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ABSTRACT

In this dissertation, we introduce a new algorithm for generating simulation re-

lations between nonlinear control systems that are affine in inputs and disturbances

and provide precise mathematical conditions ensuring that the algorithm works as

intended. Moreover, we prove that under appropriate conditions, making the “right

choices”in the algorithm leads to a maximal simulation relation of the first system by

the second. We also construct several illustrative examples showing in detail how the

algorithm works in specific instances and also indicate some of the limitations of the

algorithm.
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0. INTRODUCTION

In broad terms, control theory is the study of ordinary differential equations or

dynamical systems containing a parameter called a control. Different values of the

control parameter induce different solutions or system trajectories, thus allowing one to

influence or “control”the evolution of the system. Consequently, starting at a specified

initial value of the system, one can reach a multitude of states depending on the choice

of the control parameter. In this context, there are several questions that can be raised.

For example, in investigating the reachability problem, one of the questions of interest

is whether or not one can control the system in order to reach a desired final state by

starting from a given initial state. A thorough discussion of this question, as well as

other fundamental foundational issues, can be found in [7] and [17].

One of the important steps in the development of the theory of control systems

was the realization that the state space, i.e., the space in which the trajectories of the

system evolve, is in many cases not an Euclidean space or even a space diffeomorphic to

an Euclidean space but rather a differentiable manifold. For example, when studying

the dynamics of a rigid body, the state space naturally associated to the system is

SO(3)×R3, where SO(3) denotes the group of all three-dimensional rotations about the

origin. For other interesting examples and applications involving mechanical control

systems, the reader is referred to [2] or [17]. Since, in general, the state space of

a control system is a differentiable manifold, this led to the development of a new

branch of control theory called geometric control theory in which differential geometric
1



concepts such as vector fields, distributions, or vector bundles are employed in the

study of control systems.

An overarching problem in geometric control theory is represented by the clas-

sification of control systems. In one of the first attempts in this direction, con-

trol systems have been classified based on state space equivalence. When re-

garded as families of vector fields indexed by a control parameter, control sys-

tems are said to be state space equivalent if there exists a diffeomorphism be-

tween the state spaces of the two systems whose differential “conjugates”the two

families of vector fields (see [2]). So, if we assume for simplicity that for both

systems the state space is Rm and the control space is Rd, then the systems

ẋ = f(x, u) and ẏ = g(y, u), f, g : Rm × Rd → Rm, x(t), y(t) ∈ Rm, u(t) ∈ Rd,

are said to be state space equivalent if there exists a diffeomorphism Φ : Rm → Rm

such that

for any x ∈ Rm, ω ∈ Rd we have Φ∗x(f(x, ω)) = g(Φ(x), ω).

For systems that are analytic and transitive, Krener ([10]) obtained a complete

characterization of local state space equivalence in terms of (infinitely many) iterated

Lie brackets involving the vector fields associated to the two systems. A similar char-

acterization for global equivalence was derived by Sussman in [18] and [19] under

additional assumptions. The problem for smooth systems has been further analyzed

in [8]. However, as it has been noted, despite its natural definition, state space equiv-

alence induces too many equivalence classes. So one needs to look for more general

equivalence relations.

One step in this direction was the introduction of feedback equivalence (see [1]

and [9]). Two systems as above are called feedback equivalent if, in addition to the
2



diffeomorphism Φ considered above, we also have a map Ψ : Rm ×Rd → Rd such that

the map (x, x̄) → (Φ(x),Ψ(x, ω)) is a diffeomorphism and

for any x ∈ Rm, ω ∈ Rd we have Φ∗x(f(x, ω)) = g(Φ(x),Ψ(x, ω)).

The latter equivalence notion generalizes the former in that while the state space

equivalence requires that both systems have the same input, for feedback equivalence

the corresponding input for the second system is now a function of the state parameter

x and the input ω. However, one common drawback is that in both cases the state

spaces must be diffeomorphic and hence have the same dimension.

A different approach to generalizing the state space equivalence concept has been

taken in [11] and [12], where the authors employ model reduction techniques to reduce

the dimension of the state space of the second system while still requiring the same

input function for both systems. More recently, Pappas introduced the concept of

Φ−related control systems (see [14]), which further generalizes both state space and

feedback equivalence. The main idea in the aforementioned reference is that we start

with a “complex”system (where complexity could refer to a large dimension of the

state space or a high degree of nonlinearity) and we want to “relate”or “abstract”it

with a “simpler”system. So, two systems given as

ẋ = f(x, u), f : Rm × Rd → Rm, x(t) ∈ Rm, u(t) ∈ Rd,

ẏ = g(y, v), g : Rn × Rp → Rn, y(t) ∈ Rn, v(t) ∈ Rp

are said to be Φ−related if there exists a mapping Φ : Rm → Rn whose fundamental

property is that it sends trajectories of the first system onto trajectories of the second.

We also say that the second system is an abstraction of the first. As noted in [14],

this condition is equivalent to

Φ∗x{f(x, ω)|ω ∈ Rd} ⊆ {g(Φ(x, θ))|θ ∈ Rp}
3



for all x ∈ Rm, which can be seen to be a generalization of both state space and

feedback equivalence.

It is interesting to observe that, regardless of whether we have state space equiv-

alence or Φ−related systems, the trajectories of the first system can be “mapped”to

trajectories of the second in a nice geometric manner, that is, by means of Graph(Φ) ⊂

Rm × Rn, where Φ is the function “relating”the two systems. Indeed, any trajectory

of the first system can be “lifted”to a curve in Graph(Φ), which then projects onto

a trajectory of the second system. Based on this idea, one can actually define a new

way of relating two systems by replacing Graph(Φ) ⊂ Rm × Rn by a subset R of

Rm×Rn with the property that certain trajectories of the first systems can be “paired

up”with trajectories of the second through R. We call R a simulation relation of the

first system by the second and, if the simulation relation persists when the roles of

the two systems can be reversed, we then say that R is a bisimulation relation. The

reason that we are not requiring all trajectories of the first system to paired up with

trajectories of the second system is that we are allowing relations R which may not

project onto the entire state space of the first system. However, if every trajectory of

the first system can be paired up with some trajectory of the second system, we say

that the second system is a simulation of the first. If the same holds when replacing

the first system by the second, then the two systems are called bisimilar.

The (bi)simulation concept is a relatively new development in geometric con-

trol theory, which was inspired by analogous concepts in automata theory. In [6],

(bi)simulation relations were first discussed in the context of mathematical control

systems in the relatively abstract setting of morphisms and categories. In the case of

linear systems, specific results characterizing bisimulation relations induced by linear
4



surjections have been established in [15]. For nonlinear systems that are affine in the

control, in [20], Tabuada and Pappas discussed bisimulation relations induced by non-

linear submersions and provided an algebraic characterization for local bisimulation

relations. Further results focusing on “admissible”controls and disturbances for both

simulation and bisimulation relations have been obtained by Grasse (see [3],[4],[5]).

An obvious problem in the study of (bi)simulation relations is to determine whether

or not there exists a (bi)simulation relation between two given control systems. A

partial answer to this question was provided in [16] by van der Schaft who introduced

an algorithm for computing maximal (bi)simulation relations between systems that are

affine in inputs and disturbances. However, it should be noted that, while innovative,

the algorithm (especially in the nonlinear case) is only presented in a broad, heuristic

manner, with few mathematical details and no examples.

In this dissertation, inspired by [16], we introduce a new algorithm for generating

simulation relations between nonlinear control systems that are affine in inputs and

disturbances and provide precise mathematical conditions ensuring that the algorithm

works as intended. Relative to the maximality issue, we prove that under appropriate

conditions, making the “right choices”in the algorithm leads to a maximal simulation

relation of the first system by the second. In addition, we construct several illustrative

examples showing in detail how the algorithm works in specific instances and also

indicate some of the limitations of the algorithm.

In Chapter 1, we review some basic differential geometric concepts and discuss the

Constant Rank Theorem and its proof in the context of differentiable manifolds. We

pay close attention to connectivity, which is an aspect that is often overlooked in the

discussion of this theorem, yet it plays a significant role in our investigations. In
5



addition, we present a mild generalization of the Constant Rank Theorem showing

that, under certain conditions, the preimage of a submanifold is a submanifold as well.

We note that the case we are addressing is in some sense dual to the classical case

when the function is transverse to the submanifold.

In Chapter 2, we discuss some fundamental constructions involving vector bundles

such as the Whitney sum of two vector bundles and the bundle of homomorphisms

associated to a vector bundle. We also show that, given a vector subbundle of a vector

bundle, we can construct a smooth section of the homomorphism bundle of the larger

vector bundle having a special property with respect to sections of the smaller bundle.

This section allows us to construct a function which is instrumental in obtaining some

of our main results and whose regularity properties, when satisfied, ensure that some

of the sets we consider in Chapter 4 are submanifolds.

In Chapter 3, we define the concept of input-disturbance-output (IDO) system as

a refinement of the control system concept by taking into account the different types

of controls that could arise (inputs and disturbances) and the fact that, in many

applications, it is the external behavior rather than the behavior of the system itself

that is of interest. In section 3.2., we introduce pointwise and admissible simulation

relations between IDO systems and note that, as shown in [4], under appropriate

conditions, the two definitions are equivalent (see Theorem 3.2.8). The introduction

of both of these definitions is motivated by the fact that, in general, the algorithm

we introduce in Chapter 4 generates pointwise simulation relations. However, from

the point of view of trajectories and controls, the proper concept is that of admissible

simulation relations.

Chapter 4 contains our main results. First, we construct an algorithm for generat-
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ing (pointwise) simulation relations between two systems and prove that the algorithm

does indeed generate a simulation relation as claimed (provided such a relation exist)

and that termination occurs in a finite number of steps (see Theorem 4.1.). In address-

ing the problem of generating a maximal simulation relation, we introduce the notion

of regular pre-simulation relations up to some specified order and show that if this

pre-simulation condition is satisfied up to a certain order depending only on the di-

mensions of the state spaces, then, by making the proper choices in the algorithm, the

set we obtain at termination does become a maximal (pointwise) simulation relation.

We also obtain that this set is maximal among all admissible simulations satisfying a

certain “disturbance constant rank”condition.

In Chapter 5, we present several examples illustrating how the algorithm and our

results from Chapter 4 can be applied in specific cases. In particular, our examples

show that the various potential outcomes resulting from the application of the algo-

rithm are not only theoretical possibilities but can in fact occur for specific control

systems.
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1. GENERALITIES ON DIFFERENTIAL GEOMETRY

1.1. Basic Definitions

In all of our investigations, we will use the definition of a differentiable manifold as

given in [21]. So, Mm is an m−dimensional differentiable manifold of class Ck (k ∈ N

or k = ∞) if M is an m−dimensional, second countable, locally Euclidean space

endowed with a differentiable structure of class Ck. We will refer to differentiable

manifolds of class C∞ as smooth manifolds, or simply as manifolds. The tangent

space to M at a point p ∈ M will be denoted by TpM.

Definition 1.1.1. Given two smooth manifolds Mm and Nn, a function f : Mm →

Nn is said to be differentiable at p ∈ M if for any local charts (U, φ)(φ : U → φ(U) ⊆

Rm) around p and (V, ψ)(ψ : V → ψ(V ) ⊆ Rn) around f(p), the function

ψ ◦ f ◦ φ−1 : φ(U ∩ f−1(V )) → Rn

is differentiable at φ(p). We use the terms “map”and “function”interchangeably.

If f : M → N is a smooth function, then its differential at p ∈ M will be denoted

by f∗p : TpM → Tf(p)N.

Definition 1.1.2. Let f : M → N be a smooth map.

a) f is called an immersion if f∗p : TpM → Tf(p)N is injective for all p ∈ M.

b) The pair (M,f) is called a submanifold of N if f is a one-to-one immersion.

c) The function f is called an imbedding if f is a one-to-one immersion and a

homeomorphism onto f(M) with the subspace topology.
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d) If f is one-to-one and onto and if f−1 is smooth then f is called a diffeomorphism.

Remark 1.1.3. As it was noted in [21], there exists an equivalence relation on

the set of submanifolds of a given manifold defined as follows. Two submanifolds

(M1, f1) and (M2, f2) of the manifold N are equivalent if there exists a diffeomorphism

φ : M1 → M2 such that f1 = f2 ◦ φ. In this manner, for each equivalence class there

exists a representative of the form (A, i), where A is a subset of N and i : A → N

is the inclusion. Indeed, if (M,f) is any other representative in the given class, then

we can let A = f(M). The manifold structure on A is the one induced from M by

requiring f to be a diffeomorphism.

While immersions are fundamental in the definition of submanifolds, regular points

and submersions are essential tools in the construction and better understanding of

submanifolds. We define these concepts below.

Definition 1.1.4. If f : Mm → Nn is a smooth map then a point p ∈ M is called a

regular point of f if the rank of f∗p is maximal. Otherwise, p is called a critical point.

A point q ∈ N is called a regular value of f if f−1(q) consists only of regular points.

Definition 1.1.5 Given a smooth map f : Mm → Nn, f is called a submersion if it

is surjective and f∗p is onto for every point p ∈ M.

As we will see in the next section, submersions and, in general, constant rank

mappings allow one to construct submanifolds as preimages of single points.

1.2. The Constant Rank Theorem

Under appropriate circumstances, the following theorem provides the means of rec-

ognizing a subset of a manifold as a submanifold. The theorem is well known, but we

chose to provide a proof for completeness.
9



Theorem 1.2.1 (The Constant Rank Theorem). Let Mm and Nn be two smooth

manifolds and let f : Mm → Nn be a smooth mapping of constant rank k ≤ min(m,n).

For every q ∈ N, the set {p ∈ M |f(p) = q} is a union of at most countably many

disjoint, connected, closed, imbedded submanifolds of M of codimension k.

For the proof we will first need the Rank Theorem.

Theorem 1.2.2. (The Rank Theorem - Euclidean Case). Let f : Rm → Rn be

a smooth map having constant rank k ≤ min(m,n). For each p ∈ Rm, there are local

charts (U, φ) at p and (V, ψ) at f(p) such that

ψ ◦ f ◦ φ−1(x1, x2, . . . , xm) = (x1, x2, . . . , xk, 0, . . . , 0).

Proof. Without loss of generality, we may assume that p = 0 ∈ Rm, f(p) = 0 ∈ Rn,

and the k× k matrix in the upper left corner of the Jacobian matrix associated to f∗0

is nonsingular. Consider the function φ : Rm → Rm given by

φ(x) = (f1(x), f2(x), . . . , fk(x), xk+1, . . . , xm)

and observe that the Jacobian associated to φ at 0 is

Jφ(0) =

[
∂(f1,f2,...,fk)
∂(x1,x2,...,xk)

(0) ∗
0 Im−k

]
,

where Im−k denotes the identity matrix of order (m− k).

Since the determinant of Jφ(0) is nonzero, by the Inverse Function Theorem (see

[21]), there exists an open neighborhood of 0 ∈ Rm so that the restriction of φ to this

neighborhood is a local diffeomorphism onto its image. If we denote the image of this

neighborhood under φ by U, then φ−1 is well defined and smooth on U.

If we let πi : Rm → R the projection onto the i−th coordinate, 1 ≤ i ≤ n, then,

from the definition of φ, it follows that πi ◦φ = f i, 1 ≤ i ≤ k, thus πi = f i ◦φ−1 on U.
10



Moreover, if we let gi := f i ◦ φ−1, k + 1 ≤ i ≤ n then, for all x ∈ U, we have

f ◦ φ−1(x) = (x1, x2, . . . , xk, gk+1(x), . . . , gn(x)).

This way, the Jacobian of f ◦ φ−1 at any x ∈ U is

Jf◦φ−1(x) =

[
Ik 0

∗ ∂(gk+1,gk+2,...,gn)
∂(xk+1,xk+2,...,xm) (x)

]
.

As Jf◦φ−1(x) = Jf (φ
−1(x))◦Jφ−1(x) and since φ−1 is a local diffeomorphism, we have

rank(Jf◦φ−1(x)) = rank(Jf (φ
−1(x))) = constant = k, since f has constant rank k. On

the other hand, by the form of Jf◦φ−1(x), its rank is at least k with equality if and

only if ∂gi
∂xj

(x) = 0 for all i, j with k + 1 ≤ i ≤ n, k + 1 ≤ j ≤ m, and all x ∈ U. It

follows that gk+1, . . . , gn are independent of xk+1, . . . , xm on U.

By shrinking U if necessary, we may assume that for all x ∈ U ⊆ Rm we have

(x1, x2, . . . , xk, 0, . . . , 0) ∈ U. Thus, we can define ψ : U → Rn as follows. For any

x = (x1, x2, . . . , xm) ∈ U, let

ψ(x) = (x1, . . . , xk, xk+1 − gk+1(x1, . . . , xk, 0, . . . , 0), . . . , xn − gn(x1, . . . , xk, 0, . . . , 0)).

Now we have that for any x ∈ U

ψ ◦ f ◦ φ−1(x) = ψ(x1, . . . , xk, gk+1(x), . . . , gn(x)) = (x1, . . . , xk, 0, . . . , 0).

To finish the proof, note that ψ is a local diffeomorphism. Indeed, its Jacobian at 0 is

Jψ(0) =

[
Ik 0
∗ In−k

]
.

So, by the Implicit Function Theorem, ψ is a diffeomorphism on a neighborhood V of

0. ¤
11



Theorem 1.2.3. (The Rank Theorem - General Case) If Mm and Nn are

smooth manifolds and if f : Mm → Nn is a smooth map having constant rank k ≤

min(m,n), then for each p ∈ M, there exist local charts (U, φ) at p and (V, ψ) at f(p)

such that

ψ ◦ f ◦ φ−1(x1, x2, . . . , xm) = (x1, x2, . . . , xk, 0, . . . , 0).

