derivation of slope deflection equations por STRATGHT TRUSSES OF CONSTANT DEPTh

By
DALE E. MORRISETY
Bachelor of Science
Oklahoma Agricultural and Mechanical College
Stillwater, Oklahoma

1954

Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial
fulfillment of the requirements
for the degree of MASTER OF SCIENCE August, 1957

DERIVATION OF SLOPE DEFLECTION EQUATIONS FOR STRAIGHT TRUSSES OF CONSTANT DEPTH

Report Approved:

Report Advisor

Dean of the Graduate School

PREFACE

The purpose of this report is the derivation of slope deflection equations for trusses of constant depth and their application to the analysis of structures containing truss-members, Slope deflection equations and moment distribution constants for trusswmembers of constant or variable depth were developed by J. M. Haynes, ${ }^{2}$ E. R. Jacobsen, ${ }^{3}$ and L. C. Maugh. ${ }^{4}$ The basic structure used in their investigations wes a simple beam-truss. The writer's contribution is the application of elastic center to these derivations.

The normally slow procedure for evaluating load and truss constants has been eljminated by deriving general formulas using power series. The evaluation of constants by power series was first introduced by J. J. Tuna in his 1956-57 extension class held in Oklahoma City. The power series expressions were applied by him and W. Sullivan to the analm ysis of truss frames for the C. A. C. building in Oklahoma City. The computation of elastic constants for three typical cases were added by the writer.

The nomenclature used in this report is explained either in the chapter they are used or in a preceding chapter.

Indebtedness is acknowledged to Frofessor Tuma for his valuable guidance and assistance in the preparation of this report, and to my wife, Mrs. Dolores Morrisett, for her care in the typing of this report.

1. It is a general reference number in the bibliography.

TABLE OF CONTENTS

Chapter Page
I. DERIVATION OF SLOPE DEFLECTION ECUATIONS 1
Statics 1
Least Work 3
Deformation Equations 5
II. SERIES EVALUATION OF CONSTANTS FOR SFECIAL CASES 7
Case I - Pratt Truss 8
Case II - Warren Truss 12
Case III - Warren Truss (with verticals) 16
III. PROCEDURE AND EXAMPLES 20
Procedure of Analysis 20
Example I - Warren Truss (with verticals) 20
Example II - Pratt Truss - Frame 23

LIST OF TABLES

Table Page
I. Truss and Load Constants 9
II. Truss and Load Constants 13
III. Truss and Load Constants 17
LIST OF FIGURES
Figure

1. Truss Beam with General System of Loading 1
2. Free-body Trusses $A C$ and $C B$ 2
3. Typical Pratt Truss 8
4. Truss Element AC 8
5. Typical Warren Truss 12
6. Truss Element AC 12
7. The Bending Moment Diagram of Parts $A C$ and $C B$ 15
8. Warren Truss (with verticals) 16
9. Truss Element AC 16
10. A Continuous Truss 21
11. A Loaded Truss Frame 23

Sign Convention

CHAPTER I

DERIVATION OF SLOPE DEFLECTION EQUATIONS
A. Statics

A typical truss beam removed from a contimous elastic system, loaded by a general system of forces, is considered (Fig. 1). The truss has constant depth and is fixed at both ends.

In the analysis of this truss, the following assumptions have been made:

1. All members are connected by frictionless hinges.
2. All members are subjected to axial forces only, and the influence of shear and bending moment is neglected.
3. The truss and the loads are forming a coplanar system.
4. All loads are applied at joints.
5. The deformations of the truss are elastic and small.

Truss Beam with General System of Loading

The structure has four reactions: two reactive forces, $R_{A Y}$ and R_{BY}, and two reactive moments, $\mathrm{FM}_{\mathrm{AB}}$ and $\mathrm{FM}_{\mathrm{BA}}$ 。 The problem is statically indeterminate to the second degree and its solution requires two equations of deformation.

Fig. 2
Free - body Trusses $A C$ and $C B$

General displacements of supports $\triangle_{A Y}, \triangle_{B Y}, \theta_{A}$ and θ_{B} are introduced. The given system is resolved into free body sketches AC and $B C$ as shown in Fig. 2. The resultant of loads corresponding to part AC and $C B$ is denoted by W_{1} and W_{2} respectively. The forces at the central crossosection are V_{0} and $M_{0} / h_{\text {. Assuming }}$ all displacements and reactions to be positive and using conditions of static equilibrium, the end reactions of parts $A C$ and $C B$ are:

$$
\begin{array}{ll}
R_{A Y}=W_{1}+V_{0}, & M_{A B}=M_{0}-a V_{0}-C M_{A C} \tag{1}\\
R_{B Y}=W_{2}-V_{0}, & M_{B A}=-M_{0}-a V_{0}+C M_{B C}
\end{array}
$$

where $C M_{A C}$ and $C M_{B C}$ represent the cantilever moment due to W_{1} and W_{2} respectively.

