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Abstract 

Knapsack problem (KP) has broad applications in different fields such as 

machine scheduling, space allocation, and asset optimization. Meanwhile, it is a hard 

problem due to its computational complexity, but numerous solution approaches have 

been developed for a variety of KP.  In this dissertation, an extensive literature review is 

first provided. Then, the research focuses on methods, models, and applications for two 

variations of Knapsack problem: Multiple Knapsack Problem with Assignment 

Restrictions (MKAR) and Stochastic Knapsack Problem with Penalty Cost (SKPPC).  

A new procedure, Largest Unutilized Capacity First Algorithm (LUCF) is 

developed and tested on MKAR along with other assignment procedures available in 

the literature.  It is concluded that LUCF performs very well and it returns the best 

initial feasible solution among all types of greedy algorithms for the solution of the 

MKAR. After the generation of initial feasible solutions, a tabu-search procedure is 

implemented to generate improved solutions. Three versions of intensification 

procedures are implemented within the tabu search procedure. Experimental results 

show significant improvement over the initial solution quality with the tabu search 

procedure. That is, this approach yields a high percentage of utilization for all 

combinations of problems, based on the initial solution provided by LUCF.  

For SKPPC, for each item of the knapsack, there are several possible processing 

times, each with certain probability of selection. For a given knapsack capacity, a 

strategy is developed to assign the optimal number of items to each the knapsack. 

Mathematical formulations are provided for both single knapsack and m-knapsack 

cases. The objective value function for the single knapsack problem exhibits a convex 
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property, which leads to an optimal strategy to assign the number of items. For the m-

knapsack case, the processing time of each item will be revealed after pre-scan 

operations. LUCF heuristic is combined here to obtain good solutions.  This approach is 

finally adapted to the package security inspection problem.  We discuss how one can 

determine the optimal number of items in each knapsack and the optimal number of 

operators needed for inspection with the objective of maximizing operator utilization 

and throughput.  
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Chapter 1 

Introduction  

1.1 Overview 

The pioneering work of Dantzig [7] in the late 1950’s has been followed by 

numerous researches in the area of Knapsack Problems (KP).  These problems have 

been studied extensively and intensively since then (Pisinger [34]). In the most general 

sense, the problem deals with the assignment of a set of items into a number of 

knapsacks with each item having size and value associated with it. The objective is to 

maximize the total value of assigned items while observing the capacities of the 

knapsacks. 

Many theoretical studies of knapsack problems have been intended and applied 

to the real-life problems.  Many, that were mostly applications oriented, made 

researchers and practitioners look for better and fast solutions to cope with the vast 

industrial and financial management problems (Pisinger [34]).    

Knapsack problems are usually sub-problems of more complex combinatorial 

optimization problems, and most of them require the selection of a subset of some given 

items resulting in the maximization of a profit sum, with the total assigned weight not 

exceeding the capacity of the knapsack(s).  All knapsack problems are classified as 

being NP-hard, meaning that their optimal solutions cannot be obtained by the 

application of polynomial time algorithms.  However, several years of research have 
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exposed the structural properties of these problems making them easier to solve 

(Pisinger [34]). 

The knapsack problems have a variety of real life applications including 

financial modeling, production and inventory management systems, stratified sampling, 

design of queuing network models in manufacturing, and control of traffic overload in 

telecommunication systems.  Other areas of applications include yield management for 

airlines, hotels and rental agencies, college admissions, quality adaptation and 

admission control for interactive multimedia systems, cargo loading, capital budgeting, 

cutting stock problems, and computer processing allocations in huge distributed 

systems.  

1.2 Research Objectives 

Multiple Knapsack Problem (MKP) generally is the assignment of items into 

several knapsacks.  The items usually have weights, and costs associated with them, 

which may vary from item to item.  The knapsacks may be of different capacities as 

well.  Stochastic Knapsack Problem (SKP), on the other hand, assumes that the weight 

of the item is not known until it is placed in the knapsack. However, the weight is 

assumed to follow a probability distribution. The assignment of items to a knapsack 

generally works with the actual weights of the items already assigned and the 

probability distribution of the unassigned items. The objective in both cases is either to 

maximize capacity (or expected capacity) utilization or the most cost effective 

assignment.  Knapsack capacities are usually never exceeded in the final assignment. 

In this study, a new greedy algorithm that yields very attractive initial solution 

for the MKP is proposed.  This algorithm’s performance was then compared with that of 



 

 3

the most common assignment procedures.  Multiple Knapsack Problems with 

Assignment Restrictions (MKAR), a new variant of MKP, is studied in regards to 

obtaining initial feasible solutions using the most common assignment procedures.  

Tabu search was later employed to improve the initial solutions generated to yield better 

results. 

Stochastic Knapsack Problems with Penalty Cost (SKPPC) having different item 

types is studied to determine optimal assignment.  Only two item types were studied, 

and each item type has a possible processing time determined by a probability of 

selection.  The problem was extended to multiple processors for different processing 

times.  Expected penalty cost and percentage of utilization were recorded for various 

problem sizes.    

1.3 Organization of the Dissertation 

Chapter 2 comprises the literature review on knapsack problems, its solution 

procedures, and some common application areas.  Also included is explanation of tabu 

search, and dynamic and stochastic knapsack problem. 

Chapter 3 contains a variant of the multiple knapsack problem - multiple 

knapsack problem with assignment restriction (MKAR).  This was the start of the 

research for this dissertation.  A new algorithm, Largest Unutilized Capacity First, 

LUCF was developed and tested against other known greedy procedures for assigning 

items to knapsacks. 

Tabu Search, an efficient search method, is the discussion of Chapter 4.   The 

tabu search procedure was applied to the initial solution generated for the MKAR. The 

LUCF algorithm was one of the methods used to generate an initial feasible solution. 



 

 4

Stochastic knapsack problem with penalty cost (SKPPC) is the topic of 

discussion in both Chapters 5 and 6.  A study of SKPPC involving the assignment of 

two item types with probabilities of selection was investigated.  Penalties were given for 

both under-utilization and over-utilization of the knapsack capacity.   The extension of 

the problem to many processors was formulated and solved.  Analyses were performed 

on the various variables of the problem.  

Chapter 7 concludes this report with summary, conclusions and suggestions for 

further research. 
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Chapter 2 

Literature Review 

2.1 Knapsack Problems 

The basic concept of all the families of knapsack problems involve the selection 

of some items, each with profit and weight values, to be packed into one or more 

knapsacks with capacity.  The item profit pj, weight wj, as well as the capacity c of the 

knapsack are all assumed to be positive integers. 

Several instances of knapsack problems, despite their worst-case complexity, 

may have efficient solutions via heuristic methods with acceptable computational times.  

The heuristics take advantage of the well defined structures inherent in these problems. 

Dantzig [7] was the first to order items according to their profit-to-weight ratio, 

and then find a solution for the continuous 0-1 knapsack problem. 

   
n

n

w

p

w

p

w

p
≥≥≥ ...

2

2

1

1 . 

The ordering of the items according to this ratio can be done in O(nlogn) time (Dantzig 

[7]). The continuous 0-1 knapsack problem has its constraints on { }jj mx ,...,1,0∈  

relaxed to jj mx ≤≤0 .  A greedy algorithm is then applied on the profit-to-weight ratio 

to assign items to knapsack starting with the largest until we reach the first item that 

cannot be assigned.  The first unassigned item is termed the break item b (

{ }∑ =
>=

j

i i cwjb
1

:min ) resulting in an initial feasible solution.  The optimal solution 
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can then be the selection of all items j < b plus the residual of the knapsack capacity 

which can be represented by a fraction of item b.  This procedure is utilized frequently 

for various types of knapsack problems. 

Dynamic programming generates solutions to several knapsack problems in 

pseudo-polynomial time, meaning a time controlled by the number of items in a 

problem. Efficient algorithms have been developed by incorporating bounding tests in 

dynamic programming procedures. 

Horowitz and Sahni’s [20] solution approach for 0-1 knapsack problem in 

)2( nO  worst-case time involves dividing the items into two sets.  Two sets of feasible 

solutions are later merged after all feasible solutions of each set are enumerated.  By 

recursively dividing the problem in two parts, makes the 0-1 knapsack problem solvable 

through parallel computation which runs in O(log n log c) where n and c are the number 

of items and the capacity of the knapsack, respectively. 

  Knapsack problems can also be solved using reduction algorithms (Martello and 

Toth [30]).  Efficient ones have been developed which consist of fixing several decision 

variables at their optimal values before the problem is solved.  This procedure decreases 

the decision space thereby resulting in efficient computations. 

Martello and Toth [28] developed a branch-and-bound algorithm, which requires 

the solution of a 0-1 knapsack problem every time a lower/upper bound is found, for the 

multiple knapsack problems. 

Heuristic algorithms like Tabu search and Genetic Algorithm have also appeared 

in recent times for the solution of knapsack problems.  Chu et al. [6] proposed a genetic 

algorithm for the multidimensional knapsack problem.  A heuristic based on tabu search 
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was presented by Glover and Kochenberger [13] whereby a flexible memory structure 

that integrates recency and frequency information of critical events during the solution 

process was employed. 

The 0-1 Knapsack Problem (KP), the root of all knapsack problems, involves 

the selection of a subset of n items into a single knapsack.  The total profit of all items 

selected is to be maximized without the total weights exceeding the capacity of the 

knapsack.  The general formulation of the problem follows: 

maximize ∑
=

n

j
jj xp

1

       (2.1) 

subject to ,
1

cxw
n

j
jj ≤∑

=

 

{ },1,0∈jx   .,...,1 nj =  

where jp is the profit of each item, jw  is the weight, and jx  is 1 if item j is assigned to a 

knapsack or 0 otherwise.   

Martello and Toth [27] proposed a new way of computing the upper bound for 

the 0-1 knapsack problem, and also presented a branch-and-bound algorithm for the 

same problem type.  A bound-and-bound algorithm [28] defined as a tree-search 

technique that makes use of a lower bound to determine the branches to follow in the 

decision was later formulated for 0-1 multiple KP [28].   The term “bound-and-bound” 

was defined, for a maximization problem, as a tree-search technique that makes use of a 

lower-bound in determining the branch to investigate further in a decision tree. 

 Pisinger [33] presented a minimal algorithm for the 0-1 KP based on a dynamic 

programming approach, where the core problem is gradually extended and 

computational sorting and reduction of the core is minimal. A core (Balas and Zemel 
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[2]) is when only a small amount of the items are enumerated when there is a large 

probability of reaching to an optimal solution.  It was shown that when the process 

terminates due to some bounding tests, the core processed is actually much smaller than 

the total number of solvable symmetrical core possible. 

 Hung and Fisk [21] developed a depth-first branch-and-bound algorithm for the 

solution of the 0-1 MKP by constructing successive higher levels of the decision tree 

either by assigning an object to a knapsack or by excluding that object from all 

knapsacks.  This implies that every node generates m+1 descendent nodes, where m 

denotes the number of knapsacks. The essential steps of the algorithm are very much 

like those developed for the 0-1 KP by Ahrens and Finke [1]. 

The Multiple-choice Knapsack Problem (MCKP) is another variant of the 0-1 

KP involving the selection of exactly one item j from Ni, where Ni denotes the number 

of item i available for each of the m items.  This is formulated as follows: 

maximize ∑ ∑
= ∈

m

i Nj
ijij

i

xp
1

     (2.2) 

subject to ,
1

cxw
m

i Nj
ijij

i

≤∑ ∑
= ∈

 

    ,1=∑
∈ iNj

ijx   .,...,1 mi =  

    { },1,0∈ijx  ,,...,1 mi =  and .iNj ∈  

 

 Several algorithms for MCKP have been presented over the last twenty years.  

Most of these algorithms start by solving linear MCKP (LMCKP) so as to obtain an 

upper bound.  Dudzinski and Walukiewicz [9] showed that MCKP can be solved in 
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pseudo-polynomial time (a time controlled by the number of items) through dynamic 

programming.   The two stages of solution of LMCKP are: a.) LP-dominated items are 

reduced by sorting the items in each class according to increasing weights, and delete 

some unpromising states by applying some dominance criteria; b.) a greedy algorithm is 

then used to solve the reduced LMCKP.  Upper bound tests may be employed to fix 

several variables in each class to their optimal value after the two initial procedures 

mentioned before. 

 Balas and Zemel [2] with Fayard and Plateau [10] suggested considering the 

core which is a small subset of the items in the solution of a KP.  A core can be found 

through partitioning procedure in O(n) time, where n is the number of items.  Martello 

and Toth [29] showed that the restricted KP defined on the core items can be solved 

easily for several classes of data in linear time.  Pisinger [33] proposed a simple 

algorithm for solving LMCKP, as well as for deriving an initial feasible solution.  

Dynamic programming was later used from the starting initial solution to solve MCKP 

by adding new classes to the core as needed.  This showed that to solve the MCKP to 

optimality, the consideration of a minimum number of classes are required. 

Other 0-1 KP problem types include the Multidimensional Knapsack problem 

[6], the Bounded Knapsack problem (BKP) [36], the Unbounded Knapsack problem 

(UKP) [19], the Subset-Sum problem (SP) [41], the Multiple Knapsack problem (MKP) 

[35], the Bin-Packing problem (BP) [26], the Multiple-Constrained Knapsack problem 

[10], the Generalized Assignment problem (GAP) [5], the Quadratic Knapsack problem 

(QKP) [4], and the Precedence Constrained Knapsack problem (PCKP) [22]. 
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The other variants that require mentioning are Nonlinear Knapsack problem 

[22], the Max-Min Knapsack problem [22], the Minimization Knapsack problem [22], 

the Equality Knapsack problem [22], the Strongly Correlated Knapsack problem [22], 

the Change-Making Knapsack problem [22], and the Collapsing Knapsack problem 

[22].  Others are the Parametric Knapsack problem [22], the Fractional Knapsack 

problem [22], the Set-Union knapsack problem [22], and the Multiperiod Knapsack 

problem [22]. 

Pisinger [35] developed and implemented an exact algorithm for large multiple 

knapsack problems.  The MKP is defined as the assignment of some of n items into m 

knapsacks, where the knapsacks may be of different capacities. The aim of the problem 

is to maximize total profit in a way that the capacity ci of any knapsack is not exceeded. 

This is formulated as follows: 

maximize ∑∑
= =

m

i

n

j
ijj xp

1 1

      (2.3) 

subject to ,
1

i

n

j
iji cxw ≤∑

=

 .,...,1 mi =  

     ,1
1

≤∑
=

m

i
ijx   .,...,1 nj =  

     { },1,0∈ijx   ,,...,1 mi =  .,...,1 nj =  

 

xij is 1 if item j is assigned to knapsack i, or 0 otherwise.  All coefficients pj, wj, and ci 

are assumed positive integers. 

The following assumptions are also essential to avoid trivial cases: 

1. maxj { wj } ≤ maxi { ci } 
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2. minj { wj } ≤ mini { ci } 

3. wj > maxi { ci } 

The first assumption ensures each item is admissible into at least one knapsack 

or else, it may be discarded from the problem.  The second assumption deals with the 

fact that if any item cannot fit into the smallest knapsack, the knapsack can be excluded 

from the problem.  The last inequality assures that all items will not fit into the largest 

knapsack.  The paper [35] is devoted to large problem situations where the ratio n/m, 

ratio of number of items to number of knapsacks, is very large. 

The algorithm presented in the paper [35] incorporates some well know 

procedures to achieve its goal.  The algorithm uses Martello and Toth’s [28] bound-and-

bound framework.  A series of subset-sum problems are solved to obtain lower-bounds 

as well as tighten the knapsacks capacity constraints.  The algorithm derives upper-

bounds by incorporating a well-performing   0-1 knapsack problem through surrogate 

relaxation.  Surrogate relaxation (by Lagrangean strategy) involves the replacement of 

the original objective function by a new set of constraints, the surrogate constraints.    A 

separable dynamic programming algorithm is used for solving the subset-sum problems, 

and items that cannot be assigned are eliminated by efficient reduction rules which are 

rules for reducing a KP. 

Upper-bound is derived by using surrogate relaxation on some of the side constraints.  

The SMKP may be formulated thus: 

maximize ∑∑
= =

m

i

n

j
ijj xp

1 1

      (2.4) 

∑
=

n

i 1
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subject to ,
111

i

m

i
i

n

j
iji

m

i
i cxw ∑∑∑

===

≤ ππ   .,...,1 mi =  

     ,1
1

≤∑
=

m

i
ijx   .,...,1 nj =  

     { },1,0∈ijx   ,,...,1 mi =  .,...,1 nj =  

The best choice of multipliers of the surrogate relaxed problem, SMKP, is a positive 

constant k (where k is a positive number) as proved by Martello and Toth [28].  The 

choice of these multipliers turns the SMKP into: 

maximize ∑
=

n

j

l
jj xp

1

      (2.5) 

subject to ,
1

cxw
n

j

l
ji ≤∑

=

  

     { },1,0∈l
jx   .,...,1 nj =  

The introduced variables ∑ =
=

m

i ij
l
j xx

1
shows whether item j is chosen for any of the 

knapsack i, where i = 1to m, and likewise ∑ =
=

m

i icc
1

represents the capacity of all 

knapsacks. 

This paper [35] also utilizes the bound-and-bound algorithm of Martello and 

Toth [28], MTM, to derive both the lower-bounds and upper-bounds.  Lower-bounds 

are found by solving m individual 0-1 knapsack problems.  Upper-bounds are generated 

from the results of the surrogate relaxed problems. 

Knapsacks are ordered in increasing order of capacities, mccc ≤≤≤ ...21 , and 

filled one after the other in that order.  All assigned items are considered permanent by 

the branching process, and only the unassigned items are considered when lower and 
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upper bounds are being computed.  The procedure is terminated when the gap between 

the lower and upper bound can no longer be tightened. 

 

 Hifi et al. [18] developed and proposed several heuristics for approximately 

solving the multiple-choice multidimensional knapsack problem, MMKP, which is an 

NP-hard combinatorial optimization problem.  The MMKP is a more complex version 

of the 0-1 knapsack problem, whose high computational complexity in the formulation 

of an exact solution makes it unsuitable for real-time decision making applications. 

The MMKP has n classes Ji of items, with each class Ji, i = 1, …., n, consisting 

of ri items.  Each item j, where j = 1, …, ri, of class Ji has the profit value vij, non-

negative, and requires resources of weight vector, Wij=(w1
ij, w2

ij, …, wm
ij) with the 

component of each weight  wkij, k =  1, …, m non-negative.  A vector C = (C1,C2, . . , 

Cm) represents the amount of available resources. 

The MMKP is formulated as below:  

maximize ∑∑
= =

n

i

r

j
ijij

i

xv
1 1

      (2.6) 

subject to k
n

i

r

j
ij

k
ij Cxw

i

≤∑∑
= =1 1

 .,...,1 mk =   

    ,1
1

=∑
=

ir

j
ijx   .,...,1 ni =  

    { },1,0∈ijx   ,,...,1 ni =  .,...,1 irj =   

 The MMKP aims to pick exactly one item from each class in order for the total 

profit of items picked to be maximized, subject to available resource constraints.    
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A feasible solution exists for all  { },,...,1 mk ∈  where k
ij

n

i

r

j

k
ij Cxwi ≤∑ ∑= =1 1

and only one 

item is picked from each class.  That is, xij is 1 if item j of the ith class Ji is picked, or 0 

otherwise. 

Hifi et al. [18] discuss three algorithms.  The first two are considered 

constructive and complementary solution approaches, while the third uses a guided 

local search (GLS) method. 

The GLS algorithm by Hifi et al. [18], which is considered to be a metaheuristic, 

is similar to tabu search because of its memory utilization to propel the search to 

promising regions. It includes a penalty term in the objective function to avoid 

revisiting undesirable features of the previously visited solutions.  The algorithm has 

proven to be effective in solving some hard combinatorial optimization problems.  GLS 

has also been used effectively for the traveling salesman problem, quadratic assignment 

problem, and resource allocation.  It has also been applied on vehicle routing and bin-

packing problems. 

 

The aims of the algorithm are: 

a. use a greedy algorithm to start at a lower bound 

b. improve the quality of the initial solution by using the CP 

c. propel the search to the neighborhood for improvement of the solution by 

applying CCP 

 

A pseudo-utility ratio is computed for each item by the following formula: 
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},...,1{,
,

i

ij

ij
ij rj

WC

v
u ∈= , where .,. is a scalar product. 

The items are arranged in decreasing order of this pseudo-utility ratio, and are assigned 

starting with the largest, picking only one item from each class, until all classes have 

been covered.   

The complementary procedure, CP, comprises of an ADD and a DROP phase.  

 

The steps of CP are: 

1. assign items using the pseudo-utility to pick the best from each class 

2. CP terminates if the obtained solution is a feasible state, FS 

3. for an unfeasible state, US, the DROP phase considers the most violated 

constraint in the C 

4. the class of the largest weighted item of the most violated constraint is selected 

5. the ADD phase selects another item from this class, and  swap with the previous 

item of the most violated constraint 

6. if the new state is still US, another item is swapped with the just selected one, 

and this continues until an FS or the smallest unfeasibility amount for the 

obtained solution is reached.  

 

The complementary CP approach, CCP, utilizes an iterative improvement of the initial 

feasible solution.  

