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Abstract 

Bacteria have been able to circumvent antibiotic treatment in 

several ways, e.g., reorganization of the membrane and its permeability, 

decrease porin content, over expression of efflux pumps, and genetic 

changes in target sites (1-3). Most aerobic and facultative anaerobic 

microorganisms synthesize at least one siderophore, which chelates iron, 

making iron transport systems an appealing target in determining new 

methods of pathogenic preventions. 

Ferric enterobactin (FeEnt) is the native siderophore of Escherichia 

coli (E. coli). The mechanism of FeEnt transport through the outer 

membrane (OM) receptor protein, FepA, is still unknown. FepA is a ligand-

gated porin with a globular N-domain occluding the 22-stranded β-barrel 

C-domain. The occlusion of the ligand-gated porin makes it necessary for 

conformational change within the N-domain of FepA during FeEnt 

transport. Two models have been proposed: the ball-and-chain model and 

the transient pore model; in the former the N-domain is completely 

expelled into the periplasmic space and the latter requires a structural 

rearrangement within the β-barrel of FepA.  

 TonB is essential for transporting all metal complexes through the 

OM, including FeEnt. The role of TonB is unknown and the concentration 

of TonB proteins and TonB-dependent receptor proteins is 

disproportionate. This suggests that there are two populations of TonB-

dependent receptor proteins: active transporters associated with TonB 
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and inactive transporters unassociated with TonB. This discrepancy in 

protein concentration between the OM transport protein and TonB may 

explain the slow turnover rate of FeEnt through FepA. The slow turnover 

rate may also be a result of an intrinsically slow transport mechanism 

across the OM. Existing radioisotopic assays measure the transport of 

FeEnt through the passage of the inner membrane (IM), as the 

accumulation of the iron complex in the cytoplasm. We devised a new 

assay to observe FeEnt transport through the OM.  

The novel post-uptake binding (PUB) determinations provided 

information on the mechanism of FeEnt transport through FepA. It 

revealed that all of the FepA proteins were functionally active and could 

transport FeEnt through the OM. It is possible that the interaction between 

FepA and TonB is the rate-limiting step, which may explain the low 

turnover number. PUB determinations from strains lacking FepB or a 

complete FepCDG inner membrane complex suggested that these 

proteins were necessary for FeEnt transport through the OM. After 

determining the FepA proteins were actively transporting FeEnt in the 

∆fepB strain, it was determined that FeEnt was not retained in the cell. 

Accumulation of the ligand in the cytoplasm was impaired in strains 

lacking the periplasmic binding protein or a complete inner membrane 

FepCDG complex. Retention experiments and PUB determinations 

revealed TolC exported FeEnt out of the cell.   
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Kinetic data suggested that ligand uptake through FepA is triphasic 

with the initial rate being the most rapid, the second rate has an 

intermediate rate, and the last rate is the slowest. These results have not 

been previously observed and it may reflect the mechanistic connections 

to TonB-ExbBD, FepB and FepCDG-Fes. We determined the activation 

energy of FeEnt internalization through the OM was approximately 35 

kcal/mol. The results indicated that the transport of FeEnt through FepA 

may involve significant conformational changes. These studies have 

resulted in a publication, Newton, S. M., Trinh, V., Pi, H., and Klebba, P. 

E. (2010) J Biol Chem 285, 17488-17497. 

After determining that all FepA proteins bound to FeEnt actively 

transport FeEnt, we tried to determine the mechanism of FeEnt transport 

through FepA using FRET analyses. We engineered several double Cys 

substituted mutants in FepA. These FepA derivatives were labeled with 

the donor dye, fluorescein maleimide (FM), and the acceptor dye, Alexa 

Fluor 546 maleimide (A546M). The fluorescence intensities from an 

emission scan with an excitation at 488 nm was used to determine if 

energy transfer was occurring between the two dyes. Using the energy 

transfer efficiency, the distance between the two dyes could be calculated. 

Comparing the distance between the dyes in the absence and presence of 

FeEnt transport through FepA would help determine the mechanism of 

ligand transport through FepA. 
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 After determining the double Cys mutant derivatives of FepA 

transported FeEnt similar to wild-type FepA, we optimized fluorescent 

labeling conditions with FM and A546M. Then, we ran excitation and 

emission scans of the single and double Cys substituted mutants in FepA. 

We were unable to show reproducible results that indicated energy 

transfer between the dyes in the absence or presence of FeEnt transport 

through FepA.  

It was possible that the dipole orientation of the dyes are more 

static than anticipated, this would result in poor energy transfer between 

the fluors. By engineering new double Cys substituted mutants in FepA, it 

should be possible to remedy this problem. The labeling efficiency of 

A546M may also contribute to the results that indicated energy transfer did 

not occur between the dyes. If fractional labeling of A546M occurred, it 

was possible that FepA could be labeled with two FM dyes rather than just 

one. If the fractional labeling of A546M was determined, it would be 

possible to adjust the values obtained in the emission scan and determine 

the distance between the fluors. If we determined the energy transfer 

between the dyes in the absence and presence of FeEnt transport through 

FepA, we would determine the mechanism of FeEnt transport through 

FepA: ball-and-chain or transient pore model.  

After determining FRET analysis could not be used for studies 

involving the conformational change of FepA during FeEnt transport, 

disulfide bond formation studies were conducted to determine the 
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conformational change of the N-domain of FepA during FeEnt transport 

through FepA. We constructed two classes of double Cys mutants in 

FepA: N-terminus to N-terminus mutants in FepA and N-terminus to C-

terminus mutants in FepA.  

Siderophore nutrition tests, FeEnt accumulation determinations, 

and mobility shift assays were conducted under oxidizing and reducing 

conditions. The first two assays were used to determine if the formation of 

a disulfide bond hindered the transport of FeEnt through FepA. The N-

terminus to N-terminus Cys substituted mutants in FepA were designed so 

the Cys residues were within cross-linking distance. With the exception of 

L125C/V141C, all N-terminus to N-terminus mutants in FepA indicated a 

formation of a disulfide bond within the globular N-domain of FepA. This 

cross-link hindered FeEnt accumulation through FepA. These results 

suggested that the N-domain of FepA needed to undergo conformational 

changes during FeEnt uptake through the OM.  

N-terminus to C-terminus mutants were engineered where the Cys 

residues could not form a disulfide bond in the native FepA or in the 

absence of FeEnt transport. If the N-domain of FepA was displaced into 

the periplasmic space, like the ball-and-chain model, it was possible that 

the Cys residue in the N-domain could come in proximity of the Cys 

residue in the C-domain and form a disulfide bond. Based on the FeEnt 

accumulation assays and the siderophore nutrition tests a cross-link did 

not form between the two Cys substituted residues in FepA. If a disulfide 
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bond formed, it did not hinder FeEnt transport through FepA. The 

electrophoretic mobility results indicated that all of the double Cys mutants 

in FepA formed a disulfide cross-link. This result was just qualitative and 

there were no quantitative results to determine the effects of the disulfide 

bond during FeEnt binding or transport. 
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Chapter 1: Introduction  

Iron and Bacteria 

Iron is essential for several biosynthetic and metabolic systems 

within prokaryotes and eukaryotes. Iron is involved in DNA synthesis, 

electron transport, protection against oxidative stress, and the tricarboxylic 

acid cycle (4-7). During bacterial infection, iron must be acquired from the 

host animal for the growth of the pathogen to occur. In mammalian hosts, 

proteins like lactoferrin and transferrin sequester iron and are a form of 

defense by limiting iron availability (8). In addition, the concentration of 

free iron in aerobic conditions is too low (10-18 M (9)) for optimal growth of 

microbes (10-8 M to 10-6 M (10)). Many bacterial pathogens respond to 

these iron-limited conditions by developing additional methods to obtain 

iron: synthesizing iron chelators, known as siderophores; and high affinity 

iron transport systems and development of receptors that can bind 

transferrin, lactoferrin, or hemoglobin as a source of iron (11,12).  

Siderophores 

Siderophores are low molecular weight organic molecules that 

chelate iron and are secreted under iron-deficient conditions (13). The 

synthesis of siderophores and their transport systems is regulated by a 

ferric uptake regulator (Fur) protein or Fur-like proteins (14). Siderophores 

can be classified by the moieties donating the oxygen ligands for Fe3+: 

catecholates, hydroxamates, or (α-hydroxy-) carboxylates (15).  
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Enterobactin is the native siderophore of E. coli (16,17). The 

triscatecholate siderophore is the strongest iron chelating compound ever 

discovered and can strip iron from ferritin (18,19). Once enterobactin binds 

iron, it is called ferric enterobactin (FeEnt) and has a negative charge (-3) 

and is ~700 Da.  

Ligand-Gated Porins 

In order to internalize iron into the cytoplasm of Gram-negative 

bacteria, iron must pass through the outer membrane (OM) and inner 

membrane (IM) bilayers. The OM contains phospholipids, 

lipopolysaccharides, and proteins, such as the porins OmpF and OmpC. 

These porins contribute to the membrane permeability with a size 

exclusion limit of 650 Da (20). 

Siderophore complexes are usually larger than 650 Da; therefore, 

specific receptors transport the metal complexes. These siderophore 

receptors belong to the class of porins called ligand-gated porins (LGP) 

(21) and are commonly named after the ligands they transport. Once the 

LGP is bound to a siderophore, conformational changes activate 

siderophore internalization through the OM. These ligand-gated porins 

accumulate the metal against a concentration gradient, which requires 

energy and the TonB-ExbB-ExbD complex in the IM. Iron siderophore and 

vitamin B12 receptors share similar structure and function, for example 

FepA, BtuB, FecA and FhuA. FepA, ferric enterobactin porin A, transports 

FeEnt and similarly to its OM receptor homologues contains a C-terminus 
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that forms a porin channel consisting of 22 antiparallel β-strands, large 

extracellular surface loops, and an N-terminus with 150 residues (22).  

These residues of the N-domain form a globular domain inside the pore. In 

addition to siderophores, most LGP recognize and interact with colicins 

and bacteriophages.  

FeEnt Uptake 

FeEnt uptake through the OM protein FepA is not fully understood. 

FepA binds a single FeEnt molecule with high affinity (Kd = 0.2 nM (23)) 

and the binding of FeEnt to FepA exhibits biphasic kinetics (24,25). The 

initial step is rapid, during which FeEnt is likely bound to the surface loops 

of FepA primarily by hydrophobic bonds and aromatic residues(26). 

Previous research suggests that the second binding site consists of 

aromatic and basic amino acids and is located above apex of the N-

domain of FepA (27). These interactions are reasonable considering 

FeEnt has a negative net charge (-3). This is followed by a slower step 

which involves the internalization of the ligand.  

Once FeEnt passes through the OM, the ferric complex is then 

bound by the periplasmic protein, FepB (28,29). FepB shuttles FeEnt to 

the inner membrane complex, FepCDG, which is an ATP-dependent ABC 

transporter (30,31). Once FeEnt is in the cytoplasm, it is hydrolyzed by an 

esterase releasing iron to be utilized for cell metabolism (32). An essential 

component for FeEnt transport is the inner membrane protein TonB and 
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FeEnt transport through FepA is an active transport and requires 

energy to internalize the ligand. The porin channels in the OM, make it 

impossible to maintain an electrochemical potential. In addition, the 

periplasmic space contains no known energy source (34). The proton 

motive force of the inner membrane could be the driving force for FeEnt 

internalization (35). 

Because of the necessity for TonB and energy during FeEnt 

transport through FepA, it has been proposed that TonB functions as an 

energy transducer for the OM metal receptors and ExbB and ExbD 

stabilize TonB (34). But this has never been proven and the function of 

TonB still remains unknown. In FhuA, once ferrichrome binds to the OM 

receptor, a short β-strand known as the TonB-box relocates, signaling 

TonB (36).  

