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ABSTRACT 

 

 

The combination of Quantitative Structure Property Relationships (QSPR) with 

experimental studies using model compounds provides great promise for fuel 

upgrading. Through this approach, QSPR software is utilized to predict fuel properties 

of interest for model compounds as well as for any potential reaction products. Catalytic 

studies are performed in combination with QSPR, attempting to maximize selectivity to 

products with the optimal fuel properties of interest. QSPR provides the direction to 

which specific chemical bonds should be broken or formed to optimize fuel properties, 

while model compound studies relate the properties of the catalyst and reaction 

conditions to the selectivity towards specific products. The end result is a guided 

approach to catalyst design which maximizes knowledge gained, with a constant link to 

practical application through fuel property prediction. This methodology has a dual 

benefit.  While practical advancement for fuel improvement is gained, fundamental 

knowledge is developed about relationships between specific molecules and catalysts. 

In this contribution, examples will be given for the development of important 

fuel properties, their prediction with QSPR, and further optimization through model 

compound studies.  A further extension of QSPR will then be made in order to predict 

not only fuel properties, but primary product selectivities as well. Transitioning of these 

strategies to oxygenated hydrocarbons more representative of renewable fuel sources 
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(e.g. biomass) will also be discussed.  This methodology allows the development of not 

only novel catalytic strategies utilizing conventional reactors, but also a new catalytic 

system with enormous potential through the use of nano-hybrids at the oil-water 

interface. 
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CHAPTER 1 

 

1. Overview of Molecular Engineering Strategies as Applied to Fuel 

Upgrading 

 

1.1 Introduction 

Molecular engineering is a term not commonly associated with fuel upgrading.  

Fuels have become such a fungible quantity over the years that it is a common 

perception that fuel upgrading technology is well established.  In reality, however, 

increasingly stringent environmental regulations and the transition towards renewable 

fuel resources have led refiners to embrace the concepts of molecular management and 

molecular engineering.  Through these techniques, advancements are made in leaps and 

bounds towards establishing improved catalytic strategies for fuel upgrading.  In 

addition to practical applications, valuable fundamental knowledge is obtained which 

then can be applied towards future strategies. 

The concept of molecular management has been implemented in refining 

operations for some time.  In simple terms, molecular management implies having the 

right molecule in the right place, at the right time and at the right price.
1
  By applying 

these concepts, refiners have developed separation and conversion processes that allow 

them to more accurately select the mix of crudes with properties that maximize the 

performance of products with higher demand at a given time (gasoline, kerosene, or 

diesel).   The closely related concept of molecular engineering as applied to fuels 

implies a higher level of molecular manipulation, indicating a purposeful design of 



 

2 

 

molecules with precise structures and well-defined properties.  To achieve this high 

level of chemical specificity, the continuous improvement of catalytic materials is 

essential.
2
 

A number of properties determine the quality of a given fuel.  We can mention 

octane number, cetane number, sooting tendency, water solubility, freezing point, 

viscosity, flash point, cloud point, autoignition temperature, flammability limits, sulfur 

content, aromatic content, density, boiling temperature, vapor pressure, heat of 

vaporization, heating value, thermal and chemical stability, and storability.  Many of 

these properties can be modified by catalytic upgrading.  In designing a catalytic 

upgrading strategy, a refiner must know how each of these properties is affected by the 

structure of the molecule and how a given catalytic conversion of that structure in turn 

affects the properties.   

For example, catalytic cracking on an acidic zeolite, converting long alkanes 

into shorter and branched hydrocarbons would increase octane number and vapor 

pressure, while decreasing viscosity and density.  Of course, fuels have a large number 

of components and for many fuel properties the overall value for the mixture depends 

non-linearly on the individual properties of the components.
3
   However, it is certainly 

of great value to understand how the structure of a given molecule in the mixture affects 

each of the properties of interest.   This knowledge can serve as a guide to determine 

what reaction paths would be the best candidates to optimize a specific fuel property of 

a complex mixture. 
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There are many examples in the literature in which the molecular engineering 

approach has been applied for the upgrading of fossil fuels.  By contrast, the same 

rational approach has been used more sporadically in the upgrading of biofuels.  This 

provides enormous opportunity for the development of novel strategies in this area. 

Although the catalytic strategies which result from the implementation of this molecular 

engineering approach may be vastly different, the methodology which was utilized is 

constant.  This methodology, and the wide range of problems it can be utilized to solve, 

will be the focus of this contribution.  

1.2 Methodology 

The notion of molecular engineering as applied to catalytic upgrading of fuels is 

illustrated in the conceptual triangle depicted in Figure 1.1.    

    

 

Figure 1.1 Schematic overview of molecular engineering strategy 
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In order to optimize a fuel property of interest it is first necessary to develop a 

database of properties for the possible molecular components, which can either be 

obtained experimentally or predicted with reliable methods based on the molecular 

structure (relationship 1). Then, one needs to obtain fundamental understanding on how 

different potential catalysts and processes modify the structure of a given reactant to 

obtain the resulting products (relationship 2).   

This understanding provides direction towards which specific chemical bonds 

will be broken or formed under specific conditions.   We can identify the “1+2” path as 

the molecular engineering approach, while the direct path “3” would be an empirical 

approach.  The rational approach takes into account that by knowing the relationship 

between molecular structure and the desirable fuel properties one has the ability to 

modify different aspects of the catalyst and the reaction conditions to optimize specific 

structures, resulting in the optimum properties. 

 

1.2.1 Relationship 1: Molecular Structure-Properties:   

While it is advantageous to have reliable experimental data for each of the fuel 

properties of interest, in many cases the only information known about a given 

compound is its molecular structure.  Therefore, correlations between fuel properties 

and molecular structure need to be used.   

The most commonly used correlations are the so-called Quantitative Structure 

Property Relationships (QSPR), first used more than 40 years ago in agrochemistry,
4 
but 

they have expanded onto many fields.   QSPRs are models that correlate molecular 
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descriptors, i.e., numerical values calculated from the molecular structure, to specific 

properties of the corresponding compounds.  Molecular descriptors involve geometric, 

steric and electronic aspects of the molecule and can range from very simple physical 

parameters such as the number of carbon atoms or branches in a molecule, to more 

complex parameters such as dipole moment or surface area.  Commercial QSPR 

softwares calculate hundreds of molecular descriptors.  Specific, computationally 

expensive descriptors are sometimes needed and they can be calculated through higher 

order calculations such as density functional theory.
5
 Ideally a researcher could use 

chemical intuition to select which descriptors are more relevant for a particular 

property.  However, in many cases the relationships between molecular descriptors and 

properties of interest are too complex, so genetic algorithms and neural networks may 

be utilized to reduce the number of possible descriptors from several hundreds to a 

much smaller number that correlate best with the desired property.   

After the descriptors have been selected, different models can be created through 

the use of linear regressions, nonlinear regressions, principal component analysis, 

genetic algorithms, and artificial neural networks.  Care must be taken to ensure that the 

models capture desired trends without over-fitting the data.  For this reason, cross-

validation of the model is an important step.  Application of QSPR to fuel properties has 

resulted in models that can estimate Cetane Number,
6,7
 Octane Number (research octane 

number, RON, and motor octane number, MON),
8
 and sooting tendencies

9
 of any fuel 

component, only on the basis of the molecular structure. 
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1.2.2 Relationship 2: Catalyst-Reactivity-Structure:   

The understanding of these relationships at the molecular level has been the goal 

of many modern research studies in catalytic fuel upgrading.  Elegant examples abound 

in the catalysis literature.
10
   These relationships can be investigated following different 

approaches: in one of them, the effect of varying the reactant molecular structure is 

studied while keeping the type of catalyst unchanged.  In another approach, the variable 

is the structure/composition of the material that catalyzes a fixed probe molecule.  An 

interesting example of this type of study has been the selective ring opening of 

naphthenic molecules on noble metal catalysts.
11,12 

 Only one endocyclic C–C bond per 

naphthene ring must be opened to preserve the reactant molecular weight while 

producing isoalkanes of high octane number.  Over conventional hydrocracking 

catalysts, the yield of alkanes with the same number of C atoms as the cyclic reactant 

naphthenes is typically very low due to secondary cracking.   Since 5-member rings 

open much more readily than 6-member rings, an acidic catalyst that catalyzes the ring-

contraction reaction converting alkylcyclohexanes into alkylcyclopentanes coupled with 

a high-activity hydrogenolysis metal catalyst, such as Ir, was proposed.
11
  This 

bifunctional catalyst is many times more selective for ring opening than conventional 

hydrocracking catalysts.  Likewise, alkane cracking reactions on FCC catalysts have 

been intensively investigated for many years; very good correlations between reactivity 

and chain length, as well as number and type of substituents have been found for 

different catalyst compositions and reaction conditions.
13 
  

The investigation of novel catalyst formulations has evolved from simple 

parallel screening of different catalysts to modern high-throughput techniques combined 
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with theoretical calculations (DFT) that guide the selection of formulations, as opposed 

to empirical testing, and minimize the number of experiments.  At the same time 

modern characterization techniques help to better understand the nature of the active 

site.
14
 

 

1.3 Utilization of molecular engineering strategies towards upgrading of fuels  

The application of this molecular engineering strategy towards fuel upgrading 

has a vast range of possibilities.  This will be expressed with the extensive array of 

projects with which the strategy has been applied.  Behind each project is a fundamental 

focus on understanding the nature of reactions in order to provide some indication of the 

surface intermediates involved (relationship 2).  The overall strategies are always driven 

by a practical optimization in fuel properties (relationship 1).  Knowledge gained from 

these studies has both a primary and secondary impact.  The primary effect is to directly 

apply it in order to tailor a catalyst or series of catalysts to optimize the specific 

feedstock.  The secondary effect is the insight gained which can then be applied towards 

upgrading of various other feedstocks in the future.   

Prediction of fuel properties is not a new technique, nor is fundamental 

heterogeneous catalysis.  What is truly novel about this approach is the link between the 

two, where fundamental studies are conducted with a constant emphasis on fuel 

property optimization.  This provides a crucial link between fundamental research and 

practical applicability.  Through this approach, strategies are developed which not only 
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work, but valuable knowledge has been gained such that it is known why these 

strategies work as well.    
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 CHAPTER 2 

 

2. Prediction of Fuel Properties for Conventional Fuels  

 

2.1. Importance of fuel property predictions 

In order for the molecular engineering approach to be practical, each model 

compound study must have some connection with fuel properties.  This provides 

guidance for the molecular engineering strategy, with the goal of understanding 

fundamental reactions while perpetually linking them to the fuel properties which result.  

The end result is a guided development of optimized catalytic strategies built on a 

strong fundamental foundation.  The optimal approach would be to utilize 

experimentally measured properties for each model compound produced.  The problem 

with this is even simple model compound reactions can produce a plethora of products.  

Many compounds which are produced have properties which have not been measured 

experimentally.  Several factors, including cost, separation techniques, volume, and 

time required make the experimental measurement of each compound produced 

impractical for most cases.  For this reason, some method must be developed in order to 

estimate the properties of fuels which have not been previously measured. 

While links between bulk fuel properties and spectroscopic techniques such as 

NMR, IR, or GC have been made previously, these traditionally hold only for a specific 

species of fuels or fuel mixtures.  The structure-property relationship which is 
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ultimately extracted may be very simple, such as correlating aromatic content with 

octane number, etc.  While these techniques are often very practical on a real fuels 

basis, they rarely are able to distinguish the minute differences between similar 

molecules which can account for changes in fuel properties.  Model compound studies 

are often conducted in extremely small volumes, and the only thing known about the 

products is their molecular structure.  This places a tremendous value on the ability to 

predict the properties of molecules based only on their molecular structure.  This is 

conducted through the use of Quantitative Structure Property Relationships, which will 

be explained shortly, and are widely utilized to provide direction for fuel upgrading.   

2.2. QSPR methods for property predictions 

As said by George Box, a statistician from the University of Wisconsin, “All 

models are wrong, some are useful.”  This statement is especially true for fuel property 

prediction.  One of the most promising techniques for the prediction of fuel properties is 

based on an assumption which is many times wrong, but very useful.  This is the 

assumption that molecules with similar structures have similar activities and properties.   

The fallacy of this technique is known as the SAR paradox, which points out 

that molecules with very similar structures can have radically different activities based 

on other aspects.  Examples of this effect abound in the literature.  A simple example in 

catalysis is the difference in isomerization reactivity in HZSM-5 for ortho, meta, and 

para-xylene.  These are all molecules with very similar structures, but widely different 

reactivities.  This hurdle can be overcome, however, through the use of Quantitative 

Structure Property Relationships or QSPR’s.  These are simply models which relate 
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various aspects of molecular structure to fuel properties of interest.  Different weights 

are placed on various molecular features, such that models are created which are able to 

relate the underlying molecular features which are responsible for variations in a 

specific property.  For the previous example, the xylene comparison is actually due to 

the kinetic diameter of the molecules with respect to the zeolite pores, which changes 

dramatically with the branch positions.  This can be estimated by taking into account 

the proximity of the methyl branches, the ovality of the molecule, and the overall 

surface area.  While this is not a direct measurement of the kinetic diameter, they are 

related.  A model can then be created which emphasizes particular aspects of the 

structure which are directly responsible for fuel properties.  A similar example is the 

reactivity of α vs. β-tetralone.  β-tetralone is a much more reactive compound due to the 

lack of conjugation with the aromatic ring.  In order to estimate this, molecular facets 

such as the charge on the oxygen atom, or the dipole moment can be utilized to predict 

this behavior.  While this is not the true explanation for why the molecules behave 

differently, these molecular features can be utilized to capture the trends of interest.  For 

this reason, we are creating models which are not completely accurate from a 

fundamental sense, but extremely useful.  

QSPR’s are created by correlating molecular descriptors, which are numerical 

values calculated from the molecular structure, to properties of molecules.  This is 

accomplished by creating a database with known fuel properties of interest, along with 

known molecular structures.  A model is then created which outputs the desired fuel 

property as a function of a set of molecular descriptors.  The end result is a model with 
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the ability to estimate fuel properties of molecules based only on their molecular 

structure. 

Molecular descriptors can range from very simple descriptors such as the 

number of carbon atoms, or branches in a molecule, to more complex descriptors such 

as dipole moment or surface area.  Our group typically uses descriptors calculated via 

the software MDL® QSAR (version 2.2.0.0.446 (SP1) from MDL Information Systems, 

Inc.), which has the ability to calculate over 400 descriptors based only on molecular 

structure.  If more complex descriptors are needed, more computationally expensive 

descriptors may be calculated through the use of density functional theory, etc.  In order 

to determine which molecular descriptors should be utilized in a model, genetic 

algorithms are utilized.  This reduces the number of descriptors from ~400 to a much 

smaller number which correlate best with the desired fuel property.  Many types of 

models can then be created through the use of linear regression, nonlinear regression, 

regression of principle components, all possible subsets regression, and artificial neural 

networks.  Each of these models has inherent strengths and weaknesses, and each could 

be the optimum solution depending on the situation.  Because of this, QSPR’s are 

created on a case-by-case basis.  A brief outline of the various correlation techniques, 

along with their applicability to fuel property prediction is discussed in the next section. 
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2.3- Correlation methods 

 

2.3.1- Genetic algorithms 

 

2.3.1.1 General overview of genetic algorithms as applied to descriptor selection 

Genetic algorithms as applied to fuel property prediction are statistical 

algorithms which function as a random search tool for descriptor selection.  The 

functionality of these is the same as other random search tools, such as various other 

Monte Carlo techniques, to minimize the computational time required to find an 

optimum solution.  The idea of genetic algorithms is based on the theory of evolution 

such that over time the animal with the optimal chromosomes will be determined out of 

random mating.  For this reason, statistical terms are replaced with biological terms, but 

the underlying statistical procedure is very similar to other random search methods.  In 

spite of the random foundation of this technique, genetic algorithms have several 

tunable parameters which are tailored for the specific problem of interest.  The end 

result is a technique which allows one to find the descriptors which best relate to a 

given fuel property with minimal computational time.   

An overview of the genetic algorithm strategy as applied to QSPR or QSAR will 

now be attempted with a continual relation to what the model is actually doing to select 

the best descriptors.  As a starting point, the problem is broken up into “animals” which 



 

15 

 

is synonymous to models which relate molecular descriptors to the desired fuel 

property.  Each animal has a set of “chromosomes” or molecular descriptors associated 

with it.  If a set of descriptors is included in the model or not is indicated by a code 

consisting of 0’s for not included and 1’s for included.  The order of the numbers 

remains the same to serve as placeholders, so a model which started with 100 

descriptors with an optimized solution of 3 would consist of a code of 97 0’s and three 

1’s.  A value is placed on each “animal” or model by comparing how well it is able to 

correlate the molecular descriptors to the fuel properties in the database, as well as how 

many degrees of freedom were utilized.  This is a tunable parameter such that the 

number of descriptors selected as an output of the genetic algorithm can be altered by 

placing a heavier or lighter weight on the number of descriptors utilized.  This is very 

important to have a tunable parameter for this section, as too few descriptors will not 

capture the trends in the data, while too many will lead to a model which over fits.  This 

provides the direction for which the genetic algorithm operates.   

A set of animals is first chosen as the initial population.  A larger initial 

population will increase computational time, but also have a lower chance at arriving at 

a solution which is a local minimum.  The way the model incorporates random search is 

to rank the models in order of the desired scoring (fitness) and call this set of animals a 

“generation”.  The animals of each generation are allowed to “mate” that is randomly 

exchange descriptors and generate offspring.  This allows for the best descriptors to be 

selected over time.  After each generation, some of the weakest members are replaced 

by some of the best.  In order to avoid arriving at a local minima, or “focusing,”  the 

term “mutation” is introduced where randomly selected descriptors are changed from 
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zero to one and vice versa.  This increases time to find the solution, but it helps to push 

the solution out of valleys of local minima and find the optimum solution in the end.  

Initial sample size, probability of mating, probability of mutation, and rate of population 

updating are tailored inputs to the model.  There is a tradeoff among all of these values 

between arriving at the global minimum and minimizing computational time.   

2.3.1.2 Fitness function and initial sample selection 

Thus far, we have discussed the algorithm very generally, though we have not 

mentioned how the initial populations are obtained, the specifics of the fitness function, 

or how mating and mutation are handled.     

The fitness function utilized is Friedman’s Lack-of-fit scoring.  This is defined as: 

���� �� �	
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�
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�  

Where 

 p=number of independent variables (descriptors) in the model 

N= number of samples (experimental measurements) in the data set 

RSSp= residual sum of squares based on the regression model using p 

independent variables 

d= smoothing factor (tunable parameter) 

The smoothing factor is the tunable parameter in this model, as larger values of 

d shift the minimum lack of fit towards smaller values of p (less descriptors).  As this 
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function is minimized over time, value is placed on minimizing the error in the data set 

while also minimizing the number of descriptors required.   

Initial sample selection can be conducted through a variety of measurements, but 

the most common technique utilized for the following procedures is tournament 

selection.  Through this process, each member of the initial population must first win a 

tournament among itself and a set number of animals, each with randomly selected 

descriptors.  If, for example, the initial population size is 32, and the tournament size is 

4, each of the original 32 animals (or models) must first win a tournament (have the best 

fitness) among itself and three other animals with randomly generated descriptors.  This 

provides a much improved starting point for the genetic algorithm descriptor selection 

process, further minimizing computational time.   

 

2.3.2 All Possible Subsets Regression 

All possible subsets regression is utilized when one wants to compare every 

possible combination of a given set of descriptors.  This ensures that the optimum 

solution is reached, but the computational time is very expensive.  The total number of 

subsets required is 2
p

 where p indicates the number of descriptors.  For this reason, this 

method is very useful for finding the optimal solution out of a relatively small set of 

input descriptors.  It is extremely useful, for example, if one wishes to find the optimum 

five descriptors out of an initial set of 10.  When starting with a large set of descriptors, 

such as 100, this method is not practical.  In order to utilize this method, some pre-

selection of descriptors is required in order to bring the allotted number to a value 
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which is reasonable to work with.  The ideal method of pre selection is through 

intuition, but when structure property relationships are complex, statistical techniques 

may also be utilized.  A very useful strategy involves utilizing a genetic algorithm with 

a low scaling factor.  This gives a set of descriptors that is too large to create a model 

with, but much smaller than the original number.  All possible subsets regression is then 

conducted in order to determine the optimal descriptors out of this set.   

2.3.3 Regression of Principal Components 

Relationships between a molecular structure and fuel properties are often very 

complicated.  Because of this, multiple descriptors are sometimes needed in order to 

capture all of the molecular features responsible for variations in a specific fuel 

property.  This may lead to a high degree of correlation, or multicollinearity, between 

various descriptors for the specific data set.  For these cases, principal components are 

particularly useful.   

The idea behind principal component regression is to replace many highly 

correlated descriptors with few non-correlated descriptors, or principal components.  

Principal components are found by computing the eigenvectors and eigenvalues of the 

correlation matrix, and multiplying the matrix of observed values of independent 

variables by these eigenvectors.  Principal components are naturally orthogonal, so 

complications due to multicollinearity are avoided.  Each principal component contains 

some aspect of each descriptor, and the greatest amount of variance in the data is 

captured by the principal component with the highest eigenvalue.  Because most of the 

variance in the data is captured by the principal components with the highest 



 

19 

 

eigenvalues, models are created by utilizing the descriptors with the highest 

eigenvalues.  Ideally with this approach, by fitting a model with only the principal 

components that capture the most variance, one is capturing the true trends in the data 

as opposed to the noise.  Observations of the contrary have been observed, however, as 

important trends are sometimes captured by the components with small eigenvalues as 

well.
1
 This is still the exception to the rule, and regression of principal components can 

serve as an excellent tool for extracting the fundamental links to fuel properties out of 

highly correlated descriptors. 

 

2.3.4 Artificial &eural &etworks (A&&) 

    Artificial Neural Networks, or ANN’s, serve as excellent tools for predicting fuel 

properties with a relatively large database.  The primary advantage of this technique 

over other regression techniques is the ability to capture nonlinear trends between 

descriptors and fuel properties with greater efficiency.  Through the utilization of 

ANN’s, a greater number of descriptors may be utilized without over fitting the data 

when compared with other non-linear techniques.  The main disadvantage is that it is 

nearly impossible to extract the fundamental relationships between the original 

molecular descriptors and the fuel properties.  For this reason, ANN’s are viewed as a 

“black box” technique, where data is put in, with a result in the other end.  There is 

unfortunately no easy way to make sense of the true relationships which are being 

formed.   ANN’s are excellent tools for providing prediction models, but their black box 

reputation makes them somewhat less desirable for studying fundamental relationships.  
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   ANN’s were designed after the way the human brain works.  Input data is fed to 

several neurons, or nodes, which contain functions.  These then relay the data to other 

neurons in hidden layers, thus creating a series of functions.  The most common form of 

ANN is the multilayer perceptron, or MLP.  ANN’s fit the data through “learning” or 

adjusting weights on the functions until the desired output is approached.  As the 

learning process progresses, care must be taken in order to not over-fit the data.  For this 

reason, one must stop the learning process as soon as the desired fitness is reached.  One 

alternative method is to continuously cross-validate the model with an external set of 

data.  This provides the best approach, as the error is minimized while avoiding over-

fitting of the data.  Genetic algorithms are often incorporated into ANN’s in order to 

find the optimum number of hidden layers or descriptors to input.  This provides an 

extremely useful fitting procedure for many types of problems. 

 

2.4 Model validation 

Creating models that fit experimental data is quite simple, with the main 

challenge in ensuring that the models are reliable.  Care must be taken to ensure that the 

models capture desired trends without over-fitting the data.  For this reason, cross-

validation of every model is perhaps the most crucial step.  This can be accomplished in 

three ways: cross-validation with an external data set, cross-validation via the leave-

one-out method, and visual observation of trends. 

The optimal route for model verification is through cross validation with an 

external data set which was not utilized in the creation of the model.  After a model is 
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created, the molecules in an external data set are predicted and compared with the actual 

experimental values.  If the error in prediction is significantly higher (order of 

magnitude) than the error in the training set, then the model is over predicting, and 

fitting the noise in the data.  This is the optimal strategy for cross validation as it is a 

direct measurement of the ability of the model to predict properties of molecules.  Care 

must be taken to ensure that the external data set is representative of the sample, and not 

a specific niche.  As an example, an external dataset for prediction of CN of 

hydrocarbons should have some representative compounds from each of the species 

involved, such as paraffins, olefins, naphthenics, and aromatics.  If the model was 

derived around each of these groups, but the external data set only includes paraffins, 

this is not a reliable test of the model.  The only time in which this method should not 

be utilized is when the amount of data is extremely limited, such that one cannot afford 

to sacrifice any data points for the external data set.  This is the only instance when 

other techniques, such as the leave-one-out method, should be utilized. 

The leave-one-out method for prediction of fuel properties is a useful technique 

for estimating if a model is over-fitting the data when an external data set cannot be 

utilized.  The concept of this model is very simple, that is a model is created by 

regressing every data point except for one.  This one data point temporarily serves as 

the external data set, and its value is subsequently predicted by the model.  The process 

is then repeated for each point in the data set, and the error is summed.  If this error is 

significantly higher than the error for the model itself, then the model is over-fitting the 

data. 
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The final technique should be utilized every time a QSPR model is built, in 

collaboration with the above methods of validation.  This is the comparison of observed 

trends to ensure that the model captures the trends in the data.  This could be any simple 

case where one would expect a smooth trend.  As an example, one could plot the 

variation in cetane number as a function of increasing carbon number for n-paraffins.  If 

the model fits this trend in a jagged or sinusoidal fashion, then this is an indication that 

it is over-fitting the data.  Model verification is extremely important for fuel property 

prediction.  This is arguably the most critical step in the process, as without it no model 

would be trustworthy.   

 

2.5 Prediction of important fuel properties of conventional fuels 

 

2.5.1. Prediction of cetane number 

In the case of diesel fuel, an important property that defines the fuel quality is 

the cetane number (CN).  This is a measure of the ability of a fuel to combust upon 

compression of the engine cylinder at high temperature and pressure.  Fuels with low-

CN have poor ignition quality (i.e. knocking, noise, PM emissions) and make starting 

the engine difficult on cold days.
 2,3

  It is well known that CN is lowest for PAHs and 

highest for n-paraffins.
4,5  

In normal paraffins, CN increases with the number of carbon 

atoms in the molecule. For naphthenic compounds and isoparaffins the CN falls 

between those of aromatics and n-paraffins.  In isoparaffins, the CN decreases as the 

degree of branching increases.
6
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 Predictions of CN for bulk fuels have been made by several authors using a 

variety of different types of inputs including 
13

C NMR, IR spectra, refractive index, 

parameter lumps, GC analysis, and multiple other types of properties.
7,8

 In 1995, 

Ladommatos et al
8
 introduced twenty-two equations to predict the CN of diesel fuel 

from various experimental properties. The predictive capability of some equations was 

high (standard error of CN < 2). He also reported that it is unlikely that the standard 

error can be reduced significantly below 1.5, because the measured cetane numbers are 

themselves subject to experimental error. However, more than ten years later, Ghosh et 

al.
9
 reported an improvement in CN prediction with standard error of only 1.25. A 

simple composition-based model is used to correlate CN of diesel fuels with a total of 

129 various hydrocarbon lumps determined by a group of supercritical fluid 

chromatography, gas chromatography, and mass spectroscopic methods.     

These models allow us to estimate the CN of diesel fuel mixtures.  However, to 

evaluate the impact of specific reactions on specific molecules, the cetane values of 

individual compounds are needed.  For this purpose, molecular descriptors were used in 

order to predict the CNs of individual hydrocarbons.  The quality of the model is 

represented by Figures 2.1 a and b.  Figure 2.1a shows a plot of the CN values 

calculated from the model versus the actual measured CN inputs.  This plot is important 

to ensure that the errors in prediction do not deviate significantly to one side or the other 

in a systematic way.  As the number of molecular descriptors used in the model 

increases, the error between the calculated and measured values in the model 

continuously decreases.  To prevent an over-fitting of the data a maximum number of 

descriptors is recommended.  One can clearly see in Figure 2.1b that, as the number of 
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descriptors increases, the root mean squared (RMS) error in the model continuously 

decreases, while the error in an external set of data reaches a minimum and then 

increases again as over-fitting starts to occur.  The external data set is composed of nine 

data points that represent the entire range of data.  The reason for the smaller degree of 

error in the external dataset than in the model is that the external dataset consisted only 

of Ignition Quality Tester (IQT
™

) derived CNs from one particular machine.  The 

database used to feed the model
10

 was composed of both, engine test CNs and IQT 

measurements from various sources.  The large variety of sources causes a relatively 

high error in the database itself, so if possible a single database source should be used.   
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Figure 2. 1 a) Calculated versus observed CNs.  The error is well dispersed, and 

does not deviate much from the ideal slope of 1. b) Comparison between the Root Mean 

Squared errors of the calculated values and the number of descriptors included in the 

CN model. 

 

Compared with the artificial neural network (ANN) approach used in previous 

work to predict CN
11

 the linear regression model by QSAR has a lower cross validation 
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error, meaning it has a lower degree of over-fitting.  Furthermore, models created 

through this technique are not subject to the “black box” viewpoint, that is the 

relationship between molecular descriptors and predicted properties can be extracted.  