The steps of CCP are: 

1. a swapping strategy of picked items  
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2. a replacement stage which consists of replacing the previously assigned items 

with a new one selected from the same class. 

 

 

2.2 Tabu Search 

 The tabu search method was developed by Glover [14] to solve combinatorial 

optimization problems.  Combinatorial optimization problems, by definition, have a 

large discrete solution space.  Tabu search imposes restrictions on the search process 

while rummaging around the feasible region (Glover and Laguna [15]).  The search 

makes use of both short-term and long-term memories.  The short-term memory is used 

to perform moves by exploring neighborhood points while long-term memory aids in 

the intensification of the search once an improving direction is found or in the 

diversification of the search to areas previously unexplored.  The tabu search method 

can be used to guide any process that employs a set of moves for transforming one 

solution into another and offers an estimation of the function for measuring the 

attractiveness of these moves (Glover [11]). 

 The tabu search method can initially be viewed as a form of neighborhood 

search (Glover and Laguna [15]).  For the neighborhood search, a current solution has 

an associated set of neighbors in the feasible region.  The objective function is 

evaluated at each neighboring point and compared against the objective function value 

of the current point to determine the next “move”.   
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The tabu search procedure moves from one point to another in an effort to locate 

the global optimum.  The procedure has the ability to escape from a local optimum by 

accepting a sequence of “non-improving” moves.  At all stages, a tabu list is kept of 

moves that the procedure is not allowed to make (Pinedo [32]).  The list contains a fixed 

number of entries.  Every time a move is made in the neighborhood of the current point, 

the previous point is recorded at the top of the tabu list and other entries are shoved 

down one position while the bottom entry is removed.  The size of the tabu list should 

not be too small to prevent cycling, but a big list of tabu moves unduly constrains the 

search. 

  For unconstrained optimization, Prabandari [37] used tabu search to find starting 

points for optimization techniques.  Each local point, when coupled with a local 

optimization technique for unconstrained optimization problems, is expected to 

converge to a different local point. 

 Quadratic assignment problem (QAP) deals with the assignment of n objects to 

n locations in a way to minimize the total distance times flow measure between the 

locations (Skorin-Kapov [40]).  Methods for QAP involve two phases: construction and 

improvement.  Skorin-Kapov [40] incorporated tabu search into the improvement phase 

of the quadratic assignment problem to continue the search beyond local optimality. 

 Traveling salesman problem (TSP) is finding a complete tour that minimizes the 

total distance travelled by a salesman while visiting all of the n cities once, only once 

and returning to the starting city.  TSP is a special case of QAP.  The assignment 

problem is to ensure that the salesman visits all the cities once and terminates his 
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journey at the same city from where he started.  Knox [25] used tabu search as a tour 

improvement algorithm by switching the position of points in the tour. 

 Facility layout is the arrangement of departments within a facility.  Premkumar 

[38] used tabu search to find a layout better than the initial layout of a plant simulation 

layout (PSL) software while minimizing the cost involved in doing so. 

 Pinedo [32] used tabu search to reduce the number of tardy jobs on a single 

machine.  The neighborhood of a schedule with a lower tardiness of jobs was sought 

through adjacent pair wise interchanges of jobs. A tabu list of jobs that were swapped 

recently was also kept. 

 Tabu search based procedure for Solving 0-1 MultiObjective Knapsack 

Problem, the Two Objective Case was developed by Xavier and Arnaud [42].  The 

paper addresses a case of MultiObjective Combinatorial Optimization (MOCO) 

Problems, the so called 0-1 MultiObjective Knapsack (0-1 MOKP). 

MOCO can be formulated as below: 

maximize z1(x), z2(x), …, zp(x)    (2.7) 

subject to Xx ∈ . 

X is a discrete subset of nℜ , defines the decision space. z1(x), z2(x), …, zp(x) are p 

objective functions. 

The difficulty of MOCO arises due to research of all elements of the efficient 

frontier, E(P) that grows with number of objective functions.   Tabu search, TS, was 

introduced for MOCO problems because of its efficiency in obtaining good solutions 

for many mono-objective combinatorial problems. 

The 0-1 MOKP can be formerly formulated as below: 



 

 19

maximize ∑
=

n

i
i

j
i xc

1

  .,...,1 pj =    (2.8) 

subject to ω≤∑
=

n

i
ii xw

1

  

     { },1,0∈ix   .,...,1 nj =  

All coefficients, cj
i, wi and ω, are positive integers. 

 

The basic steps of the algorithm developed in the paper [42] are: 

1. the use of a greedy algorithm to obtain an approximation of supported efficient 

solutions SE(P) 

2. tabu search is used and any potential solution x that is generated, is added to the 

set of approximate solutions if it dominates some solutions, and the solutions 

dominated are removed 

3. a decision space reduction method is then employed 

The decision space reduction method used involves the introduction of an additional 

constraint.   Glover first introduced the bounds used by Xavier and Arnaud [42], which 

are 

LB = 








≤∑
=

s

i
iws

1

max ω , (wi) sorted in decreasing order, and 

UB = 








≤∑
=

s

i
iws

1

max ω , (wi) sorted in increasing order. 

The addition of an extra constraint,∑ =
=

n

i i bx
1

, b∈[LB, UB], allows for the reduction of 

the decision space containing both dominated feasible and infeasible solutions. 
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The Tabu Search Based Procedure (TSBP) components of Xavier and Arnaud’s 

paper [42] were investigated by two algorithmic variations.  The first starts with one 

initial feasible solution, and then explores one layer after the other in the solution space 

until a defined termination condition is satisfied.   The other uses a greedy mechanism 

to generate an initial feasible solution.  The exploration uses the information identified 

by the greedy algorithm to move from one layer to the other until a stopping criteria is 

reached. 

Tabu search has also appeared in recent times for the solution of knapsack 

problems.  A heuristic based on tabu search was presented by Glover and Kochenberger 

[13] whereby a flexible memory structure that integrates recency and frequency 

information of critical events during the solution process was employed.  Glover and 

Lokketangen [16] developed a tabu search approach for solving zero-one mixed integer 

programming problems.  A new approach to tabu search that provides a balance 

between intensification and diversification strategies was proposed by Hanafi and 

Freville [17]. 

 

2.3 Dynamic and Stochastic Knapsack Problems (DSKP) 

Kleywegt and Papastavrou [24]’s definition of DSKP is as follows.  Items, 

having associated reward, demand (size) for a limited resource (the knapsack) arrives 

according to a Poisson process in time.  There is a joint distribution according to a 

known probability between the resource requirements and rewards which becomes 

known at the time of item’s arrival.  An item is either accepted or not.  A reward is 

recorded for an acceptance and a penalty is incurred for a rejection.  The problem can be 
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stopped at any time yielding a terminal value which may be due to the amount of 

resources remaining.  The objective is to maximize the expected value (rewards minus 

costs) accumulated given a waiting cost within a time horizon. 

A classical SKP involves the assignment of items with known sizes, or weights, 

into a knapsack having a fixed capacity.  The objective is to maximize profit/reward.    

Resources that have weights and probabilities are requested and assigned to a knapsack 

with a fixed capacity.  A typical example involves items arriving randomly over time 

which must either be accepted or rejected on the spot without consideration of complete 

information.  This information includes the arrival time, the amount requested and the 

associated rewards derived from such operation.   

The stochastic knapsack problem has been studied by Ross and Tsang [39].  

They looked at a knapsack with an integer volume capable of holding different classes 

of objects.  Objects are assumed to arrive randomly to be assigned to the knapsack, and 

the arrival is exponentially distributed with mean depending on the system state.  They 

worked on finding a procedure to maximize the average revenue by either accepting or 

rejecting an object. 

Dynamic and stochastic knapsack problem (DSKP) was the title of the paper 

published by Kleywegt and Papastavrou [23].  Their paper outline a scenario whereby 

items to be assigned to knapsack arrive according to Poisson process in time.  

Associated with each item, is its reward, size, and a limited resource.  The item’s 

reward is received if it is accepted and a penalty is paid if rejected.  The resource 

requirement and reward of an item are jointly distributed according to a known 

probability distribution.  These become known when the item arrives. 
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Papastavrou et al. [31] included deadlines in their study of the DSKP.  The 

problem definition is the same as previously described with the addition of fixed time 

horizon.  They determined the optimal policy for the knapsack within the time allowed 

in order to maximize the expected accumulated reward. 

Kleywegt and Papastavrou [24] improved on their previous work by having 

items with random sizes.  Their objective was to determine the maximum expected 

value (rewards minus costs) accumulated.  A reward is received if an item is accepted, 

and a penalty is incurred if rejected.  The resource requirements and rewards are known 

at the time of the demand’s arrival, but unknown before then.  They showed that the 

DSKP has an optimal assignment that includes both an easily computed threshold 

acceptance rule and an optimal stopping one.   

The stochastic knapsack problem (SKP) to be studied involves items with 

possible processing times.  The processing times are unknown but have probabilities of 

being selected.  The objective of the problem would be to minimize the expected 

penalty cost of all assignments.  Two versions of the Stochastic Knapsack Problem with 

Penalty Cost, SKPPC, would be investigated; the one processor and many processors 

case.  Both the expected penalty cost and percentage of utilization would be recorded. 
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Chapter 3 

Multiple Knapsack Problems with Assignment 

Restrictions (MKAR)  

3.1 Statement of the Problem 

 The Multiple Knapsack Problem with Assignment Restrictions (MKAR) is a 

variant of the well-studied Multiple Knapsack Problem (MKP), which is a 

generalization of single Knapsack Problem (KP).  The MKAR deals with items that are 

constrained to particular knapsacks.  The problem to be solved is to maximize assigned 

weights for each knapsack, with due consideration to the assignment restrictions.  The 

formal representation of this kind of knapsack problem is described as follows: 

maximize ∑ ∑
∈ ∈Mi Bj

ijj

i

xw      (3.1) 

subject to ,i
Bj

ijj cxw
i

≤∑
∈

 Mi ∈  

     ,1≤∑
∈ jAj

ijx   Nj ∈  

     { },1,0∈ijx   jAi ∈  Nj ∈ , 

where, the variable xij indicates whether an item j is assigned to a knapsack i. 

The MKAR can be described as follows: 

N The set of items to be assigned, N = {1, . . ., n} 

M The set of knapsacks to be filled, M = {1, . . , m} 

wj The weight of item j 
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pj The profit of item j 

ci The capacity of knapsack  i 

Aj The set of knapsacks that can hold item j, Aj is a subset of M 

Bi The set of items that can be assigned to knapsack i, Bi is a subset of N 

A feasible assignment is one in which: 

• Each item is assigned to at most one knapsack, 

• Assignment restrictions are satisfied, 

• Total weight of items assigned to a knapsack does not exceed its capacity. 

The following assumptions can be made: 

wj, pj  > 0 and integers for all j in N 

 ci >0 and integer for all i in M 

minj { wj } ≤ mini { ci } 

maxj { wj } ≤ maxi { ci } 

wj > maxi { ci } 

 Dawande et al. [8] started the pioneering work in this area of knapsack problems 

and developed two major algorithms, which are successive knapsack, and selective 

successive knapsack algorithms. 

3.2 Successive Knapsack Algorithm (SK) 

This is the same as maximizing assigned weight under assignment restrictions.  

This simple algorithm assign items to knapsacks one after the other.  One knapsack is 

completely filled before going to the next.  The procedure of the algorithm is as follows: 

1. Initialize S = N, Weighti = 0 

∑
=

n

i 1
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2. For each knapsack i 

2.1 Solve a single knapsack problem for each knapsack i with item set S ∩  Bi  

 2.2 Let Si be the set of items packed with total Weighti 

 2.3 Remove Si from S 

 

3.3 Selective Successive Knapsack (SSK) Algorithm 

This is the other algorithm presented in the paper by Dawande et al. [8] which is 

bi-criteria.  It involves maximizing assigned weight and minimizing total unused 

capacity.  The steps of the algorithm follow: 

 

Initialize S = N, R = M, Weighti = 0, AW = 0 (total assigned weight) 

(1) For all i ∈ R, calculate Weighti and Wastei by solving a single knapsack problem for 

knapsack i with set S ∩  Bi. Weighti is the total weight of assigned items in knapsack i, 

Wastei is the unutilized space of the knapsack i. 

(2) Pick the knapsack with minimum ratio of Wastei / Weighti, say knapsack k. 

(3) Pack items into knapsack k to obtain Weightk, add Weightk to AW. 

(4) If AW ≥  T/3, then terminate the algorithm. 

(5) Otherwise, 

 (5.1) Remove assigned items from S and knapsack k from R. 

 (5.2) If R is nonempty, go to Step (1). 

 (5.3) If R is empty, terminate the algorithm. 
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 Research was conducted which involves proposing a similar algorithm to the SSK to 

solve this kind of knapsack problem (Dawande et al. [8]).  It was realized that the SSK 

generates solution using the procedure of subset-sum problems, hence the decision to 

investigate to see if there can be an improvement on this procedure by using a different 

approach.  A procedure called the largest unutilized capacity first (LUCF) algorithm 

was developed. It is a greedy algorithm that arranges both the items and knapsacks in 

non-decreasing order of their values, and assigns the next item to the knapsack with the 

largest unutilized capacity.  The items are arranged with mwww ≥≥≥ ...21 , while the 

knapsacks are ordered such that nccc ≥≥≥ ...21 .  It was believed that, a better 

approach to this problem will be the selection of knapsack based upon unutilized 

capacity, which means selecting the knapsack with the largest available space first.  The 

idea comes from scheduling theories whereby largest processing time first is used for 

allocating jobs on parallel machines to minimize completion time.  Such scheduling 

results in load balancing amongst the machines. In this case, knapsack capacities would 

be balanced thereby maximizing the weight assignment of items in the various 

knapsacks. 

3.4 Largest Unutilized Capacity First Algorithm (LUCF) 

The steps of the LUCF, the algorithm developed, are as follows: 

Initialize S = N, R = M, Weighti = 0, Spacei  = 0 

(1) For each item j 

 Pick the knapsack i with Spacei = 
i

max(ci - Weighti) in Aj 

(2) If wj > Spacei, remove item j from S 
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(3) Otherwise assign item j to knapsack i 

(3.1) Weighti  =   Weighti + wj 

(3.2) Remove item j from S 

(4) If 
j

min {wj} in Aj  > Spacei, remove knapsack i from R 

(5) If R is nonempty, go to Step (1) 

(6) If R is empty, terminate the algorithm. 

 

 Ten different ways of assigning items to knapsacks were modeled and studied.  

The same data set was used for all the ten procedures.  The performance of all were 

recorded and compared against the proposed LUCF algorithm. 

 

3.5 The Assignment Procedures 

The ten assignment procedures can be divided into two major groups; those with 

smallest items assigned first and ones with largest items first. 

  Procedure 1 had both the items and the knapsacks arranged in increasing order, 

that is, smallest items with smallest knapsacks.  The items were then assigned to the 

knapsacks simultaneously.  This means that the next item was assigned to the next 

knapsack in line.  This continues until no knapsack has enough space to accept the next 

item. 

 Procedure 2 also had both the items and the knapsacks arranged in increasing 

order.  However, unlike procedure 1, the next knapsack was filled completely until the 
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next item cannot be assigned.  This procedure was continued until all knapsacks have 

been assigned the most items. 

 Procedure 3 is similar to procedure 1 in the aspect of assignment, but the items 

and knapsacks are initially arranged in opposite order,  The items are arranged in 

increasing order, smallest items first, while the knapsacks are in non-decreasing order, 

largest knapsacks first.  The items were then assigned into the knapsacks. 

 Procedure 4 had the same item and knapsack arrangement as procedure 3, but 

similar assignment as procedure 2.  The next knapsack is filled completely before 

processing to the next. 

 Procedure 5 had the items arranged in decreasing order and the knapsacks 

arranged in increasing order.  This was largest items-smallest knapsacks setup.  Items 

were then assigned simultaneously into the knapsacks. 

 Procedure 6 had the items arranged in non-decreasing order, and the knapsacks 

arranged in increasing order.  The assignment was carried out with each knapsack 

completely filled before the next. 

 Procedure 7 was one of the three setups that had both the items and knapsacks 

arranged in non-decreasing order.  It was largest items, largest knapsacks procedure.  

The items were then assigned simultaneously into the knapsacks until no item could be 

admissible by any knapsack.  

 Procedure 8 shared the same items and knapsack arrangement with procedure 7.  

However, knapsacks were completely filled one after the other during assignment.  This 

continued until the next item couldn’t fit into the knapsack with the largest unused 
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space.  The procedure was stopped at this point since the remaining knapsacks would 

have smaller unused space. 

 Procedures 9 and 10 shared the same assignment protocol.  Largest unutilized 

capacity knapsack was selected next during the process.  This means that the next item 

would be assigned to the knapsack that has the biggest space.  Procedure 9 had the 

items arranged in increasing order while procedure 10 was the opposite with the items 

arranged in non-decreasing order. Items were then assigned one after the other until 

there was no space for the next one in any of the knapsacks.  Procedure 10 is the largest 

unutilized capacity first (LUCF) algorithm. 

 Items sizes of 25, 50, 100, and 200 were generated and assigned to knapsacks of 

capacities 2, 3, 4, and 5.  The data generation steps were taken from the book by 

Martello and Toth [30].  
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The ten procedures studied are: 

Table 1: The Assignment Procedures 

PROCEDURE 1 Assign next smallest item to the  

Next Smallest knapsack 

PROCEDURE 2 Fill next smallest knapsack with the 

Next smallest items 

PROCEDURE 3 Assign next smallest item to the  

Next biggest knapsack 

PROCEDURE 4 Fill next biggest knapsack with the 

Next smallest items 

PROCEDURE 5 Assign next biggest item to the  

Next smallest knapsack 

PROCEDURE 6 Fill next smallest knapsack with the 

Next biggest items 

PROCEDURE 7 Assign next biggest item to the  

Next biggest knapsack 

PROCEDURE 8 Fill next biggest knapsack with the 

Next biggest items 

PROCEDURE 9 Assign next smallest item to the  

Knapsack with the biggest space 

PROCEDURE 10 

(LUCF)  

Assign next biggest item to the  

Knapsack with the biggest space 
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3.6 Data Generation 
 
Uncorrelated items were generated with wj uniformly random in [10, 100], and 

capacities having ci uniformly random in 







∑ ∑

= =

n

j

n

j
jj mwmw

1 1

/6.0,/4.0  for i = 1, m-1.  

The capacity of the mth knapsack was set to cm = 







−∑ ∑

=

−

=

n

j

m

i
jj cw

1

1

1

5.0 . 

The following conditions must be satisfied for all formulations: 

(1) wj, pj  > 0 and integers for all j in N 

(2) ci >0 and integer for all i in M 

(3) minj { wj } ≤ mini { ci } 

(4) maxj { wj } ≤ maxi { ci } 

(5) wj > maxi { ci } 

 The items generated were sorted in ascending order for some procedures and 

in descending order for other procedures.  The same was done for the knapsack 

capacities generated. 

 MATLAB and EXCEL were the computation platforms.  All codes for both 

the generation of data sets and execution of knapsack/item assignments were performed 

in MATLAB.  An EXCEL table was used to compare the results generated. 

 Twenty runs of each knapsack/item combination were executed, and the same 

data set was used for all the procedures at all times.  The minimum, maximum, and the 

average of the unutilized capacities were then recorded for each procedure for the 

twenty replications. 

∑
=

n

i 1
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 All the procedures were able to fully utilize the knapsack capacity at least 50% 

of the time.  Procedures 5, 6, 7, 8, and 10 all returned maximum utilization in at least 

one replication.  The best performers, in all the three categories of data recorded, are 

procedures 6, 8, and 10. 

 The proposed LUCF (procedure 10) procedure performed very well amongst 

all studied procedures, and returned best initial solutions about 70% of the time.  The 

table on the next page shows the performance comparisons of the ten procedures. 

 The next step, in the solution of the problem, was the design of an 

improvement method.  Tabu search was implemented in the improvement stage of the 

initial solution generated by the procedures.  
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Table 2: Results of the unutilized capacities of all Assignment Procedures 
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Chapter 4 

Tabu Search 

4.1 Properties of Tabu Search 

 The tabu search method can initially be viewed as a form of neighborhood 

search (Glover and Laguna [15]).  For the neighborhood search, a current solution has 

an associated set of neighbors in the feasible region.  The objective function is 

evaluated at each neighboring point and compared against the objective function value 

of the current point to determine the next “move”.   

The following steps explain the neighborhood search method adapted from 

Glover and Laguna [15].  

Step 1: Initialization 

1.1 Select a starting point xnow in the feasible space. 

1.2 Record the current “best” solution.  If xnow is better than xbest, set xbest = xnow,  

else xbest remains. 

Step 2: Decision and Termination 

2.1 Choose a solution, xnext, from the neighborhood points of xnow.   

2.2 Terminate if: (i) xnext can not be found by applying the decision criteria or  

   (ii) when a termination criterion is met. 

Step 3: Update 

 Reset xnow = xnext, and perform Step 1(b).  Return to Step 2. 
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 The tabu search method uses the above neighborhood search strategies and 

builds upon the set of criteria to be employed to move from one point to another.  While 

doing so, it employs the use of a tabu list, short-term, and long-term memory structures.  

Several unique terms and definitions are used in the tabu search method. 