Proof. This can be easily seen to follow from the Euclidean case. Indeed, by con-

sidering any local charts (U1, φ1) at p and (V1, ψ1) at f(p), the function ψ1 ◦ f ◦ φ−1
1

satisfies the hypotheses of the Euclidean case and the local charts (U, φ) and (V, ψ) as

in the conclusion of the general case can be constructed by appropriately changing the

original charts. ¤

The following proposition shows that being an imbedded submanifold is a local

property and also plays an important role in the proof of the Constant Rank Theorem.

Proposition 1.2.4. Let M be a smooth manifold and let S ⊆ M. If for each x ∈

M there exists an open set U ⊆ M containing x such that U ∩ S is an imbedded

submanifold of U of dimension s, then there exists a differentiable structure on S such

that S is an imbedded submanifold of M of dimension s.

Proof. Let U be the collection of all open subsets U as above. For each U ∈ U ,

let iU∩S,U : U ∩ S → U denote the inclusion. By the definition of an imbedded

submanifold, it follows that there exists a differentiable structure on U∩S with respect

to which i is a one-to-one immersion and i is a homeomorphism into. This implies that

the topological structure on U ∩ S is the restriction of the topological structure on U

(and hence M) to S. First, let us construct a topological structure on S as follows: a

subset V ⊂ S is open if it is a union of open subsets of U ∩ S, with U ranging over

a subset of U . Observe that the topology on S defined this way coincides with the
12



subspace topology induced from M. Clearly, every open set in S is the intersection of

an open set in M with S. To show that for every open subset W ⊆ M we have W ∩ S

is open in S with the topology constructed above, note that

W ∩ S =
⋃

x∈W∩S

(Ux ∩W ) ∩ S,

where Ux denotes any open subset of M for which Ux ∩ S is a submanifold of U. But

(Ux ∩ W ) ∩ S is an imbedded submanifold of Ux ∩ W since the intersection of an

imbedded submanifold with an open set from the ambient manifold is an imbedded

submanifold in the chosen open set, with the role of the ambient manifold being played

by Ux∩S and that of the open set by Ux∩W. In summary, we obtain that Ux∩W ∈ U

for all x ∈ W ∩ S, which, by the relation above, implies that W ∩ S is open in the

constructed topology of S.

Since the topology on S is the restriction of the topology on M and since M is Haus-

dorff and second countable, it follows that S has the same properties. In particular, as

a consequence of the fact that S is second countable, we obtain that S has countably

many components. This observation plays an important role in our investigations.

To define the differentiable structure on S, consider U ∈ U and a local chart (V, φ)

in U ∩ S. Since V is open in U ∩ S, it is also open in S and we can declare (V, φ) to

be a local chart in S. To establish the compatibility of the charts, consider two charts

(V1, φ1) and (V2, φ2) around some x ∈ S. If both of them are charts in U ∩ S for some

U ∈ U , then the charts are clearly compatible. Otherwise, let us assume that (V1, φ1)

is a chart in U1 ∩ S and (V2, φ2) is a chart in U2 ∩ S with U1 ∩ U2 ∩ S 6= ∅. If iU∩S,U

denotes the inclusion of U ∩ S into U, then by the Rank Theorem, there exist charts

(V̄1, φ̄1) and (V̄2, φ̄2) around x on U1 ∩ S and U2 ∩ S, respectively, and (Ū1, ψ1) and
13



(Ū2, ψ2) on U1 and U2, respectively, such that

ψ1 ◦ iŪ1∩S,Ū1
◦ φ̄−1

1 (x1, x2, . . . , xs) = ψ1 ◦ φ̄−1
1 (x1, x2, . . . , xs) = (x1, x2, . . . , xs, 0, . . . , 0)

and

ψ2 ◦ iŪ2∩S,Ū2
◦ φ̄−1

2 (x1, x2, . . . , xs) = ψ2 ◦ φ̄−1
2 (x1, x2, . . . , xs) = (x1, x2, . . . , xs, 0, . . . , 0).

Note that it is enough to establish the compatibility of (V̄1, φ̄1) and (V̄2, φ̄2) since

(V1, φ1) and (V2, φ2) are compatible with (V̄1, φ̄1) and (V̄2, φ̄2), respectively, and V1 ∩

V̄1 6= ∅, V2 ∩ V̄2 6= ∅. So, without loss of generality we may assume that (V1, φ1) =

(V̄1, φ̄1) and (V2, φ2) = (V̄2, φ̄2). But then, since ψ2 ◦ φ−1
2 = ψ1 ◦ φ−1

1 on φ1(V1 ∩ V2) ∩

φ2(V1 ∩ V2), it follows that

φ1 ◦ φ−1
2 = ψ1 ◦ (ψ−1

1 ◦ φ1) ◦ ψ−1
2 ◦ i,

where i : Rs → Rn denotes the inclusion of the first s factors and s denotes the

common dimension of V1 ∩ S and V2 ∩ S, Clearly, all maps in the composition above

are smooth, thus showing compatibility.

Next, we need to prove that the inclusion iS,M : S → M is an imbedding. To this

end, note that for any x ∈ S, iS,M∗x is one-to-one since iS,M coincides with iU,M◦iU∩S,U

on U ∩ S for some U ∈ U with x ∈ U and both iU,M and iU∩S,U are immersions. To

show that iS,M is a homeomorphism it is enough to recall that the manifold topology

on S coincides with the subspace topology coming from M. ¤

Proof of the Constant Rank Theorem. Let p ∈ f−1(q) and consider charts (U, φ)

around p and (V, ψ) around q as in the conclusion of Rank Theorem. Note that

x ∈ f−1(q) ∩ U ⇔ ψ(f(x)) = 0 ⇔ φ(x) ∈ {(y1, y2, . . . , ym) ∈ φ(U)|y1 = · · · = yk = 0}.
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Also note that the set appearing on the right side of the line above is a submanifold

of φ(U). Indeed, the set P = {(y1, y2, . . . , ym) ∈ Rm|y1 = · · · = yk = 0} is an (m− k)-

plane, hence a connected (second countable) manifold. Its intersection with the open

set φ(U) is open in P, which implies that any one of its components is an open subset

of P. Since the components are open and mutually disjoint subsets of P and since P is

second countable, it follows that P ∩φ(U) has countably many components. But each

component is clearly an imbedded submanifold of φ(U), which, based on the previous

comments and the fact that P is closed in Rm, implies that P ∩ φ(U) is a closed,

imbedded submanifold of φ(U).

As φ is a diffeomorphism, it follows that

f−1(q) ∩ U = φ−1({(y1, y2, . . . , ym) ∈ φ(U)|y1 = · · · = yk = 0})

is an imbedded submanifold of U. Thus, by Proposition 1.2.4, it follows that f−1(q)

is an imbedded submanifold of M having countably many components. Since f−1(q)

is closed in M and since the connected components of any set are closed in that set,

it follows that each one of the connected components of f−1(q) is a closed subset of

M. ¤

Observation 1.2.5. In many instances we will be required to ascertain whether or

not the preimage of an imbedded submanifold S ⊂ N under a function f : M → N

is itself an imbedded submanifold. The following section provides one solution to

this problem. However, if S is the preimage of a point p ∈ P under some function

g : N → P and if the rank of g ◦ f is constant on M then, by the Constant Rank

Theorem, f−1(S) = (g◦f)−1(p) will be a union of mutually disjoint, closed, connected,

imbedded submanifolds of M.
15



1.3. A Mild Generalization of the Constant Rank Theorem

The Constant Rank Theorem shows that the preimage of a point under a constant

rank mapping is an imbedded submanifold. If we consider preimages of submanifolds

of positive dimension, the same conclusion may no longer be satisfied. In particular,

the preimage of an imbedded submanifold is, in general, not an imbedded submanifold,

even under constant rank assumptions. Indeed, if we consider the function f : R2 → R2

given by f(x1, x2) = (x1, 0), then the rank of f is constant and equal to one. If we

also consider a smooth function g : R → R such that g(x) = 0 iff −1 ≤ x ≤ 1, then

the preimage under f of the submanifold {(x, g(x))|x ∈ R} ⊂ R2 under f is the set

[−1, 1]× R, which is not an imbedded (or even an immersed) submanifold of R2.

Despite the negative result above, one does have some positive results in this di-

rection given certain transversality assumptions (see Theorem 1.39 in [21]). However,

there are many instances in which the transversality condition is not satisfied and we

would still like to be able to recognize the preimage of an imbedded submanifold as an

imbedded submanifold. In this section we investigate a generalization of the Constant

Rank Theorem in which the constant rank assumption is substituted by the following:

Definition 1.3.1. Let M and N be smooth manifolds, let f : M → N be a smooth

map, and let S ⊆ N be an imbedded submanifold of N. We say that S is neat with

respect to f if the following condition is satisfied:

(∗) For every x ∈ f−1(S) there exists an open set V ⊆ N such that f(x) ∈ V, a

function g : V → Rk such that S ∩V = g−1(0), and an open set U ⊆ M such that

x ∈ U, f(U) ⊆ V, and dim[(kerg∗f(y) + imf∗y)/kerg∗f(y)] is constant for y ∈ U.

16



Observation 1.3.2. A point p ∈ N (regarded as a submanifold) is neat with respect

to any constant rank map f : M → N. Indeed, for any point x ∈ f−1(p), consider a

chart (V, g) around p such that g(p) = 0 and let U = f−1(V ). Clearly,

dim[(kerg∗f(y) + imf∗y)/kerg∗f(y)] = dim[({0}+ imf∗y)/{0}] = rankf∗y

is independent on y ∈ U since f has constant rank. Moreover, the remaining conditions

in (∗) are easily checked.

Observation 1.3.3. Any imbedded submanifold S ⊆ Nn is neat with respect to the

inclusion map iS : S → N. To see this, let x ∈ S and consider a manifold chart (V, φ)

of N around x and a neighborhood U of x in S with the property that U is a slice of

(V, φ), i.e.

U = {z ∈ V |(πi ◦ φ)(z) = 0, s+ 1 ≤ i ≤ n},

where 1 ≤ s ≤ n represents the dimension of S and πi : Rn → R represents the

projection onto the i-th factor (see also [21]). Consider now the map g : V → Rn−s

given as g = (π1 ◦ φ, . . . , πn−s ◦ φ). Since S is imbedded, it follows that g−1(0) = U =

S ∩ V. In addition, for any y ∈ U

dim[(kerg∗iS(y) + imiS∗y)/kerg∗iS(y)] = dim[(TyS + TyS)/TyS] = 0

is constant on U, thus showing that condition (∗) is satisfied.

The following lemma clarifies the meaning of the constant term in the definition

above.

Lemma 1.3.4. Let X,Y, Z be finite dimensional linear spaces and consider two linear

mappings F : X → Y and G : Y → Z. Then, we have:

rank(G ◦ F ) = dim[(ker(G) + im(F ))/ker(G)].
17



Proof. Indeed, first note that rank(G ◦ F ) = dim(G(F (X))) = dim(im(G|F (X))). If

we consider the linear mapping G|F (X) : F (X) → Z and apply the first isomorphism

theorem, we obtain that im(G|F (X)) is isomorphic to im(F )/ker(G|F (X)). Moreover,

since ker(G|F (X)) = ker(G) ∩ im(F ), we have

im(G|F (X)) ∼= im(F )/(ker(G) ∩ im(F )) ∼= (ker(G) + im(F ))/ker(G),

where the second isomorphism above follows from the second isomorphism theo-

rem. ¤

Returning to Definition 1.3.1, we see that the expression appearing in condition (∗)

equals rank(g ◦ f)∗y. Based on this observation, we can prove the following:

Theorem 1.3.5. Let M and N be smooth manifolds and let f : M → N be a smooth

map. If S ⊆ N is a closed submanifold of N and if S is also neat submanifold with

respect to f, then f−1(S) is a union of at most countably many disjoint, connected,

closed, imbedded submanifolds of M.

Proof. We will show that for every x ∈ f−1(S) there exists an open set U ⊆ M such

that f−1(S) ∩ U is an imbedded submanifold of U. Since S is neat with respect to f,

there exists an open subset U ⊆ M containing x, an open subset V containing f(x),

a function g : V → Rk such that f(U) ⊆ V, S ∩ V = g−1(0) and dim[(kerg∗f(y) +

imf∗y)/kerg∗f(y)] is constant for y ∈ U. Note that, by Lemma 1.3.4, we obtain that

rank(g◦f) is constant on U. So, by the Constant Rank Theorem applied to the function

(g ◦ f)|U : U → Rk we obtain that ((g ◦ f)|U )−1(0) is an imbedded submanifold of U

of codimension rank(g ◦ f). But

((g ◦ f)|U )−1(0) = (f |U )−1((g|f(U))
−1(0)) = (f |U )−1(g−1(0) ∩ f(U)) =

= (f |U )−1(S ∩ V ∩ f(U)) = (f |U )−1(S ∩ f(U)) = f−1(S) ∩ U.
18



So, by Proposition 1.2.4, f−1(S) is an imbedded submanifold of M, hence so are its

countably many connected components. Since f is continuous and S is closed in N,

it follows that f−1(S) is closed in M. Moreover, the connected components of f−1(S)

are closed in f−1(S) and hence, by the previous observation, they are also closed in

M. To summarize, f−1(S) is a union of at most countably many disjoint, connected,

closed, imbedded submanifolds. ¤

Observation 1.3.6. The theorem above generalizes the Constant Rank Theorem.

Indeed, for any function f : M → N having constant rank, by Observation 1.3.2, any

point p ∈ N is neat with respect to f. But then, by Theorem 1.3.5, the conclusion of

the Constant Rank Theorem follows.
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2. VECTOR BUNDLES AND DISTRIBUTIONS

2.1. Introduction

Definition 2.1.1. A triple (E, π,M) is called a k−dimensional (real) vector bundle

if the following three conditions are satisfied:

(1) E,M are smooth manifolds and π : E → M is a surjective, smooth map.

(2) For every p ∈ M,π−1(p) is a k−dimensional (real) vector space.

(3) For every p ∈ M, there exists an open neighborhood U of p and a diffeomorphism

ψ : π−1(U) → U × Rk with the following properties

(i) pr1 ◦ ψ = π|π−1(U)

(ii) For any q ∈ U,ψq := pr2 ◦ ψ|π−1(q) : π
−1(q) → Rk is a linear isomorphism,

where pr1 : U×Rk → U and pr2 : U×Rk → Rk denote the canonical projections.

We call (U,ψ) a chart of the vector bundle. E,M, and π are called the total space,

base space, and projection of the bundle, respectively. For each p ∈ M,π−1(p) is called

the fiber over p.

Definition 2.1.2. Given two vector bundles π : E → M and τ : F → M, we say

that τ is a subbundle of π if F is a submanifold of E, π|F = τ, and τ−1(p) is a vector

subspace of π−1(p) for all p ∈ M.

Definition 2.1.3. Let π1 : E1 → M1 and π2 : E2 → M2 be two vector bundles.

A smooth map h : E1 → E2 is called a bundle map if there exists a smooth map
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h̄ : M1 → M2 such that π2 ◦ h = h̄ ◦ π1 and for any p1 ∈ M1 the function h|π−1
1 (p1)

:

π−1
1 (p1) → π−1

2 (h̄(p1)) is linear.

In particular, if M1 = M2 and there exists a bundle map h that is a diffeomorphism

and such that h̄ = idM1 , then the two vector bundles are said to be isomorphic.

Definition 2.1.4. A smooth map s : M → E is called a section of the vector bundle

π : E → M if π ◦ s = idM .

2.2. Examples of vector bundles

Among the many vector bundle constructions, we mention the product (trivial) bundle

π1 : M × Rk → M, the tangent bundle of a manifold π : TM → M, the product

of two vector bundles, the pull-back of a vector bundle, the Whitney sum of two

vector bundles, and the homomorphism bundle associated to a vector bundle. For our

purposes, we will briefly review some of these classical constructions below.

• The product of two vector bundles

Given two vector bundles π1 : E1 → M1 and π2 : E2 → M2, π1 × π2 : E1 × E2 →

M1×M2 is a vector bundle whose bundle charts are given by (U1×U2, ψ1×ψ2), where

(U1, ψ1) and (U2, ψ2) are bundle charts for π1 and π2, respectively.

• The pull-back of a bundle

Let π : E → M be a k−dimensional vector bundle and let f : N → M be a smooth

map. Consider the set

f∗E = {(q, v) ∈ N × E|f(q) = π(v)}.

Also, define π1 : f∗E → N by π1(q, v) = q. It follows that π1 : f∗E → N (which we

will also denoted by f∗π) has the structure of a k−dimensional vector bundle. To see
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this, choose a bundle chart (U,ψ) for π and a coordinate neighborhood V of q ∈ N such

that f(V ) ⊂ U. Then we have f∗E ∩ (V × π−1(U)) = {(r, ψ−1
f(r)(x)); r ∈ V, x ∈ Rk}.

f∗E has a differentiable structure that makes it a submanifold of N × E. Moreover,

if we define ψ1 : π−1
1 (V ) → V × Rk by ψ1(r, v) = (r, ψf(r)(v)) then π1 : f∗E → M

becomes a vector bundle with charts of the form (V, ψ1).

Observation 2.2.1. If f : N → M is a smooth map and if (E, π,M) is a vector bundle

then any smooth section s of E induces a smooth section f∗s of f∗E as follows:

f∗s : N → f∗E, (f∗s)(n) = (n, s(f(n))), n ∈ N.

Note that f∗s is indeed a section of f∗E since π1(f
∗s)(n) = π1(n, s(f(n))) = n. In

particular, if E = TM is the tangent bundle of a manifold and if X is a smooth

section of this vector bundle, i.e., a smooth vector field, then f∗X is a smooth section

of f∗TM.

