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ABSTRACT

Although the ensemble Kalman filter (EnKF) has been remarkably successful

for history matching and quantifying uncertainty in petroleum reservoirs, there have

been problems with the use of small ensembles, and occasionally with applications to

real reservoirs.

Geological complexity and limited access to the subsurface typically result in a

large uncertainty in reservoir properties and forecasts. There is, however, a system-

atic tendency to underestimate such uncertainty, especially when rock properties are

modeled using Gaussian random fields. In this dissertation, the uncertainties in mul-

tiscale reservoir parameters are quantified through a stochastic multiscale model. The

multiscale parameters including regional trend coefficients and heterogeneities can be

estimated using the EnKF for history matching.

The proposed method of EnKF with multiscale parameterization was tested on

a deepwater field whose reservoir model has over 200,000 unknown parameters. The

match of reservoir simulator forecasts to real field data using a standard application

of EnKF had not been entirely satisfactory, as it was difficult to match water cut in a

main producer of PFJ2 reservoir. None of the realizations of the reservoir exhibited

water breakthrough using the standard method. By adding uncertainty in large scale

trends of reservoir properties, the ability to match the water cut and other production

data was improved substantially. The results indicate that an improvement in the

generation of the initial ensemble and in the variables describing the property fields

give an improved history match with plausible geology. The multiscale parameteriza-

tion of property fields reduces the tendency to underestimate uncertainty while still

providing reservoir models that match data.
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Another aspect that this dissertation focuses on is statistical sampling error caused

by a limited ensemble size. The number of ensemble members (ensemble size) is crit-

ical to the efficiency and performance of the EnKF. When the ensemble size is small,

the Kalman gain generally can not be well estimated. The most common approach for

reducing the effect of spurious correlations on model updates is multiplication of the

estimated covariance or Kalman gain by a tapering function that eliminates all cor-

relations beyond a prespecified distance. The distance-based localization, however,

is not always appropriate. In the dissertation, we propose a more general method

for regularizing Kalman gain, which discriminates between the real and the spurious

correlations in the Kalman gain matrix by using the bootstrap resampling technique

to assess the confidence level of each element from the Kalman gain matrix.

Both the bootstrap-based screening and the commonly used distance-based local-

ization are type of regularization methods, but use different mechanisms. The concept

of distance-based localization was originally applied to the covariance matrix. Im-

proved results, however, were also obtained by applying localization on the Kalman

gain. In spite of the widespread applications of these two ways of using localization,

little in the literature addresses the difference between these two ways of applying

localization. This dissertation presents a comparison between the covariance regular-

ization and the Kalman gain regularization in three aspects: improvement observed

in the estimates of the Kalman gain, quality of data prediction, and the estimates of

model variables. Two regularization methods are taken into consideration including

the distance-dependent localization and the bootstrap-based screening. The investi-

gation resulted in three primary conclusions. First, if localizations of two covariance

matrices are not consistent, the estimate of the Kalman gain will generally be poor

at the observation location. The consistency condition can be difficult to apply for

nonlocal observations. Second, the estimate of the Kalman gain that results from

covariance regularization is generally subject to greater errors than the estimate of

xiv



the Kalman gain that results from Kalman gain regularization. Third, in terms of

removing spurious correlations in the estimation of spatially correlated variables, the

performance of screening Kalman gain is comparable as the performance of localiza-

tion methods (applied on either covariance or Kalman gain), but screening Kalman

gain outperforms the localization methods in terms of generality for application, as

the screening method can be used for estimating both spatially correlated and uncor-

related variables, and moreover, no assumption about the prior covariance is required

for screening method.
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CHAPTER I

INTRODUCTION

History matching is a process of adjusting reservoir simulation model parameters to

match measurements. In history matching, direct measurements such as core data

provide the information of reservoir properties around wellbores and can be used for

building geological reservoir simulation model and generating conditional realizations

of rock property field, however, such data are not always available. Indirect mea-

surements of reservoir properties are usually obtained at the surface, in the form of

seismic data and production data (such as fluid rates and well-head pressure etc.).

The production data are sensitive to a large area of reservoir properties and can

be obtained with a relatively low cost as the use of permanent downhole gages and

surface equipment. As a result, most of the time, reservoir properties are estimated

through matching production data.

In the past, history matching was done manually based on reservoir engineers’

knowledge and experience. The traditional manual history matching method, cur-

rently, is still used for doing local adjustment. Manual history matching involves

adjusting model parameters according to the physical relationship between data and

parameters. Such manually trial and error approaches, however, are impractical to

achieve well by well history match for most of the medium or large history match-

ing problems involving a large number of wells and complicated geological settings.

Hence, a lot of research is being done in assisted history matching methods. Oliver

and Chen (2010) review recent developments in reservoir history matching area. Ex-

perimental design is an often used history matching method in the petroleum industry.

The power of experimental design lies in identifying the most significant parameters,

1



the number of parameters that can be estimated, however, is very limited. Evolu-

tionary algorithms (such as genetic method) are global optimization method, but

the efficiency of such algorithms are very low. Gradient-based methods are usually

effective at finding good estimates of model parameters, but calculating gradients

is expensive and dependent on the source code of simulator. As the growth in the

application of optimization in reservoir management, greater demands are placed on

the application of history matching. The history matched models should not only

reproduce the historical production behavior, but also preserve geological realism

and quantify forecast uncertainty. To meet these challenging requirements on his-

tory matching method, more effective and efficient techniques are needed. The most

prominent technique that is receiving growing attention in petroleum science is the

ensemble Kalman filter.

