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Abstract

The objective of this paper is to combine the results of two papers to get a
new result. The first paper [2] is called Super-Ezponential 2-Dimensional Dehn
Functions by Josh Barnard, Noel Brady and Pallavi Dani. In this paper, the
authors construct groups whose 2-dimensional Dehn functions 6® (z) ~ exp™(x),

where 7 is a natural number and exp”(x) is a tower of exponentials of height n

.ez

(ie. exp™(z) = e ). The second paper [6] is called Snowflake Groups, Perron-
Frobenius Eigenvalues and Isoperimetric Spectra by Noel Brady, Martin Bridson,
Max Forester and Krishnan Shankar. In this paper, the authors construct groups
whose k-dimensional Dehn function 6*(x) ~ 2?* where o = logy(r) and X is the
Perron Frobenius eigenvalue of an irreducible non-negative integer matrix P and
r is a natural number greater than every row sum of P. Notice that « can range
over all rational numbers greater or equal to 1. By using the case when k = 2, we
are able to recognize a common thread between the two constructions so that we
can combine them to produce a new group whose 2-dimensional Dehn function

6@ (x) ~ exp™(z®).

vi



Chapter 1

Introduction

Historically, Dehn functions, developed by Max Dehn [8] in 1910, were originally
used to answer the Word Problem: Is an arbitrary word equivalent to the iden-
tity? Recall that for any generating set A of a group G there exists a surjective
homomorphism ¢ from F(A), the free group with basis A, onto G such that
G = F(A)/ker(o). If we denote a normal generating set for the ker(c) by R,
then G' can be simply represented by (A | R). This is called a presentation of
G (it is called a finite presentation if A and R are both finite). In this context,
the Word Problem can be restated as follows: For a group G = (A | R), is an

element in F(A) also an element in ker(o)?

Now, given a finitely presented group G = (A | R) and o : F(A) — G such that
G = F(A)/ker(o), a Dehn function 6 : N — N is defined by

d(n) = max{Area(w) | w € ker(o), |w| < n}
where

N
Area(w) = min{N € N | w free Hxi_lrixi, z; € F(A), r; € R}

=1



Intuitively, we can view any word w € ker(o) as a path bounding a disc in the
2-complex determined by (A | R); Area(w) as the area of the least-area disc with
boundary label w (where unit areas are discs with boundary label r € R*!); and
d(n) as the maximum area over all least-area discs whose perimeter is less than

or equal to n.

Now, given the Dehn function of G = (A | R), we can solve the Word Problem
by an exhaustive approach. That is, given a word w € F(A), to determine if

w =¢ 1, compare w freely with all words of the form

N
|| -1

€T; T
i=1

where x; € F(A), r; € (R)* and N < 6(|Jw|). It is always possible to choose each
x; so that |z;| < KN (K is the length of the longest relation in R). This together
with N < §(Jw]|) allows us to solve the Word Problem in a finite amount of time.
Thus Dehn functions give a very natural way of measuring the complexity of the

Word Problem of a group

Dehn functions however have evolved from a tool to solve the Word Problem into
an area of interest in and of itself. A key reason for this is that the Dehn func-
tion of a group is a quasi-isometry invariant, well defined up to coarse Lipschitz

equivalence, ~.

In the 1990s, Mathematicians began to ask: Which (coarse Lipschitz equivalence)
classes of functions arise as Dehn functions? Since there are only countably many
finite presentations of groups, we know there can only be countably many coarse

Lipschitz equivalence classes of Dehn functions. Thus the isoperimetric spectrum,



IP={peR"| f(n)=n"is ~ toa Dehn function}

is a countable set. Gromov [10], in 1987, proved there is a gap between 1 and 2 in
the isoperimetric spectrum, i.e. IPN(1,2) is empty. This is due to the fact that
every finitely presented group with sub-quadratic Dehn function is hyperbolic,
and hence has linear Dehn function [10, 4, 11, 12]. Brady and Bridson [5] later
showed that IPN[2,00) is dense. More recently, Brady, Bridson, Forester and
Shankar [6] gave examples of groups, called snowflake groups, that this dense set
IPN[2, 00) contained all rational numbers greater than or equal to 2. But there are
other types of functions that can arise as Dehn functions also. Baumslag Solitar
groups have Dehn functions Lipschitz equivalence to exponential functions. As
it stands today, Dehn functions > n*, have essentially all been classified. This is

known as the Sapir-Birget-Rips Theorem [14].

Recent studies of Dehn functions have since moved toward higher-dimensional
Dehn functions. If Dehn functions relate areas of discs (in a 2-complex of a
group) in terms of their perimeter, 2-dimensional Dehn functions 6 (z) relate
volumes of balls (in a 3-complex of a group) in terms of their surface area z. An
interesting fact about 2-dimensional Dehn functions, proved by Papasoglu [13],
is that they are all bounded above by recursive functions (this is not true for

regular Dehn functions).

A natural question to ask is: What Lipschitz equivalence classes of functions arise
as 2-dimensional Dehn functions? Alonso, Bogley, Pride and Wang [1, 16, 17]
partially answer this question by proving that the Lipschitz equivalence classes
of x” arise as 2-dimensional Dehn functions for infinitely many p in the interval
[1.5,2). Brady and Bridson [5] and Bridson [9] further adds to this answer by

proving IP®)| the set of exponents p, is dense in [1.5,2) and includes 2 and 3.
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The more recent paper by Brady, Bridson, Forester and Shankar [6] adds another
layer to this answer by asserting that IP® is dense in [1.5,00) and contains all
rational numbers in this range. Beyond polynomial functions Barnard, Brady
and Dani [2] give examples of groups that have super-exponential 2-dimensional
Dehn functions. This paper serves to add yet another layer in answering this
question by showing that for any natural number n and o = log, (r) the Lipschitz

equivalence classes of exp”(x®) also arise as a 2-dimensional Dehn functions.

MAIN THEOREM 1.0.1. Let n > 1 be an integer, P an irreducible non-
negative integer square matrix with Perron-Frobenius eigenvalue A > 1, r an
integer greater than every row sum of P. There exists a group SES, p, of type

F3 whose 2-dimensional Dehn function is given by

2 n fe
05, . (x) = exp™(z%)

where a = log, (r).

1.1 Preliminaries

In this section, we give standard definitions and notations used throughout the

paper as well as a proposition that is crucial in a later section.

DEFINITION 1.1.1. Given two functions f,g : [0,00) — [0,00) we define

f = g to mean that there exists a positive constant C' such that
f() < Cy(Cx) + Ca

forall z > 0. If f < g and g < f then f and g are said to be coarse Lipschitz

4



equivalent (or simply Lipschitz equivalent), denoted f ~ g.

DEFINITION 1.1.2. A group G is said to be of type Fy if it has a K(G, 1)

with finite k-skeleton.

DEFINITION 1.1.3. If W is a compact k-dimensional manifold and X a CW
complex, an admissible map is a continuous map f : W — X® c X such that
FHX® — X1 s a disjoint union of open k-dimensional balls, each mapped

by f homeomorphically onto a k-cell of X.

FACT 1.1.4. Let W be a compact manifold (smooth or piecewise-linear) of
dimension k and let X be a CW complex. Then every continuous map f: W —
X is homotopic to an admissible map. The proof of this fact is given [6] as

Lemma 2.3.

DEFINITION 1.1.5. If f : W — X is admissible, then the volume of f,

denoted Volk( f), to be the number of open k-balls in W mapping to k-cells of X.

DEFINITION 1.1.6. Given a group G of type Fr.1, fix an aspherical CW
complex X with fundamental group G and finite (k 4 1)-skeleton. Let X be the
universal cover of X. If f : % — X be an admissible map, then the filling volume

of a f, denoted FVol(f) is given by:

FVol(f) = min{Vol**(g) | g : B*! = X is an admissible map, g|ppi+1 = f}

DEFINITION 1.1.7. Let G be a group of type F3 and let X be the universal
cover of an aspherical CW complex with finite 3-skeleton and fundamental group

G. Then

68)(:2) = sup{FVol(f) | f: 5% — X is an admissible map, Vol*(f) < '}



DEFINITION 1.1.8. A graph T is a set of vertices V(I'), a set of edges E(I),
maps 0y, 0y : E(I') — V(I') which maps edges to their endpoints, and a fixed
point free involution e — € of E(I") such that d;e = 0;_se. A directed graph is a
choice of e for each each {e,e} in E(I") where the direction of the edge is from

Oo(€) to 01(e). The set of choices of these edges e will be denoted by E*(T').

For the remainder of this paper, all diagrams of graphs will have directed edges,
where each directed edge denotes the pair {e, e} in E(I'), but the direction of the

edge denotes only the direction of e.

DEFINITION 1.1.9. The star of v in I', denoted Str(v), is given by

Ste(v) = 35 (v)

DEFINITION 1.1.10. A morphism between graphs I' and [V isamap ¢ : I' —

[V taking vertices to vertices, edges to edges, and for e € E(I'), ¢(0;e) = 0i¢p(e)
(i =0,1) and (&) = o(e).

Given a graph morphism ¢, we have a local map ¢ : Str(v) — Str(¢(v)) for
each v € V(I

DEFINITION 1.1.11. A graph of groups G over I, denoted (I', G), is an assign-
ment to each v € V(I'), a (vertex) group G,; and to each edge pair {e,e € E(I),
an (edge) group H. = Hg; as well as for each e € FE(I'), monomorphisms

He - He — Gao(e).

We will write G,/ = G/ pie(He) where 9y(e) = v to denote the set of cosets of

H,in G,.



DEFINITION 1.1.12. Let T be a maximal tree of I' with edges only from
E*(I"). We define the fundamental group of (I',G) to be obtained from the fol-

lowing presentation

(Gy,e (veV(), ec B*T)) | epe(z)e™ = pe(z) for all e € E*(I'), x € H,)
(1.1.13)
by adding relations e = 1 for each edge e in T. The generator e is called a stable

letter of the graph of groups (I, G).

A natural question to ask is, because T' is chosen so arbitrarily, is this group is
well defined? Proposition 20 of chapter I in [15] proves the affirmative. Because
it does not matter which maximal tree we choose, we can leave out the maximal

tree as a parameter in our denotation for the fundamental group, = (', G).

DEFINITION 1.1.14. An HNN extension of (or over) a group G is the funda-
mental group of a graph of groups whose graph is a single vertex v and an edge

pair {e, e} with endpoints v and where G is the group assigned to v.

DEFINITION 1.1.15. Let (I',G) and (I”,G’) be graphs of groups. By an
untwisted morphism between graphs of groups ® = (¢, (¢u, ¢.)) : (I',G) — (I, G)

we mean the following:

(a) a graph morphism ¢ : ' — I"
(b) group homomorphisms

Go 1 Gy = G,y for v e V(I

¢e: He — H for e € E(I)

(e)



(c) and for each e € E(I') and v = e, the following diagram commutes:

P ’
Gy — Gy

”CT Tu;(e) (1.1.16)

!
He ——= Hy)

It is worth remarking that an untwisted morphism of graphs of groups is a special

case of a morphism between graphs of groups in the sense of Bass [3].

A graph of groups morphism ® induces the following map

(I)v/e’ : H Gv/e — G;’/e’
e€)(¢)

defined by [g]e — [¢y(g)]er for each e € gb(_v%(e’) and g € G,.

Moreover, by Proposition 2.4 in [3], ® induces a homomorphism ®, : 7 (I, G) —

(", G).

DEFINITION 1.1.17. We call & an immersion if each vertex group homomor-
phism ¢, is injective and each induced map @, : (Hee(b(—vl) () Goje) = Gib(v)/e, is

injective (i.e. for each v € V(I') and €' € St/ (¢p(v))).

The following proposition is proved as Proposition 2.7 in [3] and will be used in

Section 4.

PROPOSITION 1.1.18. Let (I',G) and (I",G") be graphs of groups and ® :
(I,G) — (I",G") a graph of groups morphism. If ® is an immersion then ®, :

m (T, G) = m (I, G") is injective.



