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ABSTRACT

The reliability of reservoir models generally increases as more data are included

during their construction. In the recent past, the ensemble Kalman filter (EnKF)

technique has established itself as a viable data assimilation method for models with

large numbers of variables. The standard implementation of the EnKF and its vari-

ants are being used in a number of disciplines including reservoir engineering.

The standard formulation of the EnKF, however, does not take into account the

physical constraints on state variables during the data assimilation step so, the con-

straint violations are often handled heuristically. When the standard implementation

of the EnKF is used for history matching, the resulting updates to reservoir properties

sometimes exceed physical bounds, especially when the problem has highly nonlin-

ear model dynamics, the state variables are non-Gaussian, or the ensemble size is

small. The physical constraints often contain valuable information about the system

which are critical for the valid initialization and the forecast. A successful enforcing

of these constraints during the data assimilation step of the EnKF is necessary for

valid estimation of reservoir properties.

In the conventional EnKF approach, phase saturations (in case of black-oil mod-

els) and molar densities (in case of compositional models) are often included in the

state vector. Unfortunately, the analysis step of the EnKF sometimes results in

non-physical values of phase saturations or molar densities. In this dissertation, we

illustrate the problem of using the standard EnKF with a compositional model in

which the updated CO2 molar density in some regions of the model space is observed
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to take negative values while molar densities of the remaining components are in-

creased. A number of solutions to the problem of constraint violation have been

proposed in the past including the iterative EnKF, transformation of state variables,

reparameterization, and truncation. The standard truncation schemes avoid negative

values of molar densities, but do not address the problem of increased molar den-

sities of other components. The results can include a spurious increase in reservoir

pressure with a subsequent inability to maintain injection. In this dissertation, we

present two different methods for incorporating the inequality constraints into the

EnKF methodology.

In the first part of this dissertation we present a method for the constrained EnKF

(CEnKF) which takes into account the physical constraints on the plausible values of

state variables during the data assimilation such that the resulting solution is as close

as possible to the unconstrained solution obtained from the standard EnKF, and at

the same time, it lies in the feasible region. The proposed method can be implemented

in two different approaches, both of which convert the inequality constraints to a

small number of equality constraints. The first approach uses Lagrange multipliers to

enforce the active constraints. In the second approach, the active constraints are used

as virtual observations for calibrating the model parameters within plausible ranges.

Applying the CEnKF technique in an iterative manner ensures that the resulting

solution is within the limits set by the constraints.

The application of the proposed CEnKF method is successfully demonstrated on a

synthetic 1D linear problem, on a synthetic 2D compositional model, and on a highly

heterogeneous three-phase flow reservoir model. The effect of the constraints on mass

conservation is illustrated using a 1D Buckley-Leverett flow example. Results show

that the CEnKF technique is able to enforce the non-negativity constraints on molar

densities and the bound constraints on phase saturations (all phase saturations must

be between a lower and an upper bound), and achieve a better estimation of reservoir
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properties than is obtained using only truncation with EnKF.

An interior-point method for incorporating the inequality constraints into the

EnKF methodology (IPCEnKF) is presented in the second part of this dissertation. In

this approach, the objective function for data assimilation is reformulated by adding

a barrier function to penalize proximity of the state variables to the boundaries of the

feasible region and to set a barrier on the state variables against leaving the feasible

region. By doing so, the original constrained optimization problem is transformed

into an unconstrained optimization problem. We present the solution of the resulting

unconstrained problem in the form of a new iterative EnKF scheme which implic-

itly contains inequality constraints on the state variables. The proposed IPCEnKF

method is efficient compared to the CEnKF as it does not require the identification

of the active constraints. Although the method is iterative to reduce the effect of

the barrier term at each assimilation step, the iterations do not require running the

simulator.

The IPCEnKF method is successfully tested first on a 1D linear example to illus-

trate the performance when nonlinearity is not an issue, then on a more realistic 3D,

three-phase reservoir flow assimilation problem based on the modified SPE9 model.

Results from the reservoir problem show the effectiveness of the newly proposed IP-

CEnKF method in matching the observations and honoring the inequality constraints

on phase saturations. The proposed method is able to achieve a better estimate of

reservoir properties than is obtained using only truncation with the standard EnKF.
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CHAPTER I

INTRODUCTION

Uncertainty quantification is one of the most important factors in a successful reser-

voir management process. The uncertainty in reservoir properties such as porosity,

permeability, and fluid contacts can have a significant impact on the reservoir per-

formance and the production strategy. One way to quantify the uncertainty in the

future reservoir performance is to generate a suitable collection of reliable geological

models of the reservoir. The reliability of reservoir models increases as more data

are included in their construction. Traditionally, conditional geostatistical simulation

(Deutsch and Journel, 1998) has been used to incorporate static data (e.g. geological,

geophysical, and well-log or core data) into the construction of reservoir geological

models. Although the well-logs or core data can provide a direct measurement of

reservoir properties (porosity and permeability), the process of acquiring these data

is often highly expensive. Therefore, the static data are available in limited quan-

tity and are often sparsely located in the reservoir field. Geostatistical methods are

typically constrained by the requirement of linearity in relationships between model

variables and observations. On the other hand, the dynamic production data (e.g. oil

production rate, water production rate, gas-oil ratio, and cumulative fluid production

rates, etc.) are available in abundant quantity, but are nonlinearly related to model

variables over a long distance in the reservoir.

History matching provides a way of incorporating both static data (e.g. well-log or

core data) as well as dynamic data (e.g. production data) in the geological reservoir

model construction. The traditional approach to history matching often consists of
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manually adjusting local reservoir properties (e.g. porosity, permeability, or transmis-

sibility, etc.) so that the flow simulation results using the adjusted parameters match

the recorded observations. Traditional history matching methods, including manual

history match, simultaneously utilize all the available production data obtained dur-

ing the entire production history period and often involve heuristic trial-and-error

techniques which become impractical for achieving well-by-well history match for

reservoir models with large numbers of gridblocks and a large number of wells. On

the contrary, data assimilation approach uses available observations in a sequential

manner for estimating reservoir properties. Since data are assimilated sequentially

as they become available, it provides a way of obtaining the estimate of reservoir

properties that honors the production data up to the most recent time. As a di-

rect consequence of this feature of data assimilation, the method is highly suitable

for real-time reservoir management. Data assimilation is often called as an assisted

or automatic history matching problem and can be considered as an optimization

problem when it is formulated under the Bayesian framework (Oliver et al., 2008).

Data assimilation is usually formulated as a minimization problem in which the objec-

tive is to minimize the mismatch between the actual measurements and their model

counterparts with a regularization term (Tarantola, 1987).

Among the possible methods for solving this minimization problem, gradient-

based approach is one of the most widely applied techniques. A number of methods

including numerical perturbation and sensitivity equation have been developed in

this area. The numerical perturbation method is easy to implement, however, as

the necessary computations increase proportionally with the number of unknown

parameters, the method often breaks down for reservoir models with large numbers of

gridblocks with a few numbers of unknown parameters per gridblock to be estimated.

The adjoint-based method is a popular approach for history matching (Wu et al.,

1999; Li et al., 2003; Liu and Oliver, 2004) among researchers and practitioners as
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the computation of gradients from the adjoint-based method is highly efficient. Any

history matching method that uses the adjoint approach, however, requires access to

the simulator source code and needs significant code development and maintenance

on the user’s side. A number of challenges like these, involved in using the gradient-

based approach prohibit its application for history matching in reservoir engineering

on a large scale.

In the past few years, a technique called as the ensemble Kalman filter (EnKF) has

attracted significant attention in the research community as a viable data assimilation

method. The EnKF technique has a great advantage over the gradient-based approach

as it approximates the gradient through the ensemble-based sensitivity which can be

obtained from the ensemble of forecasts obtained from the simulator. Thus, the EnKF

does not suffer from the challenges including high computational cost or the require-

ment of the access to the simulator source code as those faced by the gradient-based

methods. One only has to work with the inputs and outputs from the reservoir sim-

ulator for computing the sensitivity which makes the reservoir simulator a black box.

The EnKF was developed by Evensen (1994b) for reducing the limitations on linear-

ity and for allowing data assimilation with reservoir models with large numbers of

gridblocks. The EnKF utilizes the dynamical equations to evolve the most probable

state (mean) and the error covariance matrix forward in time and the model param-

eters of each ensemble member are adjusted using the sensitivity computed from the

ensemble of state vectors. The first application of the EnKF to the reservoir engi-

neering field was presented by Lorentzen et al. (2001a) where the authors used the

EnKF in a dynamic two-phase fluid flow model for updating model parameters. Since

its introduction to the petroleum engineering field, the EnKF technique has gained

increasing attention for history matching and continuous reservoir model updating

(Nævdal et al., 2005; Evensen et al., 2007; Skjervheim et al., 2007). The application

of the EnKF is not only limited to the synthetic data assimilation problems but the
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method has successfully been demonstrated on a number of pseudo-field cases (Gu

and Oliver, 2005; Chen and Oliver, 2010) and real-field data assimilation problems

(Bianco et al., 2007; Haugen et al., 2008; Zhang and Oliver, 2010b).

The standard implementation of the EnKF performs well when the model dynam-

ics is not highly nonlinear, the state variables can be approximated by a Gaussian

distribution, and the ensemble size is large. In case of highly nonlinear problems,

the standard implementation of the EnKF often encounters difficulties in obtaining

a reasonable match to the observations. One solution to this issue is to use an iter-

ative approach as discussed by a number of researchers (Zafari et al., 2006; Li and

Reynolds, 2009a; Krymskaya et al., 2009). An iterative EnKF method, called as en-

semble randomized maximum likelihood (EnRML), was proposed by Gu and Oliver

(2007) which uses a Gauss-Newton formulation to iteratively adjust model parame-

ters. The dynamic state variables such as gridblock pressures and phase saturations

are obtained from the reservoir simulator. A major issue that occurs in the presence of

highly nonlinear model dynamics, non-Gaussian state variables, and small ensemble

size is that the standard EnKF results in large adjustments to state variables leading

to non-physical updates during the data assimilation step. As the analysis step of the

EnKF preserves only the first two moments, violation of the Gaussianity assumption,

as in the case with water saturation during a water flood operation, often results in

constraint violations where the updated water saturations take non-physical values. A

number of solutions have been proposed in the past to avoid the issue of non-physical

updates, however, to our knowledge, there are no well-established methods in the

literature for incorporating the inequality constraints into the EnKF framework.

In this dissertation, we describe two different methods, the CEnKF and the IP-

CEnKF, for incorporating the inequality constraints on the plausible values of state

variables during the analysis step of the EnKF methodology. These methods are
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derived based on two distinct principles. In the constrained EnKF method, an un-

constrained solution is obtained using the standard implementation of the EnKF.

The unconstrained solution is subsequently analyzed for any inequality constraint

violations for each ensemble member. The inequality constraints (at the location of

constraint violations) are converted into a small number of equality constraints be-

fore using them as pseudo-observations during the CEnKF data assimilation step.

Although the CEnKF is an iterative method and additional constraint violations are

identified during each iteration, it is observed during this study that a small num-

ber of iterations are often sufficient for obtaining a solution that either lies in the

feasible region completely or gets sufficiently close to being in the feasible region.

Thus, the CEnKF method utilizes the inequality constraints in the form of equality

constraints for projecting the unconstrained solution on to the feasible region. On

the other hand, the IPCEnKF method formulates the data assimilation problem in

such a manner that the resulting solution stays within the boundaries of the feasible

region at all times. The IPCEnKF method is also an iterative technique and shows

a close resemblance to the EnRML. The fundamental difference between the CEnKF

and the IPCEnKF methods is that the CEnKF method gradually moves the uncon-

strained solution towards the feasible region whereas the solution obtained from the

IPCEnKF method always lies in the interior of the feasible region. Although both

methods are iterative in nature, the iterative process does not require running the

reservoir simulator.

This dissertation contains six chapters. Chapter 2 presents a brief summary of the

EnKF technique. A number of issues involving the application of the EnKF method

such as model error, sampling error, localization, assimilation of large amounts of

observations, and handling of equality and inequality constraints on the state vari-

ables are discussed. The evolution of the EnKF technique in terms of its application
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to models with increasing dimensions and estimation of different types of model pa-

rameters is also mentioned. Chapter 3 illustrates the application of the standard

implementation of the EnKF to a synthetic 2D compositional model and points out

the resulting issue with the injection of fluids into reservoir. A detailed analysis of one

of the ensemble members is presented for demonstrating the absence of a constraint-

enforcing mechanism during the analysis step of the EnKF. Chapter 4 introduces the

constrained EnKF method (CEnKF) and presents two different approaches for its

implementation. The effectiveness of the CEnKF is demonstrated through its ap-

plication to a synthetic 1D linear example, to a synthetic 2D compositional model,

and to a highly heterogeneous three-phase flow reservoir model. Chapter 5 presents

the interior-point method for incorporating the inequality constraints into the EnKF

methodology (IPCEnKF). The newly proposed IPCEnKF method is tested first on

a 1D linear example to demonstrate its effectiveness when the nonlinearity is not an

issue, then on a more realistic 3D, three-phase reservoir flow assimilation problem

based on the modified SPE9 model. Chapter 6 summarizes the main findings and

conclusions drawn from this study.
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CHAPTER II

THE ENSEMBLE KALMAN FILTER AND

RELATED ISSUES

2.1 Introduction

The EnKF is an ensemble-based extension of the Kalman filter (Kalman, 1960). The

Kalman filter was originally developed to continuously update the states of linear

systems to account for data assimilation in linear problem with Gaussian priors.

The Kalman filter seeks a solution that minimizes the objective function involving

the sum of two quantities: (1) mismatch between the actual observations and the

simulated observations predicted from the solution and (2) mismatch between the

prior knowledge about the state of the system and the solution obtained from the

Kalman filter algorithm. Under this framework, the classical Kalman filter can be

thought of as an optimization algorithm where the solution maximizes the posterior

probability density of the state of the system given the observations and the prior

knowledge of the state.

Due to the underlying structure, however, the Kalman filter becomes impractical

for state vectors (a vector consisting of static model parameters and dynamic state

variables) with large dimensions as the computational efforts required for updating

the covariance matrix are prohibitive. The Kalman filter was extended for dealing

with the nonlinearity in the models through the extended Kalman filter (Jazwinski,

1970) which uses linearizations of the model and observation equations around the es-

timated mean of the state. Even though the extended Kalman filter shows promising

results for a wide variety of problems, it breaks down for highly nonlinear models. In
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addition, the extended Kalman filter requires updating the covariance matrix which

makes this method, like the standard Kalman filter, infeasible for models with large

numbers of gridblocks. In 1994, Evensen (1994b) introduced the technique of the

ensemble Kalman filter (EnKF) to reduce the limitations on linearity and to allow

assimilation with large state vectors. The EnKF uses an ensemble of model real-

izations for approximating the probability distribution of the state vector and relies

on the Monte Carlo approach to forecast the error statistics. The mean state and

the associated error covariance matrix are propagated forward in time using a set

of dynamical equations. Evensen (1994a) mentioned about the successful applica-

tion of EnKF in resolving the closure problems reported from the applications of the

extended Kalman filter. Unlike the extended Kalman filter, EnKF avoids the lin-

earization of the nonlinear model dynamics and uses a reduced order approximation

of the covariance matrix which makes it suitable for data assimilation problems with

large numbers of state variables.

A number of improvements to the implementation of the EnKF have been sug-

gested since the method was originally introduced by Evensen (1994b). Due to the

ease of implementation and the robustness, the EnKF in its standard form and its

variants have gained increasing attention for data assimilation in a wide spectrum

of fields ranging from meteorology (Houtekamer and Mitchell, 1998; Hamill et al.,

2000; Anderson, 2001; Houtekamer et al., 2005), to oceanography (Evensen and van

Leeuwen, 1996; Keppenne and Rienecker, 2002; Bertino et al., 2003; Gerber and Joos,

2010), and to groundwater (Reichle et al., 2002; Moradkhani et al., 2005; Chen and

Zhang, 2006; Zhang et al., 2007). Evensen (2003) reviewed some of the important

results from a number of studies and documented a chronological sequence of the

developments in the application of the EnKF. Although the EnKF is being used in a

number of different fields, Oliver et al. (2010) summarized some of the key points of

the data assimilation for multiphase flow problems in reservoir engineering that make
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the problem distinctly different from data assimilation problems in other areas such

as meteorology and oceanography. Aanonsen et al. (2009) presented a comprehen-

sive review of a number of applications where the EnKF has been used for problems

specific to the petroleum industry.

The EnKF updates reservoir models by assimilating observations in a sequential

manner. In the process, it uses the cross-covariances between observations and model

parameters estimated from the ensemble. Liu and Oliver (2005b) cited a number of

reasons for which large, nonlinear models show difficulty in terms of sequential data

assimilation. In spite of the challenges, the method has gained widespread acceptance

in the petroleum industry simply because it uses a reduced order approximation of the

covariance matrix and the computation of the entire cross-covariance is not required

which makes the method more suitable for large-scale fluid flow problems in reservoir

engineering. Also, the correlation between the model parameters and theoretical

data is only a function of the information contained in the ensemble, thus making

the EnKF method independent of the reservoir simulator. The historical production

data are sequentially assimilated which makes EnKF suitable for reservoir monitoring

and performance prediction (Nævdal et al., 2002, 2005). Since its introduction to

petroleum engineering field, the EnKF technique has gained increasing attention for

history matching and continuous reservoir model updating (Lorentzen et al., 2005;

Liu and Oliver, 2005b; Bianco et al., 2007; Evensen et al., 2007; Haugen et al., 2008;

Agbalaka and Oliver, 2009; Chen and Oliver, 2010; Zhang and Oliver, 2010b).

There has been a remarkable progress in terms of the application of the EnKF

technique for history matching with reservoir models that are increasingly complex

in nature and size. In the first application of the EnKF to the petroleum engineering

problem, Lorentzen et al. (2001b) used the EnKF technique for tracking observations

in case of a underbalanced drilling operation. In this study, model parameters for a

dynamic two-phase model of fluid flow in a vertical well were estimated by assimilating
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measured data such as the pump pressure, the bottomhole pressure, and the liquid

and gas flow rates at the outlet. The first application of the EnKF to reservoir

monitoring was presented by Nævdal et al. (2002) where the EnKF was used on a

2D (vertical cross-section) model for forecasting production of a near-well reservoir

and for tracking the production of the two phases in different inflow zones. In 2005,

the reservoir engineering field saw the first application of the EnKF technique on

field-like synthetic cases (Nævdal et al., 2005) where a simplified 2D field model

was constructed by taking out a horizontal layer from a model of a North Sea field.

Nævdal et al. (2005) applied the EnKF for assimilating historical production data

from 14 production wells and for estimating permeability field. In addition, Nævdal

et al. (2005) used the EnKF technique on a 2D synthetic example with model size of

2500 gridblocks where the permeability field was tuned by assimilating well pressure,

oil production rate, producing gas-oil ratio, and water cut data at two producers and

a single injector.

Gu and Oliver (2005) initialized a series of studies using the PUNQ-S3 model

where both porosity and permeability fields were estimated. The dimensions of the

PUNQ-S3 reservoir model were 19×28×5 with 1,761 active gridblocks. There were 6

producing wells with no injectors in the field. The oil production rate was identical for

all producers, however, as Gu and Oliver (2005) reported, the actual oil production

rate values varied as wells in some simulation models were unable to make the target.

Gu and Oliver (2005) assimilated four kinds of production data including bottomhole

pressure, producing gas-oil ratio, water cut, and oil production rate. In another study,

Gao et al. (2006) applied the EnKF on the PUNQ-S3 problem for uncertainty quan-

tification, however, as all six producing wells were constrained to a fixed production

rate, Gao et al. (2006) did not include oil production rate data in the state vector,

but instead assimilated only water cut, wellbore pressure, and producing gas-oil ratio

during the data assimilation procedure. The atmospheric pressure was set as the
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minimum bottomhole pressure in their study. Skjervheim et al. (2007) presented the

first application of the EnKF technique on a field case where the authors used the

EnKF for assimilating 4D seismic data and production data including water cut and

producing gas-oil ratio for a North Sea field. The reservoir properties such as porosity

and permeability were considered to be uncertain parameters for the reservoir model

with 14 layers and 29,580 active gridblocks.

Although the EnKF was used to estimate spatially correlated rock properties such

as porosity and permeability during the initial applications of EnKF, since then, the

types of variables that could be estimated using the EnKF have been expanded dra-

matically to include, for example, discontinuous variables such as reservoir rock facies

(Liu and Oliver, 2005b,a; Agbalaka and Oliver, 2008, 2009). Evensen et al. (2007) and

Seiler et al. (2009) used EnKF as a tool for assisted history matching on a complex

North Sea field. The reservoir simulation model consisted of 40 layers with 60,000

active gridblocks. A number of model parameters including permeability, porosity,

relative permeability, fault transmissibility multipliers, and vertical transmissibility

multipliers were estimated by assimilating oil production rate, water cut, and pro-

ducing gas-oil ratio data. A number of researchers have also attempted to estimate

the uncertainty in the fluid contacts such as water oil contact and gas oil contact

(Evensen et al., 2007; Thulin et al., 2007). Chen and Oliver (2010) also estimated

the uncertainty in the relative permeability curves along with other model parame-

ters such as porosity, permeability (in three directions), and net-to-gross ratio during

the application of an iterative form of EnKF to the Brugge benchmark study. In an

application of the EnKF to a deepwater reservoir field with 5 layers and over 95,000

active gridblocks, Zhang and Oliver (2010b) used a hierarchical stochastic model and

included porosity and permeability along with the uncertain trend coefficients into the

state vector. The known application of EnKF for history matching and uncertainty

quantification on the largest reservoir simulation model was presented by Cominelli
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et al. (2009). The simulation model of the deepwater reservoir field used by Cominelli

et al. (2009) consisted of 44 layers and over 410,000 active gridblocks where porosity

and permeability fields were tuned by assimilating oil production rate, water produc-

tion rate, and static pressure data. An attempt has also been made to estimate the

geomechanical properties such as stress, strain, and displacement fields (Chang et al.,

2010). Recently, Irving and Robert (2010) presented a workflow for quantifying the

uncertainty in the structural parameters such as fault permeability and thickness.

Irving and Robert (2010) used the Barnhill field to compare the performance of the

EnKF-based workflow with another method named factorial experimental design and

pointed out different advantages and disadvantages of these two methods.

In the following section, we briefly discuss the methodology for the standard im-

plementation of the EnKF.

2.2 The ensemble Kalman filter

The EnKF is a sequential data assimilation method. It is a Monte Carlo technique in

which an ensemble of states is propagated forward in time to obtain the time evolu-

tion of the mean and the covariance of the ensemble of model realizations. The mean

of the ensemble forecast represents the best estimate of the population mean whereas

the ensemble members quantify the corresponding uncertainty in the estimate. Most

of the Monte Carlo methods require a large sample size, while the EnKF utilizes much

less number of samples due to the conditioning of state variables to data along the

sequential data assimilation process. In other words, the samples obtained during

the analysis step of the EnKF move to the region of higher probability as data are

continually assimilated. In petroleum engineering field, the process of evolving reser-

voir models forward in time is often accomplished by running a reservoir simulator

which can be expensive for reservoir models with large numbers of gridblocks. A

small ensemble size can be advantageous while working with such models where the
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computational time required for running the simulator can be the main concern.

2.2.1 Parameterization

In order to characterize a reservoir and quantify the uncertainty in its future reservoir

performance, one needs to quantify the uncertainty within a number of gridblock-

based parameters as well as global properties. Therefore, the first step in the history

matching process is to identify the important parameters which influence the per-

formance of the simulation model and therefore need to be estimated. Traditional

history matching methods, e.g. manual history match, are not capable of estimat-

ing large numbers of uncertain variables and often require to include a low number of

model parameters in the workflow. Currently, one of the most popular history match-

ing methods used in the petroleum industry is the Design of Experiments which uses

a sensitivity study to identify the most significant parameters. Since it is necessary

to evaluate the performance of the reservoir model for different combinations of the

unknown model parameters during the sensitivity study, the number of unknown

parameters that can be estimated using such technique is severely limited and only

global parameters such as fault transmissibility multiplier or water oil contact can be

determined. The EnKF, however, does not suffer from these disadvantages and the

numbers of unknown parameters that can be estimated are not limited. The funda-

mental reason is that the EnKF uses an ensemble of realizations for representing the

probability distribution of state variables. With this ensemble approximation, the

EnKF effectively reduces the dimension of the problem from the number of uncertain

variables in the state vector to the number of ensemble members. As a direct conse-

quence of this, the solution obtained from the most basic form of the EnKF algorithm

lies in the subspace spanned by the ensemble members.

Due to the improvements to the EnKF methodology, a wide range of uncertain

model parameters can be estimated using the EnKF including porosity, horizontal
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permeability, vertical permeability, depth of fluid contacts, horizontal and vertical

barriers to fluid flow, net-to-gross ratio, relative permeability curves, fault transmissi-

bility multipliers, vertical transmissibility multipliers, and trend coefficients, etc. The

most important gridblock-based parameters included into the state vector, however,

are often porosity and permeability. Since the logarithm of permeability (referred

to as log-permeability in this dissertation) is sometimes approximately Gaussian, the

log-permeability instead of permeability is often included in the data assimilation

process. The reservoir gridblock properties such as porosity and log-permeability do

not change with time. Hence, they are termed as the static model parameters. The

uncertainty associated with some of the global reservoir parameters such as fluid con-

tacts, fault transmissibility, and net-to-gross ratio can also be quantified using the

EnKF. However, in all the reservoir flow problems discussed in this dissertation, we

use the standard parameterization for the EnKF and include the two most impor-

tant static model parameters, gridblock porosity and log-permeability, into the state

vector.

2.2.2 Generation of the initial ensemble

An initial ensemble of porosity and log-permeability realizations can be generated

using a number of statistical tools such as sequential Gaussian simulation (SGSim),

Cholesky decomposition, and the method of moving averages, etc. If all the realiza-

tions from the initial ensemble are required to honor the porosity and log-permeability

data at well locations, one can use the conditional simulation for generating the initial

ensemble. The prior mean and the prior covariance for generating the initial ensem-

ble of porosity and log-permeability can be determined from the geological reservoir

model (if available). In industrial practice, the geologists often take into account the

information available from sources such as cores, well-logs, and seismic data for es-

timating the statistical parameters (e.g. mean and covariance) of model parameters.
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As mentioned earlier, the dynamic state variables are also included into the state vec-

tor. For reservoir engineering applications, pressures and phase saturations (water,

gas, and oil) at each gridblock represent the dynamic state of the reservoir at any

given time. These properties change with time and therefore, they are termed as the

dynamic state variables. The reservoir field is assumed to be in a static equilibrium

condition at the initial time prior to any production from the field. As a result, the

spatial distribution of the dynamic state variables at the initial condition is often

assumed to be known without any uncertainty. The ensemble of reservoir models is

initialized with these static model parameters and dynamic state variables.

2.2.3 Forecast and analysis

The EnKF methodology is a recursive two step process. The first step is the forecast

step in which the system is evaluated forward in time using a forward model. The

second step, often called the updating or the analysis step, is based on the Bayesian

framework for merging the prior (or background) information about the current state

based on the previous data up to the current time, and current data (or observa-

tions). Each ensemble member is evaluated from the current time step to the next

data assimilation time step at which the observations are available. The discrepancy

encountered due to the lack of the knowledge and the expertise to model the actual

system dynamics is usually the source of the model error. To this date, a reliable

method for quantifying model error in petroleum reservoir flow problems has not

been developed. An inappropriate use of the model error, however, can introduce

bias in the estimates. For all the examples discussed in this dissertation, we consider

a “perfect model” with no model error.

Let us assume that the static model parameters are denoted by m and the dynamic

state variables, uk, at time tk are a nonlinear function of the state variables at time
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tk−1 and the model parameters, m,

uk = f(uk−1,m).

In reservoir engineering, a reservoir fluid flow simulator often represents the forward

model, f(·), and the model error is typically neglected. The predicted data, dk, at

time tk are functions of the state and model variables at tk.

dk = g(uk,m).