1.1 The ensemble Kalman filter for history match-

ing

The ensemble Kalman filter (EnKF) (Evensen, 1994, 2006) is a sample-based version

of the Kalman filter, which uses an ensemble of model states to provide uncertainty

quantification in reservoir characterization and production predictions. The appli-

cation of EnKF in petroleum engineering started recently (Lorentzen et al., 2001;

Nævdal et al., 2002). Since then, the EnKF was successfully applied on many syn-

thetic cases for solving more complicated data assimilation problem (Brouwer et al.,

2004; Gu and Oliver, 2005; Nævdal et al., 2006). Promising results were also obtained

from several applications of the EnKF on history matching multiphase flow models of

real fields (Skjervheim et al., 2007; Evensen et al., 2007; Bianco et al., 2007; Haugen

et al., 2008; Zhang and Oliver, 2009). The EnKF has been shown to be a viable

method for tackling the challenging history matching and uncertainty quantification

problem. Many features make EnKF attractive and useful in many different contexts.

2



First, it is relatively easy to adapt EnKF to a number of different types of model

parameters. Initially, EnKF was used to estimate spatially correlated rock prop-

erties such as porosity and permeability, but the types of variables that could be

estimated using the EnKF has been expanded dramatically. The estimation range

has reached to discontinuous reservoir rock facies (Liu and Oliver, 2005b,a; Agbalaka

and Oliver, 2008, 2009), vertical transmissibility multipliers and fault transmissibili-

ties (Evensen et al., 2007), relative permeability curves (Chen and Oliver, 2010), fluid

contacts (Evensen et al., 2007; Thulin et al., 2007), geomechanic properties such as

stress, strain, and displacement fields (Chang et al., 2010), and reservoir structural

parameters (Seiler et al., 2009).

Second, the ensemble itself represents the uncertainty in reservoir characterization

and production predictions (Gao et al., 2006; Zafari and Reynolds, 2007). The cor-

relations between model variables and data are directly estimated from the ensemble

of model variables and their corresponding simulated data. There is no need to com-

pute derivatives of data with respect to changes in model variables, and computing

the full covariance is also avoided by only computing the parts of the covariance that

is required for the Kalman gain. These pieces have much lower dimension than the

full covariance. The reservoir simulator used for modeling reservoir fluid flow and

reporting the simulated data, is treated as a black box in the EnKF framework, thus

no adjoint codes are required. The EnKF method can be coupled with any existing

reservoir simulator.

Third, observations are sequentially assimilated whenever they are available. Thus,

the ensemble Kalman filter can be used for real-time data assimilation, reservoir

monitoring, and performance prediction (Nævdal et al., 2003, 2005), all of which are

required for closed-loop reservoir management (combining history matching with pro-

duction optimization) (Lorentzen et al., 2006; Wang et al., 2007; Chen et al., 2009).

3



Any method has its limitation and application requirements. A successful appli-

cation of EnKF is based on the assumptions that prior distribution of model variables

is approximately Gaussian and the nonlinearity of the relationship between data and

model variables is not very strong, and that the ensemble size is sufficiently large.

These assumptions present challenges for applying the EnKF on highly non-linear

and non-Gaissian problems or problems involving high-dimensional model. Oliver

et al. (2010) summarizes some of the key points of the data assimilation problem for

multiphase flow in petroleum reservoirs that make the problem distinctly different

from data assimilation problems in other areas such as weather and oceanography. A

recent comprehensive review by Aanonsen et al. (2009) addresses various challenges

for the application of the EnKF in petroleum science. This dissertation focuses on

some of the challenging problems, particularly related to non-Gaussian prior distri-

butions of model variables, implementation of the EnKF on large-scale oil fields, and

statistical noise in the estimates of covariance and Kalman gain.

1.2 History matching hierarchical-Gaussian rock

property fields

The EnKF has two recursive steps: forecast and analysis. In the analysis step, the

update equation is almost identical as that is used in the Kalman filter except that

the covariance is directly computed from the ensemble and ensemble members are

updated individually using the common Kalman gain (that is calculated based on the

sample covariances approximated from ensemble) to represent the posterior distribu-

tion of model variables. In other words, only the first two statistical moments (mean

and covariance) are used for updating in the analysis scheme of EnKF. If the prior

distribution of model variables are approximately Gaussian, the first two moments

are sufficient for describing the distribution, otherwise, the EnKF can result in incor-

rect estimates of models variables. For optimal estimation, the implicit Gaussianity

4



assumption of EnKF should not be violated. In reality, however, the distributions

of rock properties of many oil-bearing reservoirs appear to be non-Gaussian or non-

stationary due to the diverse depositional environments.

If Gaussian random field model is used to simulate such non-stationary rock

property fields, the EnKF can be used to calibrate the estimates, however, the spa-

tially varying mean of property field can not be accounted using Gassian simulation,

and moreover, the uncertainty associated with the estimates will be underestimated.

Therefore, characterizing the multiscale nature of reservoir properties is essential for

reliable reservoir history matching and management. In the dissertation, we describe

a hierarchical method for representing and updating multiple scales of heterogene-

ity in the ensemble Kalman filter. The proposed method of EnKF with multiscale

parameterization has been tested on a fairly large deepwater reservoir (Zhang and

Oliver, 2009).

