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Abstract

In the thesis we consider the damped Klein-Gordon equation with a variable

diffusion coefficient:

utt(t, x) + αut(t, x)−∇(β(x)∇u(t, x)) + δg(u(t, x)) = f(t, x)

u(t, x)|x∈Γ = 0, t ∈ (0, T )

u(0, x) = y0(x), ut(0, x) = y1(x), x ∈ Ω,

where the nonlinear term is g(u) = |u|γu with the constant γ satisfying


0 ≤ γ <∞ if n = 1, 2,

0 ≤ γ ≤ 2 if n = 3,

γ = 0 if n ≥ 4.

The goal is to derive necessary conditions for the optimal set of parameters

q∗ = (α, β, γ) ∈ P minimizing the objective function J(q) = ‖u(q)− zd‖2
L2(0,T ;H).

First, we study the nonlinear term g(u) for the different cases of γ, and derive

its properties which are crucial to the entire research. Then we show that the

solution maps q → u(q): P → L2(0, T ;V ) and q → u′(q): P → L2(0, T ;H)

are continuous. Furthermore, the solution map is shown to be weakly Gâteaux

differentiable on the admissible set P , implying the Gâteaux differentiability of

the objective function. Finally we study the Fréchet differentiability of J and

optimal parameters for these problems. Unlike the sine-Gordon equation, which

viii



has a bounded nonlinear term, Klein-Gordon equation requires stronger assump-

tions on the initial data. The further difficulties in mathematical analysis of the

equation arise from the unbounded nonlinear term g(u) = |u|γu and the variable

diffusion coefficient β(x).
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Chapter 1

Introduction

In the thesis, we study a damped Klein-Gordon equation with a variable diffusion

coefficient. The goal is to derive necessary conditions for the optimal set of

parameters minimizing the objective function J .

Klein-Gordon equation has many different forms. Its original form is

1

c2
utt −∆u+

m2c2

h2
u = 0.

The equation was named after the physicists Oskar Klein and Walter Gordon,

who in 1926 proposed that it describes relativistic electrons. The Klein-Gordon

equation is considered a relativistic version of the Schrödinger equation (see [36],

[37], and [38]). It is the equation of motion of a quantum scalar or pseudoscalar

field, a field whose quanta are spinless particles (see [10], [44]).

Klein-Gordon equation is also used to model the propagation of dislocations

in crystals, the behavior of elementary particles, Josephson junctions (see [12],

Chapter 8.2 for details), and others. It has been studied extensively. More details

of the field are reviewed in the next chapter.

The Klein-Gordon equation studied here is the following.

Let Ω be an open bounded set in Rn with a sufficiently regular boundary

Γ. The damped Klein-Gordon equation with a damping coefficient α, a variable
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diffusion coefficient β(x), and a magnitude of the nonlinear term δ ≥ 0 is

utt(t, x) + αut(t, x)−∇(β(x)∇u(t, x)) + δg(u(t, x)) = f(t, x) (1.1)

u(t, x)|x∈Γ = 0, t ∈ (0, T )

u(0, x) = y0(x), ut(0, x) = y1(x), x ∈ Ω,

where T > 0, (t, x) ∈ Q = (0, T ) × Ω. The nonlinear term is assumed to be of

the form g(u) = |u|γu with the constant γ satisfying


0 ≤ γ <∞ if n = 1, 2,

0 ≤ γ ≤ 2 if n = 3,

γ = 0 if n ≥ 4.

(1.2)

The precise statement of the problem will be given in Chapter 3. The Lipschitz

continuous diffusion coefficient β(x) is assumed to be in B ⊂ C(Ω) where

B = {β(x) : 0 < ν ≤ β(x) ≤ µ; |β(x)− β(y)| ≤ C|x− y|, x, y ∈ Ω} (1.3)

for some positive constants ν, µ and C. The identification problem for (1.1) is

to find the parameters α, β(x), and δ such that the solution of (1.1) exhibits the

desired behavior. More precisely, let

P = {q = (α, β, δ) ∈ [αmin, αmax]× B × [δmin, δmax]}. (1.4)
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Define the cost functional J(q) by

J(q) =

∫
Q

[u(q; t, x)− zd(t, x)]2dxdt, q ∈ P, (1.5)

where zd is a given function in L2(Q). The data zd can be thought of as the

targeted behavior of (1.1). The parameter identification problem for (1.1) with

the objective function (1.5) is to find q∗ = (α∗, β∗, δ∗) ∈ P satisfying

J(q∗) = inf
q∈P

J(q). (1.6)

One of the main results of this thesis is that we prove the existence and

uniqueness of the weak solution u of the Klein-Gordon equation,

u′′ + αu′ + Aβu+ δg(u) = f, in V ′ a.e. on [0, T ],

u(0) = y0 ∈ V, u′(0) = y1 ∈ H.

Because β(x) is not a constant and the operator Aβ relies on β, we study the

eigenvalues and eigenfunctions of the operator Aβ, and prove that the mapping

β → Aβv from B into V ′ is continuous. Then we establish the continuity of the

solution maps q → u(q): P → C([0, T ];V ) and q → u′(q): P → C([0, T ];H).

Based on the continuity, we prove the Gâteaux differentiability of the solution

map in P . Hence we obtain that the objective function J(q) = ‖u(q)−zd‖2
L2(0,T ;H)

is also Gâteaux differentiable. Furthermore, we prove the Fréchet differentiability

of the functional J with respect to the parameters q ∈ P , and give a variational

characterization for the minimizers, expressed through the solutions of the state

and adjoint systems.

The thesis is organized as follows.
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In Chapter 2 we review the research has been done in studying Klein-Gordon

equations. We start with how the original Klein-Gordon equation was introduced

and its significance in physics. Then we review the research on different forms

of nonliear Klein-Gordon equations with and without a damping term. Also

we review the research on optimization problems of nonlinear hyperbolic wave

equations. In the end we introduce the research that this thesis is mainly based

on.

In Chapter 3 we introduce appropriate function spaces with their respective

inner products and norms. Because, in general, the Klein-Gordon equation (1.1)

does not have a classical solution, we define the weak solution of the equation in

an appropriate function space.

In Chapter 4 we study the nonlinear term g(u) = |u|γu. Unlike the bounded

nonlinear terms sinu in sine-Gordon equations, the nonlinear term |u|γu in the

Klein-Gordon equaiton is unbouded. This brings a lot difficulty to the prob-

lem. Therefore, we investigate properties of the term which are crucial to the

whole problem. The properties of g(u) we derive in Chapter 4 are important for

later chapters when we discuss the solution of the Klein-Gordon equation, the

continuity and differentiability of the solution map.

In Chapter 5 we derive the energy estimates of the solution of the Klein-

Gordon equation (1.1) and hence prove the uniqueness of the solution. The

existence of the solution is established by standard Galerkin method.

In Chapter 6 we study the eigenvalues and eigenfunctions of the operator Aβ,

and the mapping β → Aβv from B into V ′. Then, we derive the weak solution

for more regular initial conditions of equation (1.1).

In Chapter 7 we prove that the solution maps q → u(q): P → C([0, T ];V )

and q → u′(q): P → C([0, T ];H) are continuous.
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In Chapter 8 we define the weak Gâteaux derivative of the solution map

q → u(q) at q∗ in the direction q − q∗. Because the diffusion coefficient β(x)

is not a constant, the standard variational method cannot be used to show the

Gâteaux differentiability of the solution map. Instead we show that the weak

Gâteaux derivative z = Du(q∗; q − q∗) ∈ L2(0, T ;H) exists and it is the unique

weak solution of the problem

z′′(t) + α∗z′(t) + Aβ∗z(t) + δ∗g′(u(t; q∗))z(t) = f0(t),

z(0) = 0, z′(0) = 0, t ∈ (0, T ),

where f0(t) = (α∗ − α)u′(t; q∗) + (Aβ∗ − Aβ)u(t; q∗) + (δ∗ − δ)g(u(t; q∗)).

In Chapter 9 we show that the objective function J(q) = ‖u(q)−zd‖2
L2(0,T ;H) is

also Gâteaux and Fréchet differentiable on P. In the end, we derive the equations

to optimize parameters.

In Chapter 10 we summarize the main results of the thesis and propose our

future work for the topic.
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Chapter 2

Review of the field

In the early 20th century, Max Planck, Albert Einstein, De Broglie, Niels Bohr,

Erwin Schroedinger, Heisenberg and others achieved a highly successful break-

through in the world of physics. At that time many physical phenomena, such

as photoeletric effect, blackbody radiation, the Zeeman effect, Stark effect, could

not be explained by the laws of classical physics. The breakthrough came with

the invention of Quantum Mechanics.

Quantum mechanics is very successful in explaining these phenomena, so the

theory can model the atom by matching the experimental results. In addition,

with the help of Einstein’s Special Relativity, quantum mechanics can also ex-

plain the phenomenon of nuclear physics, elementary particles, and other physical

phenomena which exhibit the small size of the object relative to the displacement.

Quantum mechanics with special relativity is known as relativistic quantum me-

chanics.

Equation of relativistic quantum mechanics called the Klein-Gordon equation

is named after Oskar Klein and Walter Gordon, who in 1926 tried to explain

properties of electrons using the special relativity theory. Unfortunately, because

the electron has spin 1/2, the results were not satisfactory to explain properties

of the electron. Nevertheless, the Klein-Gordon equation describes the electron

particles without spin or other particles that have integer spins.
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Its original form is

1

c2
utt −∆u+

m2c2

h2
u = 0,

which is a linear wave equation.

Klein-Gordon equation has many different forms, such as:

utt −∆u+m2u+ g(u) = 0, (2.1)

where g is some nonlinear real-valued equation. It is called nonlinear Klein-

Gordon equation. And the equation

utt + ut −∆u+m2u+ g(u) = 0, (2.2)

which has the term ut, is called nonlinear damped Klein-Gordon equation.

Klein-Gordon equation is used to model many natural phenomena, such as

the propagation of dislocations in crystals, the behavior of elementary particles,

Josephson junctions (see [12], Chapter 8.2 for details), and others. Mathemati-

cally, to study local and long term behavior of a hyperbolic wave equation could

be very interesting and challenging. The equation has been studied extensively.

The local existence of nonlinear Klein-Gordon equation has been studied in

Nakanishi [41], Huang and Zhang [29], Grundland and Infeld [20], Guan [16],

Shatah [46], Duncan [13], and Park and Jeong [42]. The global existence existence

and blowing up of the solutions has been studied in Ha and Park [28], Ginibre

and Velo [18], [19], Brenner [6], and Gan, Guo and Zhang [15]. The existence of

the soliton solutions has been studied in Benci and Fortunato [5], and Bellazzini,

Benci and Bonanno [4]. A large amount of work has been devoted to the study of

the Cauchy problem for the nonlinear Klein-Gordon equation (see [39], [42], [3],
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[30], [31], [45], [26] and [27]). In numerical aspect, a lot of work also have been

done (see [7], [8], [11], [33], [43], [47], [49]).

Recently many works are devoted to study the control and parameter esti-

mation problems for hyperbolic equations (see Ahmed [1],[2], and Lions [34]).

However there are not many results on the optimal control theory for the non-

linear damped hyperbolic equations. In Ha and Nakagiri [25],[23],[27], [40] and

Ha and Gutman [24], the authors study the optimal control problems and the

numerical analysis for the nonlinear control systems described by damped sec-

ond order equations in a Hilbert space H. For all the equations studied, their

nonlinear terms sin y and e−ay are bounded and the associated energy estimates

of solutions are rather easily obtained compared with the unbounded nonlinear

terms such as polynomials. Since the estimates and differentiations of solutions

with respect to control variables are essential in deriving the existence of opti-

mal controls and the necessary optimality conditions, the control problems for

unbounded nonlinearities become more difficult than those for bounded nonlin-

earities.

