UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

OPTOELECTRONIC THREE-DIMENSIONAL TRACKING SYSTEM

FOR COLLISION RISK MODEL

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
Degree of

DOCTOR OF PHILOSOPHY

By

YIH-RU HUANG
Norman, Oklahoma
2009

OPTOELECTRONIC THREE-DIMENSIONAL TRACKING SYSTEM
FOR COLLISION RISK MODEL

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

DR. JOHN FAGAN, CHAIR

DR. HILLEL J. KUMIN

DR. HONG LIU

DR. JAMES J. SLUSS

DR. JOSEPH P. HAVLICEK

© Copyright by YIH-RU HUANG 2009
All Rights Reserved.

ACKNOWLEDGEMENTS

Thank you, Dr. Fagan; I cannot finish this dissertation without your
guidance and support. This is a very impressive experience in my life. Thanks

for giving me this opportunity.

I would like thank everyone in the lab, especially Dr. Wen, Evan, Ben, Rix

and Jacob. This research cannot be done without your help. Thanks FAA-OKC

for all the supports and helps, especially Dean Alexander.

Finally, a special thank to my parents. You are always helpful whenever I

need. Thanks for everything.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...t v
TABLE OF CONTENTS ..ottt \Y
LIST OF TABLESo VII
LIST OF FIGURES. ...ttt \211
ABST RACT e e e e e e et e e e s et e e e e narr e e e e enaees 1
CHAPTER 1 INTRODUCTION AND BACKGROUND.........ccccoviiiiiiiiiiiiiens 3
1.1 BACKGIOUND ..ottt ettt et bbbt bbbt 3
1.2 THE TASK ettt bbbttt b b et b e bt e s e e b b e b bt et et eneennen 5
1.3 DISSErtation OULIINEcccierieiieieie ettt sttt 8
CHAPTER 2 CRM SYSTEM ARCHITECTURE. ..., 9
2.1 CRM-Box System Implemented ArChiteCtUIecccoeiireiiniiice e 11
2.2 CRM System Remote CONLIOl SEIVENcccviveieice e st 26
2.3 CRM System Databhase SEIVENcccviviireiiaierieesesesestesrese e sesresresresneasaessensenes 30
CHAPTER 3 METHODOLOGY AND ALGORITHM ..., 32
3.1 CRM-Box System RUNWaY SIghting........ccccvviviveiiiriiieiese e 32
3.2 Data ACQUISTEION ...ttt sttt sttt e 36
3.3 SYSLEM CaliDrationcoiuiiiiieiieee bbb 38
3.4 Digital IMage ProCESSING......ccciveieiirieriestisesteeeeieesie e ste e sre e e esa et esresresresneerae e eneens 41
3.5 TSPI CONSIFUCLIONcvieiiiteieie sttt bbbttt 44

CHAPTER 4 RESULTS ...coii s 47

4.1 CRM System Evaluation and Validationccocereiiiieienieneieieeene e 47
4.2 CRM SysStem Errors ANAIYSISccueiiiiiiiiiienieie ettt 51
A3 RESUIES ...t 64
CHAPTER 5 CONCLUSIONS ..o 67
REFERENCESo 69
APPENDICES.ottt et e e nnae e 72
Appendix A: CRM-Box CCD Camera Aiming Tool C# COEceeververervrvinseeierie e 72
Appendix B: CRM System Raw Data to CSV Tool C# Code.........covvriiiiriiiiecniees 85
Appendix C: CRM_BoxRL_ProcessAutoCal.m MATLAB Codecccocererireninenieieneene 88
Appendix D: CRM-Box System Watchdog C COUEccveviviiieiiiecece e 93
Appendix F: KOUN Runway 17 CRM-Box System Sighting.........cccceevvivvveerereninnnsn s 121
Appendix G: CRM Server Linux Perl Scripting Languagecccoceverirereieneneicneneenen, 123

vi

LIST OF TABLES

TABLE 2.1 CRM WATCHDOG COMMAND CODES.ccceiiuviieeerriieeeenereeeeeirreeeeenenns 18
TABLE 4.1 TSE MEAN OF THE CALIBRATION FLIGHT.ccceveiiieiiiiiiee e 59
TABLE 4.2 STANDARD DEVIATION OF THE ABOVE CALIBRATION FLIGHT. 59
TABLE 4.3 MEAN ERROR FOR 6 CALIBRATION FLIGHTS.ccccovviiiiiiiieeeeiieeeeeee 60
TABLE 4.4 STANDARD DEVIATION FOR THE ABOVE 6 CALIBRATION FIGHTS. 60

TABLE 4.5 ICAO AIRCRAFT APPROACH CATEGORY (KNOTS). .ecuvvverereeeireeeereeene 62

Vil

LIST OF FIGURES

FIGURE 1.1 TYPICAL LIS GUIDED APPROACH.ccccvvreeeeuriieeeniieeeeenireeeeennneeesnnenns 4
FIGURE 1.2 CCD VIEW OF APPROACH LANDING LIGHTS....cc..ceoviiiiniiiiniieenieenen. 7
FIGURE 2.1 ANAGLYPH APPROACHING CRM IMAGE.........ccovveiriiiiniiieniieeiee e 10
FIGURE 2.2 CRM SYSTEM ARCHITECTURE.cccccuteeriireeereeeireenereenneeesseeesnseesnnne 11
FIGURE 2.3 KOUN MASTER CRM-BOX......cooiiiiiiiiiiiiiiiiiieceececeeee 12
FIGURE 2.4 CRM-BOX FUNCTION DIAGRAM. ...cccuutiiiiiiiiiiiiniieeniieeneeenee e 13
FIGURE 2.5 CRM-BOX SYSTEM COMPONENTS.cceitterireerireenireenreeenreeesinee s 14
FIGURE 2.6 WATCHDOG PCB IN THE CRM-BOX SYSTEM.ccovvuiiiniiiiniieeiieenne 15
FIGURE 2.7 CRM-B0ox COMPUTER POWER MANAGEMENT FLOW CHART............. 17
FIGURE 2.8 CRM BOX SOLAR CHARGING FLOW CHART.covvuveerrieeniieerreeenne 18
FIGURE 2.9 CRM-BOX SYSTEM COMMUNICATIONS. ...ccccuvteriieeniieenieeenreeenineennnee 20
FIGURE 2.10 VIA C3 EMBEDDED SYSTEM COMPUTER.ccocuvteriieeniieenieeenieeeenee 23
FIGURE 2.11 OV9121 CCD WITH S50MM LENS.cooiiiiiiiiiiiiiieeeceee e 24
FIGURE 2.12 OV9121 LIGHT RESPONSE.ecoitiiiiiniiiiienieenieeeieeiee et 25
FIGURE 2.13 TRC30 IR FILTER TRANSMISSION VALUE......ccccceerriiierrieenieeenreeenne 26
FIGURE 2.14 CRM-B0OX SYSTEM REMOTE CONTROL SERVER WEB...................... 28
FIGURE 2.15 CRM-BOX REMOTE CONTROL SERVER WEB......cccccceeriiiiiniiennieennn 29
FIGURE 2.16 CRM RAW DATA STRUCTURE.ccceeiuviieeeiiiieeeeiiieeeesnreeeeenenneeeeennnns 30
FIGURE 3.1 CRM BOX CCD VIEW COVERAGE.......ccccttriiieriieeniieeniieenieeesiiee e 33
FIGURE 3.2 KOUN CRM BOXES RUNWAY SIGHTING. ...ccveeruienieeieenieeieeneeeeeens 34
FIGURE 3.3 CRM SYSTEM RUNWAY SURVEY...cccceeiitiimiiiniiiniienieeniteniieeieeseeeieens 35
FIGURE 3.4 LANDING LIGHT IMAGE CENTROID.ccc0veeriieeiieeeireenneeenreeennneeennne 37
FIGURE 3.5 ASHTECH Z-XTREME DGPS RECEIVERS. ...cc.ceiviiiiniiiiniiiinieeerieeene 39
FIGURE 3.6 CRM CAMERA AIMING SOFTWARE......ccccuttriiieniieeniieeniieenieeesinee e 40
FIGURE 3.7 CRM DSP FLOW CHART....ccotttiiiiteiieeniiee ettt e 42
FIGURE 3.8 CRM-BOX CAMERA LEFT AND RIGHT IMAGES......ccccccovviiiniienieenne 44
FIGURE 3.9 CRM TSPI ALGORITHM ILLUSTRATION......cc0eeerureeeiieenreeenreeenereeennne 46

viil

FIGURE 4.1 ECEF-XYZ AND ENU LOCAL TANGENT PLANE.cceccvveviiiniienne. 49
FIGURE 4.2 FLIGHT TRACK ENU (LEFT) TO NORMALIZED ENU (RIGHT). 50
FIGURE 4.3 CRM SYSTEM LEFT AND RIGHT VIEW OF CCD.ccccovvvvieriieerennne. 52
FIGURE 4.4 CRM SYSTEM CCD AND TRUTH SYSTEM ANGLE MEASUREMENT.54

FIGURE 4.5 CRM AND TRUTH SYSTEM HORIZONTAL AND VERTICAL TSPI PLOT. 55

FIGURE 4.6 KOUN CRM 3D TSPIPLOT. ..cc.eotitiiiiriieiiieieieeeeeeeeeeee e 57
FIGURE 4.7 CRM SYSTEMS TSE WITH DISTANCE EAST. ...ccccviiiiiiiiniiiicnicceene 58
FIGURE 4.8 CRM-B0OX SYSTEMS AND TRUTH SYSTEM DIFFERENCE IN TIME........ 61
FIGURE 4.9 CRM-BOX SYSTEMS CCD RESOLUTION....cc..ttimiiieniieenieeenieeeniieeenee 63
FIGURE 4.10 CRM TSE DISTRIBUTIONS HISTOGRAM.......cecvvuieiriiiiniiieniienniieeenne 66

X

ABSTRACT

The purpose of this dissertation is to develop a new, novel and low cost
three-dimensional tracking system that can produce a Time and Space Position
Information (TSPI) database for developing an FAA Collision Risk Model (CRM)
for the final phase of flight. This Collision Risk Model TSPI database will then
help the FAA define a better and safer Terminal En-Route Procedures (TERPS)
for air-traffic control in the National Air Space (NSA). The Federal Aviation
Administration (FAA) has attempted to develop a simple and economic solution
to analyze the approaching aircraft’s behavior during the time immediately after
leaving the instrument approach to landing, in the visual segment, during
Instrument Meteorological Conditions (IMC). Normally FAA could use laser or
radar tracking, but it is expensive, does not acquire sufficient data for a
meaningful analysis, and is hampered by the weather itself. The reason this
tracking technique is being researched is that little is known of the aircraft’s
behavior upon leaving the instrument segment of flight in IMC conditions and

transitioning to a visual form of flight to the touch down point during a landing.

The new CRM tracking system uses a pair of stationary CCD cameras to
record the landing lights of the approaching aircrafts at two sides of the runway.
The concept is to apply the left and right pictures from the two cameras to create a
stereoscopic image. The stereoscopic images are then used to triangulate the

position of the approaching aircraft, which becomes their TSPI data. Every CRM

tracking system on a runway includes two CRM tracking units and links to a
central CRM data base server computer by GSM (Global System for Mobile

Communications) wireless network.

The CRM system is new and novel concept and is the first successful low
cost attempt to visually track a high speed approaching aircraft. The system
satisfies the requirement to provide a large volume of track data on an area of the
approach that had not been examined for the risk for collision of each type of
aircraft on final approach after leaving IMC condition. Controller and pilot error
in the critical phase of flight can be determined in order to implement new FAA
procedures for the final approach to landing. This CRM tracking system has
proved its functional integrity and has successfully produced high accurate TSPI
data for the FAA at the University of Oklahoma Westheimer Airpark (KOUN)
and Oklahoma City Will Rogers World Airport (KOKC). This dissertation
discusses the details of the CRM tracking system concept, implementation,
including software and hardware development. This dissertation also includes the
system’s function development, calibration, and system definition errors as well

as a sample of the data produced by the new system.

Chapter 1 Introduction and Background

This dissertation introduces a new and novel engineering solution for
tracking the aircraft on approach to landing during the visual segment of flight.
Until now, the Collision Risk Model (CRM) provides approach obstacle clearance
risk analysis before the aircraft reaches the Decision Height (DH) which is a part
of approach by instrument flight. The contribution of this dissertation is the
development of a system for the Federal Aviation Administration (FAA) with a
methodology to complete the FAA’s Collision Risk Model (CRM) by finishing
the visual segment of the approach to the landing. This research builds on
previous work which developed a partial flight tracking system. The research re-
directs an ongoing research project by developing a new, compact, and unique
image tracking algorithm and hardware host for tracking aircraft on approach in
the visual segment. This dissertation will detail the Collision Risk Model (CRM)
tracking system, which includes software and hardware algorithm development
and implementation and how the system harvested data will complete the FAA’s
current CRM. [1] The research will also detail the algorithm functional

development, calibration measure, and a definition of the system error.

1.1 Background

The Federal Aviation Administration (FAA) has attempted to develop a

simple and economic solution to analyze the approaching aircraft’s behavior

during the time immediately after leaving the instrument approach to landing, in
the visual segment, during Instrument Meteorological Conditions (IMC).
Usually, the FAA could use laser or radar tracking system but it is much more
expensive and does not acquire enough CRM data on a wide variety of aircraft
and airport environment, and is hampered by the weather itself. The reason this
tracking technique is being developed is that little is known of the aircraft’s
behavior upon leaving the instrument segment of flight in IMC conditions and
transitioning to a visual form of flight to the touch down point during an approach

to landing.

ILS dlide Mominal approach Mominal missed approach
9 flight path of flight path of the aeroplane
path
/ the aeroplane

Initiation of the
missed approach
MM procedure

Instrument Path

Visual Path

ILS Origin

Figure 1.1 Typical LIS Guided Approach.

This dissertation develops a three-dimensional tracking system to produce
a Time and Space Position Information (TSPI) database for Collision Risk Model
(CRM) analysis. This Collision Risk Model TSPI database will help the FAA to

define better and safer Terminal En-Route Procedures (TERPS) for air-traffic

control in the airspace service volume. Figure 1.1 is a typical approach path for
an airplane on final approach of flight to landing. ILS and DH represent
Instrument Landing System and Decision Height respectively. ILS is a ground
based navigation system that provides the localizer and glide-slope signal for the
aircraft during an approach. The localizer signal is an outward horizontal beam
which helps align the aircraft in the horizontal plane with the centerline of
approaching runway. The glide-slope signal is a vertical beam that helps keep the
aircraft on an optimal vertical descent path. The DH is an altitude above the
ground level on which a pilot makes a decision whether continue approach to
landing or perform a missed approach. In order to continue the approach, the
pilot must be able to see the runway environment. OM and MM represent the
Outer Maker and Middle Marker beacons respectively. The Outer Maker and
Middle Maker are aligned with approach line in front of a runway and support
additional information about the distance to the runway threshold. The standard
instrument approach is performed using ILS or GPS before the aircraft reaches the
Decision Height, and after the Decision Height is the visual segment in which the

pilot completes the approach to landing or the missed approach in a manual mode.

[1]

1.2 The Task

The concept of this dissertation revolves around developing a pair of

CRM-Box systems, located at the left and right sides of the subject runway, to

capture a stereoscopic image of an approaching airplane’s landing light. The
horizontal angle from the left and right landing light images can determine the 2D
(East and North) horizontal distances of the approaching aircraft. Adding the
vertical angle measurement from either left or right images with the horizontal
distance can be used to calculate the altitude (Up) of the approaching aircraft.
Merging 2D horizontal distances and vertical altitude continuously results in a
three-dimensional East, North, Up (ENU) TSPI track for the CRM visual
segment. The CRM visual segment research is a marriage of the wisdom of the

past tracking concepts with new technology available today.

The work presented in this document solves two major problems
encountered in tracking the visual segment. The challenge of developing a
system platform is to design a completely independent and reliable system, where
these units require no airport infrastructure. The system must be minimally
invasive to the airport environment and not interfere with the mission of the
airport. The hardware of the CRM system must have a watchdog power
management system and the solar charging system to collect and store energy to
overcome no sun during the operational place. The watchdog system must
guarantee the integrity and reliability of the CRM-Box system energy source and

remote control by the CRM server at all times.

There is no current equipment research on tracking multiple identical

landing lights in such large scale at such a low cost. The only similar science is

calculating the astronomical unit (AU) in the early age. [2] Therefore, it is
necessary to create a solution for an automatic tracking algorithm. Figure 1.2
shows a compost set of left and right approach track of more than one aircraft’s

approach landing lights and ambient city light recorded by the CRM-Boxes’ CCD

cameras.
CRM KOUN Flight Test (CRM Left View) CRM KOUN Flight Test (CRM Right View)
+ \‘ - T+ - | ¥
<. wg . :”'~l.'.':
0, e
S s L
ot ” o AOA +
B . :
O N I
* k. T+ :
320.2051 - o - e i - 328.2051 -
b, t :
kefA LTI, .
v :
. :
e) .
e :
o W
é}’*f:«h‘v« 3
..2' o B +
vt s, MREE:
. .
+
. > "”i‘;‘.
g g i
s e 09’00,‘0‘ .
4 -3 RS 1R
SE L R
g MRS VA e SRR
e Eu e L
1641026 e ...,‘,..s‘.‘.....y'.‘.s’w,“] 164.1026 |+~ -
N e ot
ER SRR AP IR "
e S0 N
: w
R S
|RRASR TS VSO PARRE ::.g:o,.
B iy 1 LA
RN
0 bt i 2
N . 3
oy S
ey go:ﬁ.”’u“
‘.r,a'c.-,’«.g! 7 -
: * - :
A : '
: :" :“;‘n& ,}& . e . eat e . .
i i L b P Ted o % -
e ol
7687.6923 951.7949 1115.8974 1280 o 164.1026 328.2051 492.3077
CCD Pixel (1280 % 1024) CCD Pixel (1280 x 1024)

Figure 1.2 CCD View of Approach Landing Lights.

Each blue dot is represents a snapshot of the landing light in time. The
CRM left and right binary images are the combined one night’s capture of the
approaching aircrafts’ landing lights at KOUN. The goal of this research is to

develop a unique algorithm that creates a stereoscopic image from the left and

right pictures that triangulates the approaching aircraft’s three dimension
positions for its TSPI data. The problem is also to develop a stable algorithm that
matches the left and right landing lights images on a multiple image environment
which indicates the same approaching aircraft and produces a 3D Time and Space

Position Information (TSPI) database for Collision Risk Model (CRM) analysis.

[3]

1.3 Dissertation Outline

Chapter 1 presents the purpose and concept of a CRM tracking system and
points out the dissertation’s contributions, background, and a path to the solution
of the problem. Chapter 2 describes the conceptual system function and
architecture. Chapter 3 presents the methodology and the developed algorithms
for an effective solution to tracking multiple aircraft for Collision Risk Model
(CRM) analysis. Chapter 4 presents the CRM system analysis and evaluation of
the CRM system error. Chapter 5 presents the conclusions and foreseeable future

research.

Chapter 2 CRM System Architecture

To achieve the final part of the visual segment of the CRM research, a
complete data acquisition system was developed, which relies on a unique and
robust system architecture. The CRM system has three major components which
include the CRM-Box systems on the airport, the CRM system remote control
server, and the CRM database server. These three components of the CRM
system form a powerful network to collect and sort the CRM data automatically

in the database for FAA CRM analysis.

The function of a pair of CRM-Box systems is to capture the stereoscopic
images from an airplane’s landing light using a self provided energy source and a
pair of wireless links to the CRM server. A pair of CRM-Box systems is placed
at the left and right side of the runway. The CRM-Box systems use the horizontal
phase shift angle to determine the distance between the runway threshold and an
approaching aircraft’s horizontal position. Figure 2.1 shows the anaglyph
approaching images taken from the CRM-Box system at KOKC. The anaglyph
image builds from a single approaching aircraft with two horizontal phase shift
angle images. The vertical angle measurement and the horizontal distance are
used to calculate the altitude of the approaching aircraft. With horizontal position
and vertical altitude, the CRM system can build an East, North, Up (ENU) TSPI

database for this approaching aircraft.

Figure 2.1 Anaglyph Approaching CRM Image.

The CRM system remote control server is a web based network remote
control system. The remote server acquires the necessary information such as
weather conditions at each airport and the CRM-Box system’s health status to
determine if the CRM-Box system needs to be powered on or off. The purpose of
the CRM system remote control server is to reduce the CRM-Box’s system power
consumption and only acquire the CRM data during Instrument Meteorological
Conditions (IMC). The CRM database server organizes the CRM data and sorts
CRM byte package by date and airport. Figure 2.2 shows the CRM architecture

diagram with the three major components.

10

GSM ISP
CRM !

CRM Remote
Box Control
Master / Server

-

CRM

Database
Server

CRM

Box
Slave _/

Figure 2.2 CRM System Architecture.

2.1 CRM-Box System Implemented Architecture

The CRM-Box system chassis is built in a 30"x24"x12" industrial
enclosure. One side of the box has a glass window for observation and an
aluminum frame structure on the top for holding a solar panel. Each box was
designed with aluminum panel that is fixed to the bottom of the box for placing
the electronic components and batteries. Each CRM-Box system is equipped with
a CRM watchdog board developed as part of this research, a 3.5” VIA-C3 Eden
mini-board computer with BusyBox Linux Embedded System, a charge coupled
device (CCD) with 50mm lens and IR filter, a patch directional antenna, a
lightning surge arrester, three 12-volt batteries, and one 220-watt solar panel
module. Figure 2.3 shows the master CRM-Box system at right side of runway

17 at the University of Oklahoma Max Westheimer Airport (KOUN).

11

Figure 2.3 KOUN Master CRM-Box.

The master and slave wireless communication interface and solar charging
controller are also integrated into the CRM watchdog PCB. The master CRM-
Box system has an additional GSM cell phone for wireless internet data link to
connect to the CRM remote control and database server. The slave CRM-Box
system was developed to use a local wireless link to the master CRM-Box system
and share the internet service provide by the master CRM unit. Figure 2.4 shows
the CRM-Box system function diagram and figure 2.5 shows the components

inside the CRM-Box system.

12

Patch Solar
Antenna Panel

Lighting
Surge CRM Watchdog

Board

Wireless
Modem

——————

ATX Power
Supply

——————————

Micro-
Controller
L TR
J

Serial Port

——————————d)

SSD

Flash
Memory
—_—

V3
CPU

USB Port

-/

Embedded System Computer /

GSM
USB USB
Cell-phone
Camera Hub
Modem

Figure 2.4 CRM-Box Function Diagram.