Tabu size is the number of moves in the tabu list.  Tabu list is the set of moves 

that are not permitted by the search at any particular moment.  The number of restarts 

is the maximum number of times the tabu search procedure is run before a particular 

search is terminated.  Restarts diversify the search to other areas on the surface of the 

measured sample in hopes of obtaining an improved solution.  The number of 

iterations equals the number of moves allowed within each restart.  Iteration is a move 

from one sample point to another on the measurement surface.  This could be a move 

from a good solution to a bad solution because the heuristic allows such moves in order 

to escape from local optimality.  The number of iterations is always a function of the 

size of the sample to be measured.  The number of destroyed iterations is the number 

of non-improving moves allowed within each restart.  Non-improving moves, or bad 

moves, are moves from a current solution to a solution with an objective function value 

worse than the current solution.  This enables the search to escape from a region of local 

optimal solution to an immediate neighboring region in search of a better solution.  

Short-term memory stores the best solution for each restart. The concept is that the 

global optimal solution should be contained in the set of good solutions.  The solution 

for each set of iterations is recorded and the best solution picked out of the recorded 

solutions.  Long-term memory stores the number of times each point has been 

sampled.  Intensification is the process of focusing the search in areas where previous 
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best solutions were obtained.  This strategy assumes that the global optimum will be in 

this neighborhood.  Diversification is the process of focusing the search in unexplored 

areas by avoiding previously visited locations.  

 

4.2 Problem Definition 

Tabu search, a very reliable and promising search procedure, is to be applied to 

the Multiple Knapsack Problem with Assignment Restrictions (MKAR).  The MKAR 

deals with items that are constrained to particular knapsacks. 

The formal representation of this kind of knapsack problem follows: 

maximize ∑ ∑
∈ ∈Mi Bj

ijj

i

xw      (4.1) 

subject to ,i
Bj

ijj cxw
i

≤∑
∈

 Mi ∈  

     ,1≤∑
∈ jAj

ijx   Nj ∈  
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where the variable xij indicates whether an item j is assigned to a knapsack i. 

The notations of MKAR can be described as follows: 

N The set of items to be assigned, N = {1, . . ., n} 

M The set of knapsacks to be filled, M = {1, . . , m} 

wj The weight of item j 

pj The profit of item j 

ci The capacity of knapsack  i 

Aj The set of knapsacks that can hold item j, Aj a subset of M 



 

 37

Bi The set of items that can be assigned to knapsack i, Bi a subset of N 

 The utilization of the features of tabu search is expected to bring good results in 

reasonable time.  The tabu size, tabu list, number of bad moves allowed, short and long-

term memories, intensification, and diversification would be the most used for finding 

the solution of the MKAR.  The tabu size and list would be determined by the problem 

sizes.  The number of bad moves allowed would be set to yield good results.  The short-

term memory would be used to store the result of iterations, while the long-term 

memory would store the best overall result.  The intensification step would be in three 

steps. The first step would be individual optimization of each knapsack assignment, 

while the second step is the employment of problem set reduction by fixing some items 

in the solution set.  Third step would be the pair-wise exchange of items between 

knapsacks.  All these are implemented after an initial feasible solution has been 

obtained.  Diversification to other regions of the solution space would be carried out by 

using the solutions obtained by the various assignment methods as a starting point 

before the steps of the intensification procedures.  The unattractive solutions, i.e. bad 

moves, during iterations would be allowed to see if this propels the procedure into other 

regions.  The algorithm stops after a fixed number of iterations, and maybe by the use of 

a stopping termination criterion. 

 

4.3 Solution Method 

The solution would be obtained by the following major steps: 

1. Implement the various assignment methods to obtain a series of feasible starting 

solutions. 
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2. Initialize tabu size (TS), tabu list (TL), number of bad moves allowed, (BM), 

short-term memory (SM), and the long-term memory (LM). 

3. Pick the procedure with smallest unutilized capacity. 

4. Perform intensification to improve on the solution obtain. 

5. Perform diversification to improve solution. 

6. Terminate algorithm if best assignment is obtained or after all solutions methods 

have been investigated. 

4.4 Steps of Tabu Search Procedure 

The major steps of the solution method involve 5 procedures.  These procedures are the 

main procedure, 3 intensification procedures and a diversification procedure.  

The main procedure (MP) involves obtaining initial feasible solutions from all 

the procedures.  The procedure with the maximum utilization was then selected for the 

next stage, the first intensification procedure. 

 The first intensification procedure (IP1) consists of trying to maximize the 

overall capacity utilization by solving single knapsack problem for each knapsack.  The 

result obtained was then passed over to the second intensification procedure, IP2. 

 Further improvement was the aim of IP2, the second intensification procedure.  

This involves reducing the problem size by making some items to be included in the 

assignment solution.  That is, some items are fixed, always selected, in any assignment. 

 Pair-wise exchange of items between knapsacks was the purpose of IP3, the 

third intensification procedure.  Items are exchanged between two knapsacks to see if 

further improvement could be made on the solution. 



 

 

 The last, but not the least, was the diversification procedure, DP

integral part of tabu search.  The next 

amongst the remaining 

steps with IP2, and IP3 were repeated.

have been utilized. 

The procedures 

outlined in solving the MKAR

 

Figure 1: Tabu Search Implementation in MKAR.
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The last, but not the least, was the diversification procedure, DP

integral part of tabu search.  The next best solution, in terms of capacity utilization, 

amongst the remaining procedures acts as a starting solution for IP1, and the whole 

steps with IP2, and IP3 were repeated.  This was done for all the procedure

 below were implemented in MATLAB, to perform t

in solving the MKAR. 

  

Figure 1: Tabu Search Implementation in MKAR. 

The last, but not the least, was the diversification procedure, DP, which is an 

best solution, in terms of capacity utilization, 

IP1, and the whole 

procedures until all 

, to perform the steps 
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4.4.1 Main Procedure (MP) 

1. Solve the MKAR using ALL PROCEDURES 

2. Save the solutions of all procedures in Mresult 

3. Pick the procedure with the best solution say Zbest and Xbest 

4. Make Z* = Zbest, and X* = Xbest 

5. Remove Mbest from Mresult 

6. Initialize TL = 4 and BM = 0 

7. CALL IP1 

 

4.4.2 Intensification Procedure 1 (IP1) 

1. Initialize Z, X, S=N, R=M 

2. Update TL 

3. Pick the knapsack, say knapsack k, with the largest unutilized capacity 

4. Solve 0-1 KP on knapsack k to yield Z and X 

5. If Z > Z*, replace Z* with Z, and X* with X 

Else If Z ≤ Z*, BM = BM +1 

6. Remove assigned items from S and knapsack k from R 

7. If { }0=R and BM < 4, go to step 2 

8. CALL IP2 
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4.4.3 Intensification Procedure 2 (IP2) 

1. Initialize Z, X, S=N, R=M,  BM = 0, F 

2. Update TL 

3. Pick the knapsack, say knapsack k, with the largest unutilized capacity 

4. Fix F items in knapsack k 

5. Solve the MKAR using the LUCF algorithm on the reduced problem to yield Z 

and X 

6. If Z > Z*, replace Z* with Z, and X* with X, F = F + 1 

Remove assigned items from S and knapsack k from R, go to step 2 

7.  If Z ≤ Z*, BM = BM +1, F = F + 1, 

If BM = 4, Remove assigned items from S and knapsack k from R go to step 2 

8. CALL IP3 

 

4.4.4 Intensification Procedure 3 (IP3) 

1. Initialize Z, X, S=N, R=M,  BM = 0 

2. Update TL 

3. Pick two adjacent knapsacks, say knapsacks k1 and k2 

4. Exchange items between knapsacks k1 and k2 

5. Solve 0-1 KP on knapsack k1 and knapsack k2 to yield Z and X 

6. If Z > Z*, replace Z* with Z, and X* with X 

Else if Z < Z*, B = B + 1 

7.  If BM < 4, go to step 2 

8. CALL DP 
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4.4.5 Diversification Procedure (DP) 

1. Pick the next best procedure from Mbest 

2. Remove this procedure from Mbest 

3. CALL IP1 

4. If { }0∉Mresult , go to step 1 

5. Terminate the algorithm, and record Z* and X* as the best solution obtained 

 

The performance of the procedure was measured by the percentage utilization 

which is defined as the percentage ratio of the total utilization by the total knapsack 

capacities. 

)(

)(
%

capacitiessum

nsutilizatiosum
nUtilizatio = . 

 

This was found to be more than 99% from the 16 problems solved.  Table 3 contains the 

percentage utilization for the items/knapsack combinations generated and analyzed.   

The table has data for initial solution, final solution, and the percentage increase.  

The initial solution was the best overall solution selected from all the initial feasible 

results of the ten procedures after the execution of the main procedure.  The final 

solution is the best result obtained from all the steps of both the intensification and the 

diversification procedures.  

The three levels of intensifications were employed to obtain the best solution 

possible.  No comparison could be carried out to check the performance of the 

intensification procedures against each other because they have different starting points.  

It was also observed that the there was no consistency in regards to solution 
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improvement from one intensification procedure to another.   There was little or no 

improvement in some cases.  IP1, the first intensification procedure, seems to give the 

best solution improvement in most cases in terms of capacity utilization increase. 

The item sizes of 25, 50, 100, and 200 were generated, and assigned into 2, 3, 4, 

and 5 knapsacks.  The tabu search was terminated at any point a full utilization is 

obtained.  This occurred three times in all the sixteen problems solved.  Maximum 

utilizations were obtained six times after the initial solution were improved upon.   

Table 3: Results of Tabu Search Implementation on MKAR. 

# of Knapsack # of Items   Solution   
m n initial final %increase 

2 25 98.87 100.00 1.14 
  50 97.39 100.00 2.68 
  100 99.71 100.00 0.29 
  200 100.00 100.00 0.00 
3 25 98.31 99.48 1.19 
  50 100.00 100.00 0.00 
  100 99.96 100.00 0.04 
  200 97.47 99.55 2.14 
4 25 98.18 99.39 1.23 
  50 100.00 100.00 0.00 
  100 92.39 99.96 8.20 
  200 99.98 100.00 0.02 
5 25 97.72 99.19 1.50 
  50 97.96 100.00 2.08 
  100 99.88 99.97 0.09 
  200 99.84 100.00 0.16 
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Chapter 5 

Stochastic Knapsack Problems with Penalty Cost 

(SKPPC) 

5.1 Introduction  

In this chapter, we consider the stochastic knapsack problem with penalty cost.  

More specifically, we focus on the case where there is only one item type.  The 

processing time for each item of the specified type is unknown.  We assume that the 

processing time can take one of two possible values with probabilities associated with 

each value.  The goal is to assign the items with unknown processing times into 

knapsacks in a way to minimize expected under-utilization of the knapsacks. 

The first problem we studied involves a single knapsack.  This study was then 

extended to multiple knapsacks.  Although the problems bear similarity to problems 

discussed previously on DSKP, these have penalty cost associated with both under-

utilization and over-utilization of resources. The probabilities associated with item types 

are known prior to the commencement of execution of any problem.  This property 

makes it different from all DSKP, studied to date, which consider mostly dynamic 

probabilities.  The objective is to minimize the total expected penalty cost.  There is 

penalty cost for under-utilization, as well as over-utilization of resources.  This means 

that the expected total cost value always has a penalty function for both cases of 

assignments.   All item assignment combinations are generated, these are called 

scenarios, and the expected cost value calculated for each scenario. 
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The steps of the solution procedure, of a one-knapsack two-item-type problem would 

be: 

1. compute all possible item assignments, 

2. estimate the objective values among all scenarios, and 

3. increase number of item type and repeat step 1 

The motivation of our research involves security inspection of packages at the 

airports.  Packages are categorized into two groups: high-risk and low-risk.  The high-

risk packages require more inspection time.  The objective is to minimize total expected 

cost of packages inspected, and a penalty cost is incurred if the given time is not fully 

utilized or over-utilized. 

 

5.2 Notations 

The problem can be described either in terms of scheduling jobs or item assignment. 

Here, C which normally represents the knapsack capacity can also mean the available 

machine time in case of job processing, or resources available to processors.   cmax 

would then mean the processing time of the last job as compared to the maximum 

assigned weight in case of knapsack assignments.  Without loss of generality, we can 

present the problem using the following notations similar to job scheduling in a 

production planning environment. 

 

First, we assume the processing time is t1 for one realization of the processing time of 

each job and t2 is the value for the other realization of the processing time of the job.  

The expected processing time is defined as E[T]. 
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Objective function = minimize expected total penalty cost. 

n = number of jobs 

pj = processing time of job j 

αj = probability associated with selection of job j 

λ1 = penalty for each unit time for under-utilization 

λ2 = penalty for each unit time for over-utilization 

φ = set of all possible scenarios  

C = total available machine time/resources 

cmax = completion time of the last assigned job 

 

5.3 Mathematical Formulation for n-job-1-processor Case 

The objective is to minimize expected total penalty cost of processing a set of items.  

Items were assigned by selecting the number of items that generates the minimum 

penalty cost.  Since each item has two possible scenarios, for a set of n items, there are 

2n possible scenarios. 

 

The mathematical formulation can be described as follows: 

 Minimize )]0,max()0,max([ max2max1 CccCS kk

k
k −+−∑

∈

λλ
φ

        (5.1) 

kS  = the probability that the kth scenario will happen 

kcmax= completion time of last job under scenario k 

∑=
j

k
j

k pcmax for all φ∈k where k
jp = the processing time for job j in scenario k. 
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n = number of items waiting for service 

For the case that all items are the same type, that is, pj = t1 with probability α and pj = t2 

with probability1-α.  Then to assign n jobs, we will get n+1scenarios. 

 

For an n-job problem, this problem can be written as: 

)}0,max()0,max({)1()( max2max
0

1 CccC
k

n
nf kk

n

k

knk −+−−







= ∑

=

− λλαα       (5.2) 

Where, 

)(21max kntktck −+=  

 

For instance, in the following, we list a two-item case.   

Table 4: The two possible realizations of each item 

 
Processing time for 

the first item 

Processing time for 

the second item 
Probability 

Scenario 1 t1 t1 α2 

Scenario 2 t1 t2 2 α (1- α) 

Scenario 3 t2 t2 (1- α)2 

 

The 2-job type can be represented mathematical as below: 

)}0,max()0,max({)1(
2

)2( max2max

2

0
1

2 CccC
k

f kk

k

kk −+−−







= ∑

=

− λλαα      (5.3) 

 

If the completion time of all scenarios is less than C, then 
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)}({)1(
2

)2( max

2

0
1

2 k

k

kk cC
k

f −−







= ∑

=

− λαα           (5.4) 

If the completion time of all scenarios is greater than C, then 

)}({)1(
2

)2( max2

2

0

2 Cc
k

f k

k

kk −−







= ∑

=

− λαα            (5.5) 

 

5.4 n-job-1-processor Numerical Example 

 Each job has two possible processing times of 16 and 1, each with the 

probabilities 0.2 and 0.8 respectively.  The results are shown in the obtained table. 

 Tables 5 and 6 show the worksheet derived for this type of problem.  It was 

noted, from the results, that the values obtained started to increase after an initial 

descent.  This makes us conclude that the results could have a convex structure after this 

behavior was repeatedly obvious for some other assignment scenarios as well. 
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Table 5: 2-job assignment results for selection of 2, 3, 4, 5 and 6 items 



 

 50

Table 6: 2-job assignment results for selection of 7, 8, 9 and 10 items  
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5.5 Job Assignment Scenarios 

 A job assignment may consist of several scenarios.  The scenarios would be 

under-utilized most of the time at the start of job assignments.  After the initial steps, 

the assignment of an additional job to any of the scenarios may result either in that 

scenario to be still under-utilized or over-utilized.   

 An example of a typical job assignment with 5 scenarios, S1, S2, S3, S4, S5, that 

are under-utilized is shown as follows: 

 

Figure 2: Typical Job Assignment Scenarios 

 

The current objective function for this setup is 

515414313212111 dSdSdSdSdS λλλλλ ++++       (5.6) 

i
i cCd max−=  for i = 1 to 5 

S1 

S2 

S3 

S4 

S5 

C 
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Figure 3: Addition of a job to the current assignment of S3 with n jobs 

 

To prove the convexity of the value function, we first analyze an example 

corresponding to scenario 3.  Assume we have assigned n jobs and we plan to assign the 

n+1th job.  For instance, supposing job n+1 is added to S3, this makes the objective 

value of this scenario to be 

)})(1(),)(1(max{

)}(),(max{

3
2

132
2

1331

3
1

132
1

1331

dtStdS

dtStdS

nn

nn

−−−−+

−−

++

++

αλαλ

αλαλ
         (5.7) 

where,   

 =+
1

1nt processing time of job n+1 with probability α 

=+
2

1nt processing time of job n+1 with probability 1-α 

 

Assuming all assignments on S3 exceed available time of resources, this leads to 

))(1()( 3
2

1323
1

132 dtSdtS nn −−+− ++ αλαλ       (5.8) 

C 

S3

33

d3 

t1 

t2 

α 

(1-α) 
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In general, if for both scenarios after the assignment of the n+1th job, the resource limit 

(time limit C) is not reached, we have ][)()1( 31
33 TESnfnf ss λ−=−+ .  (5.9) 

If ,)(3 Cnf s ≥ then we have ].[)()1( 32
33 TESnfnf ss λ=−+              (5.10) 

Otherwise, if ,)(3 Cnf s < we analyze the following cases: 

(1) if for both scenarios after assignment of the n+1th job, the resource limit (time 

limit C) is not reached, we have ][)()1( 31
33 TESnfnf ss λ−=−+ .            (5.11) 

(2) if only one assignment exceeded the capacity and the other did not, without loss 

of generality, we assume .2
1

1
1 ++ < nn tt  Then,  

.))(1()()()1( 3313
2

132
1

1331
33 dSdtStdSnfnf nn

ss λαλαλ −−−+−=−+ ++         (5.12) 

(3) if both assignments exceed the capacity, then we have  

.))(1()()()1( 3313
2

1323
1

132
33 dSdtSdtSnfnf nn

ss λαλαλ −−−+−=−+ ++         (5.13) 

5.6 Convexity of Cost Function 

It was noticeable during experiment and testing that the cost function has 

convexity properties, hence in this section, we prove that the cost function, f(n), is 

convex. 

 

To prove convexity, we need to show that for each scenario, we have  

,0
)1()(

≥
∂

−∂
−

∂
∂

n

nf

n

nf ss

                 (5.14) 

this is equivalent to proving that  

)1()()()1()1()2( −−≥−+≥+−+ nfnfnfnfnfnf ssssss .           (5.15) 
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Note here, if ,)( Cnf s ≥ then we have increment of inserting each additional job after 

job n to be ][2 TSEλ .  If ,)( Cnf s < then we have increment of inserting each additional 

job before job n to be ],[1 TSEλ− which is less than ][2 TSEλ .  The conclusion holds for 

both ends. 

In the following, we only need to prove that the conclusion holds for steps in-between. 

Without loss of generality, we can assume .)( Cnf s <  After adding one additional job, 

we only need to consider two cases. 

Case 1: We have the total finish time of one scenario larger than C and the total 

finishing time of the other scenario smaller than C, as shown in Figure 3.  Under this 

case, we have 

.)1())(1()()1( 3132211 dSdtStSnfnf
ss αλαλαλ −−−−+−=−+             (5.16) 

Note here, for notation brevity, we use t1 instead of 1 1+nt  and t2 instead of .2
1+nt  

Then, we can observe that, 

≥−−−−+−=−+ 3132211 )1())(1()()1( dSdtStSnfnf
ss αλαλαλ  

].[)1())(1( 13123111 TSEdStdStS λαλαλαλ −=−−−−+−               (5.17) 

Similarly, we can observe that  

≤−−−−+−=−+ 3132211 )1())(1()()1( dSdtStSnfnf
ss αλαλαλ  

].[)1()1( 1222222 TSEtStStS λαλαλαλ =+−≤−                (5.18) 

Case 2: We have the total completion times of both realizations larger than C.  Under 

this case, we have 

).)(1()()()1( 322312 dtSdtSnfnf ss −−+−=−+ αλαλ                 (5.19) 
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It is easy to see that  

][0))(1()()()1( 1322312 TSEdtSdtSnfnf ss λαλαλ −≥≥−−+−=−+             (5.20) 

and  

 
].[)1(

))(1()()()1(

22212

322312

TSEtStS

dtSdtSnfnf ss

λαλαλ

αλαλ

=−+≤

−−+−=−+
              (5.21) 

This conclusion also holds. 

In the following, we only need to show that 

)()1()1()2( nfnfnfnf ssss −+≥+−+                 (5.22) 

For the above case 1, since )()1()1()2( nfnfnfnf ssss −+≥+−+ is obvious for case 

2. 

In order to show )()1()1()2( nfnfnfnf ssss −+≥+−+  holds for case 1, if 

,02 31 >− dt then we have  

)()1()2(

)())(1(

)2()1)(1()1()1()2(

13122312

1313212

3122212

tdStSdtS

tdSdttS

dtStStSnfnf ss

−−−+−=

−−−+−+

−+−−+−=+−+

αλαλαλ

αλααλ

ααλααλααλ

        (5.23) 

Under this case, in order to show ),()1()1()2( nfnfnfnf ssss −+≥+−+ we only 

need to prove that  

.)1())(1(

)()1()2(

3132211

13122312

dSdtStS

tdStSdtS

αλαλαλ

αλαλαλ

−−−−+−≥

−−−+−
               (5.24) 

Since 02 31 ≥− dt  according to our assumption and ,0)1( 32 ≥− dS αλ we only need to 

prove that .)1()( 3113111 dStdStS αλαλαλ −−≥−−                (5.25) 

It is equivalent to prove .)1(0)2( 31311 dSdtS αλαλ −−≥≥−               (5.26) 

It is easy to see that the above inequality holds since 312 dt ≥ and .0)1( 31 ≥− dS αλ  
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Thus, the conclusion holds. 