The thesis is mainly based on the work of J.L. Lions (see [34], [35]), Roger

Temam (see [48]), Semion Gutman (see [24],[21]), and Junhong Ha and Shin-

ichi Nakagiri (see [26], [41]). Lions studied linear and nonlinear boundary value

problems by using the theory of distributions, and then find ways to numerically

approximate their solutions. He developed standard ways to study existence

and uniqueness of solutions of partial differential equations with initial/boundary

conditions. In [48] (Chapter 4, Section 3), Temam studied the nonlinear wave

equation of relativistic quantum mechanics of the form:

utt + αut −∆u+ g(u) = f in Ω×R+,

8



where g is a C2 function from R to R satisfying some assumptions. Ha and Nak-

agiri [26] studied identification problem for the damped Klein-Gordon equation

with constant parameters. Gutman [24],[21] studied the optimization problem

for the damped sine-Gordon equation with a variable diffusion coefficient. In the

thesis, we follow the similar approach to the Klein-Gordon equation as in Gut-

man [24],[21] for sine-Gordon equation. The further difficulties in mathematical

analysis arise from the unbounded nonlinear term g(u) = |u|γu and the variable

diffusion coefficient β(x).
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Chapter 3

Problem Setup

Let the Hilbert space H = L2(Ω) have the norm |u| and the inner product (u, v).

Let the Hilbert space V = H1
0 (Ω) have the norm ‖u‖ and the inner product

(∇u,∇v). The dual H ′ is identified with H leading to V ⊂ H ⊂ V ′ with compact,

continuous and dense injections. Hence, there exists a constant K1 = K1(Ω) such

that

|w| ≤ K1‖w‖, for any w ∈ V. (3.1)

Let 〈u, v〉 denote the duality pairing between V = H1
0 (Ω) and V ′ = H−1(Ω).

Given β ∈ B, we define the bilinear, continuous and coercive form aβ on

V × V , and the associated linear operator Aβ from V to V ′ by

aβ(u, v) =

∫
Ω

β(x)∇u(x)∇v(x)dx = 〈Aβu, v〉. (3.2)

Then aβ(u, u) ≥ ν‖u‖2 for any u ∈ V . The bilinear form aβ(u, v) is an equivalent

inner product on V . Let Vβ denote V with the inner product ((u, v))β = aβ(u, v)

and the norm ‖v‖2
β = aβ(v, v). The domain of Aβ is D(Aβ) = {v ∈ V : Aβv ∈

H}. Now we prove that D(Aβ) = H2(Ω) ∩ V for any β ∈ B. We need a result

from [17] on the regularity of solutions of linear second order equations.

Theorem 3.1. Let Ω be an open bounded set in Rn with C2 boundary ∂Ω. Let

Lu = Di(a
i,j(x)Dju) + bi(x)u) + ci(x)Diu+ d(x)u,

10



where the coefficients ai,j, bi, i, j = 1, ..., n are uniformly Lipschitz continuous

in Ω, and
∑
ai,j(x)ξiξj ≥ λ|ξ|2, for any x ∈ Ω, ξ ∈ Rn. Suppose that the

coefficients ci, d, i = 1, ...n are essentially bounded in Ω, and f ∈ L2(Ω). Then

the weak solution u ∈ W 1,2
0 (Ω) of the equation Lu = f in Ω satisfies u ∈ W 2,2(Ω)

and

‖u‖W 2,2(Ω) ≤ C(‖u‖L2(Ω) + ‖f‖L2(Ω)), (3.3)

where C = C(n, λ,K, ∂Ω), and K = max {‖ai,j, bi‖C0,1(Ω̄), ‖ci, d‖L∞(Ω)}.

Proof. Operator L is strictly elliptic since
∑
ai,j(x)ξiξj ≥ λ|ξ|2 for any x ∈ Ω, ξ ∈

Rn. The result follows from [17], Theorem 8.12.

Theorem 3.2. Let β ∈ B, then D(Aβ) = H2(Ω) ∩ V .

Proof. Let u ∈ D(Aβ). This means that Aβu = −
∑n

i=1(β(x)uxi)xi ∈ H. Let

Lu = −Aβu, and f =
∑n

i=1(β(x)uxi)xi . Thus Lu = f . For the coefficients of

L we have ai,i(x) = β(x), ai,j(x) = 0 for i 6= j, 0 < ν ≤ β(x) ≤ µ, and β(x)

is uniformly Lipschitz continuous in Ω. Then by Theorem 3.1, u ∈ W 2,2(Ω) =

H2(Ω). Therefore D(Aβ) ⊆ H2(Ω) ∩ V .

For the other direction notice that β(x) is Lipschitz continuous. Then by

Theorem 5.8.4 in [14], β(x) ∈ W 1,∞(Ω) ⊂ W 1,2(Ω). If u ∈ H2(Ω) ∩ V , then

Aβu = −
n∑
i=1

(β(x)uxi)xi = ∇β(x) · ∇u+ β(x)∆u ∈ H.

This implies H2(Ω) ∩ V ⊂ D(Aβ). Therefore, D(Aβ) = H2(Ω) ∩ V .

By Theorem 3.2 the domain D(Aβ) = H2(Ω) ∩ V does not depend on β(x).

Accordingly, we use the notation D(A) instead of D(Aβ) for any β ∈ B.
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Let

W (0, T ) = {u : u ∈ L2(0, T ;V ), u′ ∈ L2(0, T ;H), u′′ ∈ L2(0, T ;V ′)}, (3.4)

and f ∈ L2(0, T ;H). Function u ∈ L∞(0, T ;V )∩W (0, T ) is called a weak solution

of the damped Klein-Gordon equation (1.1) if

u′′ + αu′ + Aβu+ δg(u) = f, in V ′ a.e. on [0, T ], (3.5)

u(0) = y0 ∈ V, u′(0) = y1 ∈ H,

In the sequel, the solution of the Klein-Gordon equation means the weak solution.

In this problem the derivatives are understood in the sense of distributions with

the values in V ′, see [35], [9]. A weak solution u of (3.5) is called simply a solution

in what follows.

We use the following Lemmas established in [48].

Lemma 3.3. Let β ∈ B, w ∈ L2(0, T ;V ), w′ ∈ L2(0, T ;H) and w′′ + Aβw ∈

L2(0, T ;H). Then, after a modification on a set of measure zero, w ∈ C([0, T ];V ),

w′ ∈ C([0, T ];H) and, in the sense of distributions on (0, T ) one has

(w′′ + Aβw,w
′) =

1

2

d

dt
{|w′|2 + ‖w‖2

β}. (3.6)

Lemma 3.4. Let β ∈ B, w ∈ L2(0, T ;D(A)), w′ ∈ L2(0, T ;V ) and w′′ +

Aβw ∈ L2(0, T ;V ). Then, after a modification on a set of measure zero, w ∈

C([0, T ];D(A)), w′ ∈ C([0, T ];V ) and, in the sense of distributions on (0, T ) one

has

((w′′ + Aβw,w
′))β =

1

2

d

dt
{‖w′‖2

β + |Aβw|2}. (3.7)
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Proof. Use Lemma 3.3 with the triple V ⊂ H = H ′ ⊂ V ′ replaced by D(Aβ) ⊂

Vβ = V ′β ⊂ H, see [48], Section 2.4.2.

Lemma 3.5. Let w ∈ Wr(0, T ) , where

Wr(0, T ) = {u : u ∈ L2(0, T ;V ), u′ ∈ L2(0, T ;V ), u′′ ∈ L2(0, T ;V ′)}. (3.8)

Then, after a modification on a set of measure zero, w ∈ C([0, T ];V ), w′ ∈

C([0, T ];H) and, in the sense of distributions on (0, T ) one has

d

dt
||w||2β = 2aβ(w′, w) = 2〈Aβw,w′〉, and

d

dt
|w′|2 = 2〈w′′, w′〉. (3.9)

Proof. According to ([48], Lemma 2.3.2), if u ∈ L2(0, T ;V ) and its derivative

u′ ∈ L2(0, T ;V ′), then u ∈ C([0, T ];H) after a modification on a set of measure

zero, and it satisfies d/dt|u|2 = 2〈u′, u〉. Let w ∈ Wr(0, T ), and u = w′. Then

u ∈ L2(0, T ;V ) and w′ ∈ L2(0, T ;V ′). Therefore we have w′ = u ∈ C([0, T ];H),

and the second equality in (3.9). For the first equality in (3.9) we can use ([48],

Lemma 2.3.2) with V = H = V ′, since ‖w‖β is an equivalent norm in V .
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Chapter 4

Properties of the Nonlinear Mapping g(u)

Let g(t) = |t|γt, where t ∈ R and γ ≥ 0. Notice that g′(t) = (γ + 1)|t|γ. We will

use the following elementary inequality

|g(t)− g(s)| = ||t|γt− |s|γs| ≤ (γ + 1)(|t|+ |s|)γ|t− s|. (4.1)

Indeed, by the Mean Value Theorem,

||t|γt− |s|γs| ≤ (γ + 1)|θt+ (1− θ)s|γ|t− s|,

and |θt+ (1− θ)s| ≤ |t|+ |s|, 0 ≤ θ ≤ 1.

Lemma 4.1. If u ∈ V , then |g(u)| ≤ c‖u‖γ+1. Mapping g : V → H is locally

Lipschitz on V .

Proof. We recall the Sobolev embedding: V ⊂ Lq(Ω), for any 1 ≤ q < ∞ if

n = 1, 2; V ⊂ Lq(Ω), for 1 ≤ q ≤ 6 if n = 3 (see [48], II (1.15) and [14], 5.6

Theorem 2). Hence, for u ∈ V , |g(u)|2 =
∫

Ω
|u|2γ+2dx = ‖u‖2γ+2

L2γ+2(Ω) ≤ c‖u‖2(γ+1).

For the case n ≥ 4, |g(u)| = |u| ≤ c‖u‖.

Now we prove the Lipschitz continuity of g. Assume u, v ∈ V . For n ≥ 4, the

14



case is trivial. Let n ≤ 3. By (4.1),

|g(u)− g(v)|2 =

∫
Ω

|g(u)− g(v)|2dx ≤ (γ + 1)2

∫
Ω

(|u|+ |v|)2γ|u− v|2dx

≤ C
(∫

Ω

(|u|+ |v|)3γdx
) 2

3
(∫

Ω

|u− v|6dx
) 1

3

≤ C
(∫

Ω

(|u|+ |v|)3γdx
) 2

3‖u− v‖2.

If 0 ≤ 3γ < 1, then

∫
Ω

(|u|+ |v|)3γdx ≤
∫

Ω

(1 + |u|+ |v|)2dx ≤ C

∫
Ω

(1 + |u|2 + |v|2)dx

≤ C(1 + |u|2 + |v|2) ≤ C(1 + ‖u‖2 + ‖v‖2) ≤ C(1 + ‖u‖+ ‖v‖)2.

If 3γ ≥ 1, then

∫
Ω

(|u|+ |v|)3γdx ≤ C

∫
Ω

(|u|3γ + |v|3γ)dx = C(‖u‖3γ
L3γ(Ω) + ||v||3γL3γ(Ω))

≤ C(‖u‖3γ + ||v||3γ) ≤ C(||u||+ ||v||)3γ.

Combining these results, we get

|g(u)− g(v)|2 ≤ C
( ∫

Ω
(|u|+ |v|)3γdx

) 2
3‖u− v‖2 ≤ C(1 + ‖u‖+ ‖v‖)2γ+2‖u− v‖2.

Lemma 4.2. If β(x) ∈ B and u ∈ D(A), then ‖g(u)‖ ≤ C‖u‖γH2‖u‖, where C

depends only on Ω .

Proof. By the Sobolev embeddings Theorem (see [48], II (1.12)), H2(Ω) ⊂ C(Ω)

continuously for n ≤ 3 . Therefore, for any u ∈ H2(Ω) ∩ H1
0 (Ω), ‖u‖C(Ω) ≤
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C‖u‖H2 , for some constant C that depends only on Ω. Hence,

‖g(u)‖ =

∫
Ω

|∇g(u)|2dx =

∫
Ω

|g′(u)∇u|2dx = (γ + 1)2

∫
Ω

|u|2γ|∇u|2dx

≤ C‖u‖2γ
H2

∫
Ω

|∇u|2dx = C‖u‖2γ
H2‖u‖.

The case of n ≥ 4 is evident.

Theorem 4.3. If un → u pointwise a.e. on Ω, and ‖un‖, ‖u‖ ≤ C, for some

constant C, then g(un) ⇀ g(u) weakly in H, as n→∞.