13

Lighting Surge

i

USB Camera ¢&
_F_ct@ Lens

Figure 2.5 CRM-Box System Components.

2.1.1 System Watchdog and Solar Charging Controller

A system watchdog was required to solve continuity and stability issues of
the CRM-Box system hardware. The CRM watchdog board includes a CRM
watchdog microcontroller system, CRM-Box master to slave communication
system, an ATX DC-DC converter power supply unit, and the system solar
charging management system. The heart of the CRM-Box system watchdog is an
ATmel ATmega8 microcontroller. The ATmega8L is a high-performance AVR
8-bit RISC architecture microcontroller with operating voltages between 2.7 and
5.5 V. When the ATmega8L is active, it only requires 3.6 mA to run and 1 mA at
idle mode. The ATmega8L is capable of 1 to 8 MIPS with byte-oriented two-

wire serial interface designed for useful debug or information display. The

14

ATmega8L can be programmed by C code and compiled by the AVR-GCC (GNU
C Compiler) with the powerful AVR Library. [4] The microcontroller manages
the system power level and solar charging to the batteries inside the CRM-Box

system. Figure 2.6 shows the watchdog layout in the CRM-Box system.

TTL Debug

o0 O

ofo|
o o

0 o
oMol

oo

20071022 o

Figure 2.6 Watchdog PCB in the CRM-Box System.

The power management of the CRM-Box computer is done by sleep time
control from the CRM remote server and the condition at local CRM-Box system.
When the system is powered on for the first time, the microcontroller will
determine the local CRM-Box conditions, including power level and master
CRM-Box online status. After the status checks, the CRM-Box watchdog
microcontroller will power on the CRM-Box computer and wait six minutes

allowing the computer to boot up and connect to the CRM remote control server

15

through the GSM cell phone ISP. After six minutes of no response from the
CRM-Box computer, the CRM-Box watchdog will then force the computer to
sleep for another three minutes by shutting down the power of the CRM-Box
computer and then powering on again. This routine is in order to force the power
cycle of the CRM Embedded System by directly cutoff the computer’s main
power supply. If the CRM-Box computer successfully boots and connects to the
CRM remote control server, the server will tell the CRM-Box watchdog to stay
powered on or sleep for a precise time and then power the computer off. This
routine is set by an alarm clock for the CRM-Box Computer to wake up again and
stay in contact with CRM remote control server. The reason for this routine is
after the CRM-Box computer is been shutdown by the order of the CRM remote
server, the watchdog microcontroller in the CRM-Box system could not directly
connect to the CRM remote server without the TCP-IP protocol function. Figure

2.7 shows the system power management flow chart of the CRM-Box system.

The Timeout Refresh Code is sent often to indicate the CRM-Box
computer status and determine if the CPU is still alive or CRM-Box system is
functioning normally. If the CRM-Box computer is running normally and not
halted for some reason, the CRM-Box computer should send out the Timeout
Refresh Code (DE AD FA CE EE) to the CRM-Box system watchdog through a
one-way RS-232 serial communication port. The Timeout Refresh Code should

be sent often and for a period not longer than 360 seconds. Any task software

16

runs in the CRM-Box embedded system crash or in a wait dead loop will cause
the computer not send out this message code. Table 2.1 shows the typical CRM-
Box computer to watchdog command codes. The DE AD FA CE is the header for
CRM-Box system command codes. The inclusion of the header code in CRM-
Box system commands reduces the chance of miscommunication between CRM
data and CRM commands. The header code can avoid triggering the sleep or
power off code accidently from the CRM raw data that is sent through the same
serial port at a different baud rate.

CPU
Power On

No Is CPU
Alive?

Yes

No Is Battery
Not Low?

Yes

No Is Master No Is

. PowerOn? / Master?

Yes

Is CPU No
Sleeping?

Yes

CPU
Sleeping

-

Figure 2.7 CRM-Box Computer Power Management Flow Chart.

17

DE AD FA CE 55 Power Off Command Code
DE AD FA CE EE Timeout Refresh Code
DE AD FA CE AA XX Sleep XX sec Command Code

Table 2.1 CRM Watchdog Command Codes.

Battery
Draining

—

No Is Battery

Chargeable?
Yes

Battery
Charging
1200 Sec

—>

No Is Battery

Full?
IYes

Battery
Cool-Down
600 Sec

Figure 2.8 CRM Box Solar Charging Flow Chart.

The purpose of the solar charging management of the CRM-Box system is
to optimize the power from the solar array as well as preventing the batteries from

over charged. Any over charge would raise the battery’s temperature, reducing

18

the battery’s life and energy capacity. The watchdog microcontroller will check if
the batteries need to be charged and compare the solar voltage level and battery
voltage level. When the batteries need to be charged and the battery voltage is
less than solar voltage, the watchdog microcontroller will switch the system to
charge mode. Next, the watchdog microcontroller will check battery voltage level
every twenty minutes until the batteries are completely charged and follow with a
ten minute battery cool down cycle. The battery cool down cycle allows the
voltage level to be measured correctly by the CRM system watchdog after one
complete charge cycle. Figure 2.8 shows the CRM-Box solar charging flow

chart.

2.1.2 Master and Slave Wireless Communication

There are two stages of communication between the master and slave
CRM-Boxes system and the CRM-Box system to the CRM database server. The
communications include the command codes to the CRM-Box system watchdog
and the CRM track data with system status information to the CRM database
server. These two types of information will transmit data by sharing one serial
communication port due to CRM-Box computer hardware limits. A new
technique will switch dual baud rates to separate these two types of transmissions.
The baud rates are 1200 bps (bits per second) and 38400 bps with consideration
for electric signal separation, minimum data transmitting speed needed, and

wireless communication bit error rate (BER).

19

Both CRM master and slave box systems need to be connected to the
CRM server through the internet in order to transmit the CRM data back or
receive CRM remote control commands. Cost consideration require, the master
CRM-Box system to share the internet with the slave CRM-Box system through
WLAN (Wireless Local Area Network) with PPP (Point-to-Point Protocol) link
encap which construct on the serial ports between both master and slave CRM-
Box system computer. Figure 2.9 shows the two types of CRM-Box
communications previously mentioned with GSM cell phones, internet, and
private wireless link. The wireless internet on the master CRM-Box system is
established on a GSM cell phone based Internet Service Provider (ISP) and shares
the network IP through private network protocol. The CRM-Box private network
uses a 24-bit block (10.0.0.0-10.255.255.255) single class A protocol which has
an IP address of 10.0.0.1 to the master CRM-Box system and another IP address

of 10.0.0.2 assigned to the slave CRM-Box system.

Internet

)

Sync Master System Sync Slave System
D .

Master Data Slave Data

Slave Data

Cellphone Modem Modem

Figure 2.9 CRM-Box System Communications.

20

The wireless PPP communications between the master CRM-Box system
and slave CRM-Box system utilizes a pair of Aerocomm AC4490x 900 MHz
transceivers with a pair of HyperLink Technologies HG908P flat patch antennas.
The AC4490 is a low cost low power wireless transmitter and the patch antenna
will improve the gain of the wireless signal by its directional radio wave
character. The Aerocomm AC4490 is capable with full handshaking serial
communication wireless modem to ensure transmission quality. The AC4490 is a
frequency hopping spread spectrum (FHSS) wireless transceiver with very low
power consumption at 200 milliwatt for typical battery powered implementations
such as the CRM-Box system. The AC4490 is a very low latency and high
throughput Original Equipment Manufacturer (OEM) package with qualified
industrial temperatures. The HG908P antenna is an 8.5 inch square flat patch
antenna which has a 50 Ohm impedance and 8 dBi gain at a frequency around
902-928 MHz. This patch antenna has a 75 degrees in horizontal beam width and
65 degrees vertical beam width. The HG908P antenna is perfectly suitable for the
CRM outdoor airport environment because of its rugged and weatherproof
construction features, sealed internal elements, and an aesthetic UV-stable, UL

flame rated white plastic radome.

2.1.3 BusyBox Linux Embedded System

The concept of the CRM visual segment research is based on optically

recording the approach aircraft’s landing lights and calculating the aircraft’s 3D

21

Time and Space Position Information. By using the TSPI database, the data can
be used for studying the airplane’s behavior during Instrument Meteorological
Conditions (IMC). This goal requires a powerful computer to digitize the optical
images in order to translate the images into a set of meaningful TSPI data. The
COMMELL LE-362E6 VIA-C3 computer takes on this task with a miniature
BusyBox Linux embedded system. [5] Figure 2.10 shows a picture of a VIA-C3
computer used inside a CRM-Box system. The computer is a COMMELL VIA
C3 Eden architecture CPU board which uses less than 20 watts in the full
computing mode. The BusyBox Linux embedded system is running from a
compact flash memory card as a SSD (Solid-State Drive) instead of an unreliable
mechanical hard drive. The computer also has two Universal Serial Bus (USB)

2.0 ports for image acquisition.

There are two kinds of communication between the master and slave
CRM-Boxes system as mentioned in prior paragraph. One is the CRM data
acquired from slave CRM-Box system and needs to be transmitted to CRM
database server through a master CRM-Box system’s GSM internet service. The
other communication is the CRM-Box embedded system to watchdog command
codes communications, which includes CPU status, powering down the CRM-
Box computer, and setting the sleep timer. The two communications share the
only serial port on the VIA-C3 computer board. In order to filter out the CRM

command code message and CRM image data to different targets, the CRM-Box

22

embedded system switches between two baud rates. The embedded system uses a
baud rate of 38400 bps to communicate between both master and slave CRM-Box
systems. When the CRM-Box computer needs to transmit the CRM-Box
command codes to the CRM-Box system watchdog to update the power
management status, such as keep awake or sleep for certain time, the CRM-Box
embedded system switches to a baud rate of 1200 bps. The watchdog serial
receiving channel pin or Rx port will ignore the 38400 bps baud rate transmission

of the CRM master and slave communications.

Figure 2.10 VIA C3 Embedded System Computer.

23

To capture the image from the approaching aircraft’s landing lights, the
VIA C3 computer needs to be connected to an optoelectronic device. The
OmmVision OV9121 USB CCD camera is the optoelectronic device which
connects through the CRM computer’s USB 2.0 port. The OV9121 USB camera
is a one mega-pixel black and white CCD which has an array size up to
1280x1024 (SXGA) pixels. The pixel size is 5.2 um x 5.2 um and has an image
area of 6.66 mm x 5.32 mm (1/4" CCD). The CCD image is focused by a 50 mm
telescope lens (V-4350) made by Marshall Electronics, Inc. The V-4350 50 mm
telescope lens is an ideal lens for capturing the approaching aircraft’s landing
light in the far field airport environment because of its angle of view at 04-03-05
(H-V-D Degree) when applied to a 1/4" CCD. Figure 2.11 shows the OV9121

CCD with V-4350 50 mm lens.

4

- ' 50mm Lens

B

-f’
1l
4
o
o
N

N

NN\ 7 7774

Figure 2.11 OV9121 CCD with 50mm Lens.

The OV9121 CCD has wide range of light response photon sensor and can
detect wavelength from 400 nm to 1150 nm. Since the visible light is about 400

nm-700 nm, the CCD can also detect the Infrared (IR) radiation. Figure 2.12

24

shows the OV9121 Light Response between wavelength and corresponding
efficiency. However, the CCD infrared capable part is a down side of this
tracking system. Because the most aircraft landing light uses halogen lamp, the
landing light is also a strong IR source. The IR causes the image gets too bloom
when the aircraft is close to the CRM-Box system. The new designed lens is
equipped an IR cut-off filter to reduce the bloomed image from the aircraft’s
landing light. The IR cut-off filter also reduces the digital image processing load
and helps in the location of the aircraft’s landing light for the CRM system.

Figure 2.13 shows the IR cut-off filter IRC30 transmission value.

Monochrome Response

1.00
0.90
0.80
0.70 7
0.60
0.50
0.40 1
0.30 1
0.20
0.10
0.00

Efficiency

600
650
700
750
200
a50
S00
950
1000
1050 4
1100 —
1150

f I
o o
o 'y}
[Ty] 0

400
450

Wavelength (nm)

Figure 2.12 OV9121 Light Response.

25

IR filter (typical) transmission values

100

a0

w2 2
NI A\
A

IRC20
IRC21
IRC30
IRC4D

Transmission{%)
= =
L—1
/‘_

L\
\ A\

10 —

350 450 550 630 750 250 950

wavelength (nm)

Figure 2.13 IRC30 IR Filter Transmission Value.

2.2 CRM System Remote Control Server

There are several airports in the United States that have been chosen to
equip with the CRM-Box systems for the visual segment CRM study. In order to
keep these CRM-Box systems working properly during Instrument
Meteorological Conditions (IMC), a central CRM-Box system remote control
server is required. The CRM system remote control server is a Linux Based A-
M-P (Apache, MySQL, PHP) web and database server. The Linux server has a
corn job set up for a scheduler of every fifteen minutes to run the weather PERL

script, “/home/ben/src/logger/weather.pl”. [6]

26

The PERL is a scripting programming language that was originally
developed in UNIX systems for a high-level, general-purpose, interpreted,
dynamic programming language. PERL is a very powerful programming
language in manipulating text that borrows many features from C, shell scripting
(sh), AWK, sed and Lisp. [7] PERL also wins the nickname of "the Swiss Army
knife of programming languages" because of its multi-functions and flexibility.
The CRM remote control and database server runs PERL repeatedly in scan,
search, insert, assembly, sort, and producing texts. For example, PERL can create
a web address by inserting the assembly airport ID, build a database by scan,
search and sort from a webpage or text file, and produce a webpage from

assembly texts or database. [8]

The weather PERL script automatically collects the weather information
from a National Oceanic and Atmospheric Administration (NOAA) website by
using a unique NOAA web address format which contains the entire CRM subject
airport ID (KXXX), such as KOUN, KOKC or KLAX. The following is an

example address.

“http://adds.aviationweather.noaa.gov/metars/index.php?station_ids=KATL %2
0KBOS%20KCVG%20KLAX%20KPDX%20KSFO%20KOKC%20KBED%2
0KHOU%20KMEM%20KOUN%20KSEA&std_trans=standard&chk_metars

=on&chk_tafs=off”

27

The special query of all CRM subject airport weather information will be

displayed on this special NOAA website.

On the webpage, NOAA provides

Aviation Digital Data Service (ADDS) in METeorological Aviation Report

(METAR) format and its translated information for each request airport. The

weather PERL script then sorts the data into a Linux MySQL database and

produces a PHP webpage to display the CRM-Box system status. Figure 2.14

shows a sample of the CRM-Box status webpage that automatic generate by

PERL on the CRM-Box system remote control server.

TE 4R |{) CRM: Database Query

=

CRM Box Status: Jul-16 23:00:25

id check {1) check {2} status sleep

KATL - - - 60.0 min.
KEBED - - - 0.0 min.
KBOS - - - 60.0 min.
KCV¥G - - - 30.0 min.
KHOU |- - online

KLAX |- - online

KLAY 14 a2 online

KHEH - - - 110.0 min.
KOKC 100970 - - 30.0 min.
KOUON 1272 21121 - 60.0 min.
KPDX 6607906 6613203 online

KSEA 187 - online

KSFO 21 242 online

Override weather conditions:

KATL [cycle 30
Override disable:

o

View Statistics:

katL 110

weather age | weather
FEW &000 SCT 6000

90206
1216249226
194038
287249
95070
19951
19952
19713
6273
OVERRIDE.
19235
22356
19717

BEN
BENH
BEN
BEN
EBEN

BEN

BEN

FEW
EBENH

7000 FEW 7000 SCT 30000
4000 SCT 2500
25000 FEW 2900 OWC 2000 SCT 4200

1200
1200

s000

2000

coon
1100

ave
ave

SCT

ovC

ave
FEW

1000 SCT 20000
1000 SCT 20000

10000

2000

1000
1300 OVC 1200 SCT 1400

Figure 2.14 CRM-Box System Remote Control Server Web.

28

The weather PERL scripted Common Gateway Interface (CGI) webpage
can automatically turn on or off the CRM-Box systems in the field according to
their airport weather condition. If necessary, the CRM-Box systems can also turn
on or set the sleeping time manually from the webpage as an override function.
The CRM-Box system status web page also provides the CRM-Box systems’
check in age, sleeping time setup, weather check in age and weather information.
By selecting the airport ID label, that airport CRM-Box system’s health condition
such as uptime, system load, system temperature, and voltage will display on the
web page. Figure 2.15 shows the KOUN CRM-Box system’s status webpage that
is automatically generated by PERL on the CRM-Box system remote control

SCrver.

W | @ CRM: KOUN Status

KOUN Status: May-16 21:58:24

age id |uptime| insert_time | lag frames0 framesl frames2|points0|pointsl points2 loadl|/loadl5/load5| = _temp = volt
1327 (0) KOUNL|5432 |May-16 21:36:18[1 5429 5429 5429 £33380 |1025551 658125 |1.159 |1.503 |1.325 104.6 (40.3) 12.853
1542 (215) KOUNZ 5111 |May-16 21:32:43 9 5077 5077 5077 521716 (958361 461005 (0.000 0.000 |0.009 108.2 (42.9) 12.479
1568 (241) | KOUN1|5252 |May-16 21:32:17|0 5189 5189 5189 630438 |978907 627415 [1.374 |1.598 [1.489 105.2 (40.6) 12.9325
1792 (250) |KOUN2 4871 |May-16 21:28:33/3 4837 4837 1837 521253 [944053 (456694 (0.064 0.005 |0.037 106.3 (41.3) 12.639
1808 (240) | KOUN1|5012 |May-16 21:28:17/0 4949 4949 1949 629978 (929503 602863 [1.439 |1.651 [1.567 105.2 (40.6) 13.174
2022 (230) KOUNZ 4631 |May-16 21:24:43[10 4598 4597 1597 518633 [887935 454118 (0.000 0.000 [0.004 106.3 (41.3) (13.370
2046 (238) KOUNL 4773 |May-16 21:24:191 4710 4710 1710 625545 [BB2363 568568 |1.555 1.709 |1.676 104.6 (40.3) 12.479
2274 (252) KOUN2 4391 |May-16 21:20:311 4358 4357 4357 515864 (818254 453236 |0.022 0.006 |0.027 105.7 (41.0) 12.461
2287 (241) | KOUN1 4532 |May-16 21:20:18/0 4470 4469 1469 618544 (834305 561897 [1.646 1.723 |[1.710 104.6 (40.3) 12.568
2505 (231) KOUN2 4151 |May-16 21:16:40 8 4117 4117 4117 507384 [?50813 452422 (0.118 0.024 |0.050 105.7 (41.0) 12.568
2527 (240) KOUNL 4292 |May-16 21:16:181 4229 4229 4229 595497 |789870 (557830 |1.667 1.750 |1.737 104.6 (40.3) 14.155
2754 (249) KOUN2 3911 May-16 21:12:311 3877 3877 3877 502004 [720617 442172 (0.000 0.026 |0.012 106.3 (41.3) 13.E66
2768 (241) KOUNL 4052 |May-16 21:12:17/0 3989 3989 3989 583581 |745229 524953 |1.543 1.751 |1.636 105.2 (40.6) 12.633
2986 (232) KOUNZ 3671 |May-16 21.08:39 0 3637 3637 3637 492033 |717887 433050 (0.000 0.050 |D.042 106.9 (41.6) 13.263
3008 (240) | KOUN1|3812 |May-16 21:08:17|0 3750 3749 3749 £E3883 |700194 496288 [1.774 |1.801 |1 810 105.2 (40.6) 12.479
3225 (239) KOUNZ 3431 |May-16 21:04:40(3 3397 3397 3397 488443 [699737 431185 (0.131 0.073 |0.109 106.9 (41.6) (12.960
3246 (238) | KOUN1|3572 |May-16 21:04:181 3510 3509 3509 549185 |652133 (467176 [1.573 |1.803 [1.820 105.2 (40.6) 12.550
3465 (240) KOUN2 3191 |May-16 21:00:408 3158 3158 3157 461291 [656523 420043 (0.111 0.064 |0.101 106.9 (41.6) 12.497
3487 (241) | KOUN1|3332 |May-16 21:00:18/0 3270 3270 3270 512477 (603943 432806 (1.638 |1.811 [1.865 104.6 (40.3) 12.942
3702 (237) KOUN2|2952 |May-16 20:56:43[10 2918 2918 2918 423519 [612892 (395965 [0.027 0.045 |0.049 106.9 (41.6) |12.622
3727 (240) | KOUN1|3092 |May-16 20:56:18/0 3030 3030 3029 469313 [559272 404428 [1.801 1.818 |[1.922 104.6 (40.3) 12.461

Figure 2.15 CRM-Box Remote Control Server Web.

29

2.3 CRM System Database Server

Every day, the CRM-Box systems will transmit huge amounts of data back
to the CRM database server piece by piece in a small data packages. These
intermittent data packages will be packed and sorted one day after being received
by the Linux corn job which will run a sorting PERL script algorithm to organize
and form the CRM-Box system’s raw data. The sorting PERL file path on the
CRM database server is located at “/home/ben/src/repack/sortp.pl”. The sorting
PERL script algorithm will create a folder named in order of year-month-day,
such as “YYYYMMDD?”, and then create an airport ID named folder under the
date-folder. Each CRM intermittent data will be assembled as raw data and put in
order of their airport ID folder under the date folder. Figure 2.16 illustrates the

CRM raw data structure from compressed and characterized images.

||| sec |psec |#|x1§y1§b1|x2§y2§b2| sec |psec |#|x1|y1|b1|___|

Frame Header C1 C2 Frame Header C1

File Header

Figure 2.16 CRM Raw Data Structure.

The CRM raw data file stream starts with the file header which includes
airport and camera ID using two characters format. Following the file header is
the frame header which includes Coordinated Universal Time (UTC) second,
microsecond and the number of landing light points in each frame image in order

of two 4-byte and one 2-byte unsigned integers. The approaching aircraft’s

30

landing lights and some other lights pixel locations and brightness are written in

three 2-byte unsigned integers.

31

Chapter 3 Methodology and Algorithm

Determining the three-dimensional positions of the approaching aircraft in
the final visual segment of the landing path is similar to calculating an
astronomical unit such as a distance from a star to Earth. The science behind the
CRM visual segment research is solid geometry; the proper placing of the
observation location and establishing a reference for calibration is the critical
point for success to this CRM project. In other words, acquiring data through a
proper method means less mathematical manipulation. The unique digital image
processing and trigonometric function algorithm provides an effective solution for
reconstructing the visual segment of the approaching airplane’s Time and Space

Position Information (TSPI).

