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ABSTRACT 

The mitochondrial NAD-malic enzyme catalyzes the oxidative decarboxylation of 

malate to pyruvate and CO2.  The role of the dinucleotide substrate in oxidative 

decarboxylation is probed in this study using site-directed mutagenesis to change key 

residues that line the dinucleotide binding site.  Mutant enzymes were characterized using 

initial rate kinetics, and isotope effects were used to obtain information on the 

contribution of these residues to binding energy and catalysis.   

The first part of the project was to investigate the contribution of binding energy 

and catalysis of the groups that interact with the nicotinamide and ribose rings of NAD. 

Results obtained for the N479 mutant enzymes, indicate that the hydrogen bond donated 

by N479 to the carboxamide side chain of the nicotinamide ring is important for proper 

orientation of the cofactor in the hydride transfer step.  The stepwise oxidative 

decarboxylation mechanism observed for the wt enzyme changed to a concerted one, 

which is totally rate limiting, for the N479Q mutant enzyme.  In this case, it is likely that 

the longer glutamine side chain causes reorientation of malate such that it binds in a 

conformation that is optimal for concerted oxidative decarboxylation. Converting N479 

to the shorter serine side chain gives very similar values of KNAD, Kmalate and isotope 

effects relative to wt, but V/Et is decreased 2,000-fold.  Data suggest an increased 

freedom of rotation, resulting in nonproductively bound cofactor, perhaps with the 

nicotinamide ring occupying the site that favors the reduced ring.  Changes were also 

made to two residues, S433 and N434, which interact with the nicotinamide ribose of 

NAD.  In addition, N434 donates a hydrogen bond to the β-carboxylate of malate.  The 

KNAD for the S433A mutant enzyme increased by 80-fold, indicating that this residue 
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provides significant binding affinity for the dinucleotide.  With N434A, the interaction of 

the residue with malate is lost, causing the malate to reorient itself, leading to a slower 

decarboxylation step.  The longer glutamine and methionine side chains stick into the 

active site and cause a change in the position of malate and/or NAD, and results in more 

than a 104-fold decrease in V/Et for these mutant enzymes.  Overall, data indicate that 

subtle changes in the orientation of the cofactor and substrate dramatically influence the 

reaction rate. 

The second part of this project focused on the residues that form the adenosine 

binding site of NAD. Site-directed mutagenesis was performed to determine the role of 

these residues in binding of the cofactor and/or catalysis.  D361, which is completely 

conserved among species, is located in the dinucleotide-binding Rossmann fold and 

makes a salt bridge with R370, which is also highly conserved.  D361 was mutated to E, 

A and N.  R370 was mutated to K and A.  D361E and A mutant enzymes were inactive, 

likely a result of the increase in the volume, in the case of the D361E mutant enzyme that 

caused clashes with the surrounding residues, and loss of the ionic interaction between 

D361 and R370, for D361A.  Although the Km for the substrates and isotope effect values 

did not show significant changes for the D361N mutant enzyme, V/Et decreased by 1400-

fold.  Data suggested the nonproductive binding of the cofactor, giving a low fraction of 

active enzyme.  The R370K mutant enzyme did not show any significant changes in the 

kinetic parameters, while the R370A mutant enzyme gave a slight change in V/Et, 

contrary to expectations.  Overall, results suggest that the salt bridge between D361 and 

R370 is important for maintaining the productive conformation of the NAD binding site.  

Mutation of residues involved leads to nonproductive binding of NAD.  The interaction 



xiv 

stabilizes one of the Rossmann fold loops that NAD binds.  Mutation of H377 to lysine, 

which is conserved in NADP-specific malic enzymes and proposed to be a cofactor 

specificity determinant, did not cause a shift in cofactor specificity of the Ascaris malic 

enzyme from NAD to NADP.  However, it is confirmed that this residue is an important 

second layer residue that affects the packing of the first layer residues that directly 

interact with the cofactor. 

The last part of this dissertation consists of a review on the acid-base chemical 

mechanism of the enzyme class, metal ion-dependent pyridine nucleotide-linked β-

hydroxyacid oxidative decarboxylases. This family includes malic enzyme (ME), 

isocitrate dehydrogenase (IcDH), and isopropylmalate dehydrogenase (IPMDH), which 

require a divalent metal ion, and homoisocitrate dehydrogenase (HIcDH), and tartrate 

dehydrogenase (TDH), which require a monovalent and divalent metal ion for activity.  

Overall structure gives two distinct classes, with the MEs as the only member of one of 

the two classes, ME subfamily, while all of the others exhibit the same fold, the IcDH 

subfamily.  The active sites of all of the enzymes have a similar overall geometry and 

most of the active site residues are conserved throughout the family; they are completely 

conserved within the IcDH subfamily.  Data available for all of the enzymes in the family 

have been considered and a general mechanism is proposed for the family that makes use 

of a lysine (general base), tyrosine (general acid) pair.  Differences exist in the 

mechanism of generating the neutral form of lysine so that it can act as a base. 
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CHAPTER 1:  

 

INTRODUCTION 

1.1. Pyridine-nucleotide dependent oxidative decarboxylases 

The malic enzyme is in a class of enzymes called pyridine-nucleotide dependent 

decarboxylases that includes isocitrate dehydrogenase (ICDH), 6-phosphogluconate 

dehydrogenase (6PGDH), tartrate dehydrogenase (TDH), isopropylmalate dehydrogenase 

(IPMDH), cholestenoate dehydrogenase (CDH) and malic enzyme (ME). Those enzymes 

catalyze the oxidative decarboxylation of β-hydroxyacids with the use of NAD(P) as the 

oxidant Figure 1.1 [1]. This class can be divided into three based upon the metal ion 

requirement features. 6PGDH does not need the metal ion for activity because the 

electron-withdrawing hydroxyl groups vicinal to the β-hydroxyl group can act like the 

metal ion in activating the substrate for decarboxylation [2]. Malic enzyme needs a 

divalent cation, like Mg+2 or Mn+2, and the rest of the enzymes fall into the third class 

requiring both a monovalent and a divalent metal ion. 

The enzymes of this class are either homodimeric or homotetrameric. TDH, 

IPMDH and ICDH show amino acid sequence homology whereas ME and 6PGDH do 

not. 6PGDH has a rapid equilibrium random kinetic mechanism whereas the others have 

a steady-state random kinetic mechanism [1].  

Pyridine-nucleotide dependent oxidative decarboxylases have the same general 

acid-base mechanism. In the first step, a general base assists in the oxidation of β-

hydroxyacid to β-ketoacid. Then the same residue acts as a general acid and aids in the 

decarboxylation of the β-ketoacid to the enol, with the divalent ion acting as a Lewis acid  



2 

 

 

 

 

 

 

 

R2

O

H
OH

R1

H + NAD(P)+

R2

R1

H H
-O

O
+ NAD(P)H + CO2

Mn2+

 

 

Figure 1.1 General reaction of Pyridine-nucleotide dependent oxidative 

decarboxylases. R1=H, OH, CH2CO2
-, CH(CH3)2. R2= CO2

-, CH(OH)CH(OH)CH2OPO3
2- 

M2+ is the metal ion [3]. 

 

 

 

 

 

 

 

 

  



3 

(exception of 6PGDH). In the last step, the enol is tautomerized to a ketone, with the aid 

of a second general acid [1]. This class is an excellent example of multistep catalysis. 

1.2. Background and significance 

In the early 1940’s, an enzyme catalyzing the oxidative decarboxylation of malate 

was reported independently by a number of scientists [4-6]. The enzyme, named as 

‘malic enzyme’ by Ochoa [7], was first found in pigeon liver and has since been isolated 

from many living organisms from bacteria to humans.  

Malic enzyme is an oxidative decarboxylase which catalyzes the divalent metal 

ion (Mg+2 or Mn+2) dependent conversion of L-malate to pyruvate and CO2, with 

concomitant reduction of NAD(P)+ to NAD(P)H. Three different isoforms of malic 

enzyme have been found in mammals:  cytosolic NADP+-dependent malic enzyme (c-

NADP-ME), mitochondrial NADP+-dependent malic enzyme (m-NADP-ME) and 

mitochondrial NAD(P)+-dependent malic enzyme (m-NAD-ME). m-NAD-ME can use 

both NAD+ and NADP+, but under physiological conditions it prefers NAD+ . 

Malic enzyme is involved in many important biological pathways. With its 

products pyruvate, NAD(P)H and CO2, malic enzyme plays a significant role in 

metabolic processes such as photosynthesis and energy production. Photosynthetic 

NADP-MEs have been found in both C4 and CAM (Crassulacean Acid Metabolism) 

plants. The isoform in C4 plants is the best studied plant enzyme and it plays a very 

important role in providing CO2, via malate decarboxylation, to be used in carbon 

fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase. The malic enzyme is 

specifically localized in bundle sheath chloroplasts [8] and its expression is regulated by 

light [9]. Another isoform has been found in CAM plants, having a similar function to the 
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C4 isoform. NADP-ME is also present in C3 plants where it has a non-photosynthetic 

role. It is induced by UV-B radiation exposure [10] and plays a role in the plant defense 

system by providing NADPH for deposition of lignin and for biosythesis of flavonoids 

[11]. This function of the enzyme has also been documented for C4 and CAM non-

photosynthetic isoforms.   

NADP-ME is also suggested to be involved in lipid biosythesis in mammals. It 

participates in the transfer of a hydride from NADH to NADPH [12] and is one of the 

major sources of NADPH required in fatty acid biosynthesis in adipose tissue [13]. It has 

also been reported that when cells are passing from growing state to resting state, the 

increase in triacylglycerol synthesis is due to the increased activity of triacylglycerol 

synthesizing enzymes, one of which is malic enzyme [14]. In another study by Ayala et 

al, it has been reported that the activation of NADPH-consuming pathways, such as 

detoxification processes, increases the ME amount; suggesting that NADPH requirement 

can be a factor for ME induction [15].  

Several studies suggest that there is a significant increase in expression of malic 

enzyme in rapidly proliferating tissues [16-18]. In normal tissues, malic enzyme provides 

NADPH for fatty acid biosythesis. However, in tumor cells, rather than contributing to 

the NADPH pool, malic enzyme is thought to participate in energy production. 

Glutamate, rather than glucose, has been reported to be the preferred energy fuel in tumor 

cells [18,19]. Malic enzyme participates in a pathway called glutaminolysis in which 

glutamine is converted to lactate. This pathway provides energy and intermediates for 

synthetic purposes in the tumor cells [18]. In addition, malic enzyme converts excess 

malate to pyruvate which in turn is converted to lactate to be secreted from the cell [20]. 



5 

1.3. Reactions of malic enzymes 

Malic enzymes catalyze the metal-dependent oxidative decarboxylation of L-

malate (Figure 1.2A) with concomitant reduction of NAD(P) to NAD(P)H. In addition to 

oxidative decarboxylation, malic enzymes can catalyze the decarboxylation of 

oxaloacetate (Figure 1.2B) and the reduction of α-ketoacids (Figure 1.2C). 

According to their dinucleotide specificity and oxalaoacetate decarboxylase 

activity, malic enzymes are divided into three different classes [21]. The first class is EC 

1.1.1.40, that is L-malate:NADP oxidoreductase (oxaloacetate-decarboxylating), which 

includes malic enzymes from the livers of pigeon and chicken. The second class is EC 

1.1.1.39, that is L-malate:NAD oxidoreductase (decarboxylating) which includes group D 

streptococcus, cauliflower and potato tuber malic enzymes. The third class is EC 

1.1.1.38, that is the L-malate:NAD oxidoreductase (oxaloacetate-decarboxylating), which 

includes the malic enzyme from Lactobacillus arabinosus, the dung beetle Catharsius 

and Ascaris suum. 

1.4. Malic enzyme from Ascaris suum 

Ascaris suum, which is a parasitic nematode, has been a major source for malic 

enzyme studies, especially before recombinant techniques, since it could be easily 

obtained in large quantities (the female parasite can lay an estimated 2 million eggs 

daily). Ascaris suum infects intestines of pigs, while Ascaris lumbriocides infects 

humans. In the latter case, with the ingestion of Ascaris eggs, growing larvae travel to 

lung tissue via circulatory system, causing ascariasis. 
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Ascaris suum malic enzyme is one of the best-studied malic enzymes and it is also 

the subject of this study. NAD-ME was isolated from A. suum in 1956 by Saz and 

Hubbard [21]. Malic enzyme plays an important role in carbohydrate metabolism in this 

organism, Figure 1.3. Ascaris suum has an anaerobic energy metabolism where the Kreb 

cycle is not functional [22]. The organism stores its energy in terms of glycogen at high 

concentration, which can be converted to glucose in the cytosol. The glucose is then 

converted to phosphoenolpyruvate via the glycolytic pathway. PEP is converted to 

oxaloacetate which in turn is converted to malate by malate dehydrogenase. Malate enters 

the mitochondria and malic enzyme catalyzes the oxidative decarboxylation of malate to 

pyruvate, CO2 and NADH. These reactions are responsible for transfer of reducing 

equivalents from cytosol to mitochondrion. 

Fumarase also acts on malate, converting it to fumarate, maintaining the two at 

equilibrium. Fumarate is converted to succinate by fumarate reductase which uses the 

NADH produced by the malic enzyme reaction and fumarate reduction is coupled to 

electron transport-associated ADP phosphorylation. Mitochondrial NAD-ME is the key 

enzyme in the only mitochondrial ATP producing pathway of the organism. The 

succinate produced can be used to synthesize branched-chain fatty acids and other endo 

products of metabolism.  

1.5. Purification, cloning and expression of Ascaris suum ME 

In 1957, Saz and Hubbard [21] partially purified A. suum ME and in 1981, Allen 

and Harris [23] purified it to homogeneity. DEAE-cellulose and cellulose phosphate 

chromatographies and ammonium sulfate fractionation were used in these studies. In 

1957, Saz and Hubbard [21] partially purified A. suum ME and in 1981, Allen and Harris 
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Figure 1.3 Abbreviated Carbohydrate and Energy Metabolism in Ascaris suum 
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[23] purified it to homogeneity. DEAE-cellulose and cellulose phosphate 

chromatographies and ammonium sulfate fractionation were used in these studies. In 

1994, Karsten and Cook [25] developed a procedure, which was modified from the 

method of Allen and Harris, that utilized tandem column affinity chromatography with 

Blue-B and Orange-A agarose resins.  

In 1992, Kulkarni et al. obtained the nucleotide sequence of A. suum ME cDNA 

[26]. It consisted of 2269 bases, with a 5’-leader sequence, single open reading frame of 

1851 bases and a 3’-noncoding region of 340 bases. The first 12 amino acid residue 

sequence is a mitochondrial translocation signal sequence. The mature protein consists of 

605 amino acids, 73 are acidic and 84 are basic. There are 3 tryptophan, 13 histidine and 

9 cysteine residues. The molecular weight of the monomer is 68,478 Da. 

The A. suum NAD-ME was first subcloned into expression vector pKK223-3 

[27]. In 1999, Karsten et al. [28] subcloned it into the pQE.30 expression vector which 

adds a six histidine tag to the C-terminus. The pQE.30 vector gives good expression and 

the his-tag makes it very easy to purify the recombinant protein by using nickel-NTA 

column chromatography. 

1.6. The structure of the malic enzyme 

Crystals of malic enzyme were obtained from rat liver in 1987 [29], A. suum in 

1991 [30] and pigeon liver in 1999 [31].  However, the first structure of an NAD(P)-ME 

from human mitochondria was solved in 1999 at 2.5 Å resolution and refined to 2.1 Å 

resolution [32]. In that study it was found that human mitochondrial NAD(P)-ME is a 

homotetramer, which is comprised of a dimer of dimers. The monomer structure consists 

of four domains, A, B, C and D.  Domain A is mostly helical while domain B consists of 
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a parallel five-stranded β-sheet surrounded by helices on both sides, which represented a 

new backbone fold.  Domain C has a Rossmann fold indicating a dinucleotide-binding 

motif, while domain D contains one helix and a long extended structure.  A second NAD-

binding site was found and is ~35 Å away from the active site, which is a deep cleft at the 

interface between three of the domains.  The second NAD-binding site is thought to be an 

inhibitory site for ATP.   

