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Abstract 

Understanding the movement of people in urban areas is one of the most significant 

issues on spatial science with a wide range of applications in urban design, public health, 

public safety and intelligent transportation system. Urban planners, cognitive scientists, 

computer scientists, and geographers have contributed to an understanding of pedestrian 

movement from aspects of configurational analysis, knowledge representation, 

computational models, and space-time patterns respectively. However, no previous 

studies provide comprehensive solutions to pedestrian movement taking both space and 

cognition into account. Combining these disciplines allows us as researchers to not only 

explain correlations between spatial layouts and pedestrian flows but also understand 

how and why environmental perception and spatial knowledge are used by pedestrians to 

orient themselves and navigate through space. 

My research proposes a theoretical framework of space, cognition and movement to fill 

in interdisciplinary gaps of pedestrian movement studies. The core of this framework lies 

in the hypothesis that where people choose to hold activities and how people choose to 

get there depends on individuals‟ cognitive maps of the environment. This cognitive map 

consists of the salient layout of spatial features as well as the prominent utilities afforded 

by these features. The analysis proceeds from three dimensions: (1) space syntax to 

characterize spatial configuration or structure, (2) space semantics to address the 

distribution of activities, and (3) spatial cognition to capture one‟s knowledge about the 

space. 

The proposed framework was used to guide an empirical study conducted at the 

University of Oklahoma Norman Campus. Space was characterized by two aspects of 

space syntax and space semantics. For syntactical analysis, the study not only used 

measures of network centrality to examine network effects on pedestrian movement but 

also improved them by varying concepts of distance, adding distance decay effects, and 

weighting spatial heterogeneity of activities. Betweenness centrality calculated by the 

shortest length and weighted by distance decay effects resulted in the best description of 

observed pedestrian flows. In semantical analysis, functional centrality was described by 

density and diversity. Only functional density significantly contributed to modeling 

pedestrian flows. This study provided evidence that pedestrian movement depended on 

the spatio-functional interactions. The distribution of activities not only took the location 

advantage provided by spatial configuration but also reinforced network effects on 

pedestrian movement. This study not only examined aggregated patterns of pedestrian 

movement but also investigated individual variations in cognitive maps and wayfinding 

behaviors. The sketch map analysis suggested that as people became more familiar with 

the environment, the increase of completeness and accuracy was observed in their 

cognitive maps. Completeness was described by number of landmarks in sketch maps 

while accuracy concentrated on the relative positions between pairs of landmarks. 

Landmark served as the organizing concept of cognitive map. Betweenness centrality, 

functional density, and familiarity significantly contributed to modeling the presence of 

landmarks. When landmarks were used in navigation, this study developed a landmark-

based pathfinding method. Landmark-based pathfinding resulted in a better description of 

routes selected by survey participants. In sum, individual cognitive maps, particularly the 
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organization of landmarks, serve as the core in determining where pedestrians choose to 

hold activities and how to get there. Finally, the study developed the conceptual agent-

based model (ABM) for pedestrian movement. The core of this ABM lies in a cognizing 

agent that is able to solve pathfinding tasks based on perceptual information and 

knowledge of cognitive map. 

The research outcomes not only improve the understanding of spatial and cognitive 

factors on pedestrian wayfinding but also contribute to several disciplines. Architects and 

urban planners can adopt the framework of pedestrian movement to test, assess and 

improve existing spatial layouts and possible design alternatives. Computer scientists and 

Geographic Information System developers can use the specification of cognitive map to 

implement landmark based navigation system. Cognitive scientists and psychologists can 

apply the comprehensive model of pedestrian movement in research on human 

wayfinding behaviors for people with different perceptual abilities. 

 

Keywords: Pedestrian Movement, Space Syntax, Space Semantics, Spatial Cognition, 

Network Centrality, Functional Density, Functional Diversity, Landmark, Agent 
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Chapter 1: Introduction 

An urban area is a planned yet evolving settlement with rapid traffic flows of people, 

commodities and information. Understanding the movement of people in urban areas is 

one of the most significant issues on spatial science with a wide range of applications in 

urban design, public health, public safety and intelligent transportation system. 

Aggregated patterns of human movement result from the sum of individual behaviors for 

spatial navigation. Finding one‟s way in unknown or familiar environments is a common 

task that people experience in daily lives. The urban configuration can facilitate or limit 

one‟s navigation, depending on the structures and characteristics of physical elements in 

the city (Hillier & Hanson, 1989; Lynch, 1960). The impacts of spatial configuration on 

navigation behaviors are grounded in the way how people recognize this urban 

environment in their minds. More precisely, where to go and how to get to the destination 

are determined by spatial knowledge and spatial experiences through interactions with 

built environments. To date, however, the role of spatial configuration and spatial 

knowledge on pedestrian movement were examined separately in different fields and 

disciplines. Urban planners, cognitive scientists, computer scientists, and geographers 

have contributed to an understanding of pedestrian movement from aspects of 

configurational analysis (Hillier, Penn, Hanson, Grajewski, & Xu, 1993; Bin Jiang & 

Claramunt, 2002), knowledge representation (Lynch, 1960; Montello & Sas, 2006), 

computational models (Freksa, 1992; Kuipers, Tecuci, & Stankiewicz, 2003), and space-

time patterns (Kwan, 1998; Miller, 1999) respectively. The knowledge gap about how do 

three domains - spatial configuration, spatial experiences, and spatial knowledge - 

interact with each other and their roles in shaping pedestrian movement has not been 

extensively explored. 

The purpose for this study is twofold. On the one hand, we are concerned with the 

scientific question about how movement, particularly pedestrian movement, relates to 

space and cognition. Previous coarse-scale movement studies (Hu & Lo, 2007; Stead & 

Marshall, 2001) using aggregated, top-bottom approaches were weak in revealing spatial 

and temporal details and were criticized for ecological fallacy (Wrigley, Holt, Steel, & 

Tranmer, 1996) and modifiable areal unit problems (MAUP) (Openshaw, 1983). This 

study takes a bottom-up approach to explore how pedestrian movement relates to space 

and cognition. Specifically, how do spatial configuration and spatial experiences lead to 

differences in knowledge about the space, and moreover to the formation of movement 

patterns in space. On the other hand, we are proposing a practical tool through agent 

based modeling, which allows us to test the network, functional and psychological effects 

on pedestrian movement. This model can be used to guide the simulation of wayfinding 

tasks in real world or in layout plans even before the construction of built environments, 

which makes it possible to determine where on the network attracts more pedestrians, 

why pedestrians select particular routes and how to design the network to assist in 

pedestrian wayfinding.  

This study attempts to bring spatial, behavioral and psychological dimensions into a 

single methodological framework for pedestrian movement. This framework aims to 

explain how a pedestrian finds a specific destination in a familiar environment when they 

have different environmental perception and bounded rationality due to limits of 
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cognitive capabilities. The research design rests on the hypothesis that spatial 

configuration and spatial experiences influence the development of spatial knowledge, 

and furthermore, spatial knowledge contributes to pedestrian movement. Therefore, this 

study breaks the analysis into three components: space syntax, space semantics, and 

spatial cognition. Specifically, space syntax is characterized by the configurational layout 

of roads, buildings, open space and other spatial features, particularly how a spatial 

feature is separated or clustered with other spatial features in the network. Space 

semantics describes possibilities of functions or activities that can occur in the specific 

location, such as land use types of residential, commercial, industrial, transportation, and 

business regions or activities of living, working, commuting, shopping, eating and 

recreation. Spatial cognition refers to knowledge of space, particularly what critical 

spatial structures and meaningful places are stored in mind, and how to use these salient 

features along with environmental perception to guide pedestrian navigation. Based on 

these three components, the two key research questions are: 

 What aspects of spatial cognition have measurable differences along with variance in 

spatial configuration measures (space syntax) and spatial affordance measures (space 

semantics)? 

 What aspects of spatial cognition have measurable impacts on movement patterns? 

This work proposes a comprehensive framework for pedestrian movement to analyze and 

simulate information needs for decision making in pedestrian navigation. This framework 

focuses on network and psychological effects on performing navigation tasks in a 

familiar environment. The major scientific contributions are: 

 a theoretical framework of space, cognition and movement to fill in interdisciplinary 

gaps of pedestrian movement studies among fields of urban planning, geography, 

cognitive science and artificial intelligence; 

 a methodological approach to derive and select syntactically and semantically salient 

features captured in cognitive map;  

 a landmark-based pathfinding method to find the „optimal‟ route with the least 

cognitive load, and 

 a conceptual model for agent-based pedestrian wayfinding simulation that is 

grounded in human perception and cognition. 

The research outcomes are expected to not only improve the understanding of spatial and 

cognitive factors on pedestrian wayfinding but also contribute to several disciplines. It is 

targeted in particular at researchers in the following areas: 

 Architects and urban planners can adopt the framework of pedestrian movement to 

test, assess and improve existing spatial layouts and possible design alternatives. 

 Computer scientists and Geographic Information System (GIS) developers can use 

the specification of cognitive map to implement landmark based navigation system. 

 Cognitive scientists and psychologists can apply the comprehensive model of 

pedestrian movement in research on human wayfinding behaviors for people with 

different perceptual abilities. 
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The organization of this dissertation includes this chapter, Chapter 1, which has 

introduced the concepts, research questions, expected outcome, and the intended 

audience for this study. 

Chapter 2 reviews previous research concerning the modeling of pedestrian movement. 

First, we discuss quantitative methods to describe syntactical properties of network where 

pedestrian wayfinding takes place. We then give an overview of affordance theories 

which provide functional interpretation of places over the network. Furthermore, we 

describe models of human spatial cognition which underlies all processes of wayfinding 

tasks. All of the presented theories and concepts are linked to the comprehensive 

framework of space, cognition and pedestrian movement developed in this study. Finally, 

we present relevant concepts from artificial intelligence and empirical studies using agent 

based modeling techniques. 

Chapter 3 explains the methodology and approaches used in this work. An empirical 

analysis was conducted at the University of Oklahoma Norman Campus. The main task 

for the empirical study is to explain what kinds of syntactically and semantically salient 

features are captured by cognitive map and then used in wayfinding decision making. 

Chapter 4 shows the results and analysis from the empirical study. First, we conduct 

syntactical analysis to explain network effects on pedestrian movement. Space syntax 

analysis here focuses on network centrality but is further improved by considering 

spatially heterogeneous origin-destination (OD) distribution and distance decay effects. 

We then describe the distribution of activity densities and perceived use of space. After 

that, we continue to examine the relationships between form and function, and identify 

impacts of spatio-function interactions on pedestrian movement. Furthermore, we show 

these syntactically and semantically salient features are expressed in cognitive maps 

represented by sketch maps. We specify methods to measure the salience of features from 

aspects from visual attraction, syntactical prominence and semantic significance. This 

study provides evidence that selected salient features, strongly correlated with human 

concept of landmark, play an important role in pedestrian wayfinding particularly 

destination preference and route selection. Finally, we develop a conceptual model of 

pedestrian movement using agent based techniques and allow pedestrian agents to 

understand knowledge of space in terms of cognitive map. 

Chapter 5 first summarizes the work done in this study. We then present the major 

findings of our research. This chapter discusses limitation of this study and concludes 

with possible directions for future works. 
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Chapter 2: Background 

This chapter presents the scientific background on pedestrian movement research and 

relates it to the work done in this study. Spatial syntax describes the configuration of 

physical network in which pedestrian moves and is therefore introduced first. On one 

hand, pedestrian movement is constrained by the form of this walking grid. On the other 

hand, pedestrians interact with places over the network based on the meaning people 

assign to them. The chapter continues with the discussion of modeling places with 

affordances.  Spatial knowledge underlies all processes of pedestrian movement. We then 

review different aspects relevant to spatial cognition: mental representation, computation 

models and sketch map analysis. The final part of this chapter is devoted to relevant 

concepts of agent based modeling. 

2.1 Space syntax 

Spatial configuration describes how spatial elements including buildings, open spaces 

and street networks are linked to construct a global pattern of urban form. This urban 

form is the environmental medium that people perceive, through which they further 

interpret the meanings of places. Space syntax analysis provides a quantitative framework 

to measure spatial configuration. There syntactical properties were found to be 

significantly correlated to pedestrian and vehicle movement in urban space (Hillier et al., 

1993; Bin Jiang & Claramunt, 2002; Turner, Doxa, O'sullivan, & Penn, 2001). 

The initial idea of space syntax analysis relies on the convex partition of urban space and 

the representation of axial lines. Axial lines are drawn as the longest and fewest straight 

lines passing through all convex elements within open space where people can freely 

move (Hillier & Hanson, 1989). For each axial line, it essentially represents directions of 

uninterrupted visual access and straight segments of movement. A collection of mutually 

intersected axial lines that pass through the whole free space constructs axial map. 

Syntactical measures with axial line based approach are derived from dual graph of axial 

map called connectivity graph (Bafna, 2003; Bin Jiang & Claramunt, 2002). Row (a) in 

Figure 1 demonstrates the mapping from the urban structure (column (1)) to the axial 

map (column (2)) and further the conversion to the connectivity graph (column (3)). As 

shown in row (a) column (1), urban structures are abstracted by grey areas of building 

blocks and white areas of roads. In row (a) column (2), network is identified though the 

longest straight paths available in road areas. Then the connectivity graph is established 

in column (3) for network analysis where nodes and edges represent axial lines and the 

intersections between lines respectively. Distances from an axial line to others are 

specified by number of turns (i.e., edges) between them. In order to increase 

representation resolution of street network, axial lines are chopped at each junction into 

axial segments (Dalton, 2001; Turner, 2001a). As for the transformed connectivity graph, 

nodes represent axial segments while edges are weighted by the angle of connecting pairs 

of axial segments. Although widely used in earlier studies of space syntax analysis, the 

generation of axial maps was criticized for sensitivity to boundary condition and 

deformation of urban grid (Bin Jiang & Liu, 2010; Ratti, 2004). Additionally, space 

syntax studies used to rely on hand-drawn axial map (Hillier & Hanson, 1989) until 

automatic generation of axial lines were developed (Batty & Rana, 2004; Bin Jiang & Liu, 

2010; Turner, Penn, & Hillier, 2005). But how to generate axial map is still controversial 
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which makes it hard to provide reliable and comparable results (Desyllas & Duxbury, 

2001). Therefore, alternative representations of street network and visibility graph are put 

forward.  

 

(Bin Jiang, 2007; Bin Jiang & Claramunt, 2004) 

Figure 1 Comparison of axial map and street network based approaches 

(a1, b1, c1, d1) urban structure; (a2) axial map; (b2) named streets; (c2) natural streets; 

(d2) street network; (a3, b3, c3, d3) connectivity graph 

Street network based approaches provide an intuitive way of analyzing spatial 

configuration using road center line maps. In traditional representation of transportation 

modeling, urban network is perceived as a spatial graph (i.e., primal graph) whose nodes 

have precise positions of street junctions in two dimensions and edges are street segments. 

Street network based approaches provide a different perspective of space syntax analysis 

from axial line based approaches in that the primal graph can work with not only 

topological relations but also metric distances. The primal graph also overcomes the 

shortcoming of dual graph that a single value for a long axial line is too limited to 

represent complex urban structures (Ratti, 2004). However, Batty (2004) argued that 



 

6 
 

measuring urban structure was not a primal but a dual problem of morphology. Primal 

representation of street network is neither the way how people perceive the urban 

structure nor able to uncover meaningful patterns of configuration (Bin Jiang, 2007). To 

simplify street network and construct dual graph of street network, individual segments 

are merged into meaningful streets, which leads to two additional representations of 

natural streets (Bin Jiang, 2007; Thomson, 2004) and named streets (Bin Jiang & 

Claramunt, 2004). As shown in Figure 1 row (c), natural streets are derived from merging 

adjacent street segments based on thresholds of continuation. Figure 1 row (b) represents 

named streets merging segments by street names. 

The third type of approaches is based on viewshed, which shifts syntactical analysis from 

street network to a single point of view. Viewshed based approaches provide a solution to 

combine axial lines and street network in the framework. As for the viewpoints 

representation of space syntax, nodes in connectivity graph can be either intersections of 

axial line (Batty, 2004) or junctions of road segments (Bin Jiang & Claramunt, 2002), 

which are essentially syntactical salient points. Edges represent inter-visibility or inter-

accessibility between two points (see Figure 2, below). This viewpoint representation is 

as efficient as axial line and street network approaches in describing urban structures. 

Additionally, it provides a richer interpretation for pedestrian movement as these 

syntactically salient points turn out to be critical locations of decision making (Batty, 

2004; Bin Jiang & Claramunt, 2002). Viewshed based approaches are not limited to 

salient points of axial maps and street network but can cover every point in walking space. 

Specifically, visible areas from a point of view are described as 2-dimension isovist 

(Batty, 2001; Benedikt, 1979; Turner et al., 2001) and 3-dimension viewshed (Fisher-

Gewirtzman, Shach Pinsly, Wagner, & Burt, 2005; Llobera, 2003; Morello & Ratti, 

2009). Visibility graph is constructed by connecting mutually visible locations (Turner, 

2001b). The advantage of thinking of space from the perspective of visibility is that it 

describes the extent of space that can be seen or moved from a point of view (Batty & 

Rana, 2004), which contributes to modeling individual pedestrian behaviors. When 

walking along a route, a pedestrian perceives a sequence of isovist/viewshed properties 

and captures a profile of visual field. This trace of visual fields does not only describe 

spatial experience associated with the route but also highlights salient locations over the 

rhythm of isovist/viewshed properties (Batty, 2001). In addition, viewshed based 

approaches introduce vertical dimension in space syntax analysis, which can be used to 

explain why taller buildings are perceived as the generator of more traffic flows (Ratti, 

2004).  

 

(Bin Jiang & Claramunt, 2002) 

Figure 2 Viewshed based approach  

left: urban structure; center: junctions of street segments; right: inter-visibility graph 
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As for dual graph of street network, syntactical analysis relies on topological accessibility 

of streets. Spatial configuration is specified by how a node (i.e., axial line, named street, 

or natural street) intersects with other nodes of neighborhoods. Depending on the distance 

used for neighborhoods, local and global properties are proposed. Local properties, 

including connectivity, control, local depth, local mean depth, and local integration, 

describe the degree of connectivity from a node to immediate neighborhoods within a 

specific distance. Global properties, including global depth, global mean depth, and 

global integration, evaluate structural salience of a node through the transversal of entire 

graph (see Table 1, below). Integration in axial map, which refers to the normalized mean 

depth to neighboring axial lines, was found to be a significant indicator of predicting 

human movement in several empirical studies (Baran, Rodríguez, & Khattak, 2008; 

Hillier et al., 1993; Penn, Hillier, Banister, & Xu, 1998; Read, 1999). When compared 

local connectivity to global integration, another syntactical property called intelligibility 

are often used to describe the degree of ease of navigating in an environment (Hillier & 

Hanson, 1989; Kim, 2001). An intelligible environment is the one in which locally well-

connected space tends to be well-integrated globally. Other syntactical properties, 

including small world metric and weighted PageRank, are related to the cluster or the 

concentration degree of a node (i.e., axial line, named street, or natural street) over 

network (see Table 1, below). The small world metric (Watts & Strogatz, 1998) refers to 

the probability that two connected neighbors of a given node are linked together. A high 

value suggests a clustered or centralized node in the network. The weighted PageRank 

examines the relevance and importance of a node in a directed network (Xing & 

Ghorbani, 2004). The basic idea behind PageRank is that highly ranked node is 

determined if other highly ranked nodes point to it. The weighted PageRank turned out to 

be better correlated with traffic flows than local integration in London street network 

(Bin Jiang, 2009). 

The core of syntactical analysis in primal graph of street network lies in the concept of 

centrality (see Table 1, below). Reach and closeness describe centrality as being near 

others through the shortest distance (Freeman, 1975; Wasserman & Faust, 1994). Central 

locations near others capture similar characteristics of network with depth and integration 

in dual graph. By comparing with virtually straight route, straightness in primal graph 

approximates measures of topological distance and describes centrality as being direct to 

others. Finally, as a large proportion of traffic flows are through movement, intermediate 

nodes between origin and destination control route selection strategically. Betweenness 

centrality describes the importance of a node as being passed through when linking all 

pairs of nodes in the network (Freeman, 1975; Porta et al., 2009; Sabidussi, 1966; 

Sevtsuk & Mekonnen, 2012). Central locations correspond to power in terms of attraction 

and control. Evidence was found that betweenness centrality is a better candidate of 

predicting moving flows than integration (Turner, 2007a). Primal graph makes options of 

metric distances possible in space syntax analysis, which is used to explain wayfinding 

behaviors of perceiving shortcuts. In our study, we investigate route selections using 

different wayfinding strategies. Space syntax analysis in primal graph provides an easy 

solution to modify the shortest distance into geometric distance of the least angle and 

topological distance of the fewest number of turns. 
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Table 1 Common space syntax metrics 

Variables Descriptions Formulas Sources 

Connectivity 
Number of directly linked 

nodes (i.e. immediate 

neighbors) 

1,

0,
ik

i ik

if i and k are connected

if i and k are disconnected

CN


 




 
Hillier and Hanson 

(1989); Bin Jiang 

and Claramunt 

(2002) 

Control Sum of connectivity reciprocals 

of immediate neighbors  

1
, 1i ik

K k

CR k K if
CN

  
 

Hillier and Hanson 

(1989); Bin Jiang 

and Claramunt 

(2002) 

Local depth 

Sum of the topological turns to 

all local neighbors within a 

specific step ,

i ij

J

ij

ij

LD d

d is the number of turns between i and j

j J if d n steps



 

  

Hillier and Hanson 

(1989); Bin Jiang 

and Claramunt 

(2002); Penn et al. 

