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CHAPTER 1 : INTRODUCTION 

Natural disasters cannot be completely avoided, but the impacts and 

aftereffects can be managed by developing effective risk reduction strategies 

through application of geospatial tools and decision support systems. Disasters, 

such as floods, can cause loss of life and bring about extensive economic losses 

and social disruptions throughout the world. It was not long ago that the 

international community fully recognized that sustainable development 

framework should integrate natural disaster risk reduction strategies. This 

concept was in the “reducing disaster risk” report from the United Nations 

Development Programme (Pelling et al. 2004) that provides the groundwork for 

incorporating hazard assessment at an early stage of natural disaster risk 

mitigation. This insight is made possible because of the natural disaster risk 

scholarship that was established half a century ago by geographers and natural 

and social scientists through sound understanding of natural hazards and 

disasters. 

The pioneering work of Gilbert White from the 1950s till 1980s is the 

keystone for contemporary natural hazard risk reduction research. During this 

time, the notion of human adjustment to natural hazards in relation to floods was 

introduced. This opened new dimensions to flood hazard management. White 

and his colleagues listed different forms of human coping mechanisms, ranging 
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from sociological to technological means for flood risk mitigation (White 1957; 

White 1973; Harris 1978). Their research revealed that early flood warning with 

adequate lead time facilitates disaster risk reduction and is crucial in reducing the 

loss of life and economic damages.  

Among all geophysical disasters, floods are considered to produce the 

most devastating effects on a global scale. On average, floods cause more than 

20,000 deaths and adversely affect about 140 million people per year around the 

globe (Adhikari et al. 2010). It is not surprising, thus, that intensive research 

efforts have been devoted to the monitoring of such natural hazards, especially in 

flood prone regions. Flood prediction requires data that describes the dynamic 

hydrologic states and topographic factors (i.e. slope, aspect, curvature). 

Topographic factors are relatively static in comparison to hydrologic processes, 

which require frequent measurements. 

One of the proven technological mitigation measures for flood disaster is 

to predict flood events with a sufficient lead time to minimize the loss and 

damage of life and property. Getting satisfactory ground data for flood prediction 

has been a major constraint in the past despite the availability of numerous 

hydrological models. In the regions where installation of the ground instruments 

is limited by the available resources and rugged terrain, satellite remote sensing 

products with global coverage have made it possible to set-up flood monitoring 

systems. 
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The National Aeronautics and Space Administration (NASA) has taken a 

leading role in the research and development of natural hazards warning 

systems such as the internet-based Global Flood Monitoring (GFM) system 

(Hong et al. 2007); (http://trmm.gsfc.nasa.gov/) and the Regional Monitoring and 

Visualization System (SERVIR) for Africa and Mesoamerica 

(http://www.servir.net/). Although the general deployment of SERVIR has been 

highly successful, its flood warning system component is still under development 

and invites the research community for participation. GFM and SERVIR systems 

are based on the Tropical Rainfall Measurement Mission (TRMM), which is   near 

real-time satellite precipitation data, with a temporal resolution of three hours and 

a spatial resolution of 0.25 degrees. This data exhibits potential for hydro-

meteorological applications.  

Current satellite remote sensing based precipitation estimation techniques 

represent an important advantage for flood prediction purposes, especially in 

sparsely or ungauged regions. The recent development and improvement in 

precipitation estimates from space involves a combination of infrared 

measurements from geostationary satellites and passive microwave 

measurements from polar-orbiting satellites (Marzano et al. 2004; Tapiador et al. 

2004). These developments in satellite based remote sensing techniques can be 

used to report the spatial and temporal aspects of floods hazards cost effectively. 

Moreover, flood risks can be managed with consistent and timely information 

through an early warning system. 
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Tropical Rainfall Measurement Mission (TRMM) based Multi-satellite 

Precipitation Analysis (TMPA) products have been heavily used with rainfall 

runoff models for flood monitoring. Although several hydrologically-based 

evaluations of TMPA data have been performed over different regions (Hong et 

al., 2007; Hossain and Lettenmaier, 2006; Collischonn et al., 2008; Li et al., 

2008; Su et al., 2009; Yong et al., 2009), the use of satellite precipitation as an 

input to hydrologic models for flood prediction is still an active area of research, 

particularly over sparsely or un gauged regions. 

The primary advantage of using remotely sensed precipitation data over 

surface rain gauge measurements is the high spatial and temporal, coverage. 

Satellite based precipitation estimates provide near real time precipitation at a 

fine spatial temporal resolution (Hong et al 2007). The use of satellite remote 

sensing and forecasting models reduces the dependency for in-situ precipitation 

and other observations in parts of the world where surface networks are critically 

deficient. These advantages are more pronounced in unreachable areas, where 

rugged terrain hampers the installation of rain gauge networks.  
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1.1 Problem statement 

Precipitation triggered floods are among the most devastating natural 

disasters around the globe, impacting human lives and causing severe economic 

damage through livelihood and property loss. Moreover, floods, unlike other 

natural disasters, repeat the dreadful toll on human life and property annually 

worldwide. It is understood that flood risks will not subside in the near future in 

developing regions due to an increasing population and settlements in vulnerable 

areas. In 2004, the United Nations University (UNU) warned that the number of 

people vulnerable to floods (mostly in developing countries) might reach two 

billion by 2050 due to population growth, unsustainable development, and 

climate change impacts in flood-prone regions.  

The burgeoning population in flood plains and the lack of flood 

contingency plans will intensify the associated flood risks. The current trend and 

future scenarios of flood risks demand accurate spatial and temporal information 

on the potential of flood hazards and risks. This is a challenge in data scarce 

environments. The unavailability of local (on-the-ground) observations in many 

regions around the world hampers pre flood risk reduction measures. In data 

poor regions, flood early warning systems are nonexistent due to the lack of 

surface based networks, financial and human resources for flood prediction. 

Moreover, the flood monitoring and reporting is not systematic and mainly 

depends on the international media and international organizations. Therefore, 

with the increase in frequency and intensity of precipitation, it can be assumed 
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that the potential for loss of life and property will rise in the future as the extreme 

events will increase in number and intensity. 

To address the limited data availability issue in data poor environments, 

the Predictions in Ungauged Basins (PUB) initiative was launched in 2003 by the 

International Association of Hydrological Science. In addition to other 

technological measures, the PUB plan accentuates new techniques and data for 

hydrologic prediction. It draws attention to the understanding and potential of 

satellite remote sensing to provide a first order analysis of the hydrologic 

extremes.  

The success of current satellite data on revealing spatial patterns at 

scales unachievable by ground observations is accompanied by uncertainties 

associated with the indirect nature of remote radiance estimates. A key research 

component of this dissertation is to test the feasibility of remote sensing products 

and quantification of uncertainties in the context of a hydrologic assessment. The 

latter seeks to enable a better understanding of satellite-based precipitation and 

other estimates into hydrologic modeling.  
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1.2 Research objective  

The overarching goal of this research is to evaluate the hydrological 

capabilities of the multispectral and microwave satellite remote sensing products 

within a hydrologic modeling framework for flood prediction systems in SERVIR-

Africa domain. 

1.3 Research questions 

Based on the overall objective, the following research questions are 

formulated and addressed in this dissertation: 

1. How can satellite precipitation products and in-situ data be used to study 

hydroclimatology in data poor environments? 

2. What is the viability of multispectral sensors to supplement in-situ 

observations to calibrate a rainfall runoff model for flood monitoring? 

3. Can a combined geospatial approach based on microwave remote sensing 

data assist in flood prediction in ungauged basins?  

1.4 Outline of the Dissertation  

The dissertation is structured into the introductory chapter, three main 

chapters followed by the fifth chapter; which serves as an overall conclusion. 

Chapter 2 and 3 are published as two independent peer reviewed journal articles, 

and chapter 4 is recently submitted to a journal. There is some repetition in 
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chapters 3 and 2, but this is done so that the manuscripts can stand alone. 

Findings from this research work are organized into the following main chapters. 

Chapter 2:  Hydroclimatology of Lake Victoria using in-situ an d satellite data 

This chapter presents the hydroclimatology of the sub basin of Lake Victoria 

in East Africa, using observed and simulated data with particular emphasis on 

distributed hydrology of the watershed. First, this chapter examines the basin scale 

hydroclimatology at decadal, annual, monthly and daily temporal scales using 

observed gauge data. Second, it studies the hydrological capability of remote 

sensing data, primarily the satellite precipitation to study the hydrology. Using a 

semi-distributed hydrologic model and multiple years satellite remote sensing 

data, the water cycle components were simulated and analyzed. 

Chapter 3: Multispectral Remote Sensing for Flood Detection 

This chapter seeks to investigate the utility of flood spatial extent 

information obtained from orbital sensors to calibrate and evaluate the hydrologic 

model. This is done in an effort to potentially improve hydrologic prediction and 

flood management strategies in ungauged catchments. The goal of this exercise 

was to formulate an approach to evaluate the satellite based flood inundation 

areas with the hydrologic model flood extent. In this chapter, an attempt is made 

to address the question on how the multispectral sensor based flood extent can 

be used to calibrate the semi- distributed hydrologic model. 
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Chapter 4: Microwave Sensors for Flood Predictions in Ungauged  Basins  

This chapter introduces a novel framework that integrates microwave 

satellite remote sensing and the hydrologic model for flood Prediction in 

Ungauged Basin (PUB). The objective is to use the unconventional satellite 

remote sensing based river discharge signal to calibrate the hydrologic model for 

flood forecasting in sparsely gauged catchments. Therefore, for this research 

work the Okavango basin, which is a poorly gauged catchment, will serve as a 

testbed. First, a rainfall runoff model is implemented with observed data. Second, 

the passive microwave based river discharge signal is used to calibrate and 

validate the model. Finally, the simulations from the two approaches are 

compared to test the efficacy of the new method. 
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CHAPTER 2 : HYDROCLIMATOLOGY OF LAKE VICTORIA USING  

HYDROLOGIC MODEL AND REMOTE SENSING DATA 

 

Abstract  

 

Study of hydroclimatology at a range of temporal scales is important in 

understanding and ultimately mitigating the potential severe impacts of 

hydrological extreme events such as floods and droughts. Using daily in-situ data 

combined with the recently available satellite remote sensing data, the 

hydroclimatology of Nzoia basin, one of the contributing sub-catchments of Lake 

Victoria in the East African highlands is analyzed. The basin, with a semi-arid 

climate, has no sustained base flow contribution to Lake Victoria. The short spell 

of high discharge showed that rain is the primary cause of floods in the basin. 

There is only a marginal increase in annual mean discharge over the last 21 

years. The 2-, 5- and 10- year peak discharges, for the entire study period 

showed that more years since the mid 1990s have had high peak discharges 

despite having relatively less annual rain.  

The study also presents the hydrologic model calibration and validation 

results over the Nzoia basin. The spatiotemporal variability of the water cycle 

components were quantified using a hydrologic model, with in-situ and multi-
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satellite remote sensing datasets. The model is calibrated using daily observed 

discharge data for the period between 1985 and 1999, for which model 

performance is estimated with a Nash Sutcliffe Efficiency (NSCE) of 0.87 and 

0.23% bias. The model validation showed an error metrics with NSCE of 0.65 

and 1.04% bias. Moreover, the hydrologic capability of satellite precipitation 

(TRMM-3B42 V6) is evaluated. In terms of reconstruction of the water cycle 

components the spatial distribution and time series of modeling results for 

precipitation and runoff showed considerable agreement with the monthly model 

runoff estimates and gauge observations. Runoff values responded to 

precipitation events that occurred across the catchment during the wet season 

from March to early June. The spatially distributed model inputs, states, and 

outputs, were found to be useful for understanding the hydrologic behavior at the 

catchment scale. The monthly peak runoff is observed in the months of April, May 

and November. The analysis revealed a linear relationship between rainfall and 

runoff for both wet and dry seasons. Satellite precipitation forcing data showed 

the potential to be used not only for the investigation of water balance but also for 

addressing issues pertaining to sustainability of the resources at the catchment 

scale. 
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2.1 Introduction 

Climatologically most of East Africa is considered as a sub humid landscape 

that comprises arid and semi-arid regions, grasslands, savannahs, as well as a 

Mediterranean environment. East African climate is mainly influenced by the 

seasonal shift of the Intertropical Convergence Zone (ITCZ). However other regional 

factors that influence the climate are topographical variations, large inland lakes, 

land cover/land use, as well as the proximity to the Indian Ocean. Oscillations in the 

ITCZ, shapes two rainy seasons in the equatorial East Africa, one from March to 

May and the second from October to December (Kaspar et al., 2008). This 

precipitation pattern can result in floods in this region with impacts on the food and 

agricultural security, human health, infrastructure, tourism, and other sectors.  