The linear regression model also has the added benefit of robustness, such that anyone 

who has the ability to calculate the QSAR descriptors can easily predict the CN of any 

individual compound.  The predicted CN values, some of which are tabulated in Table 

1, will be employed below to evaluate the different catalytic strategies to optimize the 

fuel.    
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Table 2.1 (a) Predicted fuel property values for paraffins and cycloparaffins. (b) 

Predicted fuel property values for aromatics and olefins. 
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2.5.2. Prediction of Octane &umber 

Octane number (ON) is a key parameter in determining the quality of gasoline. 

High ON means high resistance of the fuel against knocking. In a combustion engine, a 

compressed mixture of fuel and air is introduced. Due to the thermal stability of each 

molecule and the ensuing radicals, some molecules tend to burn sooner than others, 

which causes knocking.
12

  There are two types of octane number tests: research octane 

number (RON) and motor octane number (MON).  RON typically provides an 

indication of how the fuel will perform under mild driving conditions, while MON 

represents more severe conditions.  (RON+MON)/2 is the current ON that is reported at 

the pump.  These values are based on a scale on which isooctane is 100 (minimal 

knock) and heptane is 0 (bad knock). In general, aromatics (i.e. benzene, toluene, etc.) 

and isoparaffins have high ONs.
13

 For isoparaffins, branching is desirable, because it 

increases ONs, which is in contrast to CN. Therefore, n-paraffins are undesirable in 

gasoline, while they are desirable in diesel. To achieve the goal of making gasoline 

more environmentally friendly, while keeping its ON high, aromatics need to be 

converted to isoparaffins in order to minimize losses in ON. 

Similar to the case of CN predictions, the majority of the work reported in the 

literature has focused on the prediction of ON of gasoline mixtures.
14,15

  For example, in 

the 1970s, Anderson, et al.
16

 constructed a method to estimate the RON of different 

gasolines by using the results from gas chromatography.  This model had a standard 

error of 2.8 points, probably due to the assumption of linearity in octane blending.  

Deviations due to nonlinear interactions among different hydrocarbons group (i.e. 

paraffins, olefins, aromatics, etc.) can be significant.
17

  In order to estimate the ON of a 
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mixture of hydrocarbons, interactions between the molecules involved must be 

considered. It has been reported that hydrocarbons belonging to the same molecular 

class blend linearly; i.e., paraffins blend linearly with other paraffins, olefins blend 

linearly with other olefins, and so on. However, a blend of paraffins and olefins may 

exhibit significant deviations from linearity. A diagram that helps to illustrate this 

concept is shown in Figure 2.2.
12

  Curve a displays a positive interaction or equivalently 

a positive deviation from linearity, curve c displays a negative interaction, and curve b 

displays no interaction.  

 

Figure 2. 2 Deviations from non-linear mixing of pure component ON’s of a binary 

mixture.  Adapted from ref.12. 

 

For a mixture containing more than two compounds, this system becomes even 

more complicated.  Very recently, Ghosh et al.
9,12

 have created an improved model from 

experimental RON and MON data of 1471 gasoline fuels.  GC analysis was conducted 

in order to determine the compositions of each fuel; then, molecular lumps were 



 

30 

 

generated and correlated to the RON and MON of the mixtures.  Blending parameters 

were correlated to RON and MON by creating a constrained least-squared minimization 

problem and utilizing a Levenberg-Marquadt algorithm.  Interaction parameters were 

obtained between large groups of molecules (i.e. between paraffins and olefins, etc.) in 

order to minimize the number of calculations.  This molecular lumping technique 

proved to be quite accurate, with a standard error of ~1 for prediction of both RON and 

MON of fuel mixtures. The equation developed can be readily applied as follows: 
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In this equation, all molecules are divided into four groups: paraffins (P), olefins 

(O), naphthenics (N), and aromatics (A).  The vi values represent the volume fractions 

of each component used, while the βi values are the blending values, which were 

calculated for each of the molecular lumps shown in Table 2.  Pure component octane 

numbers used are designated as O&i , but one should note that in the development of the 

model, 57 molecular lumps were made based on GC analysis, and pure component ONs 

were assigned to each lump, and not necessarily each pure component.  The ki values 

are calculated interaction parameters between paraffins, olefins, and naphthenics, and 

are also shown in Table 2.2.  Based on this equation, and knowing the composition and 

pure octane numbers of a fuel mixture, an estimation of the blending ON may then be 

made. 
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Table 2. 2 Parameter values for equation (1) adapted from ref.12. 

In addition to the ON of gasoline mixtures, ONs of individual compounds are 

needed when the effect of specific catalytic strategies is to be assessed. Figure 2.3a 

shows the predicted versus the observed RON values for olefins and aromatics, which 

utilized 22 descriptors and had a RMS error of 4.8 points with a cross validation error of 

8.5.  MON predictions for olefins and aromatics (2.3b) utilized 21 descriptors and 

showed a RMS error of 5.8 points, with a cross validation error of 8.1.  Separate models 

were constructed for the group of n-paraffins, isoparaffins, and cycloparaffins in order 

to get a better fit of data for the extreme low and high ON molecules.  The RON 

predictions for n-paraffins, isoparaffins, and naphthenes (2.3c) utilized 16 descriptors 

with an RMS error of 8.7 and cross validation error of 4.1.  MON for this set (2.3d) 

utilized 16 descriptors as well with a RMS error of 6.8 and cross validation error of 6.3.  

For each of these models, the error in the cross validation step was minimized, as a 

further increase in descriptors for both cases resulted in better RMS errors but worse 

cross validation results.  For every case, a genetic algorithm was utilized in order to 

select the initial best descriptors, followed by all possible subsets to obtain the optimum 
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set of descriptors.  Predicted values of ON for different compounds are also shown in 

Table 2.1. It is important to mention that the ON predictions result in larger errors in the 

regions of lower ON due to the smaller number of measured data points used in this 

region for the development of the models.  In industrial practice, this region is less 

important because the amounts of compounds with ON’s lower than 40 are very low, 

and will not contribute much to the total ON of the fuel.  For fundamental studies, 

however, it is often important to be able to estimate the ON’s of these compounds 

because they may be present in large amounts for a given chemical reaction.  It is still 

very important to realize that ON values that are in the very low ON range or those that 

may be extrapolated to negative numbers may not be very accurate.  The trends, 

however, are still captured by the model and can be very useful in determining how 

beneficial a particular reaction is in the overall reaction scheme.   
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Figure 2.3 Predicted versus observed RON and MON octane values for olefins and 

aromatics (a,b), and n, iso, and cycloparaffins (c,d). 

 

 

 

 

 

a) b) 

c) d) 
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2.5.3. Prediction of Threshold Sooting Index (TSI) 

In addition to CN and ON, the smoke point (SP), which is the maximum smoke-

free laminar diffusion flame height, has been employed widely to evaluate the tendency 

of different fuels to form soot. This tool is most commonly utilized for kerosene, but 

also has been utilized for diesel fuels.
18,19

  Researchers have tried to relate smoke points 

of pure compounds to their molecular structure. It was found that the inverse of smoke 

point, which measures the potential of a fuel to form soot, increases from n-paraffins to 

isoparaffins to alkylbenzenes to naphthalenes.
20,21

 Since smoke points vary with 

experimental conditions, the concept of a threshold sooting index (TSI), which is 

calculated from the smoke point, molecular weight, and experimental constants, has 

been used to compare the soot-formation tendencies of different fuel molecules.
22

  

Recent studies have been devoted to the prediction of the TSI of various 

individual hydrocarbons,
23

 using the database compiled by Olson et al.
19

  However, the 

range involved in these predictions is rather limited, covering mostly the kerosene range 

as TSI is most relevant for this hydrocarbon range.  The accuracy of the TSI values 

greatly diminishes at both extremes, high and low values, due to the nature of the 

experimental measurement.  At very high smoke points, the values of TSI are very 

small because TSI is inversely related to the smoke point.  Consequently, the 

hydrocarbons with high smoke points are all very close together on the TSI scale, so 

small deviations in TSI correspond to large deviations in smoke point.  At the other end 

of the scale, very small smoke points produce large TSI values, with small deviations in 

the smoke point producing large deviations in the TSI.  For these reasons, it is expected 

that TSI values are more accurate in the middle of the scale, where the instruments and 



 

35 

 

the correlation are much more precise. TSI values were predicted with an identical 

methodology to the previous models with CN and ON.  The model depicted in figure 

2.4 utilized 15 descriptors, and had a RSM error of 3.98 with a cross validation error of 

5.31. The predicted threshold soot indices (TSI) of different hydrocarbon compounds 

are tabulated in Table 2.1, together with cetane and octane numbers. 

 

          Figure 2. 4 Predicted versus experimental values for TSI 
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2.6. Correlation between Particulate Matter (PM) emissions and fuel properties 

Besides the fact that these fuel properties must be at a certain minimum number 

in order to meet current EPA regulations, there are other important results that can be 

obtained from these fuel properties.  As mentioned in the introduction, TSI provides an 

indication of how much PM a particular fuel will produce. The primary reason for the 

high CN regulations is the fact that the unburned hydrocarbons resulting from low CN 

fuels produce PM or soot, which is harmful to the environment and human health. As 

described above, CNs of individual compounds heavily depend on their molecular 

structures.  For example, in an attempt to demonstrate the relationship between 

paraffinic molecular structure and soot formation in the high temperature range 

corresponding to the in-cylinder flame zone, Nakakita et. al 
24

 have carried out an 

investigation to measure the soot yields of isomeric hexanes in a shock tube. The 

temperature dependence of the yield of soot formation was found to follow a bell-

shaped curve, with a maximum at about 2000°C for all four isomers.  These maximum 

yields are summarized in Figure 2.5. It is seen that the soot production increases in the 

following order:  

 

 cyclohexane > 2,2-dimethylbutane > 2-methylhexane > n-hexane.  

 

 



 

37 

 

 

Figure 2. 5 Comparison of soot yield for various hexanes.  Adapted from ref 24. 

Similar to the soot formation in the high temperature range, PM precursor 

formation at intermediate temperatures is also influenced by paraffinic molecular 

structure.  It was proposed that the soot formation yield decreases in the order: 

cycloparaffin > 2-branched isoparaffin > 1-branched isoparaffin > normal paraffin. This 

trend is opposite to the cetane number trend, in which naphthenes have the lowest CNs 

and normal paraffins have the highest CNs.  

One might be tempted to conclude that soot formation always decreases with 

increasing CN.  However, Androulakis et al.
25

 have clearly demonstrated that CN alone 

may be misleading. They conducted experiments with model feeds fed in a high-speed 

diesel engine with fuels of varying overall compositions, but practically the same CN.  

Compositions of the fuels investigated are summarized in Figure 2.6.   The first fuel is 

denoted as TF-1 and has a composition similar to current market diesel fuel, although 
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with increased levels of two-ring aromatics. Except for TF-8, the CNs of all other fuels 

are in a similar range, but the compositions vary considerably.  The PM emissions from 

the advanced high-speed direct injection (HSDI) diesel engines for different fuels were 

measured and the results are shown in Figure 2.7.  It was observed that, under high and 

medium load conditions (2800 rpm/60% and 2200 rpm/40% loads), PM emissions from 

TF-1 and TF-3, which contain more aromatics, were 60%-70% higher than those from 

the paraffinic fuels TF-5, TF-7, and TF-8.  When comparing the PM emissions from 

TF-5 and TF-7, which have almost equivalent CNs, cycloparaffins (naphthenes) are 

seen to have a higher PM formation tendency than isoparaffins or n-paraffins. As more 

aromatics and naphthenes are introduced, the amount of PM will increase, even while 

keeping the same CN, in good agreement with previous observations.
26

 An exception 

was observed for TF-8 that contained the largest amount of n-paraffins. It does not yield 

the PM reductions that one may have expected. In fact, the very high CN of TF-8 (CN = 

80.5) results in a significantly decreased ignition delay. Consequently, combustion is 

initiated before sufficient fuel-air mixing has occurred. This could be altered, however, 

by changing the engine parameters. The general trends identified from the study of PM 

emission HSDI diesel engines are: higher aromatics, naphthenes, CN, and density all 

lead to increased PM.  These results increase the importance of utilizing other fuel 

properties in the design of a given fuel that will provide a better indication of the fuel 

tendency to form PM than CN alone.  
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Figure 2. 6 Molecular composition of matrix fuels.  Adapted from ref. 25. 

 

 

 

 

 

 

 

Figure 2. 7 Engine-out exhaust PM results from tests of several fuels at fixed 

speed/load conditions of an advanced, high-speed, direct injection diesel engine.  

Adapted from ref. 25 
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The purpose of this example is to show that PM emissions are a function of 

many parameters, and one alone may not be the best estimate.  Furthermore, a simple 

property such as TSI inherently captures many properties of the molecule.  TSI is a 

complicated measurement of the fuel to not only form soot via pyrolysis, but also 

oxidize.  The ratio of soot formed via pyrolysis and oxidation will be much different in 

a laminar flame as opposed to a diesel or kerosene engine.  As temperature increases, 

both fuel oxidation and pyrolysis increases, but oxidation increases more dramatically.  

Because of this, there is a need to separate the two events, and be able to distinguish a 

molecule’s tendency to oxidize from its tendency to form soot via pyrolysis.  This will 

be the focus of the next chapter. 
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CHAPTER 3 

3. Development of a Novel Micropyrolysis Index (MPI) to Estimate 

Sooting Tendency of Fuels 

 

3.1 Overview of applicability towards molecular engineering strategy 

 As explained in previous chapters, fuel properties and their prediction provide 

guidance for the entire molecular engineering strategy.  For the case of particulate 

matter emissions, however, no property has been developed which separates the 

fundamental nature of a molecule to form soot via pyrolysis.  For this rare case, in order 

to develop strategies to improve the sooting tendency of a fuel, the property itself must 

first be developed.  The aim of this chapter is to develop this property, coined the 

Micropyrolysis Index (MPI).  MPI is then predicted via QSPR and subsequently 

compared with other properties CN and TSI.  The end benefit is twofold, a deeper 

understanding of the relationship between molecular structure and pyrolytic sooting 

tendency, as well as a property which can now be optimized through the molecular 

engineering strategy.     

3.2. Introduction 

Particulate matter (PM) emissions from soot can cause lung and heart diseases
1-6

 

and can potentially lead to 60,000 premature deaths per year in the US.
7
  In addition, 

PM emissions contribute to smog, reduce visibility, affect local climate, and could also 
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play a significant role in the global climate.
8-11

  Public concern about these serious 

health and environmental impacts has resulted in stricter EPA standards towards the 

amount of fine particulates in emissions.
12

  

 While the amount of particulate matter emissions that a given fuel will produce 

is dependent on parameters such as engine type and operating conditions, the sooting 

tendency associated with the chemical composition of the fuel is a critical factor.  A 

reliable method for quantification of the sooting tendency of pure fuel components and 

their mixtures can be of significant help to understand and control PM emissions from 

different fuels.  Quantitative values of sooting tendencies would also be important in 

upgrading of fuels to improve and model the sooting tendency.
13

  In fact, some recent 

studies have made use of such numbers to create models which predict sooting 

tendencies under specific conditions.
14,15

   

For diesel fuels, the cetane number (CN) is often mistakenly taken as an 

indication of the amount of PM emissions that a given fuel will produce when burned in 

a diesel engine.  However, this has been shown to not be the case 
16,17

 as the PM 

emissions have been shown to be highly dependent on the aromatic content and 

operating parameters, even when the CN is kept constant.  One other method which is 

commonly used to estimate PM emissions, especially for jet engines, is the smoke point, 

which is the maximum diffusion flame height obtainable before the flame begins to 

produce smoke.  Because these measurements vary from instrument to instrument, an 

effort was made to correlate the various measurements by fitting them with apparatus-

specific constants and defining the threshold sooting index (TSI).  This also allowed the 

incorporation of smoke point measurements obtained by varying the fuel mass 
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consumption rate rather than the fuel height into the TSI database.  Regrettably, these 

measurements have been shown to have precision uncertainties of up to ±15% 
18

 for 

those measurements obtained by measuring smoke height and ±7% 
19

 for those 

measurements obtained by fuel mass consumption.  Furthermore, the TSI may be more 

or less representative of the amount of soot that a given fuel may produce depending on 

the engine operating parameters as the sooting tendency largely varies with the richness 

of the flame and many other parameters. 

 One aspect that may be important to consider when evaluating a technique for 

determining sooting tendencies in pure compounds and prepared mixtures is the 

amounts of fuel required to obtain a single measurement.  The current techniques 

require amounts that may be prohibitively large for laboratory research scale.  For 

instance, one CN measurement requires on the order of 1L of fuel.  While TSI and IQT 

(ignition quality test) require considerably lower amounts, e.g. on the order of 20mL, 

they may still be significantly large for lab studies.  For example, in a catalyst 

development study of fuel upgrading conducted in a typical laboratory reactor, 

collecting several mL of liquid for a single TSI or IQT measurement may take several 

hours.  As a result, the database of pure compounds can be limited due to the large 

volumes needed in order to conduct a single measurement. 

     Another method that has recently been developed
20

 involves the maximum 

soot volume fraction measured by laser induced incandescence in methane doped 

flames.  This test has been named yield sooting index (YSI), for which considerable 

improvement has been made on the precision of the measurements to ±3% for aromatic 

doped flames.   Furthermore, these results roughly correlate with the TSI measurements 
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conducted by varying the mass flow rate of the fuel, but not as well with the flame 

height measurements.  It is also claimed that because the measurements were conducted 

in a methane flame, the values are more representative of an alkane fueled flame, a 

considerable improvement over TSI measurements of pure compounds, because 

aromatics behave much differently in pure aromatic flames than in mixtures.   

The fuel in the TSI and YSI tests is partially oxidized and partially pyrolyzed to 

form soot, with little information separating the two events.  For this reason, we have 

attempted to develop a method in which the conditions are fixed and only the soot-

forming pyrolysis is monitored and so the intrinsic sooting tendency of a given 

hydrocarbon can be analyzed.  The chemistry involved with pyrolysis in oxygen-free 

environments is also much simpler, as the ability of molecules to oxidize, the heating 

value, etc. need not be taken into account.  Consequently, it would be very valuable to 

have a fuel property which could give an indication of the nature of a particular fuel to 

form soot via pyrolysis which is independent on the oxygen/fuel ratio of the flame.   

In designing the method presented in this contribution we stipulated that it 

should be much more precise than traditional smoke point methods, it should require 

small sample volumes so that it can be utilized on a lab scale and with expensive model 

compounds, and it should require common lab equipment so that it can easily be 

implemented and reproduced in existing labs. Based on these requirements, we have 

developed a simple method that measures a newly defined fuel property that we have 

called the micropyrolysis index (MPI), which satisfies all of the aforementioned 

conditions.  
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 In this contribution we describe the experimental details of the MPI method and 

report measurements on pure hydrocarbon compounds.  The MPI values are compared 

with the corresponding TSI measurements.  In addition, a quantitative structure-

property relationship (QSPR) has been developed between the molecular structure of 

each pure compound and the measured MPI.  From this relationship, MPI values of 

unmeasured pure compounds have been estimated, leading to a large database 

expansion and the possibility of developing trends for various families of compounds.     

3.3. Experimental 

3.3.1. Carbon deposition 

All experiments were conducted by pyrolyzing 20µL of a vaporized liquid 

sample across a hot bed of 300mg α-Al2O3 beads (Purchased from Atlantic Equipment 

Engineers, particle size 30-50 mesh, 99.9% purity).  A schematic of the reactor system 

can be seen in Fig. 3.1.  The alumina bed was placed at the desired height in a ¼” OD 

quartz tube and held up with 15mg of quartz wool.  The reactor was placed in a 

Thermcraft Incorporated electric furnace (model# 114-12-3ZV) controlled with an 

Omega
®

 temperature controller, model CN 3251, to keep the temperature constant at 

850
o
C.  This temperature was chosen because it is a high enough temperature to 

pyrolyze hydrocarbons, but low enough to avoid alumina sintering and utilize common 

lab equipment.  For the injection, 20 µL of the desired hydrocarbon sample was placed 

in a Hamilton 100 µL SampleLok gas-tight syringe (part# 81056) with a seven inch 

needle.  The syringe was first filled with 20µL of air, then 20µL of sample, followed by 

20µL of air, and then closed off from the surrounding environment.  The two air pockets 
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were used in order to ensure that no sample was left in the needle before or after the 

time of injection.  A gas-tight syringe was used in order to avoid losses of sample by 

vaporization before the injection.  The seven inch needle was used to ensure that entire 

sample was in the heating zone of the reactor when it left the syringe, so that no 

condensation could occur.  A helium flow rate of 25ml/min was maintained through the 

system as the sample was heated to 850
o
C.   

 

Figure 3. 1 Schematic description of the apparatus used to obtain MPI values by 

pyrolysis of a 20µL liquid sample across an α-Al2O3 placed in a ¼ in. o.d. quartz tube, 

held at 850 °C.  A He flow rate of 25mL/min was maintained through the system, and a 

backpressure regulator was used in order to maintain a pressure of 10 psig. 

A Tescom
®

 backpressure regulator (model# 44-2361-24) was used in order to 

maintain a constant system pressure of 10 psig, and to prevent any oxygen back-

diffusion into the reactor.  A period of 30 min was allowed for the temperature of the 

catalyst bed to stabilize at the desired value.  Once the temperature of the alumina bed 
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was stabilized, the sample was injected at a constant rate over thirty seconds.  This 

controlled injection was accomplished by using a Hamilton repeatable dispenser (part# 

83700) set to inject at a rate of 2µL/second.  Once the sample was injected on the 

alumina bed, the bed was maintained at 850
o
C for 10 min to ensure that any light 

volatile hydrocarbons had passed through the reactor.  After 10 min, the reactor was 

allowed to cool to room temperature under the same He flow rate and pressure in order 

to eliminate any back-diffusion of oxygen that could oxidize some of the deposited 

carbon.  After the reactor was cooled to room temperature, the dry ice trap, and the line 

from the reactor to the backpressure regulator were cleaned with acetone in order to 

eliminate any tar buildup.          

3.3.2. Temperature Programmed Oxidation (TPO) 

After the sample was cooled to room temperature, the alumina bed with a given 

amount of deposited carbon was transferred to a clean reactor bed.  The carbon was then 

placed in a TPO system in order to quantify the amount of carbon deposited on the 

alumina during the injection.  The TPO system is typically used to quantify coke 

deposits in heterogeneous catalysts and consists of a quartz tube containing the sample 

that is placed in an electric furnace while 5% O2/He stream flows through the sample at 

a rate of 80ml/min.  The temperature of the oven is then linearly heated to 900
o
C at a 

constant rate of 10
o
C/min.  The exit gas is sent through a methanator containing a 

5%Ni/Al2O3 catalyst and a side-stream of H2 to convert all of the CO and CO2 into CH4, 

which can be detected by the sensitive FID detector.  The area of the C peak is then 

compared with that of a reference peak resulting from a pulse of 100µL of CO2 in order 

to quantify the amounts of deposited C.  This setup is preferred because of the high 
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sensitivity of the FID detector, but other systems and detectors, such as MS, or TCD, 

etc. might also be used.  Only the carbon on the alumina was quantified because the 

goal of this work is to measure the kinetic tendency of a compound to form soot via 

pyrolysis.  The alumina acts only as a mechanism of heat transfer, so some carbon will 

be deposited on the quartz wool as well as the walls of the reactor.  Because such a 

small fraction of the injected carbon deposits on the alumina, the kinetic tendency of a 

compound to produce soot is captured by quantifying only the carbon deposited on the 

alumina as long as all of the parameters discussed in section 3.3.4 are carefully 

controlled. 

3.3.3. Definition of MPI 

We define the micropyrolysis index MPI as the amount of C deposited from 

injection of 20µL of the sample, normalized to two reference compounds.  The first one 

is n-octane, for which an arbitrary value of 5 was assigned, and the second is 

decahydronaphthalene (decalin), which was assigned a value of 20.  All others were 

taken in reference to these values.  MPI gives an indication as to how much soot a given 

fuel produces on a volumetric basis, and is very practical from a fuels standpoint, but it 

may sometimes be misleading if one wants to study the chemistry because different 

amounts of C are being injected in each fuel due to the differences in density. In that 

sense, a value normalized by the number of moles of carbon injected would a give 

better idea of the sooting tendency of each atom of C injected.   For this reason, another 

number may be calculated from MPI results where the number of C moles deposited on 

each sample are divided by the number of moles of C injected.  This value typically 

follows very similar trends to MPI, but small differences may be observed when 
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considering similarly-sooting molecules.  This fraction of injected carbon which 

deposits on the surface will likely be different for different systems, but the observed 

trends should be quite similar.     

3.3.4. Effect of Injection Speed, Temperature, and Pressure 

In order for MPI measurements to be reproducible, three factors must be 

carefully controlled: speed of injection, temperature, and pressure.  While it is 

acknowledged that small deviations in these variables will likely occur as the method is 

repeated in other systems, the soot formation tendency of each sample with respect to 

that of a reference compound (hexane and decalin) should remain quite constant.  What 

is essential, however, is that these parameters do not vary from run to run for a 

particular system.  First, the amount of carbon deposited on the α-Al2O3 is highly 

dependent on the injection rate for multiple reasons.  By varying the injection rate, both 

the evaporation rate and residence time through the sample can vary, leading to large 

differences in the observed MPI.  For this reason, each sample must be injected at 

reproducible rates.  Second, small deviations in temperature may greatly influence the 

rate of pyrolysis.  For this reason, it is essential that the temperature of the catalyst bed 

is stable for the duration of the run.  In most systems, additional time is required for the 

catalyst bed temperature to come in equilibrium with the furnace wall temperature as 

measured by the thermocouple.  This time may vary from system to system, but can 

easily be measured by conducting a blank run with a thermocouple inside the catalyst 

bed.  Third, an important variable that must be maintained constant in all measurements 

is system total pressure.  A simple backpressure regulator can be used to maintain 

system pressure at 10 psig.  By increasing or decreasing the system pressure, one can 
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manipulate the amount of carbon that deposits on the alumina.  If less sensitive 

detectors, such as TCD or MS are used, one may need to increase the pressure of the 

system slightly to produce more carbon per run.  One further advantage of the 

backpressure regulator is the elimination of any possible back diffusion of oxygen from 

the environment that may partially oxidize some of the deposited carbon.  It is essential 

that a dry ice trap is placed before the backpressure regulator in order to prevent any 

unwanted pressure increases that may be brought about by tar-like pyrolysis products 

building up inside the backpressure regulator.  Because the MPI is a kinetic 

measurement, it is essential that these three variables are carefully controlled.  By 

changing the residence time through the reactor or the pyrolysis rate, drastic differences 

may be observed in the amount of soot deposited on the alumina.       

3.3.5. Repeatability 

As long as the aforementioned parameters are controlled, MPI measurements 

can be very precise.  Standard deviations of 0.11, 0.22 and 1.02 MPI were observed for 

sooting values of 3.3 MPI, 32.4 MPI, and 94.7 MPI, respectively.  This level of 

reproducibility is very high compared with typical uncertainties obtained for the TSI 

method (e.g. 7% 
19

 to 15% 
18

).  It is also comparable to the more precise YSI method, 

for which an estimated ±3% inaccuracy has been reported. 
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3.4 Results and Discussion 

3.4.1. Effects of molecular structure on MPI 

 Table 3.1 summarizes MPI and mol C deposited/mol C injected values obtained 

on a series of hydrocarbons.  Clear trends are immediately apparent.  For instance, it is 

observed that alkanes exhibit significantly lower MPI values than isoparaffins and 

naphthenic compounds.  Similarly, for a given family of hydrocarbons, the MPIs clearly 

increase with the number of carbons in the molecule. 

It is well known that the tendency for particulate formation from hydrocarbons 

increases in the order: n-paraffins<isoparaffins<naphthenics<aromatics; indeed, the 

MPI values reported in Table 1 are in very good agreement with this trend.  The 

increase in MPI with increasing chain length could also be anticipated and has been 

observed with TSI 
15

.  One factor that is easily noted is the large effect that the degree 

of branching has on the MPI (e.g. hexane<2-methylpentane<2,2-dimethylbutane).   
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Table 3. 1 MPI values of several hydrocarbons (n-alkanes, isoalkanes, and 

cycloalkanes) in the C6-C11 range. 

 

Since the density of isoparaffins is significantly lower than that of n-paraffins, 

MPI and the molar ratio of C deposited/injected show considerable differences.  To 

appreciate the need for taking into account both MPI and the molar ratio of C 

deposited/injected, one can compare undecane and 2,2-dimethylpentane.  They both 

form comparable amounts of soot on a volumetric basis, but when one considers the 

actual moles of C that were injected, the branched molecule is seen to produce 

significantly more deposits, as one could have anticipated.   

It is well known that during combustion naphthenic compounds produce more 

soot than paraffins due to the hydrogen abstraction reactions that can take place at high 

temperatures with the ensuing production of aromatics, which in turn are effective 

producers of soot.  On the other hand, the explanation for the sooting trends associated 
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with the naphthenic ring size and alkyl substituents is somewhat less straightforward.  

One can clearly see from the data in Table 3.1 that increasing the degree of branching 

and increasing the number of tertiary bonds in the molecule result in increases in MPI.   