3.1 CRM-Box System Runway Sighting

For the optical solution, the 50mm telescope lens for 1/4" CCD is ideal for
this research and covers the entire approach field by using only one CCD camera
instead of three used in an earlier attempt. This design will make an approach
observation channel approximately 200 meters wide and at least 3 Nautical Miles
(NM) from the touchdown point which will cover the typical visual segment of a
aircraft on approach to landing. Figure 3.1 shows the sketch for the CRM-Box
systems on each side of the instrumented runway as well as the ideal field of

coverage. Figure 3.1 also displays the physical CCD minimum resolution (meter

32

per pixel) by this new telescope lens. The blue (CRM Master) and red (CRM
Slave) lines intersection is the three dimension solution detection area is a typical
approach to landing should fly through the channel between blue and red doted
lines. The red dot is represents the runway touchdown point. The reason the
touchdown point is not inside the CRM the detection area is the limited of runway
at KOUN. The runway length at KOUN is about 5000 feet and is much shorter

than a normal commercial airport which usually has about 10,000 foot runways.

[9]
CRM Box KOUN at Runway1? EMU Sketch
ADD_ R LR R S : AR EREEERS :
CRM Slave Eiox is 92.69 Meters West of R17

— 2DD bt 2 % b s ok e o o s P B b e i e e N P B B T R e, s e it
= cch Resolutmn at Threshold is D 14538 M
£ : :
r=g
g]
=
o
=
w200

4m i L :

-2000 -1000 0 1000 2000 3000 4000 5000
EMU : East(meter) [Horizontal Wiew]
GO0
500

EMU : Up(meter)
[au] (5] =
(] [} [
(=] [mm] (=]

=
[}

CCD Resoluti@n at Threshald is 0 1493 MetersfF‘if}(eI
1 1 1

] N o | |
-2000 -1000 0 1000 2000 3000 4000 5000
EMU : East(meter) [Vertical Wiew]

Figure 3.1 CRM Box CCD View Coverage.

33

Placing a calibration point in front of the CRM-Box systems through
precision survey aids in the calibration of the CCD orientation and will also allow
for checking any minor changes in CCD orientation. Figure 3.2 illustrates the
KOUN runway 17 master and slave CRM-Box systems and reference rods
arranged on the satellite photo on the top of the figure. The bottom two pictures
are taken at top of the KOUN master CRM-Box system to show the view of
heading at bottom left of the figure. The view of calibration rod in front of the

master CRM-Box system is at bottom right of the figure.

KOUN CRM_Remote
KOUNECRMEMaster

KOUN35End /\

Figure 3.2 KOUN CRM Boxes Runway Sighting.

34

The method requires a land survey transit instrument placed at the center
of the subject runway to point out the perpendicular line relative to the runway for
placing the master and slave CRM-Box systems at a distance of about 100 meters
from the runway. The TOPCON Auto-Level AT-F1A is the land survey leveling
instrument using in the CRM project. The airport will require at least 250 feet
clear zone along the runway or taxiway to avoid the potential collisions. The
leveling instrument is used again at both master and slave CRM-Box system
locations to apply a previous point on the center of the runway that indicates two
parallel lines relative to the instrumented runway. The two lines have same
heading as runway 17-35 and at right side of runway 17 for master CRM-Box
system and left side for slave CRM-Box system. Figure 3.3 shows the CRM-Box

system side survey and the three parallel lines indicated in red arrow.

CRM Reference
Box L ” Rod

100 Meter

]
100 Meter

CRM Reference
Box R ~ Rod

Figure 3.3 CRM System Runway Survey.

35

Both KOUN runway 17 CRM-Box systems observe the KOUN runway 17
aircraft. Two parallel lines also create the CRM-box system CCD orientation
heading and can be placed the reference rods at about 100 meters in front of each
CRM-Box systems for CCD aiming, alignment, and calibration. The red and blue
dot lines on the top of figure 3.1 should match these two survey parallel lines.
This special CRM-Box system sighting design and the angle of view from the
50mm telescope lens provide an ideal detection zone for observation the
approaching aircraft. The proper CRM-Box system runway sighting will
significantly reduce the CRM system digital image processing work load and

limited the noise signals from ambient city lights.

3.2 Data Acquisition

The CRM data acquisition is a series of optoelectronic processing that
transfer images from approaching aircraft’s landing light into the electrical
impulse. The optoelectronic signal is digitalized frame by frame and becomes the
continuous two dimension raw TSPI data of each approaching aircraft. Because
of energy consumption at the field CRM-Box system, the digital image processing
of the CRM system is separated into two stages: one basic digital image
processing at the CRM-Box system computer and the other, a more complicated
digital image processing, at the CRM database server. The first basic digital
image processing method calculates the landing light image pixels from a CCD

into a single location by applying a gradient descending centroids algorithm.

36

Figure 3.4 top shows aircraft’s blurry landing light and figure 3.4 bottom shows

two different landing light image centroid algorithms. [10]

. %

Mathematical Centroid Gradient Descent Centroids

Figure 3.4 Landing Light Image Centroid.

The gradient descending centroids algorithm starts with locating possible
bright spots from the CCD image. [11] The algorithm also applies the hill-
climbing algorithm to locate the local maxima brightest spot for the possible

aircraft landing lights. This method allows separation of the landing light’s cloud.

37

[12] Then the mathematical centroid or mean centroid algorithm applies the
physical center of mass to find the landing light’s cloud location and remove the
duplicate points. The gradient descending centroids algorithm is produces a better

aircraft’s TSPI resolution for the CRM system. [13]

Usually an aircraft is equipped with more than one landing light at the
front landing gear. The gradient descending centroids algorithm is capable of
pointing out the locations of two or more landing lights near each other. The 2D
raw TSPI data package or CRM raw data structure includes UTC time when
acquiring, 2D pixel locations of aircraft’s landing lights, and the brightness of the
lights for one frame of CRM raw data stream. The CRM raw data then transmits
via GSM wireless network to the CRM database server for second stage digital

image processing.

3.3 System Calibration

A system without calibration is useless and will yield results in poor data.
After the CRM-Box systems are deployed in the field, a system calibration is
necessary to guarantee the CRM system functions correctly. The CRM system
calibration includes static land surveys, CCD lens orientation aiming, and a
dynamic calibration flight. Each calibration step will fine tune the CRM system,

resulting in an exceptional measuring tool for tracking an approaching aircraft.

38

Figure 3.5 Ashtech Z-Xtreme DGPS Receivers.

The purpose of static land survey is to locate the ENU (East, North, Up) of
both master and slave CRM-Box systems relative to the instrumented runway
threshold and check the CRM-Box systems runway sighting. The static land
survey consists of four locations that include both master and slave CRM-Box
systems and their calibration rods. This survey data combines the subject runway
threshold and end points which can be accessed from the airport database to
calculate both master and slave CRM-Box systems heading. The Ashtech Z-
Xtreme differential GPS (DGPS) receivers are used to calibrate the CRM system

in both the static land survey within centimeter accuracy and dynamic flight

39

calibration within half meter accuracy. Figure 3.5 shows a pair of the Ashtech Z-

Xtreme DGPS receivers.

'—?;l CRWCameTaiRecorden \.3 E.E' ﬁ‘

|
1

Rec

Stop

1000 B ms | 0| 2080807034303 (UTC) o Raw |
Figure 3.6 CRM Camera Aiming Software.

A Windows graphical user interface (GUI) application software was
developed in C# to properly aim the CRM CCD Cameras. The main function of
the CRM camera aiming software is to capture the CCD image from the USB port
and plot additional horizontal and vertical half degree angle of view ticks for
reference. The CCD aiming scope software also has a center crosshair plot on the
capture image to indicate the center of the CCD pixels. Figure 3.6 shows the

CRM camera aiming GUI.

40

With this CCD aiming software, the CRM CCD camera can be precisely
aligned within one tenth of a degree horizontally using reference rod in front of
the CRM-Box systems. The dynamic calibration flight uses the Ashtech Z-
Xtreme in the kinematic mode as a truth system to record one flight of TSPI data
and then compare the data with master and slave CRM camera data to compute
the lens’ true angel of view and the center offset within one hundredth of a

degree.

3.4 Digital Image Processing

The second stage digital image processing starts with unpacking the binary
CRM raw data from the CRM database server and forms a comma-separated
values (CSV) file with UTC time, x pixel location, y pixel location, and
brightness index value columns. Both master and slave CRM-Box system CSV
files are loaded to a MatLab script for the digital image processing program to

reconstruct the subject runway TSPI data of the day.

41

Match CRM
Left/Right
UTC Time

Is Left/Right
Vertical
Angle Match?

No

Calculating
ENU E

\ 4

Is Ranging

Distance In
Limit?

Yes

Trash the No
Data

D—

Calculating
ENU N
ENU U

Are ENU N
and ENU U
In Limit?

Find the
Maxima
Brightness
Point

TJ

Save the
ENU and
UTC+1

Figure 3.7 CRM DSP Flow Chart.

42

First in the MatLab script, the dynamic calibration data of left and right
CCDs center offset and lens’ angle of view are added to align the master and
slave CRM-Box system’s data with same UTC Time. Then transform the pixel
locations to the angles of view data with matched vertical angles to less than 0.05
degree from left and right CRM-Box systems image. The Computed ENU data
must be within the setup limits and pick up the brightness point for this UTC

group. Figure 3.7 shows the CRM second stage DSP flow chart. [14]

The vertical angle matching is a simple and efficient algorithm of digital
image processing that determines which two points belong to one single landing
light from the left and right CRM-Box system images. The vertical angle
matching algorithm also automatically filters out the scattered ground lights. This
is because the typical aircraft approach to landing is located at the designed
intersection of detecting zone. The probability of both master and slave CRM-
Box system observations to an approaching aircraft’s landing lights is extremely
higher than the other ambient city lights when vertical angle comparison is
applied. In most cases, the scattered city lights are not even in the intersection
detecting zone. Figure 3.8 shows the CRM-Box system left and right images and
demonstrates the vertical angle matching algorithm. N1 is second aircraft’s
landing light captures by left CRM-Box system and N2 is the ground tower light
captures by the right CRM-Box system. N1 and N2 are noise lights relative to the

approaching aircraft. When A@, is equal to A@g, the left object and right object

43

are captured as the same object. For example, the A@x; is not equal to ADg or
A@rny, there is no matched N1 image from the right side of the CRM-Box system
image and N1 is designated noise. N2 also has no matched image at the left side
of the CRM-Box system image. N1 and N2 then are filtered out by a vertical

angle matching algorithm.

Figure 3.8 CRM-Box Camera Left and Right Images.

3.5 TSPI Construction

With a pair of left and right points identified from a single landing light of
an approaching aircraft, the stereoscopic information can be calculated with
Equations 1 through 5 to determine the ENU of the landing light relative to the
instrumented runway threshold. Equations 1 and 2 are the trigonometric functions

for determining the horizontal angle of the aircraft relative to the CRM-Boxes for

44

the left and right CRM-Box systems respectively. Dr and Dy, are the distances
measured from the CRM-Box systems to the center of the runway, and Dgr is the
distance between the CRM-Box systems and the runway threshold. The distance
is calculated from the DGPS land survey data by using Ashtech Truth System.
ABr and AO are the horizontal angles translated by measuring the CCD pixels,
and AQ is the vertical angle translated by measuring the CCD pixels. Both A8
and AQ are the view of angles from the CRM camera with calibration offset
correction. Therefore, the standard East, North, Up (ENU) will be calculated with
Equations 3, 4, and 5. Using this ENU data and comparing with the GPS Truth
System calculation data the total system error can be determined. Figure 3.8

illustrates the CRM system TSPI Algorithm.

De =N _ tan(A6y) (1)
Dy +E
D -N _ tan(A6,) (2)
Dy +E

_ DetD 3)

tan(A6y) + tan(A6,)
N — D, tan(A6;)— Dy tan(A6,) ()
tan(Ady) +tan(A6,)
U = tan(Ag) Dy + D, D, |=tan(Ag)x E)
tan(A6;) + tan(A6,)

45

Runway Threshold
E,N,U(0,0,0)
Aircraft

Landing Light

Figure 3.9 CRM TSPI Algorithm Illustration.

46

Chapter 4 Results

The results of the developed CRM systems performance are strong
evidence of the functional realization of the CRM concept with allowable error.
The CRM system flight test results also provide enough data to evaluate the
CRM’s system performance. Comparing the CRM system results to a Differential
Global Positioning System (D-GPS) Truth System flight data has been useful to
validate the CRM Total System Error (TSE) and developed algorithm
performance. The CRM system TSE provides a guideline for the CRM system
error components. When the CRM system error components are well defined, the
CRM system is easier to review. An analysis of the CRM system error data has
been used to improve the CRM’s system performance. It was necessary to
compare the CRM system flight test results with the Truth data in order to

evaluate the performance of the CRM system presented in this dissertation.

4.1 CRM System Evaluation and Validation

It was necessary to set up a control system simultaneously with CRM
system evaluation flight test for compares the result of the experiment. The
control system in the CRM system flight test is a near ideal TSPI define
measurement tool or Truth System. By comparing the measurement between
CRM system and Truth System, the CRM system’s performance can be easily

observed.

47

4.1.1 Truth System

A Truth System is an on board device used for tracking the test aircraft
and recording the Time and Space Position Information (TSPI) and Position
Velocity Time (PVT) data. This tracking system is an Ashtech Z-Xtreme GPS
Receiver installed in the test aircraft. [15] A similar GPS receiver is operated and
records data at a surveyed location. The surveyed ground location must be near
the CRM-Box system for post flight data analysis to produce a very accurate D-
GPS post processing data. A pair of Ashtech Z-Xtreme Receivers acts as the
Truth System and has demonstrated dynamic accuracy of less than 0.2 meter error

at 5 Hz rate. [16]

4.1.2 Normalized ENU Method

The truth data is based on Earth Centered, Earth Fixed (ECEF-XYZ) and
the WGS-84 Coordinate System. Although the ECEF-XYZ is very useful to
determine the global position, it does not provide good local relative data at a
local position on the globe. Thus, a local coordinate transformation from X, Y, Z
coordinates to a local E, N, U (East, North, Up) coordinates is applied. Figure 4.1
shows ECEF-XYZ and ENU local tangent plane on the globe. Equation (6)
calculates the conversion from ECEF coordinates to the local coordinates ENU.
X, Y, and Z are reference points which are the runway threshold and x, y, and z

are TSPI of the aircraft. @ and A are the local latitude and longitude. To create

48

horizontal and vertical profiles, the TSPI and PVT data that is collected during the
approaches done on the different subject runways is normalized to a single west
bound runway. This is accomplished by rotating each runway heading to 270° as
standard normalized ENU runway heading. Figure 4.2 shows the KOKC-35R
calibration flight track on the left of figure and an normalized ENU plot on the
right of the figure. As shown in Equation (7), the Ex, Ny, and Uy (Normalized)
are created by rotating ENU at 0 degrees which is the difference of 270° and the

test runway heading. [17]

Lecer

North (N)

East (E)

Figure 4.1 ECEF-XYZ and ENU Local Tangent Plane.

49

E —sin A cosA 0 [x-X
N |=|—singcosA —singsind cosg||y—Y (6)
U cosgcosA cosgsind sing | z—Z

| [Stk St = 2se 2oth S|
3 : J!lUE T
= |aath | St 1 ; ‘f Tinker AFE -
@ﬁ/ ,qu Dol H ol
\° alle,l Brook NI
niarid Aire gt =
S 5 L = Sth_ St = | - SR S o0
S 104th St 3 SE 1Dath 5t
=| b
é 119th St oo i h St
LI
37} i = =
rellnbbrlocy o
th o
* sy E E1
TR = CRM Tracks (ENU)
Inclian = Tabon T T
0 K A H M A FTHY
i = 14000 -
»
o AT =
= = 12000
&l
Robins:
Jorm el Par _ joooof
- F—T & =t o
% iR A 2 >
B & T £ sooot :
; %, £ :
Golds| " S moml}
> X
= 3
O oo} ;
David Jay Ferny Airpo :
chard :
[coLm 1N 2000 - 2
0r =
Cole :
i
0 0.5 1 15 2 25

EMU-East (meters) 23

Figure 4.2 Flight Track ENU (Left) to Normalized ENU (Right).

=N cosd -sinf O|E
Ny |=|sind cosé OfN (7)
U, 0 0 1||U

4.1.3 Time Domain to Space Domain
Because aircraft do not fly at a constant velocity and the Truth System
measures the aircraft’s position at a period of time, the distribution of the

aircraft’s position is not separated by a uniform distance. In order to calculate the

50

statistical data for the CRM metric, it is necessary to transfer the data from the
time domain to the space domain. Equation (8) is the conversion from Py y(t) to

Pexnu(d).

P(t)-P(t-1)
P. oy (d)=P(t x(Cxn—k 8
w @ =PO+ €K (8)

k =|P(t)|%C (©)

0<(Cxn-k)<|P(t)-P(t-1)

. n=123... (10)

Here, Pgnu(t) is TSPI data which has sets of data E, N, U with 0.2 sec
increments or 5 Hz sample rate. Constant C is a space interval of the linear
interpolation method and the programming operator % in Equation (9) is the
remainder of division operation or module. Thus, the 5 Hz data linearly shapes to
a uniform 10 meters interval sets of P u(d) corresponding to the range distance
(ENU-East) from the runway threshold and ready for any CRM approach flight

statistical processing. [18]

4.2 CRM System Errors Analysis

The CRM system error analysis is separated into Total System Error
(TSE), CRM system time error, and CRM system error components definition
error. Figure 4.3 shows one calibration flight digitalized into both left and right

2D image in the CRM-Box system. The image includes several stationary and

51

dynamic noise signals such as other airplane’s landing lights and other stationary

lights.
CRM Left CCD View of the KOUN Flight Test CRM Right CCD View of the KOUN Flight Test
i i i i i i
I I
I I
I I
l l
328.2051 32820511 - - - - - [|
I I
I I
I I
I I
l l
I I
I &,
I J
I ?
! o 0
B
| e % |
| e .'. |
| ® °® |
164.1026 164.1026- - - - - - Tee——
{0
S |
o’ e
Lol
0l © d |
... °e° :
ol o |
°q ° : :
° Fd ° | |
O o | |
I I
o I I
Pe | |
0 1 1 1
787.6923 951.7949 1115.8974 1280 0 164.1026 328.2051 492.3077
CCD Pixel (1280 x 1024) CCD Pixel (1280 x 1024)

Figure 4.3 CRM System Left and Right View of CCD.

The CRM system left and right images are then processed using a unique
new transform into horizontal and vertical angle representative information.
Hence, the noise signal can be easily identified by angle measure plots. Figure
4.4 shows CRM system CCD angle measurement plots. From the top to the
bottom of the plots included in the figure are the right horizontal angle, left
horizontal angle, right vertical angle, and left vertical angle of the CRM system

CCD angle measurements. The blue-dots indicate the aircraft’s landing light and

52

noise lights. The figure also includes angle measure plots generated from Truth
System data as the red line represented. Because the horizontal and vertical data
are grouped as one pair, the noise signal can be easy filtered out by using the
vertical angle matching algorithm. The red line of the Truth System information
track in the plot can also indicate the quality of the CRM system calibration

statue.

53

CRM System Right CCD and Truth System Horizontal Angle Measurement

:
i
S IR
mw i
1
" oot

3.5278

x 10°

3.5274 3.5276

35262 35264 3526 35268 3527 35272
UTC Seconds

3.526

CRM System Left CCD and Truth System Horizontal Angle Measurement

il
iy
) | ”
a&@mwow?‘,. °

3.5278

x 10°

3.5274 3.5276

35262 35264 3526 35268 3527 35272
UTC Seconds

3.526

CRM System Right CCD and Truth System Vertical Angle Measurement

A1
B
[\,\\,\\,\Mgb
| o @m
1 BN
” L Ed
b EE
e e

N - (]

seafeq sipuy

3.65262 35264 35266 35268 3527 35272 35274 35276 3.5278

3.526

x 10°

UTC Seconds

CRM System Left OCD and Truth System Vertical Angle Measurement

35272 35274 35276 3.5278
5
x 10

3.527

Truth System Angle Measurement

3.5262 35264 35266 3.5268

I
3.526

UTC Seconds

Figure 4.4 CRM System CCD and Truth System Angle Measurement.

54

CRM System and Truth System Horizontal TSPI Plot

[[[[
				P
		- o *1-° T		
[E R — - 4o [T g - == — = —				
		,nn.		
		I %e,		
I I I I o	I			
			P,	
				%o
				.\99
			o o ®	
			°®	
[[[
]	
			.	
			odq,	
			&	
			¢	
I | | | Ce) |
- - — - — = - — - — — = JE R [L — - ==~ —
| | | | | g |
I I I I I °
| | | | | V
| | | | |
| | | | | Q-ﬁ
s 5 | | | [S
| | | | I o' |
| | | | Lo |
! F~———=--- T~ T g [ty
£ | | | al | |
WM | | | .7- | |
= I I I s I I
! | | | - | |
° ! | | (e | |
! | | [| |
! | | | ,_ | |
| | | | |
R ° o °] 3

25

15
ENU : East(NM)

0.5

CRM System and Truth System Vertical TSPI Plot

T IRt S
N m m m
. | | |
.....n/f ““““ [[
M N M M
o A G
| | ,o-oo ” ”

M M N |

B S

| | | ,..Uf ”

3 3 | | | |

IF 3 IS L SN
g8 ” ” o

1 . | | N

] g 8 g 8 ,

(rRW)dN 1 NNT

25

15
ENU : East(NM)

0.5

Figure 4.5 CRM and Truth System Horizontal and Vertical TSPI Plot.

55

After the calibration is verified, the CRM system’s unique DSP algorithm
computes the angle measurement data in order to construct the CRM ENU data
for the test flight. The algorithm applies Equations 1 trough 5 with figure 3.9
from Chapter 3-3.5 with the horizontal and vertical angle data present in Figure
4.4. Figure 4.5 shows CRM Horizontal and Vertical TSPI Plot along with Truth
System data for comparison. Thus, the CRM system Total System Error (TSE)

can be determined with the corresponding time of the Truth System data.