Proof. Since un → u pointwise a.e. on Ω, then g(un) → g(u) pointwise a.e. on

Ω. By Egoroff’s theorem, for any ε > 0 there exists a measurable set E ⊂ Ω such

that m(E) < ε and the convergence g(un)(x)→ g(u)(x) is uniform for x ∈ Ω\E.

Therefore, for large n

∫
Ω

|g(un)− g(u)|dx =

∫
E

+

∫
Ω\E
≤
∫
E

|g(un)|dx+

∫
E

|g(u)|dx+ ε.

By Lemma 4.1, |g(v)| ≤ c‖v‖γ+1. Hence, if v ∈ V , and ‖v‖ ≤ C, then

∫
E

|g(v)(x)|dx ≤ |g(v)|

√∫
E

dx ≤ c‖v‖γ+1
√
m(E) < cCγ+1

√
ε.

Therefore, ∫
Ω

|g(un)− g(u)|dx ≤ 2cCγ+1
√
ε+ ε.

Thus,

‖g(un)− g(u)‖L1(Ω) → 0, n→∞.

By Lemma 4.4, it is enough to check the convergence (g(un), p) → (g(u), p) for
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any bounded p ∈ H. For such a p ∈ H we have

|(g(un), p)− (g(u), p)| ≤
∫

Ω

|g(un)(x)− g(u)(x)||p(x)|dx

≤ ‖p‖∞
∫

Ω

|g(un)− g(u)|dx→ 0

as n→∞.

Lemma 4.4. If |fn|, |f | < C and (fn, p) → (f, p) for any bounded function

p ∈ H, then fn ⇀ f weakly in H.

Proof. Let h ∈ H. For each N ∈ N define function hN ∈ H by hN(x) = h(x)

for x ∈ Ω such that |h(x)| ≤ N , and hN(x) = 0 otherwise. Functions hN are

bounded on Ω, and converge to h in H by Lebesgue’s Dominated Convergence

theorem. This shows that bounded functions are dense in H.

Let ε > 0. Given h ∈ H choose a bounded function p ∈ H such that |h−p| < ε.

Then, for large n

|(fn, h)− (f, h)| = |(fn − f, h)| ≤ |(fn − f, p)|+ |(fn − f, h− p)|

≤ ε+ |fn − f ||h− p| ≤ ε+ 2Cε.

Theorem 4.5. If un → u in H and ‖un‖, ‖u‖ ≤ C for some constant C, then

g(un) ⇀ g(u) weakly in H.

Proof. Suppose that g(un) 6⇀ g(u) weakly in H. Then there exist ε > 0, a

subsequence uk of un, and an h ∈ H such that |(g(uk), h)−(g(u), h)| ≥ ε for any k.

On the other hand, since un → u in H, then the same is true for the subsequence
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uk. The convergence in H implies the convergence in measure uk → u on Ω. This,

in turn, implies that there is a subsequence of uk (call it uk again) that converges

to u pointwise a.e. on Ω. By Theorem 4.3 we have g(uk) ⇀ g(u) weakly in H

contradicting the assumption.

Theorem 4.6. If un → u in L2(0, T ;H) and ‖un(t)‖, ‖u(t)‖ ≤ C for some

constant C and any t ∈ [0, T ], then g(un) ⇀ g(u) weakly in L2(0, T ;H).

Proof. Suppose that g(un) 6⇀ g(u) weakly in L2(0, T ;H). This means that there

exist ε > 0, a subsequence uk of un, and an h ∈ L2(0, T ;H) such that |(g(uk) −

g(u), h)L2(0,T ;H)| ≥ ε for any k.

On the other hand, un → u in L2(0, T ;H), as n → ∞. The same is true for

the subsequence uk, i.e.
T∫
0

|uk(t) − u(t)|2dt → 0. This implies that uk converges

to u in measure on [0, T ] in the space H = L2(Ω). This, in turn, implies that

there is a subsequence um such that |um(t) − u(t)| → 0 pointwise a.e. on [0, T ].

In other words, um(t) → u(t) in H, a.e on [0, T ]. By Theorem 4.5 we have

g(um)(t) ⇀ g(u)(t) weakly in H for any t ∈ [0, T ]. This implies that (g(um)(t)−

g(u)(t), h(t))→ 0 pointwise a.e. on [0, T ].

Let Fn(t) = (g(um)(t)− g(u)(t), h(t)), then

|Fn(t)| ≤ |g(um)(t)− g(u)(t)||h(t)| ≤ (|g(um)(t)|+ |g(u)(t))||h(t)| ≤ C|h(t)|.

Here we used the fact that |g(um)(t)| + |g(u)(t)| ≤ c(‖um(t)‖γ+1 + ‖u(t)‖γ+1) ≤

2cCγ+1. Function |h| is integrable on [0, T ], since |h| ∈ L2(0, T ). Hence

(
g(um)− g(u), h

)
L2(0,T ;H)

→ 0,

by the Lebesgue’s Dominated Convergence Theorem. This contradicts the as-
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sumption.

For convenience we summarize the results of this chapter.

Theorem 4.7. Let g(u) = |u|γu and γ is assumed to satisfy


0 ≤ γ <∞ if n = 1, 2,

0 ≤ γ ≤ 2 if n = 3,

γ = 0 if n ≥ 4.

(4.2)

Then, we have g′(u) = (γ + 1)|u|γ, and

(i) If n = 1, 2, then we have the Sobolev embedding V ⊂ Lq(Ω), where 1 ≤

q < ∞. If n = 3, then we have the Sobolev embedding V ⊂ Lq(Ω), where

1 ≤ q ≤ 2γ + 2. Therefore, we have, for n = 1, 2, 3 and u ∈ V , the Sobolev

inequality

‖u‖Lq(Ω) ≤ C‖u‖, (4.3)

where 1 ≤ q ≤ 2γ + 2.

(ii) If u ∈ V , then |g(u)| ≤ C‖u‖γ+1 and g : V → H is locally Lipschitz with

|g(u)− g(v)| ≤ C(1 + ‖u‖+ ‖v‖)γ+1‖u− v‖, (4.4)

where u, v ∈ V .

(iii) If β(x) ∈ B and u ∈ D(A), then ‖g(u)‖ ≤ C‖u‖γH2(Ω)‖u‖, where C

depends only on Ω.

(iv) If un → u in L2(0, T ;H) and ‖un(t)‖, ‖u(t)‖ ≤ C for some constant C

and any t ∈ [0, T ], then g(un) ⇀ g(u) weakly in L2(0, T ;H).
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Chapter 5

Solutions of the Klein-Gordon Problem

The existence and the uniqueness of the solutions for (3.5) is established using

standard Galerkin method. Our goal here is to establish the convergence estimate

(5.14). We also ascertain the uniformity of the estimates with respect to the

parameters q ∈ P . Everywhere in the sequel c > 0 denotes various constants

that depend only on the bounds of the admissible set P .

Lemma 5.1. Let u ∈ W (0, T ) ∩ L∞(0, T ;V ) be a solution of the damped Klein-

Gordon problem

u′′ + αu′ + Aβu+ δg(u) = f, f ∈ L2(0, T ;H) (5.1)

u(0) = y0 ∈ V, u′(0) = y1 ∈ H.

Then

|u′(t)|2 + ‖u(t)‖2 ≤ cI, (5.2)

for any t ∈ [0, T ], where

I = |y1|2 + ‖y0‖2 + ‖y0‖γ+2 + ‖f‖2
L2(0,T ;H). (5.3)

Proof. By the definition of the weak solution we have u ∈ L∞(0, T ;V ). Therefore,
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g(u) ∈ L∞(0, T ;H) ⊂ L2(0, T ;H) by Theorem 4.1. Then

u′′ + Aβu = f − αu′ − δg(u) ∈ L2(0, T ;H).

Multiply both sides by u′ to get

(u′′ + Aβu, u
′) + δ(|u|γu, u′) = (f, u′)− α(u′, u′).

By Lemma 3.3 and
∫

Ω
|u|γuu′dx = 1

γ+2
d
dt

∫
Ω
|u|γ+2dx , we have

1

2

d

dt
{|u′|2 + ‖u‖2

β}+
δ

γ + 2

d

dt

∫
Ω

|u|γ+2dx = (f, u′)− α|u′|2.

Integrating both sides from 0 to t we get

|u′(t)|2 + ‖u(t)‖2
β +

2δ

γ + 2
||u(t)||γ+2

Lγ+2(Ω) + 2α

t∫
0

|u′(s)|2ds

= |y1|2 + ‖y0‖2
β +

2δ

γ + 2
‖y0‖γ+2

Lγ+2(Ω) + 2

t∫
0

(f(s), u′(s))ds.

It follows readily from the inequality

2

t∫
0

(f(s), u′(s))ds ≤
t∫

0

|f(s)|2ds+

t∫
0

|u′(s)|2ds

that

|u′(t)|2 + ‖u(t)‖2 ≤ C
(
|y1|2 + ‖y0‖2 + ‖y0‖γ+2

Lγ+2(Ω) + ‖f‖2
L2(0,T ;H) +

t∫
0

|u′(s)|2ds
)
.

By the Sobolev inequality (4.3), we have ‖y0‖Lγ+2(Ω) ≤ c‖y0‖. Therefore, by
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Gronwall’s Lemma (see [14], section B.2)

|u′(t)|2 + ‖u(t)‖2 ≤ c
(
|y1|2 + ‖y0‖2 + ‖y0‖γ+2 + ‖f‖2

L2(0,T ;H)

)
= cI.

Lemma 5.2. (i). Let ui, i = 1, 2 be two solutions of the damped Klein-Gordon

problem

u′′i + αu′i + Aβui + δg(ui) = fi, fi ∈ L2(0, T ;H) (5.4)

ui(0) = y0,i ∈ V, u′i(0) = y1,i ∈ H.

Then

|u′2(t)− u′1(t)|2 + ‖u2(t)− u1(t)‖2

≤ C(I1, I2)(‖y0,2 − y0,1‖2 + |y1,2 − y1,1|2 + ‖f2 − f1‖2
L2(0,T ;H)) (5.5)

for any t ∈ [0, T ], where Ii = |y1,i|2 + ‖y0,i‖2 + ‖y0,i‖γ+2 + ‖f‖2
L2(0,T ;H),

and i = 1, 2.

(ii). The solution of the damped Klein-Gordon problem (5.1) is unique.

Proof. Let u be a solution of the equation (5.1). Then ‖u(t)‖ ≤ c
√
I, where c

√
I

is not dependent on t by Lemma 5.1.

To show (i), notice that the difference w = u2 − u1 satisfies

w′′ + Aβw = −αw′ − δ(g(u2)− g(u1)) + f2 − f1 ∈ L2(0, T ;H).
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Multiplying both sides by w′ and using Lemma 3.3, we get

1

2

d

dt
{|w′|2 + ‖w‖2

β} = −α|w′|2 − δ(g(u2)− g(u1), w′) + (f2 − f1, w
′). (5.6)

Integrating over [0, t], 0 < t ≤ T and using estimate (3.1) gives

|w′(t)|2 + ‖w(t)‖2
β = |w′(0)|2 + ‖w(0)‖2

β − 2α

t∫
0

|w′(s)|2ds

− 2δ

t∫
0

(g(u2(s))− g(u1(s)), w′(s))ds+ 2

t∫
0

(f2(s)− f1(s), w′(s))ds.

The Lipschitz continuity of g(u) and (4.4) imply

|w′(t)|2 + ||w(t)||2β ≤ |w′(0)|2 + ||w(0)||2β + C1

t∫
0

|w′(s)|ds

+ C2

t∫
0

(1 + ‖u1‖+ ‖u2‖)2γ+2||u1 − u2||2ds+

t∫
0

|f2 − f1|2ds.

By Lemma 5.1

|w′(t)|2 + ||w(t)||2β ≤ |w′(0)|2 + ||w(0)||2β + C1

t∫
0

|w′(s)|ds

+ C ′2(1 + I1 + I2)γ+1

t∫
0

||u1 − u2||2ds+

t∫
0

|f2 − f1|2ds.

Gronwall’s Lemma ([14], Section B.2) implies (5.5).