Overall, the trends exhibited by MPI for non-aromatic compounds seem to be 

consistent with those generally accepted for soot formation.  For example, cyclopentane 

rings appear to have similar or even larger MPI values than similar cyclohexane 

compounds with the same number of carbon, as can be noted by comparing the MPIs of 

ethylcyclopentane and dimethylcyclopentane with that of methylcyclohexane.  The high 

sooting tendency of C5 naphthenic rings can also be explained in terms of hydrogen 

abstraction.  Through this reaction path a cyclopentane ring can lead to 

cyclopentadienyl radicals.  Two of these radicals can then recombine to form 

naphthalene
21

, which is a high-sooting molecule.   

3.4.2. Comparison with TSI 

As noted in the introduction, TSI values give estimates of the sooting tendency 

of a flame with oxygen, and the amount of soot produced is highly dependent on the 

oxygen/fuel ratio.  Moreover, another aspect which varies in the TSI measurements is 

the flame temperature.  This could lead to increased nonlinearities when mixtures of 

pure compounds are considered.  Further complications of TSI are brought about by its 

definition, i.e., TSI=a(MW/SP) +b 
18

.  In this equation, the molecular weight is 

introduced to offset the inherent smoke point increase brought about by increased 

molecular weight and is mostly due to the larger air/fuel ratio required for 

stoichiometric combustion.  While this effect can be relevant to some engines, this 
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further complicates the chemistry and may not be very relevant when dealing with true 

fuel mixtures.   

One other effect of TSI which may be misleading is that it is inversely 

proportional to the smoke point.  This means that when dealing with any compound that 

has a high smoke point (e.g. alkanes), the TSI values will be very low, making it 

difficult to differentiate between fuels in this range, which may make up a large portion 

of many fuels.  On the other end of the spectrum, aromatics have very low smoke 

points, which lead to very high TSI values.  This means that a very small error, even a 

fraction of a mm, when reading the smoke point could lead to huge errors in TSI.  

Furthermore, flame temperature may have a dramatic effect on TSI values.  As an 

example of this, Olson et al. studied the emissions temperatures of several model 

hydrocarbon diffusion flames 
19

.  It was found that the emission temperatures of 

cyclohexane, methyl cyclohexane, ethyl cyclohexane, and isooctane were all 1460K, 

while the emission temperatures of n-paraffins were significantly higher.  This indicates 

that multiple phenomena are involved when measuring the TSI of pure compounds.  It 

is well known that iso-alkanes and naphthenics have a higher tendency to produce soot 

under pyrolysis than n-paraffins, but this rate also is highly dependent on flame 

temperature.  If n-paraffin flame temperatures are higher, the observed difference 

between sooting tendencies of the different groups may not be so straightforward.  This 

can be illustrated by comparing the TSI values with MPI values obtained from pure 

pyrolysis at a uniform temperature as shown in Fig. 3.2.  Note that the MPI values for 

iso-alkanes and naphthenic compounds shift to higher values when compared with the 

corresponding TSI values.  This shift can be explained by differences in flame 
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temperatures of the three groups, which merge the TSI values closer together while MPI 

values distinguish the groups better.  The naphthenic compound which appears to have 

a very high TSI value is decalin, which as indicated by Olson et al., has a 

uncharacteristically high emissions temperature when compared with substituted 

cyclohexanes as it is a very stable naphthenic, and was found to have emissions 

temperatures closer to those of aromatics.  The differences between aromatic 

measurements between MPI and TSI will be discussed later in section 3.3.5.  Overall, 

the scale of MPI seems to differentiate much better between low sooting non-aromatics 

and stoichiometric differences need not be accounted for as no oxygen is involved, 

leading to a much more straightforward fuel property. 



 

Figure 3. 2 Comparison of MPI values obtained in this work with TSI v
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Comparison of MPI values obtained in this work with TSI v

literature.
19
 

 

Comparison of MPI values obtained in this work with TSI values from the 
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3.4.3. MPI of oxygenates 

With the growing interest in renewable energy sources, the sooting tendencies of 

oxygenates must be well understood.  It is clear that MPI values of oxygenates are 

lower than those of the corresponding oxygen-free hydrocarbons.  For example, this 

trend can be seen by comparing the MPI of n-octane with that of octanol.  Octane has an 

MPI of 5 while octanol has an MPI of only 3.1.  This difference is likely due to the 

radical scavenging ability of the alcohol to eliminate radicals which are the precursors 

of soot.  The sooting tendency of oxygenates will be the focus of future studies using 

MPI, since this method has the ability to probe the effects of oxygen-containing 

compounds on soot formation or soot reduction without the presence of oxygen in the 

surrounding atmosphere which further complicates the chemistry.  This effect of oxygen 

will be discussed in greater detail in chapter 7. 

3.4.4. MPI of aromatics 

When comparing the sooting tendencies of pure aromatics, one must take 

caution.  Aromatics in mixtures typically produce a great deal of soot when combusted 

in diesel or jet engines due to the fact that the formation of the first aromatic ring is the 

rate limiting step in soot formation.  Aromatics are also very stable, so it is very 

unlikely that their C-C bonds will break apart at considerable rates under these pyrolysis 

conditions, but rather fragments of other compounds in the fuel will attach to the 

aromatics to form large particles.  For this reason, a small amount of aromatics can lead 

to very large increase in soot when added to fuel mixtures. However, when tested as 

pure components the aromatics can only form soot by reacting with themselves, and this 

rate will be highly dependent on the stability of the side chains on the aromatics.  An 
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example of this is shown in Fig. 3.3.  It can be seen that the rate of soot formation for 

pure components is dependent on the stability and number of carbons in the side chains, 

which are subject to pyrolysis.  For this reason, molecules with less stable side chains 

are more likely to produce greater amounts of carbon deposits.  By contrast, in mixtures 

the trend is reversed as the aromatics that form the most soot are those that had less side 

chains.  This is because other molecules in the mixture could connect the aromatics and 

form soot more quickly.  Because these measurements are done on a volumetric basis, 

the amount of aromatic rings introduced to the system typically decreases with the 

addition of side chains, which also will likely influence the sooting tendency in dilute 

mixtures for a particular volume of aromatics injected.   

 

Figure 3. 3 Effect of aromatic content in mixtures.  Aromatics tetralin, toluene, and 

benzene were blended with methylcyclohexane in various volume percentages.  The 

resulting effect on MPI is shown. 
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From the practical point of view, mixtures with small percentages of aromatics 

may be more representative of an actual fuel (diesel, gasoline, or kerosene) than a pure 

aromatic mixture.  Furthermore, it is proposed that mixtures with small percentages of 

aromatics are the most accurate for measuring the effects of aromatics on soot 

formation.  In order to determine the effect of aromatics in a mixture, we extrapolated 

the line from 0-15% aromatic content to 100% aromatics.  We conclude that this is a 

much more accurate representation of how aromatics will influence the sooting 

tendency of a fuel than obtaining an MPI value of the pure aromatic compound. 

 The role of aromatics is different in the MPI method from the standard TSI.  For 

TSI, oxygen is involved, which may partially oxidize some of the aromatics, making 

them much less stable.  However, in MPI under the pyrolysis conditions alone the 

aromatic rings will not break in significant amounts.  An example of this is shown by 

the MPI of pure benzene.  Pure benzene alone forms far less deposited carbon than any 

of the other aromatics.  When present in a small amount in mixtures, however, benzene 

produces significant amounts of carbon.  This is one other inherent advantage of MPI, 

in which only the pyrolysis is studied.  For example, the TSI values of benzene, toluene, 

and tetralin are 29, 44, and 61 respectively
19

.  This indicates that pyrolysis plays the 

most important role in soot formation in flames, but by introducing oxygen the 

chemistry becomes much more complex.  Furthermore, when introducing oxygen to 

aromatics, the flame temperatures and point in the flame where soot inception begins 

will likely change, but the effects will be dramatically different depending on the 

conditions.  Because of these issues, TSI values for pure compound reflect both of these 

issues, which explain the lack of correlation between MPI and TSI values of pure 
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aromatics, as seen in Fig. 3.4.  Aromatic species typically have MPI values greater than 

30, with the exception of pure benzene (not shown).  For all of the non-aromatic 

species, the MPI correlates with the TSI quite well as described above, but this 

correlation breaks apart at high sooting values.  For this reason, it is proposed that the 

sooting tendency of a particular aromatic is more accurately estimated by investigating 

the effect that this compound has on the MPI of a mixture of non-aromatics.    

 

Figure 3. 4.  Comparison between MPI values obtained in this work and TSI values 

from the literature.
19 
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3.4.5. Development of QSPR models to estimate MPI 

Quantitative Structure Property (QSPR) relationships have been used in the past 

to predict the values of many important fuel properties such as Octane 

Number
13

,CN
13,22

, and TSI
23,13

.  QSPR relations provide a very powerful tool in fuel 

upgrading.  Once a property is predicted, direction to desired molecules is provided as 

the database of fuel property values is expanded through QSPR estimation.  This 

information helps to determine which compounds should be maximized, and which 

ones should be reduced in a particular fuel upgrading.  The main challenge here is the 

limited amount of experimental data available.  Furthermore, as described in the 

aromatic blending section, different factors influence the amount of soot that aromatics 

will produce when compared with non-aromatics.  This means that different molecular 

descriptors must be used in order to quantify the MPI for aromatics.  This work is in 

progress in our lab, as the aromatic database is being expanded.   

In this contribution, for all of the non-aromatic compounds, a model was created 

in order to estimate the MPI of a pure compound which has not been previously 

measured.  In order to accomplish this estimation, 13 non-aromatic compounds were 

measured and correlated with molecular descriptors to the MPI of each compound.  The 

molecular descriptors were calculated and correlated with MDL® QSAR software 

(version 2.2.0.0.446 (SP1) from MDL Information Systems, Inc.).  This software 

calculates over 400 molecular descriptors of each molecule.  A genetic algorithm was 

used in order to determine the descriptors which best described MPI by minimizing 

Friedman’s lack-of-fit scoring.  These descriptors were then correlated to MPI through 

an ordinary multiple regression model which involved 3 descriptors.  Although many 
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types of models were created, the ordinary multiple regression model was chosen based 

on its ability to capture the trends observed in MPI without over-fitting the data.  Table 

3.2 shows the equation used to predict MPI as well as the information encoded in the 

descriptors which were chosen.  In prediction studies like this, it is typically 

recommended that a subset of data, not included in the model, be compared with the 

predicted values in order to validate the model and ensure that the data was not over-fit.  

However, in this case, due to the small number of compounds used in the database, 

traditional model verification techniques could not be used as each data point was  

Table 3.2. Equation used and molecular information encoded in the descriptors used to 

predict MPI of unmeasured molecules. 

 

 

crucial.  For this case, the leave-one-out method was used to find the best model.  This 

technique involves building a model based on each compound except one in the 

database, and then predicting the value of the last compound.  This technique was 

repeated for each compound in the database, and the errors were summed as a form of 

cross validation.  This technique works very well when the amount of data is limited, 

but as the database is expanded, the traditional method should be used.  The total cross 
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validation sum of squares added to 19.52, corresponding to an average cross validation 

RMS error of ±1.22MPI, which is higher, but in the same order of magnitude as the 

value of ±0.79MPI average RMS error predicted in the final model.  An increase in the 

cross validation error is to be expected, especially with the limited number of data 

points in use.  A parity plot of the predicted vs. experimental numbers is shown in Fig. 

3.5.  Note that the error is well dispersed, and does not deviate to one side or the other.  

This is critical in order to ensure that the correct trends have been captured.  Also, based 

on the cross validation results, as well as several parity plots for different groups which 

were plotted, one can conclude that the model does not over-fit the data, and predictions 

from this model can be used to calculate MPI values in this range.     

 

Figure 3. 5  Parity plot of predicted vs. experimental values of MPI through the use of 

QSPR. 
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3.4.6. Results from predicted MPI values 

The results from MPI prediction can be of great value.  One example can be 

seen in Fig.3.6, where the MPI values of various groups of compounds are plotted as a 

function of the number of C atoms.  One can clearly see that the trends discussed earlier 

are captured by the predictions.  As branching increases, the MPI increases, as would be 

expected for the pyrolysis of a mixture.  Also, the addition of a ring increases the MPI 

even more, as expected.  With this tool, one can calculate the estimated MPI for a 

variety of compounds and can clearly see the trends as molecular structure varies.  This 

tool can be of great use for a variety of applications, including fuel upgrading.  Tables 

3.3 a and b show predicted MPI values compared with suggested experimental TSI 

values from Olson et al.
19 

for several pure compounds.  The trends discussed in section 

3.4.2 are shown to hold for these data when compared in a much larger range of data as 

can be seen in Fig. 3.7.  It can clearly be seen that MPI differentiates more than TSI for 

the various groups of hydrocarbons.  This is a very important observation as one can 

now study the effect of pyrolysis alone, which compliments sooting tendency 

measurements which involve oxygen and flames.  This is very important as the 

influence of oxygen and flame temperature on the actual sooting tendency of a fuel will 

vary largely depending on the combustion properties such as the oxygen/fuel ratio, etc...  

This gives an even greater value on the ability to differentiate between the effects of 

oxygen and flame temperature with the ability of a compound to produce soot solely via 

pyrolysis.  For a given set of molecules with the same TSI value, the MPI values follow 

the trend n-alkanes<iso-alkanes<cycloalkanes. 
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Figure 3. 6.  MPI predicted values as a function of number of carbon atoms for various 

classes of non-aromatic hydrocarbons. 
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Table 3. 3 Experimental TSI values and predicted MPI values for several pure 

hydrocarbons.
a
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Figure 3. 7.  Predicted MPI values vs. experimental TSI values obtained from the 

literature.
19
 

 

3.4.7. Comparison between predicted MPI values and Cetane /umber 

 As discussed earlier in the introduction, Cetane Number is often mistakenly 

taken as an indicator of the sooting tendency of a particular fuel.  The reason for this 

assumption is that fuels which are more stable and less likely to combust upon 

compression typically contain a large degree of aromatics and highly branched 

compounds which result in both a low CN and a high sooting tendency.  For this reason, 

it is generally perceived that decreasing CN will necessarily result in increasing sooting 

tendency.  What are not so obvious are the opposite trends observed with increasing 

carbon numbers in many cases.  By increasing the number of carbons in n- and 
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isoalkanes the CN increases, but at the same time the sooting tendency also increases.  

These trends can be seen in Fig. 3.8a, where predicted MPI values are compared with 

CN data found in  

 

Figure 3. 8. (a) Comparison between predicted MPI and experimental CN values 

obtained from literature
22

 for n-alkanes and isoalkanes. (b) Comparison between the 

(moles of carbon deposited)/(moles of carbon injected) and CN.   Arrows indicate the 

direction of increasing number of carbons/molecule. 

 

the literature.
22

  Arrows indicate the direction of increasing number of carbons.  Among 

the separate groups, CN increases with increasing sooting tendency due to the higher 

reactivities of the larger molecules, but one can clearly see the distinction between the 

separate groups, with MPI differentiating more clearly between the branched molecules 

for a particular cetane number.  One could quickly assume that the increasing in MPI 

for larger hydrocarbons would result from a higher density of the fuel, that is, one is 
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injecting more carbon atoms which can form more soot.  However, if we calculate the 

amount of carbon deposited per mole of carbon injected similar results are still 

obtained.  To estimate the mole-based MPI, we first calculated the moles of carbon 

deposited on the surface from MPI values based on the moles of carbon which 

correspond to the MPI values of the references, 5 and 20.  After these values were 

found, the moles of carbon injected for each pure compound could be calculated from 

the density, molecular weight, and number of carbons of each molecule.  Results can be 

seen in Fig. 8b, with the overall trends being identical to those found when comparing 

CN to MPI alone. 

 In contrast, when considering cycloalkanes, the trends among the various 

molecular groups may not be so obvious; for instance, increasing the number of carbons 

may actually decrease CN in some cases.  This can be seen in Fig. 9a.  Again, the 

arrows indicate the direction of increasing number of carbons.  While CN trends do not 

remain constant across the different groups, predicted MPI values can be interpreted 

much more easily.  For this case, the 1-ring cycloalkanes were all n-alkyl 

monosubstituted cyclohexanes (cyclohexane, methylcyclohexane, ethylcyclohexane, 

and propylcyclohexane).  In this case, the CN increased with increasing number of 

carbons (or length of the alkyl substituent, as did the MPI, as should be expected.  For 

the two-ring substituted cycloalkanes, however, this trend is not so obvious.  The 2 ring 

cycloalkane molecules shown in Fig. 9 are trans-decalin, 1-propyldecalin, 1-

butyldecalin, and 1-octyldecalin.  In this case, even though the branch is linear, 

increasing numbers of carbons results in decreasing CN values.  This trend is not 

observed with the predicted MPI values, as sooting tendency increases with an 
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increasing number of carbons.   That is, increasing the number of rings, the number of 

branches, or the number of carbons in the molecule increases the sooting tendency, even 

when it does not correlate with CN.  As in the previous set of figures, when comparing 

MPI and CN on a per-carbon-mol injected basis, the same trends are observed (See Figs 

3.9a and b).  These results provide further evidence that CN alone does not provide a 

good estimate of a particular fuel’s sooting tendency.    

 

Figure 3. 9. (a) Comparison between predicted MPI and experimental CN values 

obtained from the literature
22

 for n-alkanes and cycloalkanes. (b) Comparison between 

the (moles of carbon deposited)/(moles of carbon injected) and CN.  Arrows indicate 

the direction of increasing number of carbons/molecule. 
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3.4.8. MPI measurements of real fuel mixtures 

 A valuable feature of MPI is its ability to measure real fuel mixtures.  To test 

this feature, we obtained several samples of real fuels from ConocoPhillips.  The 

NOISE analysis (provided by ConocoPhillips) of each fuel along with its extrapolated 

MPI value can be seen in Table 3.4.  The MPI values were calculated by diluting each 

sample to 10%volume in n-heptane, and measuring the MPI of this mixture.  The pure 

MPI values were then found by extrapolating a line from 0-10% sample in n-heptane to 

100%; this would be the case if a pure sample were injected  

Table 3.4. MPI and compositional analysis of several real fuel mixtures

 

 

and no nonlinearities would exist.  This approach was taken in order to eliminate any 

nonlinearities due to high concentrations of aromatics as discussed in section 3.4.4.  

This is a good approach if the actual fuel composition is unknown and only the sooting 

tendency is to be estimated.  In this case, larger concentrations of sample could be used 

as long as the total aromatic content in the sample does not go over~20% by volume.  

The observed MPI values indicate that MPI scales with aromatic content, but the 

presence of both large aromatic and naphthenic rings also play an important role.  For 

instance, sample B contains no aromatics, and consequently has the lowest MPI value.  

As aromatic content is introduced in sample C, the MPI value increases substantially, 
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but heavier naphthenics play a significant role as well.  This is indicated by the 

differences in samples A and D.   

On the other hand, by comparing samples C and D, one can see that if the total cyclane 

content is kept constant, but the mono-aromatic content is increased, the MPI value 

increases.  What is not so obvious is that when comparing samples C and A, by keeping 

the mono-aromatic content somewhat constant, but replacing a fraction of the small 

naphthenics and paraffins with large naphthenics, an even larger increase in MPI can 

occur.  This means that observing only the aromatic content of the fuel can lead to 

skewed interpretations of its sooting tendency.   

3.5. Conclusions    

 

 The Micropyrolysis Index (MPI) proves to be a valuable tool for estimating the 

sooting tendency of a particular fuel component.  Some advantages over more 

traditional measurements of sooting tendency are: 

a) Only pyrolysis is involved in the measurement, so this method is independent of 

stoichiometric oxygen ratios and flame temperatures, making it much more 

representative of a particular compound in a mixture, as well as very promising for 

fundamental studies.   

b) Only small sample volumes are required, making this method accessible for 

laboratory scale studies, from which small sample volumes are available.   
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c) Reproducibility is much improved compared to the traditional TSI method, and 

equipment commonly found in conventional labs may be utilized to obtain the MPI 

values.   

This provides an extremely valuable measurement with the purpose of guiding the 

molecular engineering strategy.  Strategies may now be developed in order to minimize 

the MPI of the resulting products, thus improving the health and environmental 

properties of the fuel.   
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CHAPTER 4 

4. Development of Strategies for Upgrading of Conventional Fuels 

4.1 Introduction 

The strategies created according to the methodology outlined in chapter one are 

the end product of the molecular engineering strategy.  These have been developed to 

produce novel solutions which solve a variety of problems.  Although the motivation for 

the strategies may seem to be widely varied, the underlying strategy utilized to develop 

them is the same.  This is to understand the fundamental reactions occurring on the 

catalyst surface, and link those to fuel properties in order to determine which properties 

should be maximized. 

Three strategies will be discussed, hydrogenation of multi-ring aromatic 

compounds, selective ring opening of naphthenics to produce high octane gasoline, and 

selective ring opening to produce high cetane diesel fuel.   These strategies are highly 

interrelated.  Hydrogenation of aromatic rings is the first step of the overall process, 

which produces naphthenic compounds.  In order to minimize secondary cracking, an 

acid catalyzed ring contraction step is then employed.  The resulting naphthenic 

compounds can then be utilized to produce either diesel or gasoline fuel, depending on 

where the ring is selectively opened.  The resulting properties are highly dependent on 

the selectivity to where the ring is opened, as can be observed in figure 4.1 starting with 

the model compound naphthalene.  By opening the ring selectively at substituted 

positions, a high cetane diesel fuel may be obtained, while opening selectively at 
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unsubstituted positions results in high octane gasoline fuel.   This figure represents the 

reactions which will be considered in this chapter, which eventually lead to novel 

catalytic strategies built on fundamental knowledge. 

 

Figure 4. 1 Overview of catalytic steps involved in the upgrading of diesel and gasoline 

fuels 

 

Fuel properties associated with hydrogenation of aromatic rings are well 

understood, that is the cetane number dramatically increases with hydrogenation while 

the ON dramatically decreases with hydrogenation.  Hydrogenation is necessary, 

however, for both fuels as even in the case of gasoline a limit is placed on the aromatic 

content allowed due to health and environmental concerns.  Because the fuel properties 

resulting from hydrogenation of aromatics are well known, the focus for this study will 
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be to understand the kinetics and degree of inhibition by other compounds present in 

light cycle oil streams containing nitrogen and sulfur containing compounds.  This will 

be accomplished through the use of kinetic fittings in order to determine the rates of 

each reaction, as well as the adsorption constants.  A quantitative structure property 

relationship will then be utilized to relate the structure of the nitrogen containing 

compounds with their adsorption strength, and thus their ability to competitively adsorb 

on the surface of the catalyst.    

For the next two examples, selective ring opening (SRO) will then be compared 

for the two cases of improving octane or cetane number.  As can be observed in figure 

4.1, this is highly dependent on where the ring is selectively opened.  By understanding 

the fundamental surface reactions involved in this pathway, strategies are then 

developed in order to target the selective cleavage resulting in either high CN or ON 

products. 

 

4.2  Influence of �itrogen Containing Compounds and �umber of Aromatic Rings on 

the Inhibition of Hydrogenation Activity over Sulfided �iMo/Al2O3.        

 

4.2.1 Introduction 

A combination of depleting petroleum resources and increasingly stringent 

environmental concerns on produced fuels provides a unique challenge for refiners.  A 

depleting reserve has caused an increasing trend towards the processing of heavier 
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petroleum crudes which inherently contain a large amount of heavy aromatic 

compounds.
1
 In addition, increasingly stringent clean fuel regulations

2-7
 require the end 

fuels to have a lower total aromatic content than in the past.  Because of these 

challenges, hydrotreating reactions of heavy oil cuts have recently received 

considerable interest.  This is especially true for the case of diesel fuel, as very high 

efficiencies in hydrodearomatization (HYD) and hydrodesulfurization (HDS) must be 

obtained in order to meet on-road diesel specifications.  For this to occur, a thorough 

understanding of the reactions and competition between molecules on the catalyst 

surface must first be obtained. 

A fundamental phenomenon which is not well understood is the effect of 

competitive adsorption between molecules on the catalyst surface.  One is the influence 

of competitive adsorption among various polycyclic aromatic compounds, and another 

is the competitive adsorption of nitrogen containing compounds with HYD and HDS 

reactions.  Both of these reactions have been investigated to some extent, but each case 

has been lacking some practical aspect.   

Our group has shown in the past that there is a strong inhibition between 3, 2, 

and 1-ring aromatic compounds over noble metal catalysts in a flow reactor.
8
  This has 

not been conducted, however over a commercial hydrotreating catalyst.  An interesting 

study has been conducted over CoMo/Al2O3 by Korre and Klein
9
 in a batch reactor 

which indicates the presence of competitive adsorption among the aromatic compounds.  

In practice, however, hydrotreating reactors are operated continuously, and Nickel 

based catalysts are more commonly employed.   
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The inhibiting effect on hydrogenation from nitrogen containing compounds is 

also very important, and somewhat poorly understood.  Interesting information 

implying the inhibition effect from nitrogen containing compounds has been conducted 

in the past,
10-12

 but a systematic study which includes ammonia as well as other nitrogen 

containing compounds has not been conducted.  Furthermore, there has not been an 

effort to understand the fundamental phenomenon which is responsible for the 

competitive nature of nitrogen containing compounds.  For these reasons, a commercial 

NiMo hydrotreating catalyst has been employed under realistic flow conditions in order 

to better understand the effects of competitive adsorption in a hydrotreating reactor.     

 

4.2.2. Experimental 

  

4.2.2.1 Reactor Tests
13,14

 

The commercial NiMo/alumina hydrotreating catalyst Criterion 424 used for all 

experiments contained 6 wt%Ni and 18 wt% Mo. The catalytic activity was measured in 

a continuous flow reactor at a temperature of 345°C and a total pressure of 70 atm, with 

a H2/HC molar ratio in the range 20–130 and at different contact times. Before each run, 

the catalyst sample was physically mixed with 5 cc of inert alumina and placed in the 

center of the reactor between layers of 3 mm glass beads. The catalyst was pre-sulfided 

in flow of 10% H2S in H2 at 200 and 370°C.   
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Table 4. 1 Feeds utilized in this study (adapted from ref 13,14) 

 

Several different feeds were used in this work (see Table 4.1)  A model feed was 

prepared by blending  various amounts of tetralin (TL; Acros, +98%),  naphthalene (NP 

Aldrich, +99%), and (phenanthrene (PHE Aldrich, 98%) with 500 ppm of 

dibenzothiophene (DBT Aldrich, 99%) and 500 ppm of 4,6-dimethyldibenzothiophene 

(4,6-DMDBT; Aldrich, 99%) in 90 wt.% of dodecane (DO; Aldrich, 99%). Nitrogen 

compounds containing feed were prepared by adding 1,000 ppm of quinoline (Q; molar 

fraction = 0.00176); 1,2,3,4-tetrahydroquinoline (THQ molar fraction = 0.00171); 

Indole (IN; molar fraction =0.00194), Indoline (HIN; molar fraction = 0.00191) and 85 

ppm NH3 (molar fraction = 0.00114), respectively, to the model feed, respectively. The 

products were trapped with chilled water and analyzed online by a HP6890 gas 

chromatograph with an FID detector using an HP-5 column. The data were collected at 

Time-on-stream (TOS) = 5h because of the stability and reproducibility of the data at 

this TOS. Experiments were undertaken at pre-determined conditions (flow-rate = 10 

cc/h and particle diameter\0.64 mm) where no significant mass transfer effects were 

expected. 

 

1 2 3 4 5 6 7 8 9 10 11

tetralin (monoring) 5 5 5 5 5 5 5 5 5

naphthalene (diring) 3 3 3

phenanthrene (triring) 2 2 2 2 2 2 2 2

quinoline 1000ppm

tetrahydroquinoline 1000ppm

indole 1000ppm

indoline 1000ppm

ammonia 85ppm

a) dodecane was used as a solvent

feed no. (wt%)

nitrogen doped feeds
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4.2.2.2 Kinetics
13,14

 

The generalized Langmuir–Hinshelwood model for hydrogenation suggested by 

Kiperman 
15
[9] was used to fit the data obtained in this study. 

 

Where rij (mol gcat
-1
h
-1
) is the rate of conversion of compound I to compound j, P 

(atm) is the partial pressure, kij is the kinetic rate constant, Keq is the equilibrium 

constant and Km (atm
-1
) is the adsorption parameter of individual compounds.  Usually 

n1 can be taken as 1, Z represents the number of surface sites required for reaction, n3 is 

½ for atomic adsorption of H2, and m is 1 for molecular adsorption.  The equilibrium 

constants were obtained using HSC-Chemistry-5.0®
 
software (Reg. USPTO, Outotec).  

The nonlinear parameter estimation of the kinetic model was performed with the Powell 

version of the Levenberg-Barquardt algorithm.  The differential equations were solved 

using the EPISODE package of Scientist.® 

 

4.2.2.3 Theoretical calculations 

Electronic structures of studied organonitrogen compounds were calculated using 

density-functional-theory (DFT).  The molecules were optimized using Gaussian 03W 

(DFT/B3LYP/STP-3G), and the Mulliken charges on the nitrogen atoms were 



subsequently calculated.  These we

be discussed below. 

