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Abstract 

In this work, a study of anisotropic dual-porosity and dual-permeability poromechanics 

is presented through generalized analytical solutions for selected problems in laboratory 

and field applications. For example, the solution to the inclined wellbore geometry with 

standard applications in the oil and gas industry for drilling stability or consolidation in 

naturally fractured rock formations are derived and illustrated. In addition, the dual-

porosity and dual-permeability poromechanics solutions to common laboratory testing 

setups in geomechanics and biomechanics for purposes of rock and bio-tissue 

characterization are developed for rectangular strip, solid and hollow cylinder geometries. 

The behaviors of naturally fractured rock formations or the responses of the well 

known dual-porosity bone structure are modeled as dual-porosity and dual-permeability 

poroelastic media that fully couples the secondary porosity medium’s deformation, fluid 

flow and interporosity exchange processes. For chemically active fractured media, e.g., 

clay, shale, or biomaterial, chemical interaction effects including osmotic and solute 

transport in both the primary porosity (matrix) and secondary porosity (fracture) are 

addressed based on non-equilibrium thermodynamics. Thermohydromechanical coupling 

under non-isothermal condition is incorporated by adopting a “single-temperature” 

approach in which a single representative thermodynamic continuum is argued to be 

sufficient to describe the thermally induced responses of a naturally fractured rock 

formation. 



 

xviii 

The physical and mathematical models are used to find poromechanics analytical 

solutions for pore pressure, fluid flux, stress, and displacement, in addition to solute flux 

for chemically active material or temperature for non-isothermal condition to the above 

problem geometries. These solutions are general and can be tailored to simulate specific 

field problems or experimental testing. For instance, the inclined wellbore solutions include 

boundary conditions for simulating openhole drilling and fluid injection or withdrawal. On 

the other hand, the solutions for laboratory testing of rectangular and cylinder geometries 

account for two primary axial loading modes, namely, stroke control or stress relaxation 

and load control or creep test. The rectangular strip solution is also shown to simplify to the 

classical one-dimensional consolidation in soil mechanics. 

For non-reactive dual-porous material under isothermal condition, generic dual-

poromechanics results are plotted and compared with single-poromechanics counterpart 

representing a homogenous isotropic medium when applicable. Parametric analyses are 

also carried out through the responses of a solid cylinder under unconfined compression to 

evaluate the effects of material anisotropy and dimensionless dual-poroelastic parameters 

such as permeability ratio, storage ratio, and interporosity coefficient. For chemically active 

fractured formation, the analyses is focused on the impacts of chemical salinity gradients 

via osmotic and solute transport on pore pressure and effective stress distributions near the 

wellbore or fluid/solute flux and displacement of solid cylinder under axial-flow-only 

oedometer testing setup. Finally, the effects of temperature gradients manifested through 

thermal expansion/contraction and conductive heat transport are assessed using the 



 

xix 

analytical solutions for inclined wellbore and rectangular strip geometries. Furthermore, the 

significance of heat convection is evaluated numerically and displayed. 

Application-wise, the inclined wellbore solution is used to perform time-dependent 

wellbore stability analysis for drilling through chemically active fractured rock formations 

under non-isothermal conditions. The hollow cylinder is applied to study elastic 

consolidation of a producing naturally fractured reservoir and associated implications on 

porosity and permeability reduction in the near-wellbore region. Finally, some realistic 

quasi-static loading conditions commonly encountered in experimental testing and field 

applications such as cyclic, linear ramping, and exponentially decayed are demonstrated via 

the solutions of unconfined solid cylinder. 
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Chapter 1 

Introduction 

1.1 Overview 

Naturally fractured rocks can be found in many subsurface formations through out the 

world (Aguilera 1995) and are problematic when it comes to field operations in the oil 

and gas industry. Such formations involve various types of highly coupled hydraulic, 

mechanical, thermal, and chemical processes taking place simultaneously at different rate. 

Adding to this complexity, fractured formations usually possess a high degree of local 

heterogeneity that makes the task of modeling even more challenging. Understanding the 

coupled and transient behaviors of  these fluid saturated fractured formations are critical 

in many petroleum engineering field applications ranging from drilling stability, 

hydraulic fracturing, production induced compaction to the design and analysis of 

laboratory rock testing procedures.  

Over the years, research efforts have matured from the original dual-porosity concept 

of Barenblatt et al. (1960) and Warren and Root (1963) for treating fluid flow in naturally 

fractured reservoirs to the dual-porosity and dual-permeability isotropic poroelastic 

approach which can handle the fully coupled fluid flow and deformations processes 
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(Bowen 1976; Aifantis 1977; Berryman and Wang 1995). Although the literature is 

prolific, analytical solutions have been limited to the one-dimensional consolidation 

problem in geomechanics (Lewallen and Wang 1998) or the uncoupled fluid-flow problem 

in well testing and production management (Chen 1989). Furthermore, all of the previous 

solutions and analyses are restricted to the isotropic case in which both the rock matrix and 

fracture system are considered to possess the same material properties such as permeability 

and compressibility in all directions. In reality, geo-activities are carried out in formations 

that can be broadly classified transversely isotropic due to the natural deposition and 

compaction processes of sedimentary rocks over a geological time scale. The depositional 

processes lead to development of formations with similar material properties across a cross 

section but having different characteristics in the perpendicular direction. 

On the other hand, biomaterials such as bone tissues are well known for their multi-

porosity makeup and anisotropic characteristics. For example, it was suggested that a two-

porosity poroelastic model is appropriate for the study of bone fluid movement and bone 

fluid pressures (e.g., Cowin 1999). It was also shown that the greatest degree of elastic 

symmetry appears to be orthotropy for bone (e.g., Dempster and Liddicoat 1952; Bird et al. 

1968); however, bones are mostly modeled as transversely isotropic material (Cohen et al. 

1998). Furthermore, biological tissues display osmotic swelling behavior when the 

surrounding fluid salinity is in the excess due to ionized charged structure, e.g., the 

negatively charged proteoglycans in intervertebral discs and articular cartilage (Urban et al. 

1979). Similar to the modeling of naturally fractured rock in geomechanics, existing 

models and solutions describe biomaterials as single-porosity and single-permeability 
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homogeneous medium (e.g., Norwinski and Davis 1970; Armstrong et al. 1984; Cowin and 

Mehrabadi 2007) and thus fall short at simulating the proper responses of dual-porosity 

bone structure. 

In this dissertation, the behaviors of these dual-porous materials are modeled as dual-

porosity and dual-permeability poroelastic media that fully couples the secondary porosity 

medium’s deformation, fluid flow and inter-porosity exchange processes, i.e., Fig. 1.1. In 

addition, chemical interaction effects including osmotic and solute transport in clay, shale 

or bio-tissue, and the impact of thermal loading due to temperature gradient are also 

incorporated. 

matrix fracture

interflow

Geo-material Bio-material

interflow

Dual-Porosity and Dual-Permeability
Poromechanics

primary porosity secondary porosity

φI, kI, cI, αI, etc φII, kII, cII, αII, etc

interflow

lacunar calanicular vascularmatrix fracture

interflow

Geo-material Bio-material

interflow

Dual-Porosity and Dual-Permeability
Poromechanics

primary porosity secondary porosity

φI, kI, cI, αI, etc φII, kII, cII, αII, etc

interflow

lacunar calanicular vascular  

Fig. 1.1—Modeling geo-material (naturally fractured rock) or bio-material (bone tissues) as dual-
porosity and dual-permeability poroelastic media (the multi-porous bone structure illustration is 
adapted from Cowin et al. 2009). 

1.2 Literature Review 

A brief review of the development of theoretical formulation and analytical solution is 

presented in this section. More detailed review of the literature is discussed in relevant 

chapters. 

Biot (1941) is the first to present a consistent theory of isotropic poroelasticity to 
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account for the coupled diffusion-deformation processes in fully saturated porous media. 

Later work of Geertsma (1957, 1985), Verrujt (1969), Chen and Teufel (1997) 

reinterpreted Biot’s theory along the line of conventional fluid flow modeling in the 

petroleum industry. Rice and Cleary (1976) recast Biot’s theory in terms of new and 

straight forward physical constants and developed some general solution methods. Biot’s 

(1941) theory was first developed for isotropic porous medium saturated with an 

incompressible fluid. Subsequently, this theory was generalized to account for anisotropy 

and compressible fluid by Biot (1955) and Biot and Willis (1957). Biot’s isotropic and 

anisotropic poroelastic theory has been the basis for diverse application in many areas 

such as geo- and bio-material characterization (Armstrong et al. 1984; Hart and Wang 

1995; Zhang et al. 1998; Scott and Abousleiman 2002; Al-Tahini et al. 2005), wellbore 

stability (Cui et al. 1998; Abousleiman et al. 2001), subsidence above compacting oil and 

gas reserve (Geertsma 1973), ocean wave-induced seabed’s response (Rahman et al. 

1994), groundwater level fluctuations (Verruijt 1969; Kim and Pariek 1997; Wang 2000), 

sedimentation on an impermeable basement (Gibson 1958), induced seismicity (Roeloffs 

1988), and bone poroelasticity (Cowin 1999) to name a few. Two such applications are 

illustrated in Fig. 1.2. Analytical solutions of fundamental problems such as the one-

dimensional consolidation problem (Biot 1941), consolidation of a rectangular strip or the 

Mandel’s problem (Mandel 1953; Abousleiman et al. 1996), consolidation of semi-

infinite stratum (Gibson and McNamee 1963), sphere (Cryer 1963), solid cylinder 

(Abousleiman and Cui 1998), hollow cylinder and borehole (Rice and Clearly 1976; 

Abousleiman and Cui 1998). 
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Fig. 1.2—Two applications of poroelastic theory and solutions: (a) geo- and bio-material 
characterization and (b) wellbore drilling stability (modified after Bradley 1979). 

A unified poroelastic solution for cylindrical geometries, called the “generalized 
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Lamé’s problem”, was also reported (Kanj and Abousleiman 2004a). These analytical 

solutions served as basis for understanding the physical phenomena as well as benchmark 

for validating the integrity of numerical codes (Finol and Ali 1975; Chin et al. 2000; 

Jourine et al. 2004; Alassi et al. 2006; Phillips and Wheeler 2007). The characteristic 

behavior of the poroelastic response that is lacking in the uncoupled diffusion theory is 

illustrated through the pressure history at the center of a solid cylinder under sudden 

axial-load application in Fig. 1.3. The phenomenon is known as the Mandel-Cryer effect 

in which the pore-pressure continues to rise after its initial value instead of monotonically 

declines as in regular diffusion process. 

In chemically active porous media such as clays, shales, and biological tissues, 

additional osmotic effect is generated due to physico-chemical interactions among pore-

fluid’s components with the invading fluid and the solid matrix that result in membrane 

behavior, i.e., only transport of certain pore fluid species is allowed. A chemical potential 

gradient will induce simultaneous flows of fluid and solute into or out of the medium. The 

coupled osmotic and solute transport processes can lead to material’s strength weakening in 

addition to pore-pressure elevation or reduction. Early analyses addressing chemical 

osmotic effect in active shale were presented by lumping the activity-generated osmotic 

pressure and hydraulic pressure into a chemical potential term, ignoring the solute 

movement into or out of the shale (Yew et al. 1990; Hale et al. 1992; Van Oort 1994). This 

chemical potential is treated as an effective pressure which is used in subsequent evaluation 

of effective stresses. Later, the concept of a chemical potential and membrane efficiency 

are further woven into the poromechanics formulation (Sherwood 1993; Abousleiman et al. 
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2001) and have been applied in estimating the swelling effects on stress and pore pressure 

distributions in the vicinity of deep wellbores (Sherwood and Bailey 1994; Abousleiman et 

al. 2001; Chen et al. 2003). 

 

 
(a) 

 
(b) 

Fig. 1.3—The Mandel-Cryer’s poroelastic effect: (a) evolution of pore-pressure distribution in a solid 
cylinder and (b) history of pore-pressure fluctuation at the center, the dashed line is the uncoupled 
diffusion behavior. 
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In more rigorous approaches, the complete chemical interaction effects including 

osmotic and solute transport in stressed shale or bio tissues have been formulated and 

addressed extensively based on mixture theory and/or non-equilibrium thermodynamics 

(Sachs and Grodzinsky 1987; Sherwood 1993; Heidug and Wong 1996; Huyghe and 

Janssen 1999). In term of field applications, Ekbote and Abousleiman (2003, 2005, and 

2006) presented a linearized anisotropic porochemoelastic model and provided the general 

analytical solution to inclined wellbore drilling problem through shale formations. 

The development of field projects that are often subjected to non-isothermal conditions 

such as drilling in deep and high temperature subsurface, oil recovery by steam injection, 

geothermal wells, and nuclear waste depository necessitates an understanding of the 

coupled thermo-hydro-mechanical processes. Extension of Biot’s theory, incorporating 

both thermal expansion/contraction and heat diffusion, has been successfully studied under 

the isotropic porothermoelastic model (Bear and Corapcioglu 1981; McTigue 1986; Coussy 

1989). Extensive analytical solutions have been developed for many problems including 

consolidation around spherical heat source (Booker and Savidou 1984, 1985), heating of a 

porothermoelastic half-space (Mc-Tigue 1986), axisymmetric borehole solutions (Mc-

Tigue 1990), vertical wellbore in non-hydrostatic in-situ stress (Wang and Papamichos 

1994), and inclined wellbore subjected to three-dimensional state of stress (Ekbote 2002; 

Chen et al. 2003; Abousleiman and Ekbote 2004; Chen and Ewy 2005). A complication in 

the analytical approach is due to the presence of the convective heat flow – heat transported 

by the pore fluid carrier – which renders the heat diffusion equation non-linear. As such, 

numerical solutions were also presented, e.g., thermally induced stresses in poroelastic 
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cylinder and hollow sphere (Kurashige 1992; Kodashima and Kurashige 1996), one-

dimensional consolidation accounting for thermo-osmosis and thermal filtration (Zhou et 

al. 1998). 

The original Biot’s theory treated the saturated porous medium as a homogenous 

material, i.e., single-porosity and single-permeability model. However, in naturally 

fractured rock formations containing distributions of various distinct types of pores, from 

fractures or fissures to porous rock matrix, the use of an approximate average porosity 

over both domains, in many field cases, is inappropriate. A dual-porosity continuum 

approach, utilizing two distinct forms of intrinsic porosity, one corresponding to the 

porous matrix (primary porosity) and the other corresponding to the fracture framework 

pore distribution (secondary porosity), is more appropriate. To this end, Barenblatt et al. 

(1960), and subsequently Warren and Root (1963) presented the original ideas of 

representing the fluid domain in a naturally fractured reservoir by two overlapping 

continua. Each continuum possesses its own fluid pressure fields. A summary of the 

extensive literature on treating the fluid flow problems in naturally fractured reservoirs 

incorporating the dual-porosity and dual-permeability concept was presented by Chen 

(1989). All of these models have been developed for the study of fluid flow (single-phase 

and/or multiphase) in hydrocarbon reservoirs or ground water aquifers (Cheng et al. 

1992), but the rock formation is treated as a rigid body, thus ignoring the coupling effect 

between fluid flow and deformation. 

 The extension of Biot’s theory of poromechanics to fractured rock formations within 

the framework of the dual-porosity and dual-permeability approach was presented by 
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Aifantis (1977 and 1980) based on the theory of mixtures (Bowen 1976 and 1982). The 

quasi-static linear constitutive relation relates linearly the overall macroscopic stress to the 

strain and pore pressures in both the primary porosity as well as in the secondary porosity 

media. Berryman and Wang (1995) reformulated Aifantis’s dual-porosity governing 

equations by exchanging the roles of the dependent and independent variables. The 

coefficients of the governing equations could mostly be interpreted as different storage 

coefficients. Using a rigorous mathematical approach, Valliappan and Khalili-Naghadeh 

(1990) presented a coupled dual-porosity flow-deformation formulation. One deviation 

from the Aifantis and Berryman and Wang formulations is that the coefficients of the 

governing equations were considered as variables instead of constants. Recently, Berryman 

and Pride (2002) presented models that allow all dual-poroelastic coefficients to be 

determined from the underlying constituents’ properties, thus expanding the applicability of 

the dual-poroelastic formulation. Nevertheless, existing analytical solutions in this area are 

scarce, ranging from the one-dimensional consolidation (Lewallen and Wang 1998), 

axisymmetric borehole (Wilson and Aifantis 1982), to plane-strain wellbore (Li 2003). 

Lately, the a series of analytical solution for the geometries of rectangular strip, solid 

cylinder, hollow cylinder and inclined wellbore in naturally fractured rock formations 

modeled as dual-porosity and dual-permeability isotropic poroelastic continuum was 

published (Abousleiman and Nguyen 2005; Nguyen and Abousleiman 2009a; Nguyen and 

Abousleiman 2010). These solutions serve as the basis for understanding the salient 

features of the coupled dual-time scale response in fractured porous media. 

For chemically active fractured porous media, e.g., fractured shale, additional coupled 
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osmotic and solute transport processes in both the porous matrix and fracture network have 

to be accounted. To the author’s knowledge, no analytical solution exists for dual-

poroelastic with chemical osmotic interaction. Available solutions are either numerical or 

mostly focused on the fluid and solute transport aspect of the problem, e.g., Dershowitz and 

Miller 1995. As a first order approach, Nguyen et al. (2009) extended the dual-poroelastic 

inclined wellbore solution (Abousleiman and Nguyen 2005) to include chemical osmotic 

potential while neglecting the solute transport effect in fractured shale formations. It was 

shown in this work that fractured shale modeled as dual-poroelastic formation subjected to 

chemical potential gradient show significantly different behavior than its compact-shale 

counterpart. This solution laid the foundation for the complete inclined wellbore stability 

solution for fractured shale accounting for chemical osmosis as well as solute transport 

(Nguyen and Abousleiman 2009b) which will be presented in Chapter 3 of this dissertation. 

Incorporating thermal effect into the dual-poroelastic theoretical formulation is more 

involved due to difference in the mechanism of heat flow from that of fluid flow in 

constituent porosity media. Heat flow in the porous matrix is primarily driven by 

conductive mechanism through the compact matrix skeleton while heat convection carried 

by the fast diffusing fluid in the fracture network is intuitively more dominant. However, 

because thermal conductivity is significantly higher through the compact matrix framework 

than through the fracture network, comprised mostly of pore space, the dual-porosity 

temperature evolutions and interporosity heat exchange are most likely masked. 

Consequently, a single-temperature approach for naturally fractured geomaterials appears 

to be more practical (Master et al. 2000) than the double-temperature approach (Aifantis 
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and Bekos 1980). Again, for fractured porous media, despite the abundance in numerical 

modeling of porothermoelastic effects (e.g., Aifantis and Bekos 1980; Millard et al. 1995; 

Nguyen and Selvadurai 1995; Abdallah et al. 1995; Master et al. 2000; Nair et al. 2004), no 

analytical solution has been provided for the coupled heat and fluid flow and the resultant 

stress and deformation field in fractured porous media. 

1.3 Objectives 

Based on the preceding literature review regarding dual-poromechanics formulations and 

solutions, it is evident that, to date, a large number of analytically-solvable problems for 

dual-porous materials such as naturally fractured rock formations or bone tissues have not 

been addressed. Therefore, the objective of this dissertation is to present consistent 

theoretical formulations and analytical solution methods for problems in laboratory and 

field applications in a transversely isotropic dual-porosity and dual-permeability poroelastic 

medium incorporating the effects of chemical and thermal gradients. Given the generality 

and widespread applications of the following problem’s geometries:  rectangular strip, solid 

and hollow cylinder and inclined wellbore, in geo- and bio-mechanics fields, it is necessary 

to develop mathematical framework and obtain the corresponding analytical solutions. 

Finally, it is desired to carry some laboratory and field analyses to demonstrate the 

applications of the derived analytical solutions. For example, the inclined wellbore solution 

can be applied to study such problems as drilling stability, production induced 

consolidation, and hydraulic fracturing (Schmitt and Zoback 1992; Cui et al. 1998; 

Abousleiman et al. 2007). The cylinder geometry are commonly used in the design and 
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setups for uniaxial and triaxial laboratory testing of porous rock specimens (Schmitt et al. 

1993; Cui and Abousleiman 2001; Kanj and Abousleiman 2004b; Jourine et al. 2004), 

sanding experiment (Papamichos et al. 2001), and in simulating sudden stress relief of a 

long core removed from subsurface wellbore (Detournay and Cheng 1993). The rectangular 

strip geometry can be used to investigate reservoir consolidation features as well as to 

benchmark and validate the integrity of numerical codes. 

1.4 Dissertation Outline 

Chapter 2 is devoted to studying the behaviors and characteristics of dual-poroelastic 

saturated porous media. An anisotropic dual-poroelastic formulation is presented by 

extending the classical elastic and single-poroelastic ones. Governing equations are 

specialized for a transversely isotropic as well as isotropic material under generalized 

plane-strain loading condition. The resulting system of equations is used to derive 

analytical solutions for wellbore and consolidation problems in naturally fractured rock 

formations. The wellbore problem is illustrated via the solution of inclined borehole 

geometry for various fluid-flow boundary conditions. The consolidation problem includes 

solutions to geometries such as rectangular strip and cylinders (solid and hollow). The 

results for pore pressure, stress, and displacement for each problem’s geometry are plotted 

to highlight the dual-time-scale behaviors and the effect of fracture network as well as 

transverse isotropy on the overall responses. 

In Chapter 3, the analytical dual-porosity and dual-permeability porochemoelastic 

formulation and solutions to simulate the poromechanical responses of chemically active 
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fractured formation are presented. First, the single-porochemoelastic governing equations, 

extended based on thermodynamic framework of dual-poroelasticity to incorporate the 

effects of fluid and solute flow in the secondary porosity, e.g., rock’s fractures, are briefly 

presented. The constituent porous matrix and fracture media are generally modeled as 

imperfect semi-permeable membranes which can allows partial transport and exchange of 

the solutes. Separate transport equations and inter-porosity exchange are written for the 

porous matrix and fracture network accounting for the fully coupled flow processes 

including hydraulic conduction (Darcy’s law), chemical osmotic flow, and solute diffusion 

(Fick’s law). The resulting system of equations is applied to obtain the analytical solutions 

for the drilling of inclined wellbore and consolidation of solid cylinder under oedometer 

testing condition (K0 test). Results for dual pore pressures, solute concentrations, stresses, 

and displacements are plotted and compared with the corresponding single-

porochemoelastic counterparts or dual-poroelastic (neglecting chemical effect) to highlight 

the contributions of fracture, chemical osmosis and solute transport on the overall 

responses. 

In Chapter 4, a dual-porosity and dual-permeability porothermoelastic analytical 

formulation and solution applicable to transversely isotropic fractured porous media is 

presented. First, the dual-poroelastic governing equations as presented in Chapter 2 are 

extended to incorporate thermal effects within the thermodynamic framework of a global 

temperature approach. The complete formulation includes contribution from both heat 

conduction and convection in the porous matrix and fracture system. Neglecting the non-

linear heat convection, the resulting system of equations is applied to obtain the analytical 
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solutions for inclined wellbore and consolidation of rectangular strip (the Mandel’s 

problem) subjected to thermal perturbation. The effect of heat convection is assessed 

numerically by finite difference solution method for a special case of vertical borehole 

drilled in hydrostatic in-situ stress condition. In addition, the extended non-isothermal 

Mandel’s problem can be treated as a canonical illustration of the intricate dual-

porothermoelastic interplay. The results for stress, pore pressure, displacement, and 

temperature are plotted and compared with the corresponding isothermal counterpart to 

demonstrate the effect of temperature gradient in a fractured porous saturated medium.  

Chapter 5 demonstrates some practical applications of the presented wellbore and 

consolidation solutions, both in field cases and in laboratory testing designs. First, the 

various inclined wellbore solutions accounting for drilling fluid’s pressure, salinity, and 

temperature are applied to simulate and predict time-dependent borehole stability. Next, the 

hollow cylinder solution is employed to study reservoir geomechanics responses of a 

vertical well in a naturally fractured reservoir. The analysis includes vertical consolidation 

and associated implication on porosity and permeability reductions due to fluid withdrawal 

process. Concluding the chapter, the unconfined solid cylinder solutions are used to 

simulate some realistic loading conditions in poromechanics testing of rocks and bio-

tissues. 

Finally, Chapter 6 includes a summary of this dissertation findings and 

recommendations for future work. 
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Chapter 2 

Dual-Porosity and Dual-Permeability 
Poroelasticity: Dual-Poroelasticity 

2.1 Introduction 

In this chapter, the modeling of naturally fractured formations will be addressed 

analytically applying the dual-porosity and dual-permeability poromechanics approach 

accounting for the transversely isotropic nature of the rocks. For clarity of subsequent 

presentations, the classical elastic and single-porosity poroelastic formulations are briefly 

reviewed and summarized. Next, the naturally fractured rock formation is modeled within 

the framework of the anisotropic dual-porosity and dual-permeability poroelastic 

approach. Governing field equations are then developed and specialized for a transversely 

isotropic as well as isotropic poroelastic material under generalized plane-strain loading 

condition. The resulting system of equations is used to obtain analytical solutions to typical 

geometries such as inclined wellbore, rectangular strip, solid and hollow cylinder. Note that 

although the formulation and solutions are derived for naturally fractured rock formation, 

they are generally applicable to other dual-porous material such as bio-tissues (bone, 
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cartilage, etc.). 

2.2 Governing Equations 

2.2.1 Elasticity 

In the simplest form, the deformation of a linear elastic isotropic material follows the 

classical Hooke’s law (e.g., Timoshenko and Goodier 1951) 

⎟
⎠
⎞

⎜
⎝
⎛

−
+

+
= ijkkijij v

v
v

E δεεσ
211

,................................................................................(2.1) 

where σij is the total stress tensor, εij is the total strain tensor, εkk = ΔV/V is the bulk 

volumetric strain, E is Young’s modulus, ν is Poisson’s ratio, and δij is the Kronecker’s 

delta (δij = 1 for ji = ,δij = 0 for ji ≠ ). The elastic coefficients E and ν are related to the 

familiar bulk compressibility as Cb = 3(1−2ν)/E. Correspondingly, Eq. 2.1 is generalized in 

the anisotropic form as (e.g., Saada 1974; Boresi and Chong 2000) 

klijklij M εσ = , ...........................................................................................................(2.2) 

The above equations are written in Einstein’s tensor notation where repeated index denotes 

summation. Mijkl is the symmetric elastic modulus tensor, the reciprocal of which is the 

compliance or compressibility tensor Cijkl of the rock formation. 

2.2.2 Poroelasticity 

For fluid saturated porous media, e.g., subsurface rock formations, it is well-known that 

changes in pore pressure alter the “effective stresses” acting on the porous solid frame 

through a weighted effective stress coefficient (Biot 1941; Geertsma 1957). Thus, in a 
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poroelastic approach, the constitutive Eq. 2.2 can simply be expressed in terms of effective 

stress as (Biot 1955; Thompson and Willis 1991; Cheng 1997) 

klijklijij Mp εασ =− , .............................................................................................. (2.3a) 

or equivalently 

pM ijklijklij αεσ += , ..............................................................................................(2.3b) 

where ijα  is the Biot’s effective stress coefficient tensor and compression is positive. On 

the other hand, the variation of the fluid content corresponding to the fluid exchange with 

the surroundings is governed by not only the pore-fluid pressure field but also by the rock 

deformation as 
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in which mf = φρf  is the fluid mass content per unit total reference bulk volume, ρf is the 

fluid density, and φ is the porosity. M is the Biot’s modulus, the inverse of which is 

equivalent to the familiar storage coefficient in groundwater literatures. For the most 

general anisotropic case, the above constitutive behaviors (Eqs. 2.3 and 2.4) are described 

using twenty eight material constants (twenty one ijklM , six ijα  and one M coefficients). 

The time-dependent poroelastic effect comes in under the transient nature of the fluid 

flow across the porous formation. The fluid flux due to the pressure gradient follows 

Darcy’s law 

j
iji x

pq
∂
∂−= κ , ..........................................................................................................(2.5) 



 

 19

where iq  is the total volumetric fluid flux and κij is the usual Darcy’s mobility coefficient 

tensor defined as the ratio of the intrinsic permeability kij tensor over the dynamic fluid 

viscosity μ. Other governing equations are the strain-displacement relations and 

conservation equations which include the quasi-static stress equilibrium equation and mass 

balance equations written in index notation as 
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in which ui is the displacement vector. Equations 2.3 to 2.8 complete the time-dependent 

poroelastic description of the response of anisotropic saturated porous rock formations. 

These equations are extended to model naturally fractured porous media using the dual-

porosity and dual-permeability concept in the following. 

2.2.3 Dual-Poroelasticity 

Naturally fractured porous rock involves a high degree of local heterogeneity due to the 

presence of abnormally high permeability but low porosity flow paths (fractures). One way 

to model would be to account for each fracture in the computational mesh. Unfortunately, it 

is mathematically and physically impossible to model all the fractures in a field scale rock 

mass explicitly, e.g., an astounding number of 5 million fractures were estimated in a 68 

cubic meter volume from mapping statistics in consideration of seepage in three-
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dimensional fracture networks (Billaux et al. 1989; Pariseau 1993). A more tractable and 

“least damaging” approach is to realizing the fractured porous media within the frame work 

of the dual-porosity and dual-permeability continuum concept (Cho et al. 1991; Tom et al. 

2006; Bagheri and Settari 2006).  

The current approach ignores the characteristics of individual fracture such as aperture, 

length and toughness. In other words, the fractures are not discretely modeled but explicitly 

represented as a secondary porous continuum characterized by secondary porosity, 

compressibility and permeability. At the macroscopic level, the overall system is 

considered to consist of two co-located but distinct fluid-saturated porous continua:  the 

primary one represents the porous matrix with intrinsic properties { I
ijklM , I

ijα , IM , Iφ , I
ijκ } 

occupying volume fraction vI of the total bulk volume and the secondary one represents the 

porous fracture network with intrinsic properties { II
ijklM , II

ijα , IIM , IIφ , II
ijκ }occupying the 

remaining bulk volume fraction vII = 1- vI. In other word, the overall domain is envisioned 

as containing two distinct porous continua, each possessing a solid skeletal framework and 

a saturated pore network. As a result, fractured formation will exhibit dual pore-pressure 

evolutions when subjected to stress and pressure perturbations. The porous matrix and 

fracture continua can communicate and may exchange fluid mass. 

In the dual-poroelastic constitutive approach, since there are two distinct effective fluid-

pressure fields, the linear anisotropic constitutive equations accounting for the effect of 

fracture network follow naturally from the single-poroelastic formulation Eqs. 2.3 and 2.4 

as 

IIIIII ppM ijijklijklij ααεσ ++= ,.................................................................................(2.9) 
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ijij ++−= εαζ , ...................................................................................(2.10) 
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II

II,I
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IIII
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p
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p

ijij ++−= εαζ , .................................................................................(2.11) 

where the superscript (N) = I or II represents the porous intact rock matrix and the porous 

fracture network, respectively; p(N) is the fluid pressure; ( ) (N)
0,

(N)(N)(N)(N) /v ff ρρφζ =  is the 

variation of fluid content per unit total reference bulk volume; φ (N) = Vp
(N)/ V(N) is the local 

porosity based on individual bulk volume of the porous matrix and fracture continua. The 

over bar symbol denotes the overall dual-poroelastic material coefficients. 

Unlike the pore-pressure fields which are distinct, the stress and strain tensors in Eqs. 

2.9 to 2.11 represent the overall mechanical response of the combined matrix-fracture 

system. The formulation is characterized by effective material constants such as the overall 

drained elastic modulus tensor, ijklM , the effective pore-pressure-coefficient tensors, I
ijα  

and II
ijα , and the effective coupled Biot’s moduli, IM , IIM , and II,IM . As a result, the 

most general anisotropic dual-poroelastic constitutive behaviors is described using thirty 

six constants (twenty one ijklM ’s, six I
ijα ’s, six II

ijα ’s and three Biot moduli). These overall 

coefficients represent the combined responses of the system and can be related to the 

intrinsic material constants and volume fractions of the constituting porous continua 

(matrix and fracture network) as described in Appendix A. The applicability of the dual-

porosity and dual-compressibility continuum approach depends on the determination of the 

bulk properties of the fracture network and the extent of its contribution to the whole 

system. 
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The dual-permeability nature of fractured formations demands dual Darcy’s laws for 

the fluid flow in the fracture network and in the intact rock matrix regions. Assuming that 

the flow in each constituting porous medium is independent of the flow in the other, 

separate Darcy’s equation for each medium can be written as 

j
iji

j
iji x

pq
x
pq

∂
∂−=

∂
∂−=

II
IIII

I
II ; κκ , .....................................................................(2.12) 

The system is subjected to momentum and mass balance laws. The momentum 

conservation is enforced by the quasi-static equilibrium equations and is the same as 

given by Eq. 2.6. The fluid mass balance, accounting for the fluid flow in the porous 

fracture network and the porous rock’s matrix as well as the interporosity fluid transfer can 

be expressed separately as 

Γ=
∂
∂+

∂
∂

i

i

x
q

t

I
I

I

vζ ,................................................................................................ (2.13a) 

Γ−=
∂
∂+

∂
∂

i

i

x
q

t

II
II

II

vζ ,..........................................................................................(2.13b) 

In the above, Γ  represents the interporosity fluid flux transfer. Modeling interporosity fluid 

flow can be classified into two main categories: pseudo steady state and transient 

interporosity flow. In the simplest form, the pseudo steady-state model assumes the fluid 

exchange to be directly proportional to the pressure differential between the porous fracture 

network and porous rock matrix as (Warren and Root 1963) 

)( III pp −=Γ λ , ....................................................................................................(2.14) 

where λ  is a characteristics of fractured formation such as matrix’s permeability, fractures’ 

geometry, distribution, and size. Warren and Root (1963) provided some idealization for 
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the determination of  λ  assuming regular matrix block shape and fracture’s pattern. It 

should be noticed that such assumed idealizations are no other than some averaging 

techniques to arrive at the macroscopic parameters as required by the continuum approach 

(Chen 1989).  

