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PREFACE 

The purpose of this report is the derivation of slope deflection 

equations for trusses of constant depth and their application t.o the 

analysis of structures containing truss-members. Slope deflection 

equations and moment distribution constants for truss-members of con-

2 J stant or variable depth were developed by J. M. Haynes, E. R. Jacobsen, 

and L. C. Maugh.4 The basic structure used in their investigations was 

a simple beam-truss. The writer 1 s contribution is the application of 

elastic center to these derivations. 

The normally slow procedure for evaluating load and truss constarltS 

has been eliminated by deriving general formulas using power series. 

The evaluation of constants by power series was first introduced by 

J. J. Turna in his 1956-57 extension class held in Oklahoma City. The 

power series expressions were applied by him and W. Sullivan to the anal-~ 

ysis of truss frames for the C. A. C. building in Oklahoma City, The 

computation of elastic constants for three typical cases were added by 

the writer. 

The nomenclature used in this report is explained either in the 

chapter they are used or in a pre,:;eding chapter. 

Indebtedness is acknowledged to Professor Tuma for his valuable 

guidance and assistance in the preparation of this report, and to my 

wife, Mrs. Dolores Morrisett, for her care in the typing of this repor-t. 

1. It is a general reference number in the bibliography. 
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CHAPTER I 

DERIVATION OF SI.DPE DEFLECTION EQUATIONS 

A. Statics 

A typical truss beam removed from a continuous elastic system, load-

ed by a general system of forces, is considered ,Fig. 1). The truss has 

constant depth and is fixed at both ends. 

In the analysis of this truss, the following assumptions have been 

ma.de: 

1. All members are connected by frictionless hinges. 

2. All members are subjected to axial forces only, and the influence of 

shear and bending moment is neglected. 

3. The truss and the loads are forming a coplanar system. 

4. All loads are applied at joints. 

5. The deformations of the truss are elastic and small. 

~ l ---r-· :~ 
FMAB FMBA --h h 

h 

FMAB / FM / 

~ 
h h 

L 

RAY Fig. 1 R.i3y 

Truss Beam with General System of Loading 

1 
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The structure has four reactions: two reactive forces, RAY ana. 

RBY and two reactive moments, FMAB and FMBA. 'rhe problem :Ls stati-
' 

cally indeterminate to the second degree and its solution requi.res two 

equations of deformation, 

M C o 
a h 

Fig. 2 

F'ree -- body Trusses AC and CB 

General displacements of supports ~AY, ~BY, eA and 8B are in-

troduced. The given system is resolved into free body sketches AC and 

BC as shown in Fig, 2. The resultant of loads corresponding to part AC 

and CB is denoted by w1 and w2 respectively. 1'he forces at the central 

cross=section are V0 and M0/h. Assuming all displacements and reactions 

to be positive and using conditions of static equilibriu~, the end re-

actions of parts AC and CB are: 

M0 - aV 0 CMAC 

-lvl'-o - aV O + CMBc 

where CMAC and CMBC represent the cantilever moment due to w1 and W;;.: re

spectively. 
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The normal force for any member in the truss in terms of tho ap-

plied loads and the redundants is: 

Ni = SNi + 0. iMo + 8 ivo l2) 

where SNi -· normal force in any member due to loading 

ex i =- normal force in any member due to Mo .::::. l 

and B i = normal force in any member due to Vo :;:; l 

B. Least Work 

The Principle of Conservation of Energy states that: 

u. 
1 =- ue (3) 

where ue = the external work 

and ui = the internal work 

The internal work is formed by: 

ui = u s + UV ( 3a.) 

where Us = the strain energy of the structure 

UV = the strain energy due to volume change 

The energy due to volume change is neglected and equation (3a) becomes: 

= 

where Li :;:;. length of any member 

Ai = cross-sectional area of any member 

and E = moduJus of elasticity 

In reduced form: 
B 

ui ::. us =-
22 --~i Ai (3b) 

A 

where Ai = Li 
l7E' 1 
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The external work is expressed as: 

u e = U1 + Ur (3c) 

B B 
where U1 = 2).6. + Iwe ::. ~ork due to loads 

A A 

B B 
and u ::; ~Rf.\ + })g :. ,•ior k due to :reactions r 

A 

The work of supports in terms of displacements and rec:.ct:Lons defined by 

equation (1) is: 

