
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

ATTITUDE AWARE SMARTPHONES FOR TELE-OPERATED

ROBOT CONTROL

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

AMBER M. WALKER
Norman, Oklahoma

2013



ATTITUDE AWARE SMARTPHONES FOR TELE-OPERATED
ROBOT CONTROL

A DISSERTATION APPROVED FOR THE
SCHOOL OF AEROSPACE AND MECHANICAL ENGINEERING

BY

Dr. David Miller, Chair

Dr. M. Cengiz Altan

Dr. Dean Hougen

Dr. Chen Ling

Dr. Zahed Siddique



c© Copyright by AMBER M. WALKER 2013
All Rights Reserved.



Acknowledgements

First, I wish to thank my research adviser, Dr. David Miller, who welcomed me

to Oklahoma and took on more than just a student. I have been demanding and

strong-willed, and really tested my limits by having a baby in the middle of an

already accelerated degree. Thanks for believing in me! I have learned about

much more than robotics. You took the time to develop me as a researcher,

mentor, and teacher. My future cadets thank you!

To my committee, I thank you for your advice, service, and accommodation.

I have enjoyed working with each of you. I have especially enjoyed the

multi-disciplinary nature of my degree, and each of you had a hand in ensuring

its success. Computer science and human factors were very new to me three years

ago, but not so now thanks to your confidence, time, and patient instruction.

I also wish to thank my military mentor, COL Daisie Boettner, who has been

inspiring me since I took her Fluid Dynamics class at West Point 11 years ago.

She will soon be my boss, and I could not ask to work for a more dedicated

professional.

Finally, I must thank my family...all of them. Especially my husband, Michael,

who has been through all of life’s crazy rides with me. He is a truly equal partner,

making everything I’ve accomplished possible. To my son, Tyson, I hope that

one day you’ll at least read to this page of my dissertation and be inspired! The

world is your oyster.

iv



Table of Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Current Operator Control Units (OCUs) . . . . . . . . . . 3
1.2.2 Smartphones in the Military . . . . . . . . . . . . . . . . . 4

1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Objectives & Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Research Questions & Hypotheses . . . . . . . . . . . . . . . . . . 9

1.6.1 Research Question #1 . . . . . . . . . . . . . . . . . . . . 10
1.6.2 Research Question #2 . . . . . . . . . . . . . . . . . . . . 11

2 Literature Review 13
2.1 Tele-operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Tilt-based Research . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Human Factors/Usability . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Designing for the Masses–Customizable Control . . . . . . . . . . 23

3 Application (Software) Development 27
3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Controller Use Case . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Design Considerations . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Apple and Objective-C . . . . . . . . . . . . . . . . . . . . 34
3.1.4 Model-View-Controller . . . . . . . . . . . . . . . . . . . . 35

3.2 MVC: View (Controller Interface) . . . . . . . . . . . . . . . . . . 37
3.3 MVC: Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Motion Algorithm . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Transform Functions . . . . . . . . . . . . . . . . . . . . . 48
3.3.3 User Settings/Preferences . . . . . . . . . . . . . . . . . . 52

3.4 MVC: Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 Communication Protocol & WiRC SDK . . . . . . . . . . 57

3.5 MainViewController . . . . . . . . . . . . . . . . . . . . . . . . . 58

v



4 Experiment Design 65
4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Course design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 Independent Variables . . . . . . . . . . . . . . . . . . . . 71
4.5.2 Definition of Experiment Phases . . . . . . . . . . . . . . . 73
4.5.3 Dependent Variables . . . . . . . . . . . . . . . . . . . . . 79

4.6 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6.3 Timed Trials . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Experiment & Results – Phase 1 86
5.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Independent/Dependent Variables . . . . . . . . . . . . . . . . . . 88
5.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.2 Analysis of Variance (ANOVA): The F -Statistic . . . . . . 92

5.4 Results & Discussion: The F -Statistic . . . . . . . . . . . . . . . 94
5.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.2 User Preference . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Results & Discussion: Correlation . . . . . . . . . . . . . . . . . . 100
5.6 Analysis of Covariance (ANCOVA) . . . . . . . . . . . . . . . . . 103
5.7 Summary & Other Results . . . . . . . . . . . . . . . . . . . . . . 105

6 Experiment & Results – Phase 2 106
6.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Independent/Dependent Variables . . . . . . . . . . . . . . . . . . 108
6.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4 Results & Discussion: The F -Statistic . . . . . . . . . . . . . . . 112

6.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.2 User Preference . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Results & Discussion: Correlation . . . . . . . . . . . . . . . . . . 115
6.6 Analysis of Covariance (ANCOVA) . . . . . . . . . . . . . . . . . 119
6.7 Summary & Implications for Phase 3 . . . . . . . . . . . . . . . . 120

6.7.1 Mode Confusion . . . . . . . . . . . . . . . . . . . . . . . . 120
6.7.2 Customization . . . . . . . . . . . . . . . . . . . . . . . . . 123

vi



7 Experiment & Results – Phase 3 126
7.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 Independent/Dependent Variables . . . . . . . . . . . . . . . . . . 127
7.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4 Results & Discussion: The F -Statistic . . . . . . . . . . . . . . . 129

7.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.5 Results & Discussion: Correlation . . . . . . . . . . . . . . . . . . 131
7.6 Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.6.1 Effect of Satisfaction on Performance . . . . . . . . . . . . 135
7.6.2 Controller E Configurations vs. Preferences . . . . . . . . 137
7.6.3 Suitability of Controller Defaults . . . . . . . . . . . . . . 141
7.6.4 Controller Operation with Gloved Hands . . . . . . . . . . 143

7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8 Conclusions & Future Work 148
8.1 Project Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.1.1 Multi-Phase Usability Experiment . . . . . . . . . . . . . . 149
8.1.2 Experimental Findings . . . . . . . . . . . . . . . . . . . . 149

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.2.1 Continue Army Research Lab’s Experiment . . . . . . . . 156
8.2.2 Controller Modifications . . . . . . . . . . . . . . . . . . . 157
8.2.3 Additional Research . . . . . . . . . . . . . . . . . . . . . 160

References 165

A Interviews with Company Commanders using Ground Robots in
Afghanistan 176
A.1 Correspondence with CPT Michael Knox, U.S. Army . . . . . . . 176
A.2 Correspondence with CPT Jack Morrow, U.S. Army . . . . . . . . 179

B Institutional Review Board #1115 184

C Experiment Results: User Questionnaires, Experiment Logs,
and Participant Comments 191
C.1 Demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
C.2 Performance Measures: Experiment Log . . . . . . . . . . . . . . 193
C.3 NASA TLX Results . . . . . . . . . . . . . . . . . . . . . . . . . . 195
C.4 System Usability Scale Results . . . . . . . . . . . . . . . . . . . . 197
C.5 Post-Iteration Survey Results . . . . . . . . . . . . . . . . . . . . 200

C.5.1 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
C.5.2 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
C.5.3 Phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

C.6 Post-Experiment Survey Results . . . . . . . . . . . . . . . . . . . 212

vii



C.6.1 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
C.6.2 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
C.6.3 Phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

C.7 Other Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

D DVD 223
D.1 WiRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
D.2 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . 224
D.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 224
D.4 Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

viii



List of Tables

3.1 Survey of Tilt-Based Games and Products . . . . . . . . . . . . . 41
3.2 User-Settable Values . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Kyosho Blizzard SR RTR Specifications . . . . . . . . . . . . . . . 68
4.2 Experiment Counterbalance Design . . . . . . . . . . . . . . . . . 72
4.3 Summary of Controllers as the Independent Variable . . . . . . . 72
4.4 Definition of Runs for Phases 2 and 3 (Object Locations) . . . . . 75
4.5 Training Procedures by Experiment Phase . . . . . . . . . . . . . 84

5.1 Normality Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 The F -Statistic: Phase 1 . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Spearman’s Correlation Coefficient (ρ): Phase 1 . . . . . . . . . . 101

6.1 The F -Statistic: Phase 2 . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Spearman’s Correlation Coefficient (ρ): Phase 2 . . . . . . . . . . 116
6.3 Analysis of Covariance: Controller & Users’ Spatial Abilities . . . 119
6.4 User-Rated Importance of Customizable Controller Options . . . 123

7.1 The F -Statistic: Phase 3 . . . . . . . . . . . . . . . . . . . . . . . 130
7.2 Spearman’s Correlation Coefficient (ρ): Phase 3 . . . . . . . . . . 132
7.3 Controller E Configurations and Frequency of Customization . . . 139
7.4 Comparing User-Adjusted Configuration Values to Controller

Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.1 Population Demographics: Proficiency/Experience Likert Scale . . 191
C.2 Post-Iteration Questionnaires: Training Likert Scale . . . . . . . . 200
C.3 Post-Iteration Questionnaires: Trial Subtask Skill Likert Scale . . 200

ix



List of Figures

1.1 Operator Control Unit (OCU) Examples . . . . . . . . . . . . . . 5

3.1 Application Icon (Green Steering Wheel) on Device Home Screen 30
3.2 View from Camera Onboard Robot . . . . . . . . . . . . . . . . . 31
3.3 Custom Control Application Architecture . . . . . . . . . . . . . . 36
3.4 Default Controller Application . . . . . . . . . . . . . . . . . . . . 37
3.5 iPhone Coordinate System . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Custom Controller Application Examples . . . . . . . . . . . . . . 53
3.7 Settings View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.8 Alert View Pop-up . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Army Research Laboratory’s Android Operator Control Unit [96] 66
4.2 Experiment Hardware . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Layout of Test Course . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Pictures of Course . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Phase 1 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Phase 2 Visual Identification Task . . . . . . . . . . . . . . . . . . 75
4.7 User Worksheet for Mapping Object Locations . . . . . . . . . . . 76
4.8 Phase 2 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.9 Phase 3 Control Interface . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Phase 1: Controllers A and B . . . . . . . . . . . . . . . . . . . . 87
5.2 User Workstation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Histogram of Phase 1 Trial Times (N = 50) . . . . . . . . . . . . 94
5.4 Phase 1 Results Summary . . . . . . . . . . . . . . . . . . . . . . 98
5.5 Scatterplot of Minor Errors vs. Path Points . . . . . . . . . . . . 104

6.1 Phase 2: Controllers C and D . . . . . . . . . . . . . . . . . . . . 106
6.2 Scanning Boxes for Visual Identification Tasks . . . . . . . . . . . 107
6.3 Completed User Worksheet from Phase 2 . . . . . . . . . . . . . . 108
6.4 Spearman’s Correlation Plots: Phase 2 . . . . . . . . . . . . . . . 118
6.5 Analysis of Covariance: spatial ability vs. localization . . . . . 119
6.6 Mode Confusion Charts . . . . . . . . . . . . . . . . . . . . . . . 122

x



7.1 Phase 3: Controller E . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Spearman’s Correlation Plot: ttime vs. tlx . . . . . . . . . . . . 134
7.3 User Performance vs. User Satisfaction . . . . . . . . . . . . . . . 137
7.4 Touchscreen Capable Military Work Gloves . . . . . . . . . . . . . 144

8.1 Phase 1 Results Overview . . . . . . . . . . . . . . . . . . . . . . 151
8.2 Phase 2 Results Overview . . . . . . . . . . . . . . . . . . . . . . 152
8.3 Comparison of System Usability Scores and NASA TLX Mental

Workload Index: All Phases . . . . . . . . . . . . . . . . . . . . . 153
8.4 User Preferred Control Mode Combinations . . . . . . . . . . . . 154

B.1 IRB Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . 185
B.2 IRB Recruitment Material . . . . . . . . . . . . . . . . . . . . . . 186
B.3 IRB Informed Consent . . . . . . . . . . . . . . . . . . . . . . . . 190

C.1 Population Demographics Survey Results . . . . . . . . . . . . . . 192
C.2 Phase 1 Performance Results . . . . . . . . . . . . . . . . . . . . . 193
C.3 Phase 2 Performance Results . . . . . . . . . . . . . . . . . . . . . 194
C.4 Phase 3 Performance Results . . . . . . . . . . . . . . . . . . . . . 194
C.5 Phase 1 NASA TLX Results . . . . . . . . . . . . . . . . . . . . . 195
C.6 Phase 2 NASA TLX Results . . . . . . . . . . . . . . . . . . . . . 196
C.7 Phase 3 NASA TLX Results . . . . . . . . . . . . . . . . . . . . . 196
C.8 Phase 1 System Usability Scale Results . . . . . . . . . . . . . . . 198
C.9 Phase 2 System Usability Scale Results . . . . . . . . . . . . . . . 199
C.10 Phase 3 System Usability Scale Results . . . . . . . . . . . . . . . 199
C.11 Post-Iteration Questionnaire: Phase 1 Results (Training) . . . . . 201
C.12 Post-Iteration Questionnaire: Phase 1 Results (Driving) . . . . . . 202
C.13 Controller A: Easiest/Hardest Control Tasks . . . . . . . . . . . . 204
C.14 Controller B: Easiest/Hardest Control Tasks . . . . . . . . . . . . 204
C.15 Post-Iteration Questionnaire: Phase 2 Results (Training) . . . . . 205
C.16 Post-Iteration Questionnaire: Phase 2 Results (Camera Control) . 206
C.17 Controller C: Easiest/Hardest Control Tasks . . . . . . . . . . . . 207
C.18 Controller D: Easiest/Hardest Control Tasks . . . . . . . . . . . . 208
C.19 Post-Iteration Questionnaire: Phase 3 Results (Training) . . . . . 209
C.20 Post-Iteration Questionnaire: Phase 3 Results (Camera & Driving) 210
C.21 Controller E: Most Important Customizable Control Options . . . 211
C.22 Post-Experiment Questionnaire: Phase 1 Results . . . . . . . . . . 212
C.23 Post-Experiment Questionnaire: Phase 2 Results . . . . . . . . . . 214
C.24 User-Customized Settings . . . . . . . . . . . . . . . . . . . . . . 221
C.25 Preference Comparisons (by User), Phase 1-3 . . . . . . . . . . . . 222

xi



Abstract

The U.S. military has increasingly turned to unmanned ground vehicles

(UGVs) to assist in the most dull, dirty, and dangerous missions. Their presence

on the battlefield is redefining how war is waged, expanding opportunities for

reconnaissance and surveillance while minimizing soldier mortality. Robotic

systems have gotten ever smaller, many now being man-packable. Soldiers may

now carry, deploy, and control their own robotic assistant, many with limited

formal training. Unfortunately, UGVs add significantly to a soldier’s standard

load of water, ammunition, armor, and supplies, making weight and portability

top concerns. One way to ease the soldier burden is to adopt smartphones for use

as robot operator control units (OCUs). Their small, lightweight frame combined

with processing power and adaptable software backbone may enable intuitive

controls on a device well-suited for other military missions.

Field operations are often conducted when users are gloved and/or

dirty, making common smartphone touch interfaces problematic. By using

proprioceptive device inputs related to attitude, smartphones can be used for

control in ways that minimize that touch interface. To test this, an attitude aware

smartphone controller (using the device’s accelerometers and gyroscope) for a

small, tele-operated, ground robot was developed and assessed via a multi-phase

usability experiment. The controller’s motion algorithm made use of quaternion

mathematics to simplify motion handling and the user interface.

Twenty-five users were recruited to assess usability of attitude aware controls,

testing their suitability for driving and camera manipulation tasks. Participants

operated a small tracked robot on an indoor course with controllers using either

xii



virtual joystick or tilt-based controls while metrics regarding performance, mental

workload, and user satisfaction were collected. They were also exposed to

customizable controls, identifying modes and settings which contributed most

heavily to the controller’s usability. Results indicate that attitude-based controls

are suitable for tele-operated reconnaissance and surveillance, as 64% of users

preferred tilt-based driving controls while performing equally as well as the

alternative. Customized configurations showed 60% of users preferred tilt for

driving tasks when throttle sensitivity and controller responsiveness could be

manipulated. The inherent usability of attitude aware controls optimistically

exhibit how smartphones can be leveraged for robotic control, even in harsh

environments by gloved users.

xiii



Chapter 1

Introduction

1.1 Background

Robots are often said to excel at the “dull, dirty, and dangerous,” making

them uniquely suited to military missions [109, 119, 48]. As tools on the

battlefield, unmanned systems are becoming indispensable; the number of

robots in combat is consistently growing. 2011 estimates indicate a 1:50 robot

to soldier ratio in Afghanistan, expected to increase to 1:30 by the end of

2013 [131]. As specialized field robots, military unmanned systems have been

designed to reliably complete a variety of tasks in unstructured and unpredictable

operating environments while remaining immune to fatigue, disease, emotion, and

environmental discomfort [119, 15].

While unmanned aerial systems were some of the first to be put into military

operation, unmanned ground vehicles (UGVs) are growing more crucial to the

Army and Marine Corps’ missions. They are generally cheaper, easier to deploy

and maintain, and more mobile than their aerial counterparts. Additionally, very

little “specialized” training is needed to operate UGVs; a vast difference from

the trained pilots currently flying unmanned aerial vehicles (UAVs). Carlson and

Murphy define a UGV as “a ground-based mechanical device that can sense and

1



interact with its environment” [21]. To date, the most commonly deployed UGVs

are found in explosive ordnance disposal, primarily due to their success at saving

lives by keeping soldiers out of harm’s way. Commanders are taking notice, asking

for robots with a greater range of capabilities and redefining how war is waged

at the lowest levels [2]. UGVs are now being used (or developed) in support

of reconnaissance and surveillance, logistics and support, communications, and

combat missions [4].

To support this evolving mission set, robots are being miniaturized. Portable,

man-packable robots are highly deployable, making them uniquely suited to

small-unit reconnaissance and search and rescue. In these missions, UGVs are

almost entirely employed out of line of sight, referred to as tele-operation. Users

must rely on video feedback from one or more onboard cameras to navigate and

surveil. Since even sophisticated UGVs cannot adequately discriminate between

friend and foe, or make decisions regarding complex situations (on the battlefield

and beyond) [4], the user interface is a critical tool allowing the operator to

make these decisions. Interestingly, while robots have gotten increasingly smaller,

efforts to shrink the operator interface have not proceeded apace.

1.2 Motivation

Historically, most large-scale technologies and weapons systems are researched,

developed, and procured as very structured military “programs of record.”

Battlefield robots, however, have been purchased primarily as commercial systems

developed by independent companies anticipating the demand. As such, the

robots currently deployed by the military are a hodgepodge of different platforms,

operator interfaces (controllers), batteries, and communications that did not

2



undergo extensive field testing prior to their use in Iraq and Afghanistan.

Interestingly, the absence of comprehensive field testing not only affects the

reliability and success of the robot platform, it also effects its controller.

Controllers may be called by many names–operator interface, user interface, or

operator control unit (OCU) are all common. As such, the term controller should

be taken to mean hardware, making no assumptions about the user or operator

with whom it interfaces.

Researchers like Adams and Nguyen and Bott have examined the development

of controller interfaces as they relate to user populations. All have noted

systemic issues with users’ involvement in the design process coming too late

to impact change [1, 84]. This is termed a lack of “user-centric” design, and

can significantly affect the quality and usability of products that rely so heavily

on user involvement. In the case of military robots over the past ten years, the

operational need to ship robots overseas and the limited access to military robot

operators have resulted in a product which soldiers had no ability to shape.

1.2.1 Current Operator Control Units (OCUs)

For many years robot control has been achieved via laptop-based systems

originally designed for desktop use then crudely converted for field operations. As

robots and their users have become consistently more mobile, however, the laptop

has become a cumbersome control option. Various versions exist, whether they

be worn around the user’s neck or carried in a backpack with a tethered handheld

component (see Figure 1.1a). Aside from their size, many of these systems are

inherently complicated for potentially under-trained operators desiring a capable,

intuitive system.

3



On the whole there has been a lack of significant progress on portable,

handheld operator control unit technologies which eschew the standard

single-mode, tactile joystick approach. Several companies have recently unveiled

updated controllers, but all have made concerted efforts to avoid touchscreens

without conducting research into whether or not they could be beneficial. Recon

Robotics currently deploys their Throwbot R© XT with a simple handheld device

where video and joystick are housed on a device weighing 1.6 pounds [105]

(Figure 1.1b); iRobot has upgraded to a small, 2 pound handheld controller

with 5” LED screen for their FirstLook R© robot [59] (Figure 1.1c); and Applied

Research Associates (ARA) uses something similar for their Pointman R© robot [10]

(Figure 1.1d).

1.2.2 Smartphones in the Military

Smartphones are of interest to the military for multiple reasons–communications,

adaptability, and “disposability.” In fact, the U.S. Army is in the midst of

arming soldiers with these devices, following the success of recent tests at White

Sands and Fort Bliss training areas [77]. While there are still unanswered

questions regarding screen glare, ruggedization, and battery life, the Army, at

least, is committed to continuing development towards a standardized military

smartphone and operating system.

Initially, these smartphones will connect to the secure military network via

Rifleman Radio and provide GPS data, map overlays, and other situational

awareness tools [49]; however, industry developers are already in line to expand

those capabilities to include applications for logistics, maintenance, and more.

The Department of Defense’s Robotic Systems Joint Project Office is hopeful

4



(a) Laptop-based Controller
(b) Recon Robotic’s Throwbot

Controller

(c) iRobot FirstLook Controller (d) ARA Pointman Controller

Figure 1.1: Operator Control Unit (OCU) Examples

5



that one of these applications will enable smartphones for use as future unmanned

system OCUs [109].

Smartphones play host to one of the most promising new controller platforms

since the advent of modern video games. Their unique combination of processor

power, size, and high-resolution displays makes them inherently adaptable–one

of the military’s doctrinal requirements for robotics systems [37]! While

smartphones with tactile keyboards do exist (e.g. Blackberry), the majority

are touchscreen devices. These offer the most flexibility for robotics applications,

as the device’s large screen is available for video display and operator feedback.

Unfortunately, touchscreen technology has been slow to be accepted by military

personnel due to its disadvantages when compared to traditional tactile controls:

• Touchscreen operation is difficult when hands are dirty or gloved.

• The devices are viewed as flimsy, breakable, and fragile. While this belief

may not be factually supported, users continually claim fragility as a reason

to avoid touchscreen use. Given the availability of rugged, waterproof

cases and the fact that many soldiers successfully carry personal devices

of similar make and model (iPods, digital cameras), it is an unfounded,

albeit common, complaint [67].

• Small screens limit the resolution for remote viewing and are easily obscured

by fingers operating the controls.

• Touchscreens lack physical feedback.

While many users feel strongly about the deficiencies in this list, none are

insurmountable. Some can be addressed through small changes to the hardware,

6



others may be managed via chosen control mode, and perceived fragility will

likely only be eliminated by successful, widespread use.

1.3 Problem Definition

By limiting the touches necessary to operate in field environments, attitude-based

control offers a less demanding, intuitive interface which addresses nearly all

of the disadvantages of current OCUs. The intent of this body of work is

to provide an option for smartphone-based robot control that meets the needs

of dismounted troops using small, portable unmanned ground vehicles (UGVs)

for reconnaissance and surveillance. A usability experiment is presented which

tests the suitability of an attitude aware smartphone controller while identifying

heuristics governing its design. By exploiting onboard micro-electromechanical

sensors, such as accelerometers and gyroscopes, proprioceptive device inputs (tilt

and rotation) can be leveraged to overcome common user complaints regarding

touchscreens in field environments.

Defining Attitude

Attitude aware refers to an object’s three-dimensional pose with respect to

its inertial frame (gravity). Smartphones are attitude aware thanks to

their accelerometers and gyroscopes, measuring linear motion and rotation

respectively. By monitoring device pose, and changes to it, applications can

respond to custom gestures, recognize orientation changes, and track dynamic

motion. This can improve the user experience by providing a more physical

mode of feedback, removing clutter from the display, and mapping to mental

models more intuitive to operators. Throughout this paper, attitude will be

7



used to reference this control modality and should not be confused with user

attitudes or psychological applications of the word.

1.4 Objectives & Scope

Robot use is increasing, the missions they support are becoming more diverse,

and more soldiers are therefore becoming operators. Ease of use, size, weight,

and portability must therefore be emphasized in all design efforts. To date,

development has outpaced military doctrine, resulting in a lack of well-defined

requirements and numerous training gaps. Currently the U.S. military boasts an

array of different UGVs by different manufacturers, all with their own unique

controller. Some of these are handheld devices and some are still laptop sized;

however, very few of them share features, limiting interoperability between robot

platforms.

Nguyen and Bott, in a survey of law enforcement robot operators, identified

that the

most important criterion for a successful program is producing an end

product that the user will use and appreciate. Closing the loop with

the user should therefore be the number one priority throughout the

design and development process [84].

This project addresses the specific need for a smartphone-based OCU

that overcomes the previously stated issues regarding touchscreens

in military applications. Operator control unit methodologies and modes

that promote simple, efficient control of small reconnaissance robots in use by

dismounted ground forces during contingency operations will be evaluated.

8



1.5 Dissertation Outline

This dissertation is organized into eight chapters; an Introduction (Chapter 1)

and Conclusion (Chapter 8) plus six “body” chapters. Chapter 2 provides

background knowledge necessary for readers to understand the subjects present

in this research, specifically tele-operation, the tilt-based control modality,

human factors and usability, and control customization and the user experience.

Chapter 3 presents the attitude aware controller prototype. It defines a

controller use case, identifies design considerations, presents the motion algorithm

for tilt-based controls, and (for the programmers in the audience) goes into

substantial detail about the application’s functions, prototypes, and structure.

Chapter 4 introduces the three-phase experiment designed to test usability.

Procedures and equipment common to all three phases are presented, while

details regarding individual phase characteristics are withheld until presentation

of results, each in their own chapter, as outlined in the following section.

1.6 Research Questions & Hypotheses

Chapters 5-7 provide results individual to each phase, while Chapter 8

summarizes the series and looks at the broader impact of these results. Guided

by two underlying questions, three hypotheses were developed to inform the

multi-phase experiment design. The hierarchical presentation to follow nests

hypotheses with research questions and identifies the experiment phase and

chapter in which tests of each hypothesis are presented.

9



1.6.1 Research Question #1

(R.1)

Can the operator control unit for a tele-operated UGV be

implemented on an attitude aware smartphone such that the

advantages of that device platform (performance, usability,

size/weight) overcome suspected deficiencies, including negative

user perception?

While users are expected to be skeptical of new, touchscreen technologies,

pairing attitude aware controls with a large handheld screen available for remote

video viewing, eliminates the need for a touch interface. Therefore, smartphones

could prove usable when employing attitude aware controls, especially considering

their other advantages, namely size and adaptability.

Chapter 5: Phase 1

To test this assumption of usability, the first hypothesis formed the basis

for experiment Phase 1. It built off of related work by the Army Research

Laboratory (ARL), who had previously designed a smartphone-hosted virtual

joystick controller [96]. Phase 1 compared that controller to attitude-based

controls when tele-operating (driving) on an indoor course. Given that all

current OCUs use one or multiple tactile joysticks, the touchscreen joystick was

expected to be a familiar, if less physical, control modality. Experiment trials

tested users’ driving skills, focusing on control suitability with regards to an

operator’s primary task.

10



(H.1)

Over time, and after reasonable training, users will be able to

perform surveillance and reconnaissance tasks to a reasonable

standard and equally as well with tilt inputs as with a virtual

joystick.

Chapter 6: Phase 2

Phase 2 expanded the controls from Phase 1 and enabled additional robot

“degrees of freedom.” While Phase 1 examined suitability of attitude-based

controls for driving, Phase 2 tests their usability for camera control as well.

Many tele-operated UGVs have a pan/tilt camera mount to improve situational

awareness and increase the robot’s field of view. Therefore, to fully answer

the research question posed, controls must be tested for both driving and

surveilling–crucial tasks in common military missions.

(H.2)

Tilt-based controls are intuitive enough a control modality to be

used for a number of robotics applications with multiple degrees of

freedom, without significant dedgradation of performance.

1.6.2 Research Question #2

(R.2)

Can controller customization options entice users to spend more

time with the device, become more personally invested in its use,

and perform better while using it for tele-operated surveillance and

reconnaissance tasks with a ground robot?

This research question was motivated by several related factors. Given user

reluctance to adopt touchscreens for military applications, customizable control

was posited to draw the user in, provide a sense of ownership, and hold the

11



user’s attention. Users are often quick to dismiss technologies that are new or

unfamiliar; by providing customizable control, users might not give up so soon. In

addition to enticing the user to spend time with the device, customizable controls

are also likely to improve user satisfaction. Who wouldn’t prefer something they

could customize?! That said, are preferences selected by novice operators likely

to improve performance, or are well-engineered defaults superior?

Chapter 7: Phase 3

Phase 3 capitalizes on the operators’ training in Phases 1 and 2 and presents

them with a customizable controller interface for both driving and camera

channels. Users may choose from either tilt or joystick control modes and can

customize sensitivity and responsiveness through an easily accessed settings

menu.

(H.3)
Permitting customization of controller layout and functionality will

lead to a more satisfied user with better performance metrics.

All readers may benefit from the background topics addressed in Chapter 2,

while software developers will want to then focus on Chapters 3 and 7. Industrial

engineers, or those interested in usability, will find Chapters 4-7 relevant. Military

officers and procurement specialists should start with a summary of the findings,

as well as recommendations for employment of the attitude aware prototype, in

Chapter 8.

12



Chapter 2

Literature Review

This chapter will provide an introduction to the subjects necessary to appreciate

the multi-disciplinary foundation of this research. Tele-operation, the primary

control mode for military ground robots, is defined and discussed, as well as a look

at the progress in tilt-based control modalities. Human factors and usability is

likewise important and described alongside customizable control as a component

of the user experience.

2.1 Tele-operation

Currently, the military is primarily invested in robots that are tele-operated,

or “manually controlled by an operator at a distance that is too great for the

operator to see what the robot is doing” [21, 81]. A human user is crucial to

operations in unknown environments, where their flexibility and expertise are

needed to interpret and make judgments based on remote feedback [128, 123].

Historically, military robots have used direct tele-operation interfaces supporting

real-time decision making. These are often hand controls, like 3-axis joysticks,

paired with video feedback available from a robot mounted camera. Fong

and Thorpe describe this as “inside-out” driving, because the operator feels

13



as if he/she is inside the vehicle looking out [42]. Tele-operation tends to

be challenging because operator performance is “limited by the operator’s

motor skills and his ability to maintain situation awareness...difficulty building

mental models of remote environments...[and] distance estimation and obstacle

detection” [41, 75].

Winfield describes the control interface as one of three key components of any

tele-operated system. The other two are the communications link and the robot.

Multiple communication methods are used based on robot system and mission;

however, they must be full duplex (two-way) to accommodate commands from the

interface while providing vision and sensor data from the robot [128]. Military

ground robots are primarily controlled over radio frequency links, while aerial

vehicles and space rovers are almost always connected via higher latency satellite

links.

van Erp conducted a thorough survey of tele-operation and operator tasks

with a specific interest in improving the user interface without taxing the

communications link. He discusses at length the human operator’s superiority

at obstacle avoidance at high speeds and expertise regarding camera control

and scanning (i.e. knowing where to look); however, he notes the difficulty

for operators in the sensory deprived state inherent to tele-operation [123].

To combat this sensory deprivation, van Erp suggests several heuristics for

“task-critical information in UGV control” specific to the image system:

1. The field size of normal drivers is 140◦. Smaller fields of view limit

peripheral vision and may cause drivers to initiate their control actions

earlier than optimal [124, 23]. van Erp recommends a minimum field size

of 50◦, with 100◦ preferred.

14



2. While fields of view may be artificially expanded by applying a

magnification factor less than 1.0, van Erp has proven this disastrous for

driving performance as it alters the user’s perception of speed and distance

and transfers less object motion to the display.

3. van Erp quotes his own experimental results to show that the required

camera update rate, while task dependent, ranges between 3 to 10 Hz.

4. Color images are preferred in rough terrain, especially when the interface

lacks stereoscopic depth cues and/or when image quality is degraded.

5. van Erp acknowledges the advantages of a variable view camera (e.g. pan

and tilt camera implementation), providing the operator a larger periodic

field of view. Unfortunately, many operators have difficulty determining

the viewing direction of the camera compared to the vehicle’s heading. He

recommends providing adequate vehicle references within the camera field

of view, much like his requirement for some portion of the vehicle to be

visible in the camera frame for driving.

6. Murphy introduced another consideration for camera placement, presenting

evidence of unnatural viewing angles for small vehicles low to the

ground [82]. Where vehicle height is not an issue, cameras can be placed

on masts (often in stereo pairs) to improve this visual mismatch while

increasing field of view. Several authors have examined optimal settings

for mobile robots, specifically mast height, elevation of the camera(s),and

the focal length of the lens [56, 63].

Chen et. al. examined issues similar to van Erp, surveying more than

150 papers covering human tele-operation performance issues and mitigation

15



solutions. She states that most human performance issues fall into two categories,

either remote perception (already covered in some detail in [123]) or remote

manipulation [23]. Her analysis of time lag fills in on a component not present in

van Erp’s work, noting that system latencies exceeding one second force users to

adopt a “move and wait” strategy, with variable lags being more detrimental than

fixed ones [68]. Extensive research has been done to characterize these delays,

as well as suggest mitigation strategies [33, 20, 24, 78]. Some of the earliest

work came out of MIT with Thomas B. Sheridan beginning in 1965 [40], and was

followed by his work looking more specifically at supervisory control [114, 113].

Chen’s summary also emphasizes the importance of, in addition to visual

feedback, providing cues to aid in the operator’s sense of orientation. “Track-up

maps” (vehicle point of view) have proven superior for local navigation, while

north-up maps enhance global awareness [23, 127]. Where available, robot

attitude should also be fed back to the user, as operators are not always aware

of a robot’s precipitous position (i.e. on a steep grade or uneven ground) until it

is too late and the robot cannot self-right [75]. Visual display elements are often

integrated into a comprehensive representation of robot status using overlays;

however, research indicates this often leads to higher perceived mental workload.

Chen concludes her work with a brief survey of available input and output

modes in support of multimodal control. Speech inputs and auditory feedback

are considered natural and effective for most users and provide hands-free control

options. Similarly, gesture-based control using body and arm pose, hand gestures,

or even facial expressions, allow for a wide variety of control and are also often

hands-free.

Using this knowledge, the attitude aware controller developed for testing

ascribed to many of the design guidelines introduced. The vehicle chassis is

16



visible in the camera’s frame while driving, using a color camera with 60◦

field of view. The camera was mounted approximately 4.5” above the top of

the robot’s body to bring the camera’s reference frame further off the ground.

Network latency, while varied, was generally under one second, well within

Chen’s recommended range [23]. Feedback, while not robust, was addressed

primarily through subtle visual indicators in combination with physical device

pose/translation. Every effort was made for the robot and controller to abide

by well-documented heuristics while identifying new ones more specific to the

tilt-based control modality.

2.2 Tilt-based Research

Gestural inputs, as in Chen’s survey, usually describe a vision system interface

that tracks human gestures [71]; however, they can also be used in conjunction

with handheld devices such as Apple’s iPhone or Nintendo’s Wii [14, 129, 99, 54].