Observation 2.2.2. Let i : N → M be a submanifold of M, let X be a smooth vector

field on M, and consider the restriction X ◦ i of X to N. Notice that, by the previous

observation, i∗X is a section of the vector bundle (i∗(TM), π1, N). Let us also consider

the bundle map î : i∗(TM) → TM given by î(p, v) = v, p ∈ N, v ∈ TpM. We claim that

for all p ∈ N we have î(i∗X(p)) = (X ◦ i)(p). Indeed, î(i∗X(p)) = î(p,X(p)) = X(p).

This relation allows us to identify restrictions of vector fields onM along a submanifold

N with sections of the vector bundle (i∗(TM), π1, N) with the identification map given

by î. Similarly, we can identify the restriction to N of a subbundle D of TM with i∗D.

Observation 2.2.3. If i : N → M is a submanifold of M, by using the injection

TN → i∗TM given by v → (n, i∗nv), v ∈ TnN,n ∈ N, we can also identify (any vector

subbundle of) TN with a vector subbundle of i∗TM.
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• The Whitney sum

Consider two vector bundles π1 : E1 → M and π2 : E2 → M over the same base.

If ∆ : M → M × M is the diagonal map, then π1 ⊕ π2 := ∆∗(π1 × π2) is called

the Whitney sum of the two vector bundles. By the two constructions above, it

follows that the fiber of the Whitney sum at p is E1,p ⊕ E2,p and if (Ui, ψi) is a

bundle chart for πi, i = 1, 2, then (U1 ∩ U2, ψ) is a bundle chart for π1 ⊕ π2, where

ψ(p, r1, r2) = (p, ψ1p(r1), ψ2p(r2)), p ∈ U1 ∩ U2, ri ∈ π−1
i (p), i = 1, 2.

• The bundle of homomorphisms associated to a vector bundle

Let πi : Ei → M be two vector bundles of dimension ki, i = 1, 2. For each p ∈ M,

consider Hom(E1,p, E2,p), the set of all homomorphisms from the fiber E1,p to the fiber

E2,p. Define Hom(E1, E2) :=
⋃

p∈M Hom(E1,p, E2,p) and πHom : Hom(E1, E2) → M by

sending L ∈ Hom(E1,p, E2,p) to p. In this manner, πHom : Hom(E1, E2) → M becomes

a vector bundle of dimension k1k2. If (Ui, ψi) : ψ
−1
1 (Ui) → Ui × Rki are local charts

for the two bundles, then a local chart for Hom(E1, E2) is given as (U1 ∩U2, φ), where

φ : π−1
Hom(U1 ∩ U2) → (U1 ∩ U2) × Hom(Rk1 ,Rk2) is defined as follows: for each Lp ∈

π−1
Hom(p), φ(Lp) = (x, L̃p), where L̃p ∈ Hom(Rk1 ,Rk2) is given by L̃p = ψ2,p ◦Lp ◦ψ−1

1,p.

If E1 = E2 = E, then, if (U,ψ) is a bundle chart for E with ψ : π−1(U) → U×Rk, we

have that (U, φ), φ : π−1
Hom(U) → U×Hom(Rk) is a bundle chart for Hom(E), where φ is

defined as follows: for each p ∈ U and Lp ∈ Hom(Ep), φ(Lp) = (p, L̃p), with L̃p = ψp ◦

Lp◦ψ−1
p . In particular, by the discussion above, the bundle charts for Hom(E1⊕E2) can

be constructed in the following manner: consider bundle charts (Ui, ψi) for Ei, i = 1, 2

and let U = U1 ∩ U2. For any p ∈ U and any Lp ∈ Hom(E1,p ⊕ E2,p), define φ(Lp) =

(p, L̄p), where L̄p ∈ Hom(Rk1 × Rk2) is defined as L̄p = (ψ1,p, ψ2,p) ◦ Lp ◦ (ψ−1
1,p, ψ

−1
2,p).
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2.3. A special section of Hom(E1 ⊕ E2)

In our investigations of distributions associated to control systems on a manifold, we

encounter a special section of Hom(E1 ⊕ E2). This section is defined as

S : M → Hom(E1 ⊕E2), S(p)(v1,p, v2,p) = (v1,p, 0), (v1,p, v2,p) ∈ E1,p ⊕ E2,p,

and is instrumental in proving a key technical result needed in the development of

our simulation algorithm. We want to prove that this section is smooth. To do this,

let (U, ξ), ξ : U → Rm, be a manifold chart on M such that (U, φ) is a bundle chart

for Hom(E1 ⊕ E2), as above. Notice that φ can be used to define a manifold chart

on Hom(E1 ⊕ E2). Indeed, if we define Φ : π−1
Hom(U) → Rm × Hom(Rk1 × Rk2) '

Rm×R(k1+k2)
2

by Φ(L) = ((ξ ◦πHom)(L), pr2 ◦φ(L)), then (π−1
Hom(U),Φ) is a manifold

chart on Hom(E1 ⊕ E2). But then, the local representation of the section S in the

charts (U, ξ) and (π−1
Hom(U),Φ) is

Φ ◦ S ◦ ξ−1(p) = Φ
(
Sξ−1(p)

)
=

(
(ξ ◦ πHom)

(
Sξ−1(p)

)
, (pr2 ◦ φ)

(
Sξ−1(p)

))
= (p, S̄p),

for all p ∈ ξ(U), where S̄p ∈ Hom(Rk1 × Rk2) is given by

S̄p(u1, u2) =
(
(ψ1,ξ−1(p), ψ2,ξ−1(p)) ◦ Sξ−1(p) ◦ (ψ−1

1,ξ−1(p), ψ
−1
2,ξ−1(p))

)
(u1, u2).

Let ψ−1
i,ξ−1(p)(ui) = vi,ξ−1(p), i = 1, 2. With this notation,

S̄p(u1, u2) = ((ψ1,ξ−1(p), ψ2,ξ−1(p))
(
Sξ−1(p)(v1,ξ−1(p), v2,ξ−1(p))

)
=

= (ψ1,ξ−1(p), ψ2,ξ−1(p))(v1,ξ−1(p), 0) = (u1, 0).

So, S̄p is independent of p and, hence, differentiable. But then, Φ ◦ S ◦ ξ−1 is differen-

tiable as well.
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2.4. Generalities on Distributions

Definition 2.4.1. a) A distribution D on a manifold M is an assignment of a vector

subspace Dx ⊆ TxM, for each x ∈ M.

Let vf∞[D] = {Y ∈ X∞(M)|Y (x) ∈ Dx,∀x ∈ M}, where X∞(M) denotes the set of

all smooth vector fields on M.

b) A distribution D is called involutive if vf∞[D] is a Lie subalgebra of X∞(M).

c) A distribution D is smooth if vf∞[D](x) = Dx.

d) A distribution D is regular if the function x → dimDx is constant on M. We call

this constant the rank of D.

e) If π : E → M is a vector bundle then a generalized distribution D on M is an

assignment of a vector subspace Dx ⊆ Ex, for each x ∈ M. By replacing vector fields

on M by sections of E we can introduce terminology similar to a),c), and d) above for

generalized distributions.

Observation 2.4.2. While every vector subbundle of TM induces a distribution on

M, not every distribution on M comes from a vector subbundle. But if D is a smooth

and regular distribution on a manifold M, then (D,πD,M) is a vector subbundle of

(TM, π,M), where πD is the restriction of π to D. Indeed, since D is smooth, there

exist smooth vector fields X1, . . . , Xk, where k is the rank of D, such that, for all

p ∈ M,Xi(p) ∈ Dp, 1 ≤ i ≤ k, and {X1(x), . . . , Xk(x)} form a basis of Dx. By

continuity, there exists a neighborhood U of x such that for each y ∈ U, the vectors

X1(y), . . . , Xk(y) are linearly independent. But then we can define ψ : π−1(U) →

U × Rk as follows: for any vy = a1X1(y) + . . . akXk(y) ∈ Dy, y ∈ U, ai ∈ R let

ψ(vy) = (y, a1, . . . , ak). It follows that (U,ψ) can be considered as a local chart and
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(D,πD,M) is a vector subbundle. Note that by using a similar argument, it follows

that a smooth and regular generalized distribution is a vector subbundle.

Observation 2.4.3. If S is smooth manifold and if i : S → M is the inclusion

mapping then the restriction of TM to S can be identified with i∗TM. Finally, if D is

a smooth distribution on M and D̄ is a smooth distribution on S, then the restriction

of D+D̄ to S can be interpreted as a vector subbundle of the pullback bundle i∗(TM),

as long as the mapping s → dim(Di(s)+D̄s), s ∈ S, is constant on S. This follows from

the comments above and the second part of Observation 2.4.2.

Proposition 2.4.4. Let M be a manifold, let πE : E → M be a vector bundle over

M, and let πD : D → M be a vector subbundle of E. Then there is a smooth section

S : M → Hom(E) of the vector bundle Hom(E) such that a section σ : M → E

satisfies

σ(x) ∈ Dx ∀x ∈ M ⇔ S(x)σ(x) = σ(x)∀x ∈ M.

Proof. Since M is paracompact, there exists an inner product on E, i.e., a smooth

map 〈·, ·〉 : E ⊕ E → R which restricts to a positive definite, symmetric bilinear form

on each fiber ([13]). For each x ∈ M let us consider D⊥
x , the orthogonal complement

of Dx in Ex. If D⊥ :=
⋃

x∈M D⊥
x and πD⊥ is the restriction of πE to D⊥, then

φ : D⊕D⊥ → E given by φx(vx, wx) = vx+wx, for all x ∈ M, vx ∈ Dx, and wx ∈ D⊥
x ,

is a vector bundle isomorphism (see [13]).

Let us now define a smooth section S̄ of Hom(D⊕D⊥) as follows: for any x ∈ M, vx ∈

Dx, and wx ∈ D⊥
x , let S̄(x)(vx, wx) = (vx, 0). Note that by the result from the previous

section, S̄ is smooth. Now we can construct a smooth section S of Hom(E). Indeed,
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for any x ∈ M, and e ∈ Ex, let S(x)(e) = φx(S̄(x)(φ
−1
x (e))). Now let’s check that S

satisfies the required condition. If σ : M → E is a section of E then

S(x)(σ(x))=σ(x) ⇔ φx(S̄(x)(φ
−1
x (σ(x))))=σ(x) ⇔ S̄(x)(φ−1

x (σ(x)))=φ−1
x (σ(x)).

But S̄(x)(vx, wx) = (vx, wx) iff wx = 0. Hence, the relation above can be reformulated

as φ−1
x (σ(x)) ∈ Dx × {0}, which is equivalent to σ(x) ∈ Dx. ¤

Proposition 2.4.5. a) Let πE : E → M be a smooth vector bundle of rank k over a

manifold M, let D be a vector subbundle of E, and let σ1, . . . , σs : M → E be smooth

sections of E. Let (by Proposition 2.4.4.) S be a smooth section of Hom(E) such that

for every section σ : M → E we have σ(x) ∈ Dx if and only if S(x)σ(x) = σ(x) for

every x ∈ M. Then

span{σ1(x), . . . , σs(x)} ⊆ Dx ⇔ Φ(x) = (0x, . . . , 0x) ∈
s times︷ ︸︸ ︷

Ex × · · · × Ex,

where Φ : M → ⊕s
i=1E (s-fold Whitney sum of E with itself) is the smooth map

Φ(x) = ((S(x)− I)σ1(x), . . . , (S(x)− I)σs(x)).

b) If the image of zero-section of (⊕s
i=1E,⊕s

i=1πE ,M) is neat with respect to the

function Φ above then the set

{x ∈ M | span{σ1(x), . . . , σs(x)} ⊆ Dx}

is a union of disjoint, connected, closed, imbedded submanifold of M.

Proof. To establish a), let us observe that span{σ1(x), . . . , σs(x)} ⊆ Dx if and only if

σi(x) ∈ Dx for all i, 1 ≤ i ≤ s. By Proposition 2.4.4, this is equivalent to S(x)σi(x)−

σi(x) = 0x ∈ Ex for all i, 1 ≤ i ≤ s, which, in turn, is equivalent to Φ(x) = (0x, . . . , 0x).
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To prove b), it is enough to note that by a), the set {x ∈ M | span{σ1(x), . . . , σs(x)} ⊆

Dx} is the preimage of the image zero-section of (⊕s
i=1E,⊕s

i=1πE ,M) under the smooth

function Φ. As the zero-section of any vector bundle is an imbedded submanifold, the

conclusion follows based on Theorem 1.3.5. ¤

Notation. From now on we will denote the function Φ defined in part a) of Proposition

2.4.5. by ΦM,E,D. It should also be noted that, in fact, ΦM,E,D also depends on the

sections σi, 1 ≤ i ≤ s. However, we suppress the dependence on these sections to

simplify the notation.

Consequence 2.4.6. a) Let f : N → M be a smooth function, let π : E → M be a

vector bundle of rank k, letD be a vector subbundle of f∗E, and let σ1, . . . , σs : M → E

be smooth sections of E. Then we have

span{f∗σ1(x), . . . , f
∗σs(x)}⊆Dx ⇔

⇔ (ΦN,f∗E,D)(x)=(0x, . . . , 0x)∈
s times︷ ︸︸ ︷

(f∗E)x×. . .×(f∗E)x .

b) If the image of the zero section of (⊕s
i=1f

∗E,⊕s
i=1f

∗π,N) is neat with respect to

the function ΦN,f∗E,D : N → ⊕s
i=1f

∗E then the set

{x ∈ N | span{f∗σ1(x), . . . , f
∗σs(x)} ⊆ Dx}

is a disjoint union of connected, closed, imbedded submanifold of N.

Proof. It is enough to apply Proposition 2.4.5. to the vector bundle f∗E, the sub-

bundle D, and the sections f∗σ1, . . . , f
∗σs. ¤

Observation 2.4.7. If (E, π,M) (and hence (⊕s
i=1f

∗E,⊕s
i=1f

∗π,N)) is a trivial

vector bundle then, in order to obtain the same conclusion as above, we may replace

the assumption in part b) of Consequence 2.4.6 as follows: If ψ : ⊕s
i=1f

∗E → N ×Rks
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is a trivialization function, if π2 : N × Rks → Rks represents the projection onto the

second factor, and if

ΨN,f∗E,D
def
= π2 ◦ ψ ◦ Φ : N → Rks

has constant rank then, since the image zero section of (⊕s
i=1f

∗E,⊕s
i=1f

∗π,N) is the

preimage of 0 ∈ Rks under the function π2 ◦ψ, it follows by Observation 1.2.5 that the

conclusion of part b) of Consequence 2.4.6 remains valid.
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3. CONTROL SYSTEMS AND SIMULATION RELATIONS

3.1. Introduction

We begin our discussion of control systems by establishing some notations and as-

sumptions and by introducing the necessary terminology. Let M be a smooth manifold

(assumed, as in Chapter 1, to be second countable and Hausdorff) and let Λ be a sep-

arable metric space. The following definition, as well as many of the considerations

below, are adopted from [3] and [4].

Definition 3.1.1. A C1 control system with state space M and control space Λ is a

function F : M × Λ → TM satisfying the following properties:

a) For each λ ∈ Λ, the function x → F (x, λ) is C1 and satisfies (πM ◦F (x, λ)) = x,

and

b) For every coordinate chart φ : U → Rm of M, the local representation of F in

this chart, that is, the function Fφ : φ(U)× Λ → Rm given by

Fφ(y, λ) = φ∗φ−1(y)F (φ−1(y), λ)

is C1 in its first component.

Typically, a control system is given as ẋ = F (x, u(t)), with the understanding that

once an input or control function t → u(t) ∈ Λ is specified, the result is ẋ = F (x, u(t)),

which can be interpreted as an ordinary differential equation on M. To address the

existence and uniqueness of solutions, we introduce the following definitions.
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Definition 3.1.2. A measurable function u : R → Λ is called a potential control if u

is Lebesgue measurable. We denote the set of all Lebesgue measurable functions into

Λ by UΛ
meas.

Definition 3.1.3. A potential control u : R→ Λ is called an admissible control for the

C1 control system F if the function Fu : M×R→ TM defined as Fu(x, t) = F (x, u(t))

is such that it satisfies the C1 Caratheodory conditions (see [3]) in any local chart of

M. We denote the set of all admissible controls for F by UΛ
meas(F ).

The introduction of the technical conditions in the definition above is motivated by

standard results in the theory of ordinary differential equations. More precisely, given

a C1 control system F, an initial point x0 ∈ M, and an element u ∈ UΛ
meas(F ), there

exists an open interval J ⊆ R containing 0 and a unique function ψ : J → M such

that ψ(0) = x0, ψ is absolutely continuous on every compact subinterval of J and

ψ̇(t) = F (ψ(t), u(t)) for almost all t ∈ J.

Definition 3.1.4. Given a control system F : M ×Λ → TM as above, an admissible

control u ∈ UΛ
meas(F ), and an initial state x0 ∈ M, the function ψ : R → M defined

above is called a trajectory of the system F corresponding to the initial condition x0

and the control u. In some instances we will use the notation ψ(t) = ψ(t, x0, u) to

emphasize the dependance of the trajectory on the initial condition and control.

In many applications involving control systems, not all of the variables in the state

space are readily available or can be measured. A somewhat similar situation occurs

in computer-aided design where one is only interested in the “external bahavior”of

the system, i.e., the system’s parameters that can be measured by an external device

interacting with system. To capture situations of this type, we define a continuous

function h : M × Λ → O from M × Λ to a topological space O. We call h the output
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mapping and note that, in some sense, h summarizes the information about the control

system that is either needed or available.