FepA is a 724 residue protein and contains only 2 cysteines, C487 

and C494, which form a disulfide bond together. As mentioned earlier, 

contains a C-domain β-barrel with the globular N-domain residing within 

the β-barrel (Fig. 2). The N-domain of FepA is a four-stranded β-sheet with 

a short 7 residue sequence called the TonB-box which may mediate signal 

transduction to TonB (37). The N-domain of FepA completely occludes the 

transmembrane channel and the mechanism of FeEnt transport through 

FepA is unknown. During FeEnt internalization through FepA, the N-

domain of FepA must undergo a structural rearrangement to allow a 
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In the ball-and-chain model, the N-domain of FepA is expelled into 

the periplasmic space in a concerted motion. The N-domain could be 

dislodged into the periplasm as a globule that is attached to the β-barrel 

by a “hinge-like” connection or by unfolding its α-β structure. This would 

form a ~ 40 Å OM channel for FeEnt to pass through. The drawback to 

this model would be the disruption of interactions within the N-domain and  

non-covalent interactions between the N-domain and the β-barrel wall 

(25).   

 In the transient pore model, the N-domain undergoes 

conformational change within the β-barrel of FepA during FeEnt transport. 

This would have to produce a passage way for FeEnt which must be at 

least 10 Å in diameter. In the transient pore model, it is unclear how a 

structural rearrangement could occur within the C-domain of FepA, 

considering the dense shape of the N-domain.  
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Chapter 2: Materials and Methods 

The materials and methods listed here are frequently used assays. 

Procedures that are specific to one study are provided in the appropriate 

chapter. 

Bacterial strains, plasmids, and culture conditions 

The bacterial strains are derived from E. coli K-12 and are 

derivatives of BN1071 (10), which contains a wild type FeEnt uptake 

system. Tables 1 and 2 give a detailed list of the strains and plasmids, 

respectively.  OKN3 (38) and OKN13 (38) were used as host strains for 

the low-copy plasmids pITS23 (39) or pITS47 (40), which contain a wild 

type gene for FepA that differ only in the restriction sites flanking fepA. 

Table 1. Host strain 

Strain Relevent genotype or gene Reference 

BN1071 F- thi entA pro trp rpsL Klebba 1982 (10) 

OKN1 BN1071 ∆tonB Ma 2007 (38) 

OKN3 BN1071 ∆fepA Ma 2007 (38) 

OKN13 BN1071 ∆tonB ∆fepA Ma 2007 (38) 

OKN4 BN1071 ∆fepB Newton 2010 (41) 

OKN6  BN1071 ∆fepC Newton 2010 (41) 

OKN11 BN1071 ∆fepD Newton 2010 (41) 

OKN12 BN1071 ∆fepG Newton 2010 (41) 

OKN34 BN1071 ∆fepA ∆fepB Newton 2010 (41) 

OKN422 BN1071 ∆fepB ∆tolC Newton 2010 (41) 

CL29 F- tfr-8 NbsB thi-1rfaD Coleman 1979 (42) 
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Table 2. Plasmids 

Plasmid Relevent genotype or gene Reference 

pHSG575  Hashimoto-Gotoh 
1981(43) 

pITS23 fepA+ on pHSG575 Scott 2001 (39) 

pITS47 fepA+ on pHSG575 Smallwood 2009 (40) 

 

Bacteria were grown at 37°C in Luria-Bertani (LB) media. When 

necessary, strains were subcultured from stationary phase into iron-free 

MOPS minimal media (44). The antibiotics streptomycin (100 µg/mL) and 

chloramphenicol (10 µg/mL or 20 µg/mL) were added when required. 

When applicable, subcultures were conducted in the presence of a 

reducing agent, β-mercaptoethanol (1 mM). 

Preparation of calcium chloride competent cells and heat shock 

transformation 

A 5 mL overnight culture was grown in LB media with the 

appropriate antibiotics. Then the strain was subcultured 1:50 into 50 mL of 

LB in the presence of antibiotics and allowed to grow until mid-log phase, 

with an approximate A600nm of 0.5-0.6. The cells were centrifuged at 4°C 

and 6,000xg for 10 minutes. After centrifugation the supernatant was 

discarded and the cell pellet was resuspended in 25 mL of ice cold 50 mM 

CaCl2. This resuspension incubated on ice for 30 minutes before an 

additional centrifugation at 4°C and 6,000xg for 10 minutes. After 

centrifugation the supernatant was discarded and the cell pellet was 

resuspended in 0.5 mL ice cold 50 mM CaCl2, 15% glycerol solution. The 
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resuspension was then separated into 40 µL aliquots, which were flash 

frozen in liquid nitrogen and immediately stored in a -80°C freezer. To 

prepare for transformation via heat shock, the competent cells thaw on ice, 

4-6 µL of the plasmid were gently added and the cell mixture incubated on 

ice for 30 minutes. The cells were then heat shocked at 42°C for 40 

seconds and placed back on ice for 2 minutes. Then 100-200 µL of super 

optimal broth with catabolite repression (SOC) media was added and the 

cells incubated at 37°C with shaking for 1 hour. The cells were then plated 

on LB plates with the appropriate antibiotics present. Colonies were picked 

12-16 hours later.  

Site-directed single cysteine substitution mutagenesis 

QuikChange mutagenesis (Stratagene, San Diego, CA) was used 

to generate single cysteine mutations in fepA on pITS23 or pITS47. KAPA 

mutagenesis (Kapa Biosystems Inc., Woburn, MA) was also used to 

create single cysteine mutations in fepA on pITS47. DNA sequence 

analysis (MCLAB, San Francisco, CA or OMRF, Oklahoma City, OK) 

confirmed the cysteine substitution. 

Siderophore nutrition assay 

This was a modified qualitative assay of the ability of strains to 

grow in the presence of FeEnt when a chelator is present in the media 

(45). Strains were grown in LB media until late log phase in the presence 

of the appropriate antibiotics. A sample of 100 µL of bacterial culture, 3 mL 

of warmed Nutrient top agar containing 233 µM bipyridyl, and the 
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appropriate antibiotics was plated in 6-well plates. Once solidified, a sterile 

paper disc (6 mm in diameter) was placed in the center and 0.5 nmol of 

purified FeEnt (46) was added to the disc. The plates were incubated at 

37°C overnight and the results were expressed as the diameter of growth 

around the discs. Additional experiments were conducted in the presence 

of a reducing agent, β-mercaptoethanol (βME), or an oxidizing agent, 

oxidized dithiothreitol (DTT), at various concentrations. 

Colicin B sensitivity assay 

To determine the sensitivity of a strain to Colicin B, a 100 µL 

overnight culture was added to 3 mL of warmed LB top agar and plated 

onto LB plates containing the appropriate antibiotic. Serial dilutions of 

purified Colicin B were done using half of a 96 well plate. Starting at the 

upper left well a 1:10 dilution was made down the column and 1:2 dilutions 

were made across the row. The serial dilution of Colicin B was applied on 

to the plate using a clonemaster. The plates were incubated at 37°C 

overnight and the titre was determined as the last Colicin B dilution able to 

clear the lawn of bacteria (26). Additional experiments were conducted in 

the presence of a reducing agent, β-mercaptoethanol. 

Siderophore binding 

This assay determined the about of 59FeEnt that binds to FepA and 

was a modified version from previous experiments (23,27). Strains were 

subcultured at 1% from stationary phase LB cultures into MOPS minimal 

media and allowed to grow at 37°C for 5.5 hours or until late log phase. 
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When necessary, 1 mM βME was added to the subcultures. The binding 

experiments were conducted in triplicate at 0°C, which allowed 59FeEnt to 

bind to FepA but did not allow uptake of the siderophore. The cell cultures, 

radioactive ligand, and appropriate buffers were all on ice while the 

experiment was conducted. 59FeEnt was added to 10 mL MOPS, 0.4% 

glucose at the following concentrations: 0.05, 0.1, 0.5, 1.0, 5.0, and 10.0 

nM 59FeEnt (unless stated otherwise). These solutions were added to 100 

µL aliquots of cell cultures and allowed to incubate for 5 seconds. The 

cells were then collected on 0.45 micron nitrocellulose filters and 10 mL of 

0.9% LiCl was added to rinse the filter and prevent any further binding 

reactions. A gamma counter was used to analyze the extent of 59FeEnt 

binding by detecting the counts per minute (cpm) of the cells. The specific 

activity of the 59FeEnt and the OD600 of the cells were included when 

plotting the pmol of 59FeEnt bound/109 cells versus the concentration of 

59FeEnt in a data fitting program. From these plots, the Kd and capacity 

could be determined. The negative control was done using a fepA 

deficient strain, OKN3. The positive controls were wild type strains 

BN1071 or OKN3 containing the plasmids pITS23 or pITS47. When 

relevant, fluorescent labeling of FepA occurred before binding assays to 

determine the effects of covalent modification by fluorophores. 

Siderophore transport 

To assay the uptake of 59FeEnt, siderophore transport was 

conducted similarly to siderophore binding but the experiment was done at 
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37°C rather than 0°C. This allowed binding and uptake of 59FeEnt to 

occur. This assay was also conducted in triplicate. To determine the 

uptake of 59FeEnt, two separate incubation times were used, 5 seconds 

and 1 minute and 5 seconds. In some transport assays, the time points 

may vary. Although the 5 second measurement was done at 37°C, FeEnt 

transport did not occur because the passage through FepA occurs in 10-

15 seconds (23,39,47,48). 100 µL aliquots of cells were mixed with 10 mL 

MOPS, 0.4% glucose containing various concentrations of 59FeEnt, 

allowed to incubate at 37°C, collected on filters and rinsed with 0.9% LiCl. 

The uptake of 59FeEnt in one minute was determined by calculating the 

difference of the counts at the two separate times. A plot of pmol 

59FeEnt/109 cells/minute versus the concentration of 59FeEnt was used to 

determine the KM and Vmax. The negative and positive controls were 

OKN3, and BN1071 or OKN3 containing pITS23 or pITS47, respectively. 

When required, fluorescent labeling of FepA occurred before 59FeEnt 

transport assays to determine the effects of fluoresceination. 

Siderophore accumulation 

To measure the accumulation of 59FeEnt in bacteria, strains were 

subcultured at 1% from stationary phase LB cultures into MOPS minimal 

media and allowed to grow at 37°C until late log phase. When required, 

subcultures were conducted in the presence of 1 mM β-mercaptoethanol. 

For accumulation of the siderophore to occur, the assay was done at 37°C 

to allow 59FeEnt binding and uptake. An aliquot of the cells were taken and 
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placed in a 37°C shaking water bath and 59FeEnt was added to the cells to 

a final concentration of 5 µM 59FeEnt. The high concentration of 59FeEnt 

was essential to ensure that depletion of the siderophore would be 

minimal over an extended period of time. Aliquots of the cells (100 µL) 

were collected on nitrocellulose filters and rinsed with 0.9% LiCl after 

specific incubation periods: 5, 15, 25, 45, and 60 minutes. This was done 

in triplicate and the filters were counted to determine the accumulation of 

59FeEnt in the bacteria over various periods of time. 

Fluorescence labeling of FepA Cys sites in vivo 

The substituted Cys sulphydryl groups in FepA were conjugated to 

the Cys specific fluorophores, fluorescein maleimide (FM) (49). Cells were 

subcultured in MOPS minimal media and allowed to grow for 5.5 hours or 

until late log phase. The OD600 was measured and 5 x 108 cells were 

collected by centrifugation at 17,000xg for 1 minute at 4°C. The cells were 

then washed and resuspended in 1 mL of 50 mM Na2HPO4, pH 6.5, 0.9% 

NaCl, containing 0.4% glucose. The cells were incubated for 10 minutes at 

37°C.  FM was then introduced to the cells at 5-10 µM and the cells were 

incubated for an additional 15 minutes at 37°C. At the end of the labeling 

period, the reactions were quenched with 1 mM cysteine or 2 mM βME. 