Part (ii) follows from (5.5), since in this case the initial conditions are the

same, and f1 = f2.
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Now we establish the existence of a weak solution for Klein-Gordon equation

(3.5). Let {λk}∞k=1 and {wk}∞k=1 be the eigenvalues and the eigenfunctions of the

operator Aβ in V , such that {wk}∞k=1 form an orthonormal basis in H. Then

{wk/
√
λk}∞k=1 form an orthonormal basis in Vβ, see [14], Chap. 6.

Fix m ∈ N and let Vm = span{w1, ..., wm}. Define

Pmh =
m∑
k=1

(h,wk)wk, h ∈ H. (5.7)

Then Pm : H → Vm is an orthogonal projection in H with |Pmh| ≤ |h| for any

h ∈ H. It is also an orthogonal projection in Vβ with ‖Pmv‖β ≤ ‖v‖β, v ∈ V .

Note that Pm is dependent on β.

The approximate solution of (3.5) is defined to be a function um ∈ W (0, T )∩

L∞(0, T ;V ) that satisfies

u′′m + αu′m + Aβum + δPmg(um) = Pmf, in V ′, (5.8)

um(0) = Pmy0, u′m(0) = Pmy1.

Lemma 5.3. Equation (5.8) has a unique solution um satisfying um(t) ∈ Vm,

um, u
′
m ∈ C([0, T ];V ), and

max
0≤t≤T

(
‖um(t)‖2 + |u′m(t)|2

)
+ ‖u′′m(·)‖2

L2(0,T ;V ′) ≤ c(I + Iγ+1), (5.9)

where I is defined as in (5.3).

Proof. The uniqueness is established as in Lemma 5.2. Let zm(t) =
∑m

k=1 gkm(t)wk

24



satisfy

(z′′m, wk) + α(z′m, wk) + aβ(zm, wk) + δ(g(zm), wk) = (f, wk), (5.10)

zm(0) = Pmy0, z′m(0) = Pmy1

for 1 ≤ k ≤ m. For each m ∈ N this is a Cauchy problem for the system of

ordinary differential equations that has a unique solution zm(t) with zm, z
′
m ∈

C([0, T ];V ) and z′′m ∈ L2([0, T ];V ). To see that the solution zm(t) also satisfies

(5.8) it is enough to establish that

〈z′′m + αz′m + Aβzm + δPmg(zm), wk〉 = 〈Pmf, wk〉 (5.11)

for any k ∈ N. But for 1 ≤ k ≤ m, equations (5.11) are the same as (5.10), and for

k > m equations (5.11) are reduced to 0 = 0, because wk are the eigenfunctions

of the operator Aβ. The uniqueness of um implies um = zm.

To obtain estimate (5.9) multiply both sides in (5.8) by u′m to get

(u′′m, u
′
m) + (Aβum, u

′
m) + δ(Pmg(um), u′m) = −α(u′m, u

′
m) + (Pmf, u

′
m).

Notice that (Pmg(um), u′m) = (g(um), Pmu
′
m) = (g(um), u′m). Similarly to the

proof of Lemma 5.1, we have

‖um(t)‖2 + |u′m(t)|2 ≤ cIm,

where Im = |Pmy1|2 +‖Pmy0‖2 +‖Pmy0‖γ+2 +‖Pmf‖2
L2(0,T ;H). Notice that Im ≤ I
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for any m. Hence, we obtain

max
0≤t≤T

(
‖um(t)‖2 + |u′m(t)|2

)
≤ cI, (5.12)

for any m. Let v ∈ V with ‖v‖ ≤ 1. Then

〈u′′m, v〉 = −α(u′m, v)− 〈Aβum, v〉 − δ(Pmg(um), v) + (Pmf, v).

Using |v| ≤ K1‖v‖ = K1 we get

|〈u′′m, v〉| ≤ K1max{|αmin|, |αmax|}|u′m|+ µ‖um‖+K1δmax‖um‖γ+1
L2γ+2 +K1|f |

≤ K1max{|αmin|, |αmax|}|u′m|+ µ‖um‖+ CK1δmax‖um‖γ+1 +K1|f |.

Therefore

‖u′′m‖2
V ′ ≤ c(|f |2 + |u′m|2 + ‖um‖2 + ‖um‖2γ+2),

and the energy estimate (5.9) follows from (5.12).

Theorem 5.4. Let q ∈ P, y0 ∈ V, y1 ∈ H, f ∈ L2(0, T ;H), and I is defined as

in (5.3). Then

(i). There exists a unique solution u(t) = u(t; q) of (3.5). This solution

satisfies u ∈ C([0, T ];V ) ∩W (0, T ), u′ ∈ C([0, T ];H), and

max
0≤t≤T

(
‖u(t)‖2 + |u′(t)|2

)
+ ‖u′′(t)‖2

L2(0,T ;V ′) ≤ c(I + Iγ+1). (5.13)

(ii). The solution u(t) = u(t; q) and its approximations um(t) = um(t; q) satisfy
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the following convergence estimate

|u′(t)− u′m(t)|2 + ‖u(t)− um(t)‖2 ≤ c(I)
(
|y1 − Pmy1|2 + ‖y0 − Pmy0‖2

+‖f − Pmf‖2
L2(0,T ;H) +

∫ t

0

|g(u(s; q))− Pmg(u(s; q))|2ds
)
. (5.14)

(iii). Furthermore, um → u in C([0, T ];V ), and u′m → u′ in C([0, T ];H) as

m→∞.

Proof. The uniqueness of the solutions for (3.5) is already established in Lemma

5.2. The existence is proved using standard methods, see [48], Section 4.4.4. That

is, the energy estimate (5.9) shows that the approximate solutions um, m ∈ N

remain within a bounded ball of the Hilbert space W (0, T ). Therefore we can

choose a subsequence umk such that

umk ⇀ z in L2(0, T ;V ), u′mk ⇀ z′ in L2(0, T ;H), u′′mk ⇀ z′′ in L2(0, T ;V ′),

(5.15)

as mk → ∞, where ⇀ denotes the weak convergence. Furthermore, estimate

(5.9) shows that we can also assume that umk ⇀ z weak-star in L∞(0, T ;V )

and u′mk ⇀ z′ weak-star in L∞(0, T ;H). Since V is compactly embedded in H,

umk → z in L2(0, T ;H). By Theorem (4.6), g(umk) ⇀ g(z) weakly in L2(0, T ;H).

Therefore, for any h ∈ L2(0, T ;V ), we have

〈u′′mk , h〉+ α〈u′mk , h〉+ 〈Aβumk , h〉+ δ〈g(umk), h〉

−→ 〈z′′, h〉+ α〈z, h〉+ 〈Aβz, h〉+ δ〈g(z), h〉,

as mk →∞.

That is z′′ + αz′ + Aβz + δg(z) = f in L2(0, T ;V ′). Furthermore, we have
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z(0) = y0 and z′(0) = y1. For the details of the proof see [14, 48].

Thus z is a solution of (3.5). Since the solution of (3.5) is unique, we have

um → z for the entire sequence um and not just for its subsequence umk .

Rewrite (3.5) as u′′ +Aβu = f − αu′ − δg(u). Hence u′′ +Aβu ∈ L2(0, T ;H).

Rewrite (5.8) as u′′m + Aβum = Pmf − αu′m − δPmg(um). Hence u′′m + Aβum ∈

L2(0, T ;H). For the difference u− um we have

(u− um)′′ + Aβ(u− um)

= f − Pmf − α(u− um)′ − δ(g(u)− Pmg(um)) ∈ L2(0, T ;H). (5.16)

By Lemma 3.3,

1

2

d

dt
{|u′ − u′m|2 + aβ(u− um, u− um)}

= (f − Pmf, (u− um)′)− α|(u− um)′|2 − δ
(
g(u)− Pmg(um), u′ − u′m

)
.

Integration on [0, t] gives

|u′(t)− u′m(t)|2 + aβ(u(t)− um(t), u(t)− um(t)) ≤ c
(
|y1 − Pmy1|2

+ aβ(y0 − Pmy0, y0 − Pmy0) + ‖f − Pmf‖2
L2(0,T ;H) +

∫ t

0

|u′ − u′m|2ds

+

∫ t

0

|g(u)− Pmg(u)|2ds+

∫ t

0

|Pm(g(u)− g(um))|2ds
)
.

Furthermore, using |v| ≤ K1‖v‖ and

|g(u)− g(um)|2 ≤ C(1 + ‖u‖+ ‖um‖)2γ+2‖u− um‖2,
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we get

|u′(t)− u′m(t)|2 + ‖u(t)− um(t)‖2 ≤ c(I)
(
|y1 − Pmy1|2

+ ‖y0 − Pmy0‖2 + ‖f − Pmf‖2
L2(0,T ;H) +

∫ t

0

|g(u)− Pmg(u)|2ds

+

∫ t

0

|u′(s)− u′m(s)|2ds+

∫ t

0

‖u(s)− um(s)‖2ds
)
.

Now the Gronwall’s Lemma gives the convergence estimate (5.14).

By the Lebesgue Dominated Convergence Theorem, the right side of (5.14)

approaches zero as m→∞. This implies that um → u in L∞(0, T ;V ) and u′m →

u′ in L∞(0, T ;H). Since um, u
′
m ∈ C([0, T ];V ) we conclude that u ∈ C([0, T ];V ),

and u′ ∈ C([0, T ];H) after a modification on a set of measure zero in [0, T ].
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Chapter 6

Estimates for Eigenvalues and Eigenfunctions

Definition 6.1. Let β ∈ B, and λk(β) and wk(β), k ∈ N be the eigenvalues and

the normalized in H eigenfunctions of the operator Aβ defined in (3.2).

Denote by Λk, k ∈ N the eigenvalues of the negative Dirichlet Laplacian

−∆ = Aβ with β = 1.

The following four lemmas are from [22].

Lemma 6.2. Let β ∈ B. Then

νΛk ≤ λk(β) ≤ µΛk (6.1)

for any k ∈ N.

Proof. Recall the Courant Minimax Principle

λk(β) = min
Vk

max
v∈Vk

aβ(v, v)

‖v‖2
,

where Vk varies over all k-dimensional subspaces of V , see [32], Chapter 6. Since

ν ≤ β ≤ µ for any β ∈ B, the Minimax Principle implies that λk(ν) ≤ λk(β) ≤

λk(µ). But ν = const, so λk(ν) = νΛk. Similarly, λk(µ) = µΛk.

Lemma 6.3. Let v ∈ D(A), β ∈ B, then

‖v‖β ≤
1√
νΛ1

|Aβv|, and ‖v‖ ≤ 1

ν
√

Λ1

|Aβv|. (6.2)
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Proof. We have v =
∑∞

k=1(v, wk(β))wk(β) in V . Therefore

‖v‖2
β =

∞∑
k=1

λk(β)|(v, wk(β))|2. (6.3)

By [48], Section 2.2.1,

|Aβ(v)|2 =
∞∑
k=1

λ2
k(β)|(v, wk(β))|2. (6.4)

Using Lemma 6.2, and λm+1(β) ≤ λk(β) for k ≥ m+ 1 we get

νΛ1‖v‖2
β ≤ λ1(β)

∞∑
k=1

λk(β)|(v, wk(β))|2 ≤ |Aβv|2, (6.5)

Since ν‖v‖2 ≤ ‖v‖2
β, we establish (6.2).

Recall that B is equipped with the C(Ω̄) topology.

Lemma 6.4. Let v ∈ V . Then the mapping β → Aβv from B into V ′ is contin-

uous.

Proof. Suppose that βn → β in B as n→∞. We denote A = Aβ and An = Aβn .

Our goal is to show that ‖(An−A)v‖V ′ → 0 as n→∞. Let w ∈ V with ‖w‖ ≤ 1.

Then

|〈(An − A)v, w〉|2 ≤
(∫

Ω

|βn(x)− β(x)||∇v(x)||∇w(x)|dx
)2

(6.6)

≤ ‖βn(x)− β(x)‖2
∞‖v‖2 → 0, as n→∞.

Lemma 6.5. Suppose that βn → β in B, and vn ⇀ v weakly in V , as n → ∞.