On the other hand, the transient model is a more appropriate representation of the 

interporosity flow process in which the fluid exchange is proportional to the gradient of 

pressure difference at the fracture and matrix interface (de Swaan 1976). This fact further 

complicates the governing equations and solutions have to be resorted to numerical 

approach. Analytical solutions are restricted to cases of special fracture pattern such as slab, 

layer, or cubes (Chen et al. 1990). No analytical solution exists for the dual-porosity and 

dual-permeability case assuming a transient interporosity flow regime. In this dissertation, 

the pseudo steady-state model, i.e., that of Warren and Root (1963), will be used to 

characterize the interporosity flow process. 

The above set of equations, Eqs. 2.9 to 2.14, represents the dual-porosity and dual-

permeability poroelastic system in general anisotropic form. It is specialized to transversely 

isotropic and isotropic materials in the following section. Additionally, the corresponding 

field equations necessary for solutions under generalized plane-strain condition are also 

derived.  

2.2.4 Special Anisotropic Cases 

Transversely Isotropic Materials.  Transversely isotropic materials are characterized by 

an axis of rotational symmetry. That is, they have the same properties in one plane (e.g., the 

x1-x2 plane) and different properties in the perpendicular direction to this plane (e.g., the x3 
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axis). Practically, it is reasonable to assume that the axes of rotational symmetry are the 

same for both the intact rock matrix and the fracture network. As a result, the drained 

elastic modulus tensor of the combined matrix-fracture system ijklM  is also transversely 

isotropic and characterized by five material constants. Because shear stresses do not give 

rise to fluid pressure generation, only two directional pore-pressure coefficients exist: one 

in the isotropic plane and the other in the perpendicular direction to define the effective 

pore-pressure-coefficient tensor (two each for I
ijα  and II

ijα ). Additionally, there are three 

Biot’s moduli IM , IIM , and III,M  which signify the coupled storage capacities of the 

dual-porosity system under constant strain. Totally, there are twelve independent 

constitutive parameters to sufficiently describe the response of a transversely isotropic 

dual-poroelastic system. The constitutive equation expressed in matrix notation is 
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In the above, the components of overall elastic moduli and poroelastic coefficients are 
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related to individual set of material properties of the primary and secondary porosity as 

given in Appendix A1. Under generalized plane-strain condition where all response 

functions (except axial displacement) are invariant along the axis of material rotational 

symmetry and the out-of-plane strain components are zero or spatially uniform, i.e., 

02313 == εε  and )(3333 tεε = , the stress equilibrium (Eq. 2.7) reduce to 
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xxxx
σσσσ ,....................................................................(2.18) 

Combining the stress-strain-pressure constitutive relations (Eq. 2.15) with the equilibrium 

Eq. 2.18 and strain-displacement Eq. 2.6 leads to the compatibility equation 
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or in terms of stress by inverting Eqs. 2.15 and substituting into Eq. 2.18 

011 IIII
1

11

12II
1

11

12
2211

2 =⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+∇ p

M
Mp

M
M αασσ ,.......................................(2.20) 

where 2
2

22
1

22 // xx ∂+∂=∇  is the Laplacian spatial differential operator.  

Isotropic Materials.  Under isotropic case where the material properties are the same in all 

directions, the constitutive equations (Eqs. 2.9 to 2.11) simplify to 
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And the corresponding field equations under generalized plane-strain condition become 
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⎜
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++∇ p

G
p

Gkk

ηη
ε ,.............................................................................(2.24) 

( ) 022 IIIIII
2211

2 =+++∇ pp ηησσ ,....................................................................(2.25) 

where εkk = ε11 + ε22 + ε33 noting that ∇2ε33 = 0 for generalized plane strain; (N)η  is lumped 

poroelastic coefficient defined as )1(2/)21((N)(N) vv −−= αη  and G  is the overall shear 

modulus given as )1(2/ vEG += . Again, the overall material coefficients are related to 

the constituent properties as given in Appendix A2. 

2.3 Inclined Wellbore1 

2.3.1 Background 

The inclined wellbore problem and solution have become an important tool in the 

simulation and prediction of wellbore stability for drilling through subsurface rock 

formations. The first analytical solution for a vertical borehole with unequal far-field stress 

was Kirsch equations (1898) based on plane-strain idealization and linear elastic modeling 

of rock. This solution was later generalized to inclined wellbore geometry in a three-

dimensional state of stress (Hiramatsu and Oka 1968; Bradley 1979). The elastic approach 

in these early solutions failed to account for the transient fluid-flow effect due to drilling 

that will significantly alter the near-wellbore pore pressure and stress concentration. 

Incorporating the time-dependent fluid diffusion process, Carter and Booker (1982) 

presented analytical solution for circular tunnel excavated in a fluid saturated medium 

                                                 
1 Part of this section was published in J. Eng. Mech., 131 (11): 1170–1183 (Abousleiman and Nguyen 2005) 
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under the framework of Terzaghi’s consolidation theory (1943) which is a special case of 

Biot’s poroelasticity theory, i.e., when the effective pore pressure coefficient α = 1. Based 

on this work, a solution for vertical wellbore in a linear poroelastic medium was provided 

(Detournay and Cheng 1988). The complete analytical solution for an inclined borehole, 

drilled in an isotropic poroelastic compact rock formation and subjected to a three-

dimensional state of stress, was first published by Cui et al. (1997), employing similar 

boundary-condition decomposition scheme of Carter and Booker (1982). Subsequently, 

the solution was extended to account for formation transverse anisotropy (Abousleiman 

and Cui 1998) and different wellbore-fluid boundary conditions (Cui et al. 1998; Ekbote 

et al. 2004). It was demonstrated that the poroelastic inclined wellbore solution and its 

effects in this problem present quantitative and qualitative results that are very different 

from their elastic counterparts (Cui et al. 1999). In addition, wellbore stability analyses 

reveal results capturing field observations that are not explained by the conventional 

elastic solution, e.g., time-delayed failure (Abousleiman et al. 2001). 

For fractured rock formations modeled as dual-porosity and dual-permeability porous 

media, Waren and Root (1963) provided the first analytical solution to the fluid flow 

problem for a vertical wellbore. Following this work, extensive literature was developed for 

the solution of fluid flow in hydrocarbon reservoirs (Mattax and Kyte 1962; Kazemi 1969; 

Duguid and Lee 1977; Kazemi et al. 1976; Thomas et al. 1983; Wu and Pruess 1988 and 

Choi et al. 1997) or ground water aquifers (Cheng et al. 1992). However, the fractured rock 

formation is treated as a rigid body, thus neglecting the coupling between fluid flow and 

deformation. Incorporating the coupled deformation process within the framework of the 
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dual-poroelasticity formulation, Wilson and Aifantis (1982) and Bekos and Aifantis (1986) 

published analytical solution for vertical wellbore under hydrostatic state of stress, without 

any plots or numerical results for verification and analysis. Li (2003) presented analytical 

solution for vertical wellbore in non-hydrostatic stress field. Based on this work and 

previous solutions for compact rock formations, the complete analytical solution for 

inclined wellbore drilled in fractured rock formations and subjected to three-dimensional 

state of stress was derived by Abousleiman and Nguyen (2005). This solution is for 

isotropic fractured formation and permeable fluid-boundary condition, e.g., openhole 

drilling. Analyses showed significantly different evolution of effective stress and pore 

pressure distributions in both the rock matrix and the fracture network, leading to more 

conservative failure predictions, which agree with field observations (Nguyen et al. 2009). 

In this section, the isotropic inclined wellbore solution for fractured formations 

(Abousleiman and Nguyen 2005) is extended to account for transverse isotropy and 

different fluid boundary conditions across the wellbore wall. 

2.3.2 Problem Descriptions 

The wellbore is defined as an infinitely long cylinder created by removal of rock material 

from a formation with infinite lateral extent. Prior to drilling, the saturated rock formation 

is subjected to a three-dimensional in-situ state of stresses {SV, SH, Sh} and formation fluid 

pressure p0. The in-situ stresses SV, SH, and Sh form an orthogonal set of principal stresses 

where SV is the vertical overburden stress while SH and Sh, which generally are not equal, 

represent the maximum and minimum principal stresses in the horizontal plane, 

respectively. An inclined wellbore is one in which the borehole axis is drilled inclined to 
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the far-field principal in-situ three-dimensional state of stress. In addition, the borehole 

generator is also assumed to be perpendicular to the isotropic plane of a transversely 

isotropic poroelastic rock formation. A schematic of the inclined wellbore geometry and 

the associated in-situ stress orientation is illustrated in Fig. 2.1. 

 

 

Fig. 2.1—Inclined wellbore geometry in transversely isotropic fractured formation. 

Two separate right-handed coordinate systems (x, y, z) and (x’, y’, z’) are attached to 

the wellbore and the in-situ principal stresses, respectively. The in-situ stress orientation is 

defined by the azimuth of the maximum horizontal stress direction, aSH, while the borehole 

local coordinate are described by two angles—the wellbore inclination iw and azimuth aw. 

For practical purpose, all azimuthal angles are defined clockwise from the geographic 
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North direction. In Fig. 2.2, the far-field in-situ stress components from the vantage point 

of the wellbore coordinates (x, y, z) is illustrated. It is seen that the wellbore is subjected to 

far-field normal as well as shear stress components denoted by Sx, Sy, Sz, Sxy, Syz, and Sxz. 

The stress transformation operation is listed in Appendix D. 

 

Fig. 2.2—Far-field in-situ stress components in local wellbore coordinate system (x, y, z). 

As the wellbore is drilled, the hydraulic pressure of the drilling fluid replaces the 

support lost by the excavated column of rock. However, the mud pressure, being 

hydrostatic, can not exactly balance the in-situ earth stresses. As a result, the rock around 

the wellbore is strained due to the redistribution of stresses. In addition, the imbalance 

between the mud pressure and the formation fluid pressure leads to potential gradient 

which acts as driving force for fluid flow process that also affects near-wellbore 

distribution of stress and pore pressure. The boundary conditions for the problem are 
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imposed at far field and at the borehole wall. Because the far-field boundary is at infinite 

distance from the wellbore, it is assumed that there are no changes of stress and pore 

pressure at this boundary such that 

zzzyyyxxx SSS === σσσ ;; ,................................................................. (2.26a) 

xzxzyzyzxyxy SSS === σσσ ;; ,..............................................................(2.26b) 

II
0

III
0

I ; pppp == , ........................................................................................ (2.26c) 

where the stress components are expressed  under Cartesian coordinate system (x, y, z). 

(N)
0p  is the far-field/initial formation pore pressure in the matrix and fractures, respectively. 

It is reasonable to assume that I
0p  = II

0p  = 0p .  

Due to its cylindrical geometry, the boundary conditions at the wellbore wall are 

naturally expressed within a cylindrical coordinate system (r, θ, z) as shown in Fig. 2.3. At 

the borehole wall, r = Rw, all surface tractions and fluid pressure or fluxes are changed 

from their initial state at the instant of excavation as 

)()())](2cos([ tpt wrdmrr +−Η−+= θθσσσ , ................................................... (2.27a) 

)())(2sin( trdr −Η−−= θθσσ θ , .........................................................................(2.27b) 

)()]sin()cos([ tSS yzxzrz −Η+= θθσ , .................................................................. (2.27c) 

)()(0
III tptppp w+−Η==  pressure boundary, ................................................(2.27d) 

or 

))(()();( 0
IIIIII tqptppptqqq wwwrr +−Η===+  flux boundary, .............. (2.27e) 

where t is time and H(t) is the Heaviside unit step function (H(t <0) = 0 and H(t ≥0) = 1); 
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pw(t) is a time-dependent wellbore mud pressure due to mud density and/or fluid flow rate 

and qw(t) is a transient fluid discharge across the borehole wall. As such, the hydraulic 

boundary condition can be specified as either pressure-boundary condition or flux-

boundary condition to simulate particular field problem such as instantaneous drilling, 

bottom-hole pressure-controlled production, and flow-rate-controlled injection or 

withdrawal. 

 

Fig. 2.3—Cylindrical stress components (r , θ, z) near and at the wellbore wall (grey components 
denote zero values). 

In Eqs. 2.27a to 2.27e, terms associated with H(-t) represent the initial state before wellbore 

drilling whereas terms involved with H(t) correspond to conditions imposed after the 

instant of excavation. mσ , dσ , and rθ  are parts of the stress boundary condition and 

rotation angle in polar coordinate for a circular borehole as defined in Cui et al. (1997) 
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22 4)(5.0;2/)( xyyxdyxm SSSSS +−=+= σσ ,......................................... (2.28a) 

)]/(2[tan5.0 1
yxxyr SSS −= −θ , ..........................................................................(2.28b) 

2.3.3 Analytical Solutions 

Because the wellbore is infinitely long and there is no change of boundary condition along 

the wellbore axis, a generalized plane-strain condition can be assumed to prevail (Saada 

1974). Furthermore, since all far-field quantities do not change with time, only the 

perturbed state needs to be solved for. As a result, the far-field boundary conditions for all 

perturbed variables vanish identically and drilling is simulated by applying a change in 

boundary condition at the borehole wall as follows 

))](2cos([)( rdmwrr tp θθσσσ −+−= , ............................................................. (2.29a) 

))(2sin( rdr θθσσ θ −= , .....................................................................................(2.29b) 

)]sin()cos([ θθσ yzxzrz SS +−= , ......................................................................... (2.29c) 

0
III )( ptppp w −==  pressure boundary, ..........................................................(2.29d) 

or 

0
IIIIII ))(();( ptqppptqqq wwwrr −===+  flux boundary, ......................... (2.29e)  

Owing to the linearity of the governing equations, the problem can be decomposed into two 

sub-problems and solved separately. The boundary conditions and corresponding solutions 

to the two sub-problems are presented in the followings. 

2.3.3.1 Problem I – Plane Strain  

The boundary conditions for perturbed quantities in Problem I at the wall (r = Rw) are 
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))](2cos([)( rdmwrr tp θθσσσ −+−= , ............................................................. (2.30a) 

))(2sin( rdr θθσσ θ −= ,......................................................................................(2.30b) 

0
III )( ptppp w −==  pressure boundary, ..........................................................(2.30d) 

or 

0
IIIIII ))(();( ptqppptqqq wwwrr −===+  flux boundary,......................... (2.30e) 

For plane strain condition, i.e., 033 == εε zz , the fluid contents (Eqs. 2.16 and 2.17) in 

polar coordinate (r-θ) in terms of stress and pressures reduce to 
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where the material coefficient (N)a  and dimensionless parameters (N)ϕ  and bij are 
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Similarly, the compatibility Eq. 2.20 is rewritten in polar coordinate (r-θ) as 
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Based on boundary loading conditions and symmetry considerations for fluid pressures and 

stress, the various response functions can be decomposed as (Carter and Booker 1982) 

))(cos(],,,[],,,[ (N)(N)(N)(N)
rrrrrrr nSSQPqp θθσσ θθθθ −×= ,................................ (2. 37a) 

))(sin( rrr nS θθσ θθ −= ,......................................................................................(2.37b) 

where θθSSSP rrkk ,,,(N) , and θrS  are functions of radial distance (r) and time (t) only and n 

is an integer number depending on loading conditions. Incorporating Eq. 2.37a into Eq. 

2.36 to eliminate θ dependency and seeking for bounded solutions gives 

n
rr rtCPPSS −++=+ )(1

IIIIII γγθθ , ....................................................................(2.38) 

in which the dimensionless coefficient, )/1( 1112
(N)

1
(N) MM−= αγ  and C1(t) is an arbitrary 

time-dependent coefficients to be determined from boundary conditions. Eliminating the 

stress components in the fluid contents (Eqs. 2.31 and 2.32) and substituting the resulting 

expressions into the fluid mass balance lead to the simplified diffusion equations in terms 

of the decomposed fluid pressures. In compact matrix form, they are expressed as 
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where )/)(/1(/ 222 rrrr ∂∂+∂∂=∇  and the coefficient matrices A, D and Γ are 
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Introducing the following normalized parameters 
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where rD and tD are the dimensionless radial distance and time; Dκ  is the macroscopic 

mobility ratio; λD is the dimensionless interporosity flow parameter; ω and ωI,II are the 

macroscopic coupled storage ratios; . The diffusion equation becomes 
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The above system of partial differential equations is solved directly to obtain the general 

expressions for the decomposed pore-pressure fields. Applying Laplace transform  to the 

diffusion Eq. 2.45 yields 
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where the tilde sign  ~  denotes the corresponding quantity in Laplace transform domain, s 

is the Laplace transform parameter, and )(~~
11 sCC = . The general solutions are 

straightforward, noting that the pressures have to be finite as r approaches infinity  

)()(~~ IIII
2

II
21

II
DnDn

n
D rCrCrCgP ξξ Κ+Κ+= − , .........................................................(2.50) 

)()(~~ IIIIII
2

III
21

IIII
DnDn

n
D rmCrmCrCgP ξξ Κ+Κ+= − ,...............................................(2.51) 

where )(I
1
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2 sCC =  and )(II

2
II
2 sCC =  are arbitrary coefficients to be determined from 

boundary conditions; Kn is the modified Bessel functions of the second kind or order n; 

(N)(N) l=ξ  where (N)l  is the eigenvalue of the coefficient matrix )(1
DD ΓωκY += − s ; 

(N)l , (N)g , and (N)m  are defined as  
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The decomposed radial fluid fluxes are derived using Darcy’s laws (Eq. 2.12) 
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in which )/~]()/([~ (N)III(N)(N)
Dwr drPdRQ κκκ +−=  and dxxdx nn /)()(' Κ=Κ . Once the 
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pressure expressions are obtained, the general solutions for stresses are easy to obtain by 

using the stress-strain-pressure constitutive equation (Eq. 2.15) and strain-displacement 

relations (Eq. 2.6) in polar coordinate. For brevity, only the final general solutions for the 

stress components are presented here 
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in which )(00 sCC =  is an additional coefficients to be determined from boundary 

conditions; the lumped coefficients A1 and (N)
2A  are expressed as 

12 IIIIII
1 ++= ggA γγ , ........................................................................................ (2.60a) 

(N)III(N)
2 mA γγ += , ...............................................................................................(2.60b) 

To determine the unknown constants, 0C , 1
~C , I

2C , and II
2C , the boundary conditions for 

this problem are further decomposed into two contributing loading cases namely: 

axisymmetric and deviatoric loading cases. Case 1, the axisymmetric case, accounts for the 

unloading of hydrostatic part of the in-situ stress, σm, as well as hydraulic perturbation due 
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to drilling fluid pressure, pw(t). Case 2, the deviatoric case, accounts for the release of the 

deviatoric part of the in-plane in-situ stress, σd.  The corresponding boundary conditions 

and solutions for four different wellbore-wall’s fluid boundary conditions including 

pressure (permeable), flux, no-flow (impermeable), and impermeable-matrix and 

permeable-fracture boundary conditions are derived and listed in Appendix D. 

2.3.3.2 Problem II – Antiplane Shear  

The boundary conditions for perturbed quantities in Problem II at the wall (r = Rw) are 

)]sin()cos([ θθσ yzxzrz SS +−= ,.......................................................................... (2.61a) 

0== θσσ rrr , ......................................................................................................(2.61b) 

0or0 IIIIII ==== rr qqpp ,.......................................................... (2.61c) 

This problem accounts for the sudden release of the out-of-plane in-situ shear stress 

components Sxz and Syz at the wellbore wall. It was shown that no excess pore pressure is 

generated by this disturbance of shear stress. The stress state is elastic and identical to the 

isotropic case given as (Amadei 1983) 

)/11()]sin()cos([ 2
Dyzxzrz rSS −+= θθσ , ............................................................. (2.62a) 

)/11)](cos()sin([ 2
Dyzxzz rSS +−−= θθσ θ , ...........................................................(2.62b) 

It should be noted that the above solutions for Problem II are no longer valid if the 

formation material rotation symmetry axis is arbitrary. 

2.3.3.3 Complete Solution 

The complete solutions for stresses and pore pressures are obtained by superimposing the 
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non-zero solutions of the two sub-problems together with the background in-situ stress 

state as 
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)/11()]sin()cos([ 2
Dyzxzrz rSS −+= θθσ , .............................................................(2.63g) 

)/11)](cos()sin([ 2
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in which the superscript (1) and (2) denote the solutions to two loading cases of Problem I. 

2.3.4 Results and Discussions 

2.3.4.1 Modeling Parameters 

 To demonstrate the various inclined wellbore solutions presented above, the set of data for 

a Gulf-of-Mexico shale (Cui and Abousleiman 2001) are adopted in this analysis as 

MPaKGPaKdarcyk
MPaMvMPaE

fs 1744;6.27;10*5;14.0
9100;96.0;22.0;1854

8 ====
====

−φ
α

 

The above data are assumed to be the isotropic properties of the non-fractured porous rock 

matrix (I) in the dual-porosity and dual-permeability model. The fracture network in the 

rock modeled as the secondary porous region (II) is assumed to be more compliant than the 
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matrix one. Various methods for the estimation of the bulk fracture network 

compressibility based on individual fracture/joint characteristics, spacing, and orientation 

have been proposed and discussed in the rock mechanics field as summarized by Cook 

(1992). In this example, to highlight the contrast in stiffness, the same Poisson’s ratio is 

assumed for both porous matrix and fracture systems while the fracture’ Young modulus is 

specified to be 50 times smaller without loss of generality: 22.0III == vv  and 

MPaEE 3750/III == . The local fracture porosity IIφ  is the fracture pore volume 

divided by the fracture total bulk volume. Since the majority of the fracture are porous flow 

channels, the fracture porosity are usually close to 1. On the other hand, the fracture 

volume fraction, vII, is the fracture bulk volume divided by the total bulk volume of the 

combined formation. As such the fracture volume fractions depends on the fracture’s 

spacing and geometry and usually is a small number less than 5% bulk volume as reported 

in the literatures (Aguilera 1995). Here, fracture porosity and volume fraction are, in here, 

chosen as 95.0II =φ  and vII = 1%. Subsequently, the fracture poroelastic parameters IIα  

and IIM  can be determined using Eqs. A2.3 and A2.4, assuming that the same fluid is 

permeating the pore spaces fff KKK == III , sPa ⋅== 01.0III μμ  (viscosity), and the 

porous matrix and porous fracture skeletons are comprised of the same mineral materials 

sss KKK == III . The intrinsic fracture permeability is the macroscopic permeability that is 

assigned to the fracture network in a given volume of rock, and thus dependent upon the 

fracture’s width, orientation and spacing. Here, an intrinsic fracture permeability of 

approximately 5 milidarcy (5×10-15 m2) is assumed. For isotropic modeling, the 
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interporosity flow geometric factor is given in term of fracture spacing d (Warren and Root 

1963) and fracture’s volume fraction, e.g., λ = 60(vII/d2) ~ 2.4×10-3 MPa-1-s-1. Other 

relevant data for in-situ condition and wellbore geometry are summarized below: 

 Depth = 1000 m, Rw = 0.1 m, well inclination = 60, well azimuth = 0  

 SV = 25 MPa, SH = 20 MPa (azimuth = 0), Sh = 18 MPa , p0 = 10 MPa 

Time is set at tD = 0 when the wellbore is drilled. Four cases are considered: a constant 

wellbore pressure (permeable), a constant injection rate, a no-flow wellbore (impermeable), 

and fully permeable fracture coupled with impermeable matrix wellbore wall fluid 

boundary conditions. Except for the constant flux boundary condition (injection rate Q = 

0.07 m3/day/m) where the wellbore pressure varies, the wellbore pressure due to drilling 

mudweight for all other cases are maintained overbalanced at 1.12 g/cc or 11 MPa. 

2.3.4.2 Dual-Poroelastic Responses 

Due the anisotropy of in-situ stress, excavation of the wellbore will induce non uniform 

stress distribution near the wellbore as shown in Fig. 2.4 for pressure boundary condition. 

Specifically, it is observed that there is excessive compressive tangential stress 

concentration along the direction of minimum horizontal stress Sh whereas the formation is 

more relaxed along the maximum horizontal stress direction SH. The variation of total 

tangential stress concentration at and around the wellbore wall for four cases of different 

fluid boundary conditions is shown in Fig. 2.5. Obviously, the total normal stress changes 

significantly with locations and fluid boundary conditions. Note that even if the in-situ 

horizontal stresses are equal, the inclination of the wellbore will render the in-plane stress 

components non-hydrostatic leading to unequal stress concentration around the wellbore. 
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Fig. 2.4—Total tangential (hoop) stress distribution around the wellbore after tD = 1 (~ 3.5 minutes) 
into drilling for pressure (permeable) boundary condition. 
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Fig. 2.5—Total tangential (hoop) stress distribution at rD = 1 after tD = 1 (~ 3.5 minutes) for four 
different fluid boundary conditions. 
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Fig. 2.6—Dual pore-pressure distributions around the wellbore after tD = 1 (~ 3.5 minutes) and tD = 10 
(~ 35 minutes) for fluid pressure (permeable) boundary conditions. 
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Because pore pressure is directly coupled with the stress field, the near-wellbore pore-

pressure fields are also non-uniform which is a distinct behavior of the fully coupled 

poroelastic theory and cannot be captured using uncoupled analysis. The evolutions of dual 

pore-pressure distributions are illustrated in Figs. 2.6 to 2.12. For all cases of fluid 

boundary conditions, the near-wellbore matrix pore pressure is elevated along the Sh 

direction (due to high stress concentration) but is depressed along the SH direction (due to 

low stress concentration). As time progresses, this poroelastic effect due to unloading of the 

non-hydrostatic in-situ state of stress diminishes and the pore pressure distributions become 

more uniform around the wellbore.  

In Fig. 2.6, the dual fluid-pressure penetrations through the matrix and the fracture 

network are shown for a permeable borehole wall subjected to a constant wellbore mud 

pressure. The figure clearly shows two distinct pore pressure responses in which drilling 

mud quickly penetrates the fracture’s region and equilibrates with the applied wellbore 

pressure while the matrix pore pressure is still transient. This behavior signifies the 

domination of the flow process in the fractures to the overall matrix-fractures response.  

The pressure distribution for a permeable wellbore subjected to a constant injection rate 

of Q = 0.07 m3/day/m (flux boundary condition) is shown in Fig. 2.7. Unlike the constant 

pressure boundary condition, the fluid pressure at the borehole wall is increasing to 

maintain the constant fluid influx. The pore pressure distribution in the fracture network is 

almost uniform around the wellbore due to its high permeability.  
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Fig. 2.7—Dual pore-pressure distributions at the wellbore after tD = 1 (~ 3.5 minutes) and tD = 10 (~ 35 
minutes) for non-zero flux boundary conditions (Q = 0.07 m3/day/m). 
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Fig. 2.8—History of pore pressure at the wellbore wall for non-zero flux (injection Q = 0.07 m3/day/m) 
versus pressure (permeable) boundary conditions. 
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The corresponding evolution of fluid pressure at the wellbore wall is plotted in Fig. 2.8. 

Full hydraulic communication requires that the fluid pressure be the same in both the 

matrix and the fracture network as well as around the wellbore wall. The pressure 

responses for flux boundary condition exhibits typical transient behavior as shown in the 

early work of Warren and Root (1963) and others. 

For impermeable boundary condition, there is no flow across the wellbore wall. 

However, there is still pressure buildup or reduction in the matrix in the near wellbore 

region due to the poroelastic effect of unloading non-hydrostatic in-situ stress as shown in 

Fig. 2.9. Again, the perturbed pore pressure in the fracture network quickly dissipates and 

converges to the original formation pore pressure as displayed in Fig. 2.10. Similar 

behaviors are observed in Figs. 2.11 and 2.12 for the evolution of pore-pressure distribution 

for the case of impermeable-matrix and permeable-fracture boundary condition. Instead of 

converging to the original formation pore pressure, the dual responses approach the applied 

wellbore pressure due to full hydraulic communication between the wellbore and the 

fracture network as well as interporosity flow exchange. 
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Fig. 2.9—Dual pore-pressure distributions around the wellbore after tD = 1 (~ 3.5 minutes) and tD = 10 
(~ 35 minutes) for no-flow fluid boundary conditions. 
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Fig. 2.10—History of pore pressure at the wellbore wall for no-flow fluid boundary condition. 
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Fig. 2.11—Dual pore-pressure distributions around the wellbore after tD = 1 (~ 3.5 minutes) and tD = 
10 (~35 minutes) for impermeable matrix and permeable fracture’s fluid boundary conditions. 
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Fig. 2.12—History of pore pressure at the wellbore wall for impermeable-matrix and permeable-
fracture fluid boundary condition. 
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Next, the evolution of effective tangential stress – total normal stress less pore pressure 

– at the borehole wall is demonstrated in Figs. 2.13 to 2.15. For pressure and flux boundary 

condition, both the matrix and fracture’s pore pressures equal to the imposed wellbore 

pressure leading to the same effective stress in the matrix and fracture regions as shown in 

Fig. 2.13. Although the pore pressure stays constant for a pressure boundary condition, the 

effective tangential stress at the wall changes with time and locations. As time progresses, 

the effective stress increases considerably along the minimum horizontal stress direction (θ 

= 90) which promotes compressive failure in this location but decreases along the 

maximum horizontal stress direction (θ = 0) which makes the region more susceptible to 

tensile failure. On the other hand, the results for constant injection rate show reduction in 

effective stress all around the wellbore because the magnitude of the transient increase in 

total stress along θ = 90 can not overcome the increase in wellbore pressure to maintain the 

injection rate. Along θ = 0, the time-dependent reduction in effective tangential stress is 

more pronounced and the stress becomes tensile after tD = 100 (~ 5 hours 50 mins). The 

result is practically helpful since it predicts the time to fracture initiation due to constant 

fluid injection.  

For no-flow (Fig. 2.14) or impermeable-matrix and permeable-fracture boundary 

condition (Fig. 2.15), the pore pressure at the wall evolves differently in the porous matrix 

region and fracture network. Therefore, dual effective stresses, σθθ – pI and σθθ – pII, are 

shown as bounds for the actual effective developed in fractured formation. It observed that 

the transient effective stress level is more critical in the fracture network than in the rock 

matrix region, i.e., higher in compression along θ = 90 and closer to tension along θ = 0. 
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Fig. 2.13—History of effective tangential stress at the wellbore wall for flux boundary condition 
(injection Q = 0.07 m3/day/m) and pressure boundary condition. 
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Fig. 2.14—History of effective tangential stress at the wellbore wall for impermeable (no flow) 
boundary condition. 
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Fig. 2.15—History of effective tangential stress at the wellbore wall for impermeable-matrix and 
permeable-fracture boundary condition. 

2.3.4.3 Comparison with Single-Poroelastic 

Finally, it is also of interest to compare the dual-poroelastic response in conjunction with 

the single-poroelastic counterpart that model the formation as compact rock, neglecting the 

compressibility and fluid flow in the fracture network. As shown in Figs. 2.16 to 2.19, the 

intact rock is modeled as single-poroelastic material while the fractured rock formation is 

modeled as dual-poroelastic material. The transient pore pressure distribution around 

wellbore are shown in Figs. 2.16 and 2.17. The result for single-poroelastic has been 

converted to the same time scale as the dual-poroelastic using the characteristic times of the 

two models. It is observed that the perturbed pore pressure in a fractured rock system at a 

specific time is less than that in a compact one due to the faster speed of fluid dissipation. 

On the other hand, due to the contribution of fracture compressibility, the fractured rock 
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exhibits higher effective stress concentration along the Sh direction and lower effective 

stress level along the SH direction as displayed in Figs. 2.18 and 2.19 for effective 

tangential stress. The difference in effective stress between single- and dual-poroelastic 

modeling approaches will translate into significant implications on wellbore stability 

evaluation of the mud-weight window for field planning and operations as illustrated later 

in Chapter 5. 
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Fig. 2.16—Time-dependent pore-pressure distribution along SH direction. The fluid boundary is 
constant pressure with permeable borehole wall. 
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Fig. 2.17—Time-dependent pore-pressure distribution along Sh direction. The fluid boundary is 
constant pressure with permeable borehole wall. 
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Fig. 2.18—Effective tangential stress distribution along SH direction at tD = 10 (~ 35 mins). The fluid 
boundary is constant pressure with permeable borehole wall. 
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Fig. 2.19—Effective tangential stress distribution along Sh direction at tD = 10 (~35 mins). The fluid 
boundary is constant pressure with permeable borehole wall. 