Chapter 2

Groups with Super-Exponential

2-Dimensional Dehn Functions

Barnard, Brady and Dani gives a way to construct groups with super-exponential

2-dimensional Dehn functions of height n [2].
6@ (z) ~

For simplicity, we denote this n-fold composition of exponential functions by
exp™(x). To achieve groups whose §( is super-exponential, the authors utilize a

palindromic automorphism ¢ on Fy = (a,b) defined by

ar—aba b—a



They begin with a group denoted Hy = Iy X Fy x Fy. This begins a sequence of

graphs of groups:

H <G <H <G <---<H,,<G,1<H, <G,

in which each group in the sequence is defined inductively by its predecessor as

Figure 2.0.1 indicates:

Figure 2.0.1:

where edge groups (I" and T') and stable letters for H,, and G,, are defined as in
Table 2.1:

10



’ Group ‘

Edge groups

‘ Stable letters ‘

Hy Ap1, Ap2, Y
Gy (ag1) x (ag) Uo
H, (ag1) Mg (ug, y) ar
(ag2) g (uo, y) aie
Gy (3-11, a12) <110> Ug
(ai1) xp (u1, y) ag
H, _<?12> X (U, y) Az
(llo a11> Ay (111, ao1> Qg3
(ug'ass) X (uy, ags) Ay
Gy (a21, @z, Az, Az4) X (Ug) u;
(a21) Xp (U2, y) as
(ag) xg (U2, y) aza
(a23> X (uz, am) as3
H, <:'1124> X (112, aoz) azq
(uy ag) xg (ug, a) ass
(uitag) X (ug, a) asg
(uj tags) X (ug, ayy) asy
(ui'ag) Xg (ug, a2) asg
(An-1)i) o (Wn—1, Ln()) A

H, 1 <q<2nt 1 <q<2nt
n=>1 <u7_zi2a(n*1)j> Ng <un—1> En(z» Ang

Tl o< g =4 =2t vl o<
e I Ry u,

Table 2.1: Table of (super exponential) groups

Vector notation is used for the stable letters.
denotes a free group of rank 2. For example y denotes the basis {y1,y2}, uy
denotes the basis {u1,u12} and ass denotes the basis {ag31, agse}. Furthermore,
an ordered list of k£ vectors describes an ordered basis of Fy,. For example, (ug, y)
denotes F; with ordered basis {uo1, uo2, Y1, y2}. Also, product notation of vectors
is used to denote coordinatewise multiplication of basis elements. For example,

u; 'ay; denotes the basis {u ' ag11, ujy @212 }. Lastly, £, (i) denotes the 7"

11

That is, each bold faced vector



of the ordered list £,, defined recursively as follows:

Li={y,y}
Lo = {L1, a1, ag2}
Ln = {Ln 1, An-2)1s - - - An_2)2n-2, ur_zi3a(n—2)1a e U,ﬁga(n—sz?}, n=>3

The edge maps for GG,, are inclusion (as a subgroup) in one direction and (¢ * ¢ *
-+ % ) X @ in the other, where ¢ is the palindromic automorphism given above.
And the edge maps for H, are inclusion (as a subgroup) in one direction and
@ x id, which acts by ¢ on the F; factor and by the identity on the F} factor; The

map 0 : Fy — Aut(Fy) is defined on the ordered basis {1, xs, 23,24} as follows:

Ty 9,9 — @, x3 — id, x4 > id

Next, we state the lemma that gives the structure of the edge groups in Table 2.1.

LEMMA 2.0.1. For each n > 0, the following statements hold:

1. For1 <4< 2" the subgroup (@um—1yi, Un—1,Ln(1)) of Gy_1 is isomorphic
to FyxgFy, where Fy has basis a@,—1); and Fy has ordered basis {w,—1, L,,(1)}
(0 defined as above).

2. For 1 <j < 2" the subgroup (u, s@(—1yi; n—1,Ln(j +2"71)) of Gooy is
isomorphic to Fy xg Fy, where Fy has basis u;iga(n,l)i and Fy has ordered

basis {w,_1, L, (7 +2"1)} (0 defined as above).

3. The subgroup {(@n1, . .., Quan, W,_1) of Hy, is isomorphic to Font1 X Fy, where

the Fy factor has basis w,_1.

After defining our groups, we are ready to state the main theorem in [2].

12



THEOREM 2.0.2. For every n > 0, there exist groups H,, and G,, of type F3,

with 5532 (x) ~ exp™(y/x) and 582 (x) ~ exp"(x).

13



Chapter 3

Snowflake (GGroups

Brady, Bridson, Forester and Shankar show us in [6] how to construct snowflake
groups, denoted by G, p, that have k-dimensional Dehn functions, 58?}3@) ~ g2«
where « is an element of a dense subset of (1, 00) containing the rational numbers
greater than 1. We will be interested in the case for £ = 1 and £ = 2. A snowflake
group, as defined in [6], is the fundamental group of a graph of groups determined
by two parameters r and P. Let P be an irreducible non-negative square integer
matrix with Perron-Frobenius eigenvalue A > 1, and r an integer greater than

every row sum of P. Then a = log, r. By ranging r and P, we see that indeed

that o can be any rational number greater than 1.

Before we define G, p, we first define the group V,,, that will end up being our
vertex groups. The group V,, with m > 2 is defined as m — 1 copies of Z x Z (the

h

i'" copy having generators{a;, b;}) amalgamated so that we have the following

relations:

bi = asby, by =asbs, ..., bn-2=apn_1by 1.

14



We also define two new elements: ¢ = a;b; and a,, = b,,—1. Then aq,...,a,,
generate V,,, and the relation a; - - - a,,, = ¢ holds; thus ¢ will be called the diagonal

element of V,,,. See Figure 3.0.1

C

Figure 3.0.1: Some relations in Vy: ¢ = ayasazay and ¢ = (a1)3(az)?(a3)3(ay)?

If m = 1 then V,, is the infinite cyclic group (a;) and ¢ = a;. The following

Lemma proved in [6] gives an area bound for V,,.

LEMMA 3.0.1. (Area bound for V,,) Let w(ay,...,amn_1,b1,...,bm_1,¢) be a
word representing the element ™ for some N, where x is a generator a;, b; or c.
Let w be expressed as wy ---wy where each w; is a power of a generator. Then

N < |w| and Area(wz™N) <337, [wil|w;].

Now, to construct G, p, let P = [p;;] be a R x R matrix and r an integer greater
than every row sum of P. Let G, p be the graph of groups whose underlying graph
I' has vertices vy, ...,vg and p;; directed edges from v; to v;. The vertex group
G,, at v; is defined to be V,,,, where m; = Zle pij (i.e. the sum of the entries of
row ¢ in P). Hence, there are M = X¥m; directed edges in I" so that we can label
the edges {ej,...,en} and define two functions p,o : {1,..., M} — {1,..., R}
indicating the initial and terminal edges, respectively (i.e. e; is a directed edge
from v,;) to vs(;)). Observe that these functions give the row and column of the
matrix entry for e;. Next, partition the set {1,..., M} as (U I; where I, = p~1(4)

so that, by definition, I; records the indices of the edges that emanate from v;.

15



Since the number of standard generators of all the vertex groups add up to M,
we will relabel these generators {aj,...,ap} in such a way that the standard

generating set for G, is {a; | j € I;}.

Each edge group G, of directed edge e; is infinite cyclic. Let ¢; be the diagonal
element of G,,. Then the edge maps of G., maps the generator of G., to the
The following Proposition 3.0.2 proven

elements a] € G and ¢, € G

Up (i) Yo (i)*
in [6] as Corollary 5.5 shows how geodesics in the edge group compares with

geodesics in G, p.

PROPOSITION 3.0.2. (Edge group distortion on G, p) Given r and P there
18 a positive constant D with the following property. If ¢ is a diagonal element

and w is a word in G, p representing ¢ then |N| < D|w|®.

Let s; be the stable letter associated to edge e;. The fundamental group G, p of

G, p is obtained from the presentation
(Goyyooos Gopy 81,2580 | 57 alsi = Co(iy for all 7)

by adding relations s; = 1 for each edge e; in a maximal tree in I'. We will
continue to use the generating set {ay,...,an,s1,...,su} for G, p even though

some of these generators are trivial.

Now, we define snowflake words from [6]. It is defined recursively on |[N| € N as

follows. Let
M(3r +1?)
— 4y

Ny =
0 r—M

Let ¢ be the diagonal element of a vertex group with the standard generating set

{ai,...,a;,}. A word wT representing ¢V is a positive snowflake word if either

16



1. IN|<Nyand w=al ---al¥, or

Noal
2. IN| > Ny and w = (sjurs;,') -+ (s, u1s; ') where each u; is a positive
snowflake word representing a power of the diagonal element c; of a vertex

group Vi, .

A negative snowflake word w™ is defined similarly with the ordering of the terms
representing powers of a;; reversed. A snowflake disk with diameter cV is a disk

whose boundary is (w™')(w™)™1, see Figure 3.0.2.

REMARK 3.0.3. Brady et al. explain in [6] that for large enough |N|, the
definition of snowflake words describes an iterated process of finding a path that

represents ¢V whose length is less than |N].

The following proposition gives upper and lower bounds for the length of snowflake
words representing ¢V in terms of |N| that will serve useful later in our paper.

Its proof is given as Proposition 4.5 in [6].

PROPOSITION 3.0.4. Given r and P there are positive constants Cy, Cy with
the following property. If c is the diagonal element of one of the vertex groups V.,
and w is a snowflake word representing ¢V then Colw|® < |N| < Ci|w|®, where

a = logx(r) and X is the Perron-Frobenius eigenvalue of P.

We are now ready to state the theorem for the 1-dimensional Dehn function of a

snowflake group:

THEOREM 3.0.5. Let P be an irreducible non-negative integer matrix with
Perron-Frobenius eigenvalue A > 1, and r an integer greater than every row sum
of P. Then there is a group G, p that is finitely presented (i.e. of type Fy) with

Dehn, function 6(z) ~ x21°8x(")

17
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Figure 3.0.2: Example of a snowflake disk in X, p with P = (1 1) and some integer
r > 3.

Figure 3.0.2 shows an example of a snowflake disk imbedded in )~(,n, p, the universal
cover of the complex associated with G, p. To get snowflake balls, we define a
monomorphism ¢ : G, p — G, p that takes each a; to a] and each s; to itself.
Then the group XG, p is defined to be the associated double HNN extension with

stable letters v and wv.

YG,p = (Grp,u,v | ugu™ = ¢(g), vgv = ¢(g), g € G,.p)

We are now ready to state the theorem for the 2-dimensional Dehn function of a
3-dimensional snowflake group. Note, this is a special case of the actual theorem
in [6] which states the theorem for general k-dimensional Dehn function of a

k + 1-dimensional snowflake group:

THEOREM 3.0.6. Let P be an wrreducible non-negative integer matrix with
Perron-Frobenius eigenvalue A\ > 1, and r an integer greater than every row sum

of P. Then there is a group X.G, p of type F3 with 2-dimensional Dehn function

52) () = g2VoBA(r),

18



Figure 3.0.3: Example of a few layers of the upper hemisphere of a snowflake Ball
B;-” imbedded in the universal cover of the complex associated with XG,. p with
P = (3 1) and some integer r > 3.

Now, we want to state a lemma from [6] that we will use in proving the lower
bound of our balls. But before we state the lemma we want give some notation
used in [6]. Figure 3.0.3 shows a few layers of the upper hemisphere of a B]?’ ball
where j denotes the height of a hemisphere of B;’. And for i =1,...,j, the disk

B? denotes the 2-dimensional snowflake disk with diameter <

LEMMA 3.0.7. Given r and P there is a positive constant Fy such that
|0B7| < Area(9B7) < Fy|0B;|

for every j.
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Chapter 4

Snowflake GGroups with
Super-Exponential 2-Dimensional

Dehn Functions

We begin by constructing the sequence of groups up to H,, as in [2].