 

4.2.3 Results and discussion

4.2.3.1 Competitive adsorption among aromatic rings

While it has been proposed that aromatic hydrocarbons hydrogenate in the order 

of aromaticity, that is, the compounds with a greater number of aromatic rings have the 

highest adsorption strength on the surface, and thus hydrogenate first, this has not been 

verified under realistic hydrotreating conditions with a NiMo/Al

the best description of this inhibition activity can be taken from Beltramone 

can be observed below in figure 4.2, addition of a 

aromatic compounds severely inhibits the conversion of tetralin over the surface

Figure 4. 2 conversion

1,4, and 5 (see table 4.1).
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subsequently calculated.  These were utilized for structure property correlations as will 

4.2.3 Results and discussion 

adsorption among aromatic rings 

While it has been proposed that aromatic hydrocarbons hydrogenate in the order 

that is, the compounds with a greater number of aromatic rings have the 

highest adsorption strength on the surface, and thus hydrogenate first, this has not been 

verified under realistic hydrotreating conditions with a NiMo/Al2O3 catalyst.  Perhaps 

t description of this inhibition activity can be taken from Beltramone 

can be observed below in figure 4.2, addition of a small amount of di and tri ring 

aromatic compounds severely inhibits the conversion of tetralin over the surface

conversion of tetralin over NiMo/Al2O3 at 100psig, 345°C.  Model feeds 

1,4, and 5 (see table 4.1).Adapted from Ref 13. 

+ 

+ 

re utilized for structure property correlations as will 

While it has been proposed that aromatic hydrocarbons hydrogenate in the order 

that is, the compounds with a greater number of aromatic rings have the 

highest adsorption strength on the surface, and thus hydrogenate first, this has not been 

catalyst.  Perhaps 

t description of this inhibition activity can be taken from Beltramone et al.
13

   As 

of di and tri ring 

aromatic compounds severely inhibits the conversion of tetralin over the surface 

 
at 100psig, 345°C.  Model feeds 



 

In a similar fashion, naphthalene conversion is only decreased in the presence of 

phenanthrene, and phenanthrene conversion is only mildly affected by naphthalene.  

Both multiaromatic ring 

alone provides strong evidence for the competitive adsorption phenomenon previously 

outlined.  A more clear case can be made, however, when one compares adsorption 

constants resulting from the

products produced.  These can be observed below in figure

Figure 4. 3 Adsorption constants K (obtained from the kinetic fittings) as a function of 

the number of aromatic rings

 

Through this graph, the influence of aromatic rings an

adsorption is very clear.  Naphthenic rings provide a mar
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fashion, naphthalene conversion is only decreased in the presence of 

phenanthrene, and phenanthrene conversion is only mildly affected by naphthalene.  

Both multiaromatic ring compounds are not influenced by the presence of tetralin.  This 

alone provides strong evidence for the competitive adsorption phenomenon previously 

outlined.  A more clear case can be made, however, when one compares adsorption 

constants resulting from the kinetic fitting of not only the feed molecules, but also the 

products produced.  These can be observed below in figure 4.3.    

Adsorption constants K (obtained from the kinetic fittings) as a function of 

number of aromatic rings.  Adapted from ref 13. 

Through this graph, the influence of aromatic rings and naphthenic rings on 

clear.  Naphthenic rings provide a marginal increase in adsorption, 

fashion, naphthalene conversion is only decreased in the presence of 

phenanthrene, and phenanthrene conversion is only mildly affected by naphthalene.  

compounds are not influenced by the presence of tetralin.  This 

alone provides strong evidence for the competitive adsorption phenomenon previously 

outlined.  A more clear case can be made, however, when one compares adsorption 

kinetic fitting of not only the feed molecules, but also the 

 
Adsorption constants K (obtained from the kinetic fittings) as a function of 

naphthenic rings on 

ginal increase in adsorption, 
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while aromatic rings provide a much more pronounced increase for every case.  This 

provides a clear example of the competitive nature of multiple aromatic rings.   

 

4.2.3.2 Competitive adsorption among nitrogen containing compounds 

The effect of nitrogen inhibition was studied in an identical manner to the 

investigation of competitive adsorption among polyaromatic hydrocarbon groups.  For 

this case, as can be observed in Table 4.1, the ratio of aromatic and sulfur containing 

compounds was maintained while small amounts of nitrogen containing compounds 

were introduced to the system. Nitrogen containing compounds of various molecular 

weights and various degrees of basicity were compared, and the results were 

subsequently fit with the previously described Langmuir Hinshelwood kinetic model.  

The results for the inhibition of tetralin and phenanthrene doped with 1000ppm, or in 

the case of ammonia 85ppm, of nitrogen containing compounds can be observed in 

figure 4.4a and b. 
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Figure 4. 4 Influence on nitrogen containing compounds on conversion of (a) 

phenanthrene and (b) tetralin.  Symbols represent feed 5 (no dopant �solid diamonds), 

feed 7 (1000ppm Quinoline�open squares), feed 8 (1000ppm tetrahydroquinoline� 

closed squares, feed 9 (1000ppm Indole�open triangles), feed 10 (1000ppm Indoline� 

closed triangles, and feed 11 (85ppm ammonia� open diamonds).  �ote: Log scale 

used for clarity 

One can clearly observe the strong competitive nature of the nitrogen containing 

compounds.  Even the strongly adsorbed phenanthrene is inhibited by each of these 

compounds even in small amounts.  This indicates that the adsorption constants of these 
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nitrogen containing compounds are extremely high with respect to polycyclic aromatic 

species.  As before, a thorough analysis of reaction kinetics can be utilized to help 

explain this phenomenon.  By comparing the adsorption constants of each of the 

nitrogen derived species, one has the ability determine the fundamental nature of the 

molecule responsible for the strong adsorption on the surface.  The kinetic adsorption 

constants for the nitrogen containing compounds are in Table 4.2. 

Table 4. 2 Adsorption constants of various nitrogen containing compounds. 

 

The first observation from these constants is that they are extremely high in 

comparison with the aromatic hydrocarbons discussed in section 4.2.3.1.  For most of 

these compounds, the adsorption constant is an order of magnitude greater than those 

for the strongly adsorbed phenanthrene.  The next step is to determine what molecular 

feature is responsible for this phenomenon. 

This phenomenon can be explained through a simple structure-property 

relationship.  As discussed in section 4.2.2.3, density functional theory calculations 
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were conducted in order to obtain the optimum structure and electronic configuration of 

the nitrogen containing compounds.  Mulliken charges are the partial charges attributed 

to atoms on the molecule when computed according to a population analysis of the 

wavefunctions.  The Mulliken charges of the nitrogen atoms were compared with the 

experimental adsorption constants, with the results shown in figure 4.5. 

 

Figure 4. 5 Correlation between the adsorption constant of the organonitrogen 

compounds and the negative Mulliken charges on the nitrogen atoms as calculated with 

DFT. 

   

The agreement between the partial charges on the nitrogen atoms with the 

adsorption constant is remarkable.  This provides strong evidence that the underlying 

factor attributed to the adsorption constant of nitrogen compounds over nickel 

hydrotreating catalysts can be explained simply by the partial charge on the nitrogen 
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atom of the molecules.  Although this charge was calculated via an expensive 

computational method, the relationship is one of the most fundamental correlations 

between a property and molecular structure which can be derived, with an extremely 

high return.  With this methodology, one could estimate the adsorption constant under 

these conditions of nitrogen containing compounds under these conditions while 

knowing only the partial charge on the nitrogen atom.   

 

4.2.4 Conclusions 

Several important conclusions can be drawn from this study. 

1) The adsorption strength, and therefore reactivity of multiring aromatic 

compounds increases on the order tetralin<naphthalene<phenanthrene, 

indicating the strong influence of the number of aromatic rings in a molecule 

on the adsorption over a nickel based hydrotreating catalyst. 

2) The adsorption constant of nitrogen containing compounds can be explained 

by the increasingly negative partial charge on the nitrogen atoms as 

calculated via DFT.  

4.2.5 Applications to molecular engineering strategy  

This section provides an example of the molecular engineering strategy, 

although the focus was heavily on understanding what happens on the catalyst surface, 

and very little emphasis was placed on the optimization of fuel properties.  Fuel 
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properties are still what drives this example, and the reason why they were not 

emphasized is because the result is rather trivial.  Hydrogenation of aromatics increases 

CN and decreases ON at the expense of hydrogen as was seen in figure 4.1.  The 

desired result is to maximize hydrogenation conversion, and gain fundamental 

knowledge to improve the efficiency of the process.  Through this, a maximum in fuel 

properties will be obtained. 

This example serves as one where fuel property prediction plays the most minor 

role.  As this chapter progresses, a perpetually increasing emphasis will be placed on 

fuel property prediction for the guided development of fuels.  This provides a nice 

transition to chapter 5, where QSPR’s will be utilized to not only predict fuel properties 

of interest, but also catalytic behavior.  

 

4.3 Aromatics removal in gasoline while minimizing O� losses 

4.3.1 Introduction 

Aromatics removal in gasoline provides a unique challenge to refiners, as 

aromatics contain exceptional octane numbers.  Simple removal of aromatics to their 

corresponding naphthenics provides an enormous drop in octane number.  This can be 

observed in figure 4.6, as aromatics are hydrogenated to their corresponding 

naphthenics, a significant decrease in octane number is always observed.      
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Figure 4. 6 RON values of mono-ring aromatic hydrocarbons before and after 

hydrogenation 

 

 This scenario provides extreme potential for the molecular engineering strategy, 

as novel catalytic strategies can be developed in order to remove aromatics while 

minimizing losses in octane number.  An overview of potential ON improvement 

strategies will first be discussed, followed by the actual implementation of the most 

promising strategy for octane improvement. 

 

  4.3.2 Overview of potential catalytic strategies for O� improvement  

As a first step, one should investigate how selective ring opening alone will 

impact octane number.  Utilizing methylcyclohexane as a model compound, this can be 



investigated by looking at the various ring opening products of 

well as the properties which would result.  These 

RON of the various ring opening 

methylcyclohexane.  It can clearly be observed that octane number varies dramatically 

depending on where the ring is selectively opened.  This aspect is overwhelmed, 

however, by the fact that each of the potential prod

significantly lower than the initial feed of methylcyclohexane.  Although this is only 

one compound, this provides an indication that selective ring opening alone may not be 

the optimum strategy for further improving octa

Figure 4. 7 Influence of position of selective ring opening on research octane number 

for selective ring opening of methylcyclohexane.

 

As an alternative approach, one may consider an acid catalyzed ring 

step.  This serves two purposes, it may increase the degree of branching on the ring, 

while at the same time making the ring more prone to selective ring opening without 

excessive cracking to low value products.
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investigated by looking at the various ring opening products of methylcyclohexane

well as the properties which would result.  These can be observed in figure 4.7 as the 

RON of the various ring opening products can be compared with that of 

methylcyclohexane.  It can clearly be observed that octane number varies dramatically 

depending on where the ring is selectively opened.  This aspect is overwhelmed, 

however, by the fact that each of the potential products has an octane number which is 

significantly lower than the initial feed of methylcyclohexane.  Although this is only 

one compound, this provides an indication that selective ring opening alone may not be 

the optimum strategy for further improving octane number.  

Influence of position of selective ring opening on research octane number 

for selective ring opening of methylcyclohexane. 

As an alternative approach, one may consider an acid catalyzed ring 

step.  This serves two purposes, it may increase the degree of branching on the ring, 

while at the same time making the ring more prone to selective ring opening without 

excessive cracking to low value products.  As an illustration of the fuel properties which 

methylcyclohexane, as 

can be observed in figure 4.7 as the 

products can be compared with that of 

methylcyclohexane.  It can clearly be observed that octane number varies dramatically 

depending on where the ring is selectively opened.  This aspect is overwhelmed, 

ucts has an octane number which is 

significantly lower than the initial feed of methylcyclohexane.  Although this is only 

one compound, this provides an indication that selective ring opening alone may not be 

 

Influence of position of selective ring opening on research octane number 

As an alternative approach, one may consider an acid catalyzed ring contraction 

step.  This serves two purposes, it may increase the degree of branching on the ring, 

while at the same time making the ring more prone to selective ring opening without 

As an illustration of the fuel properties which 



may result from a ring contraction step, methylcyclohexane again will be utilized as a 

probe molecule.  The RON of methylcyclohexane, as well as its potential ring 

contraction products can be observed below

Figure 4. 8 RON values for potential ring contraction products resulting from 

As can be observed in figure 4.8, each product except for ethylcyclopentane has 

an octane number which is signific

promise for an acid catalyzed

in ON.   

Although ring contraction 

advantages are quite marginal,

products can be improved 

direct ring opening of methylcyclohexane is not beneficial, regardless of where the ring 

is opened.  Ring opening 

increasingly branched alkanes with much improved octane numbers.  This is illustrated 
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may result from a ring contraction step, methylcyclohexane again will be utilized as a 

probe molecule.  The RON of methylcyclohexane, as well as its potential ring 

contraction products can be observed below in figure 4.8. 

 

RON values for potential ring contraction products resulting from 

methylcyclohexane 

As can be observed in figure 4.8, each product except for ethylcyclopentane has 

an octane number which is significantly higher than the feed.  This provides 

n acid catalyzed ring contraction step as a potential route for improvement 

Although ring contraction is quite promising for improvement of octane number, 

advantages are quite marginal, and it is worth investigating if these ring contraction 

products can be improved further.  As mentioned above and illustrated in figure 4.7, 

direct ring opening of methylcyclohexane is not beneficial, regardless of where the ring 

is opened.  Ring opening of the ring contraction products, however, can result in 

increasingly branched alkanes with much improved octane numbers.  This is illustrated 

may result from a ring contraction step, methylcyclohexane again will be utilized as a 

probe molecule.  The RON of methylcyclohexane, as well as its potential ring 

RON values for potential ring contraction products resulting from 

As can be observed in figure 4.8, each product except for ethylcyclopentane has 

antly higher than the feed.  This provides great 

ring contraction step as a potential route for improvement 

promising for improvement of octane number, 

and it is worth investigating if these ring contraction 

further.  As mentioned above and illustrated in figure 4.7, 

direct ring opening of methylcyclohexane is not beneficial, regardless of where the ring 

of the ring contraction products, however, can result in 

increasingly branched alkanes with much improved octane numbers.  This is illustrated 



for the case of 1,2 dimethylcyclopentane in figure 4.9.   While opening the ring at 

position a or b clearly has a

c produces a significant advantage.  This gives motivation for selective ring opening, as 

selective cleavage at position c would result in products with 

numbers than those of hydrogenation alone.   

Figure 4. 9 RON resulting from the selective ring opening of 1,2 dimethylcyclopentane

 

In order to selectively open the ring

found that Iridium based catalysts were the most selective for opening the ring of 

naphthenics while minimizing secondary cracking when compared with Pt, Ni, and 

Ru.
16
  Furthermore, a member of our

influence of support for ring opening selectivity of substituted cycloalkanes over Ir 

based catalysts.
17
  This effec
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1,2 dimethylcyclopentane in figure 4.9.   While opening the ring at 

position a or b clearly has a detrimental effect on octane number, the opening at position 

c produces a significant advantage.  This gives motivation for selective ring opening, as 

selective cleavage at position c would result in products with notably higher octane 

numbers than those of hydrogenation alone.    

RON resulting from the selective ring opening of 1,2 dimethylcyclopentane

In order to selectively open the ring, and avoid excess cracking, McVic

found that Iridium based catalysts were the most selective for opening the ring of 

naphthenics while minimizing secondary cracking when compared with Pt, Ni, and 

a member of our group, Phuong Do, subsequently found a dramatic 

influence of support for ring opening selectivity of substituted cycloalkanes over Ir 

This effect can be observed in figure 4.10.  For the model compound 

1,2 dimethylcyclopentane in figure 4.9.   While opening the ring at 

detrimental effect on octane number, the opening at position 

c produces a significant advantage.  This gives motivation for selective ring opening, as 

notably higher octane 

 

RON resulting from the selective ring opening of 1,2 dimethylcyclopentane 

, and avoid excess cracking, McVicker et al 

found that Iridium based catalysts were the most selective for opening the ring of 

naphthenics while minimizing secondary cracking when compared with Pt, Ni, and 

subsequently found a dramatic 

influence of support for ring opening selectivity of substituted cycloalkanes over Ir 

For the model compound 
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1,3 dimethylcyclohexane, cleavage at unsubstituted vs. substituted positions was found 

to be much greater for Ir/SiO2 when compared with the supports Al2O3 and TiO2.  This 

was attributed to an increased tendency to form a dicarbene intermediate on the surface, 

thus resulting in selective cleavage at unsubstituted positions.  For this reason, Ir/SiO2 

was selected as the most promising catalyst for providing further improvements in ON 

after the ring contraction step.   

 

Figure 4. 10  Ratio of cleavage at substituted positions on the ring to unsubstituted 

positions on the ring as a function of conversion over Ir based catalysts in a flow reactor 

at 593 K and 3540 kPa.  The hydrogen/hydrocarbon ratio was maintained at 30.  The 

ratio on the y-axis represents cleavage at positions (a+b)/c.  Open diamonds represent a 

support of SiO2, closed triangles represent Al2O3, and open squares represent TiO2.  

Adapted from ref 17. 

 This provides an indication of the true power of combining model compound 

studies to understand the fundamental surface intermediates with fuel properties.  A 

potential reaction strategy of ring contraction followed by selective ring opening over 

Ir/SiO2 has been developed as a way of increasing the ON of the model compound 
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methylcyclohexane before any reactions have even been conducted.  This is the true 

value of fuel property prediction, and an example of how it can provide guidance for the 

development of catalytic strategies. 

 

 4.3.3 Implementation of catalytic strategy for improvement of O�. 

Because of the guided nature of the molecular engineering approach, ring 

contraction and selective ring opening at unsubstituted positions have already been 

selected as the best strategy for maximizing ON of hydrogenated aromatic compounds.  

What is left is to determine the optimal approach for these reactions.  This study was 

conducted by Malee Santikunaporn while at OU.
20
  For the ring contraction step, Pt/HY 

was utilized.  It was observed in previous studies that the addition of Pt enhances 

catalyst lifetime and reduced secondary cracking.  This is due to the increased rate of 

hydrogen transfer brought about by the Pt
18
 as well as the decrease in acid site density.

19
 

In order to determine the best overall strategy for octane improvement, while utilizing 

methylcyclohexane as a probe molecule, three potential approaches were investigated.  

A schematic of these three approaches is outlined in figure 4.11. 
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Figure 4. 11 Schematic reaction system configurations.  Adapted from ref. 
20
 

 

These configurations outlined in figure 4.11 obviously should produce marked 

differences in the resulting fuel properties.  For configuration (a), the Ir/SiO2 bed will be 

in potential contact with some of the unconverted feed methylcyclohexane, resulting in 

some degree of direct ring opening.  This approach does not conceptually appear to be 

the best due to the properties of the products which would result as indicated by figure 

4.7.  Configuration (b) separates these two events by placing the Ir/SiO2 bed after the 

Pt/HY bed.  This should result in improved properties when compared with 

configuration (a).  Configuration (c) introduces the potential advantage of performing 

the ring opening step at 20°C cooler than the initial ring contraction step.  This idea 

arises from the fact that cyclopentane rings have an added amount of ring strain, and 

thus ring open much more readily than cyclohexane rings.  Because of this, by 

decreasing the temperature slightly, selective ring opening of the ring contraction 

products may be maintained while minimizing undesirable secondary cracking. 



The results of these three strategies on RON and MON can be observed below in 

figures 4.12 (A) and (B).  For this case, due to the highly nonlinear blending rules of 

ON for mixtures, ON w

al
21
which was developed for blends and has a standard error of ~±1octane number.  

This method was described in chapter 2 section 

is very promising.  One can cl

both provide a substantial

contraction alone.  The productivity of the catalyst bed arrangements appears to follow 

the order (a)<(b)<(c), most likely due to the aforementioned hypothesis for each case.  

 

Figure 4. 12 (A) RON and (B) MON of the product mixture resulting from conversion 

of methylcyclohexane following the reactor bed 

Total pressure = 2MPa; H

 

 

 

(A) 
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The results of these three strategies on RON and MON can be observed below in 

figures 4.12 (A) and (B).  For this case, due to the highly nonlinear blending rules of 

ON for mixtures, ON was estimated utilizing the method outlined by Ghosh 

which was developed for blends and has a standard error of ~±1octane number.  

This method was described in chapter 2 section 2.4.2.  The result of the reaction results 

is very promising.  One can clearly observe that catalytic bed arrangements (b) and (c) 

substantial advantage over the equilibrium obtained through ring 

contraction alone.  The productivity of the catalyst bed arrangements appears to follow 

(c), most likely due to the aforementioned hypothesis for each case.  

  

A) RON and (B) MON of the product mixture resulting from conversion 

of methylcyclohexane following the reactor bed configurations outlined in figure 4.11.  

Total pressure = 2MPa; H2/feed molar ratio=40.  Adapted from ref.20. 

(B) 

The results of these three strategies on RON and MON can be observed below in 

figures 4.12 (A) and (B).  For this case, due to the highly nonlinear blending rules of 

as estimated utilizing the method outlined by Ghosh et 

which was developed for blends and has a standard error of ~±1octane number.  

The result of the reaction results 

early observe that catalytic bed arrangements (b) and (c) 

advantage over the equilibrium obtained through ring 

contraction alone.  The productivity of the catalyst bed arrangements appears to follow 

(c), most likely due to the aforementioned hypothesis for each case.   

A) RON and (B) MON of the product mixture resulting from conversion 

configurations outlined in figure 4.11.  
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4.3.4 Conclusions 

Due to a combination of fuel property prediction with fundamental model 

compound studies, a novel catalytic strategy was developed which could provide great 

promise for upgrading of gasoline fuels while at the same time meeting environment 

demands for reducing aromatic content.  This provides an excellent example of how 

model compounds can be combined with fuel properties in order to develop catalytic 

strategies which are effective, but also built on a fundamental foundation. 

 

4.4 Insight gained towards improvement of C� of diesel fuels 

An identical approach to that taken for the improvement of ON can be utilized in 

order to improve the CN of diesel fuel.  Fuels which have a high ON typically have an 

inherently low CN, and vice versa.  This can be observed through the schematic 

overview of this chapter depicted in figure 4.1.  For the case of CN improvement, the 

opposite bonds for ring cleavage should now be targeted.  Instead of preferential 

cleavage at unsubstituted positions via the dicarbene mechanism, cleavage at substituted 

positions via the metallocyclobutyl mechanism should be maximized.  According to 

figure 4.10, Ir/Al2O3 should now be the preferential catalyst of choice as it has a higher 

tendency to break at these positions while minimizing secondary cracking.   

While the fundamental approach to this problem is very similar, the underlying 

practical question is somewhat different.  For the improvement of CN, the molecular 

weight range will be quite different.  Diesel fuels contain a heavier cut of hydrocarbons, 
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and many compounds in the diesel range may have multiple aromatic rings if one 

wishes to utilize some of the heavier cuts of crude oil such as light cycle oil.  While the 

first step towards improving the properties of polycyclic aromatic compounds towards 

the production of diesel fuel is obviously hydrogenation, as outlined in section 4.2, the 

sequential steps are not clearly defined.  If one starts with decahydronaphthalene, as in 

figure 4.1, it is widely accepted that opening of the first ring will result in an increase in 

CN.  The opening of the second ring, however, is the subject of debate as the properties 

which result can vary wildly depending on the selectivity to where the ring was opened 

and the degree of secondary cracking. 

This leads to the fundamental question of whether or not the opening of the 

second ring is beneficial or not.  This will be the focus of chapter 5, with a further 

increased emphasis placed on the usefulness of structure property models.   

 

4.5 Conclusions 

Thus far, we have outlined three examples of how the molecular engineering 

strategy can be employed in order to develop catalytic strategies to improve the 

properties of conventional fuels.  Each sequential example has an increased emphasis 

placed on fuel properties, and their prediction.  At the same time, these examples are 

highly correlated, as hydrogenation is the preliminary step for the other two reactions.  

The improvement of ON and CN are very much related as well, as selective ring 

opening is employed in both cases, with only the position which is opened being the 

fundamental difference between the two.  This serves as an example of how a wide 
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variety of problems can be approached through the use of the same fundamental 

strategy. 
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CHAPTER 5 

 

5. Primary Product Selectivity Prediction over Ir/Al2O3 as a Novel 

Approach towards Fundamental and Practical Problems in Fuel 

Upgrading.
1
 

5.1 Introduction 

Hydrogenolysis of naphthenic rings is a potentially valuable step for many 

applications.  One example is the upgrading of light cycle oil (LCO) to produce a more 

valuable product which can be blended into diesel fuel.
2-5

  LCO contains a large fraction 

of aromatics, which reduces the fuel’s cetane number (CN).  Thus, in order to improve 

CN of this fuel and meet environmental regulations, the aromatics can be hydrogenated 

to their corresponding naphthenes.  While it has been suggested that selective ring 

opening (SRO) can produce linear paraffins with high cetane numbers, we have pointed 

out
6-8

 that this CN increase can only be accomplished via ring opening at substituted 

positions.   However, even the most selective ring opening catalysts, such as Ir/Al2O3, 

do not open the ring at substituted positions with 100% selectivity.  Therefore, when 

looking only at the CN of the products, ring opening may not be worth the investment 

as only marginal gains in CN may be achieved.  But, as we show here, CN is not the 

only fuel property which may be improved by selective ring opening.  The specific 

gravity of the fuel will slightly decrease as the rings are opened, leading to an increased 

volume in product.  More importantly, the sooting tendency of the fuel can dramatically 

decrease after further ring opening, leading to a more environmentally friendly fuel. 
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There are many potential mechanisms for selective ring opening on metals
6-10

, 

and the dominant mechanism can change with various metals, supports, and reaction 

conditions.  Because of this, it would be very valuable to be able to predict the product 

distribution of a given model naphthenic molecule under specific reaction conditions.  

This prediction provides important insight towards identifying reaction paths occurring 

under specific reaction conditions. It also helps determine the value of a particular 

catalyst towards improvement of ON, CN, specialty chemical production, etc. 

In this study, strategies are compared to maximize CN of a fuel while 

minimizing particulate matter emissions and specific gravity through a combination of 

hydrogenation followed by selective ring opening.  Also, a tool has been developed to 

predict the primary product distributions obtained when reacting various substituted 

cyclohexanes over an Ir/Al2O3 catalyst under specified conditions.  This prediction was 

made by developing Quantitative Structure Property Relationships (QSPR) between the 

molecular structure of the feed and various ratios which represent the product 

distribution.  QSPR has been applied previously by our group for the prediction of CN,
7
 

ON,
6
 as well as other important fuel properties.  These same techniques are applied here 

towards the prediction of primary product selectivity, which leads to a very valuable 

tool with numerous possible applications. 

This is an extremely unique application of QSPR’s in comparison with the 

current literature.  These studies do not use as complicated and computationally 

expensive descriptors as are the focus of many recent developments in the chemistry 

and pharmaceutical fields.  On the other end of the spectrum, this does not classify as a 

high throughput study, where often a single property such as conversion or selectivity 
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towards a particular product is maximized for hundreds of potential reactions.  This 

study brings with it the unique approach of providing a proof-of-concept for predicting 

not only the selectivity towards a particular product, but the entire primary product 

selectivity.  In addition, the ability to extract the resulting fuel properties from each of 

the predicted reaction products is a truly novel and useful approach. 

5.2 Effect of selective ring opening on fuel properties 

Selective ring opening can have a drastic effect on several fuel properties.  The 

fuel properties of interest in this case are cetane number, particulate matter emissions, 

and specific gravity.  There are two primary routes that one can take when considering 

ring opening of one ring naphthenic molecules, acid and metal catalyzed ring opening.  

Acid-catalyzed ring opening results in highly branched products with excessive 

cracking, so this pathway will not be discussed in this case.  The second primary route 

for ring opening of naphthenics is metal-catalyzed selective ring opening.  The 

selectivity with which a metal breaks a ring depends strongly on many factors, 

including particle size, support, and metal type.
8
  Five-membered rings are much more 

reactive than six-membered rings due to the increased strain on the molecule. This was 

illustrated by McVicker et al. that alkylcyclopentanes can readily undergo ring opening 

at a rate nearly 100 times faster than its corresponding alkylcyclohexane (before ring 

contraction).
5
  For this reason, in order to produce high selectivity to ring opening 

products, it is strongly advisable to precede ring opening of two ring naphthenics by a 

ring contraction step.  Of all catalysts tested by McVicker et al., Ir/Al2O3 had the 

highest selectivity to opening of the ring as opposed to cracking of the molecule.  This 

type of approach is illustrated in figure 5.1 below: 
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Figure 5.1 Metal Catalyzed ring opening preceded by acid catalyzed ring 

contraction.  Adapted from ref 7 

 

Note that the drastic increases in CN that can occur if the ring is opened 

selectively at substituted positions.  Ideally, decalin would be converted to the non-

branched n-decane with 100% selectivity.  This has been shown to not be the case, 

however, and even the most selective ring opening catalysts, such as Ir/Al2O3 can 

cleave the ring at un-substituted positions.
6
  It is then important to gain control of the 

ring opening product selectivities that would result from various single-ring 

naphthenics.  With this knowledge combined with the fuel properties of each product, 

one could determine if it is beneficial to do ring opening of the second ring or not.   