So as not to confuse the reader, gestures specific to handheld devices using

accelerometers and gyroscopes will be referred to instead as attitude aware

or tilt controls throughout this paper. A full definition will be provided in

Chapter 3.

Rekimoto did some of the earliest work with tilt controls on small screen

handheld devices, using a Personal Digital Assistant (PDA) [107]. His work was

motivated by the need to refine desktop applications for use on smaller systems,

leading to development of tilt-based inputs to control menus, scroll bars, and

maps. Experiments indicated that users could manipulate on-screen menus fairly

accurately with just 2◦ of tilt, while normal operations saw users tilting the

device between 10-15◦ [107]. These are some of the earliest reported tilt-based

17



interaction metrics, which have since been further refined by researchers like

Hinckley et. al. [54] and Rahman et. al. [103].

Ken Hinckley, a researcher for Microsoft, is one of the scientists credited

with prototyping and testing the mobile interaction technologies that would gain

stunning popularity in the touchscreen devices of the early 2000s (e.g. Apple’s

iPhone) [53]. He started by adding a suite of sensors to a PDA in 2000 and

writing software to control device behaviors based on those sensor inputs. He

presented experiments where the device was outfitted with proximity sensors to

detect when a person brought it towards his/her face, automatically detected

device orientation to update the screen configuration (landscape vs. portrait

mode), and used pressure sensitive sensors to determine when the device was

being held [54]. His goal was to create interactions that were minimally disruptive

while minimizing cognitive demands and/or visual attention. He emphasized the

need for future work on the subject, stating that:

While interactive sensing techniques seem to provide many benefits,
they also increase opportunities for poor design because the strengths
and weaknesses in the design space are not as well understood
as traditional GUI design. We need experiments to quantify user
performance with these techniques, and we need longitudinal studies
to determine if users may find sensing techniques “cool” at first,
but later become annoyed by false positives and negatives, for
example [54].

Hinckley has spent the years since that article (published in 2000)

designing, experimenting, and writing textbooks [55], cementing his expertise in

human-computer interaction technologies and input techniques. He encourages

developers to embrace multimodal controls, stating, “We shouldn’t try to do

everything with any one [mode]. We should instead seek to understand how input

modalities and techniques can complement one another, such that the advantages

18



of one make up for the shortcomings of others.” He cautions, however, that

“excellence in user interface design requires tailoring the interface to the input

method” [55].

Rahman et. al. took a more physiological approach to designing for

multimodal interaction, examining tilt in terms of human anatomy and focusing

on the general level of control possible with the wrist [103]. He quantifies

three physical axes of rotation: flexion/extension (60/45◦); pronation/supination

(65/60◦); and ulnar/radial deviation (15/30◦). The motion algorithm used relied

on discretization of the tilt-space, recommending a quadratic function where “the

extremities of the range of motion are given the largest amount of space and less

angular tilt is allocated to the middle of the range” [103]. The authors also

introduced a click-tilt-release interaction, where tilt controls were activated by

first pressing a button and de-activated when that button was released. This was

found to provide a sense of recalibration reference the point of origin, helping to

reduce confounding effects.

Several other researchers have presented work using accelerometers and

gyroscopes for tilt-based interactions [61, 89]. Jang and Park looked at using

PDA-mounted accelerometers to recognize gestures, comparing the sensor’s signal

pattern to a “known” gesture pattern. Their work provided methods for

recognizing and filtering both static and dynamic accelerations, introducing the

idea of a “threshold” value and programmatic deadzones to eliminate inadvertent

user inputs [61]. Pitman and Cummings, Muller, Piskorski [99, 80, 97] and others

present tilt-based interfaces for robotics controls and/or gaming. A full survey of

their implementations, motion algorithms, and interface strengths and weaknesses

is presented in Table 3.1 in Chapter 3.

19



Notable lessons learned from tilt-based research include the need

for a deadman switch, following Rahman’s click-tilt-release interaction

methodology [103]. This ensures that tilt controls are not always active and

helps limit inadvertent control inputs. Likewise, it aids in recalibration around

the point of origin, allowing users more precise control over the device’s behavior.

Rekimoto’s work showing that users can manipulate controls with just 2◦ of

tilt provides a strong basis for the level of precision available to robotic control

implementations, reinforcing its feasibility [107]. Jang’s work with thresholds

and deadzones [61] inspired use of programmatic limits around the controller’s

origin, ensuring that user inputs are distinctly large enough to warrant robot

manipulation. Each of these attributes plays towards controller usability, the

crucial characteristic of interest in this research.

2.3 Human Factors/Usability

While engineering and application development are crucial to the design of most

robotic platforms, an acute understanding of users and human factors is needed

to successfully develop a robotic system. Human factors is the study of designing

“the things people use and the environments in which they use [them] to better

match the capabilities, limitations, and needs of people” [110]. Mental models,

linked closely to affordances, are an individual’s perception of the world around

them and how things should act, or interact [87]. Compatabilities often inform

these models and can be either intrinsic or learned. Intrinsic compatabilities are

natural mappings rooted in the system design, for instance turning a steering

wheel left to turn left. Culturally acquired, or learned, compatabilities may differ

between cultures and are often not as obvious; as an example, light switches are

20



commonly flipped up to turn on in the United States, but are pushed down in

several other countries [110].

In order to design for these compatabilities and mental models, they must first

be understood. Donald Norman has written several best-selling books discussing

“human-centered design,” including The Design of Everyday Things [86] and The

Design of Future Things [87]. He provides easy-to-follow guidelines for the design

of virtually any system [87]:

1. Provide rich, complex, and natural signals.

2. Be predictable.

3. Provide a good conceptual model.

4. Make the output understandable.

5. Provide continual awareness, without annoyance.

6. Exploit natural mappings to make interaction understandable and effective.

While generic, these heuristics propose a path to making human factors a systemic

part of the design process. Norman states that “the ability of a person to discover

and make use of affordances is one of the important ways that people function

so well, even in novel situations when encountering novel objects” [87]. Just how

well this has been done is often assessed via usability.

Goodrich and Olsen produced a series of work attempting to quantify

human-robot interactions in a methodical manner. The result was seven

principles to make human-robot interactions, specifically tele-operation, more

efficient, resulting in more usable systems [46, 91, 47, 38]. They recommend

implicitly switching interfaces or modes without cognitive effort or attention, such

21



as switching to manual control automatically when a joystick is grasped. They

also suggest that robots should use natural human cues, supporting efforts in

speech control, sketch-based maps, or point-to-move interfaces [108, 19]. Allowing

users to manipulate the information presented is also deemed prudent, as is

designing to help manage their attention. Donmez attempted to further work

on defining metrics applicable to human-robot interaction by looking beyond the

performance of a robot system to measure human performance explicitly. He

identifies three metrics important to human performance: situation awareness,

workload, and mental models of device operations [38, 116].

“Usability comprises ease of use and usefulness, and these drive user

satisfaction. User satisfaction, in turn, results in usage” [70, 60]. ISO 9241,

Ergonomics of Human-System Interaction [58, 62] focuses on effectiveness,

efficiency, and satisfaction. Jokela et. al. examines the definition of ISO 9241

and its implementation in designing for usability [62]. Shneiderman summarizes

it into five usability measures [115]:

1. Time to learn. How long does it take for a typical user to learn the system,

specific to a set of tasks?

2. Speed of performance. How quickly can users carry out those tasks?

3. Rate of errors by users. How often do users make errors, and of what type?

4. Retention over time. How well do users retain knowledge gained about

system operation? Hours? Days?

5. Subjective satisfaction. This is a measure of how well users like various

aspects of an interface, often collected via interview or survey.

22



By examining these metrics and prioritizing them, as all systems may demand

a different balance of, for instance, error handling and speed, systems can

be designed for the ultimate goal: addressing the needs of all users [115].

Shneiderman proposes that designing for differing situations actually results in

a better product for all users. While his examples include sidewalk access for

disabled users also benefiting parents with strollers, cyclists, etc., the benefits of

designing broadly are also relevant in the military, where soldiers attempt to use

the same equipment for a myriad of missions in a variety of environments.

Designing for usability inspired both the work done during controller

development and the experiment procedures adopted to assess the final attitude

aware controller. Inspired by common mental models, the controller prototype

was designed to mimic driving a vehicle with a steering wheel. Interfaces

remained simplistic, with only one screen/menu for all controls (no switching

required). Following conventions of research into human performance, which

commonly includes mental workload, the NASA TLX Task Load Index [38, 51]

was administered to all users conducting trials as part of the attitude aware

usability experiment. Additionally, best practices indicate that effectiveness,

efficiency, and satisfaction be quantified [58, 115] in usability assessments; these

were collected in each experiment phase as a combination of dependent variables:

practice time, trial time, number of driving errors, and user satisfaction (measured

via survey).

2.4 Designing for the Masses–Customizable Control

A 2007 study by Synovision, commissioned by the Department of Defense (DoD),

was performed to provide guidance to DoD regarding how best to acquire a

23



common robotic controller based on the survey of technologies available at

that time. The controllers used in their study are reported in the report’s

appendix [117], but the authors felt strongly that “the human factor in robotic

control is soldier specific and more qualitative than quantitative in nature.” There

was no common “intuition” among soldiers regarding number of buttons, location

of those buttons, etc., seemingly implying the need for not only more study

regarding the users and uses of future common controllers, but also the inherent

adaptability of any controller designed to suit this purpose [117].

Several researchers have conducted work to look at customization of desktop

software systems, like word processors, to gain insight into user demands and

preferences [73, 74, 93]. The theory exists that customization makes users more

productive because they can tailor their software to their work. In order to

confirm (or deny) this theory, studies were executed to identify the frequency

with which users customized options, and which options were manipulated. In

a 1996 study by Page et. al., 92% of participants customized their software in

some way over the course of 28 days, with the heaviest users making the most

changes [93]. High incidences of button removal (44% of users) on one of the

shortcut bars implied that defaults were poorly chosen, but also supported the

premise that features simple to adapt (like the button bar) would experience

higher incidences of customization [93]. His recommendations were to design

for casual users less likely to manipulate settings and more likely to “satisfice”

rather than optimize [74, 93], while expecting users to to make at least some

modifications.

Mackay, in 1991, identified four categories of events which serve as triggers to

customization:

24



1. External events. Changes of job or office. Things likely to make users

re-evaluate how they manage their time and software.

2. Social pressure.

3. Software changes. Upgrades, crashes, etc. Interestingly, most users that

customize do so to make new software feel more like old software, often

discarding or ignoring the newest features [73].

4. Internal factors. These are generally time related, where people are bored or

have time to spare to try something new and/or repair a recurring problem

which had previously gone ignored.

Social pressure can take the form of peer pressure, which is proven to play a large

role in user customization. Every user in Mackay’s study borrowed some or all

of their customization files from other people [72]! Informal experts also tend

to emerge, helping co-workers customize and allowing novice users to become

proficient at settings manipulation [93].

Customization is inherently user-driven as individuals strive to “align device

capabilities and appearance with their needs, desires and inherent behaviors” [16,

50]. It has become a bigger consideration for designers as technology use has

expanded beyond the most expert users. Given the now worldwide availability

of smartphones, customizing for differing priorities, user needs, capabilities, and

cultures is critical [50, 95]. Park et. al. reported that individual mental models

are affected by social factors, confirming substantial differences in modular user

interfaces developed for varying cultures, ages, and genders [95].

Most recently, in 2012, Haberman looked at how users customized

smartphones over time, specifically interaction modalities, interaction styles,

25



available content, and content presentation [50]. She reported high rates

of customization, with all study participants making modifications to their

device at the time of acquisition. Users primarily focused on the content

and arrangement of their home screens, giving special treatment to prioritized

applications. Participants did indicate a desire to move the location of the

highest priority icons, as one-handed (primarily thumb-based) interaction was

not well suited to the out-of-the-box configuration [50]. The author identified five

types of connections between motivation and customization; the most important

being that participants desired customizations motivated by their abilities, and

they wanted customizations that closely aligned with current market offerings

(familiarity).

Research into how and why users customize, while dating back to early

personal computers, has progressed as technology has become a larger part

of people’s lives and user expertise improves. Haberman’s insight that all

users customize their smartphones out of the box implies a strong tendency

for users to look for, and use, customizable options [50]. It also reaffirms the

high rates of customization observed by Mackay in 1990 [73]. Mackay and

Page [74, 93] suggested designing for satisfaction, rather than optimization,

hinting at an interesting dynamic between performance and satisfaction. To

test this relationship and enhance usability of the attitude aware controller,

customizable control options were offered to users in the final phase of the

usability experiment. Specifically, the custom options included settings for

sensitivity and controller responsiveness, indicated important by users in related

work by Pettitt [96].

26



Chapter 3

Application (Software) Development

3.1 Approach

The research questions and hypotheses introduced in Chapter 1 motivated

development of a robot platform, custom controller, and human user experiment

to assess usability of the proposed control system for tele-operation of ground

robots. A significant amount of time was devoted to application development,

as the attitude-based control envisioned required incremental development on

a system and programming language with which the author had no previous

experience. The goal was not simply to produce a prototype application, but

to identify the design heuristics which had the greatest impact on usability.

This increased the number of control iterations undertaken, as multiple pilot

“experiments” were conducted to inform each phase of design.

Attitude aware controls use a device’s accelerometers and gyroscopes,

measuring linear motion and rotation, to monitor device pose and changes to

it. The attitude-based application designed for robot control accepts attitude

inputs resulting when the user moves the device like a steering wheel; these then

map to robot behavior (throttle and heading). This chapter describes the details

of that approach.

27



3.1.1 Controller Use Case

To best understand the application and its behavior, which comprises the bulk

of this chapter, it is important to obtain a frame of reference regarding what

the controller was designed to do. What follows is a casual use case, describing

the goals, primary actors, and conditions for use, followed by a common scenario

describing how the application might be employed [27, 28].

Goal

The goal of users engaged with this controller may vary slightly based on mission,

depending on the type of reconnaissance and surveillance required. On the whole,

users hope to guide a small, mobile robot equipped with a moveable camera

into dangerous or hard to reach places in order to gain information about the

environment. Successful operations would provide the user with the intelligence

he/she requires while operating from a safe location some distance away.

Actor

The primary actor (user) is anticipated to be a young, male dismounted soldier

between 18-35 years old. He may have some college education and grew up with

technology–computers, video games, smartphones. His primary specialty in the

Army is something besides robot operation, affording him limited time for formal

hands-on tele-operation training (likely not exceeding 40 hours) [67, 79]. Some of

these users might relish the opportunity to use “cool” technology, while others will

feel it is an undue burden “not in their job description.” Appendix A provides

the text of two interviews conducted with Company Commanders deployed to

Afghanistan using ground robots as a regular part of their tactical mission [67, 79],

28



both of which were used to help define actor and conditions.

Conditions

Realistic use conditions (uncertain field environments) are hard to describe;

however, users are expected to be almost exclusively outdoors during robot

operation. At best, the operator might be behind a wall or in a doorway.

Lighting conditions may cause issues with screen glare (bright sunlight) or

eye strain/fatigue (bright screen in the dark). The user will likely be

stationary–standing, squatting, or lying down–with a team of fellow soldiers

pulling security while he devotes his attention to robot operation. Security

considerations may limit the duration of operations, so speed is crucial.

All soldiers (and therefore all users) wear military utility gloves and eye

protection (both tinted and clear) for tactical operations. The robot may be one

of many ruggedized, tracked vehicles under 35 pounds and small enough to fit in

the soldier’s rucksack. The smartphone controller is protected by a waterproof

case and can be carried in one of the soldier’s cargo pockets.

A note on gloved control. Soft buttons are touchscreen buttons, reacting

only to conductive inputs like those provided by a user’s fingertip flesh. To use

them, gloved users must either remove their gloves or use touchscreen-compatible

gloves which interweave special fibers into the fingertips. Hard buttons are tactile

push buttons and can generally be felt even with gloves on. The iPhone has four

tactile buttons: the power button, the home button, and the volume up and

down buttons. In order to accommodate gloved users, attitude aware control

implementations may use the volume up and down buttons, located on the top

edge of the phone when positioned for control in landscape mode.

29



Sample Scenario

The user powers on both robot and controller, ensuring they are connected to the

same WiFi network. The user then launches the Custom Control v3 application

(steering wheel icon) on the smartphone, which initiates the connection between

controller and robot (see Figure 3.1). After several seconds, a live video feed

loads to the device’s screen, displaying what the robot can see from its onboard

camera (Figure 3.2). A connection status indicator and battery icon also appear

onscreen. To this point, the robot and camera have remained unmoving at their

neutral position.

Figure 3.1: Application Icon (Green Steering Wheel) on Device Home Screen

To drive the robot, the user presses and holds a deadman switch (touchscreen

or volume button) to activate the controls, then moves the device like a steering

wheel. Tilting forward and back control the robot’s speed, while rotation left

and right control heading. When the user wants (or needs) to stop the robot, he

30



Figure 3.2: View from Camera Onboard Robot
Convention dictates that some portion of the robot chassis be visible in the camera’s frame of
view. Here the WiFi dongle and USB cord pictured are attached to the top front of the robot,

similar in location to a vehicle’s headlights.

simply removes his finger from the deadman switch and the robot stops almost

immediately (unlike braking).

If the user then wants to scan the robot’s surroundings, he would press and

hold the camera deadman switch and again move the device like a steering wheel,

this time to pan the camera left and right and tilt it up and down. To stop the

camera at any position, the deadman switch is simply released. To capture a

photograph from the robot’s camera, the user taps a snapshot button, visible

only when camera controls are active. When the picture saves to the device, an

alert view pops up indicating success. The user hits OK to exit and return to

robot control. Following completion of their operations, the robot is recovered

and users exit the application by pressing the smartphone’s home button. This

terminates the connection, making it safe to power down both controller and

robot.

31



3.1.2 Design Considerations

While this particular controller application was designed and developed for Apple

smartphones, the heuristics identified during development may be applied to any

handheld device using a similar set of attitude aware sensors. Some of these design

guidelines are very specific to the motion algorithm, which will be discussed

in Section 3.3.1. Others are more generic, regarding basic controller behavior,

enumerated below.

1. All device motion should be measured relative to the point where the

deadman switch was activated. This ensures that users do not have to

expend mental effort finding the device “origin;” instead the device resets

itself at each control activation.

2. Given that the bulk of control is done via gestural manipulation of the

device body, and all robot manipulation is done via tele-presence, the

controller screen should be almost wholly devoted to video feedback, and

therefore in landscape mode.

3. Driving and camera controls should not be activated simultaneously. Users

must choose whether to drive the robot or manipulate its camera at any

given time. Enforcing this limitation means to simplify the control task for

novice users and avoid disorientation in individuals new to tele-operation.

This restriction could be customized, allowing users to enable simultaneous

control in something like “expert” mode.

4. All feedback is provided to the user via video from the robot’s camera,

meaning the camera should remain in a fixed (trimmed) position while

driving. This camera neutral position is the same for all users. Each

32



individual sees the same frame with respect to the robot to ensure best

practices are maintained, e.g. keeping some portion of the robot chassis in

view. This requirement could be relaxed for experienced users but is an

important way to limit confounding effects during experimentation phases.

5. While originally designed to work in the same way that the driving controls

do, camera controls also use a tilt/rotate steering motion to pan and tilt the

camera head. However, enabled by improvements to the motion handling

algorithm, tilt-based camera inputs are actually best implemented when the

user imagines that the robot’s camera is attached to the controller itself.

Like taking a panoramic picture with the smartphone, users can sweep the

controller broadly from left to right to pan the robot’s camera and scan

its surroundings. It’s almost as if operators are using the control device to

select a viewing frame of a broader window.

6. The camera, when stopped, should remain in its current position. This

gives the user an opportunity to fix the camera in a given location for

reconnaissance, closer examination of an object, or capturing a photograph.

7. When the camera is at a position other than neutral, and the user depresses

the driving deadman switch, the camera shall immediately snap back to

its neutral position and remain there until once again manipulated. This

prevents issues with users not being able to resolve the camera’s position

from the robot’s heading.

8. Given the limitations of a wireless network, periodic interruptions to the

connection may occur. If the controller disconnects from the robot, the

robot should automatically stop. A pop up then notifies the user of the

33



disconnection and prompts them to reconnect by hitting a button. Doing

so re-establishes the connection with the robot and should permit the user

to continue operation after only minimal disruption.

3.1.3 Apple and Objective-C

The Apple iPhone and iPod Touch R© were selected as controller hardware for

this project due to their well-supported development environment, XCode, and

their standardized device characteristics: processors, operating system, and

micro-electromechanical systems (MEMs). These devices run Apple’s iOS, which

is coded in Objective-C, an object-oriented programming language [31, 52]. The

custom control application defined in this chapter uses this language, which may

not be familiar to all readers. Below is a brief introduction to some of the

Objective-C syntax used throughout the remainder of this chapter.

A class is a blueprint for objects, defining how instances of itself (created

at runtime) should be treated [5, 7]. In object-oriented programming, a class

usually represents a noun, such as a person, place, or thing, and is always

defined with a capitalized name, e.g. Class. Classes’ behaviors are defined

by their methods, or subroutines. Two types of methods exist in Objective-C:

class methods, denoted by +(void)methodName; and instance methods, denoted

by -(void)methodName. Instance methods are the more common of the two,

but require that an instance of their class be allocated before being called.

Methods, and all other Objective-C objects, are defined with titles whose

first letter is lower-case, followed by capital letters denoting each new word

in the statement. Some methods require parameters be passed to them,

e.g. variables required to calculate a function. This is done by placing a

34



colon after the method name, e.g. -(float)methodName:(int)firstParameter

second:(int)secondParameter. The declaration in parentheses before each

parameter and method identifies its type, such as integer or float; methods that

do not return an object are void. -(IBAction)methodName is a special type of

method which is accessed by a user action i.e. a touch or multi-touch event on an

IBOutlet object, which are interfaces to the user (text boxes, buttons, sliders).

Comments in code are denoted by // or /*, depending on their length. In

XCode, a special form of commenting using pragma marks is used to insert

“bookmarks” which help better organize large programs. Titles preceded by

# define such sections, e.g. #Section Title. Full, compilable versions of the

controller code, including comments, can be accessed in Appendix D.

3.1.4 Model-View-Controller

Objective-C is an object-oriented programming language in which the

model-view-controller (MVC) construct is commonly utilized. It emphasizes

reusability of code and separation of tasks [5, 7]. As the goal of this project was

to provide not only a prototype controller, but also a set of design guidelines for

future use, designing for interoperability, expansion, and reuse was paramount.

Figure 3.3 depicts the model-view-controller construct used in the attitude aware

controller application. References in the graphic depict how the remainder of this

chapter is organized. View: Section 3.2; Controller: Section 3.3; and Model:

Section 3.4.

35



Figure 3.3: Custom Control Application Architecture

36



3.2 MVC: View (Controller Interface)

The graphical interface presented to the user was designed to be intuitive and

accessible, regardless of technological proficiency or previous system experience.

Low-level sensor inputs and controls were mostly hidden to the user and presented

in forms easy to understand e.g. battery icon versus remaining voltage. The

motion input portion of the controller required users to hold and move the device

like a steering wheel, using a mental model most would find familiar. This control

interface prioritized display of the robot’s camera feed and limited the clutter of

other forms of feedback, like connection, battery, and driving status.

(a) Controller Home Screen (b) Driving with Controller

(c) Controlling Camera

Figure 3.4: Default Controller Application

Figure 3.4a shows the “home screen” of the attitude aware controller used in

most phases of this study. The video feedback takes up the whole of the screen in

landscape mode (320 x 480 pixels), with soft-button thumbprints, i.e. deadman

37



switches, overlaid on the left and right indicating where the user should press and

hold to activate the attitude sensors for either the camera (left) or the vehicle

motors (right). Along the top of the display (from left to right) is the controller

connection status, the driving status, and the battery status. Driving status was

comprised of three features: 1) a driving light which displayed green for driving,

red for stopped, and blinking red for reverse; 2) driving text which read either

“Driving” or “Reversing”; and 3) a visual representation of controller rotation,

provided by keeping the video frame level to the horizon, similar to many aircraft

attitude indicators (see Figure 3.4b).

A brief set of instructions displays on screen until controls are activated for the

first time. The slider along the bottom of the screen allows access to the settings

menu–a feature only made available in later phases of this research. Finally, the

camera snapshot button in the bottom center of the screen allows users to capture

a still photograph via the vehicle’s onboard camera (see Figure 3.4c); these save

automatically to the phone’s camera roll. The application pictured is the default,

used as the basis for all development. Details of modifications resulting in other

versions of the controller will be presented in Chapter 4.

3.3 MVC: Controller

The controller portion of this application’s MVC architecture is made up of

three primary classes. AttitudeUpdate and MainViewController work together

to manage the tilt-based aspects of the application (Section 3.3.1) and control

mapping (Section 3.3.2). The third, Preferences, is summarized in Section 3.3.3,

which describes the construct of user-customizable settings. Specific features of

MainViewController not covered in the discussion of the motion algorithm or

38



user preferences are presented later in Section 3.5, which further details the class’s

architecture and flow.

3.3.1 Motion Algorithm

As arguably the most important part of this application’s development,

substantial time and effort was devoted to writing a motion algorithm capable

of reliably handling complex three-dimensional motion. A survey of available

tilt-based games and applications for the iPhone was conducted to collect

and examine ideas and implementations which could inform this design (see

Table 3.1). The majority of these games, built primarily for entertainment

purposes, did not stand up to rigorous testing under use case conditions.

Generally controls dictated a single user starting position, where a prescribed

neutral point had to be found and held in 3D space. Almost none accounted

for users who would be operating in unconventional positions e.g. lying down,

and those that did accounted only for “inversion,” a specific scenario where

the device’s screen is pointed down, towards gravity, and accelerometer values

are therefore reversed. Apple provides no specific guidance for how to utilize

accelerometer and gyroscope data, beyond documenting its properties in their

definition of the Core Motion framework. Even fellow engineers have not

completely solved the problem of how to orient and calibrate a system given

the variance in user’s mental models defining how they expect the device to

behave. Pitman and Cummings designed a tilt-based controller for micro-air

vehicles at the Massachusetts Institute of Technology; in recent experiments they

observed users inadvertently flying the vehicle backwards, given their instinct to

angle the device for comfortable viewing. This differed from the designed neutral

39



angle (level to the ground), causing the observed behavior [99, 98]. This problem

was likewise noted in early versions of the attitude aware controller, motivating

research to conquer this obstacle to intuitive control.

Attitude

The iDevices used in this research are equipped with 3-axis accelerometers and

gyroscopes, which detect and measure motion and rotation about three axes, x,

y, and z. Given their ability to identify motion, these devices are called attitude

aware, meaning able to identify their orientation in three dimensional space at

any given time, usually with respect to gravity. Primarily they contribute to the

user experience by detecting orientation changes, but can be tailored for use in

almost any instance where motion-based inputs are recorded e.g. pedometers,

panoramic picture applications, and tilt-based games. Apple makes this possible

through their Core Motion framework, encapsulating accelerometer, gyroscope,

and magnetometer data in multiple forms. Developers can choose to access any

of this sensor data independently, or as attitude, where sensor data are fused

into a representative output. This output can be represented mathematically

as Euler angles, a rotation matrix, or as a quaternion, which are properties of

the attitude object [8]. Using a device motion manager, developers define the

device reference frame, the type of attitude output requested, and the frequency

with which such data should be captured.

40



Table 3.1: Survey of Tilt-Based Games and Products

Product Developer Key Features Reference

AR.
Drone

Parrot

A unique hobbyist quadcopter controlled via iPhone, and a development
kit for more advanced controls and gaming is open source. The packaged
controller recently updated to v2.0, which now supports both relative and
absolute control modes. In the relative mode, the aircraft is the point of
reference, and all tilts are translated into movement with respect to it. In
absolute control mode, the pilot is the point of reference, and all tilts are
translated into movement with respect to him/her. It is meant to provide
a more intuitive interface for first-time pilots, or those who lack experience
with remote control platforms. Absolute mode almost assures that users
are co-located with the quadcopter, as true tele-operation would work
best in the older, relative control mode. This controller does use attitude
in two dimensions; however, does not account for controller inversion. It
uses separate accelerometer and gyro streams rather than fused sensor
data, leading to gimbal lock.

[130,
97]

WiFi
RC

Dension

This application was developed to work out of the box with the WiRC
hardware described in Section 4.3 for operating remote control vehicles.
Its tilt mode requires the user to pick which gyro will control which
channel (non-obvious in landscape mode). It then provides feedback
regarding angle of input via small tick marks that move along the
perimeter of the screen. By pressing the “play” button, users can
re-calibrate the tilt control’s center point; however, calibration does not
correct for inverted use. There is no deadman switch, meaning controls are
always active; presumably a user could stop by pressing the play button
and re-setting the controller to zero. Gimbal lock occurs when the device
is level to the ground.

[34]

Tilt
to
Live

Alex
Okafor

In this game, the objective is for the user to maneuver his/her arrow
around obstacles on the screen. The user interface provides options for
orientation (choose from regular (45◦), top-down (level with ground), or
custom) as well as tilt sensitivity, adjusted separately for each axis. The
custom orientation allows a user to set his/her own neutral point and does
account for inverted reference frames. Users are prompted to choose an
orientation before the start of each new game, and the interface is intuitive
enough for even new users to understand, using graphics to demonstrate
the choices.

[90]

Mad
Bomber

Charles
Scalesse

The author provides details of his motion algorithm in the reference
provided. This game requires the user to tilt to move their character
onscreen in an effort to catch dropping bombs. Uniquely, this game
provides accelerometer calibration which supports any device play
orientation, including inversion. This is accessed via an options menu
which prompts the user to orient the device at the desired angle and then
press a button to calibrate. Inversion is handled separately. Controls
do not seem to be properly filtered to account for sensor drift, and only
one-axis motion is measured, making the algorithm less complex.

[111]

Sphero Orbotix

This application is used to control a small, robotic ball. The tilt-based
controls (available in addition to joystick controls) are fairly elementary.
They do not account for user-defined origins, meaning users must start
with the device parallel to the ground. It likewise does not operate
correctly inverted. There is no deadman switch operation, making it
much too easy to lose control.

[92]

Cube
Runner

Andy
Qua

This game, similar to Tilt to Live, has users represented as small flying
arrows through a three-dimensional landscape filled with cubes they must
navigate around. It is presented in portrait or landscape mode (the only
one surveyed) and tilting OR rotating left and right steers the aircraft.
Tilt does not control animation speed. In the settings, users can calibrate
the center point from which movements are measured along the single axis
utilized. In testing, calibration successfully overcame starting positions
where the device was purposefully off-center by up to 30◦. Additionally, it
automatically detects cases of inversion, even during active game play, and
makes behind-the-scenes adjustments to ensure controls are not reversed;
however, it does not account for users who wish to leave the device parallel
to the ground i.e. resting on a table, as gimbal lock prevents measurable
rotation at this attitude.

[102]

41



Reference Frame

In the Core Motion framework, the motion manager requires a reference frame

be set when it is activated. Apple’s SDK offers four reference frames. z is vertical

in each, and developers can choose between an x -axis that is arbitrary, arbitrary

corrected, magnetic north, or true north; the magnetometer is required for all

but the first [8]. Since z always points to gravity, it is positive coming up from

the device screen and negative through the back of the device (see Figure 3.5) [9].

Figure 3.5: iPhone Coordinate System

The reference frame is important to attitude aware controls given that

orientation is measured in that coordinate system. A fixed, global reference frame

would mean that the origin exists at a very specific point in space, a difficult

concept on a device which can move freely in three dimensions. Therefore,

attitude aware controls are best implemented with a relative reference frame

which defines an origin based on user input and device pose and measures all

further device motion with respect to it. In other words, this approach provides

for self-zeroing and instantaneous reference frames when attitude controls are

activated.

42



In the attitude aware controller, this is achieved by declaring a new reference

frame each time the deadman switch, which activates the motion manager, is

touched. The following is executed with each -(IBAction) on the deadman

switch button:

CMAttitude *referenceAttitude = motionManager.deviceMotion.attitude;

self.referenceFrame = referenceAttitude;

Users can be holding the device in any position when setting the reference

frame, and at the instant that the deadman switch is activated, the phone is at its

origin (0, 0, 0). Not only does this improve usability, it also, in conjunction with

quaternion attitude measurements, allows users to initiate the motion manager

irrespective of gravity. Previous implementations found it difficult for users

operating the device in unconventional positions, such as lying down, where the

z -axis is reversed compared to Figure 3.5. One game, Tilt to Live, attempts to

control for this by offering the user a choice of starting positions [90]; this takes

that a step further by identifying the starting position and accounting for its

orientation without explicit user input.

Quaternion Based Approach

As alluded to in the discussion of reference frames, quaternions play a large part

in the adaptability and precision of the motion handling within the attitude

aware application. Apple provides brief documentation on their use as a

CMAttitude representation, but they are governed by complex mathematics that

many developers choose not to explore. Two of the better know “robotics”

implementations–AR.Drone and Sphero–use mostly Euler representations and/or

separate accelerometer and gyroscope data in their publicly available SDKs

43



[97, 92]. Several applications use quaternion representation from a publicly

available math class (Quaternion.h) [90], but none have documented the use

of quaternions as direct output of Apple’s Core Motion framework. It appears,

based on the limited literature available, that quaternions in iOS programming

are used more for 3D animation e.g. spherical linear interpolation, than capturing

device motion.

Quaternions provide computational benefits, storing four numbers instead

of the nine needed for rotation matrices. Quaternions also avoid gimbal lock–a

common downfall of Euler angles–which occurs when one degree of freedom is lost

due to two axes being driven into parallel configurations [112]. On the iPhone,

specifically, this occurs most often when the the pitch value (rotation about the

axis running along the iPhone’s width) is lost in landscape orientations. Overall,

quaternions can greatly simplify motion algorithms while addressing common

issues regarding reference frames and gimbal lock. Their mathematical properties

make them both a valuable and under-utilized tool for attitude aware control.

Developed by W.R. Hamilton in the eighteenth century, quaternions were

originally devised as a fourth-dimensional extension of complex numbers

(Eqn. 3.1) [17]. Most commonly, quaternions are normalized to a magnitude = 1,

as Apple’s Core Motion framework does, yielding what is known as the unit

quaternion [112]. In this representation, the four dimensions can be presented as

a rotation of θ radians (scalar) about a unit vector {x, y, z} [8], decomposed for

better understanding in Eqn. 3.2.

44



w + xi+ yj + zk (3.1)

where i2 = j2 = k2 = ijk = −1 with real w, x, y, z

represented as {w,~v}

where ~v = {x, y, z}

{q.x, q.y, q.z, q.w} where q is the unit quaternion

q.x = x× sin

(
θ

2

)
q.y = y × sin

(
θ

2

)
q.z = z × sin

(
θ

2

)
(3.2)

q.w = cos

(
θ

2

)

For the purposes of attitude aware control mapping, quaternion motion, when

decomposed to its individual x, y, and z components, must be done so as not

to lose the fourth dimension. This is accomplished quite easily by calculating

relative motion, multiplying the inverse of the reference quaternion by the

quaternion describing current attitude.