 

2.4 Rectangular and Cylindrical Geometries 

2.4.1 Rectangular Strip and Solid Cylinder2 

2.4.1.1 Background 

The poromechanics solutions for laboratory setups with initial and boundary conditions on 

prepared samples easily traverse the boundaries of various fields such as geomechanics and 

biomechanics. The two-dimensional Mandel-type problem geometry assumes a rectangular 

strip shape in Cartesian coordinate or cylindrical disk samples in polar coordinate. In 

geomechanics, such configurations are used in common uniaxial and triaxial testing of 

                                                 
2 Part of this section was published in the J. Appl. Mech., 77(1): 011002-1-011002-18 (Nguyen and 
Abousleiman 2010) 
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porous rock specimens (Dickey et al. 1968; Abousleiman and Cui 1998) or in simulating 

sudden stress relief of a long core removed from subsurface wellbore (Wang 2000). 

Meanwhile, this problem geometry is equivalent to the popular unconfined compression 

test in the biomechanics society, in particular, for testing cartilages and bones (Buschmann 

et al. 1998). Hence, distributions and evolutions of stress, displacement, and pore pressure 

in the samples under these setups and conditions are of important values and have been 

investigated by many researchers. 

Mandel (1953) presented the first solutions for the isotropic consolidation of an 

unconfined soil layer using Biot’s theory of poroelasticity (1941), demonstrating the non-

monotonic pore-water pressure response, known as the “Mandel–Cryer effect,” which is a 

distinctive feature of the coupled consolidation theory. Kenyon (1979) provided solutions 

for transversely isotropic material using Terzaghi’s uncoupled consolidation theory (1943), 

which is a limiting case of Biot’s poroelasticity. Later, Abousleiman et al. (1996) extended 

Mandel’s original solution to the full transversely isotropic case and provided the explicit 

expressions for stress, pore pressure, displacements, and fluid flux. Recently, Hoang and 

Abousleiman (2009) provided the poroviscoelastic solution accounting for the intrinsic 

nature of the orthotropic viscoelastic matrix structures of many porous materials such as 

articular cartilage. Also in biomechanics, Kameo et al. (2008) published isotropic solutions 

for transient response of fluid pressure under uniaxial cyclic loading. These 

poromechanical solutions to the original Mandel’s problem have been used as a benchmark 

for testing the validity of numerical codes of poroelasticity (Christian and Boehmer 1970; 

Cui et al. 1996; Yin et al. 2006; Phillips and Wheeler 2007). In addition, the rectangular 
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strip geometry also matches one of the testing configurations of stiff clay samples in 

geomechanics (Dickey et al. 1968) or articular cartilages in biomechanics (Odgaard and 

Linde 1991; Wang et al. 2003). 

On the other hand, testing of solid cylindrical samples subjected to load perturbation 

can be considered an axisymmetric Mandel type problem due to its radial symmetry and 

plane-strain/generalized plane-strain nature (Saada 1974). Armstrong et al. (1984), 

following Mandel’s approach, derived the isotropic poroelastic solution simulating the 

unconfined compression of articular cartilage disk and showed results for step and ramp 

loadings. Independently in the field of geomechanics, Abousleiman and Cui (1998) 

published a more general cylinder solution accounting for the transversely isotropic nature 

of rock samples and arbitrary time-dependent loading condition. The solution was later 

extended to incorporate the effect of lateral confining stress and results for uniaxial and 

triaxial testing under ramp loading condition were demonstrated (Cui and Abousleiman 

2001). Subsequently, Cowin and Mehrabadi (2007) also gave the same unconfined 

anisotropic poroelastic solution with results for bone testing. 

This section shows the derivations of the analytical solutions for Mandel-type problems 

in dual-poroelastic media. By noting the parallelism between plane strain and radial 

symmetry, the solutions for strip and cylindrical geometries are analogously derived and 

expressed in closed form in the Laplace-transform domain as well as in the time-domain. 

The developed solutions describe the consolidation of a rectangular strip or circular disk 

sample under confined or unconfined compression testing setups.  
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2.4.1.2 Rectangular Strip (The Mandel’s Problem) 

2.4.1.2.1 Problem Descriptions 

The original Mandel’s problem involves an infinitely long rectangular specimen 

sandwiched between the top and bottom by two frictionless plates as illustrated in Fig. 

2.20. It is assumed that the y-axis is infinitely long and the response along that direction is 

invariant. This geometry is represented by a perpendicular cross section (x-z) in a state of 

plane strain, i.e., the displacement and fluxes vanish in the y direction perpendicular to the 

paper εyy = 0. At time t = 0+, a constant compressive force 2F (per unit length) is applied to 

the rigid plates at the top and bottom, respectively. The left and right edges of the plates are 

stress-free and drained. The geometry and boundary conditions imply that every horizontal 

plane is a plane of folding symmetry. That is, horizontal planes remain horizontal (εzz = 

εzz(t)), fluid flow is parallel to the impermeable plates (qz = 0), and there are no shear 

stresses on the plane (σxz = 0). In addition, the responses of all quantities are symmetric 

about the centerline z-axis (f(x) = f(−x)) (Mandel 1953; Abousleiman et al. 1996). 
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Fig. 2.20—The Mandel’s problem geometry and loading setup for a rectangular strip of transversely 
isotropic dual-poroelastic (fractured) material. 
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This work extends the original Mandel’s problem solution to transversely isotropic 

fractured rock as illustrated in Fig. 2.20. The new solution account for external boundary 

conditions that are generalized to time-dependent loading applications, i.e., F = F(t), Pc = 

Pc(t), and po = po(t) where Pc and po are the confining stress and fluid pressure on the outer 

boundary (x = a). Additionally, the axial loading can represent either applied vertical 

strain/displacement, )(tzz
∗ε  or )(tuz

∗ , or an applied vertical load, 2F(t). Mathematically, the 

generalized boundary conditions are expressed as 

0);();(: III ====±= xzocxx tppptPax σσ , ......................................(2.64) 

)(;0:2,0 III tuuqqbz zzzzxz ===== σ , ......................................................(2.65) 

)(2:2 tFdxbz
a

a
zz == ∫

−

σ  load control, .......................................................... (2.66a) 

btutbz zzzzz 2/)()(:2 ∗∗ === εε  stroke control,............................................(2.66b) 

With the above boundary conditions, the governing equations is reduced to one-

dimensional and all variables are at most functions of x and t only. The plane-strain 

condition in the y direction and the stress equilibrium (Eq. 2.18) in the x direction require 

that εyy = 0 and σxx = Pc(t). Using these conditions into the constitutive Eqs. 2.15 and 2.16, 

the fluid contents are rewritten in terms of stress and fluid pressure as 

)( II
12

I
11

III pbpbPa czz −−+−= ϕσζ , ...................................................................(2.67) 

)( II
22

I
21

IIIIII pbpbPa czz −−+−= ϕσζ , ................................................................(2.68) 

where the material coefficient (N)a  and dimensionless parameters (N)ϕ  and bij are given as 
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Similarly, the compatibility Eq. 2.19 simplifies to 
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Integrating and accounting for the symmetry about the centerline (x = 0) yields 

)(1
IIIIII tCppzz ++= γγσ , ...................................................................................(2.73) 

in which the dimensionless coefficient 1113
(N)

1
(N)

3
(N) / MMααγ −=  and C1(t) is an 

integration constant depending only on time. Eliminating the stress components in the fluid 

contents, Eqs. 2.67 and 2.68, and substituting the resulting expressions into the fluid mass 

balance, Eqs. 2.13a and 2.13b, lead to the simplified diffusion equations in terms of the 

dual fluid pressure fields and applied stress as. 
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where the coefficient matrices A, D and Γ are defined in Eqs. 2.40 and 2.41. In compact 

matrix form, Eq. 2.74 is expressed as 
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in which the dimensionless coefficient matrixes ω , Dλ , Dκ  and the parameter (N)
fc  are 

given in Eqs. 2.46 and 2.47; xD and tD are the dimensionless distance and time. The system 

of Eqs. 2.73 and 2.75 together with relevant boundary conditions are sufficient for the 

general solution of the three variables },,{ III ppzzσ . 

2.4.1.2.2 Analytical Solutions  

Analogous to the inclined wellbore problem, the general solution to this coupled ordinary 

differential equation system is straightforward and admits the following form in Laplace 

transform domain 

)cosh()cosh(~~~ IIII
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where )(I
2

I
2 sCC =  and )(II

2
II
2 sCC =  are arbitrary coefficients to be determined from 

boundary conditions; (N)ξ , (N)g , and (N)m  are coefficients as given in Eqs. 2.52 to 2.54; 

(N)f  is defined as 
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Next, the non-zero stress and displacement components are obtained by substituting the 

pressure expressions into Eqs. 2.73 and 2.15 to get 
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where  the lumped coefficients 0A , 1A , (N)
2A , (N)h , f, and g  are given as 
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The remaining three unknowns )(~
1 sC , )(I

2 sC  and )(II
2 sC  are determined from the fluid 

pressure boundary conditions for pI and pII at the edges xD = +/-1 and the vertical loading 

condition at the top zD = 1. Detail derivations of this solution for load-control and 

displacement-control vertical loading are presented in Appendix B. 

It is obvious that the solutions developed in here have the same functional forms as 

their single-poroelastic counterparts. The differences arise in the additional set of similar 

terms accounting for the secondary porosity coupled contributions. Requiring the 

secondary porosity porous medium to shrink to zero, all material parameters associated 

with the secondary porosity porous medium vanish and the current solution naturally 
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simplifies to single-porosity solution as demonstrated by Nguyen and Abousleiman (2010a) 

for isotropic case. 

The newly developed dual-poroelastic solution in Laplace transform domain is too 

complicated to be inverted analytically back into the time domain. However, the time 

domain solution can be efficiently computed using numerical inversion methods such as 

the Stehfest’s algorithm (1970). Though robust, the numerical inversion schemes may 

diverge and fall short in modeling certain loading conditions such as cyclic or piecewise 

loading function (Chen et al. 1994). As a result, it is of benefit to obtain a true time-domain 

analytical solution for using where the numerical inversion of Laplace transform fails. 

Derivation of the general time-domain solution in terms of infinite series was published by 

Nguyen and Abousleiman (2010a) in which explicit expressions for three unconfined 

uniaxial loading cases such as step loading, cyclic loading and linear-ramp loading were 

summarized. So far, the analysis applies only to strip problem in Cartesian coordinate. It 

will be shown in the next section that the extension to cylindrically axisymmetric problem 

is analogously straightforward. 

2.4.1.3 Solid Cylinder (The Axisymmetric Mandel-type Problem) 

2.4.1.3.1 Problem Descriptions 

In this section, the compaction of a saturated solid cylinder sandwiched between a top and 

bottom impermeable, rigid, and frictionless plates as illustrated in Fig. 2.21 is investigated. 

The cross section of the cylinder is circular. The axial loading is represented either by an 

applied axial displacement/strain, )(tzz
∗ε  or )(tuz

∗ , or an applied vertical load, F(t). 

Additionally, a confining stress Pc(t) as well as a fluid pressure po(t) can be applied on the 
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lateral surface. In common laboratory setting, the confining stress and fluid pressure at the 

outer boundary (r = R) are often the same, i.e., Pc(t) = po(t).  

Mathematically, the boundary conditions are expressed in cylindrical coordinate as 

0);();(: III ====== rzrocrr tppptPRr σσσ θ , ................................(2.86) 

)(;0:2,0 III tuuqqhz zzzzzrz ====== θσσ , ............................................(2.87) 
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Fig. 2.21—The axisymmetric Mandel-type problem geometry and loading setup for a solid cylinder of 
transversely isotropic dual-poroelastic (fractured) material. 

With the aforementioned setup, the problem is obviously axisymmetric providing that 

at any time the shear stresses and strains 0,0 ==== zrzr θθθθ εεσσ  and all other 
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variables are independent of θ. The geometry and boundary conditions imply that every 

horizontal cross section is a plane of folding symmetry. That is, horizontal planes remain 

horizontal (εzz = εzz(t)), fluid flow is in the radial direction only (qz
I = qz

II = 0) and there are 

no shear stress on the plane (σrz = 0). Under such conditions, a generalized plane strain 

condition naturally manifests in any cross-sectional plane (Saada 1974). Consequently, the 

governing equations are reduced to one-dimensional and all variables are at most functions 

of r and t only. Specifically, the fluid contents are expressed in terms of stress and fluid 

pressure as 

)( II
12

I
11

III pbpbSa zzrr −−++−= ϕσσζ θθ , ........................................................(2.89) 

)( II
22

I
21

IIIIII pbpbSa zzrr −−++−= ϕσσζ θθ ,......................................................(2.90) 

where )()( 33 tMtS zzzz ε= ; (N)a , (N)ϕ  and bij are the same as defined in the inclined 

wellbore solution, Eqs. 2.33 to 2.35b. Similarly, the compatibility Eq. 2.20 simplifies to 
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Integrating twice and seeking for bounded expression yields 

)(1
IIIIII tCpprr ++=+ γγσσ θθ ,..........................................................................(2.92) 

in which the dimensionless coefficient )/1( 1112
(N)

1
(N) MM−= αγ  and C1(t) is an 

integration constant depending only on time. Eq. 2.91 is used to eliminate the in-plane 

stress components in the fluid contents, Eqs. 2.89 and 2.90. The resulting expressions are 

substituted into the fluid continuity Eqs. 2.13a and 2.13b to get the diffusion equations as 
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where )/)(/1(/ 222 rrrr ∂∂+∂∂=∇ ; A, D and Γ are coefficient matrices as defined in Eqs. 

2.40 and 2.41. In terms of dimensionless coefficients, Eq. 2.93 is expressed as 
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where the coefficient matrices ω , DΓ , Dκ  and (N)
fc  were defined in Eqs. 2.46 and 2.47. 

The dimensionless time tD and the differential operator 2
,Dn∇  are 
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The system of Eqs. 2.92 and 2.94 together with appropriate boundary conditions are 

sufficient for the general solution of the three variables },,{ III pprr θθσσ +    

2.4.1.3.2 Analytical Solutions 

Analogous to the strip problem, the Laplace-transform general solutions for the dual pore-

pressure fields are first derived as 
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in which I0 is the modified Bessel function of the first kind of order zero and all other 

parameters are the same as previously defined in the strip loading solution. Eqs. 2.95 and 

2.96 also imply that both pressure field must be finite at rD = 0. Making use of the pressure 
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expressions, other solutions for stresses, displacements, and strains follow naturally from 

the constitutive equation as 
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where  the lumped coefficients 0A , 1A , (N)
2A , 0B , 1B , (N)

2B , f, g, and (N)h  are 
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In addition to )(~
1 sC , )(I

2 sC  and )(II
2 sC , the fourth undetermined quantity in the solution is 

the axial strain 33/~)(~ MSs zzzz =ε . All of these coefficients and variables are determined 

using boundary conditions of vertical stress/displacement, radial stress, and dual pressure 

fields. Again, details derivations are presented in Appendix C. Again, the corresponding 

time-domain isotropic solution in terms of infinite series is also derived and presented in 

Nguyen and Abousleiman (2010a). 

It is easy to verify that the above solution reduce to the single-poroelastic solid cylinder 

solution as presented by Cui and Abousleiman (2001) by allowing either the primary or the 

secondary porosity porous medium to vanish. It should be noted that Cui and Abousleiman 

expressed the solution using a different set of material coefficients such as undrained and 

drained Poisson ratios {νu, ν} and storativity coefficient S. The reduction to single-

poroelastic solution in the Laplace transform domain for isotropic case is shown in Nguyen 

and Abousleiman (2010a).  
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2.4.1.4 Results and Discussions 

The results for rectangular strip and solid cylinder are presented and studied in a parallel 

manner to highlight the different responses of the two geometries. The fractured rock’s 

material properties are the same as listed in section 2.3.4.1. Let Pc(t) = po(t) = 0, resulting in 

unconfined uniaxial loading condition which is the common laboratory testing setup for 

geo- and bio-material. The analysis is carried out for step loading, i.e., F(t) = F×H(t) or 

)()( tt zzzz Η×= ∗εε . Results for other loading applications are discussed later in Chapter 5. 

For laboratory testing, the strip’s cross section is set as 2(a×b) = 6×10 cm while the 

cylinder’s diameter and height are also 2(R×H) = 6×10 cm. The transverse anisotropy is 

modeled by different ratios of material coefficients between the isotropic plane and the 

transverse direction, i.e., 31 / EEnE =  and  1312 / vvnv = . Different ratios define different 

degrees of anisotropy and 1== vE nn  denote isotropic material.  

2.4.1.4.1 Dual-Poroelastic Pressure and Stress Evolutions 

The analytical solution shows that there are two eigenvalues, ξI and ξII, which physically 

correspond to the effective pressure diffusion coefficients in the porous rock matrix and the 

fracture network, respectively. The relative time scale among between the flow processes 

in fractured porous media can be assessed by calculating the diffusion coefficients from 

these eigenvalues neglecting the interporosity flow contribution, i.e., (N)(N) /ξsc =  and 

(N)2(N) / catch =  (or (N)2(N) / cRtch = ). This data set gives 

matrix hours 4.3 s 12245;/scm 103.7 I24I ≅=×= −
chtc  
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fracture  s 4.6/s;cm 4.1 II2II == chtc  

Hence, fluid diffusion process that takes only seconds in the fracture network requires 

hours in the porous rock matrix. The histories of dual pore-pressure changes in the center of 

the specimens are illustrated in conjunction with the single-poroelastic’s responses in Figs. 

2.22 and 2.23. The single-poroelastic’s results are obtained by requiring the bulk volume 

fraction of either the fracture network or the porous matrix to vanish (vII→ 0 ⇒ ω = κD = 0 

or  vI→ 0 ⇒ ω = κD = 1). In Figs. 2.22 and 2.23, the dimensionless time for single-

poroelastic results are scaled with respect to the effective characteristic time of the overall 

dual-poroelastic system tch = 19 s. The results display typical non-monotonic poroelastic 

behaviors in term of the Mandel-Cryer effect. After initial loading, the pore pressure near 

the lateral surface must dissipate due to access to drainage, effectively making the 

specimen more compliant near the sides and stiffer in the middle region. Therefore, there is 

a load transfer to the middle region, as reflected in the history of vertical stress in Figs. 

2.24, such that the pore pressures continue to rise after the initial jumps due to Skempton’s 

effect. At long time, the pore-pressure buildup decrease due to subsequent fluid diffusion. 

Clearly, there are two distinct responses, especially in the matrix’ pressure, signifying the 

dual time scales that is not captured in the single-poroelastic solution. The first pressure 

peaks in both the matrix and fracture network correspond to the characteristic time scale of 

the fracture network. Being more fluid permeable, the pressure in the fracture dissipates 

faster and quickly falls below the matrix’s pressure. As time progresses, the matrix’s 

pressure seeks to build up non-monotonically again according to the matrix’ time scale 

while simultaneously feeding fluid into the fracture network via interporosity fluid 



 

 71

exchange. In fact, fluid exchange with the fracture system negates the second pressure peak 

in the matrix. The contribution of interporosity exchange can be visualized by looking at 

the separation between the matrix’s pressure with and without interporosity flow in both 

Figs. 2.22 and 2.23. 
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Fig. 2.22—Pore pressure histories in the center of an isotropic rectangular-strip geometry under 
uniaxial step loading. 
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Fig. 2.23—Pore pressure histories in the center of an isotropic solid-cylinder geometry under 
uniaxial step loading. 
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Fig. 2.24—Total vertical stress histories at xD = rD = 0 and xD = rD = 1 for both geometries under 
uniaxial step loading. 

Next, the pore pressure responses due to a step loading of constant vertical strain for both 

geometries are shown in Fig. 2.25. The results are for the case of no interporosity flow, λD 

σ0=F/πR2σ0=F/πR2
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= 0, and normalized by 0εzE . It is interesting to observe that the well-known Mandel-Cryer 

effect, in which the pore pressures continue to rise after the initial values, does not manifest 

in the rectangular strip geometry. Physically, for a constant step load (σ0), the material is 

effectively softened on the outside leading to redistribution of the constant applied load to 

the middle region and simultaneously increasing the pore pressures. Under a constant 

vertical strain (ε0), the vertical stress relaxes as the material softens so that there is no extra 

pore pressure generation. However, this is not the case for solid cylinder geometry where 

the non-monotonic pore pressure behavior still exists. Mathematically, this can be 

explained by looking at the coupled diffusion equations for both geometries. Under 

unconfined vertical strain application, the stress and corresponding diffusion equations in 

terms of strain components of each geometry become: 

Rectangular strip (Eqs. 2.73 and 2.74) 
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Solid cylinder (Eqs. 2.92 and 2.93 ) 
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As a result, pressure diffusion in strip geometry is coupled with the rate of vertical 

strain application. When this strain rate is constant (εzz(t) = ε0), the diffusion process is 

uncoupled from the deformation and a regular diffusion phenomenon is observed. On the 

other hand, diffusion in solid cylinder is governed by the radial and tangential strain rate in 

addition to the vertical strain rate. The non-zero volumetric strain rate, 

rrε(∂ tzz ∂++ /)εεθθ , acts as a source/sink term for pore pressure generation in the 

diffusion equation, leading to the non-monotonic pressure behavior. It is obvious that the 

response of strip and solid cylinder geometries are analogous and characterized by two time 

scales. In the following, the effects of governing parameters and material anisotropy are 

shown based on solid-cylinder results. 
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 Fig. 2.25—Normalized pore pressure histories at the center (xD = rD = 0) of the sample under 
unconfined uniaxial step strain (εzz = ε0×H(t)) for both rectangular strip and solid cylinder geometries 
(λD = 0). 
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2.4.1.4.2 Effects of Dual-Poroelastic Parameters 

The analytical solutions, expressed in normalized position and time, show that pressure 

and stress depend on the following set of dimensionless parameters {ω , III,ω , Iγ , IIγ , Iς , 

IIς , Iϕ , IIϕ , Dλ , Dκ }. The physical range for these coefficients are:  0 ≤ ω, Dκ ,  I
cγ , II

cγ , 

Iϕ , IIϕ , Iς , IIς  ≤ 1; Dλ  ≥ 0; and -1 ≤ III,ω  ≤ 1. The ratios, ω and III,ω , represent relative 

storage of the fracture network and cross storage between the porous matrix and fracture. 

Although it is common to assume that III,ω  = 0, it has been shown that III,ω  is non-zero 

and significant (Berryman and Wang 1995). The parameters Iγ , IIγ , Iς , and IIς   

correspond to the poroelastic coupling of the system, i.e., when Iγ , IIγ , Iς , IIς  → 1, the 

solid-to-fluid and fluid-to-solid coupling are the most pronounced and vice versa. 

Similarly, Iϕ  and IIϕ  denote the coupling effect of axial loading on the pore pressure 

response. For isotropic material, Iϕ  = IIϕ  = )1/()21( vv −− . The dimensionless 

interporosity parameter, λD, is a measure of the flow exchange between the matrix and the 

fracture. The macroscopic mobility ratio, Dκ , indicates the relative macroscopic flow 

ability of the fracture system and the matrix. The storage ratios and dual-poroelastic 

dimensionless coefficients affect the responses in two ways: they modify the magnitude 

and partially control the speed of evolution. The histories of pore pressure at the center of 

the cylinder and axial stress for different values of ω are shown in Figs. 2.26 and 2.27.  
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 Fig. 2.26—Effect of storage ratio ω on pore-pressure histories at the center (rD = 0) of isotropic solid 
cylinder sample under unconfined uniaxial step loading. 
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 Fig. 2.27— Effect of storage ratio ω on axial stress history in isotropic solid cylinder sample under 
unconfined uniaxial step loading. 
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Fig. 2.28—Effect of interporosity coefficients λD on pore pressure histories at the center (rD = 0) of 
isotropic solid cylinder sample under unconfined uniaxial step loading. 
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 Fig. 2.29—Effect of interporosity coefficients λD on axial stress history in isotropic solid cylinder 
under unconfined uniaxial step loading. 
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The effect of interporosity exchange parameter, λD, is illustrated through the pore pressure 

and axial stress evolutions in Figs. 2.28 and 2.29. For no interflow, the dual-non-

monotonic pressure buildups in the center of the cylinder are clearly observed. The higher 

the interflow coefficient, the closer the matrix and fracture pressure converge to each other 

and the less distinct the dual behavior becomes. As λD → ∞, the pore pressure in the matrix 

is instantaneously equilibrated with the fracture’s pressure which renders the system single-

response. The corresponding axial stress history in Fig. 2.29 also reveals two stages of load 

transfer into the middle region of the cylinder for intermediate values of λD. In other words, 

interporosity exchange equilibrates the dual pore pressures and reduces the non-monotonic 

matrix’s pressure buildup in the center of the cylinder.  
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Fig. 2.30—Effect of macroscopic mobility ratios Dκ  on pore pressure histories at the center (rD = 0) 
of isotropic solid cylinder under unconfined uniaxial step loading. 
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 Fig. 2.31—Effect of macroscopic mobility ratios Dκ  on axial stress history at the center of isotropic 
solid cylinder under unconfined uniaxial step loading. 

On the other hand, the macroscopic mobility ratio directly alters the dual time scales 

which are shown in Figs. 2.30 and 2.31. It is seen that the higher the mobility ratio, the 

more pronounced the characteristic dual response exhibits due to the separation of the 

characteristic time scales. As the mobility ratio approaches 0.5, the response converges to 

single-permeability’s one. The different matrix and fracture pore-pressure responses for Dκ  

= 0.5 in Figs. 2.30 and 2.31 is due to the effect of contrasting compressibility. 

2.4.1.4.3 Effects of Material Anisotropy 

The history of pore pressure at the center of the cylinder for the case of 31 / EEnE =  = 0.5, 

1, 2 with 1312 / vvnv =  = 1 is presented in Fig. 2.32. The magnitude of the initial and non-

monotonic pore-pressure response varies significantly with different ratios of En . The 
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greater the ratio En  is, the higher the dual pore pressures are because more of external axial 

loading is transferred to the fluid when the solid frame is less stiff in the loading direction. 

In Fig. 2.33, the pore pressures are plotted for the case of vn  = 0.5, 1, 2 with En  = 1. 

Similar trends to the previous ones are observed. The material anisotropy and time effects 

on displacements are shown in Figs. 2.34 and 2.35. 
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Fig. 2.32—Effect of different isotropic-to-transverse Young modulus ratios ( 31 / EEnE = ) on pore 
pressure history at the center (rD = 0) of solid cylinder under unconfined uniaxial step loading. 
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Fig. 2.33— Effect of different isotropic-to-transverse Poisson ratios ( 1312 / vvnv = ) on pore pressure 
history at the center (rD = 0) of solid cylinder under unconfined uniaxial step loading. 

In Fig. 2.34, the axial displacement is plotted for both variations in En  and vn . It is 

obvious that En  has more significant effect on vertical consolidation than vn  because En  

directly controls the compliance of the sample in the loading direction. On the other hand, 

vn  is related to the Poisson effect which has more impact on the lateral responses. 

Therefore, for the same En , the final vertical consolidation is the same although the 

transient response are different. The corresponding radial displacement at the cylinder 

lateral surface is presented in Fig. 2.35 in which positive values indicate tension 

(expansion). As expected, varying vn  changes the radial displacement significantly. For all 

cases of En  and vn , the sample is initially expanded then contracted because the short-time 

(undrained) Poisson’s effect – when the sample appears to be stiffer – is higher than the 

long-time (drained) one.  
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Fig. 2.34—Normalized axial displacement history of solid cylinder under unconfined uniaxial step 
loading for different ratios of 31 / EEnE =  and 1312 / vvnv = . 
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Fig. 2.35—Normalized radial displacement history at rD = 1 of solid cylinder under unconfined 
uniaxial step loading for different ratios of 31 / EEnE =  and 1312 / vvnv = . 
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2.4.1.4.4 Special Case of One-Dimensional Consolidation 

It is also of interest to demonstrate that the generalized Mandel’s strip problem can be 

rearranged to arrive at the classical one-dimensional consolidation of a laterally constrained 

finite layer (Terzaghi 1943 and Biot 1941). Because xD = 0 is a symmetry plane and 

satisfies a no-flow and no-displacement condition, half of the strip geometry can be turned 

on its end with external loading conditions εzz = po = 0 and Pc ≠ 0 as depicted in Fig. 2.36. 

Here, Pc plays the role of vertical load, po = 0 implies a drained top surface, and εzz = 0 

signifies laterally constrained condition.   
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ε z
z
=

q z
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Fig. 2.36—Schematic showing the equivalency between the Mandel’s problem and the one-
dimensional consolidation of a finite layer by simplifying the loading condition and considering the 
symmetry of the problem (Pc ≠ 0, po = εzz = 0). 

The normalized dual pore-pressure distributions from top to bottom of the one-

dimensional column at various times are plotted in Fig. 2.37. The instantaneous matrix 

fluid-pressure response is 86% of the applied load, lower than its fracture’s counterpart at 

92%. Since the column is constrained laterally, the dual pore-pressure fields are uncoupled 

from the stress or deformation field as derived in Eq. 2.186. Consequently, there is no non-
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monotonic pressure behavior after initial loading in the column as previously shown in the 

work of Lewallen and Wang (1998). The histories of the matrix and fracture pore pressure 

at depths of xD = 0.1 (near the bottom) and 0.9 (near the top) are illustrated in Fig. 2.38. 

The corresponding settlement at the top of the column is shown in Fig. 2.39 in 

conjunction with the single-poroelastic’s response considering the matrix properties only. 

The results clearly demonstrate two phases of consolidation for a fractured medium. The 

difference in the final settlement denotes the contribution of fracture deformation to the 

overall response. 
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Fig. 2.37—Evolution of normalized dual pore-pressure profile in a laterally constrained finite layer 
under suddenly imposed constant vertical load (Pc ≠ 0, po = εzz = 0). 
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Fig. 2.38—Normalized dual pore-pressure histories at two different depths in a laterally constrained 
finite layer under suddenly imposed constant vertical load (Pc ≠ 0, po = εzz = 0). 
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Fig. 2.39—Evolution of normalized settlement during drainage phase following a step load on finite 
layer (Pc ≠ 0, po = εzz = 0). 
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2.4.2 Hollow Cylinder3 

2.4.2.1 Background 

Hollow cylinder geometry is the most widely used geometry in laboratory for material 

characterization and, particularly in petroleum engineer, for the study of field phenomena 

such as formation consolidation, hydraulic fracturing, breakout, and sanding, to name a few 

(Ewy and Cook 1990; Schmitt et al. 1993; Sherwood and Bailey 1994; Papamichos et al. 

2001). The elastic solution to the Lamé problem (1852) – thick-walled cylinder under 

uniform, axisymmetric, external and/or internal confining pressure – have been treated 

extensively in classical elasticity (e.g., Kirsch 1898; Love 1944; Timoshenko and Goodier 

1970; Saada 1974).  

Coupling the elastic response with the transient effect of fluid flow, Rice and Cleary 

(1967) provided the fundamental plane-strain poroelastic solution for isotropic hollow 

cylinder. This solution is widely used to analyze rock formation response under rapid and 

intensive pressure drawdown. The solution for internal pressurization of hollow cylinder, 

used in laboratory testing to determine rock’ tensile strength and to simulate hydraulic 

fracturing was presented by Detournay and Carvalho (1989) and Schmitt et al. (1993). 

Later, Jourine et al. (2004) gave general solution that was used to simulate laboratory 

experiments with realistic boundary conditions. The extension from isotropy to transverse 

isotropy was first carried out by Kanj et al. (2003) to evaluate uncertainties in 

measurements of poromechanical parameters. Recently, Abousleiman and Kanj (2004) 

                                                 
3 Part of this section was presented at the Biot Conference (Nguyen and Abousleiman, June 2009, New York) 
and SPE ATCE (Nguyen and Abousleiman, SPE 123900, October 2009, New Orleans). 
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unified all analytical solutions for transversely isotropic hollow cylinder under the 

“umbrella” of the generalized Lamé problem. Their solutions applied to all experimental 

testing configurations that may be subject to stroke/load control axially and 

hydrostatic/non-hydrostatic laterally. Applications of these solutions encompassed a 

multitude of problems with cylindrical geometries ranging from solid cylinder to borehole 

(Kanj and Abousleiman 2004). Other notable hollow cylinder solutions in geomechanics 

included extension to incorporate thermal effect (Kanj and Abousleiman 2005) and 

chemical effect (Sherwood and Bailey; Kanj and Abousleiman 2007). In biomechanics, 

transversely isotropic models and solutions (Zhang et al. 1998; Rémond and Naili 2004; 

Gailani and Cowin 2008) were also used to simulate unconfined compression test of 

cortical bones or to model pore-pressure response in osteon. 

All of the above solutions model the porous medium as single-poroelastic continuum 

and thus fall short in describing the proper response of the well-known dual-porosity 

porous medium and such as bone structures (Cowin 1999) or the response of naturally 

fractured saturated rocks modeled and simulated as dual-porosity and dual-permeability 

porous medium. The analytical solutions for isotropic dual-poroelastic hollow cylinder 

subject to vertical and/or lateral confining stress and fluid pressure was presented by 

Nguyen and Abousleiman (2009). This section extends that solution to transverse isotropy 

and generalized the lateral boundary conditions to account for radial displacement. As such, 

the cylinder is subject to stress and fluid pressure variations, representing all experimental 

configurations, yet the pore pressure responses in the medium exhibit dual and transient 

evolutions. Results for all testing setup are plotted to demonstrate the different behaviors.  
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2.4.2.2 Problem Descriptions 

The schematic of a transversely isotropic fractured hollow cylinder in which the axis of 

material symmetry coincides with the cylinder axis is shown in Fig. 2.40. The sample is 

sandwiched between two smooth, rigid, and impervious plates. Axially, the geometry is 

subjected to either an applied axial load F(t) or an applied axial displacement )(tuz
∗ . 