The cells were washed three times with 1 mL 50 mM of Na2HPO4, pH 6.5, 

0.9% NaCl. For spectrophotometric studies, the cells were finally 

resuspended in 1 mL TBS (50 mM Tris chloride, pH 7.4, 0.9% NaCl), 0.4% 

glucose. For detection of fluorescence labeling by SDS-PAGE, 1 x 108 
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bacteria were lysed by boiling for 5 minutes in SDS-PAGE sample buffer 

before resolution by SDS-PAGE. A modified procedure of fluorescence 

labeling was used for FRET experiments that can be found in chapter 4. 

Detection of fluorescence labeling by SDS-PAGE and expression of 

FepA 

After SDS-PAGE was completed the gel was scanned for 

fluorescence on a STORMSCAN phosphorimager (Molecular Dynamics). 

The proteins in the gel were transferred to nitrocellulose paper using a 

semi-dry transfer apparatus. The blots were developed with mouse anti-

FepA monoclonal antibodies (mAb) 41 and 45 (46) and 125I-protein A (23). 

The blots were then exposed on an imaging screen and the radioactivity 

was quantified on the STORMSCAN phosphoimager. All of the scanned 

images were then analyzed by ImageQuant 5.2 (Molecular Dynamics). 

Protein expression 

To determine and compare the expression of wild type and mutated 

FepA, western immunoblots were conducted. After SDS-PAGE was 

complete the proteins in the gel were transferred to nitrocellulose paper 

using a semi-dry transfer apparatus. The blot was blocked with TBS plus 

1% gelatin for 15 minutes and then incubated with mouse anti-FepA mAb 

41 and mAb 45 in TBS plus 1% gelatin for a minimum of one hour. Either 

water or TBS and 0.05% tween 20 was used to wash the blot with three 

five minute washes. After the wash, the blot was incubated with 125I-
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protein A for a minimum of two hours. The blot was then exposed on an 

imaging screen and the blot was visualized using a StormScanner. 
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Chapter 3: Direct measurements of FepA during FeEnt 

transport through post-uptake binding experiments 

Background  

The role of TonB is still unknown but it is essential for most ligand-

gated porin transport, exceptions being T5 through FhuA (50) and cloacin 

DF13 through IutA (51). The necessity of TonB for the transport of all 

metal complexes through the OM creates questions concerning the 

proportion of TonB and TonB-dependent transporters present in the cell. 

In iron-deficient conditions, the total concentration of E. coli TonB-

dependent receptor proteins are present in the OM ~100-fold greater than 

that of TonB in the IM (52,53). This suggests that all of the OM TonB-

dependent transporters could not be active at the same time because 

TonB could not associate with all of the TonB-dependent proteins in the 

OM.   

The overall rate of FeEnt uptake is relatively low (kcat ~ 5 min-1) 

(39,47,48). Could this be due to the fact that there is only a portion of 

FepA proteins that can associate with TonB or could this result from an 

intrinsically slow transport mechanism? By observing the transport of 

FeEnt through FepA using the assay, post-uptake binding, we can 

address this and other questions. We used this assay to observe wild-type 

cells and strains lacking TonB, FepB, FepD, FepG, and TolC. FeEnt 

transport measurements were taken alone and during simultaneous 

transport of ferrichrome (Fc).  
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Experimental Procedures 

Siderophore post-uptake binding (PUB) 

Siderophore post-uptake binding determined the quantity and 

fraction of active FepA proteins by modifying the previous methods of 

siderophore binding and transport. This was done by taking advantage of 

the binding and transport temperatures, 0°C and 37°C, respectively. At 

0°C, bacterial cells were saturated with 56FeEnt and this ensured only the 

binding of 56FeEnt to FepA would occur. Once the temperature was 

increased to 37°C, all of the bound 56FeEnt would be transported through 

FepA. This allowed FepA to be ligand free and the addition and 

measurement of 59FeEnt determined the fraction of active FepA. Figure 4 

illustrates the various types of binding essential in this study. This assay 

was independent of the uptake of the ferric siderophore through the IM 

into the cytoplasm; therefore it focused on the transport of FeEnt through 

the OM alone. 
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pelleted by centrifugation at 4°C for 3 minutes and the supernatant was 

removed. The pellet was then resuspended in 100 µL of ice-cold MOPS 

media. Uptake of 56FeEnt occurred by the addition of 900 µL of MOPS 

media at 42°C and incubating the bacteria for 1 minute at 37°C. The cells 

were then chilled on ice and pelleted. The pellet was resuspended in 1 mL 

of ice-cold MOPS media. 100 µL aliquots of cells were mixed with 10 mL 

of ice-cold MOPS media containing varying concentrations of 59FeEnt.  

The bacteria were collected and rinsed on nitrocellulose filters. The filters 

were then measured using a gamma counter.   

PUB assays were also done in the presence of ferrichrome (Fc). 

Bacterial cells were grown, chilled, and then mixed with saturating 

amounts (100 nM) of both ferric siderophores. The excess siderophores 

were removed by centrifugation and the pellet was resuspended in 100 µL 

of MOPS media containing 100 nM Fc. The cells began ferric siderophore 

transport once 900 µL of MOPS media at 42°C was added and the cells 

were allowed to incubate at 37°C for 1 minute. Subsequent binding of 

59FeEnt determined the amount of 56FeEnt uptake during the 1 minute 

incubation period. 

To appropriately determine the fraction of active FepA proteins 

additional control experiments were required. One control was the 

aforementioned siderophore binding assay using 59FeEnt to determine the 

total 59FeEnt binding capacity. The other control was a blocked binding 

assay that measured 59FeEnt binding at 0°C to cells previously saturated 
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with 56FeEnt at 0°C. This assay measured the amount of 56FeEnt that 

dissociated from the bacteria. 

Immunoprecipitation 

To determine if FepB interacted with FepA at the periplasmic 

surface of the outer membrane, purified FepA (54) was 

immunoprecipitated with an IgG2b monoclonal antibody in the presence of 

purified FepB (55) and FeEnt. The mouse anti-FepA monoclonal antibody 

mAb 45 recognized loop 4 of FepA (26) and inhibited FeEnt adsorption 

and uptake (46), but previous flow cytometric analyses showed that the 

binding of FeEnt to FepA did not block the interaction of mAb 45. To 

remove precipitates, the solutions of FepA, mAb 45, and FepB were 

centrifuged at 18,000xg for 5 minutes before immunoprecipitation. FepA 

(4.5 µg) was incubated with or without FeEnt (10 nM) for a few seconds 

and FepB (15.4 µg) and mAb 45 (30 µg) were added in a final volume of 

0.5 mL of TBS. The suspension sat overnight at 4°C and then 50 µL of 

protein A-agarose (3 mg/mL resin) was added and the mixture incubated 

for an additional 2 hours at room temperature. The immune complexes 

were pelleted by centrifugation at 2,500xg for 3 minutes and solubilized in 

SDS sample buffer and analyzed by SDS-PAGE. To analyze the SDS-

PAGE results properly, additional conditions were tested during 

immunoprecipitation. 
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Radioisotopic FeEnt retention assays 

Retention assays determined the retention of 59FeEnt during 

subsequent exposure to 56FeEnt. The bacterial strains were exposed to 

0.5 µM 59FeEnt for 40 minutes and then 56FeEnt was added to 10 µM. 

Similar to accumulation measurements, aliquots of the cells were taken at 

various times, filtered, washed, and counted to determine the retention of 

59FeEnt. 

Determination of the activation energy of FeEnt transport through 

FepA by in vivo fluorescence analysis 

To determine the activation energy of FeEnt transport through 

FepA we fluorescently labeled OKN3/pFepAS271C (38,49) with FM using 

the protocol mentioned in methods and materials. We spectroscopically 

measured 5 x 106 cells with FeEnt in an SLM-AMINCO 8000 fluorometer 

upgraded to 8100 functionality. We were able to observe the quenching of 

FM by FeEnt when we measured the emission wavelength at 518 nm with 

an excitation wavelength of 490 nm. When FeEnt was bound to 

FepAS271C-FM, the fluorescence emissions quenched and as the 

bacteria depleted the FeEnt present in the solution by transport, the 

fluorescence recovered (49). From these measurements, we were able to 

determine the rate constants for the transport of FeEnt through FepA in 

two ways. 
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determine k2. By plotting ln(k2) versus 1/T, we were able to determine the 

activation energy (Ea) from the Arrhenius equation, . Although 

these calculations were approximations, the values of k2  derived from the 

two separate methods proportionally reflected the temperature 

dependence of FeEnt transport. 

Results 

Fraction of FepA proteins that transport FeEnt 

PUB experiments were conducted to calculate the fraction of FepA 

proteins that could participate in FeEnt uptake at any time. FepA proteins 

were saturated with 56FeEnt and allowed to transport. Of the portion that 

were able to transport, the FepA proteins became vacant and were able to 

bind 59FeEnt.  

Because it was possible that the FeEnt bound to FepA could 

dissociate, we measured the dissociation by blocked binding assays. The 

strains BN1071 (contains wild type FeEnt transport system (10)) and 

OKN1 (∆tonB) (38) were studied. These cells were incubated on ice with 

excess 56FeEnt and collected by centrifugation and resuspended in ice-

cold buffer. The cells were then mixed with 59FeEnt to determine the 

amount of FepA that had dissociated with 56FeEnt. The results of the 

blocked binding assay revealed that about two-thirds of the FepA proteins 

were still bound to 56FeEnt (Fig. 5). 
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Both strains tested showed that a third of the FepA proteins 

dissociated 56FeEnt. In the wild type strain, the PUB assay showed that 

the remaining two-thirds of FepA that were bound to 56FeEnt were able to 

transport the siderophore and 59FeEnt was able to bind to FepA to full 

capacity. OKN1 lacks tonB; therefore we considered it a negative control 

for FeEnt uptake. Figure 5 showed the results of OKN1 in all three binding 

conditions. As expected the blocked binding and PUB results were almost 

identical. The results indicated that in the PUB experiment, the remaining 

two-thirds of FepA associated with 56FeEnt were unable to transport 

during the 37°C temperature increase and only the dissociated FepA 

proteins were able to bind 59FeEnt. BN1071 treated with the proton motive 

force inhibitor, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), 

showed similar results to OKN1 and could not uptake 56FeEnt.   

Initial rate of FeEnt uptake by FepA 

The use of PUB assays allowed for the direct measurement of OM 

transport, which differed from standard radioisotopic iron uptake assays. 

The latter allowed the accumulation of 59FeEnt within the cell, thereby 

measuring the amount of 59FeEnt present in the cytoplasm, periplasmic 

space, and the OM. The results of the PUB assays indicated that uptake 

occurred immediately once transport was allowed and continued until all 

FepA proteins were vacated (Fig. 6). The transport reaction was a first 

order reaction with k = 1.2 min-1. This rate is 3-fold slower than previously 

measured. The discrepancy may be due to the differences in the methods 
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employed. Previous assays were done at 37°C and the cells never 

experienced a temperature change. In PUB assays, the cells were chilled 

on ice with the iron siderophore present and to induce transport the cells 

were rewarmed to 37°C. To test this theory, conventional 59FeEnt uptake 

assays were conducted with cells that were chilled prior to transport and 

for the first 20 seconds the calculated Vmax was 83 pmol(109 cells·min)-1 

for the next 40 seconds the rate increased to 172 pmol(109 cells·min)-1. 

Previous studies have shown that with conventional radioisotopic assays 

the Vmax was 208 pmol(109 cells·min)-1 (47). Chilling the cells prior to 

transport resulted in turnover numbers of 1.2 min-1 for the first 20 seconds, 

2.6 min-1 for the next 40 seconds, and an average of 2 min-1 for the 1 

minute assay period. These results explained the lower rate determined 

by the PUB assays. 
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the lowest rate (Vmax = 37 pmol(109 cells·min)-1) that continued until the 

end of the 90 minute period.  