While in the definition of a control system we think of the controls u as representing

external factors affecting the system, as noted in [4], we can refine our understanding

of the controls given that the external factors may or may not be under our full

control. This way we classify our controls as deterministic (also called inputs) and

non-deterministic (also called disturbances).

Based on the two observations above, we introduce the following definitions (as in

[4]):

Definition 3.1.5. a) A C1 input-disturbance (ID) system is a C1 control system

F : M × Λ → TM whose control space can be written as Λ = Ω ×∆. We call Ω the

input space and ∆ the disturbance space.

b) A C1 input-disturbance-output (IDO) system is a pair (F, h), where F is a C1 ID

system (as above) and h : M × Ω → O is a continuous mapping into a topological

space O. We call h the output mapping and O the output space.

c) If U ⊆ UΛ
meas and D ⊆ UΩ

meas are such that U × D ⊆ UΩ×∆
meas (F ), then we call

the four-tuple (F, h,U ,D) an (IDO) system with admissible inputs U and admissible

disturbances D.

3.2. Simulation relations for IDO systems

In this section we introduce the notions of pointwise and admissible simulation rela-

tions as given in [4] and observe that, as noted in the aforementioned reference, for IDO

systems that are affine in both inputs and disturbances the two notions are equivalent

provided that a certain “disturbance constant rank”condition is satisfied. As noted in
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the Introduction, the motivation for having two types of simulation relations comes

from the fact that the pointwise simulation concept is based on a condition involving

tangent vectors and tangent spaces at a point and, being an algebraic condition, can

be manipulated with relative ease. However, when one is interested in trajectories and

admissible controls, the proper concept is that of an admissible simulation relation.

Let M and M̄ be differentiable manifolds, let O be a topological space, let Ω,∆,

and ∆̄ be separable metric spaces, and suppose we have two C1 IDO systems

F : M × Ω×∆ → TM, h : M × Ω → O, u ∈ U , d ∈ D

and

F̄ : M̄ × Ω× ∆̄ → TM̄, h̄ : M̄ × Ω → O, u ∈ U , d̄ ∈ D̄

having common input space Ω and common output space O. In addition, we also

assume that the two IDO systems have a common family of admissible inputs U and

admissible disturbances D and D̄, respectively, where

U ⊆ UΩ
meas,D ⊆ U∆

meas, D̄ ⊆ U ∆̄
meas

satisfy

U × D ⊆ UΩ×∆
meas (F ) and U × D̄ ⊆ UΩ×∆̄

meas (F̄ ).

Definition 3.2.1. A nonempty subset R ⊆ M × M̄ is called an admissible simulation

relation of (F, h,U ,D) by (F̄ , h̄,U , D̄) if for every (x0, x̄0) ∈ R, for every u ∈ U , and

for every d ∈ D there exists d̄ ∈ D̄ and a compact interval I containing 0 in its interior

such that for every t ∈ I both ψ(t, x0, u, d) and ψ̄(t, x̄0, u, d̄) are defined (ψ and ψ̄

stand for the trajectory mappings of F and F̄ , respectively), and

for all t ∈ I we have (ψ(t, x0, u, d), ψ̄(t, x̄0, u, d̄)) ∈ R
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and

for all t ∈ I we haveh(ψ(t, x0, u, d), u(t)) = h̄(ψ̄(t, x̄0, u, d̄), u(t)).

Definition 3.2.2. A subset R ⊆ M × M̄ is called a pointwise simulation relation of

(F, h,U ,D) by (F̄ , h̄,U , D̄) if R is a union of connected, disjoint submanifolds of M ×

M̄ (possibly with different dimensions) and if the following “simulation condition”is

satisfied:

(SC) For every (x, x̄) ∈ R, for every ω ∈ Ω, and for every δ ∈ ∆, there exists

δ̄ ∈ ∆̄

such that
[
F (x, ω, δ)
F̄ (x̄, ω, δ̄)

]
∈ T(x,x̄)R and h(x, ω) = h̄(x̄, ω).

Definition 3.2.3. A pointwise (admissible) simulation relation R of (F, h,U ,D) by

(F̄ , h̄,U , D̄) is called maximal if for any pointwise (admissible) simulation relation R′

of (F, h,U ,D) by (F̄ , h̄,U , D̄) we have R′ ⊆ R.

As mentioned before, the first two simulation concepts are closely related. In particu-

lar, if F̄ is affine in its disturbances, i.e., if

F̄ (x̄, ω, δ̄) = f̄(x̄, ω) + ḡ(x̄)δ̄ for all (x̄, ω, δ̄) ∈ M̄ × Ω× Rq,

where ḡ(x̄) = [ḡ1(x̄), . . . , ḡq(x̄)] and ḡ1, . . . , ḡq are vector fields on M̄ , then, in order to

clarify the connection between the two concepts, we introduce the following:

Definition 3.2.4. Given a smooth, immersed submanifold R of M × M̄ and a con-

trol system F̄ as above we say that F̄ has disturbance constant rank along R if the

dimension of the vector space

V̄(x,x̄) := T(x,x̄)R+ im

[
0

ḡ(x̄)

]
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is constant as (x, x̄) varies over each connected component of R.

The following result appears in [4] and will play an important role in our investigations

as it shows that under certain conditions, the concepts of admissible and pointwise

simulation relations coincide.

Theorem 3.2.5. Let (F, h) and (F̄ , h̄) be two IDO systems with common input space

Ω and common output space O such that F̄ is affine in disturbances. LetR be a smooth

submanifold (or a union of disjoint submanifolds with possibly different dimensionss)

of M × M̄ and assume that F̄ has disturbance constant rank along R (along each

submanifold in the union). Furthermore, consider U ⊆ UΩ
meas(f̄),D ⊆ U∆

meas such that

U × D ⊆ UΩ×∆
meas (F ) and let D̄ ⊆ L1

loc(R,Rq) (where L1
loc(R,Rq) denotes the space

of equivalence classes of all Lebesgue measurable functions from R into Rq that are

integrable on compact subintervals of R). Then the following statements hold:

a) If R is an admissible simulation relation of (F, h,U ,D) by (F̄ , h̄,U , D̄) and if U and

D contain all constant mappings into their respective images, then R is a pointwise

simulation relation of (F, h,U ,D) by (F̄ , h̄,U , D̄).

b) If R is a pointwise simulation relation of (F, h,U ,D) by (F̄ , h̄,U , D̄), then R is an

admissible simulation relation of (F, h,U ,D) by (F̄ , h̄,U , L1
loc(R,Rq)).

Remark 3.2.6. Consider a control system F : M × Ω × ∆ → TM that is affine in

both inputs and disturbances, i.e.,

F (x, ω, δ) = a(x) + b(x)ω + g(x)δ, x ∈ M,ω ∈ Ω, δ ∈ ∆,

where Ω = Rc,∆ = Rp, a(x) is a vector field on M, and the columns of the matrices

b(x) and g(x) are vector fields onM. For such systems, a natural class of inputs and dis-

turbances to be considered is that of Lebesgue measurable functions from R into their
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respective images that are integrable on compact intervals. As noted in [4] (Remark

3.2) and [5] (Example 2.8), these classes of inputs and disturbances are admissible for

any control system that is affine in both inputs and disturbances. So, since we are only

interested in control systems that are affine in inputs and disturbances, from now on

we will let U = L1
loc(R,Rc),D = L1

loc(R,Rp), and D̄ = L1
loc(R,Rq). In addition, when-

ever there is no danger of confusion, we will also refer to (F, h, L1
loc(R,Rc), L1

loc(R,Rp))

and (F̄ , h̄, L1
loc(R,Rc), L1

loc(R,Rq)) simply as (F, h) and (F̄ , h̄).

Remark 3.2.7. Under the assumption that both F and F̄ are affine in inputs and

disturbances, condition (SC) becomes equivalent to the following:

For every (x, x̄) ∈ R we have h(x, ω) = h̄(x̄, ω). In addition, for every (x, x̄) ∈ R, ω ∈

Rc, we have

[
a(x)
ā(x̄)

]
+ im

[
b(x)
b̄(x̄)

]
+ im

[
g(x)
0

]
⊆ T(x,x̄)R+ im

[
0

ḡ(x̄)

]
.

In light of the remarks above and the fact that L1
loc(R,Rc) and L1

loc(R,Rp) contain the

constant mappings into their respective images, we obtain the following consequence

of Theorem 3.2.5 for control systems that are affine in inputs as well as disturbances.

Theorem 3.2.8. Let (F, h) and (F̄ , h̄) be two (IDO) systems with F : M×Rc×Rp →

TM, F̄ : M̄ × Rc × Rq → TM̄ given by

F (x, ω, δ) = a(x) + b(x)ω + g(x)δ x ∈ M,ω ∈ Rc, δ ∈ Rp,

F̄ (x̄, ω, δ̄) = ā(x̄) + b̄(x̄)ω + ḡ(x̄)δ̄ x ∈ M̄, ω ∈ Rc, δ̄ ∈ Rq,

and h : M → Rr, h̄ : M̄ → Rr. Observe that a, ā, and the columns of the matrices

b, b̄, g, and ḡ are vector fields on M. Let R ⊆ M × M̄ be a union of disjoint, connected
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submanifolds of M × M̄ and consider the following affine simulation conditions

(ASC)1 (x, x̄) ∈ R ⇒
[
a(x)
ā(x̄)

]
+im

[
b(x)
b̄(x̄)

]
+im

[
g(x)
0

]
⊆ T(x,x̄)R+im

[
0

ḡ(x̄)

]

(ASC)2 (x, x̄) ∈ R ⇒ h(x) = h̄(x̄).

Then the following statements hold:

a) R is a pointwise simulation relation of (F, h) by (F̄ , h̄) if and only if conditions

(ASC)1 and (ASC)2 are satisfied.

b) If F̄ has disturbance constant rank along each connected submanifold of R, then R

is an admissible simulation relation of (F, h) by (F̄ , h̄) if and only if conditions (ASC)1

and (ASC)2 are satisfied.
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4. THE MAIN RESULTS

In this chapter we present our main contributions to the problem of determining

simulation relations for a given pair of control systems. First, we introduce our sim-

ulation algorithm and then show in Theorem 4.1 that the manifold at termination, if

nonempty, is a simulation relation of the first system by the second. The same theo-

rem also shows that the algorithm terminates (successfully or not) in a finite number

of steps. At this point we should mention that, in contrast to the algorithm in [16],

our algorithm is always well defined. In addition, we also paid close attention to the

connectedness of the sets R̃k (as defined in our algorithm) and to the possibility that

these sets may not be submanifolds; these issues were not discussed in [16]. In doing

so, we allow for greater flexibility in the algorithm in that the choice of a certain sub-

manifold Rk needs to be made in going from one step to the next. While for specific

IDO systems this choice can be made by “inspection”, in Observation 4.2 we show

how to make such a choice for two general IDO systems in a systematic fashion.

As mentioned above, running the algorithm involves making certain choices. So,

different choices result in different submanifolds at termination. In our quest for a

maximal simulation relation, we need to make the “proper”choices. To investigate

how these choices should be made, we start by introducing the notion of regular pre-

simulations up to order l (see Definition 4.3). It is interesting to note that, as shown

in Lemma 4.5, under certain conditions, regular pre-simulation up to order l implies

regular pre-simulation up to order l + 1, for any l ≥ 1.

Proposition 4.6 is one of our key results and shows that under the hypothesis that
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two IDO systems are regularly pre-simulated up to a specified order (depending on the

dimensions of the state spaces), the set we obtain at termination is a nonempty point-

wise simulation relation. Moreover, under the disturbance constant rank assumption,

the set at termination is also an admissible simulation relation. It is worth noting that,

when running the algorithm, some of the sets involved may be unions of closed com-

ponent submanifolds of possibly different dimensions. Due to the way the algorithm

is defined, if we insist on getting the maximal simulation relation, we are faced with a

“branching”of the algorithm depending on the various dimensions of these component

submanifolds. So, the set at (overall) termination may be a union of submanifolds of

different dimensions.

The main reason for imposing the regular pre-simulation conditions in order to

obtain a maximal simulation relation is to ensure that at each step of the algorithm

(or any of its “branches”) the setsRk are unions of mutually disjoint, closed, connected,

imbedded submanifolds. However, this condition may be difficult to check. Proposition

4.8 offers an alternate way of ensuring the aforementioned property by replacing the

regular pre-simulation condition with the hypothesis that certain functions Ψk,α have

constant rank. The construction of these functions is based on Consequence 2.4.6 and

Observation 2.4.7.

In Theorem 4.9, we prove that, under the same assumptions as in Proposition 4.6,

the set we obtain at termination is, in fact, a maximal pointwise simulation relation.

Actually, the same set is also maximal among all admissible simulation relations sat-

isfying the disturbance constant rank condition.

Finally, we end the chapter by considering the somewhat unlikely case of a

0−dimensional simulation relation and analyze in Lemma 4.10 how this could hap-
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pen for systems that are fully nonlinear. In the case of systems that are affine in

inputs and disturbances we obtain a simpler characterization in Lemma 4.11. We

should also note that, in spite of the fact that this is a rare occurrence, in Chapter 5

we provide an example of two systems for which the maximal simulation relation is in

fact a point.

Let us now introduce an algorithm for computing simulation relations between two

IDO systems, similar to the one introduced by van der Schaft in [16] for computing

the maximal (pointwise) bisimulation relations.

The Algorithm.

Consider two IDO systems (F, h) and (F̄ , h̄) such that both F and F̄ are affine in

disturbances as well as inputs, i.e.,

F (x, ω, δ) = a(x) + b(x)ω + g(x)δ and F̄ (x̄, ω, δ̄) = ā(x̄) + b̄(x̄)ω + ḡ(x̄)δ̄,

and h : M → Rr, h̄ : M̄ → Rr.

Step 0. Let R0 = M × M̄.

Step 1. Let R̃1 = {(x, x̄) ∈ M × M̄ |h(x) = h̄(x̄)}. Is R̃1 = ∅?

If true, then the algorithm ends unsuccessfully.

If false, then let R1 be a (possibly 0− dimensional) submanifold of R0 contained in

R̃1.

Step 2. Let k := 1

Step 3. Consider the set R̃k+1 defined as follows:

R̃k+1 =

{
(x, x̄) ∈ Rk|

[
a(x)
ā(x̄)

]
+ im

[
b(x)
b̄(x̄)

]
+ im

[
g(x)
0

]
⊆ T(x,x̄)Rk + im

[
0

ḡ(x̄)

]}
.

Step 4. Is R̃k+1 = ∅?
40



If true, then the algorithm ends unsuccessfully.

If false, then select a (possibly 0−dimensional) submanifold Rk+1 of Rk contained

in R̃k+1.

Step 5. Is dimRk = dimRk+1?

If true, then the algorithm ends successfully with Rk+1.

If false, then let k := k + 1 and return to Step 3.

Theorem 4.1. a) If for some integer k, k ≥ 1, we have dimRk = dimRk+1, with Rk

as in the algorithm, then Rk+1 is a pointwise simulation relation of (F, h) by (F̄ , h̄).

Hence, if the algorithm terminates successfully, the submanifold at termination, i.e.

Rk+1, is a pointwise simulation relation of (F, h) by (F̄ , h̄). If, in addition, F̄ has

disturbance constant rank along Rk+1, then Rk+1 is an admissible simulation relation

of (F, h) by (F̄ , h̄).

b) The algorithm terminates in a finite number of steps.

Proof. To establish a), let us first observe that dimRk = dimRk+1 implies that Rk+1

is an open subset of Rk. But then, for all (x, x̄) ∈ Rk+1, T(x,x̄)Rk = T(x,x̄)Rk+1, which

implies
[
a(x)
ā(x̄)

]
+ im

[
b(x)
b̄(x̄)

]
+ im

[
g(x)
0

]
⊆ T(x,x̄)Rk+1 + im

[
0

ḡ(x̄)

]

for all (x, x̄) ∈ Rk+1. This way, we obtain that conditions (ASC)1 and (ASC)2 in

the hypothesis of Theorem 3.2.8, part a), are satisfied, and thus Rk+1 is a pointwise

simulation relation. Based on part b) of the same theorem, we obtain the rest of the

claim.

To prove b), let’s note that the algorithm actually terminates in at most 3(dimM +

dimM̄ + 1) + 2 steps. Indeed, since the dimension of R1 is at most dimM + dimM̄,

if the algorithm doesn’t end successfully with R2 then, after the first five steps, the
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dimension of R2 is at most dimM + dimM̄ − 1. By repeating the same argument, if

the algorithm doesn’t terminate after 3k+2 steps for some positive integer k, then the

dimension of Rk+1 is at most dimM +dimM̄ −k. In particular, if k = dimM +dimM̄,

the dimension of RdimM+dimM̄+1 must be zero. By running the algorithm three more

steps, assuming it doesn’t end earlier, the dimension of RdimM+dimM̄+2 must be zero.

So RdimM+dimM̄+2 and RdimM+dimM̄+1 have the same dimensions and the algorithm

terminates. ¤

Observation 4.2. Since R̃k+1 is, in general, not a submanifold of Rk, in order for the

algorithm to be well-defined, in step 4 we need to consider a submanifold Rk+1 of Rk

contained in R̃k+1 so that we can continue the process. For now, let us indicate how

to construct a specific submanifold that, in certain instances, can be taken as Rk+1.

Later on, we will come back to this step and investigate sufficient conditions ensuring

that R̃k+1 = Rk+1, i.e., R̃k+1 is a submanifold of Rk.

Let us assume that F̄ has disturbance constant rank along Rk for some k ≥ 1, let

ik : Rk → R0 be the inclusion map, and let V̄k be the vector bundle over Rk defined

by

(x, x̄) → T(x,x̄)Rk + im

[
0

ḡ(x̄)

]
.