It is assumed that the observed data are functions of the true state and model variables

with zero-mean Gaussian noise added.

dobs = g(utrue,mtrue) + ν

where, the covariance of the data is CD. The measurements are generally indepen-

dent of each other, and therefore, CD is often a diagonal matrix where the diagonal

elements represent the measurement error variances. In reservoir engineering applica-

tions, the measurements used in the analysis step often include the production data

(e.g. oil production rate, gas-oil ratio, water cut at the well, etc.) recorded during

the production history of the reservoir. To reduce the number of subscripts and

superscripts, we will omit the notation for the time index in the following equations.

For most reservoir engineering applications, a joint vector consisting of the static

model parameters (m), the dynamic state variables (u), and the predicted (simulated)

data (d) is often used. In that case, the augmented state vector yj for the jth ensemble

member can be represented as

yj =


m

u

d


j

(2.1)

and the collection of all ensemble state vectors is denoted by Y as

Y = [y1,y2,y3, . . . ,yNe ] . (2.2)
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The matrix Y is of dimensions Ny × Ne where Ne is the ensemble size. In Eq. 2.1,

m ∈ RNm and u ∈ RNs where Nm and Ns denote the dimensions of the static model

parameters and the dynamic state variables, respectively. As a result of the use of

the augmented state vector, the measurement operator H, is a matrix consisting of

0s and 1s that selects the simulated data from the state vector. The analysis step in

the standard EnKF computes variables that approximately minimize

Jj(y) =
1

2
(y − yf

j )T (Cf
Y )−1(y − yf

j ) +
1

2
(Hy − dobs,j)

T C−1
D (Hy − dobs,j). (2.3)

As a result, each state vector of the ensemble is updated at a data assimilation step

using the ensemble approximation to the Kalman gain in the following manner:

yu
j = yf

j + K(dobs,j −Hyf
j ), for j = 1, 2, . . . , Ne (2.4)

where, the superscripts f and u stand for forecast and update, respectively. In

this study, we have used the perturbed observation approach (Burgers et al., 1998;

Houtekamer and Mitchell, 1998), for which random observation perturbations with

the same covariance as the true observation error are added to observations in each

ensemble member,

dobs,j = dobs + νj.

Although the perturbed observation approach is widely used by the data assimilation

community, the perturbations to the observations can serve as a source of additional

sampling error in which case Tippett et al. (2003) suggest using methods that do not

require perturbations. In Eq. 2.4, K is the ensemble approximation to the Kalman

gain and is computed as

K = Cf
Y HT (HCf

Y HT + CD)−1. (2.5)

In Eq. 2.5, Cf
Y denotes the prior covariance matrix for the state variables. An alter-

nate expression for the Kalman gain K in Eq. 2.4 can be given as

K = Cf
yd(Cf

dd + CD)−1, (2.6)
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where, Cf
yd is the sample covariance between state variables and simulated data and

Cf
dd is the sample covariance between different simulated data. In EnKF, the covari-

ances Cf
yd and Cf

dd are estimated from an ensemble of realizations.

Substituting Eq. 2.5 into Eq. 2.4, the expression for updating each state vector of

the ensemble can be expressed as

yu
j = yf

j + Cf
Y HT (HCf

Y HT + CD)−1(dobs,j −Hyf
j ), for j = 1, 2, . . . , Ne. (2.7)

The mean of the updated ensemble can be computed from Eq. 2.7 as

yu = yf + Cf
Y HT (HCf

Y HT + CD)−1(dobs −Hyf ), (2.8)

where, dobs denotes the vector of true observations. The prior covariance matrix

for the state variables, Cf
Y can be estimated from the ensemble using the following

expression:

Cf
Y =

1

Ne − 1
(Yf −Yf )(Yf −Yf )T (2.9)

where, Yf is the mean of state variables calculated across the ensemble members and

is a vector of dimension Ny. The state covariance matrix can be very large, but it

is never necessary to compute the entire matrix which makes the implementation of

the traditional EnKF so efficient. Instead, we compute products of the form (Yf −

Yf )T HT which are typically much smaller in dimension than the state covariance

matrix.

2.3 Application of EnKF to reservoir engineering

problems

The performance of the EnKF for reservoir engineering related applications with

highly nonlinear model dynamics and non-Gaussian state variables is well docu-

mented. Gu and Oliver (2005) reported the use of the EnKF for automatic history

matching and quantifying the uncertainty in the future reservoir performance of the
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PUNQ-S3 synthetic model. Gu and Oliver (2005) showed that the EnKF gave sat-

isfactory history-matching results and required significantly less computational work

compared to traditional methods. The results of the cumulative oil production after

16.5 years obtained from the EnKF (Gu and Oliver, 2005) were compared with those

summarized by Floris et al. (2001) which showed that the EnKF outperformed the

traditional methods including multiple maximum likelihood or maximum a posteriori

solution using different initial models. Zhang and Oliver (2010b) reported success

with a hierarchical EnKF for matching the historical production data in case of a

Gulf of Mexico deepwater reservoir field. A significant increase in the ability to

match the water cut and other production data using this method was demonstrated

by Zhang and Oliver (2010b). In a recent article, Peters et al. (2010) summarized the

results of the Brugge benchmark study which was designed to test the combined use

of flooding-optimization and history-matching methods. A total of nine participants

took part in this study. The history-matching methods used by the participants varied

from ensemble-based approach (EnKF and EnRML) to the gradient-based approach

to the streamline-based generalized travel time inversion method. The participants

who used EnKF or the iterative form of the EnKF (EnRML) approach for the history-

matching part obtained the highest net present value (NPV) of the reservoir which

underlines the power and the ability of the EnKF for history-matching large-scale

reservoir models with complex geology.

Although the EnKF is being regarded as one of the promising data assimilation

techniques in reservoir engineering related applications, there are a number of issues

involving the practical application of the EnKF that are being studied for making the

method more robust and increasing its applicability. Some of these key elements are

described in the following section.
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2.3.1 Model error

For systems of interest in the reservoir engineering field, one is often interested in es-

timating model parameters (e.g. porosity and permeability) using reservoir response

(e.g. different types of production data) rather than determining exactly the initial

reservoir conditions. The production data including oil production rate, water pro-

duction rate, producing gas-oil ratio, well bottom hole pressure, etc. are typically

measured in the field during various stages of production. During the history match-

ing process using the EnKF, an accurate forecast is critical; only a perfect model

guarantees such an accurate forecast. For real-field applications, a reservoir simula-

tor is often used to simulate reservoir conditions and production scenarios. Although

there has been a great progress in the field of reservoir simulators, the state-of-the-art

simulator does not completely honor the physics of the multiphase fluid flow through

porous media and is an ‘imperfect model’ as compared to the true reservoir. Using

such an imperfect model, it is highly unlikely to produce correct probabilistic forecasts

capable of bounding the true state of the system.

Hansen (2002) proposed to sample from both state uncertainty space and model

uncertainty space while dealing with the imperfect model. Hansen (2002) suggested

that in order to handle the model error, or rather to ignore the influence of model error,

one should use a probabilistic framework for ensemble forecasting and should switch

to a deterministic framework for data assimilation. Mitchell and Houtekamer (2000)

developed a method of accounting for model error in the EnKF context by adding an

ensemble of realizations of model error to the ensemble of model predictions. Mitchell

and Houtekamer (2000) parameterized the model error in terms of a small number

of parameters which were estimated at each analysis time. A number of researchers

(Pham, 2001; Anderson, 2001; Whitaker and Hamill, 2002) used the approach where

the ensemble-based covariances were scaled using a tunable factor to account for both

inbreeding effects in the data assimilation process and model error. To account for
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model error, Mitchell et al. (2002) used an additive representation which the authors

claimed, is more general than multiplication by a tunable factor and presented a

method of generating balanced model perturbations which were used to generate the

initial ensemble and to simulate model error. Evensen (2006) provides a thorough

discussion of model errors in connection with the EnKF and suggests a method for

estimating model error as a part of the data assimilation process. Lødøen and Omre

(2008) have developed a method for dealing with model bias caused by grid coarseness.

Most of the research on handling of the model error has been done for weather

systems which are inherently different from the petroleum reservoir flow problems.

In addition, a number of techniques discussed above require the use of a large size

of ensemble which prohibits their implementation on a real-scale data assimilation

problem with large numbers of state variables. To this date, a reliable method for

quantifying model error in reservoir engineering related applications has not been

developed. An inappropriate use of the model error, however, can lead to undesired

results.

2.3.2 Sampling error and localization

Sampling error is another important aspect that needs to be looked at carefully during

the implementation of the EnKF. There are two main sources of sampling error:

(1) stochastic perturbations added to the observations and (2) small ensemble size.

Although the original formulation of the EnKF presented by Evensen (1994b) did

not include stochastic perturbations to the observations, the importance of including

random observations to each ensemble member was pointed out independently by

Burgers et al. (1998) and Houtekamer and Mitchell (1998). Deterministic methods

for data assimilation were also developed to avoid sampling issues associated with the

use of perturbed observations in the stochastic analysis ensemble update methods.

These deterministic methods include the ensemble transform Kalman filter (Bishop
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et al., 2001), the ensemble adjustment filter (Anderson, 2001), and the ensemble

square-root filter (Whitaker and Hamill, 2002; Tippett et al., 2003; Evensen, 2004).

In the implementation of the square-root filter and all its variants, the ensemble mean

is updated first followed by the update of the ensemble perturbations.

A small ensemble size is another element which introduces sampling error in the

data assimilation process. During the forecast step of the EnKF, all model realizations

of the reservoir are run forward in time using a reservoir simulator. Hence, for reservoir

models with few hundreds of thousands of gridblocks, the forecast step often becomes

highly expensive. Therefore, for all practical purposes, one wishes to use as small an

ensemble as possible. One problem that arises as a result of a small ensemble size,

however, is that the sample covariance computed from a small ensemble may suffer

from unrealistic spurious correlations. These spurious correlations, when used for

computing the Kalman gain, cause changes to model parameters and state variables

in regions of no real influence. Lorenc (2003) showed that the unrealistic updates can

ultimately result in the loss of the ensemble variability and final breakdown of the

EnKF, and concluded that the “harm done by spurious covariances with distant grid

points is greater than the local benefit”.

In the EnKF, the covariance is approximated from an ensemble that is often orders

of magnitude smaller than the number of variables in the state vector. The error in

the estimate of the covariance decreases at a rate which is inversely proportional to

the square-root of the ensemble size. Therefore, using a large ensemble can result in

an accurate estimate, while a small ensemble can lead to an estimate with large errors.

An effective approach for reducing the harmful effect of spurious correlations on the

update is to use distance-dependent covariance localization. The first application of

localization in the EnKF was presented by Houtekamer and Mitchell (1998) where a

distance-based cutoff was applied to the Kalman gain. Following on their previous

study, Houtekamer and Mitchell (2001) described the use of a tapering function for
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localizing covariances of the background error. A fifth-order compactly supported

correlation function of Gaspari and Cohn (1999) appears to be a widely accepted

choice for covariance localization. A tapering form of the localization function, similar

to Houtekamer and Mitchell (2001), has been used by a number of researchers (Hamill

et al., 2001; Houtekamer et al., 2005; Furrer and Bengtsson, 2007). The distance-

based localization is often applied to the prior estimate of the covariance matrix

where an element-by-element product is computed between the covariance matrix

and a compactly supported positive-definite matrix. Refer to Ehrendorfer (2007)

and Aanonsen et al. (2009) for additional discussion on covariance localization. The

distance-based localization can also be applied to the Kalman gain and has been used

by a number of researchers leading to improved results (Anderson, 2007; Agbalaka

and Oliver, 2008; Zhang and Oliver, 2010b; Chen and Oliver, 2010).

Although the distance-dependent localization is an effective method for elimi-

nating the spurious correlations, this approach suffers from a number of challenges

including determining optimal correlation length and determining appropriate type

of localization for a given datum. In a comprehensive study, Chen and Oliver (2009)

presented a number of critical points about the application of distance-based covari-

ance localization for data assimilation in reservoir engineering related applications.

Some of their conclusions include: (1) the sensitivity and the prior covariance should

be considered together for determining the region of non-zero cross-covariance, (2)

the same type of datum might require different localization at different times, and (3)

different model parameters and state variables should be localized differently. Due to

the difficulty in applying distance-based localization, more general methods have been

proposed (Anderson, 2007; Hacker et al., 2007) which assume that the prior estimate

of cross-covariance may not be zero beyond a certain distance as the case is with the

distance-dependent localization. More recently, Zhang and Oliver (2010c) developed

23



a bootstrap-based screening method for assessing the confidence level of each ele-

ment from the Kalman gain matrix. In a follow-up study, Zhang and Oliver (2010a)

evaluated the performance of bootstrap-based screening on the Kalman gain and on

the covariances. They showed that the screening approach (either Kalman gain or

covariance) results in better estimation and the screening Kalman gain outperforms

the distance-based localization methods in terms of generality for application.

2.3.3 Assimilation of large numbers of observations

As mentioned earlier, the number of ensemble members are usually kept to a rea-

sonably low value during all practical applications of the EnKF. The analysis step

of the EnKF carries out a linear update where each updated ensemble member is a

linear combination of the initial ensemble. In case of a field application with large

numbers of wells, it is possible to have large numbers of production data, which are

greater than the number of ensemble members, for assimilation during each data as-

similation step. All the production data, however, may not be independent of each

other. Localization, as discussed in Section 2.3.2, can also help in increasing effective

rank of the ensemble and thus may help in resolving the issue with the degrees of

freedom required for assimilating large numbers of production data. The applica-

tion of the EnKF for assimilating production data along with 4D seismic data was

demonstrated by Skjervheim et al. (2007). The 4D seismic data usually involves the

difference between seismic attributes recorded at the time of the first and second seis-

mic surveys and such type of observations are typically available for each gridblock

in the reservoir simulation model. Therefore, assimilating 4D seismic data in case

of a reservoir model with few hundreds of thousands of gridblocks with relatively

small ensemble size (typically a couple of hundreds) results in insufficient degrees of

freedom as the number of independent data is greater than the number of ensem-

ble members. As Aanonsen et al. (2009) pointed out, assimilating large amounts of
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observations, such as seismic data, also results in a computational problem where it

becomes infeasible to compute the Kalman gain matrix as it requires inverting the

matrix (HCf
Y HT + CD). This issue can be resolved by computing the singular value

decomposition of H∆Y. The data mismatches and simulated measurement errors can

then be projected onto the subspace spanned by the principal left singular vectors of

H∆Y (Evensen, 2004; Evensen et al., 2007; Skjervheim et al., 2007). This effectively

transforms the matrix (HCf
Y HT +CD) from its original dimensions of Nd×Nd to the

new dimensions of Ne × Ne. With this transformation, it becomes feasible to invert

the matrix (HCf
Y HT + CD) needed in the computation of the Kalman gain.

2.3.4 Nonlinear model dynamics and non-Gaussian priors

A successful application of the standard EnKF is based on two fundamental assump-

tions: (1) the prior distribution of model parameters can be approximated by a Gaus-

sian distribution and (2) the relationship between observations and model parameters

is not strongly nonlinear. In addition, use of a large ensemble size can also aid in

obtaining good results during the application of EnKF. As discussed in Section 2.2.3,

the EnKF consists of forecast and analysis steps. In reservoir engineering related

applications, the forecast step is often carried out by running a numerical reservoir

simulator which can be highly expensive for reservoir models containing hundreds of

thousands of gridblocks. Therefore, a practical application of the EnKF on a realistic

reservoir model requires the use of as small ensemble size as possible. The governing

principles behind a reservoir simulator used in the forecast step of the EnKF are the

highly nonlinear dynamical equations for multiphase flow in porous media which are

solved in a discretized manner. In case of such nonlinear problems, the dynamic state

variables (e.g. pressure, phase saturation, etc.) updated at the analysis step of the

EnKF are likely to be inconsistent with those obtained from rerunning the reservoir

model from initial time using the updated static model parameters (e.g. porosity,
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permeability, etc.).

For a nonlinear problem, the augmented state vector for the jth ensemble member

(Eq. 2.1) can be represented as

yj =


m

u

d


j

.

In reservoir engineering related applications, u and d are highly nonlinear functions

of model parameters, m. If u and d are linear functions of m then let us assume that

u = Fm and d = Gm, (2.10)

where, F and G are matrices of dimensions Ns × Nm and Nd × Nm, respectively.

Here, Nd is the number of observations. With these notations and without the loss

of generality, a state vector, y for a linear problem can be represented as

y =


m

Fm

Gm

 =


I

F

G

m. (2.11)

If CM represents the covariance of the model parameters m, then the covariance of

the state vector y can be represented as

CY =


I

F

G

CM

[
IT FT GT

]
. (2.12)

The right hand side of Eq. 2.12 can be expanded as

CY =


CM CMFT CMGT

FCM FCMFT FCMGT

GCM GCMFT GCMGT

 . (2.13)
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Using Eq. 2.8, the EnKF analysis step for a linear problem can be written as (Chen,

2008)

yu =


mu

F mu

G mu



=


mf

F mf

G mf

+


CMGT

FCMGT

GCMGT

 (GCMGT + CD)−1(dobs −Gmf ). (2.14)

Eq. 2.14 can be reduced to

mu = mf + CMGT (GCMGT + CD)−1(dobs −Gmf ). (2.15)

For a linear problem represented by Eq. 2.10, Eq. 2.14 states that, the dynamic

state variables (u) and the simulated observations (d) obtained from the EnKF anal-

ysis step will be equivalent to those that could be obtained by rerunning the simu-

lation model from the initial time using the updated static model parameters (m).

For nonlinear problems like those encountered in the reservoir engineering field, how-

ever, this relationship does not hold true and the updated dynamic state variables

(e.g. pressures, phase saturations, etc.) are often found to be inconsistent with those

could be obtained by rerunning the simulation model using the updated static model

parameters (e.g. porosity, permeability, etc.). The most common evidence of this

inconsistency is the violation of the inequality constraints on the plausible values of

state variables and the occurrence of non-physical state variables upon data assim-

ilation. These non-physical state variables can cause unwanted results during the

forecast step of the EnKF. When the model is not strongly nonlinear, the inconsis-

tency is not strong and heuristic methods like truncation can be used to handle the

constraint violations. When the nonlinearity is strong, however, heuristic method is

not an appropriate solution.
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The EnKF relies only on the first two moments, the mean and the covariance, of

the state vector. The Gaussian probability distribution is the only distribution which

can be completely characterized using the first two moments, the mean and the vari-

ance or the covariance. Hence, the EnKF works well and shows a good match to the

observations when the prior probability distributions of the static model parameters

and the dynamic state variables are approximately Gaussian. The violation of the

Gaussianity assumption may result in large adjustments to variables in the state vec-

tor and can introduce severe problems when using the EnKF for data assimilation

in multiphase flow reservoir problems. Chen (2008) pointed out two reasons for the

occurrence of the non-Gaussian probability distributions of state variables: (1) the

prior probability distributions of the state variables are non-Gaussian and (2) non-

linearity present in the dynamic model (e.g. reservoir simulator) which can result in

non-Gaussian distributions even when the prior probability distributions of the state

variables are perfectly Gaussian.

A familiar example of the non-Gaussian behavior of the state variables is often

seen in case of a two-phase displacement process where the saturation of the displac-

ing phase (e.g. water) is high behind the saturation front and is low ahead of the

front. Chen et al. (2009) showed that, in a water flood problem, the water satura-

tion near the flood front is nearly discontinuous and its probability distribution in

the front area is bimodal which cannot be accurately approximated by a Gaussian

distribution. During the forecast step of the EnKF for a water flood problem, the

reservoir simulator is able to honor and propagate the non-Gaussian probability dis-

tribution of the water saturation. The analysis step of the EnKF which is based on

the first two moments, however, is not capable of handling the bimodal probability

distribution and often results in saturations that violate the inequality constraints on

their plausible values leading to non-physical saturations. It has been demonstrated

that, because of the nonlinear/non-Gaussian effects, the analysis step of the EnKF
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can make large adjustments to the water saturations and may result in non-physical

water saturation values when the EnKF is applied for history matching of facies dis-

tribution and production data (Agbalaka and Oliver, 2008). A reservoir with fluvial

structure consists of high-permeability channels in a background of low-permeability

region and the location of these high-permeability channels is often uncertain. During

the water flooding operation, the injected water, as expected, rapidly flows through

the highly permeable channels with a small fraction of water advancing into the low-

perm region. Such uneven advancement of water flood front through the high- and

low-perm regions introduces the non-Gaussian effect. As Zhao et al. (2008) point out,

the analysis step of the standard implementation of the EnKF can result in smeared

saturations where water is not confined to the channels.

2.3.5 Constraint violations

Most optimization problems, including the problem of estimating model and state

variables using the EnKF, come with a set of feasibility constraints on the elements

of the optimal solution. In the EnKF framework, the static model parameters and the

dynamic state variables are often subject to physical laws or constraints defined by

the maximum and/or the minimum value they can take. Even though the EnKF has

been highly successful for data assimilation, the underlying mathematical framework

does not take into account the physical constraints on state variables during the data

assimilation step. Highly nonlinear model dynamics, non-Gaussian state variables,

and small ensemble size are some of the key elements which can result in non-physical

updates during the data assimilation step of the standard EnKF. The computational

cost grows with increase in the ensemble size. Therefore, for all practical purposes, it

is required to use as small an ensemble size as possible. The standard implementation

of the EnKF, however, suffers from a poor approximation to the covariance matrix

when the ensemble size is small. The poor approximation of the covariance matrix
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can result in non-physical updates to the state variables.

The widely studied example of the EnKF resulting in non-physical updates in case

of reservoir data assimilation problem is that the updated saturations, when included

directly into the state vector, may take values which are negative or are greater than

unity. Gu and Oliver (2007) showed examples in which this problem occurred. The

authors showed that the EnKF in its standard form failed to handle a highly nonlinear

model (1D water flood) involving non-Gaussian state variable (water saturation) re-

sulting in non-physical water saturations during data assimilation. A similar problem

was demonstrated by Chen et al. (2009) where the authors showed that the standard

implementation of the EnKF failed to handle the bimodal probability distribution

of water saturation in the front area in case of a water flooding example. Mandel

et al. (2004) also reported a problem of updated state variables taking non-physical

values when the EnKF was applied to a simple wildfire model. The authors observed

that, application of the EnKF resulted in non-physical changes to the temperatures in

some locations, which caused a complete breakdown of the simulations in subsequent

advancements.

In case of history matching compositional models using the EnKF, a similar prob-

lem occurs when the molar densities of components, instead of phase saturations, are

included in the state vector. In Chapter 3, we illustrate an application of the stan-

dard implementation of the EnKF to a compositional model in which the updated

molar density of CO2 in some regions is observed to take negative values while molar

densities of the remaining components are increased. Standard truncation schemes

avoid negative values of molar densities, but do not address the problem of increased

molar densities of other components. The results can include a spurious increase in

reservoir pressure with a subsequent inability to maintain injection. Chapter 3 in-

cludes the reservoir description of a compositional model and discusses the results

obtained from the application of the standard EnKF to it.
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2.4 Summary

The ensemble Kalman filter (EnKF) was developed to allow data assimilation with

nonlinear models consisting of large numbers of state variables. The EnKF uses an

ensemble of model realizations for propagating forward in time the mean state and

the associated error covariance matrix. The EnKF, however, is only sub-optimal for

nonlinear and non-Gaussian problems due to the linear update at the analysis step. In

reservoir engineering related applications, highly nonlinear model dynamics and non-

Gaussian state variables are often encountered which present a significant challenge

for data assimilation when the standard implementation of the EnKF is used.

A brief review of the EnKF technique and its application to petroleum engineer-

ing related applications is presented. The review consists of the progress in terms

of the application of the EnKF method to reservoir engineering history matching

problems with increasing dimensions and estimation of different types of model pa-

rameters. Some of the important studies including the first application of the EnKF

to petroleum engineering history matching problem and to reservoir monitoring, and

the application of the EnKF to different pseudo-field and real-field cases are discussed

in the review. The methodology for the implementation of the standard EnKF tech-

nique which include parameterization, generation of the initial ensemble, and the

forecast and the analysis steps are discussed. Some of the important issues that arise

during the application of the EnKF to reservoir engineering related history matching

problems are briefly mentioned. These issues include model error, sampling error,

localization, assimilation of large numbers of observations, nonlinear model dynamics

and non-Gaussian state variables, and constraint violations on the plausible values of

the state variables.
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CHAPTER III

HISTORY MATCHING OF A

COMPOSITIONAL MODEL USING THE

STANDARD ENKF

In this chapter, we describe the application of the standard implementation of the

EnKF to a data assimilation problem of CO2 injection into a compositional reservoir

model with 12 components, 11 in the hydrocarbon phase. A detailed discussion about

the reservoir model is given below.

3.1 Reservoir model description

The synthetic 2-dimensional (x-z cross-section) compositional reservoir model has

immobile water saturation with no initial gas phase. The 11 components in the oil

phase range from C1 to C7+ along with CO2 and N2. There is one producer and one

injector in the model. The producer is located on the east boundary of the model

and is operated with a bottom hole pressure (BHP) constraint of 1600 psia. The

CO2 injector is located on the west boundary of the model with a BHP constraint

of 2200 psia. The reservoir model is divided into a uniform grid of dimensions 50

× 1 × 30. Grid block dimensions are 50 ft × 30 ft × 20 ft. The porosity and log-

permeability are realizations of a correlated anisotropic Gaussian random field. The

mean porosity is 0.32 with standard deviation of 0.06. The mean log-permeability

is 4.0 with standard deviation of 1.4. The log-permeability field is correlated to the

porosity field with a correlation coefficient of 0.90. Figs. 3.1(a) and 3.1(b) show the

porosity and log-permeability fields for the reference case, respectively. Completion
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locations for the injector and the producer are also shown in Fig. 3.1(b).
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Figure 3.1: The reference porosity and log-permeability fields for the compositional
model.

3.2 Parameters for the standard EnKF

3.2.1 Initial ensemble

Forty initial realizations of porosity and log-permeability are generated using the

same geostatistical parameters as the reference model. None of the realizations are

conditioned to the static well data. Fig. 3.2 shows the initial realizations of poros-

ity and log-permeability for different ensemble members and the cross-plots between

porosity and log-permeability for each of these realizations. The variability among

the log-permeability fields of different ensemble members is sufficiently high which is

important for obtaining different flow behavior (e.g. early or late CO2 breakthrough

at the producer) during the history matching period. A commercial compositional

reservoir simulator (Schlumberger, 2006) is used for the forward modeling of flow and

transport. Measurements used in the data assimilation include oil production rate,

producing gas-oil ratio, CO2 injection rate, gas-phase CO2 mole fraction at the pro-

ducer, and liquid-phase CO2 mole fraction at the producer. The state vector for model

updating includes the molar densities of 12 components from the reservoir fluid sys-

tem and gridblock-based variables including pressure, porosity, and log-permeability.

Thus, there are a total of 15 variables in each gridblock.

Fig. 3.3 shows the production data obtained from the initial ensemble together
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Figure 3.2: The model parameters for different realizations from the initial ensemble.

Table 3.1: Compositional model - standard deviation values for different types of
production data

Type of observation Standard deviation

Oil production rate 10.0 STB/day
CO2 injection rate 20.0 lb moles/day
Producing gas-oil ratio 0.5 MSCF/STB
Producing gas-phase CO2 mole fraction 0.0005
producing liquid-phase CO2 mole fraction 0.00005
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with the reference production data. The gray curves indicate the ensemble forecasts

and the black curve indicates the production data from the reference model. A sig-

nificant fraction of the initial ensemble members have high oil production rates and

early CO2 breakthrough compared to the reference model. The total simulated pro-

duction history time is 1106 days and production data are assimilated approximately

every 100 days. The production data are assimilated 11 times during the history

matching period. The noise associated with the production data is sampled from a

normal distribution with a mean of 0 and standard deviation which varies by type of

observation. The same initial realizations and the same noisy observations are used in

performing the standard EnKF and the CEnKF (CEnKF is discussed in Chapter 4).