The normal force for any member in the truss in terms of the applied loads and the redundants is:

$$
\begin{equation*}
N_{i}=S N_{i}+\alpha_{i} M_{0}+\beta_{i} V_{0} \tag{2}
\end{equation*}
$$

where $\mathrm{SN}_{\mathrm{i}}=$ normal force in any member due to loading $\alpha_{i}=$ normal force in any member due to $H_{0}=1$
and $\quad B_{i}=$ normal force in any member due to $V_{0}=1$ B. Least Work

The Principle of Conservation of Energy states that:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{i}}=\mathrm{U}_{\mathrm{e}} \tag{3}
\end{equation*}
$$

where $\quad U_{e}=$ the external work
and $\quad \mathrm{U}_{i}=$ the internal work
The internal work is formed by:

$$
\begin{equation*}
U_{i}=U_{s}+U_{v} \tag{3a}
\end{equation*}
$$

where $\quad U_{S}=$ the strain energy of the structure

$$
U_{v}=\text { the strain energy due to volume change }
$$

The energy due to volume change is neglected and equation (3a) becomes:

$$
u_{i}=U_{s}=\sum_{A}^{B} \frac{N_{i}^{2} L_{i}}{2 A_{i} E}
$$

where $\quad L_{i}=$ length of any member
$A_{i}=$ cross-sectional area of any member
and $E=$ modulus of elasticity
In reduced form:

$$
\begin{equation*}
U_{i}=U_{s}=\sum_{A}^{\frac{B}{2}} \frac{N_{i}^{2} \lambda_{i}}{2} \tag{3b}
\end{equation*}
$$

where

$$
\lambda_{i}=\frac{L_{i}}{\overline{A_{i} E}}
$$

The external work is expressed as:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{e}}=\mathrm{U}_{1}+\mathrm{U}_{\mathrm{r}} \tag{3c}
\end{equation*}
$$

where $\quad U_{1}=\sum_{A}^{B} W \Delta+\sum_{A}^{B} w \theta=$ work due to loads
and $\quad U_{r}=\sum_{A}^{B} R \triangle+\sum_{A}^{B} M \theta=$ work due to reactions
The work of supports in terms of displacements and reactions defined by equation (l) is:

$$
\begin{align*}
U_{r} & =R_{A Y} \Delta_{A Y}+M_{A B} \theta_{A}+R_{B Y} \Delta_{B Y}+M_{B A} \theta_{B} \\
& =\left(W_{1}+V_{0}\right) \Delta_{A Y}+\left(M_{0}-a V_{0}-C M_{A C}\right) \theta_{A} \tag{3d}\\
& +\left(W_{2}-V_{0}\right) \Delta_{D Y}+\left(-M_{0}-a V_{0}+C M_{B C}\right) \theta_{B}
\end{align*}
$$

According to Castigliano's theorems, the first partial derivative of the strain energy of a truss with unyielding supports, with respect to a redundant, is equal to zero. Allowing displacement of supports, we have:

$$
\begin{align*}
& \frac{\partial U_{r}}{\partial M_{0}}=\frac{\partial U_{S}}{\partial M_{0}} \tag{3e}\\
& \frac{\partial U_{r}}{\partial V_{0}}=\frac{\partial U_{S}}{\partial V_{0}} \tag{3f}
\end{align*}
$$

The partial derivatives of equation (3b) with respect to each redundant are:

$$
\begin{align*}
& \frac{\partial U_{S}}{\partial M_{0}}=\sum_{A}^{B} \frac{N_{i}}{\partial M_{0}} \lambda_{i}=\sum_{A}^{B} N_{i} \alpha_{i} \lambda_{i} \tag{3~g}\\
& \frac{\partial U_{S}}{\partial V_{0}}=\sum_{A}^{B} N_{i} \frac{\partial N_{i}}{\partial V_{0}} \lambda_{i}=\sum_{A}^{B} N_{i} B_{i} \lambda_{i} \tag{3h}
\end{align*}
$$

The partial derivatives of equation (3d) with respect to each redundant are:

$$
\begin{align*}
\frac{\partial U_{r}}{\partial M_{\theta}} & =\theta_{A}-\theta_{B} \tag{3i}\\
\frac{\partial U_{r}}{\partial V_{0}} & =\Delta_{A Y}-a \theta_{A}-a \theta_{B}-\Delta_{E Y} \\
& =a \theta_{A}-a \theta_{B}+\Delta \Delta_{Y} \tag{3j}
\end{align*}
$$

where

$$
\Delta_{Y}=\Delta_{A Y}-\Delta_{B Y}
$$

C. Deformation Equations

Equations ($3 \varepsilon, 3 f$) in terms of equations ($3 g, 3 h, 3 i, 3 j$) becomes:

$$
\begin{align*}
\Delta_{A}-\theta_{B}= & \sum_{A}^{B} S N_{i} \alpha_{i} \lambda_{i}+M_{0} \sum_{A}^{B} \alpha_{i}^{2} \lambda_{i}+V_{0} \sum_{A}^{B} \beta_{i} \alpha_{i} \lambda_{i} \\
\Delta_{Y}-a \theta_{A}-a \theta_{B} & =\sum_{A}^{B} S N_{i} \beta_{i} \lambda_{i} \tag{4}\\
& +M_{0} \sum_{A}^{B} \alpha_{i} B_{i} \lambda_{i}+V_{0} \sum_{A}^{B} \beta_{i}^{2} \lambda_{i}
\end{align*}
$$

From symmetry:

$$
\sum_{A}^{B} \alpha_{i} \beta_{i} \lambda_{i}=\sum_{A}^{B} B_{i} \alpha_{i} \lambda_{i}=0
$$

Thus the simplified equations are:

$$
\begin{align*}
\theta_{A}-\theta_{B} & =\sum_{A}^{B} S N_{i} \alpha_{i} \lambda_{i}+\mathbb{M}_{0} \sum_{A}^{B} \alpha_{i}^{2} \lambda_{i} \\
\Delta_{Y}-a \theta_{A}-a \theta_{B} & =\sum_{A}^{B} S N_{i} \beta \lambda_{i}+\nabla_{0} \sum_{A}^{B} \beta_{i}^{2} \lambda_{i} \tag{La}
\end{align*}
$$