(1998) 

Local mean 

depth 

Local depth divided by number 

of local linked nodes (i.e. local 

neighbors within a specific 

step) 

1

i
i

n

n

LD
MD

m

m is the number of nodes within n steps




 

Hillier and Hanson 

(1989); Bin Jiang 

and Claramunt 

(2002); Penn et al. 

(1998) 

Global depth 
Sum of the topological turns to 

all nodes in the graph 

i ij

E

GD d

E is the entire graph

  

Hillier and Hanson 

(1989); Bin Jiang 

and Claramunt 

(2002); Penn et al. 

(1998) 

Global mean 

depth 

Global depth divided by the 

total number of nodes in the 

graph 

1

i
i

LD
MD

M

M is the total number of nodes

within the entire graph


  

Hillier and Hanson 

(1989); Bin Jiang 

and Claramunt 

(2002); Penn et al. 

(1998) 

Relative 

asymmetry 

(RA) 

Standardized value of mean 

depth between zero and one 

(max: corner of chain/series 

connection; min: center of 

star/parallel connection) 

2( 1) / ( 2)i iRA MD n

k is the number of nodes

    

Bafna (2003); Bin 

Jiang (2009) 

Real relative 

asymmetry 

(RRA) 

Standardized value of RA by 

dividing the RA of a formal 

grid/diamond of the same step 
22{ [log (( 2) / 3) 1] 1}

( 1)( 2)

i
i

n

n

RA
RRA

D

n n
D

n n

n is the number of node



  


 

 
Bafna (2003); Bin 

Jiang (2009) 
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Local 

integration 

Reciprocal of RRA or RA 

within a specific step 

1 1
i iLI or LI within n step

RRA RA
   

Hillier and Hanson 

(1989); Bin Jiang 

and Claramunt 

(2002); Penn et al. 

(1998) 

Global 

integration 

Reciprocal of RRA or RA 

within the entire graph 

1 1
i iLI or LI

RRA RA

within the entire graph

   

Hillier and Hanson 

(1989); Bin Jiang 

and Claramunt 

(2002); Penn et al. 

(1998) 

Intelligibility 
Correlation between 

connectivity and integration 

1

( )( )

1

n

i iCN CN GI GI

I
n

n is the total number of nodes

within the entire graph

 






 

Bafna (2003); 

Hillier et al. 

(1993); Penn 

(2003) 

Reach Number of road segments 

accessible within a given search 

radius on the network 

( { }; )

tan

r

i ij

ij

R Count j G i d r

j is the others road segments

d is the shortest dis ce between i and j

     Sevtsuk and 

Mekonnen (2012); 

Wasserman and 

Faust (1994) 

Closeness Reciprocal of a sum of 

distances to all nodes within a 

given search radius through the 

shortest network paths 

1
, { },r

i ij

ij

C j G i d r
d

   


 Crucitti, Latora, 

and Porta (2006); 

Sabidussi (1966); 

Turner (2007a) 

Betweenness Fraction of the shortest paths 

between pairs of other road 

segments that pass through the 

measured segment 

[ ]
, , { },

[ ]

jkr

i ij

jk

jk

n i
B j k G i d r

n

n i is the number of the shortest paths

that pass by i

   
 

Crucitti et al. 

(2006); Freeman 

(1975); Turner 

(2007a) 

Straightness Probability that connected 

routes deviate from the virtual 

straight route 

[ ] , { },

tan ;

tan

ijr

ij

ij

ij

ij

S i j G i d r
d

is the straight Euclidian dis ce

d is theshortest network dis ce





     
Crucitti et al. 

(2006); Vragović, 

Louis, and Díaz-

Guilera (2005) 

Small world Probability that two neighbors 

of a given node are linked 

( )

( )

,

mn
i

p

mn

p

Count e
S

Count e

e are connected edges between neighbor m n

e are possible edges


 

Bin Jiang (2009) 

Weighted 

PageRank 

Relevance and importance of 

individual road segment in 

clustered graph of network 
int

;

1

;

i

j

i j

j ON c

i

j

ON are nodes that po to i

w is the weight of j c a

wd
PR d PR

re coute

n w

rpart of j




  

  
Bin Jiang (2009) 
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Viewshed based approaches first provide quantitative methods to describe visual 

characteristics from a point of view: radial distance, maximum visible angle, radial 

variance, area, perimeter, occlusivity, roundness, jaggedness, bounding proportion, 

compactness, and convexity (Batty, 2001; Benedikt, 1979; Meilinger, Franz, & Bülthoff, 

2012; Turner et al., 2001). When visibility analysis is extended to consider the third 

dimension of height, additional visual properties of vertical visual span, visual slope, 

height to width, visual voxel, shadow volume, visible volume and iso-vis-matrix are 

developed (Asami, Kubat, Kitagawa, & Iida, 2003; Fisher-Gewirtzman et al., 2005; 

Morello & Ratti, 2009; Ratti, 2005). These visual properties not only describe shapes of 

visual areas from a point of view but also express selections of reference points of visual 

prominence. For example, occlusive points in a visual field serve as salient points for 

pedestrian navigation as they characterize the discontinuity between optic flows (Turner, 

2007b). Relation analysis between two visual locations is grounded on inter-visibility or 

accessibility. Inter-visibility is specified by direct linkage of mutually visible locations or 

locations of overlapping visible polygons (Turner et al., 2001). On one hand, the 

configurational properties derived from this visual connectivity graph are similar to ones 

used in dual graph approaches, including descriptions of being connected in terms of 

neighborhood size, visual integration and mean shortest path length, and descriptions of 

being clustered in terms of clustering coefficient (Turner et al., 2001). On the other hand, 

salient locations of visual prominence are identified by comparing visual properties at 

adjacent viewpoints (Llobera, 2003), which provides measures of local visually salient 

features for this study. As for descriptions of global visual awareness, a cumulative 

viewshed is constructed by adding each viewshed from every viewpoint in the walking 

space. Locations with local visual prominence and areas with a greater global visual 

presence are likely to be anchor points which serve as primary reference nodes in 

pedestrian wayfinding (Amedeo & Golledge, 1975). When pedestrians go through a 

sequence of visual points without obstacles to accessibility, the profile of visual fields 

describe „true‟ visual experience, specifically how much of visual information is 

expanded or lost along the path.  

Significant correlation between space syntax metrics and aggregated traffic flows was 

observed in studies across scales of space including shopping mall (Penn & Turner, 2001), 

museum (Choi, 1999), neighborhoods (Kim & Penn, 2004; Penn et al., 1998) and cities 

(Hillier et al., 1993; Read, 1999). These empirical studies suggested that 50-70% of the 

variance of movement flows could be explained by variance of syntactical properties of 

urban structures. This proportion of movement determined by spatial configuration is 

called natural movement (Hillier et al., 1993). With the development of viewshed based 

approaches, natural movement is able to be investigated at a finer resolution of individual 

navigation behaviors. From the perspective of visibility, the reason why syntactical 

properties correlated with observed movement lies in the fact that people tend to follow 

paths that minimize the turning of line of view in order to maximize trip efficiency 

(Hillier, 1999). Simulations using wayfinding strategies of following the longest visible 

line captured 50% of the variance in traffic flows, which implied that visual access 

provides critical environmental cues for navigation. Penn and Turner (2001)‟s study in a 

shopping mall further compared two ways of route selection within field of view: the 

simple rule of randomly selecting next location with forward facing and the „intelligent‟ 

rule of selecting the most integrated location. Simulated outcome with the simple rule of 
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random selection resulted in a better correlation with observed movement, which implies 

that syntactical analysis better explains explorative behaviors of navigation. Similar 

finding was also confirmed in Bin Jiang and Jia (2011)‟s study of GPS tracks from 

taxicabs in urban network. 

In sum, space syntax essentially measures the structural salience of the route segments in 

a network. Evidence of natural movement does not only indicate that people can perceive 

distance by topological descriptions but also imply that route choices are determined by 

configurational relations to a larger network beyond local properties. However, 

syntactical properties only describes locations with no specific contents and thereby no 

measurable attraction. In other words, space syntax describes a way of urban growth that 

the spatial configuration is the primary generator of human movement and attractors for 

human activities just serve as multipliers that enhance the patterns from natural 

movement. On one hand, this proposition that attractors are a consequence of 

configuration conveys the idea of seeing cities from static perspective. Therefore, space 

syntax analysis cannot explain temporal details and individual variations in pedestrian 

movement. On the other hand, human activities do not evenly distribute over the network. 

When this uneven distribution of human activities conflicts with the primary pattern of 

natural movement, space syntax discarding meaning of space is rather limiting. Thus, we 

need to include discussions about sense of place represented by affordances.  

2.2 Space semantics 

People interact with and communicate about locations based on meanings they assign to 

them. In other words, people infuse “a sense of place” into physical space (Tuan, 1977). 

Meanings turn space into places. As for pedestrian movement, the sense of place 

influences decisions about destination choices and route selections. Specifically, 

pedestrian movement is attracted by meaning of space as how individuals perceive 

functions afforded by locations. Urban space can support a variety of functions related to 

land use types, such as residential, commercial, industrial, and transportation. The 

function of a place is determined by human activities or actions that it can occupy. 

Affordance based model of place fills in absence of semantic dimension of space. 

The concept of affordances was originally developed by Gibson (1977) when 

investigating how people visually perceive the environment. Gibson (2013) argued that 

affordances are measurable invariant property of an environment but is meaningful only 

when a user perceives it. The core of affordance lies in possibilities for activities 

provided by an environment and perceived by the user (i.e., pedestrian). This study 

focuses on affordances tied to locations. As for pedestrian movement, natural movement 

generated by spatial configuration relies on walkability affordances. Additionally, 

affordance is neither a property of a pedestrian nor of an environment but instead a 

relational property that fits between them (Jordan, Raubal, Gartrell, & Egenhofer, 1998; 

Wells, 2002). The term “fit” indicates that a pedestrian is capable of perception and 

activities/actions. Pedestrians with visual impairments rely on auditory and haptic hints 

and comprehend a different interpretation of spatial configuration (Kitchin, Blades, & 

Golledge, 1997). Pedestrians using wheelchairs afford different walking surface. External 

environmental conditions such as light, shadow, and weather also influence the 

perception of affordance. Raubal and Winter (2002b) found that landmark selection for 
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navigation were different between day and night, and between foggy and sunny days 

(Raubal & Winter, 2002a). From the perspective of agent-environment mutuality (Zaff, 

1995), spatial qualities such as color or size are meaningless unless the pedestrian can 

perceive affordance from them. Therefore, a top-down approach of pedestrian movement 

is not sufficient to capture sense of place perceived by pedestrian and not able to explain 

how people conduct perceptual wayfinding. Understanding meaning of space emphasizes 

an agent center perspective. Modeling perceptual wayfinding focuses on activity/action 

relevant properties of environment that can be utilized by the pedestrian. 

Examples in the original idea of affordance such as „sittability‟ or „climbility‟ derive 

action possibilities from physical properties relevant to agent‟s capabilities. But physical 

properties are not sufficient to explain affordance in complex behaviors of pedestrian 

movement. A pedestrian moves within spatiotemporal schedules and contexts with social 

and institutional rules. Although physical properties afford walkability, the utilization of 

this perceived affordance may not be accomplishable within space-time constraints or not 

be socially permitted. In addition, route planning is essentially a cognitive process of 

making decisions about destinations and routes which is neglected in Gibson‟s theory of 

affordances. In order to compensate these deficiencies, Raubal and Moratz (2008) 

proposed an extended model of affordances to break concept of affordance into three 

parts: physical, social-institutional, and mental. Most of Gibson‟s examples of 

affordances fall within the category of physical affordances. Social-institutional 

affordances (Raubal, Miller, & Bridwell, 2004; Raubal & Moratz, 2008) essentially 

describe contextual properties relevant to the pedestrian‟s socioeconomic and cultural 

backgrounds. For example, only pedestrians having membership get the access to the 

fitness center. Taking physical and social-institutional affordances as perceptual input, 

mental affordances refer to cognitive interpretation which influences decision about what 

perceived affordances to be utilized and further what actions or activities to be executed. 

This extended model of affordances goes beyond environment as perceived and serves to 

represent cognitive processes in pedestrian movement. Norman (2002) argued that 

affordance is the result of mental interpretation, in which past experiences and obtained 

knowledge are applied to perceptual information. A collection of perceived use of space 

from previous environmental experiences highlights functionally meaningful places. 

These semantically salient locations further serve as anchor points for future navigation. 

However, this extended model does not specify the temporal context of affordances. In 

order to understand affordances with time constraints, the inclusion of time geography 

studies in the background discussions is needed. Time geography studies will help to 

provide descriptions of situational context within a net of constraints. 

Time is an important component in describing affordances as the situational 

interpretation of the environment (Rasmussen & Pejtersen, 1995). Compared with slow 

transformation of spatial configuration, functions of places and patterns of human 

activities change rapidly. Time geography suggests that human activities are conditioned 

by three type of constraints: capability constraint, coupling constraint, and authority 

constraint (Hägerstraand, 1970; Miller, 1999). Specifically, capability constraints which 

describe limitations on activities due to inherent abilities and/or lacking tools are related 

to physical affordances. Authority constraints which describe limitations on activities due 

to the control of certain institutions are associated with social-institutional affordances. 
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What are not covered in extended theory of affordances are the coupling constraints 

which deal with interactions of an individual with others people or entities in a space-

time context (Raubal et al., 2004; Shaw & Yu, 2009). Coupling constraints require a 

pedestrian to reach a certain location within a time limit and stay for enough duration in 

order to engage in an activity, such as taking classes or attending a meeting. In order to 

represent a space-time context of activities, time geography provides a useful method of 

the space-time path (Hägerstraand, 1970; Raubal et al., 2004) which delineate a sequence 

of activities at various locations over a period of time in a 3-dimension graph (see Figure 

3, below). Slopes of segments in space-time path represent moving efficiency (Miller, 

2004). The steeper the slope is, the more time is required for moving per unit space. 

Vertical tube as shown in Figure 3 illustrates a stationary state in space called space-time 

station (Raubal et al., 2004). When considering interactions between a pedestrian and a 

place, vertical tube can also be used to represent the spatiotemporal context of physical 

properties and social-institutional rules, such as opening hours. Conjunction on the space-

time path indicates that a pedestrian and other people are co-present to engage in a social 

activity or a pedestrian reaches to utilize an opportunity of the activity. While space-time 

path describes sequential relations of activities conducted, space-time prism as shown in 

Figure 4 illustrates opportunities of activities offered by a space-time context. Time 

geography distinguishes fixed and flexible activities by the ease to rescheduling and 

relocation. Fixed activities such as working are imposed by more strict coupling 

constraints. As illustrated in Figure 4, if space and time of fixed activities are determined, 

the projection of space-time prism to geographical space demonstrates all locations 

accessible with reference to the travelling velocity of a pedestrian. Locations within this 

potential path area that support relevant functions results in a feasible opportunity set of 

places for the flexible activity. Space-time prism lies in the core of space-time queries 

from a person-specific perspective (Kwan, 1998). It goes beyond what perceived function 

of space is as described by the concept of affordance and illustrate whether a pedestrian is 

able to utilize and engage in the perceived possibility of activities with spatiotemporal 

constraints. Finally, the integration of time geography and affordance theory makes 

representing temporal details of pedestrian movement possible. 

                              

(Raubal et al., 2004) 

Figure 3  Space-time path and space-time station 

Space-time path 

Time 

Space-time station 

Geographical 
space 
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(Kwan, 1998) 

Figure 4 Space-time prism and potential path area 

(t1, t2: space and time of fixed activities; A: minimum duration required for the flexible 

activity; v: travel velocity) 

Wayfinding simulation is the next component of affordances within the literature to 

discuss. Agent-environment mutuality lies in the core at understanding meaning of space 

in terms of affordances. An affordance based model of place was developed to represent 

knowledge in the world in the agent simulation of perceptual wayfinding at the airport 

(Raubal, 2001, 2008; Raubal & Worboys, 1999). It also implemented in crowd simulation 

system to model perception of available actions in evacuation scenarios (Pelechano, 

Allbeck, & Badler, 2008; Sokhansefat, Delavar, & Banedj-Schafii, 2012). Furthermore, 

the concept of affordance is used to explain and evaluate effectiveness of environmental 

signage on indoor wayfinding performance (Vilar, Rebelo, & Noriega, 2014). Most of 

these wayfinding simulations using the affordance based model are conducted in an 

indoor scenario and focus on perceptual knowledge of explorative behaviors in an 

unfamiliar environment. The types of affordances modeled are limited to physical 

affordances relevant to actions such as „go-to‟ and „turn‟. When considering navigation 

on an urban network, pedestrians are situated within a more complex environment with 

social and institutional rules. Pedestrians are also engaged in types of activities in a 

spatiotemporal context. Therefore, how to integrate the concept of affordances and 

insights from time geography in modeling pedestrian movement is still challenging. 

In sum, space semantics in terms of affordances transforms a location on physical 

network into a meaningful place. From the perspective of affordances, places are 

locations with functional significance. Pedestrians travel to places and utilize possibilities 

of activities they can afford. In order words, space is meaningless to pedestrians unless 

they can perceive and utilize affordances from it. Affordances are essentially the person 

centered interpretation of possibilities for activities situated within a spatiotemporal 

context. Space-time prism from time geography serves as the theoretical foundation to 

represent spatiotemporal contexts and conduct space-time queries. However, this 

affordance based model of place has not been applied to wayfinding simulation in 

complex urban network. Additionally, although discussed in the extended model of 

affordances, the cognitive process behind mental affordances is unclear. How past 
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experiences are utilized in mental affordances, how mental affordances make decisions 

from alternatives and how to model the process of mental affordances are open to 

question. Cognitive psychologists and geographers have conducted studies of spatial 

cognition about the acquisition, organization and utilization of spatial knowledge. The 

concept of affordances is essentially grounded in ecological approaches to understand 

cognitive processes. 

2.3 Spatial cognition 

How a person moves essentially depends on how much the individual knows about the 

environment. There are two levels of spatial knowledge: (1) intuitive knowledge of the 

immediate environment at a perceptional level and (2) knowledge of the global structure 

at a cognitive level which results from a long term exposure to the environment 

(Golledge, 1997). Spatial knowledge stored in mind construct a cognitive map  although 

it is not necessarily conceptualized in the form of a classical map (Tolman, 1948; 

Tversky, 1992). Cognitive collage, rubber sheet map, and cognitive atlases are other 

metaphors developed based scattered information from multiple sources of perception 

(Mark, 1993; Tversky, 1993). Cognitive map (i.e., mental map) in this study refers to 

mental representation of environmental structures along with subjective meaning of 

places. Space syntax and space semantics are sources of spatial knowledge. For the 

purpose of modeling pedestrian movement, we will review relevant studies about mental 

representation of spatial configuration, landmarks and anchor point theory, and 

computational model of spatial cognition. 

Navigation particularly wayfinding is impossible without some kinds of mental 

representation for spatial configuration. Siegel and White (1975) classified mental 

representation for a new environment by three stages of construction: landmark 

knowledge, route knowledge, and survey knowledge. Landmark knowledge comprises 

salient, typically familiar features in the environment. Route knowledge consists of a 

sequence of landmarks with associated topological information. Survey knowledge is 

characterized by an understanding of the spatial layout of an environment and capabilities 

to locate landmarks and routes with reference of Euclidean distances and directions. 

However, this model is criticized for the strict sequence of knowledge development 

(Montello, 1998). Montello and Sas (2006) argued that spatial knowledge was acquired 

and stored as soon as the beginning of the first moving experience but the extension and 

elaboration continued over a long time period. As for salient features captured, Lynch 

(1960) extracted five elements in mental maps of a city by interviewing residents of three 

cities: nodes, landmarks, paths, edges, and districts. Nodes, paths and districts are spatial 

elements accessible on the moving path. Landmarks and edges serve as external strategic 

references for navigation, which are typically visually or semantically salient but not 

necessarily accessible to pedestrians (Conroy-Dalton & Bafna, 2003). This study about 

the image of the city also provides an analytical method of sketch map which is later 

widely used to represent the understanding of spatial layouts (Kim & Penn, 2004; Rovine 

& Weisman, 1989).  

Physical structures captured in cognitive map were found to be fragmented and 

systematically distorted. Pedestrians make spatial decisions based on fragmentary 

knowledge. The level of details in cognitive map is influenced by degree of syntactical 
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salience and familiarity. Specifically, spatial features located in areas with a higher 

integration resulted in a higher frequency of appearance in cognitive map (Kim, 2001). 