Ur = RAY6 AY + MAB9A + RBYL\BY + MBl;iB 

= (Wl + vo)6 AY + (M - av - CMAC )9A 0 0 
(3d) 

+ (W2 - V )l\-oy + (-M - av + t:MBC)eB 0 .,_, __ 0 0 

According t0 Castigliano I s theorems, the first partial derivative' 

of the strain energy of a truss ~ith unyielding supports, with respect 

to a redundant, is equal to zero. Al.lowing displacement of supports; 

we have: 

3 Ur 
8M0 

aur 
avo = 

8 Us (3e) 

oM0 

au s (3f) 

avo 

The partial derivatives of equation (3b) with respect to each redundant 

are: 

B 
B 

aus = IN· 8N1 A- = 2)~- ex· A· 
8~ 

1--~ l A 1 i i 91\, 
A 

('3g) 

B 

au IN· aNi A· 
B 

s =- = 2)i Bi Ai l-- l 
avo av0 A 

A 

(3h) 
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The partial derivatives of equation (3d) with respect, to each redundant 

are: 

aur - QA - QB - (3i) 

oM 
0 

aur I:). AY - aQA - aQB - I:). BY = av0 

= a.GA - a.eB + I:). y (3j) 

where f:}.y - I:). AY - I:). BY 

C. Deformation Equations 

Equations l3e, 3f) in terms of equations (Jg, Jh, 3!, 3jJ becomes: 

I:). y - a9 
A 

B B B 
iSNiCX ~Ai + M_,; 0. I Ai +- Vo ~Bi C(i Ai 

- aG 
B 

B B 
IM ~a.E.A, + v ~/3~). oi 1 1 1 · 01_ 11\1 

From symmetry: 

= 0 

Thus the simplified equations are: 

B B 2. 
= fSN, d· t\ · + Mo LQi/\i 1 1 l 

A A 

B B 
= l?Ni8 ii\i + Vo L.8 f Ai 

A A 

Denoting: 
B 

02 = Isnia ii\i 
A 

t4) 

(4a) 



B 
I'<Y · 2.1 • A 1(\1 = 

the deformation equations become: 

.6. ... ae - ae 
Y A B 

Solving these two equations, the redundants are: 

-D1 t &A - ~ ~ 
C1 C1 c1 

Vo -D2 - a9 - a<,B + .6.y =- _A 
C2 C2 C2 C2 

Substituting the results of equation (4c) into equation {l): 

I 
'( 

= 

MBA I = 

-. t - eA t (a2 1 ) 
C2 Cl 

-

2 . 

c!_ + ~g t C C B 2 1 

-

(~:- t) eB 

a.6.y - D1 + aD2 - CMAC 
C2 Cl C2 

(' - ~)GA 

a.6Y +_ Dl + ~D2 t CM - BC C2 cl C2 

6 

t4b) 

(4c) 

(5) 

(6) 



CHAPTER II 

SERIES EVALUATION OF CONSTANTS 

FOR SPECIAL CASES 

In this chapter, three straight trusses of constant depth, are con-

sidered. Nomenclature used in this chapter is: 

a = half-length of truss 

ABi cross-sectional area of bottom bars 

ABMD bending moment area of basic structure 

ADi = cross-sectional area of diagonal members 

A 
Ti 

cross-sectional area of top members 

b = panel length 

BMD = bending moment diagram 

C length of a diagonal member 

h height of truss 

i = any truss member 

L = length of truss beam 

n = number of panels in full-truss 

s = number of panels in half-truss 

I\ Di 
7\ of any bottom member 

"?\ 
Hi 

= ?\ of horizontal members b = AHE 
(\ 

Ti 
/\of any top member 

7 



A. Case I - Pratt Truss 

A Pratt Truss of constant depth and loaded by a general system of 

forqes as shown in Fig. 3 is considered. 