Hy<Gy<H <---<H,,<G,.1 < H,

Next, we construct a snowflake group of type Fy as in [6]. Let P be an irre-
ducible non-negative integer matrix with Perron-Frobenius eigenvalue A > 1, r
an integer number greater than every row sum of P, a = log, r, and let G, p be
the fundamental group of the graph of groups associated with » and P given in

[6]-
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4.1 The groups C, p,

Denote a vertex group of G, p by V. and define the group C, p, to be the
fundamental group of the graph of groups represented by Figure 4.1.1 with vertex
groups H,, and G, p:

X

Yon

Figure 4.1.1: Graph of Groups with fundamental group C,, p,.

Where each edge group is infinite cyclic generated by (a). For each edge labeled

x;, y; respectively, we have the following edge group monomorphisms:

.0 (a) — H, a > Qg1

®,.0: (a) — H, a u(_nl_l)laml
Q.10 (a) = Grp a—c

Q1 (a) = Gp arc

where c is the diagonal element in V». We denote the new stable letters of
Cn.pr by z; and y;, respectively. That is, we add the following new relations

1 _ 1, -1 _ . n
{z; annz; = ¢, y; Ui 1)1 @nilYi = €, 1 |i=1..2"}.
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4.2 The spaces X¢,

A 3-complex X¢, . whose fundamental group is C), p, can be constructed by
forming a graph of spaces as follows. Start with an aspherical 3-complex Kp
whose fundamental group is H,, as constructed in [2]; and an aspherical 2-complex
X, p whose fundamental group is G, p. Then attach annuli X} and Y}, one for

each edge xy, yi, respectively in I'¢ The two boundary curves of each X}

Py
are attached to the edge labeled a,x in Kp, and the diagonal edge labeled ¢ in
X7, which is the subspace of X, p associated with the subgroup V, of G, p. The
two boundary curves of each Y} are attached to the edge labeled u(_nlfl)lankl in
Kpg, and the edge labeled ¢ in X of X, p. The resulting 3-complex X¢, ,has

fundamental group C,, p, and is aspherical because it is the total space of a graph

of aspherical spaces. Therefore, X¢, ,, is a 3-dimensional K (C,, p,, 1) space.

The universal cover )}cn, », 15 the union of copies of the universal covers Ky, and
)Zr, p and infinite strips R! x [—1, 1] covering each annuli X}, and Yj. Each strip
covering X}, is tiled by 2-cells whose boundary labels read x;lanklxkcfl; the two
sides R x {£1} consist of edges labeled a,x1 and ¢ respectively. And each strip
covering Y}, is tiled by 2-cells whose boundary labels read v, 1u(_nlfl)1ank1ykc’1;

the two sides R x {£1} consist of edges labeled u(_nl_l)lankl and ¢ respectively.

See Figure 4.2.1.
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Figure 4.2.1: A local picture of Xo

n,P,r

4.3 The subgroups G, p

Next, we want to show there are subgroups G, p, W;,p and Wy .p of Cnpy.
In this section, we we will define C;‘T, p and prove that it is a subgroup of C,, p,.

Consider G, p and V) from C), p, and for k =1,...,2", define

S = <u(n71)1> X <an117 an21, An3ly - - - >an2n1>

Then G, p is the fundamental group of graph of groups represented in Figure 4.3.1.

X

Yon

Figure 4.3.1: The graph of groups of G, p
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Where the edge groups are all infinite cyclic and the stable letters are x; and y;,
respectively as shown. The edge maps are inclusion and are defined similar to
those of the graph of groups of C,, p, so that the following relations {z; Y =

c, yi_lu(jll_l)lamlyi =c,xp=1]i=1,...,2"} exist inside G, p.
To show G, p is a subgroup of C,, p,, we first prove the following lemma.

LEMMA 4.3.1. There exists a retraction r : H, — S.

Proof. First, note there is a retraction f : G,,—1 — (u(n—1)1) defined by the trivial
map on H,_; and ug,—1)2 and the identity map on w(,_1);. This is clear from the

graph of groups description of GG,,_; given by Figure 4.3.2.

Uin-11

n-1

Un-1)2

Figure 4.3.2: Graph of groups for GG,,_;. The vertex group is H,_;. The stable
letters are u(,—1)1 and u@—1)2.

Now, define r : H, — S by f on GG,,_1, the identity map on the stable letters a,;;

and the trivial map on the stable letters a0, 1 =1,...,2".
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Figure 4.3.3: Graph of groups for H,. The vertex group is G,_;. The stable
letters are a,;; and a,; for i =1,...,2".

To show that r is a retraction, we need to show that r preserves the relations of
H, (Figure 4.3.3 gives the graph of groups description of H,,). Since r|g, , = f is
a retraction of G, onto (u,—1y1) < S thus preserves all relations in G, < H,p,
we only need to check the relations of H,, involving the new stable letters a,;

and a,;s. They are listed as follows:
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1
Ani1 CL(n 1)12) nzl(gD
i1 (U, 2)1 —1)51)@n41

nit u(n 2)2 (n—1)52 aml

1
(
(
(
(
(
(
(£

Ani1 (U(n— 1)1) ml(u(nq)l -1 1< <2

pin (Un—1)2) Gy (U(n—1)2) " 1<i<2m

it (L)1) (L (i)1) 1<i<2n

anin (La(0)2)an;y (La(i)2) ™" 1<i<om

2 (@ (n-1)i1) i (P(A(n-1)i1)) 1<i< 2t

iz (O(n-1)i2) iz (P (A(m-1)i2)) 1<i<on!

2 (U1 n1)j1) Uin (P (UG g1 Q1)) TH 207 < i< 2%, j=i—2n!
) -1

Ani2 u (n— 1)1) 7”2( 1)1 1 S 7 S 2"

1< <2

Ani2\U(n ) ) ( 1)2

(
(
(ug (¢
nin (U )9 (n—1)j2)Uin(P(UG )5 0(n-1)j2)) H 2"7H <@ <27, j=i—2"
( 1)
( 1)2)
iz (£
(£

n(0)1) 5 (L (i)1) 7" 1<i<2n
) 1

—_
IA
IA
[\
3

n(1)2) @15 (L (1)

Where ¢ is the palindromic automorphism of a free group of rank 2 discussed

Ani2

in Section 2. Notice that these relations are all of the form: a,;Xa,,}Y and
am'QXCL;éY

If X e {a(nfl)u,a(nfl)iQ,U(_nl,g) A(n—1)j1, U ( 2)23(n— 1;2} C Hy_y1, then Y = p(X)
is an element of H,_; and

(ani)r(X)r(a,))r(Y) = anala,

nil

'1=1

nil
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and

as desired.

If X =wu@p_1)1, then Y = u(’nl_l)1 and

7 (@ni)r(X)r(a,)r(Y) = am1u(n—1)1aﬁil1u@1_1)1 = “(n—l)lanilaﬁiu@l_l)l =1

since u(,—1y1 commutes with all a,;; in S, and

as desired.

If X = ugm_1)2, then Y = u(_nlfl)2 and 7 (a1 )r(X)r(a,})r(Y) = apa(1)a,; (1) =1

and 7 (ani) 7 (X)r(a,5)r(Y) = (1)(1)(1)(1) = 1 as desired.
If X € {£,(i)1,L,(i)2} C H,_1, then Y = X and 7(anq)r(X)r(a,)r(Y) =

nil

anit(1)a k(1) = 1 and 7(an)r(X)r(a5)r(Y) = (1)(1)(1)(1) = 1 as desired. O

nil ni2

Note that since S clearly includes into H,, and that » composed with this inclusion
is the identity on S, S is a subgroup of H,,.

CLAIM 4.3.2. G, p is a subgroup of C, p,.

Proof. We will prove this by showing there exists a retraction from C), p, to @T’ p.

To that end, let R : C,, p, — Gn p be a map defined by the identity on G, p, z;

and y; (1 =1,...,2"), and r from Lemma 4.3.1 on H,,. See Figure 4.3.4.
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Yon Yon

Figure 4.3.4:

To show that R is a retraction, we need to show that R preserves the relations of
Cn,pr. Since R|g, , is the identity on G, p < G, p; and R|y, is the retraction r
from H, onto S < G, p, the only relations we need to check are the ones involving
the new stable letters z; and y;. Those relations are precisely {z; Yapazic™t =1,
yi_lu(_nl_l)10Lm~1yic*1 =1,z=1]i=1,...,2"}. A quick check shows that these

relations hold:

R(z; Y R(ana)R(z:)R(c™) = z7lapare™? =1
R(yi_l)R(u(_nlfl)la'nil)R(yi)R(Cil) = yi_lu@lfl)lam‘lyicil =1
R(.Tl) = I =1

Now, let i : G, p — C,, p, be the inclusion map (it is clearly a homomorphism).
Then R o is the identity map on G, p. This shows that i is injective and thus

G, p is a subgroup of C,, p,. O
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4.4 The subspaces X

In this section we show that the subcomplex Xg , of X¢, . whose fundamental
group is G, p is an aspherical 2-complex. It is constructed from an aspherical
2-complex X, p whose fundamental group is G, p; and a 2-dimensional aspherical
subcomplex Kg of Ky, whose fundamental group is S < H,. Note that Kg is
2" copies of a 2-dimensional torus where the k' copy is generated by the circles
labeled by w(,—1)1 and ani1. These tori are all attached along the generating
circle labeled w(,—1)1. Now attach annuli X}, and Y}, one for each edge xy, yx,
respectively in I'g . The two boundary curves of each Xj are attached to the
edge labeled a,;; in Kg and the diagonal edge labeled ¢ in X, which is the
subspace of X, p associated with the subgroup V,* of G, p. The two boundary
curves of each Yj are attached to the diagonal edge labeled u(_nl_l)lankl in Kg
and the edge labeled c in X of X, p. The result is a 2-complex Xér’ » Whose

fundamental group is G, p and is aspherical because it is the total space of a

graph of aspherical spaces.

The universal cover )?@n » is the union of copies of the universal covers )?r’ p and
Ks (which is the product space of a tree and R) and infinite strips R' x [—1, 1]
covering each annulus X} and Y. Each strip covering X} is tiled by 2-cells whose
boundary labels read x;lanklxkc_l; the two sides R x {£1} consist of edges
labeled a,,; and c respectively. And each strip covering Y} is tiled by 2-cells

whose boundary labels read y,;lu(nl_l)lanklykc_l; the two sides R x {41} consist

of edges labeled u(_nlfl)lankl and c respectively.
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4.5 The subgroups W, p and W

In this section, we we will define Wy, p and Wy p and prove that they are a
subgroups of C), p,. Consider G, p and V, from C), p, and for k = 1,...,2"

define

Se = (Luy1(k)1) X (Gnr1)

T = (Lopa(k+2")1) X (ug, ) @nk)

where £,,,1(k) is the k™ element of the ordered list £,,,; given in [2] and restated
again in Section 2 of this paper. Since each element of this list is a free groups of

rank 2, the subscript 1 in £,,,1(4); denotes the first generator of this free group.

Then Wy, p and Wy | p are the fundamental group of the graph of groups given

in Figure 4.5.1, respectively.