With all of these things in mind, it would be extremely valuable to have the 

ability to predict the primary product distributions which result from a particular 

substituted cyclohexane.  This was accomplished by measuring the primary product 

distributions of several model compounds over a particular catalyst, and creating ratios 

which can be used to represent these product distributions.  QSPR models were then 
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created to correlate these ratios to the molecular structure of the feed, as has already 

been done by our group for several fuel properties in the past.
6
  

QSPR models have been developed to represent primary product distributions 

for several substituted cyclohexanes over an Ir/Al2O3 catalyst.  The results provide 

much improved insight as to reaction mechanisms that occur on the surface, while at the 

same time providing a valuable tool to estimate the effects that ring opening would have 

on the desired fuel properties. 

 

5.3 Experimental 

Catalytic measurements of primary products were conducted by Phuong Do and 

Siraprapha Dorkjampa at OU. 

 

5.3.1 Catalyst preparation 

For each of the experiments conducted, the catalyst used was a 0.9 wt% Ir/ γ-

Al2O3 prepared by incipient wetness impregnation as described previously.
6,8

  The 

precursor used was IrCl3·3H2O obtained from Alfa Aesar.  A liquid/solid ratio of 

0.9ml/g was used for the γ-Al2O3 (HP-140, Sasol).  The catalysts were dried overnight 

at 373K and then calcined in air at 573K for two hours. 

 

5.3.2 Catalyst characterization  

CO chemisorption and BET surface area measurements were conducted as 

previously reported.  CO chemisorption was conducted via the dynamic adsorption 

method in a flow cell.  The catalyst was first reduced in H2 for 1.5h at 723K, and then 
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cooled to room temperature in He.  CO pulses were then sent through the catalyst bed 

and the m/e = 12  signal was monitored via mass spectrometry until the area of each 

pulse did not vary within ±1%.  This final area was taken as the amount of CO in each 

pulse and the difference between this area and the area of the first injections was taken 

as the amount adsorbed on the sample.  From this method, the ratio of moles of 

CO/moles of Ir was found to be 0.73.  The catalyst support particle size was 150 mesh, 

and the BET surface area was found to be 250 m
2
/g from N2 adsorption/desorption. 

 

5.3.3 Catalytic activity measurement and data analysis 

All experiments were conducted in a flow reactor at 603K.  The catalyst was 

reduced for 2 hours in H2 at 603K prior to feed introduction.  In all cases, a 

hydrogen/hydrocarbon molar ratio of 30 was utilized.  The reactor pressure was 

maintained at 500 psig with a backpressure regulator.  The plug flow reactor consisted 

of a ½ inch stainless steel tube placed inside an electric furnace and the temperature of 

the catalyst bed was kept isothermal for all runs.  Liquid hydrocarbon feed was 

continuously fed to the reactor with an IscoLC-5000 high-pressure syringe pump.  A 

dry ice and acetone bath maintained at 193K was used to condense all of the products.  

The liquid samples were then injected into a Hewlett-Packard 5890 plus GC equipped 

with a FID detector for compositional analysis.  Product identification was achieved 

through the use of a Shimadzu GC-MS-QP5000.  Pure component standards were also 

used in order to attain analytical certainty.  
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5.4 Results  

5.4.1 Selection of molecules and ratios  

Fourteen model alkyl-cyclohexane compounds were chosen as representative 

reaction feeds.  The molecules were chosen so that the effect of several factors on the 

product distribution may be investigated such as the effect of alkyl chain length, number 

of chains, chain position, and degree of chain branching.  The compounds chosen can 

be seen below in table 5.1.     
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Table 5. 1 Model compounds utilized in the present study 

  
 

    In order to create models which accurately reflect the tendency of a particular 

catalyst to cleave each feed molecule in specific positions, the product distributions 

were measured at very low conversions (4%).  This low conversion was chosen so that 

secondary products could be neglected, which would further complicate the analysis.  

On the other hand, this conversion is still high enough that analytical certainty and 

reproducibility still exist as all of the peaks can readily be identified and integrated via 

Name 

1,3-dimethylcyclohexane

1,2-dimethylcyclohexane

1,2,4-trimethylcyclohexane

1-ethyl-2-methylcyclohexane

1-ethyl-3-methylcyclohexane

n-propylcyclohexane 

1-propyl-2-methylcyclohexane 

ethylcyclohexane 

methylcyclohexane

1,3,5-trimethylcyclohexane

n-butylcyclohexane

tert-butylcyclohexane 

isopropylcyclohexane

1,4-dimethylcyclohexane

Structure
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FID-GC.  For each case, a minimum of two runs were conducted which measure the 

conversion very close to 4%, and then the product selectivities were interpolated to 

determine the selectivity at exactly 4% for each case.   

To accurately estimate the cleavage at specific positions both on the ring and on 

the branches of molecules similar to those measured experimentally, several ratios of 

various product selectivities were measured.  These ratios, shown in Table 5.2, were 

chosen in order to maximize the accuracy of product selectivity.  These ratios are 

universal enough so that several molecules could be included in each model, but at the 

same time capture the uniqueness of each molecule. 

   

Table 5. 2 Definition of ratios used to predict product selectivity 

 

These ratios contain both statistical and fundamental significance.  Through this 

approach, the product selectivity to each bond can be estimated by utilizing these ratios 

and some simple algebra.  Each of these ratios carries with it mechanistic insight as 

well.  Ratio 1, which is the ratio of cleavage of the ring at substituted/unsubstituted 

positions, provides an indication of the dominant surface intermediates which are 

Ratio 1 2 3 4

Example

a/b a/b a/b a/b

Description

substituted 

cleavage/ 

unsubstituted 

cleavage

tertiary-tertiary 

bond/ tertiary-

secondary 

bond (in the 

ring)

de-

alkylation/ring 

opening

cleavage of 

the branch at 

positions not 

connected to 

the ring/ 

connected to 

the ring

a=

b=
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occurring on the catalyst surface.
5
 A high ratio represents cleavage at substituted 

positions via the proposed metallocyclobutyl intermediate, while cleavage at 

unsubstituted positions indicates cleavage via the dicarbene mechanism.  Ratio 2 

provides further insight as to how various functional groups influence the selective 

substituted cleavage between substituents as opposed to adjacent to only one.  Ratio 3 

provides an indication of the tendency of the molecule to crack at the branches, which is 

obviously an undesirable reaction for selective ring opening.  Ratio 4 provides an 

indication of the tendency of a molecule which cracks to undergo terminal cracking as 

opposed to cleavage of the substituent where it is attached to the ring.  This provides an 

indication as to if the branch itself is adsorbing on the surface of the catalyst, or if the 

cracking is due to an intermediate where both the ring and branch are adsorbed.  

 In order to create the most accurate models, some of the ratios were divided by 

the statistical ratio (i.e. the statistical number of bonds for each group).  As an example, 

the statistical ratio of ratio 1 for 1-ethyl-2-methyl cyclohexane would be 3/3=1 as there 

are an equal number of both types of bonds for this particular molecule.  Models were 

created for each ratio, as well as each ratio divided by its statistical ratio, and only the 

best models were used.  The results will be discussed in the next sections. 

 

5.4.2. Development of QSPR models to estimate product selectivity 

Using the experimental data and ratios shown in the previous section, a QSPR 

model was created for each of the four ratios in order to predict primary product 

distributions of unmeasured compounds.  Each model was influenced by molecular 

descriptors which were chosen through the use of a genetic algorithm as well as other 



 

 

model statistics.  Because a small number of experimental data points were used, 

experimental data along with predicted data 

molecules, such as increasing branch length, etc. in order to ensure that all t

captured and no models were 

was used for cross validation in each case so that all data could be applied to the model.

Parity plots for each of the ratios can be observed below in figure

Figure 5. 2 Parity plots for predicted ratios shown in table 5.2.  Numerical 

values which were predicted are 

 

(a) 

(c) 
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Because a small number of experimental data points were used, 

xperimental data along with predicted data are plotted along various groups of 

, such as increasing branch length, etc. in order to ensure that all t

captured and no models were over fitting the data.  Also, the “leave one out” method 

was used for cross validation in each case so that all data could be applied to the model.

Parity plots for each of the ratios can be observed below in figure 5.2. 

 

 

Parity plots for predicted ratios shown in table 5.2.  Numerical 

values which were predicted are (a) Ratio1/statistical ratio, (b) Ratio2, 

(d) Ratio4/statistical ratio. 

(b) 

(d) 

Because a small number of experimental data points were used, 

plotted along various groups of 

, such as increasing branch length, etc. in order to ensure that all trends were 

the data.  Also, the “leave one out” method 

was used for cross validation in each case so that all data could be applied to the model.  

Parity plots for predicted ratios shown in table 5.2.  Numerical 

Ratio2, (c) Ratio3, and 
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Details from the QSAR models can be summarized as follows.  For ratio 1, 

which is an indication of the tendency of the molecule to cleave at the substituted 

positions (leading in products with a lesser degree of branching), a partial least squares 

regression model was created which utilized three components.  This model was 

influenced by four molecular descriptors which were chosen as mentioned above.  The 

R
2
 value for this model was found to be 0.977.  The second model, which essentially 

measures the tendency of breaking various substituted positions for 1,2 disubstituted 

cyclohexanes.  This ratio decreases as the tendency to break between the two 

substituents increases.  The model selected to predict this ratio utilized one principal 

component, which was influenced by two molecular descriptors.  The R
2
 value for this 

model was found to be 0.994.  The third ratio provides an indication as to the tendency 

of the catalyst to open the ring or to crack the molecule by chopping the branches.  This 

ratio was predicted by utilizing a 3-component partial least squares model which was 

influenced by four molecular descriptors.  The R
2
 value was 0.979.  The fourth and final 

ratio provides an indication as to where the catalyst preferentially de-alkylates the 

branch.  This ratio is very important as it provides insight as to how much carbon will 

actually be lost as light gasses.  For this ratio, the best model found was a simple 

ordinary multiple regression, which utilized two molecular descriptors.  The R
2
 value 

for this model was 0.957.  Parity plots were created for each model as well to ensure 

that the error was well dispersed, and did not deviate in any particular trend.  This was 

the case for each of the models.   
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5.4.3 Results from predicted values 

 

5.4.3.1 Predicted trends in ratios 

Predicted initial product selectivities can provide a variety of interesting results.  

Predicted ratios alone can provide insight as to general trends which are observed as one 

changes properties of functional groups.  As an example, as one looks at ratio 1, which 

is an indication of the tendency to open the ring next to alkyl substituents as opposed to 

any unsubstituted position in the ring, one can clearly notice the effect of having two 

branches on product selectivity.  This can be seen below in figure 5.3. 

 

Figure 5. 3Effect of branch length and position on Ratio 1 

    

One can clearly note that, for monosubstituted cyclohexanes, increasing chain 

length has virtually no effect on the tendency to cleave at the substituted position, but 

for 1,2 di-substituted cyclohexanes there is a large effect of chain length.  This can be 
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explained by either the weakening of the bond between the two substituents that results 

from disubstituted cycloalkanes, or by the influence of the second alkyl group on 

surface adsorption intermediates.  The strong agreement between predicted trends and 

those observed experimentally should also be noted as this provides an indication that 

the model is not over-fitting the data. 

Ratio 2 provides further insight as to where the molecule breaks for 1,2-

disubstituted cycloalkanes.  As an example of the information which can be extracted 

from this prediction, figure 5.4 shows how ratio 2 varies as a function of the number of 

carbons, and length of branches.  A higher value of ratio 2 indicates a lower selectivity 

towards cleavage between the alkyl substituents.  One can clearly see that longer alkyl 

substituents lead to a higher selectivity towards cleavage between the alkyl groups.  

This could be explained either by the electronic interaction of the alkyl groups with the 

ring, or a modified adsorption intermediate resulting from adsorption of the long alkyl 

chains on the metal surface.  Note the smooth trend and agreement between the 

predicted vs. observed values for this model.  This is critical, as this model had only 4 

input data points.  For this reason, this model should be utilized only with extreme care, 

and because no branched alkyl substituents were utilized in the model, it should not be 

extrapolated to estimate selectivities resulting from these types of molecules.  This 

model is extremely useful, nonetheless, as one can clearly predict the tendency of larger 

alkyl groups to enhance ring opening between them.  This is very valuable for the fuel 

property CN, as cleavage between two linear branches results in the most valuable 

product, which is the linear paraffin.  
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Figure 5. 4 Ratio 2 as a function of increasing number of carbon atoms, and 

distribution of carbons on the branches. 

 

 

Ratio 4 is analogous to the ratio of desirable ring opening to undesirable 

cracking of the alkyl substituents which a molecule may undergo as it is reacted over an 

Ir/Al2O3 catalyst.  As one would expect, this ratio of cracking of the alkyl groups to ring 

opening increases as the length of the alkyl chains increase.  This can be observed in 

figure 5.5. 
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Figure 5. 5 Ratio 3 as a function of length of alkyl branch for monosubstituted 

cyclohexanes. 

 

As the length of the alkyl branch on monosubstituted cyclohexanes increases, 

the ratio of cracking dramatically increases as indicated by increase in ratio 3.  One may 

be tempted to conclude that this is only due to increasing ratio of alkyl carbons vs. ring 

carbons on the molecule.  This is not the entire explanation for this phenomenon, 

however, as shown in figure 5.6, where the statistical ratio of carbons on the branch to 

carbons in the ring is taken into account.  From figure 5.6, it can clearly be observed 

that there is much more responsible for cleavage than the statistical ratio alone.  For 

methylcyclohexane, the ratio is much less than the statistical ratio, but as the number of 

carbon atoms increases, this trend shifts.  Propylcyclohexane has a ratio which is very 

close to the statistical ratio of cleavage, but then as the molecules increase further in 

size, this ratio increases beyond the statistical ratio.  This means that the nature of the 

adsorbed molecules on the surface is changing as a function of carbon atoms in the 

alkyl group.  For methylcyclohexane, the ring is the most dominantly adsorbed 

molecule, and the ring is likely opened via the selective dicarbene mechanism.  As the 
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alkyl group increases, the adsorption of the alkyl group on the surface plays a stronger 

role on how the molecule adsorbs on the surface.  At longer lengths of carbon atoms, 

the alkyl group is predominantly adsorbed on the surface, thus dramatically decreasing 

the selectivity towards dicarbene ring opening.  The remarkable aspect here, when 

compared with figure 5.3, is this seems to have virtually no effect on where the ring is 

opened.  This provides strong evidence that the presence of a second methyl group has a 

strong influence on the fundamental adsorption intermediates which occur on the 

surface and therefore lead to ring opening. 

 

 

Figure 5. 6 Ratio of cleavage on the branch to cleavage on the ring divided by 

the statistical ratio of each type of bond available to open for monosubstituted 

alkylcyclohexanes. 

 

When one does consider more than one substituent, as in the case of 1,2-

dimethylcyclohexane, both the degree of cleavage at substituted positions and the 

degree of cracking increase with an increasing number of carbon atoms.  This can be 

observed for the case of 1-R-2-methylcyclohexane molecules, where the R group is a 
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linear alkyl group with an increasing number of carbon atoms.  The results of the two 

ratios can be observed below in figure 5.7. 

 

Figure 5. 7. Ratio1 and Ratio 3 plotted against increasing length of linear R 

group for 1-R-2-methylcyclohexane 

 

 This provides an indication as to how the overall fuel properties will be 

influenced by the increasing chain length on the alkyl substituents.  As ratio 1 increases, 

less branched paraffins will result, indicating a valuable increase in CN.  At the same 

time, one can clearly see that undesirable cracking of the alkyl groups will result due to 

the increase in ratio 3.  This provides the first instance of selectivity tradeoff which is 

often encountered in the molecular engineering strategy.  The resulting influence of 

these ratios on the fuel properties of the products which result will be the focus of the 

next section. 
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5.4.3.2 Incorporation of predicted product selectivities and fuel properties 

 

Perhaps the most valuable information which can be gained through the 

prediction of primary product selectivities is the resulting impact on desired fuel 

properties.  As mentioned earlier, our group has predicted various fuel properties 

through QSPR
6
.  Through a combination of these two tools, one can predict each of the 

primary products which will result from reacting the compound over Ir/Al2O3, while 

also having the ability to predict fuel properties of each resulting product.  Through this 

information, estimations on the overall fuel properties resulting from the reaction can be 

achieved if one assumes linear blending of fuel properties.  As an example, we will look 

at the measured primary product distribution for the reaction of 1-propyl-2-

methylcyclohexane.  The CN’s of each possible liquid phase product were predicted 

through QSAR, and when summed up over the product distribution, it was estimated 

that the CN will increase to approximately 42.8.  This can be observed in figure 5.8. 

 

Figure 5. 8 Measured product selectivities and the resulting CN at 4% 

conversion of 1-propyl-2-methylcyclohexane over Ir/Al2O3 at 603K and 500psig of H2.  

The linear average CN was obtained by multiplying the product selectivities by each 

compound’s predicted CN, as predicted according to chapter 2. 



 

 

 

Figure 5.9 shows the predicted product distribution based on the calculated 

ratios.  The predicted product distribution was calculated by the use of the predicted 

ratios and some simple alg

to 100%.  It can be seen that not every product has been estimated, but rather several 

like groups can be estimated as ind

that could not be directly estimated, the selectivities were

among the compounds in the group

the compounds resulting from breakin

have a selectivity of 4.5%.  When one compares the res

predicted ratios to that measured experimentally, there is remarkable agreement.  

Figure 5. 9 Predicted CN values and predicted primary product distribution to 

 

This same methodology ca

of interest which result from the predicted product distribution.  
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shows the predicted product distribution based on the calculated 

s.  The predicted product distribution was calculated by the use of the predicted 

ratios and some simple algebra while knowing that the sum product selectivities

to 100%.  It can be seen that not every product has been estimated, but rather several 

like groups can be estimated as indicated by the boxes in figure 5.9.  For all products 

that could not be directly estimated, the selectivities were assumed to be split evenly 

among the compounds in the group according to their statistical ratios.  

the compounds resulting from breaking the ring at points a and c were both assumed to 

have a selectivity of 4.5%.  When one compares the resulting CN estimated from these 

predicted ratios to that measured experimentally, there is remarkable agreement.  

Predicted CN values and predicted primary product distribution to 

estimate the CN of primary products. 

This same methodology can be applied in order to estimate other fuel properties 

of interest which result from the predicted product distribution.  The next step is to 

shows the predicted product distribution based on the calculated 

s.  The predicted product distribution was calculated by the use of the predicted 

selectivities add up 

to 100%.  It can be seen that not every product has been estimated, but rather several 

.  For all products 

assumed to be split evenly 

  As an example, 

c were both assumed to 

ulting CN estimated from these 

predicted ratios to that measured experimentally, there is remarkable agreement.   

 

Predicted CN values and predicted primary product distribution to 

n be applied in order to estimate other fuel properties 

The next step is to 
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apply these ratios to predict fuel properties of products which have not previously been 

measured.  Results from similar calculations to the one above can be seen in table 5.3.  

The fuel properties CN, micropyrolysis index (MPI)
11

, as discussed in chapter 3, and 

specific gravity were predicted for each of the feed alkylcyclohexanes as well as each of 

their potential products.  By utilizing these ratios in order to estimate the product 

distribution, one can estimate the resulting influence on desired fuel properties which 

will be obtained. 

Table 5. 3 Predicted values for CN, MPI, and specific gravity of several 

substituted cyclohexanes, as well as the linear average of their predicted primary 

products. 

 

 

These compounds were chosen because they are all the possible one-ring 

naphthenics which can result from either direct ring opening of decalin, or ring opening 

of decalin preceded by ring contraction as indicated in figure 5.1.  The most obvious 

difference that can be noticed right away is the inconsistent trend in CN improvement.  

It can be seen that the CN of the products is higher than that of the one ring molecule 

for some cases, and less for some cases.  One property that consistently improves is the 

MPI, or sooting tendency of the fuel.  The specific gravity of the fuel also consistently 

1-ring naphthenic Structure CN MPI Sp. Gr. CN MPI Sp. Gr.

1-propyl-2-methylcyclohexane 39.1 20.4 0.777 42.7 13.8 0.750

1-isopropyl-2-methylcyclohexane 30.8 22.5 0.785 28.3 14.9 0.744

1,2-diethylcyclohexane 39.0 20.4 0.772 36.5 13.8 0.748

sec-butylcyclohexane 35.3 20.4 0.801 36.1 14.0 0.756

n-butylcyclohexane 47.4 18.3 0.792 40.8 12.8 0.747

1-ring naphthenic properties properties of predicted products
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decreases as the final ring is opened.  This means that overall, for the ring opening of 

the second ring of decalin, drastic CN improvements may not be achieved, while the 

sooting tendency will significantly improve.  This makes selective ring opening a means 

of slightly increasing, or at least maintaining CN while improving both specific gravity 

and emissions properties of the fuel.    

This serves as a truly novel approach towards the utilization of QSPR towards 

determining not only the selectivity towards a specific molecule, but the entire primary 

product selectivity which will result.  In addition, one can then estimate the fuel 

properties which would result, not by a simple correlation, but by predicting the fuel 

properties of the individual molecules which would result.  While this study is not 

robust, as only 14 model compounds were utilized, it serves as an excellent proof-of-

concept for future studies based on this fundamental QSPR approach.  The advantages 

if a similar methodology were applied to a greater number of data points, as via high-

throughput reactions, would be tremendous, as the amount of practical and fundamental 

information extracted is invaluable.     

 

5.5 Conclusions 

Results from this study indicate that selective ring opening of the second ring of 

a two-ring molecule, in this case decalin, results in relatively small increases in CN, 

while improving MPI and specific gravity.  Through QSAR analysis, a tool has been 

developed to predict primary product distributions of several substituted cyclohexanes.  

The applications of this tool are only beginning to be realized as it can be combined 
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with fuel property prediction to give insight as to how the fuel properties will change 

when reacted.    
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CHAPTER 6 

 

6. Transition of the Molecular Engineering Approach towards the 

Upgrading of Biofuels 

 

6.1 Viability of molecular engineering approach as applied towards biofuel refining. 

 

 

Figure 6. 1 Conceptual schematic of molecular engineering strategy as applied to 

biofuels.
1
 

 

While during the last few decades we have witnessed significant advances in the 

production of ethanol biofuel, much less efforts have been directed towards the 

development of high-tech methods for conversion of biomass into “green” hydrocarbon 

fuels such as gasoline, diesel, and jet fuel.  These fuels are more attractive than ethanol 
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due to their higher heat content and lower solubility in water.  Moreover, they can be 

fully fungible with petroleum-derived fuels and could be directly incorporated into the 

existing infrastructure.  However, the technological challenges for their production and 

refining are still enormous.  At the same time, these challenges represent excellent 

opportunities for research and development for the chemical engineering community.   

Prof. J. Dumesic (U. Wisconsin) tells us “An important body of fundamental 

knowledge already exists for catalytic processes involved in the upgrading of petroleum 

fuels. This knowledge, gained through efforts of researchers over many decades, can 

serve as the initial basis for biofuel refining.  However, the complexity of new 

biorefining systems has only recently started to become apparent, requiring new and 

innovative approaches”.   

The complexity and instability of pyrolysis oils pose huge analytical challenges.  

Nonetheless, novel analytical techniques and modern instrumentation are making 

significant progress in this area and are now able to provide detailed information about 

chemical composition.  This information will allow researchers to discriminate among 

the different chemical groups in the biofuels and could make the development of 

composition-property relationships possible.  

On the side of the researchers are the technological background gained in the 

area of fossil fuel refining.  Against them are the extreme economic pressures to obtain 

something competitively priced in a minimum amount of time.  A better understanding 

of the fundamental reactions occurring on the catalyst surface will help accelerating the 

development of effective catalytic strategies for the development of fuels with 

properties which are acceptable with the current infrastructure.     
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A rational approach towards this development is through the molecular 

engineering approach discussed in chapter 1.  The approach consists in utilizing model 

compounds and mixtures of model compounds which represent a more complicated 

feedstock.  The main goal is to understand the fundamental chemistry involved in the 

reactions, and link this understanding to the practical impact of fuel composition on fuel 

properties.  Some important relationships between the model compounds and their 

resulting fuel properties of interest are determined on the basis of their molecular 

structure.  A linkage is proposed between the nature of catalyst active sites and the 

molecular structure of model compounds through the study of selected reactions and 

careful catalyst characterization.  Through these two relationships, one can link the fuel 

properties of resulting products to specific catalysts and reaction conditions through the 

structure of model compounds.  A number of properties are determinant of the quality 

of a given fuel.  They include octane and cetane numbers, sooting tendency, water 

solubility, freezing point, viscosity, flash point, cloud point, autoignition temperature, 

flammability limits, sulfur and aromatic contents, density, boiling temperature, vapor 

pressure, heat of vaporization, heating value, thermal and chemical stability, and 

storability.  Many of these properties can be modified by catalytic upgrading.  In 

designing a catalytic upgrading strategy, a refiner must know how each of these 

properties is affected by the structure of the molecule and how a given catalytic 

conversion of that structure in turn affects the properties.   

The main complications of this method arise from the nonlinearities of blending 

effects.  Single model compound studies can be taken as a first approach to provide 

direction towards optimizing fuel properties, but not the ultimate solution.  Surrogate 
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blends are important to study effects on solubility and competitive adsorption.  As one 

increases the complexity of the system the picture of what is occurring on the surface 

becomes increasingly murky.  However, fundamental studies are highly valuable in 

providing guidance for development of rational refining strategies rather than purely 

empirical approaches. 

 

6.2 Potential applications in the upgrading of biofuels 

When one applies molecular engineering strategies towards biofuel upgrading, 

several important opportunities are presented.  Each type of biofuel has inherently 

unique challenges associated with it.  Many of these challenges arise from the presence 

of oxygen in the biofuel molecules.  Oxygen can have some positive effects on fuel 

properties, such as lowering the vapor pressure, decreasing sooting tendency, and 

improving octane number.  However, oxygen can also have a negative impact on 

critical properties such as blending vapor pressure, storage stability, transport in 

pipelines, water solubility, corrosion, NOx formation, toxicity, and heating value.  Many 

of these challenges warrant the need for removal of oxygen from the system to make a 

more fungible fuel, which is compatible with the current infrastructure.  Molecular 

engineering of biofuels is not the simple deoxygenation, but rather the controlled 

conversion of the oxygen functionality and how this conversion affects the fuel 

properties.  Through this knowledge, catalysts and processes may be designed to only 

remove the specific oxygen atoms that pose the greatest problems in fuel applications, 

while minimizing yield loss and valuable hydrogen consumption.  At the same time, the 

presence of oxygen can be utilized to take advantage of its functionality and condense 
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small oxygenated molecules with low fuel value (e.g. propanal, acetic acid, furfural, 

etc.) into heavier hydrocarbon molecules, more appropriate for diesel or gasoline fuels, 

via organic reactions such as aldol condensation, ketonization, etherification, etc.  

 

6.3 Estimation of biofuels properties 

Estimation of properties, which are common for conventional fuels, may pose 

challenges when dealing with biofuels due to the impact of the oxygenated groups.  For 

this reason, improved methods must be developed to predict fuel properties such as 

cetane number, octane number, sooting tendency, vapor pressure of biofuels and their 

blends with petroleum fuels.
2,3
  Properties that are typically of minor concern in 

conventional fuels but have significance for biofuels include water solubility, thermal 

and chemical stability, corrosivity, and toxicity.  Prediction of water solubility is very 

important, as this property has environmental as well as refining and transport 

implications.  Compounds soluble in water have a greater tendency to negatively impact 

the environment in lakes and drinking water.  Water solubility also hinders storage and 

conventional pipeline transportation.  Because of these inherent issues, the problem of 

estimating water solubility has been undertaken by a number of groups.
4 
 Correlations 

have even been obtained between water solubility and other fuel properties such as 

melting point, logP (i.e., log of the octanol/water partition coefficient ratio), and 

molecular weight.
5
  Stability can be broken up into various subsets.  Oxidative stability, 

for example, is a cause of concern for olefinic triglycerides and methyl esters.  This can 

be estimated through the rancimat test (EN14212) or oxidative stability index (OSI).
6
  

Other forms of storage stability, however, are dependent on condensation and 
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polymerization reactions between functional groups of neighboring molecules.
7
  This is 

a difficult property to access for one compound alone, as it is highly dependent on the 

fuel matrix.   

For example, in the case of pyrolysis oil, which contains many compounds, it 

would not be practical to evaluate and follow the variation of properties of individual 

compounds, but rather of all the molecules containing a given functional group.  Model 

studies provide fundamental knowledge about the reactivity of specific functional 

groups on a given catalyst and the impact of the observed reactions on the targeted fuel 

properties.   

In general, specific functional groups, such as aldehydes and carboxylic acids, 

which are known to react with each other, can be targeted and converted in order to 

improve the storage stability.  Corrosivity, which is a major issue with pyrolysis oil, can 

be influenced by both metal content and pH of the fuel.  Acidity measurements pH and 

pKa have been extensively predicted based on QSPR, group contribution, as well as 

spectroscopic techniques.
8
  These types of models are essential for biofuels as many 

properties of biofuel molecules are unknown, and it may be very difficult to separate 

and measure them.  As an example, fast pyrolysis oil contains over 400 different 

compounds.
9
  Properties for many of these oxygenates have not been previously 

measured, although they all can have a significant impact on fuel properties.   