MAB 
h 
MAB 

h 

p p 
2 P P P P P P P P P 2 

L 

Fig. 3 

Typical Pratt Truss 

Pa Ps-1 P3 P2 P1 po 

MAB s-1 
h s 

s-

1 
h 

1 MAB 
h A s s-1 3 2 lJ Fi 

a= 5b 
RAY 

Fig. 4 

Truss Element AC 
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TABLE I 

TRUSS AND LOAD CONSTANTS 

l 

2 

3 

s-1 

s 

1 

2 

3 

s-1 

Ci 
i 

- 1 
h 

- 1 
h 

- 1 
h 

- 1 
h 

- 1 
h 

1 b - M1 I 
+ h - h h I 
t 1 - 2b _ M2 1 

h h h 
t 1 ,.,b _ ~ 

h -.,h I h 

+ _hl - (s-1)£ I - Ms-J 
1
1 

h h 
s +1 -sb _Ms I 

1--~~~----1-------0----+--~-~-. ----1--~~-oE~~--.-.-~h~~-------1 

rj 
.2 
+ 

s.:. 
Q) 

> 

cr 
C 
0 
ITT 
0 

1 

2 

3 

s-1 

s 

1 

2 

3 

s-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

- l 

- 1 

- 1 

- 1 

, 
- .l. 

+ c/h 

+ c/h 

+ c/h 

t c/h 

I 

I/ I 
/1 

,I I 
/ ! 

I I 
/ I 

l I 
!' I 

I I --------·-·~\-_._,_... ___ s ____ _._ ______ o_·..---.__~+---_c~/h~··.~~-"'-~·~· -· ~~-~......-!-1 
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The truss of Fig. 3 is resolved into two free-bodies, AC and CB, 

with AC shown in Fig. 4. The elastic constants are tabulated in Table 

I-. From this table, the value of the constant: 

B 
2n ?\ c1 = Ia. I\. - ( 7) 

A i 1 h2 H 

where ?\H = AT = 7\B 

The computation of the constant c2 is appar~ntly more complicated. 

From definition: 

B B 
C 2 = I p' ~i /I.Ti + f 8 ~i /\Bi 

(8a) 

The first term of eq. (8a) is: 

= (8b) 

The expression in the bracket of eq. (8bJ is a power series. Evaluat-

ing the power series, eq, (8bJ becomes: 

Similarly: 

B 2 
L ~ T' A,1,· A i i 

B 

l BB' AB· A i l 

(8c) 

(8d) 

The corresponding expressions for the vertical and diagonal members are: 

( 8e) 



B 2 
Ien.i\o. A 1 1 

Combining eqs. (8c, 8d, 8e, and 8f), the constant: 

= n. lh2:.ln2 + 2)). . + h2?\ ~.. 6 f\9 V 

11 

( 8f') 

( S) 

Finally, the load constants D1 and D2 a.re derived. If the system of' 

loading is symmetrical with respect to the axis of symmetry of the truss, 

the constant: 

= 0 ( 9) 

and the constant n1 may be expressed in a very simple form. From defi-

nit ion: 
B 

l SNT · a.T.A Ti A i 1 -

B 

+ rSNv. QV. II v· A 1 1 1 

B 
+ I SNB. ClB. II B' A 1 1 1 

B 

+. f SN Did. Di 'A Di 

{lOa.) 

The third and fourth terms of eq. ( 10a) are equal to zero, and the first. 

and second terms (Table I) are: 

B 

I SNT . a T· . AT . A J. i i 

B 

I SNB. dB'/\ B' A J. 1 J. 

(lOb) 

(lOc) 

Combining the first and second term;, (eq. 10a) and introducing a new 

function: 

ABMD = bending moment area of the basic structure (both part a) 

- bl2M1 + 2M2 t . +- 2Ms-l + Ms) (lOd) 

B 

D1 = l§N·O·A· =- - 2ABMD AH (lO) J. J. J. 
A bh2 
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In cases of unsymmetrical loading, the general procedure for the 

evaluation of load constants is more convenient. 

B. Case II - Warren Truss 

A Warren Truss of constant depth and loaded by a general system of 

forces is considered (Fig. 5). 

MAB 
h 

MBA 
h 

p 

2 p 

s 

p F p 

L 

Fig. 5 

Typical Warren Truss 

p 
s-1 

s-1 s-1)'7 
s-1 1 

Fig. 6 

Truss Element AC 

p 

1 
1 

p 
2 

1 
1 1 h 
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TABLE II 

TRUSS AND LOAD CONSTANTS 

i () i Bi .S!\ 

l -· 1 t b t M'1 
h 2h. T 

Cl. s-1 I 1 +- 3b t M' , 

j ~ 
-; ,,, ,_ S-J... 