Laterally, the cylinder can be subjected to inner/outer fluid pressure ( )(i tp  and )(o tp ) or 

fluid flux ( )(i tq  and )(o tq ) as well as inner/outer confining stress ( )(i tP  and )(o tP ). The 

generalized setups and solutions are intended for studying of various rock testing 

conditions and field problems by combining relevant boundary conditions. It is also 

important to recognize that the hollow cylinder problem reduces to the solid cylinder case 

when the inner radius approaches zero or converges to the vertical borehole problem in an 

infinite medium when the outer radius becomes very large compared to inner radius. The 

overall boundary conditions are generally expressed in cylindrical coordinates as follow: 

At the cylinder’s inner wall, r = Ri 

)(or)( ii tUutP rrr ==σ , ............................................................................. (2.110a) 

0== rzr σσ θ , ....................................................................................................(2.110b) 

⎪⎩

⎪
⎨
⎧

=

=+
==

III

i
III

i
III

)(
or)(

pp

tqqq
tppp

rr
,...................................................... (2.110c) 
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Fig. 2.40—The generalized hollow cylinder problem’s geometry and boundary conditions. 
 

At the cylinder’s outer boundary, r = Ro 

)(or)( oo tUutP rrr ==σ , ............................................................................ (2.111a) 

0== rzr σσ θ , ....................................................................................................(2.111b) 

⎪⎩

⎪
⎨
⎧

=

=+
==

III

o
III

o
III

)(
or)(

pp

tqqq
tppp

rr
,...................................................... (2.111c) 

Axially at the top or bottom, z = 0 or z = H 

0;0 III ==== zzrzz qqσσ θ , ......................................................................... (2.112a) 

)(
2

or)( o

i

t
A

drrt zz
hR

R zzzzzz
∗∗ == ∫ σ

π
σεε , ........................................................(2.112b) 

In the above, the subscripts i and o denotes inner and outer boundary condition 
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respectively; )( 2
i

2
o RRAh −= π is the cross sectional area of the hollow cylinder. ; )(tzz

∗ε  is 

an average axial strain due to the applied stroke/displacement )(* tuz ; hzz AtFt /)()( =∗σ  is 

the average axial stress applied on the cylinder. 

The geometry and boundary conditions imply that every horizontal cross section is a 

plane of folding symmetry. That is, horizontal planes remain horizontal ( )(tzzzz εε = ). No 

axial fluid displacement occurs ( 0III == zz qq ) and fluid flow is in the radial direction only. 

The end effects of shear and torsion are negligible and there is no axial shear stress on the 

plane. Under such conditions, a generalized plane-strain condition naturally manifests in 

any cross-sectional plane. Consequently, all response functions (except axial displacement 

uz(t)) are axially invariant and at most functions of radial distance r and time t only. 

Following Abousleiman and Kanj (2004), the next section discusses the generalized 

axisymmetric problem and presents the corresponding analytical solution. 

2.4.2.3 Generalized Analytical Solutions 

This is a designated generalized plane strain (z-independent) and axisymmetric problem (θ-

independent). First, the general dual-poroelastic solutions of pore pressures, fluid fluxes, 

and stresses are derived. Then solutions applicable to specific boundary conditions such as 

pressure or flux boundary conditions are presented. The generalized boundary conditions 

for this axisymmetric problem as depicted in Fig. 2.40 are expressed as follow: 

At the cylinder’s inner wall, r = Ri 

)(or)( i
)1(

i
)1( tUutP rrr ==σ , ........................................................................... (2.113a) 

0)1()1( == rzr σσ θ , ...................................................................................................(2.113b) 
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⎪⎩
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II(1)I(1)

i
II(1)I(1)

i
II(1)I(1)

)(
or)(

pp

tqqq
tppp

rr
, ............................................... (2.113c) 

At the cylinder’s outer surface, r = Ro 

)(or)( o
)1(

o
)1( tUutP rrr ==σ , .......................................................................... (2.114a) 

0)1()1( == rzr σσ θ , ...................................................................................................(2.114b) 

⎪⎩

⎪
⎨
⎧

=

=+
==

II(1)I(1)

o
II(1)I(1)

o
II(1)I(1)

)(
or)(

pp

tqqq
tppp

rr
, ............................................... (2.114c) 

Axially at the top or bottom, z = 0 or z = H 

0;0 II(1)I(1))1()1( ==== zzrzz qqσσθ , .................................................................. (2.115a) 

)(
2

or)( o

i

)1()1( t
A

drrt zz
hR

R zzzzzz
∗∗ == ∫ σ

π
σεε , .......................................................(2.115b) 

Due to the uniformity of the lateral boundary condition, the problem is obviously 

axisymmetric such that at any time the shear stress and strain components are identically 

zero ( 0== zr θθ σσ  and 0== zr θθ εε )  and all other response functions are independent 

of the circumferential angle θ. Consequently, the governing equations are reduced to one-

dimensional and all variables are at most functions of r and t only. Specifically, the 

equilibrium equation, Eq. 2.18, in polar coordinate becomes 

0=
−

+
∂

∂
rr

rrrr θθσσσ , .........................................................................................(2.116) 

Combining the above equilibrium equation with the stress-strain-pressure constitutive Eq. 

2.15 and the strain-displacement relations, Eq. 2.6, yields the Navier-type field equation 
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Integration with respect to r yields 

)(11 1
IIII

1
11

12II
1

11

12 tCp
M
Mp

M
M

rr =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+ αασσ θθ , ......................................(2.118) 

where C1 = C1(t) is an integration constant. Analogous to the solid cylinder problem, the 

fluid content constitutive equations simplify to 

)( II
12

I
11

III pbpbSa zzrr −−++−= ϕσσζ θθ , ................................................... (2.119)) 

)( II
22

I
21

IIIIII pbpbSa zzrr −−++−= ϕσσζ θθ , ................................................ (2.120)) 

where )()( 33 tMtS zzzz
∗= ε ; (N)a , (N)ϕ , and ijb  are given in Eqs. 2.69 to 2.71b. Then, the 

diffusion equation in terms of normalized time tD and radial distance rD is identical to the 

solid cylinder’s counterpart, Eq. 2.94. The Laplace transform solutions for the fluid 

pressures and fluid fluxes are straightforwardly expressed as 

∑
=

Κ+Ι++=
III,(N)

(N)
0

(N)
3

(N)
0

(N)
2

I
1

II(1) )]()([~~~
DDzz rCrCgCfSp ξξ , .............................(2.121) 
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(N)
2

(N)II
1

IIII(1) )]()([~~~
DDzz rCrCmgCfSp ξξ , ...................(2. 122) 
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1

(N)
3

(N)
1

(N)
2

(N)I(1) )]()([)1(~
DDDr rCrCq ξξξκ ,..................................(2.123) 

∑
=

Κ−Ι−=
III,(N)

(N)
1

(N)
3

(N)
1

(N)
2

(N)(N)II(1) )]()([~
DDDr rCrCmq ξξξκ , ..................................(2.124) 

where 0Ι  and 0Κ  are the modified Bessel functions of the first and second kind of order 

zero; (N)
2C  and (N)

3C  are coefficients to be determined from boundary conditions; other 
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parameters were same as previously defined in Eqs. 2.52 to 2.54. Making use of the 

pressure expressions, other solutions for stresses, displacements, and strains follow 

naturally from the constitutive equation as 
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in which the lumped coefficients 0A , 1A , (N)
2A , 0B , 1B , (N)

2B , f, g, and (N)h  are given 
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previously in the solid cylinder solution, e.g., Eqs. 2.103a to 2.107. 

TABLE 1—AXISYMMETRIC LOADING CONFIGURATIONS OF HOLLOW CYLINDER 
GEOMETRY UNDER AN AXIALLY DISPLACEMENT-CONTROLLED CONDITION 

Config. No. _1_ _2_ _3_ _4_ _5_ _6_ _7_ _8_ 

i)( rrσ  Pi Pi Pi Pi Pi Pi Pi Pi 

o)( rrσ  Po Po Po Po - - - - 

i)( ru  - - - - - - - - 

o)( ru  - - - - Uo Uo Uo Uo 

i
I )( p  pi 

III pp =  pi 
III pp =  pi 

III pp =  pi 
III pp =  

i
II )( p  pi 

III pp =  pi 
III pp =  pi 

III pp =  pi 
III pp =  

o
I )( p  po po 

III pp =  III pp =  po po 
III pp =  III pp =  

o
II )( p  po po 

III pp =  III pp =  po po 
III pp =  III pp =  

i)( rq  - qi - qi - qi - qi 

o)( rq  - - qo qo - - qo qo 

zzε  ∗
zzε  ∗

zzε  ∗
zzε  ∗

zzε  ∗
zzε  ∗

zzε  ∗
zzε  ∗

zzε  

Config. No. _9_ _10_ _11_ _12_ _13_ _14_ _15_ _16_ 

i)( rrσ  - - - - - - - - 

o)( rrσ  Po Po Po Po - - - - 

i)( ru  Ui Ui Ui Ui Ui Ui Ui Ui 

o)( ru  - - - - Uo Uo Uo Uo 

i
I )( p  pi 

III pp =  pi 
III pp =  pi 

III pp =  pi 
III pp =  

i
II )( p  pi 

III pp =  pi 
III pp =  pi 

III pp =  pi 
III pp =  

o
I )( p  po po 

III pp =  III pp =  po po 
III pp =  III pp =  

o
II )( p  po po 

III pp =  III pp =  po po 
III pp =  III pp =  

i)( rq  - qi - qi - qi - qi 

o)( rq  - - qo qo - - qo qo 

zzε  ∗
zzε  ∗

zzε  ∗
zzε  ∗

zzε  ∗
zzε  ∗

zzε  ∗
zzε  ∗

zzε  

Note: For axially load-controlled condition, simply replacing the condition  )(tzzzz
∗= εε  with )(tzzzz

∗= σσ  

 

There are seven unknown coefficients 1
~C , I

2C , II
2C , I

3C , II
3C , 4C , and ∗

zzε~  (or zzS~ ) to 

be determined from boundary conditions. These equations may include four equations for 

fluid pressure or fluid fluxes and two equations for radial stress or radial displacement at 

the inner and outer boundaries, respectively, in addition to one equation for axial loading. 

Table 1 summarizes the 16 different possible axially displacement-controlled 
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configurations for this generalized axisymmetric loading. An equal number of 

configurations (17 to 32) can be listed for the axially load-controlled scenarios by simply 

replaced the condition )(tzzzz
∗= εε  with )(tzzzz

∗= σσ  in the same table. 

The displacement-controlled loading condition involves a prescribed axial strain or 

displacement, i.e., )(tzzzz
∗= εε  is known. Hence, there are only six unknown coefficients to 

be determined from the following system of six linear equations 
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,......................................(2.131) 

where b1 and b2 correspond to the boundary conditions of the radial stress or displacement 

(Eqs. 2.110a and 2.111a); b3 to b6 represent the fluid pressure or flux boundary conditions 

(Eqs. 2.110c and 2.111c). The components of the coefficient matrix cij and vector bi for 

specific loading configurations are listed in Appendix E with the corresponding solutions.  

Under the load-control condition, the sample is subjected to a prescribed time-

dependent axial force that can be expressed in term of an average axial stress )(tzzzz
∗= σσ . 

The solution under this condition is best handled by converting the applied axial stress into 

an equivalent axial strain by using the general expression for vertical stress (Eq. 2.15) in 

conjunction with the load equilibrium equation (Eq. 2.112b). The approach yields 
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The above Eq. 2.132 is then substituted into Eq. 2.131 to allow expressing boundary 

conditions in term of the axially applied stress, ∗
zzσ~ . As a result, the same set solution 

expressions for displacement-controlled condition can be used for load-controlled 

counterpart in which the cij coefficients are updated to 

6,...,3,1;6,...,2,177 ==+→ jicccc jiijij , ......................................................(2.133) 

2.4.2.4 Results and Discussions 

This section illustrates the poroelastic responses for various loading configurations of a 

fully saturated, hollow cylindrical fractured sample. The same material properties adopted 

earlier for a Gulf-of-Mexico shale are used in these examples. 

Geometrically, the cylinder has an inner radius, Ri = 0.0127 m, and an outer radius, Ro 

= 0.0635 m so that Ro is five times Ri. At t = 0+, the sample is subjected to a compressive 

Heaviside-type axial load differential, F = 1.2×10-2 MN, leading an average axial stress 

differential of 1 MPa. Laterally, the specimen can be unconfined (Pi = 0 or Po = 0) and/or 

restrained (Ui = 0 or Uo = 0). The fluid can be drained on both (pi = po = 0) boundaries or a 

mixed of drained and jacketed boundaries (pi = 0, qo = 0 or qi = 0, po = 0). These can be 

also numbered as configuration 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, and 31 in the 

extended form of Table 1. Cases of fully jacketed configurations (20, 24, 28, and 32) are 

not considered since the solutions and responses reduce to the undrained elastic ones.   
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Two basic poromechanical responses, namely, pore pressure and total tangential stress, 

are illustrated for each of the considered loading configurations. In Fig. 2.41, the dual pore-

pressure responses at various locations in the hollow cylinder versus time are shown on the 

left column while the evolution of total tangential stress profile is annexed on the right side 

for configurations that involve only pressure boundary condition (17, 21, 25, and 29). For 

unconfined configuration 17, the sample is allowed to expand laterally thus induces tensile 

tangential stress near the two boundaries. In addition, the drained surfaces effectively 

soften the material on the boundaries and give rise to the Mandel-Cryer effect causing the 

pore-pressure response to vary non-monotonically over the course of time. Restricting the 

lateral movement at either or both boundaries increases the levels of stress and pore 

pressure responses in the cylinder. Naturally, fixing the radial displacement on the outer 

surface (configuration 21) leads to higher stress concentration than on the inner surface 

(configuration 25).  

For inner jacketed or outer jacketed case under laterally unconfined condition 

(configuration 18 and 19), the evolutions of pore pressure and tangential stress distributions 

in the cylinder are illustrated in Figs. 2.42. The results show that compressive total stress 

arises at the jacketed surface while tensile total stress develops at the drained surface. 

However, in term of effective stress, the reverse is observed, i.e., the sample is more 

susceptible to tensile failure near the jacketed surface and compressive failure near the 

drained surface due to the corresponding effective stress concentration.  

Similarly, the cases of jacketed and restrained lateral displacement on one surface 

(configuration 30 and 31) are displayed in Fig. 2.43. Again, higher total stress evolves at 
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the jacketed and restrained lateral surface. Finally, the responses for the rest of the loading 

configurations (22, 23, 26, and 27) are presented in Fig. 2.44. These results show the 

capability of the solutions to be applied to various problem settings to predict the 

poromechanical responses of fractured or multi-porous material. 
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Fig. 2.41—Pore pressure and tangential stress responses for four different lateral 
stress/displacement configurations under fluid-pressure boundary conditions (case 17, 21, 25, and 
29). 
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Fig. 2.42—Pore pressure and tangential stress responses for two different mixed fluid-pressure/flux 
boundary conditions under laterally unconfined condition (case 18 and 19). 
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Fig. 2.43—Pore pressure and tangential stress responses for two different mixed fluid-pressure/flux 
boundary conditions under laterally confined displacement (case 30 and 31). 
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Fig. 2.44—Pore pressure and tangential stress responses for four different mixed fluid-pressure/flux 
and stress/displacement lateral boundary conditions (case 22, 23, 26, and 27). 
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2.5 Summary 

In this chapter, a consistent anisotropic dual-poroelastic formulation is used to describe the 

proper responses of porous material exhibits multiporosity and/or multipermeability 

characteristics, such as secondary porosity or fracture. Specifically, the behavior of 

fractured rock formations is modeled as a dual-porosity and dual-permeability porous 

media. The model has been used to analyze the coupled responses of wellbore and 

consolidation through selected problem geometries including: (1) the inclined wellbore 

problem, which is of important applications in the field such as instantaneous drilling, 

pressurization of a borehole, production/injection from a reservoir; (2) the generalized 

Mandel-type problems, which is the canonical demonstration of poroelastic coupling, 

covering both rectangular and solid cylinder geometries; and (3) the hollow cylinder 

problem, which in the limiting case can be treated as a solid cylinder or wellbore problem.  

The corresponding generalized analytical solutions to these problems are derived and 

presented in explicit analytical forms for both transverse and isotropic dual-porosity and 

dual-permeability poroelastic materials. These solutions account for arbitrary time-

dependent external loading conditions, e.g., cyclic and ramping and can be tailored to 

simulate specific problems in laboratory testing (uniaxial, triaxial testing) or in the field 

(wellbore drilling, hydraulic fracturing). For ease of interpretation, the solutions are 

expressed in terms of dimensionless parameters such as storativity ratio, mobility ratio, 

dimensionless interporosity flow, etc. The model and solutions have been verified to reduce 

to the corresponding single-poroelastic ones. 

Results for pore pressure, stress, and deformation are plotted to demonstrate the 
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differentiating characteristic of the dual-poroelastic behavior as well as the impact of the 

presence of the secondary porosity medium – or fracture network – on the overall response.  

Specifically, the inclined wellbore solution shows that the different speeds of pressure 

dissipation in the matrix and fracture network lead to time-dependent modifications of pore 

pressure and stress distributions. Effective stress calculations show that the dual-poroelastic 

solution predictions differ substantially from single-poroelastic approach. For example, it 

was shown that the effective stress is higher in the compressive region and closer to tension 

in the tensile region around the wellbore in a fractured rock formation. Therefore, 

neglecting the contribution of the fracture network will likely mislead the predictions and 

optimization for field operations. 

The dual-porous system exhibits typical dual-time-scale responses. Parametric analysis 

has been carried out for solid cylinder problem to study the effects of the dual characteristic 

time scales, poroelastic coefficients, and material anisotropy on the transient behaviors.  

The rectangular Mandel’s problem is shown to simplify to the classical one-

dimensional consolidation problem and the results correctly reveal no non-monotonic 

pressure behavior after initial loading in contrast to previously published literature 

(Lewallen and Wang 1998).  

Finally, the solutions and results for hollow cylinder’s geometry provides general 

framework for simulating various problems spanning various fields including 

geomechanics and biomechanics. Particularly in the petroleum industry, this solution 

allows geomechanicians the ability to study the effect of fractures on the overall behaviors 

of naturally fractured rocks and reservoirs. In biomechanics, the same solutions can also be 
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applied to study the response of biological tissues well-known for their multiporosity 

makeup. Examples with realistic loading conditions for laboratory testing or field 

simulations will be provided in Chapter 5 to demonstrate the engineering applications of 

the presented dual-poroelastic formulation and solutions. 
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Chapter 3 

Dual-Porosity and Dual-Permeability 
Porochemoelasticity: Dual-Porochemoelasticity4 

3.1 Introduction 

It has long been recognized that chemically active porous media exhibit swelling and/or 

shrinking when brought in contact with aqueous solutions. This phenomenon observed in 

clays, shales, and biological tissues is generally termed osmosis which is the non-

hydraulically driven fluid flow. The chemical osmotic effect is generated from 

physicochemical interactions among pore fluid components with the invading fluid and the 

solid matrix, resulting in the membrane behavior, i.e., only transport of certain pore fluid 

species is allowed. A chemical potential gradient will induce simultaneous flows of fluid 

and solute in the porous medium. The coupled osmotic and solute transport processes can 

lead to strength weakening in addition to pore pressure elevation or reduction which could 

be very detrimental to the material integrity, in many engineering applications. Biot’s 

poromechanical analyses addressing the coupled chemical effect, i.e., porochemoelastic, 

                                                 
4 Part of this chapter was published in J. Eng. Mech. 135(11): 1281-1293  (Nguyen and Abousleiman 2009) 
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have been formulated extensively in various fields based on mixture theory and/or non-

equilibrium thermodynamic (Sachs and Grodzinsky 1987; Sherwood 1993; Heidug and 

Wong 1996; Huyghe and Janssen 1999).  

The conventional porochemoelasticity models fluid saturated porous medium as single-

porosity and single-permeability medium and thus fall short in describing the proper 

response of fractured rocks modeled as dual-porosity and dual-permeability porous 

medium (Barenblatt 1960; Warren and Root 1963; Bowen 1976; Aifantis 1977) or the 

behaviors of the well-known dual-porosity bone structures (Cowin 1999). Extension of 

Biot’s theory of poroelasticity (Biot 1941) to account for the dual-porosity and dual-

permeability nature of fractured porous media has been formulated by many researchers. 

Such formulations in the geomechanics domain (Wilson and Aifantis 1982; Valliappan and 

Khalili-Naghadeh 1990; Berryman and Wang 1995) only model the coupled solid 

deformation and fluid flow while not accounting for any chemical interaction. Recently in 

biomechanics, dual-porosity poroelastic models have been developed to include the effect 

of chemoelectrical interactions between pore fluid’s species and the solid skeleton (Huyghe 

1999; Simoes and Loret 2003) applicable to cartilaginous tissues. Their formulations, 

however, are the “dual-porosity and single-permeability” models in which the much slower 

transport processes in region with insignificant permeability are neglected to simplify the 

problem.  

The time-dependent single-porochemoelastic solution, incorporating chemical osmosis 

and solute transport effect simulating inclined wellbore drilling stability through compact 

shale formation, have been presented and investigated extensively (Abousleiman et al. 
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2001; Ekbote and Abousleiman 2003, 2005, and 2006). Later, the analytical solution for 

inclined wellbores drilled in naturally fractured rock formations modeled as dual-porosity 

and dual-permeability continuum was published (Abousleiman and Nguyen 2005). This 

solution was recently extended to include chemical osmotic potential while neglecting the 

solute transport effect in fractured shale formations (Nguyen et al. 2009). It was found that 

dual-porosity and dual-permeability analyses show significantly different behaviors when 

compared to the single-porosity and single-permeability porochemoelastic counterparts. 

These solutions laid the foundation for the complete inclined wellbore stability solution for 

fractured shale accounting for both chemical osmosis and solute transport (Nguyen and 

Abousleiman 2009). 

In this chapter, the analytical dual-porosity and dual-permeability porochemoelastic 

formulation and solution to two problem geometries, inclined wellbore and axially flow-

only solid cylinder, are presented. First, the single-porosity porochemoelastic governing 

equations, extended based on thermodynamic framework of dual-poroelasticity to 

incorporate the effects of secondary porosity, e.g., rock’s fractures, are briefly presented.  

The constituent porous matrix and fracture regions are generally modeled as imperfect 

semi-permeable membranes which can allows partial transport and exchange of the solutes. 

Individual porous matrix and fracture transport equations and inter-porosity exchange are 

written accounting for the fully coupled flow processes including hydraulic conduction 

(Darcy’s law), chemical osmotic flow, and solute diffusion (Fick’s law). The dissolution, 

deposition or chemical reaction as well as explicit modeling of electrostatic interaction 

between the solid skeleton and the saturating and/or invading fluid’s species (Nguyen and 
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Abousleiman 2010b) are not considered in this work. The resulting system of equations is 

applied to obtain the analytical solutions of inclined wellbore drilling and uniaxial testing 

of solid cylinder geometries expressed in the Laplace transform domain. Results for dual 

pore pressures and stresses are plotted and compared with the corresponding single-

porosity porochemoelastic counterparts to highlight the effects of fracture, chemical 

osmosis and solute transport on the overall responses.  

3.2 Mathematical Formulation 

This section briefly presented the governing equations describing the responses of dual-

porous and chemically active media within the frame work of dual-porosity and dual-

permeability porochemomechanics, hereafter termed “dual-porochemoelastic” for brevity. 

At the macroscopic level, the system is considered to consist of two co-located but distinct 

fluid-saturated porous continua:  the primary one represents the porous matrix with intrinsic 

properties I
ijklM  (stiffness), Iφ  (porosity), and I

ijκ  (mobility) occupying volume fraction vI 

of the total bulk volume and the secondary one represents the porous fractures with 

intrinsic properties II
ijklM , IIφ , and II

ijκ  occupying the remaining bulk volume fraction vII = 

1- vI. In other word, the overall domain is envisioned as containing two distinct porous 

continua, each possessing a skeletal framework and a saturated pore network. As a result, 

fractured formation will exhibit dual pore-pressure evolutions when subjected to stress and 

pressure perturbations. When the dual-porous medium is chemically active, additional 

coupled transport processes such as chemical osmotic and solute diffusion develop in both 

porous continua if there is imbalance in chemical activity or solute salinity. Additionally, 
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the primary and secondary porosity continua can communicate and may exchange fluid 

and/or solute mass. 

3.2.1 Chemical Potential 

The flow of fluid and its dissolving species are controlled by the total potential contribution 

from individual driving forces. In chemically active porous medium, the total driving force 

is the chemical potential which comprises of the fluid pressure and the chemical-activity-

driven pressure given as (Katchalsky and Curran 1967) 

]ln[RT]ln[RT rrrrrr mipVapV ςμ +=+= .........................................................(3.1) 

where rμ  = chemical potential of the rth fluid species (r = solvent and solutes), Vr = partial 

molar volume, p = thermodynamic pressure, R = universal gas constant, T = the 

temperature, rrr ma ς=  = chemical activity, rς  = chemical activity coefficient, mr = mole 

fraction with 1=∑r
rm , and i = number of solute’s dissociating ions. Eq. 3.1 is written for 

electroneutral fluid components and ignores the contribution of electrostatic potential 

acting on the dissociating ions in solution. In an ideal or dilute solution, the activity 

coefficient has the property that rς  → 1 as mr → 0 so rr ma ≅ . For simplicity, both the 

primary (I) and secondary (II) porosity  continua are assumed to comprise of a solid 

skeleton with interconnected pore space saturated with the same binary solution containing 

a solvent (f) and a solute (s) with mole fraction ms(N) and mf(N) = 1 – ms(N), respectively 

where (N) = I, II. 
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3.2.2 Constitutive Equations 

Because the total driving pressure is not the fluid pressure alone, the original Biot 

poroelasticity constitutive approach must be extended to account for the chemical 

potentials of all pore fluid species. The change in free energy density for a dual-porous 

medium completely saturated with a binary fluid solution can be expressed as (Coussy 

2004)5 

∑
=

+−=
sfr

rrrr
ijij dMdMddW

,

IIIIII )( μμεσ ................................................................(3.2) 

where σij = total stress tensor, εij = linearized total strain tensor, and (N)rM  = mass content 

of the pore fluid species in mole per unit reference total bulk volume. The above expression 

is written assuming infinitesimal deformation, isothermal condition, no fluid-solid chemical 

reactions and dissolution or deposition processes taking place. The chemical potentials of 

all pore fluid components in each porosity system are not independent but related by the 

well known Gibbs-Duhem equation as (Katchalsky and Curran 1967) 

0v
,

)N()N()N()N()N( =+− ∑
= sfr

rr dMdp μφ ....................................................................(3.3) 

In writing the above equation, it has been assumed that both primary and secondary pore-

space systems are completely saturated such that (N)(N)(N)(N)(N)(N)v ssff MVMV +=φ  where 

φ(N) = Vp
(N)/V(N) is the intrinsic porosity of the individual porous continua and v(N) is the 

bulk volume fraction. Application of the Gibbs-Duhem equation into the free energy 

density leads to 

                                                 
5 The free energy W in Eq. 3.2 is equivalent to the skeleton free energy Gs as defined in Eq. 3.66 by Coussy 
(2004)  
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IIIIIIIII vv dpdpddW ijij φφεσ −−= ..........................................................................(3.4) 

It is obvious that the free energy W admits εij, pI and pII as state variables instead of the 

chemical potentials )N(rμ  of all pore fluid components. As such the linearized constitutive 

equations follow naturally as (compression is positive) 

IIIIII dpdpdMd ijijklijklij ααεσ ++= ...........................................................................(3.5) 

III,

II

I

I
III )v(

φφ

εαφ
K
dp

K
dpdd ijij ++−= ..............................................................................(3.6) 

II

II

III,

I
IIIIII )v(

φφ

εαφ
K
dp

K
dpdd ijij ++−= ...........................................................................(3.7) 

where ijklM  = overall stiffness modulus tensor, the inverse of which is the compliance 

tensor ijklC ; (N)
ijα  = effective pore pressure coefficient; (N)/1 φK  and III,/1 φK  represent the 

apparent pore compressibility. 

The intrinsic porosity, φ(N), in Eqs. 3.6 and 3.7 can be replaced in favor of the variation 

in total fluid content (N)ζ  using the complete saturation condition and isothermal fluid state 

equation: 

(N)
0

(N)
(N)
0

(N)(N)(N)
(N)

0

(N)(N)(N)

(N)
0

(N)
(N) v)v(

)v(
sol

sol

sol

sol

sol

sol d
d

dMd
d

ρ
ρ

φφ
ρ

ρφ
ρ

ζ +=== ..................(3.8) 

(N)
(N)(N)

0

(N) 1 dp
K

d

f
sol

sol

=
ρ
ρ

...............................................................................................(3.9) 

in which (N)(N)(N) sfsol MMM +=  is the total fluid mass content (moles) and (N)solρ  is the 

fluid mass density (mole/m3); (N)/1 fK  is the isothermal fluid compressibility; and the 
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subscript 0 denotes initial value. Using Eqs. 3.6, 3.7 and 3.9 into Eq. 3.8 yields 
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I
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M
dp

M
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dpdd kkij ++−= εαζ ..............................................................................(3.11) 

where (N)(N)
0

(N)(N)(N) /v/1/1 fKKM φφ +=  and III,III, /1/1 φKM =  are the apparent 

storage coefficients of the dual-porous system. Additionally, it is necessary to obtain the 

variation of solute content by linearizing the relation 
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in which (N)(N)(N) / solss MMm =  = solute mole fraction and the initial porosity is related to 

the initial fluid mass content and density as (N)
0

(N)
0

(N)
0

(N) /v solsolM ρφ = . Substituting Eqs. 

3.10 and 3.11 into Eq. 3.12 gives the solute content variations as 
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In summary, the constitutive equations for a dual-porous and chemically active medium 

are: 

IIIIII ppM ijijklijklij ααεσ ++= ................................................................................(3.15) 
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where the differential operator d has been dropped for convenience.   

Eqs. 3.18 and 3.19 show that the variation in solute contents are not only related to 

pore-fluid composition (solute mole fraction) but are also affected by the dual pore 

pressures and total volumetric strain. For dilute concentration ( 1, II
0

I
0 <<ss mm ), the effect of 

fluid pressures and deformation on solute contents is small and can be neglected. On the 

other hand, Eqs. 3.15 to 3.17 have the same form as the dual-poroelastic formulation 

without chemical effect presented Chapter 2. It can be observed that the dual fluid 

pressures, not the chemical potentials, are important; and changing the fluid composition 

(or chemical activity) of the pore fluid at constant pressure will not affect the total stress, 

total strain and/or variation of fluid contents in the primary or secondary porosity. The 

chemical effect will, however, enter via the transient nature of the fluid and solute flows 

due to differences in the chemical potential across the dual-porous medium. 

3.2.3 Coupled Transport Equations 

Eq. 3.1 shows that chemical potential difference can be caused by imbalances in the fluid 

pressure or in the chemical activity/solute concentration. The presence of the chemical 

gradient results in simultaneous fluxes of the pore fluid species. Assuming that the flow in 
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each constituting continuum is independent of the flow in the other, separate sets of linear 

transport equations can be written for the primary and secondary porosity as: 

i
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i x
m

m
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x
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−∂+
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−∂= )(RT)( (N)

(N)
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12
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(N)
11

(N) ............................................................(3.20) 
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−∂= )(RT)( (N)

(N)
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(N)
22

(N)
(N)
21

d(N)s, .........................................................(3.21) 

where xi = the spatial coordinates; (N)
iq  = volumetric fluid flow vector through the porous 

medium per unit time (m⋅s-1); (N)(N)(N)d(N)s,
0 i

ss
ii

f qmqJV −≅  = solute diffusion flux (m⋅s-1) 

relative to that of the solvent in which (N)s
iq  = absolute solute volumetric flux relative to the 

solid framework.  

(N)
mnL  = phenomenological coefficients representing coupled transport processes such as 

hydraulic conduction (Darcy’s law), chemico-osmosis, and solute/ion diffusion (Fick’s first 

law). According to the Onsager principle, (N)
12

(N)
21 LL = , which results in only three 

independent transport coefficients for each constituting porous medium. These transport 

coefficients have been well identified in the literature and can be expressed in terms of 

familiar field and/or laboratory measurable parameters such as permeability, kij
(N), or 

mobility, (N)
ijκ , reflection coefficient, (N)χ , solute effective diffusion coefficients, (N),effs

ijD , 

as summarized in Table 2. The transport coefficients as presented in Table 1 are slightly 

modified from parameters as derived by Yeung and Mitchell (1993) to account for the 

limiting behavior of the effective solute diffusion when the material’s membrane behavior 

is ideal (Bader and Kooi 2005), i.e., the absolute solute fluxes vanish, 0(N) =s
iq , for perfect 
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membrane efficiency, 1(N) =χ . It has been shown theoretically and experimentally that the 

ability of membrane to hinder solute movement depend on factors such as solute 

concentration, particle size compared to pore scale (degree of compaction) and electrostatic 

interaction between the solute’s dissociating ions and the charged solid skeleton [cation 

exchange capacity (CEC)] (Katchalsky and Curan 1967; Fritz and Marine 1983). In fact, 

the effect of all chemicoelectrical interactions between the fluid and the solid skeleton are 

lumped into the reflection coefficient. Theoretical determination the reflection coefficient 

in terms of concentration, compaction and CEC were provided by Hanshaw (1964) and 

Fritz and Marine (1983). Generally, these transport coefficients (N)
mnL  are functions of solute 

concentration. When the system is not too far from equilibrium, i.e., when the macroscopic 

gradients are sufficiently small, these coefficients can be assumed to be constants. 