The rainy season that onsets from October through early December brings 

devastating floods in Uganda, Kenya, Tanzania, and other countries in East Africa 

almost every year. This region, surrounding Lake Victoria, is heavily populated with 

around thirty million people (Osano et al., 2003). These floods are a serious problem 

in East Africa, particularly in the Lake Victoria Basin, which impacts the livelihood of 

many people every year. Since the 1950’s East African countries like Kenya, 

Uganda, and Tanzania showed an increase in population as well as unsustainable 

development. Due to economic pressure, much of the forest land is converted to 

agriculture or settlement purposes. Moreover, the Lake Victoria region experiences 

rising demands for its depleting water resources.  
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Hydro-climatology deals with the interactions of climate with hydrology. It 

recognizes that climate is the driving force of the hydrologic cycle. One of the main 

focuses of the hydro-climatic study is the interactions between precipitation, 

evapotranspiration, soil moisture storage, groundwater recharge, and stream flow 

(Shelton, 2009). The study of the water budget at a given location and time period 

essentially deals with the components of hydro-climatology. Hydrologic modeling is 

one of the efficient and valuable approaches for understanding the relationship 

between climate, hydrologic cycle, and water resources.  

In East Africa, the current trend and future scenarios of unsustainable water 

resource utilization demands modeling studies that provide accurate spatial and 

temporal information on hydrological and climatological variables. The main 

obstacles for these investigations are the lack of sufficient geospatial data for 

distributed hydrologic model input and validation. Availability of observed data in 

regions with sparse ground based networks for hydrologic estimations is the key 

limitation in hydroclimatologic studies.   

Hydrologic modeling has been constrained by the difficulty in precisely 

estimating precipitation, the key forcing factor, over a range of spatial and temporal 

scales. However, advances in satellite remote sensing data can provide objective 

estimates on precipitation, evapotranspiration and land surface controlling factors for 

water budget calculations. The recent availability of virtually real time and 

uninterrupted satellite-based rainfall estimates is becoming a cost-effective source of 
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data for hydro climatologic investigations in many under-gauged regions around the 

world. Furthermore, application of remotely sensed spatially distributed datasets has 

made possible the transition from lumped to distributed hydrologic models that 

accounts for the spatial variability of the model parameters and inputs. The question 

remains whether with the existing spatial and temporal coverage of satellite 

precipitation and other estimates, how can we achieve their optimal use to compute 

a less uncertain water budget? 

The aim of this chapter is to provide the hydro-climatology of the Nzoia basin, 

a sub catchment of the Lake Victoria region using observed and simulated data with 

particular emphasis on distributed hydrology of the watershed. The specific 

objectives are to 1) quantify the hydroclimatology of Nzoia basin at decadal, annual, 

monthly and daily time scale using in-situ dataset; 2) model the rainfall-runoff 

relationship using a semi-distributed hydrological model, calibrated by long-term 

observations, in terms of predictability at the daily scale; 3) investigate the 

hydrological capability of remote sensing data (primarily the precipitation) in terms of 

the reconstruction of water cycle components. 

In this study, Coupled Routing and Excess Storage (CREST) (Wang et al. 

2011) a semi-distributed hydrologic model, is used to simulate the spatial and 

temporal variation of atmospheric, land surface, and subsurface water fluxes and 

storages. This chapter follows with a brief description of the study basin, data, and 

model in section 2. The hydroclimatology based on observational datasets are 
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discussed in section 3, followed by section 4 with a model set-up, calibration, and 

verification. The hydrological model reconstruction results are outlined in section 5, 

and finally summary and discussions are given in section 6.  
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2.2 Study area and In-situ Data  

The study area is the Nzoia River located at latitudes 34°–36°E and 

longitudes 0°03 ′–1°15 ′N in East Africa. It drains into the Lake Victoria and Nile 

river basins. Lake Victoria, with an area of 68,600 km2, is the second largest 

freshwater lake in the world (Swenson and Wahr, 2009). Nzoia, a sub-basin of 

Lake Victoria, is chosen as the study area because of its regional importance as 

it is a flood-prone basin and also one of the major tributaries to Lake Victoria 

(Figure 2.1). 

 

 

Figure 2.1: Map of Nzoia river basin in Lake Victoria region, East Africa. 
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The Nzoia sub-basin covers approximately 12,900 km2 of area with an 

elevation ranging between 1,100 to 3,000 m. The Nzoia River originates in the 

southern part of the Mt. Elgon and Western slopes of Cherangani Hills (Li et al., 

2009). The lowlands are characterized by predominant clayey soils at 77%. The 

other main soil type of the catchment is sand at 14%. Soil data is used from the 

Food and Agriculture Organization of the United Nations (FAO; 

http://www.fao.org/AG/agl/agll/dsmw.htm). The land use land cover data is from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) land classification 

map. It is used in this study as a representation of land use/cover, with 17 

classes of land cover based on the International Geosphere–Biosphere 

Programme classification (Friedl et al., 2002). 

2.3 Satellite remote sensing datasets 

NASA’s Tropical Rainfall Measuring Mission  data. 

Precipitation is a critical forcing variable to hydrologic models, and 

therefore accurate measurements of precipitation on a fine space and time scale 

is very important for simulating land-surface hydrologic processes, and 

monitoring water resources, especially for semiarid regions (Sorooshian et al., 

2005; Gebremichael et al., 2006).  For the past decade, there have been several 

multi-satellite based precipitation retrieval algorithms for operational and 

research purposes (Hong et al., 2004; Huffman et al., 2007; Joyce et al., 2004; 

Sorooshian et al., 2000). For this study, we used one of the Tropical Rainfall 
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Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) product, 

3B42 V6 given its 10+ year data availability. 

Satellite precipitation product (3B42 V6) is used to drive the CREST model 

to simulate the water budget components such as runoff, evapotranspiration and, 

change in storage for the study basin. The standard TMPA provides precipitation 

estimates from multiple satellites at a 3-hourly, 0.25o×0.25o latitude-longitude 

resolution covering the globe between the latitude band of 50o N-S (Huffman et 

al., 2007). This TRMM standard precipitation product has been widely used for 

hydrological applications such as flood and landslide prediction at the global and 

regional scope (Su et al. 2008; Hong et al. 2006; Hong et al. 2007; Yong et al. 

2010). 

Evapotranspiration 

The process of water flux from the land surface soils, vegetation, or 

directly from overland water to the atmosphere is referred to as 

evapotranspiration. Potential evapotranspiration (Ep) is the amount of 

evapotranspiration that would occur if there were an unlimited supply of land 

surface water, and is often estimated from atmospheric thermodynamics, wind 

and radiation conditions. In the model, Potential Evapotranspiration (PET) values 

are from the global dataset based on the Famine Early Warning Systems 

Network (FEWS). Further details on these estimates can be found at 

(http://earlywarning.usgs.gov/Global/product.php?image=pt). The PET are 
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estimates of climate parameter data that is extracted from the Global Data 

Assimilation System (GDAS) analysis fields. FEWS PET is at a 1-degree 

spatiotemporal resolution calculated using global-scale meteorological datasets.  

In-Situ data 

Daily observed rainfall data are obtained from the Africa Regional Centre 

for Mapping of Resources for Development (RCMRD) from 1985 to 2006 for the 

12 rain gauge stations located within the Nzoia basin. They are then interpolated 

to fit the model grid resolution using the Thiessen polygon method (Kopec, 

1963). Also obtained are the daily discharge data (in m3/sec) at the basin outlet 

for the same time period. 

The mean monthly rainfall over Nzoia shows dual peaks over the year 

which is common to parts of the immediate equatorial zone especially in East 

Africa (Hulme, 2006).  The first and second maxima occurred in April-May and 

July-November respectively. It is observed that for the given time period of 1985-

2006, the basin average rainfall per annum is about 1,500 mm. Observations of 

the rainfall since 1985 do not show any significant change. It is observed that half 

of the recorded rainfalls are below 5mm/d (Figure 2.2a, b) 

The highest river discharges occurred in the months of May through 

September, while the lowest river discharges occurred in the months of 

December through February (Table 2.1). From 1985-2006, the average daily 
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discharge is 134 m3/sec. The flow duration curve shows the average percentage 

of time that specific daily flows (Figure 2.3a) are equaled or exceeded at Nzoia. 

The discharge histogram is skewed towards the lower values and more than half 

of the recorded daily discharges are less than 120 m3/sec (Figure 2.3b). 

 

  



Figure 2.2: Nzoia basin average daily rainfall and discharge time series. b) 

Cumulative distribution plot of observed basin average rainfall (mm/day) for 

1985-2006. 
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: Nzoia basin average daily rainfall and discharge time series. b) 

Cumulative distribution plot of observed basin average rainfall (mm/day) for 

5 10 15 20 25 30
Rainfall (mm/day)

 

 

: Nzoia basin average daily rainfall and discharge time series. b) 

Cumulative distribution plot of observed basin average rainfall (mm/day) for 
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Table 2.1: Seasonal variation of rainfall and discharge. 
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 Decades Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg 

R
ai

nf
al

l (
m

m
/d

ay
) 

1985-1994 1.7 2.7 4.5 7.7 7.7 4.5 4.5 5.4 4.1 4.3 4.2 1.6   

1995-2004 2.20 1.20 4.07 7.23 5.96 4.37 3.93 4.55 4.11 4.65 4.31 2.05   

Change 0.50 -1.49 -0.41 -0.44 -1.74 -0.13 -0.54 -0.86 0.04 0.40 0.08 0.49   

% Change 30% -55% -9% -6% -23% -3% -12% -16% 1% 9% 2% 32% -4% 

D
is

ch
ar

ge
 (

m
3 /s

ec
) 1985-1994 57 51 64 144 22 160 167 182 166 143 131 85   

1995-2004 83 45 60 129 191 151 154 165 155 141 150 116   

Change 25 -7 -4 -15 -29 -10 -14 -18 -10 -2 19 31   

% Change 44% -13% -7% -10% -13% -6% -8% -10% -6% -1% 14% 36% 2% 
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Figure 2.3: Observed daily discharge (m3/sec) for 1985-2006 for Nzoia River a) 

Flow duration curve b) histogram. 
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Return periods of rainfall and discharge 

The annual peak discharge and precipitation for the given time period are 

shown in Figure 2.4a, b. The calculated return periods for both the discharge and 

rainfall are given in Table 2.2. The peak discharges of 1985, 1988, 1999, and 

2006 were all above the 5-year flow while 1985 and 1999 recorded discharges of 

10-year return periods (Figure 2.4a). In 1985, the recorded peak discharge was 

of the 100-year return period. 

It is observed that the annual peak rainfall in the years 1985, 1988, 1990, 

1994, 1998, and 2003 exceeded the 5-year return period values. Similarly, 1994, 

1998 and 2003 have the peak rainfall of 10-year. Finally, 1985 and 1988 

recorded rainfall of a 20-year return period. 

  



Figure 2.4: Annual peak rainfall and discharge for 1985

and 10-year return period (b) annual mean discharge.

28 

Annual peak rainfall and discharge for 1985-2006 with (a) the 2

year return period (b) annual mean discharge. 

 

 

2006 with (a) the 2-, 5- 
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Table 2.2: Discharge and rainfall return periods 

 

Return periods (year) Discharge 

(m3/sec) 

Rainfall 

(mm/day) 

2 370 26 

5 443 31 

10 486 34 

20 526 37 

50 573 40 

80 591 41 

100 608 43 

200 641 45 

500 684 48 
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Annual mean discharge 

The discharge time series provide information on the year-to-year 

variations of both low and peak discharges. Figure 2.4b shows the annual mean 

discharge for Nzoia River. The lowest annual discharge is 66 m3/sec in 1986 and 

the highest is 232 m3/sec in 1994. The other wet years are 1998 and 2006 and 

the dry years are 1987 and 2002 (Figure 2.4a). Overall we can observe a slight 

increase in annual mean discharge. Seasonal cycles included in annual 

discharge are noticeable with a greater variability of monthly mean stream flow. 

The maximum monthly discharge is 421 m3/sec for May 1985. All the wet years 

of 1994, 1998 and 2006 are marked by high monthly discharges (Figure 2.4b). 

The dry years of 1986, 1987, and 2002 are not the result of a single dry month 

but due to continuous low monthly discharges throughout the whole year. 

Decadal monthly discharge 

The observed data are also analyzed for any change over the past two 

decades: 1985-1994 (first decade) and 1995-2004 (second decade). Overall 

there is some decrease (-4.2%) in rainfall in the second decade compared to the 

first.  Similarly there is a marginal increase (+2%) in discharge (Table 2.1). 