The standard deviation values used for different types of production data are given

in Table 3.1.
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Figure 3.3: The production forecasts from the initial ensemble (gray curves) and the
reference production data (black curve).
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3.2.2 Additional observation of CO2 molar density

An additional observation of CO2 molar density at gridblock (16,22), located in the

layer 22 of the 2D reservoir model and at the 16th gridblock to the right from the west

boundary of the model, is assimilated at the first data assimilation time. Although

the additional CO2 molar density measurement in the reservoir interior is unlikely

to occur in practice, it is selected because it significantly increases the likelihood of

state constraint violations in the interior. The initial ensemble of porosity and log-

permeability are run from the initial time to the first data assimilation time (day

102) using the compositional module of the reservoir simulator. Fig. 3.4 shows the

distribution of CO2 throughout the reservoir at day 102 before data assimilation for

different ensemble members and the reference model. Because of the relatively large

degree of heterogeneity in permeability, the molar densities are highly variable. The

movement of CO2 flood front inside the reservoir for the reference model is shown in

Fig. 3.4(d) which indicates that the CO2 front has not moved a long way into the

reservoir at this time.
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Figure 3.4: Forecast CO2 molar density distributions at day 102 for different ensem-
ble members.

The ensemble mean and the standard deviation of CO2 molar density at day
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102 prior to data assimilation are shown in Figs. 3.5(a) and 3.6(a), respectively. The

forecast ensemble mean and the standard deviation around the measurement location,

gridblock (16,22), are close to 1.5 and 0.70, respectively. Thus, the region around the

measurement location has fairly large variability in terms of CO2 molar density. The

standard EnKF method is applied for assimilating production data and the additional

observation of CO2 molar density. The ensemble mean and the standard deviation of

CO2 molar density at day 102 after data assimilation are shown in Figs. 3.5(b) and

3.6(b), respectively. After the analysis step, the variability in terms of CO2 molar

density at the gridblock (16,22) is reduced approximately to 0 as seen in Fig. 3.6(b).
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Figure 3.5: The ensemble mean of CO2 molar density at day 102.

0 10 20 30 40 50

0

10

20

30

(a) Before assimilation

0 10 20 30 40 50

0

10

20

30

(b) After assimilation

0 10 20 30 40 50

0

10

20

30

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

(c) Scale

Figure 3.6: The ensemble standard deviation of CO2 molar density at day 102.
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3.3 Results from the standard EnKF

At the first data assimilation time (day 102), in addition to the observations of pro-

duction data, we assume that the CO2 molar density is measured at one location in

the reservoir at that time. Fig. 3.7 shows the CO2 molar densities for layer 22 of the

reservoir model before and after data assimilation. The black curves represent the

ensemble members, the thick red curve is the reference model, and the red dot denotes

CO2 molar density measurement. For most of the ensemble members, the updated

CO2 molar density from the analysis step in the EnKF (Fig. 3.7(b)) is negative at

some locations.
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Figure 3.7: The prior and posterior ensemble of CO2 molar density for layer 22 at the
first data assimilation time (day 102). The black curves are the ensemble members,
the thick red curve is the reference, and the red dot represents CO2 molar density
measurement.

The most common method for dealing with negative saturations or molar densities

in the EnKF is to truncate the state variables that violate constraints to the value
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at the boundary of the feasible region. Molar density cannot be negative, so all CO2

molar densities in the model that are less than 0 would be set equal to 0 at the end of

the analysis step. When that approach is taken in this case, the result is an inability

to inject fluid into the reservoir.

The injector and the producer, both are controlled by the bottom hole pressure

(BHP) as the primary constraint. The injector, which is completed in the gridblocks

(1,24) through (1,29), is operated at a BHP of 2200 psia. Upon data assimilation,

a substantial increase in the gridblock pressure around an injector, exceeding the

maximum allowable BHP (2200 psia), can cause an injector to shut in during the

subsequent forecast step. The distribution of pressure data at day 102, before and

after data assimilation, for several gridblocks immediately adjacent to an injector

are analyzed and are shown in Fig. 3.8. The blue straight lines on the histograms

indicate the corresponding gridblock pressure values for the reference model. For all

the ensemble members, the pressure (before and after data assimilation) at gridblocks

adjacent to an injector lies within the limit of the maximum allowable BHP for an

injector. This analysis indicates that the updated pressure in the adjacent gridblocks

to an injector should not result in an inability to maintain fluid injection into the

reservoir.

The effect of the truncation approach during data assimilation on the reservoir

behavior can easily be understood through the investigation of one particular real-

ization. We will examine the effect of the use of the standard EnKF update with

truncation on the reservoir behavior of realization 31.

3.3.1 Analysis of realization 31

At the end of the first data assimilation step, the values of all state variables are

updated, truncated if necessary, and returned to the reservoir simulator. Fig. 3.9
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Figure 3.8: The distribution (from the ensemble) of forecast and updated pressure
data at day 102 for different gridblocks adjacent to an injector. The blue line indicates
the gridblock pressure for the reference model.
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shows the forecast pressure and molar densities of two of the components. The up-

dated pressure and molar densities of these two components obtained at the first data

assimilation time step are shown in Fig. 3.10. The pressure after updating is quite

reasonable with high pressure on the left and low pressure on the right near the pro-

ducing completions. The molar densities of NC4 and C7 prior to data assimilation at

the first data assimilation step (Figs. 3.9(b) and 3.9(c)) are also reasonable. The up-

dated molar densities of NC4 (Fig. 3.10(b)) and C7 (Fig. 3.10(c)) are somewhat odd,

however, as they show anomalously high densities to the right of the measurement

location. These densities are higher than at any other location in the reservoir.
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Figure 3.9: Realization 31 - pressure and molar density distributions in the reservoir
before the first data assimilation step (day 102).
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Figure 3.10: Realization 31 - pressure and molar density distributions in the reservoir
after the first data assimilation step (day 102).

The model is restarted using all the static and dynamic variables updated at the

first data assimilation time step (day 102). At day 102.5, a region of high pressure

can be seen between the injector and the producer (Fig. 3.11(a)). The magnitude of

the maximum pressure in this region is about 2700 psia which is substantially higher
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than the maximum allowable BHP for the injector (2200 psia). The anomalously high

pressure due to the excess mass is significant enough that it results in an inability to

inject fluid into the reservoir (Fig. 3.11(b)). Nearly 60% of the ensemble members

exhibited periods during which an injector became shut-in due to excess pressure

when truncation was used following the standard update. Realization 31 is selected

because it is one of the more extreme examples. The regions with higher molar

densities of components NC4 and C7 in Figs. 3.10(b) and 3.10(c) coincide closely with

the region of pressure build-up shown in Fig. 3.11(a). Similar behavior of increased

molar density occurs for all other components from the oil phase with the exception

of CO2. Fig. 3.12 shows the prior and the posterior molar densities of two of the

components, CO2 and NC4, for different layers of the simulation model at the first

data assimilation time step (day 102). The updated CO2 molar density (Fig. 3.12(b))

at some locations in the reservoir takes non-physical value. The updated molar density

of NC4 (Fig. 3.12(d)) at these locations appears to be increased. The results of the

production forecasts during the course of data assimilation and the predictions using

the updated estimates of porosity and permeability from the standard EnKF are

discussed in Chapter 4 and are compared with the results obtained from the CEnKF.
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Figure 3.11: Pressure in realization 31 at the end of the first forecast time step
after data assimilation (left) and the ensemble of CO2 injection rates during data
assimilation for the standard EnKF (right).
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(d) NC4 molar density (posterior)

Figure 3.12: Realization 31 - the prior and posterior molar densities of CO2 and NC4

at the first data assimilation time for different layers of the simulation model: layer
18 (black curve), layer 22 (blue curve), and layer 27 (red curve).

3.3.2 Transformation of variables

An alternate approach that avoids the need for truncation or for applying inequality

constraints is to transform the variables such that the back-transformation always

results in values within the feasible region. Gu and Oliver (2006) applied a “normal

score transform” to saturation for this purpose, with marginal results. While the

updated saturations correctly honored the inequality constraints, the spatial distri-

butions were sometimes highly oscillatory. Simon and Bertino (2009) also reported

the normal score transformation of state variables to be an effective solution in an

oceanographic application. In the case of compositional simulation, however, there is

a more compelling reason not to use transformed variables: the updated fluid com-

positions may be significantly changed as a result of updating in the transformed

system. Here we illustrate using the same example that has been discussed earlier,

but using the logarithm of molar densities in the state vector. We first note that
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the molar densities of the various components are highly correlated in the forecast

ensemble as shown by the blue dots in Figs. 3.13 and 3.14. These molar densities

correspond to a location several gridblocks away from the location at which the molar

density of CO2 is observed. When the standard variables (molar densities) are used

in the state vector, the correlation between molar densities is well-preserved after

the update (orange dots in Figs. 3.13(a) and 3.14(a)). Although the compositions of

components C3 and C1 (both present in the hydrocarbon phase at the initial time)

appear to show a good correlation after updating using the transformed state vari-

ables (Fig. 3.13(b)), the consistency of the fluid composition is completely destroyed

after updating as shown by the orange dots in Fig. 3.14(b). While there are many

examples where transformation of the variables might be the appropriate method for

preventing non-physical updates, it does not appear to be an appropriate approach

for compositional state variables.
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Figure 3.13: The cross-plot of C3 and C1 molar densities at location (18,22) obtained
from the standard EnKF without transformation and with transformation at the first
data assimilation time step. The forecast and the updated molar densities are shown
in the blue and the orange colors, respectively.

Although the transformation of state variables approach used with the composi-

tional model ensures that the updated state variables honor the inequality constraints,

it results in a similar issue of the increased molar densities of components, which has

been discussed earlier in the case of the application of the standard EnKF without

transformation. Fig. 3.15 shows the updated pressure and molar densities of two

44



æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ
æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ æ

æææ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CO2 molar density

C
1

m
ol

ar
de

ns
it

y

(a) Without transformation

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CO2 molar density

C
1

m
ol

ar
de

ns
it

y

(b) With transformation

Figure 3.14: The cross-plot of C1 and CO2 molar densities at location (18,22) ob-
tained from the standard EnKF without transformation and with transformation at
the first data assimilation time step. The forecast and the updated molar densities
are shown in the blue and the orange colors, respectively.

of the components obtained from the application of the standard EnKF with trans-

formation. The updated molar densities (Figs. 3.15(b) and 3.15(c)) show similar

behavior with those obtained during the application of the standard EnKF without

transformation (Figs. 3.10(b) and 3.10(c)). The issue of the increased molar den-

sities, however, appears to be more severe in the case of using the log-transformed

molar densities where the region with the increased molar densities is greater than

in the case where molar densities alone are included in the state vector. Although it

has not been shown here, the excess mass, in the case of the standard EnKF with

transformation, will result in the anomalously high pressure in the reservoir causing

an injector to shut in. It is clear that, the transformation of state variables method

prevents the non-physical updates to state variables, but it is not able to eliminate

the occurrence of the excess mass after data assimilation.

3.4 Summary

The application of the standard implementation of the EnKF to a data assimilation

problem of CO2 injection into a compositional reservoir model is described. Along

with the production data, an additional observation of CO2 molar density measured at

a particular location in the reservoir was used during the first data assimilation time
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Figure 3.15: Realization 31 - pressure and molar density distributions in the reservoir
after the first data assimilation step (standard EnKF with transformation).

step. We have shown that, upon data assimilation, the standard implementation

of the EnKF resulted in non-physical (or negative) CO2 molar densities and the

molar densities of the rest of the components were increased at some locations in the

reservoir. When a truncation scheme was used to truncate the state variables that

violate constraints, to the value at the boundary of the feasible region, the negative

molar densities of CO2 were set equal to 0 at the end of the analysis step. This

truncation approach, however, did not affect the increased molar densities of the

rest of the components, resulting in an inability to maintain fluid injection into the

reservoir. Transformation of state variables is an alternate approach which can be

used to replace truncation or the need for applying inequality constraints. In the case

of the compositional model, however, we have demonstrated that, the transformation

of variables approach not only destroyed the consistency of the fluid composition but

it did not prevent the molar densities of the other components (except CO2) from

increasing after data assimilation. The standard EnKF coupled with either truncation

or transformation of state variables was not successful in maintaining a continuous

fluid injection into the reservoir.
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CHAPTER IV

CONSTRAINED ENSEMBLE KALMAN FILTER

4.1 Introduction

One of the attractive features of the EnKF is its ability to update both the static

model parameters and the dynamic state variables given the observations. These

model parameters and state variables are usually subject to physical laws or con-

straints defined by the maximum and/or the minimum value they can take. Most

optimization problems, including the problem of estimating model and state variables

using the EnKF, come with a set of feasibility constraints on the elements of the op-

timal solution. In the EnKF framework as well as in any other data assimilation

method, the state variables of a realization conditioned to the measurements should

honor the constraints on their plausible values. Finding a solution that minimizes (or

maximizes) the given objective function without honoring constraints (unconstrained

optimization) may not be difficult, but finding a solution that solves the optimization

problem and simultaneously satisfies constraints on each of its elements (constrained

optimization) is often a challenging task. Although the EnKF has been highly suc-

cessful for data assimilation, the underlying mathematical framework does not take

into account the physical constraints on state variables during the data assimilation

step. The physical constraints are often ignored during updating, and are handled

post-analysis in a rather heuristic manner. Thus, the standard implementation of

the EnKF can be viewed as an unconstrained optimization problem. Often times,

highly nonlinear and non-Gaussian processes are encountered in dynamic estimation

problems. Under these conditions and in the absence of any constraint-enforcing

1Much of the material in this chapter has been accepted for publication in the SPE Journal.
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mechanism, the solution (or part of it) obtained from the standard implementation of

the EnKF often violates the constraints on its elements and may result in non-physical

values of model parameters and/or state variables.

A number of solutions have been proposed in the past including transformation of

state variables, reparameterization, and truncation to avoid the issue of non-physical

updates. Gu and Oliver (2006) proposed three different methods for preventing non-

physical water saturations: (1) normal score transformation of the saturation variable,

(2) use of the location of water shock front instead of saturations as a state variable,

and (3) use of an iterative filter whenever the updated saturations are found to ex-

ceed the physical bounds. A normal score transformation of state variables which

transforms the constrained variables to unconstrained variables was reported to be

an effective solution in an oceanographic application by Simon and Bertino (2009).

Gu and Oliver (2006) also reported partial success with using normal score trans-

form of saturation for updating states in the water flood problem. This approach

resulted in updated saturation values within plausible limits, however, it did not pre-

vent non-physical spatial oscillations in saturation. Although the transformation of

state variables approach ensures the updated state variables to honor the inequality

constraints, as discussed in Chapter 3, it might not be an attractive solution in the

case of a compositional simulation. On the other hand, Gu and Oliver (2006) did

report good success with the use of the location of the saturation front as a state

variable, but the method’s effectiveness seemed to be partly a result of the 1D geom-

etry of the flow. Gu and Oliver (2006) concluded that the most generally successful

methods are iterative forms of the EnKF in which the Kalman gain is used only to

update model variables and the updated state variables, including saturations, are

obtained by rerunning the simulator from the initial conditions (Gu and Oliver, 2007;

Li and Reynolds, 2009b). As the state variables are obtained using the simulator,

they naturally satisfy the inequality constraints. The iterative forms of the EnKF

48



present an effective way of mitigating the issue of constraint violations. However,

the effectiveness comes at a price of substantial computational efforts required for

rerunning the simulator.

The reparameterization technique has also been investigated in order to avoid

non-physical updates to state variables. When the water cut data at producers were

assimilated in a 2D water injection problem, Chen et al. (2009) showed that it resulted

in constraint violations on the plausible values of water saturation as shown in Fig. 4.1.

In order to resolve this issue, Chen et al. (2009) included the time of saturation

arrival, instead of saturations, as a state variable in the state vector. The Gaussian

assumption worked well with the time of saturation arrival and resulted in improving

the quality of the estimates compared to the standard implementation of the EnKF.

However, it required substantial additional computations beyond that required by

the EnKF. Even though transformation and reparameterization techniques have been

used, truncation of state variables where the non-physical estimates are truncated to

their limiting values remains the widely used method for dealing with the issue. The

truncation approach works fairly well in most of the situations, however, as we showed

in Chapter 3, it can fail at times resulting in significant problems during the forecast

step of the EnKF.
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Figure 4.1: The saturation profiles on the diagonal of producers P1 and P3 from
the standard EnKF. The thin curves are the ensemble solutions and the thick black
curve is the reference (after Chen et al. (2009)).
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A number of attempts have been made in the past for incorporating the constraints

on the state variables into the data assimilation framework. The equality constraints

have been addressed by a number of authors in the context of the Kalman filter.

Qureshi et al. (1989) considered the constraints on signal amplitude and signal local

variance in the image restoration process. The deterministic signal constraints were

transformed into constraints on the Kalman gain. Qureshi et al. (1989) solved the

resulting constrained nonlinear optimization of the Kalman gain using a penalty func-

tion approach. De Geeter et al. (1997) presented smoothly constrained Kalman filter

for incorporating nonlinear constraints. The nonlinear constraints were used as nearly

perfect observations and incorporated in an iterative manner. Ko and Bitmead (2007)

presented a constrained Kalman filter for dealing with the state estimation problem

for linear systems with linear state equality constraints. Simon and Chia (2002)

used the projection of the unconstrained Kalman filter solution onto the state con-

straint surface in order to incorporate state equality constraints in the Kalman filter

framework. Pan and Wood (2006) proposed a two-step procedure for incorporating

equality constraints in the data assimilation process using the EnKF. Even though

the constrained data assimilation approach can successfully be used for an equality

constrained problem, it does not address the inequality constraints which are gener-

ally more important and inherently more complicated than the equality constraints

in reservoir engineering applications.

The problem of applying inequality constraints to estimation of state variables has

been addressed in the context of the Kalman filter. Massicotte et al. (1995) modified

the standard Kalman filter algorithm where the state variables were transformed in

accordance with the inequality constraints on them, prior to assimilating data. Mas-

sicotte et al. (1995) presented the application of the modified Kalman filter algorithm

to a spectrometric data correction example for preventing the negative values of the

solution. Rao et al. (2003) used the moving horizon estimation (MHE) approach for
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incorporating the inequality constraints on the state variables and the noise associ-

ated with the state variables and the observations. For linear systems with quadratic

objective functions, the optimal solution presented by Rao et al. (2003) reflects the

standard Kalman estimate for the state of the system. Gupta and Hauser (2007)

presented two different methods for incorporating the inequality constraints into the

Kalman filter framework. In the first method, Gupta and Hauser (2007) projected

the unconstrained solution to lie in the feasible space where the active set of in-

equality constraints was obtained using Lagrange multipliers. In the second method,

Gupta and Hauser (2007) proposed to restrict the optimal Kalman gain such that

the updated state estimate lies in the constrained space. Recently, Rotea and Lana

(2008) considered a minimax estimation problem where the hard constraints on the

state variables and input were replaced by the probability constraints that restrict

the choices of the covariance matrices for the state and input. Rotea and Lana (2008)

showed that the solution to the minimax problem is a conventional Kalman filter for

suitably chosen covariance matrices for the state and input. Ungarala et al. (2007)

presented a formulation for incorporating inequality constraints on state variables in

an extended Kalman filter technique where active constraints were identified by an

exhaustive search of all combinations of state variables. While their approach was

successfully applied to a nonlinear batch reactor with small number of state variables

and limited number of constraints, direct application to reservoir problems with few

hundred thousands of state variables and constraints is not feasible. Often times, a

relatively easy approach is considered for enforcing the inequality constraints where

the inequality constraints, upon violation, are converted into equality constraints and

are used as perfect observations. Porrill (1988) and Hayward (1998) treated state

constraints as perfect measurements. On the other hand, Thacker (2007) discussed

two different approaches, Lagrange multipliers and augmented data, for incorporating

inequality constraints into the Kalman filter framework. He concluded that when the
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number of state variables is relatively large, it may not always be important to deter-

mine the active set of constraints precisely. Lauvernet et al. (2009) solved a similar

problem by modifying the Kalman gain to explicitly account for the assumption of a

truncated Gaussian probability distribution for the state variables.

Recently, Wang et al. (2010) presented accept/reject and projection methods for

incorporating inequality constraints into the EnKF framework. Depending on the

nature of the problem, Wang et al. (2010) proposed to sample the model error and/or

observation error iteratively until the forecast and the updated states honor all in-

equality constraints. Although the method is easy to implement and has been suc-

cessfully demonstrated, its extension to the reservoir engineering applications does

not seem feasible. Even though a number of attempts have been made to incorporate

the inequality constraints into the EnKF framework, most of the techniques depend

on the treatment of the unconstrained solution obtained from the standard imple-

mentation of the EnKF. None of the previous studies shows the direct involvement

of inequality constraints in the mathematical formulation of the EnKF.

In this chapter, we propose a method for the constrained EnKF (CEnKF) for in-

corporating the physical constraints on the plausible values of state variables during

the data assimilation such that the resulting solution is as close as possible to the un-

constrained solution obtained from the standard EnKF, and at the same time, it lies

in the feasible region. The proposed method is based upon the earlier work by Thacker

(2007) where he demonstrated the effectiveness of incorporating additional equality

constraints during data assimilation process for a Kalman filter. The CEnKF method

can be implemented in two different approaches, both of which convert inequality con-

straints to a small number of equality constraints. The first approach uses Lagrange

multipliers to enforce the active constraints. In the second approach, the active con-

straints are used as virtual observations for calibrating the model parameters within

plausible ranges. Applying the CEnKF technique in an iterative manner ensures that
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the resulting solution is within the limits given by the constraints. The application

of the proposed CEnKF method shows that the technique is able to enforce the non-

negativity constraints on molar densities in the case of a 2D compositional model and

the bound constraints on phase saturations (all phase saturations must be between a

lower and an upper bound) in the case of a highly heterogeneous three-phase black-

oil flow reservoir model. The CEnKF method is able to achieve a better estimate of

reservoir properties than is obtained using only truncation with the standard EnKF.

4.2 Methodology

While constraints on reservoir variables can be linear or nonlinear, the kinds of con-

straints that are of particular interest in this paper are linear inequality constraints

of the form

Ay ≥ b

which are of the type satisfied by phase saturations, concentrations, pressures, and

molar densities. Note that this form includes variables such as saturations with upper

and lower bounds. It is not easy to determine which of the inequality constraints

should be converted to equality constraints and which might be ignored when the

problem has many variables. The approach we have taken is to first assimilate the

data without any constraints (data assimilation using the standard implementation

of the EnKF) and then check for constraint violations. In this study, we apply an

iterative procedure for approximately identifying the constraints that are active in a

particular data assimilation step. Once the active set is identified, equality constraints

are applied to the problem in the update step. If constraints are still violated, the

procedure is repeated. When it is determined that a state variable is on the boundary

of the feasible region, then the inequality constraint can be replaced by equality

constraint. The system of active constraints for the jth ensemble member can be
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written in the following form,

Pjy = cj (4.1)

where, the vector cj contains the constraint values.

Thacker (2007) discussed two different approaches for incorporating equality con-

straints into a Kalman filter framework. The first approach uses the undetermined

Lagrange multipliers and it is shown that, the resulting formulation has a form very

close to the Kalman filter updating equation. The second approach incorporates the

constraints along with data in an expanded data-vector and subsequently, the en-

tire system of equations is expanded to reflect the constraints. Following is a brief

description of the two approaches.

4.2.1 Lagrange multipliers

This approach uses the undetermined Lagrange multipliers (Thacker and Long, 1988)

for incorporating equality constraints into the data assimilation formalism. While the

analysis step in the standard EnKF computes variables that approximately minimize

Jj(y) =
1

2
(y − yf

j )T (Cf
Y )−1(y − yf

j ) +
1

2
(Hy − dobs,j)

T C−1
D (Hy − dobs,j), (4.2)

the CEnKF will compute variables that minimize

Lj(x,y) = Jj(y)− (Pjy − cj)
T x. (4.3)

The vector x is a vector of the Lagrange multipliers that enforce the constraints. The

values of the Lagrange multipliers must be determined as a part of the solution.

The constrained update (which is a solution of Eq. 4.3) can be written as a cor-

rection to the unconstrained solution yu of Eq. 4.2

yu,con
j = yu

j + Cu
Y PT

j (PjC
u
Y PT

j )−1(cj −Pjy
u
j ), (4.4)

where, yu,con
j and yu

j are the constrained and the unconstrained updated solutions for

the jth ensemble member, respectively; Cu
Y is the posterior covariance matrix; Pj is
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the coefficient matrix for the constraint equations for the jth ensemble member; and

cj is the vector of constraint values for jth ensemble member.

The constrained solution (Eq. 4.4) is clearly similar in form to the unconstrained

solution from the EnKF (Eq. 2.4). The largest difference is that, while in the standard

implementation of the EnKF, the same Kalman gain is used to update each ensemble

member, here, each ensemble member may have a different set of active constraints, so

terms such as Pj, Cu
Y PT

j , PjC
u
Y PT

j , cj, and Pjy
u
j must be computed for each ensemble

member at each data assimilation time step in order to compute the constrained

solution.

4.2.2 Augmented data

This approach also starts by computing the unconstrained solution. Once the un-

constrained solution is obtained, the next step includes checking for any constraint

violations that need to be enforced. The constraint data cj are then appended to

the data-vector dobs,j. The data-error covariance matrix CD should be enlarged with

zero values on the diagonal corresponding to the constraint errors, and H should be

enlarged to reflect the constraints. With these modifications, an augmented Kalman

gain that includes columns corresponding to data and active constraints can be con-

structed for computing the constrained updates to the original forecast yf
j . The

modified form of Eq. 2.4 for implementing the CEnKF method can be given as

yu,con
j = yf

j + Cf
Y H̃T (H̃Cf

Y H̃T + C̃D)−1(d̃obs,j − H̃yf
j ) (4.5)

where, H̃ is the modified form of the measurement operator which extracts the state

variables that are subject to constraint enforcement along with the simulated data;

C̃D is the modified form of the data-error covariance matrix which also reflects the

constraints; and d̃obs,j is the modified vector of the observations appended with the

constraint values.

As we can notice from Eqs. 4.4 and 4.5, the primary difference between the two
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approaches is in the sequence of incorporating the equality constraints. In the La-

grangian approach, the constraints are applied after assimilating data, while in the

augmented data approach, the constraints are assimilated simultaneously with data.

For linear observation operators and Gaussian probability densities, the two ap-

proaches are equivalent. In the examples that follow, we use the augmented data

approach.

4.3 Algorithm description for the constrained EnKF

Following is a brief generalized algorithm for implementing the augmented data ap-

proach of the CEnKF method. This algorithm describes various steps which need to

be carried out in order to enforce the constraints on any type of state variable.

1. For assimilation times tk, (k = 1, . . . , kmax), compute updates of the ensemble

members using the standard EnKF analysis formula (Eq. 2.4).

(a) For each ensemble member (j = 1, . . . , Ne), evaluate the constraint equa-

tions Ayj − b on the updated state vector. If any values are less than −ε

where ε is some small predetermined value (e.g. 0.0001 for molar densities)

then proceed to the next step. Otherwise, increase j by one and repeat

this step.

(b) For ensemble member j, identify the constraint equation Ayj−b with the

largest constraint violation. That inequality constraint will be converted

to an equality constraint. (Note that constraint equations may need to

be normalized to make comparison of magnitudes meaningful for state

variables in different units.)

(c) Append the new constraint to the vector of actual observations (and pre-

viously appended constraints, if any) and modify the observation operator
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matrix to include the equality constraint relation. Also expand the data-

error covariance matrix, CD for the newly added constraint.

(d) With the newly expanded matrices H̃ and C̃D, compute the modified

Kalman gain for ensemble member j.

(e) Update the state vector for ensemble member j using Eq. 4.5.

(f) If the number of iterations is less than the limit, return to 1a, otherwise

apply truncation to any remaining constraint violations and return to 1

for next assimilation time.

Because our emphasis is on efficiency, we set a fairly low limit (10) on the maximum

number of iterations for identification of active constraints.

