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Abstract 

Ground clutter is a long standing issue in radar meteorology, considering 

that it can bring significant bias to the estimations of weather moments, polarimetric 

parameters, rainfall rate, hydrometeor identification, etc. Bayes’ theorem is 

introduced and applied to signal processing of weather radar signals which 

distinguishes it from existing empirical methods to improve data quality. Five 

ground clutter detection algorithms are discussed, which are the Spectrum Clutter 

Identification (SCI), Simple Bayesian Classifier applied to the Dual-Scan 

discriminants (SBC-DS), test statistic obtained from the Generalized Likelihood 

Ratio Test (GLRT), Simple Bayesian Classifier applied to the Dual-Pol 

discriminants (SBC-DP), and Simple Bayesian Classifier applied to the Dual-Pol 

Dual-Scan discriminants (SBC-DPDS). One ground clutter filtering algorithm is 

developed, which is the Bi-Gaussian Model Adaptive Processing (BGMAP). The 

BGMAP algorithm will be applied to the clutter contaminated gates identified by 

ground clutter detection algorithms. The performances of the clutter detection and 

filtering algorithms are evaluated using the data collected by the OU-PRIME 

(University of Oklahoma-Polarimetric Radar for Innovation in Meteorology and 

Engineering) 5-cm polarimetric radar and PX-1000 3-cm polarimetric transportable 

radar.  
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Chapter 1: Introduction 

Ground clutter is received when the mainlobe or sidelobes of the antenna 

illuminate objects on the ground. Weather data can be highly contaminated by 

ground clutter if the radar is measuring precipitation near the ground using elevation 

angles  less than a beamwidth. Data at low 
 
are required to have accurate 

estimates of rainfall for long ranges. But clutter power can strongly bias the 

estimated spectral moments of the weather signal. The estimated reflectivity of the 

weather signal will be biased high, and the estimated mean radial velocity of the 

weather signal will be biased toward zero, but the estimated spectrum width bias has 

a more complicated dependence on the Clutter to Signal power Ratio (CSR), mean 

radial velocity, and spectrum width of the weather signal. 

Because the spectrum of ground clutter is located around zero mean radial 

velocity, a band-stop filter centered at zero is commonly used to remove the effect 

of ground clutter according to Groginsky and Glover (1980). However, if power 

spectral components of weather fall into the stopband, a band-stop filter will bias the 

weather estimates. This can be more severe for narrow-band zero-velocity weather 

signals because most of the weather power components are suppressed by the filter. 

Thus, in order to avoid the potential bias, the efficient way is to first detect the 

locations of ground clutter and then apply ground clutter filter on those 

contaminated gates.  

Resolution volumes that echo weather signals contaminated by ground 

clutter can be identified using a static clutter map determined from data collected in 

eθ eθ
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clear-air conditions according to Meischner (2002). However, static clutter maps do 

not identify clutter locations that appear only under anomalous propagation (AP) 

conditions. Thus, an adaptive ground clutter detection algorithm is needed to detect 

ground clutter under both normal propagation (NP) and AP conditions.  

One such adaptive approach is the decision tree algorithm introduced by Lee 

et al. (1995), which makes a clutter/non-clutter decision using radial velocity, 

spectrum width, minimum detectable signal, one-lag and two-lag signal fluctuations, 

the vertical gradient of reflectivity, and a continuously updated clutter map. A Radar 

Echo Classifier (REC) proposed by Kessinger et al. (2003) was deployed within the 

National Weather Service’s WSR-88D ORPG (Open Radar Product Generator) 

build 2 and it uses fuzzy logic to classify the source of radar echoes including 

ground scatters seen via AP, precipitation, insects, and clutter associated with sea 

waves. Another approach introduced by Steiner and Smith (2002) uses the three 

dimensional reflectivity structure to detect ground clutter observed under both NP 

and AP conditions. The clutter mitigation decision (CMD) algorithm  introduced by 

Hubbert et al. (2009a and 2009b) and tested by Ice et al. (2009) combines three 

discriminants: clutter phase alignment (CPA), texture of reflectivity (TDBZ), and 

SPIN (Steiner and Smith, 2002)  using a fuzzy logic approach to determine the 

existence of clutter; it is currently used in the RDA (WSR-88D’s Radar Data 

Acquisition subsystem) build 11 with GMAP (Gaussian Model Adaptive Processing) 

filter introduced by Siggia and Passarelli (2004) and has been tested by WSR-88D’s 

Radar Operation Center to replace the bypass map according to Torres et al. (2012). 

The CLEAN-AP (CLutter Environment ANalysis using Adaptive Processing) 
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algorithm introduced by Warde and Torres (2010) combines a ground clutter 

detection algorithm and a ground clutter filter; it uses the phase of the auto-

correlation spectral density, and it is shown that CLEAN-AP has better ground 

clutter mitigation (detection and filtering) than the current CMD/GMAP (Torres et 

al., 2012). A spectrum clutter identification (SCI) algorithm introduced by Li et al. 

(2013a) and tested by Cao et al. (2012) combines four discriminants: spectral power 

distribution, spectral phase fluctuations, spatial texture of echo power, and spatial 

texture of spectrum width to make decisions as to the presence of clutter; it is 

focused on detecting ground clutter mixed with weather signals, even if the clutter 

to signal ratio (CSR) is low but can still significantly bias the weather moment 

estimates.   

A multipattern technique proposed by Zhang et al. (2011) demonstrated the 

potential of phased array radar (PAR) in detecting/mitigating ground clutter as well 

as moving clutter. Recently Li et al. (2013b) introduced a scan-to-scan correlation 

method to identify ground clutter, which takes advantage of the fact the correlation 

time of echoes from hydrometeors is typically much shorter than that from ground 

objects.  

In addition to the clutter detection algorithms based on single polarization 

radar data introduced above, many ground clutter detection algorithms based on 

polarimetric radar data were also introduced. A fuzzy logic algorithm introduced by 

Gourley et al. (2007) combines horizontal reflectivity (Zh), differential reflectivity 

(ZDR), copolar correlation coefficient ( hv (0) ), mean radial velocity (v), pulse-to-
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pulse variability of Zh, and textures of ZDR and differential propagation phase DP  to 

classify three classes: clear air echoes, ground clutter, and precipitation. A 

hydrometeor classification algorithm (HCA) proposed by Park et al. (2009) and 

Schuur et al. (2003) discriminates ten classes of weather radar echoes using fuzzy 

logic by combining six discriminants:  Zh, ZDR, hv (0) , specific differential phase 

KDP, and the textures of Zh and DP  fields. Rico-Ramirez and Cluckie (2008)  

introduced a polarimetric classification algorithm in which eight input 

measurements are used to detect ground clutter received via NP and AP conditions; 

the eight measurements were combined by using both fuzzy logic and Bayesian 

classifiers. A clutter recognition algorithm using polarimetric spectral analysis 

introduced by Melnikov et al. (2008) combined polarimetric variables obtained from 

three central lines of the Doppler spectrum to determine the existence of ground 

clutter; the focus of this method is clutter recognition in a single range gate and the 

textures of polarimetric parameters are not used.  

After the locations of ground clutter are detected, a ground clutter filter 

needs to be applied to the clutter contaminated gates to mitigate clutter effects and 

restore weather estimates. Considering that ground clutter is located around zero 

mean radial velocity, a band-stop  filter (notch filter) centered at zero is commonly 

used to remove the effect of ground clutter (Groginsky and Glover, 1980) in the 

time domain. Recently, clutter filtering in the velocity (spectral) domain has 

received attention by the weather radar community considering the fact that the 

weather and clutter can be well separated in the spectral domain if their spectra are 

not heavily overlapped. Siggia and Passarelli (2004) introduced the Gaussian Model 
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Adaptive Processing (GMAP) method, which is capable of recovering the weather 

spectrum after notching the spectrum around zero Doppler. The limitation of 

spectral filtering is that the spectral leakage, caused by finite number of samples, 

might bias the spectral moment estimations. Nguyen et al. (2008) introduced the 

Parametric Time Domain Method (PTDM) algorithm; indicated by its name, PTDM 

algorithm is based on the estimation of signal properties in the time domain, the 

results are not affected by spectral leakage and therefore it performs well even in 

cases of strong clutter contamination. The main drawback of the PTDM is that it is 

roughly 10 times slower than the spectral filter. 

In the detection section of this dissertation, the Simple Bayesian Classifier 

(SBC) is used to combine the discriminants derived from radar measurements to 

make decisions as to the presence of ground clutter. The SBC distinguishes itself 

from existing empirical classification algorithms such as fuzzy logic and decision 

tree (Lee et al., 1995; Kessinger et al., 2003; Hubbert et al., 2009a, 2009b) 

commonly used in the weather radar community, because the SBC is a statistical 

classifier based on Bayes’ theorem and it can predict class membership probabilities 

such as the probability that a given tuple belongs to a particular class. In order to 

simplify the computations involved in the SBC, the assumption of class-conditional 

independence is made.  In spite of its naïve design and over-simplified assumptions, 

the SBC has worked quite well in many complex real-world situations (Clark and 

Niblett, 1989). In the filtering section of this dissertation, the Maximum A Posteriori 

(MAP) approach based on the Bayes’ theorem (Papoulis, 1991) is used to obtain the 

cost function. By minimizing the cost function, the weather spectral moments can be 
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estimated.  The MAP approach was also used by Waldteufel (1976) to fit the 

tornado spectrum. 

This dissertation is structured as follows. Five different ground clutter 

detection algorithms will be discussed in Chapter 2 and their performance will be 

evaluated using the radar data collected by the 5-cm dual-pol OU-PRIME 

(University of Oklahoma-Polarimetric Radar for Innovations in Meteorology and 

Engineering) radar (Palmer et al., 2011) and 3-cm dual-pol transportable PX-1000 

radar. The ground clutter filtering algorithm, BGMAP (Bi-Gaussian Model 

Adaptive Processing), and its performance evaluation will be discussed in Chapter 3. 

In Chapter 4, conclusions and future work are given. 

 

Chapter 2: Ground Clutter Detection Algorithms 

To avoid potential bias caused by applying a ground clutter filter to 

uncontaminated weather signals, ground clutter contaminated weather signals are 

detected first and then the clutter filter is only applied to those weather signal 

samples having significant contamination. In this chapter, five different algorithms 

are discussed. In Section 2.1, the background of the Simple Bayesian Classifier 

(SBC) is discussed. In Section 2.2, a single-pol based Spectrum Clutter 

Identification (SCI) algorithm is introduced, which combines four discriminants 

using the SBC to make decisions as to the presence of ground clutter. In Section 2.3, 

the SBC-DS (Simple Bayesian Classifier applied to the Dual-Scan discriminants) 

algorithm is discussed, which takes advantage of the fact that the correlation time of 



 
 

7 

 

radar echoes from hydrometeors is typically much shorter than that from ground 

objects. In Section 2.4, two ground clutter detection algorithms based on dual pol 

measurement are discussed. In this section, a test statistic obtained from the 

generalized likelihood ratio test (GLRT), and a SBC applied to the Dual-Pol 

discriminants (SBC-DP), are developed to detect ground clutter mixed with weather 

signals. In Section 2.5, the SBC-DPDS (Simple Bayesian Classifier applied to the 

Dual-Pol Dual-Scan discriminants) algorithm is introduced. In Section 2.6, the 

performances of the five clutter detection algorithms are evaluated using the radar 

data collected by the OU-PRIME (5-cm polarimetric radar) and PX-1000 (3-cm 

polarimetric radar).  

 

2.1 The Background of Simple Bayesian Classifier  

Simple Bayesian Classifiers assume that the effect of an attribute value on a 

given class is independent of the values of the other attributes and it is called class-

conditional independence. It simplifies the computations involved and thus is 

considered “simple”. The SBC works as follows (Han et al., 2011): 

1. Suppose D is a training set of tuples and their associated class labels. Each tuple 

consists of an n-dimensional attribute vector X = 
1 2( , ,..., )nx x x and an n-

dimensional observation vector made on n attributes X
O
 = O O O

1 2( , ,..., )nx x x  where 

the superscript ‘O’ signifies observation. The attribute is equivalent to 

discriminant in this dissertation. For example, the differential reflectivity can be 

an attribute for polarimetric radar ground clutter detection. 
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2. Suppose that there are m classes, C1, C2, … Cm. For example, ground clutter is a 

class that differs itself from weather signal which is another class. Given an 

observation of the attributes, the classifier will predict that X = X
O 

belongs to the 

class having the highest posterior probability, conditioned on X = X
O
. That is, 

the SBC predicts that X = X
O 

belongs to the class Ci if and only if p(Ci| X = X
O
) > 

p(Cj| X = X
O
) for 1 ≤ j ≤ m and j ≠ i. According to Bayes’ theorem (Papoulis, 

1991, Chap. 7-3): 

O
O

O

( | ) ( )
( | )

( )

i i
i

p C p C
p C

p


X = X
X = X

X = X
 (2-1) 

3.   As p(X = X
O
) is constant for all classes (Han et al., 2011, Chap. 8.3), from (2-1) 

we have: 

O O( | ) ( | ) ( )i i ip C p C p CX = X X = X  (2-2) 

4. Given data sets with many attributes, it would be computationally expensive to 

calculate O( | )ip CX = X . To reduce computations involved, the simple 

assumption of class-conditional independence is made, which presumes that the 

attributes’ values are conditionally independent of one another, given the class 

label. Thus, 

O O O O

1 1 2 2( | ) ( | ) ( | ) ( | )i i i n n ip C p x x C p x x C p x x C      X = X  (2-3) 

The probabilities O

1 1( | )ip x x C , O

2 2( | )ip x x C ,…, O( | )n n ip x x C  can be 

obtained from the training tuples.  

5. To predict the class label of X = X
O
, O( | )ip CX = X  is evaluated for each class. 

The classifier predicts that the class label of X = X
O 

is the class Ci  if and only if 

O O( | ) ( ) ( | ) ( )i i j jp C p C p C p CX = X X = X , 1 ≤ j ≤ m and j ≠ i (2-4) 
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Thus, the predicted class is the class Ci for which O( | ) ( )i ip C p CX = X  is the 

maximum. In the next section, the spectrum clutter identification algorithm will be 

discussed. 