//Capture quaternion of reference frame

neutralQuat = referenceFrame.quaternion;

Take the inverse of neutralQuat:

neutralQuat−1 = newNeutral (qn) = {−w, x, y, z}

45



//Capture quaternion of current orientation (at each time step)

currentQuat = currentAttitude.quaternion;

Save currentQuat:

currentQuat = currentAttitude (qc) = {w, x, y, z}

Quaternion multiplication is a special operation where matrices are associative

but not commutative i.e. order matters [39]. When qn × qc, Eqn. 3.3 results.

w = (qn.w × qc.w − qn.x× qc.x− qn.y × qc.y − qn.z × qc.z)

x = (qn.w × qc.x+ qn.x× qc.w + qn.y × qc.z − qn.z × qc.y)

y = (qn.w × qc.y − qn.x× qc.z + qn.y × qc.w + qn.z × qc.x) (3.3)

z = (qn.w × qc.z + qn.x× qc.y − qn.y × qc.x+ qn.z × qc.w)

After returning the values (between 0 and 1) for x, y, and z, sensor data is

filtered to account for gyroscopic drift and a transform function is applied to

convert those values to appropriate control inputs (pulse width modulation, in

µs).

Pulse Width Modulation: Pulse width modulation (PWM) is a common

technique in robotics, where microprocessors digitally encode analog signals.

Their measure, in µs, is the duration of the digital signal’s on time. By

modulating (changing) this “on time,” the analog output value is varied [13].

The microprocessor used in this study accepted pulse width modulation values

between 800 - 2200 µs.

46



Complementary Filter

Before sensor data is ready for transform to pulse width modulation, it

must be filtered to account for (primarily) gyroscopic drift. A study by

Nymoen et. al. found that the iPod Touch used in their testing

performs quite well when it comes to roll and pitch, with superior
drift performance, and equal noise level, but the yaw measurements
from the iPod are less accurate and less precise. The average yaw
drift of a still recording is 70.6×10−5 ◦/s which is equivalent to a drift
of 2.5◦/h. An additional effort to force the device to give inaccurate
yaw data by shaking the device violently for 23 s, resulted in a yaw
drift of 11.5◦.

In the attitude aware controller, the yaw axis of rotation is mapped to steering;

therefore, the implication of drift from this research cannot be ignored. Pilot

testing indicated that drift did indeed worsen as a user turned the device or

maintained dynamic motion. This error manifests itself by making it appear as

if the user is inputting a gradual turn, when in fact the device is stationary.

Obviously this is not ideal given that inputs are tied directly to robot motion.

Since the deadman switch is designed to re-level the device each time it is

activated, it also serves to “re-calibrate” sensors that have drifted off; that said,

users may not understand that phenomenon, nor should they have to. Therefore,

a complementary filter was applied to ensure sensor data was filtered to prevent

large-scale drifts in the z-direction [30]. Done partially through trial and error,

appropriate constants were determined and tested to eliminate most of the sensor

drift on both development devices when in landscape mode (Eqn. 3.4).

filterZ = 0.65× z + 0.35× oldZ (3.4)

where z=current sensor reading and oldZ=previous sensor reading.

47



This filter does a satisfactory job of managing drift that is intrinsic to the

device sensors, as well as that due to shaking, because it provides a weighted

balance of both current and previous readings. It is unknown whether this

filter would be directly applicable, in its current form, to smartphones by other

manufacturers; however, it did prove adequate on both the iPhone 4 and iPod

Touch used in this study.

3.3.2 Transform Functions

Following motion processing, which is handled primarily by AttitudeUpdate,

filterZ is pushed to a method in MainViewController that converts the

raw sensor data (encapsulated as a quaternion) into pulse width modulation,

measured in microseconds. Using raw y data and filtered z data, the

function -(float)convertQuattoPWM:(int)vehicleType first determines the

centerDistConstant, which is the value added to each channel’s “trim.” It is

common in robotics and remote control applications to refer to a vehicle’s trim.

This is the input at which a motor is not moving, also known as neutral. Every

speed controller is slightly different, so this is not a fixed number, rather a point

from which other measurements/changes are generally taken.

The value c, in Eqn. 3.5, defaults to 700, derived from a default channel

trim value of 1500 µs and the robot accepted input range of 800-2200 µs.

centerDistConstant is related to the user-selected responsivenessConstant by

Eqn. 3.5. This equation is evaluated twice, once for the y-direction, and once for

the z-direction.

48



centerDistConstant =
c

responsivenessConstant
(3.5)

responsivenessConstant is a user setting which determines the device range

of motion. If a user prefers large movements to yield smaller results, this value

would be closer to 0.60 (the programmatically established upper limit), equal to

approximately 60% of the device’s range of motion along a given axis. If a user

prefers small movements to yield larger results, the value would be closer to 0.10

(the programmatically established lower limit), equal to approximately 10% of

the device’s range of motion along a given axis. The transform function includes

this value as a scaling factor (Eqn. 3.5), and also as a limit.

if (filtZ > responsivenessTurn) {

filtZ = responsivenessTurn;

}

if (filtZ < -responsivenessTurn) {

filtZ = -responsivenessTurn;

}

The next set of transforms is dependent on the input parameter vehicleType.

Built to permit cross-platform control, the attitude aware controller was tested

on two vehicle platforms–a tracked Kyosho Blizzard described in Section 4.3 and

an HPI Racing 4WD Rock Crawler. For vehicles, like automobiles, who use

Ackerman steering to avoid tire slip [66], the transform consists of calculating a

scaled “value from center” that is then added to the trim values for each channel

(see Eqn. 3.6). Here yDistPWM becomes the value from center. The constant

previously derived, based on the responsiveness constant, is multiplied by the

current y value, which is negative due to the particular behavior of the 4WD

49



vehicle used during testing. Based on directionality of the speed controller, this

value may remain positive. Finally, that value is multiplied by the accelScale,

another user-based preference that scales the throttle by between 10% and 80%.

The default acceleration is scaled by 40%, which in pilot testing performed well

for indoor use. The values centerPWM and carSteerTrim are global constants

dependent on the specific vehicle platform. The 4WD Rock Crawler, for instance,

had a throttle trim = 1500 µs, but a steering trim = 1570 µs.

yDistPWM = centerDistConstantY ×−(y)× accelScale;

zDistPWM = centerDistConstantZ ×−(filtZ)

yPWM = centerPWM + yDistPWM (3.6)

zPWM = carSteerTrim+ zDistPWM

Alternatively, if the vehicle is tank-like where right and left tracks are

channels, and steering and throttle are controlled by a combination of their inputs,

the transform functions become more complex. Here, a broader understanding

of control mapping is necessary. In general, a tracked vehicle is capable of

zero-point turns, where the left and right tracks rotate opposite one another

at the same speed. Additionally, gradual turns are executed by scaling the outer

track to a higher speed than the inner track. Driving straight is handled by

applying the same throttle command to each of the tracks, either forward or

reverse. The transform functions seen in Eqn. 3.7 demonstrate these scenarios;

however, a zero-point turn does not exist. Given the speed controller’s limitations

with reverse, which will be described in more detail later in this chapter,

stationary turns were done by applying throttle to only one track, while keeping

50



the other stationary. Deadspace was programmed near the controller’s neutral

point such that movement would only register outside of that zone; for throttle

(forward/backward) it was set to ± 20 µs, and for steering (rotation) ± 60 µs.

yDistPWM = centerDistConstantY ×−(y)× accelScale

zDistPWM = centerDistConstantZ ×−(filtZ)× accelScale

Turning left gradually:

rightTrack = tankTrimR + yDistPWM

leftTrack = tankTrimL− (zDistPWM × 2)

Turning left in place:

rightTrack = tankTrimR (3.7)

leftTrack = tankTrimL− (zDistPWM × 2)

Equations for left and right tracks are reversed for right turns.

Driving forward:

rightTrack = tankTrimR + yDistPWM

leftTrack = tankTrimL+ yDistPWM

rightTrack and leftTrack are variables saved and later sent to the robot,

while tankTrimL and tankTrimR are the global constants for the Kyosho

Blizzard (both equal to 1550 µs).

51



Finally, the last channels to consider are the two camera servos controlling

pan and tilt. Their transform functions are equivalent to Eqn. 3.6, except with

a positive filtZ variable. Notably, the trim positions on the camera servos were

not near 1500 µs, rather tilt = 1200 µs and pan = 1300 µs. All trim values were

determined experimentally and hard-coded as global constants. The program

was written to be generic enough to account for any trim value, although there

is no interface currently available for the user to set these values him/herself.

3.3.3 User Settings/Preferences

Another key component of the application’s controller architecture was the

Preferences class, written to process all user settings. The application was

designed to accommodate a number of customizable options, in answer to one of

the research questions inspiring this project: “to what effect would customization

impact controller usability and user satisfaction?” First, users were able to choose

their control mode for both driving and camera channels. If they chose tilt-based

inputs, a soft button (thumbprint) appeared in the bottom right of the screen;

however, by altering control location, this button could be moved to any one

of six positions around the perimeter of the device. A hard button deadman

switch (volume button) also existed in the prototype, intended primarily for

gloved operation.

When the joystick control mode was selected, users again had a choice of

control location, in addition to controlling the size of that joystick by scaling

from 75% to 150% of the default joystick size. Figure 3.6 shows several variations

of the controller customized with various layouts and control modes. Note that

when both channels are joystick operated, only one joystick is presented onscreen;

52



this eliminates the option of simultaneous control while managing processor

requirements given the difficulty of animation rendering alongside streaming

video.

(a) Small Joystick with Camera Tilt (b) Large Joystick, Modified Position

(c) Dual Joystick Mode
(One Joystick+Channel Selector)

(d) Hard Button Option
(White Light Indicates Button Press)

Figure 3.6: Custom Controller Application Examples

The final three options related to control scaling; the first being acceleration

sensitivity. This value, between 0.1 and 0.8, acts as a direct, linear scale factor

for the vehicle’s throttle. On the tank robot, especially, indoor driving was nearly

impossible at the highest speeds attainable. Pilot experiments indicated 0.4 as

a suitable default, allowing the vehicle to traverse inclines without sacrificing

maneuverability in tight spaces. The other two options, degree of tilt, are

a representative measure of controller responsiveness. Some users felt that the

controller had to be moved too much in order to initiate robot motion; others

felt that they achieved full throttle too quickly, with not enough control over

53



intermediate values. Degree of tilt addresses those problems by providing a

responsiveness factor. Between 0.1 and 0.6 with a default of 0.45, these values

represent roughly the degree of tilt/rotation available when either driving or

turning. By lowering this number, users are limiting the overall range of motion

of the controller and therefore making it more responsive. Likewise, when at its

maximum, range of motion is nearly 90◦, making the controller less responsive

but perhaps more precise, as users feel better in control of all inputs between

neutral and maximum. These settable values and their defaults are summarized

in Table 3.2.

Table 3.2: User-Settable Values

Default 1 2 3 4 5 6
Channel Mode 1 Tilt Joystick - - - -
Button Type 1 Soft

Button
Hard
Button

- - - -

Control Location 3 Bottom
left

Bottom
center

Bottom
right

Top
right

Top
center

Top
left

Default Min Max
Acceleration Sensitivity 0.4 0.1 0.8
◦ of Tilt: Straight 0.45 0.1 0.6
◦ of Tilt: Turning 0.45 0.1 0.6
Joystick Size/Sensitivity 1.0 0.75 1.5

Using an open source project called In App Settings Kit (IASK), customizable

options were created programmatically in a .plist file which uses an ordered

structure and “specifier keys” to identify cells (in a tabular view) and their

attributes. The values of these cells were updated at program launch and anytime

the settings view was dismissed, indicating possible changes had been made. Two

custom buttons in the settings view permitted expanded functions like resetting

controller defaults and saving options to file. This, in particular, existed to

support experiment data collection, archiving each user’s final configuration file

for analysis. The entire settings view is shown in Figure 3.7. Using saveContext

in the AppDelegate, all settings options were saved and preserved regardless of

54



how/when the controller program was killed. This means that once a user has

established a controller to his/her liking, it will remain that way between uses,

when the device’s power is cycled, and during application crashes, until manually

restored to defaults.

Figure 3.7: Settings View

55



3.4 MVC: Model

The model is generally the most complex portion of any MVC application, as it

houses the bulk of the program’s brains. A brief description of each model class is

provided in the list below. For those with little or no programming background,

this concludes the introduction and description of the application’s execution and

structure. Programmers and engineers with a specific interest in program syntax

and organization may find Sections 3.4.1 and 3.5 useful.

1. WiRC: This SDK was provided by the manufacturer of the onboard

processor, a Dension WiRC, used to connect and control the robot via

iPhone; their research and development engineer, Balint Viragh, provided

it under limited distribution [126]. It contains all of the classes comprising

the WiRC communication protocols, which are also outlined in their user

guides [35, 36]. This comprises the whole of the controller’s back-end, and

encapsulates data for transfer to the on-board WiRC processor which then

distributes it to the appropriate robot channels. Several interface functions

make this possible and will be discussed in Section 3.4.1.

2. IASK: IASK stands for In App Settings Kit; it is an open source project

which uses Apple-supported .plist files to alter application settings within

the application, rather than through the global settings menu on the

iPhone [125]. It relies primarily on the standard Apple settings cells e.g.

sliders, switches, and text fields; however, it is expandable to include

custom cells and buttons. This program was used to manage all of the

user-controlled customization, introduced in Section 3.3.3.

56



3. SneakyInput: SneakyInput is a modified version of the open source package

SneakyJoystick, a gaming interface which includes joysticks, d-pads, and

buttons [94]. It is an elegant solution using cocos2d libraries to support

animation. It was employed in this project to facilitate joystick modes in

combination with the tilt controls already discussed.

3.4.1 Communication Protocol & WiRC SDK

While the WiRC SDK is made up of more than 15 classes, the primary

interface between MainViewController and the WiRC device is defined in

WiRC.m. WiRC.m opens the connection between the two devices and provides

the send/receive pipe necessary to handle all of the WiRC’s major functions. The

other classes focus on the construct of specific messages, as well as error handling.

That said, only a few interface functions are necessary to operate the WiRC from

within the MainViewController, which is declared as a delegate of the WiRC

class. The first of these is a method named startConnectInNewThread. It does

exactly what its title implies, by broadcasting the WiRCDiscover: command

with parameters for versioning and timeouts. This polls for available WiRC

devices on the network and returns them by index number and IP address; then,

the function connects to index 0 by calling WiRC’s connectAndLogin. Finally,

startConnectInNewThread completes communication setup by establishing the

camera feed, using the interface function startCameraWithID:.

Upon connection and setup, the WiRC is then looking for periodic channel

data (PCD) messages, handled via the setChannel: method. This method

requires a parameter for channelValue and withValue, which provides a channel

number (1-8) along with the PWM value of that channel (800-2200 µs). Aside

from their call in MainViewController, these WiRC methods are only accessed

57



from one other class, AppDelegate. There they are called to handle application

termination and moves to/from the background. This is done by calling the

WiRC delegate, wirc, on an instance of the mainViewController. The only new

method presented here is disconnect, which terminates the connection thread.

//When application resumes in foreground

if (mainViewController.wirc.isConnected == NO) {

[self.mainViewController startConnectInNewThread];

}

//When application will terminate

[self.mainViewController.wirc disconnect];

3.5 MainViewController

As the heart of the application, and the class from which the main program thread is

managed, MainViewController is the most complex custom class in this application.

Aside from interfacing with the WiRC communication functions, it also loads all

of the interface views and handles the control mapping. The mathematics and

motion algorithm have already been discussed, so this section will focus primarily

on items of interest to fellow Objective-C programmers: unique method definitions

and program flow. Given that the application is built to support joystick modes,

which are facilitated via SneakyInput, the program uses a combination of UIViews

and CCLayers (cocos2d); UIViews are controlled by ViewControllers, while CCLayers

fall under a CCDirector object. In the AppDelegate, this is handled by creating an

instance of the CCDirector and adding the mainViewController object to the window

as the rootViewController. This ensures that, upon loading, the program displays

the MainViewController class, which then takes over managing the application.

Upon loading the view, MainViewController adds instances of variables needed

58



to manage the controller, as well as loading and hiding UIButtons and UIViews

where appropriate. Many local functions are called first in viewDidLoad and again

at appropriate points during runtime, when specific changes are made. To aid

in debugging and reuse, the MainViewController is separated into several pragma

marked categories, each described in turn. Appendix D should be referenced as a

supplement to this section.

#Setup This section consists of the method viewDidLoad

and setupAnimationView, as well as a function that initiates the

appSettingsViewController and ties it to the appropriate nib file. viewDidLoad

primarily sets up instances of objects and classes, including AttitudeUpdate

and Preferences. When AttitudeUpdate is allocated, the startMotion:

method is called to begin the Core Motion motion manager to make available

updates from the accelerometers and gyroscopes. In addition, it starts the WiRC

connection in a new processor thread, by calling startConnectInNewThread on

detachNewThreadSelector:. setupAnimationView loads a CCGLView named

cocosView and attaches the director object to it. This is the view which handles

the joystick sprites, called by runWithScene:[HelloWorldLayer scene:].

#Volume Functions One of the user-controlled settings includes an option

to use the volume hard buttons as deadman switches in lieu of the soft button

thumbprints. To enable this, the application must register for volume updates by

calling establishVolumeListener:

[[NSNotificationCenter defaultCenter]

addObserver:self

selector:@selector(volumeChanged:)

name:@"AVSystemController_

SystemVolumeDidChangeNotification"

object:nil];

59



When updates are registered, they are compared against the previous volume value

to determine whether the volume up or down button was used as the control input.

That information then informs which robot channel is affected.

#Camera View & Functions The methods in this section exist to receive

the camera feed and display it within the appropriate UIView. Additionally, a

UIImageObject called lastSavedCameraShot caches each previous frame for use with

the camera snapshot feature. The complexities of the image handling algorithm

are hidden behind the didReceivedCameraFrameNum: method, which processes

individual frames of the camera’s MJPEG stream. An -(IBAction)screenCapture:

method was written to save the lastSavedCameraShot to the camera roll via

UIImageWriteToSavedPhotosAlbum. An error handling method was used to either

confirm that the picture was saved correctly or identify to the user that it was not.

These alerts were pushed as UIAlertView objects, or the semi-transparent blue pop up

boxes familiar to most iPhone users (see Figure 3.8).

Figure 3.8: Alert View Pop-up

#Connections Aside from the specific connection methods discussed in

Section 3.4.1, this section also includes methods to display connection status.

Specifically, onConnect: provides the user with feedback in two cases: 1) if the WiRC

is not connected, an alert view informs the user that they have been disconnected

and provides a button to re-connect; 2) if the WiRC is connected, the camera

feed is displayed and information regarding network name and status is pulled from

60



fetchSSIDInfo.

#Motion Fittingly, the motion section is the most robust. This is primarily due

to the number of functions needed to handle several types of control inputs from

several different sources. This includes methods which receive motion and joystick

data, methods which transform that data, and methods that transmit that data.

Almost all of those rely on vehicleType as an input parameter, as the application

currently supports two vehicle profiles, stored as integers (1 = car and 2 = tank). The

algorithm remains the same, but variable signs (+/-), speed controller limits, and motor

deadspace are very much dependent on the individual robotic platform and could be

expected to change even between two vehicles of the same profile type. Most of these

differences (e.g. trim) are saved as global constants, which would allow creation of

vehicle libraries to catalog these values. The first method called in the motion section

is setDefaultTrims, which uses these global constants to ensure that vehicles are set

to their neutral (trim) position on all channels when operation commences.

When tilt-based controls are used for either driving or camera control,

AttitudeUpdate runs in the background awaiting instruction from the

MainViewController. activateAccelerometers: provides this instruction,

called when either deadman switch is depressed. A series of conditionals determines

how to handle the input dependent on the sender. Ultimately, driving inputs cause

the driving light and status to appear on the control screen and camera inputs hide

the driving lights and status but display the snapshot tool. The end result in both

instances is a call to the startMotion method. startMotion is a local interface to

[AttitudeUpdate startMotionLoop]. In that method the device reference frame is

saved and motionLoop timer is established to pull data via motionUpdates. After

filtering the data and converting it to relative quaternion motion, the class eventually

returns a value for w, x, y, and z. These are read in to calculateUpdates (also on

a timer loop) and handled according to which switch initiated the action–driving or

61



camera. For both, data is transformed via convertQuattoPWM before being transmitted

to the device. The z-input is also used in calculating a cameraTurn variable, which

rotates the UIView to help the user visualize degree of rotation by keeping the camera

frame level to the horizon.

If joystick-based controls are present, either in combination with or exclusive of

tilt-based inputs, a calculateLoop timer is initiated to poll for updates in the method

readInJoystick. This method first creates a CCNode to attach to the joystick sprite

in the scene running in the cocosView. The values returned by this node are dependent

on the size of the joystick (in pixels) and are scaled accordingly in the method which

transforms them to PWM (convertJoytoPWM:). Like with tilt-control, joystick data

comes from either a driving or camera input, and that tag, or sender, informs how the

data is processed by the remainder of the program.

After transform to PWM, all control inputs, regardless of mode, call the

checkDirection method. It is used to identify the vehicle’s intended direction of

travel such that driving lights and statuses can be updated accordingly. A solid green

light denotes forward motion (driving or turning), and a red light illustrates that the

attitude controls are active but within the neutral zone i.e. the robot is stopped; a

blinking red light is used to illustrate reverse. Reverse must be handled as a special

driving case due to the limitations of both robot’s speed controllers. Each requires a

“trigger” to engage reverse; on the radio frequency (RF) transmitters, this is done by

either pausing in neutral or inputting full reverse, depending on the vehicle platform.

Programmatically this is accomplished using false signals sent to the robot over 50

timer cycles ( 1 sec). Regardless of user input, a false signal of trim is first transmitted

to shift the car to reverse. For the tank, the false signal starts at trim, then sends

full reverse. Initial tests proved these programmatic lags were successful, although

unreliable. Executing on the tracked vehicle was especially difficult given that both

track channels engaged reverse independent of the other. Therefore, during human

62



user trials, reverse functionality was simplified, permitting users to reverse only straight

back at a set speed.

The final step to transmit values to the robot is executed in

sendValuesToDevice:(int)vehicleType withValues:(int)pwm(int)pwm2. It

processes the PWM variables and distributes them to the correct channels. Channel 1

is steering (car) or right track (tank), and channel 2 is throttle or left track. Channels

3 and 4 control camera pan and tilt on both robots.

Just as important as processing control inputs, is stopping those inputs when

necessary! The -(IBAction)stopAccelerometers: is triggered when the deadman

switch is released, and in turn calls stopAttitudeMotion which sends the trim

commands to the robot and resets the controller display. Stopping the joystick inputs

is handled separately, as it is controlled on its own timer; however, it serves the same

purpose. Multiple lines exist within these methods to ensure all variables, commands,

and timers are properly reset, invalidated, or restarted in an effort to ensure the robot

does not move when not commanded to do so.

#Messages This section is comprised primarily of methods packaged with the

WiRC SDK. These include error handling and connection initiation. didReceivedPSD:

is used to process periodic status updates from the robot. Currently, this only includes

battery charge, measured in millivolts. To simplify its presentation to the user, these

readings were displayed graphically as a battery icon; red indicates insufficient power,

less than 5500 mV. The other message method is called provideInstructions, which

pushes the appropriate text to the UIView upon application launch. For distribution

these instructions would likely be replaced with one or a series of splash screens to

more dynamically illustrate the intended controller functions.

#IASK and Settings Slider These sections are closely related, as one handles

the display of the slider and one handles the actions which occur when the slider reaches

its maximum value. The slider was designed to mimic the iPhone’s lock screen, where

63



sliding to unlock prevents accidental access to certain features. This settings slider is

displayed for five seconds at a time, either at application launch or when the center

of the display is double-tapped. This ensures that the slider does not remain on the

screen for longer than necessary, interfering with the buttons along the bottom of the

display. When the slider is slid fully to the right, showSettings is called to load the

appSettingsViewController, introduced in Section 3.3.3.

# Check Settings The final section was written to interface with the custom class,

Preferences, which contains a class method for each of the user-controlled custom

variables. This facilitates use of these variables within the MainViewController, where

they are used to tag the mode of operation and provide scaling factors.

64



Chapter 4

Experiment Design

4.1 Research Questions

Looking back at research question R.1, the core of this research is to identify and

assess operator control unit methodologies and modes that promote simple, efficient

control of small reconnaissance robots using smartphones, which provide a powerful,

lightweight, expandable platform for control. If specific usability issues are addressed,

these devices have the potential to replace any number of different controllers currently

in use. The best way to test this assertion, and the controller application prototype, is

via formal usability assessments with human users; ideally these trials are conducted

in environments similar to those in which the controller will be deployed.

The multi-phase experiment defined in this chapter was designed with this aim

in mind. Twenty-five participants were recruited to help answer the question “Can

smartphones be implemented in tele-operated control of ground robots such that

their advantages (performance, usability, size/weight) overcome suspected deficiencies,

including negative user perception?” Several hypotheses were were developed and

tested using the experiment designed herein to collect data to either support or refute

them. Details of hypotheses are presented with results in Chapters 5, 6, and 7 and

were previously introduced in Chapter 1.

65



4.2 Related Work

The Army Research Laboratory (ARL) has done significant work with

smartphone-based controllers, conducting a series of scalability experiments started

in 2008. Redden summarized the results of the complete series [106], while recent

work by Pettitt et. al. [96, 43] is most relevant to the usability experiment proposed

here. In Pettitt’s technical report, the authors described an experiment whereby an

Android-based virtual joystick controller (see Figure 4.1) was compared to a traditional

controller. Users were asked to drive a PackBot Explorer robot on two courses–indoor

and out–using each controller after a brief training period. The majority of the courses

were driven while the robot was out of line of sight of the operator, and video feedback

was provided on the Android phone in all instances. Observer/controllers following the

robot through the course measured user performance via time to complete the course,

number of driving errors (collisions), and number of course errors (driving outside the

marked areas). Participants, all military service members, also provided feedback via

the NASA Task Load Index (TLX) and surveys designed to assess controller feasibility

and usability.

Figure 4.1: Army Research Laboratory’s Android Operator Control Unit [96]

66



Results indicated poor performance with the virtual joystick, reaching significance

(p < 0.001) in mean time to complete the courses, mean number of off course errors, and

mean number of driving errors. Additionally, users reported a higher total workload

score with the Android controller, specifically on the mental, effort, and frustration

scales. Finally, participants rated their own performance with the virtual joystick

controller poorly, with 26 of 30 participants preferring the traditional control option

[96]. While most users appreciated the Android’s light weight, small size, ease of use,

and one-handed operation, many complained about the lack of haptic feedback and

sensitivity of a rather small virtual joystick. The authors suggested providing larger

buttons and/or larger spacing between buttons and incorporating some type of haptic

or audio feedback, as many users stated it was difficult to identify when the virtual

joystick was “engaged.” They also noted previous research using transparent buttons

on the screen helping to maximize limited screen real estate, a possible improvement

to their own design [96].

The multi-phase experiment presented in this chapter was designed to expand

upon this study by comparing a second smartphone-based option built to overcome

many of the user-perceived deficiencies of Pettitt’s controller. Using attitude aware,

tilt-based controls and limiting the user’s touch interface, the screen can be devoted to

video feedback for tele-operation while providing inherently haptic, physical feedback

to the user in the form of the device’s attitude in 3D space. By closely mimicking the

experiment design of Pettitt et. al., the usability experiment began by comparing ARL’s

version of virtual joystick control to the newly designed attitude aware controller, with

the goal of ascertaining whether the design characteristics of that controller provide

a suitable, more satisfying smartphone-based control option. Building upon this, the

final experiment phase examined customization of controller options, such as sensitivity

and button size, inspired by research question R.2 and common user complaints in the

ARL study.

67



4.3 Hardware

All experiments took place using a modified Kyosho Blizzard SR Ready-to-Run (RTR)

remote control tracked vehicle (Figure 4.2a), whose specifications are available in

Table 4.1. The factory-provided radio frequency (RF) module was swapped for

a Dension WiRC WiFi over RC system, which accommodates eight analog input

channels plus two USB video streams and communicates via WiFi dongle over standard

802.11n/g/b wireless in the 2.4GHz range (see Figure 4.2b). Other vehicle modifications

include the addition of pan-tilt Lynxmotion camera mounts for the Logitech C110

USB camera, and two standard servos to power their motion (see Figure 4.2c). This

setup permitted approximately 120 ◦ of motion to pan left and right, as well as scan

up and down. The fixed camera driving position looked down the centerline of the

robot with its front “bumper” in view along the bottom of the frame, coinciding with

studies which indicate that video feedback should provide a visual reference to the

device chassis [63, 127]. Overall, while smaller and less rugged than the PackBot used

in ARL’s studies, the Kyosho Blizzard remains a highly maneuverable tracked robot

providing a reasonable, if less refined, platform for comparison.

Table 4.1: Kyosho Blizzard SR RTR Specifications

Length: 14.75”
Width: 12”
Height (Chassis): 4”
Height (Camera): 8.5”
Motors: Twin 370 motors with KA-17W speed controllers
Drive System: Sprocket and chain
Power: 7.2 V (6-cell) NiMH Battery

Control of the robot was achieved via custom application, described in Chapter 3,

developed for both a 4th generation iPod Touch and an iPhone 4, used throughout this

experiment. Each was ruggedized by an Otterbox Defender case, making their size,

weight, and shape as comparable as possible (see Figure 4.2d).

68



(a) Kyosho Blizzard SR RTR Modified
for Tele-operation

(b) Dension WiRC WiFi over RC [34]
(System comes with everything shown here)

(c) Lynxmotion Pan/Tilt Camera
Mount with Servos

(d) iPhone 4 and 4th Gen iPod Touch
Ruggedized by Otterbox Cases

Figure 4.2: Experiment Hardware

69



4.4 Course design

An indoor robotic test course was developed, similar to the one used in ARL’s

experiments [96], to test users in both mobility and reconnaissance tasks. Testing

took place in a series of rooms divided further into corridors and doorways to mimic an

urban business or residence. Obstacles were placed throughout the rooms in a manner

that would force users to maneuver over and around them in order to successfully

complete the course. Obstacles varied in type: office furniture, bins, doorjambs, and

other miscellaneous items. Doorways and corridors varied from larger 36” openings

to narrower 22” openings; furthermore the course included turns in both directions,

including some which required maneuvering at more than 90◦. See Figure 4.3 for a

schematic of the course layout and Figure 4.4 for pictures of the setup.

Figure 4.3: Layout of Test Course

A path through the course was marked with red duct tape arrows (depicted in the

graphic) spaced 18-24” apart. These provided navigational cues as users followed them

counter-clockwise through the course, and served as a measure of driving accuracy that

will be further discussed with other dependent variables. Data regarding performance

was collected during the course of live trials; however, the entirety of the course was

70



(a) Picture of Course
(Left)

(b) Picture of Course
(Middle)

(c) Picture of Course
(Right)

Figure 4.4: Pictures of Course

also overlooked by a series of four closed circuit cameras used to record robot trials as

a redundancy measure.

4.5 Method

Each the three experiment phases compared two similar, but different controllers,

using the tracked robot described in Section 4.3. Controller type was examined as

a within-subject variable, meaning each user tested with both available controller

options in each phase. The order in which controllers were presented to users was

counterbalanced across the first two phases to counteract both learning and ordering

effects (see Table 4.2). In Phase 3, Controller E was the only controller presented.

4.5.1 Independent Variables

The independent variables in this experiment were controller type and task. Tasks

stayed constant within a phase, but changed between them, building upon a user’s

experience with the system to add robot capabilities while increasing task complexity.

Exactly how and why this was done is explained in the definition of each experiment

phase. A total of five controllers were presented to each user over the course of three

phases. They are summarized in Table 4.3 and later described in detail.

71



Table 4.2: Experiment Counterbalance Design
A, B, C, D, and E are levels of the independent variable, controller (see Table 4.3)

X, Y, G, and H are runs, or specific sets of object locations used in the reconnaissance task

Participant Test
1 2 3 4 5

1 A B C-X D-Y E-H
2 B A D-Y C-X E-H
3 A B D-X C-Y E-G
4 B A C-Y D-X E-G
5 A B C-X D-Y E-H
6 B A D-Y C-X E-H
7 A B D-X C-Y E-G
8 B A C-Y D-X E-G
9 A B C-X D-Y E-H
10 B A D-Y C-X E-H
11 A B D-X C-Y E-G
12 B A C-Y D-X E-G
13 A B C-X D-Y E-H
14 B A D-Y C-X E-H
15 A B D-X C-Y E-G
16 B A C-Y D-X E-G
17 A B C-X D-Y E-H
18 B A D-Y C-X E-H
19 A B D-X C-Y E-G
20 B A C-Y D-X E-G
21 A B C-X D-Y E-H
22 B A D-Y C-X E-H
23 A B D-X C-Y E-G
24 B A C-Y D-X E-G
25 A B C-X D-Y E-H

Table 4.3: Summary of Controllers as the Independent Variable

Controller Label Phase Application Name Driving Mode Camera Mode
A 1 Joystick v1 Joystick Disabled
B 1 Tilt v1 Tilt Disabled
C 2 Tilt + Joy v2 Tilt Joystick
D 2 Tilt v2 Tilt Tilt
E 3 Custom v3 Custom Custom

72



4.5.2 Definition of Experiment Phases

Phase 1. Phase 1 was designed as a direct extension of Pettitt’s ARL study. As

such, an iOS version of their Android OCU was developed, defined as Controller A

(see Figure 4.5a). Presented in portrait mode, the upper half of the screen was devoted

to video feedback while the bottom half of the screen housed the virtual joystick.

Control of the robot was achieved by dragging the joystick freely in any direction;

when the joystick was released and/or returned to center, all robot motion ceased.

Controller B consisted of a stripped down version of the custom attitude aware

application described in Chapter 3. Users were presented with a control interface

in landscape mode with full-screen video feedback. A thumbprint button located in

the bottom right of the screen served as the deadman switch and activated tilt controls

when pressed and held (see Figure 4.5b). Deadman switch activation also re-leveled

the controls, meaning that the attitude at which controls were activated became the

new neutral point. Users then tilted the device forward and backward to control the

throttle and rotated left and right to control heading. Releasing the deadman switch

stopped the robot.

The task included driving the robot around the course as prescribed during training.

Users would be unable to see the robot, although were within auditory feedback range.

The robot began at the bottom of the ramp, following the arrows first to the right, then

through the remainder of the course. Users were instructed to strive for an equal balance

of speed, accuracy, and precision, whose applicable performance measures (time, path

points hit, and number of collisions) will be defined as dependent variables.

Phase 2. Phase 2 added control of the pan/tilt camera affixed to the robot. In an

effort to manage task complexity, camera motion was only accessible when the robot

was stopped. Users were directed to drive their robot along the same course used in

Phase 1 and stop to visually scan for three objects along the way. In order to mitigate

the effects of individual scanning strategy, duct tape boxes were added to the course

73



(a) Controller A:
Joystick v1

(b) Controller B:
Tilt v1

Figure 4.5: Phase 1 Controllers

(one in each room), from which users were directed to scan for the object(s) specified.