To investigate the triphasic time course seen in the accumulation 

assays, we conducted PUB assays at three separate times, 15 seconds, 5 

minutes, and 25 minutes (Fig. 7). The results supported the presence of 

three different uptake rates. Immunoblots were done on these samples 

and the concentrations of FepA between the samples were similar. These 

results suggested that the decrease in transport rate through FepA caused 

the drop in the overall ferric enterobactin accumulation into the cytoplasm. 

If this was true, it was possible that the OM transport activity of FepA was 

regulated by other cell envelope or intracellular processes. 
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The impaired FeEnt uptake through the OM was unexpected and it 

raised questions about the interactions between FepB and FepA. The role 

of FepB is to shuttle FeEnt from FepA to the inner membrane permease 

complex FepCDG. But, it was unknown whether an interaction between 

FepB and FepA occurred during FeEnt transport. To determine if an 

interaction between the two proteins occurred, we conducted 

immunoprecipitation experiments. By using an antibody that recognizes an 

epitope in loop 4 of FepA (anti-FepA mAb 45), we tested whether or not 

FepB would precipitate along with FepA in the presence or absence of the 

iron siderophore. As seen in Fig. 9, FepB did not co-precipitate with FepA, 

mAb45, and protein A-agarose in the absence or presence of FeEnt (10 

nM). We conducted an additional experiment with FepB and FeEnt that 

included FepA in OM fragments (54). The samples were precipitated by 

ultracentrifugation and the same results were seen (Fig. 10). Both assays 

indicated that FepB did not actively interact with FepA during FeEnt 

transport through the OM. 
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pFepAG54C into OKN3 (∆fepA), OKN34 (∆fepA, ∆fepB), and OKN13 

(∆tonB, ∆fepA), strains and conducted and compared FM labeling of 

G54C (Fig. 11 panel A). FM was able to modify G54C when FeEnt was 

present whether or not the strain had fepB. In previous experiments, 

G54C was not conjugated to FM in the ∆tonB host. These results 

suggested that FeEnt transport through FepA could occur in the absence 

of FepB. 
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The PUB assays with OKN4 suggested that FepB was essential in 

the uptake of FeEnt through the OM but the FM results with G54C 

indicated that FeEnt uptake was occurring through FepA, despite the fepB 

deletion. To provide additional insight in the differing results, we studied 

59FeEnt retention assays. BN1071 (wild type), OKN1 (∆tonB), and OKN4 

(∆fepB) were subjected to retention assays (Fig. 11 panel B and C) similar 

to those done with BtuB (35). The bacterial strains were initially exposed 

to 59FeEnt and then excess 56FeEnt was added to determine the retention 

of the radioactive FeEnt. As expected, the wild type strain was able to 

retain 59FeEnt after 56FeEnt exposure. The ∆fepB strain did not bind or 

retain as much 59FeEnt as BN1071. This suggested that without the 

periplasmic binding protein, FepB, FeEnt did not stay internalized and was 

released into the media.   

Previous studies of TolC by Bleuel, et al., indicated that TolC was 

involved in the efflux of FeEnt across the OM of E. coli (59). The ∆fepB 

and ∆tolC strain, OKN422, was generated to determine if TolC was 

involved in the release of siderophore in the absence of the periplasmic 

binding protein. OKN422 was also subjected to 59FeEnt retention 

determinations and the results were similar to the wild type strain BN1071. 

We also conducted PUB measurements on OKN422 (Fig. 11 panel D). 

The results indicated that FepA was able to transport FeEnt across the 

OM even in the absence of FepB to bind the siderophore in the 

perisplasmic space. The retention and PUB measurements confirmed the 
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involvement of TolC in the efflux of FeEnt. Strains lacking fepB 

accumulated FeEnt within the perisplasmic space during FeEnt transport 

and TolC was responsible for the release of FeEnt through the OM.   

Simultaneous TonB-dependent uptake of two ferric siderophores 

TonB is necessary for the transport of all iron siderophores through 

the OM. TonB interacts with the TonB box of OM receptor proteins.  

Because of this interaction and proportion of TonB and TonB-dependent 

receptor proteins, the simultaneous transport of various ferric 

siderophores should competitively inhibit the individual rates of 

siderophore internalization. To determine the effect of FeEnt uptake in the 

presence of saturating Fc, we conducted PUB measurements and 

conventional 59FeEnt assays (Fig. 12). The standard 59FeEnt uptake 

assays indicated that the presence of saturating Fc had little effect on 

FeEnt transport. PUB assays showed a 20% decrease in the Vmax of 

FeEnt uptake when saturating Fc was present. The results of standard 

siderophore uptake assays for 59Fc transport in the presence of saturating 

FeEnt indicated that the Vmax of 59Fc was reduced by 50% in the presence 

of FeEnt.  
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Activation energy of FeEnt transport through the OM 

By studying fluorescently labeled FepAS271C, we were able to 

determine the activation energy of FeEnt transport through the OM. We 

used the Arrhenius equation to calculate the activation energy by 

fluorescence spectroscopic measurements of FeEnt uptake at various 

temperatures (49). OKN3, pFepAS271C was modified by FM and the 

bacteria were exposed to 10 nM FeEnt. As seen in previous studies (49), 

the binding and transport of FeEnt quenched fluorescence emissions and 

the fluorescence only recovered after FeEnt was depleted from solution. 

Temperature dependence of FeEnt uptake was determined in two 

separate ways: time required to deplete 10 nM FeEnt from solution 

(depletion threshold) and steady-state uptake rate at half-saturation 

(depletion rate) (Fig. 13). Fluorescence spectroscopic measurements 

were made at, 20°C, 15°C, 10°C, and 5°C. For the first method, we 

observed the time from the addition of FeEnt until F/F0 increased upward 

to a value of 0.4. As the temperatures decreased, the times for 

fluorescence recovery were 200, 1630, 2600, and 6870 seconds. In the 

second method, we measured the rate at which fluorescence recovered 

by calculating the slope of the curves at half-saturation. At 20°C the slope 

at half saturation was 0.0023 K, at 15°C the rate was 0.00061 K, at 10 °C 

the rate was 0.00031 K, and at 5°C the rate was 0.00009 K. We analyzed 

the Arrhenius plots, ln(k) versus 1/T and the calculated values of the 
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Discussion 

Initially, the amount of energy required for FeEnt transport through 

FepA was unknown. By analyzing Arrhenius plots, we calculated the 

activation energy of FepA-mediated FeEnt transport, ~35 kcal/mol. This 

value can be interpreted as a Q10 temperature coefficient of 6-7 (60). Q10 

values greater than 2 usually indicate that significant conformational 

change occurs during the biochemical reaction. The Q10 value calculated 

for FeEnt transport through FepA suggested that a conformational change 

may occur within the N-domain of FepA. 

PUB assays are direct measurements of siderophore uptake 

through the OM. These determinations indicated that FepA could not 

internalize FeEnt without TonB and a proton motive force. Siderophore 

uptake assays and PUB determinations in the presence of multiple iron 

siderophores also provided information about the activity of TonB during 

metal uptake. Within the cell there is a limited number of TonB proteins 

and an abundance of TonB-dependent OM receptor proteins. 

Simultaneous metal uptake should affect the rate of iron transport through 

the OM. 59Fc uptake by FhuA showed a 50% decrease in Vmax in the 

presence of FeEnt. The amount of FepA is greater than FhuA in the OM, 

so this result was consistent during the simultaneous metal uptake of 

FeEnt and Fc. FeEnt uptake assays and PUB measurements showed that 

simultaneous transport of Fc had little effect on FeEnt uptake. 
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The ratio of TonB:FepA in iron-deficient conditions is 1:35 (47,52). 

This suggests that at any time, only 3% of all FepA proteins are actively 

transporting FeEnt through the OM. If only a small percentage is actively 

participating in FeEnt transport, than the overall rate of FeEnt uptake ~ 5 

min-1 (39,47,48) is an underestimate and could be 30 times larger. PUB 

measurements showed that all FepA proteins bound with FeEnt were able 

to transport the ligand. This indicated that during an 80 second period, 

TonB was able to identify the ligand-bound receptor and interact with the 

OM protein and allow iron uptake. Under these circumstances, one TonB 

protein facilitated in the transport of approximately 20 FepA proteins. This 

may be the rate-limiting step in FeEnt uptake, which may explain the low 

turnover number.      

59FeEnt accumulation and PUB assays showed three uptake 

stages of FeEnt through FepA. The three phases were a rapid initial 

phase that occurred during the first 30 seconds, a secondary phase that 

occurred from 0.5 to 10 minute, and a steady-state rate that continued 

from 10 to 90 minutes. These results may reflect the involvement and 

interaction of the proteins involved during FeEnt uptake: TonB-ExbBD, 

FepB and FepCDG-Fes. If we assume that FeEnt is not associated with 

any proteins involved in the FeEnt uptake system, the first rate 

measurements begin with the initial binding of FeEnt to FepA. The second 

stage would be the saturation of TonB with FepA or FepB with FeEnt. 

During this stage FepB would be transferring FeEnt to the IM permease 
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complex. In the last stage, all proteins involved in the FeEnt transport 

system would be saturated by FeEnt or FeEnt-bound proteins.  

To investigate the triphasic time course seen in the accumulation 

assays, PUB measurements were taken at three separate time points, 15 

seconds, 5 minutes, and 25 minutes (Fig. 7). The results supported the 

presence of three different uptake rates. Immunoblots were done on these 

samples and the concentrations of FepA between the samples were 

similar. These results suggested that the decrease in transport rate 

through FepA caused the drop in overall siderophore accumulation into 

the cytoplasm (31). If this is true, it is possible that the OM transport 

activity of FepA is regulated by other cell envelope or intracellular 

processes. 

PUB determinations with strains lacking FepB, FepD or FepG 

resulted similarly to the ∆tonB strain. Initially, the results implied that FepA 

could not transport FeEnt through the OM without the periplasmic binding 

protein or an active IM permease complex. Fluorescein maleimide was 

able to covalently label FepAS271C in the ∆fepB strain, unlike ∆tonB 

bacteria, where FM could not label FepAS271C. This indicated that in the 

absence of FepB, FepA was able to transport FeEnt, whereas in the 

absence of TonB, FepA is unable to transport FeEnt. Investigations with 

TolC helped elucidate the results of strains lacking the perisplasmic 

protein or IM permease proteins where retention of FeEnt and transport 

through FepA seemed impaired. We conducted PUB and siderophore 
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retention measurements that showed TolC was responsible for the export 

of FeEnt. In the absence of FepB or the IM permease proteins, FeEnt 

accumulates within the periplasmic space and is unable to be transported 

into the cytoplasm. The accumulation results in an export of the excess 

FeEnt by TolC. This futile cycle stresses the importance of the periplasmic 

binding protein and an active inner membrane permease complex.   
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Chapter 4: Determining conformational change in FepA 

during FeEnt uptake through FRET analysis 

Background 

The N-domain of FepA occludes the FepA channel and has low 

affinity for the ligand (61). This occlusion of the C-domain leaves no space 

for FeEnt to pass through FepA during iron uptake and the N-domain of 

FepA must undergo a conformational change to allow the ligand to enter 

the periplasmic space.   

Two possible models have been discussed that could allow FeEnt 

transport through FepA by conformational rearrangements of the N-

domain (25,38,53). In the first model, which will be referred to as the ball-

and-chain model, the entire N-domain is ejected from the barrel in a 

concerted movement. Once the N-domain is dislodged into the periplasm, 

the FeEnt can pass through the OM channel. In the second model, 

transient pore model, the N-domain would rearrange within the FepA 

barrel producing a narrow passage way for FeEnt. We constructed double 

Cys substituted mutants in FepA and conjugated these sites with Cys 

specific fluorophores to try and determine the model of FeEnt transport 

through FepA.  

