGpp level, implying a 

feedback loop with the potential to influence expression of the RpoS regulon.  

From a fundamental perspective, the role of the Lrp system is to reestablish a 

new metabolic homeostasis, while the role of the RpoS regulon is to prepare the 
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cell for long-term survival under stressful conditions.  The discrete tuning of these 

systems (vis a vis ppGpp level) supplies a rationale for how cells balance 

metabolic and stress survival processes across a range of environments, from 

feast to famine.   

      

Role of ppGpp in global gene expression 

Given the results described in all sections of this work, what can be said 

about the role of ppGpp in regulating global gene expression?  Several 

overarching trends are evident: 1) The number of genes and processes 

influenced by ppGpp is extremely large, 2) ppGpp is required for cells to 

‘interpret’ the overall quality of the surrounding environment, 3) The stringent 

response is a variable response.  Implications of these trends are considered 

below. 

In virtually all experimental conditions examined here, the absence of 

ppGpp (or alteration of ppGpp metabolism by relA mutation) led to aberrant 

expression of very large numbers of genes (i.e. >30% of the genome), (Ch 2: Fig 

2, Ch 3: Fig 2).  We demonstrated that these genes fell into a variety of regulons 

including those governed by Crp, RpoS, and Lrp.  Comprehensive overlap 

between ppGpp and these regulons across different conditions suggests that 

ppGpp is at the apex of global regulation in E. coli.  This overlap also implies that 

ppGpp rarely acts alone to mediate gene expression, especially induction.  In this 

sense, if cells use regulators to properly partition transcriptional space, then 

ppGpp might be better understood as a blunt tool rather than a scalpel.  This 
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observation has important implications for future study of genes influenced by 

ppGpp.  Indeed, as part of a largely reductionist strategy in studying genetic 

regulation, the effect of ppGpp on individual promoters has omitted the possible 

effect of ppGpp function combined with more ‘typical’ DNA binding regulators, 

such Crp or Lrp (discussed in detail below).  Finally, the large number of genes 

affected by ppGpp implicates its involvement in a much wider range of individual 

cellular processes than previously thought.  As such, cells lacking ppGpp are 

profoundly altered at a systems level. 

 Bacteria adjust their growth rate, cell size, and ribosome load according to 

the nutritional richness (or poorness) of their environment.  Microbiologists have 

been aware of these relationships for decades (12).  Among the first recognized 

quantifiable phenotypes of ‘relaxed’ mutants was their tendency to continue 

synthesis of stable RNAs in the face of amino starvation (12).  It was later 

observed that ppGpp0 cells were larger than normal cells (19).  Observations 

reported in Chapter 3 suggest that the role of ppGpp extends well beyond 

regulating these fundamental aspects of microbial growth.  During amino acid 

starvation, ppGpp regulates total biomass production, including macromolecular 

synthesis outside of stable RNA transcription.  The WT strain successfully 

moderated expression of genes involved in cell division, and DNA, fatty acid, and 

membrane/cell wall biosynthesis.  Without ppGpp, cells consistently failed to 

execute these changes.  Thus, ppGpp0 cells are seemingly stuck in ‘growth 

mode,’ with virtually no ability to moderate basic vegetative functions even in 

environments incapable of supporting growth.  Mutation of a bacterial genetic 
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regulator usually results in an inability to respond to a certain environmental 

condition or variable (6).  In contrast, it seems that ppGpp0 cells do not even 

‘realize’ that they should be responding.  All of these observations point to a 

central conclusion: ppGpp is both the primary signal and the primary effector 

used by E. coli cells to adjust their physiology to the surrounding environment. 

   Examining the role of ppGpp in regulating gene expression under 

different types of starvation (carbon starvation in Chapter 2, and amino acid 

biosynthesis in Chapters 3-4) suggests that the stringent response is variable in 

its genetic content.  Many types of starvation provoke ppGpp accumulation: 

amino acid, carbon, fatty acid, iron, nitrogen, phosphate, etc.  Based on the 

experiments described here, the stringent response can be thought of as having 

a core set of genes that always respond when growth arrests, and a condition-

specific component triggered by accessory cues.  For example, carbon starvation 

and isoleucine starvation both led to down-regulation of the translation apparatus 

genes and the induction of the general stress response.  These two groups of 

genes make up the ‘core response.’  In contrast, carbon starvation initiated Crp-

dependent catabolite derepression and carbon foraging, whereas isoleucine 

starvation triggered Lrp-dependent induction of amino acid biosynthetic 

pathways.  Regulation via Crp and Lrp are examples of condition-specific 

responses.  In both cases, the condition-specific responses also required ppGpp 

for their proper development.    