The restrictions to Rk of the vector field

[
a(x)
ā(x̄)

]
, the c column vector fields of

[
b(x)
b̄(x̄)

]
, and the p column vector fields of

[
g(x)
0

]
represent 1 + c + p sections of

i∗kTR0. By using these sections, we can define the mapping

Φk = ΦRk,i∗
k
TR0,V̄k : Rk →

1+c+p⊕

j=1

i∗kT R̃0,

as outlined in Consequence 2.4.6. (We note that the vector fields mentioned above

correspond to the sections denoted by σ1, σ2, . . . , σ1+c+p in Consequence 2.4.6.) If we
42



consider the set

Mk := {(x, x̄) ∈ Rk|Φk has maximal rank at (x, x̄)},

then, since the rank of a function is locally non-decreasing, Mk is open in Rk. But

then, Φ̃k, the restriction of Φk to Mk, has constant rank on Mk and, consequently,

by the constant rank theorem, (Φ̃k)
−1(0) = Mk ∩ (Φk)

−1(0) is a submanifold of Mk

and, hence, of Rk. To summarize, if F̄ has constant disturbance rank on Rk (so that

Φk is well defined) and Mk ∩ Φ−1
k (0) 6= ∅ then then we can choose Rk+1 in Step 4 of

the algorithm to be Mk ∩ (Φk)
−1(0).

Let us now revisit step 4 of the algorithm in order to determine sufficient conditions

ensuring that in certain instances we can choose Rk+1 to be R̃k+1. First, we need a

definition.

Definition 4.3. Let (F, h) and (F̄ , h̄) be two smooth IDO systems as in the algorithm.

Let R̃0 = M × M̄, let H : R̃0 → Rr be defined by H(x, x̄) = h(x)− h̄(x̄), and let l be

a positive integer. We say that (F, h) is regularly pre-simulated by (F̄ , h̄) up to order

l if there exist nonempty sets R̃1, . . . , R̃l with the following properties:

(i) R̃0 ⊃ R̃1 ⊇ · · · ⊇ R̃l;

(ii) R̃1 = {(x, x̄) ∈ R̃0 = M × M̄ |H(x, x̄) = 0};

(iii) For k = 1, . . . , l the set R̃k is a countable union of pairwise disjoint, closed,

connected, imbedded submanifolds Rk
α of R̃0 = M × M̄ ; that is,

R̃k =
⋃

α∈Ik

Rk
α,

where Ik is a countable index set (we call the submanifolds Rk
α the component sub-

manifolds of R̃k; for a given k it is not required that these component submanifolds all
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be of the same dimension); we assume that the index sets Ik, k = 1, . . . , l are pairwise

disjoint and for notational convenience we set R̃0 = R0
α0
, where α0 /∈ ∪ l

k=1Ik, and

I0 = {α0};

(iv) For each 1 ≤ k ≤ l − 1, R̃k+1 is related to R̃k = ∪α∈Ik
Rk

α in the following

manner: For each α ∈ Ik,

Sk
α =

{
(x, x̄) ∈ Rk

α


[
a(x)
ā(x̄)

]
+ im

[
b(x)
b̄(x̄)

]
+ im

[
g(x)
0

]
⊆ T(x,x̄)Rk

α + im

[
0

ḡ(x̄)

]}

is either empty or is a union of a sub-family of the family of component submanifolds

{Rk+1
β |β ∈ Ik+1} of R̃k+1, and Sk

α is nonempty for at least one α ∈ Ik. Moreover,

every component submanifold Rk+1
β of R̃k+1 is contained in at least one of the sets

Sk
α. Thus, if for α ∈ Ik we let Jk+1,α = {β ∈ Ik+1|Rk+1

β ⊆ Sk
α}, then

Sk
α =

⋃

β∈Jk+1,α

Rk+1
β ,

Ik+1 = ∪α∈Ik
Jk+1,α (a pairwise disjoint union), and at least one of the sets Jk+1,α is

nonempty. It follows that R̃k+1 admits the various representations

R̃k+1 =
⋃

β∈Ik+1

Rk+1
β =

⋃

α∈Ik

⋃

β∈Jk+1,α

Rk+1
β =

⋃

α∈Ik

Sk
α.

Remark 4.4. Condition (iv) of the previous definition is interpreted as being vacuous

in the case when l = 1. In a typical situation one constructs the sets R̃k by starting

with R̃1 = H−1(0), checking that R̃1 satisfies condition (iii) when k = 1, and then

proceeding sequentially to the sets R̃2, R̃3, . . . , etc., by determining whether or not

the sets Sk
α defined in (iv) are indeed disjoint unions of closed, connected, imbedded

submanifolds of R̃0 = M×M̄. The verification of this last property may be ascertained

by inspection in simple examples, but can also be guaranteed by the conditions set

forth in the following lemma.
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Lemma 4.5. Let (F, h) and (F̄ , h̄) be two smooth IDO systems as in the algorithm,

let R̃0 = M × M̄, and let H : R̃0 → Rr be defined by H(x, x̄) = h(x) − h̄(x̄). Then

the following hold:

a) If H has constant rank on R̃0, then R̃1 = H−1(0) is a countable union of pairwise

disjoint, closed, connected, imbedded submanifolds of R̃0 (in other words, (F, h) is

regularly pre-simulated by (F̄ , h̄) up to order 1).

b) Let l be a positive integer and suppose (F, h) is regularly pre-simulated by (F̄ , h̄)

up to order l. Further suppose that the following two conditions hold:

i) For each α ∈ Il, F̄ has disturbance constant rank along the component sub-

manifolds Rl
α, which results in the mapping

Φl,α
def
= ΦRl

α,i∗
l,α

T R̃0,Ṽl
α
: Rl

α →
1+c+p⊕

j=1

i∗l,αT R̃0

(as constructed in Consequence 2.4.6) being well defined, where Ṽ l
α is the vector

bundle over Rl
α defined by

(x, x̄) → T(x,x̄)Rl
α + im

[
0

ḡ(x̄)

]

and the sections characterizing the construction of ΦRl
α,i∗

l,α
T R̃0,Ṽl

α
from Conse-

quence 2.4.6 are given by the vector field

[
a(x)
ā(x̄)

]
, the c column vector fields of

[
b(x)
b̄(x̄)

]
, and the p column vector fields of

[
g(x)
0

]
.

ii) the zero section of the bundle ⊕1+c+p
j=1 i∗l,αT R̃0 is neat with respect to the map-

ping Φl,α.

Then (F, h) is regularly pre-simulated by (F̄ , h̄) up to order l + 1 or Sl
α = ∅ for all

α ∈ Il, with the two possibilities being mutually exclusive.

Proof. By the constant rank theorem applied to the function x → H(x, x̄) := h(x)−

h̄(x̄) on R̃0, it follows that R̃1 = H−1(0) is a union of at most countably many
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connected, disjoint, closed, imbedded submanifolds of M × M̄.

To prove b), we will need some properties we developed in Chapter 2. Based on

Observations 2.2.2 and 2.2.3, for each α ∈ Il, if we denote by il,α : Rl
α → R̃0 the

inclusion map, then we can interpret TRl
α as a subbundle of i∗l,αT R̃0 and the column

vector fields of

[
0

ḡ(x̄)

]
as sections i∗l,αTR0. This way, if we assume that the generalized

distribution V̄ l
α = TRl

α + im

[
0

ḡ(x̄)

]
is regular, i.e., F̄ has constant disturbance rank

along Rl
α, then, by Observation 2.4.2, V̄ l

α becomes a subbundle of i∗l,αT R̃0.

Let us also note that the generalized distribution

(x, x̄) → span

[
a(x)
ā(x̄)

]
+ im

[
b(x)
b̄(x̄)

]
+ im

[
g(x)
0

]
⊆ i∗l,αT(x,x̄)R̃0

is spanned by smooth sections i∗l,ασ1, . . . , i
∗
l,ασ1+c+p, where σ1, . . . , σ1+c+p are vector

fields on R̃0 determined by column vector fields of the matrices

[
a
ā

]
,

[
b
b̄

]
, and

[
g
0

]
.

Hence, based on the assumption that the zero section of the bundle ⊕1+c+p
j=1 i∗l,αT R̃0 is

neat with respect to Φl,α and Consequence 2.4.6, we obtain that the set

Sl
α =

{
(x, x̄) ∈ Rl

α|
[
a(x)
ā(x̄)

]
+ im

[
b(x)
b̄(x̄)

]
+ im

[
g(x)
0

]
⊆ T(x,x̄)Rl

α + im

[
0

ḡ(x̄)

]}

is the preimage of the zero section of the vector bundle i∗l,αT R̃0 under the mapping

Φl,α, and hence a union of at most countably many mutually disjoint, closed, con-

nected, imbedded submanifolds of Rl
α. Since Il is countable, the collection of all these

imbedded submanifolds taken over all α ∈ Ik is also countable and let us denote the

indexing set by Il+1. Let us also denote an arbitrary element of this collection by Rl+1
β

for some β ∈ Il+1. If we let

R̃l+1 =
⋃

β∈Il+1

Rl+1
β ,

then, since being a closed set, a connected set, and an imbedded submanifold are all

hereditary properties, by condition (iii) of the regular pre-simulation condition up to
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order l, it follows that R̃l+1 is a union of at most countably many mutually disjoint

disjoint, closed, connected, imbedded submanifolds of R̃0. Thus, condition (iii) of the

regular pre-simulation condition up to order l + 1 is satisfied.

Conditions (i) and (iv) of the regular pre-simulation condition up to order l + 1 can

now be easily checked based on the work above as long as Sl
α 6= ∅ for some α ∈ Il.

Note that this relation is what ensures that the nonempty stipulation in conditions

(iv) and (i) is satisfied. ¤

Notation: Given two IDO systems that are regularly pre-simulated up to order l,

the definition above introduces the sets Ik, R̃k,Rk
α, all defined for 1 ≤ k ≤ l, α ∈ Ik,

and the sets Sk
α defined for 1 ≤ k ≤ l − 1, α ∈ Ik. For the purpose of the following

proposition we extend the definitions of these sets inductively as follows: For any k ≥ l

and α ∈ Ik consider the set

T k
α =

{
(x, x̄) ∈ Rk

α|
[
a(x)
ā(x̄)

]
+ im

[
b(x)
b̄(x̄)

]
+ im

[
g(x)
0

]
⊆ T(x,x̄)Rk

α + im

[
0

ḡ(x̄)

]}

As a subset of R̃0, T k
α is either empty or a union of its connected components. For

each α ∈ Ik with T k
α 6= ∅, let Jk+1,α denote the set indexing all connected components

of T k
α . If T k

α = ∅, we let Jk,α consist of a singleton (indexing the empty set). Now

we define Ik+1 =
⋃

α∈Ik
Jk+1,α and for β ∈ Jk+1,α ⊆ Ik+1 we let Rk+1

β be the an

arbitrary, closed, connected, nonempty (but possibly zero-dimensional) submanifold

of R̃0 of largest possible dimension contained in the β-component of T k
α if such a

submanifold exists or the empty set otherwise. Finally, we introduce the set Sk
α =

∪β∈Jk+1,α
Rk+1

β ⊆ T k
α and let R̃k+1 = ∪β∈Ik+1

Rk+1
β . Clearly, Rk+1

β ,Sk
α, and R̃k+1 are

not unique. Note that, except for the uniqueness, the introduction of the sets above

for k ≥ l generally agrees with the definition of the corresponding sets for k < l. In
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particular, for any k ≥ 1,Rk+1
β is always a connected component of some Sk

α.

While the purpose of the following proposition is to illustrate several important

properties of IDO systems that are pre-simulated up to order dimM +dimM̄ + 2, the

proposition also shows that if l = dimM + dimM̄ + 2 then for any k ≥ l + 1, the

sets R̃k,Rk
α, and Sk−1

α introduced above are actually forced to be unique, just like the

corresponding sets for k < l are unique due to their definition.

Proposition 4.6. Consider two IDO systems (F, h) and (F̄ , h̄) as in the algorithm and

suppose that (F, h) is regularly pre-simulated by (F̄ , h̄) up to order dimM+dimM̄+2.

Then we have the following:

a) If R1
α1
, α1 ∈ I1, is a nonempty component submanifold of R̃1 and if for all k ≥

1,Rk+1
αk+1

is a nonempty component submanifold of Sk
αk

for some αk+1 ∈ Jk+1,αk
⊆

Ik+1, then

R1
α1

⊇ R2
α2

⊇ · · · ⊇ Rk
αk

⊇ Rk+1
αk+1

⊇ · · · and

R̃0 ⊇ R̃1 ⊇ · · · R̃k ⊇ R̃k+1 ⊇ · · ·

b) There exists a sequence {Rk
αk

}k≥1, αk ∈ Ik, as in a) such that Rk
αk

6= ∅ for all

k ≥ 1.

c) If we let Λ be the set of all sequences α := {αk}k≥1 satisfying the property from b),

then for each such sequence there exist a nonnegative integer lα ≤ dimM +dimM̄ +1

such that

Rlα
αlα

= Rlα+1
αlα+1

= · · · =: R∗
α.

In addition, there exists some nonnegative integer l ≤ dimM + dimM̄ + 1 such that

R̃l = R̃l+1 = · · · = R∗.
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d) For each sequence α ∈ Λ, R∗
α and R∗ are pointwise simulation relations of (F, h)

by (F̄ , h̄). Moreover, if (F̄ , h̄) has disturbance constant rank on R∗
α then R∗

α is an

admissible simulation relation as well. If the constant disturbance rank condition is

satisfied on R∗
α for all α ∈ Λ, then R∗ is also an admissible simulation relation.

Proof. Clearly, a) holds by the definition/construction of the sets Rk
αk

and R̃k.

For b), let us first observe that it is possible for a sequence as in a) not to be

continuable after a finite number of steps, i.e. for the algorithm to terminate with the

empty set, because for some k ≤ dimM +dimM̄ +1 and some component submanifold

Rk
αk

, the defining condition for R̃k+1 from the algorithm/pre-simulation condition may

not be satisfied at any point inRk
αk

. However, due to the “nonempty”stipulation in part

(iv) of the definition of the pre-simulation relation, we do have at least one sequence

satisfying a) such that Rk
αk

6= ∅ for all integers k with 1 ≤ k ≤ dimM + dimM̄ + 2.

Next, let us observe that for all k ≥ 1, if dimRk+1
αk+1

= dimRk
αk

, then Rk+1
αk+1

is

an open subset of Rk
αk

. By condition (iii) of the pre-simulation condition and the

construction of the sets Rk+1
αk+1

for k ≥ dimM + dimM̄ + 2 outlined in the comments

preceding this proposition, it follows that Rk+1
αk+1

is also a closed subset of Rk
αk

. As

Rk
αk

is connected, it follows that Rk
αk

= Rk+1
αk+1

.

As mentioned earlier, there exists at least one sequence satisfying a) such that

Rk
αk

6= ∅ for all integers k with 1 ≤ k ≤ dimM + dimM̄ + 2. Now note that for

such a sequence of sets, if we let N := dimM + dimM̄ + 1, then we can consider

the finite sequence {dimRk
αk

}1≤k≤N+1. This is a nonincresing sequence consisting of

N + 1 nonegative integers, with the largest term (dimR1
α1
) being less than or equal

to N − 1. This implies that there exists some (smallest) integer lα with 1 ≤ lα ≤ N

associated to the sequence {αk}k≥1 (and in fact only to the first lα terms) such that
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dimRlα+1
αlα+1

= dimRlα
αlα

. By the observation from the previous paragraph, we must

have Rlα
αlα

= Rlα+1
αlα+1

= · · · = RN+1
αN+1

. Indeed, to see this, it is enough to look at the

definition of the sets Rk
αk

as described in part (iv) of the pre-simulation condition.

But then, the only connected, closed submanifold of RN+1
αN+1

of largest dimension is

RN+1
αN+1

, which, by the comments preceding this proposition, forces RN+2
αN+2

and, by a

similar argument all Rk
αk

, to be equal to RN+1
αN+1

for all k ≥ N + 1. In summary, since

Rlα
αlα

6= ∅, it follows that all of the terms of the sequence {Rk
αk

}k≥1 are nonempty.

Let us note that the argument above also proves the first set of equalities in c). For

the second part of the claim, let us consider the set A := {lα|α ∈ Λ}. Since A is a

set of nonnegative integers bounded above by dimM + dimM̄ + 1, if we consider the

largest element l of A then, for each α ∈ Λ, we have lα ≤ l ≤ dimM +dimM̄ +1. This

implies Rl
αl

= Rlα
αlα

= R∗
α. But then, for all k ≥ l,

R̃k =
⋃

α∈Λ

Rk
αk

=
⋃

α∈Λ

Rl
αl

= R̃l

(
=

⋃

α∈Λ

R∗
α

)
.

To prove the last part of the proposition, let us first show that for each α ∈ Λ,R∗
α

satisfies (ASC)1 and (ASC)2. Clearly, R∗
α satisfies (ASC)2 since R∗

α = Rlα
αlα

⊆ R1
α1
.

Moreover, since Rlα
αlα

= Rlα+1
αlα+1, by the definition of Rlα+1

αlα+1
we obtain

(x, x̄) ∈ Rlα
αlα

⇒
[
a(x)
ā(x̄)

]
+ im

[
b(x)
b̄(x̄)

]
+ im

[
g(x)
0

]
⊂ T(x,x̄)Rlα

αlα
+ im

[
0

ḡ(x̄)

]
,

which is exactly condition (ASC)1 for Rlα
αlα

= R∗
α. Obviously, conditions (ASC)1

and (ASC)2 are satisfied on R∗ since they are satisfied on each one of its connected

components. To finish the proof, note that each one of the connected components

of R∗ are imbedded submanifolds of M × M̄ by the pre-simulation condition. In

addition, by the observation above, conditions (ASC)1 and (ASC)2 are satisfied. So,

the conclusion follows by Theorem 3.2.8. ¤
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Observation 4.7. In general, R∗ may not be a submanifold since it may consist of

connected components with different dimensions (see Example 5 from Chapter 5).