We will consider four synthetic examples to demonstrate the performance of the

CEnKF. The augmented data approach of the CEnKF is implemented and the results

obtained from the CEnKF are compared with the results obtained from the standard

EnKF. In the first example, we consider a synthetic 1D linear model to demonstrate

the validity of the CEnKF technique. The second test problem shows the benefits of

the constrained solution in a compositional model for which truncation of negative

molar densities, as discussed in Chapter 3, results in significant problems with the

mass of fluid in the model. The third example is a three-phase black-oil example for

which the state variables have both lower and upper bounds. The final example is a

simple 1D Buckley-Leverett flow example that investigates the effects of constraints

on mass conservation during the update step.

4.4 1D linear example

4.4.1 Model description

A simple 1D model is considered to demonstrate the validity of the CEnKF method.

The 1D model (x-direction) is divided into 100 gridblocks. The present model is not
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a reservoir flow model and therefore, the dimensions of a gridblock are not important.

Instead, let us assume that the model represents a random field such that the random

variable at each gridblock is subject to two inequality constraints defined by a lower

and an upper bound. The feasible region is bounded by 0 on the lower side and by

1 on the upper side. We assume that the random variable is measured at a number

of locations throughout the field. The standard EnKF and the CEnKF methods are

implemented on this synthetic example in order to match the observations.

In the current investigation, the same exponential covariance model with standard

deviation of 0.20 and a range of 15 is used for generating the reference (true) model

and the initial ensemble of model realizations. The true covariance for the model

variable at gridblock 50 with respect to model variables at other gridblocks in the

model is shown in Fig. 4.2(a).
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Figure 4.2: (a) The true covariance for the model variable at gridblock 50, and (b)
the reference model (red curve) together with the true observations (red dots) for the
synthetic 1D example.

4.4.2 Reference model and initial ensemble

The random field is assumed to have a mean value of 0.50. The reference model and

the initial ensemble of realizations of the random field are generated by sampling the

prior Gaussian probability density function. Thus, the ith realization of the ensemble,
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yi, can be generated as

yi = mean + LZi (4.6)

where, L is a lower triangular matrix obtained from the Cholesky decomposition of

the (true) covariance matrix, and Zi is the ith vector of independent normal deviates.

The reference model generated in this manner is shown in Fig. 4.2(b).

Each realization of the initial ensemble is generated using Eq. 4.6. The random

variable at each gridblock is subject to two inequality constraints. To ensure that

each model variable of the individual ensemble member (prior) honors the inequality

constraints, it is truncated to the value at the boundary of the feasible region whenever

it is observed to take value outside the feasible region. Thus, all the model variables

from the initial ensemble of realizations lie in the feasible region. The initial ensemble

of realizations of the random variable is shown by gray curves in Fig. 4.3(a) and the

box-plot (Fig. 4.3(b)) shows the statistical distribution of the simulated data obtained

from the initial ensemble. The box contains 50% probability, the horizontal line in the

box indicates the median, and the whiskers indicate the maximum and the minimum

values. The predictions from the initial ensemble are generally very different than the

observations from the reference model and show very high uncertainty. Note that, in

Fig. 4.3(a) and in all the subsequent figures, unless stated otherwise, the red curve

represents the reference model and the gray curves denote the initial ensemble of

realizations of the random variable. Similarly, in Fig. 4.3(b) and all the subsequent

figures, the red dots represent the observations from the reference model and the

gray boxes denote the statistical distribution of the simulated data from the initial

ensemble of realizations.

4.4.3 Observations for data assimilation

We consider a linear observation model where the observations used for data assimi-

lation are the measurements of the random variable at a number of locations in the
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Figure 4.3: (a) The initial ensemble of model variables (gray curves) and the reference
model (red curve), and (b) the simulated data from the initial ensemble (gray boxes)
together with the true observations (red dots) from the reference model.

field. Let us assume that the random field has been measured at seven different loca-

tions. These measurements are assumed to be made at gridblock locations 2, 20, 35,

40, 54, 79, and 95. The measurements and their corresponding locations are given

in Table 4.1. The measurement error in the observations has a standard deviation

of 0.005. An ensemble of 30 ensemble members is considered for implementing the

standard EnKF and the CEnKF. Thus, we have 100 model variables, 30 ensemble

members, and 7 observations for the data assimilation process.

Table 4.1: The observations and the measurement locations for 1D linear example

Location Observation

2 0.2602
20 0.0653
35 0.3268
40 0.8991
54 0.2600
79 0.9500
95 0.3032
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4.4.4 Standard EnKF

The standard EnKF is implemented using the parameters discussed earlier. During

the implementation of the standard EnKF and the CEnKF methods, perturbed ob-

servations, instead of true observations, are used for data assimilation. We refer to the

solution obtained from the standard EnKF as the unconstrained solution. Fig. 4.4(a)

shows the updated ensemble of model variables obtained from the standard EnKF.

The blue curves represent the updated ensemble members and the horizontal black

lines indicate the boundaries of the feasible region on the lower and the upper sides.

The reference model is contained within the spread of the updated ensemble obtained

from the standard EnKF. The data-match obtained from the updated ensemble is

shown in Fig. 4.4(b) where the box-plots (black) represent the simulated data from

the updated ensemble obtained from the standard EnKF.
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Figure 4.4: (a) The updated ensemble of model variables (blue curves) and (b) the
simulated data (black boxes) obtained from the standard EnKF together with the
true observations (red dots) from the reference model.

The results obtained from the standard EnKF show a good match to the obser-

vations. A number of updated realizations, however, consist of model variables that

violate the inequality constraints and take values which lie outside the feasible region

(either less than 0 or greater than 1). Fig. 4.5 shows two such ensemble members,

realizations 1 and 15. The gray and the blue curves represent the prior and the

61



unconstrained solutions for realizations 1 and 15 obtained from the standard EnKF,

respectively, the red curve is the reference model, and the red dots denote the true

observations.
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(b) Realization 15

Figure 4.5: The prior and posterior solutions for realizations 1 and 15 (gray - prior
realization; blue - unconstrained solution from the standard EnKF; red - reference
model; red dots - true observations)

We define the following quantitative measure of the data mismatch for the stan-

dard EnKF and the CEnKF methods.

ObjD =
1

2Ne

Ne∑
i=1

[(di − dobs,i)
T C−1

D (di − dobs,i)] (4.7)

where, di is the vector of the simulated data obtained from the updated solution

for the ith ensemble member, dobs,i is the vector of the perturbed observations for

the ith ensemble member used during the data assimilation process, and CD is the

observation-error covariance matrix. The data mismatch objective function computed

for the standard EnKF has a value of 0.053.

4.4.5 Constrained EnKF

The results obtained from the application of the CEnKF to the 1D synthetic linear

example are discussed in this subsection. We first examine the effectiveness of the

CEnKF using realization 15. The unconstrained solution for realization 15 obtained

from the standard EnKF is shown by the blue curve in Fig. 4.5(b). The unconstrained
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solution for realization 15 showed values of 1.25 and -0.25 for the updated model

variables at gridblocks 14 and 30, respectively, as the largest violations of constraints

on the upper and the lower bounds, respectively. The vector of actual observations is

expanded to include the new constraints of 1 and 0 (during iteration 1 of the CEnKF

method) on the model variables at gridblocks 14 and 30, respectively. The data-

error covariance matrix, CD, and the measurement operator, H, are also expanded

to reflect the newly added constraints. The constrained solution for realization 15 is

computed using Eq. 4.5. Fig. 4.6 shows the constrained solutions for realization 15 at

different iterations of the CEnKF. The degree of the largest constraint violation on

both sides of the feasible region decreases with each iteration of the CEnKF method

and the constrained solution moves towards the interior of the feasible region.
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(d) Iteration 10

Figure 4.6: Realization 15 - constrained solutions at different iterations of the CEnKF
method (gray - prior realization; purple - constrained solution from the CEnKF; red
- reference model; red dots - true observations).
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Fig. 4.7(a) shows the updated ensemble of model variables obtained from the

CEnKF. The purple curves represent the updated realizations of model variables and

the horizontal black lines indicate the boundaries of the feasible region on the lower

and the upper sides. As Fig. 4.7(a) indicates, the reference model (red curve) is

contained within the spread of the updated ensemble obtained from the CEnKF and

model variables from each updated ensemble member honor the inequality constraints

on the lower and the upper side of the feasible region. The match between the true

observations (red dots) and the simulated data (black box-plots) from the updated

ensemble obtained from the CEnKF is shown in Fig. 4.7(b).
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Figure 4.7: (a) The updated ensemble of model variables (purple curves), and (b) the
simulated data (black boxes) obtained from the updated ensemble from the CEnKF
method. The true observations are denoted by the red dots.

The results obtained from the CEnKF method show a good match to the ob-

servations and the updated model variables from all ensemble members honor the

inequality constraints on the lower and the upper side of the feasible region. The

data mismatch objective function (Eq. 4.7) computed for the CEnKF method has

a value of 0.104. The results obtained from the application of the CEnKF to a 1D

linear model show that the CEnKF is successful in enforcing the given constraints

while simultaneously assimilating the observations. The CEnKF is also successful in

restoring a part of the model space which otherwise tends to violate the inequality

constraints and thus, results in a solution that lies in the feasible region.
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4.5 Compositional model

In this section, we describe in detail the application of the CEnKF method to the data

assimilation problem of CO2 injection into a compositional reservoir model studied

in Chapter 3. The reference reservoir model description and the initial ensemble

of porosity and log-permeability have already been discussed in Section 3.1. The

parameters used for data assimilation with the standard EnKF are mentioned in

Section 3.2. The only additional parameters needed for the implementation of the

CEnKF method are the set of the active constraints which are identified during each

iteration.

4.5.1 Results and discussion

The CEnKF method uses a different Kalman gain matrix and a different observation

vector for each ensemble member. Following are the results obtained from the ap-

plication of the CEnKF to the problem of data assimilation for the same ensemble

member, realization 31, studied in Chapter 3.

4.5.1.1 Analysis of realization 31

For the first data assimilation time step, the unconstrained solution for realization 31

showed a value of -0.56 for the updated CO2 molar density at the gridblock (27,23) as

the largest violation of the positivity constraint on CO2 molar density value. Fig. 4.8

shows the results for the forecast, the unconstrained, and the constrained solutions

for the molar densities of components CO2, NC4, and C7 obtained from iteration 1 for

layer 23 in the model. The green vertical line indicates the location of the gridblock 27

in layer 23 at which the constraint is enforced. At subsequent iterations, the largest

constraint violation occurs in other layers, but there is still a small effect from the

application of constraints on CO2 molar density in other layers on the density in layer

23. It should be noted that, during the subsequent iterations, the constrained solution

obtained from the previous iteration of the CEnKF is treated as the unconstrained
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solution. After iteration 4, the largest violation of the positivity constraint on CO2

molar density for realization 31 is observed at the gridblock 28 in layer 25, where

the updated CO2 molar density showed a value of -0.19. Figs. 4.9 and 4.10 show

the results for the forecast, the unconstrained (constrained solution at iteration 4),

and the constrained solutions for the molar densities of components CO2, NC4, and

C7 obtained from iteration 5 for layers 25 and 23, respectively, in the model. As

Fig. 4.10(a) indicates, the application of constraints on CO2 molar density in layer

25 during iteration 5 of the CEnKF results in a small change in CO2 molar density

in layer 23.
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Figure 4.8: Layer 23 - the forecast, the unconstrained (standard EnKF), and the
constrained (CEnKF) solutions obtained at the first data assimilation time step using
iteration 1 for the ensemble member 31. The black curve stands for the forecast, red
curve denotes the unconstrained EnKF update, and the blue curve represents the
constrained EnKF update.
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Figure 4.9: Layer 25 - the forecast, the unconstrained (CEnKF, iteration 4), and
the constrained (CEnKF, iteration 5) solutions obtained at the first data assimilation
time step using iteration 5 for the ensemble member 31. The black curve stands for
the forecast solution, red curve denotes the unconstrained EnKF update, and the
blue curve represents the constrained EnKF update.
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Figure 4.10: Layer 23 - the forecast, the unconstrained (CEnKF, iteration 4), and
the constrained (CEnKF, iteration 5) solutions obtained at the first data assimilation
time step using iteration 5 for the ensemble member 31. The black curve stands for
the forecast solution, red curve denotes the unconstrained EnKF update, and the
blue curve represents the constrained EnKF update.

In the regions where the CO2 molar density takes negative values, the uncon-

strained solution from the standard implementation of the EnKF shows anomalously

high molar densities for all other components in the hydrocarbon phase. Figs. 4.8

and 4.9 show that the consequence of applying the constraints on the molar density

of CO2 is to reduce the increase in molar densities of components NC4 and C7. The

CEnKF technique helps to ensure that the magnitudes of the increases and decreases

in molar densities of different components are applied in a consistent manner. This

consistency is missing when either transformation or truncation is used during the

implementation of the standard EnKF. The results showed that the CEnKF is able

to solve the problem of increased molar density (and thereby, additional mass) of

components in a particular region of the reservoir field which was responsible for the

high pressure build-up in that region, ultimately shutting the injector off.

Figs. 4.11 through 4.13 show pressure and distributions of NC4 and C7 molar

densities, respectively, for realization 31 in the reservoir at different iterations of the

CEnKF method at the first data assimilation time step. The change in pressure

and distribution of molar densities of two of the components between iteration 1 and

iteration 7 is significant which is indicative of the large effect of applying constraints

on CO2 molar density during iteration 1 and iteration 7. The magnitude of the
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Figure 4.11: Realization 31 - pressure in the reservoir at different iterations of the
CEnKF method at the first data assimilation step.

largest constraint violation for CO2 molar density, however, reduces during subsequent

iterations. As a result, the change in pressure and molar densities of NC4 and C7

between iteration 7 and iteration 10 is small.
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Figure 4.12: Realization 31 - NC4 molar density distribution in the reservoir at
different iterations of the CEnKF method at the first data assimilation step.

Fig. 4.14 shows the iterative reduction in magnitudes of the largest constraint

violations in realization 31 for CO2 molar density within the entire reservoir model for

three data assimilation time steps. In this particular test problem, we observed fairly

rapid reduction in the magnitude of the maximum constraint violation for the first

4 or 5 iterations, after which, the rate of reduction was decreased. The reduction is

not necessarily monotonic, because the location of the largest constraint violation for

CO2 molar density changes with each iteration and spurious correlations can result

in an increase in the magnitude of a violation at another location after updating.

Because our emphasis was on efficiency, we arbitrarily set the maximum number

of iterations at 10 with good results. Although the CEnKF method is an iterative
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Figure 4.13: Realization 31 - C7 molar density distribution in the reservoir at differ-
ent iterations of the CEnKF method at the first data assimilation step.

process, the computational cost required during each iteration is small compared to

the cost of running the reservoir simulator. The additional computational cost for each

iteration arises from the identification of the active constraints and the computation

of the modified Kalman gain for individual ensemble member. Although the Kalman

gain is computed separately for each ensemble member, the data-storage requirement

during each iteration is fairly small as the largest difference is the need to store both

the forecast and the updated state vectors at each assimilation time. As a result,

the implementation of the CEnKF method on a real-field reservoir problem with few

hundred thousands of gridblocks should not impose any computational or data-storage

challenge.

0 2 4 6 8 10
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

iteration index

C
O

2
m

ol
ar

de
ns

it
y

(a) Assimilation time step 1

0 2 4 6 8 10
-0.20

-0.15

-0.10

-0.05

0.00

iteration index

C
O

2
m

ol
ar

de
ns

it
y

(b) Assimilation time step 4

0 2 4 6 8 10

-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

0.00

iteration index

C
O

2
m

ol
ar

de
ns

it
y

(c) Assimilation time step 7

Figure 4.14: Realization 31 - the minimum value of CO2 molar density at different
iterations of the CEnKF method for some of the data assimilation time steps.

In addition to the ease of implementation, the CEnKF method is robust and no

extra assumptions about the distributions of the state variables are required for its
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application. Figs. 4.15(a) and 4.15(d) show that the prior distributions of porosity

and log-permeability fields for realization 31 are Gaussian. The posterior distributions

of porosity and log-permeability for realization 31 from the standard EnKF and the

CEnKF methods are shown in Fig. 4.15. During the implementation of the CEnKF

method, no constraints are enforced on either porosity or log-permeability. The pos-

terior porosity and log-permeability data obtained from the CEnKF method appear

to follow the Gaussian distribution. There is no noticeable effect of the CEnKF on

the prior distributions of porosity and log-permeability.
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Figure 4.15: The distributions of porosity and log-permeability for realization 31 at
the first data assimilation time step and iteration 1 obtained from different methods.

4.5.1.2 Model parameter estimates

At the end of each data assimilation time, the standard EnKF and the CEnKF provide

an ensemble of model realizations which are conditioned to all measurements up to

that time. For a good performance of the EnKF, it is necessary that the resulting

ensemble is a good representative of the underlying probability space throughout the

entire history matching period. For synthetic examples where the reference model
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is known, the mean of the final ensemble of estimates obtained from the EnKF can

be used to evaluate the performance of the method. Fig. 4.16 shows the estimates

of porosity fields obtained from the standard EnKF and the CEnKF, respectively,

together with the reference porosity field. The final estimates of porosity provided by

the standard EnKF and the CEnKF do not show a close resemblance to the reference

porosity field. Both methods, however, are able to capture some of the features seen

in the reference porosity field. The final estimate of the porosity from the CEnKF

shows a region with low porosity near the producer, similar to the reference porosity

field. Similar results were observed for the final estimates of the log-permeability field

obtained from the standard EnKF and the CEnKF which are shown in Fig. 4.17.
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Figure 4.16: Final mean porosity fields from the standard EnKF and the CEnKF
methods together with the reference porosity field.
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Figure 4.17: Final mean log-permeability fields from the standard EnKF and the
CEnKF methods together with the reference log-permeability field.

Another measure of the performance which can be used to compare different

methods in case of synthetic examples is the gridblock-based root mean squared error

(RMSE) of estimates. The RMSE of the estimate x for the ith gridblock in the model
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can be computed as

RMSEi =

√√√√ 1

Ne

Ne∑
j=1

(xi,j − xtrue
i )2 (i = 1, 2, . . . , Nx), (4.8)

where, xtrue
i is the true value of variable of interest at the ith gridblock, xi,j is the

estimate of the variable at the ith gridblock for the jth ensemble member, Ne repre-

sents the ensemble size, and Nx is the total number of gridblocks in the simulation

model. The RMSE values of the final updated porosity and log-permeability esti-

mates obtained from the standard EnKF and the CEnKF methods are computed and

compared in Fig. 4.18. The RMSE values for the final estimates of porosity from the

standard EnKF show large variability and are generally in the range of 0.04 to 0.12

for most part of the reservoir model with the exception of few locations where the

RMSE values are close to 0.20 (Fig. 4.18(a)). The final estimates of porosity obtained

from the CEnKF show RMSE values lower than 0.04 for most of the regions. We ob-

served similar results for the final estimates of log-permeability field (Figs. 4.18(c)

and 4.18(d)). The results show that the final estimates of model parameters obtained

from the CEnKF are closer to the reference model compared to the estimates obtained

from the standard EnKF.

Fig. 4.19 compares three realizations of the final updated log-permeability fields

obtained from the standard EnKF and the CEnKF. The updated realizations from

the standard EnKF appear to have larger variability, however, they do not show

the characteristics present in the reference log-permeability field. The updated re-

alizations obtained from the CEnKF method show less variability compared to the

standard EnKF. All three realizations of log-permeability from the CEnKF method

shown in Fig. 4.19 appear to have the low-permeability channel, similar to the refer-

ence field, near the producer completions. Fig. 4.20 shows the standard deviation of

log-permeability computed from the final updated ensembles obtained from the stan-

dard EnKF and the CEnKF. The results indicate that there is a larger variability
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Figure 4.18: The root mean squared error (RMSE) for porosity and log-permeability
computed from the final estimates obtained from the standard EnKF and the CEnKF
methods.
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Figure 4.19: The final updated realizations of log-permeability from the standard
EnKF and the CEnKF for different ensemble members.
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among the final updated ensemble obtained from the standard EnKF compared to

the CEnKF. The standard deviation of log-permeability from the CEnKF has values

in the range of 0.4 to 0.6 in some part of the reservoir which is lower than the stan-

dard deviation used for generating the initial ensemble (1.4). In some parts of the

reservoir, however, the standard deviation values have magnitude of around 1 which

suggests that the final updated ensemble from the CEnKF has enough variability for

assimilating additional production data in the future.
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Figure 4.20: The standard deviation of log-permeability from the standard EnKF
and the CEnKF.

4.5.1.3 Estimation of molar densities

Fig. 4.21 compares the updated ensemble of CO2 molar densities for layer 22 of the

reservoir model from the standard EnKF and CEnKF methods. The black curves in

Figs. 4.21(b) and 4.21(c) are the posterior CO2 molar densities for ensemble members

from the standard EnKF and the CEnKF, respectively. The thick red curve is the CO2

molar density for layer 22 from the reference model at day 102, the red dot denotes the

CO2 molar density measurement, and the horizontal blue line represents the boundary

of the feasible region for CO2 molar density. The updated realizations of CO2 molar

density for layer 22 obtained from the standard EnKF and the CEnKF show a good

agreement with the CO2 molar density measurement (red dot in Figs. 4.21(b) and

4.21(c)). For most of the ensemble members, the updated CO2 molar density from the

analysis step in the standard EnKF is negative at some locations. The updated CO2

molar densities from the CEnKF method honor the positivity constraint. Since the
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maximum number of iterations for the CEnKF method is set to 10, the updated CO2

molar density (Fig. 4.21(c)) for some ensemble members shows a small violation of

positivity constraint. Similar to the standard EnKF, the non-physical molar density of

CO2 from the CEnKF method is truncated to its value at the boundary of the feasible

region before advancing the simulator to the next data assimilation time. Since the

degree of constraint violation on CO2 molar density in the CEnKF is significantly

smaller than the standard EnKF, the truncation approach, unlike in the standard

EnKF, does not lead to harmful results in the CEnKF method.
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Figure 4.21: The posterior ensemble of CO2 molar density for layer 22 from the stan-
dard EnKF and CEnKF (iteration 10) methods together with the forecast ensemble
of CO2 molar density at the first data assimilation step. The black curves are the
ensemble members, the thick red curve is the reference, and the red dot represents
CO2 molar density measurement.

Fig. 4.22 shows the relationship between molar densities of different components

at a location in the reservoir model before and after assimilating data at the first data

assimilation step. The blue dots represent the forecast molar densities and the orange

dots are the updated molar densities obtained from the CEnKF method. The forecast

molar densities of components C3 and C1 are positively correlated (Fig. 4.22(a)). As

CO2 is being injected into the reservoir, the forecast molar densities of components

C1 and CO2 are negatively correlated (Fig. 4.22(b)). The analysis step of the CEnKF

is able to preserve the linear relationship between the molar densities of different

components as indicated by the orange dots in Fig. 4.22.
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Figure 4.22: The cross-plots between molar densities of (a) C3 - C1 and (b) C1 -
CO2 at location (18,22) obtained from the CEnKF at the first data assimilation step.
The forecast and the updated molar densities are shown in the blue and the orange
colors, respectively.

4.5.1.4 Matching production data

The static model parameters (porosity and permeability) and the dynamic state vari-

ables (pressure and molar densities) are updated sequentially in time using the infor-

mation contained in the production data (e.g. oil production rate, CO2 injection rate,

etc.). Figs. 4.23 and 4.24 show forecast of different types of production data during

the course of the data assimilation process for the standard EnKF and the CEnKF,

respectively. The black curves indicate the forecast from the ensemble members and

the red dots denote the actual measurements from the reference model. The static

model parameters and dynamic state variables for each ensemble member updated at

a data assimilation step are used for running the ensemble member from that data

assimilation time to the next assimilation time. As the static model parameters and

dynamic state variables are updated at each assimilation time, the ensemble forecasts

of different types of production data show large changes after the data are assimilated.

At the first data assimilation step, the observations are assimilated which provide a

large amount of information to ensemble members about the reservoir flow dynamics

(of the real field or the reference synthetic model). Therefore, large changes in the

behavior of the forecast production data are seen after the first data assimilation
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step (e.g. Figs. 4.23(a) and 4.24(a)). During the application of the standard EnKF

to the compositional model, as discussed in Chapter 3, nearly 60% of the ensemble

members exhibited periods during which an injector became shut-in after the first

data assimilation time. The absence of CO2 injection for some ensemble members

causes incorrect molar density distributions in the reservoir during the subsequent

forecast step. The result is incorrect prior covariances and incorrect updates to the

static model parameters and dynamic state variables during each of the subsequent

data assimilation steps of the standard EnKF. Therefore, forecasts of the production

data from the standard EnKF do not show improvement and have large variability

(e.g. Fig. 4.23(b)). Contrarily, forecasts of the production data from the CEnKF

show continued improvement starting at the first assimilation time as indicated in

Fig. 4.24. The estimates of the static model parameters and dynamic state variables

updated at each data assimilation step from the CEnKF are better than those ob-

tained from the standard EnKF which results in better production forecasts from the

CEnKF compared to the standard EnKF.

The ensemble of CO2 injection rate profiles obtained from the standard EnKF

and the CEnKF methods during data assimilation are compared in Fig. 4.25. The

application of the inequality constraint on CO2 molar density in the CEnKF method

ensures that the updated CO2 molar densities are non-negative while the molar den-

sities of other components are reduced in a consistent manner. Thus, the CEnKF

significantly improves the estimates of molar density distributions in the reservoir

compared to the estimates obtained from the standard EnKF. As a result, the vari-

ability in the injection rate seems more reasonable in the CEnKF (Fig. 4.25(b)).

4.5.1.5 Predictability of the updated ensemble

The ultimate goal of a history matching exercise is to obtain an ensemble of model

parameters which honor all the previous production history, so that, it can be used
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Figure 4.23: The production forecasts from the standard EnKF during the course
of the data assimilation. The black curves denote the ensemble members and the red
dots denote the true observations.
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Figure 4.24: The production forecasts from the CEnKF during the course of the
data assimilation. The black curves denote the ensemble members and the red dots
denote the true observations.
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Figure 4.25: The CO2 injection rate profiles for all the ensemble members during
data assimilation obtained from the standard EnKF and the CEnKF methods.
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for predicting the future reservoir performance. The prediction using EnKF methods

can start at the end of the data assimilation period, where the final updated static

model parameters and dynamic state variables are directly used to advance the reser-

voir simulator into the future prediction period. An alternate way of measuring the

performance of the EnKF methods is to use the updated ensemble of the static model

parameters to rerun the entire history starting from the initial equilibrium reservoir

conditions to predict the future performance.

We evaluated the performance of both EnKF methods by considering the quality

of the production forecasts from the initial time (day 0). The final updated ensemble

of porosity and permeability fields obtained from the standard EnKF and the CEnKF

methods are run from the initial time (day 0) up to the end of the prediction period

(day 1735). Figs. 4.26 and 4.27 show the prediction of the final updated ensemble

from the standard EnKF and the CEnKF, respectively. The gray curves are the

predictions from the initial ensemble, the black curves are the predictions from the

final updated ensemble, and the red curve shows the production data obtained from

the reference model in the prediction period (from day 1106 to day 1735). The

different types of production data shown in Figs. 4.26 and 4.27 include oil production

rate (OPR), producing gas-oil ratio (GOR), liquid-phase CO2 mole fraction at the

producer (WXMF), gas-phase CO2 mole fraction at the producer (WYMF), and CO2

injection rate (WCMIR). It is fairly clear that, although the final ensemble members

for both methods match production data better than the initial ensemble members,

the predictability of the ensemble updated by the CEnKF is better than that of

the standard EnKF. In particular, the ensemble predictions of breakthrough time

from the CEnKF (Figs. 4.27(c) and 4.27(d)) are better than the predictions from the

standard EnKF (Figs. 4.26(c) and 4.26(d)). The predictions of oil production rate at

early time from the CEnKF (Fig. 4.27(a)) are also better than the predictions from

the standard EnKF (Fig. 4.26(a)). The RMSE for the CEnKF method was nearly

80



a factor of two better than for the standard EnKF for all types of production data

(Table 4.2).
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Figure 4.26: The production data predicted from the ensemble of porosity and per-
meability updated at day 1106 by the standard EnKF. The gray curves represent
the initial ensemble, the black curves represent the updated ensemble, the red dots
represent the observations from the reference model, the red curve denotes the pro-
duction data from the reference model in the prediction period, and the vertical blue
line indicates the end of the history matching period (day 1106).