Denoting:

$$
D_{1}=\sum_{A}^{B} S_{i} \alpha_{i} \lambda_{i}, \quad D_{2}=\sum_{A}^{B} S_{i} \beta_{i} \lambda_{i}
$$

$$
c_{1}=\sum_{A}^{B} \alpha_{i}^{2} \lambda_{i} \quad c_{2}=\sum_{A}^{B} B_{i}^{2} \lambda_{i}
$$

the deformation equations become:

$$
\begin{gather*}
\theta_{A}-\theta_{B}=D_{1}+M_{O} C_{1} \tag{Lb}\\
\Delta_{Y}-a \theta_{A}-a \theta_{B}=D_{2}+V_{0} C_{2}
\end{gather*}
$$

Solving these two equations, the redundant are:

$$
\begin{aligned}
& M_{0}=\frac{-D_{1}}{C_{1}}+\frac{\theta_{A}}{C_{1}}-\frac{\theta_{B}}{C_{1}} \\
& v_{0}=\frac{-D_{2}}{C_{2}}-\frac{a \theta_{A}}{C_{2}}-\frac{a \theta_{B}}{C_{2}}+\frac{\Delta_{Y}}{C_{2}}
\end{aligned}
$$

Substituting the results of equation (40) into equation (1):

$$
\begin{align*}
M_{A B}=\left(\frac{a^{2}}{C_{2}}+\frac{1}{C_{1}}\right) \theta_{A} & +\left(\frac{a^{2}}{C_{2}}-\frac{1}{C_{1}}\right) \theta_{B} \tag{5}\\
& -\frac{a \triangle_{Y}}{C_{2}}-\frac{D_{1}}{C_{1}}+\frac{a D_{2}}{C_{2}}-C M_{A C}
\end{align*}
$$

$$
\begin{equation*}
M_{B A}=\left(\frac{a^{2}}{c_{2}}+\frac{1}{C_{1}}\right) \theta_{B}+\left(\frac{a^{2}}{c_{2}}-\frac{1}{C_{1}}\right) \theta_{A} \tag{6}
\end{equation*}
$$

$$
-\frac{a \Delta_{Y}}{C_{2}}+\frac{D_{1}}{C_{1}}+\frac{a D_{2}}{C_{2}}+C M_{B C}
$$

CHAPTER II

SERIES EVALUATION OF CONSTANTS

FOR SPECIAL CASES

In this chapter, three straight trusses of constant depth, are considered. Nomenclature used in this chapter is:

```
            a = half-length of truss
    A Bi = cross-sectional area of bottom bars
    A BMD = bending moment area of basic structure
    ADi = cross-sectional area of diagonal members
    A}\mp@subsup{\textrm{Ti}}{}{=}=\mathrm{ cross-sectional area of top members
        b = panel length
    BMD = bending moment diagram
    c = length of a diagonal member
        h = height of truss
        i = any truss member
        L = length of truss beam
        n = number of panels in full-truss
        s = number of panels in half-truss
\lambda Di = \lambda of any bottom member
```



```
\lambda
```


A. Case I - Pratt Truss

A Pratt Truss of constant depth and loaded by a general system of forces as shown in Fig. 3 is considered.

Fig. 3
Typical Pratt Truss

Fig. 4
Truss Element AC

TABLE I
TRUSS AND LOAD CONSTANTS

i		α_{i}	β_{A}	SN ${ }_{\text {i }}$
$\stackrel{\square}{\circ}$	1 2 3 s-1 s	$\begin{array}{r} -\frac{l}{h} \\ -\frac{l}{h} \\ -\frac{1}{h} \\ -\frac{l}{h} \\ -\frac{1}{h} \\ \hline \end{array}$	$\begin{aligned} & +\frac{b}{h} \\ & +\frac{b}{h} \\ & +(s-2) \frac{b}{h} \\ & +(s-1) \frac{b}{h} \\ & \hline \end{aligned}$	$\begin{aligned} & +\frac{M_{0}}{h} \\ & +\frac{\frac{M_{1}}{h_{0}}}{h_{2}} \\ & +\frac{M_{S-2}}{h} \\ & +\frac{M_{S-1}}{h} \end{aligned}$
$\begin{gathered} \varepsilon \\ 0 \\ + \\ + \\ 0 \\ \infty \end{gathered}$	1 2 3 s-1 s	$\begin{array}{r} +\frac{l}{h} \\ +\frac{1}{h} \\ +\frac{1}{h} \\ +\frac{l}{h} \\ +\frac{1}{h} \end{array}$	$\begin{aligned} & -\frac{b}{h} \\ & -\frac{2 b}{h} \\ & -3 \frac{b}{h} \\ & -\quad(s-1) \frac{b}{h} \\ & -\frac{s b}{h} \end{aligned}$	$\begin{aligned} & -\frac{M_{1}}{h} \\ & -\frac{\frac{M_{2}}{h}}{-\frac{M_{3}}{h}} \\ & -\frac{M_{s}-1}{h} \\ & -\frac{M_{s}}{h} \end{aligned}$
¢ +8 8 8 $>$	0 1 2 3 s-1 s	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ 0	- 1 - 1 -1 -1 -1	
	1 2 3 s-1 s	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$+c / h$ $+c / h$ $+c / h$ $+c / h$ $+c / h$	

The truss of Fig. 3 is resolved into two free-bodies, $A C$ and $C B$, with AC shown in Fig. 4. The elastic constants are tabulated in Table I. From this table, the value of the constant:

$$
\begin{align*}
c_{1} & =\sum_{A}^{B} a_{i} \lambda_{i}=\frac{2 n}{h^{2}} \lambda_{H} \tag{7}\\
\text { where } \quad \lambda_{H} & =\lambda_{T}=\lambda_{B}
\end{align*}
$$