In 2002, the crystal structure of the ME from A. suum was solved to 2.3 Å 

resolution [33].  The 3D structures of A. suum ME and human ME are very similar as 

expected since there is 82% sequence homology between them. A. suum ME is also a 

homotetramer and a dimer of dimers, Figure 1.4. The tetramer exhibits 222 symmetry.  

For the formation of the tetramer 4900 Å2 per monomer is buried.  The monomer consists 

of four domains that correspond to those assigned by Xu et al. [32], Domain A and B 

participate in the dimer and tetramer interfaces and are considered to be the core of the 

molecule.  Domain C contains the Rossmann fold to which NAD binds, while domain D 

contains the amino- and carboxy-termini, which has unique features in the A. suum ME.  

Some of the carboxy-terminal residues are not present in human ME and they 

form a short four-residue helix and a coil.  In addition, the amino-terminus contains 30 

additional residues that enable a more extensive tetramer interface interaction. The other 

domains are very similar to human ME domains, with the exception of the position of 

their C domains relative to A/B domain core.  When the tetramer organizations of A. 

suum and human MEs are compared, it can be seen that A. suum enzyme is more flat than 

the human ME.  
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Figure 1.4 Ribbon diagrams of the structure of Ascaris mitochondrial ME. A) in 
complex with NADH, Mg, and tartronate. The tetramer viewed down one 2-fold axis 
(indicated by the black oval) with the tetramer and dimer interfaces indicated by the 
arrows. The four subunits are colored blue, yellow, green, and tan. The four NADH and 
four tartronate ligands are shown as red ball-and-stick models, and their binding sites are 
indicated for one dimer. Right: the Ascaris ME dimer viewed down the 2-fold axis 
corresponding to the dimer interface showing the locations of the two tartronate binding 
sites more clearly [34] B) in binary complex with NAD. The NAD ligand and the amino 
and carboxyl termini are indicated, and the four domains are colored as follows: yellow, 
A domain; blue, B domain; tan, C domain; red and purple, D domain [33].  
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The human ME active site has been crystallized in several different conformations 

[35]. The enzyme in complex with NAD is in an open form, the active site is fully 

exposed to solvent and the residues are not positioned to carry out catalysis. However, 

upon binding of the metal ion and the substrate the enzyme undergoes a conformational 

change via rigid body movements of domain C with respect to domain B and the active 

site is closed to carry out catalysis. It has been suggested that the open form is required 

for substrate binding and product release whereas the closed form is required for 

catalysis. 

In the A. suum NAD-ME, the active site in the binary complex is similar to the 

open form of the human ME binary complex, but more open, providing a more intensive 

interaction between NAD and domain C [33]. Domains B and C provide almost all of the 

active site residues, whereas residue Y126 is contributed from domain A, Figure 1.5. The 

suggested residues contributing to substrate binding and catalysis are R181, K199, D295, 

N434 and N479. As in the human ME, the conformational change in the active site  from 

the open to closed state is by the rigid body movements of domain C and the closed form 

of the active site of A. suum ME is similar to that of human ME. 

One of the most notable differences between A. suum and human ME is that 

human ME has an exo-site, at the tetramer interface, which is suggested to be an ATP-

inhibitory binding site. However, in A. suum ME this exo site is not present and the 

enzyme is not inhibited by physiological concentrations of ATP [34]. 

1.6.1. Metal-ion binding site 

The A. suum NAD-ME needs a divalent metal ion to carry out its reaction and can 

use either Mg2+ or Mn2+. Hung et al [36], showed that with other divalent cations (Zn2+, 
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Figure 1.5 Active site residues in Ascaris malic enzyme (PDB code: 1LLQ). The 

residues shown in cyan and magenta are contributed by domain B and C, respectively. 

Y126, shown in red, is from domain A. NAD is shown in spectrum. The figures are 

generated by PyMOL molecular visualization program (website: 

http://pymol.sourceforge.net/).   
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Cu2+ and Fe2+) the conformational change was slowed down and active site geometry was 

altered. In addition, the resulting conformation was unfavorable for catalysis. Evidence 

has suggested that the nature of the metal ion and its coordination in the active site are 

crucial for the catalysis. In all malic enzymes studied thus far, it has been found that the 

sequence around the metal ion binding site is highly conserved. In the A. suum NAD-ME, 

the metal ion binding site is made up of E271, D272 and D295, which correspond to 

E255, D256 and D279 in human NAD-ME [35]. 

1.6.2. Tartronate binding site 

The A. suum NAD-ME was known to be activated by fumarate and an activation 

constant of 40 µM was reported [37]. Recently, Rao et al. [34] obtained the crystal 

structure of the A. suum mitochondrial NAD-ME in a quaternary complex with NADH, 

tartronate and magnesium, at 2.0 Å resolution. In this study tartronate (2-hydroxymalonic 

acid), a dicarboxylic analogue of malate and fumarate, was tightly bound to a positively 

charged pocket at the dimer interface (Figure 1.4A).  The residues providing hydrogen 

bondings to tartronate are reported as R105, R81 and Q78, Figure 1.6. 

These residues are homologous to those interacting with the activator fumarate in 

the human ME [38]. Therefore, it has been suggested that the tartronate binding site in A. 

suum NAD-ME is an allosteric site for the activator fumarate. However, there is 

approximately 30 Å distance between the active site and the allosteric site, suggesting 

that there must be structural interactions between the sites to transmit the allosteric signal 

[34]. 
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Figure 1.6 Binding of tartronate to Ascaris suum malic enzyme. A) Tartronate 

(TTN), 2-hydorxymalonic acid, in Ascaris ME is shown as red and cyan CPK models. 

Key residues involved in binding ligands are shown as ball-and-stick models. B) Ribbon 

diagram of the tartronate-binding site within the dimer interface of Ascaris ME with 

tartronate and key residues indicated as ball-and-stick models and a water molecule 

bound to tartronate shown as a sphere [34]. 
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1.6.3. NAD binding site 

The NAD cofactor is bound by three loops (361-362, 326-329, 405-408).  It binds 

to the C domain with the nicotinamide ring in anti-conformation re-face exposed to 

solvent [33]. However, in the structure obtained with NADH bound there is a dramatic 

difference in the conformation and interactions of the nicotinamide ring (Figure 1.7) [34]. 

In the ME-NADH complex there is +198º rotation about the N-glycosidic bond relative 

to the ME-NAD complex. As a consequence of this rotation, the interactions between 

NAD and G477, N479 are broken; new interactions between NADH and D295, R181 are 

formed. 

Recently, Karsten and Cook [39] mutated R181 to lysine and glutamine. In the 

crystal structures of A. suum malic enzyme R181 is within hydrogen bonding distance 

with malate and nicotinamide ring of NADH, but not with NAD. The significant increase 

in Kmalate and Kioxalate for both mutants suggested that R181 plays an important role in 

binding the substrate. The mutant enzymes showed a >10-fold increase in KiNADH without 

affecting KNAD. This supported the rotation of the nicotinamide ring upon reduction of the 

cofactor. This rotation is important in catalysis for proper positioning of the oxaloacetate 

intermediate prior to decarboxylation. This ring flip was also observed in 6-

phosphogluconate dehydrogenase [40,41]. 

1.7. Kinetic mechanism of the Ascaris suum malic enzyme 

Ochoa et al. [6] found out that the malic enzyme in pigeon liver extracts catalyzed 

the conversion of malate to pyruvate, with the concomitant reduction of NAD, in the 

presence of a divalent metal ion.  In 1957, Saz and Hubbard [21] showed that the malic 

enzyme from Ascaris lumbriocides muscle could use both NAD and NADP as the  
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Figure 1.7 Overlay of NAD and NADH bound to the active site of Ascaris suum 

malic enzyme.  NAD is shown in green and NADH is shown in cyan. The PDB codes for 

NAD and NADH are 1LLQ and 1O0S, respectively. 
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cofactor. It was also suggested that the enzyme did not have the oxaloacetate 

decarboxylation activity.  However, Hsu and Lardy [42] proposed that the oxaloacetate 

was an intermediate in the enzyme reaction. Therefore, the enzyme must have the 

oxaloacetate decarboxylation ability.  This was confirmed by Park et al. [43] that the 

malic enzyme from Ascaris suum could decarboxylate oxaloacetate with no requirement 

of NAD although the presence of the dineucleotide increased the affinity of the enzyme 

for the oxaloacetate.  Therefore, the classification of Ascaris suum malic enzyme changed 

to E.C.1.1.1.38. 

Landsperger et al. [44]carried out the first initial velocity studies on malic enzyme 

in both forward and reverse directions. Data suggested a sequential kinetic mechanism. 

However, the chelate complexes formed between the metal ion and the substrates were 

not considered.  Therefore, extensive initial velocity studies were carried out by Part et 

al. [45] in the absence and presence of products and dead-end inhibitors. Data showed 

that the A. suum ME has a steady-state random kinetic mechanism in the direction of 

oxidative decarboxylation, in which either malate or NAD can add to the enzyme-metal 

ion complex (Figure 1.8). However, when low concentrations of Mg+2 were used the 

mechanism became ordered with the sequential addition of NAD, Mg and malate; the 

enzyme-NAD-malate was unproductive. It was suggested that the ordered mechanism 

was optimal in vivo. In the same study, it was shown that NAD and malate form chelate 

complexes with the metal ion and that the final concentrations of the substrates must be 

adjusted for this complex. These results were confirmed by finite and equal values of V, 

V/Kmalate and V/KNAD at pH 7.0 [46] and by isotope partitioning experiments [47]. 
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The kinetic mechanism in the reductive carboxylation direction was also 

suggested to be steady-state random [48]. No binding site for CO2 was observed, so the 

reaction should happen when enolpyruvate collides with CO2. The data suggested the 

requirement of metal ion binding prior to pyruvate for a productive complex formation 

[45]. 

Cook and Cleland [49] reported that if the substrates bind to only the correctly 

protonated enzyme form, the V profile will be pH-independent. However, for the A. suum 

malic enzyme, the maximum rate shows a pH dependence and decreases below a pK of 

4.8 [46]. On the basis of this, it is suggested that when a group with an apparent pK of 4.8 

becomes protonated some step after catalysis, which is pH-dependent, becomes rate-

determining. This slow step could be 1) pH-dependent release of a product after the first 

product. Since CO2 is the most likely product to be released first, then the slow step 

involves release of pyruvate or NAD(P)H. For some of the NAD(P) MEs release of 

NAD(P)H is indeed proven to be totally rate limiting, where the deuterium isotope effect 

on V is unity. However, for the A. suum NAD-ME this can not be the case since DV is 

finite with a value of 1.45 [46]; 2) pH-dependent isomerization of free enzyme or 

enzyme-substrate complex. In 1993, Rajapaksa et al. [50] carried out pre-steady state 

kinetic studies in which a lag period was observed prior to steady state attainment. This 

study showed that there is slow isomerization of enzyme-NAD complex. 

1.8. Chemical mechanism of Ascaris suum malic enzyme 

1.8.1. Stepwise chemical mechanism of NAD-malic enzyme 

Hermes et al [51] determined deuterium isotope effects and 13C isotope effects  



20 

 

 

 

 

 

 

 

 

E EA EAB EABC ERBX ERBQ ERB ER E

EB EBC EBX EBQ EB

EC EAC ERQ EQ

P

P
K IC K IC

K IA

K IA

K IB

K IC

K IA
KA

KCK IB

 

Figure 1.8 Random kinetic mechanism of A. suum NAD-ME.  A, B and C 

represent NAD+, Mg+2 and L-malate, respectively. X, P, Q and R represent oxaloacetate, 

CO2, pyruvate and NADH, respectively [3]. Ki represents the dissociation constant for the 

binary enzyme-reactant complexes, whereas KI represents the dissociation of the ternary 

EAB complex. KI’  represents the dead-end complexes. Known dissociation constants are 

listed in Table 1.1. 
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Table 1.1 Known Dissociation Constants in Ascaris suum ME Reaction [3] 

Dissociation Constants (mM) Mg2+ as metal ion 

KA 0.005 ± 0.001 

K iA 0.080 ± 0.001 

KIA 0.078 ± 0.004 

KIA ’ 0.14 ± 0.03 

K iB 14.0 ± 1.0 

KIB 29.3 ± 1.3 

KC 1.2 ± 0.1 

K iC 20.0 ± 2.0 

KIC 1.6 ± 0.3 

KIC’ 35.0 ± 0.8 

The definition of the parameters are given in the legend of Figure 1.8. 
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with both deuterated and protoated malate.  Results showed that the malic enzyme from 

chicken liver had a stepwise mechanism with hydride transfer preceding decarboxylation. 

It was also determined that the reverse hydride transfer was 6-12 times faster than 

decarboxylation. Grissom and Cleland confirmed the stepwise nature of the NADP-malic 

enzyme [52]. The mechanism of NAD-malic enzyme from Ascaris suum was also 

considered to be stepwise, hydride transfer preceding decarboxylation and this was 

proved by Weiss et al [53] using multiple isotope effects on different dineucleotides. 13C 

isotope effect values were smaller with the deuterated malate than the ones with the 

unlabeled malate for the nicotinamide-containing dinucleotides.  This suggested a 

stepwise mechanism with hydride transfer followed by decarboxylation. However, with 

the modified nicotinamide-containing dinucleotides the mechanism either changed from 

stepwise to concerted or was still stepwise with a β-secondary C isotope effect associated 

with the hydride transfer. In 1994, Karsten et al. [25] carried out deuterium and tritium 

isotope effect studies and oxaloacetate-partioning experiments and confirmed the 

stepwise nature of the NAD-malic enzyme from A. suum. They reported DV=2.02 ± 0.07, 

D(V/KNAD)=1.57 ± 0.07, 13(V/K)H= 1.0342 ± 0.0002 and 13(V/K)D= 1.0252 ± 0.0001, when 

Mg2+ was used as the metal ion. They also showed that the mechanism changed to a 

concerted one with alternative dinucleotides, like PAAD and 3-APAD, most likely 

because of the different configuration of bound malate. This was also confirmed by the 

13C isotope effect studies carried out for all four carbons of L-malate [54]. 

1.8.2. General acid/general base mechanism of A. suum ME 

The pH dependence of the kinetic parameters and the primary deuterium isotope 

effects showed that the two enzyme groups were necessary for binding and catalysis and 
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substrates bind only to correctly protonated form of Ascaris suum NAD-malic enzyme 

[46]. A group with a pK of 4.9 must be unprotonated and a group with a pK of 8.9 must 

be protonated for optimum binding and activity. This was consistent with the results 

obtained for pH dependence of dissociation constants using the competitive inhibitors 

against malate. Based on those, a general acid/general base mechanism was proposed for 

A. suum NAD-malic enzyme [43,46].  The proposed mechanism can be summarized as: 

the general base with a pK of 4.9 accepts a proton from the 2-hydroxyl group of L-malate 

simultaneously with the hydride transfer to NAD. The proton is shuttled back and forth 

between the general base and the C2 oxygen. The general acid with a pK of 8.9 plays a 

role in the tautomerization step.   