2.2 Spectrum Clutter Identification (SCI) Algorithm 

Considering that the statistics of the phase and the power of weather signals 

in the spectral domain are different from those statistics for echoes from stationary 

objects, a spectrum clutter identification (SCI) algorithm has been developed to 

detect ground clutter using single polarization radars, but SCI can be extended for 

dual-pol radars, which will not be discussed in this dissertation. SCI examines both 

the power and phase in the spectral domain and uses a Simple Bayesian Classifier 

(SBC) to combine four discriminants: spectral power distribution (section 2.2.1), 

spectral phase fluctuation (section 2.2.2), spatial texture of echo power (section 

2.2.3), and spatial texture of spectrum width (section 2.2.4). These discriminants are 

used to make decisions as to the presence of clutter that can corrupt weather 

measurements. This work is focused on detecting ground clutter mixed with weather 

signals, even if the Clutter power to Signal power Ratio (CSR) is low but can still 

significantly bias weather moments. The performance of the SCI algorithm is shown 

by applying it to radar data collected by OU-PRIME in Section 2.6.1.  

2.2.1 Spectral Power Distribution (SPD) 

In this section SPD is defined and examples of its properties are shown when 

it is applied to combined simulated clutter and weather signal spectra of various 

CSRs. The SPD is calculated using the power spectrum P(v) (i.e., A
2
(v), where A(v) 

is the amplitude spectrum). The SPD is an indicator of how much power exists in 
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the interval w2 2 v  centered on zero Doppler velocity and how significant this 

power is as compared to power outside the interval. SPD is defined as: 

w

w

N w

N w

2

2

2

2

( )

SPD

( ) ( )

v

v

v v

v v

P v

P v P v



 



  







 

 (2-5) 

In (2-5)  is the Nyquist velocity; (vw)
2
 is the second central moment of the 

observed clutter  power spectrum. (vw)
2 

is principally due to the window function 

which will be explained later in this section, and  is the interval wherein the 

spectral power and phase characteristics of clutter and weather are examined. The 

larger is SPD, the more is power located within w2 v   relative to the power 

outside this interval; therefore SPD is related to CSR (Clutter power to Signal power 

Ratio). SPD is similar to CRN (Clutter Ratio Narrow) introduced by Hubbert et al. 

(2009b). CRN is the ratio of power within  0.5 m s
-1

 to that outside  0.5 m s
-1

 but 

within  2 m s
-1

. Thus, CRN examines the power distribution around zero velocity 

whereas SPD examines the distribution for the entire spectrum. The CRN is not 

used in CMD because, as stated in (Hubbert et al., 2009b), CPA (Clutter Phase 

Alignment, a discriminant used in CMD) better discriminates narrow weather and 

clutter spectra than does CRN.  

If we take the ratio of the spectral power of the zero Doppler to the total 

spectral power of all other spectral bins, the discriminant Power Ratio (PR) can be 

defined: 

vN

 2vw
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
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 

 






  

 (2-6) 

In (2-6), y represents the I/Q time series, m signifies the pulse number, and M is the 

total number of pulses in a dwell. From (2-6), it can be inferred that the ratio of the 

spectral power of the zero Doppler to the total spectral power of all other spectral 

bins can be calculated from the time domain rather than spectral domain, which is 

more computationally efficient. PR is not used in the SCI algorithm but will be 

discussed later in Sections 2.3-2.5.  

In Table 2-1, the qualitative expected values of SPD given different 

conditions of weather signals and clutter are summarized, and functions g, h, and u 

indicate SPD is a function of the specified arguments. 

Table 2-1: Qualitative expected values of SPD given different spectra.  

 
Clutter only 

(Fig.2-1a) 

Weather only  

|vrw| ≤ 1 m s
-1

 

(Fig.2-1b)  

Weather only 

|vrw| > 1 m s
-1

 

Weather & clutter 

(not overlapped)  

(Figs. 2-1c,d) 

Weather& 

clutter 

(overlapped) 

(Figs. 2-1e, f) 

SPD Large g(σvw) Small h(CSR) u(CSR,vrw, σvw.) 

 

A Monte Carlo simulation (Li et al., 2013a) is used to obtain representative 

power spectra of clutter mixed with weather signals (Fig. 2-1). The parameters of 

the simulation are in Table 2-2; these match those of OU-PRIME, the weather radar 
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used to collect data for the performance evaluation of SCI algorithm. Only the 

relative strength and the Doppler velocity of weather change in each panel of Fig. 2-

1. A Blackman window is applied to the simulated time series data. The red portions 

of the curves in Fig. 2-1 are within w2 v  . The CNR [Fig. 2-1(a)] or SNR [Fig. 2-

1(b)] or Signal plus Clutter to Noise Ratio SCNR (i.e., (S+C)/N) [Figs. 2-1(c)-(f)] 

are all set to 60 dB. The CSR is equal to 20 dB in Figs. 2-1(c) and (e), and equal to -

15 dB in Figs. 2-1(d) and (f). In the figure caption, vrc, σvc, and σvw are the mean 

radial velocity and spectrum width of clutter and spectrum width of weather signals; 

the panel entry vrw is the estimated mean radial velocity for the weather signals; 

likewise vrs and σvs entries are estimates for the summed spectrum. The rms (root 

mean square) value of turbulent velocities is fixed at 1 m s
-1

, and the mean power, 

mean radial velocity and spectrum width are calculated in the spectral domain using 

all the spectral coefficients (i.e., no thresholds are applied).  The spectral interval 

v  between adjacent bins is equal to 0.1 m s
-1

. The discriminant Spectral Phase 

Fluctuation (SPF) is discussed in Section 2.2.2. 

Table 2-2: Radar and meteorological parameters used in the simulation. 

wavelength (λ) 5.44 cm 

One-way 3dB Beamwidth (1) 0.5 

Scan Rate () 16 s
-1

 (0.28 radians per second) 

Pulse Repetition Frequency (PRF) 1180 Hz 

Number of Samples (M) 38 

SCNR [(S+C)/N)] 60 dB 
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Turbulence Intensity ( ) 1 m s
-1 

Mean Wind Velocity 0 

Number of Stationary Scatterers 1 

Number of Moving Scatterers 1000 

 

In Figs. 2-1(a) and (b) (pure clutter and pure narrow-band weather signal), 

the SPD is equal to 5.6 and 2.4, respectively. The difference between the two SPD 

values is caused by the fact that the clutter spectrum is still narrower than the 

spectrum of the weather signal; thus more clutter power is within the spectral 

interval w2 v  . The relatively large SPD difference suggests SPD has the 

capability to distinguish clutter from narrow-band zero-velocity weather signals. 

In Figs. 2-1(c) and (d), the spectra of weather signal and clutter are not 

overlapped, and the SPD is equal to 4.6 and 0, respectively. SPD in panel (c) is 

larger than that in (d) because SPD (related to CSR) measures the ratio of power 

within  vw (i.e., mostly clutter power) and those outside of it (i.e., mostly 

weather power). Fig. 2-1(c) shows the estimates of radial velocity (vrs = -0.3) and 

spectrum width (σvs = 1.9) of the summed spectra are significantly different from the 

weather signal’s radial velocity (vrw = -10) and spectrum width (σvw = 1). Fig. 2-1(d) 

suggests insignificant velocity estimate error due to clutter (CSR = -15 dB), but 

spectrum width estimates with clutter (i.e., σvs =1.4) are larger than σvw = 1, 

consistent with results to be shown in Table 2-3.  

 t

2
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According to Section 3.7.1.2.3.1 of NEXRAD Technical Requirements 

(1991), bias in the estimates of both mean radial velocity (vrw) and spectrum width 

(σvw) of weather signals shall be no more than 1 m s
-1

. The bias due to clutter 

assuming vrw is at the Nyquist velocity (the worst case condition for σvw estimate 

bias) is numerically calculated for SNR = infinity, in which both clutter (σvc = 0.6 m 

s
-1

) and weather spectra have Gaussian shape. The minimum CSRs that cause a 1dB 

bias in mean power Pw and 1 m s
-1

 bias in vrw and σvw estimates are shown in Table 

2-3. 

 

Table 2-3: The minimum CSR (dB), as a function of weather signal spectrum width 

(σvw), that causes biases of 1 dB in mean power (Pw) and 1 m s
-1

 in radial velocity 

(vrw) and σvw estimates of weather signals. 

 σvw=1 σvw=2 σvw=3 σvw=4 σvw=5 σvw=6 

CSR(Pw)  -5.9 -5.9 -5.9 -5.9 -5.9 -5.9 

CSR(vrw) -11.8 -11.8 -11.8 -11.8 -11.8 -11.8 

CSR(σvw) -19.2 -16.9 -15.3 -14 -12.8 -11.7 

 

If the mean radial velocity of weather signal (vrw) is at the Nyquist velocity 

(i.e., 16.06 m s
-1

 for OU-PRIME), the CSR needs to be -5.9 dB to bias the mean 

power 1 dB, but it only needs to be -11.8 dB to bias vrw 
 
by 1 m s

-1
, independent of  

the spectrum width (σvw) of the weather signal. But if σvw equals 1 m s
-1

, the CSR 

only needs to be -19.2 dB to bias σvw to 2 m s
-1

. Thus, it is concluded detection of 
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clutter down to a CSR = -15 dB is important considering the bias it can bring to the 

estimates of Doppler velocity and spectrum width; these two spectral moments 

place more stringent detection requirements on the clutter detectors than the error 

specified (i.e., 1 dB) for power measurements. If all the clutter power is within the 

interval  while all the weather power is outside of it, SPD = 0.03 if CSR = -

15 dB. Thus, SPD = 0.03 will be used as a preliminary threshold to distinguish 

clutter from weather signals in Section 2.2.5. 

In Figs. 2-1(e) and (f), the spectra of weather signal and clutter are 

overlapped, and the SPD is equal to 3.9 and 2.1, respectively. SPD in Fig. 2-1(e) is 

larger than that in Fig. 2-1(f) because the CSR is 20 dB and thus the SPD, as well as 

σvs, is more strongly influenced by clutter, whereas in Fig. 2-1(f) CSR is -15 dB and 

the weather spectrum mostly controls SPD. From Fig. 2-1(f), it can be seen that all 

the three radar moments of weather signals are almost equal to those of the summed 

spectra if the spectra are overlapped and CSR is equal to -15 dB or smaller.  

 2vw



 
 

16 

 

 

Figure 2-1: Spectra of simulated clutter mixed with a simulated narrow-band 

weather signal. The black dashed line is the noise floor and the red portions of the 

curves are within  vw. vrc = 0, σvc = 0.6 m s
-1 

and σvw = 1.0 m s
-1

. This figure 

can also be found in Li et al., (2013a). 

 

2

(a) (b) 

(c) (d) 

(e) (f) 
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Approximation of the Observed Clutter Spectrum Width 

The spectral interval ± 2 vw is determined wherein the spectral power and 

phase characteristics of clutter and weather are examined to detect the presence of 

significant clutter. vw is determined by the beam’s scan rate, the intrinsic spectrum 

width of the clutter, the dwell time, and the window weighting function. In order to 

reduce spectral leakage, a Blackman window with a maximum sidelobe level (SLL) 

of 58.1 dB is applied to the time-series data (Harris, 1978).  

The observed (measured) clutter spectrum is broader than the intrinsic 

spectrum of clutter. The intrinsic clutter spectrum (i.e., the spectrum associated only 

with the physical characteristics of clutter) is the spectrum observed with asymptotic 

data collection parameters (i.e., Ts, the pulse repetition time, goes to zero and Td, the 

dwell time, goes to infinity) when the beam is not scanning. The intrinsic spectra of 

clutter for urban, prairie, and wooded regions has been characterized, under 

conditions of full and light foliage and various intensities of wind, using a phased 

array radar and nearly asymptotic data collection parameters according to Curtis 

(2009).  If the ground scatterers are fixed objects that do not move, nor have internal 

motions (henceforth these are called hard scatterers), the intrinsic clutter spectrum is 

a delta function centered on zero velocity. Billingsley (2002) states “… Such a cell 

contains both fixed scatterers (ground, rocks, tree trunks) and moving scatterers 

(leaves, branches). The returned signal correspondingly contains both a constant 

(or steady) and a varying component.” It can be calculated using the exponential 

model (Billingsley, 2002) that the intrinsic spectrum width of tree clutter is equal to 
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0.03, 0.08, 0.19, and 0.31 m s
-1 

respectively under light air (1-7 mph), breezy (7-15 

mph), windy (15-30 mph), and gale force conditions (30-60 mph) for a 5-cm radar.   

The asymptotic clutter spectrum is the one observed with asymptotic data 

collection parameters when the beam is scanning. The asymptotic spectrum can, at 

best, only be approximated because an infinite dwell time would require spatial 

homogeneity (in a statistical sense) of the ground scatterers as they are being 

scanned. If the scatterers are many and hard, the asymptotic spectrum has a finite 

width proportional to the antenna diameter Da and the angular scan rate . The 

square of the asymptotic clutter spectrum width caused by a Gaussian shaped beam 

pattern scanning at the angular rate  can be written as (Doviak and Zrnić, 2006, 

Appendix C): 

 (2-7) 

In (2-7), is the elevation angle (it will be assumed smaller than 5; therefore cose 

 1), is the 3-dB one-way power pattern beamwidth,  is the wavelength, 

 is the wave number, 2  is the second central moment of the two-way 

power pattern and it is equal to  (Doviak and Zrnic, 2006, Section 5.3). 

OU-PRIME had a beam scanning at a rate of 16 s
-1

 and processed 38 signal 

samples spaced at the PRT (Pulse Repetition Time) equal to 847 s; thus the dwell 

time Td=32.19 ms. Given the 3-dB one-way beamwidth  equals to 0.5, 5, 

and =5.44 cm, is about 0.23 m s
-1

. It will be assumed clutter is primarily from 



2 

coseDa
2.54





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cose
21





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2
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2 cos2 e
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hard scatterers on the ground; that is, the intrinsic clutter spectrum is a delta 

function, and the asymptotic clutter spectrum width is equal to  . It can also be 

inferred that the spectrum width due solely to resolution volume displacement (0.23 

m s
-1

) dominates that due to physical motions of trees if it is under the light air and 

breezy conditions (0.03 and 0.08 m s
-1

).  