Detailed descriptions of the spatial layout was observed in familiar areas, while 

unfamiliar areas were associated with sparse information (Appleyard, 1970). As spatial 

knowledge is obtained from separate traveling experiences, cognitive map captures 

salient features of different spatial scales. The integration of separately learned routes 

into configurational knowledge was found to be more difficult in between-route 

inferences than within-a-route (Montello & Pick, 1993). In addition, the perception of 

spatial configuration is distorted systematically in cognitive space (Tversky, 1992). 

Spatial distortion results from tendency of simplification, error of alignment, and effects 

of hierarchical organization. Specifically, irregular shapes of spatial objects tended to be 

regularized (Glicksohn, 1994). Alignment tended to be simplified as lining up. Horizontal 

and vertical coordinates were favored in identifying directions. Faster judgement of 

directions and smaller estimate of distance are associated with a pair of in-region 

locations than a between-region pair. Stevens and Coupe (1978) found that estimated 

direction between San Diego, California and Reno, Nevada was biased by the fact that 

Nevada is east of California. McNamara (1986) observed similar outcomes in a room 

divided by barriers. Evidences of fragmentary knowledge and spatial distortion suggest 

that salient features captured by cognitive map are loosely connected in a hierarchical 

structure. 

Landmarks are crucial elements in mental representation of the environment. The concept 

of landmark was used in various different ways in the literatures (Couclelis, Golledge, 

Gale, & Tobler, 1987; Lynch, 1960; Sorrows & Hirtle, 1999a). What is in common is that 

landmarks have salient characteristics that distinguish them from other spatial objects and 

serve as an important role in conceptual organization and navigation assistance. This 

study extends the point notion of landmarks and includes linear and areal entities. We 

focus on why a feature serves as a landmark and how landmarks are used in pedestrian 

navigation. 

The concept of landmarks is grounded on distinctiveness of the feature. In other words, 

landmark saliency does not depend on individual qualities but on relative properties of 

contrast to nearby elements in the environment. Lynch (1960) argued that landmarks 

were identified because of local contrast to close features and high chances of being 

visible from many locations. Besides singularity and prominence of spatial location 

described by Lynch (1960), Sorrows and Hirtle (1999b) elaborated the list of 

characteristics that make a landmark salient: singularity, prominence, contents and 

prototypicality. Content salience refers to common understanding of cultural or historical 

significance. Similar to content salience, prototypicality is characterized by typical 

properties that represent a category. Sorrows and Hirtle (1999b) further categorized 

landmarks into visual, structural, and cognitive ones. As for measures of feature salience, 

Raubal and Winter (2002b) proposed a model to extract landmarks for route directions by 

visual, semantic, and structural attraction and conducted an empirical study in Vienna to 

test methods of visual and semantic salience (Nothegger, Winter, & Raubal, 2004). In 

order fill in the missing measures of structural attraction, Klippel and Winter (2005) 

investigated the conceptual complexity of using landmarks in route directions and 

derived the measure of structural salience from the ease of use. In addition, syntactical 
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properties of centrality are used to measure structural salience. Takes and Kosters (2014) 

suggested that centrality in terms of degree, betweenness, closeness, and PageRank were 

intuitive measures to select landmarks over a network. Claramunt and Winter (2007) 

conducted network analysis in named street network and used closeness centrality and 

betweenness centrality to investigate structural salience of places, paths, and districts in 

the image of the city. With GPS information widely used in mobile devices, landmark 

selection is shifted from measuring feature salience to learning from a collection of 

geotagged images (Kurashima, Iwata, Irie, & Fujimura, 2010; Shi, Serdyukov, Hanjalic, 

& Larson, 2011). In this study, salience of landmarks is determined by visual properties 

(visual contrast), syntactical properties (prominence of location), and semantic properties 

(content and prototypicality). 

Landmarks serve not only as an organizing concept in the formation of cognitive map but 

also as a navigational tool. Pedestrian navigation consists of locomotion and wayfinding 

(Montello & Sas, 2006). Locomotion refers to identifying a path towards a perceptible 

destination within an immediate environment without running to obstacles. Wayfinding 

aims to reach a destination through route planning. The route planning depends on an 

understanding of distal locations not directly accessible to perceptual systems. As for 

locomotion, pedestrians rely on landmarks to identify destination of the route. As for 

wayfinding, landmarks are used to identify decision points, origin and destination of a 

route, provide hints for self-orientation, confirm route progress, and signal crucial actions 

(Richter, 2007; Sorrows & Hirtle, 1999b). Landmarks have been used in pedestrian 

navigation services to enhance wayfinding instructions (Beeharee & Steed, 2006; Bessho, 

Kobayashi, Koshizuka, & Sakamura, 2008). Pedestrians were found to prefer landmark-

enhanced instructions to metric based directions (Rehrl, Häusler, & Leitinger, 2010). 

Additionally, landmark-based route instructions result in better performances in 

navigation than map or distance-and-turn based directions due to advantages of being 

easy to follow, less cognitive load, shorter learning time, and reduction of confusion 

(Beeharee & Steed, 2006; Goodman, Gray, Khammampad, & Brewster, 2004; Millonig 

& Schechtner, 2007). However, most of existing landmark-based pedestrian navigation 

system depends on collective knowledge for landmark selection, which is not adaptive to 

knowledge of individual pedestrian. 

Preferences of wayfinding strategies are different by gender and level of familiarity for 

an environment. On one hand, males demonstrated greater preference for directional cues 

while females relied on positional cues (Chai & Jacobs, 2010). When asked for direction, 

males tended to recall the distance and cardinal information while females preferred to 

use landmarks (Brown, Lahar, & Mosley, 1998). However, gender differences in 

preference of environmental cues did not lead to significant discrepancy in navigation 

performances (Ward, Newcombe, & Overton, 1986). On the other hand, for a navigation 

task in a multi-level building, inexperienced participants preferred the central-point 

strategy while more experienced pedestrians used the floor strategy (Hölscher, Meilinger, 

Vrachliotis, Brösamle, & Knauff, 2006). Central-point strategy relied on the most well-

known parts. The floor strategy selects routes that first head towards the vertical position 

of the destination. Experienced subjects also outperformed the inexperienced in terms of 

better route plan and shorter searching time (Hölscher et al., 2006). Familiarity also 

influences navigation performance due to effects of emotions and mood. In modeling 
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evacuation behaviors, familiarity with the building layout generated a level of confidence 

that allowed the occupants to detour and search for alternative routes in congestion 

(Gwynne, Galea, Lawrence, & Filippidis, 2001). Instead pedestrian under panic suffered 

from disorientation and eventually were stuck in traffic. 

Computation models of spatial cognition are developed in order to better understand 

cognitive processes, test empirical observations, and reproduce spatial behaviors. Three 

types of models are reviewed here: synergistic models, qualitative models, and robotic 

models. Synergetic models (see Figure 5, below) represent spatial cognition as a complex 

self-organized system consisting of mind and environment. Internal and external 

representations are expressed by pairs of stimulus and response. The dynamics of 

cognitive processes and the construction of cognitive map are manipulated by 

interactions between internal representation of the environment and external 

representations of knowledge in mind (Portugali, 1996). An update of spatial knowledge 

is conducted by adjusting values of parameters in mind based on response from the 

environmental stimulus. Complexity of synergetic models lies in temporally recursive 

operations under a large number of self-organized principles. The notion of synergetic is 

implemented in agent based modeling as the self-organized principle of disaggregated 

agents.  

 
(Portugali, 1996) 

Figure 5  Synergetic network mediating internal and external representations 

In qualitative models, cognitive processes are represented by a collection of qualitative 

statements and logical operations. Spatial-conceptual neighbor and wayfinding chroeme 

are two examples. Because of complexity in spatial tasks and limited capabilities of 

human cognition, spatial-conceptual neighbor model suggests only distinct environmental 

properties are stored in memory. Significant properties include uniqueness of spatial 

objects, topology of spatial arrangement, and conceptual structure, which are represented 

by the unit of spatial-conceptual neighbor. The spatial-conceptual neighbor is represented 

by a pair of spatial relations that have a direct transition from one relation to the other, 

such as “a is left of b” and “a touches b on the left” (Freksa, 1992). As shown in Figure 6, 

the model of spatial-conceptual neighbor also includes length information in terms of 

qualitative distance (A. U. Frank, 1998). The spatial-conceptual neighbor is useful in 

spatial reasoning particularly when working with spatial relations under uncertainty or 

with incomplete knowledge. Wayfinding chroeme model (Klippel, 2003) further adds 

functionality at adjunctions to spatial relations. As illustrated in Figure 7, the 

functionality lies in physical affordances in terms of actions to be performed relevant to 

the spatial relation. Qualitative models grounded in the qualitative abstraction of spatial 
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relations contribute to an understanding of spatial reasoning and the forming of 

procedural knowledge. 

 
(Freksa, 1992) 

Figure 6  Fifteen qualitative orientations and locations specified by spatial-conceptual 

neighborhood  

 
(Klippel, 2003) 

Figure 7  Wayfinding chroeme 

Robotics develops models of spatial cognition in order to investigate elements needed for 

an automatic system of spatial behaviors. TOUR model is a robotic model that integrates 

procedural knowledge, topological knowledge, and metrical knowledge (Kuipers, 1978). 

Specifically, procedural knowledge is represented by commands of turning and going. 

Topological knowledge describes connections between routes while metric knowledge 

refers to an understanding of distances and orientations. But TOUR model discards 

representation of survey knowledge. In order to overcome this limitation of TOUR model, 

an alternative spatial semantic hierarchy model develops an extended structure for spatial 

knowledge, in which knowledge at control, causal, topological, and metrical levels is 

chained through logical interactions (see Figure 8, below). Robotic models provide an 

engineer approach to capture and construct the mental representation of spatial 

configuration by explorative behaviors of robots. 
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(Kuipers, 2000) 

Figure 8  Spatial semantic hierarchy 

In sum, from the perspective of information processing approaches, mind serves as the 

central control system of cognitive processes, which takes perceptual information as an 

input and responses with instructions of actions. The cognitive map stored in mind 

consists of physical locations and their spatial relations (i.e., spatial syntax). From the 

perspective of ecological approaches, spatial knowledge does not rely on internal 

processing of cognitive map but is perceived and utilized through interactions with the 

environment. In other words, all information needed for cognitive processing is present in 

the environment and no memory is stored in mind. Specifically, cognitive processes rely 

on opportunities provided by the environment (i.e., affordance) (Heft, 1996). A 

pedestrian must actively search an environment in order to perceive an affordance. 

Ecological approaches provide a better explanation to fast responses in functionally 

specific behaviors such as reading directional signage and perceiving use of space. In this 

study, we argue that syntactical information and semantic interpretation are both the 

sources of spatial knowledge. Constructing cognitive map depends on hybrid approaches 

which support central storage and processing of environmental structures along with 

internal abstraction of subjective meaning for places. Wayfinding chroeme (Klippel & 

Winter, 2005) provides a promising model that integrates spatial relations and physical 

affordances although it is only used to describe route information. Visually, syntactically 

and semantically salient features are stored in cognitive map as landmarks which serve as 

the most predominant cues for pedestrian navigation. Pedestrian navigation systems 

enriching route instructions with landmarks lead to better navigation experiences and 

performances. However, whether landmark-based route instructions predict or 

outperform the intuitive way of pedestrian navigation remains to be investigated. In 

addition, these landmark-based pedestrian navigation services are grounded on collective 

knowledge of space and not adaptive to knowledge of individual pedestrian.  
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2.4 Agent based modeling 

Agent-based modeling (ABM) provides a bottom-up approach to examine pedestrian 

movement patterns from simulation of individual pedestrian navigation. ABM is also an 

intuitive way to model complex behaviors of pedestrian navigation which inherently 

autonomic and distributed (de Smith, Goodchild, & Longley, 2009). Within ABM, 

navigation is grounded on cognitive map of individual pedestrian. A typical structure of 

ABM consists of agents, an environment, and relationships between agents as well as 

between an agent and the environment. 

The agent in ABM has some typical features: autonomy, heterogeneity, explicit space, 

local interactions, bounded rationality, and non-equilibrium dynamics (Bonabeau, 2002; 

Macal & North, 2005). With respect to the form of intelligence, agents are classified into 

reactive agents (i.e. behavior-based agents) and deliberative agents (i.e. intelligent agents), 

which leads to different modeling architectures (Franklin & Graesser, 1997; Wooldridge 

& Jennings, 1995). On one hand, the idea of reactive agents is close to ecological 

approaches of cognitive processes. Specifically, intelligence does not depend on the 

complex mental computation but on physical interactions with an environment. No 

abstract representation of the environment is stored in memory. Reactive moving agents 

were used to simulate flock behaviors (Reynolds, 1987; Spector, Klein, Perry, & 

Feinstein, 2003) and reactive robots wandering around without collisions (Brooks, 1986). 

On the other hand, the idea of deliberative agents is close to information processing 

approaches. Deliberative agents rely on a mental representation of the world stored in 

memory to pursue a long-term complex goal.  

Learning and adaptive behaviors are observed in pedestrian navigation. Three types of 

learning paradigm are usually applied in computational models: supervised learning, 

unsupervised learning, and reinforcement learning. In the supervised learning, the correct 

answer is offered after each action. Learning agents are trained to produce output close to 

the known correct answer. As for the unsupervised learning, no explicit target output is 

associated with each attempt (Dayan, 1999). The intelligence emerges from the 

underlying structures of data patterns. Reinforcement learning (RL) provides a trial-and- 

error approach to model learning capabilities, which benefits from shorter response time. 

In response to actions, the learning agent receives feedback in terms of rewards or 

punishments instead of the correct answer to be learned. A typical RL model consists of 

four components: reward, value, policy, and environment (Samson, Frank, & Fellous, 

2010).  

In sum, pedestrian navigation is a situated, yet planned task. On one hand, locomotion 

part conducts simple reactive behaviors in response to direct perception of environmental 

cues without information retrieval from memory. On the other hand, wayfinding partially 

relies on a cognitive map collected from past experiences to search for an „optimal‟ route. 

ABM provides an integrated framework to coordinate heterogeneous agents and serves as 

an intuitive framework to model pedestrian navigation. One of the most significant 

strengths of ABM lies in the flexibility of simulating complex scenarios of pedestrian 

behaviors, particularly simulating special cases which are hard to be tested in reality such 

as evacuation during emergent disasters. In geospatial models, complexity of 

spatiotemporal objects has been identified in changes of internal structure, changes of 
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movement and changes of geometry (Goodchild, Yuan, & Cova, 2007). ABM essentially 

captures the fourth dimension of complexity which lies in propagation from individuals 

to the aggregated whole. This propagated complexity essentially results from a 

hierarchical nature of spatiotemporal behaviors.  

2.5 Summary 

This chapter reviews relevant concepts and studies in urban planning, time geography, 

ecological psychology, cognitive science, and artificial intelligence, which builds the 

theoretical foundation for this interdisciplinary study about pedestrian movement. The 

literature review reveals three important points: 

1. Space syntax can be utilized as a tool to quantify configurational properties of network 

structures. Evidences show significant correlation between network syntax and 

aggregated traffic flows. Spatial configuration places constraints on navigation behaviors 

because it encourages or impedes route selections through cognitive representation of 

network structures. Cognitive map in spatial cognition captures spatial syntax of 

configuration in real environments. 

2. Pedestrian movement is attracted by places of activity opportunities. Commercial 

activities and museum visits benefit from central locations in spatial configuration which 

suggest higher chances of traffic flows passing through. Some researchers even argue that 

spatial configuration is the primary generator of attractors for human activities although 

this point of view discards individual variations and temporal details. People do not have 

information about all opportunities. Environmental perception and cognitive constraints 

play an important role in determining which opportunities are accessible to them. Time 

geography provides useful methods to represent pedestrians‟ activity patterns and analyze 

possibilities of activities within the spatiotemporal contexts.  

3. Salient features embedded in spatial configuration and captured by spatial experiences 

are loosely connected as landmarks in cognitive map. Landmarks serve as the most 

predominant cues for pedestrian navigation and are used to enrich route instructions. 

Individual preferences of wayfinding strategies have been observed between genders and 

by levels of familiarity for an environment. But existing pedestrian navigation services 

are not adaptive to knowledge of individual pedestrian and short of task specific route 

search.  

We also summarize content categories of previous studies related to space, cognition and 

pedestrian movement. As show in Table 2, most of studies emphasize up to three aspects 

of content categories. Studies from three aspects of space syntax, space semantics and 

spatial cognition, such as Sorrows and Hirtle (1999b) and Claramunt and Winter (2007), 

concentrates on evaluating structural and semantic salience of environment features and 

identifying salient elements stored in cognitive map. However, whether and how these 

salient features are used in assisting pedestrian navigation is not examined. Studies from 

three aspects of space syntax, space semantics, and pedestrian movement, such as Kwan 

(1998) and Dijst and Kwan (2005), illustrate how people‟s choice of activities is 

determined by individual action spaces and space-time accessibility. These studies do not 

take cognitive constraints into account and rest on assumption that people are able to 

capture all opportunities in the environment. In studies from other three aspects of space 
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semantics, spatial cognition and pedestrian movement, such as Raubal (2001), 

pedestrians rely on environmental cues to perform perceptual wayfinding but are not able 

to construct cognitive map. In contrast, in studies from three aspects of space syntax, 

spatial cognition, and pedestrian movement, such as Turner (2007b) and Gwynne et al. 

(2001), pedestrians are able to have memory of spatial layouts and decide where to go 

using stored information. Due to the lack of space semantics, these studies only deal with 

explorative behaviors or are conducted in experimental settings of emergency evacuation 

when the only goal is to find exits. Few existing models (Pelechano et al., 2008) provide 

comprehensive solutions to pedestrian movement taking both space and cognition into 

account. 

Based on the literature review, it is intuitive to bridge space syntax, space semantics and 

spatial cognition in a comprehensive framework for pedestrian movement. The 

conceptual framework developed in this study aims to integrate syntactical analysis and 

semantic knowledge abstraction in modeling cognitive map and further examine whether 

and how identified landmarks are used in pedestrian navigation. Empirical studies within 

the campus area make it possible to verify whether collected landmarks can be identified 

by evaluating the salience of features and how this same group of participants uses these 

identified landmarks to choose destinations and select routes. The conceptual framework 

is finally used to develop the prototype form of an agent based model for pedestrian 

navigation.   

Table 2 Content categories of literatures 

Studies Syntax Semantics Cognition Pedestrian movement 

Lynch (1960) X  X X 

Ward et al. (1986)   X X 

Rovine and Weisman (1989)   X X 

Hillier et al. (1993) X 

  

X 

Heft (1996) 

  

X X 

Kwan (1998) X X  X 

Montello (1998)   X X 

Penn et al. (1998) X   X 

Choi (1999) X 

  

X 

Read (1999) X   X 

Sorrows and Hirtle (1999b) X X X 

 Dalton (2001) X 

  

X 

Desyllas and Duxbury (2001) X 

  

X 

Gwynne et al. (2001) X 

 

X X 

Kim (2001) X  X  

Penn and Turner (2001) X   X 

Raubal (2001)  X X X 

Asami et al. (2003) X X 

  Bafna (2003) X 

 

X 

 Klippel (2003) 

  

X X 
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Kuipers et al. (2003)   X X 

Goodman et al. (2004) 

  

X X 

Miller (2004) X X   

Nothegger et al. (2004) X X X 

 Raubal et al. (2004)  X X X 

Dijst and Kwan (2005) X X  X 

Hölscher et al. (2006) X  X X 

Millonig and Schechtner (2007)   X X 

Montello and Sas (2006)   X X 

Montello (2007) X  X X 

Claramunt and Winter (2007) X X X 

 Turner (2007a) X   X 

Turner (2007b) X  X X 

Pelechano et al. (2008) X X X X 

Bin Jiang (2009) X   X 

Morello and Ratti (2009) X  X  

Porta et al. (2009) X X   

Shaw and Yu (2009) X X   

Rehrl et al. (2010)   X X 

Bin Jiang and Jia (2011) X   X 

Meilinger et al. (2012) X  X X 

Lerman, Rofè, and Omer (2014) X   X 

Takes and Kosters (2014) X 

 

X X 

Li, Xiao, Ye, Xu, and Law (2016) X X  X 

Batty (2017) X X  X 

Summers and Johnson (2017) X X   
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Chapter 3: Conceptual framework and methodology 

This chapter describes in details the empirical and analytical methods used in this study. 

It begins with the construction of conceptual framework. The conceptual framework 

breaks analysis into three components: space syntax, space semantics, and spatial 

cognition. The proposed conceptual framework is then utilized to guide the empirical 

study. Study area, data collection, and survey design are outlined. The analytical method 

specifications start with measures of network centrality and functional centrality.  They 

are followed by the sketch map analysis. Finally, the chapter compares calculated routes 

using different criteria and the routes chosen by survey participants to examine the 

concepts of distances and uses of landmarks in route selections. 