In Lemma 4.5 we provided conditions under which the regular pre-simulation condition

in the hypothesis of Proposition 4.6 can be ascertained based on the neatness of the

zero section of ⊕1+c+p
j=1 i∗l,αT R̃0 with respect to the mapping Φl,α. While, in general,

it may be difficult to check the neatness condition, the main reason why neatness is

needed is to conclude that the preimage of a certain submanifold is a union of at

most countably many mutually disjoint, connected, closed, imbedded submanifolds.

In certain instances, the same conclusion can be reached by ensuring that certain

specifically constructed functions have constant rank, which is an easier condition to

verify.

Proposition 4.8. Let R̃k = ∪α∈Ik
Rk

α be a union of mutually disjoint, closed, con-

nected, imbedded submanifolds of R̃0 and assume that each α ∈ Ik, F̄ has disturbance

constant rank along the component submanifolds Rk
α, which results in the mapping

Φk,α = ΦRk
α,i∗

k,α
T R̃0,Ṽk

α
: Rk

α →
1+c+p⊕

j=1

i∗k,αT R̃0

being well defined. If, in addition, the vector bundle
⊕1+c+p

j=1 i∗k,αT R̃0 is trivial, if

ψ :

1+c+p⊕

j=1

i∗k,αT R̃0 → Rk
α × R(1+c+p)(dimM+dimM̄)

is a trivialization function, if π2 : Rk
α×R(1+c+p)(dimM+dimM̄) → R(1+c+p)(dimM+dimM̄)

represents the projection onto the second factor, and if

Ψk,α = π2 ◦ ψ ◦ Φk,α : Rk
α → R(1+c+p)(dimM+dimM̄)

has constant rank on Rk
α (or an open subset of Rk

α containing (Ψk,α)
−1(0)), then the

preimage of the zero section of the vector bundle
⊕1+c+p

j=1 i∗k,αT R̃0 is the preimage of

0 ∈ R(1+c+p)(dimM+dimM̄) under Ψk,α and, hence, it is a union of at most countably
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many mutually disjoint, closed, connected, imbedded submanifolds of Rk
α.

Proof. The proof follows by Observation 1.2.5. ¤

Theorem 4.9. Consider two IDO systems (F, h) and (F̄ , h̄) such that F and F̄ are

affine in both inputs and disturbances and assume that (F, h) is regularly pre-simulated

by (F̄ , h̄) up to order dimM + dimM̄ + 2. Then the following hold:

a) If R′ is any pointwise simulation relation of (F, h) by (F̄ , h̄), then R′ ⊆ R∗.

b) If R′ is any submanifold of M×M̄ which is also an admissible simulation relation

of (F, h) by (F̄ , h̄) such that F̄ has disturbance constant rank along R′, then R′ ⊆ R∗.

Proof. First, let us note that in both cases we can apply Theorem 3.2.8 to conclude

that R′ must satisfy conditions (ASC)1 and (ASC)2. If we consider a connected com-

ponent of R′ (denoted by R′
comp), then this component must be a subset of one of the

connected components of R̃1 since R′
comp must satisfy condition (ASC)2. Similarly,

using the same connectivity argument and the fact that R′
comp satisfies (ASC)1, we

can conclude that R′ is a subset of one of the connected components of R̃2. In fact, by

repeating the argument based on the (ASC)1 condition, we can conclude that there

exists a sequence α ∈ Λ as in Proposition 4.6 such that R′
comp is a subset of Rk

αk
, for

all k ≥ 0. By Proposition 4.6, part c), the sequence {Rk
αk

}k≥0 stabilizes at R∗
α. So,

we have R′
comp ⊆ R∗

α ⊆ R∗. As all connected components of R′ are subsets of R∗, we

obtain that R′ ⊆ R∗.

Let us conclude by noting that R∗ is maximal among all pointwise simulation relations

of (F, h) by (F̄ , h̄). Moreover, if we consider all submanifolds of M × M̄ which are

admissible simulation relations of the given systems and on which F̄ has disturbance

constant rank, then, by the theorem above, R∗ is maximal among these simulation

relations.
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Returning to the algorithm in the general case, in step 3, we may have that Rk is

a 0− dimensional set. Although it is somewhat unusual for a simulation relation to

consist of a point or a 0−dimensional submanifold, we discuss this possibility below.

Lemma 4.10 Let R be a 0−dimensional subset of M × M̄ and consider two IDO

systems (F, h) and (F̄ , h̄), where F : M × Ω×∆ → TM and F̄ : M̄ × Ω× ∆̄ → TM̄.

Then R is an admissible simulation relation of (F, h) by (F̄ , h̄) if and only if for any

(x0, x̄0) ∈ R, h(x0) = h̄(x̄0) and for every ω ∈ Ω, and δ ∈ ∆, there exists d̄ ∈ D̄ such

that F (x0, ω, δ) = 0 and F̄ (x̄0, ω, d̄(t)) = 0 for almost all t in some interval containing

0.

Proof. Let R be an admissible simulation relation of F by F̄ and consider (x0, x̄0) ∈

R, ω ∈ Ω, and δ ∈ ∆. By Definition 3.2.1, if we choose the input and distur-

bance to be constant, i.e., u(t) ≡ ω and d(t) ≡ δ, there exists d̄ ∈ D̄ such that

(ψ(t, x0, ω, δ), ψ̄(t, x̄0, ω, d̄(t))) ∈ R, where ψ and ψ̄ denote the trajectories of F and

F̄. Moreover, h(x0) = h̄(x̄0). Since ψ and ψ̄ are continuous, it follows that the im-

age of any interval containing 0 under (ψ, ψ̄) is path-connected. But then, since R is

0−dimensional, we must have (ψ(t, x0, ω, δ), ψ̄(t, x̄0, ω, d(t))) ≡ (x0, x̄0). Differentiat-

ing this relation, we obtain the conclusion.

For the implication in the opposite direction, it is enough to note that, under the

given hypothesis, the only trajectory ψ of F is ψ(t, x0, u, d) ≡ x0 and that there exists

d̄ ∈ ∆̄ such that ψ̄(t, x0, u, d̄(t)) ≡ x̄0 is a trajectory of F̄ . ¤

In particular, if F (x, ω, δ) = a(x) + b(x)ω + g(x)δ, x ∈ M,ω ∈ Ω, δ ∈ ∆ and

F̄ (x̄, ω, δ̄) = ā(x̄)+ b̄(x̄)ω+ ḡ(x̄)δ̄, x̄ ∈ M,ω ∈ Ω, δ̄ ∈ ∆̄, then the lemma above implies:

Lemma 4.11 Let R be a 0−dimensional subset of M × M̄ and consider two IDO

systems affine in inputs and disturbances as above. Then R is an admissible simulation
53



relation of (F, h) by (F̄ , h̄) if and only if h(x0) = h̄(x̄0), a(x0) = b(x0) = g(x0) = 0 and

ā(x0) + im(b̄(x̄0)) ⊆ im(ḡ(x̄0)).

Proof. If R is an admissible simulation relation then, by Lemma 4.10, F (x0, ω, δ) = 0

for all ω ∈ Ω, δ ∈ ∆. This implies a(x0) = b(x0) = g(x0) by using ω = δ ≡ 0, followed

by ω ≡ 0 and δ arbitrary, and, lastly, δ ≡ 0 and ω arbitrary. On the other hand, if

we choose ω ≡ 0, we obtain ā(x̄0) = −ḡ(x̄0)d̄(t) for almost all t in an open interval

containing 0, which implies ā(x̄0) ∈ im(ḡ(x̄0)). Since F̄ (x̄0, ω, d̄(t)) = 0, the previous

relation implies that im(b̄(x̄0)) ⊆ im(ḡ(x̄0)), thus showing that ā(x̄0) + im(b̄(x̄0)) ⊆

im(ḡ(x̄0)).

The converse holds by choosing d̄(t) ≡ δ̄, where δ̄ is the solution of the equa-

tion F̄ (x̄0, ω, δ̄) = ā(x̄0) + b̄(x̄0)ω + ḡ(x̄0)δ̄ = 0 guaranteed by ā(x̄0) + im(b̄(x̄0)) ⊆

im(ḡ(x̄0)). ¤
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5. EXAMPLES

Example 1. Given the nonlinear systems:

(1)





ẋ1 = f1(x1) + b1(x1)u+ g1(x1, x2, x3)d

ẋ2 = f2(x1, x2, x3) + b2(x1, x2, x3)u+ d

ẋ3 = g1(x1, x2, x3)(f3(x1, x2, x3) + b3(x1, x2, x3)u+ g3(x1, x2, x3)d)

h(x1, x2, x3) = (x1, x2)

and

(2)





ż1 = f1(z1) + b1(z1)u

ż2 = f̄2(z1, z2) + b̄2(z1, z2)u+ d̄

h̄(z1, z2) = (z1, z2),

we apply the algorithm in Chapter 4 to find a simulation relation of the first system

by the second.

R0 = R3 × R2 = R5

R̃1 = {(x1, x2, x3, z1, z2)|h(x1, x2, x3) = h̄(z1, z2)} =

= {(x1, x2, x3, z1, z2)|(x1, x2) = (z1, z2)} = {(x1, x2, x3, x1, x2)|(x1, x2, x3) ∈ R3}.

Since R̃1 is a submanifold of R0, we can choose R1 = R̃1 in step 2 of the algorithm

and continue to the next step. In doing so, let’s first note that for any (x, z) ∈ R1,

T(x,z)R1 ∼= R1.
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R̃2=




(x1, x2, x3, x1, x2) ∈R1

∣∣∣




f1(x1)
f2(x1, x2, x3)

g1(x1, x2, x3)f3(x1, x2, x3)
f1(x1)

f̄2(x1, x2)


+

+im




b1(x1)
b2(x1, x2, x3)

g1(x1, x2, x3)b3(x1, x2, x3)
b1(x1)

b̄2(x1, x2)


+ im




g1(x1, x2, x3)
1

g1(x1, x2, x3)g3(x1, x2, x3)
0
0


 ⊂

⊂ T(x,z)R1 + im




0
0
0
0
1








.

So, we have R̃2 =
{
(x1, x2, x3, x1, x2) ∈ R5|(∀)λ, µ ∈ R, (∃)λi ∈ R, 1 ≤ i ≤ 4,




f1(x1) + λb1(x1) + µg1(x1, x2, x3)
f2(x1, x2, x3) + λb2(x1, x2, x3) + µ

g1(x1, x2, x3)(f3(x1, x2, x3) + λb3(x1, x2, x3) + µg3(x1, x2, x3))
f1(x1) + λb1(x1)

f̄2(x1, x2) + λb̄2(x1, x2)


=




λ1

λ2

λ3

λ1

λ2 + λ4








.

Hence, (x1, x2, x3, x1, x2) ∈ R̃2 iff for all λ, µ ∈ R, there exist λi ∈ R with 1 ≤ i ≤ 4

such that

f1(x1) + λb1(x1) + µg1(x1, x2, x3) = λ1, f2(x1, x2, x3) + λb2(x1, x2, x3) + µ = λ2,

g1(x1, x2, x3)(f3(x1, x2, x3) + λb3(x1, x2, x3) + µg3(x1, x2, x3)) = λ3,

f1(x1) + λb1(x1) = λ1, f̄2(x1, x2) + λb̄2(x1, x2) = λ2 + λ4.

Comparing the first and fourth equations and keeping in mind that µ is arbitrary,

we obtain g1(x1, x2, x3) = 0. Note that the remaining equations give no additional

restrictions; λi and can be selected as follows:

λ1 = f1(x1) + λb1(x1) λ3 = 0

λ2 = f2(x1, x2, x3)+λb2(x1, x2, x3)+µ λ4 = µ+f̄2(x1, x2)+λb̄2(x1, x2)−λ2.

Hence R̃2 = {(x1, x2, x3, x1, x2)|g1(x1, x2, x3) = 0}. Let us further investigate

this set. Consider the function G : R5 → R3 given by G(x1, x2, x3, x4, x5) =
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(g1(x1, x2, x3), x1−x4, x2−x5) and note that R̃2 = G−1(0, 0, 0). The Jacobian matrix

of G is 


∂g1
∂x1

∂g1
∂x2

∂g1
∂x3

0 0
1 0 0 −1 0
0 1 0 0 −1




Note that the rank of the Jacobian at (x1, x2, x3, x4, x5) is three iff any one of the

partial derivatives of g1 at the (x1, x2, x3) is nonzero. If this is the case, then (0, 0, 0) is

a regular value for G and R̃2 is a submanifold of R5. In fact, a similar type of argument

can be used to show that R̃2 is a submanifold ofR1 and we can proceed to the next step

by considering R2 = R̃2. On the other hand, if there exist (x1, x2, x3) ∈ R3 such that

all partial derivatives of g1 at (x1, x2, x3) are zero, then R̃2 may not be a submanifold.

For example, this is the case when g1(x1, x2, x3) = x2
1+x2

2−x2
3. At (0, 0, 0), all partial

derivatives of g1 vanish. In fact R̃2 = {(x1, x2, x3, x1, x2)|x2
1+x2

2 = x2
3} is a cone in R5,

and hence it cannot be a submanifold of R1. However, note that (0, 0, 0, 0, 0) is the only

critical point, so we can remove it from R̃2 and get a submanifold by using the constant

rank theorem on R5−{(0, 0, 0, 0, 0)}. This way we can chooseR2 = R̃2−{(0, 0, 0, 0, 0)}.

While this is an interesting special case, in what follows we will still consider a general

g1 and work under the assumption that we can choose R2 to be R̃2 minus the set of

critical points.

In the next run of the algorithm, we need to construct

R̃3=




x ∈ R2|




f1(x1)
f2(x1, x2, x3)

0
f1(x1)

f̄2(x1, x2)


+ im




b1(x1)
b2(x1, x2, x3)

0
b1(x1)

b̄2(x1, x2)


+ im




0
1
0
0
0


⊂ TxR2 + im




0
0
0
0
1








.

Let us now consider TxR2. Since R2 is obtained as the preimage of a regular value

in both cases above, its tangent space is given by the kernel of the Jacobian of G, i.e.,
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the set
{
[λ1, λ2, λ3, λ1, λ2]

T |λ1
∂g1
∂x1

+ λ2
∂g1
∂x2

+ λ3
∂g1
∂x3

= 0

}

So, we have (x1, x2, x3, x1, x2) ∈ R̃3 iff x ∈ R2 and for all λ, µ ∈ R, there exist

λi ∈ R, 1 ≤ i ≤ 4 such that

f1(x1) + λb1(x1) = λ1, f2(x1, x2, x3) + λb2(x1, x2, x3) + µ = λ2, 0 = λ3

f̄2(x1, x2) + λb̄2(x1, x2) = λ2 + λ4, and λ1
∂g1
∂x1

+ λ2
∂g1
∂x2

+ λ3
∂g1
∂x3

= 0.

We can find λi, 1 ≤ i ≤ 4, satisfying the equations iff

(f1(x1) + λb1(x1))
∂g1
∂x1

+ (f2(x1, x2, x3) + λb2(x1, x2, x3) + µ)
∂g1
∂x2

= 0.

Since λ and µ are arbitrary, the relation above holds iff

f1(x1)
∂g1
∂x1

= 0,
∂g1
∂x2

= 0, and b1(x1)
∂g1
∂x1

= 0.

Hence

R̃3 =

{
x ∈ R2|f1(x1)

∂g1
∂x1

= 0,
∂g1
∂x2

= 0and b1(x1)
∂g1
∂x1

= 0

}
.

Case 1. If f1(x1)
∂g1
∂x1

≡ 0, b1(x1)
∂g1
∂x1

≡ 0 and ∂g1
∂x2

≡ 0 on R2 then R̃3 = R2 and the

algorithm terminates successfully since we can choose R3 = R̃3. For example,

a) if f1(x1) = 0, b1(x1) = 0 for all x1 ∈ R and g1(x1, x2, x3) = x2
1 + x2

3 − 1 then

R̃2 = R2 = R̃3 = R3 = {(x1, x2, x3, x1, x2) ∈ R5|x2
1 + x2

3 = 1}

is the image in R5 of the two-dimensional cylinder x2
1 + x2

3 = 1 in R3 under the

imbedding (x1, x2, x3) → (x1, x2, x3, x1, x2). The algorithm terminates successfully

with R3. Moreover, F̄ has disturbance constant rank on R3 since the disturbance

vector field [0, 0, 0, 0, 1]T is never tangent to R3. Hence R3 is a (pointwise and

admissible) simulation relation.
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b) if f1(x1) = 0, b1(x1) = 0 for all x1 ∈ R and g1(x1, x2, x3) = x2
1 − x2

3 then

R̃2 = {(x1, x2, x3, x1, x2)|x1 = ±x3}.

If we chooseR2 = R̃2−{(0, x2, 0, 0, x2)} then the algorithm terminates successfully

with R2, the union of four half-planes. Again, R2 does satisfy the disturbance

constant rank condition for the same reason as above and R2 is a (pointwise and

admissible) simulation relation.