Boxes were positioned to ensure that object(s) would be visible if users properly scanned

all 360 ◦ of a room from within them. The objects used were colored foam balls 3.5”

in diameter (see Figure 4.6a). Users saw the balls in advance of their timed runs and

were aware of which color would be present in each room, though objects were not in

position during training. Upon finding an object, participants took a picture of it using

the camera button at the base of the controller and mapped its approximate location on

the worksheet provided (see Figure 4.7). Users were asked to place an “X” where they

thought they had found the object. While not imperative to understanding the control

task, these results were used as a measure of a participant’s ability to localize their

robot in space, and plays towards overall spatial ability as it relates to tele-operation.

Two runs were executed, X and Y. Each run consisted of a set of three object locations,

one in each room as shown in Table 4.4. The runs were designed such that difficulty was

roughly equal and objects could be found when the room was scanned, but would not

be found by accident in the course of driving. Users saw each run once, counterbalanced

along with control type and order as depicted in Table 4.2.

74



Table 4.4: Definition of Runs for Phases 2 and 3 (Object Locations)

Robot Rm
(Right)

Stage
(Center)

Server Rm
(Left)

Run X/G Table Chair Circuit
Run Y/H Ladder Corner Floor
*runs were re-named for Phase 3 so that users were unaware that the same
object locations were being utilized.

(a) Foam Balls used for Visual
Identification Tasks

(b) Objects as Seen through Robot
Camera

Figure 4.6: Phase 2 Visual Identification Task

Both controllers in Phase 2 adopted attitude aware driving controls, but maintained

different modes for camera manipulation. Controller C used a virtual joystick to

control the camera pan/tilt by dragging left to look left, up to look up, etc. The

joystick was roughly equal in size to the driving deadman switch and located in the

lower left hand corner (see Figure 4.8a). Controller D presented the user with the

driving deadman switch (a plain thumbprint button) on the bottom right of the screen,

and a camera deadman switch (a thumbprint with camera overlay) on the bottom left

of the screen (see Figure 4.8b). It used attitude aware tilt-based inputs for driving and

camera manipulation. Both worked in the same way–press and hold to activate tilt

controls, release to stop. In both Controller C and D, the camera remained focused on

its current target when the joystick or deadman switch were released, allowing users to

look more closely at the frame and/or take a picture. To ensure users did not become

75



Figure 4.7: User Worksheet for Mapping Object Locations

disoriented when driving, the camera returned to its neutral position (facing forward

on the centerline of the robot with the front bumper visible in the bottom of the frame)

each time the driving deadman switch was activated.

The intent of adding reconnaissance tasks in Phase 2 was to test the suitability of

each type (mode) of control input for the robot’s third and fourth degree of freedom

(camera pan and tilt), while also examining the effects of interface mode confusion.

(a) Controller C:
Tilt + Joy v2

(b) Controller D:
Tilt v2

Figure 4.8: Phase 2 Controllers

76



Work by Chong and Lankenau indicates that mode confusion may result when a

user’s mental models differ from the system’s actual model and/or when feedback is

insufficient to indicate operation mode [26, 69]. In Controllers C and D, feedback is

provided primarily via soft buttons highlighting upon touch, as well as the presence (or

absence) of driving lights. Given the similarities of the control inputs, i.e. press, hold,

and tilt, it was important to consider whether users experienced mode confusion with

either set of controls, especially considering all robot degrees of freedom are accessed

from the same interface screen.

Phase 3. Phase 3 culminated in allowing users to customize their controls!

After exposure to multiple combinations of driving and camera controls, participants

were given the option to modify their controller, including choice of control mode(s)

and interface layout. The default controller was chosen as Controller D, and the

application began in that version for all users. By double-tapping the center of the

screen and sliding to unlock (see Figure 4.9a), users entered a settings menu (Figure

4.9b) from which they could choose either joystick or tilt controls for both driving

and camera channels. Based on those choices, users could then position the on

screen components (thumbprints and/or joysticks) in one of six locations around the

screen. Additionally, users could adjust sensitivity and responsiveness via sliding scale,

changing the maximum throttle speed and device range of motion. All of these settings

were thoroughly explained to each user before decisions were made regarding the final

configuration, referred to as Controller E, an example of which is shown in Figure

4.9c. Aside from asking users to configure their custom controller, tasks for Phase 3

remained identical to Phase 2. Users were again asked to drive the robot through the

course balancing speed, precision, and accuracy, while stopping in each of the three

scanning boxes to identify the objects placed throughout the rooms.

77



(a) Controller E
“Slide to Open Settings” Interface

(b) Controller E Settings Menu
visible at launch, scroll down for more

(c) Controller E:
Final Configuration Example

Figure 4.9: Phase 3 Control Interface

78



4.5.3 Dependent Variables

Experiment dependent variables consist of both quantitative and qualitative

information collected during the course of training and timed trials. Performance

measures recorded include practice time, time to complete the course (in seconds),

number of major driving errors, number of minor driving errors, and number of

path points hit. Driving errors were differentiated based on severity. A major

error included instances where the observer had to step in a make a correction e.g.

repositioning the robot, putting it back on the course after a major deviation,

etc. Minor errors were collisions from which the operator could self-correct, often

engaging reverse. The arrows depicting the path through the course were called

path points and were considered “hit” if any part of the robot came in physical

contact with them while traveling in the direction in which they were pointing.

There were 32 total path points, and the individual administering the experiment

noted the number hit as well as their location.

In addition to these performance metrics, information was also collected for

the tasks specific to Phase 2 and 3. Users, after locating each object, mapped

them and took a picture. Photographs were saved to provide confirmation that

an object was visually identified, allowing future analysis of the object’s position

within the frame. The maps, as described previously, provided a secondary

measure of users’ spatial awareness and were graded on a nine-point scale. For

each object marked, users could earn three points, for nine points total. The

scale was defined as: zero points for failing to mark, or being completely wrong;

one point for identifying the object on the wrong wall, but one adjacent to its

actual position; two points for noting the object along the correct wall but in

the wrong position; and three points for identifying the object within 10% of its

79



exact location.

Video feedback was also collected throughout experiment trials. Cameras

recorded not only the robot’s actions (primarily as a backup), but also the user’s

reactions, movements, and facial expressions while guiding their robot through

the course. The webcam built into the user workstation was used to record while

the live feed was hidden from users so as not distract them. These videos were

cataloged and archived but are not currently being utilized. They represent hours

of tele-operation and could easily produce interesting insights if analyzed as part

of a more psychologically focused extension of this research. In addition to these

video recordings, .plist files were also saved from the device application (per user)

during Phase 3. These preserved the final controller configurations used by each

participant in the trial and informed analysis regarding control preferences and

defaults.

Following each timed trial, users were asked to complete the NASA

TLX workload index and provide usability feedback via surveys hosted on

SurveyMonkey.com. The NASA TLX was administered using a desktop

application by Playgraph and included both the Likert scale and pairwise

comparisons [51, 57]. Surveys were customized for each phase of the experiment

and were vaguely inspired by the surveys used in ARL’s study. In Phases

1 and 2, users completed post-iteration surveys after each timed trial and a

post-experiment survey at the end of the phase. In Phase 3, given there was only

one timed trial, only one survey was administered. The questions (and results)

comprising each survey can be viewed in their entirety in Appendix C. Survey

questions focused on usability and user preference, and the answers helped guide

design decisions between phases i.e. which features to customize, how feedback

should look. Most questions were answered on a five-point Likert scale, but some

80



permitted free text commenting, providing perhaps the most revealing evidence

of user attitudes.

4.6 Procedures

Permission to proceed with this study was granted by the University’s

Institutional Review Board (IRB) on 31 August 2012, filed under IRB #1115.

All necessary disclosures and forms specific to that process are included in

Appendix B.

4.6.1 Participants

Upon study enrollment, a signed consent form was collected for each of the

25 participants, all of whom indicated their consent to be video taped. Each

subject completed a demographics survey (seen in Appendix C) regarding age,

gender, military service, and experience with relevant technologies. The majority

of participants were recruited from the undergraduate and graduate engineering

populations at the University of Oklahoma. They ranged in age from 18 to 51,

with a median age of 26. The subject population consisted of 21 men and four

women, recruited to represent the military gender split (approximately 85% male

and 15% female). While 4 participants reported military experience, none were

exposed to unmanned systems during their service. Only one individual reported

being left-handed.

All participants were compensated a total of $40 for their five-hour time

commitment spread across three experiment phases. No previous experience with

either smartphones or robots was necessary to participate, although 76% reported

good or excellent proficiency with mobile devices, with 22 respondents reporting

81



at least 12 hours of weekly use. Questions regarding use of remote controlled

systems of varying intelligence indicated that nine participants had little to no

experience with ground vehicles, and only one reported excellent proficiency.

More participants reported exposure to systems using gestural based inputs, the

most common being Nintendo’s Wii; 20 participants reported experience with

that system, and 14 participants had played tilt-based games on a mobile device,

such as the iPhone. Finally, a spatial reasoning test [122] was administered to

assess a user’s natural spatial ability, a proven predictor of user performance in

tele-operation tasks [121, 120, 25]. The mean score for study participants was

13.4 out of 20, with a median of 14, matching the referenced average for all test

takers. Only two subjects tested notably below average, with scores of 8 and 9.

4.6.2 Training

All users began the study by participating in a formal pre-interview, where they

were introduced to the project and its time requirements. Trials were scheduled

individually, with each user required to attend a 1.5 hour session for each of the

three experiment phases. Upon arrival to the test location, users were briefed

on the experiment tasks. This always began with a physical walkthrough of the

indoor course, pointing out key features and familiarizing the user with the types

of obstacles which he/she might encounter. This method of course familiarization

was chosen over map reconnaissance (or a completely unknown environment)

in an attempt to control for individual differences in spatial ability. Providing

firsthand, physical knowledge of the course and its layout was determined to

be the best way to limit the task to driving without navigating ; where driving

requires only manipulation of the robot, whereas navigating implies some measure

82



of finding one’s way.

Levels of the independent variable, controller type, were presented one at a

time in the order prescribed by the counterbalance table. A specific training

regimen was followed for each controller with a training check used to confirm

when users were ready to commence timed trials. This ensured that all users

began with a similar set of baseline skills, adjusting for biases which might

have existed due to user experience, or lack thereof, with similar technologies.

Following formal training, which included a walkthrough, verbal instructions,

and/or instructional videos, the remainder of training time was devoted to

hands-on practice. Considered a flexible practice period, hands-on practice time

was intended to provide a dependent variable measuring controller ease of use,

where actual time used (up to 15 minutes for Phases 1 and 2, and 30 minutes for

Phase 3) was recorded in the experiment log. Exact training procedures changed

slightly between experiment phases; Table 4.5 provides a full description.

83



Table 4.5: Training Procedures by Experiment Phase

Phase 1

Walkthrough
Yes; to familiarize users with the course and point out path
points.

Controller
Familiarization

5-min video instruction for each controller type; users then
had three minutes to ask questions/receive clarification.

Hands-on
Practice

Users were given a maximum of 15 minutes for hands-on
practice and were asked to instruct the experimenter when
they felt competent enough to proceed

Practice Type
Users were limited to beyond line of sight operation only
after the first three minutes.

Training Check
Drive robot around the wall in the center of the course in
less than two minutes without any major collisions.

Phase 2

Walkthrough
Yes; re-familiarized users with the course and pointed out
the addition of three scanning boxes.

Controller
Familiarization

5 min video instruction for each controller type; no time
restrictions on question/answers.

Hands-on
Practice

Users were given a maximum of 15 minutes for hands-on
practice and were asked to instruct the experimenter when
they felt competent enough to proceed.

Practice Type
Strictly tele-operation. Users were permitted to practice
both driving and scanning tasks, as objects were not present
on the course during training.

Training Check
Experimenter observed practice to ensure user was
competent with new camera controls; no formal checks.

Phase 3

Walkthrough
A walkthrough was offered for indivduals who required
re-familiarization.

Controller
Familiarization

10 min hands-on demonstration by the experimenter where
settings menu items were discussed and demonstrated in
detail.

Hands-on
Practice

Users had 30 minutes to practice and configure their robot
controller. Questions were answered at any time.

Practice Type
Users could be anywhere on or off the course either with
the robot or beyond line of sight for the duration of the
hands-on practice period.

Training Check
Experimenter observed practice to ensure user was
competent with custom controls; no formal checks.

84



4.6.3 Timed Trials

Official timed trials commenced on each controller immediately following training

using that same controller. Participants remained seated at the user workstation,

just below the main room where the the test course was located, to ensure that

users were beyond robot line of sight, therefore relying on video feedback to

maneuver their robot through the course. Ensuring users were seated also served

to eliminate accidental movements which might errantly impact the attitude

controls i.e. body rotation while standing, shifting from foot to foot, etc. The

motion algorithm described in Section 3.3.1 acts to level and filter most of these

motions; however, for experimental purposes, controlling for noise in the attitude

inputs was deemed prudent. The remainder of task completion varied with phase

and will be discussed in the chapters that follow.

85



Chapter 5

Experiment & Results – Phase 1

5.1 Task

Phase 1 experiments were conducted using Controllers A and B (see Figure 5.1),

described in detail in Chapter 4. Official timed trials commenced on each

controller immediately following training using that same controller. The

participant remained seated at the user workstation just below the main room

where the the test course was located (see Figure 5.2) to ensure that all driving

was via tele-presence while maintaining a safe distance between the robot and

subject during operation. Users were videotaped at their workstation to capture

facial expressions, major movements, etc., and the robot was filmed from above

while traversing the course as a redundancy measure.

The robot started the course at the bottom of an eight foot ramp while the

participant waited for the signal to begin. Users were instructed to complete the

course as quickly and as accurately (based on bath points hit) as possible while

minimizing collisions. Users maneuvered their robot around the entirety of the

course while the experimenter followed along collecting performance data. When

users reached the finish point at the base of the ramp, total trial time was noted

and all video recordings were stopped.

86



(a) Controller A:
Joystick v1

(b) Controller B:
Tilt v1

Figure 5.1: Phase 1: Controllers A and B

Figure 5.2: User Workstation

87



Users then transitioned to post-iteration data collection, filling out the NASA

TLX via desktop application and completing a web-based questionnaire regarding

controller features and usability. Once both of these were complete, the next

controller option (if applicable) was prepared for the participant. He/she trained

with the new controller in the same manner previously described, executed a

timed trial, and finished with the same post-iteration questionnaire and TLX.

Once both timed trials were complete, the user answered a final post-experiment

questionnaire, primarily to identify which controller, of the two presented, was

preferred.

5.2 Independent/Dependent Variables

In Phase 1, the independent variable was the controller type: A (joystick)

or B (tilt-based); making this a one-factor experiment with two levels. The

14 dependent variables used for statistical analysis were a combination of

performance results, formal measures of workload and usability (NASA TLX

and System Usability Scale), and informal measures of user satisfaction collected

via survey. These metrics were collected for each user trial: 25 users x 2 controller

levels = 50 trials. Specifically,

• ptime. Practice time was the duration of hands-on practice for each

subject, not to exceed 15 minutes, collected as a quantifiable measure of

ease of use and controller intuitiveness.

• ttime. Trial time, in seconds, was the amount of time it took each user

to drive the robot from start to finish. There was no upper limit to the

amount of time a subject could take to complete this task.

88



• majerror. Major errors were those requiring intervention on the part

of the experimenter. They primarily ensured that users who struggled

with specific portions of the tele-operation task, e.g. depth perception,

disorientation, etc., could still complete the course as intended (i.e.

following the correct route).

• minerror. Minor errors were small collisions of the robot against some

obstacle, generally requiring the user to engage reverse. They served as a

measure of driving precision and encouraged users to consider metrics other

than speed alone.

• pathpts. 32 path points existed along the course as red, duct taped arrows.

Users were instructed to hit as many of them as possible with some portion

of their robot. Results were recorded as a raw number between 0 and 32,

representing driving accuracy.

• tlx. The NASA TLX is a standardized measure of mental workload

administered via desktop application. Users completed it immediately

following each controller trial. Responses are totaled to a workload score

between 0 and 100; 100 being maximum mental demand.

• sus. The System Usability Scale (SUS) is a similarly standardized tool

built to be a generic, quick, and simple measure of usability for industrial

systems [18]. Comprised of ten questions on a five-point Likert scale, overall

usability is resolved to a number between 0 and 100; 100 being most usable.

• move. Post-iteration surveys were intended to help identify failings in

the training approach while also allowing the user to rate his/her abilities

without quantifiable knowledge of their trial performance. The primary

89



questions asked referenced the user’s ability to complete specific tasks

with each controller. For instance, users ranked their ability to “move

in the correct direction” on a five-point scale from extremely difficult (1) to

extremely easy (5).

• obstacles. Next, users rated their ability to “avoid obstacles.”

• slow, med, hi. Users also rated their ability to “maintain control when

driving at slowest speeds...medium speeds...and fastest speeds.”

• drive. The final question regarding driving tasks required users to rate

their “overall ability to perform driving tasks” on the extremely difficult to

extremely easy scale, or one to five.

• usability. Likewise, users informally rated each controller’s overall

usability, as a secondary, but more direct, measure of usability.

5.3 Statistical Analysis

Phase 1 is formally a one-way repeated measures design, where each user attempts

each level of the independent variable, controller type. It can be analyzed

using a standard t-test or with a two-way analysis of variance (ANOVA), where

both controller and subject are factors. In experiments with human subjects,

where several measurements are taken on the same experimental unit (person),

measurements tend to be correlated. When these measurements are responses

to levels of the experimental factor (controller type), correlation can be captured

using ANOVA [29]; therefore, the F -statistic was used to identify significant

effects of the independent variable on the results.

90



5.3.1 Hypothesis

In ANOVA, the null hypothesis, H0, is defined as the condition where population

group means are equal; specifically, it states that the means of the dependent

variables for Controllers A and B are equal. The alternate hypothesis, H1, is

NOT the null hypothesis, although it may not specify which factor is favored [29].

When p < 0.05, the observed effect is likely not due to chance, meaning it can

be attributed to the independent variable, although this alone does not confirm

causation.

The research questions (R.1 and R.2), introduced in Chapter 1, developed

into three hypotheses, the first of which was tested in Phase 1. All were

developed under the assumption that virtual joystick controls would be more

familiar to users, and were therefore likely to be preferred. Users often resist new

technologies, such as tilt-based controls, which have not yet achieved widespread

use. The hypothesis, H.1, intends to test these assumptions and biases.

(H.1)

Over time, and after reasonable training, users will be able to

perform surveillance and reconnaissance tasks to a reasonable

standard and equally as well with tilt inputs as with a virtual

joystick.

(H.2)

Tilt-based controls are intuitive enough a control modality to be

used for a number of robotics applications with multiple degrees of

freedom, without significant degradation of performance.

(H.3)

Permitting users to manipulate certain controller settings will lead

to more satisfied users who perform better with less

errors.

91



Hypotheses H.2 and H.3 will be revisited in Chapters 6 and 7 respectively; also,

note that Phase 3’s defined hypothesis takes the form of an alternate, not the

null.

5.3.2 Analysis of Variance (ANOVA): The F -Statistic

The F -statistic (Eqn. 5.1) compares group variance to global variance, where

MS = the mean square deviations (variances)–derived by dividing the sums of

squares by degrees of freedom.

F =
MSbetween

MSwithin

(5.1)

The F -distribution is indexed by two parameters, degrees of freedom (DOFs):

1. j − 1 where j is number of groups

2. N − j where N is number of trials

F is expected to be 1.0, and large values speak against the null hypothesis. The

critical value of F required to formally reject the null hypothesis is found in a

table of the F -distribution, indexed by the two DOFs defined. What results is the

probability of obtaining a value greater than or equal to that Fcritical by chance

under the null hypothesis. More simply, if the probability (p) is low, generally

less than 0.05, the null hypothesis can be rejected when F ≥ Fcritical.

This statistic is subject to some important limitations, which should be

considered before confidently accepting its results. First, populations from

which each group is drawn are assumed to be normal. Second, variances of

these populations are assumed to be equal. Third, error components should be

independent of one another within trials (in tests with replication), as well as

92



between trials [29]. Replication refers to the same factor and task completed by

the same individual more than once e.g. a user drives a robot under the same

conditions with the same controller multiple times. A repeated measure indicates

that the same individual conducted a task twice, but does not imply that the

level of the independent variable remained the same.

The first two assumptions regarding normality are generally accepted if sample

sizes are sufficiently large, N > 30. Therefore, this experiment’s sample size

(N = 50), should be satisfactory for ANOVA; however, a normality check was

conducted to confirm. The histogram in Figure 5.3 shows the distribution of trial

times from all 50 samples in Phase 1 and has the traditional bell curve expected of

a normal distribution. The mean and median are also sufficiently close together

to prevent skew. The statistics of normality in Table 5.1 support this assessment.

Table 5.1: Normality Statistics

Basic Statistical Measures

Location Variability

Mean 322.72 Std Deviation 87.05899
Median 314 Variance 7579

Mode 314 Range 412

Interquartile Range 88

Tests for Normality

Test Statistic p Value

Shapiro-Wilk W 0.952891 Pr < W 0.0449

Kolmogorov-Smirnov D 0.114579 Pr > D 0.0975
Cramer-von Mises W-Sq 0.123395 Pr > W − Sq 0.0531

Anderson-Darling A-Sq 0.708619 Pr > A− Sq 0.0633

93



Figure 5.3: Histogram of Phase 1 Trial Times (N = 50)

The final limitation is dependent on the error estimation technique(s) available

given the experiment design. In tests with replication, error is accounted for by

analyzing the variance between replicates; in tests without replication, it must be

estimated in other ways. For instance, repeated measures designs estimate error

using the variation among (not between) individuals [76]. The repeated measures

present in this experiment are sufficient to provide these error estimates–handled

by the statistical software package used for analysis.

5.4 Results & Discussion: The F -Statistic

To test the null hypothesis (H.1), the F -statistic was calculated for each of the

14 dependent variables defined. p < 0.05 was the critical value used to denote

significance. Table 5.2 shows the means, standard deviations, and statistics for

each dependent variable. Those achieving significance are highlighted in yellow.

94



Table 5.2: The F -Statistic: Phase 1

ptime ttime majerror minerror pathpts tlx sus

Controller A
mean (x̄) 687.72 305.88 0.28 5.64 28.6 55.31 64.9

std dev (sd) 213.19 69.4 0.61 2.6 2.02 14.78 16.9

Controller B
mean (x̄) 648.68 339.56 0.4 4.16 28.28 53.89 68.7

std dev (sd) 245.01 100.34 0.76 2.75 2.67 20.09 17.08

p (< 0.05) 0.445 0.046 0.417 0.049 0.55 0.695 0.258

F 0.6 4.41 0.68 4.29 0.36 0.16 1.34

move obstacles slow med hi drive usability

Controller A
mean (x̄) 2.44 2.52 3.48 2.625 1.72 2.96 3

std dev (sd) 0.8206 0.8226 1.005 0.7697 0.9798 0.8888 1.04

Controller B
mean (x̄) 3.52 3.08 3.68 2.8 1.88 3.2 3.56

std dev (sd) 0.9626 0.9539 1.1445 1.08 0.8327 1.041 1.08

p (< 0.05) 0.0001 0.0076 0.4091 0.5884 0.3563 0.282 0.045

F 20.68 8.49 0.71 0.3 0.88 1.21 4.46

5.4.1 Performance

Five variables achieved significance at the p < 0.05 level: ttime, minerror,

move, obstacles, and usability, meaning the null hypothesis is rejected given

that controller means are not equal. Trial time favored the joystick controller,

matching observations made during experiment trials. Joystick runs were notably

faster than those with tilt controls (in fact, significantly so). This appeared to be

the result of a small virtual joystick with limited travel between center and bezel.

Users struggled to find the joystick’s “sweet spot,” resulting in most operating

at top speed, or close to it, for the duration of their runs. Many adapted to

those conditions by driving in short bursts, although collisions/minor errors were

significantly higher as a result (x̄A = 5.64 vs. x̄B = 4.16, F = 4.29 at p = 0.049).

The three other variables resulting in significance, all favoring the tilt

controller, resulted from user responses to the post-iteration questionnaires.

move references users’ rated ability to “move in the correct direction.” Multiple

individuals noted that the joystick controller failed to operate as expected. Many

found it difficult to drive straight ahead. While users were quick to blame this

95



on the control mapping, most instances of drift were actually caused by user

error; some experienced a disconnect between where they thought their thumb

(or finger) was in contact with the joystick and where it actually was. Given

the relatively small size of the joystick [75 x 75 pixels], a small variance in

touch location yielded a noticeable effect on robot behavior. This phenomena

is believed to be a contributing factor to the difference in user ratings, leading to

the significance observed in the move variable.

Users also rated the attitude aware controller significantly better with respect

to their ability to avoid obstacles, indicating that obstacle avoidance is not

only tied to general tele-operation skills, but also related to the control type

in use. It is not immediately clear why obstacle avoidance was superior with

the tilt controls, as users did complain that turning was more difficult with it.

Observations indicated that most problems when turning in place resulted when

users accidentally engaged reverse. It was natural for users to tilt the controller

back towards themselves while rotating the device, and if, in doing so, the device

tilted beyond the set neutral point, the robot began to drive backwards. That

said, users with tilt controls did report better control over the entire range of the

robot’s throttle, as indicated in answers to survey questions regarding control at

slow (x̄ = 3.68), med (x̄ = 2.8) and hi (x̄ = 1.88) speeds (see Figure 5.4b).

It could be this perceived sense of control that had the largest impact on users’

self-rated ability to avoid obstacles.

While the formal measure of usability, sus, did not achieve significance, it was

closely related to user-rated usability, which did. Given that SUS was developed

as a general measure of system usability (in an era of desktop-based systems),

it may not provide the most accurate picture of controller usability. Lending

confidence to the more informal measure of user-rated usability, on a scale of

96



1 to 5, is the fact that both it (x̄ = 3.56, p = 0.045) and user preference (A:

36%, B: 64%) indicated support for the same controller (tilt-based). When, at

the conclusion of the experiment phase, participants were asked to choose which

controller they preferred, 16 of 25 chose Controller B (see Figure 5.4a).

5.4.2 User Preference

The role of user preference is important to any usability assessment, and here

perhaps even more so. Given the lack of experience with tilt controls in

the general population, and a task that few have previously attempted (robot

tele-operation), the hypothesis (H.1) was conservative in assuming that users

might prefer the virtual joystick regardless of performance outcomes. Joystick

control was posited to be more familiar to users and a direct mapping of current

tactile controls. Lack of familiarity can sometimes doom even the most usable new

systems, as consumer resistance to change is well documented [64, 104]. That

said, ARL’s study made clear that users had a number of issues with virtual

joystick control; problems which the tilt controller was designed to overcome.

Looking at numbers alone, it would appear to have done so, given the higher

percentage of participants preferring tilt controls; but how is that preference tied

to performance?

Table 5.2 shows that trial time was significantly faster for the joystick controls,

and as one of three quantifiable measures of performance, it could be expected

that users would summarize their own performance with Controller A superior

to that of Controller B. Instead, survey results indicate the opposite–users rated

their abilities superior with the tilt controls in all categories: move, obstacles,

slow, med, hi and drive. Additionally, while 18 users performed better with

97



(a) Phase 1 Overall User Preference
(Virtual Joystick Control vs. Tilt Controls)

(b) Phase 1 Results Showing User-Rated Driving Abilities
(on a scale of 1-5, with 5 being extremely easy).

Figure 5.4: Phase 1 Results Summary

98



the joystick controller in terms of trial time, only nine preferred it. Examining the

percent improvement between each user’s best and worst controller trial averaged

an 18% difference, regardless of whether a participant drove faster with Controller

A or Controller B. This confirms that preference is not obscured by percent

improvement in trial times, as was assumed.

Instead, it seems to suggest that one or more of the other performance metrics

ranked higher in users’ own determination of their abilities. Participants were

not informed of their trial times, nor were any stopwatches or clocks visible

to them during their runs. However, knowledge of performance regarding path

points hit and driving errors was more difficult to shield from users. While final

numbers were not shared, users generally knew how many times they had run in

to something and could easily compare one run against another. Likewise, while

participants could not always be certain that their robot ran over a path point,

users almost certainly knew if they missed one entirely. Therefore, it makes sense

that individuals might use those metrics to judge overall performance as much,

if not more so, than trial time. Of the nine users who drove faster with the

joystick yet preferred the tilt controls, eight of them committed less minor errors

with Controller B. Path points indicated less relationship to preference, as only

three of nine users improved their driving accuracy with tilt-based controls; five

hit fewer path points, and one user’s performance held constant. Finally, both

the NASA TLX and SUS results indicated a relationship to preference when

performance metrics alone could not explain a user’s choice. It appears as if

most users preferred the controller which yielded the lower workload score and

higher usability ratings (both, again, hidden from the user). Ten users reported

higher workload and lower SUS scores with Controller B, and of those, only three

still stated they preferred the tilt controls. Clearly no one variable is enough to

99



predict a user’s preference, but this provides some insight in to how users rate

the various performance metrics in their own assessments. Further relationships

between variables are examined using statistical correlation.

5.5 Results & Discussion: Correlation

Correlation is another important statistical tool that can help identify

relationships between dependent variables. It provides a measure of association

between two variables on a scale from -1 to +1. -1 implies a negative correlation,

meaning that as variable X increases, variable Y decreases. +1 implies a positive

correlation, meaning that as variable X increases, variable Y does as well; zero

indicates no correlation. Pearson’s correlation coefficient (ρ) is the most widely

used, where correlation reflects a linear relationship; however, it is not well suited

to this data given the number of ordinal variables present.

Alternatively, Spearman’s coefficient (ρ) can be applied, where the ρ value

between -1 and +1 indicates only a monotonic relationship, not a linear one. By

ranking data before evaluating the correlation function, Spearman’s coefficient is

better equipped to handle variables with repeated values or those with non-linear,

discontinuous relationships [83]. Table 5.3 shows the significant relationships

using Spearman’s coefficient. Those with strong correlations (−0.5 >ρ > 0.5)

and achieving significance are highlighted.

100



T
ab

le
5.

3:
S
p

ea
rm

an
’s

C
or

re
la

ti
on

C
o
effi

ci
en

t
(ρ

):
P

h
as

e
1

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1.
p

ti
m

e
—

—

2.
tt

im
e

0.
00

52
4

—
—

3.
m

a
je

rr
or

-0
.0

22
90

0
.5
0
5

—
—

4.
m

in
er

ro
r

-0
.1

40
01

0.
10

65
0.

15
83

—
—

5.
p

at
h

p
ts

-0
.1

11
39

0.
03

97
-0

.3
9
6

—
—

6.
tl

x
0.

06
65

3
0.

27
60

3
0.

13
83

0
.2

8
9
9

-0
.1

3
1
5

—
—

7.
su

s
-0

.0
58

31
-0

.3
27

-0
.1

69
6

-0
.2

1
6

-0
.2

3
1
7

-0
.6
2
2

—
—

8.
m

ov
e

-0
.4

5
0
2

0
.4

6
0
3

—
—

9.
ob

st
ac

le
s

-0
.4
1
7
4

-0
.4

0
3

0
.4

3
8

0
.5
4
1
1

—
—

10
.

sl
ow

-0
.4

0
4

0
.6
0
0
9

0
.5
4
4
7

0
.5
0
9
2

—
—

11
.

m
ed

-0
.3

00
6

-0
.2

96
0
.4

2
8
4

0
.5
5
6
8

0
.4

4
3

0
.5
8
0
1
1

—
—

12
.

h
i

0
.5
0
9
4

0
.3

5
4

0
.3

8
1
8

0
.7
3
5
2

—
—

13
.

d
ri

v
e

-0
.0

72
77

-0
.1

49
34

-0
.2

0
0
5

-0
.0

8
0
0
6
-0
.5
8
9

0
.7
1
4
7

0
.6
6
5

0
.5
0
6
7
7

0
.6
4
7
7

0
.5
8
7

0
.5
1
4
7

—
—

14
.

u
sa

b
il

it
y

-0
.0

97
91

-0
.1

53
54

-0
.3

2
8

-0
.1

2
3
7

-0
.5
6
9

0
.8
0
0
6

0
.6
7
8
6

0
.4

5
5
8

0
.7
5
6
3
2

0
.5
2
8
3

0
.3

4
0
7

0
.7
8
3

—
—

101



Usability and SUS are the most strongly associated variables, with ρ = 0.8006.

This confirms that user-rated usability matches closely with results of the ten

question System Usability Scale. These, in turn, are also closely related to both

drive and slow, indicating those measures’ importance to a user’s perspective of

ease of use. drive’s relationship to usability makes sense, as it is how users rate

their overall driving ability. slow, on the other hand, is less obvious; however,

it is much more strongly correlated (ρslow−sus = 0.6009) to both measures of

usability than answers to either of the other speed questions (ρmed−sus = 0.4284,

ρhi−sus = non-significant). This implies that users relied on their ability to

control the robot at the slowest speeds to, at least partially, inform their overall

impression regarding usability. Given users’ struggles to maintain slow speeds

with Controller A, it is not entirely surprising that Controller B achieved better

mean scores on all user-rated metrics. As further evidence of the importance of

the slow variable, consider that med and hi are closely related (ρ = 0.7352), but

neither is strongly tied to slow. This demonstrates that the slowest speeds reside

in a category all to themselves, set apart from the faster throttle settings which are

most likely to result in loss of control. slow was also most closely tied to results of

the NASA TLX workload index and the System Usability Scale, further implying

its importance to the results. SUS represents the formal measure of usability and,

as expected, is negatively correlated with the NASA TLX workload score. More

usable systems should rank lower in terms of workload, and that appears to be

the case here.

ttime and majerror are correlated, indicating that as major errors increased,

total trial time did as well. This relationship is supported by the amount of

time it takes the experimenter to reset the robot after a major error, naturally

increasing trial time. Variable means for ttime and majerror are lower for the

102



joystick controller than for the tilt controller, although nearly all other metrics

favor Controller B. This, when paired with data regarding minor errors, indicates

that users were faster, whether due to a lack of major errors or some other factor,

and that speed and accuracy (e.g. pathpts) are not mutually exclusive given

that drivers with the joystick controller hit more path points, on average, than

with the tilt controls. In fact, while not an overwhelmingly strong correlation,

minor error and path points show a slightly negative association, meaning that as

errors go down, path points go up, and vice versa. One might believe that better

robot operators are both more accurate and less prone to driving errors. Why, if

these values are related, does the tilt controller result in significantly fewer minor

errors and the joystick controller result in (on average) more path points hit?

The scatterplot shown in Figure 5.5, illustrates a lack of variance in the path

point term. In fact, while x̄A = 28.6 was slightly higher than x̄B = 28.28,

the scatterplot indicates that most all users achieved between 27-31 data points

in their trials. Additionally, the joystick controller’s ability to out-perform with

regards to path points, on average, does not imply likewise minimization of minor

errors. The relationship between path points and minor errors is more likely

reliant upon individual users than the level of the independent variable. Users

prioritized the balance of speed, accuracy, and precision differently, demonstrated

during trial execution. Some sacrificed speed for accuracy, while others placed

speed above all else, and committed the driving errors to prove it.