3.1 Conceptual framework 

Central to this discussion on space, cognition and pedestrian movement is the premise 

that space syntax and space semantics of an environment influence the development of 

spatial cognition which guides moving behaviors. In other words, where people choose to 

hold activities and how people choose to get there depend on individuals‟ cognitive maps 

(i.e. spatial cognition) of the environment in which the layout of roads, buildings, open 

space and other features (i.e. space syntax) as well as the actual or potential utilities of 

these features (i.e. space semantics) are representative elements.  

Due to the interdisciplinary nature of pedestrian movement studies, the conceptual 

framework as shown in Figure 9 is built on a comprehensive treatment of space syntax, 

space semantics and spatial cognition. We use specific concepts from the fields of urban 

planning (i.e., space syntax), time geography (i.e., potential path area), ecological 

psychology (i.e., affordances), cognitive science (i.e., cognitive map), and artificial 

intelligence (i.e., agents) to design the process model. The analysis is conducted from 

three dimensions: (1) space syntax to characterize spatial configuration or structure, (2) 

space semantics to address functions and affordance of space for activities that 

individuals experience and interpret, and (3) spatial cognition to capture one‟s knowledge 

about the space. On one hand, space syntax is assumed static because the built 

environment features and network structures changes slowly over time. On the other hand, 

space semantics characterized by perceived activity space within the potential path area is 

determined by space-time contexts and is modified by experiences within that 

environment. Space syntax can influence semantic salience of a place, depending on 

characteristics of activities. For example, commercial activities are more likely to choose 

locations of structural salience. Both space syntax and semantics serve as cues to activate 

one‟s cognitive map. This cognitive map consists of the salient layout of spatial features 

as well as the prominent utilities afforded by these features. These salient features with 

visual attraction, syntactical prominence and semantic significance are identified as 

landmarks in cognition map. Landmarks deform the grid layout of network and serve as 

the most predominant cues for pedestrian navigation. Based on cognitive map, 

wayfinding decisions are made by the pedestrian agent, particularly determining where to 

go and how to get there. A successful navigation corresponds to a sequence of 

explorative and purposive actions ending at the perceived destination. With more 

exposure to an environment, one‟s cognitive maps are also gradually updated and further 

modify spatial behaviors. 
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Figure 9 Conceptual framework of pedestrian movement 

3.2 Study area 

The empirical study was conducted at the University of Oklahoma Norman campus 

which can be regarded as a miniature version of an urban neighborhood. In the year 2015 

when data was collected, 27,261 students, 1,660 faculty members and 3,916 staff 

members attended the campus which consisted of 210 buildings (Figure 10) covering a 

considerable portion of the city Norman, Oklahoma. This study area is a 3.8 km
2
 

pedestrian-friendly neighborhood. The core academic area with the densest campus 

activities is located in the northern part of this study area. 

 

Figure 10 OU Norman campus and the street network 
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3.3 Data description 

To address how space and cognition affect the distribution of pedestrian movement, it is 

necessary to compile data from different sources and merge them into a single database. 

First, pedestrian volumes were collected by on-site observations. Second, a survey was 

conducted with faculty, staff, and students to collect data about activity patterns, route 

selections and sketch graphs of campus layouts. Third, the general distribution of human 

activities was described by WiFi usage acquired from the information technology 

department. 

3.3.1 Gate counts of pedestrian flows 

Gate counts are used to establish the flows of pedestrians at sampled locations within the 

campus area over the course of a day. A gate is a conceptual line across a street while 

gate counts refer to the number of pedestrians crossing that line in either direction. 

Pedestrian observation concentrated on the 0.8 km
2
 academic areas where the majority of 

campus activities occurred on weekdays. Specific 67 gates (Figure 11) within the 

academic areas were observed for five minutes during weekdays at two periods of time 

including mid-morning period between 10:00 am and 12:00 noon and mid-afternoon 

period between 2:00 pm and 4:00 pm. This study employed six people to carry out the 

observation, each of whom covered 11-12 gates since most of gates were not far apart. 

Within each time period, two rounds of observation were carried out including one round 

from gate 1 to 12 and the other reverse round from gate 12 to 1. As shown in Figure 11, 

the average observed flows of pedestrians ranged from high flows of 1,044 pedestrians 

per hour (i.e., 87 per five minutes) to low flows of 60 pedestrians per hour (i.e., 4 per five 

minutes). When examining the statistical properties of the observed pedestrian flows, this 

study found that most of street segments have low volume while only a small proportion 

of segments have high volume. Specifically, as shown in Figure 12, 25% of segments 

contributed to about 50% of the observed pedestrian volume. 
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Figure 11 Average gate counts using 5-minute samples at 67 sampled locations 

 

Figure 12 Cumulative distribution of observed pedestrian flow with ranked segments 
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3.3.2 Survey 

An interview survey was conducted to obtain data about activity patterns, route selections 

and sketch graphs of OU Norman campus. The survey had been reviewed and approved 

by the Institutional Review Board (IRB) at the University of Oklahoma. The purpose of 

this survey is to identify how people of different groups use space for types of activities, 

how individuals choose the route to a destination, and what spatial objects stored in 

memory are physically and psychologically important to the subject. Therefore, 

participants were asked to (1) draw a sketch map about the physical layout of OU 

Norman campus from memory; (2) response to questions about their spatial experience at 

OU, their perception of use of campus space, and their route selection to specific 

destinations. More specifically, the task of sketch map was the first part of survey 

interview so that the map was drawn from memory without reference to other map 

products. Voluntary participants were given 8.5‟‟×11‟‟ sheet of plain white paper and 

asked to sketch an image of OU campus including everything he/she remembered about 

the campus area. The participants were instructed that the purpose of this sketch map was 

to help a visitor to explore and navigate on campus. No time limit was set for this task as 

related studies suggested that most of participants would finish it within 15 minutes 

(Blades, 1990; Poppinga, Magnusson, Pielot, & Rassmus-Gröhn, 2011). As the second 

part regarding perceived use of campus space, participants first indicated their most 

frequent activities on campus and identified all or the top three areas that they would go 

for varied types of activities. The choices of location were collected for nine type of 

activities which covered most of common activities on campus: (1) hanging out with 

friends or colleagues, (2) looking for something for fun or entertainment (e.g., movies, 

billiards, watching TV), (3) self-studying, (4) organizing group study or group meeting, 

(5) looking for open lectures or seminars, (6) eating lunch, dinner or snacks, (7) doing 

physical exercises or physical activities (e.g., Frisbee, walking, weight-lifting), (8) 

parking or taking public transit, and (9) taking a nap or break. The last part of the survey 

was the route selection task. Theses voluntary participants were asked to draw the 

preferred route that they may take between two campus buildings. The route selections 

tasks were followed by an open question about the reasons for choosing the specific route. 

This study specifically conducted two route selections tasks:  the route between Bizzell 

Memorial Library and Sarkeys Energy Center and the route between Sarkeys Energy 

Center and Dale Hall. These selected buildings were best known by OU students, staff, 

and faculty. The detailed survey design is stated in Appendix A.  

The survey was conducted by face-to-face interviews through a convenient sampling on 

Norman main campus. The convenient sample for survey participation used any subjects 

that were available to participate in the research study. The recruitment of volunteers 

included advertisement on bulletin boards in campus buildings, brief announcement 

before class with the permission of instructors, and email invitation to all faculty, all staff, 

and all students through the OU mailing system. The survey was scheduled at noon on 

every Monday, Wednesday, and Friday in different survey locations between 10/5/2015 

and 12/4/2015. Overall 126 volunteers participated in the survey interview. Compared 

with other empirical studies using the sketch map methods (Table 6), this sample size 

provided an appropriate number of observations for the purpose of this study. 

Additionally, the surveys also collected each participant‟s demographic characteristics 

such as gender, race, role, the number of years and self-report of familiarity level with the 
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campus layout. Although the survey interview were conducted through convenient 

sampling, compared with OU facts, no systematical bias by participant types (Table 3), 

gender (Table 4) or race (Table 5) were observed in the sample of participants. 

Table 3 Comparison of participant type for sample frame and sample 

Role 

Total Sample 

frame 

Fall 2015 

% of Participant 

Type for Sample 

frame 

Survey Participants 

Sample 

(Actual) 

% of Participant 

Type for Sample  

Faculty 1,660 5.1% 7 5.6% 

Staff 3,916 11.9% 13 10.3% 

Student 27,261 83.0% 106 84.1% 

Total 32,837   126   
 

Table 4 Comparison of gender for sample frame and sample 

Role 

Sample Frame Sample 

Fall 2015 Male 
Fall 2015 

Female 

Male 

Participants 

Female 

Participants 
Other 

Faculty 900 54.2% 760 45.8% 3 42.9% 4 57.1% 0 0.0% 

Staff 856 21.9% 3,060 78.1% 3 23.1% 10 76.9% 0 0.0% 

Student 13,939 51.1% 13,323 48.9% 53 50.0% 52 49.1% 1 0.9% 
 

Table 5 Comparison of races for sample frame and sample 

Races 
Total Sample frame 

Fall 2015 

Survey Participant 

Sample (Actual) 

White 69.9% 62.7% 

Native American 8.7% 4.2% 

Asian 6.4% 10.6% 

Black 6.5% 7.0% 

Hispanic 8.0% 12.0% 

Others 0.6% 3.5% 

 

Table 6 Empirical studies using sketch map methods and sample sizes 

Studies City/Area (Country) Sample size 

Lynch (1960) Boston, Jersey City, Los Angles (United States) 60 

De Jonge (1962) Amsterdam, the Hague, Rotterdam (Netherlands) 72 

Gulick (1963) Tripoli (Lebanon) 35 

Tversky (1981) Palo Alto (United States) 47 

Yan (1990) Beijing (China) 432 

O'Neill (1991) Building floor plan 63 
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Yeung and Savage (1996) Orchardscape (Singapore) 291 

Kim and Penn (2004) Hampstead Garden Suburb (London, United Kingdom) 76 

Haq and Girotto (2003) University hospital and city hospital 96 

Yun and Kim (2007) Yonsei University (Seoul, South Korea) 39 

3.3.3 Spatial distribution of WiFi usage 

In this study, WiFi usage is selected to represent spatial distribution of human activities 

on campus. An earlier study at MIT found that 73% of students use their laptops 

equipped with WiFi on campus every day or some days of the week (Sevtsuk, 2009). The 

popularity of campus WiFi has been further enhanced with the development of ubiquitous 

WiFi infrastructure and smart phones. Therefore, WiFi usage serves as a proxy measure 

to describe daily working and living patterns on campus. The WiFi usage on campus was 

collected by the department of information technology at OU (OU IT) for two weeks 

between 11/9/2015 and 11/24/2015. OU IT provides us with the average daily WiFi 

usage by building during work days. This WiFi usage is determined by the number of 

users within the coverage of the access point although these users may not actually be 

using the access point. In the data that was made available to us, wireless traffic in 59 

buildings on OU campus was observed (Figure 13). These buildings include most of 

academic offices and classrooms but exclude housing, parking and utility facilities. 

 

Figure 13 Spatial distribution of daily average WiFi usage in campus academic area 

3.4 Method specification 

Based on the conceptual framework as shown in Figure 9 above, the analysis proceeded 

from three dimensions: network centrality analysis, functional centrality analysis, and 

sketch map analysis. The specific method and data would vary for different analytical 
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aspects (see Table 7, below). The definition of variables will be discussed in details in the 

following subchapters. The first part is to examine relationships between the specific 

aspects of space and the patterns of pedestrian flows. Space is characterized by network 

centrality and functional centrality. The study uses the observed pedestrian flows as the 

dependent variable with two kinds of explanatory variables including syntactical 

variables describing the structural centrality of network and semantic variables describing 

the contextual characteristics for pedestrian movement in the study area. The second part 

is to investigate how these syntactically and semantically salient features are expressed in 

the sketch map of campus layouts. The study also examines the influences of spatial 

familiarity on the forming of cognitive map. A logistic regression model is used to assess 

the impacts of network centrality, functional centrality, and familiarity on predicting the 

presence of landmarks. The third part is to investigate how landmarks are used in 

individual route selections and develop a landmark based approach of pathfinding. 

 

Table 7 Data and method in the analytical dimensions 

Analytical 

dimensions 

Analytical 

chapters Data 

Collection 

methods Variable 

Analytical 

method 

Space 

syntax 

Chapter 4.1: 

Network 

effects on 

pedestrian 

movement 

Street 

network 

Campus 

GIS 

database 

Degree 

▪ Correlation 

analysis 

PageRank 

Closeness 

Betweenness 

Space 

semantics 

Chapter 4.2: 

Impacts of 

spatio-

functional 

interaction 

on 

pedestrian 

movement 

WiFi 

usage 

IT 

department 

database 

Number of 

users 

connected to 

WiFi 

▪ Kernel 

density 

estimation 

▪ Correlation 

analysis 

Activity 

pattern 

Survey 

interview 

Perceived 

functional 

densities 

▪ Multiple 

regression 

methods 

Perceived 

functional 

diversity 

▪ Multiple 

regression 

methods 

Spatial 

cognition 

Chapter 4.3: 

The image 

of OU 

campus 

Sketch 

map 

Survey 
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3.4.1 Network centrality analysis 

The core of space syntax studies lies in the proposition that spatial configuration of urban 

street network is the primary generator of pedestrian flows. Spatial configuration is 

characterized by network centrality which identifies important street based on its position 

in the network. The association between space syntax and pedestrian movement are 

examined by the correlation analysis between network centrality measures and observed 

pedestrian flows. 

3.4.1.1 Street based representation 

As described in Chapter 2.1, spatial syntax analysis is grounded on the representation of 

urban structures. Street based analysis of spatial configuration is chosen over axial lines 

based representation in this study for a variety of reasons. First, road centerlines have 

been easily available for use within geographical information systems. The space syntax 

community still argues about the necessity and exact definition of axial lines (Batty & 

Rana, 2004; Ratti, 2004). Secondly, this intuitive way of using road centerlines as the 

skeleton network is able to represent precise positions of street intersections and edges. In 

contrast, the construction of axial map relies on refinement of researchers in deciding 

whether or not a certain split of axial line in the environment is important (B Jiang & Sun, 

2008). The choice of minor shift in configuration leads to significant differences in 

analytic results (Ratti, 2004). Thirdly, street network allows us to work with varied 

concepts of distances for navigation choices such as metric, topological, and geometric 

distances. Axial map based analysis depends on the notion that pedestrian movement is 

shaped by topological properties of urban grids.  

3.4.1.2 Measures of centrality in street networks 

Space syntax literatures provide a set of quantitative measures to describe spatial 

configuration of urban structures and identify important segments that lie at the central 

positions over the network. Network centrality in this study is described from four 

aspects: 1. degree centrality as being adjacent to others (i.e., connectivity as it is called in 

axial map analysis); 2. PageRank as being clustered with other central segments (i.e., 

eigenvector centrality); 3. closeness centrality as being close to others (i.e., integration as 

it is called in axial map analysis); and 4. betweenness centrality as connecting two other 



 

34 
 

nodes (i.e., choice as it is called in axial map analysis). On one hand, both degree 

centrality and PageRank are grounded on link analysis. Specifically, degree centrality is 

based on the idea that important nodes have the largest number of linkages connecting 

them to different directions. As shown in equation (1) below, the measure of degree 

centrality for a node is determined by the number of nodes adjacent to it (Wasserman & 

Faust, 1994). Two nodes are adjacent if they are linked by an edge. Nodes with a large 

number of first neighbors are considered as the central locations in the network graph. 

PageRank provides a recursive view that a highly ranked node is likely to receive 

connection from other highly ranked nodes (Bin Jiang, 2009). The computational 

iteration starts from equal PageRank scores for all nodes and ends when convergence is 

reached. For each iteration, a node either selects a connected node with probability of d  

or jumps to a randomly chosen node with probability of 1 d . The damping factor d can 

be set between 0 and 1 but 0.85 is widely used in ranking web pages (Brin & Page, 1998). 

This study uses a weighted PageRank (Bin Jiang, 2009) in equation (2) where a 

PageRank score is not evenly divided over nodes that it connects with but is distributed 

by the proportion of their degree centrality. In other words, a node with a higher degree 

centrality contributes more to the propagation of PageRank scores. On the other hand, 

closeness and betweenness (Crucitti et al., 2006) go beyond the identity of one node and 

emphasizes the distribution of centrality by passing through all nodes in the network. 

Closeness is determined by the sum of distances to all the other nodes through the 

shortest paths (see equation (3) below). Closeness conceives of a network position as 

accessibility to all the others. Betweenness shown as equation (4) is based on the idea that 

a central node lies in the position traversed by many shortest paths between all pairs of 

nodes. Betweenness suggests that a network position has strategic control and influence 

on the others. 

(1)

1,

0,

i ij

ij
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Network centrality is essentially grounded on three assumptions: (1) pedestrians choose 

the route with the shortest length, (2) probabilities of traveling from one node to any 

other nodes are equal, and (3) the distribution of origin-destination (OD) pairs 

corresponds to that of network edges. This study goes beyond the centrality measures in 

the previous space syntax studies and challenges these assumptions by taking into 

account the varied distance concepts, the distance decays effects, and the spatial 

heterogeneity of human activities. 

3.4.1.3 Varying distance concepts in centrality analysis 

Most of network centrality analysis, particularly the calculation of closeness and 

betweenness, depends on shortest distance measured metrically (Crucitti et al., 2006). 

However, empirical evidence from cognitive science studies suggested that geometric 

and topological factors were also involved in navigational choices (Hillier et al., 1993; 

Montello, 2007). Therefore, this study extends the notion of the shortest distance in 

network centrality to metric, topological, and geometric concepts. As shown in Figure 14, 

criterions of metric, topological, and geometric distance search for the shortest route of 

least lengths, fewest turns, and least angle changes respectively. Figure 14 represents the 

shortest route by length (a), turn (b), angle changes (c) from location A to location B. 
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Figure 14 Types of the shortest routes 

(a) metric distance; (b) topological distance; (c) geometric distance 

Additionally, this study examined network centrality measures within a set of defined 

radiuses since previous space syntax studies suggested that local measures of centrality 

applied to smaller sample areas resulted in better performance in predicting pedestrian 

flows (Bin Jiang & Liu, 2009). Only pairs within these defined radiuses were used to 

calculate the shortest distances. As illustrated in Figure 15, these radiuses of analysis 

were also determined by metric, topological and geometric distances. In Figure 15, red 

dash lines described neighboring radius of distances from segment E. Specifically, local 

centrality measures were calculated for neighbors within 500, 750, 1000, 2500, 5000, and 

10000 feet. Topological neighbors were analyzed for every third radius from 3 to 15 turns. 

Geometric neighbors included segments within directional changes of 90, 180, 270, and 

360 degrees. This gives 90 different mathematical interpretation of the network centrality 

(see Table 8, below): closeness and betweenness measures applied to the shortest length, 

fewest turns and least angle changes within specific metric, topological, and geometric 

radiuses of analysis. 

 

Figure 15 Radius of analysis by metric, topological and geometric distances 
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Table 8 Closeness and betweenness within metric, topological and geometric radiuses 

Network 

centrality 

Criteria of the 

shortest distance Metric radius 

Topological 

radius 

Geometric 

radius 

 

 

 

 

 

 

Closeness 

Betweenness 

Metric 

(shortest length) 

Metric_M500, 

Metric_M750, 

Metric_M1000, 

Metric_M2500, 

Metric_M5000, 

Metric_M10000 

Metric_T3, 

Metric_T6, 

Metric_T9, 

Metric_T12, 

Metric_T15 

Metric_G90, 

Metric_G180, 

Metric_G270, 

Metric_G360 

Topological 

(fewest turns) 

Topo_M500, 

Topo_M750, 

Topo_M1000, 

Topo_M2500, 

Topo_M5000, 

Topo_M10000 

Topo_T3, 

Topo_T6, 

Topo_T9, 

Topo_T12, 

Topo_T15 

Topo_G90, 

Topo_G180, 

Topo_G270, 

Topo_G360 

Geometric 

(least angle 

change) 

Geom_M500, 

Geom_M750, 

Geom_M1000, 

Geom_M2500, 

Geom_M5000, 

Geom_M10000 

Geom_T3, 

Geom_T6, 

Geom_T9, 

Geom_T12, 

Geom_T15 

Geom_G90, 

Geom_G180, 

Geom_G270, 

Geom_G360 

3.4.1.4 Distance decay effects 

Pedestrian navigation is not simply random walk over the network. Studies about human 

mobility patterns suggest that the distribution of trip lengths is governed by the distance 

decay effects (Brockmann, Hufnagel, & Geisel, 2006). The concept of radius in local 

measures of network centrality is essentially a practice of truncating the analysis after a 

maximum distance. This truncating prioritizes segments close to the target segment while 

ignores segments falling outside the radius, which is a kind of distance decay. This study 

attempts to further generalize radius of analysis and bring together betweenness centrality 

and distance decay effect. Distance decay refers to the idea that the further away from the 

target object, the less likely it will make an influence. This distance decay effect has been 

widely identified in many geographic phenomena and been expressed by the first law of 

geography (Tobler, 1970). The general distance decay function is formulated as the 

equation (5). When applied to the calculation of betweenness centrality, distance decay 

functions are used to describe the probabilities that the shortest paths occur (see equation 

(6) below). That is, the probability that the shortest path passes through the target 

segment follows a power law distribution given the length of the shortest distance. The 

choice of distance decay coefficient β in equation (6) represents different types of spatial 

structures and spatial behaviors (Hansen, 1959). This study tries different β values 

between 0.5 and 2.5 to search for the best betweenness centrality weighted by distance 

decay effect in explaining observed pedestrian flows. 
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3.4.1.5 Spatial heterogeneity of activities 

Campus activities are not uniformly distributed and will influence the potential OD 

distribution of pedestrian movement. The hypothesis that spatial configuration 

independently contributes to the pedestrian flows has not been empirically tested by 

controlling activities patterns variations. Thus, this study continues to inspect how the 

distribution of activity density influences the network effects on pedestrian movement. 

