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Abstract 
 

 
Mesoscale convective systems (MCSs) are a dominant climatological feature of the 

central United States and are responsible for a substantial fraction of warm season 

rainfall.  Yet, very little is known about the predictability of MCSs.  To help address this 

situation, a series of ensemble simulations of a MCS are performed using two- and three-

dimensional versions of a storm-scale (Δx = 1 km) model and compared with an idealized 

control run.  Ensemble member perturbations in wind speed, relative humidity and 

convective instability are based on current 24-h forecast errors from the North American 

Model (NAM).  The ensemble results thus provide an upper bound on the predictability 

of mesoscale convective systems within realistic estimates of environmental uncertainty, 

assuming successful convective initiation.   

The two-dimensional simulations are assessed by considering an ensemble member a 

success when it reproduces a convective system of at least 20 km in length (roughly the 

size of two convective cells) within 100 km on either side of the location of the MCS in 

the control run.  By that standard, MCSs occur roughly 70% of the time for perturbation 

magnitudes consistent with 24-h forecast errors.   Reducing the perturbations for all fields 

to one-half the 24-h error values increases the MCS forecast success rate to over 90%.  

The same improvement in forecast accuracy leads to a 30-40% reduction in maximum 

surface wind speed uncertainty, a roughly 20% reduction in the uncertainty in maximum 

updraft strength, and initially slower growth in the uncertainty in the size of the MCS.  

However, the occurrence of MCSs drops below 50% as the mid-layer mean relative 

humidity falls below 65%.  The response of the model to reductions in forecast errors for 



 iv 

convective instability, moisture, and wind speed is not consistent and cannot easily be 

generalized, but each perturbation type is found to have a substantial impact on forecast 

uncertainty. 

Results from the three-dimensional simulations resemble those found in two 

dimensions.  The MCS success rate for the three-dimensional runs is around 70% for 

perturbation magnitudes consistent with 24-h forecast errors, while reducing the initial 

uncertainty improves the success rate to nearly 85%.  The maximum updraft and surface 

wind uncertainties are of similar magnitude to their two-dimensional counterparts.  

However, whereas the response of the model to improvements in the initial uncertainty is 

inconsistent in the two-dimensional experiment, it is non-existent in three-dimensions.  

For most storm features, improvement in the forecast uncertainty requires the reduction 

of initial uncertainty for all three of the fields together.  The three-dimensional runs often 

produce solutions that resemble bow echoes, but surface winds associated with these 

solutions, and the perturbation profiles that produce them, are indistinguishable from the 

non-bowing solutions, making any conclusions about the bow-like systems difficult. 
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Chapter 1:  Introduction 
 

 
In the central United States, mesoscale convective systems (MCSs)—a collection of 

thunderstorms with a contiguous precipitation area extending at least 100 km and lasting 

for at least 3 h (Parker and Johnson 2000)—are one of the dominant convective features 

in the warm season and are responsible for a substantial fraction of warm season rainfall 

(Fritsch et al. 1986).  Schumacher and Johnson (2006) find that 74% of all warm-season 

extreme rain events over the eastern two-thirds of the United States during the period 

1999-2003 are associated with an MCS.  Consequently, variations in MCS activity can 

contribute to flooding (e.g., Junkers et al. 1995) or drought (Fritsch et al. 1986).  At the 

same time, forecasts of warm season rainfall continue to possess little skill (Fritsch and 

Carbone 2004); the challenge is particularly acute for MCS forecasts in weakly forced 

environments (Stensrud and Fritsch 1994; Jankov and Gallus 2004).  In addition to their 

importance to seasonal rainfall, MCSs are also responsible for a wide range of severe 

weather, including flash floods, hail, strong surface winds and tornadoes (see Weisman 

and Trapp 2003 and references therein). 

As the increase in computational resources continues apace, the operational use of 

low-single-digit horizontal grid spacing numerical weather prediction models approaches.  

Indeed, the Met Office already produces a 4-km run over the UK (see 

http://www.metoffice.gov.uk) and recent Storm Prediction Center/National Severe 

Storms Laboratory Spring Programs have utilized daily 2- and 4-km versions of the 

Weather Research and Forecast  (WRF) Model over a domain covering ~2/3 of the 

CONUS (e.g., Weiss et al. 2005).  Compared to larger scales, however, very little is 
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known about predictability of phenomena on these scales.  This is true even for 

phenomena as extensively studied as MCSs.   

Some indirect investigations of MCS predictability consist of attempts to develop 

forecast aids for existing systems, whether simple extrapolations of the storm movement 

(Boucher and Wexler 1961) or prediction of system maintenance or decay based on 

environmental conditions (Coniglio et al. 2007).  Early forecast experiments with high-

resolution numerical models included both squall-line and supercell events (Brooks et al. 

1993; Wicker et al. 1997) and achieved some qualitative predictive success.  However, 

there is no apparent a priori information available to indicate when the model is capable 

of a successful forecast, rendering their value questionable. 

In a more direct predictability study, Stensrud and Wicker (2004, hereafter SW04) 

employ a storm-scale model in two dimensions in order to make possible the production 

of 100-member ensembles under a variety of environmental and perturbation scenarios, 

for a total of 2700 simulations.  Instead of using infinitesimal perturbations or initial 

errors consistent with analysis uncertainty, as is more commonly used, SW04 take the 

perspective of a forecaster looking at numerical model guidance for issuing a day 1 or 

day 2 prediction.  If the forecaster sees the model developing an MCS in his forecast area 

12 or 24 h into the run, what level of confidence can he place in the occurrence of that 

event or its subsequent evolution?  Therefore the initial perturbations used to generate the 

ensemble members are based on the 12- and 24-h forecast errors of a mesoscale model 

compared against upper-air observations.  Using perturbation magnitudes consistent with 

24-h forecast errors, only 60% of the ensemble members produced an MCS located 

within 200 km of the control run.  SW04 note that raising that success rate to 90% would 
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require improving the forecast error to magnitudes at or below even what is currently 

possible in model analysis systems, which are limited by instrument, representativeness, 

and model errors. 

The SW04 results raise the question of the relevance of two-dimensional (2D) 

simulations.  Modeling surface-forced thermal circulations in LES-type systems, Zeng 

and Pielke (1993) find the predictability estimates from 2D runs to be suitable 

approximations to the three-dimensional (3D) results, as long as the surface forcing is 

homogeneous in the third dimension.  Subsequently, 2D models have been used to study 

the predictability of tropical squall lines (e.g., Clark et al. 2003) and isolated convection 

in the Southern Plains (e.g., Derbyshire et al. 2004; Petch 2004), and as a form of 

convective parameterization for general circulation models (e.g., Randall et al. 2003; 

Grabowski 2003).  Khairoutdinov and Randall (2003) compare two- and three-

dimensional simulations of 28-day runs of a storm-scale model.  Consistent with earlier 

studies (see Moeng et al. 1996), they find both versions produce similar results for first-

order fields: the 3D run is somewhat wetter, but the vertical profiles of temperature and 

water vapor errors and of vertical mass flux are very similar, the latter despite stronger 

3D updrafts even.  Modeling tropical convection in both two and three dimensions, 

Grabowski et al. (1998) also find that mean fields are well represented in 2D, and note 

that the biggest discrepancies are associated with the evolution of features and, thus, the 

temporal variability of quantities.  Temporal variability is larger in 2D simulations, but 

this is largely a problem of sample size—the reduced domains of the 2D runs include 

fewer areas containing high-amplitude features, such as heavy rain, than their 3D 

counterparts and so the domain average of these quantities is less stable.  However, if the 
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statistics are averaged over an ensemble of 2D simulations, then the lower variability of 

the 3D runs can reasonably be approximated (Grabowski 2004).  More directly relevant 

to the present study, in a comparison of 2D and 3D simulations of squall lines, Rotunno 

et al. (1988) conclude that, while there exist differences in the details of the simulations, 

there is “no essential difference” between the two models as long as the low-level wind 

shear is not too strong.  Including Coriolis effects also can also result in distinctive 3D 

behavior (Skamarock et al. 1994).   Complete verisimilitude in the details of the modeled 

MCSs is not to be expected, yet confidence in the predictability results may still be 

reasonable, as long as the simulations are not carried forward so long as to make Coriolis 

effects non-negligible. 

The research undertaken herein is based on, and extends, the preliminary work of 

SW04, including a test of the hypothesis that 2D simulations can provide realistic 

predictability estimates. This study is unique in the field of the predictability in that it is 

focused on a single weather phenomenon (MCSs) of strong interest to a broad sector of 

society, including agriculture, transportation, and emergency management.  Furthermore, 

predictability is investigated using large ensembles (50-100 members), an approach not 

computationally practical until recently.   

Chapter 2 presents an overview of predictability research from the early recognition 

of forecast uncertainty through current studies with storm-scale models, along with a 

discussion on measuring predictability.  The numerical model is described in Chapter 3, 

along with an explanation of the perturbations used to initialize the ensemble members. 

Chapter 4 examines an update of the SW04 research including a description of the 

changes required by the addition of ice microphysics, which is not present in the SW04 
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simulations.  The applicability of the 2D model formulation is then tested by comparing 

the results against ensembles that are identical in every way save the addition of the third 

dimension, and the results from these 3D results are presented in Chapter 5.   Chapter 6 

provides a summary. 
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Chapter 2:  Review of predictability studies 

 
 
 The recognition of uncertainty in forecasting has been around, in some form, for 

over 200 years (see discussion by Murphy 1998).  In the early 20th century there was a 

rise in the belief that these uncertainties would disappear as improvements in scientific 

knowledge and observations were made (see Murphy 1998; Anthes 1986).  In a 

noteworthy exception to this optimism, H. Poincaré, in tackling the three-body problem 

in celestial mechanics, discovered the potential for a small initial uncertainty to result in a 

sufficiently large error at some later time as to render prediction impossible.  Poincaré 

distinguished this scenario from one in which the initial cloud of uncertainty remained 

unchanged with time and even suggested that the challenge of weather forecasting could 

be attributed to the intrinsic behavior of the atmosphere (Poincaré 1908; see Ruelle 1998 

and Murzi 2006).  However, Poincaré’s deductions lay fallow for 50 years before they 

were accidentally re-discovered when longer-term numerical model solutions for 

Rayleigh-Bernard convection were compared with solutions that were halted and 

restarted at some intermediate runtime (Lorenz 1963).  The saved data were truncated for 

expediency.  The small errors introduced by this truncation grew, eventually producing 

substantially different solutions.  

 In further experiments, Lorenz (1963) demonstrates that this uncertainty is not 

simply a result of an imperfect knowledge of the physics involved or an inability to 

represent those processes, but rather it is an inherent property of the system.  In 

particular, whether a system maintains unlimited predictability depends on whether the 

system possesses periodic behavior; non-periodic systems have limited predictability.  
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Echoing Poincaré once more, three predictability scenarios are possible (Lorenz 1969): 

1.) infinitely predictable systems in which errors stay the same or decay with time; 2.) 

systems with finite predictability, but unlimited capacity for extending the 

predictability—errors grow with time, but reducing initial error leads to a proportional 

reduction in error at time t; 3.) systems with intrinsic predictability limits in which errors 

grow with time and the predictability limit can not be improved by further reductions in 

the initial error.  Until the last half-century, the atmosphere was believed to fall into the 

second category.  For example, in a comprehensive examination of atmospheric 

predictability, Thompson (1957) views the biggest hurdle to improved forecasts to be 

administrative.  The error at time, t, is assumed to be proportional to the initial error, but 

increases in the density of the observing network are expensive.  For each, say, doubling 

of the network density a smaller portion of the initial uncertainty remains.  Thus, 

successive improvements in observing network become more expensive while yielding a 

smaller return in terms of forecast improvement.  The limit to atmospheric predictions is 

then a practical societal one and not one imposed by the nature of the atmospheric system 

itself. 

 A self-described metaphysical argument that the atmosphere instead falls into the 

third category is offered by Robinson (1967).  He notes that the Navier-Stokes equation 

predicts the motion of a particle of fluid and proposed that, because of diffusion, each 

particle has a characteristic lifetime (a function of the characteristic length scale and the 

coefficient of self-diffusion) and so the Navier-Stokes equation is only valid for the 

lifetime of the particle.  Robinson proceeds to make some back-of-the-envelope 

calculations of the predictability limits implied by his theory: 3-5 days for synoptic-scale 
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flow and about one hour for storm-scale motions.  However, most of the early 

predictability studies used simplified turbulence models. 

 

 a.  Turbulence-based models 

 Using a turbulence-based approach, the numerical experiments of Lorenz (1969) are 

in basic agreement with Robinson (1967).  The energetics argument of Lorenz (1969) 

states that, regardless of grid resolution employed, there will always be unresolved small-

scale eddies.  Whereas the statistics of these eddies may be determined by the state of the 

large-scale flow, there exists an associated expected error to those statistics owing to the 

fact that the individual eddies are at different stages within their life cycles and thus 

possess considerably different amounts of energy.  Between scales differing by several 

orders of magnitude, the number of small-scale eddies present within a single grid box is 

sufficient to allow cancellation yielding an average eddy kinetic energy very close to the 

expected value.  Thus, there is little direct effect of the small-scale errors on the larger 

scales.  However, when considering more nearly adjacent scales, the number of 

unresolved eddies within a grid box is relatively few and the average kinetic energy 

within the grid box can vary significantly from the expected value, allowing errors to 

efficiently transfer upscale.  Under regimes dominated by two-dimensional turbulence, 

the time scale of the unresolved eddies is on par with the large-scale eddies and so a 

halving of the initial error results in a doubling of the predictability limit.  Under regimes 

dominated by three-dimensional turbulence (e.g., convection), however, the turnover time 

of eddies decreases as the scale decreases, and so improving initial uncertainty becomes 



 9 

an exercise of diminishing returns in terms of increasing predictability (Lorenz 1969; 

Tennekes 1978). 

 One shortcoming in the argument of Lorenz (1969) is that the while he employed 

the two-dimensional vorticity equation, the main conclusions are based on the assumption 

of a -5/3 energy spectrum (Leith 1971).  Lorenz (1969) explains that the -5/3 spectrum 

was chosen because it “seems to place a reasonable amount of energy in the cumulus 

scales.”  However, earlier work in turbulence theory (e.g., Kraichnan 1967), suggests that 

two-dimensional homogeneous isoptropic turbulence should have a -3 energy spectrum; 

the -5/3 spectrum is expected for three-dimensional homogeneous isotropic turbulence.  

That is, when system kinetic energy is plotted as a function of wavenumber, there will 

exist a range for which the decline in energy with scale follows a p-k power law, where k 

= 3 for two-dimensional turbulence and k = 5/3 for three-dimensional turbulence.  