4.2.1 Total System Error

The CRM system TSE can be determined by the difference between the
CRM system measurement and Truth System measurement. The method is
applying the root mean squared error (RMSE). [19] Figure 4.6 shows a calibration
flight test result of CRM system and Truth System measurement in three-
dimensions which is built from the horizontal and vertical TSPI data shown in
Figure 4.5. The blue dot line is the measurement from the CRM system and thin
red line is the Truth System measurement. The black dot line is the shadow of the
track on the ground for the horizontal and vertical of the blue dot line as well as
the black thin shadow line from the thin red line for Truth System data
represented. The CRM system Total System Error (TSE) is discussed in the ENU

three components.

56

KOUN CRM System Time and Space Position Information (TSPI) 3D Plot

L R i
O ! : | e CRM System ENU Measurement ||
//‘F,J‘,,,,J,,,,_\ 77777 thffmethsystemENJMe%urerTent:
| I ——
//\//‘ | | : !
Ju | | | !
I e Bl 1= - - !
S I | | T
A/‘H/‘F 4\ | | :
| - — == —d - — - - - _
//M//‘ /" ! 4‘ : -
400)/\/‘V/: : : I :
I e e R) S R R |
nhnh | | T T
3&74‘/\/\ | | !
/‘)\/\F*ﬂ*-*>ﬂ ————— !
nlin ! I !
— | | |
300 H/:’L,J,,_,: !
m/’u: I T A" ittt 1
~ | | |
& 250+ 4‘/‘/\«/\ | : | !
E //‘/\F’ﬂff‘*ﬁ— - - 77»—‘—»—7- ! |
S | i |
\/‘/ |
200 b ! !
200
%150
100
100—
50—
07

-200 ENU : North(meter)
ENU : East(meter)

Figure 4.6 KOUN CRM 3D TSPI Plot.

The CRM system ENU coordinates is a rectangular coordinate system that
the origin (0, 0, 0) is at the runway threshold. The ENU-East is the range distance
from the target aircraft to the runway threshold. The ENU-North is the cross
track distance of the desired approach line corresponding to the Terminal En-
Route Procedures (TERPS) of the runway. The ENU-Up is the altitude of the
target aircraft from the runway threshold altitude. Figure 4.7 shows the CRM
system Total System Error (TSE) in ENU and its three component errors

separately along with the range distance ENU-East.

57

CRM System TSE

Enor (Meters)

| | |
° o;o'cu""“'ﬂm"'"“.'“‘\.~“."“...d |
citeet Se000teeceeetterisnsantanney, o000t 0 R BS0e0ngy | 0rere,

1500 2000 2500 3000 3500 4000 4500
ENU : East(Meters)

pe0e0e % 000 : 0% %0

Figure 4.7 CRM Systems TSE With Distance East.

The consequence from Figure 4.7 indicates that as the range distance goes
up, the CRM system produces more position error. The CRM system TSE results
also implies that the cross track distance error (TSE ENU-North) and the altitude
error (TSE ENU-Up) maintain in the same amount of error as the range distance
is varied. Therefore, the CRM system TSE, as expected, is a function of distance
from the runway threshold. Table 4.1 shows the mean of the CRM system TSE
from Figure 4.7 in order of the error at different ranges for a calibration flight.
Table 4.2 shows the standard deviations to accompany the data in Table 4.1. The

CRM system TSE from the range 1,000 meter to 4,000 meter has results of 2.2,

58

11.92, and 25.37 meters and an average error is 13.94 meters. The CRM system
TSE is reliable at 1,000 meter to 2,000 meters which is the region of interest for

an approach.

Mean (Meters)

Range Samples | TSE(ENU) | TSE (E) TSE (N) TSE (V)
0-600 2 2.8806 2.0727 0.2929 1.5804
600-1000 12 8.7020 8.2905 0.4451 1.3688
1000-2000 26 2.2054 1.4880 0.3664 1.3993
2000-3000 28 | 11.9199 | 11.7394 0.5316 1.8918
3000-4000 26 | 25.3655 | 25.2200 0.6267 2.5888
>0 101 | 13.9442 | 13.5977 0.4848 1.9583

Table 4.1 TSE Mean of the Calibration Flight.

Standard Deviation (Meters)
Range | Samples | TSE(ENU) | TSE(E) | TSE(N) | TSE (U)
0-600 2 1.1728 1.9962 0.0261 0.4756
600-1000 12| 11.9841 | 12.1920 0.5196 0.2695
1000-2000 26 0.7510 1.0303 0.2410 0.1547
2000-3000 28 4.3161 4.3496 0.1715 0.3218
3000-4000 26 7.3134 7.3133 0.2924 0.4385
>0 101 11.9977 12.2055 0.2959 0.6417

Table 4.2 Standard Deviation of the Above Calibration Flight.

There are six CRM system calibration flights for the KOUN station. The
CRM-Box system has collected as little as 39 to as many as 101 samples for each
calibration flight. Table 4.3 shows the CRM system TSE mean errors of each
calibration flight that also includes TSE, TSE-East, TSE-North, and TSE-Up error

components and has a matched standard deviation shown in Table 4.4. The

59

calibration flight experiments have indicated that the mean of the CRM TSE is
28.90 meters of total 439 samples. The varied CRM system TSE reveals a
possible reason of more than one error source constructing the CRM system Total

System Error.

Mean Error (Meters)

Flight # | Samples | TSE(ENU) | TSE (E) TSE (N) TSE (U)
1 101 13.9442 13.5977 0.4848 1.9583
2 101 | 28.1106 | 27.7645 0.9024 2.3994
3 42 | 40.8580 | 39.8956 3.6895 2.6973
4 39 36.9655 36.1645 3.7429 2.5539
5 75 38.7171 38.4221 1.4165 2.5145
6 81| 29.3351 | 28.9096 1.5373 2.2062

Table 4.3 Mean Error for 6 Calibration Flights.

Standard Deviation (Meters)

Flight # | Samples | TSE(ENU) | TSE(E) | TSE(N) | TSE (V)
1 101 11.9977 12.2055 0.2959 0.6417
2 101 | 37.3925| 37.5390 0.8287 1.1102
3 42 | 39.8702 | 40.5517 1.5794 0.9539
4 39 | 42.2907 | 42.7022 1.5574 1.2833
5 75| 28.9233 | 29.1349 0.8800 1.2503
6 81 27.2007 27.4703 1.1319 1.3243

Table 4.4 Standard Deviation for the Above 6 Calibration Fights.

4.2.2 CRM System Time Error
Since the CRM system TSE is calculated by a comparison to a Truth
System, the amount of time difference between CRM system and Truth System

will introduce some amount of error in the CRM system TSE computation.

60

Figure 4.8 is the time difference between the Truth System to the left and right
CRM-Box system. The red plot indicates the time difference between left and
right CRM-Box system which is about sixteen milliseconds. The green plot is the
difference between Truth System and the left CRM-Box system and blue plot is
the difference between Truth System and the right CRM-Box system at KOUN.

The CRM system time error is about 100 — 200 milliseconds.

CRM System and Truth System Difference in Time
0.2

T T
— Truth - CRM Box Right
Truth - CRM Box Left

— CRM Boxes Right - Left I

T
1
| | !
018 e —_—,—, e
|
|
|

0.16

0.14

Figure 4.8 CRM-Box Systems and Truth System Difference in Time.

During the approach, the aircraft is moving much faster in the ENU-East
axis than ENU-North and ENU-Up axes. This is because the ENU-East axis is

aligned to the range distance from the runway threshold to the approaching

61

aircraft and the movement on this axis is the approaching speed. Typical
Category-A aircraft final approaching speed is about 70-100 knots and 200
millisecond can produce 7.20-10.29 meters in error. Table 4.5 indicates ICAO
aircraft approach category of the specified range of handling speeds in knots. Vat
is the speed at threshold based on 1.3 times stall speed in the landing
configuration at maximum certified landing mass. [1] The CRM System Time
Error (STE) produces more error in CRM system TSE ENU-East component.
This is the main reason for the amount of CRM system Total System Error ENU-

East part compared with Truth System.

Aircraft Range of Speed | Range of Final Max Speed for
Category Var for Initial Approach Visual Maneuvering
Approach Speeds (Circling)

A <91 90/150 70/100 100

B 91/120 120/180 85/130 135

C 121/140 160/240 115/160 180

D 141/165 185/250 130/185 205

E 166/210 185/250 155/230 240

Table 4.5 ICAO Aircraft Approach Category (knots).

4.2.4 CRM System Error Components Definition
The CRM Total System Error (TSE) includes System Time Error (STE),
Ideal Physics Limit (IPL), Thermal and Visual effect Optical Error (TVOE), and

CCD Computing Error (CCE). The CRM system STE has an upper bound of

62

10.29 meters with maximums of 100 knot and 200 millisecond latency. The
estimate Ideal Physics Limit is the error boundary that has been measured by the
manufacturer of the CRM components and can be found by examining the
specifications. The main IPL is the CCD resolution which translates to meter per
pixel. Figure 4.9 shows the CRM-Box systems CCD resolution. The upper
bound of the IPL in the CRM system is horizontal of 74.12 centimeters and
vertical of 74.08 centimeters at 3NM range distance. The other CRM system IPL
are Bits Error Rate (BER) from the CCD pixel error, GSM wireless transmission
error, and local wire and wireless transmission error. Those BER are usually less

than 10 to 10® and negligible.

CRM Box KOUN at Runway1? EMU Sketch
400_, e R e L T et AR ERTE RS :

CRM Slave Elox is 92.69 Meters West of R17

cch Resolutmn at Threshold is EI 145938 M

e}

=

[}
T

EMU : Maorth{meter)
(]
T

ol] e e e et e R O R

400 L i i
2000 -1000 1] 1000 2000 3000 4000 5000
EMU : East(meter) [Horizontal Wiew]

EMU : Up(reter)

3 g ERIE Resolutmn at Threshold is: D 1493 MetersfF’n{eI : :
0 fi - | i | i | |
-4000 -1000 * a 1000 2000 3000 4000 5000
EMU : East(meter) [Vertical Wiew]

Figure 4.9 CRM-Box Systems CCD Resolution.

63

The Thermal and Visual effect Optical Error (TVOE) is the error created
by weather such as cloud, dust, fog, rain and heat waves from the earth ground.
Clouds and dust are the main reasons for the reduction of the landing light
brightness and the continuity of the landing light for the track. Fog and rain cause
blurry and distorted images as well as the ground thermal waves. The Ideal
Physics Limit (IPL) and Thermal and Visual effect Optical Error (TVOE) are

errors cannot be controlled and removed, but must be accounted for.

4.3 Results

The result of the CRM project shows the CRM system TSE can be
decomposed into ENU three components representation. The CRM total system
error can be expanded as in Equation (11). CRM STE and IPL are fixed by the
boundary of 11.03 meters. The only error that can be improved in the CRM
system is the CCD Computing Error which has two stages in the CRM-Box

embedded system and CRM server computer.

TSE = CCE + TVOE + [STE + IPL] (11)

[STE + IPL]<10.29 +0.74 = 11.03(meters) (13)

The results of the CRM TSE performance are an average of 28.90 meter
and have standard deviation of 31.94 meters. The CRM TSE is within 28.44

meters in East component, 1.53 meters in North component, and 2.32 meters in

64

Up component based on the 6 calibration flights with a total of 439 samples.
Compared to modern air traffic radar, the CRM system has much better tracking
resolution in the observation distance less than 5000 meter. The modern air
traffic radar has the Radar Cross-Session (RCS) volume about 0.033*69.81%69.81
(ENU) cubic-meter at 4000 meter with 9 GHz 1 degree beam width and can only
scan every six seconds. The radar observation resolution for every six second is
about 161 cubic-meters and the CRM system has observation tolerance at average

of 99 cubic-meters every second.

The normal parameter estimates (normfit) provides 95% confidence
intervals for the parameter estimates on the mean and standard deviation of the
CRM TSE. The confidence lower and upper bounds intervals of mean and
standard deviation are 25.90-31.90 and 29.96-34.21 meters. [20] [21] The
correlation coefficient of the CRM TSE and a normal distribution is 0.96. Figure
4.10 shows the CRM TSE distributions histogram with a Gaussian distribution fit
and confirms the result of CRM TSE is a normally distributed error. The CRM
TSE six-sigma boundary is 220.55 meter and its East, North, and Up six-sigma
boundary are 221.47 meter, 10.46 meter, and 9.02 meter. [22] These six-sigma

values are the precise performance boundaries for the CRM system.

65

CRM TSE Distributions Histogram

Error +/- (Meter)

Figure 4.10 CRM TSE Distributions Histogram.

66

Chapter 5 Conclusions

The CRM system is the first low cost attempt to visually track a high
speed approaching aircraft. The system satisfies the requirement to provide a
large volume of track data on an area of the approach that had not been examined
for the risk for collision of each type of aircraft on final approach after leaving
IMC conditions. The system is new and novel and is capable of delivering a wide
variety of approach and departure data in order to help develop the FAA’s
Collision Risk Model for the final approach to landing in IMC conditions. Much
has been learned about commercial pilots and aircraft on approach to landing.
More has been learned about the use of the auto pilot as compared to the manual
approach to landing. Controller and pilot error in the critical phase of flight can
be determined in order to implement new FAA procedure for the final approach to

landing.

The CRM system developed as part of this research is a unique
combination of hardware and software that has no duplicate in today’s
technology. This CRM optoelectronic three-dimensional tracking system has
proved its functional integrity and has successfully produced the TSPI data at the
University of Oklahoma Westheimer Airpark (KOUN) and Oklahoma City Will
Rogers World Airport (KOKC). The CRM system dissertation meets all
requirements of CRM visual segment flight tracking data acquirement functions

for the FAA. The CRM system now is ready to deploy in the field of any subject

67

airport of CRM visual segment study and will provide the CRM database during
Instrument Meteorological Conditions (IMC) at visual segment from approach to

landing for the FAA.

The dissertation successfully introduces a new and novel engineering
solution for the CRM research. The accomplishment of this dissertation includes
a complete CRM system architecture, a unique CRM system runway field

sighting method, and an efficient digital image processing algorithm.

Future work in this field may include adding a new mathematical filtering
algorithm to reduce the CRM system error and an executable file integrated into
the CRM database server instead of a MatLab script for second stage digital
image processing. The CCD camera can also be upgraded to a much higher
resolution in order to improve the precision of the measurement for the CRM-Box

system.

68

10.

REFERENCES

. International Civil Aviation Organizations, "Manual on the Use of the

Collision Risk Model (CRM) for ILS Operations", Montreal, Quebec,
Canada: ICAO Doc 9274. First Ed. 1980.

Herman, L.K.; "The history, definition and pecularities of the Earth centered
inertial (ECI) coordinate frame and the scales that measure time"; IEEE-

AAC, 2(0):233-263, 1995.

B. Sridhar and R. Suorsa, "Comparison of motion and stereo methods in

passive ranging systems", IEEE Trans-AES., 27(4):741-746. 1991.

Atmel Corporation ATmega8L microcontroller, 2486Q—AVR—10/06.

. Karim Yaghmour, "Building Embedded Linux Systems", Oreilly &

Associates Inc, 2003.

Nicholas D. Wells, "Linux! I Didn't Know You Could Do That...", Second
Edition, Sybex Inc, 2001.

Wall, Larry, Tom Christiansen and Jon Orwant, "Programming Perl", Third
Edition, O'Reilly, July 2000.

Sheppard, Doug, "Beginner's Introduction to Perl". O'Reilly Media, 2000-
10-16. http://www.perl.com/pub/a/2000/10/begperl1.html.

Peter S. Jergensen, John L. Jergensen, Troelz Denver, Maurizio Betto, Louis
Toscon, "Autonomous Target Ranging Techniques",IEEE-0-7803-8 142-
4/03.

Mordecai Avriel, "Nonlinear Programming: Analysis and Methods", Dover,

2003

69

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Irani and P., "Anandan. A unified approach to moving object detection in

2d and 3d scenes", IEEE-PAMI, 20(6):577-589, 1998.

Jan A. Snyman, "Practical Mathematical Optimization: An Introduction to
Basic Optimization Theory and Classical and New Gradient-Based
Algorithms", Springer, 2005.

Russell, Stuart J.; Norvig, Peter, "Artificial Intelligence: A Modern
Approach", 2nd ed., Upper Saddle River, NJ: Prentice Hall, 2003.

Jorgensen, P.S.; Jorgensen, J.L.; Denver, T.; Betto, M.; Toscon, L.;

"Autonomous target ranging techniques", RAST, 275-280, Nov 2003.

J.Farrell & M.Barth "The Global Positioning System & Inertial Navigation",
McGraw Hill, 1999.

Y. P. Huang, H. Wen, J. Dyer, J. Fagan, "Flight Test Results of a MOPS
Compliant LAAS System to Provide Guided Straight and Curved Path
Departures and Missed Approaches", ION GNSS 2005.

J. Zhu, "Conversion of Earth-centered Earth-fixed coordinates to geodetic
coordinates," Aerospace and Electronic Systems, IEEE Trans, vol. 30, pp.

957-961, 1994.

Y. P. Huang, J. Fagan, Yu-Zhen Xue, "Validation of the Offset Precision
Approach with Vertical Guidance to Landing using LAAS as Sole Means of
Navigation", ION GNSS 2008.

George Casella & E.L. Lehmann, "Theory of Point Estimation", Springer,
1999.

Edwards, A. L, "The Correlation Coefficient", W. H. Freeman, 1976.

70

21. Rice, John, "Mathematical Statistics and Data Analysis", Second ed.,
Duxbury Press, 1995.

22. Mood, A., F. Graybill, D. Boes, "Introduction to the Theory of Statistics", 3
ed., McGraw-Hill, 1974.

71

APPENDICES

Appendix A: CRM-Box CCD Camera Aiming Tool C# Code

JITEEIELEIE LD iiii i iiirlln
// CRM-Box System CCD Camera Aiming Tool

/]

// MS-Visual Studio 2005 C#

/1l CRM_CamRecView v 1.0

/! --> MainForm.cs

// Author

/! Huang, Yih-Ru Peter 20080323
/1l

NNy,

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.Drawing.Imaging;

using System.Collections;

using System.Runtime.InteropServices;
using System.10;

using System.Diagnostics;

using DShowNET;
using DShowNET.Device;

namespace CRM_CamRec

{
public partial class MainForm : Form, ISampleGrabberCB

{
public MainForm()
{
InitializeComponent();
timerl.Interval = (int)numericUpDownMsec.Value;
}

private void MainForm_Activated(object sender, System.EventArgs e)

{
if (!firstActive)
return;
firstActive = false;

if (!DsUtils.IsCorrectDirectXVersion())

72

MessageBox.Show(this, "DirectX 8.1 NOT installed!", "DirectShow.NET",
MessageBoxButtons.OK, MessageBoxIcon.Stop);

this.Close();

return;

}

if (!DsDev.GetDevicesOfCat(FilterCategory.VideolnputDevice, out capDevices))
{
MessageBox.Show(this, "No video capture devices found!",
"DirectShow.NET",
MessageBoxButtons.OK, MessageBoxIcon.Stop);
this.Close();

return;
}
DsDevice dev = null;
if (capDevices.Count == 1)
dev = capDevices[0] as DsDevice;
else
{

DeviceSelector ds = new DeviceSelector(capDevices);
ds.ShowDialog(this);
dev = ds.SelectedDevice;

}
if (dev == null)
{
this.Close();
return;
}

if (!StartupVideo(dev.Mon))
this.Close();
}

private void MainForm_Closing(object sender,
System.ComponentModel .CancelEventArgs e)
{
this.Hide();
Closelnterfaces();

}

/] <summary> do cleanup and release DirectShow. </summary>
void Closelnterfaces()
{
int hr;
try
{
if (mediaCtrl != null)
{

73

hr = mediaCtrl.Stop();
mediaCtrl = null;

}

if (mediaEvt != null)

{
hr = mediaEvt.SetNotifyWindow(IntPtr.Zero, WM_GRAPHNOTIFY,

IntPtr.Zero);

mediaEvt = null;

}

if (videoWin != null)

{
hr = videoWin.put_Visible(DsHIp.OAFALSE);
hr = videoWin.put_Owner(IntPtr.Zero);
videoWin = null;

}

baseGrabFlt = null;
if (sampGrabber != null)
Marshal .ReleaseComObject(sampGrabber); sampGrabber = null;

if (capGraph != null)
Marshal .ReleaseComObject(capGraph); capGraph = null;

if (graphBuilder !'= null)
Marshal .ReleaseComObject(graphBuilder); graphBuilder = null;

if (capFilter != null)
Marshal .ReleaseComObject(capFilter); capFilter = null;

if (capDevices != null)
{
foreach (DsDevice d in capDevices)
d.Dispose();
capDevices = null;
}
}
catch
{1}
}

/] <summary> override window fn to handle graph events. </summary>
protected override void WndProc(ref Message m)

{
if (m.Msg == WM_GRAPHNOTIFY)
{
if (mediaBEvt != null)
OnGraphNotify();
return;
}

74

base.WndProc(ref m);
}

/1] <summary> graph event (WM_GRAPHNOTIFY) handler. </summary>
void OnGraphNotify()
{
DsEvCode code;
int pl, p2, hr = 0;
do
{
hr = mediaBEvt.GetEvent(out code, out pl, out p2, 0);
if (hr < 0)
break;
hr = mediaEvt.FreeEventParams(code, pl, p2);
}
while (hr == 0);
}

#region StartupVideo()
/] <summary> start all the interfaces, graphs and preview window. </summary>
bool StartupVideo(UCOMIMoniker mon)

{
int hr;
try
{
if (!CreateCaptureDevice(mon))
return false;
if (!Getlnterfaces())
return false;
if (!SetupGraph())
return false;
if (!SetupVideoWindow())
return false;
hr = mediaCtrl.Run();
if (hr < 0)
Marshal.ThrowExceptionForHR(hr);
return true;
}
catch
{
return false;
}
}

/] <summary> create the user selected capture device. </summary>
bool CreateCaptureDevice(UCOMIMoniker mon)

75

object capObj = null;

try

{
Guid gbf = typeof(IBaseFilter).GUID;
mon.BindToObject(null, null, ref gbf, out capObj);
capFilter = (IBaseFilter)capObj; capObj = null;
return true;

}
catch
{

return false;
}
finally
{

if (capObj != null)

Marshal .ReleaseComObject(capObj); capObj = null;

}

}

/] <summary> create the used COM components and get the interfaces. </summary>
bool GetlInterfaces()
{
Type comType = null;
object comObj = null;
try
{
comType = Type.GetTypeFromCLSID(Clsid.FilterGraph);
if (comType == null)
throw new NotImplementedException(@"DirectShow FilterGraph not
installed/registered!");
comObj = Activator.Createlnstance(comType);
graphBuilder = (IGraphBuilder)comObj; comObj = null;