Specifically, a spatial variable is introduced to betweenness centrality, which accounts for 

the spatial heterogeneity of campus activities. In this study, the spatial distribution of 

campus activities was approximated by the average daily WiFi usage. When activities are 

considered as a part of centrality measures, the probability of a trip is determined by a 

gravity model which is proportional to activity densities at two segments and inversely 

proportional to their distance (see equation (7) below). More specifically, each segment 

does not equally contribute to the probability of the shortest paths. Instead, the weight of 

each segment is determined by the daily WiFi usage of the nearest building. Since a 

typical wireless router travel 150 feet or less in a closed area that has obstructions, 

weights were assigned to segments located within 150 feet of campus buildings. This 

weighted betweenness suggests that if two segments are located near areas with higher 

density of campus activities, the trip between them are more likely to occur. Due to data 

availability of WiFi usage and areas of pedestrian observation, the investigation of 

betweenness centrality weighted by activity density was conducted in campus academic 

areas as shown in Figure 13 above. By using comparison of correlation coefficients in the 

unary linear regression, this study was able to explore the effectiveness of global 

betweenness, local betweenness, betweenness weighted by distance decay, and 

betweenness weighted by distance decay and activity density for modeling pedestrian 

movement. 
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3.4.2 Functional centrality analysis 

The semantic aspect of analysis is to examine whether the variation of pedestrian flows is 

reflected in the intensity of land use, in our case the functional centrality of campus 

activities, and how the spatio-functional process contributes to the pattern of pedestrian 

movement. Functional centrality in this study is characterized by two aspects of volume 

and variety and is measured by density and diversity respectively. The general 

distribution of activity densities on campus is described by the average daily WiFi usage. 

In order to examine patterns of activities for different purposes, perceived use of space 

collected by survey interview is used to calculate functional density and diversity of 

campus activities. First, kernel density estimation and correlation analysis were used to 

examine the effectiveness of functional centrality in predicting pedestrian flows. Second, 

the study investigated the extent to which the changes of network centrality and 

functional centrality were explained by each other. Third, multivariate regression 

methods were employed to assess the interactions between spatial and functional 

elements on modeling pedestrian movement. 

3.4.2.1 Kernel density estimation 

Since the street network and WiFi usage were two distinct spatial features, the kernel 

density estimation (KDE) method was applied to the distributions of both centrality 

measures and WiFi usage in order to transform them into one unit of analysis. The core 

of KDE lies in the idea that the surroundings of a place make it special. As a spatial 

smoothing method, the KDE estimates the density at the center using the observations 

within a neighborhood around it. Specifically, in Figure 16, the kernel density at the grid 

point is estimated to be the sum of event observations within the bandwidth (equation (8)). 

The choice of bandwidth is a critical parameter in KDE which influences the level of 

smoothness. Previous studies about kernel density of urban services used the bandwidth 

of 300 meters (i.e., 984 feet) (Porta et al., 2009). Considering the average nearest distance 

between the building centroids is 261 feet, this study explored different bandwidths of 

200, 400, 500, 600 and 800 feet. Within the bandwidth, KDE weights nearby 

observations more than far ones based on a kernel function. Although this kernel function 

can be described by standard Gaussian (Levine, 2006) or quartic functions (Silverman, 
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2018), the choice of it does not significantly affect the detection of spatial patterns 

(Epanechnikov, 1969). This study utilized the default quartic function implemented in 

ArcGIS (equation (9)). KDE essentially generates two continuous surfaces with the same 

resolution to represent these two distinct spatial features. As the study area, the academic 

area consists of 9,094 grid cells each of which is a 30 feet × 30 feet square. Each cell 

contains multiple values of kernel densities for different variables. Pearson‟s correlation 

is then computed based on cell-by-cell pairs of values in order to determine the extent to 

which variables were proportionally related to each other. 

 

(Timothée, Nicolas, Emanuele, Sergio, & Stéphane, 2010) 

Figure 16 Kernel function of the kernel density estimation 
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3.4.2.2 Functional density 

The functional density refers to the number of perceived opportunities for activities 

within a specific radius. Opportunities of activities distinguish trips for different purpose. 

This study considered the following set of possible activities that occurred on campus: (1) 

hanging out with friends or colleagues, (2) looking for something for fun or entertainment 

(e.g., movies, billiards, watching TV), (3) self-studying, (4) organizing group study or 

group meeting, (5) looking for open lectures or seminars, (6) eating lunch, dinner or 

snacks, (7) doing physical exercises or physical activities (e.g., Frisbee, walking, weight-

lifting), (8) parking or taking public transit, and (9) taking a nap or break. In order to 
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standardize activities of different types in the same scale, weights of opportunities equal 

to the number of participants choosing the location for an activity divided by the 

maximum number of participants identifying affordance for this specific type of activity 

among all locations (equation (10)). Since this study focuses on the cumulative 

perception of use of space, the opportunity number for each location is assumed to be the 

same as 1.  
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3.4.2.3 Functional diversity 

The functional diversity is another aspect of functional centrality which measures the 

equal distribution for different types of campus activities. Information entropy is one of 

the most common indices of measuring land use mixing (L. D. Frank & Pivo, 1994). This 

study applied entropy to measuring the diversity of campus activities. More specifically, 

area percentages of different land uses were transformed into the percentage of 

participants suggesting different types of activity affordances (equation (11)). Higher 

functional diversity suggests more heterogeneous distribution of campus activities while 

zero value of functional diversity indicates homogeneous distribution.  
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3.4.3 Sketch map analysis 

Sketch map method has been widely used to externally represent cognitive map as what a 

person knows about a specific place and also how these thoughts influence their 

behaviors, specifically in this study the pedestrians‟ wayfinding. The sketch map analysis 

in this study consists of two parts. The first part is to investigate the aggregated pattern 

captured by a collection of sketch maps. The study examined what salient features were 

drawn in sketch maps and how network and functional centrality contributed to the 

forming of landmarks. The second part focuses on the individual sketch maps. The study 
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inspected the influence of spatial familiarity on landmark salience and the relationship 

between activity space and sketch map. 

3.4.3.1 Boundary delimitation 

Regions like campus areas are perceived and expressed imprecisely in terms of vague 

concepts with fuzzy boundaries (Montello, Goodchild, Gottsegen, & Fohl, 2003). As the 

first part of analysis, this study used the sketch maps drawn by survey participants to 

estimate the individual referent of OU campus space. The method of boundary 

delimitation is grounded on the concept of action space (Horton & Reynolds, 1971) 

which describes a choice set of places for which individual possess sufficient knowledge 

to assign preference. Specifically, the analytical expression of a convex hull was used to 

approximate perception of the campus boundary. For each survey participant, the convex 

hull referred to the smallest convex polygon that contained all spatial features drawn in 

sketch map (see Figure 17).  

   

                            (a)                                                                    (b) 

Figure 17 Raw-data of sketch maps and related convex hull 

(a) Raw-data sketch maps for one participant; (b) convex hull of spatial features in the 

participant‟s sketch map 

3.4.3.2 Code scheme of sketch maps 

The spatial features captured by sketch maps allow identification of which places were 

important to pedestrians. Conventional analysis of sketch maps is grounded on the 

disaggregation of represented elements outlined by  Lynch (1960): nodes, landmarks, 

paths, edges, and districts. However, the concept of these components is confusing 

without the context of movement patterns. Whether a place is a node or a landmark is not 

able to be interpreted from the map alone because the identification requires additional 
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information about purposive behaviors of the pedestrian (Walmsley & Jenkins, 1993). 

For example, the library can be a landmark if it is used as a reference point in navigation, 

but it will be a node if it serves as the strategic focus points for orientation in day-to-day 

life. This study concentrated on landmarks for pedestrian navigation. The term of 

landmark in this study is used to denote all salient structures in the environment. 

Specifically, a landmark is not only a simply defined feature such as a building, an 

attraction or a clock tower, but also a node of street intersection, a path of any kind and 

an area like parking lot or landscape garden. In terms of frequency of appearance, as 

shown in Table 9, the sketch maps for campus areas were dominated by buildings, which 

was a consistent finding with previous studies (Banai, 1999; Tu Huynh & Doherty, 2007).   

Table 9  Sketch map elements drawn by survey participants 

Landmarks Mean 

Buildings 21.5 

Paths 6.6 

Street intersections 6 

General areas 3.3 

Other simple features 1.7 

Note: 126 survey participants 

 

3.4.3.3 Topological accuracy 

Successful wayfinding depends on the integration and memory of landmarks and streets 

in spatial relations (Lee & Tversky, 2005). Empirical studies also suggest that topological 

knowledge is generally more important than metric knowledge for effective navigation 

(Hillier & Hanson, 1989; Rovine & Weisman, 1989). As the third part of analysis, sketch 

maps were assessed in terms of topological accuracy. Since buildings and paths were the 

dominant elements captured by sketch maps, the topological accuracy in this study 

focused on spatial relations between pairs of buildings and street intersections included in 

sketch maps. For each pair of analysis, the absolute bearing was calculated to determine 

the degree of angle in a clockwise direction from the north. The directions were then 

translated into the qualitative descriptions by the cone-based model as shown in Figure 

18 (Liu, Wang, Jin, & Wu, 2005). Each cone was 45˚. When directions drawn in sketch 

maps were compared with the actual directions, same qualitative descriptions were 

considered as being „matched‟ with a score of 2. If the qualitative descriptions were 

different but the angle in between was less than 45˚, directions were considered as 

„partially matched‟ with a score of 1. Pairs of directions that were not matched obtained 

the score of 0 (see Figure 19 below). 
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(Liu, Wang, Jin, & Wu, 2005) 

Figure 18 Cone-based model for cardinal directions 
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Figure 19 Calculation of score for topological accuracy 

3.4.3.4 Spatial familiarity  

The complexity of the sketch map is related to individuals‟ experience of places and 

personal preferences (Appleyard, 1970). In previous studies, personal experiences were 

characterized from five aspects: familiarity, travel model, location of home, associativity, 

and socio-economic characteristics (Long, Baran, & Moore, 2007). This study focused on 

pedestrian movement and considered the influence of spatial familiarity and locations of 

anchor points on the forming of spatial knowledge represented by sketch maps.  

Familiarity was described by two aspects: how long they have studied or worked on 

campus and self-assessment of how familiar they are with the campus areas. Figure 20 

illustrated the frequency distribution of spatial familiarity for survey respondents. The 

survey sample included a good combination of respondents staying at OU for a long 

period of time and those new to the environment. Of 126 survey participants, 29% 

worked or studied at OU for less than one year, 25% for 1-2 years, 9% for 2-3 year, 12% 

for 3-4 years, and 25% for more than 4 years. With the number of staying years increased, 



 

45 
 

respondents were more likely to report they were very familiar with the environment. For 

respondents staying at OU for less than one year, only 10% of them reported they were 

very familiar while about 50% of respondents for more than 4 years reported very 

familiar. Most of respondents reported that they were above the average level of 

familiarity with campus areas. Therefore, the following analysis combined the groups of 

very unfamiliar and unfamiliar. 

Spatial familiarity plays an important role in pedestrian navigation as it influences the 

knowledge acquisition and strategies followed. O'Neill (1992)‟s study provided empirical 

evidence that as familiarity with an environment increased, wayfinding performances 

improved in accuracy and latency, and the degree of complexity of the layout became 

less important. In this study, the analysis of variance (ANOVA) was conducted to 

investigate whether the completeness and accuracy of sketch map were significantly 

different among groups of participants with different levels of spatial familiarity. Tukey‟s 

HSD (honestly significant difference) test was then applied to test whether the means 

were significantly different from each other. 

 

Figure 20 Frequency distribution of spatial familiarity 

3.4.3.5 Anchor points 

Anchor points closely relate to landmarks in terms of cognitively salient cues in the 

environment. Couclelis et al. (1987) argued that landmarks described the travel cues from 

a collective perspective while anchor points were more personalized and captured in 

individual cognitive maps. For example, locations of home and work would be too 

personal to be meaningful for other people. In this study, places where survey 

participants took the classes and worked were considered as personal anchor points. 

Distance to the anchor point served as a moderating variable in modeling the probability 

that a spatial feature was captured in cognitive map. For multiple anchor points, the 

minimum distance was used as the independent variable in logistic regression models. 

3.4.3.6 Logistic regression of landmarks 

The probability that a spatial feature is captured by the cognitive map is determined by its 

salience. The salience of features in this study was characterized from two aspects: 
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syntactical prominence and semantic significance. Logistic regression models were used 

to assess the likelihood that a spatial feature was present in the cognitive maps (see 

equation (12)-(14) below). Specifically, the dependent variable was binary coded as 

whether a spatial feature was present or absent in sketch maps. For logistic regression 

models in this study, the dataset of spatial features included all campus buildings, all 

streets with names, and all street intersections. General areas were excluded in logistic 

regression analyses as it usually related to vague regions with ambiguous boundaries. 

Independent variables included betweenness centrality, functional density, number of 

years at OU, level of familiarity, and minimum distances to anchor points. Since the 

probability P  increased when the value of y increased, a positive sign of coefficient 

indicated that the explanatory variable contributed to increasing the probability of 

presence in sketch maps while a negative sign implied the opposite effect. The fit of 

logistic regression models was evaluated by McFadden R
2
. As a part of the calculation 

for this pseudo R
2
, the log likelihood value for the fitted model is divided by the log 

likelihood value for the null model with only an intercept (equation (15)). The value of 

McFadden R
2 
ranges from 0 to 1. This pseudo R

2
 is typically low and is not interpreted in 

the same way as R
2 
in a linear regression model. The larger value indicates that the fitted 

model produces much better prediction than the intercept model. 
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3.4.4 Route selections analysis 

Spatial knowledge plays an important role in wayfinding decisions of where to go and 

how to get there. People tend to use the cognitively stored and recalled information more 

than the supplement materials such as maps and GPS, especially when wayfinding occurs 

in the familiar environment. The study continues to examine the interactions between 

spatial cognition and pedestrian navigation, particularly how individual wayfinding 

behaviors are influenced by the cognitive maps and how the increase of spatial 

experience contributes to the update of cognitive maps. The analysis focuses on impacts 

of route selection criteria and landmarks captured by the cognitive maps. First, we will 

look into the individual choices of the route selection. Additionally, we will examine how 



 

47 
 

levels of familiarity influence the perception of distance. Finally, the study investigates 

how personal landmarks provide the navigation cues for individual route selections. 

3.4.4.1 The perception of distances 

Previous work gives evidence that human navigator does not exclusively choose the 

shortest path by length (Golledge, 1995; Hochmair, 2004). The cost of traveling is 

essentially determined by the perception of distance (Montello, 1997). This perception of 

distance is not only shaped by the metric properties of network but also topological and 

geometric attributes (Montello, 2007). This study focuses on the concept of travel 

distances, particularly the perception of distance made by each pedestrian.  

In order to understand the perceived distances by pedestrians, the performance of each 

participant in route selection tasks was observed and measured. Survey participants drew 

their preferred routes of Bizzell Memorial Library - Sarkeys Energy Center and Sarkeys 

Energy Center - Dale Hall. The chosen routes by survey participants were then compared 

to the target routes calculated. Specifically, for each route selection task, three types of 

target routes were generated: metric route of the shortest length, topological route of the 

fewest number of turns, and geometric route of the least angle change (see Figure 21 

below). The study also considered three entrances of Dale Hall, six entrances of Sarkeys 

Energy Center and two entrances of Bizzell Memorial Library. Frechet distance was used 

to measure the difference between the chosen route drawn by survey respondents and 

three target routes. The concept of Frechet distance can be illustrated as a man walking a 

dog on a leash (Alt & Godau, 1995). Suppose the man moves on one curve while the dog 

on the other with varied speeds, the Frechet distance is the shortest length of leash that 

will be sufficient for traversing both curves (Alt & Godau, 1995). As backtracking is not 

allowed, the Frechet distance also takes into account the location and order of points 

along the curves. As shown in the equation (16), for every possible function ( )t  and 
( )t , the largest distance between the man and its dog was found as they walk along 

their respective path. Finally, the Frechet distance refers to the smallest distance among 

these maximum distances. This study utilized the discrete Frechet distance algorithm 

(Eiter & Mannila, 1994) which resulted in a good approximation of the continuous 

measure (see Figure 22, below). Frechet distance essentially describes the geometric 

similarity between two line features. Larger Frechet distance indicates that the route 

drawn by the participant deviated more from the calculated route. Small Frechet distance 

means that the target route calculated by the perception of distance better predicts the 

route to be taken. 
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Figure 21 Comparing route drawn by survey participant and target routes of shortest 

length, fewest number of turns and least angle changes 
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Figure 22 Discrete of hypothetical routes 
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3.4.4.2 Usage of landmarks in route selections 

Landmarks are not only an organizing concept of spatial knowledge as described in 

sketch map analysis but also provide environmental cues to find the way and serve as an 

essential component of route instructions. Therefore, this study focused on not only what 

features served as landmarks but also how these landmarks were used in pedestrian 

navigation, particularly to support route selections.  

Although landmarks provide important navigation cues for pedestrians, very few path-

finding algorithms start with the availability of landmarks. This study incorporated 

landmarks as the weight of street segments for route selection. This weight depended on 

the number of visible landmarks within a neighboring radius of the street segment. 

Lovelace, Hegarty, and Montello (1999) distinguished types of landmarks: landmarks of 

reorientation at decision points, route landmarks confirming to be on the right way, and 

distant landmarks. Previous studies found that distant landmarks were only used in 

navigation by a novice for coarse reference (Lynch, 1960; Raubal & Winter, 2002b). This 

study concentrated on local landmarks that were visible within a neighboring radius of 

the street segments. As shown in Figure 23 below, the view analysis with isovist was 

used to identify visible landmarks from the center of each street segment. Considering the 

average length of segments, the neighboring radius used in this study was 1,000 feet.  The 

pathfinding aimed to not only minimize the distance to be traversed but also maximize 

number of landmarks. Specifically in the landmark-based path finding calculation, the 

equation (17) was used to determine the cost of each segment. For each survey 

respondent, the view analysis was conducted within the personal landmarks captured in 

cognitive maps. For example, in Figure 24, using the personal landmarks drawn, the 

landmark based approach resulted in better prediction of the route drawn by the survey 

participant #51. 

 

Figure 23 Visible landmarks within neighboring radius at the center of a street segment 
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Figure 24 Comparing route drawn by survey participant and target routes of shortest 

length and landmark-based approach 

3.5 Summary 

The purpose of this chapter is to introduce a theoretical framework of space, cognition 

and movement and utilize it to guide the empirical study. Space is characterized by two 

aspects of space syntax and space semantics. For syntactical analysis, the study not only 

uses measures of network centrality to examine network effects on pedestrian movement 

but also improve them by varying concepts of distance, adding distance decay effects, 

and weighting spatial heterogeneity of activities. In semantical analysis, functional 

centrality is described by density and diversity. Using the centrality measures, the study 

is able to derive syntactically and semantically salient features and model the presence of 

landmarks in cognitive map. The chapter finally develops a landmark-based pathfinding 

method to identify the optimal route that balances demands of minimizing the travel 

distance and reducing the cognitive energy of processing.   
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Chapter 4: Results 

The analysis in this chapter follows three objectives. The first is to examine the extent to 

which interactions of spatial and functional elements contribute to pedestrian movement. 

The second is to assess what factors significantly explain the presence of landmarks in 

cognitive map. The third is to investigate how landmarks can be utilized in route 

selections and develop a landmarks-based approach for pathfinding. The chapter starts 

with the correlation analysis between observed pedestrian flows and measures of network 

centrality and functional centrality. Then the multivariate regression models are used to 

establish the relationships between spatio-functional interactions and pedestrian flows. In 

the following sketch map analysis, the completeness and accuracy of sketch maps are 

compared among groups with different levels of familiarity. The logistic regression is 

utilized to identify significant factors in predicting the presence of landmarks in cognitive 

maps. The final analysis is grounded on the idea that pedestrians prefer routes not only of 

shortest distances but also familiar to them. 