Furthermore, early analyses of observations (e.g., Wiin-Nielsen 1967) detected a -3 

power law for large-scale atmospheric flow.   More recent observations (Nastrom and 

Gage 1985) replicate the -3 spectrum for large scales (> 800 km) transitioning to a -5/3 

spectrum for smaller scales (< 500 km).  Note that the upper end of the range for the -5/3 

spectrum is too large to include isotropic three-dimensional turbulence.  A conclusive 

explanation for the shallower slope in the mesoscales has not yet been provided (see 

discussions in Lilly 1983 and Skamarock 2004).   

 A closer look at the nature of turbulence in two and three dimensions reveals the 

importance of choosing an appropriate spectral slope.  In barotropic, non-divergent (i.e., 

two-dimensional) flow, absolute vorticity is conserved along trajectories.  In the absence 

of any vorticity sources or sinks, vorticity is simply advected by the flow itself.  
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However, random motions will induce shearing, which tends to redistribute the vorticity 

into filaments of increasing length and decreasing thickness.  Hence, as the flow evolves, 

vorticity variations will move toward smaller and smaller scales, a property described as 

an “enstrophy cascade” (Leith 1968; Tennekes 1978; enstrophy is equal to half of the 

mean-square vorticity).   

Whereas, in two dimensions, shearing acts to elongate and narrow vorticity 

filaments such that vorticity is conserved, as described above, the stretching induced by 

the differential vertical motion resulting from convergence and divergence acts to 

amplify vorticity in three dimensions.  When motions are not constrained to be 

nondivergent, vorticity amplification occurs at all scales, but it tends to focus kinetic 

energy into scales smaller than the embedded flow (Tennekes 1978).  Consequently, 

analogous to the enstrophy cascade present in two-dimensional turbulence, three-

dimensional turbulence is characterized by an energy cascade toward smaller scales.   

Applying scaling arguments to the above two scenarios results in a predicted -3 

energy spectrum for two-dimensional turbulence and a predicted -5/3 spectrum for three-

dimensional turbulence (Tennekes 1978).  Consistent with the preceding discussion, 

scaling arguments show that for two-dimensional turbulence the intensity of the vorticity 

is independent of scale, while, for three-dimensional turbulence, the magnitude of the 

vorticity is inversely proportional to the scale of motion, such that vorticity increases as 

the spatial scale decreases.  Eddy turnover times (i.e., the time in which an air parcel with 

an eddy makes a complete circuit) can be estimated by the reciprocal of the vorticity.  

Therefore, eddy turnover times are independent of scale for two-dimensional turbulence 

but decrease with the scale of the flow in three-dimensional turbulence. 
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Using the -3 energy spectrum that is more physically consistent with two-

dimensional turbulence results in considerably longer predictability time estimates (Leith 

1971; a different turbulence approximation is used as well, but the results are much more 

sensitive to the energy spectrum imposed than to the dynamical system, see Rotunno and 

Snyder 2008).  These results lead Leith to conclude, in agreement with Thompson (1957), 

that atmospheric predictability could be continually lengthened by successive increases in 

the resolution of the observing network.  However, repeating the experiment with a -5/3 

energy spectrum (Leith and Kraichnan 1972), one finds predictability to be a function of 

the local eddy turnover time, consistent with Lorenz (1969).  The loss of predictability is, 

though, somewhat slower when a dynamical system that is physically consistent with a -

5/3 spectrum is used: ~10 times the local eddy time scale for three-dimensional 

turbulence compared to ~6 times the local eddy time scale for two-dimensional 

turbulence.  Under the assumptions used by Leith and Kraichnan (1972), the implication 

for mesoscale forecasts is not as dire as the Lorenz (1969) estimates, but the basic 

scenario remains: the connection between predictability, eddy turnover times, and the 

scale of the flow means that there is an inherent limit to atmospheric predictability that 

cannot be extended by scientific or technological improvements. 

Interestingly, when focusing on the spread of error energy between scales, the 

main difference between the two regimes is that, since there is more energy present in the 

small scales for the -5/3 scenario, large-scale errors can interact with the small scales 

resulting in a substantial downscale error-energy transfer (Rotunno and Snyder 2008).  

Consequently, while error energy is maximized in the slowly growing large scales for the 

-3 scenario, it is maximized in the smallest unsaturated scale for the -5/3 case (Rotunno 
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and Snyder 2008).  This difference can be seen in the error growth curves (Fig. 1).  After 

a brief period of initial adjustment error energy grows at a constant rate across the -3 

spectrum (Fig. 1b).  For the -5/3 case, the curve is actually composed of a series of 

increasingly long linear segments of increasingly shallow slope (Fig. 1a).  Each segment 

represents a given length scale; after the error in each scale saturates (i.e., the error 

energy is equal to the total energy at that scale) error growth continues at the slightly 

slower rate characteristic of the next smallest unsaturated scale.  This process is even 

more apparent when the number of scales of motion is reduced to two (Fig. 2).  Initially, 

error growth is dominated by the “fast” component associated with the smaller scale until 

it saturates by t = 2 (non-dimensional time units) at which point the “slow” component 

associated with the larger scale takes over as if the smaller scales did not exist.  Error 

growth continues until the slow component approaches saturation around t = 10 (see also 

Lorenz 2006; Zhang et al. 2007). 

A novel critique of this standard view of atmospheric predictability claims the 

Lorenz (1969) model to be insufficiently nonlinear possessing too few degrees of 

freedom (Robert and Rosier 2001).  Under a more realistic system, the downscale 

enstrophy cascade and upscale energy cascade present in turbulent flow lead to a form of 

self-organization of coherent structures that are significantly more predictable.  An 

analogy is drawn to suggest that small-scale chaotic motions no more affect the 

predictability of the large-scale flow than molecular thermal agitation affects the general 

properties of the gas those molecules comprise.  However, there are several reasons to 

suspect the relevance of this claim.  One, it seems to rely on a stark separation between 

the coherent large scales and chaotic small scales, but Lorenz (1969) notes that direct 
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Fig. 1. Error energy per unit wavenumber for t = 0, 2 in steps of 0.1 for (a) surface quasi-
geostrophic (SQG) turbulence and (b) two-dimensional vorticity (2DV) turbulence. The 
heavy solid line indicates the base-state kinetic energy spectra per unit wavenumber, 
which has a -5/3 slope for SQG and a -3 slope for 2DV. (From Rotunno and Snyder 
2008.) 
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Fig. 2. Typical error growth for the fast component δxf (upper curve) and for the slow 
component δxs in coupled Lorenz models with δxf(0) = 10−8 and δxs(0) = 10−12, averaged 
over 500 samples. The dashed lines show the exponential growths with exponents λ(f) 
and λ(s). (From Boffetta et al. 1998.)
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spreading of error energy from small scales to large scales is almost non-existent; the 

theory is based on flows possessing many scales of motion such that upscale error energy 

spreading occurs between nearly adjacent scales.  Two, even within their constraints, 

there exist “separatrix” decision points in the flow between two distinct coherent 

structure solutions seemingly analogous to the decision points between the two lobes of 

the Lorenz (1963) attractor.  Finally, Robert and Rosier (2001) acknowledge the 

oversimplification that their system admits only a single coherent structure whereas the 

atmosphere is composed of a finite set of such structures between which the nonlinear 

interactions can be chaotic.   The nonlinear interactions can create intermediate scales, 

leading back to the first point above. 

Still, the relevance of using turbulence-based models for predictability studies at 

the mesoscales and below raises an important question.  The key dynamical phenomena 

at these scales appear to be gravity waves and convection (see Lilly 1983).  Gravity 

waves are not treated at all by turbulence-based predictability models, while moist 

convection is highly intermittent—recall that the models assume the turbulent flow to be 

continuous in space and time—and involves the important, but untreated, process of 

latent heat release.  Accounting for intermittency in turbulence models appears to steepen 

the spectral slope, at least initially (Basdevant et al. 1981; Lilly 1983), and extend the 

predictability limits (Crisanti et al. 1993).  This steeper spectral slope indicates less 

small-scale energy, thereby reducing the downscale spread of error energy.   However, 

the spectral slope predicted by Lilly (1983) for intermittent turbulent flow, k = -2, still 

indicates a bounded predictability horizon.  Hence, whereas studies involving global 

atmospheric models (e.g., Lorenz 1982; Simmons et al. 1995) appear to support the 
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findings of Lorenz (1969) for large scales, the predictability of the mesoscale and smaller 

scales remains an open question (see also the discussion in Straus and Shukla 2005).  

Studies of mesoscale predictability awaited the development of mesoscale models. 

 

b.  Mesoscale models 

 The advent of numerical model simulation of the mesoscale brought with it claims 

of enhanced predictability at these scales (e.g., see the review by Anthes 1986) due to 

fixed forcing by terrain and other surface features.  The conclusions by Anthes (1986) are 

based on only a few cases comparing the solution from a control run with that from a run 

with randomly perturbed initial conditions in which error growth (measured as the root-

mean-square difference between the 500-hPa heights from two runs) is negligible over 

three days of integration.  The conclusions were soon identified as being more 

emblematic of the experimental design than of the atmosphere.  Limited computational 

capacity meant that focusing on the mesoscales required a shift from global to limited 

area models that, typically, still had relatively large grid spacing, on the order of 100 km.  

Grid spacing this large fails to resolve small-scale instabilities that may be responsible for 

fast early error growth (Berri and Paegle 1990).  Indeed, Anthes (1986) includes a caution 

that the results would likely not apply to smaller scales where convective instability 

becomes more prominent.  Three additional constraining influences affecting the error 

growth in Anthes (1986) have been recognized (Errico and Baumhefner 1987): strong 

numerical dissipation quashes small perturbations before they can grow; some of the 

initial perturbation projects onto gravity waves, which are dispersed through geostrophic 

adjustment and subsequently propagate out of the domain or are dissipated; the limited 
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domain combined with the use of identical lateral boundary conditions meant that as the 

numerical integration progresses differences are swept out of the downwind edge of the 

domain while identical conditions are introduced from the upstream edge.  Along with 

error sweeping, a further effect of (one-way) lateral boundaries is that large-scale growth 

is prohibited (Vukicevic and Errico 1990).  The large-scale solution is constrained to 

match the imposed lateral boundary conditions and scales larger than that determined by 

the model domain size are not present, though some large-scale error growth can be 

achieved by increasing the size of the limited area domain (Vukicevic and Errico 1990; 

Vukicevic 1991).  Still, when using measures such as root-mean-squared-error, the two 

effects of the use of lateral boundaries are manifested as error growth curves that, after a 

period of initial growth, quickly level off to a value substantially less than expected 

(Laprise et al. 2000; Vannitsem 2003; Nutter et al. 2004). 

 Another shortcoming of many early studies of mesoscale predictability is a lack of 

moist physics (e.g., Farrell 1990; Vukicevic 1991; Ehrendorfer and Errico 1995). 

Ehrendorfer and Errico (1995) note that the lack of error growth may result from the fact 

that amplification of some perturbations may require nonlinear processes, particularly 

moist physics.  Including moist processes increases the rate of forecast error growth by 

about an order of magnitude and reduces the scale of those errors, such that even 

parameterized convection is capable of producing new instabilities (Ehrendorfer et al. 

1999). 

 The danger of misinterpreting model artifacts as properties of the atmosphere 

highlights the model dependence of any predictability study.  Not only does the presence 

of model error place a severe restriction on the forecast improvement that can be obtained 
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by improving the initial analysis (Tribbia and Baumhefner 1988), but also it can prejudice 

one’s view on the ultimately predictability inherent in the system (i.e., the atmosphere).  

Predictability cannot be removed from the context of the model framework being used 

(Schneider and Griffies 1999; Smith 2006).  As a result, theoretical predictability limits 

can change as our level of understanding increases and models are improved (Smith 

2006).  This is true whether one is comparing model output to observations or employing 

the perfect model scenario (i.e., assuming that the model perfectly captures the full 

spectrum of physical processes at work in the atmosphere and thus would give an exactly 

correct forecast if exactly correct initial conditions could be supplied). 

 Additional insight into the predictability of mesoscale model forecasts can be 

gained by examining the error growth at different scales and the interactions between 

scales.  Recall that in turbulence models, the error energy spread from the large scales to 

the small scales is of the same order of magnitude as that which occurs between adjacent 

small scales (Lorenz 1969; Rotunno and Snyder 2008).  Typically, the small scales are 

found to be subject mainly to small-scale forcing with little impact on or from the larger-

scales (Zhang and Fritsch 1986; van Tuyl and Errico 1989; Zhang et al. 2002).  For 

experiments with low horizontal resolution, topography is the primary source of the 

small-scale forcing (e.g., van Tuyl and Errico 1989).  The dominance of topography as a 

small-scale forcing mechanism leads to the conclusion that mesoscale flow is likely to be 

reasonable predictable, while acknowledging that predictability may be lower in regions 

where internal dynamics are predominant (Anthes 1986; van Tuyl and Errico 1989; 

Vukicevic and Errico 1990).  When the grid spacing is reduced to about 30 km or less, 

moist convection becomes an important source of forecast error (e.g., Zhang and Fritsch 
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1986; Zhang et al. 2002).  Consequently, for these higher resolution simulations, an 

overall finding of weak error growth is a result of higher-energy large scales, where error 

growth is restricted, dominating the lower-energy, but rapidly divergent, small scales 

(Laprise et al. 2000; Zhang et al. 2002).  The important role of moist convection in small-

scale error growth can be illustrated by removing the effects of convective latent heat 

release; the resulting pair of simulations exhibit substantially reduced small-scale error 

growth (Zhang et al. 2002).   

The perceived degree of predictability is affected greatly by how error growth is 

measured.  Fourier analysis is a common tool for scale decomposition.  However, isolated 

features project onto a wide range of scales defined by Fourier functions, and so even 

very intense isolated maxima (such as convection) have less effect on the power spectra 

than broader-scale forcings such as topography (van Tuyl and Errico 1989).  In addition, 

the specific atmospheric field examined can color the results.  Fields such as 500-hPa 

heights or sea level pressure are indicative of what is occurring on the larger scales while 

precipitation may be strongly tied to small-scale errors.  For example, the initial 

perturbations in Zhang et al. (2002) have a substantial impact on the subsequent evolution 

of the precipitation fields, but sea-level-pressure fields are affected only slightly. 