 

If ,2 31 dt < then we have  

).)(1())(1(

)1)(1()1()1()2(

1313212

112212

tdSdttS

tStStSnfnf ss

−−−−+−+

−−−+−=+−+

ααλααλ

ααλααλααλ
            (5.27) 

We need to prove that 

3132211

1313212

112212

)1())(1(

))(1())(1(

)1)(1()1(

dSdtStS

tdSdttS

tStStS

ααλαλαλ

ααλααλ

ααλααλααλ

−−−−+−≥

−−−−+−+

−−−+−

               (5.28) 

That is, we need to prove 

.)1()1())(1(

))(1()1(

313211131

3121112

dSdStStdS

dtStStS

αλαλαλααλ

ααλααλααλ

−−−−−≥−−−

−−+−−
              (5.29) 

Thus, we want to show 

(i) 0)1())(1()1( 3231212 ≥−+−−+− dSdtStS αλααλααλ               (5.30) 

and 

(ii) 0))(1()1( 131311111 ≥−−−−+− tdSdStStS ααλαλααλαλ  valid.             (5.31) 

Since )( 133 tdd −≥ α and ,2αα ≥ (ii) is valid. 

We also have 

.02)1(22)1(2)( 111313311 ≥=−+≥−+=+−+ tttdtddtt αααααα              (5.32) 

Therefore, (i) holds. 

We also can conclude the function is convex. 
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5.7 The n-job m-processor Problem 

This is the extension of the n-job-1-processor problem discussed earlier.  This 

problem involves m number of inspectors, and n number of packages with l number of 

possible outcomes.  The objective of the problem is to minimize the expected penalty 

cost for all inspectors.  Each job will go through pre-scan to visualize the processing 

time of the job.  Therefore, the processing time of each type of package is known before 

assignment, and dependent on the probability of the selection of that package.  Two 

kinds of problems were formulated in this category.  One is to find the maximum 

number of packages that could be assigned within a given time limit.  The other is to 

minimize the total penalty cost for all inspectors for a given number of packages. 

 

5.7.1 Maximize the Number of Packages and Minimize Penalty Cost 

Packages are assigned to the inspectors based on the amount of resources 

available.  The next package is assigned to the inspector with the largest available 

resources.  This is done to achieve a sequential reduction of available resources to each 

inspector.  This will in turn lead to the minimization of penalty incurred.  There is a 

penalty for both under-utilization and over-utilization of resources.  In this problem, 

only the under-utilization penalty was considered. 

The following notations were used throughout the definition of this problem: 

n = total number of packages 

m = total number of inspectors 

l = possible outcomes for all packages 
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jlp  = inspection time of package j with outcome l 

lα = probability associated with jlp  

C = total available resources for each inspector 

λ1 = unit penalty cost for under-utilization 

λ2 = unit penalty cost for over-utilization 

ci = competition time of the last job in inspection i 

5.8 The n-job m-processor Problem Formulation 

Objective function of this problem is to minimize the expected penalty cost for 

all inspectors.  This can be formulated as below: 

min. ∑ ∑∑ ∑
= == =
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ijx  = package j is assigned to inspector i  

jlp  = inspection time of package j with outcome l 

nnSinSiSi
i pxpxpxc +++= ....

21 2211  

Since only the under-utilization of resources was considered for this problem, the 

formulation can be simplified as: 
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min. ∑ ∑∑∑
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This formulation is subject to the same set of constraints as the one above, but with only 

the under-utilization penalty cost λ. 

5.9 The Solution Method for the n-job m-processor Problem 

We use the sampling approximation average method to solve the problem.  To 

obtain the average value, we take samples and obtain the average value of these samples 

as the approximation of the objective function value.  The solution of each sample will 

involve the assignment of packages to inspectors until all inspectors have been fully 

utilized.  The Largest Unutilized Capacity First (LUCF) rule was again utilized in the 

solution to solve each sample. 

Each sample can be solved using the following algorithmic steps: 

Initialize P = N, R = M, ci = 0 (utilized space), C (available resources).  For notation 

brevity, we let pj represent the realized processing time pjsj for some sj based on the 

sampling result. 

(1) Pick a package j from P 

(2) Select an inspector i with min (ci) 

(3) If ci + pj > c 

      (a) Remove inspector i from R 

      (b) Go to Step (2) 

(4) Otherwise assign package j to inspector i, remove package j from P and update ci = 

ci + pj 

(5) If either R or P is nonempty, go to Step (1). 



 

 

(6) Otherwise, terminate the algorithm.

These steps are represented by 

Figure 4: Algorithmic steps of the 
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terminate the algorithm. 

These steps are represented by the flowchart below: 

Figure 4: Algorithmic steps of the 1st SKPPC Problem
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5.10 Numerical Example Data Generation 

 We test the case that each job has two possible realizations.  For instance, l=2.  

Uncorrelated package were generated with processing times pj uniformly distributed in 

[10, 100], and capacities ci uniformly distributed in 







∑ ∑

= =

n

j

n

j
jj mpmp

1 1

/6.0,/4.0  for i = 1, 

m-1.  The capacity of the mth knapsack was set to cm = 
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=
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1

1

1

5.0 .   Note here, 

pj represents the expected processing time.  Based on this, we also assume pjsj uniformly 

distributed in [10, 100].  The average of all capacities was then calculated for equal 

resources amongst all inspectors.  A random number is generated to determine pj to be 

pjsj for some sj=1 or 2.  If the random number is less than,
1s

α  then pj = pj1.  Otherwise, 

pj= pj2.   All data generated were made integers except for the probabilistic values.  

Finally, we set λ equal to 1. 

 

The following conditions must be satisfied for all formulations: 

(1) pjsj > 0 and integers for all j  

(2) ci > 0 and integer for all i  

(3) }{min}{min , iijjsj csp
j

≤  

(4) }{max}{max , iijjsj csp
j

≤  

(5) pj > maxi { ci } ∑
=

n

i 1
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5.11 Numerical Example Results 

As described in the previous section, each package has two possible processing 

times with each having its own probability of being assigned.  A number was generated 

between 0 and 1 to determine the processing time of each job.   

The proposed LUCF was used to assign job after pre-scan.  Assignment was 

stopped once none of the packages left can be accepted by any inspector without being 

over-utilized.  The penalty was calculated for each package/inspector combinations.  

One hundred samples were computed for each combination and the average penalty and 

capacity utilization were calculated.  We tested cases with package sizes to be 25, 50, 

100, and 200 and they are assigned to 2, 3, 5, and 10 inspectors respectively.  

Table 7 shows the results obtained for the various package/inspector 

combinations.  The actual expected penalty costs are recorded in the table.  It was 

observed that the larger the ratio m/n, the better the results produced. 

Table 7: Results of 1st SKPPC Problem. 

# of Inspectors # of Packages 
                               

Solution   
m n Penalty Cost % Utilization 
2 25 1.66 97.49 
  50 0.11 99.17 
  100 0.00 99.63 
  200 0.00 99.85 
3 25 6.02 95.11 
  50 0.79 98.52 
  100 0.02 99.41 
  200 0.00 99.77 
5 25 23.50 90.69 
  50 6.04 96.78 
  100 0.58 98.95 
  200 0.01 99.58 

10 25 107.17 74.48 
  50 45.42 90.77 
  100 10.81 97.06 
  200 1.04 99.05 
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Chapter 6 

Inspection Problem – an SKPPC Problem 

6.1 Introduction 

Inspection of packages or containers at an inbound point, security check of 

passengers at the airports, inspection of goods and services, in general, require 

allocation of resources. In this section, we focused our attention on inspection of 

packages where each package can be classified as a high-risk and low-risk package 

depending on a set of factors determining the level of risk for the package.  Let lα

denote the probability that a package is of type l, where l=1, 2 represent high-risk and 

low-risk packages, respectively. Let pjl denote the processing time for package j of type 

l.  Assuming m inspectors and C time units of maximum inspection time per inspector, 

the problem is to determine the number of inspectors and number of packages to be 

assigned to each inspector in a way that the expected value of the total inspection cost is 

minimized. The total inspection cost is defined as the weighted cost of the under-

utilization and over-utilization of the inspectors during the inspection period, C. We 

next formulate the problem as a stochastic knapsack problem and discuss solution 

methodology. 

 

6.2 Problem Formulation 

As discussed in the previous chapter, the inspection problem can be formulated 

as follows: 
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where,  

ijx  = package j is assigned to inspector i  

ic  = total inspection time for inspector i under scenario Si.  
 
For an n-package and m-inspector inspection problem, there will be 2n package arrival 

combinations with each package being either high or low-risk type. Each inspector may 

inspect none or all packages provided that the sum of packages inspected by all of the 

inspectors equal n. Let Si denote the number of packages inspected by inspector i with 

probability αi of occurrence. Then, 
mSSS ααα ...

21
 is the probability of a scenario. As an 

example, consider a 4-package, 2-inspector problem. There are 8 possible inspection 

sequences with 1 and 2 indicating high-risk and low-risk packages, respectively. These 

combinations are: 

 1     1     1     1 
 1     1     1     2 
 1     1     2     1 
 1     1     2     2 
 1     2     1     1 
 1     2     1     2 
 1     2     2     1 
 1     2     2     2 
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There are 5 scenarios for each inspector as shown below: 

Table 8: Scenarios for 2-inspector, 4-package assignments  

Scenarios Inspector 1 Inspector 2 

1 0 packages 4 packages 

2 1 package 3 package 

3 2 packages 2 packages 

4 3 packages 1 package 

5 4 packages 0 packages 

 

For the sake of simplicity, let’s refer to Scenario 1 as the scenario where 

inspector 2 inspects all the packages. Similarly, let’s redefine the rest of the scenarios. 

Scenarios 4 and 5 will have same probability of occurrence and same objective function 

value as Scenarios 1 and 2, hence will not be separately calculated.  Let the objective 

function value contributed by a scenario be indicated by ),( jnjZ n − .  This means that 

out of n inspected packages; j packages are inspected by inspector 1, and the rest by 

inspector 2.  

 

6.3 Algorithm 

 An algorithm was developed to solve any instance of this problem involving any 

number of inspectors, any number of packages with 2-package types. 

 

6.3.1 Notations 

n = numbers of packages inspected 
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m = numbers of inspectors 

1α  = probability associated with assignment of package type 1 

2α  = probability associated with assignment of package type 2 

p1 = inspection time for package type 1  

p2 = inspection time for package type 2  

C = time available for inspection 

Z* = optimal scenario, scenario with the minimum total inspection cost 

Si = scenario i  

ci = inspection cost of scenario i 

 

6.3.2 Steps of the Algorithm 

Step 1: Initialize the variables n, m, α1, α2, p1, p2, C, Z*, Si, ci. 

Step 2: Compute all possible package arrival combinations for n and all possible 

feasible scenarios for m. 

Step 3: Calculate the penalty cost ci for Si. 

Step 4: Record Zi(Si) for the minimum ci. 

 If Zi(Si) < Z*, replace Z* with Zi(Si). 

 If Si is the last scenario, go to Step 5, else go to Step 3.  

Step 5: Record Zi(Si). 

 All computations of the algorithm were performed in MATLAB.  The number 

of packages to be inspected, number of inspectors, probabilities of selection, processing 

times of packages, time available to inspectors, and the utilization penalties were all 

initially specified at the beginning of the MATLAB code.  
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 The unique combinations of package assignment was then computed, and stored 

in an array, with the probability for each assignment. 

 The total penalty cost for all scenarios was then calculated, and the table of 

results generated.  The data was then exported into EXCEL for the graphical 

representation. 

 The problems of assignment of 15 packages were solved within minutes.   This 

was repeated for different values of the variables.  Most graphs for data representation 

were produced in EXCEL, with just a handful in MATLAB.  This was because of the 

easier data manipulation in EXCEL to quickly adjust a graphical output to showcase a 

different data set. 

 

6.4 Numerical Example 

 The under-utilization penalty, λ1, and the over-utilization penalty, λ2 are 

constants such that λ1+ λ2 =1. 

 An inspection problem considering two-package types with inspection time, p1 

and p2 of 16 and 1 and probabilities α1 and α2 of selection 0.2 and 0.8, respectively was 

formulated, solved using MATLAB and EXCEL and results tabulated as shown in 

Table 9.  The number of packages assigned ranged from 3 to 10, although the program 

is able to give results for any number of packages.  The table below shows the results 

obtained for five values of the utilization penalties with capacity (inspection time) of 20 

time units.  The results in the table were the best objective function value for each 

scenario.  Note that, the best solution for each parameter value combinations occur, 

when the packages are distributed equally among the inspectors. This is logical since 
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one does not know the type of the package to be inspected until the inspection is done 

on the package and that the inspectors have same amount of inspection time available to 

them. Hence both the packages and inspectors are considered indistinguishable by this 

problem.  

Table 9: Penalty Cost Results for Some Scenarios with different utilization penalty  

    p1=16,p2=1,prob1=0.2,prob2=0.8     

    capacity =20       

  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 3.2800 6.0800 8.8800 11.6800 14.4800 

Z4(2,2) 4 3.3600 5.7600 8.1600 10.5600 12.9600 

Z5(2,3) 5 3.9520 5.9520 7.9520 9.9520 11.9520 

Z6(3,3) 6 4.5440 6.1440 7.7440 9.3440 10.9440 

Z7(3,4) 7 5.6352 6.8352 8.0352 9.2352 10.4352 

Z8(4,4) 8 6.7264 7.5264 8.3264 9.1264 9.9264 

Z9(4,5) 9 8.2784 8.6784 9.0784 9.4784 9.8784 

Z10(5,5) 10 9.8304 9.8304 9.8304 9.8304 9.8304 
 

From the table above, the minimum penalty cost for each problem as a function of the 

penalty cost is highlighted.  The scenario with minimum penalty cost suggested that 10 

packages would yield minimum penalty cost for a problem with equal utilization value.  

Assignment of five packages to each inspector will be the best assignment for this case. 

Other problems were formulated and solved for various combinations of the 

input parameter values. Table 10 contains results with 2, 3 and 4 inspectors.  Figure 5 

illustrates graphs for the expected total inspection costs as a function of the number of 

packages inspected when the under-utilization and over-utilization costs are penalized 

equally. It can be seen from the graphs that the expected total penalty cost increases as 

the number of inspectors increase.  For the 2-inspector problem, the minimum penalty 

cost of 9.8304 came from scenario Z10(5, 5).  The minimum penalty cost of 14.7456 
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resulted from scenario Z15(5, 5, 5) for the 3-inspector problem.  The question one can 

pose is; if 15 packages are to be inspected during a time period, is it better to have 2 

inspectors or 3 inspectors?  In general, what is the optimal number of inspectors needed 

as a function of number of packages to be inspected?  

Table 10:  Total cost as a function of n and m 

p1 = 16, 
p2 = 1  

 prob1 = 0.2, 
prob2 = 0.8 k = 20 λ1λ1λ1λ1 = 0.1  

n m=2 m=3 m=4 
3 14.4800 24.0000 34.0000 
4 12.9600 22.4800 32.0000 
5 11.9520 20.9600 30.4800 
6 10.9440 19.4400 28.9600 
7 10.4352 18.4320 27.4400 
8 9.9264 17.4240 25.9200 
9 9.8784 16.4160 24.9120 
10 9.8304 15.9072 23.9040 
11 10.5852 15.3984 22.8960 
12 11.3400 14.8896 21.8880 
13 12.3963 14.8416 21.3792 
14 13.4526 14.7936 20.8704 
15 14.7396 14.7456 20.3616 
16 16.0265 15.5004 19.8528 
17 17.4897 16.2552 19.8048 
18 18.9528 17.0100 19.7568 
19 20.5501 18.0663 19.7088 
20 22.1475 19.1226 19.6608 
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Figure 5: Expected total inspection cost versus n and m 

It can be seen from Figure 5 that the expected total penalty cost is convex as a 

function of n. As m increases the value of n which gives the minimum expected total 

inspection cost increases. For the 2-inspector problem, the minimum penalty cost of 

9.8304 came from scenario Z10 (5, 5).  The minimum penalty cost of 14.7456 resulted 

from scenario Z15 (5, 5, 5) for the 3-inspector problem. Similarly, Z20 (5, 5, 5, 5) gives 

the minimum cost for the 4-inspector problem. The optimal number of jobs to be 

assigned to each inspector is 5. For the example displayed by Table 10 and Figure 5, if 

number of items to be inspected during an inspection period is less than 15, then using 

two inspectors will give the minimum expected cost. If the number of packages 

inspected is more than 20, then 4 inspectors will give the minimum expected cost. One 

needs to run the algorithm with more than 20 packages to determine when it is best to 

add another inspector.  
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6.5 Experimental Results 

 Experiments were run with various values of processing times, capacities 

(maximum inspector time), utilization penalty, and proportion of high-risk and low-risk 

items.  The next sections discuss results for each parameter variation.  

 

6.5.1 Changes in Capacities 

 The experiments were run by varying the maximum available inspector time, 

also referred to as capacity, C.  Each inspector was assumed to have the same capacity, 

ranging from 20 to 50 time units.  These capacity values were chosen arbitrarily. The 

following tables and graphs illustrate results for C= 20, 30, 40, and 50.  

Table 11: Capacity of 20 results for 5 values of λ1 

    p1=16,p2=1,prob1=0.2,prob2=0.8     
    capacity =20       
  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 3.2800 6.0800 8.8800 11.6800 14.4800 
Z4(2,2) 4 3.3600 5.7600 8.1600 10.5600 12.9600 
Z5(2,3) 5 3.9520 5.9520 7.9520 9.9520 11.9520 
Z6(3,3) 6 4.5440 6.1440 7.7440 9.3440 10.9440 
Z7(3,4) 7 5.6352 6.8352 8.0352 9.2352 10.4352 
Z8(4,4) 8 6.7264 7.5264 8.3264 9.1264 9.9264 
Z9(4,5) 9 8.2784 8.6784 9.0784 9.4784 9.8784 

Z10(5,5) 10 9.8304 9.8304 9.8304 9.8304 9.8304 
Z11(5,6) 11 12.1852 11.7852 11.3852 10.9852 10.5852 
Z12(6,6) 12 14.5400 13.7400 12.9400 12.1400 11.3400 
Z13(6,7) 13 17.1963 15.9963 14.7963 13.5963 12.3963 
Z14(7,7) 14 19.8526 18.2526 16.6526 15.0526 13.4526 
Z15(7,8) 15 22.7396 20.7396 18.7396 16.7396 14.7396 
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Figure 6: Graph for capacity of 20 results for 5 values of λ1 

Table 12: Capacity of 30 results for 5 values of λ1 

    p1=16,p2=1,prob1=0.2,prob2=0.8     
    capacity =30       
  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 4.8800 9.6800 14.4800 19.2800 24.0800 
Z4(2,2) 4 4.5600 8.9600 13.3600 17.7600 22.1600 
Z5(2,3) 5 4.5120 8.5120 12.5120 16.5120 20.5120 
Z6(3,3) 6 4.4640 8.0640 11.6640 15.2640 18.8640 
Z7(3,4) 7 4.7872 7.9872 11.1872 14.3872 17.5872 
Z8(4,4) 8 5.1104 7.9104 10.7104 13.5104 16.3104 
Z9(4,5) 9 5.8432 8.2432 10.6432 13.0432 15.4432 

Z10(5,5) 10 6.5760 8.5760 10.5760 12.5760 14.5760 
Z11(5,6) 11 7.7184 9.3184 10.9184 12.5184 14.1184 
Z12(6,6) 12 8.8608 10.0608 11.2608 12.4608 13.6608 
Z13(6,7) 13 10.3899 11.1899 11.9899 12.7899 13.5899 
Z14(7,7) 14 11.9189 12.3189 12.7189 13.1189 13.5189 
Z15(7,8) 15 13.7993 13.7993 13.7993 13.7993 13.7993 
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Figure 7: Graph for capacity of 30 results for 5 values of λ1 

 

Table 13: Capacity of 40 results for 5 values of λ1 

    p1=16,p2=1,prob1=0.2,prob2=0.8     
    capacity =40       
  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 6.8000 13.6000 20.4000 27.2000 34.0000 
Z4(2,2) 4 6.4000 12.8000 19.2000 25.6000 32.0000 
Z5(2,3) 5 6.0640 12.0640 18.0640 24.0640 30.0640 
Z6(3,3) 6 5.7280 11.3280 16.9280 22.5280 28.1280 
Z7(3,4) 7 5.5328 10.7328 15.9328 21.1328 26.3328 
Z8(4,4) 8 5.3376 10.1376 14.9376 19.7376 24.5376 
Z9(4,5) 9 5.3536 9.7536 14.1536 18.5536 22.9536 

Z10(5,5) 10 5.3696 9.3696 13.3696 17.3696 21.3696 
Z11(5,6) 11 5.6518 9.2518 12.8518 16.4518 20.0518 
Z12(6,6) 12 5.9341 9.1341 12.3341 15.5341 18.7341 
Z13(6,7) 13 6.5194 9.3194 12.1194 14.9194 17.7194 
Z14(7,7) 14 7.1048 9.5048 11.9048 14.3048 16.7048 
Z15(7,8) 15 8.0125 10.0125 12.0125 14.0125 16.0125 
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Figure 8: Graph for capacity of 40 results for 5 values of λ1 

 

Table 14: Capacity of 50 results for 5 values of λ1 

    p1=16,p2=1,prob1=0.2,prob2=0.8     
   capacity =50     
  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 8.8000 17.6000 26.4000 35.2000 44.0000 
Z4(2,2) 4 8.4000 16.8000 25.2000 33.6000 42.0000 
Z5(2,3) 5 8.0000 16.0000 24.0000 32.0000 40.0000 
Z6(3,3) 6 7.6000 15.2000 22.8000 30.4000 38.0000 
Z7(3,4) 7 7.2224 14.4224 21.6224 28.8224 36.0224 
Z8(4,4) 8 6.8448 13.6448 20.4448 27.2448 34.0448 
Z9(4,5) 9 6.5280 12.9280 19.3280 25.7280 32.1280 

Z10(5,5) 10 6.2112 12.2112 18.2112 24.2112 30.2112 
Z11(5,6) 11 6.0838 11.6838 17.2838 22.8838 28.4838 
Z12(6,6) 12 5.9565 11.1565 16.3565 21.5565 26.7565 
Z13(6,7) 13 6.0503 10.8503 15.6503 20.4503 25.2503 
Z14(7,7) 14 6.1441 10.5441 14.9441 19.3441 23.7441 
Z15(7,8) 15 6.5014 10.5014 14.5014 18.5014 22.5014 
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Figure 9: Graph for capacity of 50 results for 5 values of λ1 

 The increase in capacity resulted in increase in the penalty cost in all cases.  This 

was to be expected since there is more resources available to the inspectors. The 

resulting minimum penalty cost for each value of λ1 has also changed.  For example, the 

minimum penalty cost changed from 3.2800 to 4.4640 for λ1=0.1 for capacities 20 and 

30 respectively.  The resulting assignment also changed from Z3(1,2) for capacity 20 to 

Z6(3,3) for capacity 30.  Similar observations were noticed for other values. 