4.1 Network effects on pedestrian movement 

4.1.1 Correlation between pedestrian flows and network centrality  

We first conducted correlation analysis between observed pedestrian flows and eight 

syntactical measures including degree, PageRank, along with closeness and betweenness 

that are applied to three types of distances. As shown in Table 10, betweenness and 

closeness were significantly correlated to observed pedestrian flows, which indicated that 

pedestrian flows strongly corresponded with the most accessible and direct streets. 

Betweenness turned out to be the best candidate of network centrality to predict 

pedestrian flows. This result was consistent with previous findings by Turner (2007a). 

Furthermore, the best significant correlation was obtained when distances were measured 

by the shortest length. When distances were calculated by fewest turns and least angle 

change, network effect on pedestrian flows was not significant.  

Table 10 Correlations between network centrality and observed pedestrian flows 

Centrality Distance Correlation 

Degree 
 

0.13 

PageRank 
 

0.16 

Closeness 

Metric (shortest length) 0.3** 

Topological (fewest turns) 0.06 

Geometric (least angle 

change) 
0.09 

Betweenness 

Metric (shortest length) 0.41** 

Topological (fewest turns) 0.02 

Geometric (least angle 

change) 
0.07 

Significance: *** = 0.001, ** = 0.01,* = 0.05 
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4.1.2 Multiple regression analysis on network centrality 

The strength of each centrality measure explaining the observed pedestrian flows was 

further evaluated through multiple regression analysis. Degree, PageRank, closeness and 

betweenness were selected as the explanatory variables. As for closeness and 

betweenness, paths between pairs of nodes were selected by the shortest length. When 

four measures of network centrality were included in the model, a strong collinearity 

(VIF>4) was detected among degree and PageRank (Table 11). Global betweenness was 

the only significant variable explaining the variation in pedestrian flows. When degree 

and PageRank were dropped from the model, only the coefficient of betweenness 

remained significant to the number of pedestrian flows. This global betweenness variable 

explained 16% (p=0.003) of the variation in the pedestrian flows (Table 12).  

Table 11 Multiple regression of pedestrian flows on network centrality measures 

 

Coefficients p VIF 

Degree 5.7 0.24 7.2 

PageRank -88440.64 0.21 6.9 

Closeness 6022.08 0.45 2 

Betweenness 224.53** 0.01 2.2 

R
2
 = 0.18, p = 0.01, n = 67 segments 

 

Table 12 Multiple regression of pedestrian flows on closeness and betweenness 

  Coefficients p 

Closeness 26170.48 0.8 

Betweenness 202.2 0.01 

R
2
 = 0.16, p = 0.003, n = 67 segments   

4.1.3 Local betweenness and closeness within radius of analysis 

The study continued to examine local measures of centrality, particularly closeness and 

betweenness within the area of analysis. On one hand, local measures of closeness 

resulted in better correlation with pedestrian flows than global measures. Significant 

correlations between pedestrian flows and local measures of closeness ranged between 

0.31-0.38 for the least length interpretation of distances and between 0.27-0.3 for the 

least angle changes. Closeness centrality was not significantly correlated with pedestrian 

flows when distances were measured by the fewest number of turns. As shown in Table 

13, closeness centrality showed the best correlation with pedestrian flows when the 

shortest distances were measured by length and radius of analysis was 5,000 feet. This 

closeness demonstrated a weak positive linear relationship with pedestrian flows 

(correlation=0.38). On the other hand, correlation analysis of betweenness gave a 

consistent picture that the local measures outperformed global measures in explaining 

pedestrian flows. Specifically, correlations for local measures of betweenness ranged 

between 0.24-0.52 when it applied to the least sum of length, between 0.37-0.44 for the 

fewest number of turns, and between 0.29-0.4 for the least sum of angle changes. These 

correlation coefficients implied that betweenness was better correlated with pedestrian 

flows than closeness. The best correlation was obtained when the shortest distances were 
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determined by the least sum of length and radius of analysis was 1,000 feet. This 

betweenness centrality showed a moderate positive relationship with pedestrian flows 

(correlation=0.52). 

Table 13 Correlations between observed pedestrian flows and local measures of 

betweenness and closeness 

Criteria of the 

shortest distance 

Betweenness Closeness 

Range of 

significant 

correlation 

Radius of 

best 

correlation 

Range of 

significant 

correlation 

Radius of 

best 

correlation 

Metric  

(shortest length) 0.24-0.52*** 1,000 feet 0.31-0.38** 5,000 feet 

Topological  

(fewest turns) 0.37-0.44*** 500 feet None None 

Geometric  

(least angle change) 0.29-0.40*** 500 feet 0.27-0.3** 750 feet 

Significance: *** = 0.001, ** = 0.01,* = 0.05 

4.1.4 Adding distance decay effects 

Although both global and local analysis of centrality suggested that betweenness was the 

best measure to capture the network effects on pedestrian flows, the correlation 

coefficients were still not satisfactory. The study continued to examine gaps between 

measures of betweenness and pedestrian flows by taking the distance decay effects into 

account. Distance decay effects were modeled by a power law function which described 

the probabilities that the shortest paths occurred. Decay coefficient between 0.5 and 2.5 

were applied in this study, which influenced how the probabilities decrease as the 

distance increase. As shown in Table 14 below, all measures of weighted betweenness 

centrality were significantly correlated with observed pedestrian flows. Distance decay 

effect is a crucial factor in analyzing network effects on pedestrian flows. Additionally, 

correlation between weighted betweenness centrality and observed pedestrian flows 

achieved a maximum of 0.70 when distance decay coefficient β was 2.0. This was the 

consistent finding with Gao, Wang, Gao, and Liu (2013)‟s study that the urban traffic 

flows followed the power law distance decay with an exponent of 2.0. Furthermore, this 

weighted betweenness centrality outperformed global and local measures of betweenness 

centrality in correlation analysis. In sum, weighted betweenness centrality with distance 

decay effects was the best candidate to describe network effects on pedestrian flows. 

Distance decay effects were best described by the power law function with an exponent 

of 2.0.  

Table 14 Correlation analysis between weighted betweennness centrality and observed 

pedestrian flows given different distance decay coefficient β 

Β Correlation 

0.5 0.63*** 

1 0.57*** 

1.5 0.66*** 

2 0.70*** 
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2.5 0.63*** 

Significance: *** = 0.001, ** = 0.01,* = 0.05 

 

4.1.5 Weighting spatial heterogeneity of activities 

Heterogeneous distribution of activities is another factor that influences network effects 

on pedestrian movement. The study considered the spatial distribution of activities as 

weight of betweenness centrality. As discussed in Chapter 3.4, weights of activities in 

centrality measures were determined by the average daily WiFi usage of the nearest 

building. As shown in Table 15, betweenness centrality weighted by density of campus 

activities was significantly correlated with observed pedestrian flows and demonstrated a 

strong positive relationship with observed pedestrian flows (correlation=0.71). However, 

compared with correlation of 0.7 for betweenness centrality weighted by only distance 

decay effect, adding activity density to centrality analysis did not contribute more to 

explaining variation in observed pedestrian flows. 

Table 15 Correlation between types of betweenness and observed pedestrian flows 

Types of betweenness Correlation 

Global betweenness 0.41*** 

Local betweenness   (radius = 1000 feet) 0.52*** 

Betweenness weighted by distance decay 

(distance decay coefficient =2) 0.7*** 

Betweenness weighted by distance decay and activity density 0.71*** 

Significance: *** = 0.001, ** = 0.01,* = 0.05 

 

4.2 Impacts of spatio-functional interactions on pedestrian movement 

4.2.1 Estimating kernel densities of daily WiFi usage  

The distribution of campus activities determine what places pedestrian choose for 

destinations, which further contributed to the patterns of pedestrian movement. The 

average daily WiFi usage per building was used to represent the general distribution of 

campus activities. More specifically, this study first applied kernel density estimation 

(KDE) method to point features of daily WiFi usage and generated a density surface 

which showed where campus activities were concentrated. Bandwidths of 200, 400, 500, 

600, 800 feet were applied to calculate kernel densities. As shown in Figure 25, the 

choice of small bandwidth (200 feet) demonstrated high variability and was not able to 

capture the general pattern of distribution. However, the increase of bandwidth resulted in 

the loss of spatial precision. In these density surfaces, two hot spots in areas of South 

Oval and Oklahoma Memorial Union were observed.  

In order to examine the effectiveness of activity distribution for modeling pedestrian 

movement, the kernel densities of WiFi usage were then applied to correlation analysis 

with observed pedestrian flows. Correlation results in Table 16 suggested that the 

distribution of WiFi usage was significantly and positively correlated with pedestrian 



 

55 
 

flows. Kernel densities of all bandwidths provided a consistent picture. The correlation 

coefficient was best captured when bandwidth was 400 feet. 

Table 16 Correlation between kernel density of WiFi usage and observed pedestrian 

flows with different bandwidths 

Bandwidth Correlation 

200 0.34*** 

400 0.63*** 

500 0.58*** 

600 0.55*** 

800 0.48*** 

Significance: *** = 0.001, ** = 0.01,* = 0.05 

 

Figure 25 Kernel densities of average daily WiFi usage 

4.2.2 Correlation betweenness centrality and WiFi densities  

The study continued to examine whether network structure and functions were mutually 

dependent. As discussed earlier, the kernel density estimation method was then used to 

transform network centrality and activity density into the same unit of analysis so that the 

relationships between them could be evaluated at the same scale. More specifically, 

bandwidths of 200, 400, 500, 600, and 800 feet were applied to calculate kernel densities 
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of betweenness centrality and average daily WiFi usage. This study used the betweenness 

centrality weighted by distance decay as it was found to be the best candidate of 

centrality measures in explaining pedestrian flows. Zero value of WiFi density suggested 

no anticipated activities occurred in the area while zero value of betweenness indicated 

no anticipated movement was present. Since this study focuses on the association 

relationship along the street network, cells of zero values in either centrality layer or 

WiFi density layer were excluded.  

As shown in Table 17 below, betweenness centrality was significantly correlated with the 

general distribution of campus activities in terms of WiFi usage. Analysis using KDE 

with 200 feet bandwidth demonstrated weak correlation because KDE with this small 

bandwidth was not able to capture general areas where campus activities were 

concentrated. When bandwidth was increased to 400 feet, a strong positive correlation 

was observed. KDE results using other different bandwidths showed very similar patterns 

but with a stronger smoothing effect. Comparing Figure 25 and Figure 26, the spatial 

pattern of WiFi usage was consistent with those of the density of street betweenness 

centrality, which showed the hot spots in areas of South Oval and Oklahoma Memorial 

Union.   

Table 17 Correlation between kernel density of WiFi usage and betweenness centrality 

Bandwidth Correlation 

200 0.07*** 

400 0.60*** 

500 0.72*** 

600 0.79*** 

800 0.88*** 

Significance: *** = 0.001, ** = 0.01,* = 0.05 

 

Figure 26 Kernel densities of betweenness centrality weighted by distance decay  

(decay coefficient = 2) 
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4.2.3 Street network and perceived uses of campus space 

Although the correlation analysis suggested that the choice of destinations contributed to 

the pattern of pedestrian flows, the distribution of WiFi usage was not able to explain 

how people utilized places for different purposes. The function of a place is determined 

by possibilities of activities that it can afford. Thus, this study continued to investigate 

functional centrality at a finer resolution. More specifically, we considered the following 

11 types of campus activities in Table 18. Location choices for each activity by 126 

voluntary survey participants were used to represent perceived uses of campus space and 

further measure the functional centrality. This study also distinguished fixed and flexible 

activities by the degree of freedom for pedestrians involved. On one hand, pedestrians 

were often required to work or take the class at a specific location for a designated 

duration, which was difficult to reschedule or relocate. On the other hand, pedestrians 

were able to choose where to shop, recreate or socialize at any idle times between classes 

or work hours. As for fixed activities on campus, this study applied the number of 

enrollment and employers to represent the distribution of classes and work related 

activities. 

The analysis started with the interdependence between street network and these perceived 

possibilities of activities. The bandwidth of 400 feet was applied to kernel density 

estimation as it was able to capture the general pattern of campus activities without losing 

much spatial resolution. Table 18 shows all correlations between activities densities of 11 

categories and betweenness centrality. Four important findings could be obtained. First, 

betweenness centrality showed significant correlations with the distributions of all 

activities. Secondly, among all types of activities, hanging out with friends, self-study, 

group study and nap demonstrated the strongest correlation with betweenness centrality. 

Thirdly, activities of parking or taking public transit were negatively correlated with 

betweenness centrality. Fourthly, flexible activities were clearly ranked higher than fixed 

activities. The study also tested the analysis with bandwidths of 200, 600 and 800 feet. 

Although the correlation coefficients were different for other bandwidths, activities 

resulted in the same ranking by correlation. 

Table 18 Correlations between types of activities and betweenness centrality 

Types of activities Correlation 

Parking or public transit  -0.308*** 

Take the class  0.125*** 

Physical exercises  0.374*** 

Fun or entertainment  0.384*** 

Work 0.401*** 

Eating lunch, dinner or snacks  0.436*** 

Open lectures or seminars  0.456** 

Hanging out with friends  0.609*** 

Self-study  0.628*** 

Group-study  0.643*** 

Nap  0.697*** 

Significance: *** = 0.001, ** = 0.01,* = 0.05 
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4.2.4 Estimating functional centrality 

Functional centrality describes how important a location is based on its surrounding 

affordances, which is characterized in this study by density and diversity. The study first 

continued to estimate functional density by standardizing densities of each activity and 

summing them up as described in equation (10). Figure 27(a) illustrated the patterns of 

functional density for fixed activities at OU campus, which distributed all over the 

academic areas. The distribution of functional density for flexible activities in Figure 

27(b) showed two highlighted areas of Bizzell Memorial Library and Oklahoma 

Memorial Union. 

 

                        (a)                                                     (b) 

(bandwidth = 400 feet) 

Figure 27 Functional densities of fixed activities and flexible activities 

(a) fixed activities (b) flexible activities 

The study then validated the reliability of functional density in explaining the distribution 

of campus activities and examined its effectiveness in modeling wayfinding behaviors. 

Figure 28 illustrated the functional density of all activities, which showed hot spot areas 

in Bizzell Memorial Library, Oklahoma Memorial Union, and Sarkeys Energy Center. 

When correlation analysis was conducted between WiFi density and functional density in 

academic areas, the result indicated that the perceived use of campus space was 

significantly and moderately correlated with the actual distribution of campus activities 

with a coefficient of 0.50. The analysis in study focused on the functional centrality over 

the street network as shown in Figure 28. 
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                              (a)                                                                  (b) 

Figure 28 Functional density at OU campus 

(a) OU Norman campus (b) academic areas 

Functional diversity describes the mixture patterns of perceived affordances in terms of 

activity possibilities. In Figure 29, the distribution of functional diversity over the street 

network was represented. It was shown that areas with the most heterogeneous 

distribution of campus activities were Cate Centers, South Oval, Oklahoma Memorial 

Union, Engineer Quad and Sarkeys Energy Center, which were similar areas identified by 

large functional density. However, the inherent difference between these two dimensions 

of functional centrality can be demonstrated by their frequency distributions. As shown in 

Figure 30, the statistical pattern of functional density indicated that only a small number 

of streets occupied high density of activities while most of other streets were located in 

areas with low activity density. The distribution of functional diversity suggested that 

most of streets were close to a good mixture of activities. Areas with lower diversity of 

activities were also with lower density of street network. 
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Figure 29 Functional diversity over the street network at OU campus 

 

                              (a)                                                                      (b) 

Figure 30  Frequency distributions of functional centrality 

(a) functional density (b) functional diversity 

4.2.5 Multiple regression analysis on functional centrality 

Multiple regression analysis was then conducted to assess the influence of functional 

centrality on pedestrian movement. Specifically, functional density and functional 

diversity were independent variables while the gate count was the dependent variable. 

The regression result (Table 19) suggested that functional density was the only significant 

variable that contributed to predicting pedestrian flows. However, this model of 

functional centrality only captured 15% (p-0.004) of the variation of observed pedestrian 

flows.  
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Table 19 Multiple regression of pedestrian flows on measures of functional centrality 

  Coefficients p 

Density 1.57 0.006 

Diversity 0.001 0.99 

R
2
 = 0.15, p = 0.004, n = 67 segments   

 

4.2.6 Spatio-functional interactions 

Previous analysis found that the pattern of pedestrian flows was not able to be explained 

by the single dimension of network centrality or functional centrality. The study 

hypothesized that pedestrian movement was grounded on the interactions of form and 

function. Therefore, a multivariate regression method was applied to explore the impact 

of network centrality and functional centrality measures on the variation of observed 

pedestrian flows. Betweenness centrality with distance decay effect was used to describe 

network centrality. Two regression models were generated. In the first regression model, 

functional centrality is represented by the actual distribution of campus activities 

described by the WiFi density at bandwidth of 400 feet. The second regression model 

used the density and diversity to characterize functional centrality perceived by 

pedestrians. The regression results were shown in Table 20, which indicated that both 

models captured over 50% of the variation in observed pedestrian flows. Both 

betweenness centrality and the density of daily WiFi usage significantly and positively 

contributed to explaining the patterns of pedestrian flows. Only variables of functional 

density and weighted betweenness were captured as the critical factors accounting for the 

variation of pedestrian flows in the second model. The explanatory power of model 1 

with the actual distribution of activities was only 2.2% higher than that of model 2, which 

illustrated the effectiveness of applying functional density to modeling pedestrian 

wayfinding behaviors.  

Table 20  Multiple regressions of pedestrian flows on network and functional centrality 

  Variables Coefficients AIC Adjusted R
2
 

Model 1 
Betweenness 987,900*** 

529.43 53.22% 
WiFi density 0.001*** 

Model 2 

Betweenness 1,325,000*** 

532.87 51.08% Density 2.17** 

Diversity 3.12 

Significance: *** = 0.001, ** = 0.01,* = 0.05 

4.3 The image of OU campus 

4.3.1 Perception of campus boundaries 

The study first estimated perceived campus areas by applying the method of convex hull 

to landmarks drawn in sketch maps. The identification of core area on campus is crucial 

as modeling spatial configuration is sensitive to boundary effects. The raw-data convex 

polygons in Figure 31(a) made it evident that campus area was perceived differently by 
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each survey participant. Within a set of overlapping polygons, the smaller was mostly 

contained within the larger ones. In terms of frequency, the larger degree of overlap 

suggested the central core of campus areas. Therefore, the perception of campus area 

could be interpreted as with a continual surface with the diminishing probability of 

membership around the core area rather than a single precise boundary. The resulting 

map in Figure 31(b) apparently communicated the perceived boundaries effectively, 

although this method produced some redundant areas near the periphery due to the 

calculation of convex hull. The core area of OU campus was located in the academic area 

between South Oval and North Oval. The more distance away from the core area, the less 

likely it would be captured in sketch maps of campus area. Half of survey participants 

included residential areas while only 10% of them mentioned research campus in the 

sketch maps. Figure 32 displayed a histogram of perceived campus area using the convex 

hull method. The entire study area was 3.8 km
2
 while the academic area was 0.8 km

2
. 

Most of survey respondents (76%, 98) delimited the campus area less than 1 km
2
.  

 

                                       (a)                                                        (b) 

Figure 31 Perception of campus areas 

(a) Raw-data convex polygons for each participant‟s concept of campus area (b) 

perceived campus areas in terms of frequency 
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Figure 32 Distribution of frequency of perceived campus areas 

4.3.2 Landmarks in sketch maps 

In order to construct the image of OU Norman campus, the study calculated the 

frequency of appearance for landmarks in sketch maps. The composite image of all 126 

sketch maps was drawn in Figure 33. Specifically, buildings that were most frequently 

captured were Bizzell Library (91%, 115), Oklahoma Memorial Union (80%, 101), 

Gaylord Stadium (78%, 98), Dall Hall (75%, 95), and Gaylord Hall (71%, 90). As for 

paths, over 85% of survey participants mentioned Lindsey St. and Asp Ave.. When 

considering general areas captured in sketch maps, South Oval and North Oval appeared 

most often in 85% (107) and 70% (84) of the sketch maps. In terms of frequency, 

buildings and paths were two dominant features captured in sketch maps. Most of survey 

participants mentioned no more than 30 buildings and no more than 10 paths (Figure 34).  
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Figure 33 Frequency of landmarks identified in sketch maps 

 

                                  (a)                                                                        (b) 

Figure 34 Distribution of frequency of buildings and paths drawn in sketch maps 

(a) buildings (b)paths 

An analysis of variance (ANOVA) was used to evaluate the effects of spatial familiarity 

on completeness of spatial knowledge in terms of number of landmarks captured in 

sketch maps. Table 21 demonstrated the mean of the number of landmarks drawn by 

survey groups with different levels of spatial familiarity. A one-way ANOVA was carried 

out with self-assessment of familiarity and number of years at OU on the average number 
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of landmarks captured by sketch maps. Both self-assessment of familiarity 

(F(3,126)=8.338, p<0.001) and number of years (F(4,126)=2.56, p<0.05) resulted in 

significant effects. As the level of familiarity increased, respondents‟ sketch maps were 

more complete with more landmarks captured. Tukey post-hoc tests further showed that 

the very familiar draw more landmarks than the other three groups of familiar (p<0.01), 

average (p<0.001), and unfamiliar (p<0.01). Respondents living or being in the study 

area for more than four years drew more landmarks than respondents being in the area for 

less than one year. All the other post-hoc tests were non-significant (p>0.05) (Table 22). 