 

c.  Storm-scale models 

 Continued computational advances recently have enabled the use of storm-scale 

models (i.e., 2-3 km grid spacing) to examine further the role of convection in small-scale 

predictability and whether some enhanced predictability exists at these scales.  In a 

follow up to Zhang et al. (2002), Zhang et al. (2003) apply a more systematic approach to  
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a poorly forecast snowstorm associated with a low-pressure system off the East Coast of 

the United States.  In place of the initial conditions derived from separate operational 

analyses as in the earlier work, a height-independent sinusoidal temperature perturbation 

is added to the control run to initialize a twinned solution (i.e., the two runs are alike in 

all ways except the initial conditions).  Errors grow rapidly, particularly over the first few 

hours, and the scale of the maximum error energy steadily increases with time, 

suggesting an upscale error cascade as predicted by Lorenz (1969).  Also in line with the 

scenario presented by Lorenz (1969), error growth rates increase as the amplitude of the 

initial error is decreased.  This behavior is most pronounced over the first 3-5 h, but 

continues throughout the 36-h simulation.  For the largest amplitudes, error grows slowly, 

if at all (see also, Hohenegger and Schär 2007b).  Recall that the error energy saturates at 

a level equal to the total energy at that scale; therefore, as the initial error magnitudes 

approach the total energy, little remaining error growth is possible.  Large initial error 

magnitudes on the small scales could be another cause of the weak error growth present 

in the early mesoscale predictability studies. 

 Growth of the initial errors increases as the grid spacing is reduced from 10 km to 

3.3 km (Zhang et al. 2003).  The error doubling time for the higher-resolution runs is less 

than 1 h, indicating that reducing the initial errors by half would only extend forecast skill 

by less than 1 h.  The rapid error growth begins at the scale of the perturbation but then 

quickly grows upscale, reaching the mesoscale within 2 h.  Model error covariances 

suggest that errors can spread to scales of 1000 km or more (Zhang 2005).  In studying 

summertime convection over a region covering southeast France, Switzerland, and 

northern Italy, Walser et al. (2004) similarly found that small-scale errors tied to 
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convection quickly contaminate larger scales.  Echoing the early mesoscale studies, 

Walser and Schär (2004) note that one case of moderately strong convection located over 

the Alps shows a higher degree of predictability.  Moreover, even within that case, the 

precipitation over the mountains is found to be more predictable than that which occurs 

over the nearby plains.  In general, though, mesoscale perturbations are able to remain in 

the domain and grow over extended time periods, impacting the overall forecast 

uncertainty after about a day (Walser et al. 2004), somewhat later than that seen in Zhang 

et al. (2003). 

 Predictability at small scales appears to be tied closely to convection over or near 

mountains (Walser et al. 2004; Walser and Schär 2004), associated with a coastal low-

pressure system (Zhang et al. 2003), within an idealized simulation of a baroclinic wave 

(Tan et al 2004), or in a weakly-forced heavy precipitation event over south Texas 

(Zhang et al. 2006).  Zhang et al. (2003) note that the regions of strong error growth are 

coincident with convectively unstable regions.  The error growth between simulations is 

tied to times and locations where small changes in the model fields can push the solution 

across a threshold (e.g., trigger convection) creating a nonlinear jump in the solution 

trajectory away from its twinned realization. (For example, imagine two convectively 

unstable regions: one exists in an area with a large cap, the other in an area with little 

inhibition.  Small perturbations in the former scenario will likely have no impact, while 

they can have a significant impact on the latter.  This leads to very different error growth 

in the two regions.)  If the perturbations are too small to initiate convection, then 

perturbation growth must wait for convection to occur in the control run.   



 22 

 At lower resolutions (∆x > 10 km), early nonlinear growth is due to the “on-off” 

switches in the convective parameterizations, while at higher resolution (∆x = 1 to 4 km) 

the on-off switches reside in the microphysical schemes (Zhang et al. 2006).  Despite still 

involving on-off switches in the microphysical schemes, non-convective precipitation 

does not correlate with regions of significant error growth (Tan et al. 2004).  Typically, 

the stronger motions associated with convection produce larger error amplitudes than the 

weaker flows associated with non-convective precipitation, regardless of the fidelity of 

the model physics.  Convection can introduce and amplify errors in both temperature 

fields (i.e., through latent heat release) and momentum fields (i.e., through shear 

production) (Zhang et al. 2007).  While the latent heat release from non-convective 

precipitation can be substantial, the rate of latent heating is generally much lower and 

shear production is minimal.  Thus, rapid error growth is not tied to precipitation in 

general, but specifically to regions of convection. 

However, the presence of convective instability is not sufficient to guarantee rapid 

error growth.  Along with the need for the perturbations to push fields beyond certain 

thresholds, it has been suggested (Hohenegger et al. 2006) that for perturbations to grow 

significantly, they must remain in areas of instability for an extended period; 

perturbations that rapidly move through unstable regions experience only transient 

growth.  So, upstream propagation of gravity waves, by keeping the perturbations in 

convectively unstable regions longer, should be associated with lower predictability 

(Hohenegger et al. 2006).  Indeed, gravity waves have been implicated as playing a major 

role in small-scale error growth.  Hohenegger and Schär (2007b) show that some portion 

of the initial perturbations project onto both fast, small-amplitude waves (see also Errico 
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and Baumhefner 1987), which then disperse the initial error rapidly through the domain.  

These small-amplitude perturbations can experience substantial amplification through 

forced ascent over topography or, if the trigger thresholds are exceeded, through 

convective activity.  (The faster, smaller-amplitude sound waves tend to simply 

propagate the perturbations out of the domain, while the slower, somewhat larger-

amplitude gravity waves are more likely to play a role in subsequent error growth.)  The 

larger-scale environment determines the saturation level, according to the amount of 

energy present at each scale in the environment, and the preferred regions of error 

growth, such as in the warm sector of a developing low-pressure system. 

Zhang et al. (2007) expand on these error growth steps by offering a three-stage 

conceptual model explaining how initial small-scale error moves upscale to produce 

synoptic-scale errors within 24 h: 

1.) During the first few hours (< 6 h) of the simulation convection is the dominant 

source of error growth.  Individual convective cells quickly become displaced between a 

pair of control and perturbed runs, such that the magnitude of the errors reaches parity 

with the amplitude of the fields themselves, implying error saturation.  Gravity waves 

then disperse the error energy away from the area of convection in the model. 

2.) Over the next 6-12 h the unbalanced small-scale errors are transformed into 

errors in the larger-scale balanced motions, possibly through geostrophic adjustment (in 

response to the latent heating). 

3.) Finally, the errors in the balanced fields can grow according to large-scale 

baroclinic instability. 
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It should be noted that the processes involved in earlier stages do not cease during the 

later stages.  Convection can continue throughout the period along with the subsequent 

unbalanced response.  In fact, while the balanced component of the difference fields 

increases with integration time, the unbalanced component remains nearly as strong 

(Zhang et al. 2007).  This may explain why geostrophic adjustment is believed to play an 

important role in the upscale error growth by Zhang et al. (2007) whereas Errico and 

Baumhefner (1987) identify geostrophic adjustment as a one of the mechanisms limiting 

error growth in mesoscale models.  In the latter simulations, geostrophic adjustment 

sweeps the initial, random perturbations out of the domain quickly, while in Zhang et al. 

(2007) the atmosphere is adjusting continually to the sustained latent heat release and 

shear production resulting from convective activity. 

 Interestingly, the three-stage model proposed by Zhang et al. (2007) presents a 

parallel between the large and small scales.  At small scales, gravity waves transport the 

initial random perturbations to locations of convective instability where those errors can 

amplify.  At larger scales, the inertia gravity wave response to the convectively generated 

latent heating transports errors to locations of baroclinic instability where those errors can 

amplify.  Zhang et al. (2006, p.165) state it as follows: “It is possible that convective 

instability determines error growth at smaller scales, while large-scale 

baroclinic…instability dictates upscale energy transfer and determines error growth at 

larger scales.”  One result of the dominant roles of convective and baroclinic instability is 

that there should be forecast scenarios in which extended predictability is expected.  

Small-scale error growth should progress slowly in convectively stable environments and 

similarly for large-scale error in environments of low-baroclinicity (see Zhang et al. 
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2006).  Indeed, casual observation of the weather bears this out, e.g., the highly persistent 

conditions often associated with high-pressure systems.  However, many weather events 

of high societal impact occur outside of these more predictable scenarios. 

 One common feature of the Hohenegger and Schär (2007b) and Zhang et al. 

(2007) conceptual models of error growth is that to a large extent the mesoscales are 

ignored.  Involved is an interplay between the storm-scale error source and synoptic 

scales which are both affected by the smaller-scale errors and help determine the location 

and timing of the convection.  A similar interplay has been proposed between the meso- 

and planetary-scales (Stensrud 1996; Stensrud and Anderson 2001), whereby the latent 

heat release from persistent mesoscale convective activity (i.e., repeated MCSs in the 

same region over the course of several days) becomes a source region for Rossby-wave 

trains.  These MCS-induced large-scale circulations can then create conditions favorable 

for continued persistent mesoscale convective activity. 

 

d.  Observational studies of MCS predictability 

 While MCSs have long garnered the attention of the meteorological community 

(e.g., Tepper 1950; Gerhardt 1963; Sanders and Paine 1975; Maddox et al. 1986; 

McAnelly et al. 1997; Parker and Johnson 2000), very little attention has been focused on 

the predictability of these systems.  The challenge of correctly forecasting MCSs includes 

having a firm grasp of the large-scale conditions, accurately predicting the initial 

convective activity, capturing boundary layer disturbances caused by this initial 

convection, and forecasting the evolution and interaction of these disturbances in order to 

obtain the correct secondary activity (Carbone et al. 1990).  Carbone et al. state that 
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quantitative prediction of convective precipitation presents a “formidable” challenge on 

even shorter (6-12 h) time scales.  A more optimistic perspective is that squall lines that 

are forced by synoptic-scale features may be more predictable as a result of  “inheriting” 

the predictability of the larger-scale forcing (Weygandt et al. 2002).  However, many 

MCSs are not associated with strong, large-scale forcing (Porter et al. 1955; Stensrud and 

Fritsch 1993); in fact, many of the features of midlatitude squall lines can be reproduced 

in models lacking any large-scale forcing (Skamarock et al. 1994). 

 A difficulty in trying to apply the predictability limits suggested by Lorenz (1969) 

to MCSs involves determining the relevant scale.  The convective portion of an MCS 

may be on the order of 10 km in the cross-line direction, but may extend for many 

hundreds of kilometers in the along-line direction.  One perspective is that the smaller, 

cross-line dimension is more representative of the individual convective cells within the 

system, while the larger, along-line dimension is more representative of the system itself.  

Using the estimates from Lorenz (1969) one would then expect a predictability limit in 

the range of 10-15 h for the MCS, while the individual convective elements would be 

predictable for less then an hour.  Studies of long time series of (nearly) national radar 

data (Germann et al. 2006; Vasic et al. 2007) set the limit at the somewhat lower values 

of 5-10 h for the scale of the along-line dimension (~250-500 km).  Germann et al. (2006) 

also found a corridor of higher predictability (of up to 10 h) to extend from northwest 

Kansas through Michigan, a favored region for warm-season MCS activity. Furthermore, 

Hovmöller plots of radar-derived rain-rates display a recurrence of coherent structures 

that suggest a potentially greater degree of predictability for MCS- or MCC-type 

convective systems (Carbone et al. 2002).  However, a subsequent examination showed a 
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pair of numerical weather prediction models to be incapable of capturing these coherent 

episodes, though the relatively coarse resolution (∆x = 10-22 km) and convective 

parameterizations appear to be contributors to the failure (Davis et al. 2003; see also 

Bukovsky et al. 2006).  Also, it is not clear to what extent persistent longitudinally-

averaged radar features would translate into useful local forecasts of convective activity. 

 

e.  Measuring predictability 

 The concept of forecast utility introduces a primary question that must be 

considered for any predictability study, namely, what is meant by predictability and how 

is it measured.  Expanding on the procedure developed by Thompson (1957), Lorenz 

(1969) focused on the error kinetic energy and, thus, looked indirectly at the 

predictability of the flow field.  Synoptic-scale studies of predictability (e.g., Lorenz 

1982; Dalcher and Kalnay 1987; Molteni and Palmer 1993) focus almost exclusively on 

500-mb height root-mean-squared error (rmse).  With the development of mesoscale 

models the target switched to sensible weather elements, particularly precipitation fields 

(e.g., Du et al. 1997; Stensrud et al. 1999).  This new focus entails some fundamental 

difficulties, however.  Wind and height fields have the advantageous property of being 

continuous and relatively smooth, especially on larger scales, and thus are well suited to 

measures such as rmse.  Examination of precipitation forecasts introduced the difficulty 

of evaluating highly intermittent fields, a problem that becomes even more pronounced as 

model resolution increases.  In one sense, this involves a shift from predictability of fields 

to the predictability of phenomena, but this also can be viewed as merely one step 

removed from the underlying error dynamics.  For example, one may be interested in 
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how initial errors may affect the development and evolution of an MCS, but these 

phenomenological differences are nothing more than the response to the accumulated 

errors in the temperature, wind, pressure, and moisture fields as a result of the eddy 

transfer of the initial errors.  In other words, if the phenomenon of interest is predictable 

for a given period of time, then the constituent flows are likely predictable as well.  

However, the intermittency of convection can cause problems for standard predictability 

measures such as rmse, a fact noted as far back as 1972 in Leith and Kraichnan who 

observed that such measures are unable to distinguish between trivial displacements and 

more important changes associated with dynamic instabilities. 

 Lorenz (1969) defined the range of predictability as “the time interval within 

which the errors in prediction do not exceed some prechosen magnitude,” but he gave 

that “prechosen magnitude” the rather broad range of somewhere between the 

observational error and the difference between any two randomly chosen states.  Once 

more, the intermittent nature of convection causes problems.  One or both of the pair of 

mesoscale states chosen completely at random is likely to contain only weak convection 

or even no convection whatsoever.  Thus, the average difference between a pair of 

randomly chosen states is likely to be smaller than the differences encountered in a 

predictability experiment.  Additionally, what are two randomly chosen states when one 

is working with idealized simulations?  Islam et al. (1993) propose the process standard 

deviation, defined as the variability of the field throughout the full space-time domain, of 

the control forecast as a reference.  However, for a solitary, translating feature, such as a 

squall line, the process standard deviation likely yields nothing more than the average 

strength of the system.   
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 Focusing on the mesoscale, Warner and Keyser (1983) propose that the 

predictability limit should be viewed as “the time required for a specified error in the 

mesoscale structure of one or more variables to cause the prediction of a specific quantity 

to be sufficiently in error so that it has essentially zero utility.”  By emphasizing utility, 

Warner and Keyser imply that predictability is user dependent as much as an inherent 

property of the dynamical system.  This definition suggests a phenomenological approach 

to predictability, that is, in approaching the problem of the predictability of a certain 

phenomenon, one is implicitly asking how long a forecast of this phenomenon can 

provide useful information to the user community.   Under this approach, one can step 

away from the direct field comparisons and focus instead on various properties of the 

storms, including measures of storm intensity and size.   This approach also alleviates the 

strong sensitivity to phase errors possessed by point-to-point measures, particularly rmse.   