5.6 Analysis of Covariance (ANCOVA)

The ANOVA already presented assumes no significant effect of pre-treatment

or existing conditions within the participant population; however, accounting

103



Figure 5.5: Scatterplot of Minor Errors vs. Path Points

for such conditions can greatly influence final results. To do so, ANOVA is

augmented with covariates (the pre-treatments or participant characteristics),

commonly referred to as analysis of covariance (ANCOVA).

Participant demographics were treated as covariates, and tests were conducted

to filter their effect on results. Four covariates were examined: spatial reasoning

scores, gender, age, and technical proficiency with mobile devices; however,

none had a significant effect on the outcomes of the dependent variables.

Given previous research confirming the role of spatial ability in tele-operation

[22, 120, 121], it is somewhat surprising that those scores did not have a

meaningful impact here. That said, additional analysis of covariance is presented

in Chapter 6, where trials of greater complexity are examined.

104



5.7 Summary & Other Results

The results already presented clearly indicate that users preferred the tilt

controller for driving tasks. Users made significantly fewer minor driving errors

with Controller B, supporting their perception of improved control. Likewise,

users rated their driving ability superior with the tilt controller for all tasks.

These results led to rejection of the null hypothesis, and exceeded expectations

which anticipated that attitude aware controls were inferior to virtual joysticks.

Rather, Phase 1 implies that tilt controls are better, and certainly feasible, control

options. In fact, in answer to the research question motivating this experiment,

tilt controls are not negatively perceived by users when properly implemented

and certainly prove that smartphones can be implemented as small, lightweight

controller options without heavy reliance on the touchscreen interface.

A great deal of data was collected to inform the results presented in this

chapter, where they were summarized for ease of presentation. Full results,

including user surveys, comments, and experimenter observations, are available

in Appendix C.

105



Chapter 6

Experiment & Results – Phase 2

6.1 Task

Phase 2 experiments were conducted with Controllers C and D (see Figure 6.1),

described in detail in Chapter 4. Official timed trials commenced on each

controller immediately following training with that same controller. Training

in Phase 2 consisted of a course walkthrough, to re-acquaint the users to the

course, and video demonstrations of the two controllers presented. The driving

task in this phase remained identical to Phase 1: follow the path points, hitting

as many as possible, while avoiding collisions and completing the course in a

timely manner.

(a) Controller C:
Tilt + Joy v2

(b) Controller D:
Tilt v2

Figure 6.1: Phase 2: Controllers C and D

106



Visual identification tasks were added to test users’ abilities using two different

control modes (joystick and tilt) to manipulate the robot’s pan/tilt camera. In

order to limit the effect of individual scanning strategies, pre-determined scanning

boxes were located along the course, one in each room (see Figure 6.2). Users

were asked to drive their robot into the scanning boxes and confine searching

tasks to those locations; by surveying the entire room from those points, users

should have been able to identify the colored foam balls depicted in Figure 4.6a.

Figure 6.2: Scanning Boxes for Visual Identification Tasks

Once an object was located, users were asked to take a photograph of it

using the controller’s snapshot tool, then map it on the worksheet in Figure

6.3. This mapping task was graded on a nine-point scale, with three points

available for each object placed properly. Following trial completion, users

once again transitioned to post-iteration data collection, filling out the NASA

TLX and web-based questionnaires regarding controller features and usability.

Once both of these were complete, the next controller option (if applicable) was

prepared for the participant. He/she trained with the new controller in the same

manner previously described, executed a timed trial, and finished with the same

post-iteration questionnaire and TLX. Once both timed trials were complete, the

107



Figure 6.3: Completed User Worksheet from Phase 2

user answered a final post-experiment questionnaire, which primarily required

them to identify their preferred controller of the two presented. The Phase 2

post-experiment questionnaire also asked users to rate the importance of certain

user settings anticipated as an expansion to the controllers already presented.

These are discussed in more detail in Section 6.7.

6.2 Independent/Dependent Variables

The independent variable in Phase 2 was the controller type, C (tilt to drive;

joystick camera) or D (tilt to drive; tilt-based camera); once again a one-factor

experiment with two levels. The dependent variables used for statistical analysis

108



were a combination of performance results, formal measures of workload and

usability (NASA TLX and System Usability Scale), and informal measures of

user satisfaction collected via survey. ptime, ttime, majerror, minerror,

pathpts, tlx, sus, and usability were collected in the same manner specified

in Phase 1, and are only briefly re-defined below:

• ptime. Practice time was the duration of hands-on practice for each

subject, not to exceed 15 minutes.

• ttime. Trial time, in seconds, was the amount of time it took each user to

complete the course. It included all scanning, picture taking, and mapping

subtasks associated with visual identification.

• majerror. Major errors were those requiring intervention on the part of

the experimenter.

• minerror. Minor errors were small collisions of the robot against some

obstacle, generally requiring the user to engage reverse.

• pathpts. 32 path points existed along the course as red, duct taped arrows.

Total hit with some portion of the robot was recorded as a raw number

between 0 and 32, representing driving accuracy.

• localization. Localization is the result of user-mapped object locations

(like those in Figure 6.3). Each “X” could be worth up to three points, for

a total of nine per trial: zero for failing to map/identify the object, one for

mapping it on a wall/surface adjacent to the object’s actual location, two

for mapping it on the correct wall/surface but in the incorrect location, and

three points for mapping it within 10% of its actual location.

109



• tlx. The NASA TLX is a standardized measure of mental workload

administered via desktop application. Users completed it immediately

following each controller trial. Responses are totaled to a workload score

between 0 and 100; 100 being maximum mental demand.

• sus. The System Usability Scale (SUS) is a similarly standardized tool

built to be a generic, quick, and simple measure of usability for industrial

systems. Comprised of ten questions on a five-point Likert scale, overall

usability is resolved to a number between 0 and 100; 100 being most usable.

• pan. Post-iteration surveys were intended to help identify failings in the

training approach while also allowing the user to rate his/her abilities

without quantifiable knowledge of their trial performance. The primary

questions asked referenced the user’s ability to complete specific visual

identification tasks with each controller. For instance, users ranked their

ability to “pan the camera” on a five-point scale from extremely difficult

(1) to extremely easy (5). Pan is defined as side to side motion.

• tilt. The next relevant survey question asked users to rate their ability to

“tilt the camera.” Tilt is defined as up and down motion.

• looking. Next, users rated their ability to “identify which direction the

camera is looking with respect to the robot.”

• scanning. Similarly, users rated their ability to use the controller in

“scanning surroundings.”

• stills. The final question regarding camera manipulation tasks asked users

to rate the ease of “capturing still photographs” on the extremely difficult

to extremely easy scale, or one to five.

110



• usability. Likewise, users informally rated each controller’s overall

usability.

6.3 Hypothesis

As always in ANOVA, the null hypothesis is the condition in which population

group means are equal, implying no statistically significant difference between

the independent variables in terms of the dependent variables described. The

hypothesis motivating Phase 2’s experiment was:

(H.2)

Tilt-based controls are intuitive enough a control modality to be

used for a number of robotics applications with multiple degrees of

freedom, without significant degradation of performance.

Degrees of freedom here refers to unique robot channels which control dissimilar

robot activities, e.g. driving and camera manipulation. There is some indication

that using similar controls for dissimilar tasks can lead to mode confusion

[26, 69], hence the need to test tilt-based controls specifically under such

conditions. The statement “without significant degradation of performance”

indicates that equal performance between the two controller levels is expected,

while implying that the alternate hypothesis would NOT favor the tilt-based

condition. In most cases throughout this research, the virtual joystick control is

assumed to be the more familiar operation mode, and hence the control mode

most likely to result in higher user satisfaction and performance. In all instances

thus far, tilt-controls are deemed successful if they are at least as competent as

their joystick counterparts.

111



6.4 Results & Discussion: The F -Statistic

Analysis of variance was once again used as the statistical test to examine the

effect of the independent variable on the 14 dependent variables already defined.

In this phase, none of these relationships proved significant (see Table 6.1),

leading to a failure to reject the null hypothesis, thereby confirming that tilt-based

controls are suitable for multiple robot degrees of freedom, performing no worse

than the joystick alternative.

Table 6.1: The F -Statistic: Phase 2

ptime ttime majerror minerror pathpts localization tlx

Controller C
mean (x̄) 193.00 539.96 0.04 3.32 25.44 7.2 44.72

std dev (sd) 140.31 154.64 0.2 1.8 3.42 1.58 13.93

Controller D
mean (x̄) 152.32 556.56 0.12 3.12 26.08 6.64 46.07

std dev (sd) 94.08 124.75 0.33 1.99 3.7 1.96 14.73

p (< 0.05) 0.228 0.584 0.327 0.639 0.227 0.223 0.393

F 1.53 0.31 1 0.23 1.54 1.57 0.76

sus pan tilt looking scanning stills usability

Controller C
mean (x̄) 77.40 4.00 4.08 3.72 4.04 4.48 4.13

std dev (sd) 12.47 1.08 0.99 0.79 0.84 0.77 0.54

Controller D
mean (x̄) 75.10 4.12 4.21 4.00 3.96 4.44 4.04

std dev (sd) 13.12 0.78 0.83 0.82 0.93 0.82 0.86

p (< 0.05) 0.389 0.600 0.524 0.183 0.714 0.814 0.479

F 0.77 0.28 0.42 1.88 0.14 0.06 0.52

6.4.1 Performance

Practice time notably decreased compared to Phase 1, mostly due to learning

effects. Users were already acquainted with the tilt-based driving controls and,

aside from a brief reintroduction to the course, spent most of their hands-on

practice familiarizing themselves with the task conditions and camera controls.

Trial times were very similar for the two controllers, failing to achieve significance

(x̄C = 540s, x̄D = 557s). Likewise, the pathpts DV failed to reject the null

hypothesis (x̄C = 25.44, x̄D = 26.08); it did, however, decrease substantially from

112



Phase 1, where 28 points were found, on average, across 50 trials. Users struggled

with the increased task complexity of Phase 2, and the shared “priorities” of

speed, driving accuracy, avoidance of collisions, and visual identification tasks,

led to degraded performance in the path points variable. Amazingly, this was

the only performance area that suffered between the two phases, as both error

variables (majerror and minerror) exhibited improved driving precision.

Within Phase 2, performance conditions were not expected to vary greatly,

as the driving task remained the more time intensive portion of the trial, and

stayed constant between Controller C and D. Many users were able to identify

the objects from their robot’s position in each scanning box in approximately one

minute, devoting about three minutes per trial to visual identification tasks. In

cases where users struggled to find an object, they were asked to continue along

the course after three minutes had elapsed in one location. For some individuals,

a non-trivial amount of time was then spent identifying the location of the found

object for mapping; this differed greatly from person to person–user narratives

describing each user’s own scanning strategy are presented in Appendix C.

localization is used to describe the dependent variable measuring the

accuracy with which users identified where items within the robot’s view were

positioned in space. Multiple user comments implied that localization was

equally difficult with both controllers, with a mixture of users indicating a clear

preference for one over the other. In the case of camera pan/tilt, a visually

intense task, a visual representation of the camera’s position might seemingly

satisfy users more than the physical representation provided by the tilt-based

controls, but user-rated looking, which answered the question “identify which

direction the camera is looking with respect to the robot,” demonstrates otherwise

(x̄C = 3.72, x̄D = 4.00). Interestingly, the value of localization (performance

113



based), slightly favored the joystick control, and is not strongly associated with

the the looking variable. Similar to what was seen in Phase 1, users’ own

assessments of their abilities and preferences do not always match performance

results!

6.4.2 User Preference

Survey results indicate that 14 users preferred the joystick camera controls, while

the remaining 11 preferred the tilt-based camera controls. Results from Phase

1 indicated that trial time was not the best indicator of user preference, and

results here support that conclusion. 13 users completed their trial faster with

Controller C, and 12 with Controller D, with an average trial time improvement

of 21%. However, 13 users also preferred the controller on which they did

not perform most quickly. Six of those participants performed best with

Controller D, yet preferred Controller C, while the other seven participants did

the opposite. Neither pathpts nor the error variables showed a relationship

to user preference; likewise, TLX and System Usability Scores, partly due to a

lower variance in those values in Phase 2 trials. Instead, preference seems more

closely related to the order in which controllers were presented to each user.

While theoretically this ordering effect was accounted for by counterbalancing

presentation of the independent variables, in the case of user preference it cannot

be wholly eliminated. 20 users preferred the controller they used last, indicating

that learning effects, perhaps magnified due to the control similarities, did play

a role in user preference.

pan, tilt, and scanning results slightly favored the tilt-based camera

controls, with a number of users describing them as “smoother.” Joystick

114



controls were described as “intuitive” and “less physical,” contributing to lower

mental workload scores, although several individuals complained that the camera

movement should be slowed down considerably. None of these preferences were

dramatic enough to prove statistically significant, but should be taken in context

with the whole of user comments provided in Appendix C.

6.5 Results & Discussion: Correlation

While the F -statistic failed to reject the null hypothesis, interesting statistical

associations did exist between dependent variables when examined via

Spearman’s correlation coefficient, ρ, in Table 6.2. NASA TLX scores and

results of the System Usability Scale were again negatively correlated, reinforcing

expectations first confirmed in Phase 1–when usability improves, mental workload

decreases (see Figure 6.4a). Usability and SUS scores were also related, indicating

that user-rated usability tends to reflect the trend in formal usability scores.

Results regarding specific camera control characteristics indicate that pan

and tilt are closely related (ρ = 0.82); meaning of the two controllers in this

phase, whichever is good at one of these tasks will likely be good at the other.

scanning was the “summary” variable for camera control, encapsulating all of

the manipulation subtasks, asking users to rate their ability in “scanning [their]

surroundings.” It was positively correlated with both measures of usability

(ρsus-scanning = 0.5371; ρusability-scanning = 0.6196), and presents itself as the

most indicative measure of usability with regards to camera control features.

The graphical relationship between SUS and scanning is shown in Figure 6.4b.

115



T
ab

le
6.

2:
S
p

ea
rm

an
’s

C
or

re
la

ti
on

C
o
effi

ci
en

t
(ρ

):
P

h
as

e
2

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1.
p

ti
m

e
—

—
–

2.
tt

im
e

0.
22

06
—

—
–

3.
m

a
je

rr
or

-0
.2

01
8

0.
12

77
—

—
–

4.
m

in
er

ro
r

-0
.0

47
9

0.
18

07
0.

34
33

—
—

–

5.
p

at
h

p
ts

-0
.0

47
-0

.2
68

1
-0

.1
59

2
-0

.1
6
9
6

—
—

–

6.
lo

ca
li

za
ti

on
-0

.1
45

9
-0

.3
27

-0
.2

05
4

-0
.0

0
0
9

0
.1

7
9

—
—

–

7.
tl

x
0.

08
67

0.
45

67
0.

02
55

-0
.0

4
5
5

-0
.2

6
0
7

-0
.1

9
4
7

—
—

–

8.
su

s
-0

.2
29

9
-0

.3
10

7
0.

06
66

0
.1

7
8
7

0
.0

7
5
9

0
.3

0
3
3
6

-0
.5
9
4

—
—

–

9.
p

an
-0

.0
85

5
-0

.0
85

5
0.

24
15

0
.0

9
7
2

0
.0

9
1

0
.2

2
7
9

-0
.4

6
0
9

0
.3

9
7
9

—
—

–

10
.

ti
lt

-0
.1

17
8

-0
.2

91
3

0.
15

23
0
.1

0
8
6

0
.0

2
0
5

0
.1

0
7
3

-0
.4

7
2
2

0
.3

2
9
6

0
.8
2
4
5

—
—

–

11
.

lo
ok

in
g

-0
.1

92
4

-0
.1

92
4

-0
.2

17
9

0
.0

2
5
3

0
.0

4
9
9

0
.0

6
5
4

-0
.2

6
8
4

0
.1

2
3
4

0
.3

7
1
8

0
.4

1
1
8

—
—

–

12
.

sc
an

n
in

g
-0

.0
94

7
-0

.1
38

5
0.

27
83

0
.2

3
7
1

-0
.0

3
3
6

0
.1

4
0
2

-0
.4

3
6
1

0
.5
3
7
1

0
.7
5
7
4

0
.6
7
4
8

0
.5
6
1
1

—
—

–

13
.

st
il
ls

0.
27

64
-0

.0
84

2
0.

10
28

-0
.0

1
4
9

0
.0

7
7
1

0
.0

7
3
5

-0
.1

4
0
4

0
.2

5
8
8

0
.0

1
3
8

0
.0

8
3
7

0
.2

3
6
3

0
.2

5
3
1

—
—

–

14
.

u
sa

b
il

it
y

-0
.2

81
5

-0
.1

94
5

0.
18

98
0
.2

9
6
2

0
.0

2
2
8

0
.0

9
1
8

-0
.4

5
9
2

0
.6
6
5
8

0
.4

9
8
6

0
.5
1
9
7

0
.3

1
8
2

0
.6
1
9
6

0
.3

1
9
7

—
—

–

116



The results in Figure 6.4 show graphs where one dependent variable is plotted

against another. The solid blue line shows the strength of the correlation

(linear regression) in the sample. The shaded blue area indicates the 95%

confidence limits, or the range within which the population correlation coefficient

is likely to reside. The dashed blue lines show the 95% prediction limits, within

which the next data point sampled is expected to fall. Neither of these is

crucial to understanding these results; however, they provide an indication of

the population’s expected correlation (confidence) and its distribution/scatter

(prediction).

Figure 6.4c depicts another interesting relationship, between ttime and

localization. While not an overtly strong correlation (ρ = −0.327), it is worth

another look because of the negative association and what it implies about user

abilities. One would expect that the most spatially aware users could localize

objects in space more easily, resulting in faster overall trial times. Users for whom

localization was more difficult would likely produce lower localization scores while

taking longer to do so. That said, this correlation implies more about the role of

spatial ability in user performance than it provides insight regarding any specific

controller option.

117



(a) sus vs. tlx

(b) scanning vs. sus

(c) ttime vs. localization

Figure 6.4: Spearman’s Correlation Plots: Phase 2
Solid blue lines = regression/correlation; Dashed blue lines = prediction limits;

Blue shaded regions = confidence limits (95%)

118



6.6 Analysis of Covariance (ANCOVA)

Analysis of covariance was therefore conducted, with a specific interest in

the aforementioned relationship between a user’s spatial ability and his/her

performance on the object-mapping task, localization. Figure 6.5 and Table 6.3

show, surprisingly, that no statistically significant relationship is present. This

does not entirely negate the possibility of a relationship, since previous studies

have proven one exists, but instead indicates that the chosen measure of spatial

ability in this study may have been poorly suited to the task type.

Table 6.3: Analysis of Covariance: Controller & Users’ Spatial Abilities

Source DF Type III SS Mean Square F Value Pr > F

controller 1 3.92 3.92 1.27 0.2657

cov spatial 1 6.56 6.55 2.12 0.1519

Figure 6.5: Analysis of Covariance:
spatial ability vs. localization

119



6.7 Summary & Implications for Phase 3

Results from Phase 2 failed to reject the null hypothesis, indicating that tilt-based

and joystick controls performed equally well when used with additional robot

degrees of freedom (pan/tilt camera). User satisfaction demonstrated very little

difference between the two, as both proved more than adequate to complete the

visual identification tasks required in this experiment phase. On the whole, users

improved at all performance metrics between Phases 1 and 2, with the exception

of driving accuracy (measured by pathpts). This was primarily due to the

increase in task complexity and the difficulty users experienced trying to prioritize

multiple subtasks. While more users preferred the joystick-based camera controls,

none of the dependent variables indicated a statistically significant relationship

to that level of the independent variable.

User feedback regarding ability to scan with the camera appeared as the

strongest indicator of controller usability, as usability scores in total increased

from Phase 1. SUS scores in Phase 1 averaged 66.8 over 50 trials, while in

Phase 2 SUS scores averaged 76.2. Time spent with the controls likely affected

this improvement, as learning effects were present. They were believed to have

contributed to user preferences, where 20 of 25 users favored the second of the

two controllers presented to them in Phase 2.

6.7.1 Mode Confusion

Aside from determining user performance and satisfaction with each of the two

controllers, Phase 2 was additionally designed to test the suitability of tilt-based

controls for two dissimilar robot actions (driving and camera manipulation). In

complex control interfaces, it is not uncommon for users to encounter confusion

120



regarding which controls are currently active and/or which buttons and gestures

result in the outcome they are expecting; this is called mode confusion. This

research raises a question asking whether using the same control mode to operate

distinctly different robot actions eases this confusion or exacerbates it. Controller

C presented a situation where two control modes (joystick and tilt) separated

and defined the two robot actions they controlled (camera and driving), while

Controller D used a single control mode, accessed through two separate activation

buttons (deadman switches) to control both robot camera and driving via tilt

inputs.

To capture these effects, users were each asked, in post-iteration surveys,

whether they encountered any mode confusion in their trials. Users could respond

never, rarely, sometimes, very often, or always. These instances of confusion

could include activating the wrong part of the robot, e.g. moving the camera

when the user intended to drive, or confusion regarding input mode, e.g. trying

to drag the deadman switch like a joystick! Those that answered anything but

never were then asked to rate how often the confusion occurred, as a percent of

all control activations. Figure 6.6 graphically illustrates these results.

Eight individuals reported some mode confusion with Controller C, while

six individuals reported confusion with Controller D. Four of these individuals

reported confusion with both controller types. Severity of confusion does not

appear to be significant, and frequency of confusion remained low. In all,

mode confusion appears much more closely related to the user than it does the

controller. User-reported technical proficiency indicated no deficiency on the part

of the four participants who experienced persistent mode confusion; however,

their gaming experience ranks less adept than the participant population, on

average. Users rated their skills with video game systems (like the XBox) and

121



smartphone games on a scale from no experience (1) to excellent (5). The sample

population averaged 3.38 on video game skills (slightly better than average), while

the four participants examined here averaged 3, or average. On smartphone game

skills, the disconnect was even greater, with the sample population reporting a

3.28 average and the participant subset averaging just 2.5 (between poor and

average). Gaming skills have been previously linked to tele-operation abilities by

Chen [22]; however, their relation to mode confusion, specifically, has not been

documented.

(a) Frequency with which Mode Confusion Occurred

(b) Mode Confusion as a Percent of All Control Activations

Figure 6.6: Mode Confusion Charts

122



6.7.2 Customization

Phase 2 also helped setup investigation of research question (R.2), asking “Can

controller customization options improve user satisfaction and performance?”

Already it is apparent that users find the tilt-based controls satisfactory, but can

the user experience be further improved (and as a result, performance) by allowing

users to choose their own settings? Pettitt indicated that controller sensitivity

was the most common complaint regarding virtual joystick usability [96]; user

comments exhibited individuals with varying expectations and suggested that a

user-defined sensitivity variable might be needed.

In order to confirm Pettitt’s findings, and in addition identify other settings

which users were apt to change, the post-experiment survey for Phase 2 collected

information specific to customization. Table 6.4 rank orders the proposed

customization options by average user score, from not at all important (1) to

very important (5).

Table 6.4: User-Rated Importance of Customizable Controller Options

Rank Feature

4.52 Sensitivity

4.28 Choice of control mode
3.24 Camera’s neutral position
3.24 Camera’s behavior upon driving

3 Feedback regarding camera limits
2.96 Driving switch location on screen
2.84 Camera switch location on screen
2.8 Driving switch type (hard or soft button)

2.64 Camera switch type (hard or soft button)

As expected, sensitivity rated highly, with nearly all users rating it as very

important. Sensitivity can be thought of as a combination of throttle sensitivity

123



and controller responsiveness, both of which will be addressed in more detail in

Chapter 7.

Choice of control mode refers to a user’s ability to pick between joystick or

tilt-based controls for both types of robot operation (driving or camera). Users

generally exhibited strong controller preferences, illustrated in comments to the

experimenter and frustration levels throughout the trials. While there was no

general consensus to this polarity, it does explain why most users desired a choice

over control mode. The interesting question is, which will they choose?!

As discussed in Chapter 3, the camera was designed with a specific driving

neutral point in mind, which matched best practices supported by literature.

On this robot, the camera was situated at the robot’s midline, approximately

4.5” above the robot chassis, and it’s field of view included the robot’s front

“bumper.” Not all users liked this setup, and several requested the camera look

further ahead of the robot; one of the questions asked users if they desired control

over this camera trim position, or if they were satisfied with the default provided.

Most users were fairly neutral in this regard (score = 3).

The last few custom features polled were deemed less than important,

including the ability to move deadman switch buttons on the control screen.

Assuming that in landscape mode most users would manipulate the touchscreen

controls with their thumbs, the deadman switch defaults were within easy reach

at the bottom corners of the screen. Only a few individuals stated a desire

to alter that location, and even then only slightly, e.g. nudging the button

further from the phone’s bezel to account for larger fingers. Finally, the question

regarding switch type was included to test users’ desire (or lack thereof) for a hard

button deadman switch, available via device volume inputs. Given the laboratory

conditions of these experiments, users regarded this option as less than important ;

124



however, this would likely change if/when tests are moved to an outdoor location

and/or the controls are handled by gloved users, such as soldiers. A hard button

option was presented to appease that audience, and reception of said choice was

unsurprisingly neutral in an audience where tasks and conditions were tightly

controlled, unlike “field” operations.

125



Chapter 7

Experiment & Results – Phase 3

7.1 Task

Phase 3 tasks and procedures were identical to Phase 2, introducing only one

new level of the independent variable–Controller E (see Figure 7.1). Users were

directed to drive the robot, stopping in the scanning boxes to conduct visual

identification tasks, and mapping the objects found. They were again instructed

to balance speed and accuracy while avoiding collisions. The controller used for

training was Controller D, identified as the default. The controller opened to this

interface for each user, such that all participants started with the same “baseline”

configurations.

Users were individually briefed on each aspect of the default configuration

and shown the new customizable settings interface, accessed by double tapping

the center of the screen and sliding to unlock. The primary task in Phase 3

was establishing a personalized controller using the settings available to each

user. This was intended to measure the suitability of the default controller, while

providing insight into the control features most closely tied to individual usability

(satisfaction and performance). After approximately 10 minutes of training,

users were granted 30 minutes to configure their controller while practicing with

126



the robot anywhere in the lab space. Participants were encouraged to try all

combinations of control modes before making a final decision, and were informed

that settings in place at the beginning of the timed trial could not be further

modified. Each user’s final control configuration became their Controller E.

(a) Controller D:
Tilt v2

(b) Controller E:
Final Configuration Example

Figure 7.1: Phase 3: Controller E

Within the control interface, an option existed to save user configurations to

file for later analysis. These files were used to catalog the controller settings

by user, available in Appendix C and summarized in Section 7.6. Like all

previous trials, users conducted post-experiment data collection via NASA TLX

and web-based questionnaire, this time answering a single survey, as only one

trial was executed by each participant in Phase 3.

7.2 Independent/Dependent Variables

The independent variable in Phase 3 was the controller type, D (tilt to drive;

tilt-based camera) and E (customized). Controller E’s dependent variables were

compared to Phase 2’s Controller D results, serving as the default against which

each customized option is measured. The dependent variables used for statistical

analysis were a combination of performance results, formal measures of workload

127



and usability (NASA TLX and System Usability Scale), and informal measures

of user satisfaction collected via survey. All of the dependent variables examined

in Phase 3 have been thoroughly introduced in Chapters 5 and 6.

ptime is not used here, as it is not directly comparable between Phases 2

and 3 due to the difference in training approach and the time limits imposed.

ttime, majerror, minerror, pathpts, localization, tlx and sus (listed along

the top row of Table 7.1) are drawn from performance and survey measures

specific to Controllers D and E, while move, obstacles, slow, med, hi and

drive are user-rated abilities for the tilt-based driving controls from Phase 1.

Results of surveys from Controller B’s trials were used for comparison, as Phase

2 (Controller D) questionnaires failed to have users rate control features specific

to driving. The bottom section of Table 7.1 shows the pan, tilt, looking,

scanning and usability rankings for both Controllers D and E, collected in

Phases 2 and 3, respectively.

7.3 Hypothesis

The null hypothesis for Phase 3 was the only one in this multi-phase experiment

that was written to be rejected. The alternate hypothesis is presented below,

which adequately summarizes the expected effects of a customizable interface on

user performance and satisfaction.

(H.3)

Permitting users to manipulate certain controller settings will lead

to more satisfied users who perform better with less

errors.

Note that this hypothesis expects improvement in both performance and

satisfaction, implying that all (or at least the majority of) dependent variables

128



should favor Controller E. This was based on two assumptions: 1) that users

would be reluctant to accept tilt-based controls and would require some measure

of personalization to become invested in the outcome, and 2) that users

understood, to some degree, their own weaknesses at the tasks assigned and

would make intelligent choices intended to improve performance to the greatest

extent possible. Assumption #1 inspired the custom controller used in Phase

3, although results from previous phases imply that users were not as reluctant

to accept tilt controls as originally expected. Regardless, users were heavily

encouraged to experiment with the custom controller options, “forcing” users to

consider modifications that they might not otherwise have been motivated to

explore. Doing so gave them not only a better understanding of the controls,

but also a greater sense of ownership over their controller, a posited contributor

to performance/task completion. Assumption #2 is yet to be fully tested;

results from Phases 1 and 2 imply that users are only partly aware of their own

performances, given that several participants preferred controllers that did not

yield the best results. That said, preference and performance were not always

expected to be monotonically related, and the results of this phase should

provide further evidence to clarify the validity of that expectation. Will users

prefer customized controls over a default, regardless of which yielded the better

quantifiable outcome, or will the two be closely related?

7.4 Results & Discussion: The F -Statistic

Analysis of variance was once again used as the statistical test to examine the

effect of the independent variable on the 18 dependent variables used in this phase.

ttime was the only performance metric that proved significant, but five of six

129



“ability” ratings (obstacles, slow, med, hi and drive) achieved significance as

well.

Table 7.1: The F -Statistic: Phase 3

ttime majerror minerror pathpts localization tlx sus

Controller D
mean (x̄) 556.56 0.12 3.12 26.08 6.64 46.07 75.1

std dev (sd) 124.74 0.33 1.99 3.7 1.95 14.73 13.12

Controller E
mean (x̄) 469.40 0.08 3.6 26.96 6.28 41.76 77.2

std dev (sd) 131.55 0.28 3.04 3.78 2.28 15.52 11.78

p(< 0.05) 0.0089 0.5743 0.3680 0.1910 0.4165 0.1534 0.3050

F 8.11 0.32 0.84 1.81 0.68 2.17 1.10

move obstacles slow med hi drive

Controller B
mean (x̄) 3.52 3.08 3.68 2.80 1.88 3.20

std dev (sd) 0.96 0.95 1.14 1.08 0.83 1.04

Controller E
mean (x̄) 3.52 3.60 4.16 3.46 2.60 3.68

std dev (sd) 1.05 0.82 0.62 1.08 1.15 0.75

p(< 0.05) 1.0000 0.0344 0.0429 0.0102 0.0042 0.0308

F 0.00 5.03 4.57 7.83 10.02 5.27

pan tilt looking scanning usability

Controller D
mean (x̄) 4.12 4.21 4.00 3.96 4.04

std dev(sd) 0.78 0.83 0.82 0.93 0.86

Controller E
mean (x̄) 4.00 4.20 4.24 4.20 4.04

std dev (sd) 1.25 0.91 0.83 1.00 0.61

p(< 0.05) 0.6406 1.0000 0.2071 0.2471 1.0000

F 0.22 0.00 1.68 1.41 0.00

7.4.1 Performance

Controller type did not prove to have a significant effect on any performance

metric outside of trial time. Users improved, on average, 16% between Phases

2 and 3, with an average trial time of 469.4 seconds. Variance in majerror,

minerror and pathpts was too small to result in significance, but none

illustrated that Controller E had any detrimental effects on overall performance.

In fact, user-rated driving abilities improved significantly from Phase 1, indicating

that users felt more capable with Controller E. Learning effects cannot be entirely

discounted, as the experiment relied on their existence to incrementally increase

the task complexity; however, such large improvements imply at least some

contribution on behalf of the controllers assessed. The statistical significance

130



of the improvement in med, hi, and drive are especially notable given what

was learned in previous trials reference users’ struggle to maintain control at

the highest throttle speeds. This newly discovered sense of control is almost

entirely due to the user’s ability to manipulate sensitivity settings, bringing actual

throttle behavior in line with individual expectations. This will be explored in

more detail in Section 7.6. The results already presented are enough to reject

the null hypothesis, although whether or not (H.3) is upheld is best left for later

discussion.

7.5 Results & Discussion: Correlation

Spearman’s correlation coefficient (ρ) was used to ascertain the relationships

between the 18 variables in Phase 3. Table 7.2 depicts these coefficients.

Given the large number of relationships to examine, usability metrics (i.e.

rated abilities) were not compared to one another in the table, as just like in

previous phases, they were all closely related. Instead, the table focuses on the

relationships between usability and performance.

131



T
ab

le
7.

2:
S
p

ea
rm

an
’s

C
or

re
la

ti
on

C
o
effi

ci
en

t
(ρ

):
P

h
as

e
3

1
2

3
4

5
6

7
8

1.
tt

im
e

—
—

-

2.
m

a
je

rr
or

0.
20

09
—

—
-

3.
m

in
er

ro
r

0.
17

62
0.

14
09

—
—

-

4.
p
at

h
p
ts

-0
.2

35
1

-0
.1

43
95

-0
.2

88
94

—
—

-

5.
lo

ca
li
za

ti
on

-0
.2

28
4

-0
.2

76
83

-0
.1

44
4

0.
23

42
—

—
-

6.
tl

x
0.

51
93

4
-0

.0
94

7
0.

06
87

-0
.3

83
64

-0
.1

64
—

—
-

7.
su

s
-0

.1
63

5
-0

.0
60

2
0.

22
45

-0
.0

10
2

0.
34

68
8

-0
.3

88
20

—
—

-
8.

u
sa

b
il
it

y
-0

.0
51

8
0.

27
86

0.
12

48
0.

21
56

0.
19

26
-0

.4
90

6
0.

54
99

—
—

-

1
2

3
4

5
6

7
8

9.
m

ov
e

-0
.2

32
3

0.
06

33
-0

.2
29

3
0.

42
55

4
0.

30
02

5
-0

.3
87

56
0.

22
3

0.
32

06

10
.

ob
st

ac
le

s
-0

.2
14

4
-0

.0
07

5
-0

.1
48

4
0.

15
42

0.
13

26
-0

.1
83

5
0.

11
46

0.
14

94

11
.

sl
ow

0.
02

73
0.

07
19

0.
01

17
-0

.0
94

5
0.

29
63

7
-0

.0
28

8
0.

28
07

4
0.

32
58

12
.

m
ed

-0
.1

85
92

0.
01

5
-0

.2
10

6
0.

26
84

0.
22

01
-0

.1
58

9
-0

.0
35

6
0.

03
4

13
.

h
i

-0
.2

54
0

0.
11

32
-0

.2
13

5
0.

36
80

8
0.

25
65

-0
.2

77
0.

03
99

0.
14

21

14
.

d
ri

ve
-0

.3
17

44
0.