Liu et al. [55] suggested that K199 was the general acid and D295 was the general 

base in A. suum NAD-ME reaction. However, with the availability of the structure of A. 

suum malic enzyme, Karsten et al. [56] proposed that a catalytic triad was responsible for 

the acid-base chemistry. In that study it was reported that the enzyme was in an open 

conformation before the binding of malate (Figure 1.9, I).  Upon binding of malate the 

active site of the enzyme is closed and a hydrogen bond is formed between K199 and 

Y126. A proton is transferred to D294 as it comes closer to E271, and this enables K199 

to act as a general base. First, malate is oxidized to oxaloacetate with K199 acting as a 

general base. In this hydride transfer step (Figure 1.9, II), K199 accepts a proton from the 

2-hydroxyl group of malate converting it to oxaloacetate intermediate which is 

subsequently decarboxylated (Figure 1.9, III) with the aid of metal ion, acting as a Lewis 

acid. A proton is shuttled from K199 to the carbonyl oxygen of oxaloacetate, forming an 

enolpyruvate. Tautomerization step (Figure 1.9, IV) involves general base-general acid 



24 

 

 
 

Figure 1.9 Proposed General Acid/Base Chemical Mechanism for Malic Enzyme  

[56] 
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catalysis, K199 accepting a proton from the enol hydroxyl and Y126 donating a proton to 

pyruvate. Then the pyruvate is released from the enzyme (Figure 1.9, V), regenerating the 

enzyme in the correct protonation state (Figure 1.9, VI). The hydride transfer and 

decarboxylation steps are partially rate-limiting whereas tautomerization step is fast and 

not rate-limiting. 

1.9. Regulation of malic enzyme 

As stated previously, when malate enters the mitochondrion of Ascaris suum it 

reacts with malic enzyme generating NADH as reducing power.  The malate also reacts 

with fumarase, producing fumarate, which is reduced to succinate utilizing the NADH 

formed by the malic enzyme.  ATP is generated through this reduction.  Therefore, there 

is a competition between fumarase and malic enzyme for malate.  A regulation should 

exist to balance the production of NADH by malic enzyme and consumption of it by 

fumarase. 

Landsperger and Harris [37] reported that the malate saturation curve exhibits 

sigmoidicity which increases with increasing pH.  They also reported that the fumarate is 

an activator of the malic enzyme, whereas the end product branched chain fatty acids, 

tiglate, 2-methylbutanoate and 2-methylpentanoate are inhibitors. These end products act 

by depleting Mg2+ required for the activity of the enzyme. Oxalate was reported to be the 

most potent inhibitor of the NAD-ME (Kis=0.16 mM) [46]. It is a structural analogue of 

the enolpyruvate. There is a competitive inhibition above pH 7 and noncompetitive 

inhibition below pH 7.  

 It was suggested that when fumarate production is increased, the fumarate 

activated the enzyme by increasing the affinity of the enzyme for malate.  Low 
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concentration of fumarate was enough to stimulate the malic enzyme (Kact= 0.5 mM).  

Both fumarate activation and end product inhibition were competitive with malate. ATP 

and several other nucleotides did not inhibit Ascaris suum malic enzyme. Lai et al. [24] 

confirmed that the activation of malic enzyme by fumarate operates by reducing the Km 

for malate resulting from a decrease in the off-rate for malate from E:Mg:malate and 

E:NAD:Mg:malate complexes. It was also reported that besides being a positive 

heterotropic effector at low concentrations, fumarate is also an inhibitor against malate at 

higher concentrations (Ki around 25 mM). They also suggested that there are two sites for 

fumarate to bind to exert its activation and inhibition effects.  Mallick et al. [48] showed 

that L-malate is also an activator of the enzyme in reductive carboxylation direction 

(Kact=50 µM). Following that study, with the help of the crystal structure, fluorescence 

and kinetic studies, it was shown that the malate and fumarate bind to different activator 

binding sites.  However, they also observed a synergistic binding of fumarate and malate, 

indicating the two binding sites must be interacting  [57]. 

The human ME is inhibited by ATP [58]. There are two NAD-binding sites, one 

at the active site and one (exo site) at the tetramer interface. Inhibition of the enzyme 

with ATP is the result of competition between NAD and ATP for the active site. The 

inhibition constant is reported to be 81 µM. A. suum is not inhibited by the physiological 

concentrations of ATP and several other nucleotides. 

The level of expression of malic enzyme in rat liver is regulated by thyroid 

hormone in a tissue specific manner [58,59]. Hormonal stimulation affects the synthesis 

rate of ME mRNA. In responsive tissues, like heart, kidney and liver, ME activity was 

modulated by thyroid hormone at pretranslational level [60]. In a study by Goldman et al. 
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[61], when the starved ducks were fed with a carbohydrate rich diet, there was a 20-fold 

increase in NADP-ME mRNA resulted both by increased transcription and decreased 

degradation. 

1.10. Scope of this study 

The kinetic and chemical mechanism of Ascaris suum NAD-malic enzyme have 

been proposed by our group. However, the functional roles of key residues lining the 

dinucleotide binding site were still unclear. The purpose of this study is to investigate the 

functions of these residues and have a better understanding of the role of the dinucleotide 

substrate in oxidative decarboxylation. For this purpose, site directed mutagenesis, initial 

velocity and isotope effect studies have been carried out. 

The content of this research can be divided mainly into three: 

1) Roles of residues interacting with the nicotinamide ring (N479) and nicotinamide 

ribose (S433 and N434): 

a) Hydrogen bond donated by N479 to the carboxamide side chain of the 

nicotinamide ring is crucial for proper orientation in the hydride transfer step. 

b) S433 provides significant binding affinity for NAD. 

c) The effect of N434 is more pronounced in both positioning of malate and NAD. 

2) Role of residues lining the adenosine binding site of NAD (D361 and R370), and 

potential cofactor specificity determinant (H377): 

a) The ionic interaction between D361 and R370 is very important for the binding of 

the adenosine portion of the cofactor. Mutations to these residues can lead to 

nonproductive binding of the dinucleotide. 
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b) H377 is not a cofactor specificity determining residue in Ascaris suum malic 

enzyme. 

3) Review on general acid/base mechanism of metal ion dependent pyridine nucleotide 

linked β-hydroxyacid decarboxylases. 

Overall, data suggested that the binding and orientation of the cofactor is strictly 

controlled by the residues lining the dinucleotide binding site. Correct positioning of the 

cofactor is a key to the efficient catalysis of the Ascaris suum malic enzyme. 

 

 

 

 

 

 

 

-Chapter 2 and Chapter 3 in this dissertation have been published in Biochemistry, 47 (8), 

2539-2546, 2008 and Biochimica et Biophysica Acta, 1784, 2059-2064, 2008, 

respectively.  
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CHAPTER 2:  

 

2.1. Introduction 

Malic enzyme is a pyridine nucleotide-linked β-hydroxyacid oxidative 

decarboxylase, which catalyzes the divalent metal ion (Mg2+ or Mn2+) dependent 

conversion of L-malate to pyruvate and CO2 , with concomitant reduction of NAD(P)+ to 

NAD(P)H [1,6,42]. 

The malic enzyme was first found in pigeon liver and was a cytosolic enzyme that 

required NADP as an oxidant [6].  The Ascaris suum mitochondrial NAD-malic enzyme 

(E.C. 1.1.1.38) was isolated from the anaerobic parasitic nematode in 1956 [21].  Malic 

enzyme plays an important role in the energy metabolism of the nematode.  L-Malate is 

the product of anaerobic glycolysis and malic enzyme, in the mitochondrion, is 

responsible for producing NADH, which is the main source of ATP synthesis via site I 

oxidative phosphorylation [22,62,63]. 

On the basis of initial velocity, product inhibition, isotope partitioning and 

deuterium isotope effect studies [45,46,64], a steady-state random kinetic mechanism was 

proposed for the A. suum malic enzyme, with the requirement that Mg+2 adds prior to 

malate.  A general acid/base mechanism was proposed on the basis of the pH dependence 

of kinetic parameters and isotope effects [43,46].  Recently, according to Karsten et al. 

[56], a catalytic triad, involving residues K199, Y126 and D294, was shown to be 

responsible for the acid-base chemistry in the Ascaris enzyme, Figure 2.1. 

The catalytic pathway, comprising a conformational change, followed by hyride 

transfer and decarboxylation, contributes to rate limitation of the overall reaction. In  
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Figure 2.1 Proposed General Acid/Base Chemical Mechanism for Ascaris suum   

Malic Enzyme. 
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addition, malate is sticky and has an off-rate constant from the central E-NAD-Mg-

malate complex equal to the net rate constant for catalysis [46,64], while at saturating 

concentrations of reactants an isomerization of E-NAD also contributes to rate limitation 

[50]. 

The aim of this study was to determine the possible functional roles of several 

residues in the dinucleotide binding site.  Site-directed mutagenesis has been used as a 

probe of the NAD and NADH binding sites.  Residues N479, S433 and N434 were 

mutated to a number of different amino acids to alter the side chain functionality.  The 

mutant enzymes were characterized by initial rate, inhibition and isotope effect studies.  

The contribution to binding energy and catalysis of the groups that interact with NAD 

and NADH have been investigated and the implications to the catalytic mechanism are 

discussed. 

2.2. Materials and Methods 

2.2.1. Chemicals and Enzymes.  

Malate, NAD and NADH were obtained from USB.  Hepes and Ches buffers 

were from Research Organics, while Pipes buffer and fumarate were purchased from 

Sigma.  Magnesium sulfate and manganese sulfate were obtained from Fisher Scientific.  

Sodium borodeuteride (98 atom %) was from Aldrich and IPTG was from GoldBio Tech.  

The QuikChange site-directed mutagenesis kit was from Stratagene.  The recombinant A. 

suum malic enzyme used in these studies has a 6-histidine N-terminal tag, and both the 

wild type and mutant enzymes were prepared and purified as described previously [28].  

Protein concentrations were obtained using the method of Bradford [65].  All other 
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chemicals and reagents used were obtained commercially and were of the highest purity 

available. 

2.2.2. Malate-2-d. 

Malate-2-d was synthesized by the reduction of oxaloacetate with sodium 

borodeuteride [39].  A solution of 40 mM oxaloacetate was prepared and its pH was 

adjusted to 7 with KOH.  40 mM sodium borodeuteride was added to this solution and 

allowed to incubate at room temperature for 1 hour and the pH was then adjusted to 5 

with acetic acid.  Pipes buffer and NAD were added to final concentrations of 25 mM and 

0.2 mM, respectively, and the pH was adjusted to 7 with KOH.  KCl (30 mM), MnSO4 (1 

mM), TDH (170 units) and LDH (50 units) were added and the solution was allowed to 

incubate at room temperature for 48 hours to remove D-malate-2-d.  The amount of the 

remaining D-malate-2-d in the solution was determined by end-point assay using tartrate 

dehydrogenase.  The end-point assay contained 100 mM Ches, pH 8.5, 1 mM MnSO4, 1 

mM NAD, 30 mM KCl, ~1 unit TDH and 5 µL of the synthesis solution.  More than 95% 

of the D-malate-2-d was removed.  The pH of the resulting solution was adjusted to 5 

with perchloric acid and activated charcoal was added to remove the dinucleotides.  After 

filtration and concentration via rotary evaporation, L-malate-2-d was purified by Dowex 

AG-1-X8 column chromatography.  The L-malate-2-d concentration was determined by 

end-point assay containing 1.5 units of wild type A. suum malic enzyme, 100 mM Ches, 

pH 8.5, 1 mM MnSO4, 1 mM NAD, 2 mM fumarate and ~0.1 mM L-malate-2-d. 
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2.2.3. Enzyme assays. 

Enzyme assays were carried out at 25°C in 1 cm cuvettes using a Beckman 

DU640 UV-visible spectrophotometer.  In the direction of oxidative decarboxylation of 

malate, malic enzyme activity was measured at varying concentrations of L-malate, 

divalent metal ion, and NAD as indicated in the text.  The non-varied substrate was 

maintained at a concentration at least 10 times its Km value, and reaction mixtures were 

maintained at pH 7 with 100 mM Hepes buffer.  The reaction was followed at 340 nm to 

monitor the production of NADH (ε340, 6220 M-1cm-1).  Malic enzyme uses the 

uncomplexed form of the divalent metal ion and substrates, and corrections for chelate 

complexes were made using the following dissociation constants: Mg-malate, 25.1 mM; 

Mn-malate 5.4 mM; Mg-NAD 19.6 mM; Mn-NAD and Mn-NADH 12.6 mM [45].  All 

substrate concentrations reported in the text refer to the uncomplexed concentrations of 

substrates, and divalent metal ion.  

The primary kinetic deuterium isotope effects were determined by direct 

comparison of initial velocities using 100 mM Hepes, pH 7, saturating concentrations of 

NAD and metal ion, and varied concentrations of L-malate-2-h(d).  The inhibition 

constant for NADH was obtained by measuring the initial rate as a function of NAD with 

metal ion and malate fixed at their respective Km values and at different concentrations of 

NADH, including zero. 

2.2.4. 13C kinetic isotope effects. 

The 13C isotope effects on the malic enzyme reaction were determined using the 

natural abundance of 13C in the substrate as the label [66].  Both high-conversion (100%) 

and low-conversion (15%) samples were measured.  The low conversion reactions 
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contained 25 mM Hepes, pH 7, 12 mM L-malate-2-h(d), 30 mM MgSO4, and 10 mM 

NAD, in a total volume of 33 mL.  The high-conversion sample contained the same 

components, with the exception that the concentration of L-malate-2-h(d) was 2 mM.  

The reaction mixtures were adjusted to pH ~6 and sparged with CO2 free nitrogen for at 

least 3 hours.  The pH was then adjusted to 8.2 with KOH and the mixture was sparged 

for an additional 2 hours.  The high-conversion reaction was initiated by the addition of 

0.6 mg of wild type malic enzyme and the reaction was allowed to incubate overnight.  

The completeness of the reaction was determined by taking an aliquot of the sample 

mixture and determining the absorbance at 340 nm.  The low-conversion reaction was 

initiated by the addition of one of the mutant enzymes.  The progress of the reaction was 

checked by measuring the absorbance of the aliquots at 340 nm.  All the reactions were 

quenched by the addition of 100 µL of concentrated sulfuric acid prior to CO2 isolation.  

The 12C/13C ratio of the isolated CO2 was determined using an isotope ratio mass 

spectrometer (Finnigan Delta E).  All ratios were corrected for 17O according to Craig 

[67]. 

2.2.5. Data analysis. 

Initial velocity data were fitted with BASIC versions of the FORTRAN programs 

developed by Cleland [68].  Saturation curves for malate, NAD and the metal ion were 

fitted using equation 1.  Data conforming to an equilibrium ordered or sequential kinetic 

mechanism were fitted using equations 2 and 3, while data for competitive inhibition 

were fitted to equation 4.  
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In equations 1-4, v represents the initial velocity, V is the maximum velocity, A 

and B are reactant concentrations, Ka and Kb are the Michaelis constants for A and B, I is 

the inhibitor concentration, Kia is the inhibition constant for A, Kis is the slope inhibition 

constant. 

Data for primary kinetic deuterium isotope effects were fitted using equation 5, 

where Fi is the fraction of deuterium in the labeled compound, and EV/K and EV are the 

isotope effects minus 1 on V/K and V, respectively. 
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13C isotope effects were calculated using equation 6, where f is the fraction of 

completion of reaction, and Rf and Ro are the 12C/13C isotopic ratios of CO2 at low and 

high conversion representing the ratio in the substrate, respectively.  Isotope ratios are 

measured as δ13C, equation 7, where Rsmp and Rstd are 12C/13C isotopic ratios for sample 

and standard, respectively.  The standard for CO2 was Pee Dee Belemnite [67] with 

12C/13C of 0.0112372. 



36 

 


























−

−
=









0

13

1log

)1log(

R

R
f

f

K

V

f

       (6) 

 

δ
13C = (Rsmp / Rstd -1) x 1000       (7) 

 

2.2.6. Calculation of intrinsic isotope effects and commitment 

factors. 