Experiments described here also addressed stresses encountered on 

different timescales (i.e. quick–onset starvation of glucose exhaustion in Chapter 
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2 and rapid downshifts by filter collection in Chapter 4 vs. the drawn out 

starvation associated with isoleucine exhaustion in Chapters 3 and 4).  During 

isoleucine exhaustion (not filtration and resuspension), ppGpp accumulated 

slowly over the course of ~100 min.  This long timescale suggests that isoleucine 

starvation might approximate a traversal of the feast to famine gradient.  The 

discrete timing and order of induction of the Lrp and RpoS regulons implies that 

the stringent response is variable in keeping with the severity of the nutritional 

situation.  In the case of isoleucine starvation, the Lrp-mediated, condition-

specific component of the response was activated before the culture showed a 

decrease in growth rate.  Interestingly, the same is true for carbon starvation, 

wherein Crp-mediated carbon scavenging was initiated in the minutes before the 

onset of diauxie, and before the induction of the general stress response.  

Together these results imply that low levels of ppGpp are usually sufficient to 

allow the initiation of condition-specific metabolic responses.  Should ppGpp 

continue to accumulate, the general stress response is initiated.  Finally, it has 

been known for many years, that basal ppGpp level is correlated with the growth 

rate (11, 14, 15, 17).  The proposed rheostatic model of the stringent response 

bears consideration as most experiments designed to interrogate the role of 

ppGpp utilize extremes of feast or famine.  As such, there may be a general 

misconception that all genes that require ppGpp for their induction actually 

require a similar amount of ppGpp, or that all genes that require ppGpp for their 

induction will respond similarly when ppGpp accumulates. This view fails to 
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appreciate the nuance accommodated by the regulatory structure of the stringent 

response.  

 

ppGpp and RNAP 

 Most positively acting transcriptional regulators bind DNA and function by 

‘recruiting’ RNAP to the promoter of the genes to be induced (5).  ppGpp is not a 

normal regulator in this sense, since it binds directly to (or inside) RNAP itself (7, 

13).  With this in mind, it is perhaps not surprising that ppGpp0 strains exhibit 

such radically impacted transcription profiles.  Based on these observations (and 

some interesting, yet rarely cited, work from Hans Bremer and coworkers in the 

early 1980s)(14), it might be suggested that ppGpp is required for normal 

promoter prioritization at a global level.  One way to think about RNAP activity is 

to consider that this enzyme has two broad functions: 1) to produce stable RNAs, 

which are in fact structural cellular components required for life, and 2) mRNAs 

for all the other gene products in the cell.  Stable RNAs must be produced at 

much higher levels than any other genes in the cell, except when growth is 

arrested.  Even then however, the cell must retain a robust translational capacity.  

Accordingly, RNAP is optimized for binding and transcribing stable RNA genes, 

not mRNAs (of course, one could also argue that stable RNA gene promoters are 

optimized for transcription initiation).  It might be suggested that ppGpp’s 

principal role is to shift the primary activity of RNAP away from stable RNAs to 

the rest of the genome.   
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 While a shift away from stable RNA synthesis implies that the promoter 

structure favored by ppGpp-bound RNAP is different than RNAP alone, the 

defining features of a promoter sequence induced by ppGpp has yet to be 

adequately described (7, 13).  Perhaps the only common feature of promoters 

induced by ppGpp is the presence of an A/T rich ‘discriminator region’ located 

between the transcriptional start site and the -10 region promoter region (4, 9, 

18).  However, the commonality of discriminator regions is not broad enough to 

be genuinely predictive positive regulation by ppGpp (data not shown).  The lack 

of a compelling structural model for induction by ppGpp based on RNAP-

promoter interaction, and the broad overlap between the ppGpp, Lrp, and Crp 

regulons may suggest that a new model should be considered.  As it seems that 

regulation in a wide range of regulons is disrupted in the absence of ppGpp, 

perhaps ppGpp makes RNAP more sensitive to regulation by DNA binding 

proteins.  In this model, the interaction between RNAP and the regulatory 

proteins would be altered by ppGpp.  While the work in this thesis provides no 

structural or mechanistic information, it at least suggests that investigation of an 

alternative model should be undertaken. 