1.3 Tackling sampling error in EnKF

Another focus of the dissertation is on eliminating the statistical noise or sampling

error caused by a limited ensemble size. The number of reservoir parameters to be

estimated is usually quite large, because the number of grid blocks in a numerical

reservoir simulation model is frequently 105 or larger and there are often several un-

knowns per grid block. In petroleum engineering related applications, the forecast

step in the EnKF is done by running the numerical reservoir simulator, which is usu-

ally more expensive than the matrix computations in the analysis step, especially for

a model with local grid refinement or involving gas flow. It is necessary to reduce

computational demands to enable the practical application of the EnKF for reservoir

history matching. Therefore, it is always desirable to use a small ensemble size to

avoid running a large number of flow simulations. One problem that arises as a result

of a small ensemble size, however, is spurious correlations in the sample covariance
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and the Kalman gain approximated from the ensemble, which can lead to unrealistic

updates to the model parameters and state variables. The cumulative effect of unre-

alistic updates is the loss of the ensemble variability and final break down of EnKF

(Lorenc, 2003). Since the ensemble Kalman filter is a type of reduced order filter, the

other problem that often arises as a result of small ensemble size is rank deficiency of

the sample covariance.

For reducing the negative effect of spurious correlations and improving the effec-

tive rank, a denoising process applied on either the estimates of covariance or the

Kalman gain seems to be necessary. Most of the time, the model parameters to

be estimated are spatially correlated variables, and a common method for reducing

the harmful effect of spurious correlations is distance-dependent covariance localiza-

tion. The concept of localization in the EnKF framework was first introduced by

Houtekamer and Mitchell (1998), where they simply applied a distance-based cutoff

to the Kalman gain. Since then, the localization method has evolved from a distance

cutoff approach to a tapering form (Houtekamer and Mitchell, 2001; Hamill et al.,

2001; Houtekamer et al., 2005; Furrer and Bengtsson, 2007). The implementation of

covariance localization using a tapering function is achieved by performing a Schur

product of tapering function and covariance matrix. The distance-based localization

is typically applied to the covariance matrix. Alternatively, the distance-based lo-

calization can be implemented on the Kalman gain (Anderson, 2007; Agbalaka and

Oliver, 2008; Zhang and Oliver, 2009; Chen and Oliver, 2010), which also leads to im-

proved results. In spite of the wide use of these two ways of performing localization,

little in the literature addresses the difference between these two ways of applying

localization. This dissertation presents a comparison study between the covariance

localization and the Kalman gain localization.

Distance-dependent localization is an effective method, but there are some chal-

lenges associated with this method. Determining an optimal range (or correlation
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length) for the tapering function is not trivial. The pre-specified range parameter in

the tapering function determines the distance beyond which the correlation values

are set to be zero. Hamill et al. (2001) and Lorenc (2003) showed that the optimal

range for a tapering function is generally related to the ensemble size. Furrer and

Bengtsson (2007) derived an expression for calculating the optimal taper function

based on the true covariance, but while it may be possible to estimate the true co-

variance prior to data assimilation, it is extremely difficult to estimate the covariance

after assimilating general flow observations in a sequential data assimilation process.

Chen and Oliver (2009) applied distance-based covariance localization in sequential

data assimilation for multiphase flow model. The authors point out that the region of

non-zero cross-covariance cannot be determined from the region of sensitivity alone

but the contribution of the prior covariance must also be considered. In their study,

the authors also presented several critical conclusions about the application of local-

ization to the covariance matrix for data assimilation in reservoir fluid flow system.

They concluded that different types of data may require different types of localiza-

tion, for example, for well oil production rate, a region surrounding the production

well is often enough, but for well water production rate, we may want to include

the injection well into the localization region. The same type of data might require

different localization at different times because of the dynamics of flow system. Their

study also showed that different model parameters and state variables may require

different localizations. The dynamic state variables (e.g. phase saturation and pres-

sure) are generally difficult to be localized. The optimal localization depends on the

history of previous data assimilation. It is clear that applying distance-dependent

covariance localization in a proper way for reservoir flow data assimilation is difficult,

as a lot of factors have to be taken into consideration. Moreover, distance-dependent

covariance localization is only appropriate for spatially correlated variables and it is

not suitable for localizing global reservoir variables such as fluid contacts and relative
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permeability parameters.

Recently, more general methods without assumption of distance dependence have

been proposed for solving the sampling error caused by a small ensemble size (Ander-

son, 2007; Hacker et al., 2007). In the hierarchical ensemble filter method of Anderson

(2007), the reliability of the regression coefficients (similar to the Kalman gain) is es-

timated using a group of ensembles. Confidence factors are defined to indicate the

reliability of estimates, which are computed from the group of ensembles. By multi-

plying the confidence factors to the regression coefficients, the effect of sampling errors

on the updates is reduced. Although the hierarchical method provides a mechanism

for discriminating between real and spurious correlations, the extra computational

cost of propagating a group of ensembles limits the practicality of its application.

Motivated by the need of more flexible localization scheme with low computational

cost, a bootstrap-based screening method (Zhang and Oliver, 2010b) was developed

to assess the confidence level of each element from the Kalman gain matrix and filter

out the unrealistic correlations from the Kalman gain. Bootstrap is a computer-based

technique for making certain types of statistical inferences (Efron and Tibshirani,

1993). In particular, it can be used to provide a measure of accuracy for estimates

of statistical parameters. In the context of this investigation, bootstrap is used to

compute multiple replicates of the Kalman gain matrix by resampling the same en-

semble with replacement. Based on the empirical distribution of bootstrap replicates,

the screening factor is inferred. In the dissertation, several different ways of defining

screening factors are demonstrated. We also applied the bootstrap-based screening

algorithm on the covariances. A further investigation is done on evaluating the per-

formance of applying the bootstrap-based screening on the Kalman gain and on the

covariances (Zhang and Oliver, 2010a). The investigations are carried out through

two examples: a 1D linear problem for which the exact solution can be computed

and a 2D highly nonlinear reservoir fluid flow problem. Consistency conditions for
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covariance regularization (including the distance-based localization and bootstrap-

based screening) are discussed and error evolutions in the Kalman gain regularization

and covariance regularization are derived.