The computation of the constant C_{2} is apparently more complicated. From definition:

$$
\begin{align*}
c_{2}=\sum_{A}^{B} \beta_{\mathrm{Ti}}^{2} \lambda_{\mathrm{Ti}} & +\sum_{\mathrm{A}}^{\mathrm{B}} \beta_{\mathrm{Bi}}^{2} \lambda_{\mathrm{Bi}} \tag{8a}\\
& +\sum_{\mathrm{A}}^{\mathrm{B}} \beta_{V i}^{2} \lambda_{\mathrm{Vi}}+\sum_{\mathrm{A}}^{\mathrm{B}} \beta_{\mathrm{Di}}^{2} \lambda_{\mathrm{Di}}
\end{align*}
$$

The first term of eq. (8a) is:

$$
\begin{equation*}
\sum_{\mathrm{A}}^{\mathrm{B}} \beta_{\mathrm{Ti}}^{2} \lambda_{\mathrm{Ti}}=2 \frac{\mathrm{~b}^{2}}{\mathrm{~h}^{2}}\left[\mathrm{I}^{2}+2^{2}+\ldots+(\mathrm{s}-1)^{2}\right] \lambda_{\mathrm{T}} \tag{8b}
\end{equation*}
$$

The expression in the bracket of eq. (8 b) is a power series. Evaluating the power series, eq. (8b) becomes:

$$
\begin{equation*}
\sum_{\mathbb{A}}^{B} \beta \frac{T_{T i}}{2} \lambda_{T i}=2 \frac{b^{2}}{h^{2}} \frac{s-1)}{6}(s)(2 s-1) \lambda_{T} \tag{8c}
\end{equation*}
$$

Similarly:

$$
\begin{equation*}
\sum_{A}^{B} \beta_{\mathrm{Bi}} \lambda_{\mathrm{Bi}}=\frac{\mathrm{b}^{2} \mathrm{~s}}{\mathrm{~h}^{2}}(\mathrm{~s}+1)(2 \mathrm{~s}-1) \lambda_{\mathrm{B}} \tag{8d}
\end{equation*}
$$

The corresponding expressions for the vertical and diagonal members are:

$$
\begin{equation*}
\sum_{A}^{B} \beta_{V i}^{2} \lambda_{V i}=2 s \lambda_{V} \tag{8e}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\mathrm{A}}^{\mathrm{B}} B_{D i}^{2} \lambda_{\mathrm{Di}}=\frac{\mathrm{c}^{2}}{\mathrm{~h}^{2}} s \lambda_{D} \tag{8ff}
\end{equation*}
$$

Combining eqs. ($8 \mathrm{c}, 8 \mathrm{~d}, 8 \mathrm{e}$, and 8 f), the constant:

$$
\begin{equation*}
c_{2}=\frac{n}{n} 2^{2}\left[\frac{\left.n^{2}+2\right)}{6} \lambda_{H}+n^{2} \lambda_{V}+c^{2} \lambda_{D}\right] \tag{8}
\end{equation*}
$$

Finally, the load constants D_{1} and D_{2} are derived. If the syster of loading is symmetrical with respect to the axis of symmetry of the truss, the constant:

$$
\begin{equation*}
\mathrm{D}_{2}=0 \tag{9}
\end{equation*}
$$

and the constant D_{1} may be expressed in a very simple form. From deîinition:

$$
\begin{align*}
D_{1}= & \sum_{A}^{B} S_{T i} \alpha_{T i} \lambda_{T i}+\sum_{A}^{B} S N_{B i} \alpha_{B i} \lambda_{B i} \\
& +\sum_{A}^{B} S N_{V i} \alpha_{V i} \lambda_{V i}+\sum_{A}^{B} S N_{D i} \alpha_{D i} \lambda_{D i} \tag{10a}
\end{align*}
$$

The third and fourth terms of eq. (10a) are equal to zero, and the first. and second terms (Table I) are:

$$
\begin{align*}
& \sum_{A}^{B} S N_{T i} \alpha_{T i} \lambda_{T i}=\frac{-2}{h^{2}}\left(0+M+\cdots+M_{S-1}\right) \lambda_{T} \tag{10b}\\
& \sum_{A}^{B} S N_{B i} \alpha_{B i} \lambda_{B i}=\frac{-2}{h^{2}}\left(M_{1}+M_{2}+\cdots+M_{3}\right) \lambda_{B} \tag{100}
\end{align*}
$$

Combining the first and second terms (eq. 10a) and introducing a new function:

$$
\begin{align*}
A_{B M D} & =\text { bending moment area of the basic structure (both parts) } \\
& =b\left(2 M_{1}+2 M_{2}+\ldots+2 M_{s-1}+M_{s}\right) \tag{10d}\\
D_{1} & =\sum_{A}^{B} S N_{i} Q_{i} \lambda_{i}=\frac{-2 A_{B M D} \lambda_{H}}{b h^{2}} \tag{10}
\end{align*}
$$

In cases of unsymmetrical loading, the generel procedure for the evaluation of load constants is more convenient. B. Case II - Warren Truss

A Warren Truss of constant depth and loaded by a general system of forces is considered (Fig. 5).