Even if the inherent properties of the atmosphere limit the ability to forecast the 

exact location and features of individual storms, correct prediction of certain features of 

the system can still provide much in the way of useful information to forecasters.  For 

example, imagine a particular forecast that misplaces the MCS by 50 km too far west and 

does not extend the line far enough to the south, but it shows that the convective 

downdrafts are strong enough to reach through the stable nocturnal boundary layer and 

bring severe winds to the surface.  Assuming the model has a history of correctly 

identifying such scenarios, a forecaster can easily make the spatial adjustments and 

extend a severe weather watch.  As touched on in Chapter 1, SW04 followed this 

approach by using as their predictability measure an MCS forecast success rate, the 

percentage of ensemble members that produce an MCS within 100 km on either side of 
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the location of the control simulation.   The same measure is adopted herein, along with 

the ensemble variability of the MCS size and intensity, with the latter identified by the 

maximum updraft strength and maximum surface (lowest model level) wind. 

 

f.  Summary of prior research 

 After nearly five decades of research on atmospheric predictability, a consensus 

on what sort of uncertainty can be expected on the mesoscale remains elusive.  Early 

turbulence-based studies, which have gained support from more recent studies on 

synoptic-scale predictability, suggest that skillful mesoscale forecasts are limited to lead 

times of only a few hours.  On the other hand, it has been proposed that fixed forcing 

from topography or surface inhomogeneities should increase the predictability of 

mesoscale flows near those features or that some mesoscale phenomena might inherit the 

predictability of the larger-scale environment in which they reside.  Modeling studies 

lend some credence to the idea of enhanced predictability near fixed surface features, but 

the idea of inherit certainty from the larger scales seems to be pure conjecture.  In 

addition, distinct patterns within observed precipitation as estimated by radar are 

interpreted to indicate that greater predictability is possible.  Nevertheless, high-

resolution experiments focused on small-scale predictability are more in agreement with 

the early pessimistic estimates, although it must be noted that these results are based on 

only a few cases.  Hence, perhaps ironically, a great deal of uncertainty remains as to 

what sort of predictability is expected for mesoscale phenomena. 

 The purpose of this study is to begin the task of determining the predictability for 

MCSs, an important, intermittent mesoscale phenomenon.  The predictability 
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experiments described in the preceding sections primarily have been either general, 

statistical-based studies or case studies using small ensembles with as few as two 

members.  In contrast, herein is described an experiment examining a single 

phenomenon, an MCS, using large, storm-scale ensembles: 100 members for 2D runs and 

50 members for 3D runs.  Because the MCS is simulated in an idealized setting (detailed 

in the following section) with a single initial environment, the conclusions reached 

certainly are not the final word on MCS predictability.  They are, however, a starting 

point that, as will be explained later, likely provides an upper bound for more realistic 

scenarios. 
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Chapter 3:  The numerical model and perturbation methodology 

 

a.  Description of the numerical model 

 All simulations were performed with the National Severe Storms Laboratory 

Collaborative Model for Mesoscale Atmospheric Simulation (NCOMMAS; Wicker and 

Wilhelmson 1995).  The model was developed to study supercell dynamics and tornado 

genesis, but has been employed successfully to study a wide range of tasks, including: a 

tornado outbreak associated with a landfalling hurricane (Romine and Wilhelmson 2002), 

convective initiation (Houston and Niyogi 2007), dryline morphology (Peckham and 

Wicker 2000), the evolution of convective cells within an incipient squall line (Jewett and 

Wilhelmson 2006), and even severe-weather forecasting (Wicker et al. 1997).  Recently it 

has been used to simulate MCS evolution by Coniglio et al. (2006), who provide an in 

depth description of the model as it has been updated in the intervening years (see their 

Appendix). 

The model uses a simple height coordinate in the vertical with pressure represented 

in the perturbation Exner function, !" =
!p

p
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#
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, where p0 = 1000 mb, R is the gas 

constant (287 m2 s-2 K-1), and Cp is the specific heat at constant pressure (1004 m2 s-2 K-

1).  The time integration employs a third-order Runge-Kutta scheme while spatial 

derivatives are approximated by fifth-order finite differences.  For the final iteration of 

the Runge-Kutta scheme, flux computations use a weighted essentially nonoscillatory 

scheme as a numerical filter.  Subgrid-scale mixing is modeled using a turbulent kinetic 

energy based scheme similar to that of Deardorff (1980).  An open boundary is used for 

the lateral boundary conditions (the y-coordinate boundaries in the 3D runs are periodic) 
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and a Rayleigh damping layer is used near the lid.  Microphysical processes are modeled 

by the three-class ice parameterization of Gilmore et al. (2004), a variant of the well-

known Lin et al. (1983) scheme, with particle density and intercept values for the mixing 

ratio distributions of rain, snow, and graupel of (1000, 8 x 106), (100, 3 x 106), and (400, 

4 x 108), respectively.  The latter set of parameters is such that small graupel is favored 

over large hail (Gilmore et al. 2004), as is appropriate for MCS simulations—severe hail 

reports associated with mesoscale systems, when they occur, are most common in the 

earliest stages of development or with isolated cells near the leading convective line 

(Houze et al. 1990). 

For modeling convective events, Bryan et al. (2003) propose that grid spacing on the 

order of 100 m should be used to reproduce small-scale turbulent eddies.  They also find, 

however, that resolving the bulk properties of a convective cloud may be possible with 1 

km grid spacing.  Similarly, Weisman et al. (1997) found that 4 km may be sufficient to 

represent the system-scale properties of mid-latitude squall-line-type convection.  To 

achieve a balance between ensemble size and the fidelity of the simulated storms, the 

model grid spacing for the 2D and 3D experiment is Δx = 1 km and Δz = 500 m (the 

vertical grid spacing is 250 m in the lowest 1250 m and then stretches to 700 m near the 

top of the model domain, giving an average grid spacing of about 500 m), with a 10 s 

time step, covering a domain 800 km in length and 20 km in height.  For the 3D runs the 

length of the domain is reduced to 700 km and the width is set to 200 km.  The grid 

spacing and domain size are consonant with other recent studies of MCS evolution (e.g., 

Coniglio et al. 2006) and mesoscale predictability (e.g., Hohenegger and Schär 2007a).  

Nevertheless, the sensitivity of the results to the horizontal resolution is explored by re-



 34 

running a subset of the simulations with horizontal grid spacing of Δx = 500 m and 250 

m.  In agreement with Bryan et al. (2003), the qualitative differences one would expect 

from higher resolution (e.g., narrower, stronger updrafts) can be seen in individual 

simulations, but the statistics of the sets of simulations are not substantially altered and 

the conclusions drawn are not affected.  

Convection is initialized in the 2D simulations using an identical 3 K warm bubble 

located at x = 100 km and z = 1500 m, with a horizontal radius of 10 km and a vertical 

radius of 1.5 km.  For the 3D simulations, the warm bubble is replaced with a thermal 

line of the same magnitude extending the entire width of the domain.  The line is located 

at x = 50 km and includes random perturbations with a maximum amplitude of 0.1 K 

along the line to encourage 3D structures.  The strength of the bubbles is sufficient to 

guarantee convective initiation, although convective initiation is at least as sensitive to 

perturbations in the environment of a potential storm as is storm maintenance (e.g., Crook 

1996).  Since the focus of the present study is limited to the latter, we explore at the 

predictability of MCS forecasts assuming convective initiation occurs.  As such, the 

results presented herein form an upper bound on MCS predictability overall. 

The simulations are each run out to produce an 8 h forecast.  The control sounding 

onto which the perturbations are added is a relatively moist sounding with approximately 

2600 J kg-1 of surface-based convective available potential energy (CAPE) (Fig.3).  The 

sounding has little convective inhibition (7 J kg-1), so deep lifting likely is not necessary 

to initiate new cells in the simulations. The relative humidity has been capped at 90% in 

the boundary layer, and 85% above the boundary layer, to avoid spurious wave activity in 

saturated unstable layers.  The wind profile for the control run increases linearly from 0.0  
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Fig.3.  Control sounding for the ensembles: thick black for temperature, thin black for 
parcel ascent and gray for moisture profile. For the rightmost moisture profile, max(RH) 
= 85%.  The additional moisture profiles represent control soundings for which the 
maximum relative humidity is set to 75, 65, and 50%. 
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m s-1 to 17.5 m s-1 at 2.5 km above the surface and no shear above that height (Fig. 3); 

this is the same wind profile as used by Rotunno et al. (1988).  

 
b.  Perturbation methodology 

 
The most substantial difference between the SW04 simulations and the 2D results 

presented herein is that the former use only warm rain microphysics while the latter 

include a three-class ice microphysical parameterization.  The addition of ice 

microphysics renders the simulations nearly independent of the perturbations used in 

SW04, likely due to the stronger downdrafts ice microphysics produces compared with 

warm rain only schemes (Srivastava 1987; Johnson et al. 1993).  Based in part on the 

framework of Rotunno et al. (1988), SW04 include perturbations to CAPE (achieved by 

varying the tropopause temperature and the exponential used to derive the relative 

humidity) and wind speed for three different shear layer depths.  This perturbation set 

appears to be insufficient for the present generation of numerical models with ice 

microphysics and thus a more complete description of uncertainty is required.   The 

details of the perturbations are described further below.  Instead of simply adjusting the 

exponential of the relative humidity profile, the profile is subjected to random 

perturbations in the same manner as the wind speed profile.  This improved perturbation 

methodology produces mid-level dry layers similar to those often found in atmosphere 

and which can have a large impact on thunderstorm outflow (Gilmore and Wicker 1998). 

Studies of the sensitivity of convection to initial perturbations (especially 

perturbations in the moisture field) often involve simulations of supercells and not MCSs, 

nevertheless, one would expect the results to generalize to some degree at least.  The 

maximum updraft strength is shown to be particularly sensitive both to the surface 
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moisture (Crook 1996) and the moisture levels within the storm (Park and Droegemeier 

2000).  Moisture perturbations as small as 1% can produce substantial differences in 

accumulated rainfall within a few hours by altering the storm evolution and structure 

(Park 1999).  On the other hand, Park and Droegemeier (2000) find the response to 

moisture perturbations to be not as strong in the precipitation fields as for the updraft 

strength.  Strong midlevel dryness results in stronger initial modeled updrafts, but the 

storms then weaken as the stronger outflow pushes the low-level inflow away from 

midlevel mesocyclone (Gilmore and Wicker 1998).  Stronger vertical wind shear can 

mitigate the effect of the midlevel dryness as the increased mixing leads to weaker 

outflow (Gilmore and Wicker 1998).  Ducrocq et al. (2002) note a case in which an 

erroneously dry model atmosphere is unable to replicate an observed convective line.  An 

inserted density current generates lifting along its leading edge, but the strength of the lift 

is not sufficient to initiate moist convection.  Though not, strictly speaking, predictability 

or sensitivity studies, discriminant analyses connecting various environmental fields to 

MCS structure and evolution suggest a sensitivity to deep-layer shear and CAPE, among 

other variables (Coniglio et al. 2007; Cohen et al. 2007).  Thus, one may expect the 

CAPE and relative humidity perturbations to affect the likelihood of producing a 

successful MCS forecast, while the contribution of the wind speed perturbations is 

somewhat more uncertain. 

Perturbation sizes used in this study are based on forecast errors from the 12-km 

North American Model (NAM, formerly the Eta; Black 1994) from the National Centers 

for Environmental Prediction during May and June of 2006.  The 20-km Rapid Update 

Cycle (RUC; Benjamin et al. 2004) model analyses are used as truth.  The data from both 
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models are obtained from the NOAA National Operational Model Archive and 

Distribution System (NOMADS).  The analyses from the NAM are bilinearly 

interpolated onto the RUC grid.   The forecast errors are calculated within the region 

between 105° and 70° W and 25° and 49° N—the continental United States east of the 

Rocky Mountains.  Finally, only errors from forecasts valid at 00Z are considered to 

focus on those errors one would expect to find around the peak hours of convective 

development.  The spread of the 24-h NAM forecast errors thus provides the initial 

uncertainty for the developing MCS in the day 2 forecast period. 

For wind speed, the standard deviation of the 24-h forecast errors (computed in 

space and time) increases slightly from 1000 hPa up to about 800 hPa, remains nearly 

constant up to near 400 hPa, and then increases to a peak value near 250 hPa (Fig. 4a).  

The 24-h relative humidity forecast error standard deviation increases from 1000 hPa to 

800 hPa (by about 8%) and decreases above 400 hPa (Fig. 5a).  In between, there is a 

(roughly 1%) peak just below 500 hPa with nearly equal values above and below this 

peak.  For both variables, the error values used represent the nearly constant mid-level 

values (Figs. 4b, 5b).  The distribution of the 24-h forecast errors for wind speed and 

relative humidity at 600 hPa are slightly peaked and right-skewed (Fig. 6a,b). However, 

these deviations from Gaussianity are sufficiently small that the standard deviation of the 

data is a reasonable measure of the spread of the forecast errors.  

The increase in forecast uncertainty between 12 h and 24 h is minimal (Table 1).  

For example, the standard deviation of the wind speed errors only increases from 2.9 m s-

1 for a 12-h forecast to roughly 3.1 m s-1 for a 24-h forecast.  The forecast uncertainty for 

relative humidity increases meagerly from 20% at 12 h to 21% at 24 h.  For the final error 
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Fig. 4. Profile of the standard deviation of 24-h forecast errors of wind speed from the 
NAM compared against RUC analyses over the central United States for the period of 
May-June 2006 for (a) the full column from 1000 to 200 mb and (b) the mid-levels 
between 800 and 400 mb. 
 

 

 

 
 

 
 
Fig. 5.  Same as for Fig. 4, except for relative humidity. 
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Fig. 6. Histograms of 24-h NAM forecast errors against RUC analyses at 600 hPa over 
May and June of 2006 for (a) wind speed, (b) relative humidity, (c) CAPE for all 
locations with positive CAPE, and (d) CAPE for all location with CAPE > 500 J kg-1. 
 