10
33

-0
.1

01
5

0.
29

24
5

0.
22

12
-0

.3
54

86
0.

32
32

9
0.

42
28

15
.

p
an

-0
.0

93
9

0.
37

19
0.

00
62

3
0.

08
71

0.
11

79
-0

.3
10

76
0.

23
24

0.
31

85

16
.

ti
lt

-0
.1

85
22

0.
31

96
9

0.
13

73
0.

16
52

0.
12

44
-0

.4
55

68
0.

19
8

0.
41

83

17
.

lo
ok

in
g

-0
.3

19
7

0.
31

09
5

0.
09

25
0.

14
96

0.
03

67
-0

.2
80

02
0.

18
24

0.
43

27
18

.
sc

an
n
in

g
-0

.1
64

0
0.

40
26

8
0.

11
27

-0
.0

75
9

0.
01

75
-0

.2
60

1
0.

20
94

0.
26

51

132



Fewer significant relationships existed in Phase 3 than in earlier phases;

however, the notable associations present solidify those previously discussed.

System Usability Scores and NASA TLX ratings were negatively correlated,

indicating yet again that as usability improves, mental workload decreases. NASA

TLX results were also correlated with trial time, indicating a strong positive

relationship (ρ = 0.51934) between that performance metric and perceived mental

demand (see Figure 7.2). Results in Phase 2 indicated a similar relationship.

This demonstrates the expected effect where users who struggle with the task

(either driving or visual identification), resulting in higher total trial times,

are also likely to feel more mentally taxed and frustrated. Overall workload

scores decreased from approximately 54 to 45 to 43 over the course of the three

experiment phases, but differences within phases still indicated an effect on behalf

of the independent variable. A slightly weaker association exists between tlx and

pathpts (ρ = −0.38364) but supports the observation already made indicating

performance’s effect on workload; in this case, as the path point variable decreases

(less driving accuracy), workload measures increase.

The relationship between pathpts and move (ρ = 0.42554) provides evidence

that the control feature most affecting a user’s driving accuracy is, unsurprisingly,

their ability to “move [the robot] in the correct direction.” This relationship did

not exist in Phase 1, likely due to the lack of variance overall in the path point

measure. Users in Phase 1 were focused on a driving only task, with many

prioritizing accuracy in their trials. When visual identification tasks were added,

users had to re-prioritize their efforts due to task complexity. This increased

variance in the pathpts term, leading to stronger statistical associations.

All of the variables describing user-rated driving abilities were closely related,

especially move and drive (ρ = 0.73072). Previous phases noted the same

133



Figure 7.2: Spearman’s Correlation Plot:
ttime vs. tlx

correlations. Abilities regarding camera manipulation were likewise closely

related, although none were individually related to any variables representing

performance or usability. pan and tilt were associated at ρ = 0.81399, and

pan and scanning at ρ = 0.73178. Unlike Phase 2, where scanning informed

usability, Phase 3 results showed no such effect. This is likely due to the change

of trial focus; in Phase 2, users were closely analyzing the camera controls as the

“new” control feature, whereas in Phase 3 users re-focused on driving controls

(which many spent the bulk of their time customizing). The only variables

even weakly associated with usability (sus) were drive (ρ = 0.32329) and slow

(ρ = 0.28074), like in Phase 1.

In all, the independent variables in Phase 3 appear to have a less statistically

significant effect over performance and a clear effect over user satisfaction,

especially with regards to specific driving characteristics. Performance leveled

134



off, with users performing at approximately the same standard in both Phase

2 and 3 trials; in contrast, satisfaction increased measurably with the addition

of the customizable interface. This has implications that go beyond optimizing

controls for performance, begging the question of how much one should design

instead for satisfaction.

7.6 Customization

A customizable control interface was presented for user consideration with

the intent of identifying the existence/strength of three main effects: 1) how

satisfaction related to performance, 2) which configurations were chosen most

often and how initial preferences informed those designs, and 3) the suitability

of controller defaults. These will each be addressed in turn.

7.6.1 Effect of Satisfaction on Performance

Several publications cite user satisfaction as a key contributor in performance

[45, 44], yet other studies have found no evidence to support that claim [65].

Such a relationship is closely tied to the experiment protocols and metrics

used, so it comes as no surprise that there remains some question about just

how strongly (if at all), and in what systems, satisfaction and performance are

correlated. The hypothesis (H.3) posited a positive association in this study, with

both satisfaction and performance expected to improve with the introduction of

user-customizable control features.

While results thus far show weak relationships between some measures of

performance and individual measures of usability/satisfaction, a new approach

was necessary to achieve a cumulative picture of performance vs. usability.

135



Nielsen [85] proposed a method for combining usability and performance

metrics and recoding raw numbers to a uniform scale permitting comparison.

Three variables were selected to represent performance (ttime, minerror and

pathpts), and three to represent satisfaction (drive, scanning and sus). These

were chosen based on relationships exhibited in Phases 1 and 2, and offered the

best representative summary of satisfaction and performance given the dependent

variables. Data for Controllers D and E were examined, with each value of the

dependent variable being restated in terms of standard deviations from the mean.

This was done by subtracting the individual value from the controller’s mean and

then dividing by the standard deviation for each factor. Negative values imply

poor performance or lower satisfaction and signs were adjusted to ensure that

all metrics were consistently scaled, accounting for several measures where lower

numbers were desirable. The resulting values (in terms of standard deviations)

were then summed to a performance factor and a satisfaction factor, plotted

against one another in Figure 7.3.

When reading the graph, points to the right of the y-axis represent users

who performed better than average with the given controller; points to the left

represent user-controller pairings that yielded worse than average performance.

Similarly, dots above the x-axis represent better than average user satisfaction

with the given controller, while dots below that axis indicate lower satisfaction

levels. Controllers D and E are represented by blue and red series, respectively,

allowing analysis of both the overall relationships between performance and user

satisfaction, as well as the controller-dependent relationships.

The r2 goodness of fit measure (from 0-1) for both Controllers D and E are

near zero, implying a lack of association between performance and satisfaction

in this data. What slight relationship does exist (illustrated via trend lines

136



Figure 7.3: User Performance vs. User Satisfaction

in Figure 7.3) is not even consistent between the two controller conditions.

Controller D exhibits a slightly negative association, while Controller E shows

a slightly positive relationship. Statistical results presented in Section 7.4.1 led

to rejection of the null hypothesis, but examination of user performance versus

satisfaction does not provide the evidence necessary to accept the alternate

hypothesis, as those factors appear to be independent of one another. While

this does not mean that performance and satisfaction cannot improve together,

it also does not assure it. Phase 3 illustrates conditions under which individual

measures of performance and satisfaction have improved but, on their own, are

not enough to conclusively accept the hypothesis, (H.3).

7.6.2 Controller E Configurations vs. Preferences

As already discussed, Controller E was not a single controller configuration,

137



but rather individual variations of the default, Controller D. On average, users

changed 3.5 settings (of 10 available), and only one individual made no changes at

all. That individual struggled with the tasks throughout the phases, and wisely

chose to use the 30 minutes of hands-on practice to continue refining his/her

tele-operation skills rather than convoluting performance by making changes to a

controller with which he/she was not yet competent. This example indicates that

personalization is best implemented by more confident and experienced users, as

presenting an inexperienced user with too many choices may be overwhelming.

While the controller was designed to be simple and intuitive in an effort to

reduce training time and improve ease of use, experiences in Phase 3 indicate

that personalized settings for complex controls are best executed over time and

under the guidance of an experienced operator or instructor. Chapter 8 will

present several recommendations for controller improvements which could make

the system less training-intensive, but customizing controls will likely need to be

done in tandem with some type of guided assistance (whether it be automated,

e.g. adaptive, or trainer-led).

Users were asked to identify in their post-experiment survey the two most

important customizable features used to build their controller. Complete

responses can be found in Appendix C; however, the majority indicated that

sensitivity as well as control mode were the most important to their design efforts.

Depending on which control modes were active, sensitivity was represented by

acceleration scaling and either joystick size or responsiveness values. Table 7.3

shows the average user-selected value for each setting, as well as how frequently

each was changed. Since not all settings applied to all control modes, # times

changed denotes the number of controllers (of 25) where that specific feature did

differ from the default, out of the number of controllers eligible to have done so.

138



Table 7.3: Controller E Configurations and Frequency of Customization

% Tilt % Joystick Value # times changed

Camera mode 80 20 5 of 25
Driving mode 60 40 10 of 25
Joystick scale 1.178 12 of 14

Accel scale 0.293 21 of 25
Responsiveness straight 0.382 18 of 23

Responsiveness turn 0.38 19 of 23

# of settings changed 3.52

Driving Mode

60% of users opted to use tilt controls for the driving mode on Controller E. This

is in line with the 64% of users who preferred tilt-based driving controls in Phase

1; however, it does not indicate that those percentages are comprised of the same

users. In fact, four of the nine users who originally preferred joystick driving

controls ended up using tilt controls in Phase 3. This was likely due to extensive

practice and exposure to the tilt-based driving controls (in Controller B, C, and

D), as well as their ability to now manipulate sensitivity settings. All four users

decreased acceleration scaling and manipulated responsiveness values, seemingly

improving their control experience to a point where it was then preferred over

the previously favored joystick.

The remaining 40% of users drove using the virtual joystick, only half of

whom had declared that their preference in Phase 1. The remaining five users

presumably found the joystick easier to use in Phase 3 after manipulating the

acceleration scaling and joystick size, with most increasing the thumbstick by

up to 50%. While some users experienced noticeable frustrations with specific

control types, most were able to drive competently with any controller version

after limited training. That said, several users were outspoken against tilt controls

139



due to their own gaming experience predisposing them to joysticks instead. They

reluctantly selected the tilt controls in Phase 1 due to their superior presentation

and smoother operation; however, once options like joystick size and sensitivity

were made available, the virtual joystick again became their control mode of

choice.

These effects at least partially explain why users may have changed their mind

(as 56% of them did). Initial preferences were clearly not a strong indicator of

actual preferences over time, especially following the addition of options rated

most important to users e.g. sensitivity scaling. No pre-study measure exists

regarding a user’s perceived preference, but it would be interesting to examine

whether those could more accurately predict final control configurations than the

Phase 1 preferences used here.

Camera Mode

In Phase 2, users favored the virtual joystick controls (14 of 25) for camera

manipulation, despite grumblings about the camera moving too quickly. In Phase

3, only five individuals opted to use the virtual joystick for camera control! This

is almost surely due to the chosen defaults. Users prioritized customization of

driving controls: mode, scaling, and responsiveness. Doing so required substantial

time and repetition, leaving little time or energy for customizing camera controls.

Given the relative simplicity of the scanning task, users likely felt their time

was better served perfecting the driving controls. Camera manipulation proved

simpler for most, as users averaged just 173 seconds of practice with camera

controls in Phase 2, compared to 668 seconds with driving controls in Phase 1.

If the default controller had utilized a joystick-based camera, the results would

likely be reversed, with 20 users opting not to change the camera channel mode.

140



7.6.3 Suitability of Controller Defaults

Table 7.3 indicates the mean value of the control options most frequently

changed. Comparing those to the original default values should provide some

evidence of which, if any, should be updated for future controller versions. As

described in Chapter 3, a combination of pilot experiments and best practices

drove the adoption of original controller defaults; however, user testing is the

preferred method to determine such values. While most users made only minor

adjustments, even these small modifications affected their sense of control.

Table 7.4 shows how the defaults stacked up against the final user-manipulated

configuration values.

Table 7.4: Comparing User-Adjusted Configuration Values to Controller Defaults

Default Modified Mean

Joystick scale 1 1.178
Accel scale 0.4 0.293
Responsiveness straight 0.45 0.382
Responsiveness turn 0.45 0.38

As previously discussed, joystick size appears to have made the virtual joystick

more usable, encouraging users to adopt it for driving more frequently than

expected. The original 75 x 75 pixel joystick was increased to approximately 125%

of that size (or 94 x 94 pixels). Apple’s Human Interface Guidelines gave only

vague guidance on button size, encouraging designers to make buttons at least 40

x 40 pixels to accommodate an average adult finger [6]. While a button that small

may suffice for simple touch interfaces, it is clearly inadequate for objects which

must be manipulated (e.g. touched and dragged), even moreso when considering

that users frequently used their thumbs in landscape mode. While consideration

must be given to how much of the screen a joystick obscures, ease of operation

141



dictates that it must be larger than the finger manipulating it. Therefore, virtual

joysticks used in future control iterations should be approximately 100 x 100

pixels, decreasing opacity to permit easier viewing of the device screen when

controls are not active.

Arguably the most important user setting, acceleration scaling, affected the

robot’s top throttle speed. Most users scaled this down further from 40% of the

robot’s capable speed to 30%. That value is best suited towards the specific

conditions in this experiment: indoors, tight spaces, relatively level. That said,

this value would likely differ significantly for robot missions executed outdoors,

in larger spaces, and/or where driving precision was less important. This setting

might even have reason to be adjusted “on the fly,” as conditions warrant.

Currently the settings interface is not conducive to quick changes; however,

several users recommended something like a turbo setting be integrated onto the

control interface. For example, some users preferred to operate the robot at very

low speeds (10% of throttle), but found that at those speeds the robot could not

easily climb the ramp to begin the course. In those cases, users found themselves

wanting to temporarily increase acceleration sensitivity, reverting to 0.10 upon

clearing the ramp. This could be easily accomplished via a turbo button which

might ramp up the robot’s throttle to clear an obstacle. Implementations could

include a set increase for a set amount of time, or a set increase for a variable

amount of time (based on length of touch).

Responsiveness settings were another key component of controller sensitivity,

although observations imply that users were not always aware of their exact role

in that relationship. Essentially, responsiveness was inversely proportional to the

degree of tilt, or device range of motion, along a particular axis. Users that

wanted responsive controls could reduce the device range of motion, whereas

142



users that wanted less responsive controls could increase the range of motion.

The limits in place on tilt and rotation (min: 0.10, max: 0.6) were intended

to prevent users from manipulating the controller in a way that would make

video viewing unmanageable. Responsiveness is best considered in combination

with acceleration sensitivity, because one affects the other. For instance, if a

user scales acceleration way down and degree of tilt way up, the deadspace at

controller neutral increases, requiring a larger input motion to initiate movement

than if acceleration and responsiveness remained closer to defaults. That said,

considering an average acceleration sensitivity of 0.30, responsiveness in both

directions (tilt and rotation) should be approximately 0.38 given user inputs.

Participants clearly preferred a slightly more responsive controller than was

originally provided, correcting some complaints regarding excess deadspace in

early versions of the controls.

7.6.4 Controller Operation with Gloved Hands

Given the military problem inspiring this experiment, the controller was designed

with gloved users in mind. It was hypothesized that gloved users would prefer

tilt-based, gestural inputs primarily due to the proprioceptive nature of their

feedback. Gloved hands are larger and bulkier, with gloves limiting dexterity

in individual digits–both issues that could hinder effective touchscreen control.

In order to test this hypothesis, at the end of Phase 3 users were asked to don

a pair of touchscreen-capable utility gloves. The first two fingers and thumb

of each glove were equipped with conductive tips (see Figure 7.4). Following

configuration, trials, and the post-experiment questionnaire for Controller E,

users were granted 10 minutes to re-configure their controls under the new, gloved

143



operating condition. Any resulting changes to the configurations were saved for

analysis.

Figure 7.4: Touchscreen Capable Military Work Gloves
Youngstown Glove Company’s Military Work Glove (MWG)

[Online] at www.ytgloves.com

Surprisingly, users modified very little! Of the ten users whose Controller

E included virtual joysticks to drive, only three of them converted to tilt-based

controls while wearing gloves. One individual changed the location of both their

driving and camera deadman switches to accommodate thicker fingers. This

particular participant had built a controller where both controls were stacked

on the right side of the display. When wearing gloves, the user felt he/she had

better control when inputs were further separated, and reverted back to the

default layout where the camera switch was on the bottom left and the driving

switch on the bottom right.

Only one user chose a controller with a hard button deadman switch–a

configuration selected for the official trial–meaning no changes were made when

gloves were added. Many other users considered the hard buttons as deadman

switches, but complained about their location on the device. With the phone

144

www.ytgloves.com


in landscape left orientation (home button to the left), the volume buttons are

accessible at the top of the phone’s bezel just right of center. Users found it

awkward to reach for these and complained further that the thick, protective

Otterbox case made manipulation more physically demanding. The hard button

option may have received more positive reviews had it utilized the home button

or a tactile peripheral in a more ergonomic location.

Discussions with participants indicated that, while tilt-based controls would

seem a more natural choice for gloved control, user preference had more bearing

in dictating the lack of changes observed. Users invested significant time in

learning the nuances of the robot and controls over the first two phases, and

many looked forward to making the changes and adjustments afforded in Phase

3. After spending 40+ minutes examining the settings interface and configuring

the controls, users were truly invested (and satisfied) with their final setup. Even

a major environment change, like adding gloves, was not enough to convince them

to make wide-scale changes. Instead, they opted to adapt to the new conditions,

using practice to overcome the added difficulties of poor dexterity and imprecise

pointing precision. While unexpected, it does imply a strong sense of ownership

over user-selected features. Several users indicated that adapting to the new

conditions was perceived to require less effort than modifying controller settings

to values/modes with which they were not comfortable.

7.7 Summary

Phase 3 results encompassed not only the performance and usability metrics

analyzed in Phases 1 and 2, but also provided data regarding customization

of control and its effect on both. ANOVA produced a statistically significant

145



effect on trial time, as users completed the course with Controller E (customized)

notably faster than with Controller D (default). User-rated abilities on five of six

driving characteristics also proved significant, favoring Controller E. Combined,

these outcomes were enough to reject the null hypothesis.

The alternate hypothesis that this phase aimed to prove anticipated

improvement in satisfaction alongside performance. Two factors were derived

which combine several dependent variables into comprehensive representations of

performance and satisfaction. By plotting these two factors in terms of standard

deviations from the mean, one could determine how closely they were related (via

linear regression). Surprisingly, performance and satisfaction proved independent

of one another in this experiment, a relationship that did not conclusively accept

the alternate hypothesis, (H.3).

In terms of customization, users spent nearly 30 minutes modifying their

controls, most often changing acceleration sensitivity (23 out of 25 users) and

responsiveness values (18 of 25 users). Control mode was also an important

custom feature, with users choosing multiple combinations of tilt and joystick

controls. Interestingly, Phase 1 preferences did not inform the custom options

selected. A number of users diverted from their earlier stated preferences, whether

due to learning effects or the availability of specific custom features which made

previously unusable controls more usable. The modified custom options, when

averaged, provided a new set of controller defaults. Acceleration scaling is

recommended to decrease from 0.4 to 0.3, along with both responsiveness values

(from 0.45 to 0.38). Joysticks should be resized to 125% of their previous size, or

approximately 100 x 100 pixels.

Finally, an exercise asking users to modify their customized controls to

accommodate gloved hands yielded interestingly un-varied results. Users, by and

146



large, made no changes to their controls to account for gloves, finding practice

alone enough to overcome the challenges of the new control condition. This

implies 1) that gloves and touchscreens are not an impossible combination, and

2) that user investment in custom controls is high. While common sense dictates

that proprioceptive controls are more suited for gloved operations, users instead

chose to commit to their original custom layout, feeling confident in its use.

147



Chapter 8

Conclusions & Future Work

8.1 Project Summary

The purpose of the research presented here was to assess the usability of attitude

aware controls as an alternative to more commonly employed, touch-intensive

operator control unit methodologies. The goal was to create a controller

prototype which promoted simple, efficient control of small reconnaissance robots

used by dismounted ground forces during contingency operations. Smartphones

offer a powerful, lightweight, multi-modal platform for such control and have the

potential to become powerful battlefield tools if usability issues specific to field

operations are addressed. Results indicate that performance gains using attitude

aware controls were minimal and inconsistent, i.e. time improvements not always

met with improved accuracy or precision. Satisfaction metrics almost universally

supported tilt-based controls even when preference and system usability did not.

System usability improved dramatically over the course of the experiment, paired

with an expected decrease in mental workload, confirming that attitude aware

controls are an intuitive and user-friendly smartphone-based control option.

148



8.1.1 Multi-Phase Usability Experiment

Five levels of the independent variable, controller type, were designed to test the

hypotheses presented in Chapters 5, 6, and 7. They were introduced to users over

the course of three experiment phases. The first phase aimed to re-create ARL’s

experiment [96], pitting virtual joystick control against attitude aware controls.

Users drove the robot through an indoor obstacle course while performance and

satisfaction measures were collected. In Phase 2, to identify the suitability of

attitude aware controls for operating multiple robot degrees of freedom, visual

identification tasks were added to test users’ ability to manipulate a pan/tilt

camera in addition to Phase 1 driving tasks. Phase 3 introduced a customizable

controller, allowing users to manipulate sensitivity and responsiveness, as well as

selecting control modes. Phases were designed to build upon one another over

the course of approximately six weeks.

8.1.2 Experimental Findings

Analysis of variance (ANOVA), with controller and subject as factors, was used

to identify the effects of the independent variable on each dependent variable

at the p < 0.05 level. In Phase 1, where users were asked only to drive the

robot through the course using joystick and tilt controls, significant effects were

observed in trial time and minor errors. While virtual joystick trials resulted in

faster overall completion times, users made significantly more errors (minerrorjoy

= 5.64 vs. minerrortilt = 4.16), decreasing their perception of control.

Driving abilities were rated superior for all subtasks (see Figure 8.1b) and

exceeded expectations given early assumptions that attitude aware controls might

be inferior to virtual joysticks. Comments indicate these preferences were rooted

149



in the intuitiveness of the tilt controller, with several participants noting its

interface was more “natural, smoother, consistent, and familiar. Users exhibited

a clear preference for tilt controls, with 64% favoring them over the joystick option

(see Figure 8.1a).

In Phase 2, users added visual identification tasks and took control of the

robot’s camera, again using both a virtual joystick and attitude aware version

of control. ANOVA failed to reject the null hypothesis, implying that both

control modes were equally usable and that attitude aware controls are able to

provide an interface for both tasks crucial to reconnaissance. Mode confusion

was insignificant, likely due to the interface’s consistent simplicity, avoiding the

use of hierarchical menus and/or screen switching. What little did exist appeared

to be related to user pre-study conditions, specifically experience with video and

smartphone gaming. Final results implied a preference for the joystick-based

camera controls (56%), although 20 of 25 users “preferred” the second controller

presented to them in their trials (see Figure 8.2a).

The most interesting results regarding attitude aware control usability came

out of Phase 3, where users were given the freedom to customize control modes

and sensitivity before conducting both driving and visual identification tasks

as before. Figure 8.3 shows that System Usability increased and NASA TLX

workload scores decreased, even as tasks grew more complex.

Users spent nearly 30 minutes modifying controller settings, most often

manipulating acceleration sensitivity (23 out of 25 users) and responsiveness

values (18 of 23 users). Users indicated that those alone could make either control

mode equally usable, although individuals maintained strong preferences! The

pie chart in Figure 8.4 indicates those preferences, depicting the frequency with

which each control combination was selected. A plurality of users (48%) chose

150



(a) Phase 1 Overall User Preference
(Virtual Joystick Control vs. Tilt Controls)

(b) Phase 1 Results Showing User-Rated Driving Abilities
(on a scale of 1-5, with 5 being extremely easy).

*Definitions for variables along the x-axis are available in Chapter 5.

Figure 8.1: Phase 1 Results Overview

151



(a) Phase 2 Overall User Preference
(Joystick Camera Control vs. Tilt Controls)

(b) Phase 2 Results Showing User-Rated Camera Manipulation Abilities
(on a scale of 1-5, with 5 being extremely easy).

*Definitions for variables along the x-axis are available in Chapter 6.

Figure 8.2: Phase 2 Results Overview

152



tilt-based controls for driving and camera control, with another 12% choosing

them for driving only. These numbers are expected to more heavily favor attitude

aware controls in future experiments, using a new pool of novice users, operating

in gloves, to better mimic the conditions of military users.

Figure 8.3: Comparison of System Usability Scores and NASA TLX Mental
Workload Index Across all Five Levels of the Independent Variable,

Controller Type

The preference for tilt-based driving controls (60% of users) is in line with

expectations born of results from Phases 1 and 2, where tilt to drive (64%) and

joystick camera (56%) controls were most popular. Performance did improve, as

customized controls resulted in significantly faster trial times than the default.

Users also rated their abilities superior on five of six driving subtasks (indicating

improved satisfaction). Additionally, while one might worry that the additional

mental effort of customizing controls would yield higher total workload scores,

153



Figure 8.4: User Preferred Control Mode Combinations

that effect was not observed here.

In summarizing these results, analyses were done to examine the role of

user preference on performance and, in Phase 3, choice of custom controls.

Interestingly, user preference was not consistently related to usability. In Phase

1, a majority of users preferred the attitude aware controller even though average

joystick trial times were significantly faster. Phase 2 results indicate that users

preferred the joystick for camera control yet rated the tilt-based interface superior

in three of five camera subtasks (see Figure 8.2).

Given these discrepancies, it is difficult to discern what, if any, one factor most

contributes to usability. It appears as if a combination of factors, including user

biases, are responsible for the mismatch between preference and performance;

however, certain telling correlations do exist between dependent variables across

the three trials. drive and slow are the maneuver metrics most closely related

154



to system usability, particularly in the first phase, while scanning is the only

camera-specific metric which appears to affect usability. Performance-wise, ttime

and localization show moderate associations with usability in Phases 1 and 2

but do not accurately predict preferences in either case.

The sum of these results prove that tilt-based controls are suitable for

tele-operating small ground robots and provide superior user experiences (in

terms of satisfaction) with better, or equal, performance when compared to

virtual joystick controls. Custom control significantly decreases trial times

and further improves individual metrics of driving satisfaction, while overall

system usability remains high. Additionally, these controls successfully overcome

a number of issues regarding touchscreens in field environments; they can

eliminate the need for touchscreen interaction during operations, provide a control

mapping that is intuitive to users (steering wheel), reduce mental workload,

improve usability, and are hosted on adaptable systems significantly smaller

than the OCUs currently deployed. This provides strong evidence to suggest

that attitude aware controls (with adjustable sensitivity) are superior

smartphone-based control implementations for tele-operated ground

robots, suitable for both maneuver and camera manipulation tasks. As

the military expands smartphone use, applications in robotics should absolutely

be considered, as indicated by the success of the glove friendly control application

presented here.

8.2 Future Work

As in any ambitious project, even after three phases of user research and

countless control iterations, work still remains. The sections below attempt

155



to identify both areas that need additional research and those that need

additional work. In some cases, changes/modifications to control or experimental

approach are recommended and, based on research already conducted, identify

tasks to complete, i.e. update controller defaults, add a feature, etc. Other

recommendations identify gaps in the current research and proposes future

projects which aim to fill them!

8.2.1 Continue Army Research Lab’s Experiment

Primarily, this usability experiment proved that better smartphone control

implementations do exist, rendering virtual joystick alternatives less desirable.

Attitude aware controls with adjustable sensitivity overcome almost all of the

user complaints from Pettitt’s 2011 experiment (introduced in Chapter 4),

including lack of haptic feedback and joystick sensitivity [96]. At the time, the

authors had suggested providing larger buttons while incorporating some type

of control status indicator, as many users encountered difficulties identifying

when the virtual joystick was “engaged.” The authors also cited previous

research using transparent buttons on the screen to maximize limited screen real

estate. The controller prototypes in this research considered all of these issues

and recommendations. Haptic feedback is inherent to attitude aware controls,

sensitivity and responsiveness are available via custom options, and partially

transparent switches and buttons towards the bottom edges of the screen obscure

very little of the full-screen display.

ARL’s results (comparing virtual joystick control to the XBox 360 controller)

overwhelmingly favored the latter, reaching significance (p <0.001) in mean time

to complete the courses, mean number of off course errors, and mean number

156



of driving errors. Additionally, users reported a higher total workload score

with the joystick controller, specifically on the mental, effort, and frustration

scales. Finally, participants rated their own performance with the XBox

360-style controller superior to that with the touchscreen joystick, with 26 of

30 participants preferring the former. The question now remains whether the

attitude aware controls would stand up better to testing against the XBox 360

controls currently in use with PackBot systems. A natural extension of the

experiments already conducted would be a “fourth phase,” where customizable

controllers are compared directly to XBox 360 controllers under similar tasks

and conditions. A key consideration would be how to train users on the more

complex customizable system, as newly recruited participants would not have the

advantage of a multi-phase “lead-in.”

8.2.2 Controller Modifications

Key modifications regarding controller defaults were already presented in

Chapter 7. As discussed, acceleration sensitivity, responsiveness, and joystick

size should all be updated to the user-averaged values observed in Phase 3.

Such changes would be seamless to future users and would simply effect default

controller start points, not the range of values available. Additional controller

modifications should address slight deficiencies in visual controller feedback.

Originally, a red crosshair was investigated for use with camera controls, to

help users track the camera’s center point; however, difficulty aligning crosshair

movement to camera movement proved more difficult than expected. Image

handling techniques, which pinpoint landmarks in the camera space, would be

required to appropriately track the camera’s servo position with respect to the

157



device view. Instead, small lights could be implemented along the vertical edges

of the screen to inform users when the camera is approaching its left and right

limits. By enabling certain features (pinch to zoom) of the UIView which hosts the

video feedback, livestream images could also be manipulated to aid in surveillance

and reconnaissance.

Users were first introduced to the driving lights which provide control status

during Phase 1 video-led training; however, users still occasionally encountered

confusion regarding the use of the green and red lights in tandem with text reading

“driving” or “reverse.” A further search of the literature should be conducted to

identify better, well-accepted approaches. In the meantime, driving text should

include a “stopped” status, and a “turning” status and light should be added

to differentiate zero-point turns from driving forward. Given that reverse lights

are red and driving lights are green, it would make sense to make turning lights

amber.

In addition to the visual feedback updates recommended, use of tactile

feedback, via vibration, should also be investigated. Similar to how the XBox 360

shakes when users are shot at during video game play, the iDevices could vibrate

when robot bump sensors are depressed. This would require a slight modification

to robot hardware, but would ease the burden on users attempting to identify

how/why their robot is no longer moving. Ideally vibration could be localized on

the device, mapped to the side of the robot stuck; unfortunately, current iPhone

hardware includes only a single motor, limiting vibration to all or nothing. As

hardware grows more sophisticated, proximity sensors could be used to further

refine obstacle detection, manifesting in vibrations of increasing strength as the

robot neared an obstacle. Paired with visual indicators, like red flashing lights

around the screen’s perimeter, this type of feedback is both attention-grabbing

158



and natural, providing the user cues to an environment he/she can just barely

see. The robot’s current camera field of view (FOV) is approximately 60◦, much

less than the 140◦ available to drivers of automobiles, making users feel as if

they are looking through a tube. van Erp suggests a field of view somewhere

between the two (100◦) for the best tele-operation experience [123]. Designers

could experiment with adding a fisheye lens to the existing setup to increase FOV,

or switching to a more sophisticated camera.

While van Erp also encourages manual robot camera control as it “enables

optimal use of human expertise concerning information gathering tasks” [123],

users here recommended adding a feature to automatically scan a room, designed

such that the camera is guaranteed to cover its entire viewing range. This would

not replace manual manipulation, but rather augment it as conditions permit.

Similarly, a “turbo” button could be created to provide short bursts of increased

acceleration to temporarily compensate for instances where users might have the

throttle sensitivity very low. If either, or both, of these macros are added, careful

consideration must be given to how and where on the control screen they will

be placed. Identifying hand/arm movements that initiate these macros may be

more beneficial, and more in line with the attitude-based nature of the controls

already developed.

Lastly, the role of robot trim was introduced in Chapter 3, where hard-coded

values of trim for the two robots used in this study were presented. While setting

these values programmatically in a global variables file does work, the ideal

approach would provide the user with an adjustable trim interface within the

controller. Early development looked at the feasibility of doing so; however, due

to the multiple runtime threads handling link establishment, message structure,

and error handling, modifying the application to handle adjusting trim in realtime

159



proved too time consuming given the limited benefits immediately applicable to

this work. Adding this feature in the future would make the controller inherently

more adaptable, as well as offering yet another form of user customization for

those desiring an alternative camera neutral.

8.2.3 Additional Research

Platform Expansion and Simulation

Part of what initially drove this project’s use of smartphones was the idea that

software-based controls are inherently adaptable and customizable in a way that

hardware-based controls are not. Several companies advertise hardware-based

“all-in-one” controllers [100, 3, 12, 118, 101], but none are feasibly configured and

maintained at operator-level. The advantage of software-based controls hosted

on a familiar device is the ease with which new missions and platforms can be

accommodated, without requiring the user to contact a contracted representative

for support. The current control prototypes were written to accommodate two

vehicles, a tracked robot and a 4WD Jeep. Future work should focus on expanding

this library of supported vehicles, identifying the control mapping necessary

for each. Ideally, an aerial platform would be added, demonstrating that not

only is the controller capable of commonality across platforms, but also across

domains. It is unrealistic to think that, in its current form, this controller

could accommodate simultaneous control of an air and ground vehicle, but with

appropriate improvements to the display and communications links, it might serve

as the most readily available way to pair the two in one controller. Doing so would

require one of the vehicles to be at least semi-autonomous, but could provide

the “exocentric-added” view coveted by many researchers, including Chen [25].

160



This view provides a split screen with the ground vehicle’s display beside the air

vehicle’s display, providing both an egocentric and exocentric view of a robot’s

surroundings. Doing so without simultaneous control, i.e. piggybacking off of

another user’s aerial robot feed, is called passive control, sometimes also regarded

as hierarchical control. In these instances, one individual controls the robot,

while one (or many) others, monitors the robot’s feed. Implementing common

controllers that can be carried by many users increases the opportunity for

passive control, improving situational awareness for individuals further from the

battlefield.

While usability assessments are most reliable when done under realistic

conditions with physical systems and human operators, there comes a time,

especially when conducting training and repetitive tasks, to include simulations.

This project initially hoped to link the controller prototype to a Linux-based

rover simulator, so that prospective users could train in a virtual environment and

use guided vignettes to identify appropriate controller settings. Doing so would

be invaluable to the military, where there is a push (and budgetary demand) to

move towards more virtual reality/simulation-based training. This would be best

accomplished by removing the WiRC-specific communications protocols from the

current application and creating a generic robot API using Linux sockets, allowing

the smartphone-based controller to connect to a variety of robot platforms or

server-based simulators.

Communication and Lag

The robot used in this study was modified to connect controller to robot via

wireless network, as the smartphones used for development were only packaged

with WiFi and Bluetooth connectivity. Unfortunately, WiFi is plagued by

161



interference and low-powered portable antennas, severely limiting range. Both

ad hoc (point to point) and infrastructure networks were tested over the course of

this system’s development, and neither proved robust. The military has generally

avoided wireless technologies for these very reasons, in addition to the difficulty

securing wireless communications. Instead, the military relies primarily on radio

frequency (RF) communication links in various spectrums: HF, UHF, VHF.