The observed clutter spectrum is the spectrum observed when the beam is 

scanning and actual data acquisition parameters are used. The observed clutter 

spectrum is the convolution of the asymptotic clutter spectrum and the spectrum 

associated with the Blackman window function. Thus, the expected width, wv , of 

the observed clutter is . If the power spectrum of the Blackman 

window is W(v), the square root of the second central moment of the power 

spectrum of Blackman window, numerically evaluated, can be approximated by: 

 0.58 m s
-1

 (2-8) 

From (2-8), it is evident  is inversely proportional to the dwell time Td, 

and because  = 0.23, . Because Td and   values in this work are those 

typically used operationally and are fixed, vw is a constant. Thus, the broadening 

effect of the Blackman window dominates the broadening effect due to beam 

scanning so  .  

vw  B
2  

2

 B

2

  


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v 2W (v )dv
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
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2.2.2 Spectral Phase Fluctuation (SPF) 

In this section the discriminant SPF is defined. Numerical simulations and 

theory show the spectral phase of clutter from a hard scatterer has a linear 

dependence on v, but the spectral phase of weather signal is a random function of v. 

Thus, the linearity of spectral phase in the spectral interval  vw could also be a 

good discriminant to distinguish clutter from weather signals.  

In order to have more spectral phase data points within the interval  vw 

to compute SPF, zero padding to the time series data is applied after the window 

function. It is stated that zero padding in the time domain corresponds to ideal 

interpolation in the frequency domain according to Smith III (2007). The SPF was 

applied with and without zero padding and it was found the skill of SPF increased 

with zero padding because SPF can be more accurately estimated with more spectral 

lines within  vw. Without zero padding only three spectral lines are within 

vw, but with zero padding there are 18 spectral lines. SPF calculates the 

standard deviation (SD) of the phase slope a(v) within the spectral interval. The SPF 

is defined as: 

,  (2-9) 

The phase term ( )v  is unwrapped to avoid that the absolute jump between 

consecutive phase elements that is larger than or equal to   π. In (2-9),  is the 

spectral interval between adjacent bins and it is equal to 0.1 m s
-1

. SPF measures 

how much the phase within the spectral interval  vw deviates from a straight 

( )v

2

2

2

2


SPF  SD[a(v)]  SD

(v) (v  v)
v









 v  2vw  v : 2vw





v
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line. If all the phase elements within the spectral interval are on a straight line, SPF 

is equal to zero. SPF is small for clutter, but larger if the weather spectrum overlays 

the clutter spectrum within  vw. Examples of the power spectrum P(v) and 

spectral phase slope a(v) from real data collected by OU-PRIME are shown in Fig. 

2-2. 

 

2

                       SPD = 6.98 

(a) 
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Figure 2-2: Power spectrum P(v) and spectral phase slope a(v) within the spectral 

intervals 10 m s
-1

 and , respectively.  (a) Clutter spectrum from clutter 

data: = 0, vc = 0.8 m s
-1

, and  = 0.58; The clutter data were collected at 23:19 

UTC on 01/13/2011 under clear condition with θe = 0 by OU-PRIME; (b) Narrow-

band zero-velocity weather signal spectrum from stratiform weather data: = 0, 

vw = 1.0 m s
-1

, and  = 0.997; The weather data were collected at 05:51 UTC on 

12/02/2009 under stratiform precipitation condition with θe = 3.5°. 

If the phase  in the spectral interval  vw lies on a straight line, the 

phase slope a(v) in this spectral interval should be a constant. As can be seen from 

Fig. 2-2(a), the spectral phase slope of clutter is almost a constant in the spectral 

interval but that of narrow-band zero- velocity weather signal is not. SPF is equal to 

0.16 s m
-1

 in Fig. 2-2(a) and 20.26 s m
-1

 in Fig. 2-2(b). In addition, SPF is 

calculated for the simulated spectra shown in Fig. 2-1. 

  2vw

vrc

vrw

(v) 2

       SPD = 2 

(b) 
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 In Figs. 2-1(a) and (b), SPF is respectively equal to 2.1 and 33.7 s m
-1

 and 

these results suggest the SPF has the capability of distinguishing clutter from 

narrow-band zero-velocity weather signals. In Figs. 2-1(c) and (d), SPF is 

respectively equal to 2.1 and 2.8 s m
-1

, both of which are small, which means SPF 

is almost not affected by CSR when vrw is equal to -10 m s
-1

 (i.e., the spectral power 

of clutter is dominant in the spectral interval  vw); In Figs. 2-1(e) and (f), SPF 

is respectively equal to 7.0 and 58.8 s m
-1

, which means if the spectra of clutter and 

weather signal are overlapped and the weather power is dominant in the spectral 

interval  vw, the phase of the spectral elements within  vw do not have a 

linear dependence on Doppler velocity. 

 

2.2.3 Power Texture (PT) 

In this section PT is defined. In this dissertation, the definition of texture is 

different from the one defined in Hubbert et al. (2009b). The texture in Hubbert et al. 

(2009b) is defined as the mean of the squared reflectivity difference between 

adjacent gates whereas the definition of texture in this dissertation is given by (2-10). 

The discriminant PT takes advantage of the fact that the mean power of weather 

signals is spatially more uniform than the mean power of clutter. PT is defined as:  

, :

,

, :

SD
PT

MEAN

i j L j L

i j

i j L j L

P

P

 

 

  
  

 (2-10) 
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PTi,j is the power texture at azimuth i and range rj. The standard deviation 

of power about its mean is calculated along the range for 9 gates (i.e., L = 4) 

centered on gate i,j. 

 

2.2.4 Spectrum Width Texture (SWT) 

In this section SWT is defined. Fang et al. (2004) pointed out that the 

spectrum width has significant error if the in-trip echo power is less than 20 dB 

stronger than the sum of out-of -trip echo powers. Applied to our case, it means that 

even if CSR is as small as -20 dB, the spectrum width of weather signal can have 

significant bias (Table 2-3). Ground clutter power is spatially variable compared to 

weather echo power and this is the reason why PT is an effective discriminant if the 

clutter power is dominant. However, if CSR is smaller than 0 dB, PT becomes less 

effective and clutter detection becomes difficult as noted by Hubbert et al. (2009b). 

On the other hand, estimated spectrum widths of weather signals can be 

significantly biased by clutter power, especially if the mean radial velocity of 

weather signal is far from zero. In this case SWT can be useful both when the CSR 

is low or high. However, when the radial velocity of weather signal is small and 

CSR is large, analysis has shown SWT is not as effective as PT.   

For narrow-band weather signals and SNR > 15 dB, the APD (Absolute 

Power Differences) spectrum width estimator proposed by Melnikov and Doviak 

(2002) has better performance than the more commonly used estimators. The APD 

spectrum width estimator is: 
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Where the diacritical hat ^ defines an estimate. M is the number of samples per 

dwell time Td. The estimated power P̂  is equal to the summation of signal power Ŝ , 

clutter power Ĉ , and average noise power N . N  is estimated with many more 

samples than that used to estimate P̂  and is the reason for the overbar above N. The 

average noise power can be estimated by the gates (usually far from the radar) that 

only contain noise power. The definition of SWT is the same as PT shown in (2-10) 

except power P is changed to spectrum width v.  

The disadvantage of using PT or SWT is that it will increase the number of 

false positives (i.e., weather signals mistakenly identified as clutter). For example, if 

only one gate is contaminated by strong ground clutter, all nine range gates centered 

on the clutter gate could be tagged as having significant clutter even if there is no 

clutter. On the other hand because in the SCI algorithm, SPD discriminant is applied 

first (Section 2.2.5), and if SPD < 0.03, data from that gate will tagged as weather 

and thus data from this gate will not be falsely tagged by the PT or SWT 

discriminant as having significant clutter. 
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2.2.5 Implementation Procedures of the SCI Algorithm 

In this dissertation, three classes are considered: ground clutter (class ‘c’), 

weather signal I (class ‘w0’, narrow-band zero-velocity weather signals, ˆ| |v  2 m s
-1

 

and v̂  2 m s
-1

), and weather signal II (class ‘w’, other weather signals). 

X represents the 4-D attribute vector, X = (SPD, SPF, PT, SWT). For the 

current resolution volume, X = X
O
 (superscript ‘O’ represents the observed 

discriminants) and  O O O O OSPD ,SPF ,PT ,SWTX . The SBC predicts whether the 

X = X
O

 belongs to c, w0, or w. X = X
O

 belongs to c only if  p(X = X
O
|c)p(c) > p(X = 

X
O
|w0)p(w0) and p(X = X

O
|c)p(c) > p(X = X

O
|w)p(w) according to (2-4).  

Because the prior probabilities p(c), p(w0), and p(w) are not known a priori, 

all classes are assumed equally likely, which is p(c) = p(w0) = p(w) = 1/3  . Thus, 

we can infer that SBC assigns 
OX X  to c only if p(X  = X

O
|c) > p(X  = X

O
|w0)  

and  p(X  = X
O
|c) > p(X  = X

O
|w). O( | )p iX X , i  = c, w0, and w, is equal to: 

O O O O O( | ) (SPD SPD ,SPF SPF ,PT PT ,SWT SWT | )p i p i     X X
 

(2-12) 

According to (2-3), (2-12) can be rewritten as: 

O O O

O O

( | ) (SPD SPD | ) (SPF SPF | )

(PT PT | ) (SWT SWT | )

p i p i p i

p i p i

    

   

X X

      
(2-13) 

The conditional probability density functions of SPD SPF, SWT and PT, 

given different classes can be obtained from ground truth (i.e., clutter data obtained 

in clear air conditions and weather data obtained at high elevation angles), which is 

also the training data. Thus, the joint conditional probability density function 
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( | )p iX  can be calculated for each class. One needs to be aware that ( | )p iX  is 

dependent on the radar sites, radar characteristics, scan strategies, and 

environmental conditions.  

The SCI algorithm is divided in the following steps: 

1) Calculate SCNR/SNR. If SCNR/SNR > 3 dB, go to step 2), otherwise the current 

gate is considered not to have significant weather; then compute SCNR/SNR for the 

next range gate. 

2) Apply the Blackman window function and then add zeros to the time series data 

if necessary.  

3) Compute SPD. If SPD>0.03, go to step 4), otherwise the current gate is 

considered not clutter contaminated. This SPD threshold reduces the number of 

false positives caused by the texture discriminants; the threshold of 0.03 

corresponds to a CSR equal to -15 dB (Section 2.2.1). 

4) Compute SPF, PT, and SWT. Look up the joint conditional PDF ( | )p iX  

obtained from ground truth. Calculate O( | c)p X X , O( | w 0)p X X , and

O( | w)p X X  . 

5) If O O( | c) ( | w 0)p p  X X X X  and O O( | c) ( | w)p p  X X X X for the 

current gate, data are clutter contaminated, otherwise, data are not contaminated; 

then return to step 1) for the next gate. 
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The performance evaluation of the SCI algorithm will be given in Section 

2.6.1. 

 

2.3 Simple Bayesian Classifier applied to the Dual-Scan Discriminants (SBC-

DS) 

The SBC-DS algorithm to discriminate weather signals from ground clutter, 

described in this dissertation, takes advantage of the fact the correlation time of 

radar echoes from hydrometeors is typically much shorter than that from ground 

objects. Because the typical correlation time of weather signals from 10-cm 

wavelength radar is less than 10 ms for most weather phenomena according to Fang 

et al. (2004), such signals generally do not correlate from one 360
o
 azimuthal scan 

to the next. Ground clutter observed both under NP and AP conditions should have 

correlation times much longer than that associated with weather signals, and thus 

the SBC-DS algorithm should apply as well to clutter received via AP conditions. 

Because much of the ground clutter has long correlation times, Fabry (2004) was 

able to use the scan-to-scan phase difference of clutter to measure changes in the 

field of refractive index of air near the surface. The focuses of this method are 1) 

clutter recognition gate by gate whereby reflectivity texture is not used and 2) 

distinguishing ground clutter from narrow-band zero-velocity weather signals.   

In this method three discriminants are combined using SBC to distinguish 

ground clutter from weather signals: (1) Cross-correlation coefficient between two 

scans at zero lag 12 (0)  (SNR > 20 dB, the 20 dB threshold can be found in 
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Melnikov and Zrnic 2007) or first lag 12 (1)  (SNR ≤ 20 dB), (2) Power Ratio of 

the first scan (PR1), and (3) Power Ratio of the second scan (PR2). In Section 2.3.1, 

the definition of the discriminant 12 ( )l  is given; In Section 2.3.2, the definitions 

of PR1 and PR2 are given. In Section 2.3.3, the implementation procedures of the 

SBC-DS algorithm are discussed.  

 

2.3.1 Cross-Correlation Coefficient between Two Scans 

A time-series of echo voltages from two scans need to be collected from the 

same location (i.e., the same azimuth and elevation angle). In the volume coverage 

patterns (VCPs) of the WSR-88D, two sequential azimuthal scans with different 

PRTs (Pulse Repetition Times) are used at each of two low elevation angles (i.e., 

0.5° and 1.5°) to mitigate range-velocity ambiguities (Federal Handbook, 2006, 

Chap. 5.3.2). The first azimuthal scan collects voltage samples data using a long 

PRT (e.g., Ts1 = 3.10 ms) and the second scan at the same elevation angles uses a 

short PRT (e.g., Ts2 = 973 μs). To implement the SBC-DS algorithm, the short PRT 

data are non-uniformly down-sampled to nearly match the location of voltage 

samples collected with long PRT. Because the WSR-88D records the azimuth of 

each voltage sample, we were able to select those short PRT voltage samples that 

are nearest in azimuth to the long PRT voltage samples. The largest beam 

displacement for the two adjacent scans is about 0.02° for the WSR-88D. 

  Assuming the signals to be wide sense stationary, the cross correlation 

coefficient between two scans 12 ( )l  for l = 0 or 1 is defined as: 
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   

   

* *

1, 2, 1, 2,

12
* *

1, 1, 2, 2,

( ) , 0 | | 1

2

m l m m m l

m l m m l m

E y y E y y
l m M l

E y y E y y


 

 


      (2-14) 

M is the number of samples in the dwell time; 1y  is the time-series of voltage 

samples from the first scan, and 2y  is the down-sampled time-series of voltage 

samples from the second scan from the same volume but collected at a higher pulse 

repetition frequency (PRF); E{x} represents an ensemble average. Because 1y  and 

2y  are assumed to be ergodic in the wide sense, the ensemble average can be 

approximated by a time average (Papoulis, 1991, Chap. 13-1). l = 1 only if SNR is 

less than 20 dB in order to avoid the bias caused by noise.  