Experimental Procedures 

Construction of double cysteine substitution mutants in FepA 

Double cysteine mutants in FepA were first constructed by 

engineering single cysteine mutations in fepA on pITS23 or pITS47. The 
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single Cys substitutions were constructed based on the method in chapter 

2. The location of the single Cys substitutions were based on previous 

fluorescent spectroscopy data (38,40) and the location of the residues. To 

determine conformational change within the N-domain of FepA, one Cys 

substituted mutant must be located on the extracellular loops of FepA and 

the other must be located on the periplasmic surface of the N-domain of 

FepA. Once the single Cys substitutions were made in FepA, we 

constructed double cysteine mutants by restriction fragment exchange 

with the endonucleases PstI and MluI. Cysteine substitutions were verified 

by DNA sequence analysis. Unless stated otherwise, all plasmids were 

harbored in OKN3 strains. 

Fluorescence labeling of FepA Cys sites in vivo for FRET analysis 

FRET is the radiationless energy transfer between two molecules, a 

donor (the excited fluorophore) and an acceptor (a fluorophore or 

chromophore). The excited donor molecule transfers energy by resonance 

and induces excitation of the acceptor electrons. The de-excitation of the 

acceptor molecule mainly results in a photon emission. The energy 

transfer efficiency is dependent upon three conditions: the spectral overlap 

between the emission spectrum of the donor fluor and the excitation 

spectrum of the acceptor fluor, the distance between the fluorophores, and 

the orientation of their dipoles (62). The energy transfer efficiency between 

the fluors can be used to calculate the distance between the fluorophores. 
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The size exclusion limit of the OM porins is 650 Da (20). This 

means that FM can traverse the OM through the porins and covalently 

label any Cys residues that are exposed to the periplasmic space (38). 

A546M will be limited to labeling any Cys residues on the extracellular 

surface.   

By fluorescently labeling the double Cys substituted mutants in 

FepA with A546M initially, the extracellular Cys residue is labeled and the 

remaining Cys mutant exposed to the periplasmic space is unmodified. To 

covalently modify the N-domain Cys mutant, we introduced FM at a high 

concentration to ensure enough FM will be able to traverse the OM porins 

and conjugate with the Cys mutant on the periplasmic surface of FepA.   

This procedure is a modified version of the fluorescence labeling 

procedure listed in chapter 2. Cells were subcultured in MOPS minimal 

media and allowed to grow for 5.5 hours or until late log phase. We 

measured the OD600 and 5 x 108 cells were collected by centrifugation at 

17,000xg for 1 minute at 4°C. The cells were then washed and 

resuspended in 1 mL of 50 mM Na2HPO4, pH 6.5, 0.9% NaCl, containing 

0.4% glucose.  We incubated the cells for 10 minutes at 37°C. Alexa Fluor 

546 maleimide, A546M, was added to the cells (5 to 25 µM) first before 

the addition of FM. Once AM was added, the cells were incubated at 37°C 

for 15 minutes. Then, we introduced FM to the cells at 300 µM and the 

cells were incubated for an additional 15 minutes at 37°C. At the end of 

the labeling period, the reactions were quenched and the cells were 
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washed three times. For spectrophotometric studies, we resuspended the 

cells in 1 mL TBS (50 mM Tris chloride, pH 7.4, 0.9% NaCl), 0.4% 

glucose. For detection of fluorescence labeling by SDS-PAGE, 1 x 108 

bacteria was lysed by boiling for 5 minutes in SDS-PAGE sample buffer 

before resolution by SDS-PAGE. 

Fluorescence spectrophotometry 

Spectrofluorometric studies were carried out using an SLM-

AMINCO 8000 fluorometer, upgraded to 8100 functionality. After the cells 

were labeled with FM and/or A546M, we conducted an emission scan 

(510 – 580 nm) with an excitation of 488 nm at various temperatures. We 

chose the excitation wavelength of 488 nm to maximize the excitation of 

FM and minimize the direct excitation of A546M. The emissions at 520 nm 

and 573 nm were the values of interest providing information on the 

fluorescence of FM and A546M, respectively. The results of the emission 

scan would provide information on the energy transfer and therefore the 

distance between the dyes. To provide additional information on the 

energy transfer and fluorescence of the dyes, we also conducted an 

excitation scan (450 – 565 nm) with an emission of 570 nm at various 

temperatures. The amount of cells measured in the experiments varied 

depending on the slit width used during each experiment. 



51 

 

Results 

Double Cys substituted mutants in FepA 

Energy transfer between the fluorophores can occur from 10 to 100 

Å. The Fӧrster distance, R0 (Å), is the distance at which the energy-

transfer efficiency is 50%. The estimated Fӧrster distance of fluorescein 

maleimide and Alexa Fluor 546 maleimide is 60 Å. This estimation was 

based on using 0.79 as the quantum yield of fluorescein (63). We 

constructed double Cys substituted mutants in FepA in a way to satisfy 

these parameters and to allow for interpretation of conformational change 

in the N-domain during FeEnt transport.   

Based on previous experiments (38,40), surface residues S271C, 

E280C, and A698C of FepA were chosen as suitable sites for biochemical 

analyses. In addition to these residues, we engineered A261C and S275C 

of FepA based on their location in FepA. These residues are located on 

the mobile surface loops and are on the “hinge-side” of FepA, where the 

globular N-domain is connected to the β-barrel C-domain. It is likely that 

the N-domain of FepA forms a pore opposite of the “hinge” where the N-

domain and the C-domain are connected during FeEnt transport. If this 

does occur, determining the distance between the dyes conjugated to the 

Cys substitutions in FepA during FeEnt transport could help differentiate 

between the models of iron transport through FepA (Fig. 15). Cys 

substitutions on the short immobile surface loops of FepA were also 

engineered, K167C and V438C.  These sites could be more beneficial 
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Table 3. Double Cys substituted mutants in FepA for FRET 
analysis 

Double Cys mutant in FepA
Distance between 
α-carbons (Å) 

L23C/A261C 40.0 

L23C/S275C 49.3 

T30C/S271C 46.3 

T30C/E280C 35.1 

A33C/E280C 32.1 

A33C/A698C 55.2 

 

 As mentioned earlier, the locations and the distances between the 

residues are important to the study for FRET analysis. The distances 

between the residues of all the double Cys mutant derivatives of FepA are 

within the Fӧrster distance (Table 3) and should have greater than 50% 

energy transfer efficiency. This is paramount to the interpretation of the 

results in the absence and presence of FeEnt. Measurements of the 

distance between the dyes could help determine the model of FeEnt 

transport through FepA. For example, based on the crystal structure of 

FepA, the distance between the residues T30C and S271C in the double 

Cys mutant in FepA in the absence of FeEnt should be 46.8 Å (25). During 

FeEnt transport the distance between the dyes could increase or decrease 

based on the model of FeEnt transport through FepA (Fig. 15). If the 

distance between the residues increases, it would suggest that the N-

domain of FepA was dislodged into the periplasm. If the distance between  
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To determine the effects of FeEnt uptake by Cys substitution(s) in 

FepA and/or covalent modification by fluorophores, we also conducted a 

modified version of siderophore uptake and binding assays. 59FeEnt 

transport was determined by collecting data at two times: 5 seconds and 

25 seconds. Bacteria were grown in MOPS minimal media and the 

samples were labeled with FM and/or A546M. An aliquot was allowed to 

incubate in a 37°C water bath. The cells were then mixed with 10 mL 

MOPS containing 10 nM 59FeEnt. Incubation was allowed at the various 

time points 5 seconds and 25 seconds and the cells were then collected 

on filters and rinsed. By calculating the difference of the counts at two 

separate time points and extrapolating the 20 second transport, we 

determined the uptake of 59FeEnt in one minute. A bar graph of pmol 

59FeEnt/109 cells/minute versus the sample was used to determine the 

effects of the Cys substitution(s) in FepA and the covalent modification by 

FM and/or A546M. FeEnt uptake and binding experiments have been 

conducted on A33C/A698C and T30C/S271C using pITS23 and pITS47, 

as the wild-type strain, respectively (Fig.18). 

The siderophore binding and uptake assays indicated that the 

double Cys mutation A33C/A698C in FepA had lower FeEnt transport than 

wild-type pITS23. This was also seen when the fluorophores were 

conjugated to the double Cys mutants in FepA. A possible explanation for 

this impairment may be due to the fluorophores inhibiting the transport of 

FeEnt through FepA. It is also possible that the double Cys mutants that 
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have been covalently modified by the fluors have a slower rate of transport 

than wild-type FepA. When comparing the double mutant T30C/S271C in 

FepA to wild-type pITS47, the transport was unaffected by the Cys 

substitutions in FepA. The FeEnt transport was also unaffected when the 

fluorophores were conjugated to the double Cys T30C/S271C mutants in 

FepA. 
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Figure 18. FeEnt binding and uptake of Cys substituted mutant(s) in 
FepA covalently modified by fluorophores. Bacteria were subcultured 
in MOPS minimal media and subjected to fluorescence labeling with 5 µM 
(A33C/A698C and A698C) or 15 µM A546M (T30C/S271C and S271C) 
and/or 300 µM FM. 59FeEnt uptake assays were conducted at two 
separate time points. The results were shown as the percent of FeEnt 
binding in 5 seconds and percent of FeEnt transport through FepA in 1 
minute (percentage was compared to wild-type FepA (100%)) in the 
absence and presence of the fluorophores. 
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Optimizing fluorescent labeling in vivo 

The double mutants that were constructed in FepA were 

L23C/A261C, L23C/S275C, T30C/S271C, T30C/E280C, A33C/E280C, 

and A33C/A698C. To determine optimal labeling conditions with A546M 

and FM, we conducted labeling experiments with all of the single Cys 

mutant derivatives of FepA. The extracellular residues located on the 

loops of FepA were labeled with varying concentrations of A546M. The 

residues located on the periplasmic surface of the N-domain of FepA were 

labeled with varying concentrations of FM. 

FepA residue E280C showed minimal covalent modification in 

comparison with S271C (data not shown). To improve A546M labeling of 

FepAE280C, we introduced pFepAE280C in CL29 (42) by electroporation. 

This host strain has a truncated lipopolysaccharide (LPS) core. By using a 

deep rough strain, it was possible the residue E280C in FepA would be 

more accessible to the fluorophore. CL29/pFepAE280C did not improve 

accessibility to the modification by A546M (Fig. 19). The expression of 

FepA was also greatly decreased in the strain. Due to these results, we 

excluded the double mutants T30C/E280C and A33C/E280C in FepA for 

FRET analyses.  
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Spectrofluorometer study of FRET 

As discussed earlier the energy transfer, E, of the donor and 

acceptor molecules can be used to determine the distance between the 

dyes, r, if the Fӧrster distance, R0, of the dyes is known. The equation 

below shows this relation and how dependent the energy transfer 

efficiency is on the distance of the donor and acceptor dyes. 

Measurements of r are only reliable if the distance of the dyes is within 

2R0.  

 

The energy transfer, E, is calculated by determining the fluorescence 

intensities of the donor dye in the absence (FD) and presence of the 

acceptor molecule (FDA). 

1  

To determine the fluorescence intensities of the FM in the absence 

and presence of A546M, we conducted emission scans with an excitation 

of 488 nm. The emission was scanned from 510 to 580 nm. This would 

allow the determination of the FM fluorescence emission at 520 nm and 

the fluorescence emissions of A546M at ~573 nm. In the absence of 

FeEnt, the fluorescence intensity of FM should decrease in the presence 

of A546M and the fluorescence intensity of A546M should be seen at 

~573 nm. 
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In addition to the emission scan, we conducted an excitation scan 

(450 – 565 nm) with an emission of 570 nm. This information was not 

used to determine the distance between the dyes but was used as a 

qualitative assay. In the excitation scan, a fluorescence intensity at 490 

nm should only show when both FM and A546M were present. This would 

also indicate that energy transfer between the two dyes occurred.   