Table 21 Average number of landmarks drawn by survey groups with different levels of 

spatial familiarity 

    Buildings Paths Intersections All landmarks 

Self-

assessment 

of 

familiarity 

Unfamiliar 19.6 6 5.2 30.8 

Average 14.9 4.9 3.4 23.2 

Familiar 22.1 6.3 5.3 33.6 

Very familiar 30.8 9.5 10.5 50.8 

Number of 

years at 

OU 

< 1 15.3 5.3 4 24.6 

1-2 22.8 5.3 4.6 32.8 

2-3 22.9 7.1 5.9 35.7 

3-4 22.5 6.33 6.1 35 

> 4 26.8 8.13 8.7 43.6 

Table 22 Tukey pairwise comparisons of mean number of landmarks for groups with 

different levels of familiarity 

    Difference 

Self-

assessment 

of 

familiarity 

Unfamiliar - Average -7.6 

Unfamiliar - Familiar 2.8 

Unfamiliar - Very familiar 20** 

Average - Familiar 10.4 

Average - Very familiar 27.6*** 

Familiar - Very familiar 17.2** 

Number of 

years at 

OU 

<1 - 1-2 years 8.2 

<1 - 2-3 years 11 

<1 - 3-4 years 10.4 

<1 - >4 years 19** 

1-2 - 2-3 years 2.9 

1-2 - 3-4 years 2.2 

1-2 - >4 years 10.8 

2-3 - 3-4 years -0.7 

2-3 - >4 years 7.9 

3-4 - >4 years 8.6 

Significance: *** = 0.001, ** = 0.01,* = 0.05 
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4.3.3 Topological accuracy in sketch maps 

Sketch map does not only illustrate the identification of landmarks but also the spatial 

relations between them. Since fragmentation and systematic distortion were common 

characteristics of cognitive map (Tversky, 1992), parts of sketch maps contain accurate 

information while other parts may contain inaccurate or missing information. This study 

continued to examine the accuracy in sketch maps and how it was influenced by spatial 

familiarity. Although people did not often require Euclidean accuracy in their 

representation of an environment, topological accuracy was found to be a vital factor that 

influenced wayfinding performances (Rovine & Weisman, 1989). Thus, the following 

analysis focused on topological accuracy which was determined by how landmarks were 

located with each other on sketch maps. As described in 3.4.3.3, matched description of 

relative direction between landmarks obtained a score of 2 while the partial matched 

obtained a score of 1. The mean score of accuracy for all survey respondents resulted in 

1.65. Figure 35 showed that sketch maps drawn by the familiar group with over 4 years 

staying at OU produced the highest score of topological accuracy. ANOVA was then 

applied to examine whether spatial familiarity was a significant factor that contributed to 

topological accuracy in sketch maps. According to results, accuracy differences were 

found to be significant among groups by self-assessment of familiarity (F(3,126)=128, 

p<0.001) and among groups by number of years (F(4,126)=76.13, p<0.001). When Tukey 

post-hoc tests were conducted in Table 23, the familiar (p<0.001) and the very familiar 

(p<0.001) groups produced sketch maps with better topological accuracy than the average. 

With the increase of years staying at OU, respondents resulted in more topologically 

accurate sketch maps. 

 

                             (a)                                                                         (b) 

Figure 35 Average score of topological accuracy drawn by groups of familiarity 

 (a) self-assessment familiarity (b) number of staying years  

Table 23 Tukey pairwise comparisons of topological accuracy for groups with different 

levels of familiarity 

    Difference 

Self-

assessment 

of 

familiarity 

Unfamiliar - Average -0.08*** 

Unfamiliar - Familiar 0 

Unfamiliar - Very familiar 0.01 

Average - Familiar 0.08*** 
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Average - Very familiar 0.09*** 

Familiar - Very familiar 0.01 

Number of 

years at 

OU 

<1 - 1-2 years 0.04*** 

<1 - 2-3 years -0.01 

<1 - 3-4 years 0.04*** 

<1 - >4 years 0.06*** 

1-2 - 2-3 years -0.05*** 

1-2 - 3-4 years -0.01 

1-2 - >4 years 0.01*** 

2-3 - 3-4 years 0.05*** 

2-3 - >4 years 0.07*** 

3-4 - >4 years 0.02*** 

Significance: *** = 0.001, ** = 0.01,* = 0.05 

4.3.4 Modeling the presence of landmarks 

Logistic regression established a functional relationship between the binary coded 

landmarks (i.e., present or absent) and factors that were recognized as playing a role in 

the forming of cognitive map. Specifically, four factors were considered in the analysis: 

syntactical prominence in terms of betweenness centrality, semantic significance in terms 

of functional density, spatial familiarity in terms of self-assessment of familiar levels and 

number of years, and personal experience in terms of distance to anchor points. The KDE 

with a 400-feet bandwidth was used to derive the distributions of betweenness centrality 

and functional density (see calculation in 4.1 and 4.2). Self-assessment of familiar levels 

and number of years were considered as ordinal variables.  

As for landmarks used in logistic regression analyses, there were 226 buildings, 95 paths, 

and 208 street intersections. Results of logistic regression analyses were presented in 

Table 24. These odd ratios indicated the relative likelihood of a landmark present in the 

sketch map. For all landmarks, all four variables of betweenness centrality, functional 

density, familiarity, and distance to anchors significant contributed to the likelihood of 

presence in sketch maps. For a one-unit increase in betweenness, we expected to see 104% 

increase in the odds of being present in sketch maps. For a one-unit increase in functional 

density, only 0.1% increase was expected. For self-assessment of familiarity, the odds of 

being familiar or very familiar were 13% and 54% higher respectively than the odds of 

being unfamiliar. Compared with the group staying at OU for less than one year, the odds 

for the group for more than four years were 110% higher. With the distance to anchors 

increased, the odd of landmark presence decreased. When types of landmarks were 

considered, four variables significantly and positively influenced the likelihood of 

presence for buildings. However, self-assessment of familiarity was not a significant 

factor for the presence of paths. There were evidences of increased odds of buildings‟ 

presence and decreased odds of paths‟ presence with increasing betweenness. Only stay 

years significantly contributed to modeling the probability of presence for street 

intersections. McFadden R
2
 (Table 24) and ROC curves (Figure 36) suggested that the 

logistic regression models resulted in better performance for predicting the presence of 

paths than the presence of buildings and intersections.  
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Table 24 Odd ratios for a landmark present in cognitive map 

 

All landmarks Buildings Paths Intersections 

  OR P OR P OR P OR P 

Betweenness 2.04 <0.001 2.09 <0.001 0.001 <0.001 0.001 - 

Functional density 1.001 <0.001 1.001 <0.001 1.04 <0.001 1.11 - 

Self-assessment of familiarity  

Unfamiliar b 1 - 1 - 1  - 1 - 

Average 0.90 - 0.9 - 0.82  - 0.89 - 

Familiar 1.13 <0.05 1.17 <0.05 1.16  - 1.12 - 

Very familiar 1.54 <0.001 1.74 <0.001 1.42  - 1.35 <0.01 

Number of years at OU  

<1 year b 1 - 1 - 1  - 1 - 

1-2 years 1.47 <0.001 1.57 <0.001 1.55 <0.01 1.24 <0.05 

2-3 years 1.55 <0.001 1.61 <0.001 1.37  - 1.39 <0.05 

3-4 years 1.72 <0.001 1.66 <0.001 1.39  - 1.96 <0.001 

>4 years 2.10 <0.001 1.79 <0.001 2.42 <0.001 2.49 <0.001 

Distance to anchors 0.99 <0.001 0.99 <0.001 0.99 <0.001 0.99 <0.001 

McFadden R2 0.20 0.13 0.49 0.23 
b Baseline category 

OR: Odd ratio; P: p-value 

  

 

Figure 36 ROC curve of logistic regression models 
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4.4 Individual wayfinding behaviors  

4.4.1 Perceived distances in route selection 

The previous correlation analysis between network centrality and pedestrian flows in 4.1 

implies that people on OU campus prefer the paths with the shortest length. However, the 

aggregated patterns of pedestrian traffic are not able to explain how individual pedestrian 

behaves in changing situations. Therefore, the study continued to examine individual 

route choices.  

The analysis first applied the method of Frechet distance to comparing preferred routes 

with the target routes calculated by three different concepts of distance. Specifically, for 

the route between Bizzeell Memorial Library and Sarkeys Energy Center, the average 

discrete Frechet distances between the chosen routes and the target routes of the shortest 

length, the fewest number of turns and the least angle change were 510.31, 843.29, and 

832.90 respectively (Table 25 below). For the route between Sarkeys Energy Center and 

Dale Hall, the average discrete Frechet distances were 777.60, 813.27, and 1314.65 for 

the metrically, topologically, geometrically shortest paths (Table 25 below). The smallest 

Frechet distance indicates the smallest shape difference between the route drawn and 

routes of the shortest length. Thus, the routes of shortest length resulted in a better fit of 

the chosen routes.  However, when the origin and the destination were father away, 

differences between the route of shortest length and the route of the fewest number of 

turns were smaller while differences between the route of shortest length and the route of 

the least angle change were larger.  

The study then examined the best criteria describing individual route choices. For each 

survey participant, the shortest Frechet distance determined the best criteria of perceived 

distance describing the route choice. For the route between Library and Sarkeys Energy 

Center, of 126 survey participants, 67% (84) chose the route closer to the shortest path by 

length while 22% (28) preferred the route closer to the path by the fewest turns (Table 26 

below). No route choices resemblance to the geometrically shortest route. The other 11% 

(14) were not able to find the route. The route selection between Sarkeys Energy Center 

and Dale Hall (Table 26 below) provided a consistent picture that the survey respondents 

were able to capture the route closer to the one of the shortest length. 

Table 25 Average Frechet distance between the chosen routes and the target routes 

  

Library - Sarkeys 

Energy Center 

Sarkeys Energy 

Center - Dale Hall 

Metric 

(Shortest length) 510.31 777.60 

Topological 

(Fewest turns) 843.29 813.27 

Geometric 

(Least angle change) 842.91 1314.65 
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Table 26 Best criteria of distance describing individual route choices with the smallest 

Frechet distance 

Best criteria 

Library - Sarkeys 

Energy Center 

Sarkeys Energy 

Center - Dale Hall 

Shortest length 67% 44% 

Fewest turns 22% 36% 

Least angle change 0% 5% 

Don't know 11% 15% 

4.4.2 Spatial familiarity and perceived distances 

The perception of distance is dynamic and changes with the increasing exposure to the 

environment. This study continues to evaluate the influence of familiarity on route 

choices. Familiarity was measured by years of work/study and self-reported familiarity. 

Both route selection tasks resulted in consistent findings. As for years of work/study 

shown in Table 27 below, the average Frechet distance decreased as the number of years 

at OU increased. The Frechet distances were smallest for the group staying at OU for 

over 4 years. As for self-reported familiarity shown in Table 28 below, the Frechet 

distances were smallest when survey participants reported that they were very familiar 

with the campus layout. With the increase of familiarity levels, the routes drawn by 

survey participants more closely resembled to the shortest path. A one-way ANOVA was 

then applied to analyzing the significance of difference of perceived distance among 

groups of different levels of familiarity. The analysis results suggested that significant 

differences were found neither among groups of self-reported familiarity (F(3,126)=1.76, 

p=0.16) nor among groups of number of years (F(4,126)=2.11, p=0.11). In other words, 

most of survey respondents chose the routes closer to the shortest path by length 

regardless of their familiarity levels. Using the method of Frechet distance was also able 

to identify individuals who relied on more one type of distances than the others. In other 

words, the survey respondent depended more on the specific concept of distance which 

was associated with the smallest Frechet distance. We then looked into the percentage of 

survey respondents whose chosen routes were best described by the shortest length. As 

the level of familiarity increased, more survey participants were able to capture the 

shortest path by length while fewer ones reported that they did not know the route (Table 

29 below). 

Table 27 Average Frechet distance between the chosen routes and the target routes 

among survey groups by number of years 

 
Metric Topological Geometric 

 
(Shortest length) (Fewest turns) (Least angle change) 

Years Bizzeell Memorial Library - Sarkeys Energy Center 

<1 555.98 805.10 805.10 

1-2 525.12 849.36 849.36 

2-3 521.57 910.08 910.08 

3-4 493.98 854.31 854.31 

>=4 471.88 847.98 847.98 
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Sarkeys Energy Center - Dale Hall 

<1 793.86 801.51 1345.62 

1-2 756.90 805.95 1305.24 

2-3 862.57 875.64 1274.38 

3-4 760.76 835.11 1304.04 

>=4 739.47 804.48 1304.02 

 

Table 28 Average Frechet distance between the chosen routes and the target routes 

among survey groups by self-reported familiarity 

 
Metric Topological Geometric 

 
(Shortest length) (Fewest turns) (Least angle change) 

 
Bizzeell Memorial Library - Sarkeys Energy Center 

Unfamiliar 441.65 867.30 867.30 

Average 584.76 828.68 828.68 

Familiar 529.42 815.70 815.70 

Very familiar 453.89 877.46 877.46 

 

Sarkeys Energy Center - Dale Hall 

Unfamiliar 679.88 743.29 1354.75 

Average 870.52 848.96 1275.52 

Familiar 772.10 827.10 1334.12 

Very familiar 708.72 797.20 1311.08 

 

Table 29 Best criteria of distance describing individual route choices with the smallest 

Frechet distance among survey groups by self-reported familiarity 

  

Perception of 

distance 

Library - Sarkeys 

Energy Center 

Sarkeys Energy 

Center - Dale Hall 

Count Percentage Count Percentage 

Unfamiliar 

(20) 

Shortest length 14 70% 9 45% 

Fewest turns 2 10% 5 25% 

Least angle change 0 0 0 0% 

Don't know 4 20% 6 30% 

Average 

(40) 

Shortest length 24 60% 13 33% 

Fewest turns 12 30% 15 38% 

Least angle change 0 0% 5 13% 

Don't know 4 10% 7 18% 

Familiar 

(35) 

Shortest length 21 60% 17 49% 

Fewest turns 10 29% 15 43% 

Least angle change 0 0% 1 3% 

Don't know 4 11% 2 6% 
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Very familiar 

(31) 

Shortest length 25 81% 17 55% 

Fewest turns 4 13% 10 32% 

Least angle change 0 0% 0 0% 

Don't know 2 6% 4 13% 

4.4.3 Criteria for route selections 

Efficiency in terms of perceived distance is related to the shortest route.  However, the 

shortest route is not necessarily the preferred route. In route selection tasks, survey 

respondents were asked to not only identify the route but also report why they chose the 

specific route. Based on previous studies (Golledge, 1995), this study focused on the 

following criteria of route selection: least crowded, shortest length, least time, fewest 

number of turns, most direct, most familiar, and most pleasant. When asked about reason 

for choosing the specific route, survey respondents tended to rely on two or more criteria. 

As shown in Table 30, over 50% of survey participants reported that they followed the 

most familiar path, which suggested that people would take the advantage of places they 

knew. Choosing the shortest distance was preferred by 40% of survey respondents. It was 

surprising that 39% of respondents thought that they chose the most direct route (i.e., 

geometrically shortest route) while only 18% of them reported the preference of the route 

with the fewest number of turns (i.e., topologically shortest route). Some other survey 

respondents considered the situations of crowdedness and the sense of aesthetics.  

Table 30 Criteria of choosing the route 

Criteria of choosing the route Percentage 

Most familiar  58% 

Shortest distance  40% 

Most direct  39% 

Least time  27% 

Most pleasant  27% 

Least crowded  18% 

Fewest number of turns  18% 

Other  1% 

 

4.4.4 Landmark-based pathfinding 

As shown in the self-reported criteria of route selections, familiarity plays an important 

role in pedestrian navigation and probably explains why the preferred route that 

pedestrians take is not necessarily the shortest one. Familiarity is closely related to 

landmarks which serve as the organizing concept of cognitive map. Landmarks in 

cognitive map describe the activity space where pedestrians are familiar with. The 

landmark-based pathfinding approach in this chapter is grounded on the idea that people 

prefer a path not only of short length but also familiar to them.  

Landmark-based approaches were implemented using personal landmarks captured in 

sketch maps. The landmark-based path was then compared to the path of the shortest 
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length in terms of Frechet distance to the chosen routes. Frechet distance refers to the 

geometrical similarity between two routes. As shown in Table 31, the mean Frechet 

distance of landmark-based path was smaller than the path of the shortest length, which 

suggested that the landmark-based approach resulted in a better description of the routes 

selected. For all groups of different familiarity, the landmark-based approach 

outperformed the method of the shortest length. Figure 37 and Figure 38 illustrated the 

difference of Frechet distance between landmark-based approach and the shortest length 

method by groups of familiarity. These differences of Frechet distance were used to 

describe how much explanative power increased by adding landmarks to pathfinding. No 

significant differences were observed among groups of self-assessment familiarity. 

Compared with the other groups based on years being at OU, landmark-based pathfinding 

significantly improved the explanative power for the group staying at OU for less than 

one year. 

Table 31 Average Frechet distance between the chosen routes and the target routes of the 

shortest length and the landmark-based approach 

  
Library - Sarkeys 

Energy Center 

Sarkeys Energy 

Center - Dale Hall 

Shortest length 510.31 777.6 

All landmarks 496.99 755.4 

 

 

            (a) Library-Sarkeys Energy Center             (b) Sarkeys Energy Center-Dale Hall  

Figure 37  Difference of Frechet distance between landmark-based approach and the 

shortest length method by groups of self-assessed familiarity  

[Frechet distance (shortest length) - Frechet distance (landmark)] 
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            (a) Library-Sarkeys Energy Center             (b) Sarkeys Energy Center-Dale Hall  

Figure 38  Difference of Frechet distance between landmark-based approach and the 

shortest length method by groups of number of years staying at OU  

[Frechet distance (shortest length) - Frechet distance (landmark)] 

4.5 Summary 

This chapter used the proposed interdisciplinary framework of space, cognition, and 

movement to guide an empirical study conducted at OU Norman campus. The study 

started with the space syntax analysis and focused on network effects on pedestrian 

movement. Network centrality measures were used to determine how important a street 

segment was based on its network position. Positions relative to rest of network were 

described from four aspects: being connected (degree), being near (closeness), being 

between (betweenness), and being clustered (PageRank). Besides global and local 

measures used in previous studies (Hillier et al., 1993; Penn et al., 1998), this study 

further improved the measures of network centrality by considering spatial heterogeneity 

of activities and distance decay effects. Betweenness centrality calculated by the shortest 

length and weighted by distance decay effects resulted in the best description of observed 

pedestrian flows. The following space semantics analysis provided evidence that 

pedestrian movement depended on the spatio-functional interactions. The distribution of 

activities not only took the location advantage provided by spatial configuration but also 

reinforced network effects on pedestrian movement. The functional centrality of a place 

was characterized by two aspects of density and diversity. The study found that only 

functional density significantly contributed to modeling pedestrian flows. In sum, the 

aggregated pattern of pedestrian flows suggested that betweenness centrality and 

functional density were significant factors for modeling pedestrian movement. 

In order to examine individual variations of pedestrian movement, the analysis continued 

with investigation of personal cognitive map and wayfinding behaviors. The sketch map 

analysis suggested that as people became more familiar with the environment, the 

increase of completeness and accuracy was observed in their cognitive map. 

Completeness was described by number of landmarks in sketch maps while accuracy 

concentrated on the relative positions between pairs of landmarks. Landmark served as 

the organizing concept of cognitive map. Betweenness centrality, functional density, and 

familiarity significantly contributed to modeling the presence of landmarks. When 

landmarks were used in navigation, this study developed a landmark-based pathfinding 

method. Landmark-based pathfinding resulted in a better description of routes selected by 
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survey participants. In sum, individual cognitive maps, particularly the organization of 

landmarks, serve as the core in determining where pedestrians choose to hold activities 

and how to get there. 
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Chapter 5: Discussion and conclusions 

This chapter begins with a summary of the research done in this study. It describes the 

three components of space syntax, space semantics, and spatial cognition that we 

analyzed for modeling pedestrian movement. We then present the results and major 

findings of our work. After that, we propose a conceptual model for agent-based 

pedestrian wayfinding simulation that is grounded in human perception and cognition. 

Finally, we outline the limitations and various directions for future research. 

5.1 Space and pedestrian movement 

Space was characterized by syntactical and semantic aspects. In Chapter 4.1, the network 

effect on pedestrian movement was examined. This study focused on network centrality 

which described the to-movement and through-movement when shortest routes were 

made between every segment on the network. Although global measures of network 

centrality had been widely used in space syntax studies, it was also criticized for “edge 

effect” problems. The choice of study boundary will influence the interpretation of 

internal structure of the environment (Park, 2009; Ratti, 2004). Empirical studies 

suggested using local measures of centrality and truncating analysis within neighboring 

space of a specific radius. Besides global and local measures used in previous studies 

(Hillier et al., 1993; Penn et al., 1998), the measure of network centrality in this study 

was further improved by considering uneven spatial distribution of origin-destination 

pairs and distance decay effects. 