 

6.5.2 Changes in Probabilities 

 The design of experiment was next formulated for changing values in the 

probabilities of selection of the 2 package types.  A capacity of 20 time units was 

chosen, with all other variables constant. The probability of selection of package type 1 
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used were chosen as 0.2, 0.3, 0.4, and 0.5.  The following tables and graphs resulted 

from that experiment. 

Table 15: Package type 1 probability of 0.2 results for 5 values of λ1 

    p1=16,p2=1,capacity=20     
   prob1=0.2      
  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 3.2800 6.0800 8.8800 11.6800 14.4800 
Z4(2,2) 4 3.3600 5.7600 8.1600 10.5600 12.9600 
Z5(2,3) 5 3.9520 5.9520 7.9520 9.9520 11.9520 
Z6(3,3) 6 4.5440 6.1440 7.7440 9.3440 10.9440 
Z7(3,4) 7 5.6352 6.8352 8.0352 9.2352 10.4352 
Z8(4,4) 8 6.7264 7.5264 8.3264 9.1264 9.9264 
Z9(4,5) 9 8.2784 8.6784 9.0784 9.4784 9.8784 

Z10(5,5) 10 9.8304 9.8304 9.8304 9.8304 9.8304 
Z11(5,6) 11 12.1852 11.7852 11.3852 10.9852 10.5852 
Z12(6,6) 12 14.5400 13.7400 12.9400 12.1400 11.3400 
Z13(6,7) 13 17.1963 15.9963 14.7963 13.5963 12.3963 
Z14(7,7) 14 19.8526 18.2526 16.6526 15.0526 13.4526 
Z15(7,8) 15 22.7396 20.7396 18.7396 16.7396 14.7396 

 

 

Figure 10: Graph for Package type 1 probability of 0.2 results for 5 values of λ1 
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Table 16: Package type 1 probability of 0.3 results for 5 values of λ1 

    p1=16,p2=1,capacity=20     
   prob1=0.3      
  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 3.4300 5.7800 8.1300 10.4800 12.8300 
Z4(2,2) 4 3.9600 5.7600 7.5600 9.3600 11.1600 
Z5(2,3) 5 5.5430 6.7930 8.0430 9.2930 10.5430 
Z6(3,3) 6 7.1260 7.8260 8.5260 9.2260 9.9260 
Z7(3,4) 7 9.6162 9.7662 9.9162 10.0662 10.2162 
Z8(4,4) 8 12.1064 11.7064 11.3064 10.9064 10.5064 
Z9(4,5) 9 15.3243 14.3743 13.4243 12.4743 11.5243 

Z10(5,5) 10 18.5421 17.0421 15.5421 14.0421 12.5421 
Z11(5,6) 11 22.6181 20.5681 18.5181 16.4681 14.4181 
Z12(6,6) 12 26.6942 24.0942 21.4942 18.8942 16.2942 
Z13(6,7) 13 31.0677 27.9177 24.7677 21.6177 18.4677 
Z14(7,7) 14 35.4412 31.7412 28.0412 24.3412 20.6412 
Z15(7,8) 15 40.0124 35.7624 31.5124 27.2624 23.0124 

 

 

 

Figure 11: Graph for Package type 1 probability of 0.3 results for 5 values of λ1 
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Table 17: Package type 1 probability of 0.4 results for 5 values of λ1 

  p1=16,p2=1,capacity=20       
  prob1=0.4      
  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 3.8200 5.7200 7.6200 9.5200 11.4200 
Z4(2,2) 4 5.0400 6.2400 7.4400 8.6400 9.8400 
Z5(2,3) 5 7.9560 8.4560 8.9560 9.4560 9.9560 
Z6(3,3) 6 10.8720 10.6720 10.4720 10.2720 10.0720 
Z7(3,4) 7 15.0552 14.1552 13.2552 12.3552 11.4552 
Z8(4,4) 8 19.2384 17.6384 16.0384 14.4384 12.8384 
Z9(4,5) 9 24.2856 21.9856 19.6856 17.3856 15.0856 

Z10(5,5) 10 29.3328 26.3328 23.3328 20.3328 17.3328 
Z11(5,6) 11 35.1196 31.4196 27.7196 24.0196 20.3196 
Z12(6,6) 12 40.9064 36.5064 32.1064 27.7064 23.3064 
Z13(6,7) 13 46.9171 41.8171 36.7171 31.6171 26.5171 
Z14(7,7) 14 52.9278 47.1278 41.3278 35.5278 29.7278 
Z15(7,8) 15 59.0655 52.5655 46.0655 39.5655 33.0655 

 

 

 

Figure 12: Graph for Package type 1 probability of 0.4 results for 5 values of λ1 
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Table 18: Package type 1 probability of 0.2 results for 5 values of λ1 

  p1=16,p2=1,capacity=20       
  prob1=0.5      
  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 4.4500 5.9000 7.3500 8.8000 10.2500 
Z4(2,2) 4 6.6000 7.2000 7.8000 8.4000 9.0000 
Z5(2,3) 5 11.1250 10.8750 10.6250 10.3750 10.1250 
Z6(3,3) 6 15.6500 14.5500 13.4500 12.3500 11.2500 
Z7(3,4) 7 21.6750 19.7250 17.7750 15.8250 13.8750 
Z8(4,4) 8 27.7000 24.9000 22.1000 19.3000 16.5000 
Z9(4,5) 9 34.5688 30.9188 27.2688 23.6188 19.9688 

Z10(5,5) 10 41.4375 36.9375 32.4375 27.9375 23.4375 
Z11(5,6) 11 48.8375 43.4875 38.1375 32.7875 27.4375 
Z12(6,6) 12 56.2375 50.0375 43.8375 37.6375 31.4375 
Z13(6,7) 13 63.7703 56.7203 49.6703 42.6203 35.5703 
Z14(7,7) 14 71.3031 63.4031 55.5031 47.6031 39.7031 
Z15(7,8) 15 78.8984 70.1484 61.3984 52.6484 43.8984 

 

 

 

Figure 13: Graph for Package type 1 probability of 0.5 results for 5 values of λ1 
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 The changes in the probability of selection of package types had different effect 

on the results as compared to the changes noticed in the previous section.  Most penalty 

cost values were increased as the value of α1, the probabilty of selection of item 1 

increases.  The only exception to this trend is Z3(1,2), the assignment of 3 items.  The 

penalty cost values reduces for λ1  = 0.3, 0.4, and 0.5 for tables 15, 16, 17 and 18.  The 

highlighted values in the tables show this trend.  

 

6.5.2 Changes in Processing Times 

 The processing times for both package types were varied to see the effect on the 

solutions for the same five values of λ1 with capacity of 20, and probabilities of 0.2, and 

0.8 respectively for the package types. The following tables and graphs resulted from 

that experiment. 

Table 19: Processing times of 16 and 1 results for 5 values of λ1 

    prob1=0.2,prob2=0.8,capacity=20     
   p1=16,p2=1     
  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 3.2800 6.0800 8.8800 11.6800 14.4800 
Z4(2,2) 4 3.3600 5.7600 8.1600 10.5600 12.9600 
Z5(2,3) 5 3.9520 5.9520 7.9520 9.9520 11.9520 
Z6(3,3) 6 4.5440 6.1440 7.7440 9.3440 10.9440 
Z7(3,4) 7 5.6352 6.8352 8.0352 9.2352 10.4352 
Z8(4,4) 8 6.7264 7.5264 8.3264 9.1264 9.9264 
Z9(4,5) 9 8.2784 8.6784 9.0784 9.4784 9.8784 

Z10(5,5) 10 9.8304 9.8304 9.8304 9.8304 9.8304 
Z11(5,6) 11 12.1852 11.7852 11.3852 10.9852 10.5852 
Z12(6,6) 12 14.5400 13.7400 12.9400 12.1400 11.3400 
Z13(6,7) 13 17.1963 15.9963 14.7963 13.5963 12.3963 
Z14(7,7) 14 19.8526 18.2526 16.6526 15.0526 13.4526 
Z15(7,8) 15 22.7396 20.7396 18.7396 16.7396 14.7396 
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Figure 14: Graph for processing times of 16 and 1 results for 5 values of λ1 

 

Table 20: Processing times of 14 and 3 results for 5 values of λ1 

    prob1=0.2,prob2=0.8,capacity=20     
   p1=14,p2=3     
  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 2.7600 5.2000 7.6400 10.0800 12.5200 
Z4(2,2) 4 2.5600 4.4800 6.4000 8.3200 10.2400 
Z5(2,3) 5 2.9520 4.3520 5.7520 7.1520 8.5520 
Z6(3,3) 6 3.3440 4.2240 5.1040 5.9840 6.8640 
Z7(3,4) 7 5.6688 6.0288 6.3888 6.7488 7.1088 
Z8(4,4) 8 7.9936 7.8336 7.6736 7.5136 7.3536 
Z9(4,5) 9 11.0352 10.3552 9.6752 8.9952 8.3152 

Z10(5,5) 10 14.0768 12.8768 11.6768 10.4768 9.2768 
Z11(5,6) 11 17.6427 15.9227 14.2027 12.4827 10.7627 
Z12(6,6) 12 21.2086 18.9686 16.7286 14.4886 12.2486 
Z13(6,7) 13 25.3643 22.6043 19.8443 17.0843 14.3243 
Z14(7,7) 14 29.5200 26.2400 22.9600 19.6800 16.4000 
Z15(7,8) 15 34.2000 30.4000 26.6000 22.8000 19.0000 
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Figure 15: Graph for processing times of 14 and 3 results for 5 values of λ1 

 

Table 21: Processing times of 12 and 5 results for 5 values of λ1 

    prob1=0.2,prob2=0.8,capacity=20     
   p1=12,p2=5     
  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 2.2400 4.3200 6.4000 8.4800 10.5600 
Z4(2,2) 4 1.7600 3.2000 4.6400 6.0800 7.5200 
Z5(2,3) 5 2.7200 3.5200 4.3200 5.1200 5.9200 
Z6(3,3) 6 3.6800 3.8400 4.0000 4.1600 4.3200 
Z7(3,4) 7 6.8800 6.4000 5.9200 5.4400 4.9600 
Z8(4,4) 8 10.0800 8.9600 7.8400 6.7200 5.6000 
Z9(4,5) 9 15.8400 14.0800 12.3200 10.5600 8.8000 

Z10(5,5) 10 21.6000 19.2000 16.8000 14.4000 12.0000 
Z11(5,6) 11 27.3600 24.3200 21.2800 18.2400 15.2000 
Z12(6,6) 12 33.1200 29.4400 25.7600 22.0800 18.4000 
Z13(6,7) 13 38.8800 34.5600 30.2400 25.9200 21.6000 
Z14(7,7) 14 44.6400 39.6800 34.7200 29.7600 24.8000 
Z15(7,8) 15 50.4000 44.8000 39.2000 33.6000 28.0000 

 

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Zn*

n

λ1 = 0.1 λ1 = 0.2

λ1 = 0.3 λ1 = 0.4

λ1 = 0.5



 

 83

 

Figure 16: Graph for processing times of 12 and 5 results for 5 values of λ1 

 

 

Table 22: Processing times of 10 and 7 results for 5 values of λ1 

    prob1=0.2,prob2=0.8,capacity=20     
   p1=10,p2=7     
  n λλλλ1 = 0.1 λλλλ1 = 0.2 λλλλ1 = 0.3 λλλλ1 = 0.4 λλλλ1 = 0.5 

Z3(1,2) 3 1.7200 3.4400 5.1600 6.8800 8.6000 
Z4(2,2) 4 0.9600 1.9200 2.8800 3.8400 4.8000 
Z5(2,3) 5 3.0000 3.2000 3.4000 3.6000 3.8000 
Z6(3,3) 6 5.0400 4.4800 3.9200 3.3600 2.8000 
Z7(3,4) 7 11.8800 10.5600 9.2400 7.9200 6.6000 
Z8(4,4) 8 18.7200 16.6400 14.5600 12.4800 10.4000 
Z9(4,5) 9 25.5600 22.7200 19.8800 17.0400 14.2000 

Z10(5,5) 10 32.4000 28.8000 25.2000 21.6000 18.0000 
Z11(5,6) 11 39.2400 34.8800 30.5200 26.1600 21.8000 
Z12(6,6) 12 46.0800 40.9600 35.8400 30.7200 25.6000 
Z13(6,7) 13 52.9200 47.0400 41.1600 35.2800 29.4000 
Z14(7,7) 14 59.7600 53.1200 46.4800 39.8400 33.2000 
Z15(7,8) 15 66.6000 59.2000 51.8000 44.4000 37.0000 
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Figure 17: Graph for processing times of 10 and 7 results for 5 values of λ1 

 The results obtained for changing the processing times of the package types had 

decrease in penalty costs for some assignments and increase for some.  The assignment 

of up to 6 items all had reductions in the corresponding values between tables, while the 

rest of the tables show increasing data values between subsequent tables for selection of 

7 to 15 items.  This pattern was observed for all data values recorded. 

 

6.6 Further Experimentation 

 Further experiments were conducted to see which variable has the most 
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the others were kept constant.  The focus was on the processing times and the available 

resources or capacity.  The probabilities were kept constant at 0.2 and 0.8 for the 

package types 1 and 2 respectively, while λ1=λ2= 0.5 for all recorded results. 

 

6.6.1 Changing p2 with p1 constant 

Processing time for package type 2 was increased while keeping that of type 1 

constant, and the processing time of package type 1 was decreased with that of type 2 

constant.  Five capacity values of 20, 25, 30, 35, and 40 were used. The tables with the 

graphs on the next pages were recorded. 

 

Table 23: p1=16, p2=1 values for 5 capacities 

 

 

 

 

 

 

 

 

p1 = 16, p2 = 1         
n k = 20 k = 25 k = 30 k = 35 k = 40 

Z3(1,2) 14.4800 19.2800 24.0800 29.0000 34.0000 
Z4(2,2) 12.9600 17.5600 22.1600 27.0000 32.0000 
Z5(2,3) 11.9520 16.2320 20.5120 25.1040 30.0640 
Z6(3,3) 10.9440 14.9040 18.8640 23.2080 28.1280 
Z7(3,4) 10.4352 14.0112 17.5872 21.5088 26.3328 
Z8(4,4) 9.9264 13.1184 16.3104 19.8096 24.5376 
Z9(4,5) 9.8784 12.6608 15.4432 18.3792 22.9536 

Z10(5,5) 9.8304 12.2032 14.5760 16.9488 21.3696 
Z11(5,6) 10.5852 12.1552 14.1184 16.0816 20.0518 
Z12(6,6) 11.3400 12.1072 13.6608 15.2144 18.7341 
Z13(6,7) 12.3963 12.4295 13.5899 14.7502 17.7194 
Z14(7,7) 13.4526 12.7518 13.5189 14.2861 16.7048 
Z15(7,8) 14.7396 13.3991 13.7993 14.1994 16.0125 
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Figure 18: Graphical representation of Table 21 

 

Table 24: p1=16, p2=3 values for 5 capacities 

p1 = 16, p2 = 3         
  20 25 30 35 40 

Z3(1,2) 12.0800 16.8800 21.6800 26.6000 31.6000 
Z4(2,2) 9.7600 14.3600 18.9600 23.8000 28.8000 
Z5(2,3) 8.9120 12.4240 16.7040 21.1040 26.0640 
Z6(3,3) 8.0640 10.4880 14.4480 18.4080 23.3280 
Z7(3,4) 8.5088 9.2688 12.8448 16.4208 20.7840 
Z8(4,4) 8.9536 8.0496 11.2416 14.4336 18.2400 
Z9(4,5) 10.1152 8.8016 10.3552 13.1376 16.2272 

Z10(5,5) 11.2768 9.5536 9.4688 11.8416 14.2144 
Z11(5,6) 12.9627 10.9118 9.6801 11.2501 13.2133 
Z12(6,6) 14.6486 12.2700 9.8915 10.6586 12.2122 
Z13(6,7) 16.9243 14.0739 11.4332 10.7323 11.8927 
Z14(7,7) 19.2000 15.8777 12.9749 10.8060 11.5732 
Z15(7,8) 22.0000 18.0066 14.8941 12.1485 11.8776 
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Figure 19: Graphical representation of Table 22 

 

Table 25: p1=16, p2=5 values for 5 capacities 

p1 = 16, p2 = 5         
  20 25 30 35 40 

Z3(1,2) 10.0000 14.4800 19.2800 24.2000 29.2000 
Z4(2,2) 7.2000 11.1600 15.7600 20.6000 25.6000 
Z5(2,3) 6.9600 9.0000 12.8960 17.2960 22.0640 
Z6(3,3) 6.7200 6.8400 10.0320 13.9920 18.5280 
Z7(3,4) 7.7600 7.3680 8.5120 11.6784 15.5424 
Z8(4,4) 8.8000 7.8960 6.9920 9.3648 12.5568 
Z9(4,5) 12.4000 9.4480 8.1344 8.4592 10.8320 

Z10(5,5) 16.0000 11.0000 9.2768 7.5536 9.1072 
Z11(5,6) 19.6000 14.6000 11.2384 9.1875 8.7750 
Z12(6,6) 23.2000 18.2000 13.2000 10.8214 8.4429 
Z13(6,7) 26.8000 21.8000 16.8000 13.1107 10.4700 
Z14(7,7) 30.4000 25.4000 20.4000 15.4000 12.4972 
Z15(7,8) 34.0000 29.0000 24.0000 19.0000 15.0486 
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Figure 20: Graphical representation of Table 23 

 

Table 26: p1=16, p2=7 values for 5 capacities 

p1 = 16, p2 = 7         
  20 25 30 35 40 

Z3(1,2) 8.2400 12.0800 16.8800 21.8000 26.8000 
Z4(2,2) 5.2800 7.9600 12.5600 17.4000 22.4000 
Z5(2,3) 5.8400 6.7280 9.0880 13.4880 18.0640 
Z6(3,3) 6.4000 5.4960 5.6160 9.5760 13.7280 
Z7(3,4) 10.8000 7.8480 6.2272 7.7552 10.6080 
Z8(4,4) 15.2000 10.2000 6.8384 5.9344 7.4880 
Z9(4,5) 19.6000 14.6000 10.4192 7.4672 7.3824 

Z10(5,5) 24.0000 19.0000 14.0000 9.0000 7.2768 
Z11(5,6) 28.4000 23.4000 18.4000 13.4000 10.0384 
Z12(6,6) 32.8000 27.8000 22.8000 17.8000 12.8000 
Z13(6,7) 37.2000 32.2000 27.2000 22.2000 17.2000 
Z14(7,7) 41.6000 36.6000 31.6000 26.6000 21.6000 
Z15(7,8) 46.0000 41.0000 36.0000 31.0000 26.0000 
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Figure 21: Graphical representation of Table 24 

 

Table 27: p1=16, p2=9 values for 5 capacities 

p1 = 16, p2 = 9         
  20 25 30 35 40 

Z3(1,2) 6.4800 9.6800 14.4800 19.4000 24.4000 
Z4(2,2) 3.3600 4.7600 9.3600 14.2000 19.2000 
Z5(2,3) 7.2800 5.4800 6.8160 9.6800 14.1600 
Z6(3,3) 11.2000 6.2000 4.2720 5.1600 9.1200 
Z7(3,4) 16.4000 11.4000 7.9360 5.8800 6.9984 
Z8(4,4) 21.6000 16.6000 11.6000 6.6000 4.8768 
Z9(4,5) 26.8000 21.8000 16.8000 11.8000 8.4384 

Z10(5,5) 32.0000 27.0000 22.0000 17.0000 12.0000 
Z11(5,6) 37.2000 32.2000 27.2000 22.2000 17.2000 
Z12(6,6) 42.4000 37.4000 32.4000 27.4000 22.4000 
Z13(6,7) 47.6000 42.6000 37.6000 32.6000 27.6000 
Z14(7,7) 52.8000 47.8000 42.8000 37.8000 32.8000 
Z15(7,8) 58.0000 53.0000 48.0000 43.0000 38.0000 
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Figure 22: Graphical representation of Table 25 

 

Increasing the processing times of package 2 while keeping that of 1 constant 

resulted in more increased number of corresponding data values between the tables.  For 

example, the recorded values for capacity of 40 resulted in decrease in all values 

between table 23 and 24, while 2 vales increased between tables 24 and 25.   Five data 

values increased between tables 25 and 26, and 7 values increased in tables 26 and 27.  