4.6 Black-oil model

The implementation of the EnKF with truncation often works well for data assim-

ilation problem of black-oil model involving only two phases (e.g. oil and water).

Table 4.2: Compositional model - RMSE values for different types of production
data

Observation Standard EnKF Constrained EnKF

Oil production rate (STB/day) 79.3 49.7
CO2 injection rate (lb moles/day) 1899. 668.

Producing GOR (MSCF/STB) 8.41 3.27
Producing gas-phase CO2 mole fraction 0.109 0.063

Producing liquid-phase CO2 mole fraction 0.00185 0.00106
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Figure 4.27: The production data predicted from the ensemble of porosity and
permeability updated at day 1106 by the CEnKF. The gray curves represent the initial
ensemble, the black curves represent the updated ensemble, the red dots represent
the observations from the reference model, the red curve denotes the production data
from the reference model in the prediction period, and the vertical blue line indicates
the end of the history matching period (day 1106).
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When it is important to consider all three phases (oil, gas, and water) present in

the reservoir, the implementation of the EnKF with truncation, sometimes, fails to

obtain good results. When the phase saturations of two phases are included in the

state vector, often times, the updated phase saturations take non-physical values af-

ter data assimilation. Truncating the non-physical phase saturations of two phases

directly effects the saturation of the remaining phase. The inconsistency in adjusting

phase saturations using the truncation approach has more severe consequences on the

reservoir performance of three-phase reservoir models compared to models where only

two phases are present. In this section, the results from the implementation of the

EnKF in its standard form with truncation and the implementation of the CEnKF

method (augmented data approach) to a data assimilation problem of black-oil model

involving three phases are discussed. The reservoir model description is given below.

4.6.1 Reservoir model description

The synthetic 2D (x − y areal) three-phase black-oil reservoir model has connate

water saturation of 0.15 with no initial gas saturation. The initial reservoir pressure

is 3600 psia, which is also the bubble point pressure. The reservoir is divided into

a uniform Cartesian grid of dimensions 50 × 50 × 1. The gridblock dimensions are

30 ft × 30 ft × 20 ft. We assume that all four sides of the reservoir model are no-

flow boundaries, and the phases present in the reservoir are oil, water, and gas. We

neglect the capillary effects. There are four producers and one injector in the reservoir

model arranged in a five-spot well pattern with the injector at the center and four

producers at the corners. The injector, INJ, is located at gridblock (25,25), and the

producers PROD1, PROD2, PROD3, and PROD4 are located at gridblocks (5,45),

(45,45), (45,5), and (5,5), respectively. All four producers are operational from day 0.

We also assume that the water injection is started from day 0 and is continued until

the end of the production period (day 520). All four producers are operated with a
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target oil production rate of 1500 STB/day and a minimum BHP of 1000 psia as a

secondary constraint. The injector is operated with a target water injection rate of

8000 STB/day and a maximum BHP of 6000 psia as a secondary constraint.

The porosity field has a mean of 0.25 and a standard deviation of 0.03. The log-

permeability field is generated with a mean and a standard deviation of 4.8 and 1.4,

respectively, and is correlated to porosity with a correlation coefficient of 0.75. An

anisotropic Gaussian variogram model with practical ranges of 30 and 5 gridblocks

in the two principal directions is used to generate the static model parameter fields.

Fig. 4.28 shows the porosity and log-permeability fields for the reference case.
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Figure 4.28: The porosity and log-permeability fields for the black-oil model (refer-
ence).

4.6.2 Data assimilation

The porosity and log-permeability fields for the reference model and the initial en-

semble are generated using the same geostatistical model parameters as the reference

model. An ensemble of 100 realizations is conditioned to values of permeability and

porosity at well locations from the reference model. Fig. 4.29 shows the production

data obtained from the initial ensemble together with the reference production data.

The gray curves indicate the ensemble forecasts and the black curve shows the pro-

duction data for the reference model. The initial ensemble shows good variability for

different types of production data and the reference model (black curve in Fig. 4.29)
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is contained within the spread of the initial ensemble.

The state vector includes static model parameters, such as porosity and log-

permeability, along with dynamic state variables, such as pressure, water saturation,

and gas saturation. The simulated production data, including oil production rate,

producing gas-oil ratio, water production rate, and water injection rate are used in

the data assimilation. The total simulated production history is 280 days. The pro-

duction data are assimilated at days 10, 40, 80, 120, 160, 200, and 280. There are

a total of 7 data assimilation time steps and 13 data at each assimilation step. The

measurement noise associated with the production data is sampled from a normal

distribution with a mean of 0 and a standard deviation which varies by type of ob-

servation. The standard deviation values used for different types of production data

are given in Table 4.3. Note that, two different values of the standard deviation are

used for the water production rate observation. When the true water production rate

is less than 1.0 STB/day, the standard deviation is 0.0001 STB/day; otherwise it is

4.0 STB/day.

In the implementation of the CEnKF method, the updated water saturation is

constrained to the connate water saturation value of 0.15 whenever the updated value

is smaller than that. The gas saturation is constrained to a value of zero upon taking

a negative value after data assimilation. The water and gas saturations from the

updated state vector (unconstrained solution) are analyzed simultaneously for any

constraint violations and constraints are enforced together.

Table 4.3: 2D black-oil model - standard deviation values for different types of
production data

Type of observation Standard deviation

Oil production rate 4.0 STB/day
Producing gas-oil ratio 0.003 MSCF/STB
Water production rate 0.0001 STB/day or 4.0 STB/day
Water injection rate 5.0 STB/day

85



0 100 200 300 400 500
0

300
600
900

1200
1500

Time HDaysL

O
P

R
HST

B
�da

yL

(a) OPR of PROD1

0 100 200 300 400 500
0

300
600
900

1200
1500

Time HDaysL

O
P

R
HST

B
�da

yL

(b) OPR of PROD2

0 100 200 300 400 500
0

300
600
900

1200
1500

Time HDaysL

O
P

R
HST

B
�da

yL

(c) OPR of PROD3

0 100 200 300 400 500
0

300
600
900

1200
1500

Time HDaysL

O
P

R
HST

B
�da

yL

(d) OPR of PROD4

0 100 200 300 400 500
0

1000
2000
3000
4000
5000
6000
7000

Time HDaysL

W
IR

HST
B

�da
yL

(e) WIR of INJ

0 100 200 300 400 500
0

500
1000
1500
2000
2500

Time HDaysL

W
P

R
HST

B
�da

yL

(f) WPR of PROD1

0 100 200 300 400 500
0

1000
2000
3000
4000
5000

Time HDaysL

W
P

R
HST

B
�da

yL

(g) WPR of PROD2

0 100 200 300 400 500
0

500
1000
1500
2000
2500
3000

Time HDaysL

W
P

R
HST

B
�da

yL

(h) WPR of PROD3

0 100 200 300 400 500
0

200
400
600
800

1000

Time HDaysL

W
P

R
HST

B
�da

yL

(i) WPR of PROD4

0 100 200 300 400 500
0
2
4
6
8

10
12
14
16

Time HDaysL

G
O

R
HM

SC
F

�ST
B

L

(j) GOR of PROD1

0 100 200 300 400 500
0
2
4
6
8

10
12
14
16
18

Time HDaysL

G
O

R
HM

SC
F

�ST
B

L

(k) GOR of PROD3

0 100 200 300 400 500
0
2
4
6
8

10
12
14
16
18

Time HDaysL

G
O

R
HM

SC
F

�ST
B

L

(l) GOR of PROD4

Figure 4.29: The production forecasts for the oil production rate (OPR), water
injection rate (WIR), water production rate (WPR), and gas-oil ratio (GOR) from
the initial ensemble and the reference production data. The gray curves denote the
ensemble members and the black curve is the reference.
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4.6.3 Results and discussion

4.6.3.1 Estimation of saturation fields

Figs. 4.30 and 4.31 show the prior and the posterior saturation profiles of water and

gas, respectively, on the cross-section which passes through producers, PROD2 and

PROD4, at different assimilation times for the standard EnKF. The gray curves are

the ensemble members, the black curve shows the saturation profile for the reference

model at the corresponding time, and the vertical blue lines indicate the locations

of producers, PROD2 and PROD4. The injector, INJ, will be located at the cen-

ter along this diagonal. The water and gas saturation profiles updated at the first

assimilation time (day 10) are nearly similar to their corresponding forecast satu-

ration profiles. The spread of the posterior ensembles, however, has been reduced

as a result of the data assimilation. As we can see in Fig. 4.30(b), there are some

ensemble members for which the updated water saturations are out of the physical

bounds (less than 0.15) for gridblocks around the injector. A similar observation

can be made in Fig. 4.31(b) where the updated gas saturations for some ensemble

members are less than zero in the regions between the producers and the injector.

The magnitude of constraint violations during the initial assimilation time, however,

is small. The water saturation profiles updated at day 80 (Fig. 4.30(d)) show strong

constraint violations for gridblocks located between the producer, PROD4, and the

injector. The updated water saturations for some ensemble members are significantly

lower than the minimum plausible value. The water saturations updated at day 160

(Fig. 4.30(f)) do not resemble the water saturation profile from the reference model

for gridblocks near the producer PROD2, and show strong constraint violations. The

gas saturation profiles updated at day 160 (Fig. 4.31(f)) also show strong constraint

violations for gridblocks located between the injector and the producer PROD2.

Figs. 4.32 and 4.33 show the prior and the posterior saturation profiles of water
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Figure 4.30: The water saturation profiles on the diagonal of producers PROD2 and
PROD4 at different assimilation times from the standard EnKF. PROD2 is located
at gridblock (45,45) and PROD4 is located at gridblock (5,5). The gray curves are
the ensemble members and the black curve is the reference.
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Figure 4.31: The gas saturation profiles on the diagonal of producers PROD2 and
PROD4 at different assimilation times from the standard EnKF. PROD2 is located
at gridblock (45,45) and PROD4 is located at gridblock (5,5). The gray curves are
the ensemble members and the black curve is the reference.
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and gas, respectively, along the same cross-section (PROD4-PROD2) at different as-

similation times for the CEnKF. The gray curves are the ensemble members and the

black curve shows the reference saturation profile at the corresponding time. The

saturation profiles are updated iteratively in the CEnKF by taking into account the

additional constraints on water and gas saturations identified during each iteration.

As results indicate, the water and gas saturation profiles updated at different assimila-

tion times from the CEnKF honor the inequality constraints. The ensembles of water

and gas saturations from the CEnKF show enough variability and the reference satu-

ration profile lies within the spread of the posterior ensemble. The water saturations

updated at day 80 from the CEnKF are reasonable and show similar behavior as the

reference water saturation profile. Unlike the standard EnKF (Fig. 4.30(f)), the water

saturation profiles updated at day 160 from the CEnKF honor the constraints and

the posterior water saturation profiles are similar to the reference saturation profile

in the region near producer PROD2. As our emphasis was on the efficiency, we used

a small number of iterations for the CEnKF method. Therefore, the updated water

and gas saturation profiles obtained from the CEnKF show constraint violations for

some ensemble members at a few number of gridblocks, although the magnitude of

the constraint violation is not as severe as it was observed for the standard EnKF.

Similar to the standard EnKF, the non-physical posterior water and gas saturations

from the CEnKF are truncated to their values at the boundary of the feasible region

before advancing the simulator to the next assimilation time.

Fig. 4.34 shows the water saturation fields, before and after data assimilation, for

realization 68 at the third data assimilation time step (day 80) from the standard

EnKF and the CEnKF together with the reference water saturation field at the same

time. The posterior water saturation after updating with the standard EnKF is less

than the connate water saturation (0.15) in some part of the reservoir between the

producer, PROD4, and the injector, INJ (Fig. 4.34(c)). Because that is below the
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Figure 4.32: The water saturation profiles on the diagonal of producers PROD2
and PROD4 at different assimilation times from the CEnKF. PROD2 is located at
gridblock (45,45) and PROD4 is located at gridblock (5,5). The gray curves are the
ensemble members and the black curve is the reference.
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Figure 4.33: The gas saturation profiles on the diagonal of producers PROD2 and
PROD4 at different assimilation times from the CEnKF. PROD2 is located at grid-
block (45,45) and PROD4 is located at gridblock (5,5). The gray curves are the
ensemble members and the black curve is the reference.
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minimum allowable level, all such water saturations in the model would be set to the

connate water saturation in a standard EnKF implementation. Although truncation

handles the issue of constraint violation, it ignores correlations between other state

variables at the same location, or the state variables in the remaining parts of the

model. The application of the CEnKF method ensures that the inequality constraints

on the water and gas saturations are honored at each data assimilation time step. The

posterior water saturations obtained from the CEnKF (Fig. 4.34(e)) are above the

connate water saturation (0.15) in all parts of the reservoir. The constraints on phase

saturations are not honored during data assimilation using the standard EnKF. These

posterior phase saturations, truncated when they are out of physical bounds, are used

during the subsequent forecast step. The inconsistent updating of phase saturations

can result in wrong forecast for the standard EnKF as shown in Fig. 4.34(b) which

indicates that, the water is moving faster between the injector, INJ, and the producer,

PROD1, and is moving slowly between the injector, INJ, and the producer, PROD3,

compared to the reference model. As phase saturations are updated in a consistent

manner during each data assimilation step using the CEnKF, it appears that, the

prior and the posterior water saturation fields at day 80 for realization 68 obtained

from the CEnKF are able to capture some of the features of the reference water

saturation at the same time. The movement of the waterflood-front between the

injector, INJ, and the producer, PROD3, from the CEnKF (Fig. 4.34(e)) is similar to

the reference model (Fig. 4.34(a)). Fig. 4.35 shows the gas saturation fields, before

and after data assimilation, for realization 68 at the third assimilation time using the

standard EnKF and the CEnKF together with the reference gas saturation field at

the same time.
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Figure 4.34: The water saturation fields, before and after data assimilation, for
realization 68 at day 80 (third assimilation time) from the standard EnKF and the
CEnKF together with the corresponding reference water saturation field.
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Figure 4.35: The gas saturation fields, before and after data assimilation, for realiza-
tion 68 at day 80 (third assimilation time) from the standard EnKF and the CEnKF
together with the corresponding reference gas saturation field.
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4.6.3.2 Matching production data

The static model parameters (porosity and permeability) and the dynamic state vari-

ables (pressure and phase saturations) are updated sequentially in time using the

production data. Although the observations for data assimilation at each assimila-

tion time include oil production rate, producing gas-oil ratio, and water production

rate for all four producers, and water injection rate for the injector, Figs. 4.36 and

4.37 show forecast of different types of production data (not all) during the course of

the data assimilation process for the standard EnKF and the CEnKF, respectively.

The black curves indicate the forecast from the ensemble members and the red dots

denote the actual observations from the reference model. We have shown earlier

that the updated water and gas saturations at each data assimilation time from the

standard EnKF show strong violations of the inequality constraints. The updated

saturations out of the physical bounds are truncated to their values at the boundary

of the feasible region. The production forecasts at each assimilation time from the

standard EnKF, however, suffer from the poor adjustments to phase saturations due

to truncation. As a result, the production forecasts from the standard EnKF show

poor improvements (Figs. 4.36(c), 4.36(d), and 4.36(e)) and large variability even

after data assimilation step 6 (day 200). The inequality constraints on the water and

gas saturations are honored and the adjustments to phase saturations are made in

a consistent manner during the application of the CEnKF method. The consistency

in updating phase saturations at each data assimilation time helps improve the pro-

duction forecasts from the CEnKF. The production forecasts for the oil production

rate of producer PROD4 (Fig. 4.37(c)), and the water production rates of producers

PROD2 (Fig. 4.37(d)) and PROD3 (Fig. 4.37(e)) from the CEnKF show significant

improvements compared to the standard EnKF.
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Figure 4.36: The production forecasts for oil production rate (OPR), water produc-
tion rate (WPR), and water injection rate (WIR) for different producers and injector
from the standard EnKF during the course of the data assimilation. The black curves
denote the ensemble members and the red dots denote the true observations.
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Figure 4.37: The production forecasts for oil production rate (OPR), water produc-
tion rate (WPR), and water injection rate (WIR) for different producers and injector
from the CEnKF during the course of the data assimilation. The black curves denote
the ensemble members and the red dots denote the true observations.
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4.6.3.3 Predictability of the updated ensemble

The ensemble of 100 realizations was continually adjusted by assimilating 13 produc-

tion data at each data assimilation time step. We had 7 data assimilation time steps

and thus, a total of 91 observations were assimilated during the entire history match-

ing process. Once the data assimilation was complete over all the data assimilation

time steps, the final updated ensemble of porosity and permeability, together with

the initial reservoir equilibrium conditions, was evaluated from the initial time (day

0) up to the end of the production period (day 520) using a commercial reservoir

simulator.

Figs. 4.38 and 4.39 show the results of the production data obtained by rerunning

the final updated ensembles from the standard EnKF and the CEnKF methods, re-

spectively. The results include the oil production rate (OPR), water production rate

(WPR), and producing gas-oil ratio (GOR) for different producers and the water in-

jection rate (WIR) for the injector. The gray curves represent the initial ensemble,

the black curves represent the updated ensemble, the red dots represent the observa-

tions from the reference model, the red curve denotes the production data from the

reference model in the prediction period, and the vertical blue line indicates the end

of the history matching period (day 280). The updated ensemble from the standard

EnKF has large variability in the history matching period and shows a poor match to

the true observations of oil production rate data for all four producers (Figs. 4.38(a)

through 4.38(d)). Similarly, a large fraction of the updated realizations from the stan-

dard EnKF show a delay in water-breakthrough at the producer PROD2 compared

to the reference model. It is evident that the proposed CEnKF method provided

improved history matching results compared to the standard EnKF. The updated

ensemble from the CEnKF was able to match water-breakthrough times for different

producers (Figs. 4.39(f) through 4.39(i)) with good accuracy. The updated ensem-

ble obtained from the CEnKF performs fairly well in the prediction period (day 280
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to day 520) for different types of production data. The predictions of oil and wa-

ter production rates for the producer, PROD4, however, are biased compared to the

reference model.

4.7 Mass conservation

The most significant problem that was observed with the application of the standard

EnKF to the compositional data assimilation problem was that, excess mass was

added during the update step at the first data assimilation time. In general, mass

should not be expected to be conserved in data assimilation or history matching, as

the mass of a component is typically an unknown quantity that must be estimated.

On the other hand, when a substance is injected into the reservoir at a known rate, it

would be desirable for that quantity to be conserved during the updating process. In

this section, we will investigate experimentally the consequences of the analysis step

on mass conservation in a simple model.

We consider 1-D, constant-rate injection of water into a reservoir of length 50 that

is initially at irreducible water saturation (0.20). The porosity is assumed to be a cor-

related random field with mean 0.25 and standard deviation of 0.07. The covariance

for porosity is nearly Gaussian with a practical range of 25. At some particular time

(560 in dimensionless units), we measure the saturation at the center of the reservoir.

Fig. 4.40(a) shows the distribution of forecast water saturation from a large number of

reservoir realizations at the measurement time. If the true water saturation at x = 25

is 0.2, then the result of a standard EnKF analysis step is as shown in Fig. 4.40(b).

Approximately, 10% of the updated realizations contain negative saturations after

updating. Fig. 4.40(c) shows the same saturation profiles after updating using the

CEnKF method. Constraining the saturation values to lie in the feasible region is not

sufficient to ensure that the profiles are monotonic and the advantage over truncation

is not obvious because in the two-phase incompressible model, the problems with
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Figure 4.38: The production data predicted from the ensemble of porosity and per-
meability updated at day 280 by the standard EnKF. The gray curves represent the
initial ensemble, the black curves represent the updated ensemble, the red dots repre-
sent the observations from the reference model, the red curve denotes the production
data from the reference model in the prediction period, and the vertical blue line
indicates the end of the history matching period (day 280).
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Figure 4.39: The production data predicted from the ensemble of porosity and
permeability updated at day 280 by the CEnKF. The gray curves represent the initial
ensemble, the black curves represent the updated ensemble, the red dots represent
the observations from the reference model, the red curve denotes the production data
from the reference model in the prediction period, and the vertical blue line indicates
the end of the history matching period (day 280).
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volume conservation are not so significant as in the compositional model. Truncation

of negative water saturations results in a corresponding reduction in the updated oil

saturation, which does not occur in the compositional model.
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Figure 4.40: Water saturation profiles for the 1D reservoir example

While the total volume will not be effected by truncation in this case, it certainly

affects the volume of the individual phases. Fig. 4.41 compares the volume of move-

able water (water whose saturation is greater than the irreducible water saturation

of 0.2) at the end of the forecast with the volume of moveable water after EnKF

with truncation and with the CEnKF method. The small variability in the volume

at the end of the forecast is a result of discretization of the reservoir and the use of

gridblock-centered saturation values. The standard EnKF with truncation shows a

bias towards higher water volume because the negative values are truncated. The

CEnKF technique does not remove the bias, but does reduce the problem substan-

tially.

If mass is explicitly included in the state vector, and all forecast realizations have

the same mass, then the mass in all analyzed realizations will also be identical. The

mass of a component in each gridblock must of course be non-negative, but mass

will not necessarily be non-negative after an EnKF update. The consequence of

truncating negative values of mass is that mass will not be conserved in the analysis

step. Application of constraints to the mass variable would necessarily conserve the

mass of each component if all realizations initially contained the same mass.
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Figure 4.41: Distributions of volume of moveable water in the reservoir at the end
of several operations: the forecast step, the standard EnKF update with truncation
of saturations, and the CEnKF.

In general, however, the variables that are included in the state vectors are sat-

urations, porosities, molar densities, or mass fractions. When saturations or molar

densities are used in the state vector, mass is not necessarily conserved even when

truncation is not used. When truncation is used, the results are typically much

worse. Fig. 4.42 shows results from the same Buckley-Leverett displacement experi-

ment whose results were shown in Fig. 4.40. In this case, however, the molar densities

and porosities are included in the state vector instead of saturations and porosities.

One consequence of this choice of parameterization is that, unlike saturation, there is

no simple upper limit on the molar density. Note that truncation of the low values of

molar density of water (solid curve in Fig. 4.42(a)), does not effect the molar density

of oil (solid curve in Fig. 4.42(b)). Also, truncation of the molar density of water

has no effect on the porosity field (solid curve in Fig. 4.42(c)). As a result, there

is 9% more total moles of both components in the realization after truncation than

in the realization after the analysis step. If the CEnKF method is used, the molar

density of water is quite similar to the molar density after truncation (dashed curve

in Fig. 4.42(a)) while the molar density of oil and the porosity field are both reduced

substantially (dashed curves in Figs. 4.42(b) and 4.42(c)). The net effect is that the

total number of moles is only 2% less than the forecast, so the mass is much more
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nearly conserved, even though the mass (number of moles) was not used directly in

the state vector.
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Figure 4.42: Comparison of updated molar densities and porosity for realization 1,
from EnKF with truncation (solid) and from CEnKF (dashed).

4.8 Summary

In this chapter, we proposed an efficient method for sequential data assimilation that

ensures that the updated state variables satisfy inequality constraints. The method

is a constrained version of the EnKF that does not require additional model evalua-

tions for constraint application. The validity of the CEnKF method is demonstrated

through its application to a synthetic 1D linear model. The second test problem

shows the application of the CEnKF technique to a data assimilation problem of a

compositional model for which state variables (molar densities of components) have

lower limits. The constraints were applied on the CO2 molar density which helped

reduce molar densities of other components in a systematic manner. The updating

of molar densities of all components in a consistent manner from the CEnKF tech-

nique resolved the issues of excess mass and pressure build-up which were observed

during the application of the standard EnKF with truncation. In case of black-oil

reservoir models involving three-phase flow conditions, adjusting phase saturations,

when the updated saturations violate the inequality constraints, is not straightfor-

ward. The CEnKF technique presents a viable option for handling three-phase flow

conditions such that the updated phase saturations are plausible. The application of
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the CEnKF method to a three-phase black-oil model clearly showed the benefits of

the constrained solution and obtained a good match to the historical production data.

We also showed that in cases where mass conservation of a component is important,

the CEnKF gives superior results to the standard truncation scheme.

The proposed CEnKF method can easily be implemented with some modifications

to the pre-existing codes for the standard EnKF. Although the CEnKF method is an

iterative process, the additional computational cost and time required during each

iteration is significantly lower compared to the cost of running the reservoir simula-

tor. Because of the small computational cost and low data-storage requirement, the

implementation of the CEnKF method on a real-field reservoir problem with few hun-

dred thousands of gridblocks should not impose any computational or data-storage

challenge.
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CHAPTER V

INTERIOR-POINT METHOD FOR

CONSTRAINED ENKF

5.1 Introduction

Although a number of attempts have been made for incorporating the inequality con-

straints into the EnKF framework, most of the techniques depend on the treatment of

the unconstrained solution obtained from the standard implementation of the EnKF.

None of the previous studies shows the direct involvement of inequality constraints

in the mathematical formulation of the EnKF. In Chapter 4, we proposed a con-

strained form of the EnKF (CEnKF) for updating reservoir models for avoiding the

problem of non-physical values of phase saturations and component molar densities.

The effectiveness of the CEnKF technique was demonstrated on fluid flow problems

(compositional and black-oil) with fairly large number of gridblocks. The CEnKF

algorithm is iterative, however, and requires identification of the active constraints

during each iteration. In reservoir engineering, the ultimate goal of history matching

is to estimate large numbers (105 to 106) of reservoir static model parameters and

dynamic state variables. The application of the CEnKF method to a reservoir model

with few hundred thousands of gridblocks might require a large number of iterations

for finding a solution that completely lies in the feasible region. Although the compu-

tational cost and data-storage requirements for each iteration of the CEnKF method

are not significant, the implementation of the CEnKF method with large numbers of

iterations may not be a practical approach.

It was discovered in the 1980s that, the algorithms from the field of nonlinear
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programming and nonlinear equations can be utilized for efficiently solving many

large-scale linear programming problems. One of the important characteristics of

these iterative methods was that they required all iterates to strictly satisfy the

inequality constraints on the elements of the solution. As a result, these methods

became known as interior-point methods. The interest in the research community

towards the interior-point method and its application did not increase until 1984

when Karmarkar (1984) presented a successful application of a new interior-point

algorithm for linear programming. The algorithm proposed by Karmarkar (1984)

was based on nonlinear projective transformations and he reported solution times

up to 50 times faster than the simplex method whose computational cost increases

exponentially with the problem dimensions. Frisch (1955) proposed the first interior-

point method in the form of a logarithmic barrier method that was later extensively

analyzed by Fiacco and McCormick (1968) to solve general nonlinearly inequality

constrained problems.

The active-set method has been the widely used approach for handling inequality-

constrained optimization problems and is suited for small- and medium-sized prob-

lems (Nocedal and Wright, 2006). The interior-point method is another branch of

algorithms for solving the inequality-constrained optimization problems. It does not

require the direct identification of the active constraints and is well suited for large

problems. Interior-point methods are usually classified into three main categories

(Quintana et al., 2000): (i) projective methods, (ii) affine-scaling methods, and (iii)

primal-dual methods. The algorithm proposed by Karmarkar (1984) falls under the

category of projective methods. The affine-scaling methods, which were simple and

computationally less complex, were proposed as simplifications of projective methods.

The primal-dual methods can further be classified as path-following methods and po-

tential reduction methods. Gill et al. (1986) showed a formal equivalence between

Karmarkar’s projective method and the classical logarithmic barrier method applied
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to linear programming. Therefore, the terms “interior-point method” and “barrier

method” are now used interchangeably. The first theoretical results for primal-dual

path-following methods were presented by Megiddo (1986) who proposed to apply a

logarithmic barrier method to the primal and the dual problems simultaneously.

The interior-point method is based on constructing a “barrier” which prevents

violation of all the inequality constraints such that the resulting sequence of the

iterates remains strictly in the interior of the feasible region defined by the inequality

constraints (Baldick, 2008). The barrier is constructed by adding a term to the

original objective function that increases rapidly as we approach the boundary of the

feasible region from its interior. In the ideal scenario, the iterative solution to the

optimization problem moves directly towards the minimizer across the interior of the

feasible region, rather than stepping along its boundary as in the active set algorithm.