Estimates of intrinsic isotope effects and commitment factors were obtained 

according to Karsten and Cook [25,39] using an iterative method to search for the best fit.  

Wild type A. suum malic enzyme has a stepwise mechanism [25,53] with the requirement 

that the metal ion must bind to the enzyme prior to malate [45,48,64].  The kinetic 

mechanism may be described as below, where M is Mg2+, A is oxidized dinucleotide, B 

is L-malate, X is enzyme-bound oxaloacetate intermediate and R is reduced dinucleotide.   
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Since this is a random kinetic mechanism, the rate constants k5 and k6 are for the 

malate-binding and release at saturating concentrations (10Km) of NAD and Mg2+, and 

the rate constants k’5 and k’6 are for the dinucleotide-binding and release at saturating 

malate and Mg2+.  The rate constants k7 and k8 represent any precatalytic conformational 

change leading to a Michaelis complex while k9 and k10 are for hydride transfer and k11 

represents decarboxylation.  There is likely no binding site for CO2, and thus the release 

of CO2 is likely very fast [48,64] and the decarboxylation step is practically irreversible.  

On the basis of this mechanism, the equations for the isotope effects are as follows: 
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The commitment factors are relative to the hydride transfer step, where cf is the 

forward commitment to catalysis, (k9/k8)(l + k7/k6), and cr is the reverse commitment to 

catalysis (k10/k11).  The intrinsic primary kinetic deuterium isotope effect is Dk9, while 
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l3k11 is the intrinsic primary kinetic 13C isotope effect.  DKeq ,
Dk9/

Dk10, is the deuterium 

isotope effect on the equilibrium constant which was determined by Cook et al. as 1.18 

[69]. 

Assuming a concerted mechanism, the intrinsic isotope effects and forward 

commitment factor were calculated according to Weiss et al. [53].  The kinetic 

mechanism is illustrated in equation 12 where M, A and B are as defined in equation 8. 
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The rate constants k5, k6, k7 and k8 are as defined for equation 8.  The rate constant 

k9 is for the concerted oxidative decarboxylation step.  For this mechanism, the equations 

for the isotope effects are as follows: 
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The cf term is as for equation 8, while cr is zero for this mechanism and does not 

appear in the equations.  All other terms are as defined for equation 8. 

2.3. Results. 

2.3.1. Initial velocity studies. 

In order to characterize the mutant enzymes, initial rate studies were carried out. 

Initial velocity patterns were obtained by measuring the initial rate as a function of NAD 

at different concentrations of malate, and with metal ion maintained at saturation (10Km).  

Kinetic parameters are summarized in Table 2.1 and Table 2.2. 

Asparagine-479, which interacts with the carboxamide side chain of NAD, Figure 

2.2, was mutated to glutamine, serine and methionine (the kinetic parameters for the 

N479M mutant enzyme could not be determined because of its estimated 105-fold 

decreased activity). A 2-fold increase in Kmalate was observed for the Q and S mutant 

enzymes, Table 2.1.  The N479Q mutant enzyme exhibited no significant change in KNAD, 

while the N479S mutant gave only a 2-fold increase.  However, both mutant enzymes had 

significantly reduced values of V/Et (>103-fold).  Inhibition constants for NADH, as a 

competitive inhibitor vs NAD, were 15 µM and 17 µM, respectively, for the N479Q and 

N479S mutant enzymes compared to a value of 19 µM for the wild type enzyme.  

Mutations of N479 thus affect the catalytic pathway, which includes the conformational 

change to close the site in preparation for catalysis, hydride transfer and decarboxylation. 

Serine-433 and asparagine-434 interact with the nicotinamide ribose of NAD, 

Figure 2.2.  In addition, N434 interacts with β-carboxylate of malate.  Table 2.2 lists the 

kinetic parameters for the S433 and N434 mutant enzymes.  
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Table 2.1 Kinetic parameters for the N479 mutant enzymes 
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Table 2.2 Kinetic parameters for S433 and N434 mutant enzymes

 

 

Kinetic parameters for S433 and N434 mutant enzymes 
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Figure 2.2 Close-up of the binding site for NAD (PDB code 1llq) in the Ascaris 

malic enzyme and the residues with the hydrogen bonding distances.  This figure was 

generated using the PyMOL molecular visualization program (website: 

http://pymol.sourceforge.net/). 
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All of the mutant enzymes, with the exception of S433C, exhibited modest 

changes in Kmalate.  The S433C mutant enzyme exhibited apparent 9- and 500-fold 

increases in Kmalate and KNAD, respectively.  (Since the enzyme could not be saturated with 

NAD, kinetic parameters were not determined). The S433A mutant enzyme showed an 

80-fold increase in KNAD.  The N434Q and M mutant enzymes exhibited modest changes 

in KNAD, while the N434A mutant enzyme showed a slight decrease in KNAD.  Replacing 

the β-hydroxyl of serine with a β-thiol as in cysteine, gave an enzyme with a very high 

apparent KNAD (16 mM), which made it impossible to determine V/Et and V/KmalateEt, but 

V/KNADEt decreased significantly (3x105-fold), likely as a result of the bulky sulfur 

causing crowding.  In agreement, V/Et and V/KmalateEt decreased only 6-fold and 10-fold, 

respectively, for the S433A mutant enzyme when the β-hydroxyl group was replaced by a 

hydrogen compared to wild type enzyme.  More pronounced effects were observed for 

the N434 mutant enzymes which gave more than a 103-fold decrease in V/Et, V/KmalateEt 

and V/KNADEt.  The inhibition constant for NADH for the S433 and N434 mutant 

enzymes could not be accurately determined, but was greater than 0.3 mM in all cases. 

2.3.2. Isotope effect studies. 

Kinetic deuterium isotope effects, DV and D(V/Kmalate), were determined by direct 

comparison of initial velocities for the wild type and mutant malic enzymes at saturating 

concentrations (10Km) of metal ion and NAD, varying L-malate-2-(h,d).  13(V/K)H and 

13(V/K)D  were also determined as described in the Material and Methods section.  The 

values of DV and D(V/Kmalate) are the mean averages of at least six separate determinations 

and the effects are equal to one another for all mutant enzymes (with the possible 

exception of S433A) within error.  All results are listed in Table 2.3.  



 

44 

Table 2.3 Primary Deuterium and 13C Kinetic Isotope Effects

 

 

C Kinetic Isotope Effects for The Wild Type and Mutant Malic Enzymesfor The Wild Type and Mutant Malic Enzymes 
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No significant change in DV or D(V/Kmalate) compared to wt was observed for the 

N479Q and S and the N434A mutant enzymes.  DV and D(V/K) may have increased 

slightly for S433A, while both values were unity, within error, for N434M.   

Primary 13C kinetic isotope effects decreased for all mutant enzymes compared to 

the wild type enzyme, with the exception of N434A.  13(V/K)D values were smaller than 

the 13(V/K)H values, indicating that the mechanism is stepwise for all mutant enzymes, 

with the exception of N479Q mutant enzyme (see footnote d in Table 2.3).  In the case of 

N479Q, 13(V/K)H =13(V/K)D indicates a concerted mechanism. 

2.4. Discussion. 

The purpose of this study was to investigate the function of the residues that 

interact with the nicotinamide and ribose rings of the dinucleotide substrate.  Site-

directed mutagenesis, initial rate kinetics and isotope effects were used to probe the 

contribution of these groups to binding energy and catalysis. 

2.4.1. Kinetic parameters of N479Q, S mutant enzymes. 

The mutant enzymes show a 2-fold increase in Kmalate, which is indicative of a 

decrease in affinity.  The Km is equal to Kd for the malic enzyme, given the equality of DV 

and D(V/Kmalate) [70].  A maximum 2-fold change in KNAD is observed, even though N479 

interacts with NAD, suggesting it provides only modest affinity for the cofactor, while 

KiNADH does not change.  Conformational changes are induced upon binding of NAD and 

malate [50], so it is not surprising that the affinity for both NAD and malate are affected, 

although only slightly.  The main effect of the mutation, however, is a >103-fold decrease 

in V/Et and V/KEt for both substrates.  The likely reason for this is a change in the 
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orientation of the nicotinamide ring relative to C2 of malate as a result of hydrogen-

bonding to the longer side chain of Q compared to N in the case of N479Q and the lack 

of the hydrogen bond for N479S.  This will be discussed further below. 

2.4.2. Isotope effects. 

Data for the wild type malic enzyme indicate a stepwise mechanism with hydride 

transfer preceding decarboxylation [50].  DV and D(V/Kmalate) values measured for the 

N479 mutant enzymes are similar to those of the wild type enzyme, Table 2.3.  Although 

V/Et has decreased by >103-fold it appears at face value that the contribution of the 

hydride transfer to rate limitation is similar to the wild type enzyme.  In the case of a 

stepwise mechanism, the 13C isotope effect measured with L-malate-2-d will be lower 

than that observed with L-malate, as found for the wild type enzyme [51].  For the 

N479Q mutant enzyme, 13(V/K)H and 13(V/K)D are equal within error, which indicates the 

mechanism has become concerted, with hydride transfer and decarboxylation taking 

place in the same step, and that the step is completely rate-limiting for the reaction.  

Converting asparagine to glutamine conserves the functional group but the glutamine side 

chain is a methylene longer than that of asparagine.  When the asparagine to glutamine 

mutation is modeled using PyMOL molecular visualization software, it is observed that 

the glutamine side chain clashes with both NAD and malate.  In order to accommodate 

the longer side chain of glutamine, which comes into close proximity of the nicotinamide 

ring and malate, the position of malate and/or the nicotinamide ring relative to one 

another would be expected to change.  In this case, malate may already be in the proper 

conformation for decarboxylation to occur as it is oxidized to oxaloacetate, generating 
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more favorable molecular orbital overlap as the π bond is formed at C2-C3.  That is, the 

oxaloacetate intermediate may either not exist or have a very short life time.  

The change from stepwise to concerted oxidative decarboxylation is not 

unprecedented for the NAD-malic enzyme reaction.  Multiple isotope effect studies with 

a variety of alternative dinucleotide substrates were measured for the malic enzyme 

[25,53].  When NAD and NADP were used as substrates the mechanism was stepwise, 

with oxidation preceding decarboxylation.  The mechanism changed to concerted with 

the more oxidizing 3-APAD(P), 3-PAAD and thio-NAD(P).  For the stepwise 

mechanism, malate binds such that its C4 carboxylate is in the C2-C3 plane, which does 

not favor decarboxylation, and it is slow as suggested by the 13C isotope effect of 1.034 

measured for the wt enzyme [53].  With the alternative, more oxidizing dinucleotide 

substrates, the hydride transfer step contributes more to rate limitation, resulting in a very 

short life-time (no potential energy well) for the oxaloacetate intermediate.  The result is 

an asynchronous concerted reaction with cleavage of the C3-C4 bond lagging behind C-H 

bond cleavage [54].  In the case of the N479Q mutant enzyme, either an asynchronous 

oxidative decarboxylation takes place as observed for the wt enzyme with more oxidizing 

dinucleotide substrates or malate is bound with its β-carboxyl group already out of the 

C1-C2-C3 plane and trans to the hydride to be transferred to C4 of the nicotinamide ring 

of the dinucleotide, i.e., a true concerted reaction.  Given the intrusion of the glutamine 

side chain into the malate and NAD sites, it is likely that a change in conformation of the 

bound malate has occurred for the N479Q mutant enzyme, placing the β-carboxyl in a 

better position for decarboxylation as C2 is oxidized. 
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A quantitative analysis, on the basis of theory presented in the Materials and 

Methods section, was used to generate estimates of forward and reverse commitment 

factors, intrinsic deuterium and 13C isotope effects, Table 2.4.  For the wild type malic 

enzyme, the forward and reverse commitment factors are high, suggesting a significant 

contribution of the precatalytic conformational change to rate limitation and a 

partitioning of the oxaloacetate intermediate in favor of malate.  For the N479Q mutant 

enzyme, the mechanism is concerted, and the equality of 13(V/K)H and 13(V/K)D indicates 

oxidative decarboxylation is completely rate limiting.  The estimated intrinsic deuterium 

isotope effect is smaller than that observed for the wild type enzyme, as is the intrinsic 

13C isotope effect.  The 13C kinetic isotope effect of 1.025 compared to the value of 1.05 

for the intrinsic 13C isotope effect for decarboxylation of the oxaloacetate intermediate 

suggests a transition state with about 50% C2-H and C3-C4 bond cleavage if the 

mechanism is truly concerted. 

If the above interpretation concerning the N479Q mutant enzyme is correct, the 

smaller serine side chain would be expected to behave differently.  For the N479S mutant 

enzyme, the primary deuterium and 13C isotope effects are very similar to those of the wt 

enzyme.  Deuteration of malate causes the 13C isotope effect to decrease, indicating a 

stepwise mechanism for the N479S mutant enzyme and the data adhere to the equality for 

a stepwise mechanism, with oxidation preceding decarboxylation.  However, there is still 

a >103-fold decrease in V/Et, suggesting the nicotinamide ring must be bound differently.  

When the asparagine to serine mutation is modeled using PyMOL molecular 

visualization software, it is observed that the hydrogen-bonding interaction between this 

residue and the nicotinamide ring of NAD is lost, since the serine functional group is  
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Table 2.4 Commitment factors and intrinsic isotope effects. 
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shorter than that of asparagine.  None of the possible orientations of NAD or serine 

residue could generate a reasonable hydrogen-bonding distance.  This situation likely 

results in an increased freedom of rotation of the nicotinamide ring, giving 

nonproductively bound cofactor, with a small fraction (~0.05% on the basis of V/Et) of 

the dinucleotide productively bound.  In agreement with this suggestion, the relative rates 

of steps within the catalytic pathway (precatalytic conformational change, hydride 

transfer and decarboxylation), relative to one another, are similar to the wild type 

enzyme.  (This is also supported by the estimates of the commitment factors and intrinsic 

isotope effects, which are very similar to those of wild type). 

2.4.3. Kinetic parameters for S433 and N434 mutant enzymes. 

 In order to obtain information on the interactions with the nicotinamide ribose, 

S433 was mutated to A and C, while N434 was mutated to Q, A and M.  Both residues 

hydrogen bond to the nicotinamide ribose, Figure 2.2. N434 also interacts with β-

carboxylate of malate. 

All of the mutant enzymes exhibit a slight increase in Kmalate, which indicates a 

decrease in affinity, considering the very similar values of DV and D(V/Kmalate) [70].  (DV 

could not be determined for the S433C mutant enzyme, but it likely behaves as the 

others).  The S433A mutant enzyme exhibits an 80-fold increase in KNAD.  Since the only 

difference between S and A is the loss of the hydrogen bond donor, data suggest S433 

provides significant binding affinity for NAD.  Using a value of 80 for the fold change, 

∆∆G˚’ is 2.6 kcal/mol (∆∆G˚’ = RT ln((KNAD)S433A/(KNAD)wt)) ).  For the S433C mutant 

enzyme, replacement of the β-hydroxyl of S433 with the larger thiol gives a 500-fold 

increase in the apparent KNAD, about 6-fold higher than that observed with the S to A 
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mutation.  The large increase in KNAD likely results from crowding by the larger thiol, 

which changes the position of the bound NAD ribose, translating into a change in 

position of the nicotinamide ring.  The inhibition constant for NADH for the S433 and 

N434 mutant enzymes could not be accurately determined, but was greater than 0.3 mM 

in all cases.  V/Et and V/KEt could not be determined for the S433C mutant enzyme 

because of the high value of KNAD.  However, the apparent V/KNADEt decreased 300,000-

fold compared to wild type and this likely includes a decrease in V/Et and an increase in 

KNAD.   