Figure 4.5.1: The graph of groups of Wy, p (top right) and W} . » (bottom right)

Where the edge groups are infinite cyclic and the stable letters are xp and y,
respectively as shown. The edge maps are inclusion and are defined similar to
those of the graph of groups of C,, p, so that the following relations {:L‘,;lankla:i =
¢, vx = 1} are inside Wy, p; and the relations {y,;lu(jll_l)lanklyk =c y = 1}

exists inside W}, p.
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Now, we want show the groups Wy, p and W p are subgroups of Cy, p,. We
begin by defining a graph I" consisting of two vertices {vg, v1} and a pair of edges
{e, €} between them where e is the directed edge from vy to v;. Next, we define
a graph of groups G over I' by assigning Z x Z = (a) x (b) to vy, G, p to v; and
Z = {(e) to the edge pair {e,é}. The edge map p. : (¢) — (a) x (b) is defined
by € > aur1; and the edge map pe : (e) — G, p is defined by e — ¢ where c is
the diagonal element of V» in G, p. Now, for k = 1,...,2", define two sets of
untwisted morphisms between graphs of groups {®; : (I',G) — (I'c,, 5, ,Cn.pr)}
and {®} : (I',G) — (I'c,, 5, Cn,pr)}. See Figure 4.5.2:

Vi

Gr,P
®, ‘

Figure 4.5.2:

with ¢, ¢, : I' = I'c, ,,, taking vy, v; to the vertices in I'g,, . that are assigned to
H, and G, p in C, p,, respectively; and the edge e is taken to the edge in I'g, ,,,
associated with stable letter zp by ¢, and to the edge associated with stable
letter yi by @). The vertex group maps () vy, (%), : (@) X (b) — H,, are defined
by (01 )uo (@) = nkrs (D1)ug(0) = Lop1(k)1, ($)oo(@) = ug 1y amm1, (B)ue(b) =
L1(k+2");. And let the vertex group maps (¢x)v,, (¢%)v, : Grp — G p be

the identity on G, p. The edge group maps (¢x)e : (€) — (x) maps e to x;
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whereas the edge group maps (¢}). : {(€) — (yx) maps e to yx. We will finish
showing @, and @) are untwisted morphisms between graphs of groups in the
claim below. But first, notice the images of ®; and @) are Wy, p and Wy p,
respectively. To show Wy, p and Wy | p are subgroups of C,, p,., we want to show
), and P} induce injective homomorphisms on fundamental groups. If we can
show additionally that ®; and &} are immersions between graphs of groups, we

can use Proposition 1.1.18 to show this injection.

CLAIM 4.5.1. For k=1,...,2", ®; and O}, defined above are untwisted mor-

phisms between graphs of groups. Moreover, they are immersions.

Proof. First, we will show that ®, and @) are untwisted morphisms between
graphs of groups. It is clear from the definition that ¢, and ¢} are graph mor-
phisms; and that (¢x)v,, (Ok)es (Pk)n, and (¢}). are all (injective) group homo-

morphisms.

To see that (¢r)y, and (¢})., are injective group homomorphisms, we just need
to show that the subgroups (a,x1, Lny1(k)1) and <u(’nl_1)1ank1,£n+1(k +2")1) in
H,, is precisely (ank1) X (L,11(k)1) and (u(_nlfl)lanm} X (Lp11(k+2")1) (i.e. they
generate a Z X Z subgroup). By Lemma 2.0.1 these generators do generate a
Z. x 7 subgroup in GG,,. But since these generators are also elements of H,,, they
generate a Z x Z subgroup in H,, < G,. Therefore (¢y)., and (¢}.),, are injective

group homomorphisms.

To finish showing that &, is an untwisted morphisms of graphs of groups, we just
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need to prove that each square in Diagram 4.5.2 commutes:

le = GT,P M GT,P

MET Tu

(@) 2 gy (4.5.2)

| [

a) x by —— H,
ta) > () (6 )vg

To see (¢)u © p12(e) = Hz, © 6 (e):

(Pr)o; © pe(€) = (Pr)uv, (1e(e))
= (¢r)u ()
fizy © (Pr)e = iz, ((Dr)e(e))
= pz(Tg)

=c
where c is the diagonal element in V! < G, p. To see (¢ )y, 0 pte(€) = iz, © Pele):

(P )uy © e(€) = (Dr)vy (e(€))
= buy ()
=

fiay, © (Dr)e(€) = pay, ((D1)e(€))
= i, (Tk)

= Qpk1
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A similar proof shows that each square in Diagram 4.5.3 induced by &} commutes:

by )v
(P )y

Gr,P GT,P = Gm
l"@kT Tﬂe
(PK)e
(yk) (€) (4.5.3)

H, «— {a)x{b
o {a) x (b)

Therefore @ is also an untwisted morphism of graphs of groups.

Now, we show that ®; is an immersion. We need to show that each of following

is injective:

Dy /a, (Hee(m);ll(xi)le/e) — Grp/pz, (i)

Pug/os  (Mee(gp)id @) Grose) = Grp/ oy ((3))

where for i = 1,...,2", x; is the generator of the edge group assigned to edge z; €

Lc, p,. For j = 0,1, because I' has only one edge, (gbk)(_vi) : Stre, (¢r(vy)) —

,T

Str(v;) is only defined for edge x;, € E(I'c, ,,) when j = 0 and Z when j = 1.

Therefore, the above maps respectively simplify to:

q)m/xk : le/e — GnP/lui‘k«xk»

q)'uo/:rk . Gvo/e — Hn/#¢k(<xk>)
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Evaluating G, /. and edge maps further simplifies the maps respectively to:

Dy, fay Grp/(c) = Grp/(c)

(I)Uo/xk t(a) x (b)/(a) — Hp/(tnr1)

The first map is the identity map and therefore injective. The second map,
because (a) x (b) — H, is injective (via (@k)y,) and a — ank1, (a) x (b)/{a) —

H,, /{an1) is injective as required. This shows @ is an immersion.

A similar proof shows that @}, is an immersion. O

Now Proposition 1.1.18 states that (®). and (®}). from Wy, , and W . re-
spectively, into C, p, are injective homomorphisms. Hence Wy, and Wy are

subgroups of C), p,.

4.6 The subspaces Xy, =~ and Xy

k,r.p

In this sections we show that the subcomplex Xy, -and Xy, —of X¢, ., whose
fundamental group are W ,.,, and W,;mp, respectively, are aspherical 2-complexes.
Each is constructed from an aspherical 2-complex X, p whose fundamental group
is G p; and a 2-dimensional asperical subcomplex Kg, or Ky, of Kp, whose
fundamental group is Sy or T}, respectively. Note that Kg, and K, are each a
2-dimensional torus where Kg, is generated by the circles labeled by L, 41(k)q
and an1; whereas Kr, is generated by the circles labeled by £,,41(k + 2"); and
U(n—1)1-1a,, - Now attach annuli X} and Y} for the edges labeled z; and y; in
L's

. and 'y, , respectively. The two boundary curves of X}, are attached to the

edge labeled a,;; in Kg, and the diagonal edge labeled ¢ in X, which is the
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subspace of X, p associated with the subgroup V, of G, p. The two boundary
curves of each Y, are attached to the diagonal edge labeled U@l_l)lanm in K,
and the edge labeled ¢ in X7 of X, p. The result are 2-complexes Xy, =~ and
Xy, . whose fundamental groups are Wy, and Wy ,.p» respectively. They are

aspherical because it is the total space of a graph of aspherical spaces.

The universal cover of Xy, . is the union of copies of the universal covers )}r, P
and Kg, (which is simply R?) and infinite strips R! x [—1,1] covering each an-
nuli X;. Each strip covering X} is tiled by 2-cells whose boundary labels read
7 appi it the two sides R x {1} consist of edges labeled a,;; and ¢ respec-

tively.

The universal cover of Xy, , is the union of copies of the universal covers
X,p and K7, (which is R?) and infinite strips R' x [—1,1] covering each an-
nuli Y. Each strip covering Y} is tiled by 2-cells whose boundary labels read

y,;lu(nl_l)lanklykcfl; the two sides R x {1} consist of edges labeled u(_nl_l)lankl

and c respectively.

4.7 The groups SES, p,

Finally, we define a snowflake group whose 2-dimensional Dehn function is super-

exponential of height n as follows:

DEFINITION 4.7.1. Let n > 1 be an integer, P an irreducible non-negative in-
teger square matrix with Perron-Frobenius eigenvalue A > 1, r an integer greater
than every row sum of P, and let M be the sum of the integer entries of P. We
define a group SES, p, to be a (2" 4+ 1)-multiple HNN-extension of C,, p,. with

edge groups G, p, W;.,.p and Wi.p k=1,...,2" See Figure 4.7.1:
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W2n’ NP Wzn, (P

Figure 4.7.1: Graph of groups for SES,, p,. The vertex group is C, p, and the
edge groups are labeled.

The edge maps for the edge associated with G, p are inclusion as a subgroup

in one direction and ¢ : an — C_l,,,p in the other, where for ¢ = 1,...,2" and
Jj=1,..., M, ¢ takes each u,_1)1, ani1 and a; to u?nq)lv an;1 and af, respectively,
and each x;,y; and s; to themselves (Note, here we use {a1,...,an,51,...,5m}

as the generating set for G, p as discussed in Section 3). The stable letter for this

edge is z.

The edge maps for the edge associated with W;,, p are inclusion as a subgroup in
one direction and ¢y, : Wy, p — Wy, p in the other, where for j = 1,..., M, ¢
takes anx1 to agyy, each a; to af, and each L11(k)1, 7, y; and s; to themselves.
The stable letters for these edges are by, respectively.

The edge maps for the edge associated with W} p are inclusion as a subgroup
in one direction and ¢j : Wi p — W} p in the other, where for j =1,..., M,
o, takes u(_nlfl)lankl to (u(_nlfl)lanm)r, each a; to aj, and each Ly 1(k+2")1, 7, i

and s; to themselves. The stable letters for these edges are dy, respectively.
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4.8 The spaces Xgpg, P

In this section we will construct an aspherical 3-complex space Xsgs, ,,, whose
fundamental group is SES, p,. Recall that Xg ., Xw, , and Xy;  are all
2-dimensional aspherical subcomplexes of X¢, , . Also in this section, for M

equal to the sum of all the entries of matrix P, we will use
{CLl,...,CLM,bo,...,bM_l,Sl,...,SM}

as the generating set for G, p even though some of these generators are trivial.

First, we define cellular maps @, : Xg , — Xg, , which induces ¢ : Grp —
an7. Fori=1,...,M and k£ = 1,...,2", it maps the one cells labeled s;, xj
and y; all homeomorphically to themselves; and a;, b;_1, anr1 and u@—1)1 to
themselves by degree r maps. Each 2-cell in X , is mapped in accordance with
its boundary labels. This implies that the image of each triangular 2-cell has
combinatorial area r?; and the image of the remaining 2-cells (which have an s;,
Xy or Yy edge in their boundaries) have area r. Thus ®, adds a dimension on top
of the 2-subcomplex X¢ , by attaching a copy of X¢, , x [0, 1] (with the product
cell structure) to Xc, . along X¢ _, as follows. The “bottom” side X¢, , x {0}
is attached to Xg , by the identity map while the “top” side Xg , x {1} is
attached to Xg , via ®,. The vertical 1-cells of Xg ., x [0,1] are labeled 2
oriented from Xg , x {1} to Xg , x {0}. From this construction, it is easy
to see that each 1-cell and each 2-cell in Xg , gives rise to a 2-cell and 3-cell,
respectively. Figure 4.8.1 shows all the possible types of 3-cells that ®, gives rise
to. The top two 3-cells in the figure is given by ®.|x, .; the bottom left is given

by ®.|x,; and the two bottom right is given by @, restricted to the edge spaces
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X and Yy, respectively.

C C
Si s;
S
diyz aj aj aj ! z
z z c z
5 :
z a; aj
X < N
K
Ank1 /(k ‘
z Ank1 K z
z X c z
1 k' Ank1 %
Un-112nk1 K
z Uin-112nk1 i c c
Un-11 5 U1 13nki A 7
] ] 3
Uin- 112k z Uln-1)13nk1 z
B z
LYz Vi : c z
Sl Uin-1)13nk1 o
Figure 4.8.1: The above picture shows 3-cells in Xggg, ., given by ®, with r = 2.

Here a = a;, b=10; and ¢ = b;_;.