In order to be useful for constrained optimization, a valid barrier function should be

differentiable on the interior of the constraint set and should become unbounded as

the solution approaches the boundary of the constraint set.

Incorporating fundamental features of a interior-point method into the EnKF

framework naturally presents a way for conditioning an ensemble of static model

parameters and dynamic state variables to historical production data and simulta-

neously honoring the inequality constraints on state variables during the analysis

step of the EnKF. To our knowledge, we are not aware of any such method that

combines a interior-point method with the EnKF for data assimilation. Recently,

Bell et al. (2009) presented an application of a interior-point method to a nonlinear

Kalman-Bucy smoother problem with inequality constraints. The authors showed the

usefulness of the interior-point method by applying it to a low-dimensional nonlinear

problem. The direct application of the method proposed by Bell et al. (2009) is not

possible for data assimilation in reservoir simulation models with few hundred thou-

sands of gridblocks, however, as it requires the explicit computation and handling of
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large-size matrices similar to the covariance matrix of state variables.

In this chapter, we present a new interior-point algorithm for incorporating the

inequality constraints into the EnKF methodology (IPCEnKF). The present study

draws the basic idea from the earlier work by Bell et al. (2009) on Kalman smoother.

The original objective function involved in the data assimilation framework is refor-

mulated by adding a barrier function which takes into account the proximity of state

variables, subject to inequality constraints, from the boundaries of the feasible region,

and sets a barrier on state variables against leaving the feasible region. By doing so,

the original constrained problem is transformed into an unconstrained problem. The

solution of the resulting unconstrained problem is presented in the form of a new iter-

ative EnKF scheme which implicitly contains inequality constraints on state variables.

The effectiveness of the newly proposed IPCEnKF method is demonstrated through

its application to a synthetic 1D linear example and a highly heterogeneous 3D, three-

phase black-oil reservoir fluid flow problem. The results indicate the effectiveness of

the newly proposed IPCEnKF method in terms of matching the observations and

honoring the inequality constraints on state variables. The proposed method is able

to achieve a better estimate of state variables than is obtained using only truncation

with the standard implementation of the EnKF.

5.2 Fundamental concepts

The standard implementation of the EnKF is an optimization problem where the

analysis step computes variables that approximately minimize the following objective

function

Jj(y) =
1

2
(y − yf

j )T (Cf
Y )−1(y − yf

j ) +
1

2
(Hy − dobs,j)

T C−1
D (Hy − dobs,j).

Since the forecast step of the EnKF uses a reservoir simulator for evolving reservoir

models forward in time, the physical constraints on the elements of state vector are

honored during the forecast step. The analysis step of the EnKF, however, does not
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involve any mechanism for enforcing constraints on state variables. As a result, the

state variables can take non-physical values when data are assimilated using the stan-

dard EnKF. Under the interior-point formulation, the original objective function of

an optimization problem involving constraints, similar to the EnKF, is often reformu-

lated by considering additional term(s). The additional term reflects the constraints

and its form depends on the nature of the constraint function. By doing so, explicit

handling of the constraints can be avoided and they can be easily treated within the

optimization algorithm. In general, the process of finding a minimum (or a maximum)

of a given objective function strongly conflicts with the process of satisfying the given

constraints and vice-versa. The interior-point formulation exploits this confliction

between the two processes. A general observation is that the difficulty in honoring

constraints increases (generally more than linearly) with increase in the number of

constraints. When a solution that minimizes (or maximizes) the objective function

is obtained, and the elements of the solution honor all the constraints on them, the

difficulty in the optimization process is less. In a different scenario, it is possible to

find a solution that minimizes (or maximizes) the objective function, however, some

of the elements of the resulting solution may fail to honor the constraints on them.

Under such scenario, the difficulty in the optimization process will be considerably

higher. By taking advantage of this behavior, one can incorporate the additional term

into the objective function that penalizes the objective function at points that do not

satisfy the constraints. There are two basic approaches for incorporating additional

term(s) in the objective function. The additional term can be incorporated in the

form of a penalty function which penalizes the objective function for values of the

solution that violate the constraints. The penalty function can be used in the form of

either a partial penalty function where a penalty is applied near the boundary of the

feasible region or a global penalty function which is applied throughout the infeasible

region. An alternate way of incorporating additional term into the objective function

108



is to use a barrier function, which is often used for inequality-constrained problems.

This approach involves adding a function (often called as barrier) that grows rapidly

as the solution approaches the boundary of the feasible region from the interior.

Generally, the interior-point method can be implemented in two forms. The first

form is the primal interior-point method which is also known as the primal barrier

approach. Under this formulation, the minimization problem is written as

min
x
S(x) (5.1)

subject to c(x) ≥ 0

where, c(x) is a vector containing all the scalar inequality constraints cj(x) ≥ 0,

j ∈ [1, Nx]. If phase saturation at each grid location is used as a variable in the

optimization problem, it is important to have phase saturations that are bounded

within an upper and a lower bound at each location at all times. Under such scenario,

Nx represents the dimension of the variable x. If the variable x is under physical

constraints as xmin ≤ xj ≤ xmax, then for each element j, the constraint cj(x) can

be expressed as cj(x) = (xmax − xj)(xj − xmin). In reservoir engineering related

applications, porosity and phase saturations are some of the variables that are subject

to similar constraints as mentioned here.

To solve the minimization problem with multiple inequality constraints as shown

in Eq. 5.1, a barrier function, fb(x), is added to the original objective function, S(x).

The modified objective function is denoted by O(x) and can be expressed as

O(x) = S(x) + tfb(x), (5.2)

where, the barrier function fb(x) prevents the model variables from leaving the feasible

region. In Eq. 5.2, t is called the barrier parameter. The two most widely used forms

of the barrier functions are the reciprocal function and the negative of the logarithmic

function. The logarithmic function is also called as the log-barrier function. In the

limit as t goes to 0, the minimizer of Eq. 5.2 approaches the minimizer of Eq. 5.1
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for points away from the barrier. In this study, we use the log-barrier function with

positive barrier parameter. The log-barrier function can be expressed as

fb(x) = −
Nx∑
j=1

log cj(x) . (5.3)

In case of the model variable with physical constraints of xmin ≤ xj ≤ xmax, the

barrier function can be written as

fb(x) = −
Nx∑
j=1

log(xj − xmin)−
Nx∑
j=1

log(xmax − xj) . (5.4)

By introducing the barrier function into the original objective function, the con-

strained optimization problem with inequality constraints is converted into an uncon-

strained optimization problem. The modified objective function O(x) is differentiable

with continuous partial derivatives. The first order necessary condition for minimizing

the objective function O(x) is

∇xS(x) + t∇xfb(x) = 0 . (5.5)

If the objective function O(x) is twice differentiable and x∗ lies in the interior

of the feasible region, then the second-order sufficient conditions for x∗ to be a local

minimizer of O(x) include (Antoniou and Lu, 2007): (a) the gradient of O(x) vanishes

at x∗, and (b) the Hessian of O(x) is positive definite at x∗. Newton’s methods can

be used to solve this unconstrained minimization problem. As the modified objective

function involves the barrier parameter t through the barrier function, the minimizer

x∗ is a function of the barrier parameter. Hence, a path or a sequence, x∗(t), can be

obtained as t is gradually decreased from the initial value to an acceptable small value

close to zero. It should be noted that, for each fixed value of t, the minimizer x∗(t)

is approached through several iterations until the convergence criteria are satisfied.

The ill-conditioning of the Hessian of the modified objective function is often

considered as the root-cause of the shortcomings of the primal interior-point method.

In this study, the primal interior-point method is introduced into the iterative EnKF
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framework. Thus, even when the barrier parameter takes a small value, the Gauss-

Newton method prevents the ill-conditioning since the approximated Hessian matrix

is always positive definite.

To improve the conditioning of the Hessian matrix or lessen the nonlinearity of

O(x), another form of the interior-point method, called as the primal-dual interior-

point method, is popular. In the primal-dual system, a new type of variable, called

as the slack variable p, is introduced. The slack variable can be defined as pj = cj(x),

j ∈ [1, Nx]. The modified objective function under the primal-dual interior-point

formulation is written as

O(x, p, z) = S(x)− t
Nx∑
j=1

log pj + (c(x)− p)T z, (5.6)

where, z is a vector of Lagrange multipliers, zj ≥ 0, j ∈ [1, Nx]. The first order nec-

essary condition for minimizing the objective function in Eq. 5.6 involves calculating

the derivatives of Eq. 5.6 with respect to the three types of variables including x, z,

and p, and setting them equal to 0 as

∇xO(x, p, z) = ∇xS(x)− AT (x)z = 0 (5.7)

∇zO(x, p, z) = c(x)− p = 0 (5.8)

∇pO(x, p, z) = Pz − te = 0 (5.9)

where, P = diag(p1, p2, . . . , pNx), e = [1, 1, . . . , 1]T , and AT (x) is the Jacobian

matrix of the function c(x). Eq. 5.9 is called the complementary slackness condition.

The solution to the primal-dual interior-point formulation can be obtained using

the Newton-Raphson method. The primal-dual method increases the dimensions of

the solution vector, and the subsequent computational cost due to the introduction

of slack variables and Lagrange multipliers is significant. Therefore, in the present

study, we investigate the primal interior-point algorithm, instead of the primal-dual

method, within the EnKF framework.
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5.3 Formulation

As Oliver et al. (2008) pointed out, a sample x from the posterior distribution con-

ditioned to observations, can be generated as the value that minimizes the following

objective function

Si(x) =
1

2
(x− xpr,i)

T C−1
X (x− xpr,i) +

1

2
(g(x)− dobs,i)

T C−1
D (g(x)− dobs,i), (5.10)

where, xpr,i denotes the ith ensemble member before data assimilation, dobs,i is the

vector of perturbed observations for the ith ensemble member, g(·) is the nonlinear re-

lationship between the model variables and the observations, CX represents the prior

covariance of model variables, and CD denotes the observation-error covariance ma-

trix. If the inequality constraints on the model variables are important, the objective

function in Eq. 5.10 is reformulated by adding a term that reflects the constraints on

the model variables, x, for the ith ensemble member. The modified objective function

for the ith ensemble member can be expressed as

Oi(x) =
1

2
(x− xpr,i)

T C−1
X (x− xpr,i) +

1

2
(g(x)− dobs,i)

T C−1
D (g(x)− dobs,i) + tfb(x).

(5.11)

The formulation of the proposed IPCEnKF method presented in this section can

be generalized for the ith ensemble member. Therefore, in order to reduce the number

of superscripts and subscripts, we will omit the index for the ensemble member in the

following equations. The gradient of the modified objective function with respect to

model variables, x, can be expressed as

∇xO(x) = C−1
X (x− xpr) + GT C−1

D (g(x)− dobs) + t∇xfb(x), (5.12)

where, G = (∇gT )T is the ensemble-based sensitivity which relates the observations

to model variables. The Hessian of the modified objective function O(x) is

∇2
xO(x) = C−1

X + GT C−1
D G + (∇xGT )C−1

D (g(x)− dobs) + t∇2
xfb(x). (5.13)
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We consider the Gauss-Newton method for minimizing the objective function given

in Eq. 5.11. Let xl denotes the latest approximation to the minimum of the objective

function shown in Eq. 5.11. Define δx such that,

δx = x− xl.

Now, let us consider the second order Taylor series expansion of the objective

function, O(x), around xl which can be given as

O(x) ≈ O(xl) +∇xO(xl)T δx +
1

2
δxT∇2

xO(xl)δx, (5.14)

where,∇xO(xl) and∇2
xO(xl) denote the gradient (Eq. 5.12) and the Hessian (Eq. 5.13),

respectively, of the objective function evaluated at xl. Let Õ(x) denotes the quadratic

approximation of the objective function given in Eq. 5.14. Thus,

Õ(x) = O(xl) +∇xO(xl)T δx +
1

2
δxT∇2

xO(xl)δx. (5.15)

The quadratic approximation Õ(x) has a unique minimum if and only if the Hes-

sian, ∇2
xO(xl), is positive definite. According to the first order necessary condition,

the gradient of the objective function, Õ(x), in Eq. 5.15 should vanish at the mini-

mum. This condition results in

∇xÕ(x) = ∇xO(xl) +∇2
xO(xl)δxl+1 = 0,

which can also be written as

∇2
xO(xl)δxl+1 = −∇xO(xl). (5.16)

In Eq. 5.16, the superscript l denotes the iteration index and δxl+1 is the search

direction for the (l+1)th iteration. As Eq. 5.16 indicates, in order to compute the

search direction δxl+1, we need to compute the gradient and the Hessian of the mod-

ified objective function which have already been discussed in Eq. 5.12 and Eq. 5.13,
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respectively. For a real reservoir problem, however, computation of the second deriva-

tive of g(x) is not feasible. In the current study, the terms involving the second

derivative of g(x) and the second derivative of the barrier function from the Hessian

(Eq. 5.13) are neglected. The resulting Gauss-Newton approximation of the Hessian

matrix can be written as

∇2
xO(xl) ≈ C−1

X + GT
l C−1

D Gl. (5.17)

Substituting Eq. 5.12 and Eq. 5.17 into Eq. 5.16, we obtain

(C−1
X + GT

l C−1
D Gl)δx

l+1 = −
[
C−1

X (xl − xpr) + GT
l C−1

D (g(xl)− dobs) + t∇xlfb(x
l)
]
.

(5.18)

In Eq. 5.18, xl is the estimate of the model variables from the lth iteration and

Gl is the sensitivity matrix from the lth iteration. Rearranging Eq. 5.18,

δxl+1 = −(C−1
X + GT

l C−1
D Gl)

−1

×
[
C−1

X (xl − xpr) + GT
l C−1

D (g(xl)− dobs) + t∇xlfb(x
l)
]
, (5.19)

which can be written in the following form

δxl+1 = xpr − xl −CXGT
l (CD + GlCXGT

l )−1[g(xl)− dobs −Gl(x
l − xpr)]

− t(C−1
X + GT

l C−1
D Gl)

−1∇xlfb(x
l). (5.20)

Substituting for the term (C−1
X + GT

l C−1
D Gl)

−1 in Eq. 5.20,

δxl+1 = xpr − xl −CXGT
l (CD + GlCXGT

l )−1
[
g(xl)− dobs −Gl(x

l − xpr)
]

− t
[
CX −CXGT

l (CD + GlCXGT
l )−1GlCX

]
∇xlfb(x

l). (5.21)

In ensemble-based methods, the prior covariance matrix CX is expressed as

CX =
1

(Ne − 1)
∆Xf (∆Xf )

T
, (5.22)
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where, Ne is the ensemble size and ∆Xf is a matrix whose columns are the vectors of

deviations of model variables from the ensemble mean. Substituting the expression

for CX from Eq. 5.22 into the last term on the right hand side of Eq. 5.21

δxl+1 = xpr − xl −CXGT
l (CD + GlCXGT

l )−1
[
g(xl)− dobs −Gl(x

l − xpr)
]

− t
[

1

(Ne − 1)
∆Xf (∆Xf )

T −CXGT
l (CD + GlCXGT

l )−1

×Gl
1

(Ne − 1)
∆Xf (∆Xf )

T
]
∇xlfb(x

l). (5.23)

Eq. 5.23 can be simplified further as

δxl+1 = xpr − xl −CXGT
l (CD + GlCXGT

l )−1
[
g(xl)− dobs −Gl(x

l − xpr)
]

− t

(Ne − 1)

[
∆Xf −CXGT

l (CD + GlCXGT
l )−1Gl∆Xf

]
(∆Xf )

T∇xlfb(x
l). (5.24)

Eq. 5.24 shows the expression for computing the search direction δxl+1 for the

(l+1)th iteration. At the lth iteration, let ∆Dl represents the deviation of each vector

of computed data from the mean vector of computed data and let ∆Xl denotes the

deviation of each vector of model variables from the current mean. As we know, the

ensemble-average sensitivity matrix Gl is the coefficient matrix relating the changes

in model variables to the changes in computed data,

∆Dl = Gl∆Xl. (5.25)

As in Gu and Oliver (2007), an approximation to the sensitivity matrix, Gl, can

be obtained from Eq. 5.25 using a pseudo-inverse based on the singular value decom-

position of ∆Xl. Knowing the new search direction, δxl+1, the iterative estimate of

the model variables xl+1 can be computed as

xl+1 = xl + βlδx
l+1. (5.26)

In Eq. 5.26, βl is an adjustment to the step length at the lth iterate, whose optimal

value can be determined using the standard methods (Dennis and Schnabel, 1983).
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For the current investigation, the optimal value of the step length is computed using

a line search method. Substituting the expression for δxl+1 (Eq. 5.24) into Eq. 5.26

and rearranging, we obtain

xl+1 = βlxpr + (1− βl)x
l

− βlCXGT
l (CD + GlCXGT

l )−1[g(xl)− dobs −Gl(x
l − xpr)]

− tβl

(Ne − 1)
[∆Xf −CXGT

l (CD + GlCXGT
l )−1Gl∆Xf ](∆Xf )

T∇xlfb(x
l). (5.27)

Eq. 5.27 shows the expression for the (l+1)th iterative estimate of the model vari-

ables using the interior-point formulation for the constrained EnKF. Gu and Oliver

(2007) proposed an iterative form of the ensemble Kalman filter (EnRML) for data

assimilation in nonlinear problems where the primary focus of the iterative approach

was to enforce constraints and to ensure that the resulting ensemble is representative

of the conditional probability density function. Gu and Oliver (2007) formulated the

problem in terms of the static model variables, m. During their study, the dynamic

state variables were obtained by running the reservoir simulator. The final form of

the iterative estimate of the static model variables obtained by Gu and Oliver (2007)

is given in Eq. 5.28.

ml+1 = βlmpr + (1− βl)m
l − βlCMGT

l (CD + GlCMGT
l )−1

× [g(ml)− dobs −Gl(m
l −mpr)]. (5.28)

It can be noticed that Eq. 5.27 has a similar form to the expression for the EnRML

method given in Eq. 5.28. Eq. 5.27, however, has an additional term which appears

as the contribution from the barrier function that enforces the inequality constraints

on the model variables.

As Eq. 5.24 indicates, finding the new search direction would require the compu-

tation of the approximation to the sensitivity matrix, Gl, during each iteration. This

would involve evaluation of the individual ensemble member with the updated model
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variables from the initial time using the forward model. For a real reservoir prob-

lem, however, running the reservoir simulator from the initial time is computationally

expensive. In order to reduce the computational cost and to make the method prac-

tically feasible, we propose to replace Gl in Eq. 5.24 with the forecast sensitivity. If

∆Dpr represents the deviation of each vector of forecast data from the mean vector

of forecast data and ∆Xf is a matrix whose columns are the vectors of deviations of

forecast model variables from the ensemble mean, then the forecast sensitivity Gpr

relates ∆Dpr and ∆Xf in the following manner

∆Dpr = Gpr∆Xf . (5.29)

As discussed earlier, an approximation to the forecast sensitivity matrix, Gpr,

can be obtained from Eq. 5.29 using a pseudo-inverse based on the singular value

decomposition of ∆Xf . Under this assumption, Eq. 5.27 becomes

xl+1 = βlxpr + (1− βl)x
l

− βlCXGT
pr(CD + GprCXGT

pr)
−1
[
g(xl)− dobs −Gpr(x

l − xpr)
]

− tβl

(Ne − 1)

[
∆Xf −CXGT

pr(CD + GprCXGT
pr)

−1Gpr∆Xf
]

(∆Xf )
T∇xlfb(x

l).

(5.30)

The simulated data during each iteration can be approximated using the forecast

sensitivity, Gpr, in the following manner

g(xl) ≈ g(xpr) + Gpr(x
l − xpr). (5.31)

Using the forecast sensitivity, Gpr, and the approximation stated in Eq. 5.31, the

expression for the search direction for the (l+1)th iteration can be updated as

δxl+1 = xpr − xl + CXGT
pr(CD + GprCXGT

pr)
−1[dobs − g(xpr)]

− t

(Ne − 1)

[
∆Xf −CXGT

pr(CD + GprCXGT
pr)

−1Gpr∆Xf
]

× (∆Xf )T∇xlfb(x
l). (5.32)
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Substituting Eq. 5.32 into Eq. 5.26, we obtain

xl+1 = βlxpr + (1− βl)x
l + βlCXGT

pr(CD + GprCXGT
pr)

−1[dobs − g(xpr)]

− tβl

(Ne − 1)

[
∆Xf −CXGT

pr(CD + GprCXGT
pr)

−1Gpr∆Xf
]

× (∆Xf )T∇xlfb(x
l). (5.33)

Eq. 5.33 shows the final form of the expression for computing the iterative estimate

of the model variables used in this study. As Eq. 5.33 indicates, the iterative estimate

of the model variables involves a term comprising of the Kalman gain that appears

during the standard implementation of the EnKF. The expression for the Kalman

gain is given in Eq. 5.34.

K = CXGT
pr(CD + GprCXGT

pr)
−1. (5.34)

As Eq. 5.33 indicates, one does not have to handle large matrices in order to com-

pute the iterative estimate of the model variables. The only significant computations

involved in solving Eq. 5.33 are the matrix-vector product type of computations, such

as Gpr∆Xf and (∆Xf )
T∇xlfb(x

l), which are computationally inexpensive.

5.3.1 Reduced form of objective function

In an ideal situation, we would like to minimize the objective function given in

Eq. 5.11. For most of the reservoir engineering related applications, however, the

state vector often contains a large number of model parameters and state variables.

Under such condition, computations of the covariance matrix, CX , and its inverse,

C−1
X , are not feasible. Hence, for practical purposes, a reduced form of the objective

function is evaluated for each ensemble member during each iteration of the IPCEnKF

method to check for convergence. The reduced form of the objective function for the

ith ensemble member involves the data mismatch term and the barrier function as

shown below

O(xl+1
i ) =

1

2
(g(xl+1

i )− dobs,i)
T C−1

D (g(xl+1
i )− dobs,i) + tfb(x

l+1
i ). (5.35)
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In Eq. 5.35, g(xl+1
i ) denotes the simulated data at the (l+1)th iteration for the

ith ensemble member which can be approximated as

g(xl+1
i ) ≈ dpr,i + Gpr(x

l+1
i − xpr,i), (5.36)

where, dpr,i represents the simulated data obtained from the prior state vector for the

ith ensemble member. For each value of the barrier parameter t, it is important to

attain the convergence for the entire ensemble before updating the barrier parameter.

A reduced form of the objective function, similar to Eq. 5.35, is evaluated for the entire

ensemble during each iteration in order to determine if the solution has converged for

the given value of the barrier parameter. The reduced form of the objective function

for the entire ensemble can be represented as

Oens(X
l+1) =

1

Ne

Ne∑
i=1

[
1

2
(g(xl+1

i )− dobs,i)
T C−1

D (g(xl+1
i )− dobs,i) + tfb(x

l+1
i )

]
.

(5.37)

5.3.2 Updating barrier parameter

In the current study, the algorithm for the IPCEnKF method is initialized with a

positive value of the barrier parameter, t. It is, however, necessary to decrease the

barrier parameter and to seek the minimizer at the updated value of the barrier pa-

rameter. During each iteration of the IPCEnKF method, Eq. 5.37 is used to evaluate

the objective function for the entire ensemble. Following criterion is used to determine

if a minimizer is attained for the given value of the barrier parameter,∣∣∣∣Oens(X
l)−Oens(X

l+1)

Oens(Xl)

∣∣∣∣ < ε1 with ε1 = 0.05. (5.38)

When the objective function evaluated at the current iteration satisfies the con-

dition given in Eq. 5.38, the barrier parameter for the next iteration is updated as

tl+1 =
tl

α
with α = 1.25. (5.39)
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5.3.3 Algorithm description for the IPCEnKF

Following is a brief generalized algorithm for implementing the IPCEnKF method.

This algorithm describes various steps which need to be carried out in order to obtain

a solution for each ensemble member that satisfies the inequality constraints on any

type of state variable.

• At each assimilation time, initialize the barrier parameter, t, with a positive

value. For each ensemble member i, (i = 1, . . . , Ne), use the reservoir simu-

lator to compute the forecast values of state variables at assimilation time tk,

(k = 1, . . . , kmax), based on the updated values of model parameters and state

variables at time tk−1.

1. Obtain the vectors of deviations of simulated data, ∆Dpr, and the vectors

of deviations of the model and state variables, ∆Xf , from their respective

ensemble means.

2. Compute the ensemble approximation to the forecast sensitivity, Gpr, using

Eq. 5.29.

3. For ensemble member i, compute the search direction δxl+1 using Eq. 5.32.

4. For ensemble member i, compute the optimal value of the step size βl

using the search direction computed in step 3 and a line search method.

The objective function for ensemble member i is evaluated using Eq. 5.35

during the line search approach.

5. Compute the ensemble-based objective function using Eq. 5.37.

6. Evaluate the criterion (Eq. 5.38) for updating the barrier parameter. If

the ensemble-based objective function at the current iteration satisfies

Eq. 5.38, update the barrier parameter using Eq. 5.39.
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7. If the convergence criteria are satisfied, exit and go to the next assimilation

time; otherwise go to step 3 and iterate.

The following criteria are used to determine if the algorithm should terminate:

• |Oens(X
l+1)−Oens(X

l)| < ε2 Oens(X
l) with ε2 = 0.0001

• Oens(X
l+1) < ND where ND is the number of observations at the current data

assimilation time step.

• Iteration exceeds the pre-set maximum number of iterations.

The computational cost during each iteration of the IPCEnKF method is signifi-

cantly less than the cost of running the reservoir simulator. Therefore, we set a fairly

large limit (30) on the maximum number of iterations during the implementation of

the IPCEnKF method.

We consider two synthetic examples to demonstrate the performance of the IP-

CEnKF. The results obtained from the IPCEnKF are compared with the results

obtained from the standard EnKF. The newly proposed IPCEnKF method is tested

first on a synthetic 1D linear example to demonstrate its effectiveness when the non-

linearity is not an issue. The synthetic 1D linear example has been discussed earlier

and the model description has been given in Section 4.4.1. The second test problem

is a more realistic 3D, three-phase reservoir flow assimilation problem based on the

modified SPE9 model.

5.4 1D linear example

In this section, we describe in detail the application of the IPCEnKF method to a

synthetic 1D linear example studied in Chapter 4. The reference model description

and the initial ensemble of model variables have been discussed in Section 4.4.2. The

parameters used for data assimilation with the standard EnKF are mentioned in

Section 4.4.3.
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5.4.1 Results and discussion

As discussed in Section 4.4.4, the data mismatch objective function (Eq. 4.7) evaluated

for the updated ensemble obtained from the standard EnKF has a value of 0.053.

The updated model variables for some ensemble members, however, show constraint

violations at a number of locations (Fig. 4.4(a)). The model variable xj is subject to

the inequality constraints defined by the boundaries of the feasible region which can

be written as

1 ≥ xj ≥ 0.

Since the model variable is subject to two inequality constraints, following form of

the barrier function is chosen for the implementation of the IPCEnKF method. The

barrier function can be expressed as

fb(x) = −
Nx∑
j=1

log(xj(1− xj)). (5.40)

The barrier parameter, t, associated with the barrier function is initialized with a

value of 1 at the beginning of the IPCEnKF algorithm. The adjustment to the step

length, βl, for different ensemble members is obtained using a line search method.

The values of βl for realizations 1 and 15 obtained during different iterations of the

IPCEnKF method are given in Table 5.1. The results for the updated ensemble of

model variables at different iterations of the IPCEnKF method are shown in Fig. 5.1.