 

Going forward    

A goal of systems biologists and bacterial physiologists alike is the 

creation of a model capable of describing a bacterial cell as a whole.  A large 

component of such a model is the network of regulation that determines global 

transcriptional output (2, 3, 16).  Probably due to the sheer number of genes 
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influenced by ppGpp and the lack of a an adequate structural model, ppGpp has 

not yet been incorporated into any large scale analysis of the E. coli transcription 

network.  Hopefully the work described here is a step toward integrating this 

important regulator into these analyses.  Many such models describe promoters 

as Boolean logic gates (1, 10).  The publicly available array data from these 

studies can readily supply lists of genes that require ppGpp in AND-type 

functions.  Furthermore, the data presented in Chapter 4 suggest ppGpp level 

thresholds that could be readily built into large scale physiological models.          

Beyond the lofty (and somewhat esoteric) goal of integrating ppGpp into 

whole cell network simulations, I hope that this work advances critical 

understanding of the role of ppGpp in global regulation.  As all free living bacteria 

have relA or spoT homologues, microbiologists in general can hopefully use the 

information provided here to facilitate breakthroughs in other medically or 

industrially important organisms. 
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Note on appendices and high-thoughput data generated for this thesis: 

 

The datasets generated for this thesis are publicly available, or are in the process 

of being made publicly available at the time of this writing.  Array data from all 

chapters is available in an interactive manner at E. coli GenExpDB 

(http://genexpdb.ou.edu/), as part of the EcoliHub project and hosted by the 

Bioinformatics Core Facility at the University of Oklahoma Advanced Center of 

Genome Technology.  Datasets associated with Chapter 3 can be downloaded 

from GEO (Gene Expression Omnibus: http://www.ncbi.nlm.nih.gov/geo/), which 

is hosted by NCBI. 

 

Appendices 1 and 2 contain supplementary figures for Chapters 2 and 3, 

respectively.   
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Appendix 1:  Supplementary data to accompany Chapter 2. 

Supplementary Figure 1 
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Legend to Supplementary Figure 1.  K-means cluster analysis (K=8) of diauxie 

gene expression profile data (from (8)).  Top, growth curve of E. coli MG1655 on 

mixture of glucose (0.05%) and lactose (0.15%).  Bottom, the average log10 

expression ratio for each cluster is plotted for the entire diauxie experiment, 
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showing both the diauxic lag period when glucose is exhausted and the 

stationary phase when lactose is exhausted.  Clusters 1-3 contain genes whose 

expression did not change significantly during diauxie. Cluster 4 contains 

stringent response genes. Cluster 5 contains stress survival genes. Cluster 6 

contains lac operon and carbon scavenging genes.  Clusters 7 and 8 contain 

nitrogen starvation genes. 
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Supplementary Figure 2. 
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Legend to Supplementary Figure 2.  Nested Venn diagram illustrating 

overlapping regulatory control circuits and their constituent functional groups.  

Each functional group has a unique color; black does not signify a functional 

group.  Numbers indicate the number of genes regulated within each group and 

the + or – designation indicates up- or down-regulation, respectively.  The RelA 

circle encompasses both the RpoS and Crp regulons.  rmf  was highly up-

regulated during the stringent response, but was not dependent upon RpoS or 

Crp.  
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Supplementary Figure 3. 
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Legend to Supplementary Figure 3.  relA and relA spoT mutants exhibit impaired 

ability to adapt to a wide variety of carbon sources.  GN2 microplates (Biolog) 

containing 95 different carbon sources were used to screen metabolic activity of 
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the mutant strains.  Assays were conducted according to the manufacturer’s 

instructions.    
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Appendix 2:  Supplementary data to accompany Chapter 3. 

 

This supplemental note is an extended consideration of the data presented in 

Supplemental Fig 1.  The same data is summarized in Table 1 in Chapter 3. 

 

Cell division, DNA replication, and DNA repair 

Given the morphological anomalies associated with the lack of ppGpp, it is 

perhaps unsurprising that 15 cell division genes showed differential expression in 

the ppGpp0 strain (Fig 7A).  Of these, 9 were expressed >2-fold higher in the 

ppGpp0 strain, while 6 were expressed >2-fold lower.  Three genes involved in 

cell division were induced >2-fold in the WT in response to isoleucine starvation.  

These genes, fic, dacC, and bolA, are members of the RpoS-dependent general 

stress response (15, 22, 26).  Among them, the bolA and dacC gene products 

are known to play a role in determining the coccoid morphology associated with 

stationary phase cells (15, 22).  None of these genes were induced in the 

ppGpp0 strain, likely because of failed induction/accumulation of RpoS and/or 

impacted ability of σS to compete for core RNAP (7, 14).   