Because the correlation time of ground clutter is typically much longer than 

that for weather signals, 12 ( )l  is expected to be larger for ground clutter than for 

both the weather signal I (narrow-band zero-velocity weather signals) and weather 

signal II (other weather signals). Weather signal I are echoes from resolution 

volumes where turbulence and mean wind shear are weak; thus these signals 

commonly have longer correlation time c  compared with weather signal II having 

no constraint on bandwidth. On the other hand, weather signal I have fewer 

independent samples ( I d c/M T , where IM  is the number of independent 

samples and dT  is the dwell time). Because estimate variance decreases as a 

function of the number of independent samples according to Marshall and 

Hitschfeld (1953), the variance of CPDF (Conditional Probability Density Function) 

of 12 ( )l  estimates for weather signal I is typically larger than for weather signal II 
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having no constraint on bandwidth. This is likely the reason why the CPDF of 

weather signal I is broader than the CPDF for weather signal II which will be shown 

in Fig. 2-11 in the performance evaluation section. Ground clutter correlation time 

(as low as 44 ms from full foliage prairie for 10-cm wavelength echoes when the 

wind is about 13 mph according to Curtis 2009 Chap. 2.10) can be much smaller 

than the radar revisit time, but is still much larger than the correlation time for 

weather signals. 

 

2.3.2 Power Ratio (PR) 

The definition of PR is already given in (2-6), and it is rewritten here as: 

2

,

1

2
2

, ,

1 1

1

PR 10log10
1 1

M

i m

m

i
M M

i m i m

m m

y
M

y y
M M



 

 
 
 
 
 
  



 

, where i = 1 or 2 (2-15) 

It is expected that PR is larger for ground clutter than for both weather signal I and 

II considering that ground clutter has zero Doppler and narrow spectrum width. 

 

2.3.3 Implementation Procedures of the SBC-DS Algorithm 

In the SBC-DS algorithm, the 3-D attribute vector is X = ( 12 ( )l , PR1, PR2) 

and
O O O O

12 12 1 1 2 2( | ) (| ( ) | | ( ) || ) (PR PR | ) (PR PR | )p i p l l i p i p i       X X . 

The SBC-DS algorithm is divided in the following steps: 
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1) Calculate SCNR/SNR. If SCNR/SNR > 3 dB, go to step 2), otherwise the current 

gate is considered not to have significant weather; then compute SCNR/SNR for the 

next range gate. 

2) Compute 12 ( )l , PR1, and PR2. Look up the joint conditional PDF ( | )p iX  

obtained from ground truth. Calculate O( | c)p X X , O( | w 0)p X X , and

O( | w)p X X  . 

3) If O O( | c) ( | w 0)p p  X X X X  and O O( | c) ( | w)p p  X X X X for the 

current gate, data are clutter contaminated, otherwise, data are not contaminated; 

then return to step 1) for the next gate. 

The performance evaluation of the SBC-DS algorithm will be given Section 

2.6.3 with data collected by the PX-1000 3-cm polarimetric transportable radar. 

 

2.4 Clutter Detection Algorithms based on Dual-Pol (DP) Measurement 

Polarimetric weather radars provide additional measurements that allow 

better characterization of the targeted medium. Because ground clutter has different 

polarimetric characteristics from weather echoes, dual polarization measurements 

can be used to distinguish one from the other. Ground clutter and weather signals 

also have different statistical properties which can be utilized to distinguish one 

from the other. A test statistic, obtained from the Generalized Likelihood Ratio Test 

(GLRT), and a Simple Bayesian Classifier applied to the Dual-Pol discriminants 

(SBC-DP), are developed to detect ground clutter mixed with weather signals. It is 
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found that the test statistic produces false detections caused by weather signal I 

while the SBC-DP can effectively neutralize them. Both the test statistic and SBC-

DP are aimed at detecting ground clutter based solely on data from each resolution 

volume.  

For weather radar measurement tested for the presence of ground clutter, one 

of the two hypotheses, a) the measurement is the combined result of weather and 

noise (null hypothesis H0), or  b) the measurement is the combined result of ground 

clutter, weather, and noise (alternative hypothesis H1), can be assumed to be true 

according to Richards (2005). The selected hypothesis should better account for the 

measurement than the other one. Because the weather radar signal is described 

statistically, the analysis starts with the modeling of the probability density function 

(PDF) that describes the measurement to be tested under each of the two hypotheses. 

The next step is to decide what the rule will be for deciding what constitutes an 

optimal choice between the two hypotheses. In the aviation radar community, the 

Neyman-Pearson criterion is commonly used according to Skolnik (2002) Chap. 5.3, 

which is designed to maximize the probability of detection PD under the constraint 

that the probability of false alarm PFA does not exceed a set constant. Kay (1993a)  

Theorem 3.1 stated that the Likelihood Ratio Test (LRT) is the optimal detector  

according to the Neyman-Pearson theorem because it provides maximum PD given a 

specified PFA. However, in real-world applications, we do not always have the 

knowledge of the values of the parameters describing the PDFs under the two 

hypotheses and a generalized likelihood ratio test (GLRT) is used instead in such 

conditions. In GLRT, the unknown parameters are replaced by their Maximum 
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Likelihood Estimates (MLEs). The test statistic obtained from the GLRT is used to 

detect ground clutter mixed with weather and noise.    

Another approach to detect ground clutter is data classification. Data 

classification is a two-step process, consisting of a learning step, where a 

classification model is constructed from the training data, and a classification step, 

where the model is used to predict class labels in the testing data (Han et al., 2011, 

Chap. 8). In the learning step, the discriminants or attributes need to be defined 

which should have distinct statistical properties (PDFs) given different classes. A 

classification rule is needed to classify testing data. The commonly used 

classification rule in the weather radar community is fuzzy logic (Hubbert et al., 

2009b)(Park et al., 2009)(Liu and Chandrasekar, 2000)(Wang et al., 2008). 

However, the membership functions of fuzzy logic classifiers are created based on 

experience. On the contrary, SBC is a statistical classifier based on Bayes’ theorem.   

In the SBC-DP algorithm, a simple Bayesian classifier (SBC) is used to detect 

ground clutter with inputs derived from the mean and covariance of the received 

signals and these inputs can also be indicated from the test statistic. 

In Section 2.4.1, the test statistic is derived; in Section 2.4.2, four 

discriminants are derived, which are the power ratio of the horizontal voltages, 

power ratio of the vertical voltages, differential reflectivity, and copolar correlation 

coefficient,  and the four discriminants are combined by using the SBC to detect the 

presence of ground clutter. 
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2.4.1 Test Statistic 

It is assumed that the received voltage (one sample of a time series) consists 

of either 1) ground clutter, weather signals, and noise, or 2) weather signals and 

noise. Thus, we have: 

y
m

= c
m

+w
m

+ n
m  (2-16a) 

y
m

= w
m

+ n
m  

(2-16b) 

In (2-16),  y  represents the received complex voltage vector and the arrow indicates 

a vector, c   signifies clutter, w   weather, and n   noise. The subscript m signifies 

the m
th

 sample of an M sample time series. These complex voltage vectors, for a 

simultaneously transmit simultaneously receive (STSR) polarimetric radar, can be 

written as: 

T

h, v,m m my y y     (2-17a) 

T

h, v,m m mc c c     (2-17b) 

T

h, v,m m mw w w     (2-17c) 

T

h, v,m m mn n n     (2-17d) 

In (2-17) the subscripts h and v represent the horizontally and vertically polarized 

voltages.
 h, hh, hv,m m my y y  , where hh,my  and hv,my  are the received horizontally 

polarized voltages when transmitting simultaneously horizontal and vertical 

polarizations, respectively. The cross-polar signal hv,my  is assumed to be principally 
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generated by the scatterers in a range cell of width 6r   (Doviak and Zrnic, 2006, 

Chap. 4.4.4), and not by coupling within the radar. Each complex voltage vector 

consists of two components: the complex voltages from horizontal and vertical 

receiving channels. Next the statistical models for y
m

, c
m

, w
m

 , and n
m

 will be 

established. Before that, the following assumptions are made: 

1. The clutter voltage vector c
m

 is complex and has a complex normal distribution 

with nonzero mean (the definition of complex normal distribution can be found in 

Kay, 1993b, Theorem 15.1) that can be expressed as , where tilde 

signifies that c
m

is complex and normally (CN) distributed with mean vector 
 

 

equal to and covariance matrix  where E[x] 

represents the ensemble average, and the superscript H the Hermitian or conjugate 

transpose. Vectors [ c
1
, c

2
, …, Mc ] are identically distributed.  

2. The weather voltage w
m

 is complex and has complex normal distribution with 

zero mean, and is expressed as w
m
~CN (0,C

w
)  where C

w
is the covariance matrix of 

weather signals equal to E w
m
w
m

Hé
ë

ù
û . Vectors [ w

1
, w

2
, …, Mw ] are identically 

distributed. 

3. The noise voltage n
m

 is assumed to be a complex white random vector with zero 

mean expressed as n
m
~CN (0,NI

2
) where N is the noise power and I

2  is a 2 by 2 

identity matrix. Vectors [ n
1
,n

2
, …, Mn ] are identically distributed. 



 
 

37 

 

4. The voltage vectors c
m

, w
m

, and n
m

 are independent of each other. 

If assumptions 1 through 4 are true, the statistical model under the 

alternative hypothesis H1 (2-16a) (i.e., the measurement is the combined result of 

ground clutter, weather, and noise) is (Kay, 1993b, Chap. 15.4): 

  (2-18a) 

 where . If ground clutter is not present, the statistical 

model under the null hypothesis H0 (2-16b) can be written as: 

y
m

~CN (0,C
w

+ NI
2
) =CN (0,C

0
) (2-18b) 

where C
0

= E y
m
y
m

Hé
ë

ù
û.  

Once a series of M samples of y
m

 (m = 1, 2, …, M) are measured, it is 

required to determine whether they fit better to the statistical model given by (2-18a) 

or (2-18b). A Likelihood Ratio Test (LRT) is often used to compare the fit of two 

models. The LRT is the optimal detector (Kay, 1993a, Theorem 3.1)  according to 

the Neyman-Pearson theorem because it provides maximum probability of detection 

(PD) given a specified probability of false alarm (PFA).    

The LRT test statistic L for M independent and identically distributed (iid) 

samples can be written as (Kay, 1993a, Theorem 3.1): 
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 (2-19) 

In (2-19) p represents the probability density function. For weather signals and 

clutter, vectors y  = [ y
1
, y

2
, …, y

M
] are  rarely independent, and thus the right side 

of (2-19) is at best an approximation.  The larger is L (i.e., the distribution of the 

measurement follows more closely the distribution given in (2-18a)), the larger is 

the likelihood the weather signal is contaminated by ground clutter. When  = 0, L 

= 1, i.e., the hypothesis H1 and H0 are equally likely. 

Because 
 

 and C
0
are unknown for hypothesis H1 and H0 in the LRT, 

the generalized likelihood ratio test (GLRT) will be used instead. In the GLRT the 

unknown parameters are replaced by their Maximum Likelihood Estimations 

(MLEs) obtained using a finite number of M samples. These unknown parameter 

estimates are given in Hurtado and Nehorai (2008): 

 

 

(2-20a) 

ˆ
C

0
=

1

M
y
m

m=1

M

å y
m

H

 

(2-20b) 

In practice GLRT works quite well, although it is not associated with optimality 

(Kay, 1993a, Chap. 6.4.2). Thus, (2-19) can be rewritten as: 
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 (2-21) 

Based on (Kay, 1993b, Chap. 15.4), the probability density functions  

and p(y
m

|
ˆ
C

0
)can be written as: 

 (2-22a) 

 (2-22b) 

In (2-22a) and (2-22b), det represents the determinant of a matrix. Bring (2-22a) and 

(2-22b) into (2-21), we have: 

 

(2-23) 

Then take the logarithm on both sides of (2-23) we obtain that: 

ln L
G

=M lndet
ˆ
C

0( ) +M tr(
ˆ
C

0

-1 ˆC
0
) -M lndet

ˆ
C

1( ) -M tr(
ˆ
C

1

-1 ˆC
1
)   (2-24) 
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In (2-24) tr represents the trace of a matrix,

 

y
m

H ˆ
C

0

-1y
m

m=1

M

å =M tr(
ˆ
C

0

-1 ˆC
0
)

 

and

. Because both tr(
ˆ
C

0

-1 ˆC
0
)  and tr(

ˆ
C

1

-1 ˆC
1
)  are 

equal to tr I
2( ) = 2 , (2-24) can be rewritten as: 

ln L
G

= M ln
det

ˆ
C

0( )
det

ˆ
C

1( )  
(2-25) 

From (2-20a) and (2-20b), we know that 
ˆ
C

0
=

1

M
y
m

m=1

M

å y
m

H  and

. Thus we can obtain that: 

  (2-26) 

According to Sylvester’s determinant theorem given in Bareiss (1968), we know 

that: 

  (2-27) 

Bring (2-27) into (2-25) we can obtain that: 

 (2-28) 

Since ln(1+x) is monotonically increasing with increasing x, an equivalent test 

statistic is: 
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 (2-29) 

In (2-29), 
ˆ
C

1
 can be written as: 

  

   

1hh 1hv

1

1vh 1vv

*2

h, h h, h v, v

1 1

* 2

h, h v, v v, v

1 1

ˆ ˆ
ˆ

ˆ ˆ

1 1
ˆ ˆ ˆ

1 1
ˆ ˆ ˆ

M M

m m m

m m

M M

m m m

m m

C C
C

C C

y y y
M M

y y y
M M

 

 

 
  
  

 
   

 
 

   
 

 

 

 (2-30) 

In (2-30) the star * represents conjugate. The inverse matrix 
ˆ
C

1

-1 can be written as: 

ˆ
C

1

-1 =
1

Ĉ
1hh
Ĉ

1vv
- Ĉ

1hv

2

Ĉ
1vv

-Ĉ
1hv

-Ĉ
1vh

Ĉ
1hh

é

ë

ê
ê

ù

û

ú
ú

 (2-31) 

Substituting (2-31) into (2-29), T can be written as: 

 (2-32) 

If both the numerator and denominator are divided by 
1hh 1vv

ˆ ˆC C , we have: 

 (2-33) 
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In (2-33) terms 
2

h 1hh
ˆˆ / C  and 

2

v 1vv
ˆˆ / C  represent, for H and V channels, 

respectively, the ratio between the power at zero spectral line and the power 

summed from all other spectral lines. The power ratio is also shown in (2-6) and (2-

15). The sum of these two terms will be defined as an alternative test statistic Ta.  