Then Anvn ⇀ Av weakly in V ′.
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Proof. Let w ∈ V , then

|〈Anvn, w〉 − 〈Av,w〉| = |〈Anw, vn〉 − 〈Aw, v〉| (6.7)

≤ |〈(An − A)w, vn〉|+ |〈Aw, vn − v〉|.

Since a weakly convergent sequence is bounded, for the first term we have

|〈(An − A)w, vn〉| ≤ ‖Anw − Aw‖V ′‖vn‖ ≤ c‖Anw − Aw‖V ′ → 0

as n → ∞ by Lemma 6.4. The second term |〈Aw, vn − v〉| → 0 since vn ⇀ v

weakly in V , as n→∞.

An additional regularity of the weak solution u of (3.5) is obtained under more

restrictive conditions on y0, y1 and f .

Theorem 6.6. If f ∈ L2(0, T ;V ), y0 ∈ D(A), and y1 ∈ V , then the solution u

of (3.5) satisfies u ∈ C([0, T ];D(A)), u′ ∈ C([0, T ];V ), and

max
0≤t≤T

(|Aβu(t)|2 + ‖u′(t)‖2) ≤ C(I)
(
|Aβy0|2 + ‖y1‖2 +

∫ T

0

‖f(s)‖2ds
)
. (6.8)

Furthermore, the solution u and its approximations um satisfy the following con-

vergence estimate

max
0≤t≤T

(|Aβ(u(t)− um(t))|2 + ‖u′(t)− u′m(t)‖2) ≤ C(I)
(
|Aβ(y0 − Pmy0)|2

+ ‖y1 − Pmy1‖2 + ‖f − Pmf‖2
L2(0,T ;V ) +

∫ t

0

‖g(u(s; q))− Pmg(u(s; q))‖2
βds
)
.

(6.9)
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Proof. Equality

((u′′m + Aβum, u
′
m))β =

1

2

d

dt

[
|Aβum|2 + ‖u′m‖2

β

]
(6.10)

is verified by substituting um(t) =
∑m

k=1 gkm(t)wk into it, and recalling that the

eigenfunctions {wk/
√
λk}∞k=1 form an orthonormal basis in Vβ. It also follows

from Lemma 3.4.

Take the ((·, ·))β inner product of both sides of (5.8) with u′m, use equality

(6.10), and integrate the result on interval [0, t] to obtain

|Aβum|2 + ‖u′m‖2
β = |AβPmy0|2 + ‖Pmy1‖2

β

+ 2

∫ t

0

[−α‖u′m(s)‖2
β − 2δ((g(um(s)), u′m(s)))β + ((f(s), u′m(s)))β]ds. (6.11)

SinceAβPm = PmAβ, ‖Pmv‖β ≤ ‖v‖β, similarly to Lemma 4.2 we have ‖g(um)‖β ≤

C‖um‖γH2‖um‖β. By (3.3) and energy estimate (5.9), we have ‖um‖H2 ≤ C(I),

where C(I) does not depend on m. Hence,

|((Pmg(um), u′m))β| ≤ ||Pmg(um)||β||u′m||β

≤ ||g(um)||β||u′m||β ≤ C(I)(||um||2β + ||u′m||2β).

Therefore, we get

|Aβum|2 + ‖u′m‖2 ≤ C(I)
(
|Aβy0|2 + ‖y1‖2

+

∫ t

0

[‖u′m(s)‖2 + ‖um(s)‖2]ds+

∫ t

0

‖f(s)‖2ds
)
. (6.12)
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Use (6.2) to estimate ‖um(s)‖2 ≤ c|Aβum|2. Then Gronwall’s inequality gives

max
0≤t≤T

(|Aβum(t)|2 + ‖u′m(t)‖2) ≤ C(I)
(
|Aβy0|2 + ‖y1‖2 +

∫ T

0

‖f(s)‖2ds
)

(6.13)

for any t ∈ [0, T ]. Estimate (6.13) shows that {um, u′m}, m ∈ N remains within

a bounded ball in L2(0, T ;D(A))×L2(0, T ;V ). Let {z, z′} be a weak limit point

of this sequence in L2(0, T ;D(A)) × L2(0, T ;V ). By Theorem 5.4, um → u in

C([0, T ];V ), and u′m → u′ in C([0, T ];H) as m→∞. Therefore {z, z′} = {u, u′}.

Thus u satisfies (6.8).

The difference u− um satisfies

(u− um)′′ + Aβ(u− um)

= f − Pmf − α(u− um)′ − δ(g(u)− Pmg(um)) ∈ L2(0, T ;V ). (6.14)

Multiplication of (6.14) by u′−u′m ∈ L2(0, T ;V ), Lemma 3.4, and Gronwall’s

inequality give the convergence estimate (6.9). Now,

|Aβ(y0 − Pmy0)| = |(I − Pm)Aβ(y0)|, and Aβ(y0) ∈ H

Therefore this equality and (6.9) imply that um → u in C([0, T ];D(A)), and

u′m → u′ in C([0, T ];V ) as m→∞. The Theorem follows.
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Chapter 7

Continuity of the Solution Maps

The main goal of this chapter is to prove the continuity of the mapping q → u(q)

for q ∈ P . Recall that B is equipped with the C(Ω̄) topology.

Theorem 7.1. Let u(q), q ∈ P be the solution of the Klein-Gordon problem

(3.5). Then the solution maps q → u(q) : P → C([0, T ];V ) and q → u′(q) : P →

C([0, T ];H) are continuous.

Proof. Let q = (α, β, δ) ∈ P , and qn = (αn, βn, δn) ∈ P . Denote An = Aβn .

Suppose that qn → q in P , as n → ∞. First, assume that f ∈ L2(0, T ;V ),

y0 ∈ D(A) and y1 ∈ V . Consider Klein-Gordon problems

v′′(q) + αv′(q) + Aβv(q) + δg(v(q)) = f (7.1)

v(0; q) = y0, v′(0; q) = y1,

and

v′′(qn) + αnv
′(qn) + Anv(qn) + δng(v(qn)) = f (7.2)

v(0; qn) = y0, v′(0; qn) = y1.
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Let w = v(qn)− v(q), then

w′′ + Anw = (Aβ − An)v(q)− αnw′ + (α− αn)v′(q)

− δn(g(v(qn))− g(v(q))) + (δ − δn)g(v(q)), (7.3)

with w(0) = 0 and w′(0) = 0. By Theorem 5.8.4 in [14], we have βn(x) ∈

W 1,∞(Ω) ⊂ W 1,2(Ω). Also y0 ∈ D(A) ⊂ H2(Ω). Therefore, we get

|Any0|2 =

∫
Ω

|∇βn(x) · ∇y0 + βn(x)4 y0|2dx ≤ L (7.4)

for some constant L independent on β, but dependent on y0. By estimate (6.8)

of Theorem 6.6 and estimate (7.4) we get

‖w′(t)‖2 = ||v′(t, qn)− v′(t, q)||2 ≤ 2(||v′(qn)||2 + ||v′(q)||2) (7.5)

≤ C(I)
(
|Any0|2 + |Ay0|2 + ||y1||2 +

∫ T

0

‖f(s)‖2ds
)

≤ C(I)
(
L2 + ‖y1‖2 +

∫ T

0

‖f(s)‖2ds
)
.

By energy estimate (6.8) we have v(q), v(qn) ∈ Wr(0, T ). Therefore w ∈

Wr(0, T ), and we can use Lemma 3.5 to derive

〈w′′, w′〉 =
1

2

d

dt
|w′|2, and 〈Anw,w′〉 =

1

2

d

dt
‖w‖2

n.

By (4.4) of Theorem 4.7 and energy estimate (5.13), we have

|g(v(qn))− g(v(q))|2

≤ C(‖v(qn)‖+ ‖v(q)‖)2γ‖u(qn)− v(q)‖2 ≤ C(I)‖v(qn)− v(q)‖2.
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Multiply (7.3) by w′ ∈ L2(0, T ;V ), and integrate it on [0, t] to get

t∫
0

〈w′′, w′〉ds+

t∫
0

〈Anw,w′〉ds

=

t∫
0

〈(An − A)v(q), w′〉ds+ (α− αn)

t∫
0

〈v′(q), w′〉ds

+ δn

t∫
0

〈(g(v(qn))− g(v(q)), w′〉ds+ (δ − δn)

t∫
0

〈g(v(q)), w′〉ds. (7.6)

By Lemma 4.1 and estimate (7.6), we get

|w′(t)|2 + ‖w(t)‖2 ≤ C(I)
(∫ t

0

‖(A− An)v(s; q)‖V ′‖w′(s)‖ds

+|α−αn|
∫ t

0

|v′(s; q)|2ds+|δ−δn|
∫ t

0

‖v(s; q)‖2ds+

∫ t

0

|w′(s)|2ds+
∫ t

0

‖w(s)‖2ds
)
.

(7.7)

By energy estimate (6.8) and by (7.5)

|w′(t)|2 + ‖w(t)‖2 ≤ C(I)
(
L

∫ t

0

‖(A− An)v(s; q)‖V ′ds+ |α− αn|

+ |δ − δn|+
∫ t

0

|w′(s)|2ds+

∫ t

0

‖w(s)‖2ds
)
. (7.8)

Now the Gronwall’s inequality gives

|v′(t; qn)− v′(t; q)|2 + ‖v(t; qn)− v(t; q)‖2

≤ C(I)
(
L

∫ T

0

‖(A− An)v(s; q)‖V ′ds+ |α− αn|+ |δ − δn|
)
, (7.9)

for any t ∈ [0, T ].

37



By the assumption qn → q in P , that is αn → α, δn → δ and βn → β in

B as n → ∞. The integral term in the right hand side of (7.9) approaches zero

by Lemma 6.4 and the Lebesgue’s Dominated Convergence Theorem. Therefore

the convergence u(qn) → u(q) in C([0, T ];V ), and u′(qn) → u′(q) in C([0, T ];H)

follows.

Now we prove the general case f ∈ L2(0, T ;H), y0 ∈ V , and y1 ∈ H.

Given 0 < ε < 1, one can find h ∈ L2(0, T ;V ), z0 ∈ D(A), and z1 ∈ V , such that

‖f − h‖L2(0,T ;H) < ε, ‖y0 − z0‖ < ε, and |y1 − z1| < ε.

Let u(t; qn) and u(t; q) be solutions for equations with f ∈ L2(0, T ;H), y0 ∈

V , and y1 ∈ H, and v(t; qn) and v(t; q) be solutions for equations with h ∈

L2(0, T ;V ), z0 ∈ D(A), and z1 ∈ V .

We have

|u′(t; qn)− u′(t; q)| = |u′(t; qn)− v′(t; qn) + v′(t; qn)− v′(t; q) + v′(t; q)− u′(t; q)|

≤ |u′(t; qn)− v′(t; qn)|+ |v′(t; qn)− v′(t; q)|+ |v′(t; q)− u′(t; q)|.

By estimate (5.5), we conclude that |u′(t; qn)− v′(t; qn)| ≤ C(I |u|, I |v|)ε,

|v′(t; q)− u′(t; q)| ≤ C(I |u|, I |v|)ε for t ∈ [0, T ], where

I |u| = |y1|2 + ‖y0‖2 + ‖y0‖γ+2 + ‖f‖2
L2(0,T ;H),

I |v| = |z1|2 + ‖z0‖2 + ‖z0‖γ+2 + ‖h‖2
L2(0,T ;H).

For ε < 1, we can find a constant ĉ such that C(I |u|, I |v|) ≤ ĉ, and ĉ only depends

on f , y0, y1, and the bounds of parameters in P .

Also, we have |v′(t; qn) − v′(t; q)| < ε for a sufficiently large n, and for any

t ∈ [0, T ]. Therefore, we have |u′(t; qn) − u′(t; q)| ≤ (2ĉ + 1)ε. Since ε could be
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arbitrary small, we get |u(t; qn)− u(t; q)| → 0 as n→ 0.

Similarly, we obtain ‖u(t; qn)− u(t; q)‖ → 0 as n→ 0.
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Chapter 8

Gâteaux Differentiability of the Solution Map in P

The goals of this chapter are to derive the existence of Gâteaux derivatives and

to give a characterization of the weak right Gâteaux derivative of the solution

map. To avoid confusion of notation, in this chapter, we use the notation |.|H for

the norm in H, and |.| simply for the absolute value.