 
 
 
 
Table 1.  The standard deviation of forecast errors valid at 0000 UTC from the NAM for 
12- and 24-h lead times.  Values represent averages throughout the mid-levels (800-400 
hPa for relative humidity and 800-500 hPa for wind speed) where little dependence on 
pressure is found.  The 1000 J kg-1 value is the 24-h forecast error standard deviation 
when only locations with CAPE > 500 J kg-1 are considered.  Also, included are RUC 
analysis error estimates from Thompson et al. (2003; *) and Benjamin et al. (2004; **). 
 
Forecast hour CAPE (J kg-1) Relative Humidity (%) Wind Speed (m s-1) 

00 h 300-500*       9**               1-3*,** 

12 h 750 20 2.9 
24 h 800/1000 21 3.1 

 

 

a 

c 

b 

d 
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field, two separate 24-h CAPE error standard deviations are calculated.  To avoid having 

the CAPE errors dominated by zero CAPE values in stable regions, only locations with  

non-zero CAPE are evaluated, giving an error standard deviation of ~800 J kg-1.  Further 

restricting the data by requiring CAPE values to exceed 500 J kg-1—since MCS 

development does not often occur in nearly neutral environments—increases the standard 

deviation of the forecast error to over 1000 J kg-1.  When the all locations with non-zero 

CAPE are considered the peakedness (or leptokurtosis) and skewness of the distribution 

of forecast errors is more pronounced (Fig. 6c); there is a strong tendency toward small, 

negative errors together with a relatively large number of big, positive errors.  Removing 

the small CAPE locations restores to the distribution to one much closer to Gaussian (Fig 

6d).  Perturbations consistent with these error magnitudes given storm initiation at a 

forecast lead time of 24-h are used (Table 2).  An additional set of perturbations is 

constructed using half the size of the 24-h errors instead of those consistent with the 12-h 

errors due to the relatively small differences between the 12- and 24-h forecast error 

magnitudes.  Halving the 24-h forecast errors reduces the perturbations to a level roughly 

equal to typical analysis error (Table 1; Thompson et al. 2003; Benjamin et al. 2004).  It 

should be noted that the errors in the RUC jump markedly between the analysis and the 

1-h forecast, with little further change through 12 h (Benjamin et al. 2004).  Thus, the 

reduced perturbations do not represent gradual forecast improvement (e.g., tomorrow’s 

24-h forecast being as good as today’s 12-h forecasts), but a radical advance in numerical 

modeling. 

The temperature profile for the control run is determined by the temperature at the 

surface and at the tropopause as well as an exponential defining the shape of the profile.  



 42 

 
Table 2. The perturbations comprising the ensemble configurations.  The ensembles are 
referred to by the leading digit of the perturbation sizes, i.e., rCRW, where C stand for 
CAPE, R stand for relative humidity, and W stands for wind speed.  Hence, r823 denotes 
the ensemble based on current 24-h forecast errors. 
 
Ensemble name CAPE  

(J kg-1) 
Relative Humidity 

(%) 
Wind Speed  

(m s-1) 
r1023 1000 20 3.1 
r1021 1000 20 1.6 
r1013 1000 10 3.1 
r1011 1000 10 1.6 
r823 800 20 3.1 
r821 800 20 1.6 
r813 800 10 3.1 
r811 800 10 1.6 
r523 500 20 3.1 
r521 500 20 1.6 
r513 500 10 3.1 
r511 500 10 1.6 
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Therefore, the desired variance in CAPE is achieved by randomly perturbing the 

tropopause temperature (e.g., a 10 K change in tropopause temperature yields a 1000 J 

kg-1 change in CAPE).  For the wind and relative humidity perturbation profiles, random 

perturbations are drawn from a Gaussian distribution with zero mean and a standard  

deviation matching the errors described in Table 1 and assigned to the vertical model 

levels every 2500 m starting at the surface.  A cubic spline is used to obtain values for 

intermediate levels.  This method ensures that the wind and relative humidity profiles are 

vertically coherent, so that, for example, realistic dry layers can be introduced into the 

initial soundings.  While both positive and negative perturbations are allowed for the 

moisture profile, the negative perturbations dominate; the control sounding is already 

moist and positive perturbation sizes must be limited to prevent saturation.  No changes 

are made to the moisture profile within the boundary layer so that the CAPE is affected 

by the temperature perturbations alone.  Figure 7 shows sample perturbation profiles for 

temperature and wind speed, along with the relative humidity profiles.  For each 

perturbation field, a single set of 100 perturbations is used and the different perturbation 

magnitudes are achieved by applying a multiplicative factor.  Therefore, any differences 

between the different ensembles result from the perturbation magnitudes and not from a 

different sample of perturbations (e.g., more negative and fewer positive perturbations). 
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Fig. 7.  Profiles of 15 perturbation structures consistent with the 24-h forecast errors, 
showing perturbation temperature (dotted), relative humidity (solid), and perturbation 
wind speed (dashed).  Tick marks are every 1.75 °C, 10%, and 1 m s-1.  The large tick 
marks represent, from left to right, 0 °C, 50%, and 0 m s-1.  Relative humidity profiles are 
shown only above the 1-km deep boundary layer. 
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Chapter 4:  Results from the 2D experiment 

 

 The base-state sounding described in the previous section defines the 

homogeneous environment for the control run (Fig. 3).  The evolution of the MCS in this 

control run (Fig. 8) shows that the system steadily grows and moves across the domain at 

about 18 m s-1 (or 33 km per 30 minutes, slightly more than one tick mark each frame).  

The system at first leans upshear and appears to develop a leading stratiform region.  

However, it transitions to a system with trailing stratiform precipitation after 4 h. 

Isolines of precipitation mixing ratios, at 8-h run time for 20 members of the 

ensemble indicate a variety of outcomes (Fig. 9), where the precipitation mixing ratio is 

defined as the sum of rain, snow and graupel mixing ratios.  These perturbations are 

based on the 24-h forecast error estimates (r823, i.e., the perturbations have a standard 

deviation of 800 J kg-1, 20%, and 3.1 m s-1 for CAPE, relative humidity, and wind speed, 

respectively; see Table 2).  Substantial variability exists among the members ranging 

from no storm to small weak cells to a large, robust single cell to multicellular to a 

leading convective line with a trailing stratiform region extending over 150 km.  The 

location of the leading edge of convection varies by up to 160 km (i.e., system 

propagation speed varies by 5-6 m s-1). 

 
a. Success rate 

 
The measure of predictability proposed by SW04 is the MCS success mode rate, 

where an individual realization is said to have successfully simulated an MCS if there 

exists a continuous region of precipitation mixing ratio ≥ 0.2 g kg-1 between 3 and 5 km 

above the surface that is at least 20 km in length located within 100 km on either side of  
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Fig. 8.  Snapshots of the evolution of the control run every 30 minutes starting at 30 
minutes into the simulation.  Isolines depict precipitation greater than 0.2 g kg-1.  The 
region of the domain plotted extends from 50 km to 650 km.  Tick marks are every 30 km 
along the horizontal axis and 5 km along the vertical axis. 
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Fig. 9.  Isolines of precipitation greater than 0.2 g kg-1 for 20 members of the r823 
ensemble at 8 h  (see text for the ensemble naming convention).  The grid extends to 100 
km on either side of the location of the control run at this time.  Tick marks are located 
every 10 km along the horizontal axis and 5 km along the vertical axis. 
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the storm in the control run and the location of the maximum updraft defines the location 

of the storm in the control run.  As seen in Fig. 9, this condition can result from a 

succession of convective cells or from the prototypical leading edge of convection 

following by a trailing stratiform region.  The success mode definition is intended as a 

generous measure of forecast success: the model need only produce a contiguous region 

of precipitation resembling a minimum-size MCS within a broad window around the 

control run. 

The MCS success mode rate possesses a modest sensitivity to the length threshold 

(Fig. 10).  For the 20 km threshold, the success rate curve reaches an asymptotic value of 

around 70% about four hours into the simulation. The convective leading edge of 

observed MCSs is typically 10 to 50 km across (e.g., Smith et al. 2008).  Increasing the 

minimum length threshold to 60 km decreases the asymptotic value to around 55% and 

increases the time required to reach this value to seven hours.  Despite this reduction in 

the final success mode rate, each ensemble configuration appears to be affected similarly 

(not shown), and so the size criterion of 20 km is adopted herein.  As mentioned above, 

the system movement varies by 5-6 m s-1.  Thus, using a narrower window for identifying 

successful forecasts results in a curve identical to that for the 200-km window until 

storms begin moving out either side of the window and the success rate declines (e.g., the 

success rate at 8 h drops from about 70% to just under 60% for a 100-km window; not 

shown).  Since each ensemble consists of 100 members, the success mode rate is simply 

the numbers of members that meet the MCS criteria. 

Time series of the MCS success mode rate for 12 ensemble configurations out to 8 h, 

plotted at 15-min intervals, is shown in Fig. 11.  Over half of the runs produce an MCS 
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Fig. 10. MCS success mode (%)—the percentage of ensemble members meeting the 

MCS definition—for the r823 ensemble as a function of model run time for minimum 
areal extent thresholds ranging from 20 to 60 km. Error bars mark the central 50% 
credible interval, i.e., from the 25th to 75th percentiles. 

 

 

 

Fig. 11.  As in Fig. 10, but for different ensemble configurations using the 20 km 
threshold.  The ensemble configurations plotted are identified in each panel.  See Table 2 
for naming convention. Each panel shows the success rate for a given CAPE perturbation 
magnitude for different wind speed and relative humidity perturbation sizes.  Dashed 
lines represent ensembles for which the relative humidity perturbations are reduced by 
half, while the gray lines represent the ensembles for which the wind speed perturbations 
are reduced by half. 
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within the first hour, with more of the runs meeting the MCS criteria as time increases 

until asymptoting to a constant success rate between 70 and 90%. Each panel shows the 

success rate for a given CAPE perturbation magnitude for different wind speed and 

relative humidity perturbation sizes.  For the 24-h wind speed and relative humidity 

errors, reducing the CAPE uncertainty yields only marginal improvement: the ensembles 

using the 1000 and 800 J kg-1 CAPE errors (r1023 vs. r823) are nearly identical with 

about 70% of the members eventually producing an MCS, while the r523 ensemble 

approaches 80% before falling back to near 75%.  However, if both the wind speed and 

relative humidity perturbations are reduced by half, the MCS success mode rate rises 

from 75 to 80 to 90% for r1011, r811, and r511, respectively.  This could be viewed as an 

added sensitivity to CAPE uncertainty for the smaller wind speed and relative humidity 

perturbations or alternatively as an added sensitivity to wind speed and relative humidity 

uncertainty as the CAPE perturbations are reduced. 

The success rate is consistently more sensitive to a reduction in the relative humidity 

perturbations than to a reduction in the wind speed perturbations as the success rate 

curves tend to group according to the size of the relative humidity perturbation (dashed 

curves vs. solid curves), though for the 1000 J kg-1 CAPE errors the two groups are 

visually distinct but statistically indistinguishable. The significant exception to this is the 

r821 ensemble, which closely tracks with the r823 ensemble for the first 2-3 h, but 

whereas the r823 curve then levels off at around 70% success rate, the r821 curve 

continues upward to 80%, matching the success rate of the r813 and r811 ensembles.  

There is also some hint of a separation during the final 2 h between the r521 and r523 

curves and the r511 and r513 curves, with the smaller wind speed perturbations leading to 
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a higher success rate, but the improvement does not equal that gained by reducing the 

relative humidity perturbations.  

In summary, an ensemble that has perturbation magnitudes consistent with estimates 

of current 24-h operational forecast errors of environmental conditions successfully 

produces an MCS in about 70% of the runs.  Reducing those 24-h forecast errors by half 

increases the success mode rate to 90%.  This means that achieving 90% success in 

forecasts of MCS development on a day 2 forecast, even leaving aside the problem of 

convective initiation, requires that errors in model forecasts of environmental conditions 

be reduced to the level of current analysis errors. 

 

b.   MCS size  
 
The size of the MCSs (taken as the maximum extent of the continuous region with 

precipitation greater than 0.2 g kg-1 at any level between 3 and 5 km above the surface) is 

not greatly affected by the perturbations magnitudes (Fig. 12). The MCS growth slows 

initially for the reduced relative humidity and wind speed perturbations, especially for the 

500 J kg-1 ensembles, but by 8 h those differences have vanished.  For the 24-h forecast 

wind and humidity errors, the variability in the MCS size for the different CAPE 

ensembles (r523 vs. r823 vs. r1023) is nearly indistinguishable—the standard deviation 

rises to 40-45 km by 8 h.  Even when both the wind and humidity perturbations are 

reduced, adjusting the size of the CAPE perturbations results in only about a 10% change 

in the uncertainty of the forecasted MCS size, and that change is mostly a result of the 

uncertainty increasing for the 1000 J kg-1 ensemble.  To the extent that the wind speed  
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Fig. 12.  As in Fig. 11, but for standard deviation of MCS size (km). 
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and relative humidity perturbations have an impact, the wind speed uncertainty is the 

more important of the two (compare black curves with gray curves). 

 

c.   Maximum updraft strength 
 
The effect of perturbation magnitude on maximum updraft strength primarily occurs 

early in the simulation during the time when updrafts are the strongest, between 1.5 and 3 

h into the simulation.  The mean updraft strength during this stage is around 15 m s-1 with 

the strongest updrafts exceeding 45 m s-1; the updrafts steadily weaken through the rest of 

the simulation.  It should be noted that the ensemble distributions of maximum updraft 

strength are not Gaussian, but rather possess some skewness and are platykurtotic (i.e., 

they have a flat peak; Fig. 13).  However, the distributions are close enough to Gaussian 

to allow use of the standard deviation as a measure of the ensemble spread.  Reducing all 

perturbations by half decreases the uncertainty in the maximum updraft strength by 20% 

(Fig. 14).  This improvement appears to come mostly from a reduction in the CAPE 

forecast errors, with a reduction to 500 J kg-1 improving the uncertainty by between 1.5 

and 3 m s-1 (r1023 vs. r523).  Interestingly, reducing the wind and relative humidity 

errors along with the CAPE reduction gives very little additional improvement to the 

updraft intensity uncertainty (e.g., r511 vs. r523), but halving the wind and relative 

humidity errors without also reducing the CAPE errors actually yields slightly greater 

uncertainty (e.g., r1011 vs. r1023).   Since the distribution of maximum updraft strength 

is skewed—by definition, there cannot be an updraft with negative vertical velocity—

changes to the standard deviation likely are due to increases in the maximum updraft.  

The impact of larger wind speed and relative humidity perturbations (e.g., greater dry air  
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Fig. 13.  Histograms for the maximum updraft from the r823 ensemble at t = 2, 4, 6, and 
8 h. 
 