When mutations at N434 are modeled using PyMOL software, the longer 

glutamine and methionine side chains stick into the active site, in close proximity to the 

bound malate, which likely results in reorientation of NAD and malate.  However, 

changes in the Km for malate and NAD were moderate for the N434 mutant enzymes, 

suggesting that the affinity for reactants was not altered.  Nonetheless, V/Et decreased on 

the order of 103-104 with the smallest change observed for N434A. 

2.4.4. Isotope effects. 

In the case of the S433A mutant enzyme, the loss of a hydrogen-bonding 

interaction results in a large decrease in V/Et, suggesting a change in the orientation of 

the nicotinamide ring relative to C2 of malate.  A slight increase in DV and D(V/K), 

coupled to a slight decrease in the 13C isotope effect, suggests a change in the partitioning 

of the oxaloacetate intermediate favors decarboxylation, i.e., a decrease in cr; a lower 

value of cr is calculated, Table 2.4.  A decrease in the forward commitment factor was 

also estimated, Table 2.4.  All of the mutant enzymes have similar intrinsic deuterium 

and 13C isotope effect values compared to wild type, suggesting similar transition states 
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for the hydride transfer and decarboxylation.   All of the S433 and N434 mutant enzymes 

exhibited a smaller value of 13C isotope effect with deuterated malate, consistent with a 

stepwise mechanism. 

Data for the S433C mutant enzyme exhibit a D(V/K) value similar to that of wt, 

while there is a decrease in the 13C isotope effect.  Data suggest a change in the 

partitioning of the oxaloacetate intermediate to favor decarboxylation.  In agreement, the 

estimated value of cr has decreased considerably, compared to wt.   

In addition to its interaction with the nicotinamide ribose, N434 also interacts 

with the β-carboxylate of malate.  If the interaction is eliminated, the positioning of 

malate may change, resulting in changes in the rates of hydride transfer and 

decarboxylation.  DV and D(V/K) values for the N434A mutant enzyme are equal, within 

error, to the wild type values, while 13(V/K)H is greater than that of the wt enzyme.  Data 

suggest a more rate-limiting decarboxylation.  The commitment factors and the intrinsic 

isotope effects were almost identical to the wt values.  However, 3,500-fold decrease in 

V/Et suggests that only a small fraction of the dinucleotide is productively bound, as for 

N479S.  The rates of the steps within the catalytic pathway slow down with the same 

ratio relative to one another. 

In the case of the N434M mutant enzyme, the longer methionine side chain sticks 

into the active site, in close proximity to C4 of malate, likely causing a change in the 

orientation of malate and slowing down decarboxylation.  The 13C isotope effects were 

not determined for this mutant enzyme since V/Et decreased 10,000-fold.  However, it 

would be expected that DV and D(V/Kmalate), unity within error, most likely reflect the 
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decarboxylation step becoming totally rate-limiting.  Isotope effects were not determined 

for the N434Q mutant enzyme since the rate was too low (14,000-fold decrease in V/Et). 

2.4.5. Conclusion. 

Results obtained for the N479 mutant enzymes, indicate that the hydrogen bond 

donated by N479 to the carboxamide side chain of the nicotinamide ring is crucial for 

proper orientation in the hydride transfer step of the Ascaris NAD-malic enzyme 

reaction.  This is very reasonable if one considers the structure of the enzyme.   

S433 and N434 residues are very important in positioning the dinucleotide.  Data 

obtained for all mutant enzymes suggest the following:  1. The orientation of the 

nicotinamide is very strictly controlled, because any mutation, whether it is conservative 

or not, caused considerable decrease in the rate of the reaction.  2. S433 provides 

significant binding affinity for NAD, and its replacement with A generates significant 

nonproductive binding of the cofactor.  3. The effect of N434 mutant enzymes is more 

pronounced in terms of the positioning of NAD and malate.  4. Differences in the 

dissociation constants for NAD and NADH indicate the enzyme sees the oxidized and 

reduced forms of the cofactor differently. 
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CHAPTER 3:  

 

3.1. Introduction 

Malic enzymes are a distinct class of oxidative decarboxylases, that catalyze the 

divalent metal ion dependent (Mg2+ or Mn2+) conversion of L-malate to pyruvate and 

CO2, with the reduction of NAD(P) to NAD(P)H [1,6,42].  The malic enzyme has been 

found in many organisms, and in 1956, was isolated from the parasitic roundworm,  

Ascaris suum. [21] The metabolism of the nematode strictly depends on the 

mitochondrial malic enzyme reaction, which is the main source of NADH for ATP 

production [62,63]. 

Crystal structures of Ascaris mitochondrial malic enzyme in complex with NAD 

and NADH have shown that the enzyme is a homotetramer with a molecular weight of 

around 68 kDa [33,34].  It is composed of four domains. Domains A and B are associated 

with dimer and tetramer interactions.  The active site residues are contributed mainly by 

domains B and C, while domain D contains the amino- and carboxyl-termini.  The 

cofactor binds to a modified Rossmann fold in the C domain of the enzyme.  The third β 

strand of the Rossmann fold is replaced by a β-turn, an antiparallel β strand (361-366) 

and a segment (367-389) that contains a short helix (375-380).  This difference in the 

Rossmann dinucleotide binding domain in the Ascaris malic enzyme was also observed 

in the human enzyme [32,38].  Aspartate-361 begins the antiparallel β strand of the 

Rossmann fold, and is located in close proximity to the 2’-OH group of the NAD 

adenosine.  As a result, D361 could provide binding specificity for NAD and exclude the 

2’-phosphate group of NADP.  However, in the crystal structure of the Ascaris enzyme 
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with NAD bound, the D361 side chain is directed away from the cofactor, leaving enough 

space for NADP binding [33].  Furthermore, D361 is conserved in NADP-specific malic 

enzymes (Figure 3.1), which suggests that it has no role in determining cofactor 

specificity [71].  The possible importance of D361 may be associated with a salt bridge it 

makes with R370; this ionic interaction is also highly conserved in malic enzymes, and 

can likely be attributed to the stabilization of one of the dinucleotide adenosine binding 

loops (361-362). 

It has been shown that both human and Ascaris malic enzymes prefer NAD under 

physiological conditions, but they can also use NADP [53,72].  The pigeon liver cytosolic 

malic enzyme utilizes only NADP as the cofactor [73].  Interaction of the cofactor with a 

lysine residue in the pigeon cytosolic enzyme was proposed to be one of the main 

determinants for cofactor specificity [71].  Sequence alignment of NADP-specific malic 

enzymes indicates that the lysine residue is completely conserved (Figure 3.1).  In the 

human mitochondrial NAD(P)-dependent malic enzyme, this lysine residue is replaced 

by a glutamine (Q362), while it is a histidine (H377) in the Ascaris malic enzyme.  Hsieh 

et al.[74], reported that the specificity of the human mitochondrial NAD(P)- dependent 

malic enzyme could be changed to favor NADP with the mutation of Q362 to lysine. 

Previously, the possible functional roles of residues interacting with the 

nicotinamide and its ribose ring were investigated, and it was concluded that the 

positioning of the nicotinamide ring is very important for the Ascaris malic enzyme 

reaction [75].  In this study, several residues that form the adenosine binding site of NAD 

were examined to determine their functional roles in binding of NAD and/or catalysis, by 

mutating them to different amino acids. In addition, the importance of H377 was 
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Figure 3.1 Multiple sequence alignment of malic enymes around the adenosine 

binding site of NAD(P).  The conserved residues (D361, R370 and H377) that are 

investigated in this study are shown in a box. 

  



 

57 

investigated.  Mutant enzymes were characterized by initial rate and kinetic isotope effect 

studies, and results are described in terms of the mechanism of the malic enzyme. 

3.2. Materials and methods. 

3.2.1. Chemicals and enzymes. 

Malate, NAD and NADH were obtained from USB.  Magnesium sulfate and 

manganese sulfate were purchased from Fisher Scientific.  Sodium borodeuteride (98 

atom %) was from Aldrich and IPTG was from GoldBio Tech. Hepes and Ches buffers 

were from Research Organics, while Pipes buffer and fumarate were purchased from 

Sigma. The QuikChange site-directed mutagenesis kit was from Stratagene.  The 

recombinant A. suum malic enzyme used in these studies has a 6-histidine N-terminal tag, 

and both the wild type and mutant enzymes were prepared and purified as described 

previously [28].  Protein concentrations were obtained using the method of Bradford [65].  

L-Malate-2-d was synthesized by the reduction of oxaloacetate with sodium 

borodeuteride, and the D-malate eliminated using the tartrate dehydrogenase reaction, as 

described previously [75].  All other chemicals and reagents used were obtained 

commercially and were of the highest purity available. 

3.2.2. Enzyme assays. 

Enzyme assays were carried out at 25°C in 1 cm cuvettes using a Beckman 

DU640 UV-visible spectrophotometer. In the direction of oxidative decarboxylation of 

malate, malic enzyme activity was measured at varying concentrations of L-malate, 

divalent metal ion, and NAD, keeping the non-varied substrate at least 10 times its Km 

value. Reaction mixtures were maintained at pH 7 with 100 mM Hepes buffer.  The 
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reaction was followed at 340 nm to monitor the production of NADH (ε340, 6220 M-1cm-

1).  Malic enzyme binds the uncomplexed forms of metal ion and substrates and 

corrections for chelate complexes were made using the following dissociation constants: 

Mg-malate, 25.1 mM; Mn-malate 5.4 mM; Mg-NAD 19.6 mM; Mn-NAD and Mn-

NADH 12.6 mM [75].  All substrate concentrations reported in the text refer to the 

uncomplexed concentrations of substrates, and divalent metal ion.  

The primary kinetic deuterium isotope effects were determined by direct 

comparison of initial velocities using 100 mM Hepes, pH 7, at saturating concentrations 

of metal ion and the cofactor, and varied concentrations of L-malate-2-h(d). 

3.2.3. Fluorescence titration. 

Fluorescence spectra were collected using an SLM 8100 spectrophotometer.  

Quartz cuvettes with an inner volume of 3 mL were used.  All spectra were collected at 

pH 7, 100 mM Hepes and 25˚C, with 150 µg/mL malic enzyme.  The excitation 

wavelength was 280 nm, and emission spectra were measured between 320 and 600 nm 

at 2-nm intervals.  A bandwidth of 5 nm was used for excitation and emission 

monochromators.  Blank spectra, containing all components except enzyme, were 

collected and subtracted from sample spectra.  The titration was carried out by 

sequentially adding 5µL from a concentrated stock malate solution.  All spectra were 

corrected for dilution resulting from the addition of malate. 

3.2.4. 13C Kinetic isotope effects. 

The 13C isotope effects on the malic enzyme reaction were determined using the 

natural abundance of 13C in the substrate as the label [66].  The low conversion reactions 
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(15%) contained 25 mM Hepes, pH 7, 10 mM NAD, 20 mM MnSO4, and 12 mM L-

malate-2-h(d), in a total volume of 33 mL.  The high-conversion sample (100%) 

contained the same components, with the exception that the concentration of L-malate-2-

h(d) was 2 mM.  The reaction mixtures were adjusted to pH ~6 and sparged with CO2 

free nitrogen for at least 3 hours.  The pH was then adjusted to 8.2 with KOH and the 

mixture was sparged for an additional 2 hours.  The high-conversion reaction was 

initiated by the addition of wild type malic enzyme (0.6 mg) and the reaction was 

incubated overnight.  The completeness of the reaction was determined by taking an 

aliquot of the sample mixture and determining the absorbance at 340 nm.  The low-

conversion reaction was initiated by the addition of one of the mutant enzymes.  The 

progress of the reaction was checked by measuring the absorbance of the aliquots at 340 

nm.  All the reactions were quenched by the addition of 100 µL of concentrated sulfuric 

acid prior to CO2 isolation.  The 12C/13C ratio of the isolated CO2 was determined using 

an isotope ratio mass spectrometer (Finnigan Delta E).  All ratios were corrected for 17O 

according to Craig [67]. 

3.2.5. Data analysis. 

Initial velocity data were fitted with BASIC versions of the FORTRAN programs 

developed by Cleland [68].  Saturation curves for malate, NAD and the metal ion were 

fitted using equation 1.  Data conforming to a sequential kinetic mechanism were fitted 

using equations 2. 

                          (1) 

    

A
A
+

=
aK

V
v
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                       (2) 

In equations 1and 2, v represents the initial velocity, V is the maximum velocity, 

A and B are reactant concentrations, Ka and Kb are the Michaelis constants for A and B, 

Kia is the inhibition constant for A. 

Data for primary kinetic deuterium isotope effects were fitted using equation 3, 

where Fi is the fraction of deuterium in the labeled compound, and EV/K and EV are the 

isotope effects minus 1 on V/K and V, respectively. 

 

          (3) 

 

13C isotope effects were calculated using equation 4. f is the fraction of 

completion of reaction, and Rf and Ro are the 12C/13C isotopic ratios of CO2 at low and 

complete (representing the ratio in the substrate) conversion, respectively.  Isotope ratios 

are measured as δ13C, equation 5, where Rsmp and Rstd are 12C/13C isotopic ratios for 

sample and standard, respectively.  The standard for CO2 was Pee Dee Belemnite with a 

12C/13C of 0.0112372 [67]. 

 

               (4) 
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13C = (Rsmp / Rstd -1) x 1000              (5) 
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3.3. Results. 

The mutant enzymes were characterized by initial rate and kinetic isotope effect 

studies.  The initial rate was measured as a function of NAD at varied concentrations of 

malate, maintaining metal ion concentration at saturation (10Km).  The results are shown 

in Table 3.1 and Table 3.2.  

3.3.1. Aspartate-361 mutant enzymes. 

Aspartate-361 was mutated to asparagine, glutamate and alanine.  The D361A and 

D361E mutant enzymes showed no activity even at high concentrations of enzyme (>1 

mg/ml) and substrates (~50 mM).  Titrations with malate were carried out monitoring 

changes in intrinsic tryptophan fluorescence to determine if the active sites of these 

mutant enzymes were intact. The Kd for the E-malate complex in the wild type malic 

enzyme was 40 ± 11 mM, while it was 32 ± 10 mM and 38 ± 12 mM for the D361E and 

D361A mutant enzymes, respectively.  The very similar values of Kd indicated that the 

site for malate binding was intact.  There is no good probe of NAD binding.  However, 

there is synergism in the binding of malate and NAD, and it’s believed that data are 

suggestive of a native conformation of the mutant enzymes.  The complete loss of 

activity is thus likely due to the local changes in the NAD site. 

The D361N mutant enzyme showed no significant change in Kmalate, and a 3-fold 

increase in KNAD. However, V/Et decreased by 1400-fold, giving a 4400-fold decrease in 

V/KNAD;.Table 3.1 
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Table 3.1 Kinetic parameters for the D361 and R370 mutant enzymes.

 

 

Kinetic parameters for the D361 and R370 mutant enzymes. 
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3.3.2. Arginine-370 mutant enzymes. 

Arginine-370 which forms a salt bridge with D361 (Figure 3.2), was mutated to 

alanine and lysine.  No significant change in Km values for the substrates were observed 

for either of the mutant enzymes, Table 1.  However, V/Et was decreased by 2.5- and 20-

fold for the R370K and R370A mutant enzymes, respectively.  The more significant 

decrease in V/Et for R370A mutant enzyme, compared to that of R370K mutant enzyme, 

suggested that the charge at position 370 is somewhat important. 

3.3.3. Histidine-377 mutant enzymes. 

On the basis of studies of the human mitochondrial malic enzyme [74], histidine-

377 was thought to be a critical residue for cofactor specificity and was mutated to lysine 

and alanine.  Initial rates were determined with NAD and NADP, as cofactors.  Both 

mutant enzymes exhibited only modest changes in Kmalate, KNAD and V/Et, Table 3.2.  