 

TABLE 2—COUPLED TRANSPORT COEFFICIENTS 
Coefficients Formulas Transport Processes 

11L  
ijκ  Hydraulic conduction – Darcy’s law; κij = kij /μ  mobility; 

kij = permeability and μ = fluid viscosity. 

2112 LL =  )/()( 00
fs

ij Vmκχ−  Chemical osmosis; χ = reflection coefficient or 
membrane efficiency [0,1]. 

22L  
ijf

s

f

seffs
ij

V
m

V
m

RT
D

κχ
2

0

0

0

0
,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+  

Solute diffusion - Fick’s first law seffs
ij DD 0

, )1( τφχ−=  

where sD0  = solute diffusion coefficient in free solution; φ 
= porosity; τ = tortuosity. 

 

3.2.4 Other Governing Equations 

Other governing equations are the strain-displacement relations (Eq. 2.6) and conservation 

equations which include the quasi-static stress equilibrium equation (Eq. 2.7), and mass 
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balance equations (Eqs. 3.22 to 3.25) accounting for interporosity fluid and solute exchange 

as follows 
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in which ui = displacement vector and Γ and Γs = interporosity fluid and solute volumetric 

fluxes. The solute mass conservations are written in terms of the absolute solute fluxes 

defined as (N)(N)d(N)s,
0

(N)
i

s
i

fs
i qmJVq −≅ . As such, Eqs. 3.23 and 3.25 become 
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The last terms in the bracket on the right-hand side of Eqs. 3.26 and 3.27 correspond to 

solute transport by advection and render the equations nonlinear. When the hydraulic 

diffusion ( (N)
ijκ ) is smaller than the effective solute diffusion ( RT/0

(N), iVD feffs
ij ), the solute 

diffusion mechanism dominates and advection contribution can be neglected (Yeung and 

Datla 1995). In addition, if the change in solute concentration is small, the solute transport 
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process can be linearized by taking 
i
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where ∇2 = Laplacian differential operator, (N)
0

(N) )/RT( sfs mVip =  = pressure equivalent 

term for solute concentration, and (N)
21D  and (N)

22D  are parts of a lumped transport 

coefficient matrix defined in terms of the original transport coefficients (N)
mnL  as: 
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In the above (N)
11D  and (N)

12D  correspond to the transport coefficients associated with the 

total fluid fluxes, (N)
iq . In the field, large concentration changes are usually encountered 

and the high hydraulic conductivity in the secondary porosity can lead to non-negligible 

advection effect. If these nonlinear effects are to be accounted for then numerical 

approaches such as finite difference or finite element are needed in subsequent solutions 

and analyses.  

Analogous to the local coupled flow mechanism, the driving forces for the interporosity 

volumetric fluid and solute transfer are the chemical potential gradient at the interface 

between the porous primary and secondary porosity continua. Extending Warren and Root 

(1963) approach, the interporosity fluid and solute exchanges are hypothesized to be 
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dependent upon the fluid pressure and solute concentration differences between the porous 

regions, the transport properties of the less-conducting region, e.g., primary porosity (I), 

and the geometrical characteristic 

)]()([ sIsIII
12

IIII
11 ppDppD −+−=Γ λ ..................................................................(3.31) 

)]()([ sIsIII
22

IIII
21

s ppDppD −+−=Γ λ ................................................................(3.32) 

in which λ is the geometric factor accounting for the geometry, distribution and 

connectivity of the dual-porous structure. 

The constitutive Eqs. 3.15 to 3.19, the transport Eqs. 3.20, 3.21, 3.31, and 3.32, the 

strain-displacement Eq. 2.6, and the conservation Eqs. 2.7 and 3.22 to 3.25 complete the 

governing equations for the behavior of dual-porosity and dual-permeability chemically 

active porous medium saturated with a binary pore fluid solution. Unlike previous work of 

others (Wilson and Aifantis 1982; Huyghe 1999) with appropriate simplifying assumptions 

regarding different time scales among various processes in the matrix or fracture, the 

current set of diffusion equations fully accounts for the dual-porosity, dual-permeability 

and dual-stiffness nature of the overall system. Therefore, the formulation can be generally 

applied to dual-porous system, especially where the apparent time scales are not 

significantly different from each other. On the other hand, because the linearized 

formulation do not account for any chemical reaction that would alter the mechanical 

behaviors of the dual-porous system, it results are limited to small range of perturbation of 

field variables. 
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3.2.5 Field and Diffusion Equations 

The above governing equations are further combined to yield the field and diffusion 

equations that are used to solve for the coupled stress and pore-pressure responses in 

general anisotropic materials. In this section, they are specialized to transversely isotropic 

and isotropic materials for cylindrical geometry. 

Transversely Isotropic Case.  In the case of transverse isotropy where the z axis is 

assumed to coincide with the overall axis of material rotation symmetry, the constitutive 

relations for dual-porochemoelasticity involve twelve independent material coefficients and 

are given as 
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In the above, the subscripts 1 and 2 denote properties in the isotropic plane and 3 represents 

the axis of rotational symmetric. The coefficients, 11M , 12M , 13M , 33M , 44M , and 55M  

are components of the drained overall elastic tensor for a transversely isotropic dual-porous 

material. (N)
1α  and (N)

3α  are Biot’s effective stress coefficients in the isotropic plane and 

transverse direction, respectively.  

The transversely isotropic equations are further reduced to the plane-strain (r-θ) case 

where all response functions are invariant along the axis of material rotational symmetry 

and the out-of-plane strain components are zero, i.e., 0== zrz θεε  and 0=zzε . The 

constitutive equations for in-plane stress components reduce to 
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with the strain components defined as 
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The quasi-static stress equilibrium equation becomes 
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Combining Eqs. 3.41 to 3.46 yields the compatibility equation as   
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where εkk = εrr + εθθ is the total volumetric strain and 2
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. Next, 

the diffusion equations are obtained by substituting the fluid and solute content constitutive 

Eqs. 3.37 to 3.40 into the fluid continuity Eqs. 3.22 to 3.25 as  
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with (N)
ijD  reduced to the transport coefficients in the isotropic plane, e.g., 
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Isotropic Case.  For isotropic dual-porous material, the constitutive equations for dual-

porochemoelasticity reduce to   
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And the compatibility relation (Eq. 3.47) becomes 
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where (N)η  is a lumped poroelastic coefficient defined as )1(2/)21(3 (N)(N) vv −−= αη  

and G  is the overall shear modulus of the system given as )1(2/ vEG −= . Again, the 

overall material coefficients are related to the constituting porosity region properties as 

given in Appendix A. Subsequently, the diffusion equations maintain the same forms as 

those of transversely isotropic case (Eqs. 3.48 to 3.51) with (N)
1α → (N)α , (N)

1κ → (N)κ , and 

(N),
1

effsD → (N),effsD . 

3.3 Inclined Wellbore 

This section presents the development of an analytical solution to analyze the wellbore 
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stability in chemically active fractured shale under the framework of the above dual-

porochemoelastic formulation.  

3.3.1 Problem Descriptions 

The inclined wellbore problem geometry is shown in Fig. 3.1. The undisturbed formation 

pore pressure and chemical activity or solute concentration are in equilibrium between the 

matrix and fracture and are denoted as p0 and fa0  or sm0 , respectively. The single-

porochemoelastic analytical solution for an inclined wellbore accounting for solute 

transport was published by Ekbote and Abousleiman (2006). The same approach is 

applicable to the current dual- porochemoelastic with solute transport model by 

incorporating relevant boundary conditions for stresses, dual pore pressures, and solute 

concentrations. 

After wellbore drilling, the borehole is filled with a drilling fluid having pressure pw 

and solute mole fraction s
wm  corresponding to a mud activity f

wa . Hence, the boundary 

conditions to be imposed at the wellbore wall, r = Rw, are 

)()())](2cos([ tpt wrdmrr +−Η−+= θθσσσ , ..................................................... (3.59a) 

)())(2sin( trdr −Η−−= θθσσ θ , ..........................................................................(3.59b) 

)()]sin()cos([ tSS yzxzrz −Η+= θθσ , ................................................................... (3.59c) 

)()(0
III tptppp w+−Η== , ................................................................................(3.59d) 

)]()()[/RT( 00
sIIsI tmtmVipp s

w
sf +−Η== , .......................................................... (3.59e) 
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(b) 

Fig. 3.1— (a) Schematic of an inclined wellbore in chemically active fractured rock formation; (b) far-
field stresses, pore pressure and solute concentration in the xyz local wellbore coordinate system. 
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And at the far field, r → ∞ 

zzzyyyxxx SSS === σσσ ,, , ................................................................. (3.60a) 

xzxzyzyzxyxy SSS === σσσ , , ...............................................................(3.60b) 

sf mVippppp 00
sIIsI

0
III )/RT(; ==== .......................................................... (3.60c) 

where t is time and H(t) is the Heaviside unit step function (H(t <0) = 0 and H(t ≥0) = 1). 

Sx, Sy, Sz, Sxy, Sxz, and Syz are far-field in-situ stresses transformed into the local wellbore 

coordinate (x,y,z) as depicted in Fig. 3.1(b). In the above σm, σd, and θr are parts of the 

stress boundary condition and rotation angle in polar coordinate (r,θ) for a circular 

borehole as defined in Cui et al. (1997). 

3.3.2 Analytical Solution 

As discussed in Chapter 2, the solution approach is to solve for perturbations/changes with 

respect to the initial reference state so that the initial conditions and far-field boundary 

conditions for all variables vanish identically. The remained boundary conditions at the 

borehole wall are then further decomposed into two sub-problems namely: (I) the plane 

strain problem and (II) the antiplane shear problem. The boundary conditions and solutions 

in the decomposition scheme are given as follows 

Problem I – Plane Strain 

The boundary conditions for perturbed quantities in Problem I at the wall (r = Rw) are 

))](2cos([)( rdmwrr tp θθσσσ −+−= , ............................................................. (3.61a) 

))(2sin( rdr θθσσ θ −= ,......................................................................................(3.61b) 
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0
III )( ptppp w −== ,.......................................................................................... (3.61c) 

])()[/RT( 00
sIIsI ss

w
f mtmVipp −== , ...................................................................(3.61d) 

Based on the above boundary loading conditions, the various response functions can be 

decomposed as (Carter and Booker 1982) 

))(cos(],,,,[],,,,[ s(N)(N)s(N)(N)
rrrkkrrkk nSSEPPpp θθσσε θθθθ −×= .................. (3.62a) 

))(sin( rrr nS θθσ θθ −×= ....................................................................................(3.62b) 

where θθSSEPP rrkk ,,,, s(N)(N) , and θrS  are functions of radial distance (r) and time (t) only 

and n is an integer number depending on loading conditions. Incorporating Eq. 3.62a into 

Eq. 3.47 to eliminate θ dependency and seeking bounded solutions gives 

n
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where C0 = C0(tD) is an arbitrary time-dependent coefficients to be determined from 

boundary conditions and rD = r/Rw is the dimensionless radial distance. Eliminating the 

volumetric strain in Eqs. 3.48 to 3.51, the diffusion equations become 
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in which the dimensionless parameters are defined as follows 
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Applying Laplace transform to Eq. 3.64 yields 
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where the tilde sign  ~  denotes the corresponding quantity in Laplace transform domain 

and s is the Laplace transform parameter. The solution to this system of coupled ordinary 
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differential equations (Eq. 3.67) can be found by uncoupling the individual equations using 

matrix diagonalization techniques (Farlow 1993). Here, the general solutions are 

straightforward and given by superimposing the homogenous solution and the particular 

solution as 
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where )((N)(N) sCC jj =  (j = 1,2) are arbitrary coefficients to be determined from boundary 

conditions; Kn is the modified Bessel functions of the second kind of order n; (N)(N)
jj l=ξ  

where (N)
jl  are the eigenvalues of the coefficient matrix )(1

DD ΓωκY += − s  with 

corresponding eigenvector }{ (N)
4

(N)
3

(N)
2

(N)
1 jjjj mmmm ; the coefficients (N)

jf  are given as 
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in which the superscript T denotes the transpose operation. Subsequently, the general 

solutions for stresses are easy to obtain by using the stress-strain-pressure constitutive 

equations (Eqs. 3.41 to 3.43), strain-displacement relations (Eq. 3.44) in polar coordinate, 

and equilibrium equation (Eqs. 3.45 and 3.46). For brevity, only the final general solutions 

for the stress components are presented here 
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in which )(33 sCC =  is an additional coefficients to be determined from boundary 

conditions; the lumped coefficients 0A  and (N)
jA  are given as follows (j = 1,2 and N = I, II) 
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To determine the unknown constants, 0
~C , (N)

jC  and 3C  the boundary conditions for 

Problem I are further decomposed into two contributing loading cases namely: axisymetric 

loading and deviatoric loading cases. The corresponding boundary conditions and solutions 

for two loading cases are listed in Appendix F. 

Problem II – Antiplane Shear 

The boundary conditions for perturbed quantities in Problem II at the wall (r = Rw) are 

)]sin()cos([ θθσ yzxzrz SS +−= ,.......................................................................... (3.78a) 
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0== θσσ rrr , ......................................................................................................(3.78b) 

0sIIsIIII ==== pppp , .................................................................................... (3.78c) 

No disturbance of fluid or solute flow is generated by this antiplane shear stress 

perturbation. The solution is elastic and the same as given previously for dual-poroelastic 

inclined wellbore, i.e., Eqs. 2.62a and 2.62b. 

The complete inclined wellbore solutions for stresses and pore pressures are obtained 

by superimposing the background state with non-zero solutions of the two perturbed sub-

problems as given in Chapter 2, Eqs. 2.63a to 2.63h. 

3.3.2 Results and Discussions 

A wellbore of radius 0.1 m is assumed to be drilled in a fractured shale formation 

characterized by in-situ stress, pore pressure, and temperature given as:  SV = 21 MPa, SH = 

18 MPa, Sh = 16 MPa, p0 = 10 MPa, T = 55oC at depth of 1000 meters. The formation is 

assumed to be saturated with a pore fluid having water activity fa0  = 0.88 (equivalent of 

150Kppm CaCl2 solution or sm0  = 0.034). The wellbore is assumed to be drilled inclined, 

ϕz = 60, along the maximum horizontal in-situ stress direction, ϕy = 0, and is filled with a 

drilling fluid (mud) maintained at constant and overbalance pressure pw = 11 MPa with 

solute salinity s
wm . The same set of material properties for a Gulf-of-Mexico shale as listed 

in section 2.6.1 is used to model the formation as compact and fractured rock. Other 

relevant data include membrane efficiency and effective solute diffusion coefficient. The 

effective solute diffusion coefficients, eff(N)s,D , can be simply estimated based on the 
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Fickian’s solute diffusion coefficient in free solution, s
0D , tortuosity, (N)τ , and membrane 

efficiency, (N)χ , of the porous shale structure as (Bader and Kooi 2005): eff(N)s,D  =   

sD0
(N)(N) (N)

))(1( τφχ− .  For the porous matrix region, a membrane efficiency of Iχ  = 0.4 

and a mean tortuosity of Iτ  = 2 (Gillham and Cherry 1982) are used to demonstrate the 

chemical osmotic and solute transport effects. On the other hand, it is reasonable to assume 

non tortuous flow paths IIτ  = 1 and zero membrane efficiency IIχ  = 0 for the porous 

fracture network. All modeling parameters are summarized in Table 3.    

TABLE 3—DUAL-POROCHEMOELASTIC MODELING PARAMETERS 
Parameters Values 
Matrix Young modulus (E I) 1854 MPa 
Fracture Young modulus  (E II) 37 Mpa 
Poisson’s ratio (νI = νII) 0.22 
Grain bulk modulus (Ks)  27.6 GPa 
Fluid bulk modulus (Kf)  1744 MPa 
Matrix local porosity (φ I)  0.14 
Fracture local porosity (φ II)  0.95 
Matrix local permeability (kI)  5.0×10−5 mD (~ 5.0×10−20 m2) 
Fracture local permeability (kII)  5.0 mD (~ 5.0×10−15 m2) 
Fluid viscosity (μ) 1 cp (0.01 Pa·s) 
Matrix membrane efficiency (χ I) 0.2 
Fracture membrane efficiency (χ II) 0.0 

Solute diffusion coeff. in free solution ( sD0 ) 1.75×10−4 m2/day 

Interporosity geometric factor (λ)  60 m–2 
Fracture’s bulk volume fraction (vII = 1 - vI)  0.01 

Drilling-mud activity ( f
wa ) 0.986 (~ 50Kppm CaCl2 = 0.008 mole fraction)  

 

Numerical results are presented in Figs. 3.2 to 3.7, in which positive values of stresses 

indicate compression. For illustration purpose, comparisons with the corresponding single-

porosity and single-permeability porochemoelastic cases plotted in dashed lines are made 
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to highlight the coupled dual-porosity and dual-permeability and chemical effects on the 

results obtained. The single-porochemoelastic solution is obtained by letting the fracture 

space to vanish (vII → 0). 

The dual-porochemoelastic formulation reduces to four diffusion equations, Eqs. 3.48 

to 3.51, each of which is associated with an effective diffusion coefficient. The analytical 

solution shows that there are four eigenvalues, I
1ξ , I

2ξ , II
1ξ , and II

2ξ   which physically 

correspond to the pressure and solute diffusion coefficients in the porous matrix and 

fracture continua, respectively. These eigenvalues indicate the characteristic time scales of 

individual diffusion processes. Due to the contribution of interporosity flow, these effective 

diffusion coefficients are not constant but time-dependent. The relative time scales of these 

coupled transport processes are estimated by calculating these eigenvalues neglecting 

interporosity term. From this data set, the effective diffusion coefficients, (N)
jc , and their 

associated characteristic times (N)2(N) / jwj cRt =  (j = 1, 2) are 
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Hence, there is about one order of magnitude in relative difference among the diffusion 

processes. This is so because the diffusion coefficients are proportional to not only the 

transport parameters such as permeability but also the stiffness of the system. Therefore, 

although the intrinsic fracture permeability is 105 times higher than the matrix permeability, 

the smaller fracture stiffness (50 times) reduces the relative difference among diffusion 
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coefficients. Since these time scales are not substantially separated, different flow processes 

are expected to interact and compete with each other during drilling operations. 
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Fig. 3.2—Pore pressure and solute salinity evolutions at radial distance r = 1.10 Rw and θ = 0 (along 
SH direction). 

Figs. 3.2 show the history of dual pore pressure and solute concentration at radial 

distance r/Rw = 1.10, parallel to SH direction (θ = 0) and for low drilling mud salinity of s
wm  

= 0.008 (50Kppm CaCl2). Clearly, there are four distinct responses in the pressure and 
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solute concentration evolutions, corresponding to the four time scales of the system as 

estimated above. Initially, both the matrix and fracture pressure are reduced below the 

formation pore pressure due to the Skempton’s effect under the sudden release of non-

hydrostatic in-situ stresses. With smaller effective characteristic times ( II
1t  and I

1t ), fluid 

flow due to hydraulic pressure gradient dominates the small time pressure responses in 

fractured formation. The porous fracture, being more fluid-permeable, reacts first to the 

driving wellbore mud pressure resulting in a higher pressure in the fracture than in the 

matrix. As time progresses, the matrix pressure - enhanced by the inter-porosity flow from 

the fracture and the osmotic pressure contribution - gradually catches up with and 

eventually grows larger than the fracture pressure. In fact, since the mud salinity is lower 

than the formation salinity, an osmotic flow of fluid from the wellbore into the formation is 

expected. This osmotic flux will induce additional fluid pressure increase in the near-

wellbore region. Hence, the matrix pressure peak at about 12.80 MPa (at 0.5 day) higher 

than the applied wellbore mud pressure of 11 MPa is due to the mud/shale osmotic effect. 

To visualize the osmotic contribution, the corresponding dual-permeability matrix pressure 

without chemical effect is also plotted in dash-dot in Fig. 3.2. The matrix pressure buildup 

above the no-chemical-effect curve quantifies the osmotic contribution. There is no 

osmotic contribution in the fracture pressure since it has been assumed that the porous 

fracture network exhibits no membrane behavior that hinders solute diffusion ( IIχ  = 0). At 

long time, e.g., t → ∞, when all pore pressures and solute concentrations equilibrate due to 

subsequent fluid and solute transport, the dual fluid-pressure responses converge to the 

single-porosity and single-permeability one.  
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Figs. 3.3a and 3.3b show snapshots of dual-pressure distribution along radial direction 

θ = 0o (parallel to SH) at time intervals t = 15 minutes and 0.5 day after drilling. Again, the 

peak in pressure responses in Fig. 3.3b is due to chemical osmotic effect. At t = 15 minutes, 

the dual fluid pressures mostly react to the invading wellbore mud pressure, leading to 

higher pressure magnitude than the single-permeability counterpart.  
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       (b) 

Fig. 3.3—Time-dependent pore-pressure profile along the maximum horizontal stress direction (θ = 
0) for (a) without mud chemistry effect and (b) with low mud salinity (50K). 
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As time elapses, the slowly-diffusing osmotic pressure starts to contribute while the 

fast-diffusing hydraulic pressure heads, due to the presence of fracture network, are 

competing and partially negating the osmotic pressure rise in the porous matrix. 

Consequently, after t = 0.5 day the dual pressure responses are lower than single-

porochemoelastic one where the induced osmotic pressure is sustained longer. 
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Fig. 3.4—Effective radial stress profile along the maximum horizontal stress direction (θ = 0). 
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Fig. 3.5—Effective tangential stress profile along the maximum horizontal stress direction (θ = 0). 
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The induced dual pore-pressure leads to modifications in effective stress, i.e., normal 

stress less pore pressure. Figs. 3.4 and 3.5 plot the corresponding effective radial and 

tangential stresses distributions in which negative values denote tension. As seen in Fig. 

3.4, the effective radial stress mirrors the pressure responses shown in Fig. 3.3. There is a 

tensile region, Rw < r < 1.2Rw, developed due to mud/shale chemical osmotic effect. 

Similarly, low mud salinity also reduces effective tangential stress which controls borehole 

fracturing initiation pressure as shown in Fig. 3.5.  

As a result, the transient responses of chemically active porous medium incorporating the 

effects of fracture network, chemical osmotic and solute transport are substantially different 

from those approaches that neglect the dual-porosity and dual-permeability nature of the 

material. 

3.4 Oedometer Test of Solid Cylinder 

The problem and solutions of solid cylinder subjected to radial-only or axial-only fluid-

diffusion are used to simulate uniaxial reservoir depletion and subsequent consolidation. In 

addition, the axial-only fluid diffusion mode, the K0 laboratory testing setups, is often 

considered more realistic and practical scenario for conventional triaxial testing of 

conventional solid core plugs. Kanj and Abousleiman (2007) presented an isotropic 

solution for K0 testing to assess the osmotic effect on the response of chemically active 

intact rock material. This section focuses on deriving and demonstrating the solid 

cylinder’s solution for chemically fractured samples subjected to axial-only fluid and solute 

flow condition. The radial-only fluid-flow solution can be obtained following similar 



 

 138

methodology for solid cylinder presented previously in Chapter 2, section 2.4.1.3. 

3.4.2 Problem Description 

The K0 testing setup is illustrated in Fig. 3.6 in which the fluid-saturated fractured-rock 

sample is sandwiched between two rigid and frictionless platens. The applied axial stress 

on the core plug is a result of either a time-dependent stroke control or a time-dependent 

load control. Moreover, the applied pore-pressure and/or solute-concentration differentials 

at either the upstream and downstream ends of the sample can be zero, constant, or function 

of time. Laterally, the outer surface of the cylinder is maintained at zero radial 

displacement by applying a time-dependent confining stress or using a rigid outer boundary 

control. Mathematically, the problem boundary conditions are written as 

At the outer surface, r = R: 

0III ===== rrrzrr qqu σσ θ , ...............................................................................(3.79) 

At the upstream end, z = 0: 

∗==∫ zz

R

zz
RtFdrr σ
π

π
π

σ
22

)( 2

0

, load control ...............................................................(3.80) 

or 

∗== zz
z

zz H
tu εε )( , stroke control ............................................................................(3.81) 

and 

)()/RT();(;0 0
sIIsIIII tmVipptppp s

u
f

urzz ====== σσθ , ...............(3.82) 

At the downstream end, z = H: 

)()/RT();(;0 0
sIIsIIII tmVipptpppu s

d
f
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Fig. 3.6—Schematic of oedometer test (K0) of transversely isotropic cylindrical fractured samples 
incorporating chemical solute salinity loading. 

in which { )(),( tmtp s
uu } and { )(),( tmtp s

dd } are the imposed upstream and downstream 

fluid pressure and solute concentration, respectively. The axial-only fluid-flow constraint 

imposes a z-dependent variation and all variables are at most functions of z and t only. In 

this case, 0(N)(N) ==== θθθεε qqrrr  and )(tzzzz
∗= σσ  due to stress equilibrium 

requirement in the z direction. As a result, the diffusion equations, Eqs. 3.48 to 3.51, can be 

rewritten compactly in terms of the applied average axial stress, pore pressure and solute 

concentration as 
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in which the dimensionless coefficient matrices, ω , Dκ , and DΓ , are the same as defined 

previously in Eqs. 3.65a to 3.65c. The dimensionless parameters, tD, zD, I
fc , and II

fc , are 

redefined as 

H
zzt

HAA
t DD =

+
+= ,

)( 2
2211

III κκ , ......................................................................(3.85) 
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3.4.3 Analytical Solution 

 Applying Laplace transform to the diffusion equation, Eq. 3.84, the general solution for 

fluid pressure and solute concentration perturbation are 
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where )((N)(N) sBB jj =  and )((N)(N) sCC jj =  (j = 1,2) are arbitrary coefficients to be 
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determined from fluid boundary conditions at the two ends, e.g., Eqs. 3.82 and 3.83, and 

are given as 
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with i, j = 1,2 and (N) = I, II 
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Eqs. 3.88 to 3.91 and the governing equations (transport equations and constitutive 

equations) are used to determined the rest of the unknown components of fluid and solute 

fluxes, stresses, strains, and displacements 
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where uz = 0 at the middle due to top and bottom symmetry; (N)
jh  and h are given as 
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For load-control mode, the average axial stress, ∗
zzσ~ , is known and the above solution is 

applicable. For stroke-control mode, the average axial strain, ∗
zzε~ , is prescribed. From Eq. 

3.99, the expression for average axial stress in term of the average axial strain is 
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Therefore, the stroke-control solution can be obtained simply by substituting Eq. 3.102 into 

the load-control mode solutions, i.e., Eqs. 3.88 to 3.91 and Eqs. 3.96 to 3.98. 

3.4.4 Results and Discussions 

A comparative study between dual-poroelastic and dual-porochemoelastic of an isotropic, 

fractured shale sample subjected to K0 testing and an assumed axial-only fluid flow 
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constraint is shown in the following. In addition, comparison with single-porochemoelastic 

approach for intact shale is also displayed. The fractured shale material properties are the 

same as listed in Table 3. The solid core is assumed to have radius of 0.025 m and a height 

of 0.1 m. The sample is subjected to a step application of an average axial stress of 1 MPa 

and both ends are drained. Moreover, the upstream end of the sample is subjected to a 

salinity or activity differential. This is achieved through setting the salinity of the upstream 

fluid of 0.008 mole fraction (50K CaCl2) or 0.06 mole fraction (250K CaCl2) while the 

original salinity in the shale is 0.034 mole fraction (150K CaCl2). The fractured shale’s 

matrix membrane efficient is 0.1, interporosity geometric coefficient is 240, and the testing 

temperature is 25 oC.  
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Fig. 3.7—Evolution of dual pore pressure distributions along the core without external salinity 
differential. 
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pore pressure, fluid flux and axial displacement in Figs. 3.7 to 3.13. The purpose is to 

illustrate the importance of considering proper porochemical coupling in the analysis.  

The pore pressure responses along the core are plotted in Figs. 3.7 to 3.9. For dual-

poroelasticity (Fig. 3.7), the dual pressure diffuse normally following instantaneous jump 

due to step loading of axial stress. The perturbed pore pressure in the fracture network – 

dashed lines – quickly dissipates and equilibrates after 30 minutes while the matrix pore 

pressure – solid lines – is still diffusing. Accounting for upstream salinity gradient, the 

osmotic effect generates additional pore pressure increment (e.g., low salinity in Fig. 3.8) 

or reduction (e.g., high salinity in Fig. 3.9) in the shale matrix. As time progresses, the 

osmotic pressure front moves down the sample and diminishes in magnitude due to 

subsequent solute diffusion, highlighting the leaky membrane behavior.  
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Fig. 3.8—Evolution of pore pressure distribution along the core for low upstream salinity. 
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Fig. 3.9—Evolution of pore pressure distribution along the core for high upstream salinity.  

 

The corresponding fluid fluxes at two ends of the sample are plotted in Figs. 3.10 to 

3.13. Without chemical effect, dual-poroelasticity (Fig. 3.10) shows draining behavior, i.e., 

fluid flux out of the sample as a result of axial load application. It is seen that the same 

amount of fluid flows across both ends and the majority of the flow is through the fracture 

network. For low upstream salinity (Fig. 3.11), the bulk of the fluid are squeezed out 

through the fracture network at both ends. However, there is an induced osmotic flow into 

the matrix region at the upstream end reducing the total out-flow fluid flux at this end. On 

the other hand, high upstream salinity leads to additional osmotic out-flow as shown in Fig. 

3.12. 
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Fig. 3.10—History of fluid flux at the two ends of fractured sample without salinity gradient effect. 
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Fig. 3.11—History of fluid flux at the two ends of fractured shale sample subjected to low upstream 
salinity. 
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Fig. 3.12—History of total fluid flux at the two ends of fractured shale sample subjected to high 
upstream salinity. 
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Fig. 3.13—History of axial displacement at the top of fractured shale sample subjected to different 
upstream salinity gradients. 
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Finally, the axial displacement is plotted in Fig. 3.13. The osmotic drainage due to high 

applied salinity promotes shrinkage, leading to higher consolidation. For low salinity 

differential, the osmotic inflow reduces the compaction. Compared with intact shale 

modeling using single-poromechanics approach, the difference in axial displacement can be 

attributed to deformation in the fracture network. 

3.5 Summary 

The dual-porosity and dual-permeability poromechanics formulation has been extended to 

incorporate the dual chemical osmotic and solute transport effects in the overall response of 

dual porous medium. The corresponding analytical solution for the drilling of inclined 

wellbore or the oedometer test of solid cylinder (K0 testing configuration) of chemically 

active naturally fractured rock have been derived and presented in this chapter.  

Via the inclined wellbore solution, effective stress and pore pressure analyses were 

carried out to study the dual-porosity and chemical effects on the overall poromechanics 

response. It is seen that the dual-porosity and dual-permeability effect is to develop dual 

pore-pressure responses in the shale formations. Meanwhile, the chemical osmotic effect is 

to modify the stress and pore pressure magnitudes in the vicinity of wellbore wall, e.g., 

drilling mud with lower mud salinity will induce an osmotic diffusive flow from the 

wellbore into the formation. In contrast to previous studies ignoring solute transport 

phenomenon, the developed osmotic pressure eventually dissipates due to subsequent fluid 

and solute diffusion processes since the shale membrane behavior is not perfect. The 

resultant pore pressure response leads to corresponding modifications in the effective stress 
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field. Effective stress calculations show that the dual-porochemoelastic solution predictions 

differ substantially from single-porochemoelastic approach. 

Numerical applications of the solution of solid cylinder subjected to a K0 test indicates 

that neglecting osmotic and solute transport effects can mislead the test results for fluid 

flux. In addition, neglecting the contribution of fracture network will lead to erroneous 

results for fluid flux as well as axial displacement. 
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Chapter 4 

Dual-Porosity and Dual-Permeability 
Porothermoelasticity: Dual-Porothermoelasticity 

4.1 Introduction 

Geomechanical analyses of field problems are often subjected to non-isothermal conditions 

occurring in such cases as deep subsurface drilling, geothermal wells, and nuclear waste 

depository. In saturated porous media, the coupled interaction between the transient fluid 

flow and the deformation processes under pressure or stress perturbations are well known 

and investigated through the theory of poroelasticity first introduced by Biot (1941). On the 

other hand, a temperature gradient will lead to not only induced thermal stresses but also 

transient thermo-induced pore pressure responses. The thermohydromechanical effects on 

the mechanical response of porous media have been successfully studied under the 

porothermoelastic model (Bear and Corapcioglu 1981; McTigue 1986; Coussy 1989). 

When viewed at the microscale, thermal gradients result in differential expansion or 

contraction of the solid and fluid constituents within a porous saturated medium. The 

volume changes associated with the expansion/contraction lead to significant modification 
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of both the total stress and pore pressure distributions. Therefore, in addition to the 

transient pressure changes due to Darcy flow, thermal deformation and diffusion also 

induced additional pressure and effective stress alteration. In solid materials, heat transport 

is analogous to fluid transport where the heat is conducted through the interconnected grain 

structure. In a saturated porous medium, the diffusing fluid also acts as a heat carrier, 

introducing another heat flow mechanism via convection. Practically, temperature 

equilibrium between the solid and fluid constituents is assumed to be instantaneous in 

comparison to heat conduction and convection processes leading to a single-temperature 

thermodynamic continuum (Bear and Corapcioglu 1981). 