1.4 Scope of dissertation

The main contributions of this dissertation include four parts:

• multiscale parameterization of non-Gaussian rock properties and estimation of

the multiscale parameters using the ensemble Kalman filter for history matching

production data (Chapter 2 );

• history matching of a deepwater reservoir located in Gulf of Mexico using the

EnKF with multiscale parameterization and a comparison of the results with

those obtained from the standard EnKF and manual history matching (Chapter

3);

• development of bootstrap-based screening methods to reduce statistical noise in

the estimates of Kalman gain and improve robustness of the estimation (Chap-

ter 4);

• evaluation and error analysis on covariance regularization and Kalman gain

regularization, for two regularization methods: distance-dependent localization

and bootstrap-based screening (Chapter 5).

Finally, Chapter 6 draws the conclusions on the major findings of this dissertation,

as well as suggestions for future research.
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CHAPTER II

THE ENSEMBLE KALMAN FILTER WITH

MULTISCALE PARAMETERIZATION

2.1 Introduction

There is an almost universal tendency for people to underestimate uncertainty, as a

result of lack of complete knowledge of the factors contributing to the uncertainty.

In some cases, even though the factors contributing to uncertainty are known, there

is no practical way to quantify the uncertainty. Many projects end up costing much

more than the initial estimates. Such cost underestimation has a long history due to

lack of adequate uncertainty quantification (Capen, 1976). In the petroleum indus-

try, advances in seismic technology have improved our ability to image the reservoir

architecture, but seismic technology alone is incapable of determining flow properties

and small-scale features needed for reservoir models. Moreover, different geologi-

cal processes can result in significant variation in reservoir facies distribution and

petrophysical properties. In addition, optimal sampling and observations are always

limited (Yang et al., 2000). As a result, a high degree of uncertainty exists when build-

ing reservoir models, especially if the reservoir lies in a complex deepwater channel

systems.

Stochastic modeling is useful because it provides a systematic way of quantify-

ing uncertainty by generating multiple reservoir property models, but the problem of

systematic underestimation of uncertainty remains, especially when rock properties

are modeled using Gaussian random fields (Oliver et al., 2008, pages 137–140). In

1Much of the material in this chapter has been accepted for publication in SPE Journal.
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Gaussian simulation, it is common to either assume second-order stationarity of the

random field, or that the trend (or drift) is known and the heterogeneity (or residuals)

are stationary (Deutsch, 2002). But the fact is that there are always trends in the ge-

ological properties, they just appear different under different measuring scales. In this

work, we model the underestimated uncertainty from regional trends by introducing

stochastic trend coefficients in a polynomial trend model. The multiscale parameters

including trend coefficients and heterogeneities can be estimated using the ensemble

Kalman filter (EnKF) for history matching. The proposed method of EnKF with

multiscale parameterization is much different from another method with a similar

name, the ensemble multiscale filter (EnMSF) that was proposed by Lawniczak et al.

(2009). In EnMSF, the sample covariance is replaced with a multiscale tree (nodes

at the adjacent scales) at each analysis step.

One benefit of the multiscale parameterization is that it allows better uncertainty

quantification of the estimates of rock properties. A second benefit is that multiscale

parameterization transforms the non-Gaussian rock properties to Gaussian variables

that can be better estimated using the EnKF, because the EnKF analysis step per-

forms poorly when the variables to be estimated do not have a Gaussian distribution.

Reparameterization or transformation are widely used in the EnKF related applica-

tions. The logarithmic transformation is the most common transformation method,

as it is almost always applied to the permeability. Chen et al. (2007) reparameter-

ized the state vector, replacing the non-Gaussian variable (water saturation) with an

approximately Gaussian variable (the time of arrival of a saturation). Other repa-

rameterizations have been chosen to reduce the number of model variables that must

be estimated. Jafarpour and McLaughlin (2008) combine EnKF with Discrete Co-

sine Transform (DCT) parameterization that captures large-scale features (such as

channels) by keeping only a few basis functions.
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2.2 Multiscale stochastic parameters

In history matching, trends are usually considered as deterministic features and het-

erogeneities are treated as stochastic correlated features, the concept of which is

known as universal kriging in geostatistics. The universal kriging theory, however,

does not allow prior knowledge of the trend (or drift) parameters. Omre (1987) pro-

posed Bayesian kriging which allows quantifying the uncertainty associated with the

estimation of geostatistical trend parameters. Applying the stochastic model of pa-

rameterization of Bayesian kriging, we develop a method for history matching the

multiscale stochastic model with the ensemble Kalman filter. Although our parame-

terization is similar, there are three important differences between Bayesian kriging

and our proposed method. First, kriging theory requires exact data, while mea-

surement errors are accounted for when using the EnKF to estimate geostatistical

parameters. Second, kriging is a linear estimator, for which the data must be lin-

early related to the model variables, while the EnKF is fairly robust to nonlinearity

in relationships. Thus, the dynamic production data can be sequentially assimilated

to update the estimation of geostatistical parameters. Finally, production data are

sensitive to model variables over large regions of the reservoir. Kriging methods do

not handle observations that are sensitive to properties in large regions. The results

of a field study shows that the influence of production data on the estimation of geo-

statistical parameters is quite significant. A detailed discussion of the results is given

in Chapter 3.

The multiscale stochastic model provides a way of treating both local hetero-

geneities (fluctuations) and trends as stochastic features for history matching. Here,

the trends we are referring to are not necessarily the very large-scale trends related

to long-term changes of sediment environment, since they can sometimes be deter-

mined well from geological knowledge and seismic data, but the regional trends in
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permeability or porosity that may be due to diagenesis or compaction and are diffi-

cult to identify in direct measurements. For practical modeling, the conditioning well

data for estimating trends are usually sparse and regional trends are only reproduced

in the neighborhood of wells, so the variance or uncertainty existing in the regional

trends should be considered. Thus, we propose to use a multiscale stochastic model

for representing rock property fields such as porosity and permeability.