Fig. 5
Typical Warren Truss

Fig. 6
Truss Element AC

TABLE II
TRUSS AND LOAD CONSTANTS

The Warren Truss of Fig. 5 is resolved into two free-bodies, AC and $C B$, with AC being shown in Fig. 6. In Table II, the truss and load constants are shown. From observation, the constant:

$$
\begin{equation*}
c_{1}=\sum_{A}^{B} \alpha_{i}^{2} \lambda_{i}=\frac{2 n}{h^{2}} \lambda_{H} \tag{11}
\end{equation*}
$$

where

$$
\lambda_{\mathrm{H}}=\lambda_{\mathrm{B}}=\lambda_{\mathrm{T}}
$$

The expression for C_{2} is more difficult to determine. By definition:

Using power series, the first term is:

$$
\begin{align*}
\sum_{A}^{B} B_{T i}^{2} \lambda_{T i} & =2 \frac{b^{2}}{4 n^{2}}\left[1^{2}+3^{2}+\cdots+(2 s-1)^{2}\right] \lambda_{T} \\
& =\frac{b^{2}}{h^{2} 12}(n-1)(n+1) \lambda_{T} \tag{12b}
\end{align*}
$$

The second term is similar to the first, however a different power series formula is used. As shown:

$$
\begin{align*}
\sum_{A}^{B} \beta_{B i}^{2} \lambda_{B i} & =2 \frac{b^{2}}{h^{2}}\left(1^{2}+2^{2}+\cdots+(s-1)^{2}+s^{2}-\frac{s^{2}}{2}\right) \lambda_{B} \\
& \left.=\frac{b^{2}}{h^{2}} n \frac{\left(n^{2}+2\right.}{12}\right) \lambda_{B} \tag{12c}
\end{align*}
$$

By inspection:

$$
\begin{equation*}
\sum_{A}^{B} \beta_{D i} \lambda_{D i}=\frac{4 \mathrm{sc}^{2}}{\mathrm{~h}^{2}} \lambda_{D}=\frac{2 \mathrm{nc}^{2}}{\mathrm{~h}^{2}} \lambda_{D} \tag{.12d}
\end{equation*}
$$

The final form of eq. (12a) is:

$$
\begin{equation*}
c_{2}=\frac{n}{h^{2}}\left[b^{2}\left(\frac{\left.2 n^{2}+1\right)}{12} \lambda_{H}+2 c^{2} \lambda_{D}\right] .\right. \tag{12}
\end{equation*}
$$

From a previous discussion, if the system of loading is symmetrical to the axis of symmetry, the load constants:

$$
\begin{equation*}
D_{2}=0 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{1}=\sum_{A}^{B} S N_{T i} \alpha_{T i} \lambda_{T i}+\sum_{A}^{B} S N_{B i} \alpha_{B i} \lambda_{B i} \tag{1/4a}
\end{equation*}
$$

From Table II and Fig. 7, the terms of eq. (14a) are:

$$
\begin{align*}
& \sum_{A}^{B} S N N_{T i} \alpha_{T i} \lambda_{T i}=\frac{-2}{h^{2}}\left(M_{1}+M_{2}^{\prime}+\cdots+M_{S-1}^{\prime}+M_{s}^{\prime}\right) \lambda_{T} \tag{14b}\\
& \sum_{A}^{B} S N N_{B i} \alpha_{B i} \lambda_{B i}=\frac{-2}{h^{2}}\left(M_{1}+M_{2}+\cdots+M_{S-1}+M_{S}\right) \lambda_{B} \tag{14c}
\end{align*}
$$

Fig. 7
The Bending Moment Diagram
of Parts $A C$ and $B C$

The area of the bending moment diagram of Fig. 7:

$$
\begin{equation*}
A_{B M D}=2 M_{1}\left(\frac{b}{2}\right)+2 M_{1}\left(\frac{b}{2}\right)+\ldots . .+M_{s}\left(\frac{b}{2}\right) \tag{141}
\end{equation*}
$$

Combining equations ($14 \mathrm{~b}, 14 \mathrm{c}$, and 14 d), the final expression is:

$$
\begin{equation*}
D_{1}=\frac{-2 A_{B M D}}{b h^{2}} \lambda_{H} \tag{14}
\end{equation*}
$$

C. Case III - Warren Truss (with verticals)

In Fig. 8 is shown the third and last special case to be considered. It is a Warren Truss (with verticals) of constant depth, and loaded by a general system of forces.

Fig. 8
Warren Truss (with verticals)

Fig. 9
Truss Element AC

TABLE III
TRUSS AND LOAD CONSTANTS

i		α_{i}	β_{i}	SN ${ }_{\text {i }}$
$\stackrel{0}{0}$	$1!$ 1 21 2 s s	$\begin{array}{r} -\frac{l}{h} \\ -\frac{l}{h} \\ -\frac{1}{h} \\ -\frac{1}{h} \\ -\frac{l}{h} \\ -\frac{l}{h} \end{array}$	$\begin{aligned} & +\frac{b}{2 h} \\ & +\frac{b}{2 h} \\ & +\frac{3 b}{2 h} \\ & +\frac{3 b}{2 h} \\ & +\frac{(2 s-1) b}{2 h} \\ & +\frac{(2 s-1) b}{2 h} \end{aligned}$	$\begin{aligned} & +\frac{M^{\prime} 1}{h} \\ & +\frac{M^{\prime} 1}{M^{h}} \\ & +\frac{M^{2}}{h^{h}} \\ & +\frac{M^{\prime} 2}{h} \\ & +\frac{M^{\prime} s}{h} \\ & +\frac{M^{\prime} s}{h} \end{aligned}$
$\begin{aligned} & \varepsilon \\ & 0 \\ & + \\ & +0 \\ & \infty \end{aligned}$	1^{\prime} I s-1 5	$\begin{aligned} & +\frac{l}{h} \\ & +\frac{l}{h} \\ & +\frac{1}{h} \\ & +\frac{l}{h} \end{aligned}$	$\begin{aligned} &-\frac{b}{h} \\ &- \frac{(s-2) b}{h} \\ &- \frac{(s-1) b}{h} \\ & \hline \end{aligned}$	$\begin{aligned} &- \frac{M_{0}}{h} \\ &- \frac{M_{1}}{h} \\ &- \frac{M_{S-1}}{h} \\ &- \frac{M_{s}}{h} \\ & \hline \end{aligned}$
$\begin{array}{r}-0 \\ 0.0 \\ +0 \\ \hline 0\end{array}$	1 s-1 s	$\begin{aligned} & 0 \\ & 0 \end{aligned}$ 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	
$\begin{aligned} & \overline{0} \\ & \text { C } \\ & 0.8 \\ & .0 \\ & \hline 0 \end{aligned}$	1 2^{1} 2 s^{\prime} s	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$-c / h$ $+c / h$ - c / h $+c / h$ - c / h $+c / h$	