Ideally, relationships are created such that not only one property, but a number 

of properties of interest are known for each potential reactant/product in a given 

reaction to measure the impact of a given conversion.  This analysis is critical since it is 

not uncommon that some desirable properties are improved at the expense of others, as 
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shown below.  In most cases an intermediate solution is reached in which all the target 

properties are in an acceptable range.  An illustrative example can be seen in Figure 6.2 

through the conversion of furfural over Cu or Pd catalysts.  Furfural is typically derived 

from dehydration of sugars,
 
but is also present in the product from the fast pyrolysis of 

biomass.
9
  Due to the unstable nature of furfural (as of any other aldehyde), it must be 

converted to be used as a transportation fuel component.  Therefore, the first step is to 

determine the properties of furfural and those of the potential products that could result 

from its conversion.   

 

Figure 6. 2 Change in a) Research Octane Number (RON); b) water solubility; c) vapor 

pressure of products exiting a flow reactor across Cu or Pd catalysts as a function of 

feed conversion. 
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For example, the Research Octane Number (RON) of each of the pure molecules 

was estimated through the use of a linear regression QSPR model by fitting data of 67 

oxygenates and hydrocarbons to their molecular structure through the utilization of 

MDL QSAR software (version 2.2.0.0.446(SP1) from MDL Information Systems, Inc.).  

The result of this fitting is a model that can predict RON of oxygenate species, based 

only on molecular structure.  The RMS error of the dataset was 6.8, with a cross 

validation error (leave one out) of 8.9 RON.  A parity plot of the QSPR prediction can 

be observed below in figure 6.3. 

 

Figure 6. 3 Predicted vs. Observed values for the calculation of RON of oxygenated 

hydrocarbons. 

 

Likewise, vapor pressure for each compound has been estimated through the use 

of ACD/Labs Software V9.04 for Solaris.  Water solubility was also estimated through 

a correlation with various other properties of the molecules.
5
 These property prediction 
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capabilities provide guidance on which reactions should be maximized in order to 

improve the fuel properties of interest.    

For example, to illustrate the method, a comparison of changes in properties 

without considering the non-linearities of the mixtures is made in Fig. 6.2.  Gas phase 

hydrogenation and decarbonylation of furfural were conducted over Pd and Cu at 

various temperatures in a tubular flow reactor.  Properties of the feed and resulting 

products were estimated assuming linear mixing of the properties of the individual 

components.   

As furfural is converted over either Pd or Cu in the presence of H2, properties of 

the compounds exiting the reactor are optimized under different conditions.  If one 

wants to maximize the octane number alone, clearly Cu/SiO2 is the better catalyst, 

operating at high conversions.  On the other hand, if one considers the water solubility 

of the resulting fuel, Pd is the better catalyst as its products minimize increases in water 

solubility.  Copper also appears more promising in minimizing light compounds with 

high vapor pressure as decarbonylation is avoided.  This graph also points out the clear 

tradeoff between vapor pressure and water solubility which is oftentimes encountered 

while upgrading of oxygenates.  Other properties, such as heating value, viscosity, and 

hydrogen consumption also play crucial roles in determining which catalysts or process 

condition should ultimately be utilized.  This example illustrates that optimization of 

one property alone is usually not the best option.  Property prediction combined with 

catalytic studies help optimize the process.     

In this example, we have compared only two catalysts and two temperatures. 

Another dimension in the molecular engineering approach could be added by 
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incorporating high-throughput catalyst design and testing and combinatorial analysis 

tools.
10
  While a higher level of precision will need to take into account the blending 

effects that may change the resulting properties by intermolecular interactions, analysis 

of the changes in properties of the individual components is a valuable first approach in 

defining catalytic strategies.   

 

6.4  Conclusions 

 

In summary, biofuels upgrading offers new challenges to researchers but a great 

potential economic impact for novel catalysts and processes.  Maximum benefit will be 

obtained from these developments if the rational approach of molecular engineering is 

employed.  In this approach, it is necessary to know how the target fuel properties of 

interest are affected by the molecular structure of the product, which in turn results from 

the interaction of the feed and the catalyst under specific process conditions.  A detailed 

fundamental knowledge of these relationships will make the development of biorefining 

processes much more effective than if empirical approaches are employed.  
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CHAPTER 7 

 

7. Influence of Temperature and Oxygen Content on Pyrolytic Sooting 

Tendency as Determined by the Micropyrolysis Index.
1
 

 

7.1 Introduction 

The Micropyrolysis Index (MPI) is a tool which has recently been developed in 

order to determine the pyrolytic sooting tendency of fuels, and distinguish this from 

oxygenated sooting tendency measurements.
2
  This measurement consists of pyrolyzing 

20µL of fuel over a bed of α-Al2O3 under a flow of He at 850°C.  The results have been 

predicted via QSPR in order to correlate molecular structure to the MPI.   

This provides both mechanistic and practical insight, as a fuel property was 

developed which can be optimized, while understanding the relationship between 

molecular structure and the tendency to form soot via pyrolysis.  It was noted that 

850°C was chosen in order to obtain increased repeatability.  What has not been 

conducted to this point is a thorough investigation as to how temperature and oxygen 

content influence the MPI of a given model compound. 

           The focus of this study will be to observe the differences in pyrolytic sooting 

tendency and the nature of that soot as a function of temperature for various model 

compounds.  In order to investigate the influence of aromaticity, toluene and methyl-
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dodecanoate were chosen as model compounds.  Oxygen incorporation was then 

investigated for these two classes of molecules.  Comparisons were made between 

dodecane and methyl-dodecanoate in order to study the influence of the ester group on 

sooting tendency.  This gives an indication of the differences in sooting tendency which 

arise from the transesterification of triglycerides as opposed to hydrotreating.  This area 

has received considerable attention as of late.
3
  For oxygenated aromatics, toluene will 

be compared with benzaldehyde and benzyl alcohol in order to determine the influence 

of oxygen on the pyrolytic sooting tendency.   This series of model compounds is more 

representative of the lignocellulosic fraction of bio-oil.  

 

7.2 Experimental 

 

7.2.1 Variations from original MPI method  

MPI measurements were conducted as reported previously
2
  with two notable 

differences.  For high temperature MPI runs (>900°C), the tip of the needle was lowered 

1” in order to prevent pyrolysis from occurring inside the needle.  Also, a gradient in 

soot was observed at higher temperature which was not observed at 850°C.  For this 

reason, the 15mg of quartz wool was oxidized via TPO along with the rest of the 

sample.  This allowed for a much more clear repeatability in the measurements.   

Because the MPI is an arbitrary number taken from two reference compounds, 

we chose to investigate the true trends which arise from increasing temperature and 
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eliminate any misleading conclusions which would arise from comparing it with two 

other compounds.  For this reason, results were reported in terms of moles of carbon 

deposited on the surface. 

 

7.3 Results and discussion 

 

7.3.1 Influence of temperature on the nature of soot from toluene 

While the nature of molecules to form pyrolytic soot on alumina has been 

previously quantified and analyzed at 850°C, we have not to this point determined much 

insight as to what these particles look like on the surface, how temperature influences 

them, and the nature with which they oxidize.  This will be investigated first for toluene. 

By measuring the sooting tendency via TPO, we are inherently measuring both 

the amount of carbon on the surface, as well as the nature of carbon on the surface.  

Results are shown in figure 7.1. The results here are not surprising, as the temperature is 

increased, the nature of carbon on the surface appears to shift to a “harder” type of coke.  

Furthermore, the amount of coke on the surface appears to increase exponentially for 

one 20µL injection.  This is not unexpected, as more severe pyrolytic conditions may 

yield a more graphitic type coke on the surface.  The next question is whether this is due 

to a truly more thermodynamically stable coke, or simply diffusion limitations due to 

the formation of larger soot particles.   
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Figure 7. 1 Toluene TPO profiles as a function of temperature.                                  

MPI measurements were obtained from Pilar Ruiz at the University of Oklahoma. 

 

In order to help verify this, SEM (scanning electron microscopy) and same spot 

TEM (transition electron microscopy) images were employed.  First, in order to 

investigate the nature of particles on the surface, SEM images were taken with the help 

of Liang Zhang at the University of Oklahoma.  Temperatures were compared at 900 

and 1000°C.  Images can be observed below in figure 7.2.  The first observation is that 

the surface appears much “cleaner” at 1000°C.  This indicates that the size of the soot 

particles increases as the temperature is increased.  It should be noted that the MPI 

method requires a 10 minute devolatilization period after soot deposition, so these 

particles, once deposited, were subject to 10 minutes of thermal treatment at 900 and 

1000°C, respectively.  It appears that at 900°C, much of the soot appear as droplets 

“wetting” the surface of the α-Al2O3, which is serving the role of heat transfer medium.  

At higher temperatures, more uniform spheres are produced.  This could be due to 



 

thermal rearrangement of the particles at h

particle growth at the higher 

Figure 7. 2 SEM images of MPI soot deposited on Al

Images were obtained with the help of Liang Zhang at OU.

 

 This brings up the question as to if the TPO profile shifts are due to a more 

graphitic type of carbon being formed, or simply larger particles with diffusion 

limitations.  In order to investigate this via imaging techniques, one would need to look 

at the same particle after partial oxidation.  This is not possible with SEM, however, as 

the particles must be coated with a metal before imaging, thus eliminating the 

possibility of sequential pretreatment of the samples.  A technique which can potentially 

accomplish this feat, however, it same spot TEM.  Through this method, an etched SiN 
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thermal rearrangement of the particles at higher temperatures, or an increased rate of 

particle growth at the higher temperatures which leads to larger particles.  

SEM images of MPI soot deposited on Al2O3 from 20µL of toluene at 900 

and 1000°C.                                                                                                                  

Images were obtained with the help of Liang Zhang at OU.

This brings up the question as to if the TPO profile shifts are due to a more 

ic type of carbon being formed, or simply larger particles with diffusion 
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of sequential pretreatment of the samples.  A technique which can potentially 

accomplish this feat, however, it same spot TEM.  Through this method, an etched SiN 

igher temperatures, or an increased rate of 

which leads to larger particles.   

 

from 20µL of toluene at 900 

                                                                                                                

Images were obtained with the help of Liang Zhang at OU. 

This brings up the question as to if the TPO profile shifts are due to a more 

ic type of carbon being formed, or simply larger particles with diffusion 

limitations.  In order to investigate this via imaging techniques, one would need to look 

at the same particle after partial oxidation.  This is not possible with SEM, however, as 

e particles must be coated with a metal before imaging, thus eliminating the 

of sequential pretreatment of the samples.  A technique which can potentially 

accomplish this feat, however, it same spot TEM.  Through this method, an etched SiN 



 

TEM grid was placed at a 45° angle to the direction of flow in the MPI reactor under 

conditions identical to those employed for soot deposition.  These etched grids allow 

one to perform a TEM image of a particle, do a subsequent treatment (in this case 

partial oxidation) and then locate the exact same particle after the pretreatment

very similar to environmental TEM, only much more realistic as post treatment steps 

may be performed ex-situ in more realistic conditions as opposed to in a vacuum.

Images of particles taken 

can be observed below in figure

Figure 7. 3 Same spot TEM images obtained for soot deposition

1000°C, follo

Images were obtained with the help of Liang Zhang at OU
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grid was placed at a 45° angle to the direction of flow in the MPI reactor under 

conditions identical to those employed for soot deposition.  These etched grids allow 

e to perform a TEM image of a particle, do a subsequent treatment (in this case 

oxidation) and then locate the exact same particle after the pretreatment

very similar to environmental TEM, only much more realistic as post treatment steps 

situ in more realistic conditions as opposed to in a vacuum.

s of particles taken directly after deposition, and after partial oxidation to 550°C 

can be observed below in figure 7.3. 

Same spot TEM images obtained for soot deposition from toluene

1000°C, followed by a partial oxidation to 550°C via TPO

Images were obtained with the help of Liang Zhang at OU

grid was placed at a 45° angle to the direction of flow in the MPI reactor under 

conditions identical to those employed for soot deposition.  These etched grids allow 

e to perform a TEM image of a particle, do a subsequent treatment (in this case 

oxidation) and then locate the exact same particle after the pretreatment.  This is 

very similar to environmental TEM, only much more realistic as post treatment steps 

situ in more realistic conditions as opposed to in a vacuum.  

directly after deposition, and after partial oxidation to 550°C 

 

from toluene at 

via TPO.                                          

Images were obtained with the help of Liang Zhang at OU. 
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 The major point of interest here is the influence of particle size on the nature of 

burning.  It is very interesting to point out here that the nature of burning appears to be 

from the outside inwards.  This is especially indicated by the zoomed image in the 

upper right corner after partial oxidation.  One can clearly observe the severe amount of 

disorder introduced at the edge of the particle, with a transition towards a more ordered 

particle as one goes deeper into the sample.  This indicates that with pyrolysis alone, we 

are not forming a “peanut shell” type of soot burning which has been observed under 

very lean conditions in diesel engines.
4
  Another very interesting result is the carbon 

film which is deposited around the perimeter of the hole.  It is supposed that a carbon 

film is first deposited on the surface, which then forms small disorganized “droplets” as 

the curvature is increased.  Higher temperatures will result in larger, more spherical 

droplets.  Furthermore, there appears to be a degree of local heating surrounding the 

particles.  This can be observed with the same sample through looking at another hole, 

as can be observed in figure 7.4.   



 

Figure 7. 4 Same sp

1000°C, followed by a partial oxidation to 550°C via TPO.

Images were obtained with the help of Liang Zhang at OU

 

As the particles 

surrounding them.  This can be indicated by the high degree of burning of the graphite 

film for the partially oxidize

Note how the film thickness is much less around the particles when compared with the 

other areas.  This local heating could be influenced by the size of the particles as well.  

Smaller particles may have a greater curvature, and thus be slightly more reactive than 

larger particles.  This can be observed through the use of figure 7.5. 
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Same spot TEM images obtained for soot deposition from toluene at 

1000°C, followed by a partial oxidation to 550°C via TPO.

Images were obtained with the help of Liang Zhang at OU

particles are burned, this influences the rate of burning of the

surrounding them.  This can be indicated by the high degree of burning of the graphite 

film for the partially oxidized sample, around the soot particles on the left of the hole.  

lm thickness is much less around the particles when compared with the 

other areas.  This local heating could be influenced by the size of the particles as well.  

Smaller particles may have a greater curvature, and thus be slightly more reactive than 

This can be observed through the use of figure 7.5.    

 

ot TEM images obtained for soot deposition from toluene at 

1000°C, followed by a partial oxidation to 550°C via TPO.                                    

Images were obtained with the help of Liang Zhang at OU. 

rate of burning of the carbon 

surrounding them.  This can be indicated by the high degree of burning of the graphite 

d sample, around the soot particles on the left of the hole.  

lm thickness is much less around the particles when compared with the 

other areas.  This local heating could be influenced by the size of the particles as well.  

Smaller particles may have a greater curvature, and thus be slightly more reactive than 
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Figure 7. 5 Same spot TEM images obtained for soot deposition at 1000°C, followed 

by a partial oxidation to 550°C via TPO.                                                                  

Images were obtained with the help of Liang Zhang at OU. 

  

Here it can clearly be observed that the smaller particles tend to oxidize more 

readily, and that there is a significant degree of local heating.  From this image, one can 

compare the oxidation ability of the large particle on the top of the hole with the small 

particle on the right side.  The small particle definitely oxidizes more rapidly, and 

produces a significant amount of local heating, as indicated by the dramatic increase in 

oxidation on the film as well as the larger particle next to the small one.  It should be 

noted here that, even though the oxidation appears faster for the smaller particles, 

oxidation of the outside of each of the particles has already begun.  This indicates that 
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oxidation starts from the outside, and then progresses towards the more curved and 

readily oxidizable inner layers.  As the smaller particles are oxidized, they produce a 

great deal of local heating, potentially contributing to the spike in the TPO profile.  This 

maximum peak height in the TPO, therefore, should provide an indication of particle 

size distribution.   

 While TEM images are useful for illustrating ideas, they account for only a 

small portion of the sample.  Bulk techniques, such as TPO, provide a much better idea 

of what is happening to the entire sample.  For this reason, we have chosen n-octane as 

a probe molecule under the conditions of pyrolysis at 900°C.  The reason for this is the 

shoulders observed for toluene at transition temperatures appear more as large peaks for 

n-octane.  The goal here was to attempt to confirm the hypothesis that this was due to 

this local heating phenomenon, where the particles all burn, but the smaller ones burn at 

more rapid rates.  Furthermore, if this is true, each of the particles should still burn at 

550°C, but the rate at which they burn will just be slower.  Results can be observed 

below in figure 7.6.      

 

Figure 7. 6 TPO profiles observed for identically prepared samples of n-octane 

pyrolyzed at 900°C with various heating ramps.  Thin blue lines represent the TPO 

signal, while thick red lines represent the temperature ramp as a function of time.   
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  These graphs clearly support the hypothesized explanation.  For graph a), the 

TPO was performed as normal with a constant ramp rate of 10°C/min to 800°C.  Note 

the two distinct two peaks which result.  When one now heats linearly with the same 

ramp to 550°C, and subsequently holds the temperature for 45 minutes, all of the carbon 

is still eventually burned, although the rate is much slower.  It is also important to note 

the small increase in CO2 which was observed initially after the ramp was held constant.  

This further indicates the presence of local heating.  As the temperature is now 

increased to 800°C, no further CO2 was observed, indicating that all of the carbon was 

burned at the slower rate.  All of this supports the hypothesis that the carbon burns from 

the outside in, with maximum peak heights representing local heating due to the rapid 

combustion of smaller particles.  This provides evidence that TPO of MPI carbon may 

potentially be used to correlate the MPI to particle size distribution, which is an 

extremely important property for combustion.  

 

7.3.2. Influence of oxygen incorporation on MPI 

 

7.3.2.1 Methyl esters 

Methyl esters are known to form a smaller degree of soot than their corresponding 

alkanes due to the oxygen.  OH groups have been suggested to both partially oxidize the 

soot on the surface and create and scavenge surface radicals, where H2O may serve as 

radical scavengers which can prevent surface growth.
5
  As an example, the amount of 

carbon deposited at 850°C is compared in figure 7.7.  One can clearly note the decrease 



149 
 

in sooting tendency which is brought about by the methyl ester group.  It is observed 

that the degree of decrease is much larger for the low molecular weight molecules.  This 

is to be expected as there is a greater degree of oxygen in the molecule, and oxygenated 

groups tend to serve as radical scavengers to prevent soot particle growth.  For this 

reason, the influence of oxygen is greater than the weight percent of oxygen in the 

molecule.  While this is interesting, it is expected.   

 

Figure 7. 7 Influence of oxygen on the amount of carbon deposited at 850°C for various 

alkanes and their corresponding methyl esters. 

 

More interesting results arise from the comparison at higher temperatures, and 

the resulting nature of the oxidizability of the soot.  The results of soot deposited as a 

result of temperature can be observed below in figure 7.8. 
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Figure 7. 8 Mol C deposited as a function of temperature for n-dodecane and methyl-

dodecanoate.   

 

This graph shows that oxygen significantly decreases soot formation for the 

entire range of temperatures.  In each case, the drop in sooting tendency is significantly 

greater than the wt% of oxygen in the sample, indicating again the radical scavenging 

ability. 

 Perhaps the most intriguing aspect of these measurements is not the total amount 

of carbon which was deposited on the surface, but the nature of that carbon.  The best 

method for analyzing this is through the TPO profiles.  TPO profiles as a function of 

temperature for dodecane and methyl-dodecanoate can be observed below in figure 7.9. 
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Figure 7. 9 TPO profiles for dodecane and methyl-dodecanoate deposited at 850, 950, 

and 1000°C. MPI measurements were conducted by Pilar Ruiz at OU. 

     

 In this case, the TPO profiles tell an excellent story.  For dodecane, as the 

temperature is increased, the peaks appear to shift to higher temperatures, indicating an 

increase in particle size as was reported earlier for toluene.  Note further the shape of 

the peaks.  As the temperature is increased, the curves appear to be very asymmetrical, 

with a sharp drop at the end.  This is an indication of a 0
th

 order burning, which 

indicates (as supported by the data with toluene) that this is a diffusion limited reaction.  

For methyl-dodecanoate, however the profiles are dramatically different. The maximum 

peak height in this case remains a relatively low temperatures, and even with more 

carbon deposited, the peaks remain somewhat more symmetrical.  This is an indication 

that the burning in this case is not simply diffusion limited, as would be indicated by 

much smaller particles.   

It should be noted that the amount of soot on methyl dodecanoate is much less 

than for dodecane.  For this reason, one could argue that the symmetry of the peaks is 

a) b) 
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due to smaller amounts of carbon on the surface.  This argument can be nullified, 

however, when one looks at the amount of carbon deposited in figure 7.8 for methyl 

dodecanoate at 1000°C when compared with dodecane at 950°C.  The amount of carbon 

from methyl dodecanoate in this case is clearly greater, while the peak remains 

symmetrical.  This supports the aforementioned hypothesis.  

The reason for this is likely due to the fact that the radical scavenging ability of 

the oxygen groups tends to prevent the growth of large particles on the surface.  For this 

reason, the particle size distribution should be much smaller for this case.  

This result could help to explain why biodiesel is known to produce a smaller 

average diameter of particle sizes than regular diesel fuel.  This is commonly assumed 

to be due only to the decreased nature of the biodiesel to form soot when compared with 

conventional diesel fuel.  These results provide evidence that the particle size due to 

pyrolysis alone may be decreased as well.  This is an interesting result which may not 

be deduced from traditional sooting methods, such as TSI
6
 or YSI

7
, which are unable to 

separate the pyrolysis from the combustion. 

 

 7.3.2.2. Aromatic oxygenates 

Fast pyrolysis oil, or bio-oil, contains a large range of oxygenated compounds.  

Many of these are aromatic oxygenates.  In order to understand better how these types 

of compounds will influence the pyrolytic sooting tendency of a fuel, a similar analysis 

as above was performed for toluene, benzaldehyde, and benzyl alcohol.  This allows 

one to distinguish the differences which are inherent of the various oxygen containing 
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compounds in the presence of an aromatic ring.  As a first approach, we compare this 

with the traditional sooting tendency measurement, smoke point,
8
 which is utilized in 

order to obtain TSI.  This measurement is conducted by measuring the maximum height 

of a smokeless diffusion flame for the various fuels.  Smoke point values were 

measured through the utilization of an ASTM D-1322 compatible smoke point lamp 

purchased from Koehler Instrument Company, Inc.  Results, along with standard 

deviations can be observed below in figure 7.10.  From this, it can be concluded that 

there is no statistical influence of oxygen on the smoke point of the fuel.  Smoke point 

is not a simple pyrolytic measurement, however, as it is a combination of the fuel to 

form soot as well as oxidize at atmospheric conditions, which is dependent on several 

parameters.  For this reason, it may not behave as a fuel would under the conditions in a 

diesel engine.  This provides a nice point for comparison with the pyrolytic sooting 

tendency alone, as any differences can be utilized to distinguish pyrolysis from 

oxidation.   
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Figure 7. 10 Measured smoke point heights for toluene, benzaldehyde, and benzyl 

alcohol. 

 

 Results from MPI measurements for these three compounds are shown in figure 

7.11.  While the same conclusion can be made between smoke point and MPI for 

benzaldehyde and toluene, this cannot be said of benzyl alcohol.  Benzaldehyde and 

toluene have very similar sooting tendencies as a function of temperature.  While the 

proposed explanations for this are numerous, the most likely is that the conjugation of 

the aldehyde double bond with the ring provides increased stability, and thus limits its 

ability to act as a radical scavenger.  Benzyl alcohol, however, appears to have a 

significant decrease in sooting tendency, providing an indication that the lack in 

conjugation brought about by the two extra hydrogen atoms allows this molecule to 

break apart and form radical scavenging groups.       
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Figure 7. 11 Mol C deposited as a function of temperature for toluene, benzaldehyde, 

and benzyl alcohol.  MPI measurements were conducted by Pilar Ruiz at OU. 

 

Further evidence supporting this argument arises from the nature of TPO 

profiles of these molecules.  It can clearly be observed in table 7.1 that the maximum 

peak temperature in the TPO appears very similar for both benzaldehyde and toluene, 

while the maximum peak height remains at lower temperatures for all cases for benzyl 

alcohol.  This provides an indication, as discussed in section 7.3.2.1, that the average 

particle size is much smaller in the case of benzyl alcohol, and it therefore has a greater 

radical scavenging ability.  This provides an interesting critical difference between 

pyrolytic and oxidative sooting tendency.  For oxidative sooting tendency, both 

molecules will likely quickly oxidize to benzoic acid, thus having the identical impact 

on sooting tendency, while for the case of pyrolysis alone, the alcohol may be allowed 

to pyrolyze and lower soot particle size.  This is an extremely important result, as actual 



 

conditions inside a droplet of diesel fuel will be subject to a wide variety of ox

concentrations.  In the center of the droplet, for example, there may be no oxygen and 

thus pyrolysis will be the dominant reaction.  Studies such as these can be used to help 

explain these phenomena.

Table 7.1 Maximum peak heights of TPO profiles a

for toluene, benzaldehyde, and benzyl alcohol.

 

7.4  Application to molecular engineering strategy

Important varianc

provides a first step towards understanding the 

have on the fuel property MPI, and may provide some insight as to what will happen in 

an actual engine.  While the ultimate goal will be to develop a database in order to 

predict the influence of oxygen on the sooti

valuable first step. 
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conditions inside a droplet of diesel fuel will be subject to a wide variety of ox

concentrations.  In the center of the droplet, for example, there may be no oxygen and 

thus pyrolysis will be the dominant reaction.  Studies such as these can be used to help 

explain these phenomena.   

Maximum peak heights of TPO profiles as a function of temperature 

for toluene, benzaldehyde, and benzyl alcohol. 

 

molecular engineering strategy 

mportant variances in sooting tendency were investigated in this case.  This 

provides a first step towards understanding the influence that particular molecules will 

have on the fuel property MPI, and may provide some insight as to what will happen in 

an actual engine.  While the ultimate goal will be to develop a database in order to 

predict the influence of oxygen on the sooting tendency of a fuel, this study provides a 

conditions inside a droplet of diesel fuel will be subject to a wide variety of oxygen 

concentrations.  In the center of the droplet, for example, there may be no oxygen and 

thus pyrolysis will be the dominant reaction.  Studies such as these can be used to help 
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CHAPTER 8 

 

8. Development of Strategies for Upgrading of Renewable Fuels 

 

8.1 Introduction 

As outlined in chapter 6, multiple opportunities are presented when one 

considers applications of the molecular engineering strategy towards the upgrading of 

fuels from renewable sources.  In the case of biofuels refining, several renewable 

feedstocks may benefit from the molecular engineering strategy.  The focus of this 

chapter has been narrowed to the use of heterogeneous catalysts for the upgrading of 

vegetable oils and fast-pyrolysis oils via model compound studies, although several 

other opportunities obviously exist.  These strategies will be outlined below with 

examples.  The end result is identical to those discussed earlier for conventional fuels.  

This is an approach guided by fuel property optimization in which model compound 

studies are utilized in order to understand the fundamental surface interactions which 

are responsible for improving the quality of a fuel.   
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8.2 Upgrading of triglycerides and methyl esters to fuels and specialty chemicals 

 

8.2.1 Introduction  

The most common process utilized today to upgrade triglycerides to fuels is 

based on the transesterification to methyl esters, or biodiesel.  Both triglycerides and 

methyl esters still pose problems with stability and cold flow properties, making further 

upgrading attractive.  Issues with triglycerides arise from four molecular aspects: long 

chain lengths, olefin content, ester groups, and free fatty acids.  The former two aspects 

can be improved through conventional processing well established in refinery 

operations, though selective hydrogenation of the olefin groups has been the focus of 

recent publications.
1
  The latter two, however, lead to problems with water solubility, 

storage, and corrosion.  Selective reaction of acid and ester groups has been the focus of 

many recent studies.
2
  Over Pd catalysts, C=C double bonds are first hydrogenated to 

form saturated acids, followed by selective decarbonylation and decarboxylation of the 

oxygen species.  Through this approach, some carbon is lost as CO, but at the same time 

less hydrogen is necessary in the process.  This can be a very practical approach due to 

the large hydrocarbons involved.  The loss of CO still results in linear hydrocarbon 

products well in the diesel range, with improved heating value, and once hydrogenated, 

the resulting products are linear paraffins, with a high CN.  The main disadvantage of 

these paraffinic hydrocarbons is their poor cold flow properties.
3
  In order to further 

improve the cold flow properties of the fuel, such as viscosity, cloud point, and pour 

point, the resulting deoxygenated hydrocarbons may be isomerized to produce branched 
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isoparaffins.  This process has been implemented commercially.
4
  In this commercial 

process, the vegetable oils are first hydrogenated and deoxygenated over conventional 

hydrotreating catalysts.  The resulting n-paraffins then undergo mild isomerization over 

an acidic catalyst to produce isoparaffins with improved cold flow properties.  While 

this process is very practical and utilizes existing equipment present in most refineries, 

the catalytic procedures themselves could potentially be optimized further.  Sulfur 

species are not inherently present in vegetable oil while conventional hydrotreating 

catalysts are highly optimized to react sulfur molecules and not oxygenates.  Therefore, 

more active and selective metal catalysts, specific for oxygenates, such as those based 

on Pt, Pd, or Ru, could be better fits for this application.  Furthermore, one may fine 

tune the operating conditions to shift from hydrodeoxygenation to decarbonylation and 

decarboxylation which may also produce paraffins, or olefins in the absence of 

hydrogen or a metal with hydrogenation capability.
5
  Future improvements could 

potentially be made where isomerization and hydrogenation are included in one reactor.  