However, there is a more pronounced monthly variation both in rainfall and 

discharge. A maximum decrease in rainfall is recorded for the month of February 

(-55%) whereas December witnessed a maximum increase (+32%). Similarly, 

there is a maximum drop in stream discharge in the months of February and May 
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(-13%) while a surge of +44% is observed in the month of January (Table 2.1). 

2.4 Methodology 

The Rainfall-Runoff Models 

Quantification of the spatiotemporal distribution of water over the 

landscape is of critical importance for sustainable water resources management 

and for mitigating hydrometeorologic natural hazards such as floods and 

droughts. Rainfall runoff models are practical tools for providing critical 

information for forecasting these calamities in time. A variety of hydrological 

models have been developed in the past (see Singh, 1995) for a comprehensive 

overview with various degrees of hydrological processes represented according 

to the intended application or availability of data.  

Hydrological models have been classified as conceptual or physically-

based (Beck, 1987; Refsgaard, 1996; Yilmaz et al., 2010 ). Conceptual models 

represent complex, spatially variable, hydrological processes in a watershed 

using simple, parsimonious mathematical expressions without explicit treatment 

of the underlying physics or intra-basin heterogeneity (e.g. Bergström, 1995; 

Burnash, 1995). Spatially distributed, physically-based hydrological models 

mathematically represent each of the important components of the hydrological 

cycle based on their physical governing equations (Woolhiser et al., 1990; 

Refsgaard & Storm, 1995). The potential strengths of distributed hydrological 

models are: (a) the ability to account for the intra-basin variability of runoff-
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producing mechanisms; and (b) the ability to infer model parameter values from 

geospatial data (e.g. geology, topography, soils, and land cover). A hybrid 

modelling strategy that maintains a balance between the degree of physical 

realism and data requirements, so as to provide reliable simulations under a 

variety of settings, seems to be advantageous.  

Coupled Routing and Excess STorage (CREST) model  

A semi-distributed hydrologic model, Coupled Routing and Excess 

STorage (CREST) (Khan et al. 2011a, Wang et al. 2011) is used to simulate the 

spatiotemporal variation of water fluxes and storages on regular grids. The 

CREST model is jointly developed by the University of Oklahoma under NASA 

SERVIR Africa project can simulate the spatial and temporal variation of land 

surface water fluxes and storages by cell-to-cell simulation. The model accounts 

for the most important parameters of the water balance component i.e. the 

infiltration and runoff generation processes.  

The main CREST components are briefly described as; 1) data flow 

module based on cell to cell finite elements; 2) the three different layers within 

the soil profile that affect the maximum storage available in the soil layers. This 

representation within cell variability in soil moisture storage capacity (via a spatial 

probability distribution) and within cell routing can be employed for simulations at 

different spatiotemporal scales 3) coupling between the runoff generation and 

routing components via feedback mechanisms. This coupling allows for a 
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scalability of the hydrological variables, such as soil moisture, and particularly 

important for simulations at fine spatial resolution.  

Rainfall–runoff generation 

a) Canopy interception:  

Once there is precipitation (P) input to a cell, the rainfall–runoff generation 

process will be activated. First, a portion of the precipitation is intercepted by the 

vegetation canopy, and an excess storage reservoir is employed here to simulate 

this process (Figure 2.5a).  

b) Variable infiltration curve:  

Next, Psoil is separated into two parts: excess rain (R) and infiltration water 

(I), according to the variable infiltration curve (VIC; also called tension water 

capacity curve), founded in the Xinanjiang model (Zhao et al., 1980; Zhao, 1992), 

and later employed in the University of Washington VIC model (Liang et al., 

1996) (Figure 2.5b).  

c) Runoff generation  

A further partitioning of R into overland excess rain (RO) and interflow 

excess rain (RI) ensues by comparing Psoil to the infiltration rate of the first layer 

(K): where K is closely related to the soil saturated hydraulic conductivity. The 

partition of overland and interflow excess rain provides quick and slow 
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hydrograph responses to precipitation.  

There are two cell-to-cell routing modules that move water overland as 

surface runoff and below ground as subsurface interflow (Figure 2.5c, d). These 

modules run in parallel which enables a computationally efficient and realistic 

three-dimensional representation of water flux to downstream cells. CREST 

model framework is illustrated in Figure 2.5, detailed in (Wang et al. 2011) lists 

the sequential flow of water entering a cell as rainfall, interception by the canopy 

layer and subsequent redistribution back to the atmosphere via 

evapotranspiration. The division of rainfall reaching the soil surface into 

infiltration and surface runoff components, sub-grid routing, routing of overland, 

channel, and subsurface components downstream, and finally feedbacks 

between routing and runoff generation components are summarized. 



35 

 

Figure 2.5: Main components of CREST: (a) vertical profile of a cell including 

rainfall–runoff generation, evapotranspiration, sub-grid cell routing and feedbacks 

from routing; (b) variable infiltration curve of a cell; (c) plan view of cells and flow 

directions; and (d) vertical profile along several cells including sub-grid cell 

routing, downstream routing, and subsurface runoff redistribution from a cell to its 

downstream cells (Wang et al. 2011). 
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d) Runoff routing 

The typical approach to routing involves determining the depth and 

momentum of overland water that flows from each cell to a neighbouring cell 

downstream and continuing this process down to the river network where it is 

considered open channel flow (Vörösmarty et al., 1989; Liston et al., 1994; Miller 

et al., 1994; Sausen et al., 1994; Coe 1997; Hagemann and Dümenil 1997). The 

routing component in CREST is based on a two-layer scheme describing 

overland runoff and interflow from one cell to the next one downstream, with 

consideration of open channel flow.  

Figure 2.5d illustrates how runoff from interflow, overland flow and channel 

flow contribute to cells downstream from the jth cell after a time step dT. The 

RI,out moves more slowly in response to a relatively small value of KX, 

corresponding to soil saturated hydraulic conductivity, and provides runoff to the 

nearby (j+2)th and (j+3)th cells. In contrast, RO,out contributes runoff to the (j+4)th 

and (j+5)th cells further downstream due to a larger value of KX. All values for KX, 

which control the timing of peak flow, can be provided a priori using land cover 

maps, soil surveys and channel cross-sections, but typically must be optimized 

through calibration. 

e) Coupling rainfall–runoff generation and routing 

For each cell, the water balance is computed by using equation (1) 
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out,n,out,in,d

dSto
IRiIRORORaEP

t
−+−+−= ∑∑  (1) 

 

where Sto is the total cell water storage, which includes all water stored in 

the overlying vegetation canopy, the three soil layers, and in the two linear 

reservoirs (Figure 2.5a). The summations for interflow and overland flow in 

equation (1) correspond to contributing runoff of multiple upstream cells and from 

eight possible flow directions, as determined from a DEM-derived flow direction 

map; see (Figure 2.5c).  

In CREST, routed water from a cell impacts the rainfall–runoff generation 

as well as routing components of downstream cells, thus coupling these 

processes in the following three ways. First, overland runoff coming from 

upstream cells is treated the same as adding precipitation directly on the 

uppermost soil layer, so that Psoil calculated from equation (2) 

 

∑+= in,soilsoilˆ ORPP
     (2) 

 

where soilP̂  is the adjusted Psoil as dictated by the total amount of overland 

flow from upstream cells. This additional water is available to enter the soil layers 

from above, as described in Section 2.1.2. Secondly, soil moisture is increased 
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by lateral interflow coming from upstream cells, so the amount of water available 

for infiltration in equation (3) is adjusted as: 

 

∑+= in,ˆ IRII     (3) 

 

where Î  is the adjusted I determined by the sum of interflow from 

upstream cells. Finally, channel runoff coming from upstream cells contributes to 

the cell’s overland reservoir depth, so that SO in (4) is modified as follows: 

 

∑++=+
in,

1ˆ ORt
ORt

OSt
OS

    (4) 

 

where 1ˆ +t
OS  is the adjusted 

1+t
OS , increased by contributing channel runoff.  

These runoff routing-generation feedback mechanisms (i.e. water routed 

from upper grids could potentially increase runoff generation of the lower grids), 

via linking the runoff generation and routing modules in CREST, mark it as a 

distinguishing characteristic from other hydrological models. These feedbacks 

cause downstream cells to become more readily saturated than upstream cells; a 

desirable characteristic in excess storage theory is the expansion of the soil 

saturation area beginning downstream and working its way up (Zhao, 1984). The 
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CREST approach of module coupling enables realistic fluxes of water both 

horizontally and vertically through the soil structure and laterally overland. 

Nevertheless, the actual modelling performance also depends upon the accurate 

quality of soil information such as depth and types. 

In the CREST model the vertical profile of grid cells is subdivided into four 

excess storage reservoirs representing interception by the vegetation canopy 

and subsurface water storage in the underlying three soil layers (Figure 2.5a). In 

addition, two linear reservoirs simulate sub-grid cell routing of overland and 

subsurface runoff separately. In each cell, a variable infiltration curve (Figure 

2.5b) originally proposed by Zhao et al. (1980) is employed to separate 

precipitation into runoff and infiltration.  

Many of the parameters in the CREST model can be estimated based on 

the availability of field survey data, such as soil surveys, land cover maps, and 

vegetation coverage. Other parameters are derived directly from a DEM such as 

flow direction, slope, and drainage area. These physically-based parameters are 

listed in table 2 along with a suggested source of data to estimate them. There 

are approximately ten parameters that are much more difficult to estimate from 

ancillary data and need to be calibrated either manually, automatically (Wang et 

al. 2011). 
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Table 2.3: Main physically-based parameters in CREST model 

 

Symbol Unit Brief description Source for estimation 

DEM m Digital elevation model Remote sensing 

ACC - Accumulation grids Derived from DEM 

Dire - Flow direction Derived from DEM 

S degree Slope between cells Derived from DEM 

d - Vegetation coverage Remote sensing 

LAI m2 m2 Leaf area index Remote sensing 

K mm h-1 Cell mean infiltration rate Soil survey 

l m Distance between cells Derived from DEM 
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Hydrologic model setup  

A moderate resolution CREST model at a 30 arc-second resolution is 

implemented for the Nzoia basin to retrospectively simulate the main 

components of water cycles with both in-situ and remote sensing data sets. The 

model is implemented using digital elevation data to generate flow direction, flow 

accumulation, and contributing basin area that are required as basic inputs to run 

the CREST model. 

The local drainage direction and accumulation are derived from the Digital 

Elevation processed from the Model Shuttle Radar Topography Mission (SRTM) 

(Rabus et al., 2003). The primary forcing datasets enabling the development of a 

distributed hydrological model using the long term rain gauge and observed 

streamflow data provided by the local authorities previously discussed in the in-

situ data section. 

The CREST model is calibrated at the Nzoia basin outlet (Figure 2.1) for the 

given time period of 1985-1998. A spin up period of one year is assigned to 

produce reasonably realistic hydrologic states. The model utilizes global 

optimization approach to capture the parameter interactions. An auto-calibration 

technique based on the Adaptive Random Search (ARS) method (Brooks, 1958) 

is used to calibrate the CREST model. The ARS method is considered adaptive 

in the sense that it uses information gathered during previous iterations to decide 

how the simulation effort is expended in the current iteration. 
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Statistical Indices for Model Evaluation 

The two most commonly used indicators for the model calibration in order to 

get the best match of model-simulated streamflow with observations are the 

Nash-Sutcliffe Coefficient of Efficiency (NSCE) equation 5 (Nash and Sutcliffe, 

1970) and relative bias ratio equation 6. Therefore, these are used as objective 

functions for the automatic calibration. The ideal value for NSCE is 1 and bias is 

0%. 
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∑
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Where, where, Qi,o is the observed discharge of the ith time step; Qi,s is the 

simulated discharge of the ith time step; oQ  is average of all the observed 

discharge values.  

Indicators of all results from CREST auto-calibration form a normal 

distribution with near zero Bias as mathematical expectation. The optimized 

parameter combination with NSCE=0.873 and Bias =-0.228% is found as final 

result by the ARS method. 
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Model Calibration and Verification  

CREST is calibrated using daily observed discharge data for the period 

between 1985 and 1999. A one-year period (1984) is used for warming up the 

model states. CREST calibration, performed using the ARS method described in 

Sec. 2.4, resulted in good performance with NSCE=0.87 and bias =-0.23% 

(Figure 2.6a). 