Next, we define cellular maps @, : Xw, , , — Xw,, , which induce homomor-
phisms ¢y, : Wy, p — Wy, p. For i =1,..., M it maps the one cells labeled s;,
x and L,41(k)1 all homeomorphically to themselves; and a; and a,;; to them-
selves by degree r maps. Each 2-cell in Xy, . is mapped in accordance with
its boundary labels. This implies that the image of each triangular 2-cell has
combinatorial area r?; and the image of the remaining 2-cells (which have an s;,
xy or L41(k)1 edge in their boundaries) have area r. Thus ®;, adds a dimension
on top of the 2-subcomplex Xy,  , by attaching a copy of Xy, , , x [0,1] (with
the product cell structure) to X¢, . along Xy, . as follows. The“bottom” side
Xw,,p. x {0} is attached to Xy, , , by the identity map while the “top” side
Xw,,.p ¥ {1} is attached to Xy, , , via ®,. The vertical 1-cells of Xy, , , x[0,1]

are labeled by, oriented from Xy,  , X {1} to Xw,  , x {0}. From this construc-
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tion, it is easy to see that each 1-cell and each 2-cell in Xy, . gives rise to a
2-cell and 3-cell, respectively. Figure 4.8.2 shows all the possible types of 3-cells
that ®,, gives rise to. The two left 3-cells in the figure is given by @, |x, ,; the
top right is given by &y, | Xs, ) and the bottom right is given by ®;, restricted to

the edge space Xj.

c c
X
k
anki /41( Xy
by anki by
by « C by
k .-
. a
ad nk1 %
a a
C C nk1 nk1
L..,K
Si Si n+11 anKs anks
Si - e L,
S L ai 3 by J B Pk
by b, ¢ b by anki by
o X £n+1(k)1,,""— EI
7S 5 L n L0,

n+1

Figure 4.8.2: The above picture shows 3-cells in Xggg
Here a = a;, b=10; and ¢ = b;_;.

given by @, with r = 2.

n,P,r

Now, we define cellular maps @4, : XW;i,r,p, — XWé,r,P, which induce homomor-
phims ¢), : Wi . p — Wj p. Fori=1,..., M it maps the one cells labeled s;,
yr and L, 1(k +2™); all homeomorphically to themselves; and a; and u(_nl_l)lankl
to themselves by degree r maps. Each 2-cell in XWzé,r,p, is mapped in accordance
with its boundary labels. This implies that the image of each triangular 2-cell
has combinatorial area r?; and the image of the remaining 2-cells (which have an
Sis Y O Lny1(k+2");1 edge in their boundaries) have area r. Thus ®,4, adds a di-
mension on top of the 2-subcomplex X Wiop by attaching a copy of X Wi, p X 0, 1]
(with the product cell structure) to X¢, ,, along Xwy , ,, as follows. The “bot-

tom” side Xy,  x {0} is attached to Xy by the identity map while the
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“top” side Xyy , x {1} is attached to Xyy _ via ®q,. The vertical 1-cells of
Xwy % [0,1] are labeled dj, oriented from Xy, . x {1} to Xyy  x{0}. From
this construction, it is easy to see that each 1-cell and each 2-cell in XWé,r,p, gives
rise to a 2-cell and 3-cell, respectively. Figure 4.8.3 shows all the possible types of
3-cells that @4, gives rise to. The two left 3-cells in the figure is given by @, |x, »;
the top right is given by @, | Xr, and the bottom right is given by ®,, restricted

to the edge space Y.

c c
Yk
Uin-1)12nk1 /'y/k s
dk Uin-1n1ank1 dy
di < dy
Yk .-
- uilyra
(n-1)19nk1 Vi
1 _]
< < r \ Yn-1)13nk1 Yin-112nk1
Si S, (k+2") N -
I ' s ! ! Uln-1)13nk1 //U(r?—1)1ank1 T, . k+2m),
ajydk 3 3 3 oy dy d
% d < di I dir Uid-1)1ank1 dy
(k+2M), .- -
ol n#l dr Ui-1)13nks n
' Si = T k2™,

Figure 4.8.3: The above picture shows 3-cells in Xsgg, ., given by @4 with
r=2. Here a = a;, b ="0b; and ¢ = b;_;.

The 3-complex Xggs, ,, has fundamental group SES, p,. It is obtained by
taking each mapping torus of the maps ®,, ®,, and ¢, (k = 1,...,2") and
identifying them along the subcomplex Xg, ,, Xw,, , and XWé,r,p’ respectively
of X¢, p,. From this perspective, it is easy to see that Xgpg, ,,, is aspherical

since each X¢, ,, Xw,, , and Xy  is aspherical.
s (A Ty
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Chapter 5

Upper Bounds

To show SES,, p, is bounded above by exp”(z*) we will repeatedly use the fol-

lowing proposition that is proved in [2].

PROPOSITION 5.0.1. Let G be the fundamental group of a graph of groups

with the following properties:
1. All the vertex groups are of type F3 and their 2-dimensional Dehn functions
are bounded above by a superadditive increasing function f.
2. All the edge groups are of type Fo and their 1-dimensional Dehn functions

are bounded above by a superadditive increasing function g.

Then 58)(33) = (fog)(x).

We will start with finding an upper bound for the 2-dimensional Dehn function
of Cy, p, which is the fundamental group of the graph of groups with two vertex

groups H, and G, p and 2("*Y edge groups each isomorphic to Z. See Figure 5.0.1:

42



Xy

Yan

Figure 5.0.1:

The 2-dimensional Dehn function of the type F3 group H, is proven in [2] to be
bounded above by exp” (/). Since the vertex snowflake group d¢, () is of type
F5 and has no 3-cell in the complex induced by it, its 2-dimensional Dehn function
is zero and thus bounded above by exp”™(y/z). Also each edge group is infinite
cyclic and has no 2-cell in the complex associated with it so each edge group’s 1-
dimensional Dehn function is zero and thus bounded above by the superadditive

increasing linear function g(z) = x. Therefore, by Proposition 5.0.1, 5(022 o (7) =
exp" (/7).

Now, we can move on to find the upper bound for SES,, p, which is the graph of
groups of a single type F3 vertex group C, p, and edge groups G, p, Wj,, p and

Wi ,.p» k=1,...,2" as shown in Figure 5.0.2.

2P Wor e

Figure 5.0.2:
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We showed above that an upper bound for 5(022113’7‘ (x) is exp™(y/z). Proposi-
tion 5.0.8 and its corollaries show that the 1-dimensional Dehn function of the
edge groups G, p, Wy, p and W}, p are bounded above by 2**. For simplicity of
notation, we will relabel the generators of S = (u@—1)1) X (@ni1, - .., an2n1) to be

(s) X (t1,...,ton), respectively.

LEMMA 5.0.2. (Area bound for S) Let w(s,ty,...,tan) be a word represent-
ing the element xV for some N, where x is either s, t; or s™'t;. Let w be ex-

pressed as wy -+ - wy w; is a power of one of the generators {s,t1,...,tan}. Then

Area(wz) < 32 icy lwillwyl.

Proof. We may assume without loss of generality that either x = s, x = t; or
x = s71t;. Since s commutes with ¢; in this group, we can successively transpose
adjacent subwords w; to obtain v = st for some m and where ¢ is a word of the
generators ;. Each transposition of letters contributes 2 to the Area(wv™!), so

we have Area(wv™") <237, . wi||w;].

In the case where z = s, s™t trivially reduces to sV, and Area(wz™") =
Area(wv™!) <237, fwillw;| <337, |wilw;] as desired.

Similarly, if x = t;, s™¢ trivially reduces to ¢, and Area(wz ") = Area(wv™!) <
23 iz lwillw;| <337 [willw;] as desired.

Now, if x = s71t;, s™t trivially reduces to s Vt&¥. Let I, and I,, be the sets of
indices for which w; is a power of s and t;, respectively. Then ., [wi| > N,
Dier, lwil = N, and therefore 3, ; lwiljw;| = N* > N? — N = Area(vz™").
Then we have Area(wz™) < Area(wv™') + Area(vz™) < 337, |willwy| as

desired. O

COROLLARY 5.0.3. (Area bound for Si) Let w(L,11(k)1,ank1) be a word
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representing the element x for some N, where x is either w(L,1(k)1 or app1-
Let w be expressed as wy - --wy w; is a power of one of these generators. Then

Area(wz~) < 3 Zi<j |wi|wj].

Proof. Relabel the generators s and ¢; with £, (k)1 and a1, respectively, and

let n = 0 in the proof of the lemma above. Omit the case when z = s~ '¢;. O

COROLLARY 5.0.4. (Area bound for Ty, ) Let w({L,+1(k+2")4, u(_nl_l)lankl) be
a word representing the element x™¥ for some N, where x is either (L, 11 (k+2"),

or u 171)1ank1. Let w be expressed as wq---wg w; s a power of one of these

n

generators. Then Area(wz™) <337, . |wil|wj|.

Proof. Relabel the generators s and ¢; with £,.1(k 4+ 2"); and u(’nl_l)lankl, re-
spectively, and let n = 0 in the proof of the lemma above. Omit the case when

xr = s . ]

CLAIM 5.0.5. There exists a Lipschitz retraction from G,p onto G,p, k =

1,...,27

Proof. Let r¢ : G, p — G, p be a map defined by x;,y;, s — 1, the identity on
G, p and t; — c where c is the diagonal element in the vertex group V,, that
is linked to S in GT’P. We need to check that rg is a homomorphism, i.e. rg
preserves relations. The relations of C’r, p are the relations of G, p together with

V=1, yis'tiy;et = 1 and 21 = 1. Relations on G, p are

stisTi =1, wtiwy e
preserved since r¢ is the identity on G, p. A quick check shows the other four

types of relations are preserved.
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ra(s)ra(t)ra(s™!

( 1

ra(yi)ra(s™)ra(t)ra(yi)ra(

Jra(t;t
ra(z)ra(ti)ra(z; )ra(c”

)
)
™)
re(z1)

The retraction rg is Lipschitz since rg either collapses unit edges to vertices or

takes unit edges to unit edges. O]

CLAIM 5.0.6. There exists a Lipschitz retractions from Wy, p and Wy . p onto

Gop, k=1,...,2".

Proof. This proof is similar to the above proof of Claim 5.0.5. We will first prove
the existence of a retraction ry from Wy . p onto G, p. The proof of the existence
of a retraction 1y, from Wy | p onto G, p will be exactly the same with a relabeling

discussed at the end.

Now, let ry : Wy, p — G, p be a map defined by xy, £, 11(k); — 1, the identity
on G, p and anr +— ¢ where c is the diagonal element in the vertex group V,
that is linked to S in C_v’ﬁ p. We need to check that ry, is a homomorphism, i.e.
ry preserves relations. The relations of Wy, p are the relations of G, p together
with L, 11(k)1ank1 Lov1 (k) e, = 1 and xgpanpmry et = 1. Relations on G, p
are preserved since r is the identity on G, p. A quick check shows the other two

relations are preserved:

P Lot (B) ) (e )P (Laa (B); r(ag)y) = (De(L)e? =1

r(zi)r(ap)r(z, r(ct) = (De(l)et =1

The proof for the existence of a retraction from Wy, p, is the same as the proof

above with W ;. p, 7w, Zr, L 11(k)1, anpa relabeled to Wy | p, iy, yk, L1 (k+2")4, u(_nl_l)lankl,
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respectively.

The retractions ry and 7, are Lipschitz since they either collapse unit edges to

vertices or take unit edges to unit edges. ]

Proposition 3.0.2 together with Claim 5.0.5 gives:

PROPOSITION 5.0.7. (Edge group distortion in G,p, Wi, p and Wy, p)
Given r and P there is a positive constant D with the following property. If
c is a diagonal element and w is a word exclusively in G, p, Wy, p or Wi .p

representing ¢ then |N| < D|wl|°.

Proof. Let R be the Lipschitz retraction rq, rw or 7, given in Claim 5.0.5 or
Claim 5.0.6. Then R(w) is a word in G, p also representing ¢". By Proposi-

tion 3.0.2 and the fact that R is Lipschitz, we have
[N < DIR(w)|* < D|w|*

as required. O

PROPOSITION 5.0.8. (Area bound for G, p) Given r and P there is a positive
constant E with the following property. Let w be a word in G, p representing x™y
for some N, where x is either a generator of the vertex groups Vy, = (a1, ..., an),
a diagonal element ¢ = a1-+-am € Vin, s € S, t; € S or s7t; € S. Then

Area(wz™) < E|w|?*.
Proof. We argue by induction on |w|. Let E = (3/2)r?D? (D given in Proposi-
tion 5.0.7). Now, x is either in some vertex group V;, or in S.