To appropriately analyze the spectroscopic data, we considered 

controls to account for covalent modification of other proteins during in 

vivo labeling experiments. FepA does not contain any free sulfhydryl 

groups for covalent modification but it has been shown that other proteins 

are modified by thiol specific fluors (38,40). To determine the background 

fluorescence that was not attributed by FepA, we conducted spectroscopic 

experiments with pITS47 labeled with FM and/or A546M (Fig. 22 and 23). 

The results of the pITS47 labeling experiment showed FM and/or 

A546M labeled the bacterial cells at a low level and the excitation and 

emission scans displayed low levels of fluorescence intensity. These 

values were compared to the Cys mutant derivatives of FepA that were 

initially tested T30C, S271C, and T30C/S271C.  
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Figure 22. Emission scan of pITS47 labeled with FM and/or A546M. 
OKN3 cells harboring pITS47 were subjected to fluorescence labeling with 
17 µM A546M (purple) or 300 µM FM (black) or both fluors (green). We 
analyzed 9 x 106 cells in a spectrofluorometer. An emission scan was 
conducted with an excitation at 488 nm. In comparison to the Cys 
derivatives of FepA, fluorescence intensities were relatively low. 
 

 

Figure 23. Excitation scan of pITS47 labeled with FM and/or A546M. 
OKN3 cells harboring pITS47 were subjected to fluorescence labeling with 
17 µM A546M (purple) or 300 µM FM (black) or both fluors (green). We 
analyzed 9 x 106 cells in a spectrofluorometer. An excitation scan was 
conducted with an emission at 570 nm. In comparison to the Cys 
derivatives of FepA, fluorescence intensities were relatively low. 
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The Cys mutant derivatives of FepA T30C, S271C, and 

T30C/S271C were subjected to the same fluorescent labeling conditions 

and spectroscopy scans. To calculate the corrected fluorescence 

intensities of the Cys mutants of FepA (Fig. 24 and 25), we subtracted by 

the fluorescence intensities of the wild-type, pITS47. 

 

Figure 24. Corrected emission scan of FepA mutants T30C, S271C, 
and T30C/S271C conjugated to the appropriate fluors. The bacterial 
cells were fluorescently labeled in vivo with 17 µM A546M and/or 300 µM 
FM. The FepA derivative T30C (orange) was labeled with 300 µM FM. The 
Cys substituted mutant S271C (pink) in FepA was covalently modified with 
17 µM A546M. The double Cys mutant in FepA T30C/S271C (blue) was 
labeled with 17 µM A546M initially and then 300 µM FM. We analyzed 9 x 
106 cells in a spectrofluorometer. An emission scan was conducted with 
an excitation at 488 nm. The fluorescence intensity values were 
subtracted by the fluorescence values of pITS47 labeled with the 
appropriate fluor. The fluorescence intensities of T30C-FM and T30C-
FM/S271C-A546M differ at 520 nm and 570 nm, this suggested energy 
transfer occurred between the donor and the acceptor dyes.   
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Figure 25. Corrected excitation scan of FepA mutants T30C, S271C, 
and T30C/S271C conjugated to the appropriate fluors. The FepA 
derivative T30C (orange) was labeled with 300 µM FM. The Cys 
substituted mutant S271C (pink) in FepA was covalently modified with 17 
µM A546M. The double Cys mutant in FepA T30C/S271C (blue) was 
labeled with 17 µM A546M initially and then 300 µM FM. We analyzed 9 x 
106 cells in a Spectrofluorometer and conducted an excitation scan with 
an emission at 570 nm. The fluorescence intensity values were subtracted 
by the fluorescence values of pITS47 labeled with the appropriate fluor. 
The fluorescence intensities of T30C-FM and T30C-FM/S271C-A546M 
differ at ~490 nm, this suggested that energy transfer occurred between 
FM and A546M.   

 

The results of the corrected emission and excitation scans, 

suggested that energy transfer between FM and A546M occurred. In the 

emission scan of the single Cys substituted mutant T30C in FepA, the 

fluorescence intensity was seen at 520 nm as expected when excited at 

488 nm and the fluorescence intensity at 570 nm was relatively low. When 

FM was in the presence of A546M, T30C-FM/S271C-A546M, the 
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fluorescence intensity at 520 nm decreased and the intensity increased at 

570 nm. We also conducted an emission scan on the Cys mutant S271C 

in FepA, the results showed that S271C-A546M did not contribute to any 

of the fluorescence intensities shown in the double Cys FepA mutant 

T30C/S271C. The excitation scan with an emission at 570 nm supported 

the results observed in the emission scan. Based on the emission scan 

results, we calculated the distance between the dyes, ~77 Å. This value 

was higher than expected but this could be due to the scans being 

conducted at 23°C, which allowed the proteins to be more mobile (64). 

The acceptor dye was located on a mobile surface loop so it could be 

reasonable that the value was higher than the expected ~47 Å.  

After the spectroscopic scans of the bacteria, we analyzed the samples by 

SDS-PAGE and the expression of FepA was determined by an anti-FepA 

immunoblot (Fig. 26). The expression of FepA was similar in all single Cys 

mutant derivatives of FepA. The results of the immunoblot showed that the 

double Cys mutant in FepA T30C/S271C had an additional FepA band 

below the expected protein band. This band was unexpected because the 

SDS-PAGE analysis was done in the presence of ~160 mM βME. This 

suggested the additional band could not be due to an aberrant disulfide 

bond formation. The additional band may be a degradation product of 

FepA, but the source of this band remains unknown. By comparing the 

results of the anti-FepA immunoblot and the SDS-PAGE gel, the second 

band did not appear to be fluorescently labeled by FM or A546M. This was  
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adjustments were made to determine the source of error or possible 

sources of improvement: slit width, amount of cells present in the sample, 

varying the concentration of A546M present during labeling, and changing 

the temperature during the scans from 23°C to 4°C. We also tested the 

other single and double Cys mutants in FepA L23C/S275C and 

A33C/A698C but none of the double mutants showed an energy transfer 

between the two fluors that was seen with T30C/S271C.  

 The results of the emission scan with an excitation at 488 nm of the 

double Cys mutant in FepA consistently showed higher fluorescence 

intensity at 520 nm than the single Cys mutant in FepA conjugated to FM 

alone. The SDS-PAGE gel analysis would confirm this problem and at 

various times had a higher background than the wild-type control, pITS47. 

At one point, the control samples with OKN3 harboring pITS47 showed 

similar fluorescence intensities compared to its FepA Cys mutant 

equivalent, which made it impossible to interpret the data from the scans. 

Initially, this appeared to be a pipetting error during fluorescence labeling 

or during the scans. It was important to have the same number of cells 

during the scans so the data could be compared to one another. 

Adjustments were made with the pipettes and spectrofluorometer but the 

problems still persisted. 

 Despite the null results seen in the absence of FeEnt, we 

conducted a few emission and excitation scans in the presence of FeEnt 

to determine if any energy transfer could be seen during iron transport 
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through FepA. These experiments were conducted both at 23°C (Fig. 27 

and 28) and 4°C (data not shown). At 23°C the FepA can bind FeEnt and 

transport at a slower rate compared to 37°C. At 4°C FepA can bind FeEnt 

and the uptake of FeEnt would not be able to occur during the scan.  

 

 

Figure 27. Emission scan of FepA mutants T30C, S271C, and 
T30C/S271C conjugated to the appropriate fluors in the absence and 
presence of 50 nM FeEnt. The FepA derivative T30C (orange) was 
labeled with 300 µM FM. The Cys substituted mutant S271C (pink) in 
FepA was covalently modified with 15 µM A546M. The double Cys mutant 
in FepA T30C/S271C (blue) was labeled with 15 µM A546M initially and 
then 300 µM FM. We analyzed 2 x 107 cells in a spectrofluorometer in the 
absence (solid line) or presence (lines with filled in circles) of 50 nM 
FeEnt. An emission scan was conducted with an excitation at 488 nm. The 
spectral data were unchanged in the presence of FeEnt. 
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Figure 28. Excitation scan of FepA mutants T30C, S271C, and 
T30C/S271C conjugated to the appropriate fluors in the absence and 
presence of 50 nM FeEnt. The FepA derivative T30C (orange) was 
labeled with 300 µM FM. The Cys substituted mutant S271C (pink) in 
FepA was covalently modified with 15 µM A546M. The double Cys mutant 
in FepA T30C/S271C (blue) was labeled with 15 µM A546M initially and 
then 300 µM FM. We analyzed 2 x 107 cells in a spectrofluorometer in the 
absence (solid line) or presence (lines with filled in circles) of 50 nM 
FeEnt. An excitation scan was conducted with an emission at 570 nm. The 
spectral data at 490 nm appeared to be unchanged in the presence of 
FeEnt. 
 

In the presence of 50 nM FeEnt, the spectral data collected from 

the emission and excitation scans were nearly identical to the data 

obtained in the absence of FeEnt. This was also seen in the scans 

conducted at 4°C. These results were unexpected since previous 

experiments indicated a conformation change within the surface loops of 

FepA during FeEnt transport (49,64). Fig. 27 and 28 were representative 

of the results seen in different double Cys mutants in FepA. This could be 
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an indication of the limitation of this scanning method during FeEnt 

transport.  

Extensive studies have been conducted to determine loop 

conformational motion during FeEnt uptake by covalent modification by 

FM (65). Various Cys substituted mutants were located on the surface 

loops of FepA. These cells were then subjected to FM labeling and 

spectroscopic measurements were done to determine the extent of 

quenching during FeEnt transport (49). The results indicated that the 

surface loops of FepA could be separated into two groups characterized 

by the extent of quenching and recovery rates. This provided information 

concerning the individual loop motion during FeEnt uptake and binding. 

Group A (loops 2, 3 and 11) exhibited a larger extent of quenching than 

group B (loops 4, 5, and 8). 

The double Cys mutants in FepA that were constructed for the 

purposes of FRET analyses have residues located in loop 3 (residues 

S271C and S275C) and loop 11 (A698C). Although previous studies with 

S271C had indicated that the loop underwent conformational change 

during FeEnt transport through FepA that resulted in FM quenching, we 

constructed double Cys substituted mutants in FepA with this extracellular 

residue because of the extent of labeling with A546M. These double Cys 

mutants in FepA were ideal for FRET analysis in the absence of FeEnt 

transport but could have been difficult to interpret during iron transport. 

With the loop conformational studies fully examined, residues in loops 4, 
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5, and 8 could be better candidates for energy transfer experiments if the 

Cys substituted mutants in FepA could bind and transport FeEnt similar to 

wild-type FepA. 

A source of error may be assuming the external loops of FepA were 

100% labeled with A546M. This assumption could have created issues 

when the distance between the dyes was calculated. If the fluorescent 

labeling of the external loops of FepA were not 100% covalently modified 

by A546M, the fluorescence intensity of the FM would be larger in the 

presence of the acceptor than the actual fluorescence intensity. FM would 

also label the free Cys residues that were not initially modified by A546M, 

therefore certain FepA proteins would have two FM dyes associated with 

it. This would make the previous energy transfer efficiency equation, 

1 , irrelevant. 

 We determined the labeling efficiency of A546M by labeling the 

single extracellular Cys derivative of FepA S271C with FM after the 

acceptor dye, A546M (Fig. 29). This was analyzed by SDS-PAGE and an 

anti-FepA immunoblot. The fluorescence intensities in the gels and the 

amount of FepA present gave an idea of the labeling efficiency of A546M 

with FepA. The results indicated that the Cys mutant S271C in FepA was  

not 100% labeled by 5 µM A546M. The addition of 300 µM FM, appeared 

to show additional labeling of FepA S271C. A problem with this analysis 

was the limitation of the scan of fluorescence in the SDS-PAGE gel. The 

StormScanner excites at 450 nm and the emission is read at 520 nm, this  
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transport assays with the Cys substituted mutants conjugated to the 

appropriate fluor to determine the effects of the dye. The Cys substituted 

derivatives of FepA were then subjected to fluorescence labeling with 

various concentrations of FM or A546M. Based on these results, we were 

able to determine which double Cys mutants in FepA were not ideal for 

FRET analysis. 