The reason that Ta is defined is because it is the sum of the two inputs PRh and PRv 

defined in Section 2.4.2. 

2 2

h v

a

1hh 1vv

ˆ ˆ

ˆ ˆ
T

C C

 
   (2-34) 

The performance evaluation of the test statistic will be given in Section 2.6.2. 

 

2.4.2 Simple Bayesian Classifier applied to the Dual-Pol Discriminants (SBC-

DP) 

If the measurement is the combined result of ground clutter, weather, and 

noise, the estimated mean  and covariance 
ˆ
C

1
 of the received signal y  is given in 

(2-20a), and they can be written as: 

 (2-35a) 

1hh 1hv

1

1vh 1vv

ˆ ˆ
ˆ

ˆ ˆ

C C
C

C C

 
  
  

 (2-35b) 

From (2-35) the following four discriminants can be obtained: 
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 (2-36a) 
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 (2-36b) 
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 (2-36d) 

PRh and PRv are the ratios between the power at zero spectral line and the 

sum of powers at all other spectral lines of the horizontal and vertical channel, 

respectively; In (2-36c) and (2-36d), l = 0 (SNR > 20 dB) or 1 (SNR ≤ 20 dB). For 

the OU-PRIME data, l = 0 is chosen; while for the PX-1000 data without pulse 

compression, l = 1 is chosen to avoid the contamination of noise.    (2-36a) and (2-

36b) can also be obtained from Ta because Ta is the summation of PRh and PRv. 

In the SBC-DP algorithm, the 4-D attribute vector is  X = (PRh, PRv, DR ( )Z l ,

hv ( )l ). (2-3) can be rewritten as: 

O O O

h h v v

O O

DR DR hv hv

( | ) (PR PR ,PR PR | )

( ( ) ( ) | ) ( ( ) ( ) | )

p i p i

p Z l Z l i p l l i 

    

  

X X
 (2-37) 
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In (2-37) we use the joint probability O O

h h v v(PR PR ,PR PR | )p i   because PRh 

and PRv are highly correlated, especially for weather signals. By doing so, it is 

expected that the SBC would have better classification between classes. 

The SBC-DP is divided in the following steps: 

1) Calculate SCNR/SNR. If SCNR/SNR > 3 dB, go to step 2), otherwise the current 

gate is considered not to have significant weather; then compute SCNR/SNR for the 

next range gate. 

2) Compute PRh, PRv, DR ( )Z l , and hv ( )l . Look up the joint conditional PDF 

( | )p iX  obtained from ground truth. Calculate O( | c)p X X , O( | w 0)p X X , 

and O( | w)p X X  . 

3) If O O( | c) ( | w 0)p p  X X X X  and O O( | c) ( | w)p p  X X X X for the 

current gate, data are clutter contaminated, otherwise, data are not contaminated; 

then return to step 1) for the next gate. 

The performance evaluation of the SBC-DP algorithm will be given in 

Sections 2.6.2 and 2.6.3. In the next section, the SBC-DPDS (Simple Bayesian 

Classifier applied to the Dual Pol Dual Scan discriminants) algorithm will be 

discussed. 
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2.5 Simple Bayesian Classifier applied to the Dual-Pol Dual-Scan Discriminants 

(SBC-DPDS) 

Both dual scan and dual pol measurements are proved to be effective in 

detecting ground clutter in the presence of weather signals (Li et al., 2013b). In this 

section, ten discriminants obtained from the dual pol dual scan measurement are 

combined using SBC to make decisions as to the presence of ground clutter.  

The following ten discriminants can be derived based on the dual pol dual 

scan measurement: 

2
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(2-38j) 

 

(2-38a)-(2-38d) represent the dc-ac power ratios calculated from voltages 

from horizontally and vertically polarized waves collected on the first and second 

scans. The power ratios are expected to be large for ground clutter and small for 

most weather signals except for the weather signal I (narrow-band zero-velocity 

weather signals) for which most power components are around zero Doppler. (2-38e) 

and (2-38f) represent the differential reflectivities of the first and second scan. As 

stated earlier, l = 1 is only used when SNR < 20 dB. It is expected that ZDR1 and 

ZDR2 for ground clutter would have a larger spread compared with weather signals.  

(2-38g) and (2-38h) signify the copolar correlation coefficients of the first and 
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second scan using lag 0 or 1 depending on the SNR. hv1( )l  and hv2 ( )l for ground 

clutter are expected to have a larger spread compared with weather signals.  (2-38i) 

and (2-38j) represent the correlation coefficient between two scans of H and V 

channels. 12h ( )l  and 12v ( )l for ground clutter is expected to be larger compared 

with weather signals. 

In the SBC-DPDS algorithm, the 10-D attribute vector is  X = (PRh1, PRv1, 

PRh2, PRv2, ZDR1(l), ZDR2(l), hv1( )l , hv2 ( )l , 12h ( )l , 12v ( )l ). (2-3) can be 

rewritten as: 

O O O

h h1 v v1

O O

h h 2 v v2

O O

DR DR1 DR DR 2

O O

hv hv1 hv hv2

O O

12h 12h 12v 12v

( | ) (PR PR ,PR PR | )

(PR PR ,PR PR | )

( ( ) ( ) | ) ( ( ) ( ) | )

( ( ) ( ) | ) ( ( ) ( ) | )

( ( ) ( ) , ( ) ( ) | )

p i p i

p i

p Z l Z l i p Z l Z l i

p l l i p l l i

p l l l l i

   

   

    

  

   

   

 

X X

 (2-39) 

In (2-39) we use the joint probabilities O O

h h1 v v1(PR PR ,PR PR | )p i  , 

O O

h h2 v v2(PR PR ,PR PR | )p i  , and 
O O

12h 12h 12v 12v( ( ) ( ) , ( ) ( ) | )p l l l l i      

because PRh and PRv, 12h ( )l  and 12v ( )l  are highly correlated for weather signals. 

By doing so, it is expected that the SBC would have better classification between 

classes. 

The SBC-DPDS algorithm is divided in the following steps: 
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1) Calculate SCNR/SNR. If SCNR/SNR > 3 dB, go to step 2), otherwise the current 

gate is considered not to have significant weather; then compute SCNR/SNR for the 

next range gate. 

2) Compute PRh1, PRv1, PRh2, PRv2, ZDR1(l), ZDR2(l), hv1( )l , hv2 ( )l , 12h ( )l , and 

12v ( )l . Look up the joint conditional PDF ( | )p iX  obtained from ground truth. 

Calculate O( | c)p X X , O( | w 0)p X X , and O( | w)p X X  . 

3) If O O( | c) ( | w 0)p p  X X X X  and O O( | c) ( | w)p p  X X X X for the 

current gate, data are clutter contaminated, otherwise, data are not contaminated; 

then return to step 1) for the next gate. 

The performance evaluation of the SBC-DPDS algorithm will be given in 

Section 2.6.3. 

 

2.6 Performance Evaluation of Clutter Detection Methods 

In Section 2.6.1 the performance of the SCI algorithm will be tested using 

the data collected by the OU-PRIME; in Section 2.6.2, the performances of the test 

statistic and SBC-DP are evaluated with the same data used in Section 2.6.1; in 

Section 2.6.3 the performances of the SBC-DS and SBC-DPDS algorithms are 

evaluated and compared with the SBC-DP with the data collected by the PX-1000. 
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2.6.1 Evaluation of the SCI Algorithm 

The controlled data sets are obtained by adding clutter data, obtained at low 

elevation angles under cold clear air conditions, to the stratiform weather data 

obtained at high elevation angles where ground clutter can be neglected (Li et al., 

2013a)(Melnikov et al., 2008). A field of clutter data were collected at 23:19 UTC 

on 01/13/2011 with the elevation angle fixed at 0° and while the beam was scanned 

over 360
o
 of azimuth. Ground clutter I/Q data were edited by deleting those few 

resolution volumes showing mean Doppler velocities  v    1 m s
-1

 and SNR < 3 dB. 

This deletion provides a clutter field not contaminated from moving objects on the 

ground or airborne (e.g., birds and aircraft). The 3 dB SNR threshold appears to 

produce data in which noise effects are not obvious and it is commonly used for the 

WSR-88D weather radars according to Ivic et al. (2009). Weather data were 

collected on seven days (04:55 UTC 04/18/2010, 12:33 UTC 05/14/2010, 21:49 

UTC 09/08/2010, 07:04 UTC 04/12/2009, 18:02 UTC 10/21/2009, 13:08 UTC 

04/17/2010, and 09:07 UTC 05/13/2010) with the elevation angle fixed 3.5°. The 

first three weather data are used for testing and the last four are used for training. 

Because the one-way 3-dB beamwidth of OU-PRIME is 0.5°, there is practically no 

clutter present in the weather data. Stratiform weather was selected because there 

are many gates containing weather signal I (narrow-band zero-velocity weather 

signals) which are the most difficult to distinguish from ground clutter (Hubbert et 

al., 2009b)(Li et al., 2013a).  The ground truth of a field of weather significantly 

contaminated by clutter is obtained as follows: 
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All the gates where ground clutter can bias weather power by more than 1 

dB or weather signal’s mean radial velocity or its spectrum width by more 

than 1 m s
-1

 are considered as significantly contaminated by ground clutter 

(NEXRAD Technical Requirements, 1991, Sec. 3.7.1.2.3.1). Otherwise, even 

if ground clutter does exist in the resolution volume, it is considered as 

weather signal because its effect on weather estimates can be neglected.  

By using the above conditions, not only CSR but also the mean radial 

velocity and spectrum width of weather signal, and the spectrum width of ground 

clutter are considered. For example, if CSR = -7 dB, noise power is negligible, mean 

radial velocity and spectrum width of the weather signal is 0 and 1 m s
-1

 

respectively, and spectrum width of ground clutter is 0.6 m s
-1

, the weather moments 

will not be significantly biased by clutter according to Li et al. (2013a); therefore 

weather data under these conditions is considered to be uncontaminated by clutter 

and clutter should not be detected. On the other hand, if CSR = -15 dB, mean radial 

velocity and spectrum width of weather signal is Nv  and 1 m s
-1

 respectively ( Nv  is 

the Nyquist velocity = 16.06 m s
-1

 for OU-PRIME), and spectrum width of ground 

clutter is 0.6 m s
-1

, weather signal spectrum widths can be biased more than 1 m s
-1 

by clutter Li et al. (2013a); in this case, weather signals are considered to be 

contaminated by clutter and clutter needs to be detected. In conclusion, CSR is not 

the only criterion to judge whether clutter needs to be detected or not. 

In Fig. 2-3, the CPDFs (Conditional Probability Density Functions) of the 

four discriminants SPD, SPF, PT, and SWT obtained from training data are shown 

given the three classes, c, w0, and w. The training data are obtained by adding 
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clutter data, collected at 23:19 UTC on 01/13/2011 with θe = 0° under clear air 

condition, to weather data collected on four days with stratiform precipitations, 

which are  07:04 UTC 04/12/2009, 18:02 UTC 10/21/2009, 13:08 UTC 04/17/2010, 

and 09:07 UTC 05/13/2010 with θe = 3.5°. 

 

 

Figure 2-3: The conditional probability density functions (CPDFs) of (a) SPD in dB 

scale, (b) SPF, (c) PT, and (d) SWT given three classes c, w0, and w using 

controlled training data sets. 

 

The CPDFs shown in Fig. 2-3 are smoothed by the Gaussian kernel 

introduced by Gourley et al. (2007). The numerical entries, Qc,w0 etc. in Fig. 2-3, 

represent the common area (i.e., the area under the minimum of the two curves) 

Qc,w0 = 0.35 

Qc,w = 0.02 

 

Qc,w0 = 0.52 

Qc,w = 0.41 

 

Qc,w0 = 0.28 

Qc,w = 0.28 

 

Qc,w0 = 0.47 

Qc,w = 0.53 

 

(a) 

(b) 

(c) (d) 
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between the CPDFs given the various classes. A smaller common area indicates a 

better discrimination. It can be concluded that PT (power texture) outperforms the 

other three in distinguishing c from w0; on the other hand, SPD outperforms the 

other three in distinguishing c from w.  

From Fig. 2-3(b), it can be seen that the CPDF given weather signals has 

long tails, which is related to the fact that spectral phase in the interval  

fluctuates randomly. On the other hand, the CPDF given clutter would be almost a 

delta function centered at zero if there is only one hard scatterer in the resolution 

volume (i.e., the phase within the interval  would almost be linear). The 

reason that the CPDF is far away from a delta function can be explained by the fact 

that there are multiple hard scatterers being scanned by the radar.  

One thing to notice is that unlike the SPD and SPF, the CPDFs of PT 

p(PT|w0) and p(PT|w) are almost the same. The disadvantage of using PT or SWT 

is that it will increase the number of false detections (i.e., weather signals 

mistakenly identified as clutter).  

After the CPDFs shown in Fig. 2-3 are obtained from controlled training 

data, they are used on testing data to make decisions as to the presence of clutter. In 

Fig. 2-4, the moment data for the three testing cases, collected on 04:55 UTC 

04/18/2010, 12:33 UTC 05/14/2010, and 21:49 UTC 09/08/2010, are shown. In Fig. 

2-5, clutter maps obtained using the SCI algorithm are compared with the ground 

truth for the three testing data.  

 

w2 v 

w2 v 
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Figure 2-4: Mean powers (a, d, g), mean radial velocities, (b, e, h), and spectrum 

widths (c, f, i), of three controlled testing data sets.  

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure 2-5: SCI clutter maps (a, d, g) compared with the ground truth (b, e, h) for 

the three testing data. PD as a function of CSR (dB) is shown in (c, f, i). The blue 

line represents the performance of the SCI detecting ground clutter in the presence 

of both w and w0 while the red line represents that in the presence of only w0.  

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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In Fig. 2-5(c)(f)(i), red curves are noisier because there are fewer numbers of 

narrow-band zero-velocity weather signals (weather signal I) compared with other 

weather signals (weather signal II). In Table 2-4 we list the probability of detection 

PD, probability of false alarm PFA, and critical success index (CSI) introduced by 

Schaefer (1990) for the three controlled testing data sets. 

 

Table 2-4. PD, PFA, and CSI for the three testing data by using the SCI algorithm. 