·h 'h ---rr-
s 1 + 5b t M's 

. \"1 
2h i h h 

11 + 1 0 Mo - -
h n 

E 1 t 1 - lb - M1 
~ h h h 
~ s-1 + 1 - 2£ - Ms-1 
c:O -

h h h 
i-

1 3£ Ms s h - -h "ff"" 

1• 0 - c/h /, 
1 0 t c/h -0 
(s-1) I 0 c/h C -

0 
m 

(s-1) c/h tl 0 + 25 

s' 0 - c/h 

. s 0 + c/h 

The Warren Truss of Fig. 5 is resolved into t:vJo free-bodies, AC and 

CB, with AC being shown in Fig. 6. In Table II, the truss and load con-

stants are shown. From observation, the constant: 

B 2 2n >.. (11) C1 - I ai ?\i : 
h2 H A 

where AH ' - i'.B = AT 
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!J.'pe expression for c2 is more difficult to determine. By defini.-

tion: 

= 

Using power series, the first term is: 

= 

= 

b2 ~2 2- 1 + 
4h2 

3 2 + . , . + ( 2 s-1 ~ A T 

The second term is similar to the first, ho~ever a different power 

series forlllllla is used. As shown: 

B 2 

L f> B' AB· A i i 
= 

b2 2 2 . )2 2 62 
2h2 ( 1_ t 2 + . . . + ( s-1 + s - - )A 

2 B 

b,2 2 
= h2 n ( n 1~ 2) A B 

By inspection: 

2 
-= 2nc AD 
~ 

The final form of eq. ll2a) is: 

= 

(12a) 

(12b) 

(12c) 

(12d) 

(12) 

From a previous discussion, if the system of loading is symmetrical to 

the axis of symmetry, the load constants: 

0 (13) 

and 

(] 4a) 



From Table II and Fig. 7, the terms of eq. (.l4a) are: 

B 
}, SN ~ ~ 
A Ti Ti Ti 

B 
\' SN (j ?\ i' Bi Bi Bi 

-2 = 2 (Mi + MI t . . 0 + Mi + MI ) A. 
h 1 2 s-1 s T 

- 2 (M t M + 
h2 1 2 

= 

Ms-1 

Fig. 7 

The Bending Moment Diagram 

of Parts AC and BC 

The area of the bending moment diagram of Fig, 7: 

r' 

15 

(14b) 

(14c) 

:: 

M~I s . i 
! M I 

s 

ABMD 2M 1
1(!) t 2M/~) + •• ~ ••.... t M

8
(~) (14i) 

Combining equations ( lilb, 14c, and 14d), the final expression is: 

D 
1 

= 
-2A 

BMD 
bh2 f\ H 

(14) 
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c. Case III - Warren Truss (with verticals) 

In Fig. 8 is shown the third and last special case to be consid-

ered. It is a Warren Truss (with verticals) of constant depth, and 

loaded by a general system of forces. 

p p p p p p p p p p p p p 

L 

Fig. 8 

Warren Truss (with verticals) 

ps 
p, 

2 s P_s-1 PJ-1 p 
1 

MAB: s ' s• -·· s h ,-.. 

MAB 
s-1 1 

h 

a = 3b 

RAY 

Fig. 9 

Truss Element AC 

p, 
1 

l' 

p 
..2. 
2 

~A 
h h 

MAB 
h 

1 

i 1 h 
h 

1 
'C h 
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TABLE III 

TRUSS AND LOAD CONSTANTS 

i ai f3 i SN. 
1 

l' - 1 t b t M'1 -h 2h h 

1 - 1 + b i" M'1 - - -
h 2h 

M~2 2' - 1 t Jb + - -- -a.. h 2h h 
~ 2 - 1 + 3b t M'2 

.h 2h h 
1 (2s-llb M' 

st - t + s 
h 2h h 

s - 1 t (2s-l)b t M's -
h 2h h 

l' + 1 0 - Mo 

E 
h h 

1 + 1 - b - Mt 
0 

+ h h 
~s-1 ~ s-1 + 1 - (s-2ib - -c:O h h h 

s + 1 ~s-1)£ 
M/ - - s 

h h h 
- 1 0 0 

/ 0 
0 
~ s-1 0 0 

I,. 

~ 
s 0 0 

l' 0 .... c/h 

1 0 + c/h 
0 
C 2' 0 0 - c/h 
en 
ti 

2 0 + c/h C) 

s' 0 - c/h 

s 0 + c/h 
,.,• 
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The truss shown in Fig. S is resolved into two parts, AC and GD. 