We conducted emission scans with an excitation at 488 nm and 

excitation scans with an emission at 570 nm with the remaining suitable 

Cys substituted FepA derivatives to determine if energy transfer occurred 

between the two fluorophores. Initial studies indicated that energy transfer 

occurred between FM and A546M in the double Cys substituted mutant 

T30C/S271C in FepA. These results were not reproducible. To determine 

if energy transfer occurred during FeEnt transport through FepA, we 

conducted additional emission and excitation scans in the presence of 

FeEnt. The results indicated that energy transfer did not occur between 

the dyes this was unexpected based on previous experiments. 

Based on the results that were accumulated, it indicated that further 

investigation was needed. For example, we could determine the fractional 

labeling of A546M. To determine the labeling efficiency of A546M, 

additional excitation and emission scans would have to be conducted. By 

labeling the same number of FepA Cys substituted mutant S271C cells 

with varying concentrations of A546M, a saturation curve which behaves 

under Michaelis-Menten conditions can determine a Kd value. Using this 
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value and the knowledge that A546M binds to FepA with a 1:1 ratio, the 

value of unlabeled FepA proteins can be determined. Once the labeling 

efficiency of A546M is determined, the fluorescence intensity with the 

emission at 520nm when excited at 488 nm of the double Cys mutant in 

FepA can be corrected for the presence of FepA proteins labeled with 2 

FM dyes. Then an equation accounting for the fractional labeling with the 

acceptor dye, , must be considered. 

This could address the higher emissions at 520 nm of the samples 

containing both the donor and acceptor dyes. It would also help determine 

the appropriate concentration of A546M to use for maximal labeling 

efficiency by the acceptor dye. Aside from the fractional labeling, the 

orientation of the dipole of the dyes could also have contributed to the 

spectral results. The energy transfer efficiency is dependent, among 

others, upon the orientation factor, κ2. In practice, it was assumed that the 

orientation factor is equal to 2/3 (62,66). This assumed the donor and the 

acceptor dye moved freely. This was probably not the case with FM 

conjugated to FepA. When FepA was covalently modified by FM, the dye 

was bound to the N-domain of FepA in an area surrounded by several 

other residues, which resulted in FM being more static than A546M. 

A546M modified a residue in FepA that was located on a mobile 

extracellular surface loop. Upgrades in instrumentation for the 

spectrofluorometer and phosphorimager have been made and this could 
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provide better analysis for the spectroscopic study of the FRET double 

Cys mutants in FepA. 
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Chapter 5: Determining conformational change in FepA 

during FeEnt uptake through disulfide bond formation 

Background 

A different approach to determining conformational change in FepA 

was taken by constructing several double Cys substituted mutants in 

FepA. The formation of disulfide bonds could provide information on the 

conformational motion within the N-domain of FepA and insight on FeEnt 

transport through FepA. The use of disulfide cross-linking to study 

transmembrane proteins have been applied before in several proteins, for 

example, LacY, ATP synthase, and G protein-coupled receptors (67-69). 

We constructed several double Cys substituted mutants in FepA to 

investigate the formation and hindrance of the disulfide cross-link in the 

absence and presence of FeEnt transport through FepA. Two classes of 

double Cys substituted mutants in FepA were engineered.  

One class of double Cys mutant derivatives of FepA is referred to 

as N-terminus to N-terminus mutants, where both Cys mutants were 

engineered in the globular N-domain of FepA. The Cys residues are within 

cross-linking distance with the distance of the α-carbon atoms no greater 

than 6 Å (70,71). These double Cys mutant derivatives of FepA could form 

a cysteine bond and could affect the transport of FeEnt through FepA.  

The second class of double Cys mutants in FepA is N-terminus to 

C-terminus mutants; one Cys substituted mutant in FepA is located in the 

N-domain and the other Cys mutant is located in the β-barrel of FepA with 
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the residue protruding into the OM channel. In this class of double Cys 

mutants the Cys residues are located far from one another and are unable 

to form a disulfide bond in native FepA, with the exception of one double 

Cys substitution in FepA. The N-terminus to C-terminus mutants were 

constructed to determine if the N-domain of FepA is dislodged into the 

periplasm during siderophore uptake. If the ball-and-chain model is 

supported, it is possible that the Cys mutant located in the N-domain 

would move into proximity of the remaining Cys mutant located on the C-

domain and form a disulfide cross-link during FeEnt transport. 

Experimental Procedures 

Construction of double cysteine substitution mutants in FepA 

We constructed seven double Cys substitutions in FepA. Four 

double Cys mutants in FepA were N-terminus to C-terminus mutants. With 

the exception of the double Cys mutant G54C/T585C in FepA, we 

engineered these based on the crystal structure of FepA and the likelihood 

they would interact if the globular N-domain were to exit the β-barrel. The 

other three double Cys mutants in FepA were N-terminus to N-terminus 

mutants. These were constructed based on the location of the residues 

and the likelihood they would form a disulfide bond in native FepA. The N-

domain is comprised of a four stranded β-sheet and we engineered the 

double Cys substituted mutants in FepA on the β-sheet to restrict the 

mobility of the N-domain. 
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Once the single Cys substitutions were made in FepA, we 

constructed the double cysteine mutants by restriction fragment exchange 

with the endonucleases PstI and MluI. Cysteine substitutions were verified 

by DNA sequence analysis. Unless stated otherwise, all plasmids were 

harbored in OKN3 strains. 

Siderophore accumulation 

To measure the accumulation of 59FeEnt in bacteria, we 

subcultured 1% stationary phase LB cultures into MOPS minimal media 

and allowed the bacteria to grow at 37°C until late log phase. Subcultures 

were conducted in the absence or presence of 1 mM β-mercaptoethanol. 

The assay was conducted at 37°C, which allowed 59FeEnt binding and 

uptake. We took aliquots of the cells and placed the samples in a 37°C 

shaking water bath and 59FeEnt was added to the cells to a final 

concentration of 5 µM 59FeEnt. This concentration of 59FeEnt saturated the 

cells and would not be depleted for several hours of transport even at a 

maximal rate ~ 100 pmol/min/109 cells (48). 100 µL aliquots of the cells 

were collected on nitrocellulose filters and rinsed with 0.9% LiCl after 5, 

15, 25, 45, and 60 minutes. This was done in triplicate and the filters were 

counted to determine the accumulation of 59FeEnt in the bacteria over a 

period of time. We measured the accumulation of 59FeEnt by plotting the 

pmol 59FeEnt/109 cells versus time. 
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Electrophoretic Mobility shift assays 

Samples (1 x 108 cells) were analyzed using the SDS-PAGE 

system by Laemmli (72). We prepared the samples in the absence or 

presence of ~160 mM βME and boiled the samples for 5 minutes. Analysis 

with 50 µM N-ethylmaleimide (NEM) was also conducted, with the addition 

of the compound prior to the sample buffer. Two different SDS-PAGE gels 

were used to analyze the mobility shifts of the double Cys mutants in 

FepA. Samples were analyzed with a 10% SDS polyacrylamide gel (72) or 

with a modified protocol using 44% acrylamide and 0.3% bis-acrylamide in 

the resolving gel (73). The stacking gels in both analyses were 30% 

acrylamide and 0.8% bis-acrylamide. We electrophoresed the samples at 

room temperature for 2 hours and 15 minutes to increase resolution. The 

proteins were transferred to nitrocellulose paper. To determine the 

expression of FepA and the possible mobility shifts, we conducted 

immunoblots with anti-FepA mAb 41/45. After incubation with the primary 

antibody and washes with water or TBS and 0.05% tween 20, the blot was 

incubated with 125I-protein A or alkaline phosphatase-conjugated goat anti-

mouse IgG. The blots were visualized by a phosphorimager or 

colorimetrically with nitro blue tetrazolium and 5-bromo-4-chloro-3-indolyl 

phosphate, respectively. 
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Results 

Double Cys substituted mutants in FepA 

We constructed two classes of double Cys substituted mutants in 

FepA with varying distances between the Cys residues (Table 4). These 

classes were created to help determine the conformational change within 

the N-domain of FepA during FeEnt transport. Figure 30 shows the 

graphical representation of the N-terminus to N-terminus double Cys 

mutants in FepA. Figure 31 shows the graphical representations of the N-

terminus to C-terminus double Cys substituted mutant in FepA. 

 

Table 4.Two classes of double Cys substituted mutants in 
FepA 

N-terminus to N-terminus Distance between α-carbons (Å)

G27C/R126C 5.1 

A33C/E120C 4.9 

L125C/V141C 5.1 

N-terminus to C-Terminus  

G54C/T585C 5.7 

M77C/T457C 27.2 

A138C/T427C 19.2 

A138C/A445C 13.0 
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The results of the siderophore nutrition test indicated that there was 

a distinct difference between the two classes of double Cys substituted 

mutants in FepA. The N-terminus to N-terminus mutants did not have 

bacterial growth halos in the absence of the reducing agent, βME. All of 

the N-terminus to N-terminus mutants were able to transport FeEnt in the 

presence of 1 mM β-mercaptoethanol, with the exception of the double 

Cys mutant L125C/V141C in FepA which a growth halo was only 

observed in the presence of 2 mM βME. This implied that these mutants 

were able to form a disulfide bond with the Cys substituted residues and 

this cross-link impaired the function of FepA during FeEnt transport. The 

N-terminus to C-terminus mutants showed similar FeEnt transport to the 

wild-type FepA in the siderophore nutrition tests in the absence and 

presence of the reducing agent. 

We conducted a Colicin B (ColB) sensitivity assay with the N-

terminus to N-terminus mutants in FepA (data not shown). Overnight 

cultures of the double Cys mutants in FepA with or without 1 mM βME 

were plated onto LB plates. A serial dilution of Colicin B was applied on to 

the plate and the titre was determined as the last ColB dilution able to 

clear the lawn of bacteria. The results indicated that all of the double Cys 

mutant derivatives of FepA were more resistant to ColB than the wild-type 

parent protein. In a reducing environment the double Cys mutants in FepA 

were twice as sensitive to ColB as in oxidative conditions. These results 
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suggested the formation of a disulfide bond within FepA also affected 

colicin sensitivity. 

Effect of double Cys substitutions in FepA in FeEnt accumulation 

To determine the effects of the double Cys mutants in FepA, we 

conducted a quantitative study in which the accumulation of the iron 

siderophore was measured over a period of time. All of the double Cys 

mutant derivatives of FepA were subcultured in the absence and presence 

of the reducing agent, β-mercaptoethanol. Similarly to the siderophore 

nutrition tests, if the double Cys mutants in FepA formed a disulfide bond 

with the Cys substituted mutants, which resulted in the hindrance of 

59FeEnt binding or transport, the accumulation of FeEnt would be less 

than wild-type FepA. The addition of βME during the subculture would 

reduce any possible thiol cross-links and the accumulation of ferric 

enterobactin should be similar to wild-type FepA. 

Although the extent of accumulation differed between the three N-

terminus to N-terminus mutants, the results indicated that FepA was 

impaired in the absence of a reducing agent and could not accumulate 

FeEnt like the wild-type parent protein. These results indicated that the 

double Cys mutants were able to form a disulfide bond in FepA. Fig. 33 

showed the accumulation data collected from all three double Cys mutants 

in FepA. When the bacterial cultures were grown in a reducing 

environment, the accumulation of FeEnt in all of the N-terminus to N-

terminus mutants in FepA was similar to the wild-type parent protein. 
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The accumulation results observed in the N-terminus to C-terminus 

mutants differed from the N-terminus to N-terminus mutants in FepA. With 

the exception of the double Cys substituted mutant in FepA G54C/T585C, 

the double Cys mutants accumulated the iron complex similar to wild-type 

FepA. This was true in the absence and presence of βME. Figure 34 

showed the results obtained for the remaining N-terminus to C-terminus 

mutants in FepA. The ability for the double Cys mutant derivatives of FepA 

to accumulate FeEnt suggested the Cys mutant residues never came into 

proximity with one another to form a disulfide bond. The double Cys 

substituted mutant G54C/T585C in FepA was unable to accumulate FeEnt 

similar to wild-type FepA in an oxidizing or reducing environment. The Cys 

residues in this double Cys mutant were within distance to form a disulfide 

bond. It was possible that a thiol cross-link was formed and βME could not 

reduce the disulfide bond that formed between G54C/T585C.  
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an indication of the functionality of the double Cys mutant in FepA 

compared to the wild-type pITS23.  