First, suppose if € V,,,. Then = a; or x = c¢. Write w as w; - - - wy, where each

N; . .. . _ _ . .
w; has the form a;" or is a word beginning with s;-tl, 5 Lor Y; I'and ending with
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sj;l, x; or y;. In the latter case, w; represents an element of the form aj-vi or i,
accordingly. Let I, and I. be the sets of indices for which these two cases occur,
and let w’ be the word obtained from w by replacing each subword w; of this

type with the appropriate word ¢Vi or aév’ . Then w' is a word in the standard

generators of V;, (and the diagonal element c) representing 2 of length Y. N;.

By Lemma 3.0.1, we have Area(w'z~") < 3 > _icj NilNj. To estimate each V;, we

use Proposition 5.0.7 as follows. If i € I, then w; represents ¢¥¢ and Proposi-

tion 5.0.7 gives NV; < D|w;|*. If i € I, then w; = sjuisj_l for some w; representing
()Ni/7 where ¢ is the diagonal element of some vertex group V;, (this depends
on the graph of groups construction). Then by the Proposition 5.0.7 we have
N;/r < D(lw;| —2)* < Djw;|*, so N; < rD|w;|* Finally if ¢ ¢ (I. U 1,) then

N; = |w;| < |w;|®. Putting these observations together we have

Area(w’x_N) < 3r2D? Z |w;|*|w;]* (5.0.9)

i<j

Ifz €S Thenz =s, x=t; orx = s 't;. Let ¢ denote the diagonal element
of the V,, vertex group that is linked to S. Write w as wy - - - wy where each w;
has the form s™, £} or (s7't;)™; or is a word of the form @y, u;z;," or yrusy; "
representing elements of the form tﬁ “or (s, )V, respectively. Here, u; is a word
representing ¢Vi. Let I be the set of indices for which this latter case occurs, and
let w’ be the word obtained from w by replacing each subword w; of this type
with the appropriate word tévi or (s7'¢;)"i. Then w' is a word in the standard

generators of S representing ¥ of length . N;.

By Lemma 5.0.2, we have Area(w'z~) < 3 > icj NilNj. To estimate each N;, we

can use Proposition 5.0.7. If ¢ € I then w; = xjuixj_l or w; = yjuiyj_l where u; is
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a word representing ¢™i. Then by Proposition 5.0.7 we have N; < D(|w;| —2)* <
Djw;|*. Finally if ¢ ¢ (I) then N; = |w;| < |w;|* Putting these observations

together and the fact that » > 1, we have

Area(w'z™) < 3r2D? Z [w;|*|w;|* (5.0.10)

i<j

Next we use the induction hypothesis and Proposition 5.0.7 to bound Area(ww'™?).

First, if € Vi, Area(ww'™') < Y., Area(w;c™™) + 37, Area(w;a; PROF
if € S, Area(ww'™') < 3. ; Area(w;z~ ), where z = t; or z = s 't;.
We can simply combine these two inequalities together to get Area(ww'™!) <

Zie[ Area(w;c™N) + Zlel Area(wl ) + D e Area(w;z i),

If 2 € 1., then w; = s._luisj, w; = x;luixj or w; = yj_luiyj where u; represents

TNi N,L -1 3

Gty or (s7't;)™, respectively. Applying the induction hypothesis to u; we
have Area(u;a;" Niy, Area(uit;N") and Area(u;(s7't;)"i) all less than or equal
to (3/2)r2D?(Jw;| — 2)**. Each of the strips s; a}"s;c™, 7'V w ;e and

y; (s Y(s71;)Niy;e~Ni has area N; < D|w;|® by Proposition 5.0.7. Thus

Area(w;c ™) < (3/2)r2D?(Jw;| — 2)** 4 Dlw;|*
< (3/2r2D*((jwil — 2 + wil") (5.0.11)

< (3/2)r* D*w,[*

The last inequality above uses the fact that for numbers x > 0, one has (z+2)%* >
2%(x + 2)% + 2%(x + 2)* > 22 + (2 + 2)*

Ni/T'

If i € I,, then w; = sjuisj_l where u; represents (¢/)"i/", where ¢ is the diagonal

element of some vertex group V,,,. Applying the induction hypothesis to u; we
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have Area(u;(¢) /") < (3/2)r2D(ws| — 2). The strip s;(¢)™/"s; a;™ has

J
area (N;/r) < D(Jw;| — 2)* < D(|Jw;| — 2)* by Proposition 5.0.7. Therefore
Area(wia;Ni) < (3/2)r2D*(|wg| — 2)** + D(Jw;| — 2)*
< (3/2)r*D*((Jwi| = 2)** + (Jwi — 2)*) (5.0.12)

< (3/2)r* D*|wi[*

If i € I, then w; = a:juixj_l or w; = yjuiyj_l where u; represents c¢i. Applying

the induction hypothesis to u; we have Area(u;c™™) < (3/2)r2D?(Jw;| — 2)2*.

—N;

The strip, z;c 13: t or ychiyj_l(s_ltj)_N", has area N; < D(Jw;| — 2)* by

Proposition 5.0.7. Thus, for z = t; or z = s™'¢;,

Area(wiz_N") < (3/2)T2D2(|wi| — 2)20‘ + D(|w;| — 2)*
< (3/2)r2D*((Jwi| — 2)** + (Jwi| — 2)*) (5.0.13)

< (3/2)r* D*w,[*
Combining (5.0.18) and (5.0.19) and (5.0.20) we then have

Area(wu'™) < Y (3/2)r D uwif** < 2(3/2)T2D2|w¢|2"‘ (5.0.14)

el .Ul Ul

Finally, adding (5.0.16) or (5.0.17) with (5.0.21) we get the desired result:
Area(wz™N) < (3/2)r*D? Z lw;|*)? < (3/2)r2D? Z w;])?* = (3/2)r2D?|w|**

[]

COROLLARY 5.0.15. (Area bound for Wy, p) Given r and P let E be the
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constant given in Proposition 5.0.8. Let w be a word in Wy, p representing x™¥
for some N, where x is either a generator of the vertex groups V,, = (a1, ..., an),
a diagonal element ¢ = ay- Gy € Vi, aprr € Sk or Lyi1(k)1 € Sg. Then

Area(wz™) < Elw|*.

Proof. The proof of Proposition 5.0.8 above will hold here if we make the following

modifications. Replace all instances of:

S with Sk
S with L1(k)1
i, ty, with Ankl
arbitrary xz;, zy, with fixed x

Lemma 5.0.2 with Corollary 5.0.3

Also we need to delete all expressions that include y;, yi, or s~'t;, and set z =

ank1- We give the modified proof here in its entirety for ease of reading:

We argue by induction on |w|. Let E = (3/2)r?D? (D given in Proposition 5.0.7).

Now, x is either in some vertex group V,, or in Sg.

First, suppose if x € V;;,. Then z = a; or z = ¢. Write w as wy,--- , w; where
each w; has the form aj.v' " or is a word beginning with s?El or x,;l and ending with
s}tl or xp. In the latter case, w; represents an element of the form aj»vi or Vi,
accordingly. Let I, and I. be the sets of indices for which these two cases occur,

and let w’ be the word obtained from w by replacing each subword w; of this

N,

type with the appropriate word ¢ or a;'. Then w’ is a word in the standard

generators of V;, (and the diagonal element c) representing z of length >, N;.

By Lemma 3.0.1, we have Area(w'z~") <337, _ N;N;. To estimate each N;, we
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use Proposition 5.0.7 as follows. If i € I., then w; represents ¢"i and Proposi-

tion 5.0.7 gives NV; < D|w;|®. If i € I, then w; = sjuisj’l for some wu; representing
(¢ )Ni/7 where ¢ is the diagonal element of some vertex group V. (this depends
on the graph of groups construction). Then by the Proposition 5.0.7 we have
N;/r < D(Jw;| — 2)* < DJw;|*, so N; < rD|w;|*. Finally if i ¢ (I. U I,) then

N; = |w;| < |w;|*. Putting these observations together we have

Area(w'z™) < 3r2D? Z |w;|*|w;|* (5.0.16)

1<j

If 2 € Sy. Then x = L£,,41(k); or = auk. Let ¢ denote the diagonal element
of the V,, vertex group that is linked to S,. Write w as wy - - - wy where each w;
has the form £, 1(k))" or ai; or is a word of the form mu;x,* representing
elements of the form af:[,j;,l. Here, u; is a word representing ¢¥i. Let I be the set of
indices for which this latter case occurs, and let w’ be the word obtained from w
by replacing each subword w; of this type with the appropriate word aff,;‘l. Then

w' is a word in the standard generators of Sy representing 2 of length >, N;.

By Lemma 5.0.3, we have Area(w'z™") < 337, N;N;. To estimate each Nj,
we can use Proposition 5.0.7. If ¢ € I then w; = xkuixgl where u; is a word
representing ¢Vi. Then by Proposition 5.0.7 we have N; < D(|w;| —2)* < D|w;|*.
Finally if i ¢ (I) then N; = |w;| < |w;|* Putting these observations together

and the fact that » > 1, we have

Area(w'z™) < 3r2D? Z |w;|*|w; | (5.0.17)

i<j
Next we use the induction hypothesis and Proposition 5.0.7 to bound Area(ww'™!).
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First, if z € V;,, Area(ww'™") < 3., Area(w;c™™) 4+ 3., Area(w;a; PRORET;
x € Sy, Area(ww'™') < 3, Area(w;a,}y). We can simply combine these two

inequalities together to get

Area(ww'™!) < Z Area(w;c ) + Z Area(wiaj*Ni) + Z Area(w;a, ).

'le-[c iela el

If © € 1., then w; = sj_luisj or w; = x;luia:k where u; represents a'TNi or @7]:/121’
respectively. Applying the induction hypothesis to u; we have Area(uZ i ') and

Area(u;a,y') both less than or equal to (3/2)r?D?(|w;| —2)?*. Each of the strips

-1 _rN; .—N;
Sj aj 5;C

Thus

and z;'a’i xc™™ has area N; < D|w;|® by Proposition 5.0.7.

Area(w;c ™) < (3/2)r2D*(|w;| — 2)** + D|w;|*
< (3/2)r* D*((|wi| — 2)** + |w;|*) (5.0.18)

< (3/2)r* D*w,[*

The last inequality above uses the fact that for numbers x > 0, one has (z+2)%* >

z(z+2)* +2%(z + 2)* > 2% + (x + 2)°

If 1 € I, then w; = sjuisj_l where u; represents (¢’ )Ni/ " where ¢ is the diagonal
element of some vertex group V,,,. Applying the induction hypothesis to u; we
have Area(u;(c/)~N/m) < (3/2)r* D*(Jw;| — 2)**. The strip s;(c')¥/"s7 a; ™ has
area (N;/r) < D(Jw;| — 2)* < D(|w;| — 2)* by Proposition 5.0.7. Therefore

Area(wia; ™) < (3/2)r* D (jus| — 27 + D(ju| — 2)°
< (3/2)r*D?((Jwi] — 2)** + (Jwi| — 2)*) (5.0.19)

< (3/2)r*D?|w;|**
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N

If v € I, then w; = xkuimlzl where wu; represents ¢"i. Applying the induction

hypothesis to u; we have Area(u;c™™) < (3/2)r?D?(|w;| — 2)**. The strip,

zrpcNix b N has area Ny < D(|w;| — 2)* by Proposition 5.0.7. Thus,

Area(wia;ﬁi) < (3/2)r*D*(Jwy| — 2)** 4+ D(|w;| — 2)*
< (3/2)r*D*((Jws| — 2)** + (Jwi| — 2)*) (5.0.20)

< (3/2)r* D*|wi[*
Combining (5.0.18) and (5.0.19) and (5.0.20) we then have

Area(wuw'™) < Y (3/2)r D uwif** < 2(3/2)7“2D2|wi!2“ (5.0.21)

1€l Ul Ul

Finally, adding (5.0.16) or (5.0.17) with (5.0.21) we get the desired result:
Area(wz™N) < (3/2)r*D*( Z lwi|*)? < (3/2)r2D*( Z lw;])?* = (3/2)r2 D?|w|>*

]

COROLLARY 5.0.22. (Area bound for Wy, p) Given r and P let E be the
constant given in Proposition 5.0.8. Let w be a word in W,gm p representing
for some N, where x is either a generator of the vertex groups Vy, = (a1, ..., an),
a diagonal element ¢ = ay---ay, € Vi, u 1 —1)10nk1 € Ty or L1(k+2"), € Ty.