The part AC is shoW'l in Fig. 9. The axial forces due to loads and 

unit-redundants are computed and tabulated. From Table III: 

B 2 2nAH 
( 15) C = Ia1 A1 = 1 A h2-

where i\H = i\B =- 2?\T 

The expression for c2 is almost identical to the expression of c2 

(eq. 12a). By definition: 

(16a) 

From observation, the first term of eq. (16a) is identical to the first 

term of eq. (12a) if A of eq. (lba.) is replaced by 2?1. • T . T 

B 

I B TiATi 
A 

t2 n 
- 2 -(n-l)(n+l);\ 
h 6 T 

Accordingly: 

(16b) 

The second term of eq. (16a) is equal to the second term of eq. (12a). 

Therefore: 

(16c) 

From Table III, the third and fourth terms of eq. (16a) are observed tu 

be: 

B c2 
L 13 DiA Di = 2i7'1i\ D ( 16(i) 
A 

B 

I {!iVi(\Vi '= 0 (16eJ 
A 



Combining the terms of eq. ( 16a), the expression for the constant: 

C 
2 

!2;. f:2(2n2 + 1) A t 2c2}\ l 
h2 L 12 H DJ 
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(lb) 

The expression for the load cons'lant u1 t.s defined by a previous dis

cussion.: 

D 
1 

= 
B 
L SNT. • aT • ?\ 'I' . A 1 1. 1 

B 

+ I SNBi °'Bi/\Di 
A 

(l?,a) 

From Table III, the first and last terms of eq. (l?a) are respectively: 

B 

I SNT. ClT. /\'I,' = A 1 1 1 
+ M t M ),,\ 

s-1 s T 

B i SN Bi a Bi l\.Bi = -~2 (Ml t M2 t ' ' . t Ms-1 t Ms) t\ B 

Combining eq. (17p, 17c) and ABMD, the final expression for u1 is: 

D 
l 

= 

(17b) 

(17c) 

( 17) 

If the system of loading is symmetrical with respect to the axis 

of symmetry of the truss, the constant: 

(18) 



CHAPTER III 

PROCEDURE AND EXAMPLES 

A. Procedure of Analysis 

The procedure of application of the slope deflection equations to 

the analysis of structures with trusses of constant depth is: 

1. Determine geometry of truss 

a. external dimensions 

b. cross-sectional areas and dimensions of members 

2. Compute constants c1, c2, D1, and D2 

3. Compute fixed-end moments 

a. due to loads 

b. due to displacements 

4. Write slope deflection equations for the 

5. Write equilibrium equations 

6. Solve ·equilibrium equations for unknovm 

structure 

.6. 1 s and 

~ 1 s by substituting constants into the slope deflection equations 

?. Compute final moments by substituting .6. 1s and 9 1 s into the 

slope deflection equations 

B. Examp::t.e I - Wal".ren Truss (with verticals) 

A three span Warren Truss is considered. The structure (Fig. 10) 

is symmetrical and symmetrically loaded. 

1. Geometry of truss 

The dimensions of the truss are indicated in Fig. 10, the cross-

20 



sectional areas are: 

A.ri 

A.vi 

10 inches 

2 inches 

= 10 inches 

4 inches 

4@]5011 = 600" 4wl50" = 6001' 4 a::i15C1' = 600" 

,Fig. 10 

A Continuous Truss 

2. Computation of constants 

21 

Using the general expressions, eqs. (15, 16, 17, and 18), the con-

stants are: 

C 1 

c2 

D 
1 

= 

= 
= 

= (2)(2)(300l 

(80)2 (10)E 

=+.01875 

E 

n el<ll2 t 1) {\ + 2c2 (1~ ~ 12 H 

-3_{300)2(8+12 300 
(80) 12 lO(E) t 2(.170) 2170] 

4E 
-2ABBMD AH 

h2 

~2(750 + 750 + 3000)(150)(300) 

(300) ( 80) 2 ( 10 )E 

= +140..Q 
E 
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0 

The error in applying the general constant formulas without modification 

is small, and no correction is needed for the truss of Fig. '10. 