 PD PFA CSI 

04/18/2010 74.17% 2.53% 0.70 

05/14/2010 73.89% 2.04% 0.70 

09/08/2010 75.55% 0.86% 0.74 

 

Terms in In Table 2-4, are defined as follows ( Li et al., 2013a; Schaefer, 

1990): 

D

TP

TP FN
P 


 (2-40a) 

FA

FP

FP TN
P 


 (2-40b) 

TP
CSI

TP FN FP


 
 (2-40c) 

In (2-40), TP signifies true positive, FN false negative, FP false positive, and TN 

true negative (TN). “Positive” labels the location that the detector judges as clutter 

contaminated, and “Negative” labels the location that the detector judges as weather; 

“True Positives” labels the location that 1) the detector judges as clutter 
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contaminated and 2) weather moments are significantly biased by clutter; “False 

Negative” denotes the location that 1) the detector judges as weather and 2) weather 

moments are significantly  biased by clutter; “False Positive” denotes the location 

that 1) the detector judges as clutter and 2) weather moments are not significantly 

biased by clutter; “True Negative” denotes the location that 1) the detector judges as 

weather and 2) weather moments are not significantly biased by clutter. For an ideal 

detector, we have PD = 100%, PFA = 0, and CSI = 1. 

In the next Section, the performance of the clutter detection algorithms based 

on dual pol measurement will be evaluated using the same data used in this Section. 

 

2.6.2 Evaluation of the Test Statistic and SBC-DP Algorithm 

In this Section, we will first evaluate the performance of the test statistic T 

(2-33) and its alternative form Ta (2-34). Then, the SBC-DP algorithm will be 

evaluated. 

 

Evaluation of the Test Statistic 

In Fig. 2-6 the Receiver Operating Characteristics (ROC) curves discussed 

in Fawcett (2003) and Kharin and Zwiers (2003) and CSI vs PFA curves of T and Ta 

for three controlled testing data sets are shown. 
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Figure 2-6: The Radar Operation Curves (a, b, c) and the CSI vs PFA curves (d, e, f) 

of T (blue) and Ta (red) for the same testing data sets shown in Fig. 2-4. 

 

From Fig. 2-6, it can be concluded that T performs better than Ta because T 

not only includes Ta but also polarimetric measurements shown in (2-33) while Ta is 

the summation of power ratios from horizontal and vertical voltages. In Table 2-5 

we list the probability of detection PD, probability of false alarm PFA, and critical 

success index (CSI) for the three controlled tesing data sets by using T and Ta. In 

Table 2-5 we intentionally chose the same PFA shown in Table 2-4 for the purpose 

of comparison. 

 

(a) (b) (c) 

(d) (e) (f) 
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Table 2-5. PD, PFA, and CSI for the three testing data by using T(Ta). 

 PD PFA CSI 

04/18/2010 50%(46%) 2.53% 0.47(0.43) 

05/14/2010 45.14%(41.6%) 2.04% 0.43(0.40) 

09/08/2010 58.39%(48.61%) 0.86% 0.57(0.48) 

 

In Table 2-5, the numbers in brackets are obtained by using Ta. By comparing Table 

2-5 with 2-4, it can be concluded that the performance of the test statistic is not very 

effective when there are many narrow-band zero-velocity weather signals. In Fig. 2-

7, 10log10(T) and 10log10(Ta) fields are shown for three testing data sets.  

 

 

(a) (b) (c) 

(d) (e) (f) 
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Figure 2-7: 10log10(T) field for three testing data sets (a, b, c); 10log10(Ta) field for 

three testing data sets (d, e, f). 

From Fig. 2-7, it can be concluded that both T and Ta have difficulties in 

distinguishing ground clutter from weather signal I, which can cause false detections. 

In Fig. 2-8, the CPDFs of 10log10(T) and 10log10(Ta) are shown for the four training 

data sets. 

 

Figure 2-8: The conditional probability density functions (CPDFs) of (a) T and (b) 

Ta given three classes c, w0, and w. The training data are the same as the one shown 

in Fig. 2-3. 

 

In the next section, we will evaluate the performance of the SBC-DP 

algorithm, which can effectively neutralize the false detections caused by narrow-

band zero-velocity weather signals when using the test statistic. 

 

Evaluation of the SBC-DP Algorithm 

Qc,w0 = 0.30 

Qc,w = 0.10 

 

Qc,w0 = 0.37 

Qc,w = 0.06 

 

(a) (b) 
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As described in Section 2.4.2, four discriminants will be used, which are 

PRH, PRV, ZDR(0), and |ρhv(0)| shown in (2-36a)-(2-36d). In Fig. 2-9, the CPDFs of 

the four discriminants obtained from training data are shown. 

 

 

Figure 2-9: h v(PR ,PR | )p i  given (a) i = c, (b) i = w0, and (c) i = w; The CPDFs of 

(d) ZDR(0) and (e) |ρhv(0)| given three classes c, w0, and w. The training data are the 

same as the one shown in Fig. 2-3. 

 

From Fig. 2-9 (a)-(c) it can be concluded that (1) generally, c has larger PR 

than both w and w0; (2) PRh and PRv are most correlated for w0, then w, and then c; 

(3) it is more difficult to distinguish c from w0 than w. In Fig. 2-9(d), the CPDFs of 

DR (0)Z  and hv (0)  for w and w0 are almost the same. The conditional 

Qc,w0 = 0.44 

Qc,w = 0.43 

 

Qc,w0 = 0.30 

Qc,w = 0.28 

 

(a) (b) (c) 

(d) (e) 
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probabilities p(
DR (0)Z |w) and p(

DR (0)Z |w0) are almost equal to zero when 

DR (0)Z is less than -2 dB or larger than 5 dB; 
DR (0)Z has a much larger spread for c 

than w and w0. In Fig. 2-9(e), the conditional probabilities p( hv (0)  |w) and 

p( hv (0)  |w0) are almost equal to zero when hv (0)  is less than 0.85 and the peak 

is located at hv (0) = 0.995; hv (0)  has a much larger spread for c and the peak of 

p( hv (0)  |c) is located at hv (0)  = 0.96. 

In Fig. 2-10, the clutter maps obtained by using the SBC-DP algorithm are 

compared with the ground truth for the three testing data. 

 

 

(a) (b) 

(c) 

(d) (e) 

(f) 
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Figure 2-10: SBC-DP clutter maps (a, d, g) compared with the ground truth (b, e, h) 

for the three testing data. PD as a function of CSR (dB) is shown in (c, f, i) for the 

three testing data. The blue line represents the performance of the SBC-DP in 

detecting ground clutter in the presence of both w and w0 while the red line in the 

presence of only w0. 

From Fig. 2-10, we find that the SBC-DP algorithm has better detection 

performance when clutter is mixed with w0 than mixed with w and w0. The reason 

is that PR is larger when clutter is mixed with w0 than mixed with w. Larger PR 

means a higher probability that the gate is contaminated by ground clutter according 

to Fig. 2-9. In Table 2-6 we list the probability of detection PD, probability of false 

alarm PFA, and critical success index (CSI) for the three testing data sets by using 

the SBC-DP algorithm. 

Table 2-6. PD, PFA, and CSI for the three testing data by using the SBC-DP 

algorithm. 

 PD PFA CSI 

04/18/2010 86.27% 1.67% 0.83 

(g) (h) 

(i) 
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05/14/2010 85.29% 1.11% 0.83 

09/08/2010 84.86% 0.65% 0.84 

 

 

Compared with the SCI algorithm, the SBC-DP algorithm significantly 

reduces the number of false detections which can be inferred by comparing Fig. 2-5 

to 2-10 and Table 2-4 to 2-6. The SBC-DP algorithm also has higher PD compared 

with the SCI especially when CSR > -6 dB (the CSR needs to be -5.9 dB to bias the 

mean power 1 dB from Table 2-3). Compared with the SCI, the SBC-DP algorithm 

is based solely on data from each resolution volume because spatial texture 

increases false alarms and unnecessary filtering (Torres et al., 2012). In the next 

section, the SBC-DS and SBC-DPDS algorithms will be evaluated and compared 

with the SBC-DP using the data collected by PX-1000, a 3-cm polarimetric 

transportable radar. 

 

2.6.3 Evaluation of the SBC-DS and SBC-DPDS Algorithms 

 The training weather data were collected at 02:47, 02:52, 02:59, 03:04, and 

03:08 UTC on Dec 15
th

 2012 by the PX-1000 radar (the details of the radar are 

discussed in Cheong et al. (2013)), with two scans at the same elevation angle (3°) 

separated by about 25 s. The clutter data were collected at 14:35 UTC on Feb 28
th

 

2013 with two scans at the same elevation angle (1°) separated by about 25 s. We 

combined the weather and clutter the same way described in Section 2.6.1.  
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As described in Sections 2.3 and 2.5, three discriminants are used in the 

SBC-DS algorithm and ten discriminants are used in the SBC-DPDS algorithm. In 

Fig. 2-11, the CPDFs h v(PR ,PR | )p i , DR( (1) | )p Z i , hv( (1) | )p i , and 

12h 12v( (1) , (1) | )p i   obtained from training data are shown. 

 

 

 

(a) (b) (c) 

(d) (e) 

(f) (g) (h) 

Qc,w0 = 0.41 

Qc,w = 0.42 

 

Qc,w0 = 0.53 

Qc,w = 0.55 
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Figure 2-11: h v(PR ,PR | )p i  given (a) i = c, (b) i = w0, and (c) i = w; (d)

DR( (1) | )p Z i given i = c, w0, and w; (e) hv( (1) | )p i  given i = c, w0, and w; 

12h 12v( (1) , (1) | )p i   given (f) i = c, (g) i = w0, and (h) i = w. 

 

From Fig. 2-11, we can conclude that the Power Ratio (PR) is generally 

larger for clutter than weather signals; 
DR (1)Z has a much larger spread for c; 

hv (1) has a larger spread for c and in contrast to Fig. 2-9(e), the peak of 

hv( (1) | c)p  is to the right of those of hv( (1) | w)p   and hv( (1) | w 0)p  . The 

reason is still unknown. One possible explanation is the PX-1000 receiver is 

saturated for ground clutter echoes. When the receiver is saturated for each pulse 

received, the received voltages would be a constant for both H and V channels, thus 

the correlation coefficient would be equal to 1. 

After the CPDFs shown in Fig. 2-11 are obtained from training data, they 

will be used on testing data to make decisions as to the presence of clutter. In Fig. 2-

12, the reflectivity, Doppler velocity, spectrum width, power ratio, differential 

reflectivity, copolar correlation coefficient, and cross-correlation coefficient 

between two scans for the testing data, collected on 03:12 UTC 12/15/2012, are 

shown. 
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(a) (b) 

(c) (d) 
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Figure 2-12: Weather signals (03:12 UTC 12/15/2012) mixed with ground clutter 

(14:35 UTC on 12/28/2013). (a) Horizontal reflectivity of the first scan; (b) 

Horizontal Doppler velocity of the first scan; (c) Horizontal spectrum width of the 

first scan; (d) Horizontal power ratio of the first scan; (e) Differential reflectivity of 

the first scan using 1-lag estimator; (f) Copolar correlation coefficient of the first 

scan using 1-lag estimator; (g) cross-correlation coefficient between two scans of 

horizontal voltages using 1-lag estimator. 

 

(e) (f) 

(g) 
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From Fig. 2-12 we can conclude that compared with weather signals, clutter 

generally has higher reflectivity, near-zero Doppler, narrower spectrum width, 

higher power ratio (PR), larger spread of
DR (1)Z , larger spread of hv (1) , and 

higher 12 (1) . In Fig. 2-13, clutter maps obtained using SBC-DPDS, SBC-DP, and 

SBC-DS algorithms are compared with the ground truth, and PD vs. CSR are shown 

for the same data shown in Fig. 2-12. 

 

 

(a) (b) 

(c) (d) 
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Figure 2-13: Clutter maps obtained using (a) SBC-DPDS, (b) SBC-DP, and (c) 

SBC-DS; (d) Ground truth; (e) PD as a function of CSR. The data are the same as 

the one shown in Fig. 2-12. 

 

For the SBC-DS algorithm, the CPDFs 1( | )p PR i , 2( | )p PR i , and 

12( (1) | )p i  are used; For the SBC-DP algorithm, the CPDFs h v( , | )p PR PR i , 

DR( (1) | )p Z i , and hv( (1) | )p i  are used. From Fig. 2-13 we can conclude that the 

SBC-DP algorithm has comparable detection performance with the SBC-DPDS 

algorithm. The SBC-DS algorithm performs equally well with the other two when 

CSR is larger than 5 dB but it performs poorer when CSR is smaller than 5 dB. 

In Table 2-7 we list the probability of detection PD, probability of false 

alarm PFA, and critical success index (CSI) for the three testing data sets. 

 

(e) 
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Table 2-7. PD, PFA, and CSI for the three testing data by using the SBC-DPDS, 

SBC-DP, and SBC-DS algorithms. All the testing weather data were collected at 

different times on 12/15/2012. 

 PD 

DPDS 

PD  

DP 

PD  

DS 

PFA 

DPDS 

PFA  

DP 

PFA  

DS 

CSI 

DPDS 

CSI  

DP 

CSI  

DS 

03:12  86.06% 85.25% 79.31% 3.42e-4 4.22e-4 3.61e-4 0.85 0.84 0.78 

03:18  95.53% 94.62% 91.20% 1.68e-4 1.92e-4 1.71e-4 0.95 0.94 0.90 

03:22 97.30% 96.32% 93.92% 1.94e-4 2.18e-4 1.92e-4 0.95 0.94 0.92 

 

From Table 2-7, we can see that all three methods produce low PFA, the 

reason is that there are not as many narrow-band zero-velocity weather signals as 

shown in Fig. 2-4. However, if there are many narrow-band zero-velocity weather 

signals, it is expected that the SBC-DPDS algorithm will produce the lowest PFA 

with the highest PD.  

 

Chapter 3:  Bi-Gaussian Model Adaptive Processing (BGMAP) 

In this Chapter, a ground clutter filter implemented in the spectral domain 

based on the Bi-Gaussian model is discussed. In Section 3.1, a cost function based 

on Bayes’ theorem is derived and by minimizing it the weather moments can be 

estimated; In Section 3.2, a noise floor estimation method is introduced and the 

selection of window function based on the estimated CSR is discussed; In Section 

3.3, the Bi-Gaussian fitting of the weather and clutter spectra by minimizing the cost 

function are discussed; In Section 3.4, the BGMAP algorithm is applied to the same 

data as shown in Fig. 2-4 to evaluate its performance. 
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3.1 Derivation of the Cost Functions based on the Maximum A Posteriori and 

Least Squares Approaches 

The Power Spectral Density (PSD) of time-series voltages 

x, x, x, x,m m m my c w n    (x = h or v; m = 1, 2, …, M) consists of a weather spectrum 

centered at the mean Doppler velocity of weather signal (vrw), a clutter spectrum 

centered at the mean Doppler velocity of ground clutter (vrc), and a noise floor. Both 

the I (in-phase) and Q (quadrature) voltages of weather and noise have Gaussian 

statistics according to the Central-Limit Theorem (Doviak and Zrnic, 2006, Sec. 