In fractured rock formations, the mechanism of heat flow in the constituent porosity 

regions may be different from fluid mass transport. In particular, fractured rock formation 

is modeled as a dual-porosity and dual-permeability continuum which is comprised of a 

primary porosity (matrix) with low fluid conductivity and a secondary porosity (fracture 

network) with highly permeable flow paths. As a result, dual-porosity and dual-

permeability continuum will exhibit dual pore pressure evolutions when subjected to stress 

and pressure perturbations. The two constituting porous regions can exchange fluid mass 

due to pressure differential at the interface between them. On the other hand, heat flow in 

the porous matrix is primarily driven by conductive mechanism through the compact 

matrix skeleton while heat convection carried by the fast diffusing fluid in the fracture 

network is intuitively more dominant. Because thermal conductivity is significantly higher 

through the compact matrix framework than through the fracture network comprised 

mostly of pore space, the dual-porosity temperature evolutions and interporosity heat 
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exchange are most likely masked. Consequently, a single-temperature approach for 

fractured porous continuum (Master et al. 2000) appears to be more practical than the 

double-temperature approach (Aifantis and Bekos 1980). 

Analytical solutions and analyses of the porothermoelastics coupling in single-porosity 

medium have been well established (McTigue 1990; Wang and Papamichos 1994; Ekbote 

2002; Abousleiman and Ekbote 2004; Chen and Ewy 2005). In fractured porous media, 

despite the abundance in numerical modeling of porothermoelastic effects (Aifantis and 

Bekos 1980; Millard et al. 1995; Nguyen and Selvadurai 1995; Abdallah et al. 1995; 

Master et al. 2000; Nair et al. 2004), no analytical solution has been provided for the 

coupling of heat and fluid flow and the resultant stress and deformation field in fractured 

porous media.  

In this chapter, a dual-porosity and dual-permeability porothermoelastic analytical 

formulation and solution applicable to transversely isotropic fractured porous media is 

presented. First, the dual-porosity and dual permeability poroelastic governing equations as 

presented in Chapter 2 are extended to incorporate thermal effects within the framework of 

a single-temperature approach. The complete formulation includes contribution from both 

heat conduction and convection in the porous matrix and fracture system. Neglecting the 

non-linear heat convection, the resulting system of equations is applied to obtain the 

analytical solution for inclined wellbore subjected to non hydrostatic in-situ state of stress. 

The effect of heat convection is accessed numerically by finite difference method for a 

special case of vertical borehole drilled in hydrostatic in-situ stress condition. 
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4.2 Mathematical Formulation 

4.2.1 Constitutive Equations 

Thermal effect in fractured porous formation can be modeled by extending the dual- 

poroelastic formulation in Chapter 2 to account for non-isothermal condition. Assuming 

instantaneous local thermal equilibrium among all system constituents, i.e., common 

temperature for all constituents of the dual porous system, and infinitesimal deformation, 

the change in free energy density of skeleton is expressed as follows (Coussy 2004)6  

dTSdpdpddW s
ijij −−−= IIIIIIIII vv φφεσ , ............................................................(4.1) 

where σij is the total stress tensor; εij is the linearized strain tensor; φ(N) is the intrinsic 

porosity of the individual porous continua and v(N) is the bulk volume fraction; Ss = SsI + SsII 

is the total solid skeleton’s entropy per unit bulk volume; and T is the temperature.  

From the above equation, it is obvious that W admits εij, pI, pII, and T as state variables 

and the linearized constitutive equations follow naturally as (compression is positive) 
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ijijijklijklij βααεσ +++= IIIIII .............................................................(4.2) 
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βεαφ −++−= .................................................................(4.3) 
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III,

I
IIIIII )v( φ

φφ

βεαφ −++−= .............................................................(4.4) 

dTTCdpdpddS s
ij

s
ij

s )/( 0
IIIIII +++−= φφ ββεβ ......................................................(4.5) 

where the overbar notation indicates overall material properties; sC  is the lumped 

                                                 
6 The free energy density W in Eq. 4.1 is analogous to the energy function Gs as defined in Eq. 4.3 by Coussy 
(2004)  
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volumetric heat capacity of the solid constituents in the primary and secondary porous 

region, i.e., IIII
0

II
0

IIII
0

I
0

I )1(v)1(v sssss ccC ρφρφ −+−=  in which cs(N) is the specific heat and 

ρs(N) is the solid grain density; and s
ijβ  and (N)

φβ  are thermal coefficient tensor and scalar 

related to the overall solid skeleton and individual pore systems, respectively. Considering 

unconfined condition and assuming self-similar thermal expansion/contraction for solid and 

pore systems, the thermal coefficients s
ijβ  and (N)

φβ  can be identified in terms of thermal 

expansion coefficients as  

)vv( IIIIII s
kl

s
klijkl

s
klijkl

s
ij MM αααβ +== , ................................................................... (4.6a) 

(N)(N)
0

(N)(N)(N) v s
kk

s
ijij αφααβφ −= , ................................................................................(4.6b) 

in which s
klα , (N)s

klα  are the solid’s linear thermal expansion coefficient tensor of the overall 

and constituting porous regions, respectively. 

Following Coussy (2004), the intrinsic porosity φ(N) and the solid’s skeleton’s entropy 

Ss are replaced in favor of the fluid mass content (N)(N)(N)(N) v ffm ρφ=  and the total 

entropy S = Ss + SfI + SfII by linearizing the saturation condition and the following state 

equations 
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,.............................(4.9) 

where (N)fρ  is the fluid density; (N)fα  is the volumetric thermal expansion coefficient of 
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the pore fluid (a scalar); (N)/1 fK  is the isothermal fluid compressibility; sf(N) is the specific 

entropy; and (N)fc  is the fluid specific heat capacity. Equations 4.3 to 4.5 become 

dT
M
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M
dpdd fskkij

I
III,

II
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I
II βεαζ −++−= , .................................................................(4.10) 
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I
IIII βεαζ −++−= , ...............................................................(4.11) 
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ff )/( 0

IIIIII
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(N)(N)
0 +++−=− ∑

=

ββεβ , .........................(4.12) 

where the apparent fluid storage (N)/1 M , III,/1 M , lumped thermal coefficient (N)
fsβ , and 

total heat capacity C  are given as 

III,III,(N)(N)
0

(N)(N)(N) /1/1;/v/1/1 φφ φ KMKKM f =+= ,......................................(4.13) 
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(N)v ffs cCC ρφ , ............................................................................(4.15) 

The first three terms on the right of Eq. 4.12 represent entropy or heat changes due to 

adiabatic deformation of the solid and the fluid. It is often negligible (Coussy 2004) and 

will be neglected in this work. In summary, the porothermoelastic constitutive equations 

for a dual-porosity medium are 

TppM s
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T
T
CmsS ff

0III,(N)
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0 =− ∑

=
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where the incremental form d has been dropped for convenient.  

4.2.2 Balance Equations 

Momentum Balance.  The momentum balance of the whole system assuming quasi-static 

evolution and neglecting inertia and body force yields the equilibrium equations which is 

given as 

0=
∂
∂

j

ij

x
σ

, ................................................................................................................(4.20) 

Fluid Mass Balance.  The fluid mass balance, accounting for the interporosity fluid 

exchange, Γ, and the fluid flow, qi
(N), within the porous primary and secondary porosity 

medium, are written separately as 
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∂
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t
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I
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vζ ,................................................................................................ (4.21a) 

Γ−=
∂
∂+

∂
∂

i

i

x
q

t

II
II

II

vζ ,..........................................................................................(4.21b) 

Under isothermal condition, separate Darcy’s equations are written for each porosity region 

in which the fluid flux is proportional to the individual pressure gradient (Eq. 2.12). For 

non-isothermal condition, fluid transport within the system can be caused by gradients in 

both the pore-fluid pressure as well as temperature. A generalized expression for fluid 

specific discharge, qi
(N), is given as 
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(N)
(N)(N) κ ,..............................................................................(4.22) 

where (N)
ijκ  is the mobility coefficient tensor and (N)T

ijD  is the thermo-osmosis coefficient 

tensor. The first term on the right hand side of Eq. 4.22 corresponds to fluid transport 

caused by the Darcy effect and the second term is associated with thermo-osmosis effect 

which is fluid flux generated by a temperature gradient. The thermo-osmosis effect is 

ignored in this analysis and Eq. 4.22 results in the well-known Darcy’s law. 

Generally, the interporosity fluid exchange, Γ, in Eqs. 4.21a and 4.21b includes 

contribution from both hydro and thermo driving force. However, the assumption of a 

single-temperature for the overall dual-porous system effectively eliminates the thermally 

induced interporosity fluid transfer. As a result, interporosity exchange is the same as 

isothermal case which in the simplest case is proportional to the pressure differential as 

given in Eq. 2.14. 

Energy Balance.  The energy balance expressing the change of heat can be written in term 

of the change in entropy of the system. Neglecting viscous dissipation effect, the thermal 

equation is expressed as (Coussy 2004) 
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where h
iq  is the heat flux. In the above equations, the first term on the right hand side 

corresponds to heat transport by conduction, whereas the second term represents the heat 

transport by convection. Analogous to the fluid mass transport, the heat flux in the most 
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general case can be caused by gradients of both pressure and temperature. A generalized 

equation for the heat flux is given by 

∑
= ∂

∂+
∂
∂−=

III,(N)

(N)
(N)

j

p
ij

j

T
ij

h
i x

pD
x
Tq λ , .........................................................................(4.24) 

in which T
ijλ  is the effective thermal conductivity coefficient tensor for the whole dual-

porous system and (N)p
ijD  is the coefficient tensor associated with the heat flux generated 

by the pressure gradients. The first term on the right hand side in Eq. 4.24 is the heat flux 

caused by the Fourier effect, whereas the second term gives the heat flux resulting from the 

Dufour effect. The Dufour effect is ignored in this analysis, thus giving the governing 

equation for the heat flux also known as Fourier’s law. The effective thermal conductivity 

is given as a volumetric weighted average of the constituents’ conductivity as 

∑
=

+−=
III,(N)

(N)(N)
0

(N)(N)
0

(N) ])1[(v Tf
ij

Ts
ij

T
ij λφλφλ , ..............................................................(4.25) 

where (N)Ts
ijλ  and (N)Tf

ijλ  are the thermal conductivity of the solid and fluid constituents, 

respectively. 

4.2.3 Field and Diffusion Equations 

The above governing equations are further combined to yield the field and diffusion 

equations that are used to solve for the coupled stress and pore-pressure responses in 

general anisotropic dual-porous materials. In this section, they are specialized to 

transversely isotropic and isotropic materials under the generalized plane strain condition. 

Transversely Isotropic Case.  In the case of transverse isotropy where the z axis is 
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assumed to coincide with the overall axis of material rotation symmetry, the constitutive 

relations for dual-porochemoelasticity involve twelve independent material coefficients and 

are given as 

TppMMM s
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In the above, the subscripts 1 and 2 denote properties in the isotropic plane (x-y or r-θ 

plane) and 3 represents the axis of rotational symmetric (z axis). The coefficients 11M , 

12M , 13M , 33M , 44M , and 55M  are components of the drained overall elastic tensor for a 

transversely isotropic dual-porous material. (N)
1α  and (N)

3α  are Biot’s effective stress 

coefficients in the isotropic plane and transverse direction, respectively. These overall 

coefficients are related to individual set of material properties of the primary and secondary 

porosity as given in Appendix A. The expressions for s
1β , s

3β , and (N)
fsβ  are obtained as 

follows 
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The transversely isotropic equations are further reduced to the generalized plane strain  

case where all response functions (except axial displacement) are invariant along the axis 

of material rotational symmetry and the out-of-plane strain components are either zero or 

spatially uniform, i.e., 02313 == εε  and )(3333 tεε = . The constitutive equations for in-

plane stress components reduce to 
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with the corresponding equilibrium equations given in Eq. 2.18. Combining these equations 

yields the compatibility equation as   
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or in terms of stress  
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where 2
2

22
1

22 // xx ∂+∂=∇  is the Laplacian spatial differential operator. Next, the fluid 

diffusion equations are obtained by substituting the fluid content constitutive equations 

(Eqs. 4.18 and 4.19) and Darcy’s law (Eq. 4.22) into the fluid mass balance (Eqs. 4.21a to 

4.21b) as follows 
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with (N)
1

(N)(N)
1 v κκ = . Combining the energy balance relation (Eq. 4.23), Fourier’s law (Eq. 

4.24), and Darcy’s law (Eq. 4.22) with the constitutive change in entropy (Eq. 4.19) yields 

the heat diffusion equation 
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where ∇ is the gradient operator, T
hfc  is the heat conduction diffusivity and (N)T

hfc  is the 

heat convection coefficients given as 
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1 κρλ == ,............................................................(4.42) 

The summation terms on the right-hand side of Eq. 4.41 correspond to heat transport by 

convection and render the equations nonlinear.  In low-permeability porous media such as 

shale, heat conduction mechanism via the intact rock matrix is dominant and convective 

heat transport due to fluid flow can be neglected. Hence, the heat equation is completely 

linearized and analytical solution can be obtained. However, in dual-porous formations 

such as fractured rock, the high fracture’s hydraulic conductivity may lead to non-

negligible heat convection contribution. If the non-linear convective effect is included, then 

numerical approaches such as finite difference or finite element are needed in subsequent 
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solutions and analyses.   

Isotropic Case.  For isotropic dual-porous material, the constitutive equations for dual-

porothermoelasticity reduce to   
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where sβ  and (N)
fsβ  are given in terms of the volumetric thermal expansion coefficients 

sα  and (N)sα  as 
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And the compatibility relation in plane strain, Eq. 4.37 or Eq. 4.38, becomes 
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where 332211 εεεε ++=kk  is the volumetric strain, G  is the overall shear modulus of the 

system, (N)η  and Tη  are lumped poroelastic coefficients defined as 
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Subsequently, the fluid and heat diffusion equations maintain the same forms as those of 
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transversely isotropic case (Eqs. 4.39 to 4.41) with (N)
1α → (N)α , (N)

1κ → (N)κ , and T
1λ → Tλ .  

4.3 Inclined Wellbore 

This section presents the development of solutions to determine the stress and pressure 

redistribution due to drilling activities through high pressure and high temperature (HPHT) 

fractured rock formations under the framework of the above dual-porothermoelastic 

formulation. 

4.3.1 Problem Descriptions 

The inclined wellbore problem geometry is shown in Fig. 4.1. The undisturbed formation’s 

pore pressure and temperature are in equilibrium between the matrix and fracture and are 

denoted as p0 and T0, respectively. 

After excavation, the borehole is filled with a drilling fluid having pressure, pw, and 

temperature, Tw. Therefore, the boundary conditions to be imposed at the wellbore wall, r = 

Rw, are 

)()())](2cos([ tpt wrdmrr +−Η−+= θθσσσ , ..................................................... (4.50a) 

)())(2sin( trdr −Η−−= θθσσ θ , ..........................................................................(4.50b) 

)()]sin()cos([ tSS yzxzrz −Η+= θθσ , ................................................................... (4.50c) 

)()(0
III tptppp w+−Η== , ................................................................................(4.50d) 

)()(0 tTtTT w+−Η= , ........................................................................................... (4.50e) 

And at the far field, r → ∞ 
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zzzyyyxxx SSS === σσσ ,, , ................................................................. (4.51a) 

xzxzyzyzxyxy SSS === σσσ , , ...............................................................(4.51b) 

00
III ; TTppp === ,................................................................................... (4.51c) 

It should be noted that the heat diffusion including convection effect, Eq. 4.41, is non-linear 

and demands numerical approaches. While realistically modeling field conditions, these 

numerical methods are computationally intensive and require extensive analytical 

validation. The complete linearization by neglecting heat convection allows analytical 

approach to an otherwise complex problem and provides the engineers with a tool for quick 

assessment of thermal effect. The porothermoelastic analytical solution for an inclined 

wellbore drilled in intact rock formation was published by Ekbote and Abousleiman 

(2005). By the same token, the approach is applicable to the current dual-porosity and dual-

permeability porothermoelastic by incorporating relevant boundary conditions for stresses, 

dual pore pressures, and temperature as shown in the following section.  

4.3.2 Analytical Solution 

By neglecting the non-linear heat convection term in Eq. 4.41, the thermal diffusion 

equation is fully linearized. As discussed in Chapter 2, the linearity of the governing 

equations allows the problem to be solved by the superposition of the initial state and two 

sub-problems of the perturbed state:  (I) the strain problem and (II) the antiplane shear 

stress problem. The boundary conditions and solutions in the decomposition scheme are 

given as follows 
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(b) 

Fig. 4.1— (a) Schematic of an inclined wellbore in fractured rock formation under non-isothermal 
condition, (b) far-field stresses, pore pressure and temperature in the xyz local wellbore coordinate 
system. 
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Problem I – Plane Strain 

The boundary conditions for perturbed quantities in Problem I at the wall (r = Rw) are 

))](2cos([)( rdmwrr tp θθσσσ −+−= , ............................................................. (4.52a) 

))(2sin( rdr θθσσ θ −= ,......................................................................................(4.52b) 

0
III )( ptppp w −== , ......................................................................................... (4.52c) 
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It is obvious to recognize that the loading condition can be separated into an axisymmetric 

case (θ-independent) and deviatoric case (θ-dependent) as follow 

Case 1: Axisymmetric Loading.  The perturbed boundary conditions at the wellbore (r = 

Rw) are 

0;)( =−= θσσσ rmwrr tp , ............................................................................ (4.53a) 

0
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Under axisymmetric condition, the compatibility relation, Eq. 4.37, becomes 

01

11

1II

11

II
1I

11

I
1

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂+

∂
∂ T

M
p

M
p

Mrrr

s

kk
βααε , ..........................................(4.54) 

In the above, kkε  = θθεε +rr  since zzε  = 0 for plane strain. Integration of the above noting 

that all quantities must vanish at far field (r → ∞) yields 
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Eliminating the volumetric strain in Eqs. 4.39 and 4.40 gives the fluid diffusion equation as  
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where the coefficient matrix [A], [Γ], and [D] are given in Eqs. 2.37 and 2.38. In term of 

dimensionless coefficients, Eq. 4.56 becomes 
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with the dimensionless coefficient matrix ][ω , ][ DΓ  and ][ Dκ  given in Eq. 2.43 and the 

coefficient (N)
hfc  defined as 

)/()/( 2211111
(N)

1
(N)(N) AAMc s
fshf +−= βαβ , ...............................................................(4.58) 

It can be seen that in axisymmetric loading of the wellbore geometry with infinite extent, 

the fluid diffusion equation is uncoupled and can be solved separately from the 

stress/displacement field. The fluid flow, however, is still coupled with the temperature 

variation. On the other hand, the thermal equation simplifies to a classical heat conduction 

equation which is uncoupled from both the stress and pore-pressure field as 
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in which the dimensionless thermal coefficient  T
Dκ  is given as 
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Using the boundary condition, Eq. 4.53c, the solution for temperature field is obtained 

independently and expressed in Laplace transform domain as 
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where T
Dh s κξ /= ; the tilde sign ~  denotes the corresponding quantity in Laplace 

transform domain; s is the Laplace transform parameter; K0 is the modified Bessel 

functions of the second kind of order zero; the superscript (1) denotes loading case number. 

Next, the expressions for the dual pressure fields are derived by solving Eq. 4.57. Equation 

4.57 is a non-homogeneous partial differential equation system and its general solution is 

obtained as a summation of the homogeneous and particular solutions and given as 
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where )((N)
1

(N)
1 sCC =  is arbitrary coefficient to be determined from boundary conditions; 

(N)(N) l=ξ  with the coefficients (N)l  and (N)m  given in Eqs. 2.48 and 2.49; the 

parameters (N)
Tg  is defined as 
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Applying the pressure boundary condition (Eq. 4.53b) yields 
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where the lumped parameters (N)
pTΔ  is defined in terms of sppp w /~~

0−=Δ  and 
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sTTT w /~~
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After obtaining the solution of (N)~p  and T~ , the radial displacement is readily obtained by 

integration of the volumetric strain, Eq. 4.55, noting that w
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where C2 is another coefficient to be determined from stress or displacement boundary 

condition. From Eq. 4.68, the polar stress components are straightforward 
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Using the stress boundary condition, Eq 4.53a, the solution for stress is 
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where the coefficient (N)
1A  is defined in Eq. 2.71b; the lumped parameter AT and the 
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functions Π and σ~Δ  are given as 
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Case 2: Deviatoric Loading.  The perturbed boundary condition at the borehole wall (rD = 

1) are 

))(2sin()),(2cos( )2()2(
rdrrdrr θθσσθθσσ θ −=−−= , .................................... (4.76a) 

0(2)II(2)I(2) === Tpp ,.........................................................................................(4.76b) 

Under this mode of loading, the heat equation yields trivial temperature solution T (2) = 0. 

As a result, the stress and pore pressure responses are the same as those for the case without 

thermal effect given by Eqs. D1.12 to D1.16 in Appendix D1. 

Problem II: Antiplane Shear Stress 

The boundary conditions for perturbed quantities in Problem II at the wall (r = Rw) are 

)]sin()cos([ θθσ yzxzrz SS +−= ,.......................................................................... (4.77a) 

0== θσσ rrr , ......................................................................................................(4.77b) 

0III === Tpp , ................................................................................................. (4.77c) 

No disturbance of fluid or temperature is generated by this antiplane shear stress 

perturbation. The solution is elastic and the same as given previously for dual-poroelastic 

inclined wellbore, i.e., Eqs. 2.107a and 2.107b. 

Complete Solution 

The complete solutions are obtained by superimposing the background state with non-zero 
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solutions of the two perturbed sub-problems given as 
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)/11()]sin()cos([ 2
Dyzxzrz rSS −+= θθσ , ...............................................................(4.85) 

)/11)](cos()sin([ 2
Dyzxzz rSS +−−= θθσ θ , .............................................................(4.86) 

4.3.3 Numerical Solution 

Thus far, the inclined wellbore solution has been obtained analytically by neglecting the 

non-linear thermal convection. This section presents a quantitative analysis for the effect of 

thermal convection via numerical solution method. It was shown in the previous section 

that the pressure and temperature diffusion equations are uncoupled from the 

stress/deformation field under the special case of axisymmetric loading, i.e., vertical 

wellbore subjected to hydrostatic in-situ stress condition. Therefore, the pore-pressure and 

temperature distributions accounting for non-linear thermal convection effect can be 

obtained independently using finite difference scheme. The finite-difference solutions for 
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pore pressure and temperature are then substituted into Eqs. 4.69 and 4.70 to get the 

resultant stress field. The axisymmetric fluid and heat diffusion equations accounting for 

heat convection effect are 
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in which the thermal convective coefficient  N)(T
hfκ  is defined as 
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The above diffusion equations are solved using the fully implicit Crank-Nicholson finite 

difference scheme. Eqs. 4.87 and 4.88 are discretized using small spatial and temporal 

stepsize. The Crank-Nicholson method transforms each component of the partial 

differential equations into the followings 
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where i, j denote position and time, respectively; X represents either pore pressure or 

temperature. Application of Eqs. 4.95a to 4.95d into Eqs. 4.92 and 4.93 leads to a nonlinear 

system of algebraic equations. The boundary conditions at the wellbore wall (rD = 1) and at 

the far field (taken at a sufficiently large distance, rD >> 1, so as to minimize boundary 

effect) are used for the first and last equations 
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where nr is the total number of spatially discretized points. As such, the task of solving for 

the unknowns, 1(N) +j
ip  and 1+j

iT , in terms of the knowns, j
ip (N)  and j

iT , reduces to finding 

the solution to the system of 3×(nr-2) nonlinear algebraic equations given in matrix form as 

][]][[]][[ 11 BCXRXL +=++ jjjj ,.............................................................................(4.93) 

where [X] is the solution vector; [BC] is the vector containing boundary conditions; [Lj+1] 

and [Rj] are banded matrices made of six tridiagonal submatrices. These matrices and their 

components are listed in Appendix G. The solution is obtained by iterating Eq. 4.93 with an 

error tolerance of ε = 10-3. 

4.3.4 Results and Discussions 

In this section, the combined time-dependent effects of fracture and mud temperature will 

be analyzed through simulated downhole drilling condition using the presented analytical 

solution. To focus on the thermally induced responses, the effects of perturbation due to 
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hydraulic pressure gradient and release of non-hydrostatic in-situ stress are isolated. This is 

achieved by assuming a vertical wellbore, drilled in a fractured rock formation with balance 

mudweight, i.e., pw = p0, and subjected to hydrostatic in-situ state of stress. The formation’s 

material data are summarized in Table 4. Other relevant data include 

 SV = 24 MPa, SH = 18 MPa (azimuth = 0), Sh = 18 MPa , p0 = 10 MPa, T0 = 40 oC 

Rw = 0.1 m , Drilling mud pressure = 10 MPa (balanced drilling) 

TABLE 4—DUAL-POROTHERMOELASTIC MODELING PARAMETERS 
Parameters Values 
Matrix Young modulus (E I) 9600 MPa 
Fracture Young modulus  (E II) 192 Mpa 
Poisson’s ratio (νI = νII) 0.20 
Grain bulk modulus (Ks)  42.0 GPa 
Fluid bulk modulus (Kf)  2300 MPa 
Matrix local porosity (φ I)  0.20 
Fracture local porosity (φ II)  0.95 
Matrix local permeability (kI)  1.0×10−4 mD (~ 1.0×10−19 m2) 
Fracture local permeability (kII)  1.0 mD (~ 1.0×10−15 m2) 
Fluid viscosity (μ) 1 cp (0.01 Pa·s) 

Solid volumetric thermal expansion coeff. ( sα ) 3.0×10−5 oC-1 

Fluid volumetric thermal expansion coeff. ( fα ) 3.0×10−4 oC-1 

Bulk heat capacity (C ) 2732  kJ/m3 -oC 

Thermal conductivity (λ T)  353 kJ/m-day- oC 
Fracture’s bulk volume fraction (vII = 1 - vI)  0.01 

 

In this case, downhole drilling is simulated for heating or cooling with a constant 

wellbore/formation temperature difference of ΔT = Tw – T0 = +/-30 oC. Due to the isotropy 

of horizontal in-situ stress, there is no stress-induced pore pressure. In addition, in balance 

drilling, there is no hydraulically-induced fluid diffusion between the wellbore drilling mud 

and the formation pore fluid. The temperature gradient results in differential expansion or 

contraction of the solid and fluid constituents within the porous saturated fractured rock 
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formation. The volume changes associated with thermal expansion/contraction lead to 

significant modification of both pore pressure and total stress distributions in the near-

wellbore region as shown in Figs. 4.2 to 4.4. Moreover, heat diffusion process dictates the 

responses time-dependent.  
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Fig. 4.2—Evolution of pore-pressure distribution in the (a) matrix and (b) fracture network under the 
effect of heating and cooling in conjunction with no-thermo effect (dashed lines). 

From Fig. 4.2, it is seen that heating expands the pore fluid and induce increment in 
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pore pressure in both the matrix and fracture network. As time progresses, the peaks of 

thermally induced pore pressure advances into the formation and decreases due to 

subsequent heat diffusion. The thermal effect on pore pressure is not significant in the 

fracture network due to its high permeability such that all build-ups will quickly dissipate. 

For cooling, the near-wellbore pore pressure is reduced in a reverse analogy to heating. 
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          (b) 

Fig. 4.3—Evolution of effective radial stress distribution in the porous matrix region under the effect 
of (a) heating and (b) cooling in conjunction with no-thermo effect (dashed lines). 
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The evolutions of the corresponding effective radial and tangential stress distributions 

are shown in Figs. 4.3 and 4.4. For isothermal case, the effective stresses are not functions 

of time due to the axisymmetric loading. The effective radial stress inversely mirrors the 

response of pore-pressure. As such, heating will reduce effective radial stress and develop a 

tensile region near the wellbore wall that will diminish with time (Figure 4.3a).  
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Fig. 4.4—Evolution of effective tangential stress distribution in the porous matrix region under the 
effect of (a) heating and (b) cooling in conjunction with no-thermo effect (dashed lines). 
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On the other hand, high mud temperature increases the effective normal stress at and in 

a short distance from the wellbore wall but decreases the effective normal stresses away 

from the wellbore compared to isothermal response (Fig. 4.4a). Qualitatively, the variation 

can be explained as followed: due to heating, there are both thermally-induced compressive 

tangential stress and pore pressure. In this case, the thermal expansion coefficient of the 

fluid is larger than the rock matrix leading to higher induced pore pressure which 

simultaneously lowers the effective normal stress away from the wellbore wall. On the 

other hand, at the borehole wall, the pore pressure is fixed due to fluid communication 

while the compressive total tangential stress is increased by a constant amount, leading to 

higher effective stress at the borehole wall. Analogously, the effects of cooling due to low 

mud temperature shows reduction in effective stress concentration at or near borehole wall 

but increase away from the wall. 

From the above analysis, it is observed that the thermal expansion coefficients for solid 

and fluid play an important and significant role in the near-wellbore stress and pore 

pressure. Figs. 4.5 and 4.6 show the effect of solid and fluid thermal expansion coefficients 

on pore pressure and effective tangential stress. Obviously, the solid thermal expansion 

coefficient dominates the stress responses while the fluid thermal expansion coefficient has 

more influence on pore pressure. Finally, anisotropic implications of the solid thermal 

expansion coefficient are displayed for heating case in Fig. 4.7. It is shown that for higher 

the ratio of s
1

s
3 /αα , the induced pore pressure is smaller and the effective stress is larger. 
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Fig. 4.5—Distribution of (a) pore pressure and (b) effective tangential stress in the porous matrix 
region due to heating for different values of solid thermal expansion coefficient, αs. 
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(b) 

Fig. 4.6—Distribution of (a) pore pressure and (b) effective tangential stress in the porous matrix 
region due to heating for different values of fluid thermal expansion coefficient, αf. 
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Fig. 4.7—Distribution of (a) pore pressure and (b) effective tangential stress in the porous matrix 
region due to heating for different ratios of solid thermal expansion coefficient in the transverse 
direction and isotropic plane, ss

13 /αα . 

Next, the effect of heat convection is investigated numerically for the special case of 

vertical wellbore subjected to hydrostatic in-situ state of stress. Instead of balance drilling, 

an overbalance mudweight of pw = 11 MPa > p0 = 10 MPa is assumed in this simulation. 

The case of drilling mud cooling the formation is considered since this is often the case in 

drilling deep rock formations. First, the finite difference scheme is validated against 
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analytical solutions for heat conduction in non-fractured rock (single-porothermoelastic) 

and fractured rock (dual-porothermoelastic) as illustrated in Fig. 4.8. The results show 

excellent agreements between the numerical and analytical solutions. At a given time, the 

fast fluid diffusion in the fracture network dissipates the thermally induced matrix pore 

pressure.  
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Fig. 4.8—Validation of finite difference scheme against analytical solutions for heat conduction. 

 

The effects of heat convection are illustrated via the profile of temperature and pore 

pressure in the matrix in Figs. 4. 9 and 4.10. Heat convection carries the temperature front 

faster into the formation and as a result modifies the magnitude and distribution of pore 

pressure response in the near-wellbore region. For this data set, the solution predicts 

noticeable contribution from heat convection. 
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Fig. 4.9—Heat convective effects on temperature distribution. 
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Fig. 4.10—Heat convective effects on pore pressure distributions. 

 

4.4 Rectangular Strip 

As displayed in the inclined wellbore problem, the impact of the extra coupling of a 

temperature gradient in fractured porous medium can be substantial and complex. The 

Mandel’s problem and solution for dual-poroelastic media (Chapter 2), extended to include 
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the effect of temperature gradient, can be treated as a canonical illustration of the intricate 

dual-porothermoelastic coupling. This section shows the derivations of the analytical 

solutions for the consolidation of a rectangular strip under non-isothermal and unconfined 

compression condition. The analytical solution are derived and given in closed form in the 

Laplace transform domain. The results for stress, pore pressure, and displacements are 

plotted and compared with the corresponding isothermal counterpart to highlight the effect 

of temperature gradient in a dual-porosity and dual-permeability porous saturated medium. 

4.4.1 Problem Descriptions 

As illustrated in Fig 4.11, the original Mandel’s problem involves an infinitely long 

rectangular specimen sandwiched between the top and bottom by two rigid, adiabatic, and 

frictionless plates. At time t=0+, a generalized axial loading representing either an applied 

vertical strain/displacement, )(tzz
∗ε  or )(tuz

∗ , or an applied vertical load, 2F(t) (per unit 

length) is applied to the rigid plates at the top and bottom, respectively. Simultaneously, the 

left and right edges of the plates are imposed with time-dependent fluid pressure po(t), and 

temperature To(t). Mathematically, the generalized boundary conditions are expressed as 

)();(;0);(: III tTTtppptPax ooxzcxx =====±= σσ ,....... (4.94a) 

)(;0: III tuuqqqbz zz
h
zzzxz =====±= σ , ..............................................(4.94b) 

)(2: tFdxbz
a

a
zz =±= ∫

−

σ  load control, ......................................................... (4.94c) 

btutbz zzzzzz 2/)()(: ∗∗ ==±= εε  stroke control,...........................................(4.94d) 
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Fig. 4.11—The Mandel’s problem geometry and setups incorporating temperature loading. 