Guid clsid = Clsid.CaptureGraphBuilder2;

Guid riid = typeof(ICaptureGraphBuilder?2).GUID;

comObj = DsBugWO.CreateDsInstance(ref clsid, ref riid);
capGraph = (ICaptureGraphBuilder2)comObj; comObj = null;

comType = Type.GetTypeFromCLSID(Clsid.SampleGrabber);
if (comType == null)
throw new NotImplementedException(@"DirectShow SampleGrabber not
installed/registered!");
comObj = Activator.Createlnstance(comType);
sampGrabber = (ISampleGrabber)comObj; comObj = null;

mediaCtrl = (IMediaControl)graphBuilder;
videoWin = (IVideoWindow)graphBuilder;

mediaEvt = (IMediaEventEx)graphBuilder;
baseGrabFlt = (IBaseFilter)sampGrabber;

76

return true;

}
catch
{
return false;
}
finally
{
if (comObj != null)
Marshal.ReleaseComObject(comObj); comObj = null;
}

}

/] <summary> build the capture graph for grabber. </summary>
bool SetupGraph()
{
int hr;
try
{
hr = capGraph.SetFiltergraph(graphBuilder);
if (hr < 0)
Marshal.ThrowExceptionForHR(hr);

hr = graphBuilder.AddFilter(capFilter, "Ds.NET Video Capture Device");
if (hr < 0)
Marshal.ThrowExceptionForHR(hr);

DsUt11s.ShowCapPinDialog(capGraph, capFilter, this.Handle);
AMMediaType media = new AMMediaType();
media.majorType = MediaType.Video;
media.subType = MediaSubType.RGB24;
media.formatType = FormatType.Videolnfo; /] 777
hr = sampGrabber.SetMediaType(media);
if (hr < 0)
Marshal . ThrowExceptionForHR(hr);

hr = graphBuilder.AddFilter(baseGrabF1t, "Ds.NET Grabber");
if (hr < 0)
Marshal . ThrowExceptionForHR(hr);

Guid cat = PinCategory.Preview;
Guid med = MediaType.Video;
hr = capGraph.RenderStream(ref cat, ref med, capFilter, null, null); //
baseGrabFl1t
if (hr < 0)
Marshal.ThrowExceptionForHR(hr);

cat = PinCategory.Capture;

med = MediaType.Video;

hr = capGraph.RenderStream(ref cat, ref med, capFilter, null,
baseGrabF1t); // baseGrabFlt

77

IntPtr.Zero))

if (hr < 0)
Marshal.ThrowExceptionForHR(hr);

media = new AMMediaType();
hr = sampGrabber.GetConnectedMediaType(media);
if (hr < 0)
Marshal . ThrowExceptionForHR(hr);
if ((media.formatType != FormatType.VideoInfo) |l (media.formatPtr ==

throw new NotSupportedException("Unknown Grabber Media Format");

videoInfoHeader =

(VideoInfoHeader)Marshal .PtrToStructure(media.formatPtr, typeof(VideolnfoHeader));

window

Marshal .FreeCoTaskMem(media.formatPtr); media.formatPtr = IntPtr.Zero;

hr = sampGrabber.SetBufferSamples(false);

if (hr = 0)

hr = sampGrabber.SetOneShot (false);
if (hr = 0)

hr = sampGrabber.SetCallback(null, 0);
if (hr < 0)

Marshal.ThrowExceptionForHR(hr);

return true;

}
catch
{
return false;
}

}

//] <summary> make the video preview window to show in videoPanel. </summary>
bool SetupVideoWindow()

{
int
try
{

hr;

/1 Set the video window to be a child of the main window
hr = videoWin.put_Owner(panelVideo.Handle);
if (hr < 0)

Marshal.ThrowExceptionForHR(hr);

// Set video window style
hr = videoWin.put_WindowStyle(WS_CHILD | WS_CLIPCHILDREN);
if (hr < 0)

Marshal.ThrowExceptionForHR(hr);

// Use helper function to position video window in client rect of owner

ResizeVideoWindow();

78

// Make the video window visible, now that it is properly positioned
hr = videoWin.put_Visible(DsHIp.OATRUE);
if (hr < 0)

Marshal.ThrowExceptionForHR(hr);

hr = mediaEvt.SetNotifyWindow(this.Handle, WM_GRAPHNOTIFY, IntPtr.Zero);
if (hr < 0)
Marshal.ThrowExceptionForHR(hr);
return true;
}
catch
{
return false;
}
}

//private void paneVideo_Resize(object sender, System.EventArgs e)
/1{

/! ResizeVideoWindow();

/1)

void ResizeVideoWindow()
{
if (videoWin != null)
{
Rectangle cr = panelVideo.ClientRectangle;
videoWin.SetWindowPosition(0, O, cr.Right, cr.Bottom);
}
}

#endregion

private void timerl Tick(object sender, EventArgs e)

{
labelDT.Text = getUTCtime();

if (recording)
{
if (filePath == null)
filePath = @"c:\CRM" + getUTCtime().Remove(8);

if (!Directory.Exists(filePath))
Directory.CreateDirectory(filePath);

int rt = recTime; // (int)numericUpDownMsec.Value * 1000;

labelRecTime.Text = rt.ToString();

recTime++;

//get image;

int hr;
if (sampGrabber == null)
return;

79

if (savedArray == null)

{
int size = videoInfoHeader.BmiHeader.ImageSize;
if ((size < 1000) |1 (size > 16000000))
return;
savedArray = new byte[size + 640000];
}

//Image old = pictureBoxl.Image;
//pictureBox1.Image = null;

//1f (old !'= null)

/! old.Dispose();

hr = sampGrabber.SetCallback(this, 1);
}
else

recTime = 0;

}

/] <summary> get UTC time (string YYYYMMDDHHMMSS) </summary>
string getUTCtime()
{
string dt;
// YYYYMMDD
dt = DateTime.UtcNow.Year.ToString();
if (DateTime.UtcNow.Month.ToString().Length == 1)
dt += "0";
dt += DateTime.UtcNow.Month.ToString();
if (DateTime.UtcNow.Day.ToString().Length == 1)
dt += "0";
dt 4= DateTime.UtcNow.Day.ToString();
/ /HHMMSS
if (DateTime.UtcNow.Hour.ToString().Length = 1)
dt += "0";
dt 4= DateTime.UtcNow.Hour.ToString();
if (DateTime.UtcNow.Minute.ToString().Length == 1)
dt += "0";
dt += DateTime.UtcNow.Minute.ToString();
if (DateTime.UtcNow.Second.ToString().Length == 1)
dt += "0";
dt += DateTime.UtcNow.Second.ToString();

return dt;

}

void OnCaptureDone()

{
if (sampGrabber == null)
return;

80

int hr;
hr = sampGrabber.SetCallback(null, 0);

int w = videoInfoHeader.BmiHeader.Width;

int h = videoInfoHeader.BmiHeader.Height;

if (((w& 0x03) '=0) Il (w<32) Il (w>4096) Il (h<32) Il (h>4096))
return;

//get Image

int stride = w * 3;

GCHandle handle = GCHandle.Alloc(savedArray, GCHandleType.Pinned);
int scan0 = (int)handle.AddrOfPinnedObject();

scan0 += (h - 1) * stride;

Bitmap H = new Bitmap(w, h, -stride, PixelFormat.Format24bppRgb,
(IntPtr)scan0);

handle.Free();
//pictureBox1.Image = H;

textBoxFileDir.Text = filePath + @"\" + getUTCtime().Remove(O, 8) +
DateTime.Now.Millisecond.ToString().Remove(l) + "." +
comboBoxImageFormat . Text ;

switch (comboBoxImageFormat.Text)
{
case "Raw":
H.Save(textBoxFileDir.Text, System.Drawing.Imaging.ImageFormat.Bmp);
break;
case "Jpg":
H.Save(textBoxFileDir.Text, System.Drawing.Imaging.ImageFormat.Jpeg);
break;
case "Bmp":
H.Save(textBoxFileDir.Text,
System.Drawing. Imaging. ImageFormat .MemoryBmp);
break;
case "Tiff":
H.Save(textBoxFileDir.Text, System.Drawing.Imaging.ImageFormat.Tiff);
break;
}

savedArray = null;

}

#region declare members
#region Interface DShowNET Functions
/] <summary> video window interface. </summary>

private IVideoWindow videoWin;
/] <summary> control interface. </summary>
private IMediaControl mediaCtrl;

81

/] <summary> base filter of the actually used video devices. </summary>

private IBaseFilter capFilter;

//] <summary> graph builder interface. </summary>

private IGraphBuilder graphBuilder;

/] <summary> capture graph builder interface. </summary>
private ICaptureGraphBuilder?2 capGraph;

private ISampleGrabber sampGrabber;

//] <summary> event interface. </summary>

private IMediaEventEx mediaEvt;

/1] <summary> grabber filter interface. </summary>
private IBaseFilter baseGrabFlt;

/] <summary> structure describing the bitmap to grab. </summary>
private VideolnfoHeader videoInfoHeader;
#endregion

/] <summary> event when callback has finished (ISampleGrabberCB.BufferCB).
</summary>
private delegate void CaptureDone();

private const int WM_GRAPHNOTIFY = 0x00008001; // message from graph

private const int WS_CHILD = 0x40000000; // attributes for video window
private const int WS_CLIPCHILDREN = 0x02000000;

private const int WS_CLIPSIBLINGS = 0x04000000;

/1] <summary> list of installed video devices. </summary>

private ArrayList capDevices;

/1] <summary> flag to detect first Form appearance </summary>
private bool firstActive = true;

/] <summary> buffer for bitmap data. </summary>

private byte[] savedArray;

/1] <summary> file path for saving </summary>

private string filePath;

/]l <summary> flag to detect buttonStop/Rec_Click </summary>
private bool recording = false;

/] <summary> recording time mark </summary>

int recTime;

#endregion

#region Functions_Click
private void buttonAbout_Click(object sender, EventArgs e)

{
AboutBox about = new AboutBox();
about . Show();
}
private void buttonExit_Click(object sender, EventArgs e)
{
Close();
}

82

private void buttonBrowse Click(object sender, EventArgs e)
{
//SaveFileDialog sd = new SaveFileDialog();
//sd.Title = "Save Images as.....
//sd.FileName = "crm";
//sd.Filter = "Raw Data(*.raw)|*.raw";
//sd.InitialDirectory = textBoxFileDir.Text;
//sd.ShowDialog();
//textBoxFileDir.Text = sd.FileName + getUTCtime() + ".raw";

FolderBrowserDialog fbd = new FolderBrowserDialog();
fbd.SelectedPath = textBoxFileDir.Text;
fbd.Description = "Choose or Create This Task Root Folder";
if (fbd.ShowDialog() == DialogResult.OK)
{
filePath = fbd.SelectedPath + @"\CRM" + getUTCtime().Remove(8);
textBoxFileDir.Text = filePath;

}

private void buttonRec_Click(object sender, EventArgs e)

{
buttonAbout.Enabled = true;
buttonBrowse.Enabled = false;
buttonExit.Enabled = false;
buttonRec.Enabled = false;
buttonStop.Enabled = true;
buttonPlay.Enabled = false;
textBoxFileDir.Enabled = false;
comboBoxImageFormat .Enabled = false;
numericUpDownMsec.Enabled = false;
pictureBoxl.Visible = true;
recording = true;

labelRecTime.Text = "0";
recTime = 1;
timerl.Interval = (int)numericUpDownMsec.Value;

}

private void buttonStop_Click(object sender, EventArgs e)
{
but tonAbout.Enabled = true;
but tonBrowse.Enabled = true;
buttonExit.Enabled = true;
buttonRec.Enabled = true;
buttonStop.Enabled = false;
buttonPlay.Enabled = false;
textBoxFileDir.Enabled = true;
comboBoxImageFormat .Enabled = true;
numericUpDownMsec.Enabled = true;
pictureBox1.Visible = false;

83

recording = false;
}

private void buttonPlay_Click(object sender, EventArgs e)
{

}

#endregion

#region ISampleGrabberCB Members
/] <summary> buffer callback, COULD BE FROM FOREIGN THREAD. </summary>
int ISampleGrabberCB.BufferCB(double SampleTime, IntPtr pBuffer, int BufferLen)

{
if (savedArray = null)
{
Trace.WriteLine("ISampleGrabberCB.BufferCB (savedArray == null)");
return 0;
}

if ((pBuffer != IntPtr.Zero) && (BufferLen > 1000) && (BufferlLen <=
savedArray.Length))

Marshal.Copy(pBuffer, savedArray, 0, BufferLen);
else

Trace.WriteLine("Grab Failed!!");

this.BeginInvoke(new CaptureDone(this.OnCaptureDone));
return 0;

}
public int SampleCB(double SampleTime, I[MediaSample pSample)
{
throw new Exception("The method or operation is not implemented.");

}

#endregion

private void panelVideo Paint(object sender, PaintEventArgs e)

{

}

84

Appendix B: CRM System Raw Data to CSV Tool C# Code

JITELIEELEE DL i it iiriiiiiliirl
// CRM System Raw Data to CSV format

/1]

/] MS-Visual Studio 2005 C#

/! CRM Data to CSV v 1.0

/! --> Forml .cs

/! Author

/! Huang, Yih-Ru Peter 20060705
/1l

NNy,

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.10;

namespace CRM Data_to_CSV

{
public partial class CRM : Form
{
public CRM()
{
InitializeComponent();
}
private void button_OK_Click(object sender, EventArgs e)
{
Unpack();
}
private void button_EXIT Click(object sender, EventArgs e)
{
Close();
}
private void button_FileName_Click(object sender, EventArgs e)
{
OpenFileDialog OpenFile = new OpenFileDialog();
OpenFile.ShowDialog();
textBox_FileDir.Text = OpenFile.FileName;
}

private void Unpack ()
{

85

FileStream CRMdata = new FileStream(textBox_FileDir.Text, FileMode.Open);
StreamWriter CRMCSV = File.CreateText(textBox_FileDir.Text + ".csv");

char side, cam;
uint utc, utc_usec, numPoints,
x_b, y_b, b_b;
double GPSsec; // GPS week sec Sunday 00:00:00 ++
double utcu;
double x, y, b;

BinaryReader br = new BinaryReader(CRMdata);

side = br.ReadChar();
cam = br.ReadChar();

while(br.BaseStream.Length > br.BaseStream.Position)
{

utc = br.ReadUInt32();

utc_usec = br.ReadUInt32();

utcu = utc + utc_usec * le-6;

DateTime dt = new DateTime(1970, 1, 1, 0, 0, 0).AddSeconds(utc);
GPSsec = dt.Hour * 3600 + dt.Minute * 60 + dt.Second + utc_usec * le-6;
switch (dt.DayOfWeek.ToString())
{
case "Monday":
GPSsec += 86400%1;
break;
case "Tuesday":
GPSsec += 86400%2;
break;
case "Wednesday":
GPSsec += 86400%*3;
break;
case "Thursday":
GPSsec += 86400%4;
break;
case "Friday":
GPSsec += 86400%5;
break;
case "Saturday":
GPSsec += 86400*%6;
break;
}

numPoints = br.ReadUInt16();

for (int j = 0; j < numPoints; j++)
{

r.ReadUInt16();
r.ReadUInt16();

o o

X_b =
y_b =

86

b_b = br.ReadUInt16();

x = 1280 - (x_b / 51.0); /* rescale back */

//x = x b/ 51.0; /* rescale back */

y=y_b / 63.0; /1 1024 or 1030?7727

/1y = 1030 - (y_b / 63.0);

b ="b_b; //* &8.0;

CRMCSV.WriteLine(GPSsec + "," + x + "," +y + "," + b);

}
CRMCSV.Close();

CRMdata.Close();
br.Close();

87

Appendix C: CRM_BoxRL_ProcessAutoCal.m MATLAB Code

CRM_BoxRL_ProcessAutoCal.m

%%%%6%6%%%%%%6%%%%%%6%%%%% % %6%6%%%% % %6%%%% % %%%%%% % %% % %% % %6%6%% %% % %% % %% % %% %% %% % % %% % %%

%% Huang, Yih-Ru 20080410 %%
%% %%
%% INPUT: *Truth.csv truth(Ashtech) ENU raw data %%
%% KxxXx1.csv %%
%% Kxxx2.csv %%
%% %Y%
%% OUTPUT KxxxYYYYMMDD.csv (E,N,U meters) %%
%% KOKC %%
%% 17R_T Dab = d1 + d2 %%
%% dl => thi, d2 => th2 %%
%% d1/D = tan(thl), d2/D = tan(th2) %%
%% %Y%
%% tan(thl) %%
%% KOUN2r KOUN1r dl = —————m Dbox %%
%% tan(thl)+tan(th2) %%
%% %%
%% %%
%% KOUN2 CRL KOUN1 di d2 %%
%% D = ———————- R %Y%
%% tan(thl) tha(th2) %%
%% %%
%% 17R_E %Y%
%% %%
%% OmmVision- 0V09121 %%
%% Array Size = 1280*1024 (SXGA) %%
%% PixelSize = 5.2 um * 5.2 um %%
%% ImageArea = 6.66 mm * 5.32 mm (1/4" CCD) %%
%% http://www.ovt.com/data/parts/pdf/0V9620_PB%20(2.7).pdf %%
%% %Y%
%% Marshall Electronics Len %%
%% Focal Angular Field %%
%% Length of View %%
%% 00 ———mmmm %%
%% V-4308 8mm 27-19-37 (H-V-D Degree) %%
%% V-4350 50mm 04_03_05 (H-V-D Degree) @ 1/4'" CCD %Y%
%% http://www.mars-cam.com/lenses/ccd_cmos/43fix._html %%
%% %%
%% 1 nautical mile(NM) = 6076.11549 feet %%
%% 1 feet = 0.3048 meters %%

%%%%6%6%%%%%%6%6%%%%%6%6%%%% % %6%6%%%% %%6%%%% % %6%%% %% %%6%%%% % %6%6%% %% % %% % %% % %%%% %% % %% %% %%

close all;
clear all;
format long g;

[inFile, path] = uigetfile("*.csv", "Looking for the Ashtech file,
"yyyymmddx_truth.csv' 1111%);
AshtechNENU = csvread([path inFile]);

[inFile, path] = uigetfile("*.csv", "Looking for the CRM Box R file,
"yyyymmddxKxxx1.csv' 1111%);

KxxR = csvread([path inFile]);

Y%KXXR KXXR(Find(KxxR(:,2)<640 & KxxR(:,3)<512),:);

KxxxR = KxxR(Find(KxxR(:,4)>1000),:);

[inFile, path] = uigetfile("*.csv", "Looking for the CRM Box L file,
"yyyymmddxKxxx2.csv'™ 1111=y;

KxxL = csvread([path inFile]);

%KxxL = KxxL(Find(KxxL(:,2)>640 & KxxL(:,3)<512),:);

88

KxxxL = KxxL(Find(KxxL(:,4)>1000),:);

DRL = 222.6725; % 1R to 1L

DR = 111.1621; % 1R to CRL

DL = 111.5103; % 1L to CRL

Dbt = 2381.8167; % 17T to CRL

DbtRV = 1.509; % 35R_T to BoxR High

DbtLV = 0.761; % 35R_T to BoxL High

CHR = 0; CVR = O0; %cal Horizontal Vertical
CHL = 0; CVL = O0;

K = 14; % GPS UTC Times Offset 13sec NOW

GridHR = 0:1280/7.80:1280;
GridHL = Fliplr(abs(-1280:1280/7.80:0));
GridV = 0:1024/(6-24*5):1024;

figure(1)

subplot(1,2,2); plot(KxxR(:,2),KxxR(:,3), "-"); %-90

set(gca, "XTick",GridHR, “YTick",GridV);

axis([0 640 0 800]); grid on; Y%axis([O 1280 0 1024]);
title("CRM KOUN Flight Test (CRM Right View)")

xlabel ("CCD Pixel (1280 x 1024)%)

subplot(1,2,1); plot(KxxL(:,2),KxxL(:,3), "-"); %-135

set(gca, "XTick",GridHL, "YTick",GridV);

axis([640 1280 0 800]); grid on; Y%axis([O 1280 0 1024]);
title("CRM KOUN Flight Test (CRM Left View)")

xlabel ("CCD Pixel (1280 x 1024)%)

figure(2); hold on

plot3(AshtechNENU(:,2), AshtechNENU(:,3), zeros(length(AshtechNENU), 1), "k:*")
plot3(AshtechNENU(:,2), 100*ones(length(AshtechNENU), 1), AshtechNENU(:,4), “k--7)
plot3(AshtechNENU(:,2), AshtechNENU(:,3), AshtechNENU(:,4), “b.%)

view(5, 25)

title("CRM KOUN Flight Test (Truth Data)"®)

xlabel (FENU : East(meter)")

ylabel ("ENU : North(meter)™)

zlabel ("ENU : Up(meter)*®)

grid on; hold off

AKA = [AshtechNENU... %AKA[1:4] Ashtech KxxxR/L Angle
atan((DR +AshtechNENU(:,3))./(Dbt+AshtechNENU(:,2)))*180/pi...
atan((DbtRV+AshtechNENU(:,4)) ./ (Dbt+AshtechNENU(:,2)))*180/pi...
atan((DL -AshtechNENU(:,3)) ./ (Dbt+AshtechNENU(:,2)))*180/pi-..
atan((DbtLV+AshtechNENU(:,4))./(Dbt+AshtechNENU(:,2)))*180/pi];

AKA = [AKA AKA(:,5).7/AKA(:,7) AKA(:,6).7/AKA(:,8) AKA(:,2)/0.3048]; %AKA[9:11]

KRA = [KxxxR... %KRA[1:4] Kxxx RightBox Angel
(1280/2-KxxxR(:,2))/1280 * 7.720 + CHR. .. %KRA(:,5)
KxxxR(:,3)/7/1024 * 6.176 + CVR]; %KRA(:,6)

KLA = [KxxxL... %KLA[1:4] Kxxx LeftBox Angel
(KxxxL(:,2)-1280/2)/1280 * 7.720 + CHL. .. %KLA(:,5)
KxxxL(:,3)/71024 * 6.176 + CVL]; %KLA(:,6)

for i=1:length(AKA)-1
I = find(KRA(Z,1)> AKA(i,1)-K & KRA(:,1)< AKA(i+1,1)-K);
KRA(I,7) = AKA(i,2); KRA(I,8) = AKA(i,5); KRA(1,9) = AKA(i,6);
I = find(KLA(Z,1)> AKA(i,1)-K & KLA(:,1)< AKA(i+1,1)-K);
KLA(E,7) = AKA(i#,2); KLA(1,8) = AKA(i,7); KLA(1,9) = AKA(i,8);
end