The truss shown in Fig, 8 is resolved into two parts, $A C$ and CD. The part AC is shown in Fig. 9. The axial forces due to loads and unit-redundants are computed and tabulated. From Table III:

$$
\begin{equation*}
c_{1}=\sum_{A}^{B} \alpha_{1}^{2} \lambda_{1}=\frac{2 n \lambda_{H}}{n^{2}} \tag{15}
\end{equation*}
$$

where

$$
\lambda_{\mathrm{H}}=\lambda_{\mathrm{B}}=2 \lambda_{\mathrm{T}}
$$

The expression for C_{2} is almost identical to the expression of C_{2} (eq. 12a). By definition:

$$
\begin{align*}
c_{2}=\sum_{A}^{B} \beta_{\mathrm{Ti}}^{2} \lambda_{\mathrm{Ti}} & +\sum_{\mathrm{A}}^{B} \beta_{\mathrm{Bi}}^{2} \lambda_{\mathrm{Bi}} \\
& +\sum_{\mathrm{A}}^{\mathrm{B}} \beta_{\mathrm{Di}}^{2} \lambda_{\mathrm{Di}}+\sum_{\mathrm{A}}^{B} \beta_{\mathrm{Vi}}^{2} \lambda_{\mathrm{Vi}} \tag{16a}
\end{align*}
$$

From observation, the first term of eq. (lea) is identical to the first term of eq. (12a) if λ_{T} of eq. (16a) is replaced by $2 \lambda_{T}$. Accordingly:

$$
\begin{equation*}
\sum_{A}^{B} B_{T i} \lambda_{T I i}=\frac{b^{2}}{h^{2}} \frac{n}{6}(n-1)(n+1) \lambda_{T} \tag{16b}
\end{equation*}
$$

The second term of eq. (16a) is equal to the second term of eq. (12a). Therefore:

$$
\begin{equation*}
\sum_{A}^{B} B_{B i} \lambda_{B i}=\frac{b^{2}}{h^{2}} \frac{\left(n^{2}+2\right)}{12} \lambda_{B} \tag{16c}
\end{equation*}
$$

From Table III, the third and fourth terms of eq. (16a) are observed to be:

$$
\begin{align*}
& \sum_{A}^{B} B_{D i} \lambda_{D i}=2 \frac{c^{2}}{h^{2}} \lambda_{D} \tag{d}\\
& \sum_{A}^{B} \beta_{V i} \lambda_{V i}=0
\end{align*}
$$

Combining the terms of eq. (16a), the expression for the constant:

$$
\begin{equation*}
C_{2}=\frac{n}{h^{2}}\left[b^{2} \frac{\left(2 n^{2}+1\right)}{12} \lambda_{H}+2 c^{2} \lambda_{D}\right] \tag{16}
\end{equation*}
$$

The expression for the load constant D_{1} is defined by a previous discussion:

$$
\begin{equation*}
D_{1}=\sum_{A}^{B} S N_{T i} \alpha_{T i} \lambda_{T i}+\sum_{A}^{B} S N_{B i} \alpha_{B i} \lambda_{B i} \tag{17,a}
\end{equation*}
$$

From Table III, the first and last terms of eq. (17a) are respectjvely:

$$
\begin{align*}
& \sum_{A}^{B} S N_{T i} \alpha_{T i} \lambda_{\mathrm{TI} i}=-\frac{4}{h^{2}}\left(M_{1}+M_{2}^{\prime}+\ldots+M_{s-1}+M_{s}\right) \lambda_{T} \tag{170}\\
& \sum_{A}^{B} S N_{B i} \alpha_{B i} \lambda_{B i}=-\frac{2}{h^{2}}\left(M_{1}+M_{2}+\ldots+M_{S-1}+M_{S}\right) \lambda_{B} \tag{17c}
\end{align*}
$$

Combining eq. (17p, 17c) and $A_{B M D}$, the final expression for D_{1} is:

$$
\begin{equation*}
\mathrm{D}_{1}=\frac{-2 \mathrm{~A}_{\mathrm{BMD}} \lambda_{\mathrm{H}}}{\mathrm{bh}^{2}} \tag{17}
\end{equation*}
$$

If the system of loading is symmetrical with respect to the axis of symmetry of the truss, the constant:

$$
\begin{equation*}
D_{2}=0 \tag{18}
\end{equation*}
$$

CHAPTER III

PROCEDURE AND EXAMPLES

A. Procedure of Analysis

The procedure of application of the slope deflection equations to the analysis of structures with trusses of constant depth is:

1. Determine geometry of truss
a. external dimensions
b. cross-sectional areas and dimensions of members
2. Compute constants $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{D}_{1}$, and D_{2}
3. Compute fixed-end moments
a. due to loads
b. due to displacements
4. Write slope deflection equations for the structure
5. Write equilibrium equations
6. Solve equilibrium equations for unknown $\Delta '$ s and
θ^{\prime} s by substituting constants into the slope deflection equations
7. Compute final moments by substituting $\Delta ' s$ and θ^{\prime} s into the
slope deflection equations
B. Example I - Warren Truss (with verticals)

A three span Warren Truss is considered. The structure (Fig. 10)
is symmetrical and symmetrically loaded.