 
 
 
 
 

 
 
Fig. 14.  As in Fig. 11, but for standard deviation of maximum updraft strength (m s-1). 
perturbation ensembles show some sensitivity (~1-2 m s-1) to the wind speed and relative 
humidity perturbations during the final 2-3 h of the simulations. 
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intrusion into the updraft) perhaps acts to constrain the potential impact of the large 

CAPE perturbations.  While the 1000 J kg-1 ensembles are more sensitive to changes in 

the other perturbation magnitudes at the early peak updraft stage, the smaller CAPE 

perturbation ensembles show some sensitivity (~1-2 m s-1) to the wind speed and relative 

humidity perturbations during the final 2-3 h of the simulations. 

 

d.   Maximum surface wind 
 
Whereas the mean updraft strength steadily weakens after an early peak, the mean 

surface wind (actually lowest model level) climbs rapidly over the first 1.5 h and then 

holds nearly constant, at around 35 m s-1 for the last 6 h (not shown), with very little 

difference among the different ensembles.   The maximum surface winds peak at over 60 

m s-1 for the r1023 ensemble, but are mostly in the 45-50 m s-1 range.  Histograms of the 

maximum surface wind (not shown) indicate that the standard deviation is again a 

suitable measure of ensemble spread.  The separation among the different CAPE 

perturbations is more pronounced for this field (Fig. 15) than for the features previously 

examined, particularly for the smaller humidity and wind perturbations where the 

variability of the 500 J kg-1 ensemble is reduced substantially while the larger CAPE-

perturbation ensembles are basically unaffected.  Interestingly, the ensembles are more 

sensitive to a reduction in the relative humidity perturbations than for the wind speed 

(compare dashed vs. solid lines with black vs. gray lines).  This suggests that the strength 

of the winds to be transported down to the surface is secondary to the presence of a dry 

layer capable of supporting downdrafts necessary for this downward transport.  However, 

adding the wind-perturbation reduction to a humidity-perturbation reduction further  
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Fig. 15.  As in Fig. 11, but for standard deviation of maximum surface wind (m s-1). 
 

 

 

 

 
Fig. 16.  As in Fig. 10, but the r823 ensemble for control soundings with different values 
of maximum relative humidity above the boundary layer, as shown in Fig. 3. 
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decreases the uncertainty for the 500 J kg-1 ensemble, such that the uncertainty for the 

r511 ensemble is 30-40% lower than for the r1023 ensemble. 

 
e. Effect of deeper shear layer 
 

When the sheer layer depth is increased from 2.5 km to 7.5 km, the success mode 

behavior is less dependent upon the CAPE perturbation magnitude; each ensemble group 

achieves about an 80% success mode rate.  Deepening the sheer layer depth also 

reducesthe uncertainty of the size of the MCS by 10-15 km (a reduction of about one 

third).  The effect of the deeper shear on the maximum updraft strength and surface winds 

is more modest.  Specifically, the mean values are reduced by 1-3 m s-1 while the 

uncertainty is reduced by about same amount early in the simulations and is only 

marginally increased toward the end of the runs. 

 
f. Effect of drier control sounding 
 

As mentioned in Section 3a, the control sounding is fairly moist throughout the 

column (Fig. 3).  One reason such a moist profile is used is to limit the number of 

ensemble members that fail to initiate convection using a warm bubble initialization.  

However, to examine the impact of the relative humidity of the control sounding, the 

r823 ensemble is rerun using successively drier control soundings in which the maximum 

relative humidity above the boundary layer is reduced from 85% to 75, 65, and 50% (Fig. 

3).  The success mode rate for these four ensembles shows that the cloud-layer relative 

humidity in the control sounding has a large impact (Fig. 16).  Each 10% reduction in the 

relative humidity results in a reduction of the success mode rate of 10-20 %, dropping 

below half of all runs as the cloud-layer relative humidity is reduced below 65% and 



 58 

down to a less than 30% success mode rate for the 50% maximum relative humidity 

sounding.  A large portion of the additional MCS failures are from members in which 

storms are unable to initiate.   In fact, for the driest profile, even the control run (not 

shown) cannot maintain a storm past two hours into the simulation (for this set, the 

location of the original control is used to define the success rate).  Furthermore, for the 

dry control soundings, the use of small CAPE perturbations actually reduces the success 

mode rate (not shown), indicating that the higher CAPE values are needed to offset the 

effects of a drier cloud layer.   MCS development can only occur with perturbations that 

lead to a substantial moistening of the column or substantial increases in instability, as 

stronger updrafts are needed to avoid entraining too much dry air, choking off the storm.  

The drier control soundings have little effect on the uncertainty of the maximum updraft 

strength or surface wind, except for the driest sounding, for which the variability declines 

by 3-4 m s-1 and 1-2 m s-1, respectively (not shown). 

 

g.  Summary of 2D results 

 With current 24-h forecast errors, the ensemble suggests that a day 2 MCS 

forecast should have a success rate around 70% (using a generous criterion for 

identification as an MCS), or slightly higher if there is a deep shear layer present.  This 

success rate drops below 50% as the cloud-layer relative humidity is reduced below 65%.  

Improvements to the ensembles resulting from reductions in forecast errors are not 

uniform.  For example, halving the wind speed errors increases the success mode rate for 

both the 500 and 800 J kg-1 ensembles, but it only has a minor effect on the 1000 J kg-1 

ensemble. Reducing the errors by half for each of the fields examined here (CAPE, wind 
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speed, and relative humidity) raises the MCS success rate to 90%.  That is, achieving 

90% confidence in forecasts of MCS development requires the tremendous advance of 

bringing 24-h forecast errors down to the level current analysis errors. This radical 

improvement in forecasting would yield a 10-20% reduction in the uncertainty for 

maximum updraft strength and a 25-35% reduction in the uncertainty for maximum 

surface wind.   

The uncertainty in the success rate, maximum updraft strength, and maximum 

surface wind are all more sensitive to changes in the relative humidity perturbations than 

changes in the wind speed perturbations, while the opposite is true for the MCS size.  The 

impact of the relative humidity and wind speed perturbations is greater when the CAPE 

perturbations are smaller for the success rate and maximum surface wind, but is greater 

when the CAPE perturbations are larger for the MCS size.  For the maximum updraft 

strength the impact of the wind speed and relative humidity perturbations is greater for 

the large CAPE perturbations early in the runs, while the opposite is true toward the end 

of the simulations.  The CAPE perturbations themselves have the biggest impact for the 

maximum surface wind, but have no impact on uncertainty in MCS size and only 

moderate impact on the success rate.  Thus, it does not seem to be the case that 

improvements in the forecast of a particular field (e.g., CAPE vs. wind speed) increase 

confidence in MCS forecasts, generally. 
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Chapter 5:  Results from the 3D experiment 

 

As stated earlier, the configuration of the 3D simulations is identical to that for 

the 2D runs with the exceptions that the domain is extended 200 km in the y direction 

(with periodic boundaries), the domain is shortened in the x direction to 700 km (from 

800 km) to reduce computational and storage requirements, and the warm bubble is 

replaced by a thermal line extending the full width of the domain with small random 

perturbations added to facilitate 3D structure.  Because of the computational demands of 

an additional spatial dimension, the size of the ensembles is reduced from 100 to 50 

members. Furthermore, only two CAPE perturbation sets have been retained, with the 

800 J kg-1 standard deviation perturbations representing the 24-h forecast errors.  MCS 

development in the 3D runs is somewhat more robust than in 2D, resulting in a 

substantially higher MCS success rate for the r823 ensemble.  Thus to allow for a greater 

influence of the positive perturbations in the moisture field, the base-state RH profile is 

reduced from 85% to 75%.  Use of the drier control sounding matches the success rate of 

the r823 ensemble in 3D to that from the 2D experiment, facilitating comparisons 

between the 2D and 3D runs of the impact of changes in the initial uncertainty. 

The resulting control run (averaged in the along-line direction; Fig. 17) is very 

similar to the 2D control run (Fig. 8), with two notable exceptions: the 3D storm moves 

somewhat slower (~17 m s-1 compared with ~20 m s-1), and the trailing stratiform region 

is almost non-existent in 3D.  A shift in the perspective to a horizontal slice (depicting a 

200 x 200 km window moving with the storm; Fig. 18), taken at z = 4 km, reveals a more 

complex scenario despite the horizontally homogeneous initial state.  The maximum  
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Fig. 17.  As in Fig. 8, but for 3D control, averaged in the y-direction. 
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Fig. 18.  As in Fig. 17, but for precipitation mixing ratio greater than [0.2, 1, 1.5, 2, 5] g 
kg-1 at z = 4 km in a 200 x 200 km window moving with the MCS. 



 63 

width of the system 8 h into the simulation is nearly double that indicated in the line-

averaged cross-section (Fig. 17).  The fibrous nature of the MCS, particularly apparent in 

the final frame largely is an artifact of the grid spacing and the chosen low-level shear.  

Reducing the grid spacing leads to smaller and weaker updrafts, with correspondingly 

smaller gaps between cells, while increasing the strength of the low-level shear produces 

a more filled-in line (G. Bryan, personal communication). 

As with the 2D ensembles, introducing perturbations equal to the 24-h forecast 

error, the r823 ensemble, yields a wide variety of solutions (Fig. 19), ranging from 

strong, narrow lines (e.g., member 01—number indicated in the lower right corner of 

each panel) to more broad, diffuse systems (e.g., member 16) to more isolated cells (e.g., 

member 42) to solutions completely unable to maintain convection (e.g., member 07).  

Some of the solutions (e.g., member 13) have the appearance of a bowing MCS, while 

others (e.g. member 4) are distinctly linear.  Average system movement ranges from ~13 

m s-1 to nearly 24 m s-1.  Reducing the uncertainty still allows for a range of structures 

(Fig. 20), but the members are noticeably more similar for the r511 ensemble, with much 

smaller differences in the speed of the systems, as well.  Additionally, all members of the 

r511 ensemble are able to maintain some convective activity. 

 

a. Success rate 

Recall that for the 2D experiment, a forecast is considered a success if the region 

of precipitation mixing ratio exceeding 0.2 g kg-1 extends for at least 20 km in length 

anywhere in the z = 3-5 km layer.  The along-line variability in the MCS structure in the 

3D runs necessitates an additional constraint for labeling a forecast as a success, namely  
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Fig. 19.  Isolines of precipitation mixing ratio greater than [0.2, 1, 1.5, 2, 5] g kg-1 
(shading from light to dark) for the 50 members of the 3D r823 ensemble at z = 4 km and 
t = 6 h.  The grid extends to 100 km on either side of the location of the control run at this 
time, resulting in a 200 x 200 km window. The number in the lower left corner notes the 
ensemble member. 
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Fig. 20.  As in Fig. 19, but for the r511 ensemble. 
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the 20-km width requirement must be met over at least 90% of the line and no gap in the 

line can exceed 10 km.  Whereas the number of MCSs in the 2D runs rises drastically in 

the period t = [45, 75] minutes, immediate development occurs in only a third to half as 

many members in the 3D simulations, with subsequent successful MCS development 

requiring an additional 2-3 h (Fig. 19, cf. Fig. 11).  As indicated above, the similar 

success rates between the 2D and 3D r823 ensembles (~70%) over the final 3-4 h of the 

simulations are due in part to the use of the drier control sounding in the 3D runs. The 

asymptotic success rate achieved by reducing the initial uncertainty for all three fields 

(r511) is 80-85%, or about 5-10 points lower than its 2D counterpart, which suggests that 

reducing the forecast uncertainty may be more difficult in 3D. 

One interesting feature of the 3D success rate curves is the lack of organization 

according to the initial perturbations.  For the 2D runs, the success rate steadily improves 

as the initial CAPE errors are reduced and the curves tend to group according to the 

degree of initial relative humidity uncertainty (Fig. 11).  For the 3D runs, there is no such 

grouping nor is there any consistent dependence on the initial CAPE uncertainty (Fig. 

21).  Instead, all ensembles except r511 bunch together with many counterintuitive 

relationships.  For example, reducing only the initial CAPE uncertainty from the 24-h 

forecast error level to the analysis levels (r523 vs. r823) actually decreases the success 

rate.  Similarly, reducing the initial wind speed uncertainty also decreases the success rate 

marginally, by about 5%, between r523 and r521 and by about 10% between r823 and 

r821 during the period t = [4, 7] hours.  No discernable sensitivity to the relative humidity 

uncertainty exists. 
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Fig. 21.  As in Fig. 11, but for 3D simulations. 
 

 

 

 
 
Fig. 22. As in Fig. 21, but for the standard deviation of maximum updraft strength (m s-1). 
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b. Maximum updraft strength 
 
The overall uncertainty in maximum updraft strength is comparable between the 

two- and three-dimensional configurations, although temporal differences exist (Fig. 22, 

c.f. Fig. 14).  As with the 2D runs, histograms of 3D maximum updraft values, along with 

those of the fields described in subsequent sections, show that, while not purely Gaussian, 

the distributions are close enough to permit the use of the standard deviation as a measure 

of ensemble spread. The peak uncertainty occurs almost an hour earlier in the 3D 

simulations and the spread of the ensembles throughout the runs is 20-30% larger. As 

with the success rate curves, there is no concrete signal among the 800 J kg-1 ensembles. 

The separation between the two curves is minimal, but the spread of the r823 ensemble is 

consistently lower than that of r821 between t = 2 h and t = 6 h, again suggesting that 

reducing the initial wind speed uncertainty can lead to decreased confidence in the 

forecast.  The peak of the 500 J kg-1 ensembles is somewhat lower than for the 800 J kg-1 

ensembles, but by three to four hours into the simulations the uncertainty in the 

maximum updraft strength is the same for both ensemble groups.  Most ensemble groups 

lack sensitivity to the initial perturbation magnitude; only reducing all fields (e.g., r511) 

yields substantial improvement in forecast confidence. 

 

c. Maximum surface wind 

The forecast uncertainty from the 3D runs for the maximum surface wind 

(actually lowest model level) undergoes a substantially different evolution than in the 2D 

runs (Fig. 23, c.f. Fig. 15).  In 2D, the uncertainty increases rapidly over the first two 

hours and then changes very little for the remainder of the simulation period.  In contrast,  



 69 

 
Fig. 23.  As in Fig. 21, but for the standard deviation of maximum surface wind (m s-1). 
 

 

 

Table 3.  Total rainfall integrated over time and space for the 3D runs.  Units are in 105 
mm. 
 