%cal Horizontal

figure(d)

subplot(2,1,1); plot(KRA(:,1), KRA(:,5), "b.", KRA(:,1), KRA(:,8), "r")
axis([KLA(1,1) KLA(end,1) 0 3.901);

89

subplot(2,1,2); plot(KLA(:,1), KLA(:,5), "b.", KLA(:,1), KLA(:,8), "r7)
axis([KLA(1,1) KLA(end,1) 0 3.90]);

%cal Vertical

figure(4)

subplot(2,1,1); plot(KRA(:,1), KRA(:,6), "b.", KRA(:,1), KRA(:,9), "r")
axis([KLA(1,1) KLA(end,1) O 3]):

subplot(2,1,2); plot(KLA(:,1), KLA(:,6), "b.", KLA(:,1), KLA(:,9), "r)
axis([KLA(1,1) KLA(end,1) 0 3]1); %

KRAC=KRA(Ffind(abs(KRA(1:end/2,5)-KRA(1:end/2,8))<0.3),:);
KRAC=KRA(Find(abs(KRA(1:end/2,6)-KRA(1:end/2,9))<0.3),:);
KLAC=KLA(Find(abs(KLA(1:end/2,5)-KLA(1:end/2,8))<0.3),:);
KLAC=KLA(Ffind(abs(KLA(1:end/2,6)-KLA(1:end/2,9))<0.3),:);

CHR = mean(KRAC(:,8)-KRAC(:,5)) %cal Horizontal
CVR = mean(KRAC(:,9)-KRAC(:,6)) %cal Vertical
CHL = mean(KLAC(:,8)-KLAC(:,5))
CVL = mean(KLAC(:,9)-KLAC(:,6))
KRA = [KxxxR...
(1280/2-KxxxR(:,2))/1280 * 7.720 + CHR... %KRA(:,5)
KxxxR(:,3)/1024 * 6.176 + CVR]; %KRA(:,6)
KLA = [KxxxL. ..
(KxxxL(:,2)-1280/2)/1280 * 7.720 + CHL... %KLA(:,5)
KxxxL(:,3)/71024 * 6.176 + CVL]; %KLA(:,6)

for i=1:length(AKA)-1
1 = find(KRA(:,1)> AKA(i,1)-K & KRA(:,1)< AKA(i+1,1)-K);
KRA(I,7) = AKA(i,2); KRA(I,8) = AKA(i,5); KRA(I,9) = AKA(i,6);
I = Find(KLA(:,1)> AKA(i,1)-K & KLA(:,1)< AKA(i+1,1)-K);
KLA(L1,7) = AKA(i,2); KLA(1,8) = AKA(i,7); KLA(1,9) = AKA(i,8);
end

%cal Horizontal

figure(b)
subplot(2,1,1); plot(KRA(:,1), KRA(:,5), "b.", KRA(:,1), KRA(:,8), "r")
axis([KLA(1,1) KLA(end,1) 0 3.90]):; %axis([351660 351870 0 3.90]);

legend("CRM Right CCD Angle Measurement®,"Truth System Angle Measurement®, 2)
title("CRM System Right CCD and Truth System Horizontal Angle Measurement®)
xlabel ("UTC Seconds*®)

ylabel ("Anglle Degrees®)

grid on
subplot(2,1,2); plot(KLA(:,1), KLA(:,5), "b.", KLA(:,1), KLA(:,8), "r")
axis([KLA(1,1) KLA(end,1) 0 3.90]); %axis([351660 351870 0 3.90]);

legend("CRM Left CCD Angle Measurement®,*Truth System Angle Measurement®, 2)
title("CRM System Left CCD and Truth System Horizontal Angle Measurement®)
xlabel ("UTC Seconds*®)

ylabel ("Angle Degrees™)

grid on

%cal Vertical

figure(6)
subplot(2,1,1); plot(KRA(:,1), KRA(:,6), "b.", KRA(:,1), KRA(:,9), "r")
axis([KLA(1,1) KLA(end,1) 0 3]); %axis([351660 351870 0 3.12]);

legend("CRM Right CCD Angle Measurement®, "Truth System Angle Measurement®, 3)
title("CRM System Right CCD and Truth System Vertical Angle Measurement®)
xlabel ("UTC Seconds*®)

ylabel ("Anglle Degrees®)

grid on
subplot(2,1,2); plot(KLA(:,1), KLA(:,6), "b.", KLA(:,1), KLA(:,9), "r")
axis([KLA(1,1) KLA(end,1) 0 3]); %axis([351660 351870 0 3.12]);

90

legend("CRM Left CCD Angle Measurement®,*Truth System Angle Measurement®, 3)
title("CRM System Left CCD and Truth System Vertical Angle Measurement®)
xlabel ("UTC Seconds*®)

ylabel ("Angle Degrees™)

grid on Y%axis([352600 352810 0 3.12]);
%6%%%%%%%%%%%%%%% %% %% %% %% %% %% %% %6%%6%

% CRM_E E = D - Dbt;

% CRM_E (DR+DL) / (tan(thHR)+tan(thHL)) - Dbt

% CRM_N = (DL*tan(thHR) - DR*tan(thHL)) ./ (tan(thHR)+tan(thHL))
% CRM_U = tan(thVl) * Crm_E = tan(thV2) * Crm_E
%%6%%%%6%%%6%%%6%%%6%%%6%%%6%%%6%6%% %% % %% % 6% % %6%%%6%%%6%6% % %% % %% % %% % 6% % %6%%%6%% % %% % %% % %% %%
1 =1;
for 1 = 1:length(AshtechNENU)-1
IR = Find(KRA(:,1) > AshtechNENU(i,1)-K & KRA(:,1) < AshtechNENU(i+1,1)-K);
IL = find(KLA(:,1) > AshtechNENU(i,1)-K & KLA(:,1) < AshtechNENU(i+1,1)-K);
for j = 1:length(IR)
for k = 1:length(IL)
it (abs(KRACIR(§),6)-KLA(IL(K),6)) < 0.2)

thHR = KRA(IR(J), 5) * pi/180;
thHL = KLAC(IL(K), 5) * pi/180;
thvl = KRA(IR(J), 6) * pi/180;
CRM_E = (DR+DL) / (tan(thHR)+tan(thHL)) - Dbt;

if CRM_E < 1852*3 && CRM_E > O
CRM_N = (DL*tan(thHR) - DR*tan(thHL)) ./ (tan(thHR)+tan(thHL));
CRM_U = tan(thvl) * (CRM_E + Dbt) ;%+/- DbtRV;
if CRM_U > 10
CRM_ENU(N,:) = [AshtechNENU(i,1) CRM_E CRM_N CRM_U
KRACIR(), 1) KLACIL(K), 1I;
1 = 1+1;
end
end
end
end
end

; J=1;

le i<length(CRM_ENU)

I = Find(CRM_ENU(:,1) == CRM_ENU(i,1));

[B 117 = max(CRM_ENU(I,5).*CRM_ENU(I,6));

CRM_ENUr(j,:) = [CRM_ENUCI(ID),Z) ...
CRM_ENUCI(11),5)-CRM_ENUCI(I1),1)+K ...
CRM_ENUCI(11),6)-CRM_ENUCI(I1),1)+K ...
CRM_ENUCI(11),5)-CRM_ENU(I(11),6) 1:

length(l);

i -

+
+1;

[T

end

figure(7); hold on

plot3(CRM_ENUr(:,2), CRM_ENUr(:,3), CRM_ENUr(:,4), °r.")
plot3(AshtechNENU(:,2), AshtechNENU(:,3), AshtechNENU(:,4), “b-7)
plot3(CRM_ENUr(:,2), CRM_ENUr(:,3), zeros(length(CRM_ENUr), 1), "k.%)
plot3(CRM_ENUr(:,2), 100*ones(length(CRM_ENUr), 1), CRM_ENUr(:,4), “k.")
plot3(CRM_ENUr(:,2), CRM_ENUr(:,3), CRM_ENUr(:,4), "r.")
plot3(AshtechNENU(:,2), AshtechNENU(:,3), zeros(length(AshtechNENU), 1), “"k:")
plot3(AshtechNENU(:,2), 100*ones(length(AshtechNENU), 1), AshtechNENU(:,4), “"k--%)
plot3(AshtechNENU(:,2), AshtechNENU(:,3), AshtechNENU(:,4), “b-7)
legend("CRM", "Truth™)

axis([-500 8000 -200 +200 O 400]);

view(5, 25)

title("KOUN CRM Time and Space Position Information (TSPI1)*")

xlabel ("ENU : East(meter)®)

ylabel ("ENU : North(meter)®)

zlabel (FENU : Up(meter)™)

91

grid on; hold off

for i=1:length(CRM_ENUr)
I = find(AshtechNENU(:,1) == CRM_ENUr(i,1));

SE_E = (CRM_ENUr(i,2)-AshtechNENU(I,2))"2;
SE_N = (CRM_ENUr(i,3)-AshtechNENU(I,3))"2;
SE U = (CRM_ENUr(i,4)-AshtechNENU(I,4))"2;

= (SE_LE + SE_N + SE_U) ~ 0.5;
CRM | SE(i, :) = [SE SE_EA0.5 SE_NAO.5 SE_U0.5];

end
CRM_SEm = mean(CRM_SE)
CRM_SEs = std(CRM_SE)

figure(8); hold on

plot(CRM_ENUr(:,2)/1852, CRM_ENUr(:,3), "“r.")
plot(AshtechNENU(:,2)/1852, AshtechNENU(:,3), "k:%)
axis([0 3 -50 50]);

hold off

figure(9); hold on

plot(CRM_ENUr(:,2)/1852, CRM_ENUr(:,4), "r.")
plot(AshtechNENU(:,2)/1852, AshtechNENU(:,4), "k:")
axis([0 3 0 600]);

hold off

figure(10)
plot(abs(CRM_ENUr(:,7:9)))
axis([0 100 0 0.2]);

legend("Truth - CRM Box Right®,"Truth - CRM Box Left",*CRM Boxes Right - Left"

title("CRM Boxes and Truth Time Difference®)
xlabel (" *)

ylabel ("Seconds*®)

grid on

%%%%%%% Write to the File
%6%%%%%%%6%%%%%%%6%%%%%%%% %% %%%6%% %% %%%6%% %% %% %% %% %% % % % %%%6%% %% %% %% % %%
outFilel = ["CRM_" inFile(1:4) inFile(10:17) ".csv"];
outFidl=fopen(outFilel, “w+%);
if ~outFidl
error(“Unable to open file.");
end

fprintf(outFidl, "%12.14F, %12.14F,%12.14F,%12.14F \n", CRM_ENUr(:,1:4)");
fclose(outFidl);

92

. 2)

Appendix D: CRM-Box System Watchdog C code

Watchdog-revB.c

Ny,

Notes: This was coded to coincide with the first hardware upgrade of the
Collision Risk Monitor Watchdog unit to the ATmega8 microprocessor. It is
not to be confused with the old hardware which also used revision A for

NNy,

iy,

/1l

// Watchdog-revB.c

/1l

/] Owner: Patrick Macklin

/1 Modified: 2/5/2007

/1l

// Owner: Yih-Ru Huang

/1 Modified: 20070707

/1l

/1l

/1l

/1l

// its first version.

/1l

Iy

/1l

/1l

/1l

/1l PCO (ADCO) ----
/1l PC1 (ADCI) ----
/1l PC2 (ADC2) ----
/1l

/1l PDO (RDX) ----
/1l PD1 (TDX) ----
/1l PD3 .-
/1l PD4 ----
/1l PD5 -
/1l

/1l PBO .-
/1l PB1 ----
/1l PB2 -
/1l PB3 ----
/1l PB4 .-
/1l PB5 ----
/1l

/1l

/1l

/1l

Pinout for the ATmega® microcontroller on the CRM board

Battery voltage
PV voltage
Analog signal strength from the modem

Connected through Max 2323 to COMP's TDX (Debug)
Connected through Max 2323 to Comp's RDX (CUP)
Master or slave select switch

Modem reset

Modem In Range

Micro Controller on and working LED
CPU power (negative logic)

Relay ON or OFF this 1s an output
CPU power indicator LED

In range ON LED

Master ON LED (Debugr)

CRM code for the AtMega® microcontroller follows
www.atmel.com/dyn/resources/prod_documents/doc2486.pdf

NNy,
Iy

/1 Set the internal clock to 1 MHz

93

/1#define F_CPU 1000000

/] These are all here to get some of the functions to work such as

// the printf calls

/] avr/*.h files are located in the winAVR directory, not the AVR studio dir

#include <avr/io.h>
#include <avr/interrupt.h>
signal.h

#include <inttypes.h>
#include <util/delay.h>
#include <stdio.h>

//New version of

NNy,

i
//A header file used with (or in) the makefile?
//Also contains some util functions

NNy,

T
#include "CRMWD_lib.h"

#ifndef __CRMWD_lib_h
warning "CRMWD_lib.h failed to include"
#endif

#define __u8 unsigned char

#define __ul6 unsigned short

//Take an A/D reading

unsigned int ADC_conversion(unsigned char chan);
void collectData(void);

void printStatus(void);

void chargeBattery(void);

void manageCPU(void);

void power_up(void);

void masterOrSlave(void);

//inline void sleep_sanity(void);

// These test the internal data memory

inline unsigned char is_battery_chargeable(void);
inline unsigned char is_battery_full(void);
inline unsigned char is_battery_low(void);

inline unsigned char enough power(void);

volatile __ul6 last_cpu_refresh;

volatile __ul6 offline_ticks;

static __ul6 charge_ticks;
static __ul6 cooldown_ticks;
static __ul6 panelVolts;
static __ul6 battVolts;

94

static __u8 data_mask;

static __u8 battery_chargeable;
static __u8 battery_full;
static __u8 battery_low;

static __u8 battery_turn_on;
static __u8 modem_in_range;
static __ud battery_state;
static __u8 CPU_state;

static __u8 Print_Delay = 10;

JITELIELEL DL i i i i i i i i iirrlln
i
int main(void)

{

DDRB = OxFF; //Set
Port B to be all outputs

DDRD = 0x00; //Set

Port D to be all inputs
PORTB = 0b00000011;
//Initialized PB outputs cpuOff(),close_relay()

ioinit();

//Initialize PDO/PD1 as a serial device, p.136
init_ADC();

//Initalize the ADC

init_TIOVF();

//Initialize the Timer Overflow

sei();

//Enable global interrupts

_delay_ms(100);

printf("\r\n\r\n\r\n CRM Watchdog-revB Starting Up . . . \r\n\r\n");
flashLEDs(250); flashLEDs(250); flashLEDs(250);

PORTB = 0b00000010;

//Initialized PB outputs cpuOff(),open_relay()

PORTB |= MCU_POW_LED; //Show the power
light for the MCU

battery_state = BATT_DRAINING;
CPU_state = CPU_SLEEPING;
charge_ticks = 0;
cooldown_ticks = 0;

battery_chargeable = 0x00; //Reset all internal
data tracking

battery_full = 0x00;

battery_low = 0x00;

modem_in_range = 0x00;

95

data_mask = 0x01;

//Reset *

//Watchdog unit will wait 10 seconds minimum before attempting to power CPU

offline_ticks = 10;

// CPU left disabled and the CPU manager will decide to turn it on or not

while(1)
{)

}

ISR(TIMER]_OVF_vect)

{
TIFR &= (1<<TOV1);

int TIOVF count = 0;
TIM16_addTCNT1(32000);

/*1f(++Tick_Count == 30)
{printf("Timer 1 Overflow 30 times.\r\n");

masterOrSlave();
the debug light on if master, off if slave
collectData();
chargeBattery();
manageCPU() ;

if(Print_Delay = 10)
status every 10 sec

{
printStatus();
Print_Delay = 0;
}
++Print_Delay;
printf(". ");
}
void masterOrSlave(void)
{
if (is_master())
PORTB |= DEBUG_LED;
else
PORTB &= ~DEBUG_LED;
}

void collectData(void)

{
panelVolts = ADC_conversion(PANEL_CHAN);
battVolts = ADC_conversion(BATT_CHAN);

96

//static

Tick Count = 0;} */

/1Set

// Print the

/1l Volts => [48 =1.0V]

//1s battery chargeable? ==> solar volts > batt volts + 0.6V
if (battVolts < BATTERY_FULL_VOLTS && (battVolts + ENGAGE_RELAY_DIFF<
panelVolts))
battery_chargeable = OxFF; //|= data_mask;
else
battery_chargeable = 0x00; / /&= ~data_mask;

//1s battery full? => batt volts > 13.8 V
if(battVolts > BATTERY_FULL_VOLTS)

battery_full = OxFF; //1= data_mask;
else

battery_full = 0x00; /1&= ~data_mask;

//1s battery low? ==> batt volts < 10.75V
if(battVolts < MINIMUM_VOLTS)

battery_low = OxFF; //1= data_mask;
else

battery_low = 0x00; /1&= ~data_mask;

//Enough power to power up? ==> batt volts < 11.75V
if(battVolts > POWER_UP_VOLTS)

battery_turn_on = OxFF; //1= data_mask;
else

battery_turn_on = 0x00; /1&= ~data_mask;

//1s modem communicating with partner box?
if(is_in_range())

modem_in_range = OxFF; / /&= ~data_mask;
PORTB |= IN_RANGE_LED;

modem_in_range = 0x00; //1= data_mask;
PORTB &= ~IN_RANGE_LED;

//Cycle the data mask
if (data_mask == 0b10000000)
data_mask = 0x01; // cycle back to zero
else
data_mask <<= 1; // left shift by one
}

void printStatus(void)
{
int BV, PV;
BV = battVolts/0.70794;//0.4655;//47.038
PV = panelVolts/0.70794;//0.4655;
printf("\r\n\r\n\r\n");
/] print f("k Rk

97

/1
/1
/1
/1
/1
/1

/1l * CRM WatchDog Master Unit Status. *
printf("\r\n* CRM WatchDog ");
if(is_master())

printf("Master Unit Status. *\r\n");
else

printf("Slave Unit Status. *\r\n");
printf(”>k>I<>I<>I<>k>I<>I<>I<>}<>I<>I<>I<>k>}<>l<>l<>k>}<>l<>l<>k>I<>I<>I<>k>I<>I<>I<>}<>I<>I<>I<>}<>I<>I<>I<>k>}<>l<>l<>k>}<\r\n”) R
printf("Battery: %d0(mV) Solar Panel: %dO(mV) \r\n", BV, PV);
printf("Battery: %i Solar Panel: %1 \r\n", battVolts, panelVolts);
//printf("Battery Chargeable: %x \r\n", battery_chargeable);
//printf("Battery Full: Ox%x Battery Low: Ox%x\r\n", battery_full,

battery_low);

/1

printf("Enough Power: Ox%x \r\n", battery_turn_on);
//printf("Modem Range: Ox%x \r\n", modem_in_range);

//printf("Data Mask: Ox%x \r\n", data_mask);

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

printf("Battery State: ");
switch(battery_state)
{
case BATT DRAINING:
printf("Battery Draining");
break;
case BATT_CHARGING:
printf("Charging %d sec", charge ticks);
break;
case BATT_COOLDOWN:
printf("Cooling Down %d sec", cooldown_ticks);
break;
default:
printf("error");
}
printf(".\r\n");

printf("CPU: ");
switch(CPU_state)
{
case CPU_SLEEPING:
printf("Sleeping %d sec", offline_ticks);
break;
case CPU_TIMED_OUT:
printf("Timed Out. Retry %d sec", offline_ticks);
break;
case CPU_LOW_POWER:
printf("Low Power. Restart %d sec", offline ticks);
break;
case CPU_ON:
printf("On. Last Refresh %d sec Ago", last_cpu_refresh);
break;
case CPU_POWERING_UP:
printf("Powering Up %d sec", offline_ticks);
break;

98

case CPU_OFF:
printf("Turned Itself Off");
break;
default:
printf("error");
break;
}
printf(".\r\n");
}

void chargeBattery(void)

{
switch(battery_state)
{
case BATT _DRAINING:
i1f(battery_chargeable)
{
battery_state = BATT_CHARGING;
charge_ticks = CHARGE_INTERVAL;
close_relay();
}
break;
case BATT_CHARGING:
if(is_battery_full())
{
battery_state = BATT_COOLDOWN;
cooldown_ticks = BATT FULL_WAIT;
open_relay();
}
else if(--charge_ticks <= 0)
{
battery_state = BATT_COOLDOWN;
cooldown_ticks = BATT CHARGE_CD;
open_relay();
}
break;
case BATT_COOLDOWN:
1f(--cooldown_ticks <= 0)
{
battery_state = BATT DRAINING;
}
break;
default:
battery_state = BATT_DRAINING;
break;
}

}

void manageCPU(void)

{
//printf("manageCPU() entered.\r\n");

99

switch(CPU_state)

{
case CPU_ON:
if (++last_cpu_refresh > WATCHDOG_TIMEOUT)
{
// CPU has stopped communicating
/1 sleep it for a small time then reboot it
cpuOff();
last_cpu_refresh = 0;
offline_ticks = WATCHDOG_SLEEP;
CPU_state = CPU_TIMED_OUT;
}
else if (offline_ticks > 0)
{
// This can occur from a recieved sleep command from the
CPU
// or an erroneous sleep state.
cpuOff();
last_cpu_refresh = 0;
CPU_state = CPU_SLEEPING;
}
else if (is_battery_low())
{
cpuOff();
last_cpu_refresh = 0;
if (offline_ticks < WATCHDOG_SLEEP)
offline_ticks = WATCHDOG_SLEEP;
CPU_state = CPU_LOW_POWER;
}
/] Slave sleeps when master isn't communicating
/] if (!(is_master()) && (modem_in range == OxFF))
/1] {
/1 cpuOff();
/] CPU_state = CPU_SLEEPING;
/] }

break;
case CPU_LOW_POWER:
if(offline_ticks > OFFLINE_MAX)
offline_ticks = OFFLINE_MAX;

if (offline_ticks > 0)
--offline_ticks;
else //428
power_up();
break;
case CPU_TIMED_OUT:

case CPU_SLEEPING:
if(offline_ticks > OFFLINE_MAX)

100

offline_ticks = OFFLINE_MAX;

if (offline_ticks > 0)
--offline_ticks;
else
power_up();

if(is_battery_low())
CPU_state = CPU_LOW_POWER;
break;
case CPU_POWERING_UP:
// CPU needs time to power up before sending timeout refreshers
if (offline_ticks > 0)
--offline_ticks;

else
{
CPU_state = CPU_ON;
last_cpu_refresh = 0;
}
break;

case CPU_OFF:
/] CPU has decided to turn itself off
// do nothing, only a hard reset can recover
default:
break;

JELTELLLEEET L i i i i i i i i rr i
Iy

/1 power_up()

// makes the decision to power up the computer

// returns 0xO1l 1f cpu powers up and 0x00 if it does not

JELTTELLEEEII L i i i i e i i i i i i
[T

void power_up(void)

{
if (enough_power()) /] Power
up if there's power to be had
{
if(!(is_master() |l is_in_range())) // This device is the slave
return; /]

Slave will off unless in communication with master

cpuln();
// Master wakes up regardless so slave will find it

offline_ticks = WATCHDOG_TO_PWR;
last_cpu_refresh = 0;

101

CPU_state = CPU_POWERING UP;
}

else
// Continue sleeping till the battery is charged
{
offline_ticks = WATCHDOG_SLEEP;
}

//inline void sleep_sanity(void)

114
/1
/1
11}

inl

{
}

inl

{

}

inl

{

}

if(offline_ticks > OFFLINE_MAX)
offline_ticks = OFFLINE_MAX;

ine unsigned char 1s_battery_chargeable(void)

return battery_chargeable = OxFF;

ine unsigned char is_battery_full(void)

return battery_full = OxFF;

ine unsigned char i1s_battery_low(void)

return battery_low = OxFF;

inline unsigned char enough power(void)

{

}

return battery_turn_on == OxFF;

NNy,
T

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

ISR(USART_RXC_vect)

Interrupt handler for RS232 communications. The CPU can sleep and wake
the watchdog unit based on the weather conditions obtained from the
server. The watchdog accepts one of three commands following a 4-byte
header.