4.3), and thus the amplitude is Rayleigh distributed and power is exponential 

distributed. According to Billingsley (2002), the distribution of ground clutter 

amplitude is commonly described by Weibull distribution, which has no physical 

basis but is simply curve fitting tool to better describe the data. In this dissertation, it 

is assumed that each spectral line of the observed spectrum, which is the 

convolution of the intrinsic spectrum and the spectrum of window function, is 

independently exponential distributed and the Doppler spectra of weather and clutter 

are Gaussian. The expected observed spectra can be written as: 

2 2

w rw c rc n

2 2

vw vc Nvw vc

( ) ( )
( ) exp exp

2 2 22 2

P v v P v v P
S v

v    

    
       

   
  (3-1) 

In (3-1), Pw is the weather power, vrw is the mean Doppler velocity of weather, and 

vw  is the spectrum width of weather; Pc is the clutter power, vrc is the mean 

Doppler velocity of clutter, and vc is the spectrum width of clutter and it is 
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assumed that vc vw  ; nP  is the noise power and Nv  is the Nyquist velocity. vrc 

can only be -∆v, 0, or ∆v, where ∆v is the spectral line spacing. Because of the 

window function, the seven parameters in (3-1), Pw, vrw, vw , Pc, vrc, vc , and nP , 

are the biased estimates of the intrinsic parameters. 

 

3.1.1 The Maximum A Posteriori (MAP) Approach 

If the power of each spectral line is exponentially distributed as assumed, we 

have: 

ˆ1ˆ( | ) exp m
m m

m m

S
p S S

S S

 
   

 
 (3-2) 

In (3-2), ˆ
mS  is the measured power corresponding to the m

th
 spectral line and  mS  is 

equal to ( )mS v  given in (3-1). Instead of the measured value ˆ
mS , one would like to 

know the expected value mS , which is determined by seven variables: Pw, vrw, vw , 

Pc, vrc, vc , and nP . It is possible for us to find mS  that maximize ˆ( | )m mp S S  by 

using Bayes’ theorem (Papoulis, 1991, Chap. 7-3): 

n N/2

ˆ ˆ( | ) ( ) ( | ) ( )ˆ( | )
ˆ ˆ( ) ( | ) ( )d

m m m m m m
m m

m m m m m
P v

p S S p S p S S p S
p S S

p S p S S p S S


 


 (3-3) 

In (3-3) ( )mp S  is a prior probability for mS , which is unknown. In the absence of 

other information, it is assumed that ( )mp S  is uniform over the range

 n N/ 2P v  . Thus (3-3) can be rewritten as: 
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n N/2

ˆ( | )ˆ( | )
ˆ( | )d

m m
m m

m m m
P v

p S S
p S S

p S S S





 (3-4) 

Bring (3-2) into (3-4), we obtain: 

n N/2

ˆ1
exp

ˆ( | )
ˆ1

exp d

m

m m

m m

m
m

P v
m m

S

S S
p S S

S
S

S S



 
 
 
 
 
 



 (3-5) 

In this dissertation, the noise level n N/ 2P v  is predetermined before the optimization 

by using the method described in Hildebrand and Sekhon (1974) which will be 

discussed in Section 3.2. Thus, searching for mS  is equivalent to search for the set of 

parameters Pw, vrw, vw , Pc, vrc, and vc  that can maximize ˆ( | )m mp S S . The 

denominator of (3-5) does not depend on the set of parameters and therefore plays 

no role in the optimization process (Kay, 1993b, Chap. 11.5). Thus, maximizing 

ˆ( | )m mp S S  is equivalent to maximizing 
ˆ1

exp m

m m

S

S S

 
  
 

. (3-5) can be rewritten as: 

n N

ˆ1ˆ( | ) exp
ˆ( , / 2 )

m
m m

mm m

S
p S S

Sg S P v S

 
   

 
 (3-6) 

In (3-6), g represents a function of ˆ
mS  and n N/ 2P v . In this dissertation, it is 

assumed that the spectral power distribution of each spectral line is independent. In 

this case, the joint probability can be written as a product: 
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1 2 1 2

1 n N

ˆ1ˆ ˆ ˆ( , ,..., | , ,..., ) exp
ˆ( , / 2 )

M
m

m m

m mm m

S
p S S S S S S

Sg S P v S

 
   

 
  (3-7) 

If we take the logarithm of both sides of (3-7), we obtain: 

 1 2 1 2 n N

1 1

ˆ
ˆ ˆ ˆ ˆln ( , ,..., | , ,..., ) ln ( , / 2 ) ln

M M
m

m m m m

m m m

S
p S S S S S S g S P v S

S 

 
      

 
   (3-8) 

Thus, in order to maximize 1 2 1 2
ˆ ˆ ˆ( , ,..., | , ,..., )m mp S S S S S S , we only need to minimize 

the cost function:  

MAP

1

ˆ
ln

M
m

m

m m

S
J S

S

 
   

 
  (3-9) 

The subscript MAP signifies Maximum A Posteriori. Thus, we need to find the six 

variables Pw, vrw, vw , Pc, vrc, and vc , that minimizes 
1

ˆ
ln

M
m

m

m m

S
S

S

 
  

 
 .    

 

3.1.2 The Least Squares (LS) Approach 

Another way to derive the cost function is the Least Squares (LS) approach. 

A salient feature of the method is that no probabilistic assumptions are made about 

the data. The cost function derived from the LS approach in the log scale is: 

 
2

LS

1

ˆln ln
M

m m

m

J S S


   (3-10) 
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3.1.3 Comparisons between the MAP and LS 

In order to compare the performance of (3-9) and (3-10), the following 

simulation is proposed: 

1. Create the expected observed weather and clutter spectra using (3-1). 

2. Randomize each spectral line with an exponential distribution with mean equal to 

Sm. Assume the distribution of each spectral line is independent from another. 

3. Using interior point methods (Byrd et al., 2000) to search for the set of six 

unknown parameters Pw, vrw, vw , Pc, vrc, and vc , that minimizes (3-9) and (3-10), 

respectively. 

4. Repeat steps 2 and 3 1000 times with different random seeds. 

In this simulation, it is assumed that SNR = 30 dB, Pc = 40 dB, Pw = 20 dB, 

CSR = 20 dB, λ = 5.44 cm, PRT = 800 μs, M = 33, σvw = 2 m s
-1

, vrc = 0, vrw = 0 and 

8 m s
-1

, and σvc = 0.5 m s
-1

. In Table 3-1, the performances of the MAP and LS 

approaches are compared.  

Table 3-1: Comparison between MAP and LS approaches if each spectral line is 

independently exponential distributed. The numbers out of the brackets represent 

means and those in the brackets represent standard deviations. 

 vrw = 0 vrw = 8 

 MAP LS MAP LS 

wP̂  19.29(2.31) 17.67(2.78) 19.89(1.62) 17.91(1.96) 
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rwv̂  
0(0.25) 0(0.29) 8(0.40) 7.96(0.45) 

vw̂  2.02(0.14) 1.98(0.17) 1.98(0.19) 1.99(0.20) 

 

 

From Table 3-1, we can conclude that MAP outperforms LS under the 

circumstances that each spectral line is independently exponential distributed. In Fig. 

3-1, the simulated spectra using the procedures given above are shown. The blue 

line signifies the expected observed spectra obtained from (3-1), blue dash line the 

observed spectra with random variations using the simulation procedures given 

above, red line the fitted spectra using the MAP approach, and black line the fitted 

spectra using the LS approach. From Fig. 3-1, we can conclude that the LS approach 

is more affected by outliers (large fluctuations) than the MAP approach. Thus, in 

this dissertation, the cost function given in (3-9) will be used. In the next section, the 

window function selection and estimation of noise floor will be discussed. 
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Figure 3-1: Simulated spectra using the procedures given in Section 3.1.3. vrw is 

equal to (a) 0 and (b) 8 m s
-1

. The blue line signifies the expected observed spectra, 

blue dash line the observed spectra with random variations, red line the fitted 

spectra using the MAP approach, and black line the fitted spectra using the LS 

approach. 

 

3.2 Window Function Selection and Estimation of Noise Floor 

Considering the spectral leakage due to limited number of samples, the 

selection of window function is very important to the reconstruction process (Siggia 

and Passarelli, 2004) in order to minimize the bias of weather spectra moments. In 

this dissertation, a similar window selection method with the one described in 

Siggia and Passarelli [9] will be used, which is shown below: 

First a Hamming window weighting function is applied to the IQ data and 

then the BGMAP algorithm is implemented. 

If the estimated CSR > 40 dB, repeat BGMAP using a Blackman window.  

If the estimated CSR > 20 dB, repeat BGMAP using a Blackman window; 

Then if CSR > 25 dB Blackman results are used.  

If CSR < 2.5 dB, repeat BGMAP using rectangular window; Then if CSR < 

1 dB rectangular results are used. 

ELSE, accept the Hamming window results.  
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In this dissertation we used the method described in Hildebrand and Sekhon 

(1974) to determine the noise floor and the boundary between the noise and 

signal/clutter region. The radar system noise power is exponentially distributed and 

it has a white spectrum. Because the noise spectral components are independent and 

according to the properties of exponential distribution, we have: 

2

n nvar( )S S  (3-11a) 

22

n n nvar( )S S S   (3-11b) 

In (3-11), Sn corresponds to the noise spectral component. (3-11a) is 

obtained from the properties of exponential distribution while (3-11b) is obtained 

from the definition of variance. For white noise, the ensemble average nS  can be 

estimated from one realization of the process, by averaging all the noise spectral 

components in the power spectrum. Thus, we can define a parameter, which is the 

ratio between (3-11a) and (3-11b): 

2

n

22

n n

S
R

S S



 (3-12) 

According to (Hildebra and Sekhon, 1974), for white noise, the ratio R should be 

unity because the mean is equal to the standard deviation of noise spectral 

components. For a spectrum containing weather/clutter, it is expected that R should 

be less than 1 because weather/clutter spectrum is not white and thus the ensemble 

average cannot be computed from one realization of the process. Thus, we can 

select the boundary between noise and weather/clutter by using (3-12). The ratio R, 

calculated from all the spectral components under the boundary, should be equal to 

1. In Fig. 3-2, simulated power spectra containing weather, clutter, and noise are 
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shown. The power spectra are obtained by using the spectral simulator given in 

Zrnic (1975). In Fig. 3-2, Pc = 40 dB, CSR = 20 dB, vrw = 5 m s
-1

, σvw = 2 m s
-1

, vrc = 

0, σvc = 0.5 m s
-1

, and M = 64. 

 

Figure 3-2: Simulated spectra containing weather, clutter, and noise. The black line 

is the boundary between noise and weather/clutter region (R = 1) and the black dash 

line is the noise floor. (a) SNR = 10 dB and (b) SNR = 30 dB. 

 

In Fig. 3-3 the ratio R given in (3-12) as a function of threshold (dB below 

the peak) is shown for the simulated spectra given in Fig. 3-2. The ratio R is 

calculated with all the spectral components under every arbitrarily assigned 

threshold (blue curve). The noise and signal/clutter boundary corresponds to the 

threshold with R = 1 (black line).  

(a) (b) 
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Figure 3-3: The blue curve represents the ratio (3-12) as a function of threshold and 

the black line corresponds to R = 1. The threshold is dB below the spectral peak and 

the ratio is calculated with all the spectral components under the threshold. (a) SNR 

= 10 dB and (b) SNR = 30 dB.  

After the boundary is calculated in Fig. 3-3, all the spectral components 

under the boundary are averaged to obtain the noise floor, which are the black dash 

lines shown in Fig. 3-2. If there are few number of samples in a dwell (e.g., M = 10), 

the boundary cannot be accurately estimated. In this case, zero padding to time 

series data after the window function is applied because zero padding corresponds to 

ideal interpolation in the spectral domain according to Smith III (2007). In the next 

section, the Bi-Gaussian fitting of weather and clutter spectra by minimizing the 

cost function JMAP given in (3-9) will be discussed.  

3.3 Bi-Gaussian Fitting of the Weather and Clutter Spectra 

After the noise floor Pn is determined, all the spectral components are used 

to fit the Bi-Gaussian model given in (3-1) by searching for the optimal unknown 

(a) (b) 
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parameters w rw vw c rc vc, , , , ,P v P v   that can minimize JMAP. Interior point methods 

(Byrd et al., 2000) will be used in the optimization process which will not be 

discussed because it is not a focus of this dissertation. One thing to notice is that if 

vrw is close to the Nyquist velocity, the Bi-Gaussian assumption does not hold 

because the weather spectrum would be divided into two parts on the two ends of 

the spectrum. In this case, we need to shift the spectral interval of [- Nv Nv ] to 

[ N sv v  N sv v ] to obtain a complete weather spectrum. sv  represents a 

shifted velocity and it can be determined from the following steps: 

1. All the noise spectral components (identified by Section 3.2) are set to zero. 

2. All the spectral components within ±4 m s
-1

 are set to zero. 

3. Find the radial velocity vmax corresponding to the maximum spectral 

component. 

4. If vmax- Nv /2 is less than – Nv , sv  is equal to Nv /2+ vmax. 

5. If vmax+ Nv /2 is larger than Nv , sv  is equal to - Nv /2+ vmax. 

6. Otherwise sv  is equal to zero. 
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Figure 3-4: The blue line is the observed spectra, and it consists of clutter, weather, 

and noise. The red line represents the fitted clutter+noise spectrum and the black 

line represents the fitted weather+noise spectrum by minimizing JMAP. In (a), the 

spectral interval [-
Nv Nv ] is shifted to [ N sv v  N sv v ]; In (b), the spectral 

interval is not shifted. 

 

In Fig. 3-4, Pc = 40 dB, CSR = 20 dB, SNR = 30 dB, vrw = 12 m s
-1

, σvw = 2 

m s
-1

, vrc = 0, σvc = 0.5 m s
-1

, M = 33, and PRT = 800 μs. We can conclude that when 

the mean radial velocity of weather spectrum is close to the ambiguity velocity, the 

Bi-Gaussian model fails (Fig. 3-4b) when fitting the spectra from –vN to vN. In Fig. 