Contrary to results expected for a specificity determinat, the mutant enzymes showed an 

increase in KNADP; 8- and 1.5-fold for H377K and H377A mutant enzymes, respectively. 

3.3.4. Isotope effects. 

Deuterium isotope effects were measured with L-malate-2-d as the labeled 

substrate and the results are summarized in Table 3.3.  Values of DV and D(V/Kmalate) are 

the mean average of at least six separate determinations.  No significant change was 

observed in the isotope effect data for the mutant enzymes.  13C kinetic isotope effects 

were also determined for H377K (1.0333 ± 0 .001) and H377A (1.0315 ± 0.004) mutant 

enzymes and found to be very similar to that of wild type (1.0342 ± 0.0002). 
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Figure 3.2 The NAD binding site of the Ascaris suum mitochondrial malic 

enzyme (PDB code 1llq).  The residues that directly or indirectly interact with the 

cofactor are shown.  The interactions between the residues are shown with dash lines.  

The hydrogen-bonding distance between adenine-N3A and D361 backbone carbonyl is 

3.4 Å, whereas the ionic interaction distance between D361 and R370 is around 3.6 Å.  

This figure was generated using the PyMOL molecular visualization program (website: 

http://pymol.sourceforge.net/). 
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Table 3.2 Kinetic Parameters for the H377 Mutant Enzymes with both NAD and NADP.

 

 

Kinetic Parameters for the H377 Mutant Enzymes with both NAD and NADP. 
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Table 3.3 Primary Deuterium Kinetic Isotope Effects for The Wild Type and 

Mutant Malic Enzymes. 
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3.4. Discussion. 

In this study, site-directed mutagenesis, initial rate and kinetic isotope effect 

studies were carried out to obtain a better understanding of the cofactor binding site of 

the Ascaris mitochondrial NAD-malic enzyme.  Residues that interact directly or 

indirectly with the adenosine moiety of the cofactor were mutated to different amino 

acids to determine their possible functional roles in binding and/or catalysis. 

3.4.1. The D361-R370 salt bridge. 

Aspartate-361 is located in the dinucleotide binding Rossmann fold and is a part 

of a cap surrounding the adenosine moiety of NAD.  D361 is in close proximity to the 2’-

OH group of the NAD-adenosine and was thought to be important in cofactor specificity, 

by excluding the 2’-phosphate group of NADP.  However, in the crystal structure of 

Ascaris m-NAD-ME, the 361 side chain is directed away from the ribose of the cofactor, 

and forms a salt bridge with R370, leaving sufficient space for the 2’-phosphate of NADP 

[33].  Furthermore, D361 is also completely conserved in NADP-specific malic enzymes 

(Figure 3.1), suggesting that it likely does not play a role in cofactor specificity [71].    

When D361 is mutated to alanine or glutamate, the enzyme loses all of its activity.  

Fluorescence titrations suggest the loss of activity of the enzymes is likely localized to 

the NAD-binding site. Since the ionic interaction is still possible, it is likely that the loss 

of activity of D361E enzyme results from the increase in molecular volume, with E being 

a methylene longer than D.  Visualization of the D to E mutation using PyMOL software 

indicates the longer side chain of glutamate clashes with the adenosine ribose of NAD 

and also with the loop (326-329) that contains the GAGAA signature motif for cofactor 
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binding.  The mutation would thus be expected to change the positioning of NAD leading 

to either nonproductive or no binding of the cofactor.   

D361N exhibited no or modest changes in the Km values of the substrates.  As 

expected, D361N did not show a significant change in KNADP (data not shown).  However, 

V/Et decreased by 1400-fold, which is most likely caused by the loss of the salt bridge 

between D361 and R370.  Unlike D361A and E mutant enzymes, D361N mutant enzyme 

exhibited activity; the asparagine side chain is essentially isosteric with aspartate and still 

retains H-bonding capability to R370.  Data suggest that the salt bridge between D361 

and R370 is important for the productive binding of the cofactor and indirectly for 

catalysis.  The electrostatic interaction stabilizes one of the loops, containing D361 and 

I362, that aids in binding the cofactor.  A shift in the position of the loop, in addition to 

causing ineffective cofactor binding, relocates I362, one of the 3 residues forming the 

hydrophobic pocket for adenosine binding.  Movement of D361 would also affect the 

hydrogen-bonding interaction of the backbone carbonyl of D361 with N3A of the adenine 

ring (3.4 Å), Figure 3.2.  

The importance of the salt bridge between D361 and R370 is also confirmed by 

mutation of R370. R370K showed modest changes in the kinetic parameters, consistent 

with the maintenance of the ionic interaction between D361 and K370.  However, the 

R370A mutant enzyme showed no change in Km values for the substrates, and a decrease 

in V/Et of only 20-fold, compared to the wild type enzyme.  Conversion of D361 to N, on 

the other hand gave a 1400-fold decrease in V/Et, and D361A was inactive.  There are 

two possible explanations for this behavior.  First of all, H377 could possibly maintain an 

electrostatic interaction with D361.  In the crystal structures, H377 is around 6 Å away 
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from D361.  However, there is no crystal structure for the closed form of the Ascaris 

malic enzyme yet.  When the active site closes upon binding of malate, the 

conformational changes may cause H377 to get closer to D361, making it possible to 

have an interaction between these residues, allowing the R370A mutant enzyme to retain 

partial activity.  A second possible reason for retaining activity may be a result of K371 

(Figure 3.2), which is in close proximity to R370. When R370 is mutated to alanine, the 

loop on which K371 is located may move, placing K371 in a reasonable interaction 

distance with D361.  

There are a number of cases in the literature for which mutation gives no or little 

change in kinetic parameters, but a significant change in isotope effects.  That is not the 

case with the D361 and R370 mutant enzymes characterized in these studies.  DV and 

D(V/K) values of the mutant enzymes were very similar to those of wild type malic 

enzyme, suggesting similarity in the relative rates of steps that contribute to rate 

limitation.   The portion of the mechanism of the wild type enzyme that contributes to 

rate limitation of the overall reaction, includes a conformational change, followed by 

hyride transfer and decarboxylation. At saturating concentrations of reactants an 

isomerization of E-NAD also contributes to rate limitation [50].  Although the Km for the 

substrates and isotope effect values of the mutant enzymes are very similar to those of 

wild type, there is still change in V/Et values.  Data suggest it’s likely that the cofactor 

binds nonproductively, with a small fraction of the enzyme being active (0.07%, 6% and 

40% for D361N, R370A and R370K, respectively, calculated as the ratio of kcat values). 
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3.4.2. H377 is not a cofactor specificity determinant of the Ascaris 

malic enzyme. 

In NADP-specific malic enzymes, like pigeon cytosolic malic enzyme, the residue 

corresponding to 377 in the Ascaris malic enzyme is a lysine that is strictly conserved 

among species, while in the NAD malic enzymes this residue varies, Figure 3.1.  The 

human mitochondrial malic enzyme can use either NAD or NADP as a substrate and has 

a Q at position 377 [72], while the residue is H in the Ascaris enzyme.   

 In 2000, Kuo et al. [76], performed alanine-scanning site-directed mutagenesis to 

change the conserved lysine residues in NADP-dependent pigeon malic enzyme.  When 

K340 (which corresponds to H377 in Ascaris and Q362 in human malic enzymes, 

respectively) is mutated to alanine, the Km for NADP was increased by 65-fold, whereas 

the Km for malate and metal ion, and kcat were not affected.  Therefore, they proposed that 

K340 plays an important role in determining the specificity for NADP.  A structure of the 

E-NADP-Mn-oxalate quaternary complex of the pigeon liver cytosolic malic enzyme 

showed that the 2’-phosphate group of NADP interacts with S346 (which corresponds to 

I362 in the Ascaris malic enzyme) and the side chain ammonium group of K340, which 

was proposed to be one of the important determinants of cofactor specificity in the pigeon 

malic enzyme (The authors numbered the residues in pigeon liver cytosolic malic enzyme 

according to their equivalents in human mitochondrial malic enzyme for a more 

convenient comparison. Therefore, K340 in pigeon malic enzyme is numbered as K362) 

[71].  The difference between NAD(P) binding site of the pigeon liver cytosolic malic 

enzyme and the NAD binding site of the human mitochondrial malic enzyme is shown in 

Figure 3.3.    
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Figure 3.3 The NADP binding site of the pigeon cytosolic malic enzyme (PDB 

code 1GQ2) and the NAD binding site of the human mitochondrial malic enzyme (PDB 

code 1QR6).  The residues in the pigeon liver malic enzyme are numbered according to 

their structural equivalents in the human malic enzyme.  The residues that directly or 

indirectly interact with the cofactor are shown.  The ionic interactions are shown with 

dash lines.  The average distance between K362 and 2’-phosphate group of the NADP is 

3.5 Å.  This figure was generated using the PyMOL molecular visualization program 

(website: http://pymol.sourceforge.net/). 
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Recently, the importance of Q362 in cofactor specificity of the human 

mitochondrial malic enzyme was studied [74].  The Q362K mutant enzyme shifted 

preference from NADP to NAD.  kcat /Km for NADP increased by 35-fold, whereas it 

decreased by 7-fold for NAD.  

Site-directed mutagenesis has been used in other studies to shift the specificity of 

the enzymes for their cofactors.  Scrutton et al. [77], mutated specific residues that 

interact with the cofactor in glutathione reductase and they observed that although the 

specificity of glutathione reductase for NADP did not change, the preference of the 

enzyme for NAD increased.  Hurley et al. [78], mutated 7 residues in E. coli isocitrate 

dehydrogenase and converted the cofactor specificity of the enzyme from a 7000-fold 

preference for NADP to a 200-fold preference for NAD.   

Mutation of H377 in Ascaris malic enzyme to lysine gave no shift in cofactor 

preference.  In the Ascaris enzyme, H377 is almost 8 Å away from the 2’-OH group of 

the adenosine ring of NAD.  Therefore, the interaction between these two is not likely.  

When NADP is modeled in the active site of the Ascaris malic enzyme using PyMOL 

software, H377/H377K and 2’-phosphate groups of NADP are still not close enough to 

be able to maintain an interaction.  Although H377 doesn’t have a cofactor specificity 

determining role, it could be an important second layer residue that affects the residues it 

is packed against, and directly interacts with the cofactor.   In the H377K mutant enzyme 

structure created using PyMOL program, the side chain of lysine clashes with one of the 

loops that binds the cofactor.  It specifically clashes with A328 and G329, which form a 

part of the cofactor binding signature motif.  This may cause nonproductive binding of 
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the cofactor.  This was confirmed by almost no change in kinetic parameters for H377A 

mutant enzyme, compared to those of wild type. 

13C kinetic isotope effects were also determined for H377K and H377A mutant 

enzymes and found to be very similar to that of the wild type, indicating a similar 

contribution to rate limitation of the decarboxylation step. 

3.4.3. Conclusion. 

Data obtained for the D361 and R370 mutant enzymes indicate that the ionic 

interaction between the two residues is important for the binding of the adenosine portion 

of the cofactor in Ascaris malic enzyme.  This interaction stabilizes a part of the 

Rossmann fold that NAD binds.   A mutation to D361 can lead to nonproductive binding 

of the cofactor to the active site.  When R370 is mutated, the interaction between D361 

and R370 may be maintained, at least partially, by interaction with other residues.  The 

mutation of H377 to lysine, which is conserved in NADP-specific malic enzymes and 

proposed to be a cofactor specificity determinant, did not cause a shift in cofactor 

specificity of the Ascaris malic enzyme from NAD to NADP.  In the available crystal 

structures of the NADP malic enzymes this lysine residue is in close proximity to 2’-

phosphate group of NADP to maintain an ionic interaction, whereas in NAD(P) specific 

enzymes the residue(s) corresponding to this lysine is (are) distant. However, H377 may 

be an important second layer residue that affects the packing of the first layer residues 

that directly interact with the cofactor. 
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CHAPTER 4:  

 

4.1. Introduction 

β-Hydroxyacid oxidative decarboxylation is catalyzed by a class of enzymes that 

utilize a pyridine dinucleotide, NAD(P). The enzyme class includes the well-studied 

malic enzyme (ME), isocitrate dehydrogenase (IcDH) and 6-phosphogluconate 

dehydrogenase (6PGDH), as well as homoisocitrate dehydrogenase (HIcDH), 

isopropylmalate dehydrogenase (IPMDH) and tartrate dehydrogenase (TDH).  The β-

hydroxyacid oxidative decarboxylases can be classified on the basis of their metal ion 

dependence.  The ME [6,21,79,80], ICDH [81-83] and IPMDH [84,85] require a divalent 

metal ion, Mg2+ or Mn2+, for activity.  In addition to the divalent metal ion, a monovalent 

ion, usually K+, is required for optimal activity of the HICDH [86,87] and TDH [88,89] 

reactions .  Finally, 6PGDH is divalent and monovalent metal ion independent [90,91].  

This review will focus on the metal ion-dependent enzymes.  In terms of overall 

structure, the metal ion dependent enzymes can be divided into two distinct groups.  The 

first includes ICDH, IPMDH, HICDH and TDH, while ME is in a class of its own. 

The reactions catalyzed by the enzymes are listed in Figure 1.1.  Note that the 

substrates of these enzymes, isocitrate, isopropylmalate, homoisocitrate and tartrate, have 

a common malate backbone, and differ only in the substituent on the carbon beta to the 1-

carboxylate.  The enzymes thus differ in their substrate specificity, and are strict in their 

selection of the substrate for the oxidative decarboxylation reaction.  (TDH catalyzes 

reactions other than oxidative decarboxylation [92]). 
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Figure 4.1 Reactions catalyzed by the metal ion-dependent pyridine dinucleotide–

linked β-hydroxyacid oxidative decarboxylases.  The dinucleotide substrate and product, 

and CO2 are common to all reactions.  The β-hydroxyacid and ketone product for each of 

the reactions are shown in parantheses.  The metal ion dependencies of each of the 

enzymes are provided above the arrow.  Reactions from top to bottom are catalyzed by 

ME, TDH, IPMDH, IcDH, and HIcDH, respectively. 
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In spite of the differences in metal ion requirement and structure, all of the 

pyridine dinucleotide-linked β-hydroxyacid oxidative decarboxylases catalyze the same 

general reaction.  The overall reaction proceeds via three steps, oxidation of the β-

hydroxyacid to a β-ketoacid, decarboxylation to generate an enol, and tautomerization to 

give a ketone product.  As an example, the mechanism for oxidative decarboxylation of 

malate is given in Scheme 4.1. 

All the enzymes in the class of metal ion dependent β-hydroxyacid oxidative 

decarboxylases exhibit a steady-state random kinetic mechanism [45,48,92-96]. The acid-

base chemical mechanisms of some of the enzymes have been proposed and there are 

significant differences in the proposed mechanisms [55,56,97-101].  In this manuscript 

we propose a unified acid-base mechanism for the metal ion dependent enzymes on the 

basis of the similarity in the active sites and data presently in the literature.  There are a 

number of reviews that cover aspects other than those considered in this manuscript, and 

the reader is referred to these for additional information [1,102-104]. 