The performance of CREST in discharge simulation at the drainage outlet 

is validated. The validation of the hydrological model is performed for the period 

1999–2004. The simulation quality during the validation period is comparable, 

even with a decrease in model efficiency. One reason for the noise in the 

simulation might be due to the increase in human activities in the catchment area 

during the recent years. With this optimized parameter combination and model 

status at the last day from calibration (Dec. 31, 1998), discharge from 1999 to 

2004 is simulated and compared to observations (Figure 2.6b). The error metrics 

with NSCE of 0.65 and 1.04% bias for the validation period (Figure 2.6b) 

indicates that the CREST model can reproduce observed discharge in the Nzoia 

basin with acceptable skill.  

The simulation results for Nzoia using TRMM 3B42 V6 as precipitation 

forcing. It can be seen that from 1999 and 2003, the model simulated daily 

discharge with a NSCE of 0.48 and bias of -4.57% (Figure 2.6c). The model for 

the validation period captures peak and low flows and there is acceptable 



44 

agreement between simulation and observation at different flow conditions 

throughout the simulation period. 
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Figure 2.6: Precipitation observed and simulated runoffs for a) calibration period 

(1985-1998), b) validation period (1999-2004), c) validation with the TRMM 3B42 

V6 from (1999-2003).  
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2.5 Hydrologic model reconstruction results  

Basin-based water balance modeling studies are important in both 

hydrology and climate research since they provide information on the 

hydrological cycle and the amount of renewable water available for ecosystems 

at various land-atmosphere interaction scales ranging, in general, from daily, 

seasonal, annual, to decadal. Water balance for watersheds, lakes or over a unit 

land surface area is normally expressed  

 

P - R - ET = dS/dt         (7) 

 

Where P is Precipitation, R surface runoff, ET is evapotranspiration and 

dS/dt change in storage (Thornthwaite, 1948;Vörösmarty et al., 1989;Willmott et 

al., 1985). In the equation (7), precipitation is the important climate variable for 

accurate water budget estimation and measured directly on a regular basis in 

gauged basins. CREST model simulates the spatio-temporal variation of water 

fluxes and storages on a regular grid with the grid cell resolution being user-

defined. The model can output many variables as a raster grid for any time 

period.  

The hydrologic variables were generated from CREST model retrospective 

simulation from 1999 to 2003 using TRMM 3B42 V6. These four years were 

selected to minimize the model run time. Since simulation of the model involves 
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thousands of iterations, model run time in particular is a critical factor to complete 

a simulation. Water balance basin average calculations were made at daily and 

long-term mean monthly scale and are discussed hereunder. 

Precipitation 

Satellite precipitation TMPA 3B42 V6 product is used as a forcing to 

characterize the hydrologic variables at the study basin. As expected, 3B42 V6 

captured the seasonality of precipitation over the Nzoia basin. The monthly 

distribution of 3B42 V6 precipitation data also shows two rainy seasons that are 

comparable with the observed precipitation shown in Figure 2.7. The TMPA 

product showed fairly good agreement throughout the year; similar results are 

reported in Li et al 2009. The 3B42 V6 estimates fall under the ±1 std dev of 

monthly mean values throughout the year (Figure 2.7). Figure 2.8 shows the 

spatial distribution of rainfall over the catchment. 
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Figure 2.7: Monthly model versus observed Precipitation (P), for annual cycle 

from 1996 to 2006. Error bars showing the ±1 std dev of monthly mean values. 
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Figure 2.8: Spatially distributed precipitation (P) (a) wet season MAMJ (from 

March to June), (b) dry season NDJF (from Nov to Feb) 
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Runoff 

The basin average monthly analysis shows that the model produces 

nearly the same basin-wide runoff. Model runoff is compared to the river 

discharge gauged at the catchment outlets of the basin. The runoff estimates are 

expressed in mm/month, to allow inspection of the relative contribution of the 

catchment. The overall comparison of runoff estimates are reasonably well 

matched in magnitude and time evolution (Figure 2.9). The model slightly 

underestimates R for the months of June, July, August and September. Model 

underestimation can be attributed to the accuracy of the TMPA V6 data. The 

model underestimates runoff for the validation period (Figure 2.6c). Spatially 

distributed runoff averaged over study period (1996-2006) during wet and dry 

season is illustrated in Figure 2.10. 

Several articles evaluated satellite precipitation products by comparing 

time series of observed river streamflow with simulated streamflow using rainfall–

runoff models over Africa (Hughes, 2006; Nicholson, 2005; Li et al. 2009) and 

other ungauged or poorly gauged regions (Su et al 2008; Collischonn et al., 

2008). These studies showed that TMPA V6 underestimate the rainfall values 

that lead to under prediction by the hydrologic model. The observed values still 

fall under the ±1 standard deviation (std dev) of monthly mean values. It is to be 

noted that there is fluctuation of observed streamflow which is an indication of 

water management practices on the Nzoia River, also depicted in figure 2.9. 



51 

 

 

Figure 2.9: Monthly model versus observed Runoff (R) for mean annual cycle 

from 1996 to 2006. Error bars showing the ±1 std dev of monthly mean values. 
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Figure 2.10: Spatially distributed average runoff in (a) wet season MAMJ (from 

March to June), (b) dry season NDJF (from November to Feb). 
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Evapotranspiration 

Estimation of evapotranspiration, a key hydrologic variable provides better 

understating of the relationships between water balance and climate. In arid and 

semi-arid biomes, around 90% or more of the annual precipitation can be 

evapotranspired, and thus ET determines the freshwater recharge and discharge 

from aquifers in these environments (Wilcox et al., 2003). Moreover, it is 

projected that climate change will influence the global water cycle and intensify 

ET globally (Huntington, 2006; Meehl et al., 2007) consequently impacting the 

scarce water resources. Therefore, estimation of average monthly and annual 

evapotranspiration is important. 

Figure 2.11 shows the simulated time series of evapotranspiration for the 

time period.  Generally in the drier months, evapotranspiration equals rainfall 

amounts. The evapotranspiration, however, does not vary as much as rainfall 

does in a given year. 
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Figure 2.11: Monthly model Evapotranspiration (ET) form mean annual cycle 

from 1996 to 2006. Error bars showing the ±1 std dev of monthly mean values. 
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Figure 2.12: Spatially distributed evapotranspiration (AET) during (a) wet season 

MAMJ (from March to June), (b) dry season NDJF (from Nov to Feb). 
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Figure 2.13: Monthly model change in storage for mean annual cycle from 1996 

to 2006. Error bars showing the ±1 std dev of monthly mean values. 
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Figure 2.14: Spatially distributed change in storage (dS/dt) during (a) wet season 

MAMJ (from March to June), (b) dry season NDJF (from Nov to Feb). 
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2.6 Summary and Conclusion  

In this study, we used observed data from 1985-2006, for the 

hydroclimatology of Nzoia basin by studying 1) rainfall and stream discharge 

patterns, 2) return periods of rainfall and discharge, 3) annual mean discharge 

and decadal monthly variation of both rainfall and discharge. In addition, a semi-

distributed hydrologic model driven by satellite remote sensing data is used to 

study the water balance of the sub catchment. Runoff and precipitation 

observation have been used to evaluate the hydrologic model results. 

The observed record at Nzoia showed that for the 1985-2006 time period 

the basin received quite consistently 2-, 5- and 10-years rainfall in totality for the 

past 21 years (1985-2006). The second decade (1995- 2004) however, received 

less 5-year and 10-year equivalent rainfalls compared to the first decade (1985-

1994). The discharge data showed that the 2-years returned period equivalent 

discharge is observed more frequently in the second decade than in the first 

decade. There is only a marginal increase in annual mean discharge for the last 

21 years. The 2-, 5- and 10- years peak discharges (table 3), for the entire study 

period shows that more years since the mid 1990s have high peak discharges 

even with relatively less precipitation. This might have been the effect of 

changing land-use and land cover types or increased channelization of the Nzoia 

basin over time.  

Githui (2008) revealed that the land use land cover changes during 1973-
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2001 have been significant and have contributed to a considerable increase in 

runoff. The agricultural area has increased from about 39.6 to 64.3% while forest 

area has decreased from 12.3 to 7.0%. Generally runoff was highest from 

agricultural lands while runoff from shrubland was greater than that from 

grasslands.  

The discharge data for the study period showed that the basin is dry and 

arid with no sustained base flow. The short spell of high discharge shows the rain 

caused flooding in the basin. With a decrease in rainfall, the primary input flux 

into the Nzoia basin, the water budget situation might deteriorate over the coming 

years. Noticeable variations in monthly average rainfall and discharge were 

observed for the two decades (1985-1994 and 1995-2004). The rainfall fluctuated 

from as low as 55% (in February) to as high as 32% (in December) in drier 

months. Similarly, there are decreases in February and May monthly average 

discharge by 13% while January saw a surge of 44%. But overall, there is only a 

very slight increase (2%) in annual mean discharge suggesting an insignificant 

imbalance in water budget in the basin during the study period. 

The study utilizes quasi-global satellite precipitation and other remote 

sensing data products. This helps to understand the utility of the remotely sensed 

data for hydroclimatology studies at a sub-catchment with sparse ground 

observations. Simulation of the key hydrological processes and their 

interconnection with climate and basin characteristics is a critical step in 
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estimating catchment water balance. Therefore, a semi-distributed hydrologic 

model (CREST) is implemented to simulate hydrological states and flux variables 

such as runoff, ET, precipitation and soil moisture at a spatial resolution of 30 arc 

seconds at 3 hourly time steps. The CREST model is forced by satellite-based 

precipitation and evapotranspiration estimates, rain gauge observations, and 

other remote sensing products. Observations on runoff and precipitation have 

been used to evaluate the model results at the sub-catchment level. TMPA 3B42 

V6 showed good agreement with gauge observations (Figure 2.7). 

Spatial distribution of CREST modeling results for precipitation (P), runoff 

(R), evapotranspiration (ET), and dS/dt (Figure 2. 8, 2.10, 2.12, and 2.14.) In 

general, the model reproduces P, ET, and dS/dt fairly well. Considerable 

agreement is observed between the monthly model runoff estimates and gauge 

observations reported for the Nzoia River (Figure 2.9). Runoff values respond to 

precipitation events occurring across the catchment during the wet season from 

March to early June. The hydrologic model reasonably captured the soil moisture 

storage variability (Figure 2.13). 

An important advantage of spatially distributed hydrologic model, such as 

CREST model, is that it not only provides estimates of hydrological variables at 

the basin outlet, but also at any location as represented by a cell or grid within 

the given basin. These spatially distributed model inputs, states, and outputs, are 

useful for visualizing the hydrologic behavior of a basin. These results reveal that 
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relatively high flows were being experienced near the basin outlet from previous 

rainfall, with a new flood peak responding to the rainfall in the upper part of the 

basin.  

Comparison of the model outputs such as evapotranspiration and soil 

moisture estimates against field measurements can help evaluate the model 

performance. The model developed from this study can be applied to poorly 

gauged catchments using satellite forcing data and also be used to investigate 

the catchment scale water balance. Implementing the CREST model resulted in 

spatiotemporally distributed hydrological variables that can be utilized in 

addressing issues pertaining to sustainability of the resources within the 

catchment. 
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CHAPTER 3 : MULTISPECTRAL REMOTE SENSING FOR FLOOD 

DETECTION 

 

Abstract 

Implementation of a flood prediction system can potentially help mitigate 

flood induced hazards. Such a system typically requires implementation and 

calibration of a hydrologic model using in-situ observations (e.g. rain gauges and 

stream gauges). Recently, satellite remote sensing data has emerged as a viable 

alternative or supplement to the in-situ observations due to its availability over 

vast ungauged regions. The focus of this study is to integrate the best available 

satellite products within a semi-distributed hydrologic model to characterize the 

spatial extent of flooding over sparsely-gauged or ungauged basins. A satellite 

remote sensing based approach is proposed to calibrate a hydrologic model, 

simulate the spatial extent of flooding, and evaluate the probability of detecting 

inundated areas.  

A raster-based semi-distributed hydrologic model, CREST, is implemented 

for the Nzoia basin, a sub-basin of Lake Victoria in Africa.  MODIS Terra and 

ASTER-based raster flood inundation maps were produced over the region and 

used to benchmark the hydrologic model simulations of inundated areas. The 

analysis showed the value of integrating satellite data such as precipitation, land 

cover type, topography and other data products along with space based flood 
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inundation extents as inputs for the hydrologic model. It is concluded that the 

quantification of flooding spatial extent through optical sensors can help to 

evaluate hydrologic models and hence potentially improve hydrologic prediction 

and flood management strategies in ungauged catchments. 
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3.1 Introduction 

Floods are among the most recurring and devastating natural hazards, 

impacting human lives and causing severe economic damage throughout the 

world. It is understood that flood risks will not subside in the future and with the 

onset of climate change flood intensity and frequency will threaten many regions 

of the world (Jonkman 2005, McCarthy 2001). The current trend and future 

scenarios of flood risks demand accurate spatial and temporal information on the 

flood hazards and risks.  