Definition 8.1. Let q∗, q ∈ P . The solution map q → u(q) of P into L2(0, T ;H)

is said to be weakly (right) Gâteaux differentiable at q∗ in the direction q − q∗ if

there exists a function Du(q∗; q − q∗) ∈ L2(0, T ;H) such that

lim
λ→0+

(
u(q∗ + λ(q − q∗))− u(q∗)

λ
, v

)
= (Du(q∗; q − q∗), v) (8.1)

for any v ∈ L2(0, T ;H).

For convenience the word ”right” is omitted in the sequel. Also, since q∗, q ∈

P , the above definition is applied to a possibly restricted set of directions in the

convex admissible set P .

Let q∗ = (α∗, β∗, δ∗). We will show that the weak Gâteaux derivative of the

solution map at q∗ in the direction q − q∗, z = Du(q∗; q − q∗) exists and satisfies

the linear equation

z′′(t) + α∗z′(t) + Aβ∗z(t) + δ∗h(t)z(t) = f̃(t), t ∈ (0, T ) (8.2)
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with some h ∈ L2(0, T ;H) and f̃ ∈ L2(0, T ;H).

Now we proceed with the determination of the weak Gâteaux derivative z =

Du(q∗; q − q∗). Fix q∗, q ∈ P . Let λ ∈ (0, 1]. For simplicity we write

qλ = q∗ + λ(q − q∗).

Let u(qλ) and u(q∗) be the weak solutions of the equations

u′′(qλ) + αλu
′(qλ) + Aβλu(qλ) + δλg(u(qλ)) = f ∈ L2(0, T ;V ), (8.3)

uλ(0; qλ) = y0 ∈ D(A), u′λ(0; qλ) = y1 ∈ V

and

u′′(q∗) + α∗u′(q∗) + Aβ∗u(q∗) + δ∗g(u(q∗)) = f ∈ L2(0, T ;V ), (8.4)

u(0; q∗) = y0 ∈ D(A), u′(0; q∗) = y1 ∈ V

correspondingly.

Lemma 8.2. Let

Bλ(t, x) = B(u(t, x; qλ), u(t, x; q∗)) =
g(u(t, x; qλ))− g(u(t, x; q∗))

u(t, x; qλ)− u(t, x; q∗)
.

Then we have |Bλ(t, x)| ≤ c on [0, T ]×Ω for some constant c that does not depend

on λ. Also,

|Bλ(t)− g′(u(t; q∗))|H → 0, (8.5)

for any fixed t ∈ [0, T ], as λ→ 0+.

Proof. For n ≥ 4, we have Bλ(t, x) = 1. The case is trivial.

Now we prove the case of n ≤ 3.
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By Theorem 6.6, u(t; qλ), u(t; q∗) ∈ D(A) for any t ∈ [0, T ] . By the Sobolev

embeddings Theorem (see [48], II(1.12)), H2(Ω) ⊂ C(Ω) continuously for n ≤ 3.

Hence,

‖u(t; qλ)‖C(Ω) ≤ c‖u(t; qλ)‖H2(Ω) ≤ ĉ,

‖u(t; q∗)‖C(Ω) ≤ c‖u(t; q∗)‖H2(Ω) ≤ ĉ,

where ĉ depends only on the ‖f‖L2(0,T ;H , ‖y0‖, |y1|, and the bounds of three

parameters by inequalities (3.3), (5.13) and (6.8).

Therefore,

|u(t, x; qλ)|, |u(t, x; q∗)| ≤ ĉ, (8.6)

on [0, T ]× Ω. Hence,

|Bλ(t, x)| = |B(u(t, x; qλ), u(t, x; q∗))| = |g′(θu(t, x; qλ) + (1− θ)u(t, x; q∗))|

= (γ + 1)|θu(t, x; qλ) + (1− θ)u(t, x; q∗)|γ

≤ (γ + 1)(|u(t, x; qλ)|+ |u(t, x; q∗)|)γ ≤ (γ + 1)(2ĉ)γ = c,

on [0, T ]× Ω, and c does not depend on λ.

For any fixed (t, x) ∈ [0, T ]× Ω, we have

|Bλ(t, x)− g′(u(t, x; q∗))| ≤ |g′′(τ)||u(t, x; qλ)− u(t, x; q∗)|

= (γ + 1)γ|τ |γ−1|u(t, x; qλ)− u(t, x; q∗)| ≤ c|u(t, x; qλ)− u(t, x; q∗)|,

where τ is between u(t, x; qλ) and u(t, x; q∗). Notice that c does not depend on t

and x.
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Therefore, we have

|Bλ(t)− g′(u(t; q∗))|H ≤ c|u(t; qλ)− u(t; q∗)|H → 0,

as λ → 0+, since the solution map q → u(q) : P → C(0, T ;V ) is continuous by

Theorem 7.1.

Theorem 8.3. Let q = (α, β, δ), q∗ = (α∗, β∗, δ∗) ∈ P . Let function u(q∗) be the

weak solution of the equation

u′′(q∗) + α∗u′(q∗) + Aβ∗u(q∗) + δ∗g(u(q∗)) = f ∈ L2(0, T ;V ),

u(0; q∗) = y0 ∈ D(A), u′(0; q∗) = y1 ∈ V.

Then the weak Gâteaux derivative z = Du(q∗; q − q∗) ∈ L2(0, T ;H) at q∗ ∈ P in

the direction q − q∗ exists and is the unique weak solution of the problem

z′′(t) + α∗z′(t) + Aβ∗z(t) + δ∗g′(u(t; q∗))z(t) = f0(t), t ∈ (0, T ) (8.7)

z(0) = 0, z′(0) = 0,

where f0(t) = (α∗ − α)u′(t; q∗) + (Aβ∗ − Aβ)u(t; q∗) + (δ∗ − δ)g(u(t; q∗)).

Proof. First, we prove the case of n ≤ 3. Case n ≥ 4 is proved in Lemma 8.4.

Let qλ = q∗+λ(q− q∗) = (αλ, βλ, δλ). Functions u(qλ) and u(q∗) are the weak

solutions of the equations

u′′(qλ) + αλu
′(qλ) + Aβλu(qλ) + δλg(u(qλ)) = f ∈ L2(0, T ;V ), (8.8)

uλ(0; qλ) = y0 ∈ D(A), u′λ(0; qλ) = y1 ∈ V
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and

u′′(q∗) + α∗u′(q∗) + Aβ∗u(q∗) + δ∗g(u(q∗)) = f ∈ L2(0, T ;V ), (8.9)

u(0; q∗) = y0 ∈ D(A), u′(0; q∗) = y1 ∈ V

correspondingly.

Then, in the distribution sense, the quotient zλ = (u(qλ)− u(q∗))/λ satisfies

z′′λ + α∗z′λ + Aβ∗zλ + δ∗
g(u(qλ))− g(u(q∗))

λ

= (α∗ − α)u′(qλ) + (Aβ∗ − Aβ)u(qλ) + (δ∗ − δ)g(u(qλ)),

zλ(0) = 0, z′λ(0) = 0.

Let

fλ(t) = (α∗ − α)u′(t; qλ) + (Aβ∗ − Aβ)u(t; qλ) + (δ∗ − δ)g(u(t; qλ)).

Let Bλ(t) = B(u(t; qλ), u(t; q∗)) be defined as in Lemma 8.2.

Then

z′′λ + α∗z′λ + Aβ∗zλ + δ∗Bλzλ = fλ, (8.10)

zλ(0) = 0, z′λ(0) = 0.

By Lemma 4.1 we have

|g(u(t; qλ))|H = ‖u(t; qλ)‖γ+1
L2γ+2 ≤ C‖u(t; qλ)‖γ+1.
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Therefore one can estimate

|fλ(t)|H ≤ |α∗ − α||u′(t; qλ)|+ 2µK1‖u(t; qλ)‖+ CKγ+1
1 |δ∗ − δ|‖u(t; qλ)‖γ+1).

Now the energy estimate (5.13) shows that there exists c ≥ 0 independent of

q ∈ P such that

‖fλ‖L2(0,T ;H) ≤ c (8.11)

for all λ ∈ (0, 1].

Since u(t; qλ), u(t; q∗) ∈ W (0, T ), zλ ∈ W (0, T ). Then

z′′λ + Aβ∗zλ = fλ − α∗z′λ − δ∗Bλzλ ∈ L2(0, T ;H)

Multiply both sides by z′λ to get

(z′′λ + Aβ∗zλ, z
′
λ) = (fλ, z

′
λ)− α∗(z′λ, z′λ)− δ∗(Bλzλ, z

′
λ).

By Lemma 3.3, we have

1

2

d

dt
{|z′λ|2H + ‖zλ‖2

β} = (fλ, z
′
λ)− α∗(z′λ, z′λ)− δ∗(Bλzλ, z

′
λ)

Integrating both sides from 0 to t we get

|z′λ(t)|2H + ‖zλ(t)‖2
β

= 2

t∫
0

(fλ(s), z
′
λ(s))ds− 2α∗

t∫
0

(z′λ(s), z
′
λ(s))ds− 2δ∗

t∫
0

(Bλ(s)zλ(s), z
′
λ(s))ds.
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Therefore,

|z′λ(t)|2H + ‖zλ(t)‖2
β

≤
t∫

0

|fλ(s)|2Hds+

t∫
0

|z′λ(s)|2Hds+ 2α∗
t∫

0

|z′λ(s)|2Hds

+ 2cδ∗(

t∫
0

|zλ(s)|2Hds+

t∫
0

|z′λ(s)|2H)ds)

≤ ‖fλ‖L2(0,T ;H) + c(

t∫
0

|z′λ(s)|2Hds+

t∫
0

‖zλ(s)‖2ds).

Then,

|z′λ(t)|2H + ‖zλ(t)‖2 ≤ c‖fλ‖L2(0,T ;H) + c(

t∫
0

|z′λ(s)|2Hds+

t∫
0

‖zλ(s)‖2ds).

Therefore, Gronwall’s inequality implies

|z′λ(t)|2H + ‖zλ(t)‖2 ≤ c‖fλ‖L2(0,T ;H),

where c does not depend on λ and t.

Hence, by (8.11), we get

max
0≤t≤T

(
|z′λ(t)|2H + ‖zλ(t)‖2

)
≤ c, (8.12)

where c does not depend on λ.

Let v ∈ V with ‖v‖ ≤ 1. Then

〈z′′λ, v〉 = −α∗(z′λ, v)− 〈Aβ∗zλ, v〉 − δ∗(Bλzλ, v) + (fλ, v).
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Using |v| ≤ K1‖v‖ = K1 we get

|〈z′′λ(t), v〉| ≤ K1|α∗||z′λ(t)|H + µ‖zλ(t)‖+ cK1δ
∗‖zλ(t)‖+K1|fλ(t)|H .

Therefore,

‖z′′λ(t)‖V ′ ≤ K1|α∗||z′λ(t)|H + µ‖zλ(t)‖+ cK1δ
∗‖zλ(t)‖+K1|fλ(t)|H .

By (8.11) and (8.12), we get

‖z′′λ‖L2(0,T ;V ′) ≤ c, (8.13)

where c does not depend on λ.

Function zλ ∈ W (0, T ) and it is bounded in W (0, T ) by (8.12) and (8). There-

fore one can extract a subsequence zλk , λk → 0+, and find z ∈ W (0, T ) such

that zλk ⇀ z weakly in L2(0, T ;V ), z′λk ⇀ z′ weakly in L2(0, T ;H),

and z′′λk ⇀ z′′ weakly in L2(0, T ;V ′).

Now let us prove that Bλkzλk ⇀ g′(u(q∗))z weakly in V ′ as λk → 0+.

Let B0 = g′(u(q∗)). Then, by Lemma 8.2 and inequality (8.6), we have

‖Bλkzλk −B0z‖V ′ ≤ c, where c does not depend on λk.