Correlation analysis between network centrality and pedestrian flows suggests that the 

chance that a pedestrian visited a street segment can be determined by the connectivity of 

the segment. The connectivity between segments contributes to the aggregated pattern of 

pedestrian movement and demonstrates some level of correlation to pedestrian flows. 

Global and local measures of centrality provide a consistent picture about network effects 

on pedestrian movement on campus. First of all, betweenness centrality serves as the best 

candidate of network centrality to describe observed pedestrian flows. Significant 

correlations were observed between pedestrian flows and measures of closeness and 

betweenness. Closeness and betweenness essentially describe two aspects of pedestrian 

movement: to-movement and through-movement. To-movement and through-movement 

are relevant to two major tasks in pedestrian navigation: the selection of the destination 

and the route choices respectively. When both closeness and betweenness were included 

in multiple regression models, only betweenness significantly explained the variation in 

pedestrian flows. Network effect of through-movement was more obvious than to-

movement. Additionally, the concept of distances is best captured by the metric 

description. Three types of distances were test in the calculation of centrality measures: 

metric distance of the shortest length, topological distance of the fewest number of turns, 

and geometrical distance of the least angle change. Closeness and betweenness 

outperformed the others in correlation analysis when distances were calculated by the 

shortest length. In local analysis, radiuses of neighbors were also the metric distance by 

length when the best significant correlation was obtained. This radius of neighbors is 

related to the size of activity territory. Correlation results imply that pedestrians on 

campus are able to read the network in metric terms. 
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Due to unsatisfactory correlation coefficients with pedestrian flows, the study continued 

to examine the three assumptions made in betweenness centrality: equal probabilities of 

traveling, homogeneous distribution of OD pairs, and identical criteria for route 

selections. The best syntactical measure in explaining pedestrian movement is the 

betweenness centrality weighted by distance decay effects. First of all, adding distance 

decay functions to network centrality measures resulted in significantly better prediction 

of pedestrian patterns. Power law functions were used to describe the probability of 

traveling from one node to another. The distance decay effects for campus pedestrian 

movement were best described by the power law function with an exponent of 2.0. 

Additionally, weighting spatial heterogeneity of campus activities did not contribute to 

explaining more variation in pedestrian flows. The reason why the spatial heterogeneity 

of campus activities is redundant in explaining pedestrian flows lies in two aspects. On 

one hand, the application of WiFi traffic to describing the distribution of campus 

activities is reasonable, that is, the travel demands and WiFi traffic are positively 

correlated. However, biases do exist and these introduce errors to network analysis. On 

the other hand, it is possible that the spatial heterogeneity of campus activities has 

already been captured by the network structures. Network structure is the underlying 

generator of campus activities while the distribution of activities reinforces the network 

effects on pedestrian movement.  

Syntactical analysis suggests that spatial configuration contributes to the pedestrian flows. 

However, whether the network independently influences pedestrian movement has not 

been empirically tested by controlling the land use variations. Pedestrians do not 

randomly walk over a physical network but plan a sequence of purposive actions based 

on interpreted meaning of place. In Chapter 4.2, the prominence of a place was 

characterized from two aspects: functional density and functional diversity. On one hand, 

density refers to the quantities of activities that occupy a place. On the other hand, 

diversity refers to mixed patterns of land use that support dense and varied population. 

Jacobs (1961) emphasized the importance of diversity for a vital street life. The analysis 

started with the spatial distribution of WiFi usage which was used to represent the density 

patterns of campus activities. Kernel density estimation (KDE) was used to interpolate 

the proximity of a place to central streets and to activities centers. Significant correlation 

between KDE of WiFi usage and pedestrian flows confirmed the effectiveness of activity 

densities in modeling pedestrian movement. The best bandwidth in describing the 

relationships between WiFi density and pedestrian flows resulted in 400 feet. The radius 

of 100 meters (328 feet) was widely used in urban planning to model street-level 

pedestrian catfchment area (Porta et al., 2009). 

The second part of semantic analysis lies in identifying the spatio-function interactions. 

Urban planners and geographers have developed models to capture relationships between 

transportation network and land use patterns (Getis & Getis, 1966). In this study, the 

significant and positive correlation was observed between KDE of betweenness centrality 

and WiFi densities, which implied that network structure served as the driving force in 

shaping urban form in terms of land uses, specifically in this study the patterns of campus 

activities. The significant correlation also explained why adding spatial heterogeneity of 

activities did not contribute to better descriptions of network effects on pedestrian 

movement in Chapter 4.1. Network centrality captures location advantage, which 
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contributes to shaping the variation of campus activities. Despite the fact that the patterns 

of campus activities are more complex than possible activities that can occupy a specific 

location, the perceived affordance is the primary factor of determining the underlying 

probability of wayfinding destinations. The semantic analysis in Chapter 4.2 did not only 

examine the patterns of campus activities but also investigate perceived use of space 

identified by survey participants. The correlation between KDE of centrality measures 

and functional density of perceived affordances not only confirmed the finding that space 

semantics was an important component in modeling pedestrian movement but also made 

it more specific. Flexible activities (such as entertainment, exercises and dining) showed 

higher correlations with street centrality than fixed activities (i.e., work and class), which 

implied that network structure significantly influenced destination selections for flexible 

activities. This observation can be explained by the fact that fixed activities are attractive 

enough by their function to drive pedestrian to the destinations. When pedestrians obtain 

more freedom in deciding time and locations for flexible activities, the destination 

selection is attracted by the perception of pass-by locations over the network. Therefore, 

the spatial layout of campus areas and how the campus performed functionally or socially 

are interlinked. 

Finally, the study provided evidence about effectiveness of the perceived functional 

centrality in modeling pedestrian movement. Multiple regression models indicated that 

pedestrian movement depends on the interactions of form and function. The pedestrian 

movement is constrained by the spatial configuration of the walking network and is 

attracted by the spatial distribution of campus activities. Betweenness centrality weighted 

by distance decay and functional density were the best candidates to model syntactical 

and semantic effects on pedestrian movement. However, functional diversity was not a 

significant factor that contributed to predicting pedestrian flows, which implied that the 

majority of pedestrian traffic on campus was not attracted by the variety of activities. The 

size of attractions plays a more important role in determining where pedestrians choose to 

go than the co-existence of functions. The reasons for low contribution of functional 

diversity lie in the patterns and distributions of campus activities. On one hand, work and 

classes determine the basic pattern of campus life. Flexible activities that fill in between 

work and classes are constrained by spatiotemporal affordances. The destination selection 

depends on a feasible set of activities within the potential path area. Places located in 

areas of higher pass-by rate are more likely to be perceived and selected as the 

destination. On the other hand, the frequency distribution of functional diversity was 

right-skewed, which suggested that most of segments over the network were accessible to 

areas with a good mixture of activities. In other words, areas with higher segment density 

gained more activity mixture than less dense areas. The influence of functional diversity 

on pedestrian wayfinding has been captured in the network structure. 

5.2 Spatial cognition and wayfinding behaviors 

Although syntactical and semantic analysis resulted in significant explanations of 

pedestrian flows, the aggregated pattern of pedestrian activities discards individual 

variations and therefore is not able to adapt to the dynamic environment. In order to 

examine pedestrian navigation at a finer resolution, we continue to analyze personal 

cognitive maps and individual wayfinding behaviors.  
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Understanding cognitive maps (i.e., mental maps) held by pedestrians is important 

because they can be used to identify desirable locations and also reveal pedestrians‟ 

travel patterns. The analysis of space and spatial cognition is grounded on the hypothesis 

that individuals‟ cognitive maps of the environment (i.e., spatial cognition) serve as the 

core in determining where they choose to hold activities and how to get there. In Chapter 

4.3, psychological effect on pedestrian movement was investigated. The first part of 

analysis is to examine completeness and accuracy of cognitive map which is externally 

represented by sketch maps. In order to identify the impacts of spatial familiarity, sketch 

maps were analyzed by groups with different levels of familiarity. Completeness was 

described by the number of landmarks captured in sketch maps while accuracy refers to 

the topological correctness of relative positions between pairs of landmarks. The concept 

of landmarks in this study included all salient features. Groups by self-assessment 

familiarity and groups by number of staying years provide a consistent outcome that as 

people became familiar with the environment, they would be able to memorize and recall 

more landmarks in the sketch map task, and their sketch maps produced higher scores of 

accuracy. The ANOVA analysis further suggested that these performance differences in 

sketch map task were significant among groups of different familiarity. If we looked into 

the difference of each group pair, the very familiar group staying at OU for over four 

years was significantly different from the other groups. In sum, spatial familiarity 

significantly influenced the completeness and accuracy of cognitive map. With the 

increasing exposure to an environment, pedestrians gradually update their cognitive maps 

and will be able to draw better maps of the familiar areas in terms of completeness and 

accuracy. Familiarity is an important factor in predicting the presence of landmarks in 

cognitive map.  

The second part of analysis is to model the presence of landmarks in cognitive map. 

Cognitive map consists of the layout of salient features as well as the prominent utilities 

afforded by these features. Landmarks serve as the important organizing concept of 

cognitive map. In Chapter 4.3, logistic regression models were used to assess the impacts 

of network and functional centrality on the presence of landmarks in cognitive map. 

Spatial familiarity and distance to anchor locations were covariate variables. The sketch 

map analysis suggested that syntactically and semantically salient features were 

expressed as landmarks in human knowledge of space. The regression models can be 

used to predict the probability that a landmark was captured in cognitive map. 

Landmarks are useful wayfinding aids for pedestrian navigation as they support fast 

reasoning and efficient communication. Chapter 4.4 looked into the individual 

wayfinding behaviors and developed a landmark-based approach of pedestrian 

pathfinding. The analysis of individual wayfinding behaviors started with the 

reexamination of the concept of distances. The correlation analysis in Chapter 4.1 

between network centrality and pedestrian flows implied that pedestrians on campus were 

able to perceive and follow the path of the shortest length. Instead of aggregated patterns 

of moving flows, Chapter 4.4 examined the individual choices in route selection tasks. 

The routes selected by survey participants were compared to target routes calculated by 

different concepts of distances. Comparison outcomes confirmed the correlation analysis 

results that the perception of distance was shaped by the metric properties of network. 

The reason for better explanation of distances using metric terms is attributed to the 
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nature of campus areas. Most of pedestrians are familiar with campus areas with repeated 

exposure to the environment. Pedestrians are able to choose the metrically shortest paths 

if they have perfect spatial knowledge of the environment. Meanwhile, the route selection 

tasks occurred in academic area on campus which was a small neighborhood size. The 

small and simple navigation environment makes it easy for pedestrians to perceive the 

route of the shortest length. Compared to the route from Library to Sarkeys Energy 

Center, the route from Sarkeys Energy Center to Dale Hall was more complex with a 

longer distance. The percentage of pedestrians choosing routes closer to the topologically 

shortest path was higher in the latter route selection task, which implied that it was harder 

for pedestrians to follow the shortest path by length in large and complex navigation 

environment. High cognitive demand in finding the route of the shortest length also 

explains why previous space syntax studies found that the concept of distance was shaped 

more by topological properties than metric properties in urban areas (Hillier & Iida, 

2005). Therefore, although the connected structures between segments govern underlying 

network effects on pedestrian movement, cognitive choices of distance interpretation 

determine how individual pedestrians choose the route differently.  

Since familiarity significantly influences the forming of personal cognitive maps, the 

study continues to examine whether impacts of familiarity on spatial knowledge leads to 

difference in individual wayfinding behaviors. When survey participants were asked 

about the reason for choosing the specific routes, over 50% of respondents preferred the 

most familiar route while 40% chose the route of the shortest length. It is no doubt that 

familiarity is crucial in modeling individual pathfinding. The influences of familiarity on 

individual wayfinding were examined from two aspects: the concept of distance and 

landmark. Surprising, although the completeness and accuracy of cognitive map are 

significantly different among groups of familiarity levels, wayfinding performances in 

terms of Frechet distance to target routes is not significantly different from each other. As 

the familiarity level increased, a larger percentage of survey participants chose the route 

closer to the one with the shortest length. However, differences among groups of 

familiarity were not significant. In other words, familiarity does not significantly 

influence how pedestrians perceive or define the distance. Meanwhile, the reason why 

people choose the familiar path lies in the fact that less cognitive energy is required to 

navigate through the known space. Landmarks play an important role in reorientation at 

intersections and confirming the right way to be followed. The more landmarks visible 

along the route, the less cognitive load it gives to pedestrians. The study added the 

number of visible landmarks to the weight of segments. Compared to the route of the 

shortest length, the landmark-based pathfinding resulted in smaller average Frechet 

distance from the routes chosen by survey respondents, which implied that adding 

landmarks to pathfinding resulted in a better prediction of route selections. If we looked 

into groups of familiarity, the explanative power significantly increased for groups 

staying at OU for less than one year, which implied that the influences of landmarks on 

route selections were more significant for people with limited experience in the 

environment. However, most of navigation systems focus on the organization of network 

elements but ignore the availability of landmarks. This study provides evidence that 

landmark-based pedestrian navigation significantly benefits the route selection.  
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5.3 Conceptual model of agent-based model for pedestrian movement 

Previous analysis on space, cognition and wayfinding behaviors serves as a foundation 

for the conceptual agent-based model (ABM) for pedestrian movement. In this chapter, 

we aim to describe the factors that influence the complexity of pedestrian navigation 

situation and develop the conceptual agent-based process model for pedestrian movement 

in familiar environment. The proposed conceptual model is grounded on significant 

factors identified in previous analysis: betweenness centrality, functional density, 

familiarity, concept of distance and use of landmarks.  

The ABM for pedestrian movement consists of agent and environment. The simulated 

environment includes syntactical and semantical components. Syntactically and 

semantically salient features are captured and stored as landmarks in cognitive map of the 

agent. The core of this ABM lies in a cognizing agent that is able to solve pathfinding 

tasks based on perceptual information and knowledge of cognitive map. As shown in 

Figure 39, the wayfinding agent consists of five elements: agent‟s states, activity pattern, 

perception, cognitive map, and wayfinding behaviors. Agent‟s states refer to familiarity, 

role, gender, and age of pedestrians which determine the personal activity patterns and 

levels of knowledge about the environment in cognitive map. The activity pattern 

includes three types of activities: fixed/scheduled activities, flexible/opportunities 

activities, and reactive activities. Fixed activities, such as taking classes and work, consist 

of goal-directed behaviors corresponding to scheduled start and end time. Fixed activities 

usually obtain a higher priority of need than flexible activities. Choices of flexible 

activities are selected from a feasible set of activities within the area that a pedestrian can 

reach between fixed activities. For example, a student goes to a nearby cafe for lunch 

between classes. For fixed and flexible activities, cognitive maps (i.e., mental maps) are 

useful in modeling where pedestrian want to go and what they want to do. Navigating to 

fixed and flexible activities is executed by a sequence of purposive actions. Meanwhile, 

reactive activities refer to simple reactions in response to perception of the environment. 

A sequence of reactive actions is guided and implemented by rule-based model of 

perceived information. The execution of reactive behaviors is not purposive and does not 

rely on knowledge of the environment in cognitive map. 

AGENTENVIRONMENT

Space syntax
network, buildings, 

open space

Space semantics
activity possibilities, 

affordances

Cognitive map
number of landmark, 

position of landmarks

Wayfinding
decisions & actions

Agent states
familiarity, role, 

gender, age

syntactically salient features

semantically salient features
location advantage

Perception
visible landmarks, 

accessible affordances

perceive

purposive

update

Activity pattern
Scheduled, opportunistic, 

reactive activities

reactive

 

Figure 39 Conceptual model of ABM for pedestrian movement 
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5.4 Major findings 

The major finding of this study is to fill in the interdisciplinary gaps of pedestrian studies 

and develop a methodological framework of space, cognition and movement. This 

framework is different from ones in previous studies for pedestrian movement because it 

is extendable and scalable to guide studies from aggregated patterns of movement to 

individual behaviors of wayfinding. The core of this framework lies in the assumption 

that people become familiar with the environment over time and construct personal 

cognitive maps. Our empirical studies utilized this framework and provided evidences 

that syntactically and semantically salient features were captured and stored as personal 

landmarks in cognitive map which were further used to guide the pathfinding. This 

framework can also be used by architects and urban planners to assess how new design of 

spatial layouts would influence the pedestrians‟ perception of the environment, and how 

new construction of attractions would change the route choices. This framework can also 

be used by cognitive scientist and psychologist to analyze how people find the route 

based on different perceptual and cognitive capabilities.  

From a methodological point of view, the main results of this study are the landmark-

based pathfinding approach and integrated centrality measures from two aspects of 

syntax and semantics. First, the landmark-based pathfinding approach depends on the 

idea that pedestrians prefer routes that are not only of shortest distance but also with 

landmarks familiar to them.  The landmark-based approach allows analysis about the 

influence of landmarks on pedestrian movement, and simulation of wayfinding process 

using personal landmarks. Comparison analysis from this study provided evidences that 

use of landmarks and the concept of distance were two major factors that contributed to 

route selections. Second, the calculation of centrality measures depends on the idea that 

the salient meaning of a place is determined not only by its position on network but also 

by its accessibility to activities possibilities. Network centrality measures in this study 

improve the predictive power of previous syntactical measures by varying the concept of 

distance and adding distance decay effects. Functional centrality measures are able to 

characterize spatial distribution of activities in terms of density and diversity. Integrated 

measures of centrality make it possible to quantitatively describe space and allow 

analyzing spatio-functional interactions. Our empirical study used integrated measures of 

centrality to examine impacts of spatio-functional interactions on pedestrian movement 

and found that the position on the network generated the location advantage while the 

distribution of activity possibilities reinforced these network effects on pedestrian 

movement. 

The study further demonstrates a conceptual model of ABM for pedestrian movement. 

This model is grounded on the theoretical framework and significant factors identified in 

empirical studies. Such a conceptual model is useful for computer scientists to simulate 

cognizing agent learning the environment and adapting to dynamic environments and for 

GIS developers to design and implement landmark based navigation system. 

5.5 Limitations and future research 

Understanding pedestrian movement remains the core challenge for psychology, 

geography, computer science, and urban planning studies. First, this study was able to 

collect information to support a comprehensive understanding of pedestrian navigation, 
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from what pedestrians think of the environment, where they choose to go for an activity, 

and how their knowledge of the environment guides wayfinding behaviors. However, 

lack of data availability remains an issue. This study obtained an appropriate sample size 

for sketch map analysis compared with previous studies. But more observations would 

produce a higher predictive power in logistic regression model for the presence of 

landmarks, and further benefit the construction and validation of ABM for pedestrian 

movement.  

Additionally, the study area at the University of Oklahoma Norman campus demonstrates 

unique characteristics that will influence pedestrian navigation. For example, most of 

people on campus are familiar with the study area with repeated exposure to the 

environment. Work and classes determine the underlying pattern of campus activities. 

Although the campus area can be used to represent a miniature version of an urban 

neighborhood, it is valuable to ask and test whether the significant impacts of spatio-

functional interactions on pedestrian movement are still observed in other types of 

neighborhood and in other regions of urban areas. Larger test cases also need to be 

carried out to see whether the theoretical framework is applied to guide the analysis of 

pedestrian movement for varied purposes of studies under different scenario and whether 

the proposed ABM can be implemented into an efficient testing tool that can be used to 

simulate agents with different perceptual and cognitive capabilities. Meanwhile, the 

survey interview in this study was conducted through a convenient sampling. The study 

confirmed that no systematical bias was observed by participant types, gender or race 

between the sample frame of OU facts and the sample of participants. However, whether 

a convenient sample is representative of the entire population is still open to question. 

Furthermore, analysis in this empirical study depended on the sketch maps and perceived 

use of space for one period of time. However, the image of a neighborhood is a dynamic 

object and change over time. Considering the changing status of cognitive maps in future 

studies would contribute to better understanding how people visually and semantically 

connect salient features to landmark knowledge and better explaining impacts of a new 

city construction before and after the project. 

Finally, this study provides evidences that route selections are determined by the shortest 

distance of length and number of visible landmarks. But it is not clear how the concept of 

distances and use of landmarks interact with each other. Specifically, when people will 

choose the shortest length over the cues of landmarks or choose guidance of landmarks 

over the shortest path under different scenario? Future empirical studies by urban planner 

or agent based simulation by computer scientists might provide the answers to this 

question. Meanwhile, this study concentrated on the influences of perceived distance and 

use of landmarks on pedestrian pathfinding. Although they are reported as the most 

important reasons for pedestrians‟ pathfinding on campus, criteria of route selection are 

not limited by distances and landmarks. Additional consideration such as aesthetic scenes 

and road signs should be addressed in the future research. Landmark-based pathfinding 

method could be extended by explicitly integrating all relevant elements that influenced 

pedestrian wayfinding decisions. 
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