Techniques utilizing satellite remote sensing data can provide objective 

information that may help to detect and monitor the spatio-temporal evolution of 

floods (Brakenridge et al. 2003a, Brakenridge, Carlos and Anderson 2003b, 

Smith 1997). For example, orbital sensors, such as NASA’s Moderate-Resolution 

Imaging Spectroradiometer (MODIS), provide necessary data to help detecting 

floods in regions where no other means are available for flood monitoring with 

good accuracy (Brakenridge et al. 2007, Brakenridge 2006). Such data, after 

certain processing are capably of provide timely information on flood extents with 

global coverage and frequent observations 

To date, satellite observations have become practical tools for 

development of cost-effective methods for hydrologic prediction in poorly or even 

ungauged basins around the globe, regardless of the political boundaries. It has 

been demonstrated that orbital remote sensing can be used for river inundation 
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mapping and has the potential to remotely measure runoff (Birkett et al. 2002, 

Brakenridge 2006). 

The application of satellite imagery for flood mapping began with the use 

of Landsat Thematic Mapper (TM) and Multi-Spectral Scanner (MSS), the 

Satellite Pour l'Observation de la Terre (SPOT) (Blasco, Bellan and Chaudhury 

1992, France and Hedges 1986, Jensen et al. 1986, Watson 1991), the 

Advanced Very High Resolution Radiometer (AVHRR) (Barton and Bathols 1989, 

Gale and Bainbridge 1990, Rasid and Pramanik 1993, Sandholt et al. 2003, Xiao 

and Chen 1987), Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER), Moderate-Resolution Imaging Spectroradiometer (MODIS) 

and Landsat-7 sensors (Brakenridge et al. 2003a, Brakenridge et al. 2003b, 

Stancalie et al. 2004, Wang 2004, Wang, Colby and Mulcahy 2002). For a 

comprehensive review on extraction of flood extent and surface water level from 

various satellite sensors please refer to Smith; Watson (Puech and Raclot 2002, 

Smith 1997, Alsdorf, Lettenmaier and Vörösmarty 2003, Alsdorf, Rodríguez and 

Lettenmaier 2007a, Marcus and Fonstad 2008, Schumann et al. 2009).  

Satellite remote sensing data have emerged as viable alternative or 

supplement to in situ observations due to their availability over vast ungauged 

regions. Microwave satellite data can be effectively used for flood monitoring 

through the cloud cover but its spatial resolution is relatively coarse for flood 

mapping at around 10-km grid scale, such as Advance Microwave Scanning 
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Radiometer for the Earth Observing System (AMSR-E) microwave data.  

Satellite radar imagery has proved invaluable in mapping flood extent 

(Horritt 2000, Horritt and Bates 2002, Schumann et al. 2007). For example, flood 

extent maps derived from Synthetic Aperture Radar (SAR) sensors have been 

used to validate hydraulic models (Di Baldassarre, Schumann and Bates 2009, 

Horritt et al. 2007). However, limitations of the SAR include inability to detect 

flooding in urban areas, inaccurate image calibration that leads to geometric and 

radiometric distortions, difficulties for data processing, and more prohibitively, low 

temporal resolution of the current radar satellites with a revisit time of 35 days 

(Schumann et al. 2007).  

Other sensors such as the Advanced Synthetic Aperture Radar (ASAR) 

instrument onboard ENVISAT with a spatial resolution of (150-1000m) and a 

revisit time few days can be effective for flood detection (Di Baldassarre et al. 

2009, Schumann et al. 2009, Schumann et al. 2007). Contrary to the space-

borne microwave data, visible/infrared sensors aboard on NASA MODIS Terra 

satellite can detect floods globally with relatively high spatial (30m ASTER, 250m 

MODIS) and temporal (daily if clear sky) resolution. For the past decade, 

noticeable efforts have been made to investigate the potential to use flood 

inundation extent derived from optical sensors as a tool to validate the 

performance of hydrologic models in sparsely or unguaged basins (Brakenridge 

et al. 2007, Brakenridge 2006). 
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The objective of the chapter is to investigate the utility of flood spatial 

extent information obtained from orbital sensors to calibrate and evaluate 

hydrologic models in an effort to potentially improve hydrologic prediction and 

flood management strategies in ungauged catchments. The goal of this exercise 

was to assemble a reasonable (rather than definitive) approach to act as a test-

bed to investigate how the improved satellite based flood inundation extent can 

be used to calibrate hydrologic model.  The chapter is organized as follows: the 

study area, data and the hydrological model. The methodology section outlines 

the methods for space based flood inundation mapping and for hydrologic model 

based flood extent mapping. Results section provides a comparison between the 

two methods and validates the model performance using MODIS/ASTER-derived 

flood inundation maps, followed by final concluding remarks in the last section. 

3.2 Study Area and Data 

Nzoia Basin 

The rainy season that onsets from October through early December brings 

devastating floods in Uganda, Kenya, Tanzania and other countries in East Africa 

almost every year. This region, surrounding Lake Victoria, is heavily populated 

with around thirty million people (Figure 3.1). During December 2006, the United 

Nations Office for the Coordination of Humanitarian Affairs estimated that 1.8 

million people had been affected by the flooding in Kenya, Ethiopia and Somalia. 

Repeated flooding affects many lives particularly in the Lake Victoria 
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region. With an area of 68,600 km2, Lake Victoria is the second largest 

freshwater lake in the world (Swenson and Wahr 2009). Nzoia, a sub-basin of the 

Lake Victoria, is chosen as the study area because of its regional importance as 

it is a flood-prone basin and also one of the major tributaries to Lake Victoria. The 

Nzoia River basin covers approximately 12,900 km2 with elevation ranging 

between 1,100 to 3,000 m. Annual average rain within the region is 1,500 mm . 

Table 1 lists recent flooding events investigated in this study. 

 



 

 

 
 

Figure 3.1 Map showing Nzoia river basin in Lake Victoria region, East Africa 
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Table 3.1: Selected flood events, location, flooded areas/river; verified with the 
(Dartmouth Flood Observatory) DFO flood inventory. Numbers in 
parenthesis are the Julian days of the corresponding year. 

 

Events 
Images 

retrieved (DOY) 

Countries 

effected 
Rivers flooded 

1.  
2006/12/04 

(338) 

Kenya 

 

 

 

Uganda 

Tanzania 

Ewaso Nyiro, Uaso Nyiro, Tana river 

and tributaries. Ramisi. Lak Dera, 

Lak Bor, Lagahar. Ndarugu. Sosiani. 

Ramisi. Nzoia. Ongoche, Kuja, 

Migori, Ongohe.  

River Ssezibwa 

Wembere, Mwanza 

2.  

2007/08/15 

(227) 

2007/08/22 

(234) 

2007/08/24 

(236) 

Kenya 

 

Uganda 

Tanzania 

Nzoia, Sabwani, Malakisi, Malaba 

Kirik, Moroto, Aswa, Ora, Ssezibwa,  

 

Dopeth. Muzizi. Nyangoma 

Wembere, Mwanza 

3.  
2008/11/12 

(317) 

Kenya 

 

Western Kenya, Nzoia River 
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3.3 Methodology 

This study presents a methodology based entirely on satellite remote 

sensing data (including topography, land cover, precipitation, and flood 

inundation extent) to calibrate a hydrologic model, simulate the spatial extent of 

flooding, and evaluate the probability of detecting inundated areas. MODIS and 

ASTER-based raster flood inundation maps were derived to benchmark the 

hydrologic model to simulate the spatial extent of flooding and associated 

hazards. 

The methodology contains three major components(Khan et al. 2011b) 

(Figure 3.2). First, the data from MODIS and ASTER sensors were archived and 

processed to derive flood inundation maps for the selected events (Table 3.1). 

Second, a grid-based semi-distributed hydrologic model is implemented and 

further calibrated using the satellite derived flood inundation maps in the study 

area. Finally, the performance of hydrologic prediction in Nzoia basin is evaluated 

by comparing the simulated flood inundation extents with those derived from 

MODIS and ASTER imagery. A similar technique described below is used by the 

Dartmouth Flood Observatory (http://www.dartmouth.edu/~floods/) to generate 

flood maps 



 

 

Figure 3.2 Schematic of the satellite remote sensing and hydrological modeling based flood monitoring system.  

79 



80 

Satellite based flood inundation mapping 

In this study we used Moderate Resolution Imaging Spectroradiometer 

(MODIS) and Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) for flood inundation mapping. MODIS instruments onboard 

NASA’s Terra and Aqua satellites offer a unique combination of near-global daily 

coverage with acceptable spatial resolution. These capabilities are being utilized 

for flood monitoring at regional and global scale. (Brakenridge et al. 2003a, 

Brakenridge et al. 2003b) demonstrated that MODIS data can be used to 

distinguish between flooded and non-flooded areas with suitable spatial 

resolution. This can be very crucial in regions where no other means flood 

monitoring are available. NASA’s Goddard Space Flight Center (GSFC), through 

the Rapid Response System, processes and displays images in near real time—

within 2 to 4 hours of retrieval. MODIS Rapid Response data are available from 

Terra and Aqua in near real time at: http://rapidfire.sci.gsfc.nasa.gov/. This 

system, initially developed for fire hazard detection and monitoring, can be 

utilized for flood detection throughout the globe. Several spectral bands at spatial 

resolutions of approximately 250 and 500 m are appropriate for accurate 

discrimination of water from land. Excluding the effects of cloud cover, there is 

also global coverage on a near-daily basis. 

Another sensor used in this study is ASTER, an imaging instrument flying 

on Terra satellite that launched in December 1999 as part of NASA's Earth 
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Observing System (EOS). ASTER is a cooperative effort between NASA, Japan's 

Ministry of Economy, Trade and Industry (METI) and Japan's Earth Remote 

Sensing Data Analysis Center (ERSDAC). ASTER is an advanced multispectral 

imager with high spatial, spectral, and radiometric resolution. The ASTER 

instrument covers a wide spectral region, from visible to thermal infrared with 14 

spectral bands. It has total of 14 bands in Visible to Near-Infrared (VNIR), Short 

Wave-Infrared (SWIR) and Thermal-Infrared (TIR) wavelengths. The ground 

resolutions of the VNIR, SWIR and TIR images are 15, 30 and 90 m, respectively 

(Fujisada et al. 1998, Yamaguchi et al. 1998). Data from this sensor can be 

acquired on demand from Land Processes Distributed Active Archive Center (LP 

DAAC) at the USGS EROS Data Center, with the standard Hierarchical Data 

Format (http://LPDAAC.usgs.gov). 

There are several methods for identifying flooded vs. non flooded areas 

using optical remote sensing imagery (e.g. (Jensen 2005, Jensen et al. 1986)). 

The first step is to identify spectral classes within the imagery. One of the widely 

used clustering algorithm used for this task is the Iterative Self-Organizing Data 

Analysis Technique Algorithm (ISODATA), which uses the Euclidean distance in 

the feature space to assign every pixel to a cluster through a number of iterations 

(Jensen 2005). ISODATA begins with either arbitrary cluster means or means of 

an existing signature set, and each time the clustering repeats, the means of 

these clusters are shifted. The new cluster means are used for the next iteration.  
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To perform ISODATA, the analyst selects the number of spectral classes 

(NSC), a convergence threshold (CT), and number of iterations for the algorithm, 

which introduces considerable subjectivity into the classification process (Lang et 

al. 2008). This process of flood water classification is performed using the 

ENVI™ software. In this study, the strategies for MODIS and ASTER based 

inundation extent extractions are described in detail. The method for the flood 

detection and mapping using satellite imagery included the following steps:  

1)  Terra MODIS near real time subsets covering the region of Lake Victoria 

were retrieved from NASA website http://rapidfire.sci.gsfc.nasa.gov/subsets 

2)  Color composite images were downloaded for image processing. The false 

composite of MODIS band 1, 2 and 7 (Red, Near Infrared, and Short-wave 

infrared) has a resolution of 250m. The true color composite of MODIS band 1, 3 

and 4 is used for visual interpretation. 

3)  False color composite images were subset to the region of interest and 

ISODATA classification is performed (20 classes and 3 iterations) 

4)  All the water classes were combined into one water class. 

5)  The raster type images were exported as Geographical Information System 

(GIS) compatible format for further processing. 

6)  The images obtained in Step 5 were overlaid on the true color image to 

remove the cloud contamination/shadows that were falsely classified as water. 
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7)  The final product overlaid in GIS under a reference water layer (SRTM 

based water bodies) is used to identify the current flooded areas. 