Generally, a total of 12, 25, 36, and 45 penalty costs increased respectively between the 

tables.  This trend is shown on the tables with the underlined numbers. 
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6.6.2 Changing p1 with p2 constant 

Processing time for package type 1 was decreased while keeping that of type 2 

constant.  Five capacity values of 20, 25, 30, 35, and 40 were used. 

The tables with the graphs following were recorded. 

Table 28: p1=14, p2=1 values for 5 capacities 

p1 = 14, p2 = 1         
  20 25 30 35 40 

Z3(1,2) 14.9200 19.7200 24.6000 29.6000 34.6000 
Z4(2,2) 13.4400 18.0400 22.8000 27.8000 32.8000 
Z5(2,3) 12.3600 16.6400 21.0960 26.0560 31.0160 
Z6(3,3) 11.2800 15.2400 19.3920 24.3120 29.2320 
Z7(3,4) 10.6224 14.1984 17.8704 22.6944 27.5184 
Z8(4,4) 9.9648 13.1568 16.3488 21.0768 25.8048 
Z9(4,5) 9.7168 12.4992 15.2816 19.6512 24.2256 

Z10(5,5) 9.4688 11.8416 14.2144 18.2256 22.6464 
Z11(5,6) 9.5976 11.5608 13.5240 17.0437 21.2597 
Z12(6,6) 9.7265 11.2801 12.8337 15.8618 19.8730 
Z13(6,7) 10.1895 11.3499 12.5103 14.9585 18.7239 
Z14(7,7) 10.6526 11.4198 12.1869 14.0551 17.5748 
Z15(7,8) 11.7396 11.8042 12.2044 13.4486 16.6931 

 

 

Figure 23: Graphical representation of Table 26 
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Table 29: p1=12, p2=1 values for 5 capacities 

p1 = 12, p2 = 1         
  20 25 30 35 40 

Z3(1,2) 15.3600 20.2000 25.2000 30.2000 35.2000 
Z4(2,2) 13.9200 18.6000 23.6000 28.6000 33.6000 
Z5(2,3) 12.7680 17.0880 22.0480 27.0080 32.0000 
Z6(3,3) 11.6160 15.5760 20.4960 25.4160 30.4000 
Z7(3,4) 10.8096 14.3856 19.0560 23.8800 28.8128 
Z8(4,4) 10.0032 13.1952 17.6160 22.3440 27.2256 
Z9(4,5) 9.5552 12.3376 16.3488 20.9232 25.6768 

Z10(5,5) 9.1072 11.4800 15.0816 19.5024 24.1280 
Z11(5,6) 9.0033 10.9665 14.0356 18.2516 22.6519 
Z12(6,6) 8.8993 10.4529 12.9896 17.0008 21.1758 
Z13(6,7) 9.1100 10.2703 12.1975 15.9629 19.8103 
Z14(7,7) 9.3206 10.0878 11.4054 14.9251 18.4448 
Z15(7,8) 9.8091 10.2093 10.8847 14.1291 17.3736 

 

 

Figure 24: Graphical representation of Table 27 
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Table 30: p1=10, p2=1 values for 5 capacities 

p1 = 10, p2 = 1         
  20 25 30 35 40 

Z3(1,2) 15.8000 20.8000 26.4000 30.8000 35.8000 
Z4(2,2) 14.4000 19.4000 25.2000 29.4000 34.4000 
Z5(2,3) 13.1760 18.0400 24.0000 28.0000 33.0000 
Z6(3,3) 11.9520 16.6800 22.8000 26.6000 31.6000 
Z7(3,4) 10.9968 15.4176 21.6032 25.2080 30.2000 
Z8(4,4) 10.0416 14.1552 20.4064 23.8160 28.8000 
Z9(4,5) 9.3936 13.0464 19.2256 22.4512 27.4096 

Z10(5,5) 8.7456 11.9376 18.0448 21.0864 26.0192 
Z11(5,6) 8.4089 11.0275 15.2435 19.7769 24.6585 
Z12(6,6) 8.0722 10.1173 14.1285 18.4674 23.2978 
Z13(6,7) 8.0304 9.4365 13.2020 17.2460 21.9944 
Z14(7,7) 7.9886 8.7558 12.2755 16.0245 20.6911 
Z15(7,8) 8.2142 8.6144 11.5652 14.9243 19.4762 

 

 

Figure 25: Graphical representation of Table 28 
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Table 31: p1=8, p2=1 values for 5 capacities 

p1 = 8, p2 = 1         
  20 25 30 35 40 

Z3(1,2) 16.4000 21.4000 26.4000 31.4000 36.4000 
Z4(2,2) 15.2000 20.2000 25.2000 30.2000 35.2000 
Z5(2,3) 14.0320 19.0000 24.0000 29.0000 34.0000 
Z6(3,3) 12.8640 17.8000 22.8000 27.8000 32.8000 
Z7(3,4) 11.7792 16.6112 21.6032 26.6000 31.6000 
Z8(4,4) 10.6944 15.4224 20.4064 25.4000 30.4000 
Z9(4,5) 9.7440 14.3184 19.2256 24.2016 29.2000 

Z10(5,5) 8.7936 13.2144 18.0448 23.0032 28.0000 
Z11(5,6) 8.0193 12.2353 16.9019 21.8116 26.8020 
Z12(6,6) 7.2451 11.2563 15.7590 20.6201 25.6041 
Z13(6,7) 6.9508 10.4410 14.6816 19.4454 24.4141 
Z14(7,7) 6.6566 9.6258 13.6042 18.2708 23.2241 
Z15(7,8) 6.6193 9.0013 12.6219 17.1737 22.0525 

 

 

Figure 26: Graphical representation of Table 29 
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Increasing the processing times of package 1 while keeping that of 2 constant 

resulted in lesser decreased number of corresponding data values between the tables.  

For example, the recorded values for capacity of 25 resulted in 7 decreases between 

table 28 and 29, while 4 vales decreased between tables 29 and 30.   Seventeen data 

values decreased between tables 28 and 29, and 12 values decreased in tables 29 and 30.  

Generally, a total of 17, 12, and 5 penalty costs decreased respectively between the 

tables.  This trend is shown on the tables with the underlined numbers. 

  

6.7 Results and Analysis 

 Recall that ),( jnjZ n −  where j = 0, 1, . . , n, refers to the objective function 

value for each problem.  As one would expect, the minimal penalty cost occurred when 

the packages were equally distributed among the two inspectors for even number of 

packages.  For odd number of packages, minimal penalty cost occurred when one 

inspector inspects one more package than the others. That is )
2

,
2

(
nn

Zn  resulted in the 

minimum penalty cost for even n values and )
2

1
,

2
1

(
+− nn

Zn  was always minimal for 

odd n values. A further look at the 2-inspector problem with a change in the processing 

time of package type 2 from 1 time units to 3 time units with all other variables held 

constant yielded the graph below: 
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Figure 27: Graph of 2-inspector problem with p2 increased to 3 

The graph above shows a decrease in the optimal objective function value from 

9.8304 to 8.0640, with optimal scenario changing from Z10(5, 5) to Z6(3, 3).  This is to 

be expected since the processing time for both packages is bigger than in the previous 

problem, meaning fewer packages could be inspected in the same time period. 

The variables all had different effects on the solution of the problems.  The 

effects all depend on the problem formulated.  Generally speaking penalty costs values 

will increase faster, if the larger processing time is assigned the bigger probability of 

selection.   The same cannot be confirmed for changes in penalty function, capacity, and 

processing time.    The most noticeable and constant effect is the convex property of all 

results recorded for all data sets. 
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Chapter 7 

Conclusions and Further Research 

7.1 Conclusions 

In this research, motivated by Knapsack Problems (KP), we looked at various 

KP methods, models, and applications.   

We developed a new method for solving MKAR, multiple knapsack problems 

with assignment restrictions, a variant of the MKP (multiple knapsack problems).  

Efficient results were obtained by implementing both the developed algorithm, and 

existing ones.  Nine existing assignment procedures with the developed one, LUCF – 

largest unutilized capacity first, were implemented on several generated KP (knapsack 

problems) and the initial feasible solutions for all problems recorded.  These results 

were compared using three measurement yardsticks; the minimum, average, and 

maximum values returned by each procedure.  Three assignment procedures including 

LUCF procedure showed the most promising results in all categories.  The LUCF 

algorithm was among the best greedy assignment method for obtaining initial starting 

feasible solutions for the problems solved, and hence could be implemented in any 

multiple knapsack problems where an initial feasible solution is required. 

Tabu search was employed to improve on the initial feasible results obtained for 

the MKAR by the ten assignment procedures.  This was carried out through three major 

procedures.  The main procedure was to get the best feasible solution from all the 

assignment procedures.  The intensification procedure has three parts to obtain the best 
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solution possible, and the diversification procedure was to ensure that other solutions 

are explored.  The implementation of tabu search procedure led to improvement on the 

MKAR’s initial feasible solutions every time.  The only exceptions occur when 

maximum capacity utilization was the initial solution obtained by any of the tens 

procedures employed. 

Also, motivated by airport security package inspection, Stochastic Knapsack 

Problem with Penalty Cost (SKPPC), a variant of SKP (stochastic knapsack problem), 

was formulated and studied.  Formulations were created for both the 1-processor, and 

m-processor set-ups.  The problem involves the selection of two-item types, and two 

kinds of problem were investigated.  The first was to find the maximum number of 

packages that would be assigned within a time period.  The second problem looked at 

involves maximizing both the number of packages assigned and the minimum number 

of inspectors that would be required.  The main objective for both problems was to 

minimize the expected penalty costs.  Penalty cost is incurred for both under-utilization 

and over-utilization of resources.  The variables of the problems were varied to see their 

effects on the solutions obtained.   These include changes in the processing times of the 

package types, the probabilities of selection of the processing times of package types, 

the penalty cost function, and the resources available to the inspectors.  All recorded 

data were also graphed for visual presentation and analysis.  The objective to minimize 

the total expected penalty cost was easily achieved for all problems solved.   The 

research also includes a proof of the convexity property exhibited by this particular 

problem. 
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7.2 Further Research 

Further research could be done on MKAR in terms of finding a single algorithm 

to solve the problem to near optimality as quickly as possible, rather than using an 

improvement procedure on an initial feasible solution. 

The number of item types for the SKPPC could be increased to accommodate 

various kinds of problems of that nature.  The actual penalty function, λ, should be 

assigned a real value to see its effect on results obtained.  A complete enumeration of a 

problem should involve both the penalty cost from under-utilization, over-utilization, 

and inventory cost on unassigned items. 
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Appendix A 

MATLAB Code for the Assignment Algorithms  
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clear  
  
% # of items and knapsacks  
n = input ( '          enter total number of packagess: ' );  
disp( '  ' )  
m = input ( '            enter number of inspectors: ' );  
disp( '  ' )  
r = input ( '     enter number of replications/run: ' );  
knaprt = [];  
  
knaprs = zeros (r,10); % storage for knapsack residual space  
cap = zeros (r,m); % storage for knapsack capacity  
cond = zeros (1,r); % storage for conditions  
knaprsum = zeros (1,10); % storage for sum of knapsack unutilized 
space  
  
  
% while r > 0  
  
% generating item weights  
a = ceil(random( 'unif' , 10, 100, n, 1));  
w = a;  
w = sort (w);  % item weights sorted in ascending order  
  
% generating item processing times probabilities  
p = vpa((random( 'unif' , 0.1, 0.8, n, 1)),1);  
  
% f = item weights  
% f = -1 * w;  
  
a1 = 0.4 * (sum(w)/m)  
a2 = 0.6 * (sum(w)/m)  
  
% generating similar knapsack capacities  
a = (random( 'unif' , a1, a2, m-1, 1))  
a (m, 1) = 0.5 * sum(w) - sum (a)  
c = ceil(a)  
c= sort (c)  % knapsack capacities sorted in ascending order  
  
cap (r,:)=c'  
  
if  max (w) <= min (c) & min (c) >= min (w) & sum (w) > max (c);  
   cond (1,r) = 1  
end  
  
% b = capacities  
% b = c;  
  
% generating A  
A = [];  
for  i = 1 : m  
    A = [A ; w'];  
end  
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% storing the items sorted in ascending order  
item1 = zeros(n,2);  
for  i = 1 : n  
    item1 ( i, 1) = i;  
    item1 ( i, 2) = w ( i, 1);  
end  
item1; % items sorted in ascending order  
  
% adding knapsack restrictions to items sorted in a scending order  
d1 = [item1 b];  
  
w = w(n:-1:1); % item weights sorted in descending order  
  
% storing the items sorted in descending order  
item2 = zeros(n,2);  
for  i = 1 : n  
    item2 ( i, 1) = i;  
    item2 ( i, 2) = w ( i, 1);  
end  
item2; % items sorted in descending order  
  
% adding knapsack restrictions to items sorted in d escending order  
d2 = [item2 b];  
  
% storing the knapsacks sorted in ascending order  
knapc1 = zeros(m,2);  
for  i = 1 : m  
    knapc1 ( i, 1) = i;  
    knapc1 ( i, 2) = c ( i, 1);  
end  
knapc1; % knapsacks sorted in ascending order  
  
c = c(m:-1:1);  % knapsack capacities sorted in descending order  
% storing the knapsacks sorted in descending order  
knapc2 = zeros(m,2);  
for  i = 1 : m  
    knapc2 ( i, 1) = i;  
    knapc2 ( i, 2) = c ( i, 1);  
end  
knapc2; % knapsacks sorted in descending order  
  
% residual capacities storage  
knapr = zeros (10,m);  
  
  
% MODEL 1 
  
% storage location for knapsack assignment  
aknap1 = [zeros(n ,1) item1 zeros(n ,1)];  
knap1 = knapc1;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
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        if  item1 ( i, 2) <= knap1 ( j, 2)  
            aknap1 ( i, 1) = knap1 ( j, 1);  
            knap1 ( j, 2) = knap1 ( j, 2) - aknap1 ( i, 3);  
            aknap1 ( i, 4) = knap1 ( j, 2);  
            if  j < m  
                k = j + 1;  
            else  
                k = 1;  
            end  
            break  
        elseif  j < m  
            continue      
        end  
    end  
end      
     
aknap1;  
  
for  i = 1 : m  
    knapr (1, i) = knap1 (i, 2);  
end  
aknap1 % model 1 knapsack assignment  
  
% MODEL 2 
  
% storage location for knapsack assignment  
aknap2 = [zeros(n ,1) item1 zeros(n ,1)];  
knap2 = knapc1;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  item1 ( i, 2) <= knap2 ( j, 2)  
            aknap2 ( i, 1) = knap2 ( j, 1);  
            knap2 ( j, 2) = knap2 ( j, 2) - aknap2 ( i, 3);  
            aknap2 ( i, 4) = knap2 ( j, 2);  
            if  j < m  
                k = j;  
            else  
                k = 1;  
            end  
            break  
        elseif  j < m  
            continue          
        end  
    end  
end      
     
aknap2;  
  
for  i = 1 : m  
    knapr (2, i) = knap2 (i, 2);  
end  
aknap2 % model 2 knapsack assignment  
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% MODEL 3 
  
% storage location for knapsack assignment  
aknap3 = [zeros(n ,1) item1 zeros(n ,1)];  
knap3 = knapc2;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  item1 ( i, 2) <= knap3 ( j, 2)  
            aknap3 ( i, 1) = knap3 ( j, 1);  
            knap3 ( j, 2) = knap3 ( j, 2) - aknap3 ( i, 3);  
            aknap3 ( i, 4) = knap3 ( j, 2);  
            if  j < m  
                k = j + 1;  
            else  
                k = 1;  
            end  
            break  
        elseif  j == m  
            k = 1;  
        end  
    end  
end  
  
aknap3;  
  
for  i = 1 : m  
    knapr (3, i) = knap3 ((m+1)-i, 2);  
end  
aknap3 % model 3 knapsack assignment  
  
  
% MODEL 4 
  
% storage location for knapsack assignment  
aknap4 = [zeros(n ,1) item1 zeros(n ,1)];  
knap4 = knapc2;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  item1 ( i, 2) <= knap4 ( j, 2)  
            aknap4 ( i, 1) = knap4 ( j, 1);  
            knap4 ( j, 2) = knap4 ( j, 2) - aknap4 ( i, 3);  
            aknap4 ( i, 4) = knap4 ( j, 2);  
            if  j < m  
                k = j;  
            else  
                k = 1;  
            end  
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            break  
        elseif  j == m  
            k = 1;  
        end  
    end  
end  
     
aknap4;  
  
for  i = 1 : m  
    knapr (4, i) = knap4 ((m+1)-i, 2);  
end  
aknap4 % model 4 knapsack assignment  
  
  
% MODEL 5 
  
% storage location for knapsack assignment  
aknap5 = [zeros(n ,1) item2 zeros(n ,1)];  
knap5 = knapc1;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  item2 ( i, 2) <= knap5 ( j, 2)  
            aknap5 ( i, 1) = knap5 ( j, 1);  
            knap5 ( j, 2) = knap5 ( j, 2) - aknap5 ( i, 3);  
            aknap5 ( i, 4) = knap5 ( j, 2);  
            if  j < m  
                k = j + 1;  
            else  
                k = 1;  
            end  
            break  
        elseif  j < m  
            continue          
        end  
    end  
end  
     
aknap5;  
  
for  i = 1 : m  
    knapr (5, i) = knap5 (i, 2);  
end  
aknap5 % model 5 knapsack assignment  
  
  
% MODEL 6 
  
% storage location for knapsack assignment  
aknap6 = [zeros(n ,1) item2 zeros(n ,1)];  
knap6 = knapc1;  
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% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  item2 ( i, 2) <= knap6 ( j, 2)  
            aknap6 ( i, 1) = knap6 ( j, 1);  
            knap6 ( j, 2) = knap6 ( j, 2) - aknap6 ( i, 3);  
            aknap6 ( i, 4) = knap6 ( j, 2);  
            if  j < m  
                k = j;  
            else  
                k = 1;  
            end  
            break  
        elseif  j == m  
            k = 1;      
        end  
    end  
end  
     
aknap6;  
  
for  i = 1 : m  
    knapr (6, i) = knap6 (i, 2);  
end  
aknap6 % model 6 knapsack assignment  
  
  
% MODEL 7 
  
% storage location for knapsack assignment  
aknap7 = [zeros(n ,1) item2 zeros(n ,1)];  
knap7 = knapc2;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  item2 ( i, 2) <= knap7 ( j, 2)  
            aknap7 ( i, 1) = knap7 ( j, 1);  
            knap7 ( j, 2) = knap7 ( j, 2) - aknap7 ( i, 3);  
            aknap7 ( i, 4) = knap7 ( j, 2);  
            if  j < m  
                k = j + 1;  
            else  
                k = 1;  
            end  
            break  
        elseif  j < m  
            continue  
        end  
    end  
end  
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aknap7;  
  
for  i = 1 : m  
    knapr (7, i) = knap7 ((m+1)-i, 2);  
end  
aknap7 % model 7 knapsack assignment  
  
  
% MODEL 8 
  
% storage location for knapsack assignment  
aknap8 = [zeros(n ,1) item2 zeros(n ,1)];  
knap8 = knapc2;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  item2 ( i, 2) <= knap8 ( j, 2)  
            aknap8 ( i, 1) = knap8 ( j, 1);  
            knap8 ( j, 2) = knap8 ( j, 2) - aknap8 ( i, 3);  
            aknap8 ( i, 4) = knap8 ( j, 2);  
            if  j < m  
                k = j;  
            else  
                k = 1;  
            end  
            break  
        elseif  j == m  
            k = 1;     
        end  
    end  
end  
     
aknap8;  
  
for  i = 1 : m  
    knapr (8, i) = knap8 ((m+1)-i, 2);  
end  
aknap8 % model 8 knapsack assignment  
  
  
% MODEL 9 
  
% storage location for knapsack assignment  
aknap9 = [zeros(n ,1) item1 zeros(n ,1)];  
knap9 = knapc2;  
  