With the above boundary conditions, the governing equations is reduced to one-

dimensional and all variables are at most functions of x and t only. The plane-strain 

condition in the y direction and the stress equilibrium in the x direction require that εyy = 0 

and σxx = Pc(t). Using these conditions into the constitutive Eqs. 4.30 and 4.31, the fluid 

contents are rewritten in terms of stress, fluid pressure, and temperature as 

)( III
12

I
11

III TpbpbPa czz βϕσζ −−−+−= , .......................................................(4.95) 

)( IIII
22

I
21

IIIIII TpbpbPa czz βϕσζ −−−+−= , ...................................................(4.95) 

where (N)a , (N)ϕ , and bij are given in Eqs. 2.34 to 2.35b. (N)β  is expressed as 

II
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I

13
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I

I
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I ;
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fsssfsss β
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β

ϕβββ −+=−+= , ........................................(4.95) 

Similarly, the compatibility Eq. 4.38 changes to 
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Integrating and accounting for the symmetry about the centerline (x = 0) yields 
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)(1
TIIIIII tCTppzz +++= γγγσ , ........................................................................(4.97) 

in which the dimensionless coefficient (N)γ = (N)
3α - 1113

(N)
1 / MMα , Tγ = s

3β - 11131 / MMsβ  

and C1(t) is an integration constant depending only on time. As a result, the fluid diffusion 

equation with normalized parameters becomes 
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Neglecting the nonlinear convective term in the heat diffusion equation, the classical heat 

conduction equation is recovered as 

2

2

D

T
D

D x
T

t
T

∂
∂=

∂
∂ κ ,.......................................................................................................(4.99) 

in the above, ][ω , ][ DΓ , ][ Dκ , and (N)
fc  are given in Eqs. 2.46 and 2.47; (N)

hfc  and T
Dκ  are 

defined in Eqs. 4.58 and 4.60. 

4.4.2 Analytical Solution 

The heat diffusion equation, Eq. 4.99, is uncoupled from the stress and pressure field and 

can be solved separately. Using the temperature boundary condition, the solution for 

temperature field is obtained and expressed in Laplace transform domain as 

)cosh(
)cosh(~

)cosh(
)cosh()/~(~

0
h

Dh

h

Dh
o

xTxsTTT
ξ

ξ
ξ

ξ Δ=−= , ..................................................(4.100) 

where T
Dh s κξ /= . Next, the expressions for the dual pressure fields are derived by 

solving Eq. 4.98. This is a non-homogeneous partial differential equation system and its 
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general solution is obtained as a summation of the homogeneous and particular solutions 

and given as 

)cosh()cosh(~~~~ IIII
2

II
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I
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III
DDTc xCxCgCgTfPp ξξ ++++= , ...........................(4.101) 

)cosh()cosh(~~~~ IIIIII
2

III
2
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1

IIIIII
DDTc xmCxmCgCTgfPp ξξ ++++= , ...............(4.102) 

where )((N)
2

(N)
2 sCC =  is additional arbitrary coefficient to be determined from boundary 

conditions; (N)(N) l=ξ  with the coefficients (N)l , (N)m , (N)f , and (N)g  as given in Eqs. 

2.51 to 2.54; (N)
Tg  are defined in Eqs. 4.64. Subsequently, using the equilibrium, 

constitutive and strain-displacement equations, it is easy to solve for the stresses and 

displacements in terms of the fluid pressures and temperature as 
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where the lumped coefficients 0A , 1A , (N)
2A , (N)h , f, and g are given in Eqs. 2.82a to 2.85. 

AT and hT are defined as 

TIIIIII γγγ ++= TT
T ggA ,.................................................................................... (4.106a) 

111
IIII

1
II

1 /)( Mggh s
TT

T βαα ++= , .......................................................................(4.106b)  

The remaining three unknowns )(~
1 sC , )(I

2 sC  and )(II
2 sC  are determined from the fluid 
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pressure boundary conditions for pI and pII at the edges x = +/-a and the vertical loading 

condition on top and bottom at z = +/-b.  

4.4.3 Results and Discussions 

This section illustrates the response of a rectangular strip under temperature gradient 

loading. The following set of data are used: E  = 1244 MPa, v  = 0.22 , Iα  = 0.64, 
Iα  = 

0.33,  sβ  = 1.33×10-2 MPa/oC, I
fsβ  = 5.05×10-5 oC-1, II

fsβ  = 8.71×10-6 oC-1, kI = 5×10-5 md, 

kII = 5 md, µ = 1 cp, and ch = 7.18×10-2 m2/day.  

Figs. 4.12 and 4.13 show the evolutions of pore pressures and vertical stress 

distribution with the application of a +/-5 oC temperature gradient across the sample lateral 

boundaries. The behavior of pore pressure in the fracture network essentially stays the same 

under the additional thermal effect due to fast fluid diffusion. However, the pore pressure in 

the matrix seems to display a counter-intuitive behavior, i.e., decreasing for heating and 

increasing for cooling. This can be explained through the transient redistribution of vertical 

stress in Fig. 4.13. For isothermal case, compatibility condition requires a stress transfer to 

the middle region due to the apparently softer drained edges (the Mandel-Cryer’s effect). 

Heating will induce additional compressive stress at the edges, effectively making the sides 

stiffer than the center. Consequently, the stress is redistributed from the center to the sides, 

leading to lower pore pressure at the center. The dual evolutions of pore pressure at the 

center of the sample are displayed prominently in Fig. 4.14. Because thermal expansion 

counteracts vertical loading near the edges (Fig. 4.15), the strip starts out consolidating but 

quickly turns to rebounding for heating as shown in Fig. 4.16. Laterally, the reduction in 
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vertical displacement allows the strip to contract more than the isothermal counterpart as 

depicted in Fig. 4.17. The responses for cooling can be explained in opposite analogy. 
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Fig. 4.12—Evolution of pore-pressure distribution in the cross section under the effect of heating 
(left column) and cooling (right column) in conjunction with no-thermo effect (dashed lines). 
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Fig. 4.13—Evolution of vertical stress distribution in the cross section under the effect of heating 
(left column) and cooling (right column) in conjunction with no-thermo effect (dashed lines). 
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           (b) 

Fig. 4.14—History of normalized pore-pressure developed at the center (x/a = 0) under the effect of 
(a) heating and (b) cooling, in conjunction with no-thermo effect (dashed lines). 
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           (b) 

Fig. 4.15—History of normalized vertical stress developed at the center (x/a = 0) and at the edge (x/a 
= 1) under the effect of (a) heating and (b) cooling, in conjunction with no-thermo effect (dashed 
lines). 
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Fig. 4.16—History of normalized vertical displacement at the top (z/b = 1) under the effect of heating 
and cooling, in conjunction with no-thermo effect (dashed lines). 
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Fig. 4.17—History of normalized lateral displacement at the edges (x/a = +/-1) under the effect of 
heating and cooling, in conjunction with no-thermo effect (dashed lines). 
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4.5 Summary 

In this chapter, the dual-porothermoelastic analytical model and solutions for the responses 

of two problem geometries, inclined wellbore and rectangular strip, have been derived and 

illustrated. Coupling of temperature effects for non-isothermal condition is incorporated by 

adopting a “single-temperature” approach in which a single representative thermodynamic 

continuum is adopted for naturally fractured rock formations.  

The inclined wellbore results demonstrate that thermal loading induces significant 

concentration of stress and pore pressure that controls near-wellbore stability. The effect of 

thermal expansion coefficients of solid and fluid on stress and pore pressure was shown, in 

addition to the anisotropic impact of varying the ratio, s
1

s
3 /αα . Numerical examples 

employing finite difference method are also shown accounting for heat convection.  

The results for rectangular strip displayed the canonical responses of the coupled dual-

porothermoelastic process which lend insight into the impact of thermal loading and the 

triple time scales among dual fluid flow and single heat diffusion in naturally fractured 

porous rock formations under non-isothermal condition.   
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Chapter 5 

Applications 

5.1 Introduction 

This chapter is dedicated to the applications to the solutions presented in previous chapters. 

The inclined wellbore solution is used to perform wellbore stability analysis for drilling 

through chemically active fractured rock formations under non-isothermal conditions. The 

hollow cylinder solution is applied to study elastic consolidation of a producing reservoir 

and its implications on porosity and permeability reduction in the near wellbore region. 

Finally, the cylinder solutions are used to demonstrate the dual-poromechanics responses 

under some realistic experimental loading conditions such as cyclic, linear ramping, and 

exponentially decayed. 

5.2 Wellbore Stability7 

In oil-and-gas operations, the majority of drilling footage is carried out through low-

permeability rock formations such as shale, chalk, granite, etc. Many of these subsurface 

                                                 
7 Part of this work was published in SPEJ 14(2): 282-301 (Nguyen et al. 2009) and presented at SPE ATCE 
(Nguyen and Abousleiman, SPE 123901, October 2009, New Orleans).  
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intervals are in-situ fractured and may be treated as such when it comes to drilling 

operations and wellbore-stability planning. The ultralow-permeability rock matrix is highly 

fractured not only at the macroscale as observed in many wellbore formation microscanner 

images (FMI) but also at the microscale as seen on thin sections and scanning electron 

microscopy (SEM) images (Han et al. 2009).  

When the shale is fractured, it is mechanically weakened and exhibits high-

permeability fluid-flow paths within the low-permeability intact shale matrix. Because of 

different fluid-diffusion rates between the fractures and shale matrix, there are two distinct 

pore-pressure fields in saturated fractured shale when subjected to stress and/or fluid-

pressure perturbation. For example, in overbalanced drilling through a fractured-shale 

formation, the drilling mud penetrates the fractures immediately and there is no significant 

leakoff of fluid from the wellbore or from the fractures into the intact shale matrix. In other 

words, the fracture network with high permeability provides preferential flow paths for 

mud invasion into the formation. Consequently, we risk losing mud circulation and 

damaging the formation. In addition, the fluid invasion into the fractures weakens the 

mechanical strength of the shale such as cohesion and friction angle, as observed in 

laboratory shale testing. Furthermore, the communication between the fluid pressure in the 

fractures and wellbore mud pressure makes the formation more sensitive to every activity 

in the drilling operation such as stopping circulation, tripping, or drillstring impact. These 

events could create significant pressure variation in the fractures, leading to collapse failure 

consequences such as cavings and hole erosion. 

As a result, the natural fractures of the shale, necessitate an unconventional approach to 
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assess wellbore instabilities. The basic approach consists of applying the dual-

poromechanics equations to calculate the time-dependent pore-pressure and effective stress 

redistributions in and around the wellbore to compute subsequently the time-dependent 

mud-weight windows to prevent wellbore collapse or to avoid wellbore fracturing.  
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Fig. 5.1—The field problem of simulating and predicting wellbore stability. 

Rocks generally fail when the effective stress state (total stress less the pore pressure: 

σij - p) exceed the formation strength’s either in tension or compression. The tensile 

strength of subsurface formations is generally very weak due to preexisting fractures or 

bedding planes in the rock. Thus, it is conservatively taken to be zero in stability 

calculation. The compressive strength is described using any two of the three strength 

parameters: friction angle, Φ; cohesion, C; and/or uniaxial compressive strength, UCS. 
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These compressive strength parameters are related by UCS = 2C×tan(Φ/2+π/4). All tensile 

and compressive strength parameters can be measured from rock testing or correlated from 

well-log data. 

In this section, the individual and combined time-dependent effects of shale’s fractures, 

mud chemistry, and temperature will be analyzed through simulated downhole drilling 

condition. A wellbore is assumed to be drilled in a fractured shale formation at a true 

vertical depth (TVD) of 3281 ft (1000 m). The values for in-situ conditions and wellbore 

geometry are listed Table 5. Other modeling material parameters for fracture and chemical 

effects are given in Table 6. 

 

TABLE 5—IN-SITU CONDITIONS AND WELLBORE GEOMETRY 
In-situ Conditions 

Overburden stress (SV) 1.050 psi/ft (23.75 kPa/m or 2.42 SG) 

Maximum Horizontal stress (SH) 0.880 psi/ft (19.90 kPa/m or 2.03 SG) 
Minimum Horizontal stress (Sh) 0.800 psi/ft (18.10 kPa/m or 1.85 SG) 
Formation pore pressure (po) 0.433 psi/ft (9.80 kPa/m or 1.00 SG) 
Formation temperature (To) 40oC (104oF) 
Formation water activity (ao) 0.88 (~ 150K CaCl2 =  0.034 mole fraction) 

Wellbore Parameters 
Well depth (true vertical depth) 3281 ft (1000 m) 
Wellbore diameter (2Rw) 4.0 in (0.1 m) 
Well azimuth 0° clockwise from North 
Well inclination varying from vertical (0o) to horizontal(90o) 

Rock Strength Parameters 
Formation cohesion (Co) 1200 psi (8.27 MPa) 

Formation friction angle (Φo) 20 degrees 
Formation tensile strength 0 psi (0 MPa) 

Bedding Plane Strength Parameters 
Bedding plane cohesion (Cb) 600 psi (4.14 MPa) 
Bedding plane friction angle (Φb) 10° 
Bedding plane dip (βd) 80° from horizontal plane* 
Bedding plane strike (βa) 150° clockwise from North* 
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TABLE 6—MODELING PARAMETERS 
Single-Poroelastic Analysis (Intact Rock) 

Compressibility (cI) 6.2×10−6 psi–1 (9.1×10−4 Mpa–1) 
Poisson’s ratio (νI) 0.22 
Effective stress coeff. (αI) 0.96 
Storage coeff. (1/MI)  7.6×10−7 psi–1 (1.1×10−4 Mpa–1) 
Porosity (φI)  0.14 
Permeability (kI)  1.0×10−5 md (~ 1.0×10−20 m2) 
Fluid viscosity (μ) 1 cp (0.01 Pa·s) 
Drilling-mud weight (pw) 10.00 lb/gal (1120 kg/m3 or 1.258 SG) 

Dual-Poroelastic Analysis (Fractured Rock) 
Fracture’s compressibility (cII)  6.2×10−5 psi–1 (9.1×10−3 Mpa–1) 
Fracture’s bulk volume fraction (vII)  0.05 
Fracture’s effective stress coeff. (αII)  1.00 
Fracture’s storage coeff. (1/MII)  7.6×10−6 psi–1 (1.1×10−3 Mpa–1) 
Fracture’s local porosity (φII) 0.95 
Fracture’s permeability (kII)  1.0 md (~ 1.0×10−15 m2) 
Interporosity geometric factor (λ)  ~ 3.87 in–2 (6.0×103 m–2) 
Overall fractured rock compressibility ( c ) 9.1×10−6 psi–1 (1.31×10−3 MPa–1) † 
Overall fractures rock Poisson’s ratio ( v ) 0.22 
Overall matrix’s effective stress coeff. ( Iα ) 0.21† 

Overall fracture’s effective stress coeff. ( IIα ) 0.76† 
Dual-Porochemoelastic Analysis (Fractured Shale) 

Matrix’s membrane efficiency (χI) 0.2 
Fracture’s membrane efficiency (χII) 0.0 (no membrane behavior) 
Solute diffusion coeff. in free solution ( sD0 ) 0.27 in2/day (1.75×10−4 m2/day) 

Matrix’s effective solute diffusion coeff. ( 2
0 )( IssI

eff DD φ= ) 5.33×10−3 in2/day (3.43×10−6 m2/day) † 

Fracture’s effective solute diffusion coeff. ( IIssII
eff DD φ0= ) 0.25 in2/day (1.58×10−4 m2/day) † 

Drilling-mud activity ( f
wa ) 0.986 (~ 50K CaCl2 = 0.008 mole fraction)  

Dual-Porothermoelastic Analysis (Fractured Rock under Non-isothermal Condition) 
Solid volumetric thermal expansion coeff. ( sα ) 3.0×10−5 oC-1 

Fluid volumetric thermal expansion coeff. ( fα ) 3.0×10−4 oC-1 

Bulk heat capacity (C ) 2732  kJ/m3 -oC 

Thermal conductivity (λ T)  353 kJ/m-day- oC 
† Computed 

 

Time-Dependent Analyses for Fractured Rock: Dual-Poroelastic Analyses. The 

impacts of natural fracture network on mud-weight window are illustrated in here. The 

mud-weight window at the borehole wall (r/R = 1) for compact shale formation as 

determined by the single-poroelastic solution, which neglects the effects of flow and 

deformation in the fracture is shown in Fig. 5.2(top).  
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Non-fractured rock: Single-poroelastic approach

Time = 2 days

Non-fractured rock: Single-poroelastic approach

Time = 2 days

 

Fractured rock: Dual

Intact rock mud window

Fractured rock: Dual- poroelastic approach

Non-fractured
rock mud window

Fractured rock: Dual

Intact rock mud window

Fractured rock: Dual- poroelastic approach

Non-fractured
rock mud window

 

Fig. 5.2—Mud-weight windows at the borehole wall (r/R = 1) for different modeling approaches: (top) 
non-fractured rock, i.e., single-poroelastic and (bottom) fractured rock, i.e.,  dual-poroelastic. 
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The corresponding mud-weight window as predicted by the dual-porosity and dual-

permeability solution is shown in Fig. 5.2(bottom). In these figures, the green color 

indicates safe drilling mud-weights whereas the red color implies that the mud-weight to 

prevent collapse is higher than the allowable mud-weight to avoid fracturing the formation. 

At high wellbore mud pressure, flow in fracture network will quickly increase the pore 

pressure and decrease the effective stress, allowing more mud support to prevent collapse 

but also promoting tensile/fracturing failure (lower fracturing mud weight). On the other 

hand, at low mud weight, flow in fracture system will reduce mud support considerably 

and, thus, increase collapse potential (higher collapse mud weight). It is obvious that the 

non-fractured-shale approach and solution without coupling the fracture’s contribution falls 

short in simulating wellbore stability in fractured shale because it predicts a wider mud-

weight window for drilling operations. For example, drilling from a non-fractured shale 

section to fractured one will not tolerate high-angle wells, e.g., with borehole inclination 

greater than 55 degrees. 

 
Time-Dependent Analyses for Fractured Shale with Mud Chemistry Effects: Dual-

Porochemoelastic Analyses. Because the effective stress states are the same at the 

wellbore (Fig. 2), chemical effects on mud-weight windows only manifest inside the 

wellbore wall. In fact, the mud-weight window at r/R = 1.05 in Fig. 5.3 reveals that low 

mud salinity (50K) and being fractured will shrink the mud-weight window. It is also 

important to note the time dependency of failure through the progression of the mud-weight 

window. In this case, it is observed that the mud-weight window shrinks from both ends 

(collapse and fracturing), approximately 1.50 lbm/gal after drilling for 1 day, resulting in a 
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total mud-weight-window contraction of 3.0 lbm/gal for high-angle wells. This trend 

suggests that borehole-instability potential increases with time. 

Fractured shale
mud window

r = 1.05 R

t = 0.1 days

Mud salinity = 50K; Formation salinity = 150K CaCl 2

Intact shale mud window

t = 0.1 days

t = 1 days
t = 1 days

Fractured shale
mud window

r = 1.05 R

t = 0.1 days

Mud salinity = 50K; Formation salinity = 150K CaCl 2

Intact shale mud window

t = 0.1 days

t = 1 days
t = 1 days

 

Fig. 5.3—Mud chemistry effect on mud-weight window at r/R = 1.05 after 0.1 day into drilling with low 
mud salinity (50K). 

Time-Dependent Analyses for Fractured Shale with Mud Temperature Effects: Dual-

Porothermoelastic Analyses. A mud/shale temperature gradient will increase or decrease 

the normal effectieve stress at the wellbore. As a result, the mud temperature can shift the 

allowable mudweight window either up or down. In Fig. 5.4, cooling will shift the mud 

window down, i.e., reducing the maximum mud density below which to avoid fracturing 

the wellbore while also decreasing the mud density required to prevent borehole collapse 

shear failures.  
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Mud Window Cooling
Dual-porothermoelastic

Mud Window Isothermal
Dual-poroelastic

r  = R
Time =  2 days

Mud Window Cooling
Dual-porothermoelastic

Mud Window Isothermal
Dual-poroelastic

r  = R
Time =  2 days

 

Fig. 5.4—Mud temperature effect on mud-weight window at r/R = 1.00 after 2 day into drilling for 
cooling. 

 

5.3 Reservoir Consolidation8 

Hydrocarbon production from naturally fractured reservoirs is susceptible to unwanted 

compaction and adverse pressure depletion. Compaction and depletion can be significant in 

“soft” and “highly permeable” reservoirs such as naturally fractured formations. In 

geomechanics reservoir modeling, the production induced reduction in reservoir pressure is 

fully coupled with the changes in total stress state in and around the reservoir. In other 

word, the reservoir porosity and permeability depends on the effective stress (total stress 

less fluid pressure) or deformation of the porous rock formation. Hence, knowledge of the 
                                                 
8 Part of this work was presented at the SPE ATCE (Nguyen and Abousleiman, SPE 123900, October 2009, 
New Orleans). 
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effective stress histories and distributions during production and depletion can help 

estimate porosity and permeability change, predict and manage solid production, stress on 

casing, as well as near-wellbore formation mechanical stability. 

In field development, it is desirable to establish the order of magnitude of the reservoir 

consolidation effect. Unfortunately, there are no simple tools available when it comes to 

analyzing the complex behaviors of fractured reservoirs. Geertsma’s (1957) early analytical 

model used a nucleus-of-strain approach to simulate the elastic deformation of an infinitely 

thin disk-shaped reservoir with uniform pressure depletion. This approach provides 

estimate of deformation outside of the reservoir, e.g., subsidence, while giving no 

information about the fluid flow and/or deformation within the reservoir. Analytical 

approaches that consider deformation within the reservoir approximate the reservoir 

compaction as uniaxial elastic deformation with uniform pressure depletion (Settari 2002; 

Settari et al. 2005). In other word, the fluid flow and deformation field are uncoupled and 

solved separately. Recently, the fully coupled geomechanics approach to reservoir 

simulation has been incorporated in various numerical codes (Lewis et al. 2003, Phillips 

and Wheeler 2007). These numerical modeling identifies significant contribution of 

compaction drive mechanism during the life of a producing reservoir which required proper 

coupling between fluid flow and deformation in reservoir simulation. For homogeneous 

rock formation, Kanj and Abousleiman (2005, 2007) provided the analytical solutions for 

assessing compaction effect under the effects of stress, pressure, thermal and chemical 

perturbation. Recently, the analytical solution for inclined wellbore drilled in naturally 

fractured rock formation modeled as dual-porosity and dual-permeability continuum was 
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provided (Abousleiman and Nguyen 2005) and later extended to include chemical effect 

for analyses in fractured shale formation (Nguyen et al. 2009), thus systematically 

modeling the stresses and pore pressures in the fractures as well as in the matrix structure. 

These fully coupled solutions provide the groundwork for studying the compaction 

problem in naturally fractured reservoir since they can approximate the response of a finite 

boundary reservoir when the reservoir lateral extent is much larger than the wellbore radius 

or formation vertical thickness. 

In this work, the reservoir is ideally modeled as a cylindrical disk-shape of large lateral 

extent of radius Ro compared to its vertical thickness, h (Ro >> h), buried at large depth 

(TVD >>h). A vertical well with wellbore radius of Rw (Rw << Ro) is completed in the 

center of the reservoir throughout the whole thickness which renders the problem geometry 

a hollow cylinder as depicted in Fig. 5.5. The reservoir behavior is linear poroelastic so that 

all material parameters such as compressibility are constant. The changes in reservoir 

effective stresses, displacements, and pore volume due to wellbore production/injection can 

be computed explicitly and analytically if the following assumptions and restrictions 

regarding boundary conditions are made (Fig. 5.5b): 

• The reservoir is surrounded on all sides by non-depleting and much stiffer rock 

formations. 

• At the outer boundary of the reservoir (r = Ro), there is no normal displacement (ur = 0) 

and no flow (qr
I = qr

II = 0). 

• At the wellbore (r = Rw), the casing support is assumed to enforce zero normal 

displacement (ur =0). For a prescribed production/injection rate, the total flow rate 
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across the wellbore wall is the sum of individual flow through the matrix and fracture 

network (qr = qr
I + qr

II). In addition, hydraulic continuity requires that matrix and 

fracture fluid pressures are the same at the well (pI = pII). 

• The bottom (z = 0) of the reservoir has a zero vertical displacement (uz = 0) and no flow 

(qz
I = qz

II = 0) constraint. 

• At the top (z = h) of the reservoir, the vertical stress applied on the reservoir by the 

overburden remains constant (ΔSV = 0) during production/injection. There is also no 

flow across this boundary (qz
I = qz

II = 0). 

The boundary conditions imply that no axial fluid discharge occurs (qz
I = qz

II = 0) in the 

reservoir and fluid flow is in the radial direction only. The assumption of soft reservoir 

encased in stiffer rock formation render the reservoir’s edge effects of shear stress and 

torsion negligible. This estimate will always yield a uniform vertical consolidation at the 

top of the reservoir. In reality, the vertical displacement is smaller at the edges of the 

reservoir as shown in Fig. 5.5a. Fortunately, for reservoir with large lateral extent, this 

assumption provides good approximation for vertical compaction (Setarri 2005). As a 

result, the problem geometry and boundary conditions allow the use of a generalized plane 

strain condition in which all quantities, except for vertical displacement (uz), are z-

independent. Due to the uniformity of lateral boundary conditions, the problem is 

obviously axisymetric (θ−independent). Here, we are interested in the changes of vertical 

displacement and effective stresses distribution in the reservoir due to production/injection 

(post-drilling and -completion processes) only. Therefore, the analytical solutions for these 

quantities are sought in reference to the pre-production stress state. The corresponding 
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analytical solution has been presented and details of the solution derivation can be obtained 

from Nguyen and Abousleiman (2009b).  

 
(a) 

             
(b) 

Fig. 5.5—Reservoir consolidation and compaction: (a) real behavior and (b) idealized model for 
fractured reservoirs. 

In this section, the analytical solution is used to simulate the production and depletion of a 

fractured reservoir in the Ghawar field, Saudi Arabia and the subsequent impact on 

compaction, solid production and casing stress. The reservoir formation is predominantly 

carbonate rock with widespread dolomization and anhydrite pore-filling material. In some 

places, dolostones are responsible for producing permeability barriers, whereas in other 

places they are associated with zones of very high production (Meyer et al. 2000). These 

zones of very high flow have been termed ‘‘super-k’’ zones which can sustain up to 500 

barrels per day per foot thickness. The average permeability varies from 1 md (matrix) to 



 

 209

400 md (fracture network). Therefore, the reservoir is a good candidate for dual-porosity 

and dual-permeability poroelastic modeling. Other formation material data include porosity 

= 20%, Young’s modulus = 2×106 psi, and Poisson’s ratio = 0.30. 

A vertical well of radius Rw = 4 inches is assumed to be completed in a fractured 

reservoir with thickness h = 200 ft and lateral extent Ro = 3280 ft (1000 m) at 12,000 ft 

depth. The pre-production reservoir pressure is 6700 psi (1.30 SG). The in-situ stresses 

acting on the reservoir outer boundaries are the overburden SV = 12,600 psi (2.42 SG) and 

horizontal in-situ stress SH = Sh = 9000 psi (1.73 SG). These are not the pre-production 

stress distribution in the reservoir because the original uniform in-situ stress state in the 

reservoir was altered due to wellbore drilling. The well is set to produce at constant flow 

rate of 10,000 STB/day for two years.  

 
Consolidation and Implications on Porosity/Permeability Reduction. The current 

model and solution can be applied to simulate the effects of elastic-dominated deformation 

on porosity/permeability reduction due to reservoir depletion. The developed vertical 

consolidation is indicative of the pore volume reduced. However, it includes contribution 

from the bulk compressibility of the rock, the fluid as well as the pore volume. For small 

variation of the porosity, the change in apparent porosities, vIφI and vIIφII, are correctly 

captured by back calculating from the variation of fluid contents, Eqs. 2.10 and 2.11. Based 

on the porosity changes, the corresponding variations in permeability are computed. 

Assuming that the bulk volume fraction of the matrix (vI) and fracture network (vII) does 

not change during elastic deformation, the induced reduction in the intrinsic or local 

porosity of the matrix and fractured can be estimated. Since the fracture’s intrinsic porosity 
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is usually a large number close to 1.0 but its bulk volume fraction is small, a small 

reduction in the total porosity can lead to a significant change in the fracture’s 

intrinsic/local porosity (φ(N)) and subsequently the fracture’s local permeability (k(N)).  

Isotropic Reservoir. The histories of vertical displacement between fractured and non-

fractured isotropic reservoir as a result of production for up to 2 years are compared in Fig. 

5.6. For constant production rate, the volumes of fluid withdrawn are the same for both 

non-fractured and fractured reservoir modeling. Therefore, the difference in the vertical 

displacement of 0.20 ft (2.4 in) clearly isolates the impact of fracture compressibility on 

reservoir deformation.  
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Fig. 5.6—Vertical consolidation due to constant production rate, Qw = 10,000 stb/day, for isotropic 
reservoir. 

Fig. 5.7 illustrates percent reduction in total porosity and equivalent permeability for 

constant production rate Qw. The local permeability reductions (ΔkI and ΔkII) are estimated 

separately for the reservoir matrix block and fracture network and then combined to arrive 

at the equivalent permeability change. The results show up to 1.5% reduction in total 



 

 211

porosity and 6% decrease in the overall permeability. Ignoring the contribution of  

fracture’s deformation and fluid flow could substantially underestimate the damage in 

reservoir flow quality. 
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Fig. 5.7—Near-wellbore total porosity and equivalent permeability reductions due to constant 
production rate (Qw = 10,000 stb/day) after 2 years. 

Transversely Isotropic Reservoir. One potential application of the transversely isotropic 

model and solution is that the orientation of the fracture system in the reservoir can be 

partially simulated by modifying the ratios of material properties in the transverse direction 

(vertical) compared to those in the isotropic plane (horizontal). For example, a reservoir 

with horizontally oriented fracture system can be represented as being more compliant in 

the vertical direction ((Cz/Cx)fracture > 1). Analogously, a randomly oriented fracture system 

can be modeled with isotropic properties, (Cz/Cx)fracture = 1, whereas a vertically oriented 

fracture network can be represented as having (Cz/Cx)fracture < 1. Figs. 5.8 and 5.9 show the 

simulated vertical displacement and reduction in porosity and permeability for the three 
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fracture’s representation discussed in here. The results are significantly different and 

demonstrate the impact of fractures' orientations, density, porosity and permeability on the 

overall reservoir flow and deformation responses.  
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Fig. 5.8—Vertical consolidation of fractured reservoir. Fracture’s orientation is simulated by varying 
the ratios of fracture’s compressibility between the vertical direction and horizontal plane. 
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Fig. 5.9—Simulating near-wellbore porosity and permeability reductions for some fracture’s 
orientations. 
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5.4 Time-dependent Load Applications 

So far, the results are shown only for step loading condition. In this section, the responses 

due to time-dependent loading situations such as cyclic loading, linear ramp loading and/or 

combination are briefly demonstrated for cylinder geometry to illustrate the capability of 

the analytical solutions presented in this dissertation.  

The material data and sample dimension are the same as listed for solid cylinder in 

Chapter 2, section 2.4.1.4. Fig. 5.10 shows the pressure evolution at the center of the 

specimens under a low-frequency cyclic axial stress with magnitude of 1 MPa and a period 

of 2 seconds (0.5 Hz) for the first 5 cycles. As expected, the pore pressures also show 

cyclic behaviors in which the pressure in the fracture is the highest because the loading 

period is smaller than the characteristic time scale for fluid diffusion in the fracture network 

(~ 4 sec). On the other hand, Fig. 5.11 demonstrates the pore pressure response due to a 

linear ramp loading for three different buildup rates with characteristic times to of 10, 100, 

and 1000 seconds. The pressurization process is such that the average axial stress reaches 

10 MPa at to time and remains constant at this level afterward. Evidently, the fast diffusion 

speed in fractured medium together with inter-porosity flow allow significantly less pore 

pressure build up in the sample. Finally, superposition of the basic loading solutions allows 

modeling of more complex loading processes. For example, combination of the above 

cyclic and linear ramp results yields the pore pressure fluctuation during the first 28 

seconds for the loading functions depicted in the inset of Fig. 5.12. 
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Fig. 5.10— Pore pressures histories at the cylinder’s center r = 0 under cyclic loading. 
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Fig. 5.11—Pore pressures histories at the cylinder’s center r = 0 varying linear ramp loading rates. 
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Fig. 5.12—Pore pressure fluctuations at the cylinder’s center (r = 0) through times under combined 
cyclic and linear ramp loading (the cyclic loading period is T = 2 seconds and ramping characteristic 
time is to = 10 seconds). 
 

5.5 Summary 

The inclined wellbore solution has been applied to assess wellbore stability for a simulated 

downhole drilling condition. Analyses that neglect the naturally fractured nature of the 

shale fall short in simulating wellbore instability since they predicted a wider mud-weight 

window for the drilling operation, while mud salinity and temperature can be utilized as a 

stabilizing factor if calibrated previously. These analytical analyses can be applied directly 

to real-case drilling analyses in fractured-shale formations. 