Hydrological model setup and implementation 

A semi-distributed hydrologic model, Coupled Routing and Excess 

STorage (CREST), developed by (Wang et al. 2011).is used to generate modeled 

flood areal extents for comparison with the satellite based flood inundation maps. 

The model accounts for the most important parameters of the water balance 

component i.e. the infiltration and runoff generation processes. The main CREST 

model components are briefly described as ; 1) data flow module based on cell to 

cell finite elements ; 2) the three different layer within the soil profile that affect 

the maximum storage available in the soil layers. This representation of within 

cell variability in soil moisture storage capacity (via a spatial probability 

distribution) and within cell routing can be employed for simulations at different 

spatiotemporal scales 3) coupling between the runoff generation and routing 

components via feedback mechanisms. This coupling allows for a scalability of 

the hydrological variables, such as soil moisture, and particularly important for 

simulations at fine spatial resolution. 

CREST model simulates the spatio-temporal variation of water fluxes and 

storages on a regular grid with the grid cell resolution being user-defined. The 

scalability of model simulations is accomplished through sub-grid scale 

representation of soil moisture variability (through spatial probability distributions) 
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and physical process representation. CREST model can also simulate inundation 

extent in an effort to obtain spatial and temporal variation of floodwater within 

grid-based domain. For more information of the CREST model  (Wang et al. 

2011). 

In CREST model, parameters related to topography, soil properties and 

topography are directly estimated form the land surface controlling data based 

shown in the framework (Figure 3.2). To apply the CREST model over Nzoia 

basin on 1km spatial resolution, local drainage direction and accumulation is 

established using the 30 arc seconds resolution SRTM DEM from HydroSHEDS 

data. The precipitation forcing data is TRMM-based  Multi-satellite Precipitation 

Analysis 3B42 Real-Time (TMPA 3B42RT) products (Huffman et al. 2007b). The 

subscript ‘RT’ refers to real time, which in reality refers to a pseudo real time 

where data is available to the user via the internet with a 8- 16 hour latency for 

the end user. The key remote sensing datasets enabling the development of a 

hydrological model in Nzoia basin includes the following: 

1)  The digital elevation data from SRTM (Rabus et al. 2003) ; 

http://www2.jpl.nasa.gov/srtm/), SRTM-derived hydrological parameter files of 

HydroSHEDS (Lehner, Verdin and Jarvis 2008).  

2) The rainfall data is from the TRMM-based Multi-satellite Precipitation 

Analysis 3B42 Real-Time (TMPA 3B42RT) operating in near-real time (Huffman 

et al. 2007b) The data is available on the TRMM web site 
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(http://trmm.gsfc.nasa.gov) at 0.25º×0.25º spatial and 3h temporal scales within 

50º N–S latitude band. 

3)  Soil parameters are provided by the FAO (2003)  

(http://www.fao.org/AG/agl/agll/dsmw.html),   

4)  MODIS land classification map is used as a surrogate for land use/cover, 

with 17 classes of land cover according to the International Geosphere–

Biosphere Programme classification (Friedl et al. 2002). 

5) Global daily Potential Evapotranspiration (PET) data is obtained from the 

Famine Early Warning Systems Network (FEWS NET: 

http://earlywarning.usgs.gov/Global/index.php). 

Model Calibration and Validation 

CREST model is calibrated using available daily observed discharge data 

for the period between 1998 and 2004 (Figure 3.3). A one-year period (1998) is 

used for warming up the model states. The model utilizes global optimization 

approach to capture the parameter interactions. An auto-calibration technique 

based on Adaptive Random Search (ARS) method by Brooks (Brooks 1958) is 

used to calibrate the CREST model. The ARS method is considered adaptive in 

the sense that it uses information gathered during previous iterations to decide 

how simulation effort is expended in the current iteration.  



 

 

 
 
 

 

Figure 3.3: Nzoia basin precipitation observed and simulated runoffs during calibration period (1985-1998). 
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Flood inundation module 

The CREST model flood inundation component uses one of the model 

outputs, the grid to gird total free water, to simulate the flood extents. A 

predefined total free water depth threshold approximately 70 mm is employed to 

determine flood inundated extents. This value is not fixed but changes with the 

calibration of satellite-based flood inundation images that are used during auto-

calibration process. For more information about CREST model inputs and 

outputs, please refer to (Wang et al. 2011). 
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Figure 3.4: A1-A4, MODIS based inundation maps for 04 Dec 2006, 15, 22, 24 

August 2007 and A5 ASTER map for 12 Nov 2008 respectively. B1-B5; MODIS 

true color composite of band 1, 3 and 4. C1-C5 MODIS false color (7, 2, 1 band) 
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Flood inundation evaluation indices 

Finally, CREST model simulated inundation spatial extents were 

compared to the flood inundation maps, derived from satellite imagery. Several 

categorical verification statistics, which measure the correspondence between 

the estimated and observed occurrence of events, were used in this study; 

Probability of Detection (POD), False Alarm Ratio (FAR), and Critical Success 

Index (CSI)., POD measures the fraction of observed events that were correctly 

diagnosed, and is also called the ‘‘hit rate’’ (Table 2). FAR gives the fraction of 

diagnosed events that were actually nonevents. CSI gives the overall fraction of 

correctly diagnosed events by CREST model. Perfect values for these scores are 

POD= 1, FAR= 0, and CSI= 1. 
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CREST model is calibrated using MODIS based flood extent maps for 

different events listed in Table 2 for which gauged streamflow aobservation are 
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not available. As pointed out earlier the purpose of this exercise is to investigate 

the possibility to calibrate the hydrological model through satellite remote sensing 

datasets. Calibration period includes two cloud free MODIS images available in 

2006 and 2007.Then we validate the calibration by comparing with other flood 

extent imagery. The objective function selected to guide the calibration process is 

the Critical Success Index CSI between satellite-based inundation maps and 

CREST-modeled flood extents. The calibration terminates when improvements in 

CSI within the last three iterations are less than 0.001. The approach can have 

far reaching implication in unguaged basins where no other means are available 

to calibrate hydrological model. 

3.4 Results and Analysis 

In this section we present the application of the two alternative methods 

for inundation mapping, namely CREST model based and satellite-based 

methods described in Section III, to generate the flood inundation maps for three 

different flood events in the study area (see Figure 3.4 and Table 3.1). The 

comparison of CREST-simulated flood extent with satellite-based observations 

will provide an evaluation of the model performance in simulation of spatio-

temporal evolution of the flood inundation extent.  

Unsupervised classification is an automatic and objective process that 

generates precise flooding maps. However, flood inundation mapping from the 

binary flood classification from optical sensors can be influenced by cloud and 
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vegetation cover. These lead to under detection or over detection due to the 

influence of riparian vegetation and the natural variability of the water surface 

respectively. Comparison between the CREST model and satellite based flood 

inundation extent for the three events listed in table 1 are discussed below: 
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Figure 3.5: Comparison of satellite-based and CREST simulated flood inundation 

extents.  First legend entry is the year and the Julian day of the flood event, 

followed by the event identification number (in Table 3.1).  
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Evaluation of the CREST-simulated inundation extent  during Event 1 

Figure 3.4 B1 and C1 illustrate true color composite and false color 

composite (bands 7, 2, 1) MODIS scenes respectively. After MODIS data 

acquisition for 04 December false color composite, the flood extent is extracted 

using the ISODATA classification (Figure 3.4 A1). The December event is also 

simulated using the hydrologic model. Inter comparison between the satellite 

based flood detection and CREST flood inundation map (Figure 3.5 A1). The 

regular river channel and water bodies are shown as light-blue, MODIS 

detections are in black and CREST in blue color. The overlapping flooded areas 

from MODIS and CREST are shown in red. Further examination of flood extents 

from the CREST and MODIS indicates that the spatial patterns of the flood extent 

are similar as illustrated in Figure 3.5 A1. To quantify this similarity, a spatial 

correlation is introduced and analyzed on a pixel-by-pixel basis. If a pixel is 

classified in the same category (regular river channel and water bodies, flooded 

area), on both inundation maps, the pixel is recoded as 1 (hits), otherwise non 

flooded areas as 0 (misses). 

Figure 3.6 A1 shows the statistical comparison between the flood extents 

derived from MODIS and CREST for December 2006 event. POD shows an 

increase from 0.23 at a radius of 250 m to 0.75 at a radius of 1000 m and 

increased to 0.98 at a radius of 2000 m. Figure 3.6 A1 also illustrates that within 

250 m radius, FAR could be as high as 0.7. However, with the increase of radius 
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to 1000m, FAR is reduced to low 0.18. The CSI is improved from 0.14 within 250 

m to 0.64 with increase of radius to 1000m.  With further increase in radius to 

2000 m CSI is improved to 0.92. Thus, the two maps shows spatial agreement of 

92% at a radius of 2000 m in Figure 3.6 A1.  
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A3 (DOY 2007234)
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Figure 3.6: Comparison between estimated accuracy of products relative to the 

inundation area derived from MODIS (A1-A4) and CREST model. 
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A5 (DOY 2008317)
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Figure 3.7: Comparison between estimated accuracy of products relative to the 

inundation area derived from ASTER and CREST model. 

 

Evaluation of the CREST-simulated inundation extent  during Event 2  

A well-documented flood event that occurred during August 2007, with an 

estimated return period of 10 years, is used to validate CREST model 

performance. Figure 3.4 B2, B3, B4 and C2, C3, C4 show the true color 

composite and false color composite (bands 7,2,1) MODIS scenes respectively. 

MODIS-based flood extent maps shown in Figure 3 A2, A3 and A4 are derived 

from the false color composite scenes for 15 22 and 24 August 2007 respectively. 
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The statistical comparison between the CREST and MODIS flood inundation 

extent for these events are presented in Figure 3.6 A2, A3 and A4. Figure 3.6 A2 

reveals that on the 15th August 2007 POD is increased from 0.37 to 0.93 with an 

increase of radius from 250m to 1000m. Similarly, FAR and CSI have showed 

improvements with increase in radius for other days of this event (Figure 3.6 A3 

and A4). 

Evaluation of the CREST-simulated inundation extent  during Event 3 

For the November 2008 event the ASTER image with higher spatial resolution 

are shown in Figure 3.7 A5. The POD of CREST shows an increase from 0.46 at 

a radius of 30m to 0.88 at a radius of 600m. Figure 3.7 A5 also illustrates that 

within 30 m radius, FAR could be as high as 0.75. However, with the increase of 

radius to 600m, FAR substantially reduced to as low as 0.15. The CSI is 

improved from 0.19 at 30 m to more than 0.76 at a radius of 600m. 

  



100 

3.5 Conclusion and Future Work 

The feasibility to setup hydrological model using satellite-based flood 

inundation extents, instead of a conventional flood modeling techniques in data 

scarce environment is evaluated. The proposed approach implements a semi-

distributed hydrologic model with remote sensing data and further calibrates the 

hydrologic model through satellite-based flood inundation maps. Utilizing the 

public domain datasets available through satellite sensors and their integration 

with the hydrologic models has the potential to improve simulation and prediction 

of the spatial extent of floods.  

The broader impact of such technique is to provide a cost-effective tool to 

progressively build capacity for flood disaster prediction and risk reductions in 

poorly- or un-gauged basins located in many under developed countries in Africa 

or South Asia. Operationally implementing this strategy in those areas will 

provide flood managers and international aid organizations a realistic decision-

support tool in order to better assess emerging flood impacts. This study 

demonstrated the applicability of distributed hydrological model calibration using 

satellite-derived flood inundation maps from MODIS and ASTER images in 

gauged basins.  

The recent release of ASTER Global Digital Elevation Model (GDEM) with a 

resolution of 30m and higher temporal resolution (less than current TRMM 3-hour 

resolution) of satellite-based precipitation products can help to implement 
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hydrological models at higher resolutions. Thus, further research on how to utilize 

spatially distributed observations, such as higher resolution imagery and other 

sensors, such as microwave sensors, should be studied in various geographical 

locations for the evaluation and calibration of distributed hydrologic models. 