Because the variability in the multiscale method will be quite large, it is useful

to transform the property field to maintain the values of physical variables within

plausible limits. In this paper, we use ΩT to denote the transformed variables, corre-

spondingly Ω stands for reservoir properties in the real scale. The transformation is

discussed in a later section. In the multiscale model, ΩT are expressed as the sum of

a relatively large-scale trend, Θ, and a small-scale heterogeneity or fluctuation, U :

ΩT = Θ + U .

2.2.1 Polynomial trend model

In this model of uncertainty, the small scale fluctuations U might be represented as

Gaussian random fields, while the large scale trends Θ in the properties might be

represented through polynomial functions of position with uncertain coefficients. If,

for example, we wish to include unknown means and quadratic trends in the reservoir

model, then we might write,

Θ = c1m+ c2x+ c3y + c4x
2 + c5y

2 + c6xy , (2.1)

where c1 to c6 are random coefficients. If set coefficients c4 to c6 to be zero, we will

end up with a linear trend. Eq. 2.2 shows how the 2-dimensional trend is formed
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using a quadratic polynomial equation with six coefficients,
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(2.2)

where i, j are the coordinate indices, nx is the number of grids in x−direction and ny

is the number of grids in y−direction. Ng is the number of gridblocks in one layer.

Eq. 2.2 can be expressed in a concise form as

Θ = ΘpΘc . (2.3)

In Eq. 2.3, Θ represents the column vector on the left hand side of Eq. 2.2, Θp

is the matrix of deterministic trend vectors, and Θc is the column vector of trend

coefficients. The first column of matrix Θp contains the transformed uniform mean m

of reservoir property field (transformation is achieved using Eq. 2.5). By multiplying

a random trend coefficient c1, we can adjust the property mean among ensemble.

Different values of c1 may be applied for individual layer of a reservoir that has

multiple layers exhibiting variation in the properties among different layers. Moreover,

different reservoir properties should be applied with different values of c1 because of

their different scales, for example, the scale of log permeability is nearly 10 times

of the scale of porosity. All the trend coefficients are generated from the normal

distribution. The polynomial trend model can simulate very diverse trends by using

linear and quadratic terms, but the method is quite general. In practical modeling,

it may be desirable to include other types of trends, such as a dependence on depth,

according to need, but the methodology is unchanged.
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2.2.2 Transformation of multiscale parameters

All model and state variables to be estimated are physical properties, so the physical

constraints have to be honored while doing history matching. When variability due to

uncertain trends is added to the heterogeneity, the variability of the sum can be quite

large, which tends to result in unphysical values. One standard approach to solve

this problem is truncation of extreme values of the parameters. But by doing so, the

histogram of generated reservoir properties may have two peaks at two extreme ends

in addition to a peak near the mean, in which case the benefits of using the multiscale

stochastic model is substantially reduced. Thus, a transformation equation that not

only can maintain a physical meaning to the generated reservoir property fields, but

also reduces the negative effect of truncation can be used. The formula that we use

for back-transforming reservoir properties to real scale is given in Eq. 2.4,

Ω =
Ωmax exp(ΩT ) + Ωmin

1 + exp(ΩT )
, (2.4)

where Ωmax and Ωmin are the maximum and minimum plausible values of reservoir

property (such as porosity and log permeability). Note that in Eq. 2.4, as ΩT → −∞,

Ω→ Ωmin and as ΩT →∞, Ω→ Ωmax. The transformation is more clear if one instead

considers Eq. 2.5, the inverse transformation of Eq. 2.4,

ΩT = log

[
Ω− Ωmin

Ωmax − Ω

]
. (2.5)

The multiscale stochastic parameters are estimated using the ensemble Kalman

filter that has been shown repeatedly to be an effective method for data assimilation

in large-scale problems, including those in petroleum engineering. In the following

section, an introduction on the ensemble Kalman filter is given.
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2.3 The ensemble Kalman filter for reservoir pa-

rameter estimation

The ensemble Kalman filter is a reduced-rank sequential data assimilation method. In

the standard implementation of the ensemble Kalman filter, the probability density

function is approximated by an ensemble of Ne state vectors,

Y = [y1, y2, . . . , yNe ] ,

where each state vector consists of the dynamic state variables vi and/or static model

parameters mi. Dynamic state variables are function of model parameters and change

with time. For petroleum inverse problem, we usually include both the static model

parameters and the dynamic state variables in the state vector

yi =

mi

vi

 , i = 1, 2, . . . , Ne .

Following is a brief overview of the standard parameterization, or in other words,

the commonly included state and model variables in a state vector in the standard

application of the EnKF.

2.3.1 Standard parameterization for the EnKF

As the reservoir is composed of reservoir fluid (oil, water and gas) and porous rock

formations, the static model parameters are related to the fluid properties and rock

properties. In standard parameterization, porosity (φ) and permeability are the two

important parameters for characterizing rock properties and are usually put into the

state vector. Since permeability generally obeys log-normal distribution, we usually

include the log-transformed permeability (ln k) into the state vector in order to honor

the implicit Gaussianity assumption of the EnKF. There may be also uncertainty in

other model parameters, such as, fault transmissibility, rock facies, relative permeabil-

ity curves, geomechanic properties, and the depths of fluid contacts, etc.. Certainly,
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it is not necessary to estimate every uncertain parameter for a given reservoir model.

We only need to identify the critical parameters and quantify the uncertainty within

them. Porosity and log permeability are usually the two basic parameters to be

estimated using the EnKF.