% assiginment of items to knapsacks  
for  i = 1: n  
    knap9 = sortrows(knap9,[2]);  
    for  j = m:-1:1  
        if  item1 ( i, 2) <= knap9 ( j, 2)  
            aknap9 ( i, 1) = knap9 ( j, 1);  
            knap9 ( j, 2) = knap9 ( j, 2) - aknap9 ( i, 3);  
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            aknap9 ( i, 4) = knap9 ( j, 2);  
            break  
        elseif  j > 1  
            continue  
        end  
    end  
end  
     
aknap9;  
  
for  i = 1 : m  
    knapr (9, i) = knap9 ((m+1)-i, 2);  
end  
aknap9 % model 9 knapsack assignment  
  
  
% MODEL 10 
  
% storage location for knapsack assignment  
aknap10 = [zeros(n ,1) item2 zeros(n ,1)];  
knap10 = knapc2;  
  
% assignment of items to knapsacks  
for  i = 1: n  
    knap10 = sortrows(knap10,[2]);  
    for  j = m:-1:1  
        if  item2 ( i, 2) <= knap10 ( j, 2)  
            aknap10 ( i, 1) = knap10 ( j, 1);  
            knap10 ( j, 2) = knap10 ( j, 2) - aknap 10 ( i, 3);  
            aknap10 ( i, 4) = knap10 ( j, 2);  
            break  
        elseif  j > 1  
            continue  
        end          
    end  
end  
     
aknap10;  
  
for  i = 1 : m  
    knapr (10, i) = knap10 ((m+1)-i, 2);  
end  
aknap10 % model 10 knapsack assignment  
  
  
% Knapsack residual capacities for all models  
knapr  
  
knaprs (r, :) = knaprs (r,:) + sum(knapr')  
knaprsum = knaprsum + knaprs (r, :)  
  
% Storing residual capacities for all models + knap sack capacities  
knapr = knapr';  
knapr = horzcat(knapr, knapc1(:,2));  
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knaprt = vertcat(knaprt , knapr)  
  
  
r = r - 1;  
  
end  
  
knaprx(1,1) = min (knaprsum);  
knaprx(1,2) = mean (knaprsum);  
knaprx(1,3) = max (knaprsum);  
  
knaprx;  
capsum = sum(sum(cap));  
all(cond)  
  
wk1write( 'knapsac.xls' ,knaprs)  
% wk1write('knapA.xls' , A)  
% wk1write('knapC.xls' , c)  
wk1write( 'knapCap.xls'  , cap)  
wk1write( 'knapsum.xls'  , knaprsum)  
wk1write( 'knaprt.xls'  , knaprt)  
wk1write( 'Capsum.xls'  , capsum)  
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Appendix B 

MATLAB Code for The Tabu-Seach Implemataion in 

MKAR 
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clear  
  
% # of items and knapsacks  
n = input ( '          enter total number of items: ' );  
disp( '  ' )  
m = input ( '            enter number of knapsacks: ' );  
disp( '  ' )  
r = 1  %input ('     enter number of replications/run: ');  
disp( '  ' )  
knaprt = [];  
  
knaprs = zeros (r,10); % storage for knapsack residual space  
cap = zeros (r,m); % storage for knapsack capacity  
cond = zeros (1,r); % storage for conditions  
knaprsum = zeros (1,10); % storage for sum of knapsack unutilized 
space  
  
  
while  r > 0  
  
% generating item weights  
a = ceil(random( 'unif' , 10, 100, n, 1));  
w = a;  
w = sort (w);  % item weights sorted in ascending order  
  
% generating assignment restriction  
b = ceil(random( 'unif' , 0, m, n, m));  
  
% f = item weights  
% f = -1 * w;  
  
% generating profits  
% a = ceil(random('unif', 10, 100, n, 1));  
% p = a;  
  
a1 = 0.4 * (sum(w)/m)  
a2 = 0.6 * (sum(w)/m)  
  
% generating similar knapsack capacities  
a = (random( 'unif' , a1, a2, m-1, 1))  
a (m, 1) = 0.5 * sum(w) - sum (a)  
c = ceil(a)  
c= sort (c)  % knapsack capacities sorted in ascending order  
  
cap (r,:)=c'  
  
if  max (w) <= min (c) & min (c) >= min (w) & sum (w) > max (c);  
   cond (1,r) = 1  
end  
  
% b = capacities  
% b = c;  
  
% generating A  
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A = [];  
for  i = 1 : m  
    A = [A ; w'];  
end  
  
% storing the items sorted in ascending order  
item1 = zeros(n,2);  
for  i = 1 : n  
    item1 ( i, 1) = i;  
    item1 ( i, 2) = w ( i, 1);  
end  
item1; % items sorted in ascending order  
  
% adding knapsack restrictions to items sorted in a scending order  
d1 = [item1 b];  
  
w = w(n:-1:1); % item weights sorted in descending order  
  
% storing the items sorted in descending order  
item2 = zeros(n,2);  
for  i = 1 : n  
    item2 ( i, 1) = i;  
    item2 ( i, 2) = w ( i, 1);  
end  
item2; % items sorted in descending order  
  
% adding knapsack restrictions to items sorted in d escending order  
d2 = [item2 b];  
  
% storing the knapsacks sorted in ascending order  
knapc1 = zeros(m,2);  
for  i = 1 : m  
    knapc1 ( i, 1) = i;  
    knapc1 ( i, 2) = c ( i, 1);  
end  
knapc1; % knapsacks sorted in ascending order  
  
c = c(m:-1:1);  % knapsack capacities sorted in descending order  
% storing the knapsacks sorted in descending order  
knapc2 = zeros(m,2);  
for  i = 1 : m  
    knapc2 ( i, 1) = i;  
    knapc2 ( i, 2) = c ( i, 1);  
end  
knapc2; % knapsacks sorted in descending order  
  
% residual capacities storage  
knapr = zeros (10,m);  
  
  
% MODEL 1 
  
% storage location for knapsack assignment  
aknap1 = [zeros(n ,1) item1 zeros(n ,1) b];  
knap1 = knapc1;  
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% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  (aknap1 ( i, 3) <= knap1 ( j, 2)) & (any(knap1(j,1 ) == 
aknap1(i,5:4+m)))  
            aknap1 ( i, 1) = knap1 ( j, 1);  
            knap1 ( j, 2) = knap1 ( j, 2) - aknap1 ( i, 3);  
            aknap1 ( i, 4) = knap1 ( j, 2);  
            if  j < m  
                k = j + 1;  
            else  
                k = 1;  
            end  
            break  
        elseif  j < m  
            continue      
        end  
    end  
end      
     
aknap1;  
  
for  i = 1 : m  
    knapr (1, i) = knap1 (i, 2);  
end  
aknap1 % model 1 knapsack assignment  
  
% MODEL 2 
  
% storage location for knapsack assignment  
aknap2 = [zeros(n ,1) item1 zeros(n ,1) b];  
knap2 = knapc1;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  (aknap2 ( i, 3) <= knap2 ( j, 2)) & (any(knap2(j,1 ) == 
aknap2(i,5:4+m)))  
            aknap2 ( i, 1) = knap2 ( j, 1);  
            knap2 ( j, 2) = knap2 ( j, 2) - aknap2 ( i, 3);  
            aknap2 ( i, 4) = knap2 ( j, 2);  
            if  j < m  
                k = j;  
            else  
                k = 1;  
            end  
            break  
        elseif  j < m  
            continue          
        end  
    end  
end      
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aknap2;  
  
for  i = 1 : m  
    knapr (2, i) = knap2 (i, 2);  
end  
aknap2; % model 2 knapsack assignment  
  
  
% MODEL 3 
  
% storage location for knapsack assignment  
aknap3 = [zeros(n ,1) item1 zeros(n ,1) b];  
knap3 = knapc2;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  (aknap3 ( i, 3) <= knap3 ( j, 2)) & (any(knap3(j,1 ) == 
aknap3(i,5:4+m)))  
            aknap3 ( i, 1) = knap3 ( j, 1);  
            knap3 ( j, 2) = knap3 ( j, 2) - aknap3 ( i, 3);  
            aknap3 ( i, 4) = knap3 ( j, 2);  
            if  j < m  
                k = j + 1;  
            else  
                k = 1;  
            end  
            break  
        elseif  j == m  
            k = 1;  
        end  
    end  
end  
  
aknap3;  
  
for  i = 1 : m  
    knapr (3, i) = knap3 ((m+1)-i, 2);  
end  
aknap3; % model 3 knapsack assignment  
  
  
% MODEL 4 
  
% storage location for knapsack assignment  
aknap4 = [zeros(n ,1) item1 zeros(n ,1) b];  
knap4 = knapc2;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
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        if  (aknap4 ( i, 3) <= knap4 ( j, 2)) & (any(knap4(j,1 ) == 
aknap4(i,5:4+m)))  
            aknap4 ( i, 1) = knap4 ( j, 1);  
            knap4 ( j, 2) = knap4 ( j, 2) - aknap4 ( i, 3);  
            aknap4 ( i, 4) = knap4 ( j, 2);  
            if  j < m  
                k = j;  
            else  
                k = 1;  
            end  
            break  
        elseif  j == m  
            k = 1;  
        end  
    end  
end  
     
aknap4;  
  
for  i = 1 : m  
    knapr (4, i) = knap4 ((m+1)-i, 2);  
end  
aknap4; % model 4 knapsack assignment  
  
  
% MODEL 5 
  
% storage location for knapsack assignment  
aknap5 = [zeros(n ,1) item2 zeros(n ,1) b];  
knap5 = knapc1;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  (aknap5 ( i, 3) <= knap5 ( j, 2)) & (any(knap5(j,1 ) == 
aknap5(i,5:4+m)))  
            aknap5 ( i, 1) = knap5 ( j, 1);  
            knap5 ( j, 2) = knap5 ( j, 2) - aknap5 ( i, 3);  
            aknap5 ( i, 4) = knap5 ( j, 2);  
            if  j < m  
                k = j + 1;  
            else  
                k = 1;  
            end  
            break  
        elseif  j < m  
            continue          
        end  
    end  
end  
     
aknap5;  
  
for  i = 1 : m  
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    knapr (5, i) = knap5 (i, 2);  
end  
aknap5; % model 5 knapsack assignment  
  
  
% MODEL 6 
  
% storage location for knapsack assignment  
aknap6 = [zeros(n ,1) item2 zeros(n ,1) b];  
knap6 = knapc1;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  (aknap6 ( i, 3) <= knap6 ( j, 2)) & (any(knap6(j,1 ) == 
aknap6(i,5:4+m)))  
            aknap6 ( i, 1) = knap6 ( j, 1);  
            knap6 ( j, 2) = knap6 ( j, 2) - aknap6 ( i, 3);  
            aknap6 ( i, 4) = knap6 ( j, 2);  
            if  j < m  
                k = j;  
            else  
                k = 1;  
            end  
            break  
        elseif  j == m  
            k = 1;      
        end  
    end  
end  
     
aknap6;  
  
for  i = 1 : m  
    knapr (6, i) = knap6 (i, 2);  
end  
aknap6; % model 6 knapsack assignment  
  
  
% MODEL 7 
  
% storage location for knapsack assignment  
aknap7 = [zeros(n ,1) item2 zeros(n ,1) b];  
knap7 = knapc2;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  (aknap7 ( i, 3) <= knap7 ( j, 2)) & (any(knap7(j,1 ) == 
aknap7(i,5:4+m)))  
            aknap7 ( i, 1) = knap7 ( j, 1);  
            knap7 ( j, 2) = knap7 ( j, 2) - aknap7 ( i, 3);  
            aknap7 ( i, 4) = knap7 ( j, 2);  
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            if  j < m  
                k = j + 1;  
            else  
                k = 1;  
            end  
            break  
        elseif  j < m  
            continue  
        end  
    end  
end  
     
aknap7;  
  
for  i = 1 : m  
    knapr (7, i) = knap7 ((m+1)-i, 2);  
end  
aknap7; % model 7 knapsack assignment  
  
  
% MODEL 8 
  
% storage location for knapsack assignment  
aknap8 = [zeros(n ,1) item2 zeros(n ,1) b];  
knap8 = knapc2;  
  
% assignment of items to knapsacks  
k = 1;  
for  i = 1: n  
    for  j = k:m  
        if  (aknap8 ( i, 3) <= knap8 ( j, 2)) & (any(knap8(j,1 ) == 
aknap8(i,5:4+m)))  
            aknap8 ( i, 1) = knap8 ( j, 1);  
            knap8 ( j, 2) = knap8 ( j, 2) - aknap8 ( i, 3);  
            aknap8 ( i, 4) = knap8 ( j, 2);  
            if  j < m  
                k = j;  
            else  
                k = 1;  
            end  
            break  
        elseif  j == m  
            k = 1;     
        end  
    end  
end  
     
aknap8;  
  
for  i = 1 : m  
    knapr (8, i) = knap8 ((m+1)-i, 2);  
end  
aknap8; % model 8 knapsack assignment  
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% MODEL 9 
  
% storage location for knapsack assignment  
aknap9 = [zeros(n ,1) item1 zeros(n ,1) b];  
knap9 = knapc2;  
  
% assiginment of items to knapsacks  
for  i = 1: n  
    knap9 = sortrows(knap9,[2]);  
    for  j = m:-1:1  
        if  (aknap9 ( i, 3) <= knap9 ( j, 2)) & (any(knap9(j,1 ) == 
aknap9(i,5:4+m)))  
            aknap9 ( i, 1) = knap9 ( j, 1);  
            knap9 ( j, 2) = knap9 ( j, 2) - aknap9 ( i, 3);  
            aknap9 ( i, 4) = knap9 ( j, 2);  
            break  
        elseif  j > 1  
            continue  
        end  
    end  
end  
     
aknap9;  
  
for  i = 1 : m  
    knapr (9, i) = knap9 ((m+1)-i, 2);  
end  
aknap9; % model 9 knapsack assignment  
  
  
% MODEL 10 
  
% storage location for knapsack assignment  
aknap10 = [zeros(n ,1) item2 zeros(n ,1) b];  
knap10 = knapc2;  
  
% assignment of items to knapsacks  
for  i = 1: n  
    knap10 = sortrows(knap10,[2]);  
    for  j = m:-1:1  
        if  (aknap10 ( i, 3) <= knap10 ( j, 2)) & (any(knap10( j,1) == 
aknap10(i,5:4+m)))  
            aknap10 ( i, 1) = knap10 ( j, 1);  
            knap10 ( j, 2) = knap10 ( j, 2) - aknap 10 ( i, 3);  
            aknap10 ( i, 4) = knap10 ( j, 2);  
            break  
        elseif  j > 1  
            continue  
        end          
    end  
end  
     
aknap10;  
  
for  i = 1 : m  
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    knapr (10, i) = knap10 ((m+1)-i, 2);  
end  
aknap10; % model 10 knapsack assignment  
  
  
% Knapsack residual capacities for all models  
knapr  
  
knaprs (r, :) = knaprs (r,:) + sum(knapr')  
knaprsum = knaprsum + knaprs (r, :)  
  
% Storing residual capacities for all models + knap sack capacities  
knapr = knapr';  
knapr = horzcat(knapr, knapc1(:,2));  
knaprt = vertcat(knaprt , knapr)  
  
knaprsu = (sum(knapc1(:,2))- knaprs)/(sum(knapc1(:, 2)))*100  
  
r = r - 1;  
  
end  
  
knaprx(1,1) = min (knaprsum);  
knaprx(1,2) = mean (knaprsum);  
knaprx(1,3) = max (knaprsum);  
  
knaprx;  
capsum = sum(sum(cap));  
all(cond)  
  
%wk1write('knapsac.xls',knaprs)  
% wk1write('knapA.xls' , A)  
% wk1write('knapC.xls' , c)  
%wk1write('knapCap.xls' , cap)  
%wk1write('knapsum.xls' , knaprsum)  
%wk1write('knaprt.xls' , knaprt)  
%wk1write('Capsum.xls' , capsum)  
  
  
r1 = 1;  
r2 = 10;  
jnaprs = zeros (r1,10); % storage for knapsack residual space  
jnaprsum = zeros (1,10); % storage for sum of knapsack unutilized 
space  
jknaprs = knaprs;  
  
  
while  r2 > 0  
  
[r3,r4] = min ( jknaprs );  % maximum utilized capacity model  
jknaprs ( 1, r4 ) = inf;  
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if  r4 == 1 % is it model 1?  
% MODEL 1 
  
jnapc1 = knapc1;  
jnapc2 = knapc2;  
jnap = knap1;  
ajnap = aknap1;  
jnap1 = sortrows(jnap,[2]);  
ajnap1 = ajnap;  
jnap2 = jnap;  
ajnap2 = ajnap;  
m1 = m;  
  
  
% tabu search implementation  
  
while  m1 > 0  
    if  jnap1(m1,2)==0  
        m1 = m1 - 1;  
        continue  
    else  
        for  i = 1 : n  
            if  ajnap1(i,1) == jnap1 (m1,1)  
                ajnap1(i,1) = 0;  
                ajnap1(i,4) = 0;  
            end  
        end  
         
        for  i = 1:m  
            if  jnap1(m1,1)==jnapc2(i,1)  
                jnap1(m1,2)=jnapc2(i,2);  
            end  
        end  
         
        for  i = 1:n  
            if  (ajnap1 ( i, 3) <= jnap1 ( m1, 2)) & (ajnap1(i,1)= =0)  
                ajnap1 ( i, 1) = jnap1 ( m1, 1);  
                jnap1 ( m1, 2) = jnap1 ( m1, 2) - a jnap1 ( i, 3);  
                ajnap1 ( i, 4) = jnap1 ( m1, 2);  
            end  
        end  
         
        if  jnap1(m1,2)< jnap(m1,2)  
            ajnap = ajnap1;  
            jnap(m1,2) = jnap1(m1,2);  
        else  
            ajnap1 = ajnap;  
            jnap1(m1,2) = jnap(m1,2);  
        end  
         
    end  
    m1 = m1 - 1;  
end  
  
for  i = 1 : m  
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    jnapr (1, i) = jnap1 (i, 2);  
end  
  
jnap1;  
jnap2 = [jnap2 jnap1(:,2)];  
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];  
  
end  
  
  
if  r4 == 2 % is it model 2?  
% MODEL 2 
  
jnapc1 = knapc1;  
jnapc2 = knapc2;  
jnap = knap2;  
ajnap = aknap2;  
jnap1 = sortrows(jnap,[2]);  
ajnap1 = ajnap;  
jnap2 = jnap;  
ajnap2 = ajnap;  
m1 = m;  
  
  
% tabu search implementation  
  
while  m1 > 0  
    if  jnap1(m1,2)==0  
        m1 = m1 - 1;  
        continue  
    else  
        for  i = 1 : n  
            if  ajnap1(i,1) == jnap1 (m1,1)  
                ajnap1(i,1) = 0;  
                ajnap1(i,4) = 0;  
            end  
        end  
         
        for  i = 1:m  
            if  jnap1(m1,1)==jnapc2(i,1)  
                jnap1(m1,2)=jnapc2(i,2);  
            end  
        end  
         
        for  i = 1:n  
            if  (ajnap1 ( i, 3) <= jnap1 ( m1, 2)) & (ajnap1(i,1)= =0)  
                ajnap1 ( i, 1) = jnap1 ( m1, 1);  
                jnap1 ( m1, 2) = jnap1 ( m1, 2) - a jnap1 ( i, 3);  
                ajnap1 ( i, 4) = jnap1 ( m1, 2);  
            end  
        end  
         
        if  jnap1(m1,2)< jnap(m1,2)  
            ajnap = ajnap1;  
            jnap(m1,2) = jnap1(m1,2);  
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        else  
            ajnap1 = ajnap;  
            jnap1(m1,2) = jnap(m1,2);  
        end  
         
    end  
    m1 = m1 - 1;  
end  
  
for  i = 1 : m  
    jnapr (2, i) = jnap1 (i, 2);  
end  
  
jnap1;  
jnap2 = [jnap2 jnap1(:,2)];  
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];  
  
end  
  
  
if  r4 == 3 % is it model 3?     
% MODEL 3 
  
jnapc1 = knapc1;  
jnapc2 = knapc2;  
jnap = knap3;  
ajnap = aknap3;  
jnap1 = sortrows(jnap,[2]);  
ajnap1 = ajnap;  
jnap2 = jnap;  
ajnap2 = ajnap;  
m1 = m;  
  
  
% tabu search implementation  
  
while  m1 > 0  
    if  jnap1(m1,2)==0  
        m1 = m1 - 1;  
        continue  
    else  
        for  i = 1 : n  
            if  ajnap1(i,1) == jnap1 (m1,1)  
                ajnap1(i,1) = 0;  
                ajnap1(i,4) = 0;  
            end  
        end  
         
        for  i = 1:m  
            if  jnap1(m1,1)==jnapc2(i,1)  
                jnap1(m1,2)=jnapc2(i,2);  
            end  
        end  
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        for  i = 1:n  
            if  (ajnap1 ( i, 3) <= jnap1 ( m1, 2)) & (ajnap1(i,1)= =0)  
                ajnap1 ( i, 1) = jnap1 ( m1, 1);  
                jnap1 ( m1, 2) = jnap1 ( m1, 2) - a jnap1 ( i, 3);  
                ajnap1 ( i, 4) = jnap1 ( m1, 2);  
            end  
        end  
         
        if  jnap1(m1,2)< jnap(m1,2)  
            ajnap = ajnap1;  
            jnap(m1,2) = jnap1(m1,2);  
        else  
            ajnap1 = ajnap;  
            jnap1(m1,2) = jnap(m1,2);  
        end  
         
    end  
    m1 = m1 - 1;  
end  
  
for  i = 1 : m  
    jnapr (3, i) = jnap1 ((m+1)-i, 2);  
end  
  
jnap1;  
jnap2 = [jnap2 jnap1(:,2)];  
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];  
  
end  
  
  
if  r4 == 4 % is it model 4?  
% MODEL 4 
  
jnapc1 = knapc1;  
jnapc2 = knapc2;  
jnap = knap4;  
ajnap = aknap4;  
jnap1 = sortrows(jnap,[2]);  
ajnap1 = ajnap;  
jnap2 = jnap;  
ajnap2 = ajnap;  
m1 = m;  
  