Suppose that D is a dense subset of V , then for any v ∈ V , and any given
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ε > 0, one can find a v0 ∈ D such that ‖v − v0‖ ≤ ε. Then

|〈Bλkzλk −B0z, v〉| = |〈Bλkzλk −B0z, v − v0 + v0〉|

≤ |〈Bλkzλk −B0z, v − v0〉|+ |〈Bλkzλk −B0z, v0〉|

≤ ‖Bλkzλk −B0z‖V ′‖v − v0‖V + |〈Bλkzλk −B0z, v0〉|

≤ cε+ |〈Bλkzλk −B0z, v0〉|.

Therefore, to prove the weak convergence, it is enough to show that

|〈Bλkzλk −B0z, v0〉| → 0 for any v0 ∈ D.

Since C∞0 (Ω) is dense in V , for any v0 ∈ C∞0 (Ω), we have

|〈Bλkzλk −B0z, v0〉| = |〈Bλkzλk −B0zλk +B0zλk −B0z, v0〉|

≤ |〈(Bλk −B0)zλk , v0〉|+ |〈B0(zλk − z), v0〉|

≤
∫

Ω

|Bλk −B0||zλk ||v0|dx+

∫
Ω

|B0||zλk − z||v0|dx

≤ |v0|∞
∫

Ω

|Bλk −B0||zλk |dx+ |v0|∞
∫

Ω

|B0||zλk − z|dx

≤ |v0|∞|Bλk −B0|H |zλk |H + |v0|∞|B0|H |zλk − z|H

By Lemma 8.2, we have |Bλk −B0|H → 0 for any fixed t ∈ [0, T ] as λk → 0+.

Also |zλk − z|H → 0 for any fixed t ∈ [0, T ] as λk → 0+. Hence, we have

〈Bλkzλk −B0z, v0〉 → 0 for any fixed t ∈ [0, T ] as λk → 0+.

Now we have zλk ⇀ z weakly in L2(0, T ;V ), z′λk ⇀ z′ weakly in L2(0, T ;H),

z′′λk ⇀ z′′ weakly in L2(0, T ;V ′), and Bλkzλk ⇀ g′(u(q∗))z weakly in V ′ as λk →

0+.
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Therefore, for any h ∈ L2(0, T ;V ), we have

〈z′′λk , h〉+ α∗〈z′λk , h〉+ 〈Aβ∗zλk , h〉+ δ∗〈Bλkzλk , h〉

−→ 〈z′′, h〉+ α∗〈z, h〉+ 〈Aβ∗z, h〉+ δ∗〈g′(u(q∗)z, h〉,

as λk → 0+.

Let

f0(t) = (α∗ − α)u′(t; q∗) + (Aβ∗ − Aβ)u(t; q∗) + (δ∗ − δ)g(u(t; q∗)). (8.14)

From Theorem 7.1 we get u(qλ) → u(q∗) in L2(0, T ;V ), and u′(qλ) → u′(q∗)

in L2(0, T ;V ), and g(u(t; qλ)) → g(u(t; q∗)) in L2(0, T ;H), as λ → 0+. And

(Aβ∗ − Aβ)u(t; qλ) ⇀ (Aβ∗ − Aβ)u(t; q∗) weakly in L2(0, T ;V ′) by Lemma 6.5.

Therefore fλ ⇀ f0 weakly in L2(0, T ;H).

Now we can pass to the limit as λk → 0+ in (8.10) and conclude that

z′′ + α∗z′ + Aβ∗z + δ∗g′(u(t; q∗))z = f0,

z(0) = 0, z′(0) = 0.

Since f0 ∈ L2(0, T ;H), we can prove that the solution z is unique in W (0, T )

by following the same approach as in Chapter 5. Hence the entire sequence zλ is

convergent to z as λ → 0+. This proves that z is the weak Gâteaux derivative

Du(q∗; q − q∗) of the map q → u(q) as claimed in the Theorem.

Lemma 8.4. Let n ≥ 4, q = (α, β, δ), q∗ = (α∗, β∗, δ∗) ∈ P . Let function u(q∗)
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be the weak solution of the equation

u′′(q∗) + α∗u′(q∗) + Aβ∗u(q∗) + δ∗u(q∗) = f ∈ L2(0, T ;V ),

u(0; q∗) = y0 ∈ D(A), u′(0; q∗) = y1 ∈ V.

Then the weak Gâteaux derivative z = Du(q∗; q − q∗) ∈ L2(0, T ;H) at q∗ ∈ P in

the direction q − q∗ exists and is the unique weak solution of the problem

z′′(t) + α∗z′(t) + Aβ∗z(t) + δ∗z(t) = f0(t), t ∈ (0, T )

z(0) = 0, z′(0) = 0,

where f0(t) = (α∗ − α)u′(t; q∗) + (Aβ∗ − Aβ)u(t; q∗) + (δ∗ − δ)u(t; q∗).

Proof. The proof of this lemma follows as the proof of Theorem 8.3 with g(u) = u

and Bλ = 1. In this case, we have

z′′λ + α∗z′λ + Aβ∗zλ + δ∗zλ = fλ, (8.15)

zλ(0) = 0, z′λ(0) = 0,

where fλ(t) = (α∗ − α)u′(t; qλ) + (Aβ∗ − Aβ)u(t; qλ) + (δ∗ − δ)u(t; qλ).

Similar to the proof of Theorem 8.3, we can show that

‖fλ‖L2(0,T ;H) ≤ c,

max
0≤t≤T

(
|z′λ(t)|2H + ‖zλ(t)‖2

)
≤ c,

‖z′′λ‖L2(0,T ;V ′) ≤ c,

for all λ ∈ (0, 1].
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Similarly, one can extract a subsequence zλk ∈ W (0, T ) such that as λk → 0+

we get

z′′ + α∗z′ + Aβ∗z + δ∗(u(t; q∗)z = f0,

z(0) = 0, z′(0) = 0.

where f0(t) = (α∗ − α)u′(t; q∗) + (Aβ∗ − Aβ)u(t; q∗) + (δ∗ − δ)u(t; q∗),

and z ∈ W (0, T ).

Since f0 ∈ L2(0, T ;H), we can prove that the solution z is unique in W (0, T )

by following the same approach as in Chapter 5. Hence zλ is convergent to z as

λ→ 0+. This proves that z is the weak Gâteaux derivative Du(q∗; q− q∗) of the

map q → u(q) as claimed in the Theorem.
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Chapter 9

Gâteaux and Fréchet Differentiability of the Objective Func-

tion

We can show that the objective function J(q) = ‖u(q)−zd‖2
L2(0,T ;H) has practically

the same differentiability properties as the ones established in [21] in the case of

the sine-Gordon equation. Here we follow the results from [21].

The objective function J(q) is Gâteaux differentiable. Indeed, by Theorem 8.3

the map q → u(q) is weakly Gâteaux differentiable at any q∗ ∈ P in any direction

of q− q∗ for q ∈ P , and its weak Gâteaux derivative z(t, x) = Du(q∗; q− q∗)(t, x)

can be described by the weak solution of equation (8.7). From the definition of

the functional J(q) = ‖u(q)− zd‖2
L2(0,T ;H) we get

DJ(q∗; q − q∗) = 2(u(q∗)− zd, Du(q∗; q − q∗)) (9.1)

= 2

∫
Q

[u(q∗; t, x)− zd(t, x)]z(t, x)dxdt.

Let the adjoint state p(q∗) is defined as the weak solution of the linear terminal

value problem

p′′ − α∗p′ + Aβ∗p+ δ∗g′(u(q∗)p = u(q∗)− zd,

p(T ) = 0, p′(T ) = 0.

Since u(q∗)− zd ∈ L2(0, T ;H), one can show that the solution p(q∗) exists and is
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unique in W (0, T ) by following the similar approach as in Chapter 5.

Therefore, expression (9.1) becomes

DJ(q∗; q − q∗) = 2

∫ T

0

(z(t), p′′ − α∗p′ + Aβ∗p+ δ∗g′(u(q∗)p))dt

= 2

∫ T

0

(z′′(t) + α∗z′(t)Aβ∗z + δ∗g′(u(q∗))z, p(t; q∗))dt

= 2(α∗ − α)

∫ T

0

(u′(t; q∗), p(t; q∗)) dt+ 2

∫ T

0

(Aβ∗ − Aβ)u(t; q∗), p(t; q∗)) dt

+2(δ∗ − δ)
∫ T

0

(g(u(t; q∗)), p(t; q∗)) dt.

Thus we obtain the following result

Theorem 9.1. Let q, q∗ ∈ P . Then the Gâteaux derivative DJ(q∗; q − q∗) of the

objective function J(q) at q∗ in the direction q−q∗ has the following representation

DJ(q∗; q−q∗) = (α∗−α)a(q∗)+

∫
Ω

(β∗(x)−β(x))G(x; q∗)dx+(δ∗−δ)c(q∗), (9.2)

where

a(q∗) = 2

∫
Q

ut(t, x; q∗)p(t, x; q∗) dxdt. (9.3)

c(q∗) = 2

∫
Q

g(u(t, x; q∗))p(t, x; q∗) dxdt. (9.4)

and

G(x; q∗) = 2

∫ T

0

∇u(t, x; q∗)∇p(t, x; q∗)dt, x ∈ Ω. (9.5)

Note that G ∈ L1(Ω).

Our main goal is to prove that the objective function J(q) is Fréchet differen-

tiable. For this purpose we will consider the interior int P of the admissible set

P defined in (1.4) as an open subset of the Banach space X = R× L∞(Ω)× R.
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The norm of (α, β, δ) ∈ X is defined by

‖(α, β, δ)‖X = max{|α|, ‖β‖C(Ω), |δ|}.

Definition 9.2. Function J(q) is called Fréchet differentiable at q∗ ∈ int P , if

there exists a bounded linear functional DJ(q∗) : X → R such that

lim
q→q∗

|J(q)− J(q∗)−DJ(q∗)(q − q∗)|
‖q − q∗‖X

= 0, q ∈ int P. (9.6)

Theorem 9.3. Objective function J(q) is Fréchet differentiable at any q∗ ∈ int P .

Let a(q∗), c(q∗) and G(q∗) be defined by (9.3), (9.4) and (9.5). Then the Fréchet

derivative DJ(q∗) ∈ X ′ is the bounded linear functional defined on q− q∗ ∈ X by

DJ(q∗)(q−q∗) = (α∗−α)a(q∗)+

∫
Ω

(β∗(x)−β(x))G(x; q∗)dx+(δ∗−δ)c(q∗), (9.7)

where q = (α, β, δ) ∈ int P .

Proof. We follow the Calculus argument that for a function of several variables

the continuity of its partial derivatives implies the differentiability.

Fix q, q∗ ∈ int P . Then u(q∗), p(q∗) ∈ L2(0, T ;V ) by the results of Chapter 5.

Therefore DJ(q∗) defined in (9.7) is a bounded linear functional on X.

Define the real valued function

F (t) = J(q∗ + t(q − q∗)), t ∈ R.

Then F is defined on an open interval containing [0, 1]. It is continuous on it by

Theorem 7.1. Moreover F ′(0+) = DJ(q∗; q − q∗) and F ′(0−) = −DJ(q∗;−(q −

q∗)). According to (9.2), F ′(0+) = F ′(0−). Therefore F is differentiable at t = 0.
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Clearly, the same argument can be applied at any t ∈ [0, 1]. The conclusion is

that one can apply the Mean-Value Theorem to F on [0, 1].

Define the mappings q → a(q), q → c(q) and q → G(q) from P into R, R,

and L1(Ω), by (9.3), (9.4) and (9.5), respectively with q∗ ∈ P being replaced

by q = (α, β, δ) ∈ P . These mappings are continuous by Theorem 7.1. Since

q∗ ∈ int P , for a given ε > 0 there exists a convex neighborhood U ⊂ int P of q∗

such that

|a(p)− a(q∗)| < ε, |c(p)− c(q∗)| < ε, ‖G(p)−G(q∗)‖L1(Ω) < ε for p ∈ U.