The initial ensemble of model variables is shown by the gray curves, the updated

realizations obtained during each iteration, where the barrier parameter (t) is up-

dated, are shown by the black curves, the red curve is the reference model, and the

true observations from the reference model are denoted by red dots. As Fig. 5.1(a)

shows, the model variables for some of the updated realizations have values close

to the boundaries of the feasible region. None of the updated realizations, however,

contains model variables which violate the inequality constraints.
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Table 5.1: The values of βl for realizations 1 and 15 obtained during different itera-
tions of the IPCEnKF method

Iteration index (l) Realization 1 Realization 15

1 0.2326 0.1567
10 0.1176 0.3287
20 0.0265 0.0871
30 0.0000 0.00005

Fig. 5.1 also shows the results for the data-match obtained from the updated en-

semble of realizations at different iterations of the IPCEnKF method. The gray and

the black boxes denote the statistical distributions of the simulated data from the

initial ensemble and the simulated data from the updated ensemble obtained from

the IPCEnKF method, respectively, and the red dots represent the true observations

(without noise) from the reference model. As Fig. 5.1(b) shows, the data-match

between the simulated data and the true observations during the first iteration of

the IPCEnKF method is poor. The data-match, however, improves with each itera-

tion. The simulated data obtained from the final updated ensemble of realizations at

iteration 30 show a good match to the true observations as shown in Fig. 5.1(f).

As discussed in Chapter 4, the CEnKF method is implemented for enforcing the

inequality constraints (in the form of the equality constraints) on model variable es-

timates. The results obtained from the application of the CEnKF to the synthetic

1D linear example are discussed in Section 4.4.5. The unconstrained solutions (stan-

dard EnKF) and the constrained solutions (IPCEnKF and CEnKF) obtained for

realizations 1 and 15 are compared in Fig. 5.2. From the results, it is clear that,

the proposed IPCEnKF method has been successful in enforcing the inequality con-

straints on the model variables and thereby, has improved the estimates compared to

the standard EnKF which suffers from the issue of constraint violations. As Fig. 5.2

shows, the final updated estimates of model variables obtained from the IPCEnKF

and the CEnKF methods are nearly indistinguishable for realizations 1 and 15. The
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(a) Iteration 1: estimate of model variables
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(b) Iteration 1: data-match

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Grid index

M
od

el
va

ri
ab

le

(c) Iteration 10: estimate of model variables
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(d) Iteration 10: data-match
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(e) Iteration 30: estimate of model variables
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(f) Iteration 30: data-match

Figure 5.1: The updated ensemble of model variables (black curves) and the data-
match (black boxes) obtained at different iterations of the IPCEnKF method. The
red curve is the reference model and the red dots are the true observations.
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CEnKF method, however, requires identification of the active constraints and com-

putation of a separate Kalman gain for each ensemble member during each iteration

of the algorithm which makes the method computationally expensive compared to

the IPCEnKF method.
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(a) Realization 1
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(b) Realization 15

Figure 5.2: Comparison of the unconstrained solutions (standard EnKF) and the
constrained solutions (IPCEnKF, iteration 30 and CEnKF, iteration 10) for realiza-
tions 1 and 15. The blue curves denote the unconstrained solutions, the black curves
denote the constrained solutions from the IPCEnKF, and the green curves denote the
constrained solutions from the CEnKF. The red dots are the true observations from
the reference model.

The IPCEnKF method can be understood by analyzing the effect of incorporating

the inequality constraints during the data assimilation process. As shown in Eq. 5.33,

the iterative estimate of model variables, xl+1, is made up of a number of terms. The

expression for calculating the iterative estimate of model variables is given as

xl+1 = βlxpr + (1− βl)x
l + βlCXGT

pr(CD + GprCXGT
pr)

−1[dobs − g(xpr)]

− tβl

(Ne − 1)

[
∆Xf −CXGT

pr(CD + GprCXGT
pr)

−1Gpr∆Xf
]

× (∆Xf )T∇xlfb(x
l).

As the above expression shows, the iterative estimate of model variables consists of

four elements: (1) prior knowledge of model variables, xpr, (2) the iterative estimate

obtained at the previous iteration, xl, (3) contribution from the standard update

(involves data mismatch), and (4) contribution from the barrier function. The terms
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representing the contributions from the standard update and the barrier function can

be expressed as

standard contribution = βlCXGT
pr(CD + GprCXGT

pr)
−1[dobs − g(xpr)], (5.41)

and

barrier contribution = − tβl

(Ne − 1)

[
∆Xf −CXGT

pr(CD + GprCXGT
pr)

−1Gpr∆Xf
]

× (∆Xf )T∇xlfb(x
l). (5.42)

The term representing the barrier function contribution (Eq. 5.42) involves the

gradient of the barrier function, ∇xlfb(x
l). Recall that the logarithmic barrier func-

tion (Eq. 5.40) is used in the current study. As a result of this choice of the barrier

function, the term representing the contribution from the barrier function shows ei-

ther a high positive value or a high negative value at a location where the model

variable approaches the boundary of the feasible region. The results from this anal-

ysis are given in Fig. 5.3 which shows the updated solutions for realizations 3 and

10 at different iterations of the IPCEnKF method. The terms representing the con-

tributions from the standard update (Eq. 5.41) and the barrier function (Eq. 5.42)

at different iterations are shown by the green and the blue curves, respectively. The

red curve represents the reference model, the red dots denote the true observations

from the reference model, and the black curve shows the estimate of model variables

at the current iteration. In Figs. 5.3(a) through 5.3(d), the gray curves denote the

prior estimates of realizations 3 and 10. The updated estimates of model variables

from the previous iteration for realizations 3 and 10 are also shown by gray curves in

Figs. 5.3(e) and 5.3(f).

As Fig. 5.3(b) shows, realization 10 contains some model variables which have

values close to the boundaries of the feasible region. The model variable at gridblock

47 has the lowest value of 0.0487 which is close to the boundary of the feasible region
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(a) Realization 3: prior
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(b) Realization 10: prior
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(c) Realization 3: iteration 1
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(d) Realization 10: iteration 1
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(e) Realization 3: iteration 20

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Grid index

(f) Realization 10: iteration 20

Figure 5.3: The updated solutions (black curve) for realizations 3 and 10 at different
iterations of the IPCEnKF method. The green curves show the contribution from the
standard update and the blue curves denote the contribution from the barrier function
at different iterations. The prior realizations at different iterations are shown by the
gray curves, the reference model is represented by the red curve, and the red dots
denote the true observations from the reference model.
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on the lower side (0). Realization 10 contains a number of model variables which

have values close to the boundary of the feasible region on the higher side (1). The

model variables at grid locations 5, 13, and 100 have values of 0.9377, 0.9494, and

0.9500, respectively. The negative of the gradient of the barrier function, −∇xlfb(x
l),

for realization 10 at iteration 1 is plotted in Fig. 5.4(b). Due to the presence of model

variables with values close to the boundaries of the feasible region, the negative of the

gradient of the barrier function at iteration 1 shows peaks (high positive and negative

values) at a number of locations. The negative of the gradient has the largest positive

value for the model variable at gridblock 47 and has the largest negative value for

the model variable at the gridblock 100. The term representing the contribution

from the barrier function (Eq. 5.42) involves the gradient of the barrier function.

As a result, the blue curve in Fig. 5.3(d) has similar features. As Eq. 5.42 shows,

however, the gradient of the barrier function is pre-multiplied by a number of terms.

As a result, the behavior of the term representing the contribution from the barrier

function slightly differs from the behavior of the gradient of the barrier function.

During iteration 1, the contribution from the barrier function appears to dominate the

overall contribution to the solution and the contribution from the standard update

(green curve in Fig. 5.3(d)) appears to be negligible for realization 10. The large

contribution from the barrier function ensures that the resulting updated solution

stays within the interior of the feasible region.

Fig. 5.3(a) shows the prior for realization 3. Note that none of the model variables

for realization 3 has extreme values that are close to the boundaries of the feasible

region. As a result, the contributions from the standard update (green curve) and

the barrier function (blue curve), shown in Fig. 5.3(c), have comparable magnitudes

during iteration 1. Once the solution lies in the feasible region, the contributions from

the standard update and the barrier function show comparable magnitudes during all

subsequent iterations. Such type of behavior can be seen from the results presented
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Figure 5.4: The prior (gray curve) and the negative of the gradient of the barrier
function at iteration 1 (l=1) of the IPCEnKF for realization 10. The red curve
represents the reference model.

in Figs. 5.3(e) and 5.3(f).

The data mismatch objective function (Eq. 4.7) is evaluated for the simulated data

obtained from the updated ensemble of realizations at the end of each iteration of the

IPCEnKF method. The results of the data mismatch objective function are plotted on

a semi-log scale and are shown in Fig. 5.5(a). The results show a continuous decrease

in the objective function with increase in the number of iterations. The data mismatch

objective function evaluated for the initial ensemble (iteration 0) results in a value

of 38675. The continuous decrease in the data mismatch objective function indicates

that the match between the simulated data and the true observations improves during

each iteration. The objective function for the updated ensemble of realizations at

iteration 30 has a value of 17.31.
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Figure 5.5: The data mismatch objective function and the barrier parameter at
different iterations of the IPCEnKF method.
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One of the critical elements for the success of the interior-point formulation is

updating the barrier parameter during the iterative process and seeking the minimizer

of the objective function at every value of the barrier parameter. In an ideal situation,

we would like to have the value of the barrier parameter as close as possible to 0. In

the current study, the barrier parameter is updated based upon the decrease in the

ensemble-based objective function. The strategy for updating the barrier parameter

has been discussed in the Section 5.3.2. The evolution of the barrier parameter during

different iterations of the IPCEnKF method is shown in Fig. 5.5(b). The value of the

barrier parameter at the end of the iterative process (iteration 30) is 4.61× 10−6.

At the end of the data assimilation process using the IPCEnKF method (iteration

30), the model variable 27 of realization 8 has the minimum value of 1.89 × 10−6

among all the model variables. Similarly, model variable 39 of realization 30 shows the

maximum value of 0.99999 among all the model variables. Fig. 5.6 shows the iterative

decrease and increase in the magnitudes of the model variables 27 (realization 8) and

39 (realization 30), respectively. In this particular test problem, we observed fairly

rapid decrease or increase in the magnitudes of the model variable estimates during

the first 5 to 10 iterations. This rapid decrease or increase, however, is followed by

an intermittent oscillatory behavior for the next few iterations before the estimate is

converged to its final solution.
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Figure 5.6: The minimum and the maximum value of model variables at different
iterations of the IPCEnKF method.
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5.5 Modified SPE9 model

In the previous section, the application of the IPCEnKF to a synthetic 1D linear

exmple was illustrated. For reservoir fluid flow problems, the implementation of

the IPCEnKF becomes somewhat more challenging. In this section, we describe the

implementation of the standard EnKF and the IPCEnKF methods on a synthetic 3D,

three-phase reservoir model and compare the results obtained. A detailed discussion

of the reservoir model description is given below.

5.5.1 Reservoir model description

We consider a 3D, three-phase synthetic reservoir model in this section. There is no

initial gas cap and the connate water saturation is 0.15. The reservoir model is divided

into a non-uniform grid-system of dimensions 24× 25× 15. The areal dimensions of

each gridblock are 300 ft × 300 ft and the layer thickness varies in different layers

between the range of 8 ft to 100 ft. The size of the reservoir model is 7200 ft × 7500

ft × 359 ft. We assume that all sides of the reservoir model are no-flow boundaries,

and the phases present in the reservoir are oil, water, and gas. The capillary effects

are neglected during the fluid flow and transport process. Fig. 5.7 shows the structure

of the SPE9 model which has a dip in the x-direction. The depths to the top of the

first layer on the west side and the east side are defined to be 9000 ft and 10216

ft, respectively. There is an aquifer on the east side of the model and the water-oil

contact (WOC) is defined at a depth of 9950 ft. The initial reservoir pressure at a

reference depth of 9035 ft is assigned a value of 3600 psia, which is also the bubble

point pressure.

There are six producers and three injectors in the reservoir simulation model. All

six producers are completed between the second and the fourth layers. The injectors

are completed in different layers; injector INJ1 is completed between layers twelve and

fifteen, injector INJ2 is completed between layers eight and ten, and injector INJ3
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Figure 5.7: Structure map of the SPE9 reservoir model.

is completed between layers ten and twelve. The production from all six producers

starts from day 0. We also assume that the water injection is started from day 0 in

all three injectors and is continued throughout the life of the water-flooding project

(day 2000). All six producers are operated with a target oil production rate of 15000

STB/day and a minimum BHP of 800 psia as a secondary constraint. All three

injectors are operated with a target water injection rate of 10000 STB/day and a

maximum BHP of 6000 psia as a secondary constraint.

The porosity and permeability in each gridblock are assumed to be the uncer-

tain model parameters. The log-permeability, instead of permeability, is used in the

state vector during data assimilation. The porosity field has a mean of 0.18 and a

standard deviation of 0.03. The log-permeability field is generated with a mean and

a standard deviation of 4.5 and 1.2, respectively. The log-permeability is correlated

to porosity with a correlation coefficient of 0.60. An isotropic Gaussian variogram

model with a practical range of 10 is used to generate the static model parameter

fields. Fig. 5.8 shows the porosity and log-permeability for different layers together

with well-locations for the reference case. The reference reservoir model is produced

for a total of 2000 days. Figs. 5.9 and 5.10 show the profiles of the production data
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from the reference model which include the oil production rate, water cut, producing

gas-oil ratio, and bottom hole pressure data for the six producers, and the water

injection rate and bottom hole pressure data for the three injectors.
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Figure 5.8: The porosity and log-permeability for different layers of the SPE9 model
(reference).

5.5.2 Data assimilation setup

For this history matching problem, we consider two cases for evaluating the perfor-

mance of the standard EnKF and the IPCEnKF methods. The porosity and log-

permeability fields for the initial ensemble are generated using the same geostatistical

model parameters as the reference model. The initial ensemble is not conditioned

to values of porosity and log-permeability at well locations from the reference model

and the ensemble size is 90 for both cases.

5.5.2.1 Case 1: the initial ensemble is unbiased

The initial ensemble of porosity and log-permeability fields is generated using sequen-

tial Gaussian simulation. For Case 1, we assume that the mean values of the porosity
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Figure 5.9: The profiles of the oil production rate (OPR), water cut (WCT), pro-
ducing gas-oil ratio (GOR), and bottom hole pressure (BHP) for the six producers
from the SPE9 model (reference).
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Figure 5.10: The profiles of the water injection rate (WIR) and bottom hole pressure
(BHP) for the three injectors from the SPE9 model (reference).
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and log-permeability fields are known correctly. Fig. 5.11 shows the production data

obtained from the initial ensemble together with the production data from the ref-

erence model. The gray curves indicate the ensemble forecasts and the black curve

shows the production data for the reference model. The different types of production

data shown in Fig. 5.11 include oil production rate (OPR) and water cut (WCT) for

six producers, and bottom hole pressure (BHP) for three injectors. Since the initial

ensemble is not conditioned to the static data at well-locations, a large variability can

be observed among ensemble members for different types of production data. The oil

production rate for different producers from the reference model is contained within

the spread of the initial ensemble (Figs. 5.11(a) through 5.11(f)). Each producer is

completed between three layers (2 through 4) and the water breakthrough in different

layers can be observed as a slight change in water cut profiles for different producers.

The static model parameters, such as porosity and log-permeability, and the dy-

namic state variables, such as pressure, water saturation, and gas saturation are

included into the state vector. We assume the period of the first 1500 days as the

production history and the period from day 1501 to day 2000 is treated as the predic-

tion period. The types of observations available for data assimilation are oil produc-

tion rate, water cut, producing gas-oil ratio, water injection rate, and bottom hole

pressure (for producers and injectors) at days 300, 600, 900, 1250, and 1500. Thus,

there are a total of 5 data assimilation steps and 30 observations are assimilated at

each assimilation time. The measurement noise associated with the production data

is 2% of the true measurement value. The same set of noisy observations are used in

evaluating the performance of the standard EnKF and the IPCEnKF methods.

5.5.2.2 Case 2: the initial ensemble is biased

Similar to Case 1, the initial ensemble of porosity and log-permeability fields is gen-

erated using sequential Gaussian simulation. For Case 2, however, we assume that
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Figure 5.11: The production forecasts from the initial ensemble (gray curves) and
the reference production data (black curve). The initial ensemble is not biased (Case
1).
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the mean values of the porosity and log-permeability fields are known incorrectly.

The initial ensemble of porosity fields is generated with mean equal to 0.28, which is

higher than that of the reference field (0.18), and standard deviation equal to 0.03.

The initial ensemble of log-permeability fields is generated with mean equal to 3.5,

which is lower than that of the reference field (4.5), and standard deviation equal to

1.2. Fig. 5.12 shows the production data obtained from the initial ensemble together

with the reference production data. The gray curves indicate the ensemble forecasts

and the black curve shows the production data for the reference model. Since the

initial ensemble is generated using a higher and a lower value for the mean porosity

and log-permeability field, respectively, the initial ensemble shows a delay in the wa-

ter breakthrough compared to the reference model. As Fig. 5.12 indicates, the water

cut at producers PROD1, PROD3, PROD4, and PROD5 from the reference model

are higher than those for the initial ensemble in the entire production period.

For Case 2, the elements of the state vector, the total production period, the

production history as well as the prediction periods, and the types of observations

available for data assimilation are similar to those used in Case 1. The standard

EnKF is known to show a poor performance for data assimilation in a situation when

the reference model has water breakthrough, but none of the realizations from the

initial ensemble show water cut or a few realizations have water breakthrough which

is significantly lower than the actual observations. Case 2 is designed to study the

performance of the standard EnKF and the IPCEnKF under a similar situation. The

first data assimilation is carried out at day 500. As Fig. 5.12 shows, at the first

assimilation time (day 500), a large number of realizations from the initial ensemble

either show no water breakthrough or have small water cut values compared to the

reference model at producers PROD1 and PROD3. Subsequently, the observations

are assimilated at days 740, 900, 1250, and 1500. Thus, there are a total of 5 data

assimilation steps and 30 observations are assimilated at each assimilation step. The
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measurement noise associated with the production data is 2% of the true measurement

value. Similar to Case 1, the same set of noisy observations are used in implementing

the standard EnKF and the IPCEnKF.

5.5.3 Results and discussion

5.5.3.1 Estimation of saturation fields

Figs. 5.13 and 5.14 show the water saturation profiles before and after data assimi-

lation at the first data assimilation time (day 300) for Case 1 along different cross-

sections from different layers of the simulation model. The cross-sections are perpen-

dicular to the direction of water movement in the reservoir and are parallel to the

y-axis. Each cross-section is identified by its parent-layer and the x-index (e.g. Layer

12, x=15). The thin gray curves show the water saturation profiles for the ensem-

ble members, the thick black curve is the reference, and the thick green curve is

the ensemble mean. The connate water saturation for this reservoir model is 0.15

which is denoted by a thin horizontal black line. The realizations from the initial

ensemble show a large variability in the forecast water saturation profiles. The en-

semble mean (thick green curve) water saturation computed from the initial ensemble

is significantly different from the reference model (thick black curve).

The saturation profiles are adjusted in the standard EnKF by assimilating the

production data at each data assimilation time. The updated water saturation profiles

from the standard EnKF show constraint violations and the posterior water saturation

is less than the connate water saturation (0.15) in some region of the reservoir model.

In the standard implementation of the EnKF, the updated saturations are truncated

to their values at the boundary of the feasible region (e.g. 0.15 and 0.88 for water

saturation) if they violate the inequality constraints on them and lie outside the

feasible region. In the IPCEnKF method, the saturation profiles are adjusted by

additionally considering the proximity of the prior saturation from the boundary

of the feasible region. As Fig. 5.14 shows, the variability of the ensemble is reduced
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Figure 5.12: The production forecasts from the initial ensemble (gray curves) and
the reference production data (black curve). The initial ensemble is biased (Case 2).
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after assimilating data using the IPCEnKF method. The posterior saturation profiles,

however, do not resemble the reference in some part of the reservoir model. As we can

see in Fig. 5.14(d), there are saturations out of the physical bound (less than 0.15)

after the updating of the IPCEnKF. This is due to the fact that the computation of

the iterative solution using the IPCEnKF involves the gradient of the barrier function

with respect to the water saturation at each gridblock. In case of a reservoir model

subject to water flooding, it is reasonable to have a large number of gridblocks with

water saturation equal to the connate water saturation. The gradient of the barrier

function evaluated at a gridblock with connate water saturation will have a large

magnitude which can subsequently result in significantly small step-size for updating

the state vector. Therefore, a different threshold, which is lower than the connate

water saturation, is used for constraining the water saturations during the updating

of the IPCEnKF. In the present study, we use a constraint of 0.10 on the water

saturation.

For Case 1, we do not see a significant difference between the posterior water

saturation profiles obtained from the standard EnKF and the IPCEnKF (Figs. 5.13

and 5.14) at the first assimilation time, although the ensemble updated using the

standard EnKF shows a larger variability compared to the IPCEnKF. The updated

water saturation profiles from the standard EnKF suggest that, using a truncation

approach to truncate the non-physical water saturations can be a reasonable solution

for handling the constraint violations in Case 1. The ensemble mean computed after

truncating the non-physical water saturations would not be significantly different

from the reference in the region of constraint violations. It appears that, using the

truncation approach with the standard EnKF would not cause significant harm during

the subsequent forecast step.

Fig. 5.15 shows the water saturation fields before and after data assimilation for

different model-layers of realization 15 for Case 1 at the first data assimilation time
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(day 300) obtained from the standard EnKF and the IPCEnKF. The correspond-

ing saturation fields from the reference model are also shown (Figs. 5.15(j) through

5.15(l)). As mentioned earlier, the water saturations were constrained to a value

of 0.10 during the implementation of the IPCEnKF. In Fig. 5.15, the region of the

reservoir model where the updated water saturations are observed to take values less

than this threshold are shown by white color. As Figs. 5.15(d) through 5.15(f) show,

the updated water saturations from the standard EnKF show constraint violations in

some region of the reservoir model. The minimum values of the posterior water satu-

rations from the standard EnKF for layers 2, 3, and 10 are 0.0005, 0.0791, and 0.0241,

respectively. The posterior water saturation fields obtained from the IPCEnKF are

similar to those obtained from the standard EnKF. The IPCEnKF, however, is able

to improve the estimates of the water saturation in the entire reservoir model.

Fig. 5.16 shows the prior and the posterior water saturation profiles at the first

data assimilation time (day 500) for Case 2 along different cross-sections from different

simulation model-layers obtained from the standard EnKF. The initial ensemble of

porosity and log-permeability fields was generated using different statistical parameter

(mean) compared to the reference model. As a result, the prior water saturation pro-

files along different cross-sections from the initial ensemble do not show resemblance

to the saturation profiles from the reference model. For Case 2, a large fraction of

the realizations from the initial ensemble either predict no water production or has

very small water production while the observed data already show significant water

breakthrough at the producers. Therefore, the standard implementation of the EnKF

makes large changes to the saturation fields during the analysis step at the first data

assimilation time. The posterior water saturations from the standard EnKF show

strong constraint violations on both sides of the feasible region in some part of the

reservoir model. As Figs. 5.16(d), 5.16(e), and 5.16(f) show, the water saturations

in some region of the model take non-physical values after data assimilation and are
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Figure 5.13: The water saturation profiles, before and after data assimilation, along
different cross-sections at the first data assimilation time (day 300) for Case 1 from the
standard EnKF. The cross-sections are considered in the y-direction and are denoted
by the x-indices.
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Figure 5.14: The water saturation profiles, before and after data assimilation, along
different cross-sections at the first data assimilation time (day 300) for Case 1 from
the IPCEnKF. The cross-sections are considered in the y-direction and are denoted
by the x-indices.
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Figure 5.15: The prior and posterior water saturation fields for different model-layers
of realization 15 at the first data assimilation time (day 300) from the standard EnKF
and the IPCEnKF (Case 1) together with the corresponding reference saturation
fields.
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greater than 0.88. Similarly, as Figs. 5.16(d) and 5.16(j) indicate, the posterior water

saturations from the standard EnKF in some region show strong constraint violations

and are significantly lower than the connate water saturation (0.15). Similar to Case

1, the truncation approach is used with the standard EnKF for handling constraint

violations. The posterior water saturations that are out of physical bounds (greater

than 0.88 or less than 0.15) are truncated to their values at the boundary of the fea-

sible region. Although the truncation avoids the non-physical saturations obtained

from the analysis step of the standard EnKF, it affects the behavior of the ensemble

members in that region of the reservoir model during the subsequent forecast step. In

the region of truncated saturations, the ensemble members show significantly different

flow characteristics compared to the reference model. For example, as Fig. 5.16(f)

shows, the posterior water saturations are out of physical bound (greater than 0.88)

in some part of the model. All such water saturations are truncated to a value of 0.88.

As it can be noticed, the reference model shows water saturation of approximately

0.60 for gridblocks in this region while a large fraction of the realizations will have

water saturation of 0.88 after truncation which will affect the performance of those

realizations during the subsequent forecast step.

Fig. 5.17 shows the prior and the posterior water saturation profiles at the first

data assimilation time (day 500) for Case 2 along different cross-sections from differ-

ent simulation model-layers obtained from the IPCEnKF. From the results presented

here, it is clear that, the posterior saturation profiles obtained from the IPCEnKF

are better than those obtained from the standard EnKF. The posterior ensemble of

saturations from the IPCEnKF has enough variability and the reference saturation

profile is contained within the ensemble-spread. The mean of the posterior ensemble

of saturations shows similar behavior as the reference model in most part of the reser-

voir model. As Figs. 5.17(d), 5.17(e), and 5.17(f) show, the updated water saturations

from the IPCEnKF, unlike the standard EnKF, honor the inequality constraint and
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are less than 0.88 in all parts of the reservoir model. The posterior saturation pro-

files obtained from the IPCEnKF (e.g. Figs. 5.17(e) and 5.17(i)) represent a better

approximation to the reference model compared to those obtained from the standard

EnKF (e.g. Figs. 5.16(e) and 5.16(i)).

The saturations out of the physical bounds are truncated for both the standard

EnKF and the IPCEnKF before advancing the simulator to the next data assim-

ilation time. Fig. 5.18 shows the prior and the posterior water saturation profiles

along different cross-sections at the second assimilation time (day 740) for Case 2

from the two methods. At day 740, the water saturations predicted by the IPCEnKF

(e.g. Figs. 5.18(g) and 5.18(h)) are closer to the reference than the saturations pre-

dicted by the standard EnKF (e.g. Figs. 5.18(a) and 5.18(b)). A large fraction of the

gridblocks shown in Fig. 5.18 are in the water flood-front area at day 740. The satura-

tions updated by the standard EnKF are unreasonable (e.g. Figs. 5.18(e) and 5.18(f)),

while the saturations updated by the IPCEnKF are plausible (e.g. Figs. 5.18(k) and

5.18(l)) and generally closer to the reference. After truncating the non-physical sat-

urations at the second assimilation time, the simulator is advanced to the next data

assimilation time. At each subsequent assimilation time, the standard EnKF suffers

from the poor saturations inherited from the previous assimilation time.

Fig. 5.19 shows the water saturation fields before and after data assimilation for

different model-layers of realization 6 at day 500 from the standard EnKF and the IP-

CEnKF for Case 2. The corresponding saturation fields from the reference model are

shown in Figs. 5.19(j) through 5.19(l). Because the initial ensemble of porosity and

log-permeability was generated using different statistical parameter (mean) compared

to the reference model, the prior saturation fields for different model-layers of real-

ization 6 are significantly different from the corresponding reference saturation fields.

The saturation fields for the reference model indicate that, at day 500, a larger area

has been swept by water compared to realization 6. The saturation fields updated
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by the standard EnKF show strong constraint violations and have values less than

the connate water saturation (shown by white region) in some part of the reservoir

model. The minimum posterior water saturations obtained from the standard EnKF

for layers 2, 10, and 12 are -0.0682, -0.1142, and -0.4870, respectively. As we can see

in Fig. 5.19(d), there is a region in layer 2, away from the aquifer and close to PROD1,

where the updated water saturations are close to 1. The water saturations updated

from the IPCEnKF are reasonable and closer to the reference saturation fields.

Fig. 5.20 shows the water saturation fields before and after data assimilation for

different model-layers of realization 51 at day 740 from the standard EnKF and the

IPCEnKF for Case 2 together with the corresponding reference saturation fields. Be-

cause the posterior saturations out of the physical bounds at day 500 are truncated

in the standard EnKF, the prior saturation fields obtained at day 740 from the two

methods are different. For the standard EnKF, the prior saturation fields for real-

ization 51 (Figs. 5.20(a) through 5.20(c)) are different from the reference saturation

fields (Figs. 5.20(m) through 5.20(o)). The updated saturations from the standard

EnKF are unreasonable. The saturations updated from the IPCEnKF are plausible

and closer to the reference saturation fields.