This could potentially take advantage of the ability to isomerize linear olefins to 

branched hydrocarbons while hydrogenating in the same reactor.  Ideally, one could 

maximize isoparaffin yield while minimizing hydrogen consumption and the number of 

reactors.   

If the decarboxylation and decarbonylation reactions are utilized to remove 

oxygen groups while minimizing hydrogen consumption, the primary product of these 

reactions is inherently an alpha olefin.  This provides the added potential for producing 

specialty chemicals from renewable resources if one is able to maximize this 

intermediate, as alpha olefins can readily be functionalized in order to produce 
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surfactants and other valuable compounds.  Because of this, for each of the model 

compounds employed, an effort is made to determine the olefin concentration, as well 

as position of the olefin on the resulting hydrocarbon as this could have enormous 

potential for the surfactant industry.   

 

8.2.2 Influence of deoxygenation of on fuel properties 

Upgraded triglycerides are typically used as diesel fuel blendstocks.  For this 

reason, important fuel properties which should be considered are cloud point, viscosity, 

water solubility, stability, sooting tendency, and cetane number.  While water solubility 

is not a typical fuel property which is considered for diesel fuel, the oxygen containing 

groups of triglycerides and methyl esters make this an inherent issue.  The first question 

which should be asked is which triglyceride based fuel alternative is more beneficial; 

methyl esters via transesterification or non-oxygenated paraffins via decarboxylation or 

decarbonylation.   The optimum fuel would contain no water solubility such that it is 

truly fungible with diesel fuel and the existing infrastructure.  Besides this, stability is 

much improved by removing the ester group, although a great amount of instability 

attributed to biodiesel arises from the double bonds present in the molecule as well.  

The heating value of a deoxygenated hydrocarbon will be significantly higher due to the 

fact the oxygen atoms do not contribute to this property.  To this point, the changes in 

fuel properties between the two routes have been trivial, with the deoxygenated version 

being the superior route in all cases.  The only property which is known to be 

disadvantageous after deoxygenation is the sooting tendency, as discussed in chapter 7.  
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An interesting story arises for the case of CN.  Oxygen containing groups typically 

lower cetane number, but in order to convert a methyl ester to its corresponding alkane 

via decarbonylation/decarboxylation, one must lose two carbon atoms.  It is well known 

that CN increases with the number of carbon atoms in the molecule, so the net effect 

will not be clear.  A graph of CN for methyl esters and linear paraffins can be observed 

in figure 8.1.  It should be noted that the x axis is the total number of carbons excluding 

the end methyl group attributed to the methyl ester.  In order to convert a methyl ester to 

a conventional hydrocarbon, one must lose one more carbon atom, as indicated by the 

black two-way arrows.  For low molecular weight esters, the advantage of removing the 

oxygen is great, even at the expense of a carbon atom.  This is indicated by the leftmost 

arrow when comparing the deoxygenation of methyl-dodecanoate to nonane, the 

resulting CN increase is roughly 30 CN values.  For larger esters, however, this 

advantage is much less pronounced, as can be seen by the smaller arrow comparing the 

conversion of a methyl-eicosanoate to nonadecane.  Even though this increase is 

marginal, when combined with the other properties which are improved, there is still a 

great need for investigation of this reaction to produce fuels and specialty chemicals. 
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Figure 8. 1 Cetane numbers obtained from the literature
6
 of methyl esters and n-

paraffins as a function of the length of the continuous carbon chain. 

    

8.2.3 Estimation of olefin content and alpha olefin selectivity 

As triglycerides and methyl esters undergo decarbonylation and 

decarboxylation, the alpha olefins which are produced provide extremely high value for 

the surfactants industry.  For this reason, the first step should be to determine the 

selectivity towards these olefins in order to better understand how the catalyst can be 

tailored to maximize the yield and selectivity of alpha olefins.  While gas 

chromatographs may be able to separate olefin isomers of relatively small molecules, 

large olefin isomers resulting from triglycerides become extremely difficult to 

differentiate the hydrogenated paraffins and alpha olefins.  Because of this, some other 
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technique must be employed.  For overall olefin content, the iodine number is 

oftentimes utilized in order to obtain an overall balance of olefin content for a particular 

sample.  This technique, while extremely valuable, unfortunately destroys the sample 

thus inhibiting further analysis while not having the ability to differentiate between 

alpha and internal olefins.  For this reason, a new technique was developed through the 

use of H-NMR, which along with GC-FID results provides extremely valuable results.   

This technique takes advantage of the hydrogen balance which is inherent for 

alpha, internal, and terminal hydrogens on any paraffinic molecule.  H-NMR has the 

ability to distinguish these groups of hydrogen atoms with great clarity.  As an example, 

Figure 8.2 shows a comparison of the H-NMR spectra which result from heptane, 1-

heptene, 2-heptene, and 3-heptene.  One can clearly see the inherent differences which 

result from alpha vs. internal olefins.  α-Olefins have two distinct peaks which are 

responsible for three protons on the molecule.  These appear at chemical shifts of 4.9 

and 5.7 ppm.  Internal olefins have a distinct peak at 5.3ppm that corresponds to two 

protons.  By taking this into account, and observing the terminal hydrogen peak at 

~1ppm which is present, along with the inherent terminal hydrogen peak at 1.6ppm 

which results from β-olefins, one can conduct a mol balance on the system assuming 

that all of the products are either paraffins or mono-unsaturated olefins.  This proves to 

be an extremely valuable tool when utilized along with GC-FID, as one has the ability 

to estimate the percentage of total and alpha olefins which are present in the sample.  

These results can be corrected for the case of impure samples by measuring the 

percentage of acids, esters, aldehydes, and alcohols via GC-FID and accounting for the 
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additional influence that these will have on the terminal hydrogen peak and thus the 

overall mol balance. 

      

 

Figure 8. 2 H-NMR spectra of n-heptane, 1-heptene and its olefinic isomers 

 

Through the use of this technique, one now has the ability to measure not only 

catalytic conversion, but also α-olefin selectivity and olefin isomerization which results.  

This will be the primary focus of the next catalytic strategy, with the applications 

towards generating fuels being the secondary objective.  As will be observed later, these 

techniques have a very common goal, as the optimum catalyst which maximizes olefin 

selectivity turns out to be the best catalyst for deoxygenating methyl esters and 

triglycerides while minimizing hydrogen consumption as well. 
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8.2.4 Proof-of-concept reactive distillation semi-batch reactor for maximizing alpha 

olefin yields 

  As a first approach towards maximizing alpha olefin concentration, the methyl 

ester methyl-laurate will be considered as the feed probe molecule.  This will provide 

insight towards the production of olefins for specialty chemicals, as well as 

hydrocarbons for fuels.  Because alpha olefins have a rapid rate of isomerization 

associated with them, and olefins are often attributed to deactivation of catalysts via 

coke formation, some method for rapidly removing the intermediate alpha olefins must 

first be developed.  Although the ideal approach would be either a reactive distillation 

or monolithic type reactor, as a first approach this can be accomplished by operating a 

semi-batch reactor under conditions with which alpha olefins will preferentially 

vaporize.   

A schematic of the reactor system can be observed below in figure 8.3.  The 

objective is to operate at a pressure such that C11 olefins will vaporize as soon as they 

are produced, thus inhibiting further isomerization while the feed and solvent will 

remain in the liquid phase.   
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Figure 8. 3 Schematic of novel reactor for α-olefin conversion from methyl esters and 

triglycerides.  

[Courtesy of Martina Chiappero at OU
7
] 

 

By operating under these conditions, one can potentially react the feed 

molecules selectively, and continuously remove the high value olefins which are 

produced.  Liquid phase reactions were conducted by Martina Chiappero at OU
7
.  For 

methyl laurate, 1g of the catalyst of interest was first placed inside the reactor, which 

was then reduced under hydrogen at 350°C for two hours.  The reactor was then purged 

with helium and the feed + solvent (hexadecane) was injected to the system under 

conditions at which the olefins would be in the vapor phase while the feed would 

remain liquid at equilibrium.  For methyl laurate, these conditions were 320°C, 80psig.  

A helium flow rate was maintained at 100mL/min in order to purge the gaseous 

products into the liquid traps 1 and 2 downstream. 

Catalysts investigated were 1wt%Pt/SiO2 and 1wt%Pt-1.3wt%Sn-

1.5wt%K/SiO2.  Pt was chosen as a first step as this catalyst is known to be very active 

for decarbonylation and decarboxylation.  SiO2 was utilized as the support in order to 

ensure that the results were not skewed by any acidity provided by the support.  The 
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addition of Sn has multiple effects on Pt, including a lowering of Pt ensembles which 

are responsible for olefin isomerization, as well as the electronic effect which lowers the 

adsorption strength of olefins to the Pt surface, which also should result in a lower 

degree of isomerization.  K was initially added in order to neutralize any residual 

acidity from the chloride precursors that were utilized to create the alloy.  It was later 

found by Phuong Do and Min Shen by XPS that the chloride atoms are not strongly 

bound to the surface, and K actually increases the Cl concentration on the surface by 

stabilizing them, although they are neutralized.  Other effects of the K, such as evidence 

that the K partially segregates the Pt-Sn alloy, are currently under investigation
8
.   

Results after 3 hours for each of these catalysts can be observed below in table 

8.1.  Through a combination of GC-FID with H-NMR, one is able to obtain the 

conversion of the feed, as well as the selectivity towards alpha and internal olefins.  One 

can clearly observe the dramatic advantage of the PtSnK catalyst.  Not only is the 

catalyst much more selective towards olefin conversion, but it also is more selective 

towards producing alpha olefins.  As one may deduce, these resulting products are 

highly correlated.  Because the Sn reduces the ensemble size of the Pt atoms, and 

decreases the adsorption strength of olefins on the surface, there is a lesser degree of 

coke formed, which subsequently deactivates the catalyst.  Coke formation at the same 

time generates a source of hydrogen, such that the overall olefin selectivity is much 

lower.  Because of this, PtSnK is the superior catalyst in terms of not only alpha olefin 

selectivity, but also catalyst lifetime.    
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Table 8. 1 Resulting product distributions from the conversion of methyl laurate at 

320°C and 80psig.                                                                                                  

[Courtesy of Martina Chiappero
7
] 

 

      

 As a second step, these catalysts can be utilized to measure the conversion of 

triglycerides directly without the need of a prior transesterification step.  The results for 

an identical reaction where the feed is now trilaurin, or a triglyceride with three 

hydrogenated C12 chains, can be observed below in table 8.2. 
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Table 8. 2 Resulting product distributions from the conversion of trilaurin at 320°C and 

80psig. 

[Courtesy of Martina Chiappero
7
] 

           

All of the advantages observed for PtSnK for methyl esters are still observed for 

the case of the triglyceride.  In this case, the total conversion, total olefin selectivity, 

and alpha olefin selectivity are still all much higher for the case of the PtSnK catalyst 

than the Pt catalyst alone.   

 This provides an indication as to how a catalyst and reactor can be developed in 

order to obtain a selective product which resembles conventional fuels from a 

renewable resource.  The molecular engineering strategy is very much a part of this 
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study, although, as with the hydrogenation of aromatics, the overall desired product is 

very well defined.    

 

8.3 Influence of equilibrium and metal particle size on the 

hydrogenation/hydrogenolysis of diethylketone
9
  

 

8.3.1 Introduction 

As more emphasis is placed on renewable sources of energy, the value of 

knowledge of oxygenate conversion chemistry becomes increasingly important.  

Specifically, understanding conversion of C=O bonds to alcohols, and alcohols to 

olefins and saturated hydrocarbons.  Increased knowledge in these areas can lead to not 

only improving the properties of fuels and making them more fungible, but also the 

development of several high-value specialty products.  Symmetrical ketones are 

produced as the result of decarboxylative ketonization of light acids.  This is a very 

promising reaction for converting the light acids in bio-oil to higher value products.  

Knowledge gained for their conversion is not only fundamentally important, but has a 

strong practical aspect as well.   

One area which has not been studied as rigorously with oxygenates as with 

hydrocarbon fuels is the influence of temperature on reaction rates and product 

selectivity.  Palladium is a well known catalyst for hydrogenation of ketones and 

aldehydes to their corresponding alcohols under mild conditions, as well as 
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hydrogenolysis to the corresponding alkene and alkane at higher temperatures. At 

temperatures greater than ~350
°
C, Pd has proven to be a good catalyst for cleavage of 

C-C bonds and decarbox/onylation reactions as well.
1,2

   Very little work has been done, 

however, with regard to the effects of temperature on product selectivity and reaction 

rates.  Furthermore, the effects of metal particle size and support have not been studied 

for most deoxygenation reactions.  For these reasons, a study using the simple 

symmetrical ketone, 3-pentanone (diethylketone) was conducted in a flow reactor in the 

presence of hydrogen in order to determine these effects on product selectivities and 

reaction rates.  

  Diethylketone (DEK) was chosen as the model compound in this case for a 

variety of reasons, the main one being its practicality as a product of propanoic acid 

decarboxylative ketonization.  Several ketones are also found in pyrolysis oil, although 

many are aromatic ketones, information learned from this simple model compound can 

be applied to guide the deoxygenation of more complicated molecules to form both 

specialty chemicals and fungible fuels.  All of these place great value on a deeper 

understanding of the role of temperature and particle size on the conversion of 

oxygenates.   
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8.3.2 Experimental 

 

8.3.2.1 Catalyst preparation 

Each of the catalysts used in this case were Pd based, produced via wet 

impregnation at incipient wetness utilizing a Pd(NO3)2  precursor stabilized in an 

aqueous solution containing 10wt% nitric acid.  Once the metal precursor was 

deposited, the catalyst was dried overnight at 120°C and then calcined at 400°C in air 

for 3 hours. A liquid/solid ratio of 0.9ml/g was used for the γ-Al2O3 (HP-140, Sasol), 

and 1.0ml/g for the SiO2 (HiSil 210, Pittsburg Plate Glass Co.).   

 

8.3.2.2 Catalyst characterization  

 CO chemisorption was conducted via the dynamic adsorption method in a flow 

cell.  The catalyst was first reduced in H2 for 2h at 200°C, and then cooled to room 

temperature in He.  CO pulses were then sent through the catalyst bed and the resulting 

signal was monitored via an FID detector until the area of each pulse did not vary 

within ±1%.  The gas exiting the reactor was passed through a methanator catalyst of 

6wt% Ni/Al2O3 with a co-flow of hydrogen maintained at 400°C in order to convert the 

unreacted CO to methane.  This final area was taken as the amount of CO in each pulse 

and the difference between this area and the area of the first injections was taken as the 

amount adsorbed on the sample.  From this method, the ratio of moles of CO/moles of 

total Pd was found for each sample. 
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8.3.2.3 Catalytic Activity Measurements  

 Each of these experiments was conducted in a tubular flow reactor at 

atmospheric pressure.  The catalyst was reduced for 2hr in H2 at 200°C prior to the 

introduction of the diethylketone (DEK) feed.  A H2/feed molar ratio of 30 was 

maintained throughout the course of the reaction.  The feed was then introduced to the 

reactor via an IscoLC-5000 high-pressure syringe pump.  Samples exiting the reactor 

were passed through a 100µL loop and samples were injected online via a 6-port valve 

to a Hewlett-Packard 5890 plus GC equipped with a FID detector for compositional 

analysis.  After the 6-port valve, a glass trap in a dry ice and acetone bath maintained at 

-80°C was used to trap the reaction products for identification purposes.  Product 

identification was achieved through the use of a Shimadzu GC-MS-QP5000.  Pure 

component standards were also utilized in order to further verify each of the reaction 

products.   

W/F was varied in each case by maintaining the same flow rate of diethylketone 

(0.7mL/h) and varying the amount of Pd catalyst for each case.  Inert SiO2 was mixed 

with the active catalyst in order to maintain a constant reactor bed size and eliminate 

bypass of reactants for small W/F values.  All catalytic W/F comparisons were made 

with data taken at 1 hour TOS.  No significant deactivation was observed for any of the 

cases of this study. 
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8.3.3 Results and Discussion 

 

8.3.3.1 Product equilibrium as a function of temperature 

In the presence of hydrogen and metals, ketones are readily hydrogenated to 

their corresponding alcohols, which can undergo subsequent CO hydrogenolysis to 

produce the resulting hydrocarbons.  This is illustrated below for DEK, with saturated 

and unsaturated hydrocarbons grouped together as the focus of this study is on the 

hydrogenation/hydrogenolysis of the CO bond.   

 

It is well known that the equilibrium between the conversion of ketones and 

aldehydes to their corresponding alcohols is highly temperature dependent, with 

equilibrium favoring the alcohol at lower temperatures.  In order to illustrate this, the 

equilibrium between diethylketone and 3-pentanol was calculated as a function of 

temperature as can be seen in figure 8.4.   



 

176 

 

 

Figure 8. 4 Equilibrium conversion of diethylketone to 3-pentanol as a function of 

temperature. 

 

These results were calculated through the use of SimSci Pro/II software while 

utilizing the Soave-Redlich-Kwong Panagiotopoulos-Reid equation of state.  The results 

show that the equilibrium conversion of DEK to 3-pentanone becomes decreasingly 

favored as the temperature is increased.  On the other hand, reaction rates increase with 

temperature, and 3-pentanol can be sequentially converted to the corresponding olefin 

and then saturated hydrocarbon.  Hydrocarbons are favored by equilibrium under all 

temperatures considered, but C-O hydrogenolysis has a higher activation energy than 

ketone hydrogenation.  For these reasons, it is not straightforward what the product 

distribution will be at various temperatures.  
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 8.3.3.2 Reaction results as a function of temperature 

Due to the equilibrium trend of decreasing concentration of alcohol at higher 

temperature, but faster rates of reaction, the influence of temperature on product 

selectivity is a very interesting phenomenon.  In order to separate the kinetic and 

thermodynamic influence each will have on the product selectivity, reactions have been 

conducted as a function of increasing catalyst amount (1wt%Pd/γ-Al2O3 CO/Pd-0.25) at 

three different temperatures 200, 225, and 250°C.  The reaction results at 200°C can be 

observed below in figure 8.5. 

 

Figure 8. 5 Concentrations leaving the reactor as a function of W/F at 200
o
C.  Solid 

circles represent the feed (diethylketone), hollow squares represent 3-pentanol, and 

solid triangles represent pentane and pentene. 
9
 

 

Note the rapid conversion of DEK to 3-pentanol at low conversions.  This is to 

be expected as the alcohol is the primary product, but both the alcohol and the aldehyde 

curves experience a sharp change in slope at a W/F of just greater than 1h.  It is 
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hypothesized that this is due to the alcohol and aldehyde approaching the equilibrium 

concentration.  In order to verify this, the alcohol/aldehyde ratio was plotted against 

W/F, and compared with the calculated equilibrium concentration at this temperature 

according to figure 8.4.  The results confirm this hypothesis, as can be observed in 

figure 8.6.  Note the rapid approach to equilibrium at W/F values up to ~1hr.  Shortly 

thereafter, the equilibrium ratio is approached and the highly selective rapid conversion 

to 3-pentanol is drastically reduced.    

   

 

Figure 8. 6 Ratio of 3-pentanol/diethylketone as a function of W/F at 200
o
C.  Symbols 

represent experimental ratios while the line represents the equilibrium ratio.
9
 

 

 While this is an interesting example, it is not unexpected, as this is a common 

phenomenon.  The true interesting aspect is how this behavior changes as temperature is 
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increased.  As a first step, the same analysis as a function of W/F was performed at the 

increased temperature of 225°C.  Results can be observed below in figure 8.7. 

 

Figure 8. 7 Concentrations leaving the reactor as a function of W/F at 225
o
C.  Solid 

circles represent the feed (diethylketone), hollow squares represent 3-pentanol, and 

solid triangles represent pentane and pentene.
9
 

 

For this case, the change in slope is much less dramatic than was observed at 

200°C.  Furthermore, the alcohol reaches a maximum concentration at a much lower 

W/F and percent conversion than was observed at 200°C.  This can be explained either 

by thermodynamics, kinetics, or a combination of the two.  As temperature is increased, 

the thermodynamic equilibrium is shifted towards the ketone, thus making conversion 

to the alcohol less favorable.  At the same time, the rate of C-O hydrogenolysis of the 

alcohol to the hydrocarbon will be much faster at higher temperatures, and the surface 

coverage of the more strongly adsorbed oxygenates will be lower.  In order to 
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differentiate the two, one can again observe the approach to equilibrium, as indicated in 

figure 8.8.   

 

Figure 8. 8 Ratio of 3-pentanol/diethylketone as a function of W/F at 225
o
C.  Symbols 

represent experimental ratios while the line represents the equilibrium ratio.   

 

  Note that in this case, the equilibrium is still approached, but never reached.  

This could be explained kinetically as the alcohol is converted to the corresponding 

hydrocarbon much more rapidly, indicating a higher temperature dependence, and thus 

higher activation energy of the C-O hydrogenolysis reaction.  If this reaction now 

proceeds faster than the first hydrogenation step to the alcohol, this would keep the 

alcohol/aldehyde ratio below the equilibrium value.  An alternative explanation could 

be made due to a lower surface coverage of the strongly adsorbed aldehydes on the 

surface at higher temperatures, allowing the alcohols to subsequently react to form 

hydrocarbons.   
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 To further demonstrate this principle, the temperature was increased to 250°C.  

The results can be observed below in figure 8.9.  In this case, it is very clear that the 

alcohol is quickly converted to the hydrocarbon, as a very minute concentration of 

alcohol is observed for each case.  To further demonstrate that this is not due only to 

equilibrium limitations, figure 8.10 shows that the equilibrium ratio of alcohol/DEK is 

never approached for this case.  This is an interesting concept, as the reaction appears to 

be thermodynamically driven at 200°C, while an increase to only 250°C completely 

shifts the dominant pathway towards conversion to the hydrocarbon.   

 

Figure 8. 9 Concentrations leaving the reactor as a function of W/F at 250
o
C.  Solid 

circles represent the feed (diethylketone), hollow squares represent 3-pentanol, and 

solid triangles represent pentane and pentene. 
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Figure 8. 10 Ratio of pentanol/diethylketone as a function of W/F at 250
o
C.  Symbols 

represent experimental ratios while the line represents the equilibrium ratio. 

 

8.3.3.3 Influence of metal particle size on product selectivity 

 Metal particle size is known to play an important role on selectivity and activity 

for many reactions involving conventional fuel upgrading.  These effects have not been 

studied as extensively, however, for the case of hydrogenation and hydrogenolysis of 

CO bonds.  For this reason, it is of high value to determine the influence of Pd metal 

particle size on CO hydrogenation and hydrogenolysis reactions.   

 Pd metal particle size was modified by changing the Pd loading, as well as 

support.  Catalysts compared were 1wt%Pd/Al2O3, 1wt%Pd/SiO2, and 0.5wt%Pd/SiO2, 

each prepared as indicated in section 8.3.2.1.  Dispersions, as measured by CO 

chemisorption, as well as catalytic activity and selectivity data are summarized in table 

8.3. 
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Table 8. 3  Influence of metal particle size and support on catalytic activity and 

selectivity at 200°C.  TOF were measured at 12% conversion of DEK, assuming 1 

adsorbed CO molecule per active site as measured by CO chemisorption. 

catalyst 

 1wt% 

Pd/SiO2 

0.5 wt% 

Pd/SiO2 

1wt% 

Pd/Al2O3 

Dispersion 16.5% 23.4% 39.7% 

(CO/Pd) 

     

TOF 0.097 0.219 0.564 

(molecules DEK 

converted*site 
-

1
*second

-1
) 

Hydrocarbon/alcohol 

ratio 

0.478 0.157 0.107 

   

  

 

     Several interesting conclusions can be made from this table.  One is the 

influence of the support.  Al2O3 is known to prevent Pd sintering, as indicated by the 

higher dispersion when prepared via identical methods as the 1wt% Pd/SiO2.  

Furthermore, γ-Al2O3 is known to be an active catalyst for dehydration of alcohols to 

their corresponding olefins at higher temperatures.  This is shown to not be a significant 

factor, as the hydrocarbon/alcohol ratio is lower for the alumina supported catalyst than 

for the two silica supported catalysts.  While this does not rule out any dehydration, it 

does provide evidence that this is not the dominant reaction.     
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Comparing the influence of particle size on activity, as measured by the turnover 

frequency, one can observe a very clear and strong trend.  Small deviations in CO/Pd 

result in large variations in turnover frequency, with better dispersions resulting in 

higher activity.  As particle size decreases the fraction of the flat (111) plane decreases, 

while the fraction of low coordination corners and edges increases. It should be noted 

here that the CO/(exposed Pd atom) ratio changes as a function of dispersion.  At 

relatively high dispersions, the CO/exposed Pd atom ratio is approximately 1, while this 

approaches 0.5 at very low dispersions due to the varying nature of adsorption sites on 

the various Pd faces.  For this reason, under this range of dispersions, small differences 

in the measured CO/Pd may actually indicate a much more dramatic change in true 

dispersion.  This could help explain the large shift in TOF with a relatively small 

change in CO/Pd.    

The second interesting phenomenon which occurs as a result of varying particle 

size is the product selectivity.  By comparing the ratio of hydrocarbon/alcohol at a fixed 

conversion of the feed of 12%, one can gain insight as to the preferential reactions 

which are occurring on the various facets of the catalyst surface.  The obvious trend is 

that the hydrocarbon/alcohol ratio decreases with increasing dispersion.  Keeping in 

mind that the TOF dramatically increases with increasing dispersion, one can draw 

conclusions about the nature of the molecules on the various sized particles.  The most 

obvious explanation for this phenomenon is that the increasing steps and edges which 

result from increasing dispersion preferentially increase the rate of hydrogenation of the 

ketone to the alcohol, while the rate of C-O hydrogenolysis to the corresponding alkane 
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is not much improved.  If the edge and defect sites significantly lower the activation 

energy barrier for the first hydrogenation step, this could explain this behavior. 

These results can be explained by the surface intermediates which result from 

varying particle sizes.  As the particle sizes are decreased (higher dispersion), the 

fraction of steps and edges on the surface increases.  Steps and edges preferentially 

adsorb aldehydes and ketones via the η
1

 mode consisting of a bond directly with the 

lone pair of electrons in the oxygen atom.  The (111) planes, however, are known to 

adsorb aldehydes and ketones via the η
2
 mode first through an overlap with the π 

orbital, and then back donation from the metal to the π* orbitals of the O and carbonyl 

carbon.
10

  This forms much stronger bonds with the surface when compared with the η
1
, 

so the molecule has much more time to decompose on the surface to form 

hydrogenolysis products.  For this reason, it is believed that the steps and edges may 

rapidly react the aldehydes to form alcohols that quickly desorb from the surface, while 

the η
2
 species react much more slowly, but at the same time have a higher tendency to 

remain on the surface and undergo C-O hydrogenolysis to form the hydrocarbon.  These 

preferential surface intermediates can explain both the shifts in TOF and product 

selectivity that occur by varying particle size.      

These results can be utilized, in part, to explain the results obtained in section 

8.3.3.1 over 1wt%Pd/Al2O3 as a function of temperature.  As the temperature is 

increased from 200-250°C, the Pd particles may slightly sinter, resulting in a lower 

concentration of steps and edges.  This effect is more pronounced on 1wt%Pd/SiO2.  

After reduction for two hours at 200°C and 1hr reaction at 200°C, the conversion was 

found to be 6.7% with a hydrocarbon/alcohol ratio of 0.52.  Afterwards, the catalyst was 



 

186 

 

subjected to sintering at 300°C for two hours in hydrogen.  The reactor was then cooled 

back down to 200°C, and the feed again introduced.  The conversion was observed to 

decrease to 4.3%, but the hydrocarbon/alcohol ratio increased to 0.95.  Because the 

alcohol is the primary product, and hydrocarbon alcohol ratio was found to increase 

after sintering at a lower conversion, the effects of particle size are definitely playing a 

role in this case.  Because the mobility of Pd on Al2O3 is much less than that on SiO2, 

and results were obtained after only one hour TOS, this effect is likely minimal for the 

reactions described in section 8.3.3.1.  Nonetheless, it still may play a role. 

 

8.3.3.3. Influence of ketone hydrogenation on resulting fuel properties 

    While this fundamental study is useful for obtaining insight as to how 

temperature and metal particle size influence reaction activity and selectivity, it has not 

to this point provided any indication as to how these events will impact fuel properties.  

In order to achieve this, the fuel properties research octane number, vapor pressure, 

water solubility, and density were plotted as a function of conversion over 

1wt%Pd/Al2O3 for the three temperatures of 200, 225, and 250°C.  Fuel properties were 

calculated as described in chapter 6.  Fuel properties exiting the reactor were taken as 

linear combinations of the properties of the compounds produced. 

For each of the temperatures investigated, the trend is eventually the same, as 

the end product is pentane in all cases.  Differences due to the selectivity and rate at 

which the alcohol is converted to pentane, however, may result in significantly different 

fuel properties as a function of conversion.  This is most noticeable for each case at 
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200°C.  At this temperature, the alcohol is the dominant product for a much wider range 

of conversion when compared with the other temperatures.  For this reason, we have 

learned that an effective route for maximizing alcohol conversion over Pd catalysts is to 

utilize lower temperatures and higher dispersions.   