Further flood mapping accuracy is also expected to continuously improve the 

ISODATA clustering classifications. The case study of Nzoia basin illustrate that 

regions with scarce ground based observations, remote sensing data can be 

used to implement evaluate hydrologic models with certain accuracy.  However, it 

noted that with the integration of different data sets i.e. satellite remote sensing 

products, ground based observations as well as the catchment information can 

improve the flood monitoring and management.  
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CHAPTER 4 : MICROWAVE SENSORS FOR FLOOD PREDICTION 

IN UNGUAGED BASIN (PUB) 

 

Abstract  

Operational flood forecasting is contingent on the availability of 

precipitation and river discharge, to benchmark hydrologic models and therefore, 

a challenge in data poor regions around the world. Lately, near real-time 

precipitation from Tropical Rainfall Measuring Mission (TRMM) has proved its 

tangible value for flood detection and monitoring, but not for forecasting. In this 

study, an unconventional flood monitoring framework is proposed by using TRMM 

precipitation forcing and more importantly, river discharge proxy from the 

Advanced Microwave Scanning Radiometer (AMSR-E) to benchmark a distributed 

hydrologic model in Okavango basin, Southern Africa. The AMSR-E passive 

microwave sensor based discharge signal, highly correlated with in-situ data at 

temporal correlation coefficient (CC) of 0.9, and is used from 2002 to 2007 to 

calibrate the hydrologic model.  

The model simulated flows are converted to flood frequencies. Flood 

frequency analysis of continuous runoff data from model is used to estimate flood 

magnitude and return periods in frequency domain. Model performance was 

improved with a Nash–Sutcliffe Efficiency of 0.90 and CC of 0.80 respectively. It is 

concluded that satellite data from microwave sensors can be used to calibrated 
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hydrologic model in data poor environment. Given the globally availability of 

satellite-based precipitation and river discharges, this proof of concept study can 

have substantial implications on flood monitoring and forecasting in ungaged 

basins throughout the globe. 
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4.1 Introduction 

Globally the sparse in-situ hydrometeorological networks are the main 

source for quantitative water resource management. Over the past half-century 

hydrologic analysis such as flood and drought risk assessments are dependent 

on these in-situ data. Hydrologic or land surface models are driven by streamflow 

and rainfall observations to predict hydrologic extremes. Therefore, adequate 

ground based observations on hydrologic variable plays a critical role in water 

resources planning and management. Unluckily, most areas of the Earth’s 

surface lack in situ observations that intricate quantification of the water budget. 

Many nations are ungauged or sparsely gauged, and in some countries existing 

measurement networks are declining. (Calmant and Seyler 2006, Shiklomanov, 

Lammers and Vorosmarty 2002, Sivapalan 2003a, Stokstad 1999). Evidently, the 

lack or inadequate gauged observations challenges the implementation of 

hydrologic models for early warning and decision‐making systems.  

To address the limited data availability issue in ungauged regions, 

research efforts such as the Predictions in Ungauged Basins (PUB) initiative was 

launched in 2003 by the International Association of Hydrological Sciences. One 

of the PUB science questions is to integrate remote sensing data into hydrologic 

models (Sivapalan et al. 2003b). More recently, several efforts have been 

directed to use the widely available satellite remote sensing data to complement 

in-situ hydrologic data over vast ungauged regions. Various studies proposed the 

optimal use of satellite precipitation and other remote sensing data products for 
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flood forecasting (Harris and Hossain 2008, Hong et al. 2007, Yilmaz et al. 2010, 

Artan et al. 2007, Su, Hong and Lettenmaier 2008, Khan et al. 2011b). The 

advantage of these datasets is the global availability over regions where ground 

networks are nonexistent. In addition to satellite precipitation, efforts are 

underway to monitor change in river discharge remotely from space. 

At present, unlike precipitation, river discharge cannot be estimated 

directly from the satellite sensors. Observable hydraulic variables such as water 

level, height, width, sinuosity and area are used to estimate river runoff. Recently, 

passive microwave sensors have been used to measured change in surface 

water flow as the bankfull river discharge. (Brakenridge et al. 2007) have globally 

detected floods using Advanced Microwave Scanning Radiometer (AMSR-E) 

brightness temperature at 36GHz H-polarization. This technique relates change 

in brightness temperature to the change in moisture in wet and dry pixel detected 

by the sensor. River flooding is detected using the emission model, polarization 

ratio and dielectric properties of different soil textures from wet and adjoining dry 

areas. This technique is used for flood detection and mapping but not for flood 

forecasting.  

In this chapter, a novel framework is developed by integrating microwave 

satellite remote sensing and hydrologic modeling for flood early warning in data 

poor regions. The impetus is to use the AMSR-E brightness temperature based 

surface water change signal to calibrate a hydrologic model. This discharge is 
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the ratio of brightness temperatures of a wet pixel and dry pixel, refered to 

measurement (M) and calibration (C) area (Brakenridge et al. 2007), a proxy for 

river water surface change. This M/C ratio is operationally being used at global 

scale for flood detection by Dartmouth Flood Observatory, River Watch (Figure 

4.1) and the Joint Research Centre (JRC) of the European Commission. (De 

Groeve 2010, Kugler and De Groeve 2007). It is proposed to employ this 

microwave sensor based discharge signal (M/C ratio) to calibrate a distributed 

hydrologic model for flood forecasting in ungauged basins. 

 



 

 

 

 
 
 
Figure 4.1: River Watch; satellite-based flood detection at more than 2500 selected river measurement sites. Flood 

detection for January 11, 2011. Source: Modified from http://floodobservatory.colorado.edu/. 
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4.2 Data and methods 

An unconventional approach is developed by utilizing the passive 

microwave sensor based discharge signal instead of river runoff to calibrate a 

hydrologic model. A semi-distributed hydrologic model Coupled Excess Routing 

and Storage (CREST) (Wang et al. 2011, Khan et al. 2011b) computes the runoff 

generation and flow routing processes with a simple and robust structure. The 

model runs on a user specified time step and comprise of soil moisture storage 

and a flow routing routine. A breif summary of the model components are 

outlined here ; 1) data flow module based on cell to cell finite elements; 2) the 

three different layers within the soil profile that affect the maximum storage 

available in the soil layers. This representation within cell variability in soil 

moisture storage capacity and within cell routing can be employed for simulations 

at different spatiotemporal scales 3) coupling between the runoff generation and 

routing components via feedback mechanisms.  

The key forcing datasets for CREST model are the satellite precipitation 

product from the TRMM Multi Satellite Precipitation Analysis (TMPA) (Huffman et 

al. 2007a) and the evapotranspiration from the Famine Early Warning Systems 

Network (FEWS NET), (http://earlywarning.usgs.gov/fews/global/index.php). 

Digital Elevation processed from the Shuttle Radar Topography Mission (SRTM) 

(Rabus et al., 2003) is used to generate flow direction, flow accumulation, and 

contributing basin area.  
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CREST model is calibrated using an auto-calibration technique based on 

the Adaptive Random Search (ARS) method (Pronzato et al. 1984, Brooks 1958). 

The model is implemented in the upper part of Okavango basin in Southern 

Africa (Figure 4.2), is representative for many poorly and ungauged basin 

throughout the world. Okavango River flows through Angola, Namibia and 

Botswana, with the main runoff generation part from Angola. River discharge and 

stage data are used from Rundu telemetry station located on the main Okavango 

River (Figure 4.2 ). 

 

Figure 4.2: Upper Okavango basin with Okavango River spanning Angola and 

Namibia. Location of gauging station at Rundu, Namibia. 
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4.3 Satellite based flood frequency approach  

Satellite based surface water change signal is supplemented with the 

sparse gauge runoff observations to calibrate hydrologic model. The attractive 

feature of this technique is the continuous accounting for flood forecasting can 

make difference in data poor environment. This technique will reduce the 

dependency on gauged runoff and precipitation data to calibrate hydrologic 

models. Moreover, typically models are calibrated at point location in the 

watershed, in contrast the geo-spatio-temporal passive microwave data allows to 

implement this strategy throughout the river reach.  

The satellite-based discharge signal correlated closely with a correlation 

coefficient (CC) of 0.9, with the observed runoff over the period from 2002 to 

2007 at Rundu in Namibia. The satellite based discharge signal (M/C ratio) were 

able to capture high flow peaks per year, however discharge estimates are not 

very accurate during the low flows (Figure 4. 3). For comparison purpose CREST 

model is calibrated with gauge runoff from 2002 to 2005. The correspondence 

between observed and simulated flows were evaluated using the Nash–Sutcliffe 

Efficiency (NSE) (Nash and Sutcliffe 1970) and CC. 

 

 

 



 

Figure 4.3: Time series of AMSR

(black line) and gauged runoff in (shaded area).
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Time series of AMSR-E sensor based discharge signal (M/C 

(black line) and gauged runoff in (shaded area). 

 

 

E sensor based discharge signal (M/C ratio) in 
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Evaluation indices CREST simulation performance is assessed using 

three commonly-used statistical indices. First, for statistical goodness of fit of 

simulated flows, we utilized the Nash-Sutcliffe coefficient of efficiency described 

earlier in Chapter II. Second, the Pearson Correlation Coefficient (CC), equation 

(8) is used to assess the agreement between simulated and observed discharge 

as follows: 

 

      (8) 

 

Where, where, Qi,o is the observed discharge of the ith time step. Qi,s is the 

simulated discharge of the ith time step. oQ  is average of all the observed 

discharge values. sQ  is the average of all daily simulated discharge values.  

The hydrologic model performed acceptable for the high flows than low 

flows, with a NSE of 0.63 and 0.84 CC (Figure 4.4a). The simulated low flows are 

biased relative to the observed data. However, the focus of this study is on high 

peak flows, therefore, CREST model is calibrated within frequency domain to 

forecast the high flows regimes. 

This flood frequency based approach requires the conversion of model 
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simulated and observed flows to daily exceedance frequencies. Streamflow and 

satellite based discharge signal (M/C ratio) are converted to frequencies by 

computing the daily exceedance frequency (or probability) based on the period-

of-data flow exceedance curve (or flow duration curve). In this way, frequencies 

associated to simulated streamflow from CREST can be compared to those 

computed from M/C ratio for calibrating model parameters. 
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Figure 4.4: a) Hydrograph showing CREST simulation with gauge (solid line), 

gauge observations (shaded area) and TRMM precipitation (inverted bars). b) 

CREST simulation with gauge (dashed line) and observed runoff (solid line) in 

frequency domain.  
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To implement the approach, CREST model simulated flows are converted 

to flood frequencies. Flood frequency analysis of continuous runoff data from 

model is used to estimate flood magnitude and return periods. The application of 

distributed hydrologic model for flood frequency analysis can improve the 

accuracy of flood forecast in ungauged basins. (Reed, Schaake and Zhang 2007, 

Carpenter et al. 1999). The satellite based discharge signal were used to 

calibrate and validate the CREST model in frequency domain over the period 

from 2002-2007.  

Results reported in Figure 4.5a in frequency domain shows, a good 

agreement between the satellite based discharge signal and the observed flood 

peaks. CREST model calibrated with M/C ratio showed skill in ranking events 

with NSE of 0.90 and 0.80 CC. The hydrologic model calibration accurately 

tracked the high flows. The exceedance level indicates that the model can 

predicts forthcoming flooding in the forecasts. It follows that there is also close 

agreement between the frequency distributions fitted to the observed and 

simulated peaks, suggesting that the corresponding parameter sets are useful for 

the simulation of flood frequency characteristic. Model simulations for the 

validation period also produced reliable results for the flooding events (Figure 

4.4b). Figure 4.4c illustrates further the threshold frequency corresponding to a 2-

6 years return period and therefore can have significant added value for an 

operational flood forecasting system. 
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Figure 4.5: Exceedance

line) and observed runoff (black line) and M/C ratio (green line) for calibration 

period (2002-2005). b) Model simulations for validation period (2006

return period. 
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Exceedance probabilities; a) CREST simulation with M/C ratio (red 

line) and observed runoff (black line) and M/C ratio (green line) for calibration 

2005). b) Model simulations for validation period (2006

 

 

probabilities; a) CREST simulation with M/C ratio (red 

line) and observed runoff (black line) and M/C ratio (green line) for calibration 

2005). b) Model simulations for validation period (2006-2007) c) 
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4.4 Discussion  

One way of risk analysis is to look at impacts from previous hazardous 

events. The physical exposure can be obtained by modeling the area extent 

affected by one event. The frequency is computed by counting the number of 

events for the given area divided by the number of years of observation (in order 

to achieve an average frequency per year). Using the area affected, the number 

of exposed population can be extracted using a Geographical Information 

System (GIS), the population affected multiplied by the frequency provides the 

physical exposure.  

The study results herein suggest that the calibrated hydrologic model 

provides acceptable hydrograph simulations and also provide acceptable 

estimates of the frequency characteristics of the flood peaks. Additionally, the 

globally available information with a relatively high resolution in both space and 

time can be useful in regions with limited or no data. The methodology presented 

here should provide enough lead time for flood warnings and mitigations 

measures. This information may be applicable to other catchments using 

appropriate choices of rainfall runoff models.  