Most of the remaining cell division genes showed no change or modest 

down regulation in response to isoleucine starvation in the WT.  Two genes were 

down regulated >2-fold in the WT (yibP and tig) in response to isoleucine 

starvation, but both of these genes were expressed >2-fold higher in the ppGpp0 

strain.  Also notable among the cell division genes expressed higher in the 

ppGpp0 strain, is cgtA (12.4-fold higher), which encodes an essential GTPase 

known to interact with SpoT in Vibrio cholerae (19).  In that system, the activity of 
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CgtA apparently keeps the hydrolytic activity of SpoT high in order to maintain 

low amounts of ppGpp in nutrient rich environments.  Similar results for E. coli 

have been recently reported (12).  Furthermore, depletion of CgtA in E. coli was 

shown to result in defective chromosome partitioning and filamentous 

morphology (6).  Though the implications of heightened expression of cgtA in the 

ppGpp0 strain are not entirely clear, we note that since the lack of ppGpp results 

in filamentation even in the presence of presumably high levels of CgtA, it is 

possible that CgtA and ppGpp function in the same regulatory cascade to 

modulate normal cell division during times of nutrient limitation.    

Sixteen genes involved in DNA replication showed a different pattern of 

expression in the ppGpp0 strain, by comparison to the WT, with all but one gene 

(cspD) expressed more highly in the mutant (Fig. 7B).  Many of these genes 

encode products directly involved in DNA replication including helicases (recG, 

hrpB), primase (dnaG, priB, priA), topoisomerases (topB, parC, topA, and parE), 

and DNA polymerase III, the primary replicative DNA polymerase (dnaN, holD, 

holB).  dnaA, whose product controls replication initiation, was also expressed 

>2-fold higher in the ppGpp0 strain.  Taken together, the expression levels of 

these genes show a downward trend in the WT, consistent with decreased 

chromosome replication.  No such trend is apparent in the ppGpp0 strain with 

most of these genes being modestly or significantly induced.  Recently, ppGpp 

has been shown to regulate DNA elongation through direct interaction with DNA 

primase in B. subtilis (28).  The higher levels of expression observed in our 

experiments for genes involved in DNA replication, combined with possible direct 
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effects of ppGpp on DNA primase, are consistent with continued DNA replication 

in the ppGpp0 strain despite the growth limitations imposed by amino acid 

starvation. 

The WT strain did not exhibit increased expression of genes associated 

with the SOS response to DNA damage, however, this trend was quite apparent 

in the ppGpp0 strain (Fig. 7C).  Twenty-three DNA repair genes showed altered 

expression in the ppGpp0 strain.  The ppGpp0 strain induced 16 DNA repair 

genes >2-fold in response to isoleucine starvation, including 13 members of the 

LexA regulon (5), i.e., recN, uvrD, dinD, dinF, recA, ruvA, lexA, dinG, ydjQ, 

umuD, umuC, yebG, and sbmC.  Only 2 genes were more highly expressed in 

the WT, including sbmC, which encodes a DNA gyrase inhibitor known to protect 

cells against DNA damage (1).  Interestingly, stationary phase induction of sbmC 

has been shown to be RpoS-dependent (18).  Whereas the WT likely terminates 

DNA replication via a combination of DNA gyrase inhibition and lowered 

transcription of DNA replication genes, it appears that chromosome replication 

continues abnormally in the ppGpp0 strain, ultimately resulting in DNA damage.  

 

Nucleotide biosynthesis and degradation 

Down regulation of nucleotide biosynthesis has been associated with the 

stringent response (2, 3, 25), and as expected, we observed this trend in 

isoleucine-starved WT cultures: 21 genes down regulated >2-fold.  Nucleotide 

biosynthetic genes showed some of the greatest levels of down regulation in the 

entire data set, including pyrI, pyrB, and carA (down regulated 79-, 93-, and 78-
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fold, respectively).  Twenty-seven nucleotide biosynthetic genes showed 

abnormal expression in the strain lacking ppGpp (Fig. 7D); only 3 genes (nrdA, 

nrdB, and thyA) were expressed at a lower level, while the remaining 24 were 

expressed at levels >2-fold higher in the ppGpp0 strain compared to the WT.  