It should be noted that while R2 in case 1b) above has been chosen in a “maximal

manner”, R2 is not a “maximal”simulation relation (see Theorem 4.9). Indeed, if we

consider

R = {(x1, x2, x1, x1, x2)|(x1, x2) ∈ R2},

then R is a (pointwise and admissible) simulation relation of the first system by the

second since conditions (ASC)1 and (ASC)2 are satisfied on R and F̄ has disturbance

constant rank along R. Yet R  R2. The reason why we cannot apply Theorem 4.9

to conclude maximality is that the regular pre-simulation condition up to order seven

from the hypothesis of this theorem is not satisfied. More specifically, while F̄ does

have disturbance constant rank along R1, R̃2 is not a union of disjoint and closed

submanifolds of R̃0.

If we disregard the observation above about R̃2 and pretend for a moment that R̃2

has not yet been computed, we can re-compute R̃2 based on Proposition 4.8 in the

hope that it will be a union of closed and disjoint submanifolds. Let us first make

the observation that since i∗1,1TR0, i1,1 : R1 → R0, is a trivial bundle over R1, we

only need to investigate the rank of a single function Ψ1,1 : R3 → R15 (as defined in

Proposition 4.8), where R1 has been identified with R3.
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Let us now recall that in order to find Ψ1,1 we first need to determine S, the section

of Hom(i∗1,1TR0) defined by the property that, for any x ∈ R1, S(x) sends any vector

in i∗1,1TxR0 (identified with R5) to its projection onto TxR1 + im([0, 0, 0, 0, 1]T ) (see

Proposition 4.8 and the proof of Proposition 2.4.4). Note that for any x ∈ R1, the

vectors 


1
0
0
1
0


,




0
1
0
0
1


,




0
0
1
0
0


, and




0
0
0
0
1




span the vector space TxR1+im([0, 0, 0, 0, 1]T ). This is a four dimensional vector space

whose orthogonal complement is spanned by [1, 0, 0,−1, 0]T . Since (S − I)(x) takes

any vector v ∈ R5 to the negative of its orthogonal projection onto this orthogonal

complement, we obtain that for any x ∈ R3,

(S − I)(x)([v1, v2, v3, v4, v5]
T ) =

[
1

2
(v4 − v1), 0, 0,

1

2
(v1 − v4), 0

]
.

Thus, Ψ1,1 sends (x1, x2, x3) to the 15−dimensional vector consisting of zeros on

all coordinates except for the eleventh and fourteenth place where the entries are

− 1
2g1(x1, x2, x3) and 1

2g1(x1, x2, x3), respectively. Clearly, the rank of Ψ1,1 at

(x1, x2, x3) is one or zero depending on whether or not the gradient of g1 at (x1, x2, x3)

is nonzero. In particular, for g1(x1, x2, x3) = x2
1−x2

3, the rank of g1 is zero at (0, x2, 0)

for any x2 ∈ R and one everywhere else. Hence, the rank of Ψ1,1 cannot be constant

(on any neighborhood of (0, 0, 0, 0, 0)) and, since (0, 0, 0, 0, 0) is contained in R̃2, the

rank of Ψ1,1 will vary (on any neighborhood of R̃2).

Case 2. If f1(x1)
∂g1
∂x1

≡ 0, b1(x1)
∂g1
∂x1

≡ 0 on R2 but ∂g1
∂x2

is not identically 0 then let

us consider the following cases:

a) f1(x1) = b1(x1) = 0 for all x1 ∈ R and g1(x1, x2, x3) = x2 + φ(x1, x3). Here,
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∂g1
∂x2

is never zero, hence R̃3 = ∅ and the algorithm terminates unsuccessfully.

b) f1(x1) = b1(x1) = 0 for all x1 ∈ R and g1(x1, x2, x3) = ex2(1−φ(x1, x3)), where

φ : R2 → R is a smooth function whose Jacobian matrix is never zero (so that R̃2

is a submanifold). In this case

R̃3 = {(x1, x2, x3, x1, x2) ∈ R5|φ(x1, x3) = 1} = R2 = R̃2.

and the algorithm terminates successfully.

Case 3. f1(x1) = 0, b1(x1) = x1, and g1(x1, x2, x3) = x2
1 + x2

3 − 1. In this case

R2 = R̃2 = {(x1, x2, x3, x1, x2) ∈ R5|x2
1 + x2

3 = 1} and

R̃3=
{
(x1, x2, x3, x1, x2) ∈ R5|x2

1 + x2
3 = 1, x1 = 0

}
=
{
(0, x2,±1, 0, x2) ∈ R5|x2 ∈ R} ,

which is the union of two parallel lines on the cylinder. Hence we can choose R3 =

R̃3 (or any one of the two component lines). Note that a tangent vector to R3 is

[0, 1, 0, 0, 1]T . But then

R̃4=




x∈R3

∣∣∣




0
f2(0, x2,±1)

0
0

f̄2(0, x2)


+im




0
b2(0, x2,±1)

0
0

b̄2(0, x2)


+im




0
1
0
0
0


 ⊂ im




0
1
0
0
1


+ im




0
0
0
0
1








.

Equivalently, (0, x2,±1, 0, x2) ∈ R̃4 iff (∀)λ, µ ∈ R, there exist λi ∈ R, 1 ≤ i ≤ 1 such

that

f2(0, x2,±1) + λb2(01, x2,±1) + µ = λ1 and f̄2(0, x2) + λb̄2(0, x2) = λ1 + λ2

Clearly, one can always choose λ1 and λ2 with the properties above. So R4 = R̃4 = R3

and, since F̄ has disturbance constant rank on R4, the algorithm terminates success-

fully with R4, the union of two disjoint submanifolds with the same dimension.

Case 4. f1(x1) ≡ 0, b1(x1) = x1, and g1(x1, x2, x3) = x2
1 + x2

2 − x3. Here

R̃2 = R2 = {(x1, x2, x3, x1, x2) ∈ R5|x2
1 + x2

2 = x3}
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is the image in R5 of the paraboloid of revolution x2
1 + x2

2 = x3 in R3 under the

imbedding (x1, x2, x3) → (x1, x2, x3, x1, x2). Moreover,

R̃3 = {(x1, x2, x3, x1, x2) ∈ R5|x2
1 + x2

2 = x3, x2 = 0, x1 = 0} = {(0, 0, 0, 0, 0)}

So, we obtain that R̃3 is a point. But then, based on Lemma 4.11, the algorithm

terminates unsuccessfully since the second component of the disturbance vector field

[g1(x1, x2, x2), 1, g1(x1, x2, x3)g3(x1, x2, x3)]
T is never zero. Alternatively, if we choose

R3 = {(0, 0, 0, 0, 0)} and continue the algorithm, then we obtain R4 = ∅ since it is

impossible to have


0
f2(0, 0, 0)

0
0

f̄2(0, x2)


+ im




0
b2(0, 0, 0)

0
0

b̄2(0, x2)


+ im




0
1
0
0
0


 ⊂ im




0
0
0
0
1




Case 5. Let us make a minor change in the disturbance vector field of the original

systems in order to get the following new systems:

(1)





ẋ1 = f1(x1) + b1(x1)u+ g1(x1, x2, x3)d

ẋ2 = f2(x1, x2, x3) + b2(x1, x2, x3)u+ x2d

ẋ3 = g1(x1, x2, x3)(f3(x1, x2, x3) + b3(x1, x2, x3)u+ g3(x1, x2, x3)d)

h(x1, x2, x3) = (x1, x2)

and

(2)





ż1 = f1(z1) + b1(z1)u

ż2 = f̄2(z1, z2) + b̄2(z1, z2)u+ d̄

h̄(z1, z2) = (z1, z2).

This way we obtain the same general R̃2 = R2 as before, but this time

(x1, x2, x3, x1, x2) ∈ R̃3 iff g1(x1, x2, x3) = 0 and for all λ, µ ∈ R, we can find

λi, 1 ≤ i ≤ 4, such that

f1(x1) + λb1(x1) = λ1, f2(x1, x2, x3) + λb2(x1, x2, x3) + µx2 = λ2, 0 = λ3
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f̄2(x1, x2) + λb̄2(x1, x2) = λ2 + λ4, and λ1
∂g1
∂x1

+ λ2
∂g1
∂x2

+ λ3
∂g1
∂x3

= 0.

We can do so as long as

(f1(x1) + λb1(x1))
∂g1
∂x1

+ (f2(x1, x2, x3) + λb2(x1, x2, x3) + µx2)
∂g1
∂x2

= 0,

which is equivalent to

f1(x1)
∂g1
∂x1

+f2(x1, x2, x3)
∂g1
∂x2

= 0, x2
∂g1
∂x2

= 0, and b1(x1)
∂g1
∂x1

+b2(x1, x2, x3)
∂g1
∂x2

= 0.

Let us now look at a specific case of the above in which g1(x1, x2, x3) = x2
1 +

x2
2 − x3, b1(x1) = x1, and b2(x1, x2, x3) = f2(x1, x2, x3) ≡ 0 (or, more generaly, any

“multiple”of g1). We obtain

R̃3 = {(x1, x2, x3, x1, x2) ∈ R5|x2
1 + x2

2 = x3, x1 = 0, x2 = 0} = {(0, 0, 0, 0, 0)}.

This time, the relation in Lemma 4.11 is satisfied iff f1(0) = 0 and

[
0

f̄2(0, 0)

]
+ im

[
0

b̄2(0, 0)

]
⊂ im

[
0
1

]
.

So, it is enough to have f1(0) = 0. Thus, we obtain a 0−dimensional simulation relation

provided that g1(x1, x2, x3) = x2
1+x2

2−x3, b1(x1) = x1, b2(x1, x2, x3) = f2(x1, x2, x3) ≡

0, f1(0) = 0, and all other functions are arbitrary.

Example 2. The following example (without the algorithm) can be found in [4] and

shows that, in general, without assuming that F̄ has disturbance constant rank, the

submanifold at termination may not be an admissible simulation relation.

Consider the following systems

1)





ẋ1 = 1 + x3
1d

ẋ2 = d

h(x1, x2) = x1

and (2)





ż1 = 1 + z21 d̄

h(z1) = z1

Clearly, R̃1 = R1 = {(x1, x2, x1) ∈ R3|x1, x2 ∈ R}. Continuing the algorithm, we have
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R̃2 =



(x1, x2, x1) ∈ R1

∣∣∣


1
0
1


+ im



0
0
0


+ im



x3
1

1
0


 ⊆ T(x1,x2,x1)R1 + im




0
0
x2
1





 .

Since T(x1,x2,x1)R1 is spanned by [1, 0, 1]T and [0, 1, 0]T , (x1, x2, x1) ∈ R̃2 iff for any

λ ∈ R there exist λ1, λ2, λ3 ∈ R such that

1 + λx3
1 = λ1, λ = λ2, and 1 = λ1 + λ3x

2
1.

Since we can always find λi, 1 ≤ i ≤ 3, satisfying the three relations above, we have

R̃2 = R1 and the algorithm terminates. However, as it was pointed out in the refer-

ence mentioned above, F̄ does not have disturbance constant rank and R2 is not an

admissible simulation relation (but is a pointwise simulation relation, as expected).

Example 3. In contrast to the previous example, in this example, despite the dis-

turbance constant rank condition not being satisfied on the submanifold we obtain

at termination, the submanifold at termination is actually an admissible simulation

relation. This shows that the disturbance constant rank condition is sufficient for

admissibility, but not necessary.

Consider the systems:

(1)





ẋ1 = x1 + x1u+
2

3
x1d

ẋ2 =
3

2
x2 +

3

2
x2u+ x2d

h(x1, x2) = (x1, x2)

and (2)





ż1 = z1 + z1u

ż2 = z2d̄

h̄(z1, z2) = (z22 , z
3
2).

R̃1 = {(x1, x2, z1, z2) ∈ R4|x1 = z22 , x2 = z32} = {(z22 , z32 , z1, z2)|z1, z2 ∈ R}. Note

that R̃1 is the preimage of 0 ∈ R2 under the function G : R4 → R2 given by

G(x1, x2, x3, x4) = (x1 − x2
4, x2 − x3

4). The Jacobian of this function at (x1, x2, x3, x4)

is
[
1 0 0 −2x4

0 1 0 −3x2
4

]
.
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Clearly, the rank of the Jacobian is constant. Hence, R̃1 is a (two-dimensional) sub-

manifold of R4 and we can choose R1 = R̃1. The tangent space of R1 at (z22 , z
3
2 , z1, z2)

is given by the kernel of the Jacobian at this point. So, a vector [λ1, λ2, λ3, λ4]
T is in

the tangent space iff λ1 = 2z2λ4, λ2 = 3z22λ4. To summarize,

T(x,z)R̃1 = span







2z2
3z22
0
1


,



0
0
1
0








.

Let us now compute R̃2.

R̃2 =




(z22 , z

3
2 , z1, z2) ∈ R1|




z22
3
2z

3
2

z1
0


+ im




z22
3
2z

3
2

z1
0


+ im




2
3z

2
2

z32
0
0


⊂ T(x,z)R1+ im




0
0
0
z2








=

=
{
(z22 , z

3
2 , z1, z2) ∈ R4|(∀)λ, µ ∈ R, (∃)λi, 1 ≤ i ≤ 3,




z22 + λz22 + 2
3µz

2
2

3
2z

3
2 + 3

2z
3
2λ+ z32µ

z1 + λz1
0


=




2z2λ1

3z22λ1

λ2

λ1 + λ3z2








.

So, (z22 , z
3
2 , z1, z2) ∈ R̃2 iff for all λ, µ ∈ R, there exists λi, 1 ≤ i ≤ 3 such that

z22 +λz22 +
2

3
µz22 = 2z2λ1,

3

2
z32 +

3

2
z32λ+ z32µ = 3z22λ1, z1+λz1 = λ2 and 0 = λ1+λ3z2.

Note that the second equation can be obtained by multiplying the first equation by 3
2z2.

If z2 = 0, with an arbitrary choice of λ1, the first, and hence second equation, will be

trivially satisfied. The value of λ2 is given by the third equation and λ3 can be chosen

arbitrarily if we select λ1 = 0. If z2 6= 0, then we can choose λ1 = z2(
1
2+

1
2λ+

1
3µ), λ2 =

z1(1 + λ), and λ3 = −λ1

z2
. In summary, we have R̃2 = R1. Since R̃2 is a submanifold,

we have R2 = R̃2 = R1.

We claim that the constant disturbance rank condition is not satisfied along R2.

Indeed, along the line {(0, 0, z1, 0)|z1 ∈ R}, the tangent space to R2 is spanned by the
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vectors



0
0
0
1


,



0
0
1
0


. So,

T(0,0,z1,0)R2 + im



0
0
0
0


 = span







0
0
0
1


,



0
0
1
0








.

On the other hand, along the complement of the line above in R2,

T(z2
2 ,z

2
2 ,z1,z2)

R2 + im




0
0
0
z2


 = span







2z2
3z22
0
1


,



0
0
1
0


,




0
0
0
z2








.

Since the three vectors on the right side of the equality are linearly independent, we

obtain different dimensions depending on whether z2 = 0 or z2 6= 0. So, the disturbance

constant rank condition is not satisfied.

Now, we claim that R2 is actually an admissible simulation relation of the first

system by the second. Let (z220, z
3
20, z10, z20) ∈ R2. To prove that R2 is a simulation

relation, we need to show that for any locally integrable functions u and d, there exists

a locally integrable function d̄(t) such that

(φ1(t), φ2(t), ψ1(t), ψ2(t)) ∈ R2 a.e.,

where (φ1(t), φ2(t)) is the trajectory of the first system with initial conditions (z220, z
3
20)

and (ψ1(t), ψ2(t)) is the trajectory of the second system with initial conditions

(z10, z20). If we select d̄ = 1
2 (1+u+ 2

3d) then d̄ is clearly locally integrable. Moreover, if

we consider α(t) =
∫ t

0
[1+u(s)+ 2

3d(s)] ds, then t → (z220e
α(t), z320e

3
2α(t)) is a trajectory

for the first system starting at (z220, z
3
20). If we also let β(t) =

∫ t

0
[1 + u(s)] ds then

t → (z10e
β(t), z20e

1
2α(t)) is a trajectory of the second system starting at (z10, z20). As

we can easily check,
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t → (z220e
α(t), z320e

3
2α(t), z10e

β(t), z20e
1
2α(t)) ∈ R2.

Example 4. The example below illustrates that for two systems there exist descending

sequences as in Proposition 4.6 which do terminate with the empty set while others

don’t. In addition, the example also shows that it is possible to have α1, α2 ∈ Ik

such that Rk
α1

and Rk
α2

have the same dimensions while at the next level, for some

for ᾱ1, ᾱ2 the submanifolds Rk+1
ᾱ1

and Rk+1
ᾱ2

will have different dimensions, with Rk+1
ᾱ1

being obtained from Rk
α1

and Rk+1
ᾱ2

being obtained from Rk
α2
. So, let us consider the

nonlinear systems:

1)





ẋ1 = (x1 − 2)(x1x2 + x1x2u+ (x2
1 + x2

2 − 1)d)

ẋ2 = −(x1 − 2)(x2
1 + x2

1u+ d)

ẋ3 = f3(x1, x2, x3) + b3(x1, x2, x3)u+ g3(x1, x2, x3)d

h(x1, x2, x3) = (x1, x2)

and

(2)





ż1 = (z1 − 2)(z1z2 + z1z2u)

ż2 = −(z1 − 2)(z21 + z22u) + d̄

h̄(z1, z2) = (z1, z2).

By using a similar argument as for the systems in Example 1, we have

R̃2 = {(x1, x2, x3, x1, x2) ∈ R5|(x1 − 2)(x2
1 + x2

2 − 1) = 0}.

So R̃2 is the union of two disjoint submanifolds of R5 of the same dimension:

R2
1 = {(2, x2, x3, 2, x2)|x2, x3 ∈ R} andR2

2 = {(x1, x2, x3, x1, x2) ∈ R5|x2
1 + x2

2 = 1}.