This proof of concept study has demonstrated the efficacy of satellite 

remote sensing data for flood forecasting in poorly and ungauged basins. In 

particular, a semi-distributed rainfall-runoff model calibrated with unconventional 

data can implicitly simulate the varying runoff response for a given rainfall event. 
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Contrary to the traditional data types that represent point measurements, passive 

microwave based flood evolution at the pixel level. This spatially continuous and 

daily data can be used to implement distributed hydrological models. This 

approach utilized the passive microwave sensor based discharge signal to 

calibrate hydrologic model parameters can provide enhanced streamflow 

forecasts in ungauged basins.  

4.5 Advances in Remote Sensing Hydrology 

In the next coming decades natural hazards mitigation, global change 

research, weather forecasting and decision-making will rely on earth observing 

satellites. Therefore, in this section a brief description on some of the future 

satellite mission is provided. Sensors aboard these satellites will offer hydrologic 

and other environmental observations. Some of the main satellite missions and 

the hydrologic applications are discussed briefly. 

The Global Precipitation Measurement (GPM) Mission 

The Global Precipitation Measurement (GPM) mission is an international 

initiative and a follow on to the TRMM. The two main sensors on the GPM Core 

are the, the GPM Microwave Imager (GMI), and the Dual frequency Precipitation 

Radar (DPR). The GMI will be a conical-scan, nine channel passive microwave 

radiometer. The configuration of this instrument provides a broad measurement 

swath (850 km), and like the TMI, maintains a constant earth incidence angle of 
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52.8° and a constant footprint size for each measureme nt channel regardless of 

scan position. The Dual-frequency Precipitation Radar (DPR) will provide high 

resolution (approximately 4-km), high precision measurements of rainfall, rainfall 

processes, and cloud dynamics (Smith et al. 2007). GPM mission promises new 

possibilities for flood forecast with the advent of precipitation products with higher 

quality and spatio-temporal resolution down to hour and 4-km respectively. 

Soil Moisture, Active and Passive (SMAP) Mission 

Spatially distributed soil moisture measurements and freeze/thaw states 

are needed to improve our understanding of regional and global water cycles. 

Soil Moisture Active and Passive (SMAP) mission (Entekhabi et al. 2010) is one 

of four first-tier missions recommended by the NRC Earth Science Decadal 

Survey Report. SMAP will provide global views of Earth’s soil moisture and 

surface freeze/thaw state, introducing a new era in hydrologic applications and 

providing unprecedented capabilities to investigate the cycling of water, energy 

and carbon over global land surfaces.  

The main goal of SMAP is to provide estimates of soil moisture in the top 

5 cm of soil with an accuracy of 0.04 cm3/cm3 volumetric soil moisture, at 10 km 

resolution, with 3-day average intervals over the global land area. (Entekhabi et 

al. 2010, Das, Entekhabi and Njoku In press). Moreover, these estimates are 

also helpful in understanding terrestrial ecosystems, and the processes that 

interlink the water, energy, and carbon cycles.  
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Soil moisture and freeze/thaw information provided by SMAP will lead to 

improved weather forecasts, flood and drought forecasts, and predictions of 

agricultural productivity and climate change. This mission will contribute to the 

goals of the Carbon Cycle and Ecosystems, Weather, and Climate Variability and 

Change Earth Science focus areas as well as to hydrological science. 

Surface Water and Ocean Topography (SWOT) Mission 

Surface Water and Ocean Topography (SWOT) is one of the 

recommended mission during the decadal survey committee for launch during 

2020. It will provide observations on lake and river water levels for inland water 

dynamics (Alsdorf, Rodríguez and Lettenmaier 2007). The core technology in 

SWOT mission is the wide swath Ka-band and C-band radar radar interferometer 

(KaRIN), which would achieve spatial resolution on the order of tens of meters 

The mission will measure water surface elevations, water surface slope, and the 

areal extent of lakes, wetlands, reservoirs, floodplains, and rivers  at global scale. 

Many of the limitations of current generation altimeters with respect to the size of 

surface water bodies measured and revisit times will be relaxed by the planned 

SWOT mission (Alsdorf and Lettenmaier, 2003; Alsdorf et al., 2007). The 

planned SWOT satellite mission is designed to infer river discharges from 

remotely sensed river hydrologic characteristics. SWOT will provide highly 

accurate river surface slope estimates, in addition to information about water 

surface elevations and inundated areas for rivers with widths greater than about 
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100 m (Alsdorf, Lettenmaier and Vörösmarty 2003). Exploratory results for this 

strategy using synthetic data have been encouraging (Lee et al., 2008). Earth 

scientists and other researchers are optimistic about the SWOT missions and its 

application in hydrologic science and water resource management throughout 

the globe. 
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CHAPTER 5 : OVERALL CONCLUSION  

Flood forecasting for early warning systems is crucial for risk management 

strategies. However, the effectiveness of an early warning depends on the 

robustness as well as accurate extent where the impacts will be felt. In view of 

the ever increasing flood disasters and their hazards to human security, there is 

an urgent need to reassess how to respond and prevent the potential of 

catastrophic loss of life and economic damage from flood risks. Satellite 

observations are crucial for future improvement of the understanding and 

monitoring of floods with better spatiotemporal resolution. Remotely sensed data 

provides potential for flood monitoring particularly over many data poor regions. 

5.1 Remote sensing products for flood monitoring 

Global monitoring of earth system process with satellite remote sensing 

improved our understanding of the water cycle both in the atmosphere and on 

the land surface. Both active and passive sensors are used as sources of 

observations, particularly in regions where in-situ networks are sparse. Many 

hydrological state variables and fluxes can be estimated through satellite remote 

sensing. Multispectral and microwave remote sensing detect reflected or emitted 

energy from an object in a number of different spectral bands of the 

electromagnetic spectrum. In remote sensing this spectral signature is the most 

diagnostic tool in remotely identifying the composition of an object. Generally 
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there is a trade-off between the spectral resolution, spectral coverage, 

radiometric resolution, and temporal resolution. 

Freely available remote sensing data are an excellent resource for the 

mapping of spatially distributed disasters. Satellite based disaster monitoring 

systems have become an integral part of disaster management activities in many 

developed and some developing countries. NASA’s Earth Observing Systems 

(EOS) provides seamless data that can be used for flood detection and mapping 

research. Therefore, data from multiple missions and sensors (e.g. SRTM, 

TRMM, MODIS, ASTER, AMSR-E) can be used with existing hydrologic models 

such as the CREST model for hydrologic analysis and flood prediction in 

ungauged basins.  

The development of satellite rainfall estimates offers the potential to 

address flood prediction problems in poorly gauged basins. The current TRMM 

mission particularly contributes towards this effort. One of the goals of this 

mission is to enable improved hydrological modeling for flood prediction 

applications over South Asia, Mesoamerica and Africa. Multispectral satellite 

sensors such as MODIS and ASTER can be used to evaluate and validate 

hydrologic model predictions. Quantification of flooding through orbital sensors 

can help to evaluate hydrologic models and, hence, potentially improve 

hydrologic predictions and flood management strategies in un-gauged 

catchments. 
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This research work demonstrates the utility of remotely sensed data for 

hydroclimatologic studies at a catchment scale with sparse ground observations. 

Simulation of the key hydrological processes and their interconnection with 

climate and basin characteristics is a critical step in estimating catchment water 

balance. Therefore, a distributed hydrologic model (CREST) is implemented to 

simulate hydrological states and flux variables such as runoff, evapotranspiration, 

precipitation and soil moisture at a spatial resolution of 30 arc seconds at three 

hour intervals. The hydrologic model is forced by satellite-based precipitation and 

evapotranspiration estimates and other remote sensing products. The hydrologic 

model calibrated with satellite precipitation TMPA 3B42 V6 displayed agreement 

with gauge observations. 

The proof of concept study has demonstrated the efficacy of satellite 

remote sensing data for flood forecasting in poorly and ungauged basins. In 

particular, a distributed rainfall-runoff model is calibrated with satellite based river 

discharge proxy, which implicitly simulate the varying runoff response for a given 

rainfall event. Contrary to the traditional data types that represent point 

measurements, passive microwave sensor shows flood evolution at the pixel 

level. This spatially continuous and daily data can be used to implement 

distributed hydrological models. Novel geospatial framework that can incorporate 

satellite-rainfall estimates and other remote sensing data into a hydrologic model 

can be helpful to develop flood forecasting systems in ungauged regions. 

Operationally implementing this strategy in those areas will provide flood 
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managers and international aid organizations, a realistic decision-support tool in 

order to better assess flood risks.  

5.2 Key Limitations  

1. The research work for this study is focused on major floods that occur 

due to longer duration storms systems lasting for more than several days. 

Results from this study are limited to large scale (>1,000 km2) watersheds. 

Therefore, findings from this study cannot be generalized to small scale runoff 

generation mechanisms.  

2. The other limitation is the cloud contamination in optical remote sensing 

data for other basins that can lead to noise in the flood pixel classification. 

5.3 Future Research Direction 

The next generation precipitation satellite constellations “Global 

Precipitation Measurement” (GPM) mission will address the need for accurate 

global precipitation measurement. With the availability of satellite precipitation 

data at fine spatial scales in the coming years, there is currently an urgent need 

to better assess the utility of these satellite products for flood predictions. On the 

other hand, statistical downscaling of current TRMM data to GPM’s 4-km 

resolution will provide insight into the potential utility of future GPM products for 

flood prediction applications.  

Future research will address these issues by systematically applying the 
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approach to a wider range of flooding events in different basins with a variety of 

climatic and land cover characteristics. Moreover, near future satellite missions 

such as the Soil Moisture Active and Passive (SMAP) mission (Entekhabi et al. 

2010) for global soil moisture, Surface Water and Ocean Topography (SWOT) 

mission for river discharge estimates (Alsdorf, Rodríguez and Lettenmaier 

2007b) and the Global Precipitation Measurement (GPM) mission  integrated into 

the proposed framework can materialize flood forecasting systems in ungauged 

basins throughout the globe. 
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APPENDICES  

 

Appendix 1. CREST Model Parameters that require opt imization. 

 

Symbol Unit Brief description Default 
values 

B - Exponent of variable infiltration curve 0.2 

Kc - Coefficient of land cover’s CIC 0.5 

kI - Interflow reservoir discharge parameter 0.1 

kO - Overland reservoir discharge parameter 0.5 

kX - Runoff velocity coefficient varying in overland, 
channel and interflow 50/100/15 

Th km2 Threshold between overland and channel 30 

Wm1 mm Maximum cell mean water capacity of soil layer 1 20 

Wm2 mm Maximum cell mean water capacity of soil layer 2 50 

Wm3 mm Maximum cell mean water capacity of soil layer 3 80 
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Appendix 2. Input and output Hydrologic Variables o f CREST model.  

 

Symbol Unit Description 

A - Upstream point of profile along several cells 

CI mm Intercepted water in canopy layer 

CIC mm Canopy interception capacity 

Ea mm h-1 Actual evaporation of bare soil 

Ec mm h-1 Actual evaporation from intercepted water in canopy layer 

Ep mm h-1 Potential evapotranspiration 

Ep1 mm h-1 Potential evaporation from soil layer 1 

Ep2 mm h-1 Potential evaporation from soil layer 2 

Ep3 mm h-1 Potential evaporation from soil layer 3 

Es1 mm h-1 Actual evaporation from soil layer 1 

Es2 mm h-1 Actual evaporation from soil layer 2 

Es3 mm h-1 Actual evaporation from soil layer 3 

im mm Maximum i of a cell 

I mm h-1 Infiltration water simulated from variable infiltration curve 



145 

Î  mm h-1 Adjusted I considering horizontal input water from routing 

P mm h-1 Precipitation 

Psoil mm h-1 Precipitation input to soil surface 

soilP̂  mm h-1 Adjusted Psoil considering horizontal input water from routing 

R mm h-1 Excess rain generated by variable infiltration curve 

RO mm h-1 Overland excess rain 

RI mm h-1 Interflow excess rain 

RI,in mm h-1 Interflow runoff entering a cell from routing 

RI,out mm h-1 Interflow runoff leaving a cell 

RO,in mm h-1 Overland runoff entering a cell from routing 

RO,out mm h-1 Overland runoff leaving a cell 

SI mm Interflow reservoir storage 

SO mm Overland/channel reservoir storage 

OŜ  mm Adjusted SO considering horizontal input water from routing 

Sto mm Total cell water storage, including soil water and free water 

T h Concentration time from cell to its downstream adjoining cell 
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W mm Total cell mean water of three soil layers 

W1 mm Cell mean water in soil layer 1 

W2 mm Cell mean water in soil layer 2 

W3 mm Cell mean water in soil layer 3 

Wm mm Maximum cell mean water capacity 

 

 

 