Oxdeadface Rx beginning signature

0x55 kill power
OxEE watchdog refresh
0xAA Sleep. Next two bytes are wake delay

The USART has to be initialized in the ioinit() function in oulib.c

102

JITELIELEEE DL i i i i i i il iirrlln
i
ISR(USART_RXC_vect)
{
static __u8 serial_state;
static __u8 rx;

//clear interrupt bit by reading the USART data register
rx = UDR;
// Do not need a wait loop because the interrupt has been triggered
[/printf("%x ", rx);
switch (serial_state)
{
case 0:
if (rx = 0xDE)
serial state++;

else
serial_state = 0;
break;
case 1:
if (rx = 0xAD)
serial_state++;
else
serial_state = 0;
break;
case 2:
if (rx == O0xFA)
serial state++;
else
serial_state = 0;
break;
case 3:
if (rx = 0xCE)
serial_state++;
else
serial_state = 0;
break;
case 4:

// header recieved, check for command

if (rx = 0x55)

{
printf("Kill Power command recieved.\r\n");
/] cpuOff();
serial_state = 0;
/! CPU_state = CPU_OFF;
break;
}
else if (rx == OxEE)
{

printf("Timeout refresh recieved.\r\n");

103

last_cpu_refresh = 0; // Reset timeout

count
offline_ticks = 0;
serial_state = 0;
//UCSRB &= ~(1<<RXCIE);

}
else if (rx == 0xAA)
{
printf("Sleep command recieved.\r\n"); //next
two bytes=wakeup time.
serial_state++;
break;
}
else
{
printf("Erroneous CPU message(invalid command, do
nothing).\r\n");
serial_state = 0;
break;
}
break;

case 5:
offline_ticks = rx << 8;
serial_state++;
break;
case 6:
offline_ticks |= rx;
//printf("Sleep %d sec.\r\n", offline_ticks);
serial_state = 0;

break;
default:
serial_state = 0; /!
invalid serial_state, do nothing
break;

104

CRMWD _lib.h

JHLTTLELEEEI L i i i i i i rrrrrirrrr
iy,

/1l

// CRMWD_lib.h

/1l

// Owner: Yih-Ru Huang

/] Modified: 20070707

/1l

JHLITLLEEEET L i i i i i i i rrirrirrrrr
Iy,

#include <stdio.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>

#ifndef __CRMWD_lib_h
#define __CRMWD_lib_h
#endif

#define F_CPU 8000000

#ifndef F_CPU
#error "F_CPU must be defined"
#endif

#if (F_CPU == 16000000)

#define MS_SHIFT 4

#define MS_GATE 0xOf

#elif (F_CPU == 8000000)

#elif (F_CPU == 1000000)

#define MS_SHIFT 8

#define MS_GATE Oxff

#else

#error "Bad F_CPU specification"
#endif

JELTEELLEEET L i r i i i i i i i i i
Iy

// Constant definitions from CRMWD lib.h

JHLTELELLEET L i i i i i i i rrirrirrrrrr
iy

// A/D converter values. Measured from voltages and A/D readouts [70.794 == 1.0V]

#define ENGAGE_RELAY DIFF 35 /] charger >
battery by 0.1V - (Diode -0.4V) = 0.5v
#define MINIMUM_VOLTS 760 // turnoff

voltage 10.75 V

105

#define POWER_UP_VOLTS 830
voltage 11.75 V

#define BATTERY_FULL_VOLTS 948
voltage 13.4 V = 13.8-0.4
#define MAXIMUM_VOLTS 999

13.8 V (+0.4 Dode) = 14.2 V

// Timing delay intervals

#define CHARGE_INTERVAL 20%60
recheck

#define BATT_FULL_WAIT 10*60
charge complete

#define WATCHDOG_TIMEOUT 6%60
imager cpu does not refresh in 5 minutes
#define WATCHDOG_TO_PWR 2*60
shorter

#define WATCHDOG_SLEEP 3%60

timeout shutdown
#define CPU_SLEEP
time 777

#define OFFLINE_MAX
for more than 6 hours

#define BATT_CHARGE_CD 10
after charge cycle

#define IN_RANGE_WAIT_ON 100
delay

#define IN_RANGE_WAIT_OFF 10
off delay

/] A/D channel selection bits
#define PANEL_CHAN

channel for solar panel connection
#define BATT_CHAN

channel for batter connection

// battery_state definitions

#define BATT_DRAINING 0
recharge conditions to be met
#define BATT_CHARGING 1
closed

#define BATT_COOLDOWN 2

reached full charge

// CPU_state definitions

#define CPU_SLEEPING 0
with plans to wake

#define CPU_TIMED_OUT 1
to reboot after comm. timeout
#define CPU_LOW_POWER 2

run out of power

30*60

6%60*60

106

// power on
/] floating

/] charge cutoff

/] charge time before

// wait interval after

// CRM sleeps the box if

// Power timeout is

/] Sleep interval after
/1 CPU Sleep
// Don't sleep
// wait interval
// slave turn on

/] slave turn

/1 A/D

/1 AID

// Waiting for
/] Relay 1is

// Battery has

/1 CPU is off
// CPU waiting

// Battery has

#define CPU_ON 3 /] CPU
up and running

#define CPU_POWERING_UP 4 // CPU on but
waiting to boot
#define CPU_OFF 5 /] CPU

has turned itself off

// Port pinouts

/] Port B

#define RELAY_SW 0x01 // pin 0
00000001 MCU pin 14

#define CPU_SW 0x02 // pin 1
00000010 MCU pin 15

#define MCU_POW_LED 0x04 // pin 2 00000100 MCU
pin 16

#define CPU_POW_LED 0x08 // pin 3 00001000 MCU
pin 17

#define IN_RANGE_LED 0x10 // pin 4 00010000 MCU
pin 18

#define DEBUG_LED 0x20 // pin 5
00100000 MCU pin 19

//Port D

#define RXD 0x01 // pin 0
00000001 MCU pin 2

#define TXD 0x02 // pin 1
00000010 MCU pin 3

#define M_S_SWITCH 0x08 // pin 3
00001000 MCU pin 5 Master/Slave Switch

#define MODEM_RESET 0x10 /] pin 4
00010000 MCU pin 6

#define MODEM_RANGE 0x20 // pin 5
00100000 MCU pin 11

#define ADC_MUX_MASK 0x07

NNy,
iy,

/] Delay

LELTTELEEEEII L i i e i i i i il
[T

//void delay_ms(unsigned int);

void delay_s(unsigned int);

inline unsigned char is_in_range(void);
inline unsigned char is_master(void);
inline void close_relay(void);

inline void open_relay(void);

107

inline void cpuOn(void);
//Turns on the CPU imager
inline void cpuOff(void);
//Turns off the CPU imager
inline void flashLEDs(unsigned char length);

inline void init_T10VE(void); //Timer
overflow initializer
inline void init_ADC(void);
//Initializes the A/D converter
inline void TIM16_addTCNT1(unsigned int 1);

/] Possible configuration parameters for timerO_config()
#define TIMERO_NOCLK 0

#define TIMERO_NOPRE 1

#define TIMERO_PRE_8 2

#define TIMERO_PRE 64 3

#define TIMERO_PRE_256 4

#define TIMERO_PRE_1024 5

#define TIMERO_EXT_FALLING 6

#define TIMERO_EXT_RISING 7

inline void timerO_enable(void);

inline void timer(O_disable(void);

inline void timerO_config(unsigned char config);
inline void timerO_set(unsigned char);

inline unsigned char timerO_read(void);

#define TIMERI_NOCLK 0

#define TIMER1_NOPRE 1

#define TIMER1_PRE_8 2

#define TIMERI_PRE_64 3

#define TIMERI_PRE_256 4

#define TIMER1_PRE_1024 5

#define TIMER1_EXT_FALLING 6

#define TIMERI_EXT_RISING 7

inline void timerl enable(void);
inline void timerl_disable(void);
inline void timerl_config(unsigned char config);
inline void timerl_set(unsigned int);
inline unsigned int timerl read(void);

#define TIMER2_NOCLK
#define TIMER2_NOPRE
#define TIMER2_PRE_8
#define TIMER2_PRE 32
#define TIMER2_PRE_64
#define TIMER2_PRE_128
#define TIMER2_PRE_256
#define TIMER2_PRE_1024 7
inline void timer2_enable(void);
inline void timer2_disable(void);

(o) WV, IR VS I S e

108

inline void timer2_config(unsigned char config);
inline void timer2_set(unsigned int);
inline unsigned int timer2_read(void);

JELTELLLEEET L i i i i i i i i rr i
Iy

/] Serial 1/0

JHLTTLLEEEEI L i i i i i rrrrrirrrr
Iy,

extern void uart_recv_flush (void);

extern int uart_send(char c, FILE *fp);

extern int uvart_recv(FILE *fp);

extern char kbhit(void);

extern void 1oinit(void);

JELTTELEEEETI L i i i i i i rr i
Iy

/1 A/D Conversion

JHLTTELEEEEI L i i i i i i i
iy,

extern inline void adc_set_reference(uint8_t ref);

#define ADC_REF_AREF 0x0
#define ADC_REF_AREF CAP Ox1
#define ADC_REF_2p56V 0x3

extern inline void adc_set_adlar(uint8_t adlar);
extern inline void adc_set_channel(uint8_t chan);
#ifdef atmega®

#define ADC_CHANNEL_O 0x0
#define ADC_CHANNEL_1 0x1
#define ADC_CHANNEL_2 0x2
#define ADC_CHANNEL_3 0x3
#define ADC_CHANNEL_4 0x4
#define ADC_CHANNEL_5 0x5
#define ADC_CHANNEL_6 0x6
#define ADC_CHANNEL_7 0x7
#define ADC_CHANNEL_1p23V 0xE
#define ADC_CHANNEL_QOV 0xF
#else

#define ADC_CHANNEL_O 0x0
#define ADC_CHANNEL_1 0x1
#define ADC_CHANNEL_2 0x2
#define ADC_CHANNEL_3 0x3
#define ADC_CHANNEL_4 0x4
#define ADC_CHANNEL_5 0x5
#define ADC_CHANNEL_6 0x6
#define ADC_CHANNEL_7 0x7
#define ADC_CHANNEL_1plV 0xE
#define ADC_CHANNEL_QV 0xF

109

#endif

extern inline void adc_set_enable(uint&_t cmd);

#define ADC_ENABLE 1
#define ADC_DISABLE 0

extern inline void adc_start_conversion(void);

extern inline void adc_set_auto_trigger(uint8 t cmd);

#define ADC_AUTO_TRIGGER_ENABLE

#define ADC_AUTO_TRIGGER_DISABLE 0

extern inline uint8_t adc_interrupt_flag(void);

extern inline void adc_interrupt_enable(uint8_t cmd);

#define ADC_INTERRUPT ENABLE 1
#define ADC_INTERRUPT_DISABLE 0

extern inline void adc_set_prescalar(uint8_t cmd);

//#define ADC_PRESCALAR_1 0

#define ADC_PRESCALAR 2
#define ADC_PRESCALAR_4
#define ADC_PRESCALAR_8
#define ADC_PRESCALAR_16
#define ADC_PRESCALAR_32
#define ADC_PRESCALAR_64
#define ADC_PRESCALAR_128

extern inline uintl6_t adc_read(void);

1

~ O L W N

// Correct? docs say this is factor 2

unsigned int ADC_conversion(unsigned char chan);

#ifdef atmegal8

extern inline void adc_set_trigger_source(uint8_t cmd);

#define ADC_TRIGGER_MODE_FREE
#define ADC_TRIGGER_MODE_ACOMP
#define ADC_TRIGGER_MODE_EXTINT
#define ADC_TRIGGER_MODE_TCOA
#define ADC_TRIGGER_MODE_TC0O
#define ADC_TRIGGER_MODE_TC1B
#define ADC_TRIGGER_MODE_TC10
#define ADC_TRIGGER_MODE_TCCE

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7

extern inline void adc_set_digital_disable(uint8_t cmd);

#endif

110

CRMWD _lib.c

JHLTTLELEEEI L i i i i i i rrrrrirrrr
iy,

/1l

// CRMWD_lib.c

/1l

// Owner: Yih-Ru Huang

/1 Modified: 20070707

/1l

JHLITLLEEEET L i i i i i i i rrirrirrrrr
Iy,

#include "CRMWD_lib.h"

NNy NNy,
i

/! Delay

// convert from loop cycles to msecs

/]

/] void delay_ms(unsigned int t)

/]

/] _delay_loop_2() can only take a 16-bit argument. This routine

// repeatedly calls _delay_loop_2() in order to get the desired busy

/!l wait length. Note that there is some overhead in the loop that is

// not counted in the delay (so the delay is actually just a little longer)

/1l

// This code 1s also specific to the 1 MHz clock

/]
NNy NNy,
i

#define _delay_ms(x) _delay_loop_2((x)*(F_CPU/4000))

inline void delay_s(unsigned int t)

{

_delay_loop_2((t*(F_CPU/1UL)) >> 2);
1

JELTEELLEEET L i r i i i i i i i i i
Iy
// 1s_in_range
// Checks Port D pin 5 to see if the master switch is set
JELTEELLEEEII L i i i i i i rrrrr i
Iy
inline unsigned char is_in_range(void)
{
return !(PIND & MODEM_RANGE);
}

111

JHLITLELEEET L i i i i i i i i i
iy,
// Checks Port D pin 3 to see if the master switch is set
// masterOrSlave sets the indicator light for the
// master/slave setting of the input switch
JELTELLLEEET L i i i i i i i i rr i
Iy
inline unsigned char is_master(void)
{
return PIND & M_S_SWITCH;
}

JHLITLEEEEET L i i i i i i i i i
Iy
/] close_relay and open_relay
// Set the output control for the battery charging relay
// and the LED indicator to either on or off
JELTTELEEEETI L i i i i i i rr i
Iy
inline void close_relay(void)
{
PORTB |= RELAY_SW;
printf("\r\n");
printf(”************************\r\n”);

printf("** Relay Closed #\r\n");
Printf("o p\ ") |

}

inline void open_relay(void)

{
PORTB &= ~RELAY_SW;
printf("\r\n");
printf(”************************\r\n");
printf("** Relay Opened #\r\n");
printf(”************************\r\n”);

}

JELTEELLEEETI L i i i i i i i i rr i
Iy
// Turn on power to the CPU and other light on
// PBl is the POWER MOSFET that switches 5 V to the
// Computer If 1t is LOW then the computer is ON
JELTTELLEEEII L i i e r i
[T
inline void cpuOn(void)
{
//PORTB |= CPU_SW;
//PB3 is the Computer ON light IF it
PORTB &= ~CPU_SW;
// no QI BS170

112

PORTB |= CPU_POW_LED; //is Lit
then the computer is on

printf("\r\n");

printf(”************************\r\n”);

printf("** CPU Power ON #\r\n");

print f("o A\ Y |

}

inline void cpuOff(void)
{

//PORTB &= ~CPU_SVW; // Turn
off power to the computer.

PORTB |= CPU_SW;

// no QI BS170

PORTB &= ~CPU_POW_LED; // Turn
off led

printf("\r\n");

printf(”************************\r\n”);

printf("** CPU Power OFF **\r\n");

printf(”************************\r\n”);
}

JELTTELEEEEII L i i i i i i i i r i
[T

/] flashLEDs

JELTEELLEEETI L i i i i i i i i i rr i
Iy

inline void flashLEDs(unsigned char length)

{
PORTB |= DEBUG_LED + IN_RANGE_LED + MCU_POW_LED + CPU_POW_LED;
_delay_ms(length);
PORTB &= ~(DEBUG_LED + IN_RANGE_LED + MCU_POW_LED + CPU_POW_LED);
_delay_ms(length);

}

JHLIELEEEEEI L i i i i i i i i
Iy,
// This initializes the timerO overflow for the microcontroller
/] After this is set the timer O overflow vector is called
/] after every overflow
JELTEELLEEET L i i i i i i i i rr i
Iy
inline void init_T10VF(void)
{
// Timer/Counter Control Register 1 B
/1 0x04 is CS 100, T1 src = CLKcpu / 1024
TCCRIB = (1<<CS12);
// Timer Interrupt Flag Register
/] Clears pending interrupt
TIFR = (1<<TOV1);

113

// Timer Interrupt Mask Register
// Enable Timer 1 overflow interrupt trigger
TIMSK = (1<<TOIEl);

}

inline void init_ADC(void) //This just chooses the channel for the microcontroller
{
//ADMUX bits 7:6 (REFS1 REFSO) settings and description
//0 0 AREF, Internal Vref turned off
//0 1 AVCC with external capacitor at AREF pin
//1 0 Reserved (do not use)
//1 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin
//bit 4 Unused
//ADLAR bit 5 =0 Don't left adjust result
//MUX bits 3:0 = 0000 channel selection, set to chan 1
ADMUX = (1<<REFS0) | (1<<MUX0);
//Wait for the channel selection to settle
/! _delay_ms(100);
//Enable ADEN, set prescaler bits (2:0) to divide by 64 (2"0bl110 = 276)
ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1);
}

//Performs an atomic write to the TCNT1 register
inline void TIM16_addTCNT1(unsigned int 1)

{
unsigned char sreg;
sreg = SREG; /1 Save
global interrupt register
cli();
/] Disable global interrupts
TONT1 += 1;
/] Set counter
SREG = sreg; /!
Restore global interrupt flags
sei();
// Enable global interrupts
}
//inline void init_TOF(void)
/1€
/! // Timer/Counter Control Register O
/! /] Set the clock source for timer O to (I/0 Clk / 1024)
/1l // This 1s the slowest internal clock setting
/1l TCCRO = (1<<CS02) 1 (1<<CS00);
/! // Timer Interrupt Flag Register
/! /] clears a pending interrupt
/1l TIFR = 1<<TOVO;
/1l // Timer Interrupt Mask Register
/! // enables Timer zero overflows to trigger an interrupt
/1l TIMSK = 1<<TOIEO;
11}

114

JELTTELEEEEEI L i i i i i i il
iy,

// Timer Support

JELTELLLEEET L i i i i i i i i rr i
Iy

inline void timerO_enable(void)

{
TIMSK |= _BV(TOIEO);
15
inline void timerO_disable()
{
TIMSK &= ~_BV(TOIEQ);
I
inline void timerO_config(unsigned char config)
{
TCCRO = (TCCRO & OxF8) | (config & 0x7); // Replace the lowest 3 bits
1
inline void timerO_set(unsigned char val)
{
TCNTO = val;
};
inline unsigned char timerO_read(void)
{
return(TCNTO) ;
1

JHLILLELLEET L i r i i i i i rrrrrinrrrr
Iy,

/] Timer 1

JHLIEEELEEEE L i i i i i i i i irrring g
iy,

inline void timerl_enable(void)

{
TIMSK |= _BV(TOIEL);
1
inline void timerl_disable()
{
TIMSK &= ~_BV(TOIEl);
1

inline void timerl config(unsigned char config)

{
TCCR1B = (TCCRIB & 0xF8) | (config & 0x7); /] Replace the lowest 3 bits

1

115

inline void timerl_set(unsigned int val)
{

TCNT1 = val;
1

inline unsigned int timerl_read(void)
{

return(TCNT1);
33

LEITTELEEEEE L i i i n i i i i i il
iy,

/] Timer 2

JELTTELEEEEI L i i i i i i i i i
Yy

inline void timer2_enable(void)

{
TIMSK 1= _BV(TOIE2);
I
inline void timer2_disable()
{
TIMSK &= ~_BV(TOIE2);
s
inline void timer2_config(unsigned char config)
{
TCCR2 = (TCCR2 & OxF8) | (config & 0x7); /] Replace the lowest 3 bits
)
inline void timer2_set(unsigned int val)
{
TCNT2 = val;
15
inline unsigned int timer2_read(void)
{
return(TCNT2) ;
I

LELTTELEEEEII L i i e i i i i il
[T

// Serial interface support

// 1/0 interface (enables things like getchar(), putchar(), printf(),

/1 scanf() to work

// void uvart_recv_flush (void)

/]

/] Clear out the contents of the receive buffer

116

JITELIELEEE DL i i i i i i il iirrlln
i
void uart_recv_flush (void) // p.144
{
unsigned char dummy;
while(bit_is_set(UCSRA, RXC)) dummy = UDR;
}

// int uart_send(char c)
// Send a byte to the serial port
int vart_send(char ¢, FILE *fp) // p.137

{
loop_until _bit_is_set(UCSRA, UDRE);
UDR = c;
return 0;

}

// int uvart_recv(void)
/] Receive a byte from the serial port
int vart_recv(FILE *fp) // p.140
{
loop_until_bit_is_set(UCSRA, RXC);
return UDR;
}

/] char kbhit(void)
// Return: 1 = character waiting in buffer

/! 0 = no character waiting
char kbhit(void)
{

return (UCSRA & (1<<RXC)) >> RXC; // RCX, p.151
}

/] void ioinit(void)
// Initialize PDO/PD1 as a serial device, p.136
void ioinit(void)
{
UCSRB = (1<<RXEN) | (1<<TXEN);
UCSRB |= (1<<RXCIE); /1 Open
USART UDRE vect Interrupt
unsigned int baud = (7800000 / (16 * 1200UL)) - 1; //3.3v 7800000, 5.0v 800000
UBRRH = (unsigned char) (baud>>8);
UBRRL = (unsigned char) baud; /! Use defaults for
UCSRC, 8NI1, p.153
fdevopen(uart_send, uart_recv);

}

JHLTTLELLEET L i i i i i i rrrrrirnrrr
Iy,
// A/D Conversion Measured from voltages and A/D readouts

117

NNy,
Iy

// Analog reference

inline void adc_set_reference(uint8_t ref)

{

ADMUX = (ADMUX & O0x3F) | ((ref & 0x3) << 6);
1

// ADC Left Adjust Result
inline void adc_set_adlar(uint8_t adlar)
{
ADMUX = (ADMUX & OxDF) | ((adlar & Ox1) <<5);
}

// Channel selection
inline void adc_set_channel(uint8_t chan)
{

ADMUX = (ADMUX & 0xFO) | ((chan & 0xF));
}

inline void adc_set_enable(uint8_t cmd)
{

ADCSRA = (ADCSRA & Ox7F) | ((emd & 0x1) << 7);
}

inline void adc_start_conversion(void)
{

ADCSRA = ADCSRA | 0x40;
}

inline void adc_set_auto_trigger(uint8 t cmd) // cmd 1s one of:
{
/1 ADC_AUTO_TRIGGER_ENABLE
ADCSRA = (ADCSRA & OxDF) | ((cmd & Ox1) << 5); /1 ADC_AUTO_TRIGGER_DISABLE
}

inline uint&_t adc_interrupt_flag(void)
{
return((ADCSRA&O0x10) >> 4);

1

inline void adc_interrupt_enable(uint8_t cmd) // cmd is one of:
{
/] ADC_INTERRUPT_ENABLE
ADCSRA = (ADCSRA & O0xF7) | ((emd & O0x1) << 3); /1 ADC_INTERRUPT _DISABLE

IS
inline void adc_set_prescalar(uint8_t cmd) // cmd 1s one of:

{
// ADC_PRESCALAR_*

118

ADCSRA = (ADCSRA & O0xF8) | (cmd & 0x7);
1

// Note: we assume adlar =0
// Blocking read of ADC result
inline uintl6_t adc_read(void)

{

uintl6_t out;

while(!adc_interrupt_flag()){}; // Wait for ADC data to
be ready

out = (uintl6_t) ADCL; // Read out the

value: order of register access 1s important!
out I= (((uintlé_t) (ADCH&0x3)) << 8);
return(out);

1

unsigned int ADC_conversion(unsigned char chan)
{

unsigned int result = 0;

// Set the A/D channel for

//ADMUX &= ~ADC_MUX_MASK;

//ADMUX |= (ADC_MUX_MASK & chan);

ADMUX = (ADMUX & Ob11110000) | chan;
/! _delay_ms(60); //1!1Where in
documentation is this necessary?