Ensemble name Mean Standard Deviation 
r823 8.68 3.50 
r821 6.72 3.47 
r813 7.51 3.46 
r811 6.94 3.11 
r523 7.14 3.59 
r521 6.92 3.38 
r513 7.74 2.96 
r511 9.96 2.37 
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the 3D uncertainty peaks around t = 2 h (at levels 30-40% higher than in 2D) and then 

steadily falls; by the end of the simulations, the uncertainty has fallen by at least half.  

For the 3D ensembles, there is much greater variability in how quickly the systems 

develop leading to large uncertainty early in the runs.  As the slower developing systems 

finally mature, the surface wind speeds become more similar.  There are still few 

discernable differences between the 800 J kg-1 CAPE uncertainty ensembles, though, 

once again, there improving the initial uncertainty can lead to decreased forecast 

confidence (cf., r823 and r813).  Similarly, the patterns that emerged among the 500 J kg-

1 CAPE uncertainty groups in the success rate and maximum updraft plots are more 

pronounced for the maximum surface wind.  While there is little difference between the 

r523, r513, and r521 ensembles, improving the initial uncertainty for all fields reduces the 

forecast uncertainty by about one-third, down to just a few meters per second. 

 

d. Rainfall 

As mentioned in the Chapter 1, one of the most important impacts of MCSs is 

hydrological; they are responsible for much of the warm-season rainfall over the eastern 

two-thirds of the United States (Fritsch et al. 1986), as well as floods and flash floods 

(Junkers et al. 1995; Schumacher and Johnson 2006).  Two different rainfall measures are 

examined here: the maximum instantaneous rain rate and the 1-h accumulations, but first 

a look the rainfall totals integrated over the entire simulation. 

The domain-averaged total rainfall among each ensemble group ranges from 6.72 

x 105 mm for the r821 ensemble to 9.96 x 105 mm for the r511 ensemble (Table 3).  

Curiously, all the ensembles have similar means (6.7-7.5 x 105 mm), except the r823 
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(8.68 x 105 mm) and r511 (9.96 x 105 mm) ensembles—the ensemble representing 

current 24-h forecast errors and the one representing improvement in forecast errors for 

all three fields.  Despite having the highest mean rainfall total, the r511 ensemble also 

has, by far, the least spread (25-40% lower).  There is no simple relationship between the 

perturbations and either the mean or the standard deviation of the total rainfall, not even 

for relative humidity as one might expect for a rainfall forecast.  In fact, as with the 

means, there is not a great deal of variability in the spread of the different ensembles with 

the exception of the r511 ensemble, as noted above, and the somewhat smaller spread of 

the r811 and r513 ensembles.  

The maximum 1-h accumulations (Fig. 24), for the 800 J kg-1 simulations suggest 

a clustering according to the wind speed perturbations up to about t = 4 h, at which point 

the curves converge.  There is even a hint that the curves then cluster according to the 

relative humidity perturbations over the last few hours.  In contrast, for the groups with 

smaller initial CAPE uncertainty, the ensembles are similar up to about t = 4 h, then the 

spread of the r511 ensemble declines dramatically.  Recall that for this ensemble, while 

not all members meet the MCS criterion, convection is present and robust in all members 

at t = 6h (Fig. 20).  However, for some members (e.g., members 21 and 25, among 

others) the convection is not very extensive.  Locations in these runs receive rain for a 

shorter period—translation speeds are similar for this ensemble—leading to lower 

accumulations for these members and greater spread for the ensemble.  Two hours later 

(not shown), most of these members have continued to develop and now cover an area 

similar in scope to the other members, reducing the spread. 
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Fig. 24.  As in Fig. 21, but for the standard deviation of maximum 1-h accumulated 
rainfall (mm). 
 
 
 
 
 
 
 
 

 
 
Fig. 25.  As in Fig. 21, but for the standard deviation of maximum instantaneous rain rate 
(mm h-1). 
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Continuing to even smaller temporal scales, the maximum instantaneous rain rate 

(Fig. 25) behaves much like the maximum updraft and maximum surface wind.  The 

curves are indistinguishable among the 24-h CAPE uncertainty groups, along with the 

r523 ensemble; r521 follows these ensembles for the first 3-4 h and then declines by 

more than half over the rest of the run, finally matching the low spread of the r511 

ensemble—after showing the largest spread of any ensemble near t = 3 h.   

The correspondence ratio (Stensrud and Wandishin 2000) provides another 

perspective on the spread of the rain forecasts.  The correspondence ratio (CR) is a 

numerical representation of the information contained in a Venn diagram, such that  

 

    

! 

CR =
I

U
, 

where U is the area of the union of all specified field values and I is the intersection of 

these same specified field values.  For example, U and I can be taken with respect to the 

grid points where precipitation exceeds a given threshold.  Furthermore, I can be defined 

for a subset of the full data.  For example, the intersection can be taken as the region over 

which at least half of the members of an ensemble exceed a given threshold; the 

correspondence ratio thus defined is identified as CRf, where f is the fraction of members 

used to define the intersection. The CR is bounded by 0 and 1.  Low values of the CR 

may be the result of either too few members exceeding the threshold value or phase 

errors in time or space. 

The CR for 1-h accumulations exceeding 0.2 mm (basically a forecast of whether 

rain will occur) is shown in Fig. 26.  The transient nature of the instantaneous rain rate is 

ill-suited for this measure.  From top to bottom, the CRf is given for f = 10, 20, 30, and 40 
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Fig. 26. Correspondence ratio, CRf for 1-h accumulations greater than 0.2 mm for f = 10, 
20, 30, and 40 members from top to bottom.  Linestyles as in Fig. 21.
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members.  As expected, the CR declines substantially as f increases. The CR shows a 

strong dependence upon the magnitude of the initial wind speed uncertainty.  Reducing 

this uncertainty results in an improvement of as much as 0.6 around t = 4 h for CR10, with 

the curves converging as the runs progress.  The greater certainty that is throughout 

thischapter for the r511 ensemble is not present for CR10, but does manifest itself as more 

members are required for the intersection.  The initial relative humidity and CAPE 

uncertainty has little impact on the scores.  It is possible to create a map of the CR, or, 

more accurately, a map of the various intersections (Fig. 27).  The light gray shading 

represents the union all members and the successively darker shading marks the area of 

intersection of at least 10, 20, 30, and 40 members.  For reference, the contour indicates 

the location of the control run.  The greater agreement within the r511 ensemble for the 

larger f values is easily seen, as is the growth of the area of union—both because of the 

growth in the MCSs and the increasing spread of the members.  Since the union forms the 

denominator of the CR, this growth contributes to the gradual decline in scores after t = 3 

h.  Indeed, the size of the union appears to explain a great deal of the difference between 

the ensembles with the 24-h forecast wind speed errors and those with the reduced wind 

errors.  The former group displays a tendency to somewhat larger systems and a greater 

range of translation speed (not shown) leading to substantially larger unions and thus 

smaller CRs, despite similar-sized areas of intersection for the lower the f thresholds. 

Increasing the rainfall threshold to moderate levels, 2 mm (Fig. 28) and 5 mm 

(Fig. 29), results in only a slight decline in CRf for f = 10 and 20 members, but a 

substantial reduction for the more restrictive f = 30 and 40 member thresholds.  

Furthermore, the separation of the curves based on the wind speed uncertainty becomes  
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Fig. 27. Correspondence ratio maps for 1-h accumulations greater than 0.2 mm.  Shading 
(from light to dark) denotes the intersection of at least 1 (the union), 10, 20, 30, 40, and 
50 members.  The dark contour marks the 0.2 mm contour from the control run. 
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Fig. 28. As in Fig. 26, but for 1-h accumulated rainfall greater than 2 mm. 
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Fig. 29. As in Fig. 26, but for 1-h accumulated rainfall greater than 5 mm. 
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Fig. 30. As in Fig. 27, but for 1-h accumulated rainfall greater than 5 mm. 
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less pronounced.  Note that the union of the 24-h uncertainty ensembles at the 5 mm 

threshold  (Fig. 30) is closer in size to the reduced uncertainty ensembles.  The large 

aerial coverage of the 0.2 mm unions is largely the result of a number of relatively weak, 

broadly diffused systems (e.g., member 5 or 16; Fig. 19) and the larger differences in 

translation speed of the systems for the ensembles based on 24-h wind speed forecast 

uncertainty (c.f., Figs. 19-20).  The impact of the diffuse systems is reduced as the 

rainfall threshold is increased.  Note, as well, that as the rainfall threshold is increased 

from 2 mm to 5 mm, the time at which the CR peaks shifts from t = 2-3 h to around t = 5 

h.  This later time also marks the peak in both the success rate curves (Fig. 21) and the 

curves marking the spread of the 1-h rain accumulations (Fig. 24); that is, the storms 

must reach maturity to produce agreement on the rain higher thresholds. 

The peak areas for which at least 10 members of the ensembles agree on 1-h 

rainfall amounts exceeding 10 mm (Fig. 31) are still reasonably large—only a modest 

decline from the 5mm curves—but the CRs quickly drop away from that peak due to a 

combination of a smaller area of intersection and a larger union (not shown).  Agreement 

for larger f thresholds is scant.  Of course, one would not expect to find strong agreement 

on the timing and location of the stronger convective cores that are generally required to 

produce higher rainfall amounts.  (The initial environment used here does not lead to the 

asymmetrical, training systems that can generate extremely large rainfall totals, as seen in 

Parker and Johnson 2000.) 

A consistent but puzzling signal in the CR plots is that the r511 ensemble, which 

possesses a much stronger degree of self-agreement (i.e., high success rate, low spread) 

than all the other ensemble groups, tracks closely, for low rainfall or f thresholds, with the  
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Fig. 31. As in Fig. 26, but for 1-h accumulated rainfall greater than 10 mm.
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CR of the other ensembles with reduced initial wind speed uncertainty.  As either the 

rainfall amount or the level of intersection, f, is increased, the r511 ensemble begins to 

separate itself from the other curves, but, for the most part, not to the same extent as seen 

for the other measures.  It is not clear what different aspects of the simulations or the 

evaluation tools are responsible for the differing results. 

Another signal unique to the CR plots, just mentioned above, is the dependence 

on the initial wind speed uncertainty.  As discussed earlier, the larger initial wind speed 

uncertainty produces an anticipated greater range of system translation speeds, which 

creates a larger area for the union of all members, leading to smaller CR values.  The 

success rate is not as sensitive to spatial displacements (the degree of sensitivity is a 

function of the size of the search window used) and so shows no sensitivity to the wind 

speed uncertainty.  The other measures focus on extreme values and so are likewise 

insensitive to location errors.  This highlights the importance of the choice of evaluation 

tool, as different tools will often key on different facets of forecast behavior.  It is thus 

necessary to select an evaluation tool based on the forecast characteristics of interest.  For 

example, the success rate should not be used (or should be used with a narrow search 

window) by someone sensitive to errors in forecast location. 

 

e. Bowing segments 

It was noted at the beginning of this chapter that among the variety of structures 

that develop in the 3D runs are several that resemble bow echoes, a feature frequently 

associated with damaging winds (Fujita 1978; Weisman 2001).  To examine these 

features more closely, the evolution of three apparent bows from the r523 ensemble is  
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Fig. 32. Precipitation mixing ratio at z = 4 km greater than 0.2 g kg-1 (shading), together 
with the perturbation pressure greater than 3 mb (contour) and horizontal wind (arrows) 
at the lowest model level at t = 3-7 h for three linear members (top) and three bow-like 
members (bottom) of the r523 ensemble in a moving 200 x 200 km window. The ‘C’ in 
each panel marks the location of the minimum temperature perturbation.  The number in 
the lower right corner of each plot is the maximum surface wind within the window. 
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Fig. 33. As in Fig. 32, but for cross-sections (200 x 15 km).  For the linear members 
(top), the cross-sections are taken through the middle of the domain (y = 100 km).  For 
the bow-like members (bottom), the cross-sections are taken through the apex of the bow 
(y = 150, 175, and 175 km).  Arrows show the (u, w) wind.  The number in the lower left 
corner indicates the maximum downdraft in the window. 
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plotted along with three linear members (Figs. 32 and 33).  The maximum surface wind 

(plotted in the lower right corner of each panel, Fig. 32) is similar for both groups; the 

bows (bottom) are no more likely to exceed the threshold for severe winds (~34 ms-1) 

than are the lines (top).  Similarly, there appears to be no connection between either the 

strength of the cold pool (not shown) or the location of the maximum temperature 

perturbation (marked by a ‘C’).  The perturbation pressure field (black contour = +3 mb) 

seems to be more extensive for the bowing members and is often coincident with the 

bowing segment, but given the presence of the +3 mb perturbation pressure field among 

some of the linear members, it would be difficult to devise a bow echo forecast rule from 

this field. 

The cross-sections (Fig. 33) are taken through the middle of the domain for the 

linear members and through the apex of the bow for the bowing members. The movement 

of the system has been subtracted out to give systems-relative winds.  The number in the 

lower left corner of each panel indicates the speed of the maximum downdraft.  As with 

the maximum surface wind there is no signal from in the maximum downdrafts, neither 

group possesses a tendency toward stronger downdrafts.  It does appear, however, that 

the descending rear-to-front flow, though not exceedingly strong, is more pronounced for 

the bowing members, while the front-to-rear flow is stronger in the linear members.  That 

the members would develop different kinematics is not clear, however, from looking at 

the initial perturbations for these members (Fig. 34).   

So, whereas there are suggestions that the bow-like solutions are dynamically 

different than the more linear solutions—stronger descending rear-to-front flow leading 

to stronger surface pressure perturbations—the two sets of solutions are indistinguishable  
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Fig. 34.  As in Fig. 7, but for the three linear (top) and three bow-like (bottom) members. 

 

 
Fig. 35.  Time series of the logarithm of the difference total energy (DTE) averaged over 
all members of the r823 (black) and r511 (gray) ensembles.  See text for definition of 
DTE. 
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in terms of the strength of the downdrafts and surface winds.  More importantly, from a 

forecast perspective, the two sets of solutions also are indistinguishable in terms of the 

perturbations from which they are initialized. 

 

e. Difference total energy 

In order to compare these results with those in Zhang et al. (2003), the difference 

total energy (DTE) is computed between each ensemble member and the control run, 

where 

DTE = 1 2 (!u)2 + (!v)2 +" (!T )2#$ %&' ,  

and where δu, δv, and δT are the difference wind components and difference temperature 

between two simulations,

! 