General anisotropic dual-porosity and dual-permeability analytical formulation and 

solution to simulate naturally fractured reservoir geomechanics due to production/injection 
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have been presented. The analytical model is easy to implement and can be used for 

sensitivity analyses among extreme cases of reservoir representation and management. The 

anisotropic representation of the fracture framework allows quick calculation of the effect 

of fractures on the overall geomechanical responses. Applications of the fractured model 

and solutions include estimation of consolidation and porosity and permeability reduction, 

all of which are important to the overall field development plan including recovery forecast 

and management, platform and well design, future stimulation programs (hydraulic 

fracturing). Furthermore, the analytical solution can be used to validate reservoir simulation 

numerical codes. 

Finally, some realistic quasi-static loading conditions commonly encountered in 

experimental testing and field applications such as cyclic, linear ramping, and combination 

have been demonstrated via the solutions of solid cylinder geometry. 
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Chapter 6 

Conclusions and Recommendations 

 

6.1 Conclusions 

A complete study of anisotropic dual-porosity and dual-permeability poromechanics is 

presented through generalized analytical solutions of problem geometries for laboratory 

and field applications. The behaviors of naturally fractured rock formations or the 

responses of the well known dual-porosity bone structure are modeled as dual-porosity and 

dual-permeability poroelastic media that fully couples fracture’s deformation, fluid flow 

and interporosity exchange processes. For chemically active fractured media, e.g., clay, 

shale, or biomaterial, chemical interaction effects including osmotic and solute transport in 

both the porous matrix and fracture network is addressed based on non-equilibrium 

thermodynamics. Thermohydromechanical coupling under non-isothermal condition is 

incorporated by adopting a “single-temperature” approach in which a global representative 

thermodynamic continuum is argued to be sufficient to describe the thermally induced 

responses of a naturally fractured rock formation. The mathematical models are used to 



 

 218

find the poromechanical analytical solutions to selected problem geometries, including 

inclined wellbore, rectangular strip, and solid and hollow cylinder. The solutions are 

derived to include general time-dependent boundary conditions that can be tailored to 

specific field problems or laboratory testing setups. These solutions are expressed in closed 

forms in Laplace transform domain and can be easily inversed to obtain results in time 

domain.  

Generic dual-poromechanics results are plotted and compared with single-

poromechanics counterpart for a homogenous medium where applicable. Parametric 

analyses are also carried out to evaluate the effect of fracture network on the overall 

response. The inclined wellbore solution is used to perform comprehensive time-dependent 

wellbore stability analysis for drilling through chemically active fractured rock formations 

under non-isothermal conditions. The hollow cylinder is applied to study elastic 

consolidation of a producing naturally fractured reservoir and associated implications on 

porosity and permeability reduction in the near-wellbore region. Finally, the solid cylinder 

solution is used to demonstrate the dual-poromechanics responses under some realistic 

experimental loading conditions such as cyclic, linear ramping. 

The following conclusions can be drawn based on the results of this study: 

1. The inclined wellbore analytical solutions with various fluid boundary conditions can be 

applied directly to real-case drilling analyses in fractured-shale formations under non-

isothermal condition. 

2. Dual-poromechanics modeling of fractured rock formation predicts a narrower 

mudweight window for operations. 
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3. The mud chemistry and temperature can be used as stabilizing factor for wellbore 

stability if calibrated previously. 

4. The analytical solutions for solid and hollow cylinder geometries can be used in both 

geomechanics and biomechanics for purposes of rock and bio-tissue characterization. 

5. In addition, the anisotropic hollow cylinder solution can be easily implemented to 

simulate naturally fractured reservoir geomechanics due to production/injection through 

sensitivity analyses among extreme cases of reservoir representation and management. 

6. Results show that analyses neglecting the effects of fracture, chemical salinity, and/or 

temperature in modeling approach can lead to erroneous laboratory test’s results or 

interpretation as well as misleading the optimization of field operations. 

 7. Finally, the analytical solutions presented in this work can be used as benchmark for 

validating the integrity of numerical codes for reservoir simulation. 

 

6.2 Recommendations 

The developed model involves many assumptions and simplifications, including linear 

elastic medium, constant material coefficients, single-phase fluid flow, etc. During 

operations such as wellbore drilling, these simplifications may not apply, and their effects 

should be assessed properly. Therefore, experiments and more field case studies are needed 

to validate the analytical models. 

Numerical analyses of realistic problem geometry and boundary conditions can be 

carried out using the analytical solutions presented in this dissertation as validation results.  
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Appendix A Material Coefficients for Dual-
Porosity and Dual-Permeability Poroelasticity 

A.1 Transversely Isotropic Case 

The individual drained elastic modulus tensor is expressed in matrix notation as 
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For engineering applications, it is more practical to use the familiar drained Young’s 

moduli (N)
1E  and (N)

3E , Poisson’s ratios (N)
12v  and (N)

13v , and the shear modulus (N)
3G  to 

express the components of the transversely isotropic drained elastic modulus matrix (N)M  

by the following relations (Abousleiman and Cui 1998) 
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And the compliance matrix (N)C  which is the inverse of the drained elastic moduli (N)M  is 

given as follows 
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Based on microhomogeneity and microisotropy arguments, the constituents’ pore-pressure-

coefficient matrix and Biot moduli are given by 
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where the superscript T denotes matrix’s transpose operation. (N)
sK  is the solid grain bulk 

modulus and (N)
fK  is the fluid bulk modulus of the porous matrix and fracture network, 

respectively. (N)(N)(N) /VVpore=φ  is the local porosity. 
)(η

M  is a lumped modulus given as 
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Following Berryman and Pride (2002), the effective constitutive coefficients for dual-

poroelastic composite material can be identified in terms of the individual constituent’s 

properties as 
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where M  is the overall drained elastic modulus matrix. Other matrixes and scalars are 

expressed as 
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in which the superscripts -1 denotes matrix’s inverse operation and 

( ) ( )II1IIIIIv CCCCQ −−= − , ........................................................................ (A1.12a) 
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The above approach requires the estimation of the overall drained elastic modulus M  or 

compliance C  matrixes. Generally, the overall moduli M  are functions of fractures 

volume/spacing and geometries which can be estimated by some averaging schemes or 

homogenization techniques. Values of elastic moduli, however, should be bounded 

between the fracture network’s moduli IIM  and the matrix’s ones IM . One reasonable 

estimate could be the geometric mean of the constituents’ moduli (
III vIIvI(N) )()( MMM = ) 

assuming that the fracture network is sufficiently developed and randomly distributed to 

form a homogeneous and transversely isotropic continuum on its own. 

A.2 Isotropic Case 

For isotropic case in which (N)(N)
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The corresponding constituents’ pore-presure coefficients and Biot’s moduli become 
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The dual-poroelastic coefficients reduce to 
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(N)K  and K  are the individual and overall bulk moduli, repectively. It can be seen that 
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when the secondary porosity medium vanishes, i.e., vII → 0, the material coefficients 

reduce naturally to the single-porosity counterparts. 
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Appendix B Dual-Poroelastic Rectangular Strip’s 
Solutions 

The boundary conditions for fluid pressures at the two edges xD = 1 and vertical loading at 

the top zD = 2 are 

Load Controlled. 
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Equations B1 to B3 are solved simultaneously for 1
~C , I

2C  and II
2C  as 
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Displacement Control 

Instead of Eq. B3, the vertical strain at the top of the strip (zD = 2) is imposed as 
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Solving Eqs. B1, B2, and B8 for 1
~C , I

2C , and II
2C  as 
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Appendix C Dual-Poroelastic Solid Cylinder’s 
Solutions 

First, it is convenient to show the derivations for stress and strain/displacement 
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components. The stress equilibrium in polar coordinate is 
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Summation of the in-plane strain components is expressed in terms of stresses as 
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Substituting Eqs. C1 to C3 into the constitutive equation gives the axial stress as 
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The radial displacement is obtained by integration noting that rurr rrr ∂∂=+ /)()/1(θθεε  
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And the strain components are 
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Substitution of the pressure expressions (Eqs. 2.95 and 2.96) leads to the explicit general 

solutions of stress and displacements (Eqs. 2.97 to 2.102). The applicable boundary 

conditions for this geometry are the fluid pressure and confining stress boundary conditions 

at the cylinder’s outer surface rD = 1, and the axial loading condition at the top zD = 2. 

Load Controlled. 
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Equations C8 to C11 are solved simultaneously for 1
~C , I

2C , II
2C , and zzS~  as 
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Displacement Controlled 

Instead of Eq. C11, the vertical displacement or strain at the top of the cylinder (zD = 2) is 

imposed as huMS zzzzz 2/~~
33

∗== ε . Solving Eqs. C8 to C10 for 0
~C , I

1C , and II
1C  as 
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Appendix D Dual-Poroelastic Inclined Wellbore 
Solutions 

The complete dual-poroelastic inclined wellbore solution for naturally fractured formations 

is given by Eqs. 2.63a to 2.63h. The boundary conditions and associated expressions for 

contributing axisymmetric loading case ( )1(Ip , )1(IIp , )1(
rrσ , )1(

θθσ ) and deviatoric loading 

case ( )2(Ip , )2(IIp , )2(
rrσ , )2(

θθσ , )2(
θσ r ) are given in the following section. 

D.1 Pressure Boundary Condition (Permeable) 

Assuming full hydraulic communication across the borehole wall, the corresponding 

boundary conditions and solutions are 

Case 1 – Axisymmetric Loading 

The perturbed boundary condition at the borehole wall (rD = 1) are 

0);( )1()1( =+−= θσσσ rDwmrr tp , .......................................................................... (D1.1) 

0
II(1)I(1) )( ptppp Dw −== , .................................................................................. (D1.2) 

This is an axisymmetric (n = 0) radial stress and hydraulic loading problem. The stress has 

contribution from the mud pressure, pw, and the hydrostatic part of the released in-situ 

stress, σm. Meanwhile, the fluid flow is due to pressure gradient between the wellbore mud 

and the formation fluid. Bounded solution at far field requires that 1
~C  vanishes. The 

solution is transient and given in Laplace transform domain which could be inverted to the 
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time domain using the Stehfest’s algorithm (Stehfest 1970) 
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where the superscript (1) denotes the loading case and only non-zero solutions are listed. 

Case 2 – Deviatoric Loading 

The perturbed boundary condition at the borehole wall (rD = 1) are 
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rdrrdrr θθσσθθσσ θ −=−−= , .................................. (D1.10) 

0II(2)I(2) == pp , ................................................................................................. (D1.11) 

This is an asymmetric (n = 2) stress loading problem accounting for the release of the 

deviatoric part of the in-plane in-situ stresses, σd. The solutions in Laplace transform 

domain are 
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where the coefficients 0C , 1
~C , I

2C , and II
2C  are given as 
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in which m = mI - mII and 
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And Θ, Ω, and Ξ are functions defined as 
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D.2 Flux Boundary Condition 

Assuming a flux boundary condition at the borehole wall which simulates fluid injection or 

withdrawal, the boundary conditions and solutions for the two contributing loading cases 

are given as 

Case 1 – Axisymmetric Loading 

The perturbed boundary condition at the borehole wall (rD = 1) are 

0;))(( )1()1( =−= θσσσ rmDwwrr tqp , ..................................................................... (D2.1) 
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Again, this axisymmetric flux loading case requires n = 0 and 1
~C  = 0 for bounded 

solutions at far field. The fluid discharge at the wellbore wall (rD = 1) is )( Dw tq  = 

)](2/[)( II
1

I
1 κκπ +Dw tQ  where Qw(tD) is the flow rate (positive for injection) per unit 

formation thickness. As a result, the wellbore pressure is a function of the flow rate 

imposed across the borehole wall, i.e., ))(()( DwwDw tqptp =  as shown in Eq. 2.128a and 

2.128c. Due to hydraulic communication at the borehole wall, continuity condition requires 

that the fluid pressure in the matrix and fractures are the same and equal to the wellbore 

fluid pressure (Eq. 2.128c). The corresponding solutions in Laplace transform domain are 
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given as 
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Case 2 – Deviatoric Loading 

The perturbed boundary condition at the borehole wall (rD = 1) are 
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It should be noted that the zero total flux boundary condition Eq. D2.12 is automatically 

satisfied regardless of the expressions for pI and pII. Because there is full hydraulic 

communication and fluid pressure at the wall is dictated by the total flowrate as calculated 

in the above axisymmetric loading, it is logical to set pore-pressure perturbation at the 

wellbore wall for the current deviatoric loading to be zero. The solutions and associated 

coefficients in Laplace transform domain are the same as Case 2 for pressure-boundary 

condition, i.e., Eqs. D1.12 to D1.25. 

D.3 No-Flow Boundary Condition (Impermeable) 

In the special case of impermeable borehole wall, there is no hydraulic communication 

between the wellbore and the formation. Hence, the dual pore pressures at the borehole 

wall are generally different from each other as well as are independent from the applied 

wellbore pressure: )(I
1 Dr tp

D =  ≠ )(II
1 Dr tp

D =  ≠ )( Dw tp . The applied wellbore pressure in this 

case is simply the hydraulic head exerted by the fluid column in the borehole.  

Case 1 – Axisymmetric Loading 

The perturbed boundary condition at the borehole wall (rD = 1) are 

0;)( )1()1( =−= θσσσ rmDwrr tp ,............................................................................. (D3.1) 

0II(1)I(1) == rr qq , .................................................................................................... (D3.2) 

Because no fluid flow is allowed, the solution for the perturbed dual pore pressure fields 

are trivial and identically zero: 0II(1)I(1) == pp . The solution for stresses due to radial 

hydrostatic loading is purely elastic as given by the classical Lamé solution 
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Case 2 – Deviatoric Loading 

The perturbed boundary condition at the borehole wall (rD = 1) are 
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Note that in this case, the fluid pressures in the matrix and fracture network are not the 

same at the wellbore wall as in the cases of permeable or flux boundary conditions (Eq. D1. 

or D2.) because no hydraulic communication is allowed. The corresponding coefficients, 

0C , 1
~C , I

2C , and II
2C  are 
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in which I
1D , II

1D , I
2D , and II

2D  are given in Eqs. D1.21 and 
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D.4 Impermeable Matrix and Permeable Fracture Boundary 
Condition 

In extremely low permeability formation, the intact rock matrix can be considered as 

impermeable to fluid flow, i.e., requiring the wellbore pressure to exceed certain capillary 

entry pressure, whereas there is full hydraulic communication between the wellbore fluid 

the fracture network in the formation. Mathematically, the boundary conditions and 

solutions simulating this case are  

Case 1 – Axisymmetric Loading 

The perturbed boundary condition at the borehole wall (rD = 1) are 

0;)( )1()1( =−= θσσσ rmDwrr tp ,............................................................................. (D4.1) 

0
II(1)I(1) )(;0 ptppq Dwr −== , ........................................................................ (D4.2) 

The solutions in Laplace transform domain are 
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where p~Δ  and σ~Δ  are given in Eq. D1.8; the function Π  is defined in Eq. D1.9 and 
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Case 2 – Deviatoric Loading 

The perturbed boundary condition at the borehole wall (rD = 1) are 
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The coefficients 0C , 1
~C , I

2C , II
2C  are 

5
II
3

III
25

I
3

II
2541 /2;/2;/2~ DDCDDCDDC ξξ −==−= , ......................... (D4.10) 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++= 2II

II
2II

1
II
3

II
22I

I
2I

1
I
3

I
241

5
0 )(

4
)(

43
ξξ
DDDADDDADA

D
C ,.......................... (D4.11) 

in which I
1D , II

1D , I
2D , and II

2D  were given in Eq. D1.12 and 
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Appendix E Hollow Cylinder’s Dual-Poroelastic 
Solutions 

E.1 Case 1 

The following lateral boundary conditions are enforced 
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And the resulting coefficients are 

Displacement-controlled.   
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where Φ, Θ, Ω, and Ξ are functions defined as 
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The coefficients (N)
ijd  in Eq. E1.2 are expressed as 
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Load-controlled.   
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The constants 1
~C  and 4C  are the same as defined in Eqs. E1.3 and E1.4. The coefficients 

(N)
ijd  are rewritten as 
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in which the functions Φ, Θ, Ω, and Ξ are the same as defined in Eqs. E1.5a to E1.5d. The 

lumped coefficients ∗
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~σ  and (N)
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E.2 Case 2 

The following lateral boundary conditions are enforced 
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where the coefficients (N)
11d , (N)

12d , (N)
21d , and (N)

22d  are rewritten as 
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The rest of the coefficients and functions are the same as previously defined for Case 1. 

For the special case of no-flow or jacketed on the inner surface, the fluid boundary 

condition at this surface becomes 
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The resulting coefficients are 
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where the coefficients (N)
11d , (N)

12d , (N)
21d , and (N)

22d  are rewritten as 
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The rest of the coefficients and functions are the same as previously defined for Case 1. 

E.3 Case 3 

The following lateral boundary conditions are enforced 
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1oDoo κκπ += rQq  in which oQ  is the flow rate per unit thickness. And the 

resulting coefficients are 
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where the coefficients (N)
31d , (N)

32d , (N)
41d , and (N)

42d  are rewritten as 
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The rest of the coefficients and functions are the same as previously defined for Case 1. 

For the special case of no-flow or jacketed on the outer surface, the fluid boundary 

condition at this surface becomes 
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The resulting coefficients are 
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where the coefficients (N)
31d , (N)

32d , (N)
41d , and (N)

42d  are rewritten as 
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32 rd D ξξκ Κ−−= ,........................................................................ (E3.6b) 
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)( oD
(N)

0
(N)(N)(N)

41 rmd D ξξκ Ι= ,..............................................................................(E3.6c) 

)( oD
(N)

0
(N)(N)(N)

42 rmd D ξξκ Κ−= , ......................................................................... (E3.6d) 

The rest of the coefficients and functions are the same as previously defined for Case 1. 

E.4 Case 4 

The following lateral boundary conditions are enforced 

iDDiDDiDDiDD

III
i

III
i

~~;~~~;~~
rrrrrrrrrrrr ppqqqP

====
==+=σ , ............................(E4.1a) 

oDD
oDD

oDDoDD

III
o

III
o

~~;~~~;~~
rrrrrrrrrrrr ppqqqP

====
==+=σ ,........................... (E4.1b) 

The resulting coefficients are 
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I
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I
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II
31

I
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II
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I
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21

I
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I
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II
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I
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II
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I
2

II
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I
1
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~

σ

σ

ff

q

ff

q

dddd

dddd

dddd

dddd

C

C

C

C

, ............................................... (E4.2) 

where the coefficients (N)
11d , (N)

12d , (N)
21d , and (N)

22d  are rewritten as 

)()1( iD
(N)

0
(N)(N)(N)

11 rmd DD ξξκκ Ι+−= ,..............................................................(E4.3a) 

)()1( iD
(N)

0
(N)(N)(N)

12 rmd DD ξξκκ Κ+−−= ,......................................................... (E4.3b) 

)()()()1( (N)III
iD

(N)
0

(N)(N)
21 ξξ Φ−−Ι−= ffrmd , ................................................(E4.3c) 

)()()()1( (N)III
iD

(N)
0

(N)(N)
22 ξξ Θ−+Κ−= ffrmd , ............................................. (E4.3d) 

)()1( oD
(N)

0
(N)(N)(N)

31 rmd DD ξξκκ Ι+−= , .............................................................(E4.3e) 
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)()1( oD
(N)

0
(N)(N)(N)

32 rmd DD ξξκκ Κ+−−= , ......................................................... (E4.3f) 

)()()()1( (N)III
oD

(N)
0

(N)(N)
41 ξξ Φ−−Ι−= ffrmd , .............................................. (E4.3g) 

)()()()1( (N)III
oD

(N)
0

(N)(N)
42 ξξ Θ−+Κ−= ffrmd ,............................................. (E4.3h) 

The rest of the coefficients and functions are the same as previously defined for Case 1. 

For the special case of no flow or jacketed on both the inner and outer surfaces, the 

condition is undrained and the solution simplifies to an elastic one with undrained 

parameters. 

E.5 Case 5 

The following lateral boundary conditions are enforced 

i
III

i
~~~;~~

iDDiDDiDD
pppP

rrrrrrrr ===
===

σ , .........................................................(E5.1a) 

o
III

o
~~~;~~

oDDoDDoDD
pppUu

rrrrrrr ===
===

,........................................................ (E5.1b) 

The resulting coefficients (N)
1C , (N)

2C , 0
~C  and C3 are the same as given in Eqs. E1.2, E1.3 

and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and ρ  are rewritten as 

Displacement-controlled.   

[ ]∗∗ −++= zzrArArUArP
rr

ερσ ~)2()~~(2~ 2
iD2

2
oD3oDo3

2
iDi2

oD
2

iD
io , ........................................(E5.2a) 

]~)(~/~2[~
30ioDo0io

∗∗∗ −++= zzhAAPhrUA ερσ , ....................................................... (E5.2b) 

(N)
3

(N)
o

(N)
1

(N)
i 2;2 hAA == ϕϕ , .........................................................................(E5.3a) 

(N)
0

(N)
o

(N)
1

(N)
i 2; hAhA == γγ , ......................................................................... (E5.3b) 
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2
iD0

2
oD3

2
oD

2
iD

2 rArhA
rr
−

−=ρ , ........................................................................................(E5.3c) 

Load-controlled.   

[ ]∗∗ −++−= zzrArArUArPB
rr

rr σρσ ~)2()~~(2~ 2
iD2

2
oD3oDo3

2
iDi22

oD
2

iD

2
iD

2
oD

io , ...........................(E5.4a) 

]~)(~)(/~)(2[)(~
i2020oDo0220

2
iD

2
oDio PhBBhAArUBABArr zz −−−+−−= ∗∗∗ σρσ , .... (E5.4b) 

])2()[(2 2
iD

(N)
122

(N)
1

2
oD

(N)
132

(N)
1

(N)
i rBABArBABA −−−=ϕ ,.......................................(E5.5a) 

])2()[(2 2
iD

(N)
12

(N)
23

2
oD

(N)
13

(N)
23

(N)
o rBAhBArBAhBA −−−=ϕ , ............................... (E5.5b) 

2
iD

(N)
100

(N)
1

(N)
122

(N)
1

2
oD02

(N)
1

(N)
i )]2()2[()( rBABAhBABArBhBA −−−−−=γ ,..........(E5.6a) 

2
iD

(N)
0220

2
oD

(N)
102

(N)
0220

(N)
o )(2])()[(2 rhBABArBAhAhBABA −−−+−=γ ,......... (E5.6b) 

2
iD0220

2
oD203

2
iD

2
oD

2
oD

2
iD

)(2)(
)/(

rBABArhBBA
rrrr

−+−
−=ρ , ......................................................... (E5.7) 

E.6 Case 6 

The following lateral boundary conditions are enforced 

iDDiDDiDDiDD

III
i

III
i

~~;~~~;~~
rrrrrrrrrrrr ppqqqP

====
==+=σ , ..............................(E6.1a) 

o
III

o
~~~;~~

oDDoDDoDD
pppUu

rrrrrrr ===
===

,........................................................ (E6.1b) 

The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.12 for Case 2. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 5. 
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For the special case of no-flow or jacketed on the inner surface, the fluid boundary 

condition at this surface becomes 

0~~
iDDiDD

III ==
== rrrrrr qq , ......................................................................................... (E6.2) 

The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.21 for Case 5. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 5. 

E.7 Case 7 

The following lateral boundary conditions are enforced 

i
III

i
~~~;~~

iDDiDDiDD
pppP

rrrrrrrr ===
===

σ ,...........................................................(E7.1a) 

oDDoDDoDDoDD

III
o

III
o

~~;~~~;~~
rrrrrrrrrrr ppqqqUu

====
==+= ,........................... (E7.1b) 

The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.15 for Case 3. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 5. 

For the special case of no-flow or jacketed on the outer surface, the fluid boundary 

condition at this surface becomes 

0~~
oDDoDD

III ==
== rrrrrr qq , ........................................................................................ (E7.2) 
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The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.24 for Case 6. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 5. 

E.8 Case 8 

The following lateral boundary conditions are enforced 

iDDiDDiDDiDD

III
i

III
i

~~;~~~;~~
rrrrrrrrrrrr ppqqqP

====
==+=σ , ..............................(E8.1a) 

oDD
oDD

oDDoDD

III
o

III
o

~~;~~~;~~
rrrrrrrrrrr ppqqqUu

====
==+= ,........................... (E8.1b) 

The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.18 for Case 4. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 5. 

For the special case of no flow or jacketed on both the inner and outer surfaces, the 

condition is undrained and the solution simplifies to an elastic one with undrained 

parameters. 

E.9 Case 9 

The following lateral boundary conditions are enforced 

i
III

i
~~~;~~

iDDiDDiDD
pppUu

rrrrrrr ===
===

, ...........................................................(E9.1a) 

o
III

o
~~~;~~

oDDoDDoDD
pppP

rrrrrrrr ===
===

σ ,........................................................ (E9.1b) 
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The resulting coefficients (N)
1C , (N)

2C , 0
~C  and C3 are the same as given in Eqs. E1.2, E1.3 

and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and ρ  are rewritten as 

Displacement-controlled.   

[ ]∗∗ −−+= zzrArArUArP
rr

ερσ ~)2()~~(2~ 2
iD3

2
oD2iDi3

2
oDo2

oD
2

iD
io , ........................................(E9.2a) 

]~)(~/~2[~
20oiDi0io

∗∗∗ −++= zzhAAPhrUA ερσ , ....................................................... (E9.2b) 

(N)
1

(N)
o

(N)
3

(N)
i 2;2 AhA == ϕϕ , .........................................................................(E9.3a) 

hAhA (N)
1

(N)
o

(N)
0

(N)
i ;2 == γγ , ........................................................................ (E9.3b) 

2
iD3

2
oD0

2
oD

2
iD

2 rhArA
rr
−

=ρ , ..........................................................................................(E9.3c) 

Load-controlled.   

[ ]∗∗ −−+−= zzrArArUArPB
rr

rr σρσ ~)2()~~(2~ 2
iD3

2
oD2iDi3

2
oDo22

oD
2

iD

2
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2
oD

io , ...........................(E9.4a) 

]~)(~)(/~)(2[)(~
o2020iDi0220

2
iD

2
oDio PhBBhAArUBABArr zz −−−+−−= ∗∗∗ σρσ , .... (E9.4b) 
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(N)
1
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23

2
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(N)
12

(N)
23

(N)
i rBhBArBAhBA −−−=ϕ , ...................................(E9.5a) 
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iD

(N)
132

(N)
1

2
oD

(N)
122

(N)
1

(N)
o rBABArBABA −−−=ϕ ,...................................... (E9.5b) 

2
iD

(N)
102

(N)
0220

2
oD

(N)
0220

(N)
i ])()[(2)(2 rBAhAhBABArhBABA −+−−−=γ , ........(E9.6a) 

2
iD02

(N)
1

2
oD0

(N)
1

(N)
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(N)
122

(N)
1

(N)
o )(])[(2 rBhBArBABAhBABA −−−+−=γ ,.............. (E9.6b) 
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iD023
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2
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2
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2
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2
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)()(2
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rBhBArBABA
rrrr

−−−
−=ρ , ......................................................... (E9.7) 
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E.10 Case 10 

The following lateral boundary conditions are enforced 

iDDiDDiDDiDD

III
i

III
i

~~;~~~;~~
rrrrrrrrrrr ppqqqUu

====
==+= , ............................(E10.1a) 

o
III

o
~~~;~~

oDDoDDoDD
pppP

rrrrrrrr ===
===

σ , ..................................................... (E10.1b) 

The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.12 for Case 2. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 9. 

For the special case of no-flow or jacketed on the inner surface, the fluid boundary 

condition at this surface becomes 

0~~
iDDiDD

III ==
== rrrrrr qq , ....................................................................................... (E10.2) 

The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.21 for Case 5. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , 

and ρ  are the same as written for Case 9. 

E.11 Case 11 

The following lateral boundary conditions are enforced 

i
III

i
~~~;~~

iDDiDDiDD
pppUu

rrrrrrr ===
===

,.........................................................(E11.1a) 

oDDoDDoDDoDD

III
o

III
o

~~;~~~;~~
rrrrrrrrrrrr ppqqqP

====
==+=σ ,......................... (E11.1b) 
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The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.15 for Case 3. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 9. 

For the special case of no-flow or jacketed on the outer surface, the fluid boundary 

condition at this surface becomes 

0~~
iDDoDD

III ==
== rrrrrr qq , ....................................................................................... (E11.2) 

The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.24 for Case 6. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 9. 

E.12 Case 12 

The following lateral boundary conditions are enforced 

iDDiDDiDDiDD
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i

III
i

~~;~~~;~~
rrrrrrrrrrr ppqqqUu

====
==+= , ............................(E12.1a) 

oDDoDDoDDoDD
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o

III
o

~~;~~~;~~
rrrrrrrrrrrr ppqqqP

====
==+=σ , ......................... (E12.1b) 

The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.18 for Case 4. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 9. 

For the special case of no flow or jacketed on both the inner and outer surfaces, the 

condition is undrained and the solution simplifies to an elastic one with undrained 
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parameters. 

E.13 Case 13 

The following lateral boundary conditions are enforced 

i
III

i
~~~;~~

iDDiDDiDD
pppUu

rrrrrrr ===
===

,.........................................................(E13.1a) 

o
III

o
~~~;~~

oDDoDDoDD
pppUu

rrrrrrr ===
===

,...................................................... (E13.1b) 

The resulting coefficients (N)
1C , (N)

2C , 0
~C  and C3 are the same as given in Eqs. E1.2, E1.3 

and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and ρ  are rewritten as 

Displacement-controlled.   
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Load-controlled.   
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~)()~~(2~ σρσ , ............................................ (E1.53) 

hBB
hBB

20

(N)
2

(N)
1(N)

o
(N)
i

)(2
−
−== ϕϕ , ............................................................................ (E1.54) 

where ∗∗
io

~σ , (N)
iγ , (N)

oγ , and ρ  are the same as given in Eqs. E1.51 and E1.52. 
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E.14 Case 14 

The following lateral boundary conditions are enforced 

iDDiDDiDDiDD

III
i

III
i

~~;~~~;~~
rrrrrrrrrrr ppqqqUu

====
==+= , ............................(E14.1a) 

o
III

o
~~~;~~

oDDoDDoDD
pppUu

rrrrrrr ===
===

,...................................................... (E14.1b) 

The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.12 for Case 2. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 13. 

For the special case of no-flow or jacketed on the inner surface, the fluid boundary 

condition at this surface becomes 

0~~
iDDiDD

III ==
== rrrrrr qq , ....................................................................................... (E14.2) 

The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.21 for Case 5. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 13. 

E.15 Case 15 

The following lateral boundary conditions are enforced 

i
III

i
~~~;~~

iDDiDDiDD
pppUu

rrrrrrr ===
===

,.........................................................(E15.1a) 

oDDoDDoDDoDD
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====
==+= ,......................... (E15.1b) 
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The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.15 for Case 3. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 13. 

For the special case of no-flow or jacketed on the outter surface, the fluid boundary 

condition at this surface becomes 

0~~
iDDoDD

III ==
== rrrrrr qq , ....................................................................................... (E15.2) 

The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.24 for Case 6. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 13. 

E.16 Case 16 

The following lateral boundary conditions are enforced 

iDDiDDiDDiDD

III
i
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i
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rrrrrrrrrrr ppqqqUu

====
==+= , ............................(E16.1a) 

oDDoDDoDDoDD
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o
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o
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rrrrrrrrrrr ppqqqUu

====
==+= ,......................... (E16.1b) 

The coefficients (N)
1C , (N)

2C  are the same as given in Eq. E1.18 for Case 4. 0
~C  and C3 are 

given in Eqs. E1.3 and E1.4. The lumped coefficients ∗
io

~σ , ∗∗
io

~σ , (N)
iϕ , (N)

oϕ , (N)
iγ , (N)

oγ , and 

ρ  are the same as written for Case 13. For the special case of no flow or jacketed on both 

the inner and outer surfaces, the condition is undrained and the solution simplifies to an 

elastic one with undrained parameters.  
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Appendix F Dual-Porochemoelastic Inclined 
Wellbore Solutions 

The boundary conditions and associated expressions for contributing axisymmetric loading, 

Case 1, and deviatoric loading Case 2 are given in the following section. 

Case 1 – Axisymmetric Loading 

The perturbed boundary condition at the borehole wall (rD = 1) are 

0),( )1()1( =+−= θσσσ rDwmrr tp , ..........................................................................(F.1) 

0
II(1)I(1) )( ptppp Dw −== , .....................................................................................(F.2) 

])()[/RT( 00
sIIsI s

D
s
w

f mtmVipp −== , .....................................................................(F.3) 

This is an axisymmetric (n = 0) loading problem. The stress has contribution from the mud 

pressure, pw, and the hydrostatic part of the released in-situ stress, σm. The fluid and solute 

diffuse due to pressure and solute concentration gradient across the mud/rock interface. 

Bounded solution at far-field requires that 0
~C  = 0. The solution is transient and given in 

Laplace transform domain as follows 
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Case 2 – Deviatoric Loading 

The perturbed boundary condition at the borehole wall (rD = 1) are 
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This is an asymmetric (n = 2) stress loading problem accounting for the release of the 

deviatoric part of the in-plane in-situ stresses, σd. The solutions in Laplace transform 

domain are 
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where the coefficients 0
~C , (N)

jC ,and 3C  are given as 
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Appendix G Dual-Porothermoelastic Finite 
Difference Solutions 

The coefficient 
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in which the submatrices of [Lj+1] are given as 
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The submatrices of Rj (RR(N), RRT,j+1, and RRI,II) are defined similar to those of Lj+1 

with LL replaced by RR. The components of these submatrices are expressed as 
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