4.2. Overall Structure 

As suggested in the introduction, the metal ion dependent β-hydroxyacid 

oxidative decarboxylases apparently fall into two general classes.  An overlay of a dimer 

of IcDH [100], IPMDH [105], and HIcDH [106] is shown in Figure 4.2A.  (No structure 

is available for TDH).  There is remarkably good agreement of the backbone structures of 

all three of the enzymes; they are clearly in the same fold family, which for convenience 

we will call the IcDH subfamily.  The malic enzyme, on the other hand, neither aligns 

well, nor has a structure similar to those of the other enzymes. A superposition of a dimer  
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Scheme 4.1 Proposed three-step mechanism of oxidative decarboxylation of 

malate. 
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Figure 4.2 Structural overlay.  A) The structures of a dimer of three members of 

the IcDH subfamily are superimposed.  The enzymes are ICDH (cyan, PDB), IPMDH 

(red, PDB 1A05) and HICDH (yellow, PDB 1X0L). B) Ascaris ME (red, PDB 1LLQ), 

pigeon liver ME (cyan, PDB 1GQ2) and human ME (yellow, PDB 1PJ2) are 

superimposed. The location of the active sites are shown with a circle. The figures were 

generated using the PyMOL molecular visualization program (website: 

http://pymol.sourceforge.net/).  
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of the malic enzymes from Ascaris suum [33] and human mitochondria [107], and pigeon 

liver cytosol [71] is shown in Figure 4.2B; the enzyme is tetrameric overall. All are αβ 

proteins with a modified Rossmann fold for cofactor binding.  The active site is located in 

the cleft between two subunits for IPMDH and ICDH, while for ME the active site is in a 

cleft with contributions from three domains [33,100,105].  All enzymes adopt a closed 

conformation of the active site upon substrate binding, via rigid body movement of one 

domain relative to the other. 

A multiple sequence alignment of the members of the IcDH subfamily is shown 

in Figure 4.3.  As can be seen, active site residues important for reactant and metal ion 

binding and catalysis are completely conserved in all of the family members.  On the 

other hand, the malic enzymes do not align with the IcDH subfamily members, but align 

with high homology to one another, Figure 4.4.  Of interest, alignment of the 

mitochondrial NAD- and cytosolic NADP-dependent MEs also exhibit high (~50%) 

homology, while the NAD- and NADP-dependent isocitrate dehydrogenases exhibit low 

(~10%) homology. 

4.2.1. Active site 

As expected on the basis of the similarity of the overall structures, the location of 

the active site within a monomer is the same for all of the enzymes in the IcDH 

subfamily.  In the case of the IcDH subfamily, active site residues are contributed by two 

subunits, with the catalytic lysine and an aspartate metal-ligand contributed by one 

subunit and the remaining residues contributed by the other. The active sites of the MEs 

are completely contained in each of the four subunits of the tetramer. A close-up view of  



 

 
 

Figure 4.3 Multiple sequence alignment for ICDH, IPMDH, HICDH and TDH, 

showing important conserved residues.

shown in bold, while the residues coordinating the substrate are bold and italicized. The 

catalytic residues are shown 

was carried out using the ClustalW program.
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ultiple sequence alignment for ICDH, IPMDH, HICDH and TDH, 

showing important conserved residues.  The residues coordinating the meta

the residues coordinating the substrate are bold and italicized. The 

catalytic residues are shown as bold and underlined. The multiple sequence alignment 

was carried out using the ClustalW program. 
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Figure 4.4 Multiple sequence alignment for Ascaris and human MEs, showing 

important conserved residues.  Residues coordinating the metal ion are shown in bold, 

while the residues coordinating the substrate are bold and italicized.  The catalytic 

residues are shown in bold and are underlined. The multiple sequence alignment was 

carried out using the ClustalW program. 
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the NAD-malic enzyme showing the catalytic residues and those involved in metal ion 

binding is shown in Figure 4.5A  

A general acid/general base mechanism and the identities of the catalytic residues 

have been proposed and will be discussed in “Acid-base Chemical Mechanism” below. 

A catalytic triad has been suggested for Ascaris ME, consisting of a lysine, a tyrosine, 

and an aspartic acid [56].  In the substrate bound form, the metal ion exhibits octahedral 

coordination, and all of the ligands are oxygens, and include three side chain 

carboxylates, a water molecule and two substrate functional groups, the α-carboxylate 

and α-hydroxyl.  In addition, the α-carboxylate of malate is further oriented by hydrogen 

bonding interactions with the side chains of an arginine and two asparagine residues (not 

shown).  The active site of the NADP-malic enzymes is virtually identical to that of the 

NAD-malic enzymes. 

Active site close-ups of IPMDH, IcDH, and HIcDH are shown in Figure 4.5B-D.  

The similarity in the active site residues and overall geometry of the active sites of IcDH 

and IPMDH is remarkable, as is the similarity to the active site of ME.  The tyrosine and 

lysine, as putative catalytic residues, are conserved, as is the arginine that hydrogen 

bonds the α-carboxylate of the substrate, and three of the ligands to the metal ion, two 

aspartate carboxylates and a water molecule. In the IcDH subfamily, one of the aspartates 

that coordinates the metal ion in ME is replaced by a second water molecule and the two 

asparagine residues that hydrogen bond the α-carboxylate of the substrate in ME are 

replaced by arginine residues. The active site of HIcDH has identical residues, but the 

tyrosine is away from the lysine. However, the structure is an open form, and it is known 

that a conformational change is required to close the site upon substrate binding and that  
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Figure 4.5 Close-up view of active sites.  Enzymes with active sites pictured are 

A) ME, B) IPMDH, C) ICDH, and D) HICDH.  Residues that coordinate the metal ion 

are shown; the metal ion is purple and coordinating residues are yellow.  Substrates are 

colored magenta. The structures for ME and HICDH are the open conformation.  The 

PDB codes for figures A, B, C and D are 1PJ2, 1A05, 1LWD and 1X0L, respectively. 

The figures are generated using the PyMOL molecular visualization program (website: 

http://pymol.sourceforge.net). 
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the tyrosine is then in close proximity to homoisocitrate [106,108].  As shown in Figure 

4.2 and 4.3, the overall structure and all of the active site residues are conserved in TDH. 

The three dimensional arrangement of active site residues is identical in IPMDH 

and IcDH, and in fact the two can be superposed, Figure 4.6A.  The HIcDH active site 

will likely also be identical with Mg-homoisocitrate bound.  This is not surprising given 

the similarity of overall fold and complete conservation of all active site residues.  The 

three dimensional arrangement of active site residues in the MEs is very similar to that of 

IcDH, but the active sites are mirror images, Figure 4.6B.  This is consistent with the 

opposite stereochemistry at the Cα alcohol of L-malate and the D-isocitrate (and 

isopropylmalate). One of the water molecules in the metal ion coordination sphere in the 

IcDH subfamily takes the place of D279 in ME.  The distance between the active site 

lysine ε-amine and tyrosine phenolic hydroxyl in the binary complex of ME is 3.3Å [32], 

but decreases to 2.9 Å in the closed quaternary E-NAD-Mg-malate complex form [107].  

In the quaternary E-NAD-Mg-malate complex the distance from the lysine ε-amine and 

the malate α-hydroxyl is 2.8 Å, and it is thus set to act as a base in the overall reaction.  

The tyrosine phenolic hydroxyl is also in position to donate a proton to C3 of 

enolpyruvate.  In the IcDH and IPMDH ternary E-M2+-substrate complexes, the distance 

between the active site lysine ε-amine and tyrosine phenolic hydroxyl is ~3.7 Å, similar 

to that found in the open form of the MEs, while the distance between the lysine ε-amine 

and the substrate α-hydroxyl is ~3.5 Å, and is expected to be within hydrogen bonding 

distance in the closed form of the enzyme [100,105]. In addition to the difference in the 

active site stereochemistry between the MEs and IcDH subfamily, there are two other 

differences.  First, the MEs have a catalytic aspartate (D278 in the human enzyme; see  
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Figure 4.6 Stereoview of active site superpositions.  A) The active sites of IcDH 

(PDB 1LWD) and IPMDH (PDB 1A05) are shown in green and yellow, respectively.  

The metal ion is shown as a purple ball (yellow for Mg) and water molecules are shown 

as red balls. B) The active sites of IcDH and ME (PDB 1PJ2) are shown in green and 

cyan, respectively. Coordination bonds to the metal ion are shown for one of the enzymes 

in both A and B. (This picture was created by Dr. Babak Andi). 
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Acid-base Chemical Mechanism below) that is absent in the IcDH subfamily. Second, 

two asparagine residues and an arginine are hydrogen-bonded to the substrate α-

carboxylate in the MEs, while there are three arginine residues in the case of the IcDH 

subfamily.  These changes almost certainly contribute to the catalytic mechanism in these 

two subfamilies. 

Details of mechanism are discussed below.  We begin with a discussion of the 

mechanism of the MEs and then discuss similarities and differences between the two 

subfamilies.  Although the exact mechanism of the other oxidative decarboxylases (TDH 

and IPMDH) has not yet been determined, the arrangement of their active site residues 

and their spatial positions in those enzymes are very similar to those that have been well 

studied. Their chemical mechanisms are thus likely to be very similar to those discussed 

in detail below. 

4.3. Acid-base chemical mechanism 

4.3.1. Malic enzyme 

The MEs are perhaps the best studied of any member of the class of pyridine 

dinucleotide-linked, metal ion-dependent β-hydroxyacid oxidative decarboxylases.  The 

proposed acid-base mechanism is based on extensive kinetic studies including pH-rate 

profiles [43,46,109] and isotope effects [25,53,54,110-113], structural studies [32-

35,38,107], and site-directed mutagenesis [3,28,55,56]. The current general acid/general 

base chemical mechanism was proposed on the basis of the E-NADH-Mn-malate 

structure [107] and site-directed mutagenesis studies of Karsten et al. [56].  The 

mechanism proceeds via the use of a catalytic triad. 
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In the open form of the enzyme, the active site lysine is within hydrogen-bonding 

distance to an active site aspartate, but not to the active site tyrosine.  The structure of the 

closed form of the human and Ascaris NAD-malic enzymes [34,107], with cofactor, 

metal ion and substrate (or substrate analog) bound show the active site lysine within 

hydrogen-bonding distance to the substrate hydroxyl, and the active site tyrosine, which 

is properly positioned to deliver a proton to C3 of the enolpyruvate intermediate that 

results from oxidative decarboxylation.  In addition, an aspartate that does not participate 

in coordination of the metal ion is in strong hydrogen-bonding distance to a glutamate 

that participates in coordinating the metal ion, Figure 5A.  There is a net negative charge 

in the active site of the quaternary E-NAD-M2+-malate complex.  Four side chain 

carboxylates and the substrate carboxylates are partially balanced by the charge on the 

metal ion, the arginine that ion pairs the substrate α-carboxylate, the charge on the 

pyridine ring of the cofactor, and the charge of the catalytic lysine.  Lysine requires 

assistance to act as a base and this is supplied by the aspartate that is in close proximity to 

the glutamate, which serves as a ligand to the metal ion, Figure 4.7. 

The proposed mechanism of the Ascaris NAD-malic enzyme reaction, as an 

example, is shown in Figure 8 [56].  A catalytic triad, comprised of K199, Y126, and 

D294, was proposed to function for the MEs.  The pH dependence of V/KmalEt decreases 

at low pH, giving a global pKa of 5.6 reflecting the general base. Given the net negative 

active site, the initial hydrogen bonding of K199 and D294 in the open form, and close 

approach of D294 and E271 in the closed form suggests a strong hydrogen bond between 

D294 and E271, and a neutral K199 that can serve as a base, as suggested in Figure 4.8 

(II).  The lysine then serves to accept a proton from the hydroxyl of malate in the  
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Figure 4.7 Stereoview of the active site structure and catalytic triad in the human 

ME (PDB 1PJ2).  The corresponding residues for the Ascaris ME are shown in 

parenthesis.  Distances between K183-D278 (2.8 Å), the malate 2’-OH and K183 (2.78 

Å), and E255-D278 (2.6 Å) in the closed structure are shown; Mn2+ is shown as a purple 

ball. The figures are generated using the PyMOL molecular visualization program 

(website: http://pymol.sourceforge.net/). 
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Figure 4.8 Proposed general acid/general base mechanism for Ascaris ME [56]. 
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oxidation step to generate the oxaloacetate intermediate (III). The β-ketoacid is then 

activated for decarboxylation, and the majority of catalysis of this step is provided by the 

metal ion, acting as a Lewis acid to produce enolpyruvate, and with K199 donating a 

proton to the enol oxygen (IV).  In agreement, kinetic 13C isotope effects measured for 

divalent metal ion-catalyzed decarboxylation of oxaloacetate are very similar to the 

intrinsic 13C kinetic isotope effects for decarboxylation of the oxaloacetate intermediate 

in the malic enzyme reaction, suggesting the enzyme simply provides the site for binding 

metal ion and reactant, and plays only a small catalytic role in this step of the reaction 

[52].  Finally, tautomerization of enolpyruvate to pyruvate proceeds via general 

base/general acid catalysis, with K199 accepting a proton from the enol and Y126 

donating a proton to C3 to give pyruvate (V).  Release of products, and proton 

rearrangement gives the catalytic triad in the same protonation state as at the beginning of 

the reaction (VI). 

In support of the proposed mechanism are the structural studies cited above and 

studies of site-directed mutations of the three participants in the catalytic triad [56].  

Mutation of K199 to R gave a 10-fold decrease in kcat, but no change in the pKa of the 

putative general base. However, mutation of D294, which is very close to E271, to A 

gave a 13,000-fold decrease in the rate, and a shift in the pKa on the acid side to about 9.7 

from 5.6. Thus, removal of the auxiliary catalyst that is required to deprotonate K199 so 

that it can serve as a base results in a pH dependence that is expected if K199 were acting 

alone. 

Tautomerization is generally very fast compared to other steps along the ME 

reaction pathway, and as a result, the pKa for the Y126 is not observed in the pH-rate 
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profiles.  Mutation of Y126 to F gives a 60,000-fold reduction in the rate, consistent with 

its important role in catalysis.  However, the pKa of the general base in the Y126F mutant 

enzyme is 5.6, identical to that of the wild type enzyme. 

Given the similarity in the active sites of the IcDH subfamily to that of ME, it is 

highly likely the same general mechanism applies in all cases.  Of the enzymes in the 

IcDH subfamily, IcDH has been well studied, while data for HIcDH and TDH are not as 

extensive and only structural data are available for IPMDH.  Each of these enzymes will 

be discussed below in terms of the mechanism proposed for the MEs. 

4.3.2. Isocitrate dehydrogenase 

The porcine ICDH has been extensively studied.  The overall mechanism of the 

enzyme follows that shown in Scheme 1.   We propose that, as is true for the MEs, the 

acid-base chemistry of the IcDH overall reaction is catalyzed by an active site lysine-

tyrosine.  On the basis of available structures [98,100,114,115], kinetic studies and site-

directed mutagenesis [98-101,114,116-118], a mechanism has been proposed for IcDH.  

The wild type enzyme exhibits a pKa of about 5.2 for a group that must be unprotonated 

for optimal activity [101].  The pKa was assigned to the ionization of the metal-bound 

hydroxyl of isocitrate. Tyrosine 140, which corresponds to Y126 in the Ascaris ME was 

proposed to be the general acid that protonates the enol to give α-ketoglutarate [116].  

Below, the proposed mechanism will first be considered, and then data obtained for IcDH 

will be considered in terms of a catalytically active Lys-Tyr pair. 

Data support the proposed role of Y140 as the general acid that must protonate the 

enol of α-ketoglutarate to generate the ketone product [116].  Changing the tyrosine to a 

side chain that cannot function over the pH range 5-9, i.e., phenylalanine which is 
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missing the phenolic hydroxyl, and threonine, which has a pKa >14, results in a very low 

pH independent basal activity that is 400-fold lower than that of wild type.  A change to 

glutamate and lysine gives enzymes that exhibit pH dependence with observed pKa 

values of 6.4 and 6.75, respectively, for a group that must be protonated for optimal 

activity.  Finally, the detritiation of α-ketoglutarate requires the presence of Y140.  