ADCSRA = (1<<ADSC); // Start
conversion. . .

while(!(ADCSRA & (1<<ADIF))); // ...and wait

//while(!(ADCSRA & 0x10));

ADCSRA |= (1<<ADIF);

result = ADCLI(ADCH<<8);

[/printf("%d\r\n", result);

return result;

JILELTELEI L L i i i iiii i iriiiiiriiiirnirilei
s,
#ifdef atmegal8

// inline void adc_set_trigger_source(uint8_t cmd)
/] cmd is one of:

/] ADC_TRIGGER_MODE_*

inline void adc_set_trigger source(uint8 t cmd)

{
ADCSRB = (ADCSRB & OxF8) | (cmd & 0x7);
15
/] ACME?
inline void adc_set_digital_disable(uint8_t cmd)
{

119

DDIRO = (DDIRO & 0xCO) | (cmd & O0x3F);
1
#endif

NNy,
Iy

120

Appendix F: KOUN Runway 17 CRM-Box System Sighting

Station Latitude Longitude EllHgt(m)

ZX01A 3514 37.52730 -97 28 19.25797 331.964,Good

ZX01B 3514 37.50285 -97 28 26.54952 331.899,Good

ZX02A 3514 39.40140 -97 28 19.25965 332.445,Good

ZX02B 3514 39.56745 -97 28 26.56197 332.214,Good
ZXMaster 35 14 32.35064 -97 28 00.75543 342.608,Published-3D
17T 3515 23.02000 -97 28 23.22000 333.654 246 B

17E 3514 31.65000 -97 28 22.84000 332.319 246 B

Digital Aeronautical Database System (DADS)
(Version 2.8/06)

sk ock sk ok sk ok ok sk sk sk skosk sk sk sk sk ok ok sk sk sk sk sk sk sk ok ok

US DOT/Federal Aviation Administration
Aviation System Standards
Information Technology Staff
NAS Management Systems Branch
1305 East-West Highway
Silver Spring, MD 20910
(301) 713-1186

*#% INVERSE (GRS 80) *** 3/7/2008 (2008067), 3:44:19 PM

sksksk

**%* Distance conversion factor:

**% 1 Nautical mile = 1852.00 Meters
**% 1 meter = 3.28083 US standard foot

B s L e e e S S S S S o o o

17T

ZX02B ZX02A

KOUN2 KOUN1
ZX01B ZX01A

17E
Station Latitude Longitude Variation Tag
17T 3514 31.65000N 097 28 22.84000W 000.00000W -
17E 3515 23.02000N 097 28 23.22000W 000.00000W -

121

1A 3514 37.52731N 097 28 19.25796W 000.00000W

1B 3514 37.50287N 097 28 26.54952W 000.00000W
2A 3514 39.40139N 097 28 19.25966W 000.00000W
2B 3514 39.56742N 097 28 26.56195W 000.00000W
C 3514 37.51517N 097 28 22.88338W -- ANS
From--To Azimuth Magnetic Distance

17E17T 359.65235 359.65235 1583.15474 M
1A1B 269.76649 269.76649 184.34965 M
17EC 359.65235 359.65235 180.75651 M
17TC 179.65229 179.65229 1402.39823 M
1AC 269.76642 269.76642 091.66007 M

1BC 089.76539 089.76539 092.68958 M

DbtRYV 333.654-331.964=1.69
DbtLV 333.654-331.899=1.755

122

Appendix G: CRM Server Linux Perl Scripting Language

sortp.pl
#!/usr/bin/perl -w

use strict;
use Getopt::Std; #must use "my"

my %options;
getopts("s:p:d:p",\%options); # "-s KOUN" or "-d yyyymmdd"

my $indir = "/home/ben/incoming/";
my $outdir = "/home/ben/data/";

my $processDay;
unless (defined $options{d})

{
my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday) = gmtime(time-2%86400);
$year += 1900;
$mon++;
$processDay = sprintf "%04d%02d%02d", $year, $mon, $mday;
}

chdir $indir or die "cannot enter incoming dir\n";
my %p; # @ $p{site}{cam} } 1is files

build hash of all packages, process each site/camera group
foreach (<*.bz2>)

{
parse out CRM compressed package name
next unless (/(\w+)-(\w+)-(\w+)\.bz2/);
my $site = $1;
my $cam = $2;
my $time = $3;
1f site argument specified, only process that site
if (defined $options{s})
{
if ($site =~ /$options{s}/)
{
push @ $p{$site}{$cam} }, $_;
}
}
else
{
push @{ $p{$site}{$cam} }, $_;
}
}

123

my %proc;

seperate dates into per day bins
foreach my $site (keys %p)

{
foreach my $cam (keys %{ $p{$site} })
{
foreach my $f (@{ $p{$site}{$cam} })
{
$f =~ /(\w+)-(\w+)-(\w+)\.bz2/;
my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday) = gmtime($3);
$year += 1900;
$mon++;
my $datestr = sprintf "%04d%02d%02d", $year, $mon, $mday;
push @ $proc{$site}{$cam}{$datestr} }, $f;
}
}
}

dont process current date or not the select day, let i1t accumulate
foreach my $site (keys %proc)
{
foreach my $cam (keys %{ $proc{$site} })
{
foreach my $date (sort keys %{ $proc{$site}{$cam} })

{
if ((defined $options{d}) && ($date !'= $options{d}))
{
print "Dropping date- $date from $site $cam\n";
delete $proc{$site}{$cam}{$date};
}
elsif (!(defined $options{d})) #process only
pick up day (today-2)
{
if ($date != $processDay)
{
print "Dropping date: $date from $site $cam\n";
delete $proc{$site}{$cam}{$date};
}
}

}
my $total _files = 0;
foreach my $site (sort keys %proc)

{
foreach my $cam (sort keys %{ $proc{$site} })

124

foreach my $date (sort keys %{ $proc{$site}{$cam} })

{
my $airport = substr $site, 0, 4;
my $dir = "$outdir/$airport/$date/tmp";
print "Output dir: $dir\n";
system("rm -rf $dir"); # delete temporary directory
system("mkdir -p $dir");
$total _files += $#{ $proc{$site}{$cam}{$date} };
print("Site: $site cam: $cam date: $date " .
"$#{ $proc{$site}{$cam}{$date} }\n");

next if defined $options{p}; # only print file stats
foreach my $f (sort @ $proc{$site}{$cam}{$date} })
{

system("cp", $f, "$dir");

system("bunzip2", "$dir/$f");
}
my $cc = substr($cam,1,1);
repackage data into one large file
system("/home/ben/src/repack/repack $cc $dir > $dir/.bigfile");
remove all the small files
foreach (@{ $proc{$site}{$cam}{$date} })
{

unlink $_;
}
my $newname = "$outdir/$airport/$date/$site-$cam-$date";
while (-f $newname)
{

$newname .= "B";
}
rename "$dir/.bigfile", $newname;
system("md5sum $newname >> $outdir/$airport/$date/md5sum.txt");
system("rm -rf $dir"); # delete temporary directory

}

}
print "site: $site\n";

}

print "Total number of CRM files: $total files\n";

125

weather_p.pl

#!/usr/bin/perl -w

use strict;
use Time::Local;

$ENV{PATH} .= ":/usr/local/mysql/bin/";
my $root = "/home/ben/src/logger";

chdir $root or die "cannot chdir to $root";

my $SECHR = 3600; # seconds in hour
1f (open(F, "CURRENT")) # save old weather
{

my $a = ;

if ($a =~ /(\d+)/)

{

rename ("CURRENT", "CURRENT.archive/CURRENT.$1");
}
}

open STDOUT, ">CURRENT" or die "cannot change STDOUT to output file";

my @st;
my %pos;
open F, "STATIONS" or die "cannot open station ID file";
while (<F>)
{

chomp;

@ = split /\s+/, $_;

push @st, $_[0];

$pos{$_[01}{"'lat'} = $_[3];

$pos{$_[0]}{"'lon"} = $_[4];
}
my $st = join '"\%20', @st; # all KXXX stations together
my ow = (); # hash of weather: $w{"station"}{"code"} = "altitude"
unlink("METARS"); # delete old weather data file

my $query = 'http://adds.aviationweather.noaa.gov/metars/index.php\?station_ids\=

$st .
"\&std_trans\=standard\&chk_metars\=on\&chk_tafs\=off"';

download METARS with wget, check that file is Okay
my $try2 = 0;

my $done = 0;

my $skip_proc = 0;

126

while (!$done)

{
system("wget -qO METARS $query");
system("echo $query");
if (system("grep \"no data available\" METARS") == 0 && $try2)
{
print "both stations down... going by sun position\n";
foreach my $s (@st)
{
$w{$s}{'CLR"} = 1e9;
$w{$sI{'TIME'} = time;
}
$done = 1;
$skip_proc = 1;
}
elsif (system("grep \"no data available\" METARS") == 0)
{
print "weather.aero 1s down, trying adds\n";
unlink "METARS";
$query = 'http://adds.aviationweather.noaa.gov/metars/index.php'.
"\?station_ids\=" . $st .
"\&std_trans\=standard\&chk_metars\=on\&chk_tafs\=off";
$try2 = 1; # indicate second site attempt
}
elsif ((stat("METARS"))[7] < 50)
{
1f file 1s small, METARs didn't work correctly
print "unable to get METARS (zero byte file)\n";
sleep(20);
unlink "METARS";
}
else
{
print "Downloaded ", (stat("METARS"))[7], " bytes weather.\n";
$done = 1;
}
}
$/ = '
'; # break input lines on HIML tag instead of \n

open(F, "METARS") or die "unable to open METARS raw data";

Build hash of weather information

while (<F>)

{
print "$_\n";
s/\n//g;

127

next unless /\>(K.*?)\</;

get GMT (UTC) day, month, year since ADDS doesn't provide
my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime(time);

my @ = split(/ /, $1);
my $station = $a[0];

time processing section ####H#
$a[l] =~ /(..)(..)(.)Z/;
my $a_day = $1; my $a_hour = $2; my $a_min = $3;

check if ADDS data is in the future

if ($a_day > $mday)

{ print "ADDS data (day) is in future: $a_day > $mday\n";
if ($a_day = $mday && $a_hour > $hour)

{ print "ADDS data (hour) is in future: $a_hour > $hour\n";
if ($a_day = $mday && $a_hour == $hour && $a_min > $min)

{ print "ADDS data (minute) is in future: $a_min > $min\n";

}

check if ADDS day rolled passed end of month (before us)
if ($a_day < 6 && $mday > 20)
{
fixup $mon and $year for ADDS measurement ahead
$mon++;
if ($mon == 12) # end of year rollover
{
$mon = 0;
$year++;
}
print "ADDS data rolled passed the month\n";
print " -- rolled month: $mon year: $year\n";

}

timegm converts back to UTC seconds

has parameters: ($sec,$min,$hour,$mday,$mon,$year)

where $mday is 0..30, $mon is O..11, and $year is 105 for 2005
my $utcsec = timegm(0,$a_min,$a_hour,$a_day,$mon,$year);

$wi{$station}{'TIME'} = $utcsec;
foreach (@a) # find cloud altitude tokens

{
last 1if /RMK/; # ignore RMK onward

128

if (/(CLRIFEWISCTIBKNIOVCIVV)(\d\d\d)?/)

{
if ($1 eq 'CLR' and not defined $2)
{
$wi{$station}{$1} = 1e9;
}
else
{
if (not defined $w{$station}{$1} Il $w{$station}{$1} >
$2)
{
$w{$station}{$1} = $2;
}
}
}
}
}

since LAX has dual stations, we copy the data

#

$w{'KLAY'} = $w{ 'KLAX'} if exists $w{'KLAX'};

$pos{'KLAY'} = $pos{'KLAX'} if exists $pos{ 'KLAX'};

#Sw{'KLAZ'} = $w{'KLAX'} if exists $w{'KLAX'};

#$pos{ 'KLAZ'} = $pos{'KLAX'} if exists $pos{'KLAX'};
$w{'KOUN'} = $w{'KOKC'} if exists $w{'KOKC'};
$pos{'KOUN'} = $pos{'KOKC'} if exists $pos{'KOKC'};

Data output #H####
print 'Weather grab, UTC time:

, time, "\n";

foreach my $st (sort keys %w)

{

insert data into this table:
CREATE TABLE stations(

id varchar(5),
Sys_time integer,

diff_time integer,

turn_off time 1integer,

turn_on_time 1integer,

cloud_string varchar(80)
);

my $sun_is_up = is_sun_up($pos{$st}{'lat'}, $pos{$st}{'lon'});
$sun_is_up = 1000000; # dont use sundown as data

129

clear old measurements (only 1f ADDS hasnt been updated)
my $de = "echo \"delete from stations where id = '$st' " .
"and sys_time = $w{$st}{TIME}\" " .
"| mysql --user=root --password=lal23 crm";
system($de);
my $in = 'echo "insert into stations (id, sys_time, diff time,"' .
"turn_off time, turn_on_time, cloud_string) values (';

$in .
$in .

"t s
"$w{$st}{TIME}, ";

my $dt = time - $w{$st}{TIME};
next if (abs($dt) > 20000); # weather time off
$in .= "$dt, ";

grab all altitudes and sort (to find lowest)
my @alts = sort {$a <=> $b} values B{$w{$st}};

turn off until sunset (max time) if clear
if ($sun_is_up > 0 && $alts[0] > 100)

{
$in .= "0, "; # next shutdown (now)
$sun_is_up = 2.0*$SECHR if ($sun_is_up > 4.0*$SECHR);
$in .= $sun_is_up-600 . ", ";
}
elsif ($sun_is_up == -1) # sun 1s down, stay online
{
$w{$st}{SUNDOWN} = 1;
$in .= 2.0*$SECHR . ", "; # next shutdown (future)
$in .= 0.5*%$SECHR . ", "; # 0.5 hr sleep (ignored)
}

elsif ($alts[0] <= 20) # stay up 1f ceiling 1s 2000 ft

{
$in .= 2.0%$SECHR . ", "; # next shutdown (future)
$sun_is_up = 0.5*$SECHR if ($sun_is_up > 0.5*$SECHR);
$in .= $sun_is_up . ", ";

}

elsif ($alts[0] <= 50) # 5,000 ft, come back in .5 hour

{
$in .= "0, "; # next shutdown (now)
$sun_is_up = 0.5*$SECHR if ($sun_is_up > 0.5*$SECHR);
$in .= $sun_is_up . ", ";

}

elsif ($alts[0] <= 100) # 10,000 ft, come back in 1.0 hour

{
$in .= "0, "; # next shutdown (now)
$sun_is_up = 1.0*$SECHR if ($sun_is_up > 1.0*$SECHR);

$in .= $sun_is_up . ", ";

else # clear, sleep 2.0 hour

130

$in .= "0, "; # next shutdown (now)
$sun_is_up = 1.5%$SECHR if ($sun_is_up > 1.5*$SECHR);

$in .= $sun_is_up . ", ";

}

$1n = Hvll;
store each cloud altitude, for completeness
foreach (sort keys %{ $w{$st} })

{
next if /TIME/;
if CLR defined and no other terms, weather is clear
if (/CLR/) # && scalar keys %{$w{$st}} == 2)
{
$in .= 'CLEAR ';
}
elsif ($_ eq 'SUNDOWN')
{
$in .= 'SUNDOWN ';
}
else # just print the term
{
$in .= "$_ " . $w{$st}{$_} * 100 . " ",
}
}
$1n ‘: HVII;
$in .= ');" | mysql --user=root --password=lal23 crm';
print("insert string: $in\n");
system($in);
}
close(F);

sub 1s_sun_up

{
my $lat = shift;
my $lon = shift;
my $next_day = 0;
NEXTDAY :

my @ = gmtime(time + $next_day);

$t[5] += 1900; # year (+1900)

$t[4] += 1; # mon (+1)

$t[3] -= 1, # day

my $sun_args = "$t[5] $t[4] $t[3] $lat $lon";

get sunrise/sunset information from sunrise command
print "./sunrise $sun_args |";

131

open F, "./sunrise $sun_args |I";
my $sun = <F>;
close F;

$sun =~ /Sunrise\s+(\d+)-(\d+)-(\d+)\s+(\d+): (\d+): (\d+)\s+
Sunset\s+(\d+)-(\d+)-(\d+)\s+(\d+): (\d+): (\d+)/x;

fixup returned dates for timegm
my $yearl = $3 - 1900;

my $monl = $1 - 1;

my $year2 = $9 - 1900;

my $mon2 = $7 - 1;

mon mday year hour min sec =>

timegm($sec,$min,$hour,$mday, $mon, $year);

03 12 2005 14 22 56, 03 13 2005 02 12 51

#my $sunrise_time = timegm($6,$5,$4,$2.$1,$3);

#my $sunset_time = timegm($12,$11,$10,$8,$7.$9);

my $sunrise_time = timegm($6,$5,%4,%$2,$monl,$yearl);
my $sunset_time = timegm($12,$11,$10,$8,$mon2,$year2);

print "sunrise: $sunrise_time sunset: $sunset_time\n";
print "now: " . time . "\n";
print "$1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11 $12\n";

1f time is greater than sunset time, that day ended
try the next day:
if ($sunset_time < time)

{
print "sunset info is old, redoing loop on next day\n";
$next_day += 24*60%60;
goto NEXTDAY;
}
if ($sunrise_time < time && $sunset_time > time)
{
print "Sun is up! sunset in: ", $sunset_time - time, "\n";
if ($sunset_time - time < 1800) {
print "less than 30 min. until sunset, overriding\n";
return -1;
} else {
return ($sunset_time - time);
}
} else {
print "Sun is DOWN\n";
}
return -1;

132

©Copyright by YIH-RU HUANG 2009
All Rights Reserved.

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Chapter 1 Introduction and Background
	1.1 Background
	1.2 The Task
	1.3 Dissertation Outline

	Chapter 2 CRM System Architecture
	2.1 CRM-Box System Implemented Architecture
	2.1.1 System Watchdog and Solar Charging Controller
	2.1.2 Master and Slave Wireless Communication
	2.1.3 BusyBox Linux Embedded System

	2.2 CRM System Remote Control Server
	2.3 CRM System Database Server

	Chapter 3 Methodology and Algorithm
	3.1 CRM-Box System Runway Sighting
	3.2 Data Acquisition
	3.3 System Calibration
	3.4 Digital Image Processing
	3.5 TSPI Construction

	Chapter 4 Results
	4.1 CRM System Evaluation and Validation
	4.1.1 Truth System
	4.1.2 Normalized ENU Method
	4.1.3 Time Domain to Space Domain

	4.2 CRM System Errors Analysis
	4.2.1 Total System Error
	4.2.2 CRM System Time Error
	4.2.4 CRM System Error Components Definition

	4.3 Results

	Chapter 5 Conclusions

	REFERENCES
	APPENDICES
	Appendix A: CRM-Box CCD Camera Aiming Tool C# Code
	Appendix B: CRM System Raw Data to CSV Tool C# Code
	Appendix C: CRM_BoxRL_ProcessAutoCal.m MATLAB Code
	Appendix D: CRM-Box System Watchdog C code
	Appendix F: KOUN Runway 17 CRM-Box System Sighting
	Appendix G: CRM Server Linux Perl Scripting Language