3-4a, wP̂  =  19.48 dB (-0.52 dB error), rwv̂ = 12.11 m s
-1 

(0.11 m s
-1 

error) and w̂ = 

2.47 m s
-1

 (0.47 m s
-1 

error); in Fig. 3-4b, wP̂  = 18.28 dB (-1.72), rwv̂ = 0.47 m s
-1

 (-

11.53) and w̂ = 9.82 m s
-1

 (7.82). After the Bi-Gaussian fitting, all the six unknown 

parameters w rw vw c rc vc, , , , ,P v P v  can be estimated. 

The implementation procedure of the BGMAP clutter filter is described in 

the flowchart shown in Fig. 3-5. 
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Figure 3-5: Flowchart of the Bi-Gaussian Model Adaptive Processing (BGMAP) 

algorithm. 
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In Fig. 3-5, the Hamming window is used for the first attempt and based on the 

estimated CSR we will decide whether other window functions (i.e., rectangular or 

Blackman) will be used or not. The window selection rule is discussed in Section 

3.2. 

In Fig. 3-6, some examples of simulated spectra and their BGMAP fittings 

based on the MAP approach are shown. CSR = 0 dB, SNR = 30 dB, M = 33, Pw = 

Pc = 40 dB, vrc = 0, σvc = 0.5 m s
-1

, σvw = 2 m s
-1

. 

 

Figure 3-6: The blue line is the simulated observed spectra, the red line is the fitted 

clutter+noise Gaussian spectrum, and the black line is the fitted weather+noise 

Gaussian spectrum. vrw is equal to (a) 6, (b) 0, and (c) 15 m s
-1

. 

 

In Fig. 3-6(a), the estimated weather power, radial velocity, and spectrum 

width is equal to 41.9 dB (1.9 dB error), 5.8 m s
-1

 (-0.2 m s
-1 

error), and 3.3 m s
-1

 

(1.3 m s
-1

 error); In Fig. 3-6(b), the estimated weather moments are 37.7 dB (-2.3), 

0.2 m s
-1

 (0.2), and 2.2 m s
-1

 (0.2); In Fig. 3-6(c), the estimated weather moments 

are 39.2 dB (-0.8), 13. 5 m s
-1

 (1.5), and 1.7 m s
-1

 (-0.3). 
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In the next section, the performance of the BGMAP will be compared with 

GMAP using the same data shown in Fig. 2-4. 

 

3.4 Performance Evaluation of the BGMAP Algorithm using the Real Data 

In this section the BGMAP algorithm will be applied to the three testing data 

shown in Fig. 2-4. In Figs. 3-7, 3-8, and 3-9, the ground truth (weather moments), 

clutter contaminated moments, and filtered weather moments using BGMAP and 

GMAP algorithms are shown for the three testing data.  In these figures, BGMAP 

and GMAP algorithms will be only applied to the gates detected by the SBC-DP 

algorithm (Section 2.4.2). 
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Figure 3-7: First row: weather data collected on 04/18/2010 at θe = 3.5°; Second row: 

weather data collected on 04/18/2010 combined with clutter data collected on 

01/13/2011 at θe = 0; Third row: Filtered weather data using GMAP algorithm; 

Fourth row: Filtered weather data using BGMAP algorithm. 
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Figure 3-8: The only difference between Fig. 3-8 and 3-7 is that the weather data 

were collected on 05/14/2010. 
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Figure 3-9: The only difference between Fig. 3-9 and 3-7 is that the weather data 

were collected on 09/08/2010. 
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From Figs. 3-7 to 3-9, a subjective comparison between BGMAP and 

GMAP shows that BGMAP slightly outperforms GMAP in estimating weather 

power, but significantly outperforms GMAP in estimating spectrum width; BGMAP 

and GMAP have comparable performance in estimating weather Doppler velocity. 

Both BGMAP and GMAP perform poorly on the clutter contaminated gates where 

weather signals have near-zero Doppler and narrow spectrum width, because 

weather and clutter spectra are heavily overlapped and it is the most difficult to 

distinguish them in the spectral domain. 

In Table 3-2, Mean Absolute Errors (MAEs) are calculated at those locations 

identified as having ground clutter by the SBC-DP algorithm, and these are the 

locations where the GMAP and BGMAP algorithms are applied; for reference 

MAEs are also calculated if no filter is applied for the three cases shown in Figs. 3-7 

to 3-9. 

Table 3-2: MAEs at clutter locations identified by the SBC-DP algorithm if GMAP 

and BGMAP filters are applied, and if no filter is applied. 

 GMAP BGMAP No Filter 

 Zw 

dBZ 

vrw  

m s
-1

 

σvw  

m s
-1

 

Zw 

dBZ 

vrw 

 m s
-1

 

σvw  

m s
-1

 

Zw  

dBZ 

vrw  

m s
-1

 

σvw  

m s
-1

 

04/18/10 5.13 1.68 1.53 4.48 1.90 0.92 13.03 3.90 1.42 

05/14/10 4.02 1.60 1.38 3.27 1.89 0.83 12.73 4.34 1.25 

09/08/10 2.87 2.05 1.20 2.75 2.10 0.80 13.89 7.48 2.32 
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The inputs in Table 3-2 represent the MAEs of weather moments. From the 

quantitative evaluation shown in Table 3-2, we can find that BGMAP outperforms 

GMAP in estimating weather reflectivity and and spectrum width while GMAP has 

slightly better performance than BGMAP in estimating weather Doppler velocity. 

For the case 1 and 2, the MAE of weather reflectivity and spectrum width is reduced 

respectively by around 0.7 dBZ and 0.7 m s
-1

 if BGMAP is used instead of GMAP. 

As can be seen from Figs. 3-7, 3-8, and 3-9, for both GMAP and BGMAP 

algorithms, the bias of reflectivity and Doppler velocity estimation becomes more 

significant when the weather signals have near zero Doppler velocities. For the first 

two cases shown in Table 3-3, the error becomes even larger when the GMAP 

algorithm is used to estimate spectrum width than the case when no filter is applied.  

 

Chapter 4: Conclusions 

Considering the significant bias caused by ground clutter on the estimations 

of weather moments, polarimetric parameters, rainfall rate, hydrometeor 

classification, five new clutter detection algorithms and one new clutter filtering 

algorithm are discussed in this dissertation. The five different clutter detection 

algorithms are the Spectrum Clutter Identification (SCI), SBC applied to the Dual-

Scan discriminants (SBC-DS), test statistic, SBC applied to the Dual-Pol 

discriminants (SBC-DP), and SBC applied to the Dual-Pol Dual-Scan discriminants 

(SBC-DPDS). The clutter filtering algorithm is the Bi-Gaussian Model Adaptive 

Processing (BGMAP). 
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The SCI clutter detection algorithm is designed for single pol radars to detect 

ground clutter mixed with weather signals, even if the Clutter to Signal power Ratio 

(CSR) is low but clutter can significantly bias weather spectral moment estimates. 

SCI combines the discriminants Spectral Power Distribution (SPD), Spectral Phase 

Fluctuations (SPF), Power Texture (PT), and Spectrum Width Texture (SWT) using 

a Simple Bayesian Classifier (SBC) to detect clutter mixed with weather signals.  

 The Conditional Probability Density Functions, CPDFs, versus the levels of 

the various discriminants for practically pure ground clutter and pure narrow-band 

zero-velocity and non-zero velocity weather signals are obtained from clutter and 

stratiform weather data collected by OU-PRIME. It is shown (Fig. 2-3a) that the 

common area Qc,w between the minimum of the CPDF curves for clutter and non-

zero velocity weather signals is about 0.02 for the SPD discriminant. The common 

area is a measure of the discriminant’s capability to distinguish various classes of 

clutter and weather. This small Qc,w (ideally Qc,w = 0) suggests SPD is effective in 

detecting clutter mixed with non-zero velocity weather signals. But the common 

area, Qc,w0, for narrow-band zero-velocity weather signals is significantly larger 

(Fig.2-3a) demonstrating the difficulty to distinguish this class of weather signals 

from clutter.  

If a single fixed scatterer generates clutter, the spectral phase is linear in the 

spectral interval w2 v 
 
independent of the position of the scatterer within the 

radar’s resolution volume. Departure from linearity is the basis to use spectral phase 

to detect stratiform weather signals mixed with clutter. However, it is found that the 

SPF discriminant improves the PD by only a few percent. This small improvement is 
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due to clutter not typically being from a collection of scatterers where one scatterer 

is dominant.  

The texture discriminants PT and SWT are both used in the SCI algorithm. 

PT effectively recognizes clutter when CSR is high (e.g., > 0 dB) whereas SWT 

recognizes clutter when CSR is low (e.g., -15 to 0 dB). Because the SWT is most 

effective if the Doppler velocity is at the Nyquist velocity, and because evaluation 

of the SCI algorithm were made using data collected by OU-PRIME, a 5-cm radar, 

it is expected the SWT discriminant will be more effective for 10-cm radars that 

have twice as large a Nyquist velocity.  

One problem in evaluating the performance of clutter detectors is having 

reliable ground truth. To provide this ground truth, practically pure stratiform 

weather and clutter data were synthesized to obtain a data field of clutter mixed with 

weather as also suggested by (Melnikov et al., 2008); in this case CSR is precisely 

known. This synthesis procedure provides quantitative estimates of CSRs to 

evaluate PD and PFA, and it was applied to three cases of stratiform weather and the 

performance is given in Fig. 2-5 and Table 2-4. We consider weather signals from a 

resolution volume are contaminated by ground clutter only if ground clutter can bias 

weather signal power by more than 1 dB or its mean radial velocity and spectrum 

width by more than 1 m s
-1

 (NEXRAD Technical Requirements, 1991, Sec. 

3.7.1.2.3.1). Otherwise, even if ground clutter does exist in the resolution volume it 

is considered as weather signal because its effect on weather estimates can be 

neglected. By doing so, we not only considered CSR but also the mean radial 
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velocity and spectrum width of weather signals and the spectrum width of ground 

clutter. 

The simple Bayesian classifier applied to the dual-scan discriminants (SBC-

DS) presents clutter locations with higher spatial resolution and thus less false 

detections (Torres et al., 2012). Higher spatial resolution is obtained because the 

SBC-DS algorithm is based solely on data from each resolution volume. This 

method is especially useful if clutter is from fixed scatterers being scanned by the 

weather radar’s beam. Narrow-band zero-velocity weather signals and clutter from 

fixed scatterers scanned by the radar beam have similar spectral characteristics and 

thus it is difficult to distinguish them from single scan data, especially when using 

the short dwell times typical for weather radar having rapidly scanning beams. 

Scan-to-scan clutter detection offers a complementary method to existing clutter 

detection methods.  

Furthermore, the SBC-DS algorithm might be applied to WSR-88Ds because 

all WSR-88Ds use Volume Coverage Patterns (VCPs) that contain two 360
o
 

azimuthal scans each with different PRTs at the two lowest elevation angles (0.5 

and 1.5
o
) where clutter matters the most. The SBC-DS might also be applied to 

phased array radar (PAR) when it is performing beam multiplexing introduced by 

Yu et al. (2007), not only to detect ground clutter but also to suppress it.  

A polarimetric test statistic T and its alternate form Ta are derived from the 

statistical properties of the received signals. It is difficult to distinguish ground 

clutter from narrow-band zero-velocity weather signals by using T or Ta. It is 

expected that T alone would produce satisfactory results if there are few narrow-
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band zero-velocity weather signals because more than 90% of false detections are 

caused by narrow-band zero-velocity weather signals if T is used.  

In order to reduce the false detections caused by narrow-band zero-velocity 

weather signals using test statistic, a simple Bayesian classifier applied to the dual-

pol discriminants (SBC-DP) with inputs derived from the mean and covariance of 

the received signals, is introduced. It is found that the SBC-DP algorithm greatly 

reduces the false alarms caused by narrow-band zero-velocity weather signals. From 

Fig. 2-10, we can infer that the SBC-DP outperforms the single pol SCI algorithm 

(Fig. 2-5) at larger CSRs (i.e., 0 < CSR < 10 dB).  

SBC-DP is based solely on data from each resolution volume because spatial 

texture increases false alarms and unnecessary filtering (Torres et al., 2012). In and 

above the bright band, the CPDFs given weather signals I and II are different from 

those shown in Fig. 2-9 because Fig. 2-9 is obtained from stratiform rain under the 

bright band. Thus, the bright band needs to be located before implementing SBC-DP 

algorithm, especially when the bright band is close to the ground during the winter 

season. Alternatively, we can use different CPDFs for weather signals from above, 

in, and below the melting layer. This needs to be explored and tested in future work. 

SBC applied to the Dual-Pol Dual-Scan discriminants (SBC-DPDS) 

combines ten discriminants to make decisions as to the presence of clutter. It is 

expected that the SBC-DPDS will produce the lowest PFA with the highest PD 

compared with the SBC-DS and SBC-DP algorithms as can be inferred from Fig. 2-

13 and Table 2-7.  
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The clutter detection algorithms introduced in this dissertation should be 

evaluated using other types of weather other than stratiform rain, which will be left 

for future work. On the other hand, detecting clutter in stratiform weather signals is 

the most challenging and thus it is anticipated that the clutter detection algorithms 

introduced in this dissertation should work as well, if not better, for other types of 

weather. Furthermore, future study should address the performance of clutter 

detection algorithms to detect clutter from heavily foliage woods under different 

wind conditions.   

A Bi-Gaussian Model Adaptive Processing (BGMAP) algorithm for clutter 

filtering is discussed in this dissertation. The cost function obtained by using 

Maximum A Posterior (MAP) approach is compared with the Least Squares (LS) 

approach using simulations and it is found that MAP outperforms LS under the 

circumstance that each spectral line is independently exponential distributed. From 

Figs. 3-7 to 3-9, we can conclude that the accurate estimation of weather moments 

(especially reflectivity) is still challenging with the BGMAP algorithm when 

weather signals have near zero Doppler. In order to mitigate this problem, the 

clutter-free gates surrounding the clutter contaminated gate should be used as a 

priori information to help with the clutter filtering. This is the topic we will 

investigate in the future. In addition, the estimate of polarimetric parameters for 

clutter contaminated gates will also be studied in the future. 
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