 The results indicated that a disulfide bond formed in the N-terminus 

to N-terminus double Cys mutants in FepA. The formation of the disulfide 

bond restrained the mobility of the N-domain within FepA and impaired the 

ability of FepA to accumulate FeEnt. The N-terminus to C-terminus double 

Cys mutants in FepA were all able to accumulate the siderophore similar 

to the wild-type FepA. This suggested that the globular N-domain of FepA 

did not exit the β-barrel of FepA. The only exception was G54C/T585C in 

FepA, which could form a disulfide bond and therefore hinder the transport 

of FeEnt through FepA. 

Table 5. Accumulation results of double Cys mutants in 
FepA 

Class of double Cys 
mutants in FepA 

Accumulation compared to wild-
type FepA 

N-terminus to N-terminus -βME + 1 mM βME 

G27C/R126C 40% 93% 

A33C/E120C 56% 95% 

L125C/V141C 47% 82% 

N-terminus to C-Terminus -βME + 1 mM βME 

G54C/T585C 36% 30% 

M77C/T457C 90% 100% 

A138C/T427C 100% 100% 

A138C/A445C 100% 98% 
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Effect of double Cys mutations in FepA during FeEnt binding and 

uptake 

We conducted standard binding and uptake experiments on all of 

the double Cys mutant derivatives of FepA. Assays with the N-terminus to 

C-terminus double Cys mutants M77C/T457C, A138C/T427C, and 

A138C/A445C in FepA were initially conducted in the presence of 

copper/1,10-phenanthroline (CuP). The assays were conducted with 

millimolar concentrations of the oxidative catalyst and the results indicated 

that the high concentrations of CuP precipitated the 59FeEnt, which made 

the results difficult to interpret (data not shown).  

Initial binding assays with the double Cys mutants in FepA were 

conducted in the absence or presence of 1 mM βME. The in vivo binding 

capabilities of the double Cys mutants in FepA were compared to wild-

type FepA by comparing the Kd values (23,26). Wild-type FepA has a Kd = 

0.2 nM, in most of the double Cys mutants in FepA, the Kd values were at 

least an order of magnitude greater. This was because the binding results 

of the double Cys mutants in FepA did not display typical binding 

characteristics and were unable to be fitted properly to a single site 

saturation curve (Fig. 35). 

The results seen in Fig. 35 were typical results seen in the other 

double Cys mutants in FepA (data not shown). This suggested that the 

formation of a disulfide bond may hinder the binding interactions between 

FepA and FeEnt.  
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Figure 35. 59FeEnt binding assay of the double Cys mutant 
A33C/E120C in FepA (+/- 1 mM βME). We subcultured overnight cultures 
into MOPS minimal media with or without 1 mM βME. The experiment was 
conducted on ice and 59FeEnt was added at a series of concentrations: 
0.05, 0.1, 0.5, 1.0, 5.0, and 10.0 nM. Aliquots of the cells were collected, 
washed, and counted. These measurements were done in triplicate. The 
double Cys mutant in FepA did not exhibit typical binding characteristics 
but did bind more 59FeEnt in the presence of 1 mM βME. 
 

We also conducted, standard 59FeEnt uptake assays on the N-

terminus to N-terminus mutants in FepA and it was determined the 

standard experimental conditions were not suitable for these mutants. 

Wild-type FepA had the expected Vmax  ~120 pmol 59FeEnt(109 cells·min)-1, 

but the double Cys mutants in FepA could not be fitted to the Michaelis-

Menten equation. Standard uptake assays extrapolate the amount of 

FeEnt transport within 1 minute by measuring two separate time points: 5 

seconds and 35 seconds. It could be possible that the latter time point was 

insufficient to measure FeEnt uptake through the double Cys mutant in 

FepA. Adjustments that were made to this assay included increasing the 

 59FeEnt (nM)

0 2 4 6 8 10

p
m
o
l 5

9
Fe

En
t/
10

9
 c
e
ll
s

0

20

40

60

80

100

120

140 pITS23 (-BME)

pITS23 (+BME)

A33C/E120C 
(-BME)

A33C/E120C 
(+BME)

Binding 
pmol 59FeEnt/109 cells vs 59FeEnt (nM)



94 

 

last time measurement to 5 minutes and 5 seconds and increasing the 

concentration of 59FeEnt. 

Mobility shift 

To determine the expression of FepA and the possible cross-link 

formation within FepA, we subjected the double Cys mutants in FepA to 

electrophoretic mobility shift assays (Fig. 36 and 37). The samples were 

analyzed using SDS-PAGE with a modified protocol using 44% acrylamide 

and 0.3% bis-acrylamide in the resolving gel (73). The stacking gels in 

both analyses were 30% acrylamide and 0.8% bis-acrylamide. Overnight 

cultures were subcultured in MOPS minimal media with or without 1 mM 

βME. The cells (1 x 108) were prepared in sample buffer also with or 

without 160 mM βME. To determine if the disulfide bond was formed after 

solubilizing FepA, we added N-ethylmaleimide (50 µM) in some of the 

samples. N-ethylmaleimide was added and the samples incubated at 

room temperature for 5 minutes before the addition of the sample buffer 

(+/-βME). 

The results of the N-terminus to N-terminus mutants in FepA (Fig. 

36) indicated that mutants G27C/S126C and A33C/E120C had a partial 

cross-link formation that led to increased elelctrophoretic mobility and a 

downward band shift. The band indicating increased mobility appeared in 

the absence and presence of N-ethylmaliemide but was not observed in 

the samples containing βME. A band similar to wild-type FepA was 

present, which indicated the fraction of the double Cys substituted mutant  
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qualitative assay and there were no quantitative results to determine the 

effects of the disulfide bond on FeEnt binding or transport.  

Future investigations on the N-terminus to C-terminus mutants in 

FepA could involve the addition of EDTA during FeEnt binding and 

transport assays. This may help prevent FeEnt precipitation with CuP. It is 

also possible that aberrant disulfide bonds could form with the native 

cysteines present in FepA during FepA synthesis. One way to determine if 

the disulfide bond formation was genuine, we could engineer a Cys-less 

FepA derivative and construct the double Cys substituted mutants in the 

new construct. 

The N-terminus to N-terminus double Cys mutants in FepA all 

formed a disulfide bond within the globular N-domain. This was supported 

by siderophore nutrition tests, FeEnt accumulation determinations, and 

mobility shift assays, with the exception of L125C/V141C, which showed 

no mobility shift. The study did show that the disulfide bond formation 

within the N-domain hindered FeEnt accumulation, which suggested the 

mobility of the N-domain is important during FeEnt transport through 

FepA. 
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Table 6. Summary of double Cys substituted mutants in 
FepA. *Results were seen in 10% SDS polyacrylamide gel and the 
samples were treated with CuP, N/A data not available 
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Chapter 6: Summary 

The novel assay post-uptake binding allowed the direct 

measurement of FeEnt transport through the OM protein, FepA. 

Measurements with this assay revealed that all of the FepA proteins 

bound with the ligand were active and equivalent in FeEnt uptake. The 

activation energy of the FeEnt internalization through the OM was ~ 35 

kcal/mol. Kinetic data suggested that ligand uptake through FepA was 

triphasic with the initial rate being the most rapid, the second rate had an 

intermediate rate, and the last rate was the slowest. Experiments indicated 

that FeEnt accumulation required the periplasmic binding protein and a 

complete inner membrane permease complex. After fluorescence and 

immunoprecipitation assays, FepA appeared to be actively transporting 

FeEnt but the accumulation of the ligand in the cytoplasm was impaired in 

the strain lacking the periplasmic binding protein. Experiments with strains 

lacking TolC indicated that it may be the source of FeEnt transport out of 

the cell.   

After determining that all FepA bound to FeEnt actively transports 

FeEnt, we tried to determine the model of FeEnt transport through FepA 

using FRET analyses. We engineered several double Cys substituted 

mutants in FepA that were labeled with the donor and acceptor dyes, FM 

and A546M, respectively. By calculating the energy transfer between the 

dyes, we could determine the distance between the fluors. If we could 

determine the energy transfer between the dyes in the absence and 
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presence of FeEnt transport through FepA, we could determine the 

mechanism of FeEnt transport through FepA: ball-and-chain or transient 

pore model.  

We determined the effect of the Cys substitution(s) through 

siderophore nutrition tests, 59FeEnt binding, and 59FeEnt transport assays. 

To determine the effect of the covalent modification by the fluorophores on 

the Cys substituted derivatives of FepA, we also conducted 59FeEnt 

binding and 59FeEnt transport assays after the cells were labeled with the 

appropriate fluor. We determined optimum labeling conditions for the Cys 

substituted derivatives of FepA for FRET analyses. 

 To determine if energy transfer between FM and A546M occurred, 

we ran excitation and emission scans of the single and double Cys 

substituted mutants in FepA after the cells were labeled with the 

appropriate fluor. We were unable to show reproducible results that 

indicated energy transfer between the dyes in the absence or presence of 

FeEnt transport through FepA. Two possible sources that could contribute 

to results indicating that energy transfer did not occur between the dyes 

could be the orientation of the dipoles of the dyes and if fractional labeling 

with A546M occurred. The former could be addressed by engineering 

double Cys substituted mutants in FepA in which the Cys substituted 

residues are mobile and are not confined. If fractional labeling of A546M 

occurred, the data collected from the emission scan would have to be 

adjusted to account for the fractional labeling. 
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 In addition to FRET analyses, disulfide bond formation studies were 

conducted to determine the conformational change of the N-domain of 

FepA during FeEnt transport through FepA. We constructed two classes 

of double Cys mutants in FepA: N-terminus to N-terminus FepA mutants 

and N-terminus to C-terminus mutants in FepA. The Cys substituted 

mutants in FepA in the N-terminus to N-terminus mutants were designed 

so the Cys residues were within cross-linking distance.  

To determine if the formation of a disulfide bond hindered the 

transport of FeEnt through FepA, we conducted assays in the absence 

and presence of FeEnt transport with these double Cys substituted 

mutants in FepA. Siderophore nutrition tests, FeEnt accumulation 

determinations, and mobility shift assays, with the exception of 

L125C/V141C, all indicated a formation of a disulfide bond within the 

globular N-domain of FepA. This cross-link hindered FeEnt accumulation 

through FepA. These results suggested that the mobility and flexibility of 

the N-domain of FepA was important during FepA mediated transport of 

FeEnt. 

The second class of double Cys substituted mutants in FepA was 

N-terminus to C-terminus mutants. The Cys substituted residues in these 

mutants were engineered in which the residues could not form a disulfide 

bond in the native FepA and in the absence of FeEnt transport through 

FepA. If the N-domain of FepA is displaced into the periplasmic space, it is 

possible that the Cys residue in the N-domain could come in close 
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proximity of the Cys residue in the C-domain and form a disulfide bond. 

The FeEnt accumulation assays and the siderophore nutrition tests 

showed no indication of a cross-link formation between the two Cys 

substituted residues in FepA that hindered FeEnt transport through FepA. 

The electrophoretic mobility assays indicated that all of the double Cys 

mutants in FepA formed a disulfide cross-link. The mobility shift assays 

were just a qualitative assay and there were no quantitative results to 

determine the effects of the disulfide bond on FeEnt binding or transport. 
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