Then Area(wz™) < Elw|*.

Proof. Like Corollary 5.0.15, the proof of Proposition 5.0.8 above will hold here

if we make the following modifications. Replace all instances of:
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S with £n+1 (k -+ 2”)1
t; with u(_nlfl)lankl
arbitrary y;, vy, with fixed yp

Lemma 5.0.2 with  Corollary 5.0.4

Also we need to delete all expressions that include xz;, xy, or s~ 't;, and set

_ -1
2= U, 1y1Onkl- ]

By setting N = 0 in the proposition and corollaries above:

0, p(Iw]), Ow,, (W), dwy (Jwl) 2 fwl*

for any word w representing 1 in G,,p, Wi, p, Wi, p, respectively. Then because

583 .. () 2 exp™(y/x), by Proposition 5.0.1, we have proved the following result:

THEOREM 5.0.23. 65y . (2) < eap™(z®) 0

55



Chapter 6

Lower Bounds

To find a lower bound for 5;2];571 ., we will use the following remarks given in [6].

REMARK 6.0.1. In order to establish the relation f < g between two non-
decreasing functions, it suffices to consider relatively sparse sequences of integers.
For if (n;) is an unbounded sequence of integers for which there is a constant
C' > 0 such that ng = 0 and n;y; < Cn; for all ¢, and if f(n;) < g(n;) for all i,
then f < g. Indeed, given x € [0, 00) there is an index ¢ such that n; < x < mn;,q,

whence f(z) < f(nis1) < g(nip1) < g(Cni) < g(Cx).

REMARK 6.0.2. Let X be a 3-dimensional aspherical space. Then a ball B
in the universal cover X has the smallest volume among all balls with the same
boundary label if it is an embedding in X. For a detailed proof of this see Remark
2.9 in [7].

Thus, to show 5(52E)Snpr(x) =< exp™(z®) where o = logy(r) and A is the Perron-
Frobenius eigenvalue of P, by Remark 6.0.1, we only need to construct a sequence

of 3-balls {B;} whose surface area sequentially grows at most exponentially to-

56



wards infinity. Also, to establish the inequality 5592111% L, () < A, it is enough to

give an embedded ball in X SES with surface area x and volume greater or

n,P,r

equal to A, by Remark 6.0.2. Here we use the fact that Xggg, ., is aspherical

and 3-dimensional.

In the next section, we will construct a sequence of balls {B;} that embeds in in
XsEs, p,- In the following section, we will show that the surface area of each B;
grows at most exponentially towards infinity and that the volume of each B is

bounded above by a function Lipschitz equivalent to exp™(Area(B;)®).

6.1 Construction

In this section, we will discuss how to construct a ball B; in this sequence {B;}.
The ball B; will be constructed in stages indexed in function notation by the
subgroups {Ho, Go, H1,G1, ..., Hy-1,Gn1, H,, Cy prr, SES,, pr}. For example
By(H3) will denote the Hs-stage in the construction of B;. The construction
of By is finished at the last stage SES, p,, thus B, = B;(SES, p,). We begin
with Bj(Hp) defined to be a ball that sits inside the subspace I?HO of the form
©N (ag11) X ™ (ag21) X 11 (¢ the palindromic automorphism). The ball By(Gp) will
be attained by adding 3-cells inside the subspace [?Go to the surface of B;(H,)

as in [2]. The balls in the following stages up to H,_; are defined similarly.

Now, construct a ball up to Bj(H,_1) as in [2]. Figure 6.1.1 shows how this

construction proceeds
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Figure 6.1.1: A schematic diagram of the surfaces of B;(Hy), Bi(Go), Bi(Hy),
Bi(G1), B)(Hs), Bi(Gy) and B,(Hs), respectively

so that locally almost everywhere, the surface of Bj(H,_1) looks like the picture

in Figure 6.1.12:

Figure 6.1.2:

The larger triangles and thin rectangles in the picture above are further subdi-

vided as in Figure 6.1.3.
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Lnqk+2"2) Lnq(+2"2)

-1
Lna()) Uy Ay Lna())
R U,
Uno An-1)k A(n-1);
Lpq(k) An-1)k Lpq(k)
Ly (k+2"2) Lnq(+2"2)
Figure 6.1.3:

Where each edge sits in the subspace associated with the F5 subgroup denoted
by its label. The strange subdivision of each large triangle is given in [2].
This is due to the fact that u,_, commutes with a(,_;); and that the prod-
uct u;iQa(n_l)i denotes only coordinate-wise multiplication of basis elements of
U2 = (Um—2)1, Umn—2)2) a0d ap_1); = (A(n—1)i1; G(n-1)i2), respectively. That is
u;iz a(p—1); is the diagonal subgroup of u,_sXxa,_1); with basis <u(_nl_2)1a(n_1)i1,
U(_11172)2G(n_1)i2>. Also note that the subdivision of the larger triangles and thin
rectangles can be coarser or finer depending on the length of its sides. For ex-

ample, the subdivision for triangles whose side lengths equal 1, 3, 7 and 17 are

given in Figure 6.1.4:

é/

N &A <A

Figure 6.1.4:

§/
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In fact, the length of each side of these triangles on the surface of Bj(H,_;) is

0" (A1)

REMARK 6.1.1. Up to now, we've constructed our balls in exactly the same
way as in [2]. For the next two stages in the construction of B, (the G,,_, and H,
stage), we will build our balls combinatorially the same way as in [2]. The only
difference is in the choice of labels by group elements. In this way, our balls sit

differently inside the subspaces I~(G and K 1, respectively, but will have the

n—1

same surface area and volume as the balls constructed in [2].

Now, to construct By(G,_1), we add onto the surface of B;(H,_;) blocks to cover
the large triangles. But unlike the ones in [2], we will only use blocks whose
vertical edges are labeled by only w(,—1)1. See Figure 6.1.5. Note that in [2],
at this stage, the authors used blocks whose vertical edges are labeled by both

generators of W,—1 = (Um-1)1, U(n-1)2))-

A apK E
W e U1 U W22

A1)k An-1)k2 Am-1)k1

An-1)k2
u
(n-2)1 u
A(n-1)k (n-11
Un-22 Ak U(n-22
U -
u g U
U (”m _____ Un-1)1 e ¢ .n.1)1 U(n2)2
--------------------- Un2)2 U2
An-1k1 An-1k2 A(n-1k1 An-1kt
Figure 6.1.5:

As mentioned, these blocks are laid down to cover the large triangles in the same
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way they were in [2]. See Figure 6.1.6

Figure 6.1.6:

Now, locally almost everywhere, the surface of Bj(G,_1) looks like the diagram

in Figure 6.1.7:

Figure 6.1.7:

The trapezoids and thin rectangular strips in Figure 6.1.7 are further subdivided

as in the following diagram, see Figure 6.1.8.
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A1)k

U,

U -1 (n-1)1
A(n-1)k
An-1)k

Y- U
A(n-1)k1

Figure 6.1.8:

The strange subdivision of each trapezoid is given in [2]. This is due to the palin-
dromic automorphism ¢ :ag,-1)x —+a@—1)% in [2]. Also note that the subdivision
of the trapezoids and thin rectangles can be coarser or finer depending on the
length of its base. For example, the subdivision for trapezoids and strips whose

base lengths equal 3, 7, 17 and 41 are given in Figure 6.1.9:

@ @

Figure 6.1.9:

In fact, because the triangular base of the prism in Figure 6.1.6 have side lengths
i (a(n-1)k1)|, the height of the prism is ! (i.e. the base of these trapezoids have

length |90Tl (am-1)k1)|; the tops have unit length; and the sides, labeled by uﬂhm,
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have length is 7).

Similar to the previous step, to construct B;(H,,), we continue to add to B;(G,,_1)
only the 3-cell blocks in Ky, whose vertical edges are labeled only by a1, ¢ =
1,...,2" (i.e. we do not use blocks whose vertical edges are labeled by ay;2). See

Figure 6.1.10:

A(n-1)k2
: A(n-1)k1 Uy,
Un-1)1 Eani1 (n-1) Un-1)1 n fann U1
: anin : 3 a.
~ (n-1)k2 a. nit
., ni1
anit A(n-1)k1
anit B
Un-1)1 Un-1)1 A1)kt Un-1)1
A(n-1)k2
L (k : A(n-1)k1 L (k)
n(k) fanit o Ln(k) " 1anit £l
: A(n-1)k1 a :
: ; nit An-1k2 an anin
H : Ani1 H a n
Ani1 S B IO S S S AN e DK e
To(k) ’ LK)
n Ln(k) n A1k L (k)
A(n-1)k1 A(n-1)k2 A(n-1)k1

Figure 6.1.10:

These blocks are laid down to cover the trapezoids and rectangular strips in the

same way they were in [2]. See Figure 6.1.11:

Figure 6.1.11:
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Now, as before, locally, the surface of B;(H,,) look schematically like the diagram

in Figure 6.1.12:

Figure 6.1.12:

The sides of the large triangles now all have length r!. The difference now is that
the large triangles are partitioned as in Figure 6.1.13:

L (k+2"2) Lp(j+2"2)

. -1 .
Ln(J) u(n-1)1anj1 Ln(J)

L (k)

L (k+2"2) LoG+2™2)

Figure 6.1.13:

Notice, the edges of these triangles span a Z?2 subgroup. This subgroup will act

like a V5 vertex group, and is now compatible with a snowflake group. This is
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the reason we modify the original construction in [2].

Next, we will shift gears and consider snowflake groups G, p. We will use the
generating set {ay,...,am, $1,...,5u} for G, p. We will call an edge labeled by
a power of a; on the boundary of a disk in X, p a fringe edge and the length of
a fringe edge to be the length of that a;-syllable. Recall from Section 3 that if
N is a power of r, then a positive snowflake word w™ is a well defined string of
s;’s and a;’s with all the a;-syllables having length 1; and each a; is part of a

subword of the form s;a;, - - - a;,,s;

where the letters a;,, ..., a;, are all distinct.
We define a positive core snowflake word to be the word attained from such
a positive snowflake word w™ by replacing each s;a;, - - ~al-msj’1 subword by aj
accordingly. This is essentially removing the outermost layer of a snowflake disk
and pronouncing the boundary of this new disk (which we will call the core of a

snowflake disk) to be its positive core snowflake word. See Figure 6.1.14. Note

that the fringe edges of the core all have length 7.

Figure 6.1.14: These snowflake disks have fringe edges all of length 1. The core of
this disk of is given in gray and edge lengths in the core are labeled (here [ = 2).
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For the following examples, we will use

Now, we will add 2-dimensional snowflake fins on top of the surface of our B;(H,,)

along the a,;; or Uy, 1y Anil edge segments, each of length r!. These fins consist
of half of a core of a snowflake disk in G, p with diameter labeled ¢ and fringe
edges of length r attached to the strips xicrlx; 1a,_n’"1[ or yic’”lyi_ 1(u@171)1am1)_”

along the path labeled c,.. See Figure 6.1.15

7
A
S =

/ AI/A\V;A

/

A
Un-1)19ni1

Figure 6.1.15: Snowflake fins (left) are added on top of the surface of an H,, ball
along the a,;; or U(_n—1)1ani1 segments, each of length r!. The labels around the
half snowflake disk in G, p indicates the length of those sides. It has diameter
length ! (here [ = 2) and fringe edge length r.