5.5.3.2 Predictability of the updated ensemble

For Cases 1 and 2, the ensemble of 90 realizations was continually adjusted by as-

similating 30 production data at each assimilation time step. There were 5 data

assimilation steps and thus, a total of 150 observations were assimilated during the

entire history matching process. Once the data assimilation was complete over all

the data assimilation time steps, the reservoir models were initialized with the final

updated porosity and permeability fields together with the initial reservoir equilib-

rium conditions. The reservoir models were then evaluated from the initial time (day

0) up to the end of the production period (day 2000) using a commercial reservoir
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Figure 5.16: The water saturation profiles, before and after data assimilation, along
different cross-sections at the first data assimilation time (day 500) for Case 2 from the
standard EnKF. The cross-sections are considered in the y-direction and are denoted
by the x-indices.
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Figure 5.17: The water saturation profiles, before and after data assimilation, along
different cross-sections at the first data assimilation time (day 500) for Case 2 from
the IPCEnKF. The cross-sections are considered in the y-direction and are denoted
by the x-indices.
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Figure 5.18: The water saturation profiles, before and after data assimilation, along
different cross-sections at the second data assimilation time (day 740) for Case 2
from the standard EnKF and the IPCEnKF. The cross-sections are considered in the
y-direction and are denoted by the x-indices.
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Figure 5.19: The prior and posterior water saturation fields for different model-layers
of realization 6 at the first data assimilation time (day 500) from the standard EnKF
and the IPCEnKF (Case 2) together with the corresponding reference saturation
fields.
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Figure 5.20: The prior and posterior water saturation fields for different model-layers
of realization 51 at the second data assimilation time (day 740) from the standard
EnKF and the IPCEnKF (Case 2) together with the corresponding reference satura-
tion fields.
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simulator.

Figs. 5.21 and 5.22 show the results of the production data for Case 1 obtained by

rerunning the final updated ensembles from the standard EnKF and the IPCEnKF

methods, respectively. The results include the oil production rate (OPR) and water

cut (WCT) for different producers and bottom hole pressure (BHP) for three injec-

tors. The gray and the black curves denote the response from the initial and the

updated ensemble, respectively, the red dots are the true observations from the refer-

ence model, the red curve is the reference production data in the prediction period,

and the vertical blue line indicates the end of the history matching period (day 1500).

The updated ensemble from the standard EnKF has large variability in the history

matching period and shows a bias in the prediction period. A large fraction of the

updated realizations from the standard EnKF show higher oil production rates at the

producer PROD1 (Fig. 5.21(a)) and PROD6 (Fig. 5.21(d)) and lower water cut at the

producers PROD1 (Fig. 5.21(e)), PROD2 (Fig. 5.21(f)), and PROD6 (Fig. 5.21(h))

compared to the reference model. A large fraction of the updated realizations from

the standard EnKF also show an early water breakthrough at the producer PROD2

(Fig. 5.21(f)) compared to the true observation. As we can see in Fig. 5.22, for Case

1, the proposed IPCEnKF method provided improved history matching results com-

pared to the standard EnKF. The updated ensemble obtained from the IPCEnKF

performs fairly well in the prediction period for different types of production data.

The predictions of oil production rate and water cut at the producer PROD6, how-

ever, are biased compared to the reference model. The RMSE for different types of

production data from the standard EnKF and the IPCEnKF for Case 1 are given in

Table 5.2.

Figs. 5.23 and 5.24 show the production forecasts for Case 2 obtained by rerunning

the final updated ensembles from the standard EnKF and the IPCEnKF, respectively.

The updated ensemble from the standard EnKF show a strong bias and a poor match
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to the observations of OPR (Fig. 5.23(a)) and WCT (Fig. 5.23(e)) at the producer

PROD1. The data-match to the observations of OPR at the producers PROD2

(Fig. 5.23(b)), PROD3 (Fig. 5.23(c)), and PROD6 (Fig. 5.23(d)) are reasonable.

The forecasts from the updated ensemble from the standard EnKF, however, are

biased in the prediction period and predict higher oil production rates compared to

the actual observations. Similarly, the updated ensemble from the standard EnKF

does not show a good match to the observations of WCT at the producers PROD2

(Fig. 5.23(f)) and PROD6 (Fig. 5.23(h)) and the ensemble forecasts in the prediction

period are biased compared to the reference model. As we can see in Fig. 5.23(j), the

updated ensemble from the standard EnKF underpredicts the BHP at the injector

INJ2 throughout the production period. The updated ensemble also shows a bias

for the BHP of the injector INJ3 as most of the updated realizations overpredict

the BHP at INJ3. From the results presented in Fig. 5.24, it is clear that, the

IPCEnKF method was able to improve the history matching results compared to the

standard EnKF. The data-match to the observations of OPR (Fig. 5.24(a)) and WCT

(Fig. 5.24(e)) at the producer PROD1 and BHP (Fig. 5.24(j)) at the injector INJ2 has

been improved using the IPCEnKF. Neither the standard EnKF nor the IPCEnKF

was able to obtain a good match to the WCT observations at the producer PROD3

in the history-matching period, although the ensemble forecasts in the prediction

period are better from the IPCEnKF than those obtained from the standard EnKF.

The RMSE for different types of production data from the standard EnKF and the

IPCEnKF for Case 2 are given in Table 5.3.

Similar to the CEnKF method presented in Chapter 4, the IPCEnKF method

proposed here is an iterative process. The computational cost required during each

iteration of the two methods, however, is small compared to the cost of running the

forward model. We have demonstrated that the constrained solutions obtained from

the two methods are plausible and often closer to the reference model. The resulting
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Figure 5.21: The production data for Case 1 predicted from the ensemble of poros-
ity and permeability updated at day 1500 by the standard EnKF. The gray curves
represent the initial ensemble, the black curves represent the updated ensemble, the
red dots are the observations from the reference model, the red curve is the reference
production data in the prediction period, and the vertical blue line indicates the end
of the history matching period (day 1500).
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Figure 5.22: The production data for Case 1 predicted from the ensemble of porosity
and permeability updated at day 1500 by the IPCEnKF. The gray curves represent
the initial ensemble, the black curves represent the updated ensemble, the red dots are
the observations from the reference model, the red curve is the reference production
data in the prediction period, and the vertical blue line indicates the end of the history
matching period (day 1500).
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Figure 5.23: The production data for Case 2 predicted from the ensemble of poros-
ity and permeability updated at day 1500 by the standard EnKF. The gray curves
represent the initial ensemble, the black curves represent the updated ensemble, the
red dots are the observations from the reference model, the red curve is the reference
production data in the prediction period, and the vertical blue line indicates the end
of the history matching period (day 1500).
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Figure 5.24: The production data for Case 2 predicted from the ensemble of porosity
and permeability updated at day 1500 by the IPCEnKF. The gray curves represent
the initial ensemble, the black curves represent the updated ensemble, the red dots are
the observations from the reference model, the red curve is the reference production
data in the prediction period, and the vertical blue line indicates the end of the history
matching period (day 1500).
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Table 5.2: SPE9 model - RMSE values for different types of production data for
Case 1

Observation Standard EnKF IPCEnKF

OPR - PROD1 (STB/day) 978.41 750.29
OPR - PROD2 (STB/day) 227.23 280.62
OPR - PROD3 (STB/day) 384.39 448.41
OPR - PROD6 (STB/day) 359.55 254.03

WCT - PROD1 0.0553 0.0424
WCT - PROD2 0.0381 0.0265
WCT - PROD3 0.0685 0.0358
WCT - PROD6 0.0515 0.0384

BHP - INJ1 (psia) 145.75 99.07
BHP - INJ2 (psia) 109.64 91.82
BHP - INJ3 (psia) 79.74 90.74

Table 5.3: SPE9 model - RMSE values for different types of production data for
Case 2

Observation Standard EnKF IPCEnKF

OPR - PROD1 (STB/day) 1782.63 701.55
OPR - PROD2 (STB/day) 561.50 481.98
OPR - PROD3 (STB/day) 452.95 507.46
OPR - PROD6 (STB/day) 650.49 381.31

WCT - PROD1 0.1599 0.0364
WCT - PROD2 0.0869 0.0413
WCT - PROD3 0.1356 0.1042
WCT - PROD6 0.1023 0.0559

BHP - INJ1 (psia) 91.44 82.51
BHP - INJ2 (psia) 539.43 164.46
BHP - INJ3 (psia) 181.97 79.46
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match to the historical production data obtained from the two methods is better

than the results obtained from the standard implementation of the EnKF with trun-

cation. The additional computational costs for the two methods are different and are

affected by different components that make-up the solution. For the CEnKF, the ad-

ditional computational cost arises from the identification of the active constraints for

each ensemble member during each iteration of the process. Subsequently, a separate

Kalman gain is computed and each ensemble member is updated separately during

the iterative process. For the IPCEnKF, the additional computational cost during

each iteration comes from approximating the simulated data, computing the gradient

of the barrier function at the current estimate of the state variables, computing the

search direction, and determining the step-size using the line search for the individ-

ual ensemble member. For both constrained data assimilation methods (CEnKF and

IPCEnKF), the computational cost depends on the cutoff values chosen for the state

variable of interest. Selecting cutoff values in the close vicinity of the true inequality

constraints may increase the computational cost. It is possible to decrease the com-

putational cost (but still higher than that of the standard EnKF) for the constrained

data assimilation methods if the cutoff values are sufficiently far from the true inequal-

ity constraints. It, however, may not show significant improvements in the estimates

of the state variables and the match to the historical production data compared to the

standard EnKF. In the current study, we observed that, the total computational time

for the CEnKF method is approximately 2 times the computational time required for

the standard EnKF. The computational time for the IPCEnKF method is observed

to be 2.5 to 2.8 times the time needed for the standard EnKF. Although the compu-

tational cost for both constrained data assimilation methods is higher than that of

the standard EnKF, the results presented in this study clearly show the benefits of

incorporating the constraints into the data assimilation framework. Both constrained

data assimilation methods were able to improve the estimates of the state variables
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(e.g. molar densities or phase saturations) and obtained good history matching re-

sults compared to the standard EnKF. In some cases (e.g. compositional model), the

application of constraints instead of truncation is critical and the only real alternative

is iteration that involves running the reservoir simulator during each iteration, which

can be quite expensive if it has to be done very often.

The standard implementation of the EnKF with truncation often gives satisfac-

tory results for history matching. In some situations, however, it may not be clear as

which state variables are subject to truncation or what the truncation-limits are. As

we have demonstrated with the compositional model in Chapter 3, the CO2 molar

density in some part of the reservoir model became negative while the molar densities

of the rest of the components were increased after assimilating data. It was neces-

sary to apply the constraints for the compositional model since neither truncation,

nor transformation of state variables gave good results. In case of black-oil reser-

voir models, it will be necessary to apply the constraints on the phase saturations

when all three phase saturations are important in some regions of the model. As we

showed in this chapter, the updated phase saturations can show strong constraint

violations after data assimilation when the ensemble forecasts are significantly differ-

ent from the actual observations. Truncating the non-physical phase saturations can

have negative effect during the subsequent forecast step and so, we should resolve

to the constrained data assimilation approach. For real-field reservoir problems, the

reservoir simulation model often contains few hundred thousands of gridblocks. If

there are large regions where the phase saturations show strong constraint violations

after data assimilation, the CEnKF method may not be able to give good solution if

a few number of iterations are used. It might be expensive to use a large number of

iterations of the CEnKF method and therefore, resolving to the IPCEnKF method

might be more advantageous.

A data assimilation problem of a reservoir model with faults is another example
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where the constrained data assimilation approach is expected to give good results

compared to the standard EnKF with truncation. In a reservoir model, the faults or

the flow-barriers are often simulated using the transmissibility multipliers in certain

parts of the model. The transmissibility multipliers are often generated using a uni-

form distribution and have a lower and an upper limits. When data are assimilated

using the standard EnKF, it is reasonable to assume that the updated transmissi-

bility multipliers violate the constraints. The transmissibility multipliers out of the

physical bounds will be truncated to their limiting values in the standard EnKF

framework. The incorrect estimates of fault transmissibility multipliers can have neg-

ative influence on the flow behavior of the reservoir model leading to poor results.

The constrained data assimilation approach (CEnKF or IPCEnKF), proposed in this

dissertation, provides a logical and reasonable solution for handling the constraints

on the fault transmissibility multipliers during data assimilation.

5.6 Summary

In this chapter, we proposed a new method, called the interior-point formulation for

the constrained EnKF (IPCEnKF), for incorporating the inequality constraints into

the sequential data assimilation framework using the EnKF. The proposed IPCEnKF

is the ensemble-based formulation of the interior-point method for constrained data

assimilation and combines the standard EnKF with the primal interior-point method.

In the proposed method, the original objective function for data assimilation, sub-

ject to constraints, is reformulated by adding a barrier function which prevents the

state variables from moving into the infeasible region. The original constrained op-

timization problem is thus converted into an unconstrained optimization problem.

The solution of the resulting unconstrained optimization problem is obtained using

the Gauss-Newton method in its classical form. The IPCEnKF method updates the

state vector in an iterative manner; the method, however, does not require additional
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model evaluations for constraint application.

The IPCEnKF method is applied to a synthetic 1D linear example in order to

demonstrate its effectiveness when the non-linearity is not an issue. The second

test problem shows the application of the IPCEnKF technique to a data assimila-

tion problem of a black-oil reservoir example (SPE9 model) involving three-phase

flow conditions for which the water and gas saturations are subject to the inequality

constraints on both sides of the feasible region. The performance of the IPCEnKF

was evaluated on two different cases. The results obtained from the IPCEnKF were

compared with those obtained from the standard EnKF. The application of the IP-

CEnKF method to the SPE9 model demonstrated the importance of incorporating

the constraints on the state variables into the data assimilation framework and showed

the advantages of the constrained solution. When the initial ensemble was biased,

the IPCEnKF gave a better match to the historical production data compared to

the standard EnKF. One of the important components of the IPCEnKF method is

the sensitivity matrix. Although we would like to compute the sensitivity during

each iteration of the IPCEnKF, it will make the method impractical for real-field

reservoir data assimilation problems. In the present study, the sensitivity computed

from the prior state variables and forecast observations was used during the iterative

process. The performance of the proposed IPCEnKF method can be improved at

the expense of running the reservoir simulator and recomputing the sensitivity at

a particular data assimilation step which shows a large data-mismatch between the

ensemble predictions and the true observations.

The results from the reservoir fluid flow example show the usefulness of the pro-

posed IPCEnKF method for enforcing constraints on the dynamic state variables

such as phase saturations. Although it has not been demonstrated in this study, we

believe that the IPCEnKF method can be useful for applying the constraints to the

static model parameters such as the fault transmissibility multipliers. The IPCEnKF
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method is an iterative process, however, the additional computational cost and data-

storage requirement during each iteration of the IPCEnKF method is fairly small.

As a result, the implementation of the IPCEnKF method on a real-field reservoir

problem should not impose any computational or data-storage challenge.
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CHAPTER VI

CONCLUSIONS

Long-term reservoir management objectives often include identifying production strate-

gies that can maximize the future reservoir performance and requires an ensemble of

reservoir simulation models for quantifying the uncertainty in the reservoir perfor-

mance. With the increasing use of the closed-loop reservoir management practices,

an ensemble of reservoir models is continually updated using the production data

obtained from the field. In the recent years, the ensemble Kalman filter (EnKF)

has established itself as one of the most successful techniques for sequential reser-

voir model updating. The EnKF represents the probability of the model parameters

through an ensemble of model realizations and reduces the dimensionality of the in-

verse problem from the number of unknown parameters to the number of realizations.

The standard implementation of the EnKF, however, suffers from a number of chal-

lenges when it is applied to a strongly nonlinear data assimilation problem. This

dissertation addresses a specific issue of the violation of the inequality constraints on

the plausible values of state variables. In this dissertation, we discussed this issue in

the context of the EnKF applied to highly nonlinear problems in reservoir engineering

with non-Gaussian state variables. The usefulness of the methods and the findings

discussed in this dissertation, however, is not limited to reservoir engineering-related

applications. This chapter summarizes the findings presented in this dissertation.

The standard implementation of the EnKF to a data assimilation problem of a

compositional reservoir model showed that the analysis step of the EnKF resulted

in non-physical values of CO2 molar densities and the molar densities of the rest

of the components were increased at some locations in the reservoir. A truncation
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scheme that was used to truncate the state variables with non-physical values did

not affect the increased molar densities of the rest of the components. The result

was an inability to maintain fluid injection into the reservoir. An alternate approach

of transformation of state variables is often used to ensure that the updated state

variables honor the inequality constraints. In the case of the compositional model,

however, we showed that, the transformation of variables approach not only destroyed

the consistency of the fluid composition but it did not prevent the molar densities of

other components from increasing after data assimilation.

A constrained version of the EnKF (CEnKF) that does not require additional

model evaluations for constraint application is presented in this dissertation. The

application of the CEnKF technique to a data assimilation problem of a compositional

model resolved the issues of excess mass and pressure build-up that were observed

during the application of the standard EnKF with truncation. In case of a data

assimilation problem of a black-oil reservoir model, the CEnKF method presents a

viable option for handling three-phase flow conditions such that the updated phase

saturations are plausible. The applications of the CEnKF method to compositional

and black-oil reservoir models clearly showed the benefits of the constrained solution

and obtained good matches to the historical production data. We also showed that,

in cases where mass conservation of a component is important, the CEnKF gives

superior results to the standard truncation scheme.

The second method presented in this dissertation is the ensemble-based formula-

tion of the interior-point method for the constrained data assimilation and combines

the standard EnKF with the primal interior-point method. Although the proposed

method is iterative, it does not require identifying the active constraints during each

iteration and most importantly, it does not require additional model evaluations for

constraint application. The effectiveness of the proposed method is demonstrated

by its application to a data assimilation problem of a three-phase black-oil reservoir
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model. By incorporating the inequality constraints on phase saturations into the data

assimilation framework, we showed that the resulting estimates of phase saturations

are plausible and better than those obtained from truncation. It is possible to fur-

ther improve the performance of the proposed IPCEnKF method by recomputing the

sensitivity at a particular data assimilation time which shows a large data-mismatch

between the ensemble predictions and the true observations. In this investigation,

the primal interior-point method was used and the barrier parameter was updated

according to the decrease in the objective function during each iteration. We be-

lieve that, the primal-dual interior-point method, which provides a better solution

for updating the barrier parameter, can help decrease the number of iterations. This

approach, however, increases the problem-dimensions and therefore, the net effect on

the overall computational cost can be an area of further study.

The usefulness of the constrained data assimilation methods presented in this

dissertation is not limited to the dynamic state variables alone. Although we have not

demonstrated in this study, the proposed methods can be used for applying constraints

on the static model parameters such as fault transmissibility multipliers. In certain

situations, it is of interest to have a particular parameter (e.g. total hydrocarbon

volume) unchanged for all ensemble members throughout data assimilation process.

The CEnKF method provides an appropriate solution under such condition.

Truncation remains the widely used approach for dealing with the non-physical

updates to state variables in data assimilation using the EnKF. If the degree of con-

straint violations on the plausible values of state variables is not severe, truncating the

state variables that violate constraints to the value at the boundary of the feasible re-

gion might be the most efficient solution for handling the inequality constraints. The

transformation of variables approach can be an alternate solution for ensuring that the

state variables honor the inequality constraints upon data assimilation. It is impor-

tant, however, that the state variable, subject to inequality constraints, does not show
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a strong correlation with other type of state variable. In some cases, as demonstrated

with the compositional model, the application of constraints, instead of truncation or

instead of transformation of variables, is critical. The CEnKF technique is suitable

for data assimilation problems where large numbers of forecast state variables either

lie on the boundary of the feasible region (e.g. phase saturations during waterflood) or

are very close to it. Contrarily, the IPCEnKF method can be advantageous over the

CEnKF technique for data assimilation problems where the forecast state variables

are well within the interior of the feasible region. The only real alternative of assim-

ilating data and simultaneously satisfying the inequality constraints is resolving to

an iterative approach that requires running the reservoir simulator for each ensemble

member during each iteration, which can be quite expensive if it has to be done very

often.
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Lorentzen, R. J., G. Nævdal, B. Vàlles, A. M. Berg, and A.-A. Grimstad, Analysis of
the ensemble Kalman filter for estimation of permeability and porosity in reservoir
models, SPE–96375, in SPE Annual Technical Conference and Exhibition, 2005.

Mandel, J., M. Chen, L. P. Franca, C. Johns, A. Puhalskii, J. L. Coen, C. C. Douglas,
R. Kremens, A. Vodacek, and W. Zhao, A note on dynamic data driven wildfire
modeling, Lecture Notes in Computer Science, pp. 725–731, 2004.

Massicotte, D., R. Z. Morawski, and A. Barwicz, Incorporation of a positivity con-
straint into a Kalman filter-based algorithm for correction of spectrometric data,
IEEE Transactions on Instrumentation and Measurement, 44(1), 2–7, 1995.

Megiddo, N., Pathways to the optimal set in linear programming, Technical Report
RJ 5295, IBM Almaden Research Center, San Jose, CA, 1986.

Mitchell, H. L. and P. L. Houtekamer, An adaptive ensemble Kalman filter, Monthly
Weather Review, 128(2), 416–433, 2000.

Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, Ensemble size, balance, and
model-error representation in an ensemble Kalman filter, Monthly Weather Review,
130(11), 2791–2808, 2002.

Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Mouser, Dual state-parameter
estimation of hydrological models using ensemble Kalman filter, Advances in water
resources, 28(2), 301–305, 2005.

Nævdal, G., L. M. Johnsen, S. I. Aanonsen, and E. H. Vefring, Reservoir monitoring
and continuous model updating using ensemble Kalman filter, SPE Journal, 10(1),
66–74, 2005.

Nævdal, G., T. Mannseth, and E. H. Vefring, Near-well reservoir monitoring through
ensemble Kalman filter: SPE 75235, in Proceedings of SPE/DOE Improved Oil
Recovery Symposium, 2002.

Nocedal, J. and S. J. Wright, Numerical Optimization, second edn., Springer, 2006.

Oliver, D. S., A. C. Reynolds, and N. Liu, Inverse Theory for Petroleum Reservoir
Characterization and History Matching, first edn., Cambridge University Press,
Cambridge, 2008.

174



Oliver, D. S., Y. Zhang, H. A. Phale, and Y. Chen, Distributed parameters and state
estimation in petroleum reservoirs, Computers & Fluids, submitted, 2010.

Pan, M. and E. F. Wood, Data assimilation for estimating the terrestrial water budget
using a constrained ensemble Kalman filter, Journal of Hydrometeorology, 7, 534–
547, 2006.

Peters, E., R. J. Arts, G. K. Brouwer, S. Cullick, R. J. Lorentzen, Y. Chen, K. N. B.
Dunlop, F. C. Vossepoel, R. Xu, P. Sarma, A. H. Alhutali, and A. C. Reynolds, Re-
sults of the Brugge benchmark study for flooding optimization and history match-
ing, SPE Reservoir Evaluation & Engineering, pp. 391–405, 2010.

Pham, D. T., Stochastic methods for sequential data assimilation in strongly nonlinear
systems, Monthly Weather Review, 129(5), 1194–1207, 2001.

Porrill, J., Optimal combination and constraints for geometrical sensor data, Inter-
national Journal of Robotics Research, 7(6), 66–77, 1988.

Quintana, V. H., G. L. Torres, and J. Medina-Palomo, Interior-point methods and
their applications to power systems: A classification of publications and software
codes, IEEE Transactions on Power Systems, 15(1), 170–176, 2000.

Qureshi, A. G., M. P. Res, and B. C. Burnaby, Constrained Kalman filtering for
image restoration, in Acoustics, Speech, and Signal Processing, 1989. ICASSP-89.,
1989 International Conference on, pp. 1405–1408, 1989.

Rao, C. V., J. B. Rawlings, and D. Q. Mayne, Constrained state estimation for non-
linear discrete-time systems: Stability and moving horizon approximations, IEEE
Transactions on Automatic Control, 48(2), 246–258, 2003.

Reichle, R. H., D. B. McLaughlin, and D. Entekhabi, Hydrologic data assimilation
with the ensemble Kalman filter, Monthly Weather Review, 130(1), 103–114, 2002.

Rotea, M. and C. Lana, State estimation with probability constraints, International
Journal of Control, 81(6), 920–930, 2008.

Schlumberger, Eclipse technical and reference manual, 2006.

Seiler, A., G. Evensen, J. A. Skjervheim, J. Hove, and J. G. Vabo, Advanced reser-
voir management workflow using an EnKF based assisted history matching method,
(SPE 118906), in SPE Reservoir Simulation Symposium, 2–4 February, The Wood-
lands, Texas, USA, 2009.

Simon, D. and T. L. Chia, Kalman filtering with state equality constraints, IEEE
Transactions on Aerospace and Electronic Systems, 38(1), 128–136, 2002.

Simon, E. and L. Bertino, Application of the Gaussian anamorphosis to assimilation
in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF:
a twin experiment, Ocean Science Discussions, 6(1), 617–652, 2009.

175



Skjervheim, J.-A., G. Evensen, S. I. Aanonsen, B. O. Ruud, and T. A. Johansen, In-
corporating 4D seismic data in reservoir simulation models using ensemble Kalman
filter, SPE Journal, 12(3), 282–292, 2007.

Tarantola, A., Inverse Problem Theory: Methods for Data Fitting and Model Param-
eter Estimation, Elsevier, Amsterdam, The Netherlands, 1987.

Thacker, W. C., Data assimilation with inequality constraints, Ocean Modelling, 16(3-
4), 264–276, 2007.

Thacker, W. C. and R. B. Long, Fitting dynamics to data, Journal of Geophysical
Research, 93(1), 1227–1240, 1988.

Thulin, K., G. Li, S. I. Aanonsen, and A. C. Reynolds, Estimation of initial fluid
contacts by assimilation of production data with EnKF, in Proceedings of the 2007
SPE Annual Technical Conference and Exhibition, 2007.

Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker,
Ensemble square-root filters, Monthly Weather Review, 131, 1485–1490, 2003.

Ungarala, S., E. Dolence, and K. Li, Constrained extended Kalman filter for nonlin-
ear state estimation, in Proccedings of the 8th International IFAC Symposium on
Dynamics and Control of Process Systems, 2007.

Wang, Y., G. Li, and A. C. Reynolds, Estimation of depths of fluid contacts by history
matching using iterative ensemble Kalman smoothers (SPE 119056), SPE Journal,
accepted, 2010.

Whitaker, J. S. and T. M. Hamill, Ensemble data assimilation without perturbed
observations, Monthly Weather Review, 130(7), 1913–1924, 2002.

Wu, Z., A. C. Reynolds, and D. S. Oliver, Conditioning geostatistical models to
two-phase production data, SPE Journal, 4(2), 142–155, 1999.

Zafari, M., G. Li, and A. C. Reynolds, Iterative forms of the ensemble Kalman filter,
in Proceedings of the 10th European Conference on the Mathematics of Oil Recovery
— Amsterdam, p. A030, 2006.

Zhang, D., Z. Lu, and Y. Chen, Dynamic reservoir data assimilation with an efficient,
dimension-reduced Kalman filter, SPE Journal, 12(1), 108–117, 2007.

Zhang, Y. and D. S. Oliver, Evaluation and error analysis: Kalman gain regularization
versus covariance regularization, Computational Geosciences, submitted, 2010a.

Zhang, Y. and D. S. Oliver, History matching using the ensemble Kalman filter with
a multiscale parameterization: a field case study (SPE 118879), SPE Reservoir
Evaluation & Engineering, minor revision, 2010b.

Zhang, Y. and D. S. Oliver, Improving the ensemble estimate of the Kalman gain by
bootstrap sampling, Mathematical Geosciences, accepted, 2010c.

176



Zhao, Y., A. C. Reynolds, and G. Li, Generating facies maps by assimilating pro-
duction data and seismic data with the ensemble Kalman filter, SPE-113990, in
Proceedings of the 2008 SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma,
April 21–23, 2008.

177