"  = Cp/Tr, Tr is a reference temperature of 287 K, and the 

summation is taken over the whole 3D domain.  Error growth through integration is 

steady, but slow, although it possibly could be argued that the error growth for the 

r511_3D ensemble is slightly faster than for r823_3D (Fig. 35).  While this result is 

somewhat surprising when compared to the MCS success rate results, it actually is to be 

expected.  It is commonly seen (e.g., Zhang et al. 2003; Zhang et al. 2006; Hohenegger 

and Schär 2007) that error growth rates are strongly dependent on the amplitude of the 

initial perturbations; error growth slows as the initial perturbation amplitude increases.  In 

fact, given the relatively large amplitude of the perturbations used here, it is perhaps 

surprising that there is any error growth whatsoever.  The discrepancy between the DTE 

results and the MCS forecast success rate suggests that DTE may not be an appropriate 

predictability measure when a more phenomenological approach is taken, for the reasons 

noted by Leith and Kraichnan (1972).  Namely, a squared difference measure, like DTE, 
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cannot distinguish between trivial and significant displacements of isolated features.  

Two simulations with storm locations separated by 50 km will have the same DTE as if 

the locations were separated by 500 km.  However, the former would be counted as a 

forecast success by the criteria employed in this study, while the latter would not.  

 

 f. Summary of 3D results 

 Results indicate that the 2D experiments provide reasonable estimates of the 3D 

MCS predictability insofar as the success rate, along with the spread of the maximum 

updraft and maximum surface wind speed, are comparable between the two experiments.  

Looking more closely at the 3D results, however, uncovers some intriguing, and not 

easily explainable results.  For example, in the 2D results there are definite sensitivities to 

the strength of the initial uncertainty in the three perturbed fields, such as a steady 

increase in agreement among ensemble members as the CAPE uncertainty is reduced.  In 

contrast, no clear patterns emerge in the 3D runs; all ensembles tend to group together, 

with the notable exception of the r511 ensemble, for which the initial uncertainty is 

reduced for all fields.  

 The spread of maximum instantaneous rain rates behaves similarly to the other 

fields, except that the standard deviation of the r521 ensemble sharply declines after t = 3 

h.  The forecast uncertainty decreases for all ensembles over the last several hours, but 

the r521 drops by half, eventually reaching the same level as the r511 ensemble.  

Integrating the rainfall over 1 h increments begins to reveal some sensitivity to the initial 

uncertainty.  For the 24-h forecast error CAPE uncertainty group, at least, the curves tend 

to separate according the strength of the wind speed uncertainty.  This tendency is much 
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stronger when the correspondence ratio is used to measure forecast spread.  Maps of the 

correspondence ratio reveal that the separation according to initial wind speed uncertainty 

is caused by greater variation in the translation speed of the runs based on the 24-forecast 

errors.  The spread in the location of the MCSs increases the union of all members, while, 

for the lower rainfall amounts, the intersection of the members does not change 

substantially, with the result being lower CRs.  

 Several of the 3D runs obtain a structure resembling bow echoes.  The bow-like 

solutions appear to have a somewhat more pronounced descending rear-to-front flow and 

consequent positive perturbation field, similar to a mesohigh.  However, whereas bow 

echoes are often associated with damaging winds, the surface winds in the bow-like 

solutions are no stronger than the non-bowing solutions.  Moreover, there is no clear 

signal in the initial perturbation profiles that could aid a forecaster in predicting the 

existence of bow echoes.  
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Chapter 6:  Summary and Conclusions 

 Mesoscale convective systems are a prominent meteorological feature over the 

eastern two-thirds of the contiguous United States and are responsible for a majority of 

the warm-season rainfall over most of this region (Fritsch et al. 1986; Schumacher and 

Johnson 2006).  Individual MCSs can carry the risk of flash flooding, damaging hail, and 

even tornadoes, while MCS activity over a monthly to seasonal timescale is associated 

with flooding and draughts.  

Despite this prominence, little is known about the predictability of these systems.  

Historically, predictability studies have relied on simplified statistical models or low-

resolution global models, where the focus is on fields such as 500-hPa heights.  

Extrapolations from these models suggest mesoscale predictability to be on the order of 

hours.  Initial experiments with mesoscale models lead to claims of enhanced 

predictability on these scales, but they largely ignored sensible weather.  Subsequent 

work called into question the enhanced predictability conclusion, noting several 

shortcomings in the experimental design.  Recent, storm-scale experiments have 

concentrated on the predictability of precipitation and the role deep, moist convection 

plays in mesoscale predictability.  Conclusions from these studies tend to favor the 

relatively short predictability limits indicated by the early experiments based on the 

statistical turbulence models, though fixed forcing mechanisms, such as orography, have 

been linked to extended predictability limits. 

The research described in this document focuses on a single mesoscale 

phenomenon, the MCS, and explores the predictability of several features of these 

systems that are of interest to forecasters: the development and maintenance of the 
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system as a whole, maximum updraft strength, maximum surface wind, and precipitation.  

The study is undertaken from the perspective of a forecaster looking at a day 2 forecast 

from a currently operational mesoscale model.  If the forecaster sees the model 

developing an MCS in the forecast area, what level of confidence can be placed in the 

occurrence of that event, or in the features of the modeled system?  By using 24-h 

forecast errors to define the initial perturbation, the large, storm-scale ensemble provides 

an estimate of the predictability of an MCS in the day 2 time frame. 

The use of 2D simulations allows for very large (i.e., 100-member) ensembles.  The 

2D simulations with current 24-h forecast errors suggest that a day 2 MCS forecast 

should have a success rate around 70% (judged by a generous criterion for identification 

as an MCS), or slightly higher if there is a deep shear layer present.  This success rate 

drops below 50% as the basic state relative humidity at the cloud-layer is reduced below 

65%.  Increases in predictability resulting from reductions in forecast errors are not 

uniform.  For example, halving the wind speed errors increases the success rate for both 

the 500 and 800 J kg-1 ensembles, but it only has a minor effect on the 1000 J kg-1 

ensemble. Reducing the initial errors by half for each of the fields examined here (CAPE, 

wind speed, and relative humidity) raises the MCS success mode rate to 90%.  That is, 

achieving 90% confidence in forecasts of MCS development requires the tremendous 

advance of bringing 24-h forecast errors down to the level current analysis errors. This 

radical improvement in forecasting would yield a 10-20% reduction in the uncertainty for 

maximum updraft strength and a 25-35% reduction in the uncertainty for maximum 

surface wind.  
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The success rate, along with the uncertainty in the maximum updraft strength and 

maximum surface wind, are all more sensitive to changes in the relative humidity 

perturbations than changes in the wind speed perturbations, while the opposite is true for 

the MCS size.  The success rate and maximum surface wind are more sensitive to 

changes in the relative humidity and wind speed perturbations for the ensembles with 

smaller CAPE perturbations.  In contrast, the MCS size is more sensitive to changes in 

these perturbation fields for the ensembles with larger CAPE perturbations.  For the 

maximum updraft strength the impact of the wind speed and relative humidity 

perturbations is greater for the large CAPE perturbations early in the runs, while the 

opposite is true toward the end of the simulations.  The CAPE perturbations themselves 

have the biggest impact for the maximum surface wind, but have no impact on 

uncertainty in MCS size and only moderate impact on the success rate.  Thus, it does not 

seem that improvements in the forecast of a particular field (e.g., CAPE vs. wind speed) 

increase confidence in MCS forecasts, generally. 

In many ways, the 2D experiments provide reasonable estimates of the 3D MCS 

predictability.  The success rate, along with the spread of the maximum updraft and 

maximum surface wind speed, are comparable between the two experiments.  (Recall that 

the base-state sounding was adjusted in the 3D experiment to match the 2D success rate 

for the r823 ensemble, but the improvement attained by reducing the initial uncertainty in 

3D is comparable to that improvement seen in the 2D experiment.)  Closer inspection of 

the 3D results uncovers some intriguing and not easily explained results.  For example, in 

the 2D results there are definite sensitivities to the strength of the initial uncertainty in the 

three perturbed fields, such as a steady increase in agreement among ensemble members 
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as the CAPE uncertainty is reduced.  In contrast, no such patterns emerge in the 3D runs; 

all ensembles tend to group together, with the notable exception of the r511 ensemble, for 

which the initial uncertainty is reduced for all fields.  

 The spread of maximum instantaneous rain rates behaves similarly to the other 

fields, except that the standard deviation of the r521 ensemble sharply declines after t = 3 

h.  The forecast uncertainty decreases for all ensembles over the last several hours, but 

the r521 ensemble drops by half, eventually reaching the same level as the r511 

ensemble.  Hourly rainfall begins to reveal some sensitivity to the initial uncertainty.  For 

the 24-h forecast error initial CAPE uncertainty group, at least, the curves tend to 

separate according the strength of the wind speed uncertainty.  This tendency is much 

stronger when the correspondence ratio is used to measure forecast spread.  Maps of the 

correspondence ratio reveal that the separation according to initial wind speed uncertainty 

is caused by greater variation in the translation speed of the runs based on the 24-forecast 

errors.  The spread in the location of the MCSs increases the union of all members, while, 

for the lower rainfall amounts, the intersection of the members does not change 

substantially, with the result being lower CRs.  

 Reducing the 24-h forecast errors to analysis error levels yields a somewhat 

smaller improvement in the 3D MCS success rate (80-85%) compared with the 2D results 

(90%), but substantial improvements in the uncertainty of maximum updraft strength (up 

to 33%) and maximum surface wind (up to nearly 75%).  Similarly robust improvements 

are found for rainfall forecasts, as well.  So, while the improvement from reducing the 

initial uncertainty in the forecast of the development of the MCS itself is not as great in 

3D as in 2D, the improvement in forecasts of various characteristics of the system is 
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much greater in 3D.  However, these substantial improvements are only achieved by 

reducing 24-h forecast errors to the level of current analysis errors—a formidable task.  

 Several of the 3D runs obtain a structure resembling bow echoes.  The bow-like 

solutions appear to have a somewhat more pronounced descending rear-to-front flow and 

consequent positive surface perturbation pressure field, similar to a mesohigh.  Whereas 

bow echoes are often associated with damaging winds, the surface winds in the bow-like 

solutions are no stronger than the non-bowing solutions.  Moreover, there is no clear 

signal in the initial perturbation profiles that could aid a forecaster in predicting the 

existence of bow echoes. 

 It is important to emphasize the sensitivity of predictability estimates to the 

forecast evaluation tool used to derive those estimates.  As noted as far back as Kraichnan 

and Leith (1972), tools designed for continuous fields are not suitable for highly 

intermittent phenomena.  Thus, a measure such as the difference total energy shows very 

little error growth for the MCS modeled herein, suggesting extended predictability.  In 

contrast, the success rate and the spread of the forecasts of maximum updraft, surface 

wind, and rain rates give a much different picture and indicate that even reducing the 

initial uncertainty by half, to levels on par with current analysis errors, is required to 

achieve substantial improvements in forecast confidence.  In fact, for the 3D runs, no 

gain results from the reduction of initial errors by any single field, but rather all three 

fields examined here need to be improved to have an impact on the forecast uncertainty.  

Using the more restrictive correspondence ratio yields a somewhat different conclusion.  

Since it is sensitive to spatial dislocations, improving the initial wind speed errors 

increases the forecast confidence.  Forecast users must be mindful of the forecast aspects 
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to which they are sensitive when examining predictability estimates.  For example, a 

hydrologist concerned about flooding in a relatively small catchment would be more 

interested in the results from the CR than from the success rate. 

There are a number of sources of uncertainty in these results, starting with the 

choice of 1-km grid spacing.  Bryan et al. (2003) have shown that the internal structure of 

convection cannot be adequately represented with 1 km grid spacing.  However, applying 

the argument of Lorenz (1969) suggests that using grid spacing less than 1 km should 

only reduce the predictability estimates by allowing for a more rapid upscale error 

cascade.  Moreover, enhanced upscale error growth from the mesoscales in the presence 

of baroclinic instability, which is not considered here, would only serve to worsen 

predictability further (Tribbia and Baumhefner 2004). 

Perhaps the biggest shortcoming is that convective initiation is nearly guaranteed 

in this study.  Initiation is a major forecast concern and often not predicted well by either 

operational or research high-resolution models.  Including the uncertainty of convective 

initiation would likely reduce the MCS success modes dramatically.  Also, the results 

derive from a single, rather moist, control sounding.  It is seen that reducing the mid-level 

moisture in the control sounding produces large decreases in the success rate.  Similarly, 

a reduction in the boundary layer moisture of the control sounding from 15 g kg-1 to 13 g 

kg-1 results in a significant decline in the success rate (not shown).  By using a 

homogeneous environment we have removed the problem of correctly forecasting the 

downstream environment into which the MCS is moving, which can play a decisive role 

in determining whether the system persists.  
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As stated previously, predictability is inextricably linked with the models from 

which the estimates are derived.  Still, while the environment used in this study, e.g., 

unidirectional shear oriented perpendicular to the convective line, is expected to produce 

a squall line more two-dimensional in character, the resulting MCSs examined here 

display a large degree of along-line asymmetry.  It would thus appear that fully three-

dimensional turbulence is able to develop in the simulations.  Adding additional 

complexity, such as removing the periodic boundaries in the y direction, does not seem 

likely to reduce forecast uncertainty. 

Whereas the impact of each of these sources of uncertainty cannot be predicted, it 

would seem that, taken together, they suggest that the estimates obtained herein (e.g., 

70% success rate for a day 2 forecast) are optimistic.  That is, they represent a very 

optimistic estimate of an upper bound on the predictability of MCS forecasts. 

Finally, let us return to the question presented earlier, how much confidence can a 

forecaster have in numerical model forecast of a MCS in the day 2 time frame?  With a 

70% success rate, fully 30% of MCS events would be missed.  Added to that are false 

alarms, and while this research cannot assess false alarms directly, the 2D experiment 

does provide some indication.  When the maximum cloud layer relative humidity is 

reduced to 50%, the control run is unable to produce an MCS, but roughly half of the 

ensemble members did maintain a system, suggesting a large false alarm rate.  Assuming 

that a MCS is correctly forecast, there is still a question of severe potential.  The National 

Weather Service severe criterion for surface winds is 26 m s-1 (58 mph), meaning that the 

maximum surface wind uncertainty is nearly one-third of the severe threshold.  In other 

words, the modeled wind field must be well over the severe threshold to have strong 
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confidence that severe winds will occur—a model forecast as strong as 35 m s-1 (78 mph) 

would still have nearly a one-in-six likelihood of being a bust.  In summary, high-

resolution model forecasts are appealing for their ability to produce realistic-looking 

fields, but the results herein suggest that there is a substantial gap between the ability to 

produce a forecast that look like something that could happen and the ability to produce a 

forecast that accurately captures what will, in fact, happen. 
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