While 9 of these genes were down regulated at least 2-fold in the ppGpp0 strain, 

the greatest level of down regulation was only 23-fold (observed for pyrI) 

compared to 79-fold in the WT.  Overall, the ppGpp0 strain exhibited a greatly 

diminished ability to stringently down regulate genes involved in nucleotide 

biosynthesis. The strong down regulation of nucleotide biosynthetic genes in the 

WT reflects the greatly decreased need for nucleotides as cellular processes that 

consume nucleotides are curtailed (namely ribosome and chromosome 

synthesis).  Given the continued production of rRNA and DNA in the ppGpp0 

strain, it might be expected that nucleotide pools would be diminished.  In 

keeping with this notion, expression of purR, whose product autorepresses its 

own transcription (21), as well as a large number of genes involved in purine 

biosynthesis (16), was induced 4.5-fold, compared to the modest repression 

observed in the WT.  The derepression of purR suggests that the hypoxanthine 

levels are low in the ppGpp0 strain, implying that the supply of nucleotides had 

dwindled.  Moreover, decreased nucleotide availability in the ppGpp0 strain might 

stall DNA replication, thus prompting the DNA damage response noted above. 

 

The WT showed both induction and down regulation of genes involved in 

nucleotide salvage/degradation (Fig. 7E), including 12 that were abnormally 
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expressed in the ppGpp0 strain. Several of these genes were induced in the WT 

in response to isoleucine starvation, including amn, udp, deoA, and add.  These 

four genes, and two more, dgt and deoC, were expressed >2-fold higher in the 

WT strain.  All six of these genes are involved in degradation, i.e., catabolism of 

nucleotides to intermediates of central metabolism.  Induction of these nucleotide 

degradation genes, down regulation of nucleotide biosynthesis genes (discussed 

above), and the observation that nucleotide utilization was enhanced as a result 

of isoleucine starvation in our Biolog assays (Fig. 5), lead us to conclude that the 

WT shifted from funneling precursors into nucleotide production during rapid 

growth, to catabolism of excess nucleotides upon growth arrest.  Furthermore, 

the induction of the non-oxidative branch of the pentose phosphate pathway 

observed in the WT might further enhance the flux of nucleotide degradation 

products into central metabolism.  These observations are consistent with 

stationary phase-induced nucleotide degradation and byproduct excretion 

described elsewhere (13, 20).  The genes codA, upp, cmk, gpt, apt, and gsk 

were expressed >2-fold higher in the ppGpp0 strain.  Interestingly, all 6 of these 

genes are involved in the salvage of endogenous nucleotide precursors for the 

production of new nucleotides, as opposed to catabolism of nucleotides via the 

non-oxidative branch of the pentose phosphate pathway.  This trend suggests 

that the ppGpp0 strain actively attempted to salvage nucleotides in keeping with 

continued synthesis of nucleic acid.  Thus, the expression data, combined with 

the loss of ability to utilize nucleotides as C-sources in the Biolog assays, 
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suggest that the switch from nucleotide production for nucleic acid synthesis to 

degradation of nucleotides is a ppGpp-dependent process.   

 

Fatty acid biosynthesis, β-oxidation, cell wall/LPS biosynthesis, and glycogen 

synthesis 

Phospholipids and their constituent fatty acids (FA) form a significant 

portion of the dry weight of E. coli (~9%) (17), and accordingly, cells invest a 

corresponding amount of carbon and energy in phospholipid biosynthesis (see 

(4) for a review).  Seventeen genes involved in phospholipid biosynthesis 

showed abnormal expression in the ppGpp0 strain (Fig. 7F). Considered in 

context, the accC and accD genes are involved in the initial production of 

malonyl-CoA from acetyl-CoA and CO2, while fabD, fabH, fabF, and acpT gene 

products are involved in the cyclical elongation of FA.   The product of the plsC 

gene catalyzes the second step in phosphatidic acid biosynthesis from glycerol-

3-P.  Phosphatidic acid is then activated to CDP-diacylglycerol by the cdsA gene 

product.  The plsX gene product is also thought to play a role in phosphatidic 

acid synthesis.  Of the 17 phospholipid metabolism genes under consideration 

here, 12 showed either modest down regulation or no change in the WT (accC, 

mdoB, cdh, acpT, fabH, plsX, fabF, fabA, accD, fabD, plsC, and cdsA).  In the 

ppGpp0 strain, all 12 of these genes were expressed at levels >2-fold higher than 

in the WT, including 5 (plsX, fabF, fabA, plsC, and cdsA) that were induced >2-

fold in response to isoleucine starvation.  Of the remaining 5 genes, 4 were 

significantly induced in the WT in response to isoleucine starvation (pgsA, ybhO, 
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uspA and cfa), but were expressed at lower levels in the ppGpp0 strain.  