An initial ensemble of porosity and log permeability realizations are usually gen-

erated using sequential Gaussian simulation. The initial realizations can be uncon-

ditional or conditional. The term conditional implies that all realizations are condi-

tioned to the measurements of porosity or log permeability at well locations. In this

case, the values of porosity or log permeability at well locations will be honored by

all realizations. The prior mean and prior covariance for generating the realizations

can be determined based on the geological reservoir model and other available data

(analog fields, core, logs, and seismic). The prior covariance model determines the

smoothness or continuity of the random fields. The correlation length used in the

theoretical prior covariance model influences the number of degrees of freedom of the

parameter space and the impact of measurements on the parameters.

In the sequential data assimilation framework, history matching process is not

pure parameter estimation, but the combined parameter and state estimation prob-

lem. The dynamic state variables are also included into the state vector. As men-

tioned previously, the dynamic state variables are function of model parameters and

change with time. Such parameters include, for example, grid-based pressure and

phase saturations (oil saturation So, water saturation Sw, and gas saturation Sg).

Some physical constraints on phase saturations need to be honored during the data

assimilation process. The sum of all phase saturations present in a gridblock should

always be equal to 1. The water saturation in a gridblock, Sw, can not be lower than

the irreducible water saturation, and oil saturation, So, can not be below residual oil

saturation in oil/water or oil/gas system.
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2.3.2 Forecast and analysis

The ensemble Kalman filter consists of two recursive steps: one is forecast step for

solution of a dynamic system to a new time point and the second step is a Bayesian

update for assimilating new data. In the forecast step, the model parameters mi

remain the same,

mt+1,i = mt,i ,

while the dynamic model variables vi are evolved from time t to time t+ 1,

vt+1,i = f(yt,i) .

The predicted data for the ith ensemble member at time t + 1, dft+1,i, are computed

from the model variables by running a forward model. In petroleum application, the

forward model is a numerical reservoir simulator (g(·)),

dft+1,i = g(yt+1,i) , i = 1, 2, . . . , Ne .

The next step is analysis or update. All algorithms for the analysis step are

based on the idea that the pdf of the variables, and specifically, summary statistics

of the probability density function, can be estimated from an ensemble of random

realizations. As data are assimilated, all realizations are adjusted using Eq. 2.6 for

consistency with the new observation. In the analysis step, both the forecast model

parameters and state variables are updated,

Y a = Y f +Ke(dobs − df ) . (2.6)

In this expression, the subscript of time index is neglected, Ke is the Kalman gain,

and dobs denotes perturbed observations obtained by adding zero-mean noise with co-

variance CD to the actual measurement values. The ensemble Kalman filter method

includes two sources of sampling error in the analysis step: the random sampling of

the initial ensemble of model realizations and random sampling in the measurement
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perturbations. Although the original implementation of the ensemble Kalman filter

method (Evensen, 1994) did not include perturbations to the observations, Burgers

et al. (1998) and Houtekamer and Mitchell (1998) showed that by perturbing the

observations, it is possible to obtain the correct variance in linear data assimilation

problems with large ensembles. Others have pointed out that the addition of per-

turbations to the observations introduces additional sampling error, and advocate

methods that do not require perturbations (Tippett et al., 2003). These methods

compensate for the lack of variability by modifying the formula for updating model

and state perturbations from the mean. For a linear assimilation problem, Whitaker

and Hamill (2002) showed that an ensemble square-root filter (EnSRF), was better

at estimating ensemble variances than the ensemble Kalman filter. Sakov and Oke

(2008) showed similar benefits of mean-preserving square root filters over the standard

EnKF when applied to the linear advection model of Evensen (2004). Zhang et al.

(2010), however, showed that the sampling error in the observation perturbations can

be largely eliminated by using second-order-exact sampling of observation perturba-

tions and eliminating the cross-covariance between the observation perturbations and

the deviations of predicted data. In this case, the performance of the EnKF and the

EnSRF are nearly identical. As the problems became more nonlinear, the advantage

of the EnSRF disappeared and all filters performed similarly.

The Kalman gain, Ke, is computed from the forecast ensemble Y f and predicted

data df , using the expression,

Ke = Cf
yd(C

f
dd + CD)−1 , (2.7)

where Cf
yd is the sample covariance between the variables in the state vector and

predicted data; Cf
dd is the sample covariance between different predicted data. Cf

yd

and Cf
dd are directly estimated from the ensemble.

Data assimilation for multiphase flow in porous media is particularly difficult,

however, because the relationships between model variables (e.g. permeability and
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porosity) and observations (e.g. water cut and gas-oil ratio) are highly nonlinear.

Because of the linear approximation in the update step and the use of limited num-

ber of realizations in an ensemble, the ensemble Kalman filter has a tendency to

systematically underestimate the variance of the model variables.

2.4 EnKF with multiscale stochastic parameters

The EnKF with multiscale parameterization is achieved by including the multiscale

parameters into the state vector to replace porosity and log permeability that are

usually used in the standard parameterization of EnKF. Thus, during the history

matching process, instead of updating porosity and log permeability directly, their

two different-scale components: the small-scale heterogeneity of each gridblock and

the large-scale trend coefficients of each layer in a reservoir are updated. Continual

updating of the large scale parameters (trend coefficients) can effectively enhance

the influence of EnKF during analysis. Moreover, as mentioned before, determining

trends in reservoir depends on data, but the fact is that static well data are usually

limited and sparse, and that wells are preferentially drilled in regions of good reservoir

properties. Thus, if only static data are used for estimating trends, there is possibility

of being misled by generating reservoir property fields that are too optimistic. On

the other hand, when production data with large regions of support are used for

estimating trends, we may get rid of these pitfalls that occur when only static data

are used. Because the procedure is slightly different from standard EnKF, we have

included some details.