 

Figure 8. 11 Comparisons of research octane number, water solubility, density, and 

vapor pressure of products exiting the reactor as a function of conversion for 200, 225, 

and 250°C. 

            

In this case, the fuel properties for the alcohol and the aldehydes are somewhat 

similar, with drastic differences, including the tradeoff between water solubility and 

vapor pressure being observed as the alcohol is converted to the hydrocarbon.  This type 

of analysis should be conducted for many model compound studies, as it emphasizes the 

need to maximize not only one fuel property, but many.  For this case, by converting the 

diethylketone, one is essentially trading beneficial octane number and high boiling 
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points for lower water solubility and increased volume of fuel.  This is essential in order 

to gain practical insight from model compound studies, as even though nonlinear 

blending was not considered, this can still be utilized to provide important guidance for 

catalytic upgrading.  Through this type of approach, one gains knowledge of how to link 

catalytic properties and conditions with the fuel properties which result. 

8.3.4 Conclusions    

The effects of temperature and particle size have been studied for the conversion 

of diethylketone over Pd. It was found that the increasing temperature prevents the 

alcohol/aldehyde ratio from reaching equilibrium, as CO hydrogenolysis becomes 

dominant at higher temperatures.  Particle size was also found to play an important role, 

as smaller particle size was attributed to a much higher activity, but lower 

hydrocarbon/alcohol ratios at a given conversion. 
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8.4 Condensation of light compounds present in bio oil.  

 

8.4.1 Introduction 

Production of bio-oil by fast pyrolysis is a very interesting area for fuel 

upgrading.  Bio-oil inherently contains several hundreds of different species which must 

be upgraded in order to produce a fungible fuel.  The relatively low operating and 

capital costs of bio-oil compared to other biofuels make it attractive.
11

 However, the 

poor inherent properties of this biofuel lower its potential for widespread application.  

The types of compounds present in bio-oil range from light to heavy oxygenates with a 

large variety of functional groups.  Bio-oil cannot be separated via traditional 

distillation as many of its components polymerize upon heating, resulting in the 

formation of solids.  On the light end, small acid compounds such as acetic and 

propanoic acid pose corrosion problems.  Because of this, pretreatment steps to remove 

the most active functional groups are required before any traditional upgrading can be 

achieved.
12

  While conversion studies have been conducted using bulk bio-oil over 

either traditional hydrotreating catalysts or acidic zeolites, this is likely not the best 

approach.  Ideally, a process which condenses the light (<C5) acids, aldehydes, and 

ketones into higher molecular weight hydrocarbons would be desirable.  Removing 

reactive groups of the larger aromatic oxygenates and thus inhibiting oligomerization to 

low-value solids and improving the fuel stability would be highly desirable.  The 

conditions required to achieve these results are vastly different.  Acid-catalyzed 

ketonization and aldol reactions would be required for the condensation of small 
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oxygenates.  By contrast, metal catalyzed mild hydrodeoxygenation would be required 

for the heavier compounds.   

Upon simple addition of water, bio-oil has been shown to separate into an 

aqueous phase containing carbohydrate derived compounds, while heavy lignin derived 

compounds settle to the bottom.
13

  Through the use of this as well as known interactions 

between model compounds in the two phases, an optimized approach for creating 

fungible fuels from bio-oil could potentially be developed.  Knowledge derived from 

the use of model compounds in fundamental studies will be essential.  In fact, many 

model compound studies that might be almost directly applied in the bio-oil upgrading 

have actually been studied in the development of specialty chemicals, fine chemicals, 

and pharmaceutical products.
14

  Small acids and aldehydes are present in bio-oil, and 

their selective condensation to form higher value products by producing larger 

hydrocarbons connected through C-C bonds could be very desirable.  C-C linkages are 

preferred in fuels over C-O linkages such as those in ethers or esters, as C-C condensed 

products can undergo further hydrotreatment while maintaining their molecular 

backbone.  Model compound studies for the production of pesticides, pharmaceuticals, 

or solvents have been conducted towards producing ketones by acid-acid, acid-

aldehyde,  aldehyde- aldehyde, or aldehyde-ketone condensation to form C-C linkages 

via aldol condensation over either solid acidic or solid basic catalysts.
15,16

   

At the other end of the spectrum, heavy lignin-derived species present in bio-oil 

exhibit stability issues as they are prone to oligomerization and can result in heavy 

compounds that solidify easily and have low fuel value.  For this reason, it is desirable 

to have an alternative strategy for the heavy oil-soluble compounds present in bio-oil.  
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A possible strategy to upgrade these compounds is mild hydrogenation and 

deoxygenation of the most unstable functional groups.  These types of model studies 

have received moderate attention in recent years.  For these types of reactions, it is 

desirable to selectively hydrogenate the oxygen functionalities, while avoiding wasting 

valuable hydrogen in saturating aromatic rings.  Model aromatic compounds, such as 

guaiacols, present in bio-oil have been reacted over commercial hydrotreating catalysts 

with decarbonylation and decarboxylation functions that remove the oxygen groups.
17

  

Not much work has been done, however, using more novel metal catalysts with 

improved selectivities.   

While both of these areas provide important areas for biofuel upgrading, the 

focus of this section will be on the condensation of small oxygenates to larger 

compounds.  Novel techniques are needed in order to maximize the utilization of these 

low value hydrocarbons towards creating a fuel which is compatible with the current 

infrastructure.   

 

8.4.2 Condensation of light aldehydes and acids 

As a first step towards the upgrading of light acids and aldehydes towards high 

value fungible fuels, the most promising catalysts are acidic and basic.  The first barrier 

to overcome is to create methods which can convert the reactive acids towards 

something which is not so problematic.  Many catalysts which have shown excellent 

results for the conversion of aldehydes deactivate in the presence of carboxylic acids.  

An example in the literature was given by James Dumesic’s group
18

 for the upgrading 
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of sugars.  They observed that metal+base CuMg10Al7Ox catalyst was found to be 

excellent for conversion of light aldehydes to higher value products in the vapor phase, 

but the catalyst was quickly deactivated in the presence of acids.  They proposed that 

these acids must be converted as a preliminary step, either via titration with a 

homogeneous base, or via decarboxylative ketonization.   

Decarboxylation of acids to form ketones is a very valuable first step, as the 

benefits to further upgrading are more than enough to compensate for the loss of one 

carbon which is sacrificed.  Ketonic decarboxylation occurs with high selectivity at 

elevated temperatures over reducible metal oxides, although it can be achieved over a 

range of acid and base catalysts as well
19

.  Some of the most promising catalysts are the 

highly reducible Titania and Ceria Zirconia catalysts.  This reaction produces ketones, 

either symmetrical or asymmetrical depending on the reactants, which can be upgraded 

via either hydrogenation as discussed in section 8.3, or further condensation.  The 

optimal second approach should depend on the size of the ketone product.  If it is in the 

diesel fuel range, it should be hydrogenated as discussed above, but if it is still a light 

product, further condensation should be achieved. 

The optimum approach for further condensation, both of aldehydes and ketones, 

is through aldol condensation.  This reaction is extremely valuable due to the fact that it 

produces condensation products with C-C linkages, such that the carbon backbone will 

be maintained after the excess oxygen is removed via hydrotreating.  This reaction is 

known to occur for virtually any carbonyl containing compounds with an alpha 

hydrogen through the utilization of either an acid or base catalyst under a variety of 

conditions.  Basic catalysts are much more active for aldol condensation at low 
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temperatures than acid catalysts.  A schematic of the base-catalyzed aldol condensation 

reaction can be observed below in figure 8.12. 

 

Figure 8. 12  Schematic base catalyzed of aldol condensation mechanism for propanal. 

(Courtesy of Quincy Amen at OU)
20
 

 

Aldol condensation reactions are known to occur for both aldehydes and 

ketones, so long as an alpha hydrogen is present.  Carbonyl containing compounds 

without alpha hydrogens can also undergo aldol condensation, but must be the subject 

of attack of the enolate ion.  That is, there must be some carbonyl containing compound 

present with an alpha hydrogen in order for this reaction to occur.  For this reason, not 

only dimers, but also trimers and tetramers may result from these reactions.  

In the presence of a bifunctional catalyst, interesting results may be obtained.  

Quincy Amen at OU
20

 has investigated aldol condensation in the vapor phase over basic 

and bifunctional catalysts.  At 300°C under atmospheric pressure and a W/F of 0.745h, 

he observed an interesting trend over basic zeolites.  NaX was the most active catalyst 
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initially, but also the most prone to deactivation.  This was explained by the high 

amount of residual acidity due to the relatively hard Na ion.  Furthermore, a cyclic 

trimer product was observed as the result of a Nazarov ring closure, which is an acid 

catalyzed reaction.  For this reason, it was concluded that the acidity of the Na was 

playing an important role in the reaction.  This was confirmed by moving to the larger 

cation, Potassium.  KX showed a lower initial activity, but much improved catalyst 

stability.  The ratio of cyclic trimer/dimer was also found to be much lower for this 

case.  This shows that both acidity and basicity can play important roles in the 

condensation of light aldehydes.   

Once all of the propanal is converted to dimer, no further aldol condensation 

may take place, as no compounds are left with an alpha hydrogen.  In order to further 

this reaction, a metal can be added to the catalyst in order to selectively hydrogenate the 

olefin and allow aldol condensation to progress further.  The metal employed will 

depend on the temperature at which the reaction is taking place.  Under low temperature 

conditions (<100°C), a highly dispersed Pd catalyst would make a good choice, as it is 

extremely selective towards hydrogenating the olefin.  As an example, the dimer from 

the aldol condensation of propanal, 2-methyl-2-pentenal, was hydrogenated in the liquid 

phase over 1wt%Pd/SiO2 (same catalyst as utilized in section 8.3).  100mg of the 

catalyst was placed in a round bottom flask and reduced at 100°C for two hours while 

flowing hydrogen at atmospheric pressure.  A mixture containing 5mL of 2-methyl-2-

pentenal and 50mL n-heptane was then placed inside the reactor at room temperature.  

After 5.5 hours at 50°C, 15% of the feed had converted with 100% selectivity towards 

the saturated aldehyde.  Further increases in temperature would result in faster rates, but 
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temperatures in excess of ~150°C result in significant amounts of decarbonylation.  

This result confirms that Pd can be utilized to selectively hydrogenate the double bond 

at lower temperatures, and potentially allow aldol condensation to continue.  Under 

these conditions, the reaction would then not be limited by the amount of propanal in 

the system as the dimer could convert further.  The reaction would now be controlled by 

the desorption of the heavy condensation products produced. 

 If higher temperatures are utilized for aldol condensation, as may be desirable if 

one wishes to work in the gas phase and increase reaction rates, the catalyst of choice 

should be chosen such that it inhibits decarbonylation and C-O hydrogenolysis.  For this 

reason, Cu or PdCu alloys make good candidates, as both of these catalysts are known 

to rapidly hydrogenate olefins and CO bonds to alcohols, but hydrogenolysis and 

decarbonylation reactions are much inhibited.  While Cu is not selective for C=C 

hydrogenation as is Pd, the equilibrium at higher temperatures favors the aldehyde or 

ketone, which further supports its use under these conditions.        

 While aldol condensation is an extremely useful route for increasing the size of 

the molecule while preserving the hydrocarbon backbone, large condensation products 

which are formed on the surface may serve to deactivate acid and base catalysts.  

Because of this, it may be of interest to work under conditions where only the dimer is 

maximized in order to avoid catalyst deactivation.  Under these conditions, the aldol 

condensation products may not be large enough to fit into the conventional gasoline and 

diesel fuels, so further condensation of these dimers would be desirable.  Furthermore, 

because these reactions produce either an aldehyde or ketone, these products require 

further hydrogenation as a second step in order to reduce water solubility and increase 
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oxidative stability.  It would be extremely valuable if both of these could be 

accomplished in one step, as will be outlined in the next section. 

 

8.4.3 Ether formation from aldehydes and alcohols via metal catalysts 

As a second step for upgrading of aldol condensation dimers, metal catalysts 

may potentially be employed in order to produce large ethers.  This reaction has a very 

narrow range of applicability, but a very high return.  Etherification has been found to 

occur readily for light aldehydes, alcohols, and ketones over specific metals under 

relatively mild conditions (100-130°C).
21

  Pd is especially active for forming ethers 

among the various groups, with the explanation due to the relatively weak adsorption of 

carbonyl groups on the Pd surface.  It has been proposed that the formation of ethers 

results from a η
1
, or atop adsorbed species, next to a η

2
, or di-σ adsorbed species.

22
 It 

has been proposed via theoretical calculations that the preferential adsorption state of 

aldehydes and ketones on Pd (111) is via the η
2

 di-σ intermediate.
23

 At the same time, it 

has been proposed that alcohols preferentially form alkoxide species by adsorbing via 

the η
1
 intermediate.

21
  Because of this, several cases have been reported where an 

alcohol preferentially reacts with either an aldehyde or alcohol to form an ether.
22,24-28

 

Ethers can be formed in very high selectivities, but only under a very mild range of 

conditions.  If temperatures are too mild (<100°C), etherification will not take place, 

while at very high temperatures, side reactions of decarbonylation and C-O 

hydrogenolysis begin to occur.   
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Because of the high potential for this reaction to be applied towards condensing 

dimers and trimers of aldol condensation products to the diesel range, it is of high value 

to test the validity of etherification over Pd catalysts with feeds representative of aldol 

condensation products.  As a first step, the hydrogenated product of propanal 

condensation, 2-methylpentanal, was utilized as a model feed.  Trung Pham at the 

University of Oklahoma
29

 has conducted reactions in a flow reactor at 125°C.  Detailed 

experimental details may be found elsewhere.
29

  Results can be observed below in table 

8.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 8.4. Reaction results from the 

Pd/SiO2 catalysts in a flow reactor maintained at 125°C in H

  

A clear trend is 

larger particle sizes indicate 

Furthermore, as observed in the rightmost column, an increase in reduction temperature 

further increases the selectivity towards ether formation.  This indicates that a high 

degree of sintering could produce a catalyst with high ether selectivity without the need 

to utilize such high Pd loadings.  This supports the explanation that the aldehydes 

preferentially adsorb via the η

thus producing ethers from larger compounds to create diesel range products.

products can have extremely promising fuel properties as well.  As an example, if one 
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. Reaction results from the etherification of 2-methylpentanal over 

catalysts in a flow reactor maintained at 125°C in H2.  Courtesy of Trung Pham 

at OU.
30  

ar trend is observed as particle size is increased.  It should be noted that 

larger particle sizes indicate a greater presence of Pd (111), and less steps and edges.  

Furthermore, as observed in the rightmost column, an increase in reduction temperature 

ses the selectivity towards ether formation.  This indicates that a high 

degree of sintering could produce a catalyst with high ether selectivity without the need 

to utilize such high Pd loadings.  This supports the explanation that the aldehydes 

ially adsorb via the η
2
 route over Pd (111), while alcohols may adsorb via η

thus producing ethers from larger compounds to create diesel range products.

products can have extremely promising fuel properties as well.  As an example, if one 

methylpentanal over 

Courtesy of Trung Pham 

     

particle size is increased.  It should be noted that 

a greater presence of Pd (111), and less steps and edges.  

Furthermore, as observed in the rightmost column, an increase in reduction temperature 

ses the selectivity towards ether formation.  This indicates that a high 

degree of sintering could produce a catalyst with high ether selectivity without the need 

to utilize such high Pd loadings.  This supports the explanation that the aldehydes 

(111), while alcohols may adsorb via η
1
, 

thus producing ethers from larger compounds to create diesel range products.  These 

products can have extremely promising fuel properties as well.  As an example, if one 



 

199 

 

assumes that the oxygen in the molecule was a carbon, this molecule would be 4,6-

demethylundecane, which has a CN of 58.  Now, if one compares ethers with 

hydrocarbons, the properties become even more promising.  n-Propane has a CN of -20, 

while n-pentane has a CN of 30, if one now replaces the middle carbon to produce 

dimethyl ether and diethyl ether, the resulting CNs are 67 and 150, respectively.
6
   This 

provides strong evidence that ether products in this range will have extremely high 

diesel fuel qualities, while the influence of the oxygen on water solubility will be 

minimal due to the large C/O ratio. 

Further support for this hypothesis of an alkoxide next to an n
2
 aldehyde 

resulting in ether formation has also been observed by Trung Pham through the co-

feeding of alcohols with 2-methylpentanal.  Increased selectivities towards ether 

formation were observed when alcohols were utilized, while asymmetrical ethers were 

observed with high selectivity when an alcohol besides 2-methylpentanol was used.  

This is an excellent result for bio oil upgrading, as this etherification can provide a 

second step for upgrading of products resulting from aldol condensation reactions.  Pd 

can serve the dual purpose of hydrogenating any unsaturated compounds at the same 

time. 

 

8.4.4.  Overview of strategy for condensation of light bio-oil compounds 

These results indicate that an optimal path for converting oxygenates would be 

to first ketonize acids to form ketones, followed by an aqueous phase solid base 

catalyzed aldol condensation reaction between aldehydes and the newly formed 



 

200 

 

ketones, combined with a metal to hydrogenate the double bonds and further the 

condensation.  This will yield a product mixture which contains a much lower degree of 

polarity, so it will likely form an organic layer which is insoluble in water.  This phase 

can then undergo a hydrogenation/etherification step in order to selectively hydrogenate 

unwanted olefins, while forming ethers with aldehydes, alcohols, and potentially 

ketones over either a Pd catalyst with a low dispersion or a promoted Pt catalyst.
21

  This 

route could produce a very high quality diesel fuel from a very low initial value 

feedstock.  A schematic of this route is shown in figure 8.13. 

 

Figure 8. 13  Schematic of potential route for producing valuable diesel range products 

from low value bio oil streams. 
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8.5. Conclusions  

We have considered several strategies for upgrading of biofuels while utilizing novel 

catalytic strategies.  Each of these strategies was guided by a purpose which was 

ultimately driven by fuel properties.  The end result in each case is a deeper 

understanding of reaction intermediates occurring on the surface, and their relationship 

to the catalyst.  By knowing the fuel properties of the compounds which may be 

produced, and using this as guidance, the ability has been gained to tailor a catalyst in 

order maximize the desired fuel properties, and develop novel strategies to obtain 

optimized fuels from renewable sources.   
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CHAPTER 9 

 

9. Novel Emulsion Catalysts for Upgrading of Bio-Oil 

 

9.1 Introduction 

The upgrading of bio-oil introduces several interesting challenges and 

opportunities for the molecular engineering strategy.  As discussed in chapter 8 section 

4, these compounds may be separated based on their boiling points and water 

solubilities into somewhat broad “cuts”.  While true distillation is impossible, as high 

temperatures cause a heavy degree of polymerization and loss of valuable products, 

treatments such as low temperature vacuum distillation and sequential quenching 

provide promise for breaking this oil into several treatable streams.  In order to gain 

further separation, potentially the most advantageous method of separation is through 

each molecule’s polarity.  This can be accomplished through the addition of either water 

or oil to a particular fraction of bio-oil.
1
   

Even within these fractions, there will likely be a broad distribution of products, 

some which should be condensed to larger products as discussed in chapter 8 section 4, 

and some which should be deoxygenated in order to improve stability.  A schematic of 

this problem is shown below in figure 9.1.  
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Figure 9. 1 Conceptual illustration emphasizing the need for selective strategies for 

upgrading of bio-oil. 

 

One strategy cannot be utilized to improve the properties of bio-oil, but rather a 

unique strategy should be utilized for each phase. By taking advantage of the water 

solubility of each phase one could, for example, selectively condense the aqueous phase 

while selectively hydrogenating the aqueous phase.  If one were able to do this in a 

single reactor, this would be of enormous benefit for bio-oil processing.  This provides 

the basis for the idea, but the possibilities created from the system which results can be 

virtually endless. 

The potential solution for this is an interfacial catalyst, one which is capable of 

selectively performing reactions in both phases.  In order to accomplish this, as well as 

increase catalytic surface area for reaction, an ideal solution would be to create a 

multifunctional emulsion which is able to catalyze specific reactions in the two phases.  

This approach could become a reality through the creation of Pickering emulsions with 

multifunctional catalytic properties.    While Pickering emulsions are not uncommon in 

the literature for stabilizing oil/water droplets with solid particles
2-6

 no example has 
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been shown to this point where these can be utilized as multifunctional catalysts capable 

of reacting both phases independently.   

Potential candidates have been proven to exist through the use of “black sand” 

nano-hybrids, which are single wall carbon nanotubes, as well as the silica support on 

which they were grown.  Black sand is inherently amphiphilic, as it prefers to orient 

selectively at the water oil interface.  An example is shown in the image below (figure 

9.2) for a mixture of heptane (top layer) and water (bottom layer). 

    

Figure 9. 2 Preferential orientation of black sand at the oil/water interface upon 

addition to an oil/water mixture.  The top phase is 1-heptene, while the bottom is water. 
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The proposed idea is that, while black sand is amphiphilic, it contains nanotubes 

and silica which have very different wettabilities in the two phases.  Nanotubes which 

are free of defects should preferentially orient themselves on the oil side of the 

interface, while silica should orient more on the polar side.  If the slightly polar silica is 

playing the larger role, the nano-hybrids will preferentially stabilize oil in water 

emulsions, while if the non-polar nature of the nanotubes is playing the stronger role, 

the emulsions will be reversed.  A schematic of these types of emulsions is shown in 

figure 9.3.   

                                     

Figure 9. 3 Schematic of water in oil vs. oil in water emulsions as prepared via nano-

hybrids.  Blue spheres represent silica particles while black lines represent carbon 

nanotubes. 

        

Black sand does not create thermodynamically stable emulsions, but it can 

stabilize oil in water or water in oil emulsions if kinetic energy is added to the system.  

These emulsions can be created simply by addition of oil to a dispersed solution of 

nanotubes in water, followed by stirring.  Dr. Min Shen at OU has shown that the 

particle size can be dramatically influenced by the degree of sonication of the oil+water 

mixture, and the emulsion volume can vary dramatically depending on the oil/water 

ratio.  As an example, Figure 9.4 shows various emulsions of 2wt% black sand with 
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varying decalin/water ratios produced via the CoMoCAT process, and provided by 

SouthWest Nanotechnologies Inc. (SWeNT). 

 

    

 

Figure 9. 4 Influence of varying decalin/water ratio on emulsion 

volume.  Emulsions are indicated by the black, non-transparent layer.  

Image courtesy of Dr. Min Shen at OU. 

 

For catalytic purposes, it would be highly desirable to create some selective 

activity through either the deposition of metals selectively on the nanotubes or silica, or 

through the acid or base functionalization of either phase.  As a first step, Pd metal 

deposition will be applied to study the reactivity and selectivity of dopant molecules in 

decalin water emulsion mixture.  Octanal was chosen as the model compound soluble in 

the oil phase, and glutaraldehyde was chosen as the model compound which is most 

soluble in the water phase.  These molecules are readily hydrogenated over Pd, and 

were chosen in order to give a proof-of-concept for this type of reaction to indicate its 

potential. 
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9.2 Experimental 

This project is a collaboration with Jimmy Faria and Min Shen at OU. 

9.2.1 Catalyst preparation 

Black sand was obtained from SouthWest Nanotechnologies Inc. (SWeNT) via 

the patented CoMoCat process.  As-synthesized particles were passed through a micro-

fluidizer in order to achieve more uniform particle sizes.  5wt%Pd was deposited on the 

nanotubes via incipient wetness impregnation with a Pd(NO3)2 precursor stabilized in a 

10wt% nitric acid solution.  Samples were dried overnight at 110°C and subsequently 

heated in a flow of He to 300°C for two hours.   

 

9.2.2 Reaction procedure 

Reactions were conducted by placing 30mg of black sand in 15 mL of water.  

The black sand was then dispersed in the water via 15 minutes of sonication in a horn 

sonicator.  To this mixture, 15mL of decalin (>98%, Fluka) was added.  This mixture 

was then placed inside a Parr reactor and brought to 200psig in He while continually 

stirring the mixture in order to produce and maintain emulsions.  The mixture was then 

heated to 100°C, where it was reduced in bubbling H2 (100mL/min) for 2 hours before 

introducing the reactive model compounds.  A 5mL mixture of equimolar octanal and 

glutaraldehyde was then introduced to the system via a connected bomb which was 

pressurized with He.  The reactant mixture was then maintained at 100°C and 200psig 

for three hours while continuously bubbling hydrogen at 100mL/min.   
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After reaction, the mixture was cooled to room temperature in He while 

maintaining 200psig of pressure.  The pressure was then slowly released, and the 

contents of the reactor were vacuum filtered in order to separate the liquid sample from 

the nano-hybrids.  The volume of each phase was subsequently measured in order to 

ensure that the mass balance was closed, and a sample of each phase was injected into a 

HP-6890 GC-FID for product quantification.   

For single phase reactions, an identical procedure was followed, with 30mg of 

nano-hybrids introduced to 30mL of either water or decalin, sonicated for 15 minutes, 

and then treated identically to the emulsion reactions.  For each of these cases, double 

the amount of glutaraldehyde or octanal was introduced to the single phase water or oil 

reactions, respectively, in order to maintain identical concentrations in each case while 

maintaining similar volumes in the Parr reactor.   

 

9.3 Results and Discussion      

 In both the emulsion and single phase reactions, glutaraldehyde yields as a 

primary product 5-hydroxypentanol.  This product was not observed, however, as only 

the cyclic hemiacetal product was present after the reaction.  This occurs via attack 

from the nucleophilic oxygen of the alcohol towards the carbonyl carbon, identical to 

the cyclization of glucose.  The secondary product observed was 1,5-pentanediol.  For 

the case of octanal, the only product observed was 1-octanol. The results from the 

glutaraldehyde/octanal emulsion mixture are very interesting, with the most important 
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result being the activity and selectivity of the emulsions when compared with the single 

phases.  Results from these activity tests are shown in figure 9.5. 

 

  

Figure 9. 5 Conversion of model compounds in the emulsion vs. oil or water phase 

alone. 

 

There are two interesting conclusions which may be drawn from this graph.  

One is the increase in conversion of glutaraldehyde for the emulsion phase when 

compared with the water phase alone.  This is to be expected, as the increase in surface 

area from the emulsions provides increased surface area for reaction and lowers 

diffusion limitations.  This result presents a strong case for these emulsions, as it 

provides evidence that increases in activity may be achieved.   

The second trend observed is the decrease in conversion of octanal in the 

emulsion phase when compared with the oil phase.  This is suspected to be due to a 

higher percentage of Pd located on the polar silica than the non-polar nanotubes, 
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although further investigation is needed to confirm this hypothesis.  If this is true, then 

the reaction in a single oil phase will have access to the Pd located on both the silica and 

the nanotubes, while the reaction in the emulsion phase will only have preferential 

access to the Pd on the nanotubes.  This suggests that the nano-hybrids are modifying 

both the activity and selectivity towards reaction in both phases.  

 

9.4 Conclusions and potential applications 

These results provide promising proof-of-concept evidence for the use of these 

nano-hybrids for the selective reaction of a biphasic mixture at the interface.  The 

potential applications which may arise from this type of approach are extremely 

numerous.  For bio-oil upgrading, one could potentially introduce basic functionality on 

the polar end, either by depositing active components on the silica, or by growing the 

nanotubes on a basic support.  If metal can then be placed selectively on the nanotubes, 

one could potentially do the aldol condensation as well as hydrogenation/etherification 

step as outlined in chapter 8 in one reactor.  Other potential applications will likely soon 

result, including aqueous phase reforming, specialty chemical production, sugar 

upgrading to fuels, lignocellulosic bio-oil selective hydrotreating, triglyceride 

conversion, and many more.  This serves as an extremely promising first step for what 

should be a very exciting area of research in the near future.      
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CHAPTER 10 

 

10. Outlook and Path Forward 

 The molecular engineering strategy as applied to fuels has proven to be an 

extremely valuable approach towards developing of novel catalytic strategies as 

potential solutions for a variety of areas.  This work serves as a demonstration of the 

types of problems this approach can be utilized to solve.  The transition from 

conventional fuels to renewable fuels should serve as an example that, while the 

reactions involved and conditions employed to improve the various fuels may be widely 

different, the underlying approach is the same.   

While virtually every fundamental study has some degree of practical driving 

force, and most practical catalytic screening tests contain some degree of guided 

intuition, this approach serves as, in my opinion, the optimal blend of the two.  By 

conducting practically driven fundamental catalytic studies, while continually linking 

them to the important resulting fuel properties, a synergistic effect is obtained.  As 

viewed from a fundamental approach, fundamental researchers are less limited by 

practical studies in order to determine if a particular approach is practical.  As viewed 

from a practical standpoint, practical researchers now are less limited by fundamental 

studies in order to determine what is guiding their results.  The end result of this 

approach serves as a catalyst for facilitating communication between the two areas.  

Through this, strategies are obtained in a timely manner which were built on a sturdy 

fundamental foundation.  
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This approach is arguably the best for determining rapid solutions to important 

problems.  This approach serves as an extremely valuable tool for approaching and 

obtaining optimal strategies for a variety of challenges in the energy industry.  It is 

likely that this type of approach which will play a large role in solving not only our 

current challenge of utilizing renewable fuels, but the many unforeseen challenges 

which will be presented to the energy industry in the future.   
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