Induction of the cfa and ybhO genes in the WT reflects the conversion of 

unsaturated FAs in membrane lipids into cyclopropane derivatives and the 

accumulation of cardiolipin, both of which are associated with entry into 

stationary phase (9, 23, 27).   

Six genes involved in β-oxidation of FA were aberrantly expressed in the 

ppGpp0 strain (Fig. 7G), 3 of which (yfcX, aidB, and fadE) were induced in the 

WT, but not in the ppGpp0 strain.  The only gene expressed higher in the ppGpp0 

strain than in the WT was fadD, which encodes acyl-CoA synthetase.  These 

data fit the known shift from large scale phospholipid synthesis to FA breakdown 

(4), concomitant with the assumption of smaller cell sizes during transition to 

stationary phase.  Gene expression in the ppGpp0 strain points in the opposite 

direction, with possibly enhanced synthesis of FA (described above) and lower-

than-normal levels of FA degradation. 

Though stringent control of peptidoglycan synthesis at the level of enzyme 

inhibition has been observed (11), the genes involved in synthesis of 

peptidoglycan were not comprehensively down regulated in the WT.  However, 

13 genes involved in peptidoglycan biosynthesis were abnormally regulated in 

the ppGpp0 strain, with 9 of them expressed >2-fold higher than the WT (Fig. 7H).  

These included two genes for penicillin binding proteins (mrdA and dacD), and 

two N-acetylmuramoyl-L-alanine amidases (amiC and amiA) involved in post-

division cell separation.  mltA and mpl, whose products are involved with murein 

turnover, were also expressed higher in the ppGpp0 strain.  mreC which encodes 
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a subunit of the MreBCD transmembrane complex was down regulated in the 

WT, but not in the ppGpp0 strain.  Genes expressed lower in the ppGpp0 strain 

include murE and murF, which catalyze the final cytoplasmic steps in the 

formation of peptidoglycan precursors.  Taken together, these results suggest the 

ppGpp0 strain may have an abnormally high rate of peptidoglycan turnover.  We 

hypothesize that this response of the ppGpp0 culture may be linked to the 

exhaustion of glutamate, which serves as a precursor for peptidoglycan 

synthesis.  

Twenty-four genes involved in the synthesis of lipopolysaccharide and 

other components of the outer membrane (OM) were expressed abnormally in 

the ppGpp0 strain and all but one of these (gutQ) were expressed >2-fold higher 

in the mutant when compared to the WT.  Most of these genes are involved in O-

antigen synthesis, lipid A synthesis, or synthesis of other LPS precursors or 

transporters.  Moreover, 8 of these genes (rfaS, lpxC, rfaH, htrB, rfaK, ddg, lpxK, 

and msbB) were induced >2-fold in the ppGpp0 strain in response to isoleucine 

starvation.  Fourteen surface antigen and OM protein encoding genes were down 

regulated >2-fold in the WT in response to isoleucine starvation, while only one of 

these (ugd) was significantly down regulated in the ppGpp0 strain.  These results 

indicate that the down regulation of genes involved in LPS synthesis and other 

OM structures in response to isoleucine starvation is directly or indirectly 

dependent on ppGpp. When considered with the expression patterns observed 

for FA metabolism genes, the down regulation of OM component genes, 

including those for LPS synthesis, suggests that inner and outer membrane 
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assembly is largely halted in the WT in response to isoleucine starvation.  

Moreover, these processes likely continue unabated in the ppGpp0 strain, adding 

to the abnormally high biomass produced by the strain lacking ppGpp. 

If excess carbon is available during the transition to stationary phase, 

glycogen can be accumulated (as is the case under isoleucine starvation).  

Glycogen can account for up to 3% of E. coli dry cell weight, and serves as a 

carbon source during periods of carbon starvation.  Accumulation of glycogen is 

known to be a ppGpp-dependent process (10, 24), and this trend is clearly 

observable in the array data, with seven genes involved in glycogen metabolism 

being expressed >2-fold lower in the ppGpp0 strain (Fig. 7J).  Moreover, glgS, 

known to be a member of the RpoS-dependent general stress response (8), was 

not induced in the ppGpp0 strain as it was in the WT.  Taken together, these 

results suggest that glycogen probably does not contribute to the higher biomass 

produced by the ppGpp0 strain. 
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