This does not mean that smartphones are not still capable of addressing the

needs; however, they would have to be modified to do so. At least one company,

Applied Research Associates (ARA), is already looking at adding RF transmitters

to iPhones and tablets, as seen/discussed at the U.S. Army’s Robotics Rodeo

2012 [11].

While waiting for RF technology to catch up with smartphone development,

additional research can be conducted to address/mask the communications lag

present between controller and robot. Often, there is a significant lag in video

feedback (1 - 3s) and a less obvious lag in the controls (300 - 500ms) [32]. Training

is generally used to familiarize users with the degree of disconnect between the

robot and controller; however, more advanced methods could be investigated.

For instance, outgoing controls to the robot could be artificially delayed by an

additional 500ms - 1s in order to sync the video feedback to the robot’s movement.

Users throughout this study logged several complaints/observations regarding

not just video lag, but variable video lag. On average these did not exceed

1s; however, combined with brief periods of reduced refresh rate, many users

were relegated to operating the robot in a “choppy” manner, mimicking the

discontinuity in the video feed. Scaling robot speed based on lag/frame rate is

one option to consider which might address this problem. This would not serve

as a time delay, but rather a forced throttle governor when the robot encountered

162



moments of poor video quality. The non-trivial aspect of this approach is

measuring system lag accurately (and in a timely manner).

Motion Algorithm Updates

Finally, while extensive time went into developing the sophisticated motion

algorithm governing the tilt-based controls currently in use, several updates

should be considered. First, controller range of motion was initially designed

around comfortable device viewing angles, ensuring that users could always see

the screen; little allowance was made for human physiology. Rahman provides

an extensive look at wrist-based control interactions implemented to improve

comfort and user performance based on the pronation/supination traits of the

human wrist. Using quadratic discretization to map wrist range of motion to

controls (like described) would likely only slightly alter the current prototype,

but could meaningfully improve the user experience [103].

Secondly, approaches to sensor filtering should be re-examined. Jang provides

an accelerometer filter which uses both a low-pass filter and a threshold

comparison to help recognize gestures [61]. While a complementary (or balanced)

filter is used here to address gyro drift, the addition of a threshold value

could prove beneficial by explicitly setting the deadspace, or controller neutral

zone, which is currently dependent on a combination of several customizable

variables. Such filters might also be the key to expanding these controls beyond

stationary use, allowing users to operate their robot “on the move,” either

mounted or dismounted. While current doctrine does not require operators to

move while tele-operating due to challenges with situational awareness, security,

and concealment, future operations might. The move towards more autonomous

systems makes this even more likely, as soldiers will do more multi-tasking.

163



References

[1] Julie A. Adams. Critical Considerations for Human-Robot Interaction
Development. Technical report, Rochester Institute of Technology, 2002.

[2] Paul V. Alpo. Warfare Has Changed, So Should Have Methods. Complete
Guide by Armada: Urban Warfare 2009, 2009.

[3] AMREL. Common Control, Here and Now. [Online], http://www.

commoncontrolnow.com, 2010.

[4] John Antal. I Fight the Body Electric! Military Technology, 33(7):22 – 30,
2009.

[5] Apple. Object-Oriented Programming with Objective-C: Tools Languages:
Objective-C, Nov 2008.

[6] Apple. Apple Human Interface Guidelines, Aug 2009.

[7] Apple. The Objective-C Programming Language, Oct 2009.

[8] Apple. Core Motion Framework Reference. [Online] at http:

//developer.apple.com/library/ios/#documentation/CoreMotion/

Reference/CoreMotion_Reference/_index.html, October 2011.

[9] Apple. Event Handling iPhone OS, March 2011.

[10] Applied Research Associates. Pointman: Purpose-Built for
Tactical Missions. [Online] at http://www.ara.com/robotics/

Small-Unmanned-Ground-Vehicle.html, 2011.

[11] Applied Research Associates. Pointman Robot and Modified Samsung
Tablet Control via Radio Frequency. Discussion/Demonstration at
TARDEC’s Robotics Rodeo 2012, Fort Benning, GA, June 2012.

[12] U.S. Army. AN/PSW-2 Common Controller, September 2009.

[13] Michael Barr. Pulse width modulation. Embedded Systems Programming,
14(10):103–104, 2001.

164

http://www.commoncontrolnow.com
http://www.commoncontrolnow.com
http://developer.apple.com/library/ios/#documentation/CoreMotion/Reference/CoreMotion_Reference/_index.html
http://developer.apple.com/library/ios/#documentation/CoreMotion/Reference/CoreMotion_Reference/_index.html
http://developer.apple.com/library/ios/#documentation/CoreMotion/Reference/CoreMotion_Reference/_index.html
http://www.ara.com/robotics/Small-Unmanned-Ground-Vehicle.html
http://www.ara.com/robotics/Small-Unmanned-Ground-Vehicle.html


[14] Eric Bland. Wii-controlled robots made for combat. DiscoveryNews on
MSNBC.com, December 2008.

[15] John G. Blitch. Adaptive Mobility for Rescue Robots. In
Edward M. Carapezza, editor, Proceedings of SPIE 5071, Sensors and
Command, Control, Communications and Intelligence (C3I) Technologies
for Homeland Defense and Law Enforcement II, volume 5071, 2003.

[16] Jan Blom. Personalization: a taxonomy. In CHI ’00 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’00, pages 313–314, New
York, NY, USA, 2000. ACM.

[17] Nick Bobic. Rotating Objects Using Quaternions.
[Online] at http://www.gamasutra.com/view/feature/3278/

rotating-objects-using-quaternions.php.

[18] John Brooke. SUS: A Quick and Dirty Usability Scale. Taylor and Francis,
1996.

[19] Jonathan Brown, Chris Blanco, Jeffrey Czerniak, Brian Hoffman, Orin
Hoffman, and Amit Juneja. Soldier Experiments and Assessments using
SPEAR speech control system for UGVs. In Proceedings of SPIE, Detection
and sensing of mines, explosive objects, and obscured targets XV. SPIE,
2010.

[20] Steve Bryson. Effects of lag and frame rate on various tracking tasks. In
Proceedings of the International Society for Optical Engineering, volume
1915, pages 155–166, 1993.

[21] J. Carlson and R. R. Murphy. How UGVs Physically Fail in the Field.
IEEE Transactions on Robotics, 21(3):423 – 437, 2005.

[22] Jessie Y. C. Chen. UAV-guided navigation for ground robot tele-operation
in a military reconnaissance environment. Ergonomics, 53(8):940–950,
2010.

[23] Jessie Y. C. Chen, Ellen C. Haas, and Michael J. Barnes. Human
Performance Issues and User Interface Design for Teleoperated Robots.
In IEEE Transactions on Systems, Man, and Cybernetics–Part C:
Applications and Reviews, volume 37, November 2007.

[24] Jessie Y. C. Chen and Jennifer E. Thropp. Review of Low Frame
Rate Effects on Human Performance. In IEEE Transactions on Systems,
Man, and Cybernetics–Part A: Systems and Humans, volume 37, pages
1063–1076, 2007.

165

http://www.gamasutra.com/view/feature/3278/rotating-objects-using-quaternions.php
http://www.gamasutra.com/view/feature/3278/rotating-objects-using-quaternions.php


[25] T. Chen, Y. Yesilada, and S. Harper. What input errors do you experience?
Typing and pointing errors of mobile web users. International Journal of
Human Computer Studies, 68:138–157, 2010.

[26] Victor Vui-Kiat Chong. Heuristics for Mitigating Mode Confusion in Digital
Cameras. Master’s thesis, University of Victoria, 2000.

[27] Alistair Cockburn. Structuring use cases with goals: Part 1. Journal of
Object Oriented Programming, pages 35–40, Sep-Oct 1997.

[28] Alistair Cockburn. Structuring use cases with goals: Part 2. Journal of
Object Oriented Programming, pages 56–62, Nov-Dec 1997.

[29] Paul R. Cohen. Empirical Methods for Artificial Intelligence. The MIT
Press, 1995.

[30] Shane Colton. The Balance Filter: A Simple Solution for Integrating
Accelerometer and Gyroscope Measurements for a Balancing Platform.
Rev. 1: Submitted as a Chief Delphi White Paper, June 2007.

[31] Joe Conway and Aaron Hillegass. iPhone Programming: The Big Nerd
Ranch Guide. Addison-Wesley Professional, 2010.

[32] M.L. Cummings, K. Jackson, P. Quimby, and D. Pitman. Development
and Testing of a Quad Rotor Smartphone Control System for Novice Users.
International Journal of Micro Air Vehicles, 4(3), September 2012.

[33] James Davis and Christopher Smyth. Mitigating the Effects of Time Lag on
Driving Performance. In Proceedings of the 2009 Ground Vehicle Systems
Engineering and Technology Symposium, 2009.

[34] Dension. WiRC User’s Manual v2.0. [Online] at http://www.wirc.

dension.com/support, 2011.

[35] Dension Audio Systems Kft. Dension WiRC Communication Protocol
Specification Version 1.3, 2011.

[36] Dension Audio Systems Kft. WiRC Communication Messages, 2011.

[37] Department of Defense. FY2009-2034 Unmanned Systems Integrated
Roadmap. [Online] at http://www.dtic.mil/cgi-bin/GetTRDoc?

Location=U2&doc=GetTRDoc.pdf&AD=ADA522247, April 2009.

[38] B. Donmez, P. E. Pina, and M. L. Cummings. Evaluation criteria for
human-automation performance metrics. In Proceedings of the Performance
Metrics for Intelligent Systems Workshop, 2008.

166

http://www.wirc.dension.com/support
http://www.wirc.dension.com/support
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA522247
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA522247


[39] D. Eberly. Quaternion algebra and calculus. Magic Software, Inc., 21, 2002.

[40] William R. Ferrell. Remote Manipulation with Transmission Delay.
Technical report, NASA, February 1965.

[41] T Fong, C Thorpe, and C Baur. Multi-robot remote driving with
collaborative control. IEEE Transactions on Industrial Electronics,
50(4):699 – 704, 2003.

[42] Terrence Fong and Charles Thorpe. Vehicle Teleoperation Interfaces.
Autonomous Robots, 11:9–18, 2001.

[43] Nicholas Fung. Light weight, portable operator control unit using an
Android-enabled mobile phone. In Douglas W. Gage and Charles M.
Shoemaker, editors, Unmanned systems Technology XIII, Proceedings of
SPIE, volume 8045, 2011.

[44] Amy W. Gatian. Is user satisfaction a valid measure of system effectiveness?
Journal of Information and Management, 26:119–131, 1994.

[45] Maarten Gelderman. The relation between user satisfaction, usage
of information systems and performance. Journal of Information and
Management, 34:11–18, 1998.

[46] Michael A. Goodrich and Jr. Dan R. Olsen. Seven Principles of Efficient
Human Robot Interaction. In IEEE International Conference on Systems,
Man and Cybernetics, volume 4, pages 3942–3948. IEEE, October 2003.

[47] Michael A. Goodrich, Jr. Dan R. Olsen, Jacob W. Crandall, and Thomas J.
Palmer. Experiments in Adjustable Autonomy. In 2001 IEEE International
Conference on Systems, Man, and Cybernetics, volume 3, pages 1624–1629.
IEEE, 2001.

[48] Michael A. Goodrich and Alan C. Schultz. Human-Robot Interaction:
A Survey. Foundations and Trends in Human-Computer Interaction,
1(3):203–275, 2007.

[49] Joe Gould. Army to field new network tools to 8
BCTs. [Online] at http://www.armytimes.com/news/2012/07/

army-network-tools-fielding-8-brigade-combat-teams-070312w/,
2012.

[50] Vicki Haberman. Designing for Diverse Users–A Case Study on
Touchscreen Smartphone Customization. PhD thesis, Georgia Institute of
Technology, 2012.

167

http://www.armytimes.com/news/2012/07/army-network-tools-fielding-8-brigade-combat-teams-070312w/
http://www.armytimes.com/news/2012/07/army-network-tools-fielding-8-brigade-combat-teams-070312w/


[51] S.G. Hart and L.E. Staveland. Development of NASA-TLX (Task Load
Index: Results of empirical and theoretical research. In P.A. Hancock and
N. Meshkati, editors, Human Mental Workload, chapter 7, pages 139–183.
Elsevier, 1988.

[52] Aaron Hillegass. Objective-C Programming: The Big Nerd Ranch Guide.
Addison-Wesley Professional, 2011.

[53] Ken Hinckley. The Past and Present Future: Patents. [Online] at http:

//kenhinckley.wordpress.com/patents/, 2012.

[54] Ken Hinckley, Jeff Pierce, Mike Sinclair, and Eric Horvitz. Sensing
Techniques for Mobile Interaction. In Symposium on User Interface
Software and Technology, CHI Letters, volume 2, pages 91–100, 2000.

[55] Ken Hinckley and Daniel Wigdor. Human-Computer Interaction Handbook:
Fundamentals, Evolving Technologies, and Emerging Applications, Third
Edition (Human Factors and Ergonomics), chapter Input Technologies and
Techniques. CRC Press, 2012.

[56] W. H. Huang and E. P. Krotkov. Optimal stereo mast configuration
for mobile robots. In IEEE International Conference on Robotics and
Automation, number 3, pages 1946 – 1951, 1997.

[57] Human Performance Research Group, NASA. NASA Task Load Index
(TLX) v 1.0: Pen and Pencil Package. [Online] at http://humansystems.
arc.nasa.gov/groups/TLX/paperpencil.html, 1988.

[58] International Organization for Standardization (ISO). Ergonomics
of human-system interaction - multiple Parts. [Online] at
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_

tc_browse.htm?commid=53372, 2008.

[59] iRobot Corporation. iRobot 110 FirstLook. [Online] at http://www.

irobot.com/us/learn/defense/firstlook.aspx, 2012.

[60] Edmond Israelski and Arnold M. Lund. The human-computer interaction
handbook. chapter The evolution of human-computer interaction during
the telecommunications revolution, pages 772–789. L. Erlbaum Associates
Inc., Hillsdale, NJ, USA, 2003.

[61] Ikjin Jang and Wonbae Park. A Gesture-Based Control for Handheld
Devices Using Accelerometer. In 9th Iberoamerican Congress on Pattern
Recognition, volume 3287, pages 259–266, 2004.

168

http://kenhinckley.wordpress.com/patents/
http://kenhinckley.wordpress.com/patents/
http://humansystems.arc.nasa.gov/groups/TLX/paperpencil.html
http://humansystems.arc.nasa.gov/groups/TLX/paperpencil.html
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=53372
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_tc_browse.htm?commid=53372
http://www.irobot.com/us/learn/defense/firstlook.aspx
http://www.irobot.com/us/learn/defense/firstlook.aspx


[62] Timo Jokela, Netta Iivari, Juha Matero, and Minna Karukka. The standard
of user-centered design and the standard definition of usability: analyzing
iso 13407 against iso 9241-11. In Proceedings of the Latin American
conference on Human-computer interaction, CLIHC ’03, pages 53–60, New
York, NY, USA, 2003. ACM.

[63] Brenden Keyes and Holly A. Yanco. Camera placement and multi-camera
fusion for remote robot operation. In IEEE Int’l Workshop on Safety,
Security and Rescue Robotics, 2006.

[64] Kamran Khan and Kim Hyunwoo. Factors Affecting Consumer Resistance
to Innovation: A study of Smartphones. Master’s thesis, Jonkoping
International Business School, May 2009.

[65] Dae-Jin Kim, Rebekah Hazlett, Heather Godrey, Greta Rucks, David
Portee, John Bricout, Tara Cunningham, and Aman Behal. On the
Relationship between Autonomy, Performance, and Satisfaction: Lessons
from a Three-Week User Study with post-SCI Patients using a Smart
6DOF Assistive Robotic Manipulator. In 2010 International Conference
on Robotics and Automation, pages 217–223. IEEE, 2010.

[66] Desmond King-Hele. Erasmus darwin’s improved design for steering
carriages–and cars. Notes and Records of the Royal Society of London,
56(1):41–62, 2002.

[67] Michael Knox. Interview with CPT Michael Knox, U.S. Army. E-mail
Correspondence, December 2012.

[68] J. Corde Lane, Craig R. Carignan, Brook R. Sullivan, David L. Akin, Teresa
Hunt, and Rob Cohen. Effects of Time Delay on Telerobotic Control of
Neutral Buoyancy Vehicles. In Proceedings of the 2002 IEEE International
Conference on Robotics and Automation. IEEE, 2002.

[69] Axel Lankenau. Avoiding Mode Confusion in Service Robots - The Bremen
Autonomous Wheelchair as an Example. In Proc. of the 7th Int. Conf. on
Rehabilitation Robotics (ICORR 2001), pages 162–167, 2001.

[70] Chen Ling, Wanil Hwong, and Gavriel Savendy. A survey of what customers
want. Behaviour Information Technology, 26(2):149–163, March-April
2007.

[71] Matthew Loper, Nathan Koenig, Sonia Chernova, Chris Jones, and Odest
Jenkins. Mobile Human-Robot Teaming with Environmental Tolerance.
In Proceedings of the 4th ACM/IEEE international conference on Human
robot interaction, pages 157–164. ACM, 2009.

169



[72] Wendy E. Mackay. Patterns of sharing customizable software.
In Proceedings of the 1990 ACM conference on Computer-supported
cooperative work, pages 209–221. ACM, 1990.

[73] Wendy E. Mackay. Users and Customizable Software: A Co-Adaptive
Phenomenon. PhD thesis, Massachusetts Institute of Technology, May
1990.

[74] Wendy E Mackay. Triggers and barriers to customizing software. In
Proceedings of the SIGCHI conference on Human factors in computing
systems: Reaching through technology, pages 153–160. ACM, 1991.

[75] Douglas E. McGovern. Experiences in teleoperation of land vehicles.
Technical report, Sandia National Labs., Albuquerque, NM (USA), 1987.

[76] Steve McKillup. Statistics Explained: An Introductory Guide for Life
Scientists. Cambridge University Press, 2011.

[77] Mark Milian. U.S. Army may soon equip troops with smartphones. [Online]
at http://www.cnn.com/2011/TECH/mobile/07/12/army.smartphones/

index.html?hpt=hp_t2, July 2011.

[78] David P. Miller and Kyle Machulis. Visual aids for lunar rover
tele-operation. In Proceedings of the 8th International Symposium on
Artificial Intelligence, Robotics and Automation in Space, September 2005.

[79] Jack Morrow. Interview with CPT Jack Morrow, U.S. Army. E-mail
Correspondence, December 2012.

[80] Florian Müller. iPhone-Robot Command Interface: A Case Study. Master’s
thesis, Eidgenössische Technische Hochschule Zürich, 2009.

[81] Robin R. Murphy. Introduction to AI Robotics. The MIT Press, 2000.

[82] Robin R. Murphy. Human-Robot Interaction in Rescue Robotics. In IEEE
Transactions on Systems, Man, and Cybernetics–Part C: Applications and
Reviews, volume 34, May 2004.

[83] Jerome L. Myers and Arnold D. Well. Research Design and Statistical
Analysis. Lawrence Erlbaum Associates, 2nd edition, 2003.

[84] Hoa G Nguyen and John P Bott. Robotics for law enforcement:
Applications beyond explosive ordnance disposal. In SPIE International
Symposium on Law Enforcement Technologies, 2000.

170

http://www.cnn.com/2011/TECH/mobile/07/12/army.smartphones/index.html?hpt=hp_t2
http://www.cnn.com/2011/TECH/mobile/07/12/army.smartphones/index.html?hpt=hp_t2


[85] Jakob Nielsen. User Satisfaction vs. Performance Metrics. Electronic
article, Nielsen Norman Group, [Online] at http://www.nngroup.com/

articles/satisfaction-vs-performance-metrics/, October 2012.

[86] Donald A. Norman. The Design of Everyday Things. Basic books, 2002.

[87] Donald A. Norman. The Design of Future Things. Basic Books, 2007.

[88] Kristian Nymoen, Arve Voldsund, and St̊ale A. Skogstad. Comparing
Motion Data from an iPod Touch to an Optical Infrared Marker-Based
Motion Capture System. In The 12th International Conference on New
Interfaces for Musical Expression, 2012.

[89] Ian Oakley and Sile O’Modhrain. Tilt to scroll: evaluating a motion
based vibrotactile mobile interface. In Eurohaptics Conference, 2005 and
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator
Systems, 2005. World Haptics 2005. First Joint, pages 40–49. IEEE, 2005.

[90] Alex Okafor. Parade of Rain Blog. [Online] at http://www.paradeofrain.
com/2010/07/lessons-learned-in-tilt-controls/, July 2010.

[91] Dan R. Olsen and Michael A. Goodrich. Metrics for Evaluating
Human-Robot Interactions. In In Proc. NIST Performance Metrics for
Intelligent Systems Workshop (2003) Key: citeulike:9886596 In Proc. NIST
Performance Metrics for Intelligent Systems Workshop (2003), 2003.

[92] Orbotix. iOS Developer Quick Start Guide. ReadMe in Open Source SDK,
https://github.com/orbotix/Sphero-iOS-SDK, 2012.

[93] Stanely R. Page, Todd J. Johnsgard, Uhl Albert, and C. Dennis Allen. User
Customization of a Word Processor. In Computer Human Interaction 1996
(CHI ’96), 1996.

[94] Nick Pannuto and CJ Hanson. Sneakyjoystick. Open Source, https://

github.com/cjhanson/SneakyJoystick, 2010.

[95] Boeun Park, Scott Song, Joonhwan Kim, and Wanje Park Hyunkook
Jang. User customization methods based on mental models: modular
ui optimized for customizing in handheld device. Human-Computer
Interaction. Interaction Platforms and Techniques, pages 445–451, 2007.

[96] Rodger A. Pettitt, Elizabeth S. Redden, Nicholas Fung, Christian B.
Carstens, and David Baran. Scalability of Robotic Controllers: An
Evaluation of Controller Options–Experiment II. Technical Report 5776,
Army Research Laboratory, September 2011.

171

http://www.nngroup.com/articles/satisfaction-vs-performance-metrics/
http://www.nngroup.com/articles/satisfaction-vs-performance-metrics/
http://www.paradeofrain.com/2010/07/lessons-learned-in-tilt-controls/
http://www.paradeofrain.com/2010/07/lessons-learned-in-tilt-controls/
https://github.com/orbotix/Sphero-iOS-SDK
https://github.com/cjhanson/SneakyJoystick
https://github.com/cjhanson/SneakyJoystick


[97] Stephane Piskorski, Nicolas Brulez, and Pierre Eline. AR.Drone Developer
Guide SDK 1.7. [Online] at https://projects.ardrone.org, May 2011.

[98] David Pitman. Collaborative Micro Aerial Vehicle Exploration of Outdoor
Environments. Master’s thesis, Massachusetts Institute of Technology,
February 2010.

[99] David Pitman and Mary L. Cummings. Collaborative Exploration with a
Micro Aerial Vehicle: A Novel Interaction Method for Controlling a MAV
with a Hand-Held Device. Advances in Human-Computer Interaction, 2012.

[100] D. Powell, G. Gilbreath, and M. Bruch. Multi-robot operator control unit
for unmanned systems. Defense Tech Briefs, April 2008.

[101] QinetiQ North America. USMC Tactical Robotic Controller
(TRC). [Online] at https://www.qinetiq-na.com/products/

unmanned-systems/trc/, 2012.

[102] Andy Qua. Cube runner. [Online] at http://andyqua.co.uk/

CubeRunner/Welcome.html.

[103] Mahfuz Rahman, Sean Gustafson, Pourang Irani, and Sriram Subramanian.
Tilt Techniques: Investigating the Desterity of Wrist-based Input. In IEEE
International Conference on Computer Human Interaction, 2009.

[104] S. Ram and Jagdish N. Sheth. Consumer Resistance to Innovations: The
Marketing Problem and its solutions. Journal of Consumer Marketing,
6(2):5–14, 1989.

[105] Recon Robotics. Throwbot XT - With Audio. [Online] at http://www.

reconrobotics.com/products/Throwbot_XT_audio.cfm, May 2012.

[106] Elizabeth S. Redden, Linda R. Elliott, Rodger A. Pettitt, and Christian B.
Carstens. Scaling Robotic Systems for Dismounted Warfighters. Journal
of Cognitive Engineering and Decision Making, 5(2):156–185, June 2011.

[107] Jun Rekimoto. Tilting Operations for Small Screen Interfaces. In
Proceedings of the 9th annual ACM Symposium on User Interface Software
and Technology, 1996.

[108] Michell M. Rhode, Victor E. Perlin, Karl D. Iagnemma, Robert M. Lupa,
Steven M. Rhode, James Overholt, and Graham Fiorani. PointCom:
Semi-Autonomous UGV Control with Intuitive Interface. In Proceedings
of SPIE 6962, Umanned Systems Technology X, number 6962. SPIE, April
2008.

172

https://projects.ardrone.org
https://www.qinetiq-na.com/products/unmanned-systems/trc/
https://www.qinetiq-na.com/products/unmanned-systems/trc/
http://andyqua.co.uk/CubeRunner/Welcome.html
http://andyqua.co.uk/CubeRunner/Welcome.html
http://www.reconrobotics.com/products/Throwbot_XT_audio.cfm
http://www.reconrobotics.com/products/Throwbot_XT_audio.cfm


[109] Robotic Systems Joint Project Office. Unmanned Ground Systems
Roadmap. Technical report, Robotic Systems Joint Project Office, 2011.

[110] M.S. Sanders and E.J. McCormick. Human factors in engineering and
design. McGraw Hill, 7th edition, 1993.

[111] Charles Scalesse. Tutorial: Accelerometer Calibration and Optimizations.
[Online] at http://iphonedevsdk.com/forum/iphone-sdk-tutorials/

39833-tutorial-accelerometer-calibration-optimizations.html,
January 2013.

[112] Michael David Schmidt. Simulation and Control of a Quadrotor Unmanned
Aerial Vehicle. Master’s thesis, University of Kentucky, 2011.

[113] T. B. Sheridan. Human enhancement and limitation in teleoperation.
Progress in Astronautics and Aeronautics, 161:43, 1994.

[114] Thomas B Sheridan. Telerobotics, automation, and human supervisory
control. MIT press, 1992.

[115] Ben Shneiderman and Catherine Plaisant. Designing the User Interface.
Addison-Wesley, 2010.

[116] Aaron Steinfeld, Terrence Fong, David Kaber, Michael Lewis, Jean Scholtz,
Alan Schultz, and Michael Goodrich. Common metrics for human-robot
interaction. In Proceedings of the 1st ACM SIGCHI/SIGART conference
on Human-robot interaction, pages 33–40. ACM, 2006.

[117] Synovision Solutions LLC. Common Robot Controller Study. Technical
report, Synovision Solutions LLC, 2007.

[118] Textron Systems and AAI Corporation. The Next Generation in One
System Technology. [Online] at www.aaicorp.com/pdfs/ugcs41709a.pdf,
2009.

[119] Dawn Tilbury and Galip A. Ulsoy. A New Breed of Robots that Drive
Themselves. Mechanical Engineering, 133(2):28, 2011.

[120] Z. A. Tomlinson. Influence of spatial ability on primary and secondary space
telerobotics operator performance. Aviation, Space, and Environmental
Medicine, 80:221, 2009.

[121] M R Tracey and C E Lathan. The interaction of spatial ability and motor
learning in the transfer of training from a simulator to a real task. Studies
In Health Technology And Informatics, 81:521 – 527, 2001.

173

http://iphonedevsdk.com/forum/iphone-sdk-tutorials/39833-tutorial-accelerometer-calibration-optimizations.html
http://iphonedevsdk.com/forum/iphone-sdk-tutorials/39833-tutorial-accelerometer-calibration-optimizations.html
www.aaicorp.com/pdfs/ugcs41709a.pdf


[122] University of Kent Careers and Employability Service. Non-Verbal
Reasoning Test. http://www.kent.ac.uk/careers/tests/spatialtest.
htm, 2013.

[123] Jan B.F. van Erp. Controlling Unmanned Vehicles: the Human Factors
Solution. In RTO SCI Symposium on ”Warfare Automation: Procedures
and Techniques for Unmanned Vehicles”. April 1999.

[124] Jan BF van Erp and Pieter Padmos. Image parameters for driving with
indirect viewing systems. Ergonomics, 46(15):1471–1499, 2003.

[125] Luc Vandal and Ortwin Gentz. In App Settings Kit (version as of 1 AUG
2012). Open Source (BSD) at www.inappsettingskit.com/, 2009.

[126] Balint Viragh. Dension WiRC SDK. Limited Distribution, December 2011.

[127] Jijun Wang, Michael Lewis, and Stephen Hughes. Gravity-referenced
attitude display for teleoperation of mobile robots. In Proceedings of the
Human Factors and Ergonomics Society 48th Annual Meeting, 2004.

[128] Alan Ft Winfield. Future Directions in Tele-operated Robotics. Technical
report, University of the West of England, 2000.

[129] Rosemarie E. Yagoda and Susan G. Hill. Using Mobile Devices for Robotic
Controllers: Examples and Some Initial Concepts for Experimentation.
Technical Report ARL-TN-436, Army Research Laboratory, 2011.

[130] Gerry Yarrish. Look, Ma! No Radio! ModelAirplaneNews.com, January
2011.

[131] Fareed Zakaria. Warrior robots in afghanistan. http://afghanistan.

blogs.cnn.com/2011/04/05/warrior-robots-in-afghanistan/, April
2011.

174

http://www.kent.ac.uk/careers/tests/spatialtest.htm
http://www.kent.ac.uk/careers/tests/spatialtest.htm
www.inappsettingskit.com/
http://afghanistan.blogs.cnn.com/2011/04/05/warrior-robots-in-afghanistan/
http://afghanistan.blogs.cnn.com/2011/04/05/warrior-robots-in-afghanistan/


Appendix A

Interviews with Company Commanders using Ground
Robots in Afghanistan

A.1 Correspondence with CPT Michael Knox, U.S. Army

264th Engineer Clearance Company,
27th Engineer Battalion (Combat)(Airborne)

FOB Fenty, Jalalabad, Afghanistan
March 2012 - March 2013

Question 1: How much training did your unit receive on robot operations? This

includes anything from training regarding TTPs to individual operator training

on specific robotic platforms. I’m primarily interested in formal training that

took place in CONUS prior to deployment.

I have multiple Soldiers that have deployed to different locations
throughout both Iraq and Afghanistan and all have different levels of
experience/training with different types of robotics. We primarily use
the Talons and were actually able to get our hands on a pair from our
18th ABN CORPS G3 CI2C to do a couple of training sessions. The
training was primarily aimed at individual operation of the equipment
itself as opposed to TTPs. NCOs and Soldiers with prior experience
were able to pass on different TTPs that they had either picked up
from EOD or deployment experience. We were only able to get the
robots 2 or 3 times.

Question 2: How did you choose which Soldiers would operate the robots?

Education, rank, luck of the draw? Or are all of your Soldiers expected to have

some proficiency with the robots?

175



Most of my Sappers have at least some sort of experience operating
Talons. Typically Soldiers with demolitions experience or Soldiers
that had been to either EOCA or R2C2 Sapper were primaries for
robotic training. Also, typically you have the type of Soldier that is
a driver/gunner or a dismount/Sapper. The dismount/Sapper type
is usually the one out on the ground and is typically the operator of
the robotics. Generally, everyone has some sort of experience due to
pulling them out and playing with them on down days.

Question 3: You stated that you don’t use the robots all of the time, how

many hours per week would you estimate they are in operation? What are the

primary missions for which they are deployed? Route clearance, reconnaissance of

villages/locations/buildings? Are they deployed directly from the outpost/base

or transported (either by vehicle or dismounted Soldier) to a pre-determined

location and deployed from there?

Like I said, we have marcbots, packbots, talons, and scouts. We really
only use the talons due to their robust size and capabilities. I wouldn’t
be able to estimate an hourly usage per week as they are generally
only used to either interrogate suspected IEDs that can’t be visually
observed by gyrocams or the naked eye or to emplace demolitions
charges used to blow in place any sort of explosive hazard that needs
reduced. Reducing explosive hazards by emplacing pre-prepared
charges is the primary mission for which the talons are employed.
We have a Talon RDS (remote delivery system) that was primarily
designed for the Iraq theater where Sappers chose not to dismount.
The Talons are typically prepped pre-mission and stowed in the RDS
until an explosive hazard that needs to be reduced is located or
identified at which point dismounts are dropped out of the patrol and
the robot is employed to either interrogate or reduce the explosive
hazard.

Question 4: Do Soldiers generally like the robots? What are the major

complaints?

The Soldiers typically like the talon robots because they are robust
and reliable. The smaller robots typically are not even used because

176



the terrain where we are deployed is not conducive to the smaller
robots. Mud, tall grass, water, trash all inhibit the use of the smaller
robots such as the Scout. It was typically designed to throw into qalat
structures to recon them but with the restrictive ROE in effect in the
Afghanistan theater there is not really any need for us to enter/recon
the inside of qalat structures. I would say the biggest complaint is
the time it takes to place it into operation and to recover it.

Question 5: Do you personally see a need for research/improvement of robot

controllers? If so, what would be the first thing you would look to change?

I don’t personally think that implementing a fragile smaller
touchscreen controller for any of the robotic systems is a feasible
solution. The larger, current OCUs are more durable and easier to use
with gloves. Also, the problem you run into when you start making
smaller, technologically advanced controllers is you increase the need
for civilian FSR support to keep the hardware running. My biggest
complaint with the equipment that RD is providing the Army right
now is that it is so advanced that it requires a small Army of civilian
contractors to keep them running. Often, there is only 1 or 2 FSRs
in theater and it takes days or weeks to get them to your location
to repair or troubleshoot equipment. I think that my soldiers like
to have a robust controller that is easier to work without removing
gloves and that is less susceptible to being either crushed or lost.

177



A.2 Correspondence with CPT Jack Morrow, U.S. Army

Commander, 693rd Engineer Company (Sapper)

FOB Azizullah, Maiwand District, Kandahar Province

October 2012 - July 2013

Question 1: How much training did your unit receive on robot operations? This

includes anything from training regarding TTPs to individual operator training

on specific robotic platforms. I’m primarily interested in formal training that

took place in CONUS prior to deployment.

• Explosive Ordnance Clearance Agent (EOCA) Course – 7 slots.
About 2 weeks worth of training on the PackBot and Talon
robots. School runs for about one month total.

• Route Reconnaissance Clearance Course (R2C2) Sapper – 6
slots. About 1 week of training on the Talon robot. School
runs for about two weeks total.

In theater school house training prior to RIP/TOA at Kandahar
Airfield:

• Blow in Place (BIP) Course – 12 slots for Soldiers who had
already complete EOCA and/or R2C2 Sapper. 2 days are spent
working with the Talon robot.

• DOKING – 8 slots. 1 day course.

Question 2: How did you choose which Soldiers would operate the robots?

Education, rank, luck of the draw? Or are all of your Soldiers expected to have

some proficiency with the robots?