Application of EnKF begins with the generation of Ne unconditional realizations

of U and Θc. The initial unconditional ensemble, Y f
0 (the subscript 0 denotes initial

condition), is a collection of random initial state vectors:

Y f
0 = [yf0 1, y

f
0 2, · · · , y

f
0Ne

] .

Usually the relationship between porosity and log permeability is positively correlated,
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therefore, the common random trend coefficients (c2 to c6) that control the trend shape

are used for porosity and log permeability as shown in the following example of state

vector j,

yf0 j =

 Uj
Θc j

 =



Uφ1,j
...

UφNg ,j

Uln k1,j

...

Uln kNg ,j

c1φ,j

c1ln k,j

c2,j
...

c6,j



.

Certainly different c1 should be used for porosity and log permeability as the mag-

nitudes of these two properties are very different. For some rock types, the porosity

and log permeability are not very correlated, two separate sets of trends coefficients

(c1 to c6) can be used in the state vector. If we have some prior knowledge about

the reservoir, for example, well logs, an initial ensemble of conditioned realizations

Y a
0 can be obtained by assimilating the static well data using Eq. 2.6. The static well

data should be transformed using Eq. 2.5 and perturbed with very small noise before

being assimilated.

To continually update the estimates of U and Θc, production data are sequentially

assimilated, whenever they are available. In this sequential data assimilation process,

along with U and Θc, the dynamic state variables such as pressure P , water saturation

Sw, and gas saturation Sg (if three-phase model) are also included into the state

vector. The algorithm given above is for standard EnKF in combination with the
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multiscale stochastic model. A flow chart of this procedure is provided in Fig. 2.1. The

multiscale stochastic model can also be easily combined with any iterative schemes

of EnKF (Zafari et al., 2006; Gu and Oliver, 2007) for more effectively solving highly

nonlinear problems. The primary extra computation cost of using the multiscale

stochastic model is the transformation of converting multiscale parameters to reservoir

properties, but such cost is negligible compared to the cost of numerical reservoir

simulation.

Generate ini)al ensemble 
of mul)scale parameters 

(U   θc) 
Simulator 

Collect dynamic variables 
and produc)on data 
(e.g.  P   Sw   Sg   df) 

Model updating: 

yi
a = yi

f + Ke (dobs –df
i) 

Build state vectors 
yif = {U   θc   P   Sw    Sg }i 

If tj < tend 

If tj = tend 

Final updated 
realiza)ons 

T

T

T

Stands for transforma)on from mul)scale parameters to 
reservoir proper)es (e.g. porosity and log permeability) 

T

Figure 2.1: Flowchart of EnKF with multiscale parameters.
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CHAPTER III

HISTORY MATCHING OF A DEEPWATER

RESERVOIR

3.1 Description of field and simulation model

The deepwater reservoir PFJ2 is located in more than 1700-ft waters in the Gulf of

Mexico. The reservoir rock is slightly compressible. There are 3 bottom aquifers,

2 water injection wells, and 6 production wells in the reservoir. The production

wells came online at different times during the production history. Fig. 3.1 shows

the structure of PFJ2. The reservoir simulation model is an Eclipse 100 three-phase

black oil model (Schlumberger, 2007) with grid dimensions of 159 × 149 × 5. The

total number of cells is 118,455, of which 95,379 are active. The horizontal grid has

a resolution of 164 ft × 164 ft. There are 5 layers with thickness varying between 0.1

ft and 23 ft. The field has been produced for about 6 years. In the simulation model,

the production wells were produced by the target oil production rate with minimum

bottom hole pressure as the secondary constraint. The injectors were also on rate

control with maximum bottom hole pressure as the secondary constraint.

3.2 Traditional manual history matching

Traditional manual history matching has previously been applied for this field case.

Manual history matching basically is manually editing the input files of simulator

according to petrophysical knowledge and experience of reservoir engineers. As ob-

served in Fig. 3.2, manual history matching of the bottom hole pressure of producer

P 5 (Fig. 3.2 (a)) was partially accomplished by decreasing the permeability within
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Figure 3.1: Structure map of PFJ2 field.

a zone surrounding the well, which results in a geologically unrealistic permeability

field (Fig. 3.2 (b)). In order to postpone the water breakthrough of producer P 4,

the pore volume of the neighborhood around well P 4 is increased by 10% (figure is

not included here). On the other hand, matching the water cut history of producer

P 1 (Fig. 3.2 (d)) can not be easily achieved by adjusting the pore volume nearby the

well. As shown in Fig. 3.2 (c), the water front is distant from well P 1. The scattered

green points in the aquifer (large blue region) in Fig. 3.2 (c) are inactive cells.

In addition, the fluctuating gas oil ratio (Fig. 3.2 (e) and (f)) data can not be

easily matched using manual history matching. Manual history matching is a time-

consuming trial-and-error process, and usually difficult to achieve well by well history

match. Therefore, the ensemble Kalman filter is applied to solve this real field history

matching problem.

3.3 History matching using the EnKF

Without knowledge of data used to create the model, it is hard to identify which

aspects of the model can be altered, so we have to make some reasonable assumptions
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Figure 3.2: Traditional manual history matching results. (In the line plots, red dots
are observations, black curve denotes the output from the simulation model without
history matching, blue curve denotes the output from the manually history matched
simulation model.)
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for applying the EnKF. We have assumed that there is no uncertainty in the structural

model (e.g. the locations of aquifers etc.), fluid contacts, and the relative permeability

curves. We also assumed that the values of porosity and permeability at the well

locations in the reservoir simulation model provided to us are sufficiently accurate

to be used as static well data. In this history matching problem, we evaluated the

performance of the EnKF on three cases.