Next we will construct R̃3 by using Proposition 4.8. First, let us show that the

hypotheses of the proposition are satisfied. To check the disturbance constant rank

condition, it is enough to note that the vector [0, 0, 0, 0, 1]T is never tangent to either

R2
1 or R2

2.
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Let us now compute Ψ2,1 and Ψ2,2. For any x ∈ R2
1, we have that

TxR2
1 + im

(
[0, 0, 0, 0, 1]T

)
is spanned by the vectors [0, 1, 0, 0, 1]T , [0, 0, 1, 0, 0]T ,

and [0, 0, 0, 0, 1]T . Its orthogonal complement is then spanned by [1, 0, 0, 0, 0]T and

[0, 0, 0, 1, 0]T . As (S− I)(x) is the negative of the projection onto this orthogonal com-

plement, as one can easily check, Ψ2,1 sends (2, x2, x3, 2, x2) ∈ R2
1 to the zero vector

in R5 × R5 × R5. Clearly, the rank of Ψ2,1 is constant and equal to zero. Thus



x ∈ R2

1|




(x1 − 2)x1x2

−(x1 − 2)x2
1

f3(x1, x2, x3)
(x1 − 2)x1x2

−(x1 − 2)x2
1


+ im




(x1 − 2)x1x2

−(x1 − 2)x2
1

b3(x1, x2, x3)
(x1 − 2)x1x2

−(x1 − 2)x2
1


+ im




(x1 − 2)(x2
1 + x2

2 − 1)
−(x1 − 2)

g3(x1, x2, x3)
0
0


 ⊆

⊆ TxR2
1 + im




0
0
0
0
1








= R2
1.

For any x ∈ R2
2, TxR2

2 + im
(
[0, 0, 0, 0, 1]T

)
is spanned by the vectors

[x2,−x1, 0, x2,−x1]
T , [0, 0, 1, 0, 0]T , [0, 0, 0, 0, 1]T . Its orthogonal complement in R5

is then spanned by the vectors [x1, x2, 0, 0, 0]
T and [1, 0, 0,−1, 0]T .

Hence, for any x ∈ R2
2 and any v = [v1, v2, v3, v4, v5]

T ∈ R5, we have

((S − I)(x))(v) =




x1[(x1−1)(v1−v4)+(v1x1+v2x2)(x1−2)]
x2
1−2

x2[x1(v1−v4)−2(v1x1+v2x2)]
x2
1−2

0
(v1−v4)−x1(v1x1+v2x2)

x2
1−2

0



.

This way, by using the three vector fields σ1, σ2, σ3 given by



(x1 − 2)x1x2

−(x1 − 2)x2
1

f3(x1, x2, x3)
(x1 − 2)x1x2

−(x1 − 2)x2
1


,




(x1 − 2)x1x2

−(x1 − 2)x2
1

b3(x1, x2, x3)
(x1 − 2)x1x2

−(x1 − 2)x2
1


, and




(x1 − 2)(x2
1 + x2

2 − 1)
−(x1 − 2)

g3(x1, x2, x3)
0
0


,

it follows that Ψ2,2 : R2
2 → R5×R5×R5 sends any (x1, x2, x3, x1, x2) with x2

1+x2
2 = 1

to the vector consisting of zeros on all components except for the eleventh, twelfth,

and fourteenth component where the entries are
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(∗) − 2x1x2(x1 − 2)

x2
1 − 2

,
2x2

2(x1 − 2)

x2
1 − 2

, and
x1x2(x1 − 2)

x2
1 − 2

,

respectively. Clearly, the preimage of 0 ∈ R15 under Ψ2,2 is the set

{(1, 0, x3, 1, 0)|x3 ∈ R} ∪ {(−1, 0, x3,−1, 0)|x3 ∈ R},

which can be directly seen to be the union of two one-dimensional disjoint, closed,

imbedded submanifolds of R2
2. On the other hand, if we insist on applying Proposition

4.8, we can first parameterize a neighborhood of (say) the first set in the union above

by

λ : (−ε, ε)× R, λ(θ, x3) = (cos θ, sin θ, x3).

The rank of Ψ2,2 on λ((−ε, ε)×R) is then the same as the rank of Ψ̃2,2 = Ψ2,2 ◦ λ on

((−ε, ε)×R). As one can check by inspection, for any x3 ∈ R, the rank of Ψ̃2,2 at (0, x3)

is constant, indeed maximal, and equal to one. Moreover, for any point (θ, x3), θ 6= 0,

where the rank of Ψ̃2,2 might be zero, we must have that the derivative of the first

and second components with respect to θ in (∗) above (after replacing x1 and x2 by

cos θ and sin θ) is zero. But then, the derivative of the quotient between the first and

second component must be zero. Note that the quotient is well defined as long as

ε < π. As it turns out, this quotient is cot θ and its derivative is clearly nonzero. This

shows that there exists an open neighborhood of {(1, 0, x3, 1, 0)|x3 ∈ R} on which the

rank of Ψ2,2 is constant and we can now apply Proposition 4.8. The same argument

can be used for {(−1, 0, x3,−1, 0)|x3 ∈ R}.

Thus, R3
1 = R2

1 = {(2, x2, x3, 2, x2)|x2, x3 ∈ R} is a two-dimensional submanifold while

R3
2 = {(1, 0, x3, 1, 0)|x3 ∈ R} andR3

3 = {(−1, 0, x3,−1, 0)|x3 ∈ R} are one-dimensional

submanifolds.

As one can easily check,
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


x ∈ R3

2

∣∣∣




(x1 − 2)x1x2

−(x1 − 2)x2
1

f3(x1, x2, x3)
(x1 − 2)x1x2

−(x1 − 2)x2
1


+ im




(x1 − 2)x1x2

−(x1 − 2)x2
1

b3(x1, x2, x3)
(x1 − 2)x1x2

−(x1 − 2)x2
1


+ im




(x1 − 2)(x2
1 + x2

2 − 1)
−(x1 − 2)

g3(x1, x2, x3)
0
0


 ⊆

⊆ TxR3
2 + im




0
0
0
0
1








= ∅ and




x ∈ R3

3

∣∣∣




(x1 − 2)x1x2

−(x1 − 2)x2
1

f3(x1, x2, x3)
(x1 − 2)x1x2

−(x1 − 2)x2
1


+ im




(x1 − 2)x1x2

−(x1 − 2)x2
1

b3(x1, x2, x3)
(x1 − 2)x1x2

−(x1 − 2)x2
1


+ im




(x1 − 2)(x2
1 + x2

2 − 1)
−(x1 − 2)

g3(x1, x2, x3)
0
0


 ⊆

⊆ TxR3
3 + im




0
0
0
0
1








= ∅,

thus resulting in R̃4 = {(2, x2, x3, 2, x2)|x2, x3 ∈ R} and the termination of the algo-

rithm.

It should be noted that while the computations for R̃3 have been achieved by using

the function Ψ2,2 and Proposition 4.8, the same answer for R̃3 can be obtained by

inspection, i.e., by applying the algorithm directly.

Example 5. Regardless of whether or not the rank conditions in Proposition 4.8 or

the regular pre-simulation condition in Theorem 4.6 are satisfied, one may still have

that the conclusions of Proposition 4.6 are satisfied. More precisely, when applying the

original algorithm, one only chooses a submanifold Rk+1 of Rk contained in R̃k+1 and

continues the algorithm. But if R̃k+1 is a union of (say) two connected, disjoint sub-

manifolds of different dimensions, then Rk+1 can be chosen in two “maximal”ways,

thus getting a “branching”of the algorithm. Hence, one may still obtain an “over-

all”termination set which, only for the purpose of this example, will also be denoted
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by R∗. (We recall that the definition of R∗ has been introduced in Proposition 4.6

and assumes the regular pre-simulation conditions in that proposition). As noted in

Observation 4.7, this set may not be a submanifold. In this example, we show that

R∗ may consist of component submanifolds with different dimensions.

Consider the nonlinear systems:

1)





ẋ1 = f1(x1, x2) + b1(x1, x2)u+ g1(x1, x2, x3)d

ẋ2 = f2(x1, x2, x3) + b2(x1, x2, x3)u+ g2(x1, x2, x3)d

ẋ3 = f3(x1, x2, x3) + b3(x1, x2, x3)u+ g3(x1, x2, x3)d

h(x1, x2, x3) = (x1, x2)

and

(2)





ż1 = f1(z1, z2) + b1(z1, z2)u

ż2 = f̄2(z1, z2) + b̄2(z1, z2)u+ ḡ2(z1, z2)d̄

h̄(z1, z2) = (z1, z2).

such that

i) b2(x1, x2, x3) = ψ1(x1)k1(x1, x2, x3) + b̄2(x1, x2), and ψ1(±1) = 0

(so b2(±1, x2, x3) = b̄2(±1, x2)),

ii) f2(x1, x2, x3) = ψ2(x1)k2(x1, x2, x3) + f̄2(x1, x2) and ψ2(±1) = 0

(so f2(±1, x2, x3) = f̄2(±1, x2))

iii) g1(x1, x2, x3) = 0 iff x1 = ±1,

iv) g2(x1, x2, x3) = 0 iff x1 = 1 or x2 = 0,

v) ḡ2(±1, x2) = 0,

vi) f1(1, x2) = b1(1, x2) = 0,

vii) f1(−1, 0) = b1(−1, 0) = 0, and

viii) f̄2(−1, 0) = b̄2(−1, 0) = 0.

(In particular, we can make the following selection:
71



f1(x1, x2) = b1(x1, x2) = (x1 − 1)x2, g1(x1, x2, x3) = x2
1 − 1,

f2(x1, x2, x3) = b2(x1, x2, x3) = (x1 + 1)x2, g2(x1, x2, x3) = (x1 − 1)x2,

f3, b3, g3 arbitrary,

f̄2(x1, x2) = b̄2(x1, x2) = (x1 + 1)x2, ḡ2(x1, x2) = x2
1 − 1.)

This way, we have R0 = R3 × R2 = R5,

R̃1 = {(x1, x2, x3, z1, z2)|h(x1, x2, x3) = h̄(z1, z2)}

= {(x1, x2, x3, z1, z2)|(x1, x2) = (z1, z2)} = {(x1, x2, x3, x1, x2)|(x1, x2, x3) ∈ R3}.

Since R̃1 is a submanifold of R0, we can choose R1 = R̃1 in step 2 of the algorithm

and continue to the next step. In doing so, let us first observe that for any (x, z) ∈ R1,

we have T(x,z)R1 ∼= R1.

Let us compute R̃2 next.

R̃2 =




(x1, x2, x3, x1, x2) ∈ R1|




f1(x1, x2)
f2(x1, x2, x3)
f3(x1, x2, x3)
f1(x1, x2)
f̄2(x1, x2)


+ im




b1(x1, x2)
b2(x1, x2, x3)
b3(x1, x2, x3)
b1(x1, x2)
b̄2(x1, x2)


+

+im




g1(x1, x2, x3)
g2(x1, x2, x3)
g3(x1, x2, x3)

0
0


 ⊂ T(x,z)R1 + im




0
0
0
0

ḡ2(x1, x2)








=

=
{
(x1, x2, x3, x1, x2) ∈ R5|(∀)λ, µ ∈ R, (∃)λi ∈ R, 1 ≤ i ≤ 4,



f1(x1, x2) + λb1(x1, x2) + µg1(x1, x2, x3)
f2(x1, x2, x3) + λb2(x1, x2, x3) + µg2(x1, x2, x3)
f3(x1, x2, x3) + λb3(x1, x2, x3) + µg3(x1, x2, x3)

f1(x1, x2) + λb1(x1, x2)
f̄2(x1, x2) + λb̄2(x1, x2)


 =




λ1

λ2

λ3

λ1

λ2 + λ4ḡ2(x1, x2)








So, (x1, x2, x3, x1, x2) ∈ R̃2 iff for all λ, µ ∈ R, there exist λi ∈ R, 1 ≤ i ≤ 4 such that

f1(x1, x2) + λb1(x1, x2) + µg1(x1, x2, x3) = λ1

f2(x1, x2, x3) + λb2(x1, x2, x3) + µg2(x1, x2, x3) = λ2

f3(x1, x2, x3) + λb3(x1, x2, x3 + µg3(x1, x2, x3)) = λ3

f1(x1, x2) + λb1(x1, x2) = λ1
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f̄2(x1, x2) + λb̄2(x1, x2) = λ2 + λ4ḡ2(x1, x2)

Comparing the first and fourth equations and keeping in mind that µ is arbitrary, we

obtain g1(x1, x2, x3) = 0, which is equivalent to x1 = ±1, by iii). Since λ1 and λ3 can

be easily found, we need to investigate if and when λ2 and λ4 can be found in terms

of λ and µ.

If x1 = 1, then, since g2(1, x2, x3) = 0 by condition (iv), the second equation becomes

λ2 = f2(1, x2, x3) + λb2(1, x2, x3). Since b2(1, x2, x3) = b̄2(1, x2) and f2(1, x2, x3) =

f̄2(1, x2) by conditions (i) and (ii), and since ḡ2(1, x2, x3) = 0 by condition (v), the

second and fifth equations both reduce to

λ2 = f2(1, x2, x3) + λb2(1, x2, x3) = f̄2(1, x2) + λb̄2(1, x2),

which provide a consistent definition for λ2. Clearly, λ4 can be chosen in an arbitrary

manner since ḡ2(1, x2) = 0.

On the other hand, if x1 = −1, then, replacing λ2 from the second equation in the

last equation, we have

f̄2(−1, x2) + λb̄2(−1, x2) = f2(−1, x2, x3) + λb2(−1, x2, x3)+

+µg2(−1, x2, x3) + λ4ḡ2(−1, x2).

Again, by i) and ii), the first two terms on either side of the equation are equal. So,

since ḡ2(−1, x2) = 0 by (v), the relation above becomes 0 = µg2(−1, x2, x3). The only

way this can be true for all µ is if x2 = 0. So, if x2 = −1, then λ2 and λ4 can be found

(with λ4 arbitrary) iff x2 = 0.

To summarize, R̃2 = {(1, x2, x3, 1, x2) ∈ R5|x2, x3 ∈ R} ∪ {(−1, 0, x3,−1, 0) ∈

R5|x3 ∈ R}. Thus, R2 is a union of disjoint, closed, connected submanifolds with

different dimensions.
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With R2
1 := {(1, x2, x3, 1, x2) ∈ R5|x2, x3 ∈ R}, we want to use the algorithm to

compute

R̃3
1=




(1,x2,x3,1,x2)

∣∣∣




f1(1,x2)
f2(1,x2,x3)
f3(1,x2,x3)
f1(1,x2)
f̄2(1,x2)


+im




b1(1,x2)
b2(1,x2,x3)
b3(1,x2,x3)
b1(1,x2)
b̄2(1,x2)


+

im




0
0

g3(1,x2,x3)
0
0


⊂T(1,x2,x3,1,x2)R2

1





.

(It should be noted that the term im[0, ḡ(x̄)]T does not appear on the right side of the

inclusion above since it is zero). So, since T1,x2,x3,1,x2R2
1 is spanned by [0, 1, 0, 0, 1]T

and [0, 0, 1, 0, 0]T , (1, x2, x3, 1, x2) ∈ R̃3
1 iff for any λ, µ ∈ R, there exist λ1, λ2 ∈ R such

that

f1(1, x2) + λb1(1, x2) = 0

f2(1, x2, x3) + λb2(1, x2, x3) = λ1

f3(1, x2, x3) + λb3(1, x2, x3) + µg3(1, x2, x3) = λ2

f1(1, x2) + λb1(1, x2) = 0

f̄2(1, x2) + λb̄2(1, x2) = λ1

By i) and ii), the second relation coincides with the last. Moreover, we can find λ1 and

λ2 such that all five relations are satisfied iff f1(1, x2) = b1(1, x2) = 0, which holds by

vi). Thus, R̃3
1 = R2

1 and the algorithm terminates.

With R2
2 := {(−1, 0, x3,−1, 0) ∈ R5|x3 ∈ R}, in order to compute R̃3

2, let us first note

that with x1 = −1 and x2 = 0, we have

f2(−1, 0, x3) = f̄2(−1, 0) = b2(−1, 0, x3) = b̄2(−1, 0) = 0

by the assumed properties of the functions above. Thus R̃3
2 is defined as follows:
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R̃3
2=




(−1, 0, x3,−1, 0)

∣∣∣




0
0

f3(−1,0,x3)
0
0


+im




0
0

b3(−1,0,x3)
0
0


+

im




0
0

g3(−1,0,x3)
0
0


⊂T(−1,0,x3,−1,0)R2

2




,

and this is satisfied for every x3 ∈ R (that is, for every (−1, 0, x3,−1, 0) ∈ R2
2) be-

cause the tangent space to R2
2 at (−1, 0, x3,−1, 0) is spanned by [0, 0, 1, 0, 0]T and the

inclusion above holds if for every λ, µ ∈ R there exists λ1 ∈ R such that

f3(−1, 0, x3) + λb3(−1, 0, x3) + µg3(−1, 0, x3) = λ1,

which, of course, holds trivially since we can just define λ1 by the formula above. Thus

R∗ = {(1, x2, x3, 1, x2) ∈ R5|x2, x3 ∈ R} ∪ {(−1, 0, x3,−1, 0) ∈ R5|x3 ∈ R}

is the union between a two-dimensional and a one-dimensional submanifold. It should

also be noted that F̄ has disturbance constant rank on each of the two components

since the disturbance vector field [0, 0, 0, 0, ḡ2(x1, x2)]
T is zero in either of the cases

x1 = 1 or x1 = −1, thus making R∗ a pointwise as well as an admissible simulation

relation.
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