  
% tabu search implementation  
  
while  m1 > 0  
    if  jnap1(m1,2)==0  
        m1 = m1 - 1;  
        continue  
    else  
        for  i = 1 : n  
            if  ajnap1(i,1) == jnap1 (m1,1)  
                ajnap1(i,1) = 0;  
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                ajnap1(i,4) = 0;  
            end  
        end  
         
        for  i = 1:m  
            if  jnap1(m1,1)==jnapc2(i,1)  
                jnap1(m1,2)=jnapc2(i,2);  
            end  
        end  
         
        for  i = 1:n  
            if  (ajnap1 ( i, 3) <= jnap1 ( m1, 2)) & (ajnap1(i,1)= =0)  
                ajnap1 ( i, 1) = jnap1 ( m1, 1);  
                jnap1 ( m1, 2) = jnap1 ( m1, 2) - a jnap1 ( i, 3);  
                ajnap1 ( i, 4) = jnap1 ( m1, 2);  
            end  
        end  
         
        if  jnap1(m1,2)< jnap(m1,2)  
            ajnap = ajnap1;  
            jnap(m1,2) = jnap1(m1,2);  
        else  
            ajnap1 = ajnap;  
            jnap1(m1,2) = jnap(m1,2);  
        end  
         
    end  
    m1 = m1 - 1;  
end  
  
for  i = 1 : m  
    jnapr (4, i) = jnap1 ((m+1)-i, 2);  
end  
  
jnap1;  
jnap2 = [jnap2 jnap1(:,2)];  
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];  
  
end  
  
  
if  r4 == 5 % is it model 5?  
% MODEL 5 
  
jnapc1 = knapc1;  
jnapc2 = knapc2;  
jnap = knap5;  
ajnap = aknap5;  
jnap1 = sortrows(jnap,[2]);  
ajnap1 = ajnap;  
jnap2 = jnap;  
ajnap2 = ajnap;  
m1 = m;  
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% tabu search implementation  
  
while  m1 > 0  
    if  jnap1(m1,2)==0  
        m1 = m1 - 1;  
        continue  
    else  
        for  i = 1 : n  
            if  ajnap1(i,1) == jnap1 (m1,1)  
                ajnap1(i,1) = 0;  
                ajnap1(i,4) = 0;  
            end  
        end  
         
        for  i = 1:m  
            if  jnap1(m1,1)==jnapc2(i,1)  
                jnap1(m1,2)=jnapc2(i,2);  
            end  
        end  
         
        for  i = 1:n  
            if  (ajnap1 ( i, 3) <= jnap1 ( m1, 2)) & (ajnap1(i,1)= =0)  
                ajnap1 ( i, 1) = jnap1 ( m1, 1);  
                jnap1 ( m1, 2) = jnap1 ( m1, 2) - a jnap1 ( i, 3);  
                ajnap1 ( i, 4) = jnap1 ( m1, 2);  
            end  
        end  
         
        if  jnap1(m1,2)< jnap(m1,2)  
            ajnap = ajnap1;  
            jnap(m1,2) = jnap1(m1,2);  
        else  
            ajnap1 = ajnap;  
            jnap1(m1,2) = jnap(m1,2);  
        end  
         
    end  
    m1 = m1 - 1;  
end  
  
for  i = 1 : m  
    jnapr (5, i) = jnap1 (i, 2);  
end  
  
jnap1;  
jnap2 = [jnap2 jnap1(:,2)];  
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];  
  
end  
  
  
if  r4 == 6 % is it model 6?  
% MODEL 6 
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jnapc1 = knapc1;  
jnapc2 = knapc2;  
jnap = knap6;  
ajnap = aknap6;  
jnap1 = sortrows(jnap,[2]);  
ajnap1 = ajnap;  
jnap2 = jnap;  
ajnap2 = ajnap;  
m1 = m;  
  
  
% tabu search implementation  
  
while  m1 > 0  
    if  jnap1(m1,2)==0  
        m1 = m1 - 1;  
        continue  
    else  
        for  i = 1 : n  
            if  ajnap1(i,1) == jnap1 (m1,1)  
                ajnap1(i,1) = 0;  
                ajnap1(i,4) = 0;  
            end  
        end  
         
        for  i = 1:m  
            if  jnap1(m1,1)==jnapc2(i,1)  
                jnap1(m1,2)=jnapc2(i,2);  
            end  
        end  
         
        for  i = 1:n  
            if  (ajnap1 ( i, 3) <= jnap1 ( m1, 2)) & (ajnap1(i,1)= =0)  
                ajnap1 ( i, 1) = jnap1 ( m1, 1);  
                jnap1 ( m1, 2) = jnap1 ( m1, 2) - a jnap1 ( i, 3);  
                ajnap1 ( i, 4) = jnap1 ( m1, 2);  
            end  
        end  
         
        if  jnap1(m1,2)< jnap(m1,2)  
            ajnap = ajnap1;  
            jnap(m1,2) = jnap1(m1,2);  
        else  
            ajnap1 = ajnap;  
            jnap1(m1,2) = jnap(m1,2);  
        end  
         
    end  
    m1 = m1 - 1;  
end  
  
for  i = 1 : m  
    jnapr (6, i) = jnap1 (i, 2);  
end  
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jnap1;  
jnap2 = [jnap2 jnap1(:,2)];  
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];  
  
end  
  
  
if  r4 == 7 % is it model 7?  
% MODEL 7 
  
jnapc1 = knapc1;  
jnapc2 = knapc2;  
jnap = knap7;  
ajnap = aknap7;  
jnap1 = sortrows(jnap,[2]);  
ajnap1 = ajnap;  
jnap2 = jnap;  
ajnap2 = ajnap;  
m1 = m;  
  
  
% tabu search implementation  
  
while  m1 > 0  
    if  jnap1(m1,2)==0  
        m1 = m1 - 1;  
        continue  
    else  
        for  i = 1 : n  
            if  ajnap1(i,1) == jnap1 (m1,1)  
                ajnap1(i,1) = 0;  
                ajnap1(i,4) = 0;  
            end  
        end  
         
        for  i = 1:m  
            if  jnap1(m1,1)==jnapc2(i,1)  
                jnap1(m1,2)=jnapc2(i,2);  
            end  
        end  
         
        for  i = 1:n  
            if  (ajnap1 ( i, 3) <= jnap1 ( m1, 2)) & (ajnap1(i,1)= =0)  
                ajnap1 ( i, 1) = jnap1 ( m1, 1);  
                jnap1 ( m1, 2) = jnap1 ( m1, 2) - a jnap1 ( i, 3);  
                ajnap1 ( i, 4) = jnap1 ( m1, 2);  
            end  
        end  
         
        if  jnap1(m1,2)< jnap(m1,2)  
            ajnap = ajnap1;  
            jnap(m1,2) = jnap1(m1,2);  
        else  
            ajnap1 = ajnap;  
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            jnap1(m1,2) = jnap(m1,2);  
        end  
         
    end  
    m1 = m1 - 1;  
end  
  
for  i = 1 : m  
    jnapr (7, i) = jnap1 ((m+1)-i, 2);  
end  
  
jnap1;  
jnap2 = [jnap2 jnap1(:,2)];  
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];  
  
end  
  
  
if  r4 == 8 % is it model 8?  
% MODEL 8 
  
jnapc1 = knapc1;  
jnapc2 = knapc2;  
jnap = knap8;  
ajnap = aknap8;  
jnap1 = sortrows(jnap,[2]);  
ajnap1 = ajnap;  
jnap2 = jnap;  
ajnap2 = ajnap;  
m1 = m;  
  
  
% tabu search implementation  
  
while  m1 > 0  
    if  jnap1(m1,2)==0  
        m1 = m1 - 1;  
        continue  
    else  
        for  i = 1 : n  
            if  ajnap1(i,1) == jnap1 (m1,1)  
                ajnap1(i,1) = 0;  
                ajnap1(i,4) = 0;  
            end  
        end  
         
        for  i = 1:m  
            if  jnap1(m1,1)==jnapc2(i,1)  
                jnap1(m1,2)=jnapc2(i,2);  
            end  
        end  
         
        for  i = 1:n  
            if  (ajnap1 ( i, 3) <= jnap1 ( m1, 2)) & (ajnap1(i,1)= =0)  
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                ajnap1 ( i, 1) = jnap1 ( m1, 1);  
                jnap1 ( m1, 2) = jnap1 ( m1, 2) - a jnap1 ( i, 3);  
                ajnap1 ( i, 4) = jnap1 ( m1, 2);  
            end  
        end  
         
        if  jnap1(m1,2)< jnap(m1,2)  
            ajnap = ajnap1;  
            jnap(m1,2) = jnap1(m1,2);  
        else  
            ajnap1 = ajnap;  
            jnap1(m1,2) = jnap(m1,2);  
        end  
         
    end  
    m1 = m1 - 1;  
end  
  
for  i = 1 : m  
    jnapr (8, i) = jnap1 ((m+1)-i, 2);  
end  
  
jnap1;  
jnap2 = [jnap2 jnap1(:,2)];  
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];  
  
end  
  
  
if  r4 == 9 % is it model 9?  
% MODEL 9 
  
jnapc1 = knapc1;  
jnapc2 = knapc2;  
jnap = knap9;  
ajnap = aknap9;  
jnap1 = sortrows(jnap,[2]);  
ajnap1 = ajnap;  
jnap2 = jnap;  
ajnap2 = ajnap;  
m1 = m;  
  
  
% tabu search implementation  
  
while  m1 > 0  
    if  jnap1(m1,2)==0  
        m1 = m1 - 1;  
        continue  
    else  
        for  i = 1 : n  
            if  ajnap1(i,1) == jnap1 (m1,1)  
                ajnap1(i,1) = 0;  
                ajnap1(i,4) = 0;  
            end  
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        end  
         
        for  i = 1:m  
            if  jnap1(m1,1)==jnapc2(i,1)  
                jnap1(m1,2)=jnapc2(i,2);  
            end  
        end  
         
        for  i = 1:n  
            if  (ajnap1 ( i, 3) <= jnap1 ( m1, 2)) & (ajnap1(i,1)= =0)  
                ajnap1 ( i, 1) = jnap1 ( m1, 1);  
                jnap1 ( m1, 2) = jnap1 ( m1, 2) - a jnap1 ( i, 3);  
                ajnap1 ( i, 4) = jnap1 ( m1, 2);  
            end  
        end  
         
        if  jnap1(m1,2)< jnap(m1,2)  
            ajnap = ajnap1;  
            jnap(m1,2) = jnap1(m1,2);  
        else  
            ajnap1 = ajnap;  
            jnap1(m1,2) = jnap(m1,2);  
        end  
         
    end  
    m1 = m1 - 1;  
end  
  
for  i = 1 : m  
    jnapr (9, i) = jnap1 ((m+1)-i, 2);  
end  
  
jnap1;  
jnap2 = [jnap2 jnap1(:,2)];  
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];  
  
end  
  
  
if  r4 == 10 % is it model 10?  
% MODEL 10 
  
jnapc1 = knapc1;  
jnapc2 = knapc2;  
jnap = knap10;  
ajnap = aknap10;  
jnap1 = sortrows(jnap,[2]);  
ajnap1 = ajnap;  
jnap2 = jnap;  
ajnap2 = ajnap;  
m1 = m;  
  
  
% tabu search implementation  
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while  m1 > 0  
    if  jnap1(m1,2)==0  
        m1 = m1 - 1;  
        continue  
    else  
        for  i = 1 : n  
            if  ajnap1(i,1) == jnap1 (m1,1)  
                ajnap1(i,1) = 0;  
                ajnap1(i,4) = 0;  
            end  
        end  
         
        for  i = 1:m  
            if  jnap1(m1,1)==jnapc2(i,1)  
                jnap1(m1,2)=jnapc2(i,2);  
            end  
        end  
         
        for  i = 1:n  
            if  (ajnap1 ( i, 3) <= jnap1 ( m1, 2)) & (ajnap1(i,1)= =0)  
                ajnap1 ( i, 1) = jnap1 ( m1, 1);  
                jnap1 ( m1, 2) = jnap1 ( m1, 2) - a jnap1 ( i, 3);  
                ajnap1 ( i, 4) = jnap1 ( m1, 2);  
            end  
        end  
         
        if  jnap1(m1,2)< jnap(m1,2)  
            ajnap = ajnap1;  
            jnap(m1,2) = jnap1(m1,2);  
        else  
            ajnap1 = ajnap;  
            jnap1(m1,2) = jnap(m1,2);  
        end  
         
    end  
    m1 = m1 - 1;  
end  
  
for  i = 1 : m  
    jnapr (10, i) = jnap1 ((m+1)-i, 2);  
end  
  
jnap1;  
jnap2 = [jnap2 jnap1(:,2)];  
ajnap2 = [item2 ajnap2(:,1) ajnap1(:,1)];  
  
end  
  
r2 = r2 - 1;  
  
end  
  
% Knapsack residual capacities for all models  
jnapr;  



 

 136

  
jnaprs (r1, :) = jnaprs (r1,:) + sum(jnapr');  
jnaprsum = jnaprsum + jnaprs (r1, :);  
  
jnaprsu = (sum(knapc1(:,2))- jnaprs)/(sum(knapc1(:, 2)))*100;  
% rsu = [knaprsu; jnaprsu];  
% for i = 1:10  
%     rsu (3,i) = 100*((rsu(2,i)/rsu(1,i))/rsu(1,i) );  
% end  
% rsu = rsu'  
  
rsu1 = [];  
for  i = 1 : 5  
    rsu1 = [rsu1 knaprsu(1,i) jnaprsu(1,i)];  
end  
rsu2 = [];  
for  i = 6 : 10  
    rsu2 = [rsu2 knaprsu(1,i) jnaprsu(1,i)];  
end  
  
rsu = [rsu1; rsu2]  
  
wk1write( 'p1.xls' ,rsu);  
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Appendix C 

MATLAB Code for the SKPPC  
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clear  
  
% # of items and knapsacks  
n = input ( '          enter total number of packages: ' );  
disp( '  ' )  
m = input ( '            enter number of inspectors: ' );  
disp( '  ' )  
r = input ( '     enter number of replications/run: ' );  
knaprt = [];  
knaprave = size(r , 2);  
  
  
while  r > 0  
     
% generating item weights  
a = ceil(random( 'unif' , 10, 100, n, 2));  
w1 = a;  
w2 = ceil(mean(sum(a)));  
% w = sort (w);  % item weights sorted in ascending  order  
  
% generating item outcomes  
p = random( 'unif' , 0, 1, n, 1);  
  
  
for  i = 1 : n  
    if  p(i,1) < 0.8  
        b(i) = 2; % select the package with 0.8 probability  
    else  
        b(i) = 1; % select the package with 0.2 probability  
    end  
end  
  
a1 = 0.4 * (w2/m);  
a2 = 0.6 * (w2/m);  
  
% generating similar knapsack capacities  
a = (random( 'unif' , a1, a2, m-1, 1));  
a (m, 1) = 0.5 * w2 - sum (a);  
c = ceil(sum(a)/m);  
% c= sort (c);  % equal knapsack capacities  
  
% selecting items to be assigned  
for  i = 1 : n  
    if  b(i) == 1;  
        w (i) = w1 (i , 1);  
    else  
        w (i) = w1 (i , 2);  
    end  
end  
  
% generating A  
A = [];  
for  i = 1 : m  
    A = [A ; w];  
end  
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w = w';  
  
% storing the items  
% item1 = zeros(n,2);  
for  i = 1 : n  
    item1 ( i, 1) = i;  
    item1 ( i, 2) = w (i);  
end  
  
  
% storing the knapsack capacities  
knapc1 = zeros(m,2);  
for  i = 1 : m  
    knapc1 ( i, 1) = i;  
    knapc1 ( i, 2) = c ;  
end  
  
  
% storage location for knapsack assignment  
aknap = [zeros(n ,4) b'];  
knap = knapc1;  
  
% assignment of items to knapsacks  
for  i = 1: n  
    knap = sortrows(knap,[2]);  
    for  j = m:-1:1  
        if  (item1 ( i, 2) <= knap ( j, 2))  
            aknap ( i, 1) = knap ( j, 1);  
            aknap ( i, 2) = item1 ( i, 1);  
            aknap ( i, 3) = item1 ( i, 2);  
            knap ( j, 2) = knap ( j, 2) - item1 ( i , 2);  
            aknap ( i, 4) = knap ( j, 2);  
            break  
        elseif  j > 1  
            continue  
        else  
            aknap ( i, 2) = item1 ( i, 1);  
            aknap ( i, 3) = item1 ( i, 2);  
        end  
    end  
end  
  
knaprt = ones(m,2);  
  
for  i = 1 : m  
    for  j = 1 : n  
        if  aknap(j,1) == i & aknap(j,5) == 1  
            knaprt(i,1) = knaprt(i,1)*0.2;  
            knaprt(i,2) = knaprt(i,2) + aknap(j,3);  
        elseif  aknap(j,1) == i & aknap(j,5) == 2  
            knaprt(i,1) = knaprt(i,1)*0.8;  
            knaprt(i,2) = knaprt(i,2) + aknap(j,3);  
        end  
    end  
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    knaprt(i,2) = knaprt(i,2) - 1;  
    knapr(1,i) = knaprt(i,1) * ( c - knaprt(i,2));  
end  
  
knaprs = sum(knapr);  
  
up = sum(knaprt(:,2))/sum(knapc1(:,2));  
  
knaprave(r,1) = knaprs;  
knaprave(r,2) = up;  
  
r = r - 1;  
  
end  
  
knaprave;  
s = mean(knaprave);  
  
s1 = s(1,1);  
s2 = 100*s(1,2);  
  
  
[ 'The expected penalty cost is '  num2str(s1)]  
  
[ 'The percentage of utilization is '  num2str(s2)]  
 



 

 141

Appendix D 

MATLAB Code for the Inspection Problem 
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clear all ;  
  
% # of items and knapsacks capacities  
n1 = 15; %input ('          enter number of packagess to be assigned: 
');  
disp( '  ' )  
m = 3; %input ('          enter number of inspectors: ');  
disp( '  ' )  
k = 18; %input ('            enter amount of resources avai lable to 
inpectors: ');  
disp( '  ' )  
w1 = 16; %input ('            enter processing time of item type 1: 
');  
disp( '  ' )  
w2 = 1; %input ('            enter processing time of item type 2: ');  
disp( '  ' )  
p1 = 0.2; %input ('            enter probability of item type  1: ');  
disp( '  ' )  
p2 = 1 - p1; %input ('            enter probability of item type  2: 
');  
disp( '  ' )  
d1 = 0.5; %input ('            enter under-utilization penalt y: ');  
disp( '  ' )  
d2 = 1 - d1; %input ('            enter over-utilization penalty : ');  
  
N1 = m;  
B1 = [];  
E = [];  
F = [];  
G = [];  
  
for  n = 3 : n1  
     
    N2 = n;  
    V1 = (0:n);  
    V2 = [w1 w2];  
    V3 = [p1 p2];  
  
    A1 = combn(V1, N1);  
    A2 = combn(V2, N2);  
    A3 = combn(V3, N2);  
     
    clear V* ;  
  
    [r,c] = size(A1);  
  
    X = A1;  
    B = [];  
  
    for  i = 1 : r  
        if  sum(X(i,:)) == n  
            B = [B ; X(i,:)];  
        end  
    end  
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    B = sort(B,2);  
    B = unique(B, 'rows' );  
    B1 = [B1 ; B];  
  
    [r1 c1] = size(B);  
  
    for  i = 1 : r1  
        for  j = 1 : c1  
            if  B(i,j) == 0  
                E1(i,j) = sum(k*prod(A3,2));  
            else  
                Y = A2;  
                Y(:,1:n-B(i,j))=[];  
                E1(i,j) = sum(abs(k-sum(Y,2)).*prod (A3,2));  
            end  
        end  
    end  
  
    E2 = 0.5*sum(E1,2);  
    E3 = min(E2);  
    E = [E ; E2];  
    F = [F ; E3];  
    G = [G; n];  
  
end  
  
E;  
F;  
a = min(E);  
b = find(E == a);  
clc;  
disp ( 'the minimum penalty cost is' ), disp(a)  
disp ( 'from the assignment' ), disp(B1(b,:))  
BE = [B1 E];  
plot(G,F);  
xlabel( '# of items inspected' );  
ylabel( 'penalty cost' );  
wk1write( 'AC.xls' ,F);  
 

 