3.3.1 Case 1: the EnKF with Gaussian simulation for generating initial
ensemble

The standard EnKF was first tested to solve this history matching problem. The ini-

tial ensemble of porosity and log permeability was generated using sequential Gaus-

sian simulation. The input parameters of sequential Gaussian simulation, such as

mean and variogram model are obtained by carrying out statistical analysis of the

given simulation model assuming ergodicity. The initial realizations of porosity are

generated using a nested isotropic variogram model (0.65 Sph (4.5) + 0.35 Exp (65)),

mean of 0.1, and standard deviation of 0.03. The realizations of log permeability are

co-simulated using the same variogram model, mean of 2.7 and standard deviation of

1.8. The correlation coefficient between porosity and log permeability is 0.6.

3.3.2 Case 2: the EnKF with multiscale simulation for generating initial
ensemble

In this case, the multiscale stochastic model was used for the generation of the ini-

tial ensemble. The trend model used in this field study is a quadratic polynomial

formulation of three terms shown in Eq. 3.1.

Θ = c1(m+mw) + c2ax(x−Ox)
2 + c3ay(y −Oy)

2 , (3.1)

where c1, as mentioned previously, is sampled from a normal distribution with mean

1, m is the transformed mean of reservoir properties, and mw is a weighting param-

eter for adjusting the mean when c2 and c3 are sampled from a normal distribution
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with a nonzero mean. ax and ay are shape adjusting parameters, and Ox and Oy are

the parameters controlling the center of trends. All the parameters shown in Eq. 3.1

are fixed for all initial realizations, except the trend coefficients (c1, c2, c3) that vary

with each realization in order to quantify the uncertainty in regional trends. One

realization of the heterogeneity and trend used for porosity (Fig. 3.3) and those for

log permeability (Fig. 3.4) shows the multiscale features achieved by using stochas-

tic heterogeneity and trend coefficients, and also demonstrates the necessity of the

transformation step.

(a) Heterogeneity (b) Trend

(c) Before transformation (d) After transformation

Figure 3.3: Illustration of heterogeneities, trends and the resulting porosity (be-
fore/after being transformed).
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We compare the standard deviation maps of initial ensemble from Gassian sim-

ulation (Case 1) and multiscale simulation (Case 2) in Fig. 3.5. It is evident that

the standard deviations with multiscale simulation are much higher. In the models

generated from multiscale simulation, the standard deviation increases significantly

as we move away from the drilled region.

(a) Heterogeneity (b) Trend

(c) Before transformation (d) After transformation

Figure 3.4: Illustration of heterogeneities, trends and the resulting log permeability
(before/after being transformed).

In order to examine the uncertainty covered by the initial ensemble, the initial

realizations were run forward in time from day 0 to day 3000, without assimilating

any production data. In fact, the production history ends at day 2032, but in order

to see the forecast of late water breakthrough, simulated history was elongated to
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3000 days. Fig. 3.6 shows the comparison of the predicted production based on the

initial ensemble generated through Gaussian simulation and those obtained from the

multiscale simulation. Water breakthrough of P 1 during the production history was

observed using multiscale simulation, whereas the water breakthrough time predicted

by the standard EnKF was far away from the actual observations. If the initial

ensemble adequately captures the uncertainty, we should expect that the actual data

fall within the range of outcomes from the ensemble. Through comparison, the spread

of the realizations generated with the multiscale model gives a better representation

of the initial uncertainty in the model forecasts.

3.3.3 Case 3: the EnKF with multiscale parameterization

Instead of limiting the use of multiscale stochastic model to generating the initial

rock properties, we include the multiscale parameters into the state vector, replacing

the porosity and log permeability as stated in Chapter 2, updating the multiscale

parameters by continually assimilating the production data.

For all the three cases, the ensemble size is 60. Besides porosity and log perme-

ability (for Case 1 and Case 2) or multiscale parameters (for case 3), the state vector

also includes three types of dynamic state variables per gridblock: pressure, water

saturation, and gas saturation. Thus, the dimension of a state vector is nearly 0.5

million. We implemented a parallel version of data assimilation with multi-processors.

A distance-based localization scheme was used in these cases to reduce the spurious

correlations and to increase the effective rank of the ensemble (Chen and Oliver, 2010;

Gaspari and Cohn, 1999). The data assimilation is carried out approximately every

three months and the total number of data assimilation times is 26. The assimilated

production data include bottom hole pressure (well constraint), water cut, gas oil

ratio, and flow rate target (well control).
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(a) STD of φ (GS) (b) STD of φ (MS)

(c) STD of ln k (GS) (d) STD of ln k (MS)

Figure 3.5: Standard deviation of porosity and log permeability of model layer 1.
φ stands for porosity and ln k stands for log permeability. GS denotes Gaussian
simulation, and MS denotes multiscale simulation.
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Multiscale simulation
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Figure 3.6: The production forecast based on the initial ensembles of porosity and
permeability (black lines), and the observations (red dots).
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3.4 Results and discussion

In Case 2, the initial realizations of log permeability and porosity were generated

from the multiscale simulation method, so the initial variability in production pre-

dictions is fairly large. Because the standard parameterization of property fields is

used in this case and the spatial variability in rock properties is very large, the di-

rect updates to the property fields (including porosity and log permeability) are not

suitably regularized, and the updated result is property fields with large over- and

undershoot in values. Because of the extreme values existing in the updated reservoir

property fields, the simulator was unstable, it was not possible to complete the entire

data assimilation, and process stopped after the 14th data assimilation time. Fig. 3.7

compares one updated realization of log permeability after 14