I wish I could tell you I had a deliberate plan for this, but my choice of
which Soldiers to send to the courses was really a matter of availability.
I had approximately 45 schools (totaling about 200 slots) I had to
send my Soldiers to prior to deploying. Some of these schools were
FORSCOM Route Clearance Pre-deployment Requirements and some
were developed by my battalion, the 7th Engineer Battalion. Most of

178



my school dates corresponded with a time when my company was at
55% strength. So basically if you met the minimum rank requirement
(in some cases I had to get waivers for rank), you were going to go
to one of the mandatory schools. When you got back from one of
those schools, you were probably going to go to another and possibly
a third. I was using names of Soldiers still in basic training (but on my
gains roster) as place holders to secure the school dates. When a new
group of Soldiers arrived, we just verified that the ones who showed
up were the ones we slotted for schools (or changed names slotted for
the school if our projected gains never made it out of Basic/AIT) and
we immediately sent them to school. It was ridiculous, but it was the
only way we were going to meet the minimum TDY school training
requirements necessary for my company to deploy and assume a route
clearance mission in Afghanistan.

Question 3: You stated that you don’t use the robots all of the time, how

many hours per week would you estimate they are in operation? What are the

primary missions for which they are deployed? Route clearance, reconnaissance of

villages/locations/buildings? Are they deployed directly from the outpost/base

or transported (either by vehicle or dismounted Soldier) to a pre-determined

location and deployed from there?

We currently use the Talon robot for charge placement, interrogation
of suspected IEDs, and cutting 550 cord when manually emplacing
MICLIC charges with the DOKING. We use Rapid Deployment
System mounted back of RG-31 to carry and deploy the Talon on
patrol. Robot backs into the mount and is locked in place, ready to
deploy.

While the DOKING has a number of great uses (flail for brush
clearing), we have been primarily using it to manually emplace
MICLIC charges. We do this because we can guarantee the charge is
centered on the road where we suspect a large number of IEDs are.
By doing so, we also eliminate the possibility of the rocket (normal
deployment of MICLIC) veering to the left or right and pulling the
MICLIC into an area where it might cause collateral damage. Our
technique is simple. We simply tie the MICLIC to the DOKING pintle
with 550 cord and send the Talon downrange with a knife taped to

179



the arm to cut the 550 cord. Weve emplaced 21 MICLICs this way,
and it has work well.

Question 4: Do Soldiers generally like the robots? What are the major

complaints?

SSG Thomas Gribble: The battery life of laptop style remote controls
is a big problem for PackBot. Currently, you need a reliable 110
outlet in vehicle to keep the remote charged for the duration of a
patrol. On the plus side, the PackBot is smaller and lighter than
Talon and just as maneuverable, though you cant pull or lift as
much weight with it as you can the Talon. The 360 degree camera
system is great on the Talon. Line of Sight is a problem between
the Talon remote control and the robot. The current OCUNeed far
too large and cumbersome; you simply cannot move very far as a
dismount while operating the Talon. In a firefight it would not be
easy to stow the OCU, shoot your weapon, and continue operating
Talon in one quick motion. You cant just take off running for cover
dragging the briefcase while it is open. Need a smaller OCU, much
smaller. Need longer battery life, batteries dont recharge well or
hold charge well in combat environment. Joystick controls for the
Talon work well. Could easily make this smaller and keep the same
general control joystick concept. Touch screen would be OK if you
could keep the controls for the upper and lower arm separate. Keep
the 8 frequencies channels on the OCU the same. Having the ability
to change frequencies in case someone jams you is critical. Keep the
360 degree camera on the Talon. This works great.

SPC Jeremy Meeks: Current OCU works well from a control
standpoint as it is dual joystick driven. Its simple to use, and you
could teach any Soldier how to operate it in 5 minutes. The current
battery wont last for an entire patrol. The OCU is a little big,
but the main issue is there is no internal battery compartment.
The OCU has a power cord that connects to an external battery.
If you had to run and take cover from direct fire while operating
the DOKING on the ground, you would have a large battery in
your pocket bouncing and cord dangling that could get caught on
something. Dont change the controls, just make it smaller. I would
rather have joysticks than a touch screen, but I feel like I could learn
to use a touch screen with enough stick time. The DOKING itself
works fine in my opinion, though it would be good to make it easier

180



to connect and disconnect components such as the flail and blade
because it currently takes 3 Soldiers to change these components.
The hydraulic system leaks quite a bit. After operation it is not
uncommon to find a lot of hydraulic fluid collected in a pool on
the belly plate. Currently there is a special key you need to open
up the side compartments to check the battery and wiring of the
actual DOKING. Given the turnover of equipment from unit to unit
in theater and operator to operator during missions, there is the
potential for the key to be lost easily and this isnt practical in combat.

SGT Fredrick Snook: The Talon robot itself is pretty much
exactly what I want. The Talon OCU is very easy to control and the
360 degree camera is very good. Even making the joysticks smaller
(operated with thumbs) would be an improvement. Currently there
are three joysticks for the Talon (drive, upper arm, lower arm).
Camera and the robot wrist are on toggle switches, creating five
different components of control being used at any given time. Some
of these functions could be consolidated into fewer joysticks/toggles,
or at least moved so that it can be operated without having to pick
up my hand and move it to a different part of the control. Every time
I have to move my hand, I have to look down at the OCU and take
my eyes off of what the camera is seeing. There are a lot of switches
on the OCU that I never use. I dont see any reason why a lot of
the controls couldnt be consolidated into a touch screen. If I had to
choose, I would keep the joysticks, but I could deal with using a touch
screen if that is what it took to make the OCU more transportable.
You could make the OCU more like an X-box controller (similar to
the Raven UAV) and that would make it more transportable.

CPL Sean ODonnell: Having an external joystick of some kind
is important for easy operation. Sometimes touch screens (like
we have for our rollers) tend to stick, and that delay in operation
could mean the difference between our robot doing what it is
supposed to do and ending up stuck in a ditch in the middle of
an IED belt. An X-box type controller would work well in my
opinion. The controller already is partially a touch screen, so I
dont see any issue keeping a touch screen but not as a standalone
means of controlling the DOKING. Having an internal battery
pack for the DOKING OCU is common sense. Maybe even
modeling the controller after Nintendo DS controller with a flip up
screen could work. The front mounted camera on the DOKING
should be an oscillating (360 degree) camera. This would make

181



it much easier to drive the DOKING particularly in restricted terrain.

SGT Denver Colin, Team 2, 2nd Platoon, 766th OD CO (EOD): We
currently use the Talon robot when conducting mounted patrols and
the PackBot 310 when patrolling dismounted with infantry. We also
have an Armadillo, but we had problems with the arm, mainly that
it would not deploy properly. The arm usually fell into the ground.
I like the Talon because it is durable and can go almost anywhere.
The arm is strong and can pull heavy jugs out of the ground. The
OCU is big and bulky, but it is very easy to use. The one thing I
would improve on the Talon is the clarity of the cameras. The OCU
for the PackBot 310 is light, transportable, and easy to use, but the
robot itself is not very good. The PackBot 310 has limited range,
and does not do well in the mud. The arm does work, but not as
well the Talons Army does. The current PackBot 310 OCU includes
an eye piece display and an X-box type controller with the main
OCU component carried on the back. The eye piece is difficult to
see unless you cover your head with a t-shirt or something similar.
You can also use a heads down monitor about 5 x 7 instead of the
eye piece, and this works pretty well. If I needed to take off running
for cover, I could shove the screen in my vest and find cover. I worry
about the responsiveness and sensitivity of a tilt based control. Im
more confident and comfortable with joystick operated controls and
my ability to adjust the sensitivity/responsiveness of the controls to
my needs. Perhaps having a combination of knobs and touchscreen
could work. The important thing with a touch screen would be able
to do everything on one screen without flipping back and forth.

182



Appendix B

Institutional Review Board #1115

183



Figure B.1: IRB Approval Letter

184



Figure B.2: IRB Recruitment Material

185



186



187



188



Figure B.3: IRB Informed Consent

189



Appendix C

Experiment Results: User Questionnaires, Experiment

Logs, and Participant Comments

Results presented in Appendix C are presented by phase, averaged for all users.

For by-user results, please reference Appendix D.

C.1 Demographics

25 participants were recruited as experiment subjects and reimbursed $40 for their

time. Demographic information was collected via survey during pre-interviews,

the results of which are reported here (Figure C.1). A five-point Likert scale was

used to measure participant experience and proficiency (see Table C.1).

Table C.1: Population Demographics: Proficiency/Experience Likert Scale

Excellent 5

Good 4

Average 3

Poor 2

No experience 1

190



Figure C.1: Population Demographics Survey Results

191



C.2 Performance Measures: Experiment Log

In the following figures, results are presented by controller level [A-E], by phase.

• Phase 1 - Figure C.2

• Phase 2 - Figure C.3

• Phase 3 - Figure C.4

Figure C.2: Phase 1 Performance Results

192



Figure C.3: Phase 2 Performance Results

Figure C.4: Phase 3 Performance Results

193



C.3 NASA TLX Results

The following figures show NASA TLX Workload scores by phase [1-3].

• Phase 1 - Figure C.5

• Phase 2 - Figure C.6

• Phase 3 - Figure C.7

The tlx score, or total weighted workload, served as the dependent variable

summarizing this data in the results chapters.

Figure C.5: Phase 1 NASA TLX Results

194



Figure C.6: Phase 2 NASA TLX Results

Figure C.7: Phase 3 NASA TLX Results

195



C.4 System Usability Scale Results

The following figures show System Usability Scale results by phase [1-3].

• Phase 1 - Figure C.8

• Phase 2 - Figure C.9

• Phase 3 - Figure C.10

These were collected as part of each post-iteration survey. The SUS score,

or total usability, served as the dependent variable summarizing this data in the

results chapters. Questions 1 through 10 [Q1-Q10], which comprise the SUS,

are rated by users on a scale of one (strongly disagree) to five (strongly agree).

All numerical results are scaled such that larger numbers indicate a desirable

outcome (i.e. more usable) [18].

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to

use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very

quickly.

196



8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

Figure C.8: Phase 1 System Usability Scale Results

197



Figure C.9: Phase 2 System Usability Scale Results

Figure C.10: Phase 3 System Usability Scale Results

198



C.5 Post-Iteration Survey Results

Users took post-iteration surveys after each trial, primarily to gather information

specific to the controller level. Questions were both free-text answer as well as

ranked multiple choice. The survey was comprised of two sections:

1. The first asked questions regarding quality of training, ranked using the

Likert scale defined in Table C.2.

2. The second asked users to rate their ability to conduct certain trial subtasks

(related to either driving or camera manipulation), ranked using the Likert

scale defined in Table C.3.

Table C.2: Post-Iteration Questionnaires: Training Likert Scale

More than adequate 4

Adequate 3

Less than adequate 2

Inadequate 1

Table C.3: Post-Iteration Questionnaires: Trial Subtask Skill Likert Scale

Extremely easy 5

Easy 4

Neither easy nor difficult 3

Difficult 2

Extremely difficult 1

199



C.5.1 Phase 1

Results are presented in two parts, training (Figure C.11) and maneuver

(Figure C.12). Additionally, Figures C.13 and C.14 depict the “easiest” and

“hardest” tasks with each controller type, as defined by users.

Figure C.11: Post-Iteration Questionnaire: Phase 1 Results (Training)

Training comments (Controller A):

• Plenty of time to get at least semi-acquainted with the controls, especially given their
ease of use.

• Easier to drive robot in straight paths.

• Well organized training and nice instructions.

• All aspects were well explained with more than adequate familiarization time to prepare
for the trial.

• Joystick was more intuitive than the tilt-based controller.

• If there were arrows on the display that indicated orientation or a wider camera view it
would help in navigation. Learn about how to drag the joystick left and right made an
extraordinary difference in controlling the robot.

• Joystick seemed unresponsive.

200



Training comments (Controller B):

• The tilt-based control seems better than the joystick for steering and control while going
fast. Similar to my problems with decreasing acceleration with the joystick, throttle was
a little difficult with the tilt-based control. Going slow and medium speeds were easy,
but going faster or a sufficient speed seemed more difficult and almost unobtainable at
times (such as at the top of the ramp).

• The only thing that became a little bit of an issue was the understanding of the sensitivity
of the tilt and what effect it would have on the robot.

• You did a great job!

• Plenty of time to practice controls and familiarize with objectives.

• I don’t think that any more time would have improved performance.

• I would often try to re-engage control of the robot before resetting the phone’s position.

Figure C.12: Post-Iteration Questionnaire: Phase 1 Results (Driving)

201



Driving comments (Controller A):

• It seemed like there was a lot of dead space in the middle then it ramped up very quickly
to full speed.

• The control was very sensitive with little gap between slow and FAST. Also it seemed
that at times the control responded to input with a lag.

• Again, sensitivity became a small factor when trying to maneuver robot to point in
direction of arrows

• the sensitivity of the controls was not linear, and felt a bit ’wonky’

• It is hard to use the controller with no use of iphone

• Identifying obstacles was difficult with respect to obstacles in peripheral field-of-view
Most difficult aspect was the stop¡—¿full speed travel distance on the joystick.
Otherwise, the theory of operation was sufficient to drive comfortably

• Could not maintain forward movement and change direction of turn. Occasionally it
turned to opposite direction when I attempted to move forward and turn simultaneously.

• Video was laggy and straight forward was hard.

• It can become more accurate with practice.

• I had a lot of trouble determining how far to move the joystick to find a comfortable speed
at which to travel and turn. It seemed as though sometimes the robot acted differently
from how I was instructing it. Specifically, I would try to move forward and it would
veer left, and if I tried moving at a slower speed it would try to reverse. Aside from that,
the turns did just as I planned for them to. Because I had a hard time finding a good
speed at which to travel/turn, I ended up just moving in quick spurts and correcting
where I needed to.

• Very difficult to drive exactly straight.

Driving comments (Controller B):

• I really liked the controller and felt like it was easy to use, I just didn’t feel like the robot
responded very well to the controls.

• The range of motion gave a sense of less sensitivity. The operation of the robot felt more
’in control’

• much more difficult than the joystick

• I think the easiness to use the controller is the biggest merit. I do like it very much.

• Laggy video made small corrections hard, and I had a hard time turning in place with
out going forward or backward

• Because of the limited view, I could not see all corners of the robot, allowing me to
only be prepared for obstacles in my view. I don’t think I did a center-point turn, only
because I could not find the right angle at which to hold the controller, so I had to plan
for a turn that may have moved the robot laterally into an obstacle.

202



Figure C.13: Controller A: Easiest/Hardest Control Tasks

Figure C.14: Controller B: Easiest/Hardest Control Tasks

203



C.5.2 Phase 2

Results are presented in two parts, training (Figure C.15) and camera

manipulation (Figure C.16). Additionally, Figures C.17 and C.18 depict the

“easiest” and “hardest” tasks with each controller type, as defined by users.

Figure C.15: Post-Iteration Questionnaire: Phase 2 Results (Training)

Training comments (Controller C):

• I had some difficulty panning the camera with smoothness rather than jumpy, jerky
movements.

• I preferred the joystick over the tilt camera because the screen I was looking at did not
have to move

• I didn’t fully understand the rules on where the colored poms could be located until I
had found the first one.

• More than enough training time –¿ most aspects more than adequate training time

• There was some camera lag when driving the robot

• The controls seemed more smooth this time, I don’t know if they were tweaked or if it
is just more practice.

• needed to ask about joystick irregularities

• The joystick was much easier than tilt for operating the camera – less intrinsic confusion
when switching between modes of operation

• Perfectly explained, answered questions well

204



Training comments (Controller D):

• I had some difficulty adjusting to using the camera with the tilt feature and not moving
the rest of my body.

• When I would tilt the camera, I felt like I had to rotate my head in the same direction
as the tilt to get a good view of the screen

• A persistent snapshot button would have made it more obvious I needed to take a
snapshot. I often did not notice that it had appeared.

• No lag. Both the driving and camera control seemed more responsive.

Figure C.16: Post-Iteration Questionnaire: Phase 2 Results (Camera Control)

Camera control comments (Controller C):

• The camera moves a bit fast with the joystick. It was slightly more difficult to control
with precision.

• Again it was difficult to know how far the sides of the robot were from an obstacle.

• lag in taking pictures; not present in other controller

• The joystick was a little too touchy to me, so I felt as if I was jumping around to the
extreme ranges of the camera instead of slowly scanning the scene.

• i liked the joystick better than the tilt for the camera

• Interestingly, I found it much easier to scan the environment using the tilt controller.
However, the orientation of the camera with respect to the robot was slightly less
apparent.

• it is hard to pan camera by small amounts

205



• Fantastic control, the camera worked well.

• Had to understand how joystick works. it’s a little different than expected

Camera control comments (Controller D):

• It was only difficult to remain still and only move the phone rather than my body. It is
still a little difficult to visualize the sides of the robot when you are driving so that you
know you are not going to run into something.

• The camera controls were great. The only less than perfect thing was the time laps I
had between finding the object, pausing, taking a picture, and then returning. I’m not
sure if that could become quicker, but it was great in general!

• The tilt camera was more difficult for me than the joystick-controlled camera.

• I found the ability to identify which direction the camera was looking wrt the robot to be
a non-issue due to its automatic return-to-center when driving. Or it may have simply
been so easy to keep track of that I never thought about it...

• hard to pan by small amounts

• I found myself trying to use a joystick for the camera control instead of tilting a couple
of times. Overall I found the joystick version to be a bit more intuitive to use.

Figure C.17: Controller C: Easiest/Hardest Control Tasks

206



Figure C.18: Controller D: Easiest/Hardest Control Tasks

207



C.5.3 Phase 3

All Phase 3 results were collected post-experiment, since only one timed trial was

conducted. A portion of that survey asked the same training and manipulation

questions asked in Phases 1 and 2’s post-iteration surveys; therefore, those

results are reported here: training (Figure C.19) and driving/camera control

(Figure C.20). Additionally, Figure C.21 depicts the two most important

customizable options used to create Controller E, as defined by users.

Figure C.19: Post-Iteration Questionnaire: Phase 3 Results (Training)

Training comments (Controller E):

• I was a little unsure about the controller turning controls?

• Good training, no complaints

• Training was fine, plenty of time to try out various settings.

• already knew most of it, so very simple

• The on-screen descriptions were not perfect, but instructor training makes up for it.

• The customizable interface was very intuitive.

208



• I enjoyed being able to customize the features.

• The instructions were concise, and being able to choose my controls and their layout
made it personalized and easier for me to use.

• Settings pane would be hard to find if you had no idea where to look.

Figure C.20: Post-Iteration Questionnaire: Phase 3 Results (Camera & Driving)

209



Driving/Camera control comments (Controller E):

• Sometimes it didn’t recognize when I was moving the iphone to move the camera.

• Upon using the hard button for the camera, some weird effects were found whereby the
camera was panning in the opposite direction and sometimes not responding at all.

• I like the fact that sensitivities can now be changed to fit an individual’s preferences.

• this is taking into account the multiple times i’ve been able to practice with this system

• Sometimes when driving the robot seemed to veer left when I was trying to go straight
forward. Some of this could have been operator error but I could not seem to ever fully
adapt to it drifting left

• the hardest thing was anticipating the lag

• ”I felt moving the camera in ””real time”” made it more difficult. If I could just push a
button that would make the camera automatically scan in a predetermined way all the
possible angles it could scan with respect to my position, it would be easier.”

• I thought the camera was mounted a little differently today, because I was not able to
see the front end of the robot. This played into my ability to detect how far my nose or
tail was from surrounding objects. Also, I chose the camera joystick because it is quicker
to scan with less physical requirements of the user, but it still seemed a little jumpy,
even as I played with its size.

Figure C.21: Controller E: Most Important Customizable Control Options

210



C.6 Post-Experiment Survey Results

C.6.1 Phase 1

Users took post-experiment surveys at the conclusion of each phase, primarily

to gather information specific to user preferences. Questions were both free-text

answer as well as multiple choice (e.g. Controller A vs. Controller B).

Figure C.22: Post-Experiment Questionnaire: Phase 1 Results

Overall comments regarding user preference:

• Overall, I preferred the tilt-based controller due to the easiness of maneuverability at
higher speeds; I did, however, find the faster speeds a little more difficult to obtain with
the tilt-based controller compared to the virtual joystick. The finger(?) touch method
was a little inconvenient with the tilt-based in that I quickly experienced discomfort in
the arm and wrist.

• I thought the joystick was a little more accurate but I have always preferred tilt based
in the past. I even felt myself trying to tilt when using the virtual joystick since that’s
what I’m so used to.

• Tilt-based controller was the most natural interface for me. I felt that the virtual joystick
was not response enough so that when I wanted to move the tank slowly, I invariable
had to move the joystick so far in one direction that the tank moved in lurches.

211



• (tilt) easier to use

• (tilt) Due to feeling more ‘in control’ from the feeling of less sensitivity

• Tilt-based was easier to understand sensitivity of controller but harder to move at higher
speeds

• the tilt based one seemed to have inconsistent turn speeds

• I’d say that a combination of the two would be great. tilt is excellent for going forward
and back. joystick is good for turning

• (tilt) This controller is much easier to control the robot.

• Tilt-based was more intuitive; less focus has to be rationed toward rule-recall

• If the R/C tank had had a more smooth control system, the disparity between these
would probably be lower

• Both felt jerky but I think that it was a limitation of the robot and not the controller.
Tilt based seemed smoother and more intuitive.

• I preferred the joystick although it seemed somewhat more erratic. The tilt based input
was consistent but not as easy to use.

• The tilt controller was easier to drive with while going straight and making small
corrections. The joystick made turning in place easier.

• The green/red light can be used to guide the robot toward an object. I did not realize
this until late in the experiment.

• (tilt) Because this method is so similar to driving, it was much easier for me to adapt
to.

• (tilt) It was more predictable. It was easier to go forward and to make small adjustments
in direction.

212



C.6.2 Phase 2

Figure C.23: Post-Experiment Questionnaire: Phase 2 Results

Overall comments regarding user preference:

• The joystick camera was easier for me to control because I felt like I was moving a “head”
around to look at things, so to speak. That is, compared to the tilt-based camera, which
would seem like I had to use the whole “body” to move the field of view.

• Felt joystick was more accurate and repeatable

• Joystick usage was more intuitive and didn’t cause me to move more than necessary

• I did not have to turn my head with the joystick camera

• much simpler/more intuitive to use

• I was physically moving a lot more with the tilt based camera but was more relaxed and
confident

213



• (tilt) It is much easier to control the camera.

• My largest frustration with the tilt-based controller when used for motion was the
combination of high-sensitivity and absence of boundaries. This frequently caused
dramatic over-steering. However, the boundary of motion in-place when using the
camera improved usability immensely. Unfortunately, this is unlikely to be applicable to
locomotive control. =[

• Switching between tilting for driving and tilting for looking kept me in a constant state
of minor confusion; reduced confidence. I was far more inclined to use the camera while
moving between objectives when it was on the joystick.

• The joystick was more intuitive, but the tilt-based was easier to control.

• The tilt controls were much smoother than the joystick camera controls.

• (joystick) Well, I really like both of them, but because I did well in the first one. that is
not mean the second one is bad. I believe both of the applications are good.

• the joystick camera is very hard to maneuver smoothly

• I enjoyed both options, but simply because the joystick was really touchy and jolted all
over the place, I’d prefer a softer and smoother scanning method.

• Even though the joystick was easier, the tilt method allowed me to easily identify the
robot’s direction vs the camera’s direction.

• (joystick) For me it was easier to pan and tilt the camera with this one.

• The tilt-based camera was easier for me to control.

Describe your scanning strategy:

• I did not use the camera at all for driving tasks. I tended to scan where I had a feeling
the ball would be, mostly moving from upwards left to right and then downwards.It was
imperative for me to position the car correctly to scan most effectively.

• I only used the camera pan/tilt for searching for balls, not for driving. I would go into
a box then scan left to right within the camera’s range, then rotate based on layout of
room and continue.

• I imagined I was a mom hiding a toy from a child and looked in the locations I would
have placed the toys first.

• I started scanning 180 from the direction I entered the box starting low and going high

• Moved in a box, went one direction, then up, then over, then back down. To ensure I
didn’t miss anything I then did a second more random look around before repositioning
the robot.

• Since I knew which direction the robot would be going after I completed the task, I tried
to maneuver the robot the other direction so that I would end up pointing in the correct
direction.

• i never used the camera scan for driving; never had to

• I used the camera for driving tasks occasionally but not often. I used the camera to
know my location on the map. My scanning depended on the environment. In a room
with a lot of space on the floor, I started scanning low and then went hight. For a room
with high walls and very little floor space, I scanned high then low. Whether I went left
to right or right to left was entirely random

214



• I start to scan left to right from high to low places.

• While navigating, I did not take advantage of the ability to pan and tilt the camera. It
remained static for the entire duration. However, upon reaching the “viewing box,” I
believe I scanned from high-to-low and left-to-right. Moving the camera while driving
could be more efficient, but with my driving skill I would not have been able to effectively
use them at the same time. If I were more experienced with driving then I would label
it as “Important.”

• Auditory feedback played an important roll in letting me determine approximately “how
on” the motors were before they started moving...Used when trying to move slowly drive
to the boxes, stop, scan low to high and then left to right, rotate the robot in the boxes,
scan again until the targets are in sight.

• I drove in short to medium bursts, seldom if ever using the tilting or panning of the
camera. Once I got to a scanning area I would scan around, hitting corners first, then
looking in the middle. After a thorough search I would reposition the robot and scan
some more.

• Upon entering the scanning-box, I would immediately scan what I could see, moving
from low to high, then work counterclockwise until I found the ball. Orienting it to the
map, I usually took second to find how close each object was to the course markers.

• The camera’s default position was adequate for most of the driving. I used it once to
see how I was stuck on a wall and I was able to look directly at the wall since I could
tell which side it was on when I hit it.

• Rarely scanned with the camera when driving the robot. It is fairly intuitive to drive and
understand where the tracks and front of the robot were. When scanning I usually looked
up before left or right. With the tilt controlled camera I had more trouble determining
where the end of the camera range was

• I did not really have any strategy planned for moving the camera around, i just picked
a location and looked around

• scan from initial robot position left to right, top to bottom. Next rotate the robot in the
direction required to make the next turn 120 degrees, scan, and so on. The first time i
scanned, it was pretty arbitrary just to get used to the controller in a real life situation.

• i tended to scan low left to right then high right to left

• I tried to drive in straight lines to my destination and make all turns at 90 degrees
whenever possible. I did try to scan left to right. I used the camera whenever I was
lodged against a wall or identifying an object.

• I used the camera while driving only when I realized I was not moving in the direction
I was hoping. This allowed me to see that I was stuck on a corner or slightly against a
wall. For scanning, I started at the robot’s eye level and moved up, because this initial
level showed everything I needed at the lowest point. I didn’t notice if I moved left to
right or right to left, but I generally started in the center and worked my way to the
maximum height, and then began scanning.

• I did not move the camera when not scanning. I would start scanning in the direction I
was facing, then move the robot at about 60 degree intervals to the right. This allowed
me to recheck some of my previously scanned area.

• I didn’t use the camera for driving, only for scanning. I remembered enough from phase
one to navigate the course without need to use the camera for scanning. Once in the
scan box I’d scan as far as I could, re-orient and then scan again until I found the object.

215



• I didn’t use the camera’s mobility except for the scanning portion. I can’t think about
moving two things at once. When I was ready to scan, I usually scan the entire field of
view available at the position where I stopped the robot, hoping to get lucky. If not, I
would try to turn the robot 120 degrees or so to get the adjacent field of view. I repeated
this until I found the target.

216



C.6.3 Phase 3

Phase 3 post-experiment results were already presented, primarily, in the section

on Post-Iteration surveys. The only remaining questions asked users to identify

options that they couldn’t customize, but wanted to; also, what changes they

anticipate making when adapting for gloved control (an exercise executed at the

end of Phase 3 trials).

Were there any options that you would like to have customized but
could not?

• Yes, I would prefer to have two joysticks, one on each side. Left side controls camera,
right side controls driving. Preferably, you could use them at the same time, but even
not, I’d prefer to have them be different places on the screen instead of a switch.

• The ability to limit the joystick when moving the camera. For a mission that only
requires you to search an area, it is unnecessary for me to be able to view directly down
at the top surface of the robot.

• sensitivity of the turn speed; it was so sensitive i had to come to a complete stop before
every turn

• cruise control

• A non-linear mapping from the joystick position to acceleration may be useful. One
minor grievance was the inability to scale obstacles, such as the entry ramp, when at
lower accelerations. Similarly, navigation was dramatically easier with the acceleration
at lower settings, but the artificial cap on acceleration was irritating during the long
stretches of open track.

• Turning as tilt and throttle as joystick (motors only run when throttle allows; no turning
even at full tilt if throttle is down)

• Tuning the balance between the motors.

• to move the camera and leave it in position while driving

• I would like the camera pan to be automatic.

• Where the camera is actually mounted, and it’s original line of sight. This only comes
to mind because I noticed a slight difference in the driving view from previous tests. If
camera and robot motion could happen simultaneously, this would not be an issue, but
if I were able to choose what my driving view was I may stop less often to check my
surroundings.

• I think there might have been too many customizations available. Most would not make
sense to the normal user without introduction.

217



If you were told you must wear gloves designed for use with
touchscreens while controlling your robot, would that impact the
controller settings you chose? If so, what do you think you would
do differently?

• No. (8 responses)

• If the gloves worked well, I wouldn’t change anything. If they didn’t, I would probably
use a hard button with tilt for driving.

• I would probably use the tilt function instead since the gloves wouldn’t allow me as fine
a control with a joystick.

• probably not. I preferred slow and slightly sensitive settings. The slower the settings,
the more control I felt I had on the robot.

• Perhaps; it would take a little getting used to, since the ’touch’ would be a bit off

• No I would not change the settings. I primarily used the tilt and hence cannot imagine
that the gloves will affect my control

• the controller should be easy to control. I will not choose the joystick controller. I will
choose the other one.

• Not likely. Neither of the available controller schemes are tactile. I suspect wearing
gloves would have little to no impact on one’s driving performance.

• yes, it would affect the sensitivity

• Yes, hard button for everything. I would probably still use the dual joystick controller,
but I would consider a tilt-based controller if it meant that I would no longer need gloves
and the gloves were uncomfortable.

• Not really. I would prefer not to use gloves because i feel it would add a degree of
separation from the controls, but overall it wouldn’t affect my ability to operate the
robot.

• It most likely would but how it would depend on how the gloves affected the soft control
button.

• It depends on the type of gloves. If they were designed for use with a touchscreen, I may
not have to do anything different.

• I’ve had no experience with gloves that allow touchscreen action, but I could imagine
that with a little testing and practice I would still be able to use the touch screen control
settings I’ve chosen. If the gloves were difficult for me, I would switch to hard button
controls.

• I would not use virtual joysticks at all.

• No, I think I could still operate the joystick and camera controls with gloves that are
designed for use with touchscreens. Hard to say for sure without trying it out, though.

218



C.7 Other Results

The final results presented are a by user account of the custom options selected

(Figure C.24) and their preferences from Phase 1 to Phase 3 (Figure C.25).

219



Figure C.24: User-Customized Settings

220



Figure C.25: Preference Comparisons (by User), Phase 1-3

221



Appendix D

DVD

This section describes the digital folders and files available on the enclosed DVD.

Questions regarding its content may be referred to the author at the permanent

e-mail address: amw91682@gmail.com.

D.1 WiRC

The folder labeled WiRC houses the entire XCode project (requiring XCode for

build settings and the compiler) as well as .h and .m header and implementation

files able to be opened in any C viewer or text editor. The application architecture

is described in detail in Chapter 3, and should be referenced where code comments

alone do not suffice. The WiRC manuals, custom protocol definitions, and

C-based desktop client are also included.

Folder list:

1. AttitudeTest. The code written for motion handling and quaternion

manipulation.

2. Control+IASK. The default controller application.

3. InAppSettingsKit. The open source project used to handle the customizable

222

amw91682@gmail.com


settings interface.

4. Joystick v1. The basic joystick control interface, using cocos2d.

5. WiRC iOS SDK original. The software development kit provided by

Dension, upon which the attitude aware controller was built.

D.2 Experiment Design

The folder labeled Experiment Design includes pertinent Institutional Review

Board (IRB) documents as well as survey instruments, cataloged by phase

(Survey Instruments).

D.3 Experiment Results

This folder includes the raw data presented in Appendix C, in spreadsheet form.

D.4 Videos

This folder holds a couple of sample videos displaying the robot and controller

in action. Ph1Tr7.mov is a sample of the video feedback available from a timed

trial.

223


	Introduction
	Background
	Motivation
	Current Operator Control Units (OCUs)
	Smartphones in the Military

	Problem Definition
	Objectives & Scope
	Dissertation Outline
	Research Questions & Hypotheses
	Research Question #1
	Research Question #2


	Literature Review
	Tele-operation
	Tilt-based Research
	Human Factors/Usability
	Designing for the Masses–Customizable Control

	Application (Software) Development
	Approach
	Controller Use Case
	Design Considerations
	Apple and Objective-C
	Model-View-Controller

	MVC: View (Controller Interface)
	MVC: Controller
	Motion Algorithm
	Transform Functions
	User Settings/Preferences

	MVC: Model
	Communication Protocol & WiRC SDK

	MainViewController

	Experiment Design
	Research Questions
	Related Work
	Hardware
	Course design
	Method
	Independent Variables
	Definition of Experiment Phases
	Dependent Variables

	Procedures
	Participants
	Training
	Timed Trials


	Experiment & Results – Phase 1
	Task
	Independent/Dependent Variables
	Statistical Analysis
	Hypothesis
	Analysis of Variance (ANOVA): The F-Statistic

	Results & Discussion: The F-Statistic
	Performance
	User Preference

	Results & Discussion: Correlation
	Analysis of Covariance (ANCOVA)
	Summary & Other Results

	Experiment & Results – Phase 2
	Task
	Independent/Dependent Variables
	Hypothesis
	Results & Discussion: The F-Statistic
	Performance
	User Preference

	Results & Discussion: Correlation
	Analysis of Covariance (ANCOVA)
	Summary & Implications for Phase 3
	Mode Confusion
	Customization


	Experiment & Results – Phase 3
	Task
	Independent/Dependent Variables
	Hypothesis
	Results & Discussion: The F-Statistic
	Performance

	Results & Discussion: Correlation
	Customization
	Effect of Satisfaction on Performance
	Controller E Configurations vs. Preferences
	Suitability of Controller Defaults
	Controller Operation with Gloved Hands

	Summary

	Conclusions & Future Work
	Project Summary
	Multi-Phase Usability Experiment
	Experimental Findings

	Future Work
	Continue Army Research Lab's Experiment
	Controller Modifications
	Additional Research


	References
	Interviews with Company Commanders using Ground Robots in Afghanistan
	Correspondence with CPT Michael Knox, U.S. Army
	Correspondence with CPT Jack Morrow, U.S. Army

	Institutional Review Board #1115
	Experiment Results: User Questionnaires, Experiment Logs, and Participant Comments
	Demographics
	Performance Measures: Experiment Log
	NASA TLX Results
	System Usability Scale Results
	Post-Iteration Survey Results
	Phase 1
	Phase 2
	Phase 3

	Post-Experiment Survey Results
	Phase 1
	Phase 2
	Phase 3

	Other Results

	DVD
	WiRC
	Experiment Design
	Experiment Results
	Videos