By the Mean-Value Theorem there exists τ ∈ (0, 1) such that J(q) − J(q∗) =

DJ(qτ ; q− q∗), where qτ = q∗+ τ(q− q∗). If q ∈ U , then qτ ∈ U by the convexity

of U . Thus

|J(q)− J(q∗)−DJ(q∗)(q − q∗)| = |DJ(qτ ; q − q∗)−DJ(q∗)(q − q∗)|

≤
(
|a(qτ )− a(q∗)|+

∫
Ω

|G(qτ )−G(q∗)|(x) dx+ |c(qτ )− c(q∗)|
)
‖q − q∗‖X

< 3ε‖q − q∗‖X

for q ∈ U , and the result follows.

A corollary of Theorem 9.3 is

Theorem 9.4. Consider Klein-Gordon equation (1.1) with constant diffusion

coefficients β. Let the admissible set be

P = [αmin, αmax]× [βmin, βmax]× [δmin, δmax]

with βmin > 0.
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Let the objective function be defined by J(q) = ‖y(q) − zd‖L2(0,T ;H). Then

the mapping q → J(q) from int P ⊂ R3 into R is differentiable. Its gradient

∇J(q) = (a(q), b(q), c(q)), where b(q) =
∫

Ω
G(x; q)dx, and a(q), G(x; q), c(q) are

defined in (9.3), (9.5), and (9.4).

Now assume that q∗ ∈ P is an optimal parameter for (1.5), that is

J(q∗) = inf
q∈P

J(q). (9.8)

The necessary optimality condition for q∗ is DJ(q∗; q− q∗) ≥ 0 for any q ∈ P .

According to Theorem 9.1 it takes the form

(α∗ − α)a(q∗) +

∫
Ω

(β∗(x)− β(x))G(x; q∗)dx+ (δ∗ − δ)c(q∗) ≥ 0 (9.9)

for any q = (α, β, δ) ∈ P .

Let us analyze condition (9.9) for the optimal parameter q∗ ∈ P , where

P = {q = (α, β, δ) ∈ [αmin, αmax]× B × [δmin, δmax]} (9.10)

and

B = {β ∈ L∞(Ω) : 0 < ν ≤ β(x) ≤ µ a.e. on Ω} (9.11)

for some positive constants ν and µ.

Choose q = (α, β∗, δ∗) ∈ P . Then (9.9) becomes (α∗ − α)a(q∗) ≥ 0 for all

α ∈ [αmin, αmax]. If α∗ ∈ (αmin, αmax) then we must have a(q∗) = 0. If a(q∗) > 0

then α∗ = αmax. If a(q∗) < 0 then α∗ = αmin. The case a(q∗) 6= 0 can be
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compactly written as

α∗ =
1

2
{sign(a(q∗)) + 1}αmax −

1

2
{sign(a(q∗))− 1}αmin. (9.12)

Similarly to the previous case, if δ∗ ∈ (δmin, δmax) then we must have c(q∗) = 0.

If c(q∗) > 0 then δ∗ = δmax. If c(q∗) < 0 then δ∗ = δmin. The case c(q∗) 6= 0 can

be compactly written as

δ∗ =
1

2
{sign(c(q∗)) + 1}δmax −

1

2
{sign(c(q∗))− 1}δmin. (9.13)

Next we consider the implications for β∗ ∈ B.

Suppose that β∗ ∈ intB, i.e. ν < ess inf β∗(x) ≤ ess sup β∗(x) < µ. Then for

a sufficiently small r > 0 we have β∗ + γ ∈ B for any γ ∈ L∞(Ω) with ‖γ‖∞ ≤ r.

Choose q = (α∗, β∗(x)− γ(x), δ∗). Then (9.9) becomes

∫
Ω

γ(x)G(x; q∗)dx ≥ 0.

Choosing q = (α∗, β∗(x) + γ(x), δ∗) gives

∫
Ω

γ(x)G(x; q∗)dx ≤ 0.

Thus ∫
Ω

γ(x)G(x; q∗)dx = 0. (9.14)

for any γ ∈ L∞(Ω). We conclude that β∗ ∈ intB implies G(x; q∗) = 0 a.e. in Ω.

Let

Ω+ = {x ∈ Ω : G(x; q∗) > 0}
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defined up to a set of measure zero. Then we must have β(x) = µ for a.e. x ∈ Ω+.

Let

Ω− = {x ∈ Ω : G(x; q∗) < 0}

defined up to a set of measure zero. Then we must have β(x) = ν for a.e. x ∈ Ω−.

This analysis shows that the optimal coefficient q∗ satisfies a bang bang control

law. Its other consequence is summarized in the following Theorem.

Theorem 9.5. If the optimal coefficient q∗ is located in the interior int P of the

admissible set P , then

a(q∗) = 0, c(q∗) = 0, and G(x; q∗) = 0 a.e. in Ω.

In the case of constant diffusion coefficients β in (1.1) the gradient ∇J(q) =

(a(q), b(q), c(q)) of the objective function was obtained in Theorem 9.3. Combin-

ing this result with Theorem 9.5 gives

Theorem 9.6. Consider the Klein-Gordon equation (1.1) with constant diffusion

coefficients β. Let the admissible set be

P = [αmin, αmax]× [βmin, βmax]× [δmin, δmax]

with βmin > 0. Let the objective function be defined by J(q) = ‖y(q)−zd‖L2(0,T ;H).

If the parameter q∗ ∈ int P is optimal, then ∇J(q∗) = 0.
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Chapter 10

Conclusions and Future Work

Because of its significance in physics, Klein-Gordon equation has been studied

extensively from different perspectives. In the thesis, we study the optimization

problem of a nonlinear damped Klein-Gordon equation with a variable diffusion

coefficient. Our work is mainly based on the work of J.L. Lions (see [34], [35]),

Roger Temam (see [48]), Semion Gutman (see [24],[21]), and Junhong Ha and

Shin-ichi Nakagiri (see [26], [41]. We follow as in Gutman [24],[21] for sine-Gordon

equation. Further difficulties in mathematical analysis arise from the unbounded

nonlinear term g(u) = |u|γu, and the variable diffusion coefficient β(x).

The summary of the research is as follows.

We studied the weak solution of the damped Klein-Gordon equation

u′′ + αu′ + Aβu+ δg(u) = f, in V ′ a.e. on [0, T ],

u(0) = y0 ∈ V, u′(0) = y1 ∈ H,

where the nonlinear term is g(u) = |u|γu with the constant γ satisfying


0 ≤ γ <∞ if n = 1, 2,

0 ≤ γ ≤ 2 if n = 3,

γ = 0 if n ≥ 4.
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We carefully studied the nonlinear term g(u) for the different cases of γ, and

derived its desirable properties, which are crucial to the entire work, as following:

(i) If n = 1, 2, 3 and u ∈ V , the we have the Sobolev inequality

‖u‖Lq(Ω) ≤ C‖u‖,

where 1 ≤ q ≤ 2γ + 2.

(ii) If u ∈ V , then |g(u)| ≤ C‖u‖γ+1 and g : V → H is locally Lipschitz with

|g(u)− g(v)| ≤ C(1 + ‖u‖+ ‖v‖)γ+1‖u− v‖,

where u, v ∈ V .

(iii) If β(x) ∈ B and u ∈ D(A), then ‖g(u)‖ ≤ C‖u‖γH2(Ω)‖u‖, where C

depends only on Ω.

(iv) If un → u in L2(0, T ;H) and ‖un(t)‖, ‖u(t)‖ ≤ C for some constant C

and any t ∈ [0, T ], then g(un) ⇀ g(u) weakly in L2(0, T ;H).

We proved existence and uniqueness of the weak solution of the Klein-Gordon

equation by using energy estimates and standard Galerkin method. We obtained

that, for q ∈ P, y0 ∈ V, y1 ∈ H, f ∈ L2(0, T ;H), the unique solution u(t) =

u(t; q) satisfies u ∈ C([0, T ];V ) ∩W (0, T ), u′ ∈ C([0, T ];H), and

max
0≤t≤T

(
‖u(t)‖2 + |u′(t)|2

)
+ ‖u′′(t)‖2

L2(0,T ;V ′) ≤ c(I + Iγ+1).

where c is only depends on the bounds of the admissible set P , and

I = |y1|2 + ‖y0‖2 + ‖y0‖γ+2 + ‖f‖2
L2(0,T ;H).
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We showed that the solution maps q → u(q): P → C([0, T ];V ) and q → u′(q):

P → C([0, T ];H) are continuous. We established the weak Gâteaux differ-

entiability of the solution map and showed that the weak Gâteaux derivative

z = Du(q∗; q − q∗) ∈ L2(0, T ;H) at q∗ ∈ P in the direction q − q∗ is the unique

weak solution of the problem

z′′(t) + α∗z′(t) + Aβ∗z(t) + δ∗g′(u(t; q∗))z(t) = f0(t) t ∈ (0, T )

z(0) = 0, z′(0) = 0,

where f0(t) = (α∗ − α)u′(t; q∗) + (Aβ∗ − Aβ)u(t; q∗) + (δ∗ − δ)g(u(t; q∗)).

Then the Gâteaux differentiability of the objective function J(q) = ‖u(q) −

zd‖2
L2(0,T ;H) is followed directly, and the Gâteaux derivative DJ(q∗; q− q∗) of J(q)

at q∗ in the direction q − q∗ has the following representation

DJ(q∗; q − q∗) = (α∗ − α)a(q∗) +

∫
Ω

(β∗(x)− β(x))G(x; q∗)dx+ (δ∗ − δ)c(q∗),

where

a(q∗) = 2

∫
Q

ut(t, x; q∗)p(t, x; q∗) dxdt.

c(q∗) = 2

∫
Q

g(u(t, x; q∗))p(t, x; q∗) dxdt.

and

G(x; q∗) = 2

∫ T

0

∇u(t, x; q∗)∇p(t, x; q∗)dt, x ∈ Ω.

Finally, we showed that the objective function J(q) is Fréchet differentiable

on P , which allow us conclude that if the optimal coefficient q∗ is located in the

interior int P of the admissible set P , then necessary conditions for the optimal
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set of parameters q∗ = (α, β, γ) ∈ P minimizing the objective function J(q) are

a(q∗) = 0, c(q∗) = 0, and G(x; q∗) = 0 a.e. in Ω.

I plan to continue my research on nonlinear wave equations such as sine-

Gordon equation and Klein-Gordon equation. These equations are examples of

infinite dimensional dynamical systems. The goal is to investigate their solutions

(trajectories). It is known that such trajectories can exhibit chaotic behaviors.

A chaotic behavior of a dissipative dynamical system can be explained by the

existence of a complicated attractor A to which the trajectories converge as t→

∞. The plan is to study theoretical properties and computational methods for

the solutions of these nonlinear equations.
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of solution mappings for semilinear second order evolution equations. J.
Math. Anal. Appl., 346(2):374–383, 2008.

[28] Tae Gab Ha and Jong Yeoul Park. Global existence and uniform decay of
a damped Klein-Gordon equation in a noncylindrical domain. Nonlinear
Anal., 74(2):577–584, 2011.

[29] Wenyi Huang and Jian Zhang. Instability of the standing waves for non-
linear Klein-Gordon equations with damping term. Appl. Math. Comput.,
213(2):522–528, 2009.

[30] Slim Ibrahim, Mohamed Majdoub, and Nader Masmoudi. Global solutions
for a semilinear, two-dimensional Klein-Gordon equation with exponential-
type nonlinearity. Comm. Pure Appl. Math., 59(11):1639–1658, 2006.

[31] Roman Kosecki. The unit condition and global existence for a class of non-
linear Klein-Gordon equations. J. Differential Equations, 100(2):257–268,
1992.

[32] Stig Larsson and Vidar Thomée. Partial differential equations with numer-
ical methods, volume 45 of Texts in Applied Mathematics. Springer-Verlag,
Berlin, 2003.

[33] S. Li and L. Vu-Quoc. Finite difference calculus invariant structure of a class
of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer.
Anal., 32(6):1839–1875, 1995.

[34] J.L. Lions. Optimal control of systems governed by partial differential equa-
tions. Translated by S.K. Mitter. (Die Grundlehren der mathematischen
Wissenschaften. Band 170.) Berlin-Heidelberg-New York: Springer-Verlag.
XI, 396 p. , 1971.

[35] J.L. Lions and E. Magenes. Non-homogeneous boundary value problems and
applications. Vol. II. Springer-Verlag, 1972.
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