1. Geometry of truss

The dimensions of the truss are indicated in Fig. 10, the cross-
sectional areas are:

$$
\begin{array}{ll}
A_{\mathrm{Ti}}=10 \text { inches } & A_{B i}=10 \text { inches } \\
A_{V i}=2 \text { inches } & A_{D i}=4 \text { inches }
\end{array}
$$

Fig。 10
A Continuous Truss
2. Computation of constants

Using the general expressions, eqs. (15, 16, 17, and 18), the constants are:

$$
\left.\begin{array}{rl}
c_{1} & =\frac{2 n \lambda_{H}}{h^{2}}=\frac{(2)(2)(300)}{(80)^{2}(10) \mathrm{E}}=+\frac{.01875}{\mathrm{E}} \\
\mathrm{C}_{2} & =\frac{\mathrm{n}}{\mathrm{~h}^{2}}\left[\mathrm{~b}^{2} \frac{\left(2 \mathrm{n}^{2}+1\right)}{12} \lambda_{H}+2 \mathrm{c}^{2} \lambda_{D}\right] \\
& =\frac{2}{(80)}{ }^{2}(300)^{2} \frac{(8+1) 300}{12} 10(\mathrm{E})
\end{array}+2(170)^{2} \frac{170}{4 \mathrm{E}}\right]=\frac{+1400}{\mathrm{E}}
$$

$$
D_{2}=0
$$

The error in applying the general constant formulas without modification is small, and no correction is needed for the truss of Fig. 10.
3. Conditions of symmetry

$$
\begin{aligned}
\theta_{A}=-\theta_{D}, & \theta_{B}=-\theta_{C} \\
F M_{A B}=F M_{B C} & =F M_{C D} \\
& =-F M_{B A}=-F M_{C B}=-F M_{D C}
\end{aligned}
$$

4. Fixed-end moments due to loads

$$
\begin{aligned}
\mathrm{FM}_{A B} & =\frac{-D_{1}}{C_{1}}+\frac{a D_{2}}{C_{3}}-C M \\
& =\frac{\frac{+21.1}{E}}{\frac{.01875}{E}}-3000=-1875 \text { kip-inches }
\end{aligned}
$$

5. Moment equations

$$
\begin{aligned}
M_{A B}=-M_{D C} & =\left(\frac{a^{2}}{C_{2}}+\frac{1}{C_{1}}\right) \theta_{A}+\left(\frac{a^{2}}{C_{2}}-\frac{1}{C_{1}}\right) \theta_{B}+{ }_{A B}^{F M} \\
& =(64.3+53.3) E \theta_{A}+(64.3-53.3) E \theta_{B}-1875 \\
& =117.6 E \theta_{A}-11 E \theta_{B}-1875 \\
M_{B A}=-M_{C B} & -\left(\frac{a^{2}}{C_{2}}+\frac{1}{C_{1}}\right) \theta_{B}+\left(\frac{a^{2}}{C_{2}}-\frac{1}{C_{1}}\right) \theta_{A}+F M_{B A} \\
& =117.6 E \theta_{B}+11.0 E \theta_{A}+1875 \\
M_{B C}=-M_{C B} & =\left(\frac{a^{2}}{C_{2}}+\frac{1}{C_{1}}\right) \theta_{B}+\left(\frac{a^{2}}{C_{2}}-\frac{1}{C_{1}}\right) \theta_{C}+F M_{B C} \\
& =106.6 E \theta_{B}-1875
\end{aligned}
$$

6. Equilibrium equations

$$
M_{A B}=0, \quad M_{B A}+M_{B C}=0
$$

7. Deformation

Simultaneous solution of the equilibrium equations gives the following results:

$$
\begin{aligned}
& \mathrm{E} \theta_{\mathrm{A}}=+16 \\
& \mathrm{E} \theta_{\mathrm{B}}=-0.784
\end{aligned}
$$

8. Final end moments

Substituting the values of $E \theta$ into the moment equations, the final moments are:

$$
\begin{aligned}
& M_{A B}=-M_{D C}=0 \\
& M_{B A}=-M_{C B}=-1959 \text { kip-inches } \\
& M_{B C}=-M_{C B}=-1959 \text { kip-inches }
\end{aligned}
$$

8. Example II - Pratt Truss - Frame

A two span truss-frame (Fig. 11) is considered. The structure is symmetrical and symmetrically loaded.

Fig. 11

1. Geometry of truss

Dimensions of the structure and sizes of the colum s are indicanted in Fig. 11. The cross-sectional areas of the truss members are:

$$
A_{H i}=10 \text { inches, } A_{V i}=4 \text { inches, } A_{D i}=6 \text { inches }
$$

2. Computation of constants

$$
\begin{aligned}
& \text { Using eqs. }(7,8,9,10) \text {, the constants are: } \\
& C_{1}=\frac{2 n \lambda_{H}}{h^{2} E}=+\frac{2(10)(60)}{(60)^{2}(10) E}=+\frac{0.033}{E} \\
& \left.C_{2}=\frac{n}{h^{2}} b^{2} \frac{\left(n^{2}+2\right.}{6} \lambda_{H}+h^{2} \lambda_{V}+c^{2} \lambda_{D}\right] \\
& \left.=\frac{10}{(60)^{2}} \frac{(60)^{2}(102) 60}{(6)(10)(E)}+\frac{(60)^{2}(60)}{4 E}+\frac{(85)^{2} 85}{6 E}\right]=+\frac{1454}{E} \\
& D_{1}=\frac{-2 A_{B M D} \lambda_{H}}{b h^{2}}=\frac{-2(15,300)(60)}{(60)^{2}(10) E}=\frac{-51}{E} \\
& D_{2}=0
\end{aligned}
$$