 Data are not as clear in the assignment of the group with a pKa of 5.2 observed in 

the kcat profile of the wild type enzyme.  Changing K212 to Q, which does not allow it to 

function as a base, does not eliminate the pH dependence of kcat, but does give a 540-fold 

decrease in the rate and a shift in the pKa to 7.5; a pH independent basal level of activity 

about 1000-fold lower than that of wild type is observed at pH values <6.5.  On the other 

hand, a change to R, gives only a 10-fold change, and no change in the observed pKa, 

similar to the behavior of ME [56].  Clearly, the observed pKa does not reflect K212, but 

its value is influenced by the positively-charged side chain in agreement with the authors’ 

suggestion [116].  The lysine side chain must have a function in the reaction in addition 

to an electrostatic effect on the pKa of another group, however, since the activity is 

decreased >500-fold.  Two other lines of evidence are used to assign the pKa of 5.2 to the 

hydroxyl of isocitrate, viz., site-directed mutagenesis to change conserved active site 

aspartate side chains and replacement of the metal ion that chelates isocitrate [101].  On 

the basis of structural data, two of the aspartate residues serve as ligands to the metal ion 

in the active site, D252 and D275, while the third, D279, is in the vicinity of the metal-

isocitrate complex and hydrogen-bonded to two water molecules [34].  Replacement of 

D252 or D275 by cysteine gives similar pKa values for kcat but a decrease in rate by 3.6-

fold and 2.7-fold, respectively, consistent with a change in the electronic properties of the 
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metal ion, which must serve as a Lewis acid in the decarboxylation reaction.  Of interest, 

the observed pKa is unchanged, which is not consistent with the ionization of the metal 

bound hydroxyl of isocitrate.  Replacement of D279 by C, however, gives a lower pKa of 

4.7, and a 240-fold lower rate, consistent with the weaker hydrogen-bonding ability of the 

cysteine thiol(ate).  Metal ion replacement, e.g., Mn2+ to Co2+ gave observed pKa values 

in kcat of 5.24 to 5.07, which the authors suggest are significantly different in support of 

ionization of the metal coordinated isocitrate hydroxyl [101]. The pKa values 5.24 and 

5.07 are likely actually within error equal (standard errors obtained are too low given the 

data reported by the authors. On the basis of hundreds of pH-rate profiles obtained by 

PFC, the standard errors on the pKa values are likely about 0.2.  It is likely that at least a 

portion of the difference results from log to ln conversions, in the error analysis). In 

agreement, a similar metal replacement study by Auld and Valee [119] gave a shift in the 

pKa of carboxypeptidase from 6.36 to 5.33 as expected given the pKa values of 10.6 and 

9.7 for hydrolysis (Mn-OH2)
2+ and (Co-OH2)

2+, respectively [120].  Also of interest, 

changing R110 and R133 (within hydrogen-bonding distance to the substrate α-

carboxylate of isocitrate) to Q results in increasing the pKa in the kcat pH-rate profile to 

6.4 and 7.4, respectively [34].  Thus, positive charge in the active site is clearly 

important. 

If the pKa observed in the kcat pH-rate profile is not that of the metal-isocitrate 

hydroxyl, how can the data be reconciled?  It is likely given the close similarity in the 

active sites of the MEs and the IcDH subfamily that the lysine-tyrosine pair functions in 

an acid-base role in IcDH as for ME.  However, it is clear that the residue responsible for 

the pKa in the kcat pH-rate profile is not lysine, but is influenced greatly by its 
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environment.  Specifically, a decrease in positive charge results in an increase in the pKa, 

suggesting either a positively-charged group in the vicinity of K212, which would have a 

lower pKa as a result of electrostatic repulsion of the two groups when protonated, or a 

neutral acid, which would be preferentially ionized in a positive site.  The only positively 

charged groups in the active site, beside K212 and the metal ion are the three arginine 

residues in the vicinity of the substrate α-carboxylate and the nicotinamide of NAD+.  

However, D279 or one of the other aspartate side chains, either directly or via hydrogen-

bonded water, could certainly function to deprontonate K212 in a manner similar to that 

proposed for ME.  In this regard, one must remember that the structure available is that of 

the E-Mn-isocitrate complex.  It is possible, for example, that one of the two aspartates 

that serves as metal ion ligands serves as a catalyst to deprotonate K212 and that D279 

acts as a ligand to the metal ion in the quaternary E-NADP-Mn-isocitrate complex.  We 

suggest a triad similar to that observed for ME functions to catalyze the Ic oxidative 

decarboxylation with another active site group, e.g., an aspartate, required to deprotonate 

K212, which functions as the general base to deprotonate the Ic hydroxyl, while Y140 

functions as the general acid to protonate the enol.  Elimination of positive charge in the 

site will cause an increase in the pKa of the aspartate, while elimination of the aspartate 

will give the pKa of the lysine unless the new side chain can function as a base, as in H or 

C.  The proposed mechanism also explains the relatively high activity observed for the 

K212R mutant enzyme.  The pKa of the δ-guanidinium of arginine is 2 pH units higher 

than that of the ε-amine of lysine, and thus one might expect a 100-fold decrease in the 

rate with R212 as the base catalyst in place of K212, and not the 10-fold change 

observed.  However, the chemical steps do not contribute to rate limitation in the case of 
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the wild type enzyme and must be at least 10-times faster than structural changes required 

to set up the site for catalysis.  In agreement, on the basis of the pH dependence of 

isotope effects, Grissom and Cleland estimate that catalysis is 16 times faster than 

substrate dissociation [52].  

A pH independent basal level of activity was observed for several mutant 

enzymes.  The K212Q mutant enzyme exhibits a 1000-fold lower rate than kcat of the 

wild type enzyme at pH values <6.5.  The Y140F and Y140T mutant enzymes exhibit a 

400-fold lower rate than that of the wild type enzyme over the pH range 5-9.  The basal 

activity is still much greater than that of the uncatalyzed reaction, and must be due to a 

combination of catalysis by the remaining catalytic group, water and the metal ion.  A 

series of double mutations could be used to sort this out using a mutant cycle analysis. 

4.3.3. Homoisocitrate dehydrogenase 

Although not as much data are available for HIcDH, data are consistent with the 

action of a lysine-tyrosine pair, consistent with the active site structure of the enzyme.  

The pH-rate profiles obtained with HIc as the substrate exhibit significant pKa 

perturbation as a result of substrate stickiness [27].  However, Ic is a slow substrate for 

HIcDH, and was very useful in interpreting the pH-rate profiles in general.  A single base 

was observed in the kcat and kcat/KIc profiles with a pKa of about 7.  Site-directed 

mutagenesis of K206 and Y150 resulted in dramatic changes in the pH-rate profiles.  The 

kcat for the K206M mutant enzyme is pH independent below pH 8, and increases at higher 

pH values to a constant value above pH 9.5, giving a pKa of about 9.3 (unpublished data 

of Y. Lin in this lab).  The Y150F mutant enzyme is pH independent above pH 7, and 

increases as the pH is decreased to a constant value below 5.5, giving a pKa of about 6 
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(unpublished data of Y. Lin in this lab).  Data are consistent with Y150 acting as a base in 

the reaction catalyzed by the Y150F mutant enzyme, and K206 acting as an acid in the 

K206M mutant enzyme.  The pKa of the Y150 in the absence of K206 is 9.3, while that 

of K206 in the absence on Y150 is about 6.  The most reasonable explanation is the 

presence of a Lys-Tyr ion pair in the wild type enzyme with a pKa of about 7.  The low 

pKa for K206 in the mutant enzyme likely results from the highly positive nature of the 

active site, with 3 arginine residues, the positive charge on NAD, and the metal ion.  The 

pH independent basal activity exhibited by K206M below pH 8 and Y150F above pH 7 is 

likely explained as for the IcDH mutant enzymes (see above). 

4.3.4. Isopropylmalate and tartrate dehydrogenases 

There is only very limited data in available for possible catalytic residues of 

IPMDH and TDH. Miyazaki et al. [121] mutated Y139, which corresponds to the general 

acid in other enzymes, to F in Thermus thermophilus IPMDH, and observed the kcat was 

reduced to 7% of the wild type, confirming the importance of the hydroxyl group of the 

tyrosine in catalysis. 

For TDH, there is no study that points out the importance of any of the conserved 

residues, however, as for IPMDH, the similarity of the arrangement of the lysine-tyrosine 

pair to the one in the MEs, IcDH, HIcDH, and IPMDH, suggests a chemical mechanism 

very similar to that of the other enzymes. 

4.4. Overall 

All of the metal ion-dependent, pyridine nucleotide-dependent β-hydroxyacid 

oxidative decarboxylases utilize a lysine-tyrosine pair to carry out the acid-base catalysis 
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in the oxidation, decarboxylation, and tautomerization steps of the overall reaction.  The 

lysine ε-amine functions as the base in the reaction, and the phenolic hydroxyl of tyrosine 

functions as the proton donor in the tautomerization reaction.  However, the way the 

enzymes utilize the catalytic pair differs.  In the case of the MEs and IcDH, there is 

apparently a group, an aspartate carboxylate in the case of ME, that assists in generating 

the neutral amine, while for HIcDH, this auxiliary catalyst is not utilized and the lysine-

tyrosine pair functions directly.  Some of the differences are almost certainly due to the 

amount of positive charge in the active sites of the respective enzymes.  The MEs have 

less positive charge because two of the three arginines that interact with the substrate α-

carboxylate in the IcDH subfamily are asparagines in the MEs. 

A number of enzymes have a lysine and tyrosine in their active site.  This pair of 

residues provides advantages for enzymes that catalyze acid-base chemistry.  Given their 

equal solution pKa values of 10.5, the two residues, if in close proximity, can ion pair as 

NH3
+--O- or hydrogen bond as NH2--HO, such that reactant binding can select one or the 

other form.  In addition, since one is a neutral acid, and the other a cationic acid the 

environment of the active site, once it closes in preparation for catalysis can generate 

differences in the pKa values of the two residues, resulting in a broader pH independent 

reaction range. 
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CHAPTER 5:  

 

5.1. Overall Discussion and Conclusion 

Malic enzyme has been studied for more than 60 years. Its overall kinetic and 

chemical mechanisms are well determined, and its structure was obtained from various 

organisms. Although vast amount of information exists on this enzyme, there are still 

gaps to be filled in on the cofactor binding site and the role of residues surrounding the 

site. This work has focused on the detailed mechanism of NAD binding and specificity 

and it has contributed to the overall knowledge of the reaction catalyzed by malic 

enzyme, specifically, and the class of pyridine nucleotide β-hyroxyacid oxidative 

decarboxylases in general.  

 The first part of the project was to investigate the contribution of binding 

energy and catalysis of the groups that interact with the nicotinamide and ribose rings of 

NAD. The results suggested that the correct orientation of the NAD is crucial for the 

reaction. If it is not in the proper position, significant decrease in the rate of the reaction, 

nonproductive binding of the cofactor and even a change in the kinetic mechanism of the 

enzyme can be observed. The second part of the project focused on the roles of residues 

surrounding the adenosine binding site of NAD. It was shown that eliminating a single 

ionic interaction between residues in the NAD adenosine binding site was enough to 

decrease or eliminate all catalytic activity of the enzyme. In addition, cofactor specificity 

could not be changed to favor NADP. Thus, binding of cofactor 2’-phosphate requires a 

collective interaction of many residues. 
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Single mutations to specific residues interacting with the nicotinamide ring, where 

hydride transfer occurs, was enough to change how the enzyme worked and indicated the 

delicate balance in the overall enzymatic reaction. As an example, one of the mutant 

enzymes (N479Q) exhibited a concerted oxidative decarboxylation of malate, instead of 

the stepwise mechanism observed for the wild type. The most likely explanation for this 

behavior was that the malate should be able to bind in the proper conformation for the 

decarboxylation to happen simultaneously with hydride transfer. In the wild type enzyme, 

hydride transfer precedes decarboxylation because when malate is bound with its C4 in 

the C2-C3 plane it is not able to undergo decarboxylation. However, in a concerted 

mechanism, malate is already bound with its β-carboxyl group out of C2-C3 plane and 

trans to the hydride to be transferred to C4 of the nicotinamide ring of NAD. This might 

give an impression that this is a more efficient way to catalyze the reaction, whereas the 

wild type enzyme has to do it by a stepwise mechanism. However, in this case the overall 

rate of the reaction decreased more than three orders of magnitude, indicating there was 

something not feasible with this mechanism. The switch from stepwise to concerted 

mechanism was also observed with alternative nucleotides. These data suggest that NAD 

binding has an important role in orienting malate for catalysis. Therefore, N479Q 

mutation caused the cofactor to bind a in a different conformation which in turn affected 

the bound configuration of malate, changing its binding orientation for catalysis. For the 

fully active enzyme, both NAD and malate must bind in proper conformation and 

orientation. This is only one of the examples indicating how the nature of the active site 

of this enzyme has been perfected through evolution. 
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Although the nicotinamide portion of the cofactor has a role in the hydride 

transfer, the binding of the adenosine portion of NAD, which is relatively distant from the 

active site, is also important. A single point mutation, changing an aspartate residue 

(D361) that helps to orient the adenine ring of the cofactor results in an inactive enzyme. 

When the closed structure of the enzyme with NAD-Mn-malate bound is overlayed 

against the structure with ATP-Mn-malate bound, the spatial positions and orientations of 

the catalytic residues and substrates are the same, Figure 5.1 . Data indicate that binding 

of the adenosine portion of the cofactor, rather than the nicotinamide portion, is important 

for the catalytic conformation of the enzyme. 

Information on a particular enzyme can be helpful when it comes to interpret data 

for another one, especially if the enzymes are in the same class. It will also be helpful 

generalizing the working principles of the class by projecting the knowledge obtained 

from one enzyme to others in the same class that have little mechanistic information 

available. The last part of this dissertation on oxidative decarboxylases provides an 

example of this. The extensive knowledge we have obtained on malic enzymes was used 

as a probe to interpret the data obtained for other oxidative decarboxylases, such as 

isocitrate dehydrogenase.  
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Figure 5.1 Overlay of human ME with NAD-Mn-malate bound (PDB:1PJ2) 

against ATP-Mn-malate bound (PDB:1PJ4) structure.  NAD bound structure is shown in 

green, whereas ATP bound structure is shown in cyan. The figures are generated by 

PyMOL molecular visualization program (website: http://pymol.sourceforge.net/). 
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APPENDIX 

 

LIST OF ABBREVIATIONS 

APAD, 3-acetylpyridine adenine dinucleotide 

ADP, adenosine diphosphate 

ATP, adenosine triphosphate 

BSA, bovine serum albumin 

Ches, 2-(N-cyclohexylamino)ethanesulfonic acid 

Hepes, N-(2-hydroxyethyl)piperazine-N’-2-ethanesulfonic acid 

HICDH, homoisocitrate dehydrogenase 

Ic, isocitrate 

IcDH, isocitrate dehydrogenase 

Ipm, isopropylmalate 

IPMDH, isopropylmalate dehydrogenase 

IPTG, isopropyl β-D-1-thiogalactopyranoside 

LDH, lactate dehydrogenase 

ME, malic enzyme 

NAD, nicotinamide adenine dinucleotide 

NADH, reduced nicotinamide adenine dinucleotide 

NADP, nicotinamide adenine dinucleotide 2’-phosphate 

NADPH, reduced nicotinamide adenine dinucleotide 2’-phosphate 

Ni-NTA, Ni 2+-nitrilo-tri-acetic acid 

OAA, oxaloacetate 
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PAAD, 3-pyridinealdehyde adenine dinucleotide 

PCR, polymerase chain reaction 

6PGDH, 6-phosphogluconate dehydrogenase 

Pipes, piperazine-N,N’-bis-(2-ethanesulfonic acid) 

SDS, sodium dodecyl sulfate 

TDH, tartrate dehydrogenase 

WT, wild type 

 