3. Conditions of synmetry 

e,A -= - en, 9B = - ec 

FMAB =- FMBC = r'Mco 
.=. - FM = - FM = -F\ BA CB C 

4. Fixed-end moments due to loads 

FM =- _D1 + aD2 - CM 
AB C1 C3 AC 

+21.1 ,- .... 3000 = - 1875 kip-inches - 201825 
E 

5. Moment equ,ations 

ft! )e 2 
- M f (a - lJ FM M = = - - 9 

AB DC C2 c1 A C2 C B .,. AB 

= (64.3 t 53.3)E9A + (64.3 - 53.3)E9B - 1875 

~ 117.6E9A - llEeB - 1875 

M - M (i~ + ~ 9 ~a2 1 ) t FMBA = t C2 - cl eA BA CB C2 C1 B 

- 117.6E9B t 11.omA t 1875 

M = -M = (a2 t 1..) 9 + ~~ _ l;) g . + FM 
BC CB c2 c1 B c2 C C BC 

·.:= 106.6E9B - 1875 

6. Equilibrium eqt1a.tions 

MAB - 0 
' ~A + M 

BC = 0 
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7. Deformation 

Simultaneous solution of the equilibrium equations gives the fol-

lowing results: 

E9A = f 16 

B. Final end moments · 

Substituting the values of EG into the moment equations, the final 

moments are: 

MAB = - Moc = 0 

MBA =- - McB .... - 1959 kip-inches 

MBC -::. - McB = - 1959 kip-inches 

S. Ex.ample II - Pratt Truss - Frame 

A two span truss-frame (Fig. 11) is considered. The structure is 

symmetrical and symmetrically loaded. 

0 
0 
aJ 

0 
LO 

~ 
C\l 

lOo) 60" =- 60011 ~ I 100) 6d = 60011 

Fig. 11 

A Loaded Truss-Frame 
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1. Geometry of truss 

Dimensions of the structure and sizes of the col~mns are indica-

ted in Fig. 11. The cross-sectional areas of the truss members are: 

10 inches, Avi = 4 inches, Ani = 6 inches 

2. Computation of constants 

Using eqs. t 7, .8, 9, 10 J, the constants are: · 

Ci = 2fl/\H + 2t10H60~ - t 0.033 -
h2E (60)2(10)E E 

~ 2' h2/\ + c2AJ c2 = b2(n t 2~ t 
h 6 H V 

10 60 2 102· 60 t , ( 60;2( 60) t (85)28~ -t 1454 : 

(60,/ 
=-

( 6 )( 10) (E) 4E 

= -2 (15,300) ( 60) 
(60)2(10)E 

= -51 
E 

6E 

The difference between the basic truss of Chapter II and the truss of 

Fig. 11 is insignificant. Accordingly, no correction to the constant 

formulas are used. 

3. Conditions of symmetry 

FMi,:{l: = F~= - FMED .:. 

eA =- eB = Ge = 

en = - 9F 

4. Fixed - end moments due to loads 

FM 
AB = 

= 
t 51 :r 

t O - 4500 

- FMr'E 

EtE =- 0 

2970 kip-inches 

E 



5. 

6. 

?. 

8. 

Moment equations 

MAD = - MCF =- 4E t GA + 2E 1 GD t FMAD L . 

= 2E· I e - 2(394.5)g :. t 3.42EG 
L D 230 D D 

~A = - ~c .::. 4E IS L D + 2E f eA + F~A 

= l1 ( ]2~. 2 )m0 230 = + 6.85m0 

\E = - ~E =- ( 2 1) 
~2 + C°i eD t ( a2 1 ) ~ - Ci GE + F~E 

= ( 61.8 + 30)Ee0 t (61.8-30):EEtE 

= 91.8Ee0 + 31.8ESE - 2970 

MED = - MEF = (a2 t L) ~ t ~a2 _ 1 ) 9n 
C2 C1 C2 C1 

= 91.8~ + 31.8E9n t 2970 

~B = 4E .! eE + 2E 1 GB t F~B 
L L 

.!: 0 

MBE -= 4E f eB + 2E f 9K t FMBE 

= 0 

Equilibrium equation 

MDA t MnE = 0 

Deformation 

Solving the equilibrium equation: 

Een = t 30.1 

Final end moments 

Substituting EGD into the moment equations: 

MAD 

M 
DA 

= 

- McF 

- M Fe 

=- 3.42(30.1) 

6.85t30.l) 

= t 103 

t 208 

-2,970 

+ FMED 

25 
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MDE = - MFE = 91.8l30.l) - 2970 = - 208 

~ = -~ ::. 31.8(.30.1) t 2970 = + 3,927 : 

MEB = MBE .::: 0 

All moments have units of kip-inches 
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