The difference between the basic truss of Chapter II and the truss of Fig. 11 is insignificant. Accordingly, no correction to the constant formulas are used.
3. Conditions of symmetry

$$
\begin{aligned}
\mathrm{FM}_{\mathrm{DE}} & =\mathrm{FM}_{\mathrm{EF}}
\end{aligned}=-\mathrm{FM} \mathrm{EDD}=-\mathrm{FM}_{\mathrm{FE}} \mathrm{\theta}=\theta_{\mathrm{B}}=\theta_{\mathrm{C}}=\theta_{\mathrm{E}}=0
$$

4. Fixed - end moments due to loads

$$
\begin{aligned}
& \mathrm{FM}_{\mathrm{AB}}=-\frac{D_{1}}{C_{1}}+\frac{a D_{2}}{C_{2}}-{ }_{C M}^{A C} \\
&=\frac{+51}{E} \\
& \frac{0.033}{E}
\end{aligned}
$$

5. Moment equations

$$
\begin{aligned}
M_{A D}=-M_{C F} & =4 E \frac{I}{L} \theta_{A}+2 E \frac{I}{L} \theta_{D}+F M_{A D} \\
& =2 E \frac{I}{L} \theta_{D}=2 \frac{(394.5)}{230} \theta_{D}=+3.42 E \theta_{D} \\
M_{D A}=-M_{F C} & =4 E \frac{I}{L} \theta_{D}+2 E \frac{I}{L} \theta_{A}+F M_{D A} \\
& =4 \frac{(394.5) E \theta_{D}}{230}=+6.85 E \theta_{D} \\
& =\left(\frac{a^{2}}{C_{2}}+\frac{1}{C_{1}}\right) \theta_{D}+\left(\frac{a^{2}}{C_{2}}-\frac{1}{C_{1}}\right) \theta_{E}+F M_{D E} \\
& =91.8 E \theta_{D}+31.8 E \theta_{E}-2970 \\
M_{E D}=-M_{F E} & =\left(\frac{a^{2}}{C_{2}}+\frac{1}{C_{1}}\right) \theta_{E}+\left(\frac{a^{2}}{C_{2}}-\frac{1}{C_{1}}\right) \theta_{D}+F M_{E D} \\
& =91.8 E \theta_{E}+31.8 E \theta_{D}+2970 \\
& =4 E \frac{I}{L} \theta_{E}+2 E \frac{I}{L} \theta_{B}+F \Theta_{E B} \\
& =0 \\
& =0
\end{aligned}
$$

6. Equilibrium equation

$$
M_{D A}+M_{D E}=0
$$

7. Deformation

Solving the equilibrium equation:

$$
E \theta_{D}=+30.1
$$

8. Final end moments

Substituting $E \Theta_{D}$ into the moment equations:

$$
\begin{aligned}
& M_{A D}=-M_{C F}=3.42(30.1)=+103 \\
& M_{D A}=-M_{F C}=6.85(30.1)=+208
\end{aligned}
$$

$$
\begin{aligned}
& M_{\mathrm{DE}}=-\mathbb{M}_{\mathrm{FE}}=91.8(30.1)-2970=-208 \\
& M_{\mathrm{ED}}=-M_{\mathrm{EF}}=31.8(30.1)+2970=+3,927 \\
& M_{\mathrm{EB}}=M_{B E}=0
\end{aligned}
$$

All moments have units of kip-inches

A SELECTED BIBLIOGRAPHY

1. Grinter, Linton E. Theory of Modern Steel Structures. New York: The MacMillan Co., 1950, pp. 297-344.
2. Haynes, John M. A New Approach to the Rigid Joint Method. Bulletin No. 134, Purdue Engineering Experiment Station, 1957.
3. Jacobsen, H. R. "Moment Distribution and the Analysis of a Continuous Truss of Varying Depth." The Engineering Journal, 1941.
4. Maugh, L. C. Statically Indeterminate structures. New York: John Wiley and Sons, Inc., 1946, pp. 167-183.
5. Parcel, John I. and Moorman, Robert B. B. Analysis of Statically Indeterminates Structures. New York: John Wiley and Sons, Inc., 1955, 141-248.
6. Seely, Fred B. and Smith, James 0. Advanced Mechanics of Materials. New York: John Wiley and Sons, Inc., 1955, pp. 421-510.
7. Spofford, Charles M. The Theory of Structures. New York: McGrawHill Co., Inc., 1939, pp. 427-454.
8. Timoshenko, S. and Young, D. H. Theory of Structures. New York: Mc-Graw-Hill Book Co., 1945, pp. 258-264.

Dale Edward Morrisett
Candidate for the Degree of
Master of Science

Report: DERIVATION OF SLOPE DEFLECTION EQUATIONS FOR STRAIGHT TRUSSES OF CONSTANT DEPTH

Major Field: Civil Engineering
Biographical:
Personal data: Born near Guthrie, Oklahoma, the son of Horace L. and Myrtle F. Morrisett.

Education: Attended grade school near Guthrie, Oklahoma; graduated from Guthrie High School in 1950; received the Bachelor of Science degree from the Oklahoma Agricultural and Mechanical Callege, with a major in Civil Engineering; completed requirements for the Master of Science degree in August 1956.

Professional experience: United States Army Corps of Engineers, 1954-1956, Commissioned Officer