We will denote this ball B;(C), p,-) (even though it is not homeomorphic to a ball).
On the surface of a B;(C,, p,), we see copies of the three types of snowflake disks
shown in Figure 6.1.16 which map to the subcomplexes associated with W, p,
Wy ,.p and G..p respectively, and embed in their universal covers. We call these

Wir.p=, Wy, p- and G, p-snowflake disks, respectively. Collectively, we will call
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them modified snowflake disks to differentiate them from the standard snowflake

disks as constructed in [6]:

GnP GnP

Xi ¢ Xj Yi ¢ Yi

-1
Un-112ni1

-1
Anin Un-113ni1
c X yi c yi

GnP GLP

Figure 6.1.16: Snowflake disks in )A(/kap (left), )Afwé _,, (center) and )A(/@nP (right).

We will call the strip in the middle of each of the left and middle disks in Fig-
ure 6.1.16 the diameter strip (they are the strips labeled by a,;; and u(_nl_l)laml,
respectively on opposing sides); and the edge labeled by u(,_1); in the middle of
the right snowflake disk in Figure 6.1.16, we will call the diameter of the disk.
Note that each of these snowflake disks has a diameter strip or diameter of length

r! and fringe edges of length .

Though these disks are not quite G, p snowflake disks, they are similar enough to
them to build half of a snowflake ball on top of each of them as in [6]. That is, we
can repeatedly use ®,, ®,, and &4, on these snowflake disks that live in )?@n o
)N(Wk,hp, and )N(Wé,r,p’ respectively (k= 1,...,2"). Each use of these cellular maps
on these snowflake disks creates a slab of blocks where the length of the diameter
or diameter strip on the bottom side of the slab is r times the length of the
diameter or diameter strip on the top side of the slab; and the fringe edges on the

bottom side of each slab will have length r whereas the top side has fringe edge
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length 1. In this manner, the bottom side of the first slab will have a diameter or
diameter strip length of 7' whereas the top side of the slab will have a diameter
or diameter strip length of 7=V, The second slab, laid on the top side of the
first slab along its core will have a diameter or diameter strip length of 7/~! and
r'=2 on its bottom and top side, respectively. We continue in this fashion until
the diameter or diameter strip on the top side of the uppermost slab has length
1. We will call these half-snowflake balls G,«, p-half snowflake balls, Wi, p-half
snowflake balls and Wy | p-half snowflake balls, respectively. Collectively, we will

call them modified half snowflake balls to differentiate them from the standard

half snowflake balls from [6].

Figure 6.1.17: Diagram of snowflake balls stacked on atop snowflake disks in
Wirp and Wy p (left) and G, p (right). The labels indicate the length of each
path. The height of each stack and the width of each grey 2-cell is 1.

We call our final ball (i.e. modified snowflake balls like the ones in Figure 6.1.17
stacked on top of Bi(C, p,)), Bi(SESypyr) = B;. Note that the snowflake fins in
By(C,, p,r) have been covered up on both sides and B is again homeomorphic to
a ball. In the following section, we will show the volume of B; is bounded below

by exp™(x®), where z is the surface area of the B;.

68



6.2 Computations

To compute the volume of B; in terms of its surface area Area(B;), we note
that it is at least the volume of B;(H,). Recall that the surface of B;(H,) is
tesselated by triangles and rectangular strips (and tiny squares and triangles
the area of which is a function of n, call it h(n)) as in Figure 6.1.12 where the
sides of the triangles and the longer side of the strips all have length r!. The
numbers of these triangles and rectangular strips of length r! in Figure 6.1.12
are functions of n, call them T'(n) and R(n), respectively. Since schematically,
for any [, there are T'(n) + R(n) triangles and strips, the surface area of B;(H,,)
is Lipschitz equivalent to the area of one of these triangles, which is % (more
precisely, it is Lipschitz equivalent to the area of a triangle plus the area of
a rectangular strip. But since the area of a rectangular strip is only r!, this
is absorbed to be Lipschitz equivalent to simply the area of a triangle). By
definition of Lipschitz equivalence, this means there exists a constant Cj such
that Area(By(H,)) > Cy(Cor')? + Cor'. By setting a new constant Cy = Ci/?, we
can simplify this inequality to Area(B;(H,)) > (Cir')%. By Theorem 2.0.2 and
Remark 6.1.1, the volume of B;(H,,) and thus the volume of B; is bounded below
by a function Lipschitz equivalent to exp™(\/Area(B;(H,))) > exp™(Cyr!). That
is, there exists a constant Cy such that Vol(B;) > Cyexp™(CoCirt) + Co(Cyrt)?;

and by setting C' =min{Cs, C1C1}, we can simplify this inequality to:

Vol(B;) > Cexp™(Cr') (6.2.1)

In the next stage of the construction of B;, the C,, p, stage, we only added 2-

cells, which we called snowflake fins, to the surface of B;(H,). Thus the volume of
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By(C,, p,) is unchanged from the volume of B;(H,) and remains bounded below
by Cexp™(Cr!). The surface area of B;(C,, p,) is increased from that of B;(H,,)
due to the area added from the snowflake fins, but these 2-cells from the snowflake
fins will be covered up in the next and final stage, stage-SES,, p,, so there is no

need to compute its effect on our construction.

Since modified snowflake balls like the ones in Figure 6.1.17 use only a quarter of a
standard snowflake ball (the kind of which that lives in )?T, p), we give a corollary
to Lemma 3.0.7 which gave bounds for the boundary of a standard snowflake ball
in )N(n p with hemisphere of height j, denoted BJ:»" . We define a quarter snowflake
ball, Q(B?), to be the construction given in [6] of a standard half-snowflake
ball, restricted to the core of half of a snowflake disk with diameter ¢”’. We
define the quarter-peel of a ball B}, denoted dQ(B?), to be Q(B?) N dB3 (this
the shaded part on the quarter snowflake ball of Figure 6.2.1 and Figure 6.2.2).
The following corollary gives an upper bound for a quarter of the boundary of a

standard snowflake ball BS, that is Q(B?).

COROLLARY 6.2.2. Given r and P, }|0B}| < Area(0Q(B?)) < F1|0B?| for

every j and Fy = %FO, (Fo given in Lemma 3.0.7).

Proof. By Lemma 3.0.7, there exists an Fy such that [0Bj| < Area(0B}) <
Fy|0B:| for every j. By the symmetry of B}, Area(0B3) = 4Area(5Q(B§’)).
Therefore

|8sz| < 4Area(5Q(B§’)) = Area(@B?) < F0|(3B]2|

for every j. Division by 4 gives the desired result. O]

Now we give bounds for the surface area of the dome of a modified half snowflake
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ball. The dome of a modified half snowflake ball is the boundary of the half ball
minus the modified snowflake disk base. Denote a modified half snowflake ball
of diameter or diameter strip length N by Bg ,(N), Bw,, »,(N) and BWé,r,p(N)
depending on its type. And denote Dome(Bg, ,(IN)), Dome(By,, ,(N)) and
Dome(By; ,(N)) to be their domes.

CLAIM 6.2.3. Given r, P and l, there exists constants Ey, E, such that
Eyrtle < Area(Dome(B@nP(rl))) < Byl

where o = logx(r) and X is the Perron-Frobenius eigenvalue of P..

Proof. From Figure 6.2.1, Bg, P(rl) is constructed from 4 quarter snowflake balls
of diameter length ' around a central region. The dome Dome(Bg, ,(r')) as
indicated in gray of Figure 6.2.1 is 4 quarter peels of B}, denoted 0Q(B}), around
the gray of the central region in Figure 6.2.1. Thus we want to compute 4
times the area of each quarter peel plus the area in gray of the central region of

Figure 6.2.1.

/!

Figure 6.2.1: A G, p-snowflake ball of diameter length r! is constructed from 4
quarter snowflake balls (left) around the central region (right). The dome of the

G, p-snowflake ball is indicated in gray (here [ = 2).

71



From the proof of Corollary 6.2.2, 4 times the area of each quarter peel, 0Q(B}),
is Area(0B}) which is bounded below by |0B?| and above by Fy|0B?|. Which,
in turn is bounded below and above by 2(g-r')"/* and 2(Z-r")"/*F, by Propo-
sition 3.0.4. The area in gray of the central region of Figure 6.2.1 is 8l (area
of vertical strips) plus 4 (area of 4 rectangular strips on top) plus 2 (area of 2

triangles on top). Thus

1
Eor'/* < Area(Dome(Bg, () < 2(ger!)'/"Fo + 8146 < By’ (6.24)
0

Set Ey = 2(0%)1/‘1 and Fy = QFO(CLO)UO‘ + Ky (where Ky > 0 is a constant that

satisfies: 81 + 6 < Ky(r/®)). O

CLAIM 6.2.5. Given r, P, k and [, there exists constants Ey, FEo such that
Egr'l® < Area(Dome(Byy, , , (r'))) < Eyr!

and

Egr'/e < Area(Dome( By rp(rl))) < Eyr!

where a = logy(r) and X is the Perron-Frobenius eigenvalue of P.

Proof. We prove the first set of inequalities first. From Figure 6.2.2, By, , . (r")
is constructed from 2 quarter snowflake balls of with diameter length ! on both
ends of a central region. The dome Dome(By,, ,(r')) as indicated in gray of
Figure 6.2.2 is 2 quarter peels of B}, denoted Q(B;}), on both ends of the gray
of the central region in Figure 6.2.2. Thus we want to compute 2 times the area

of each quarter peel plus the area in gray of the central region of Figure 6.2.2.
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Figure 6.2.2: A W}, p-snowflake ball with diameter strip length r! is constructed
from 2 quarter snowflake balls on both ends of the central region. The dome of
the Wy, p-snowflake ball is indicated in gray (here [ = 2).

From Corollary 6.2.2, each quarter peel, dQ(B}) is bounded below by 1|0B7|
and above by F}|9B}|. Which, in turn is bounded below and above by 2(&-r!)"/*
and 2(0%7“’)1/0‘}71 by Proposition 3.0.4. The area in gray of the central region of
Figure 6.2.1 is 6/ (area of vertical rectangles) plus 3 (area of 3 rectangles on top).

Thus,

1
Eyr'/® < Area(Dome(Buw, (1)) < 4Fi(5-r')"* + 61 +3 < By, (6.2.6)
0

Set Ey = 2(0%)1/‘“ and Fy = 4F1(Ci0)1/°‘ + K, (where K; > 0 is a constant that

satisfies: 61 + 3 < K, (r/®)).

The proof of the second set of inequalities is identical to the above since Wy, p-

snowflake balls and Wy . p-snowflake balls are combinatorially the same. O

Putting these results together, we get lower and upper bounds for the surface

area of Bi(SES, p,) = By
(T(n) + R(n))Eyr'/® < Area(B;) < T(n)Eyr/® + R(n)Eyr/® + h(n)
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By setting constants Gy = T'(n) + R(n)Ey and Gy = T'(n)Ey + R(n)E> + h(n) we

can clean up this inequality:
Gor'/® < Area(B;) < Gt/ (6.2.7)

It is also easy to see from here that our sequence of balls { B;} have surface areas

that sequentially grows at most exponentially towards infinity since

Area(BH_l) < GIT(H_l)/a _ irl/a
Area(B;)) — Gorl/« Go

which is constant as required.

Now, from Equation 6.2.1, Vol(B;) > Vol(B;(H,)) > Cexp™(Cr'); and from

Equation 6.2.7, we can deduce r! > (GL1 Area(B;))®. Therefore:

Vol(By) > cexpnw(Gil Area(B)?)

Which implies Vol(B;) = exp™(Area(B;)®*). Thus by Remark 6.0.1, we have

proved:

THEOREM 6.2.8. 650 , (1) = exp™(z) O

The Main Theorem 1.0.1 now follows directly from Theorem 5.0.23 and Theo-

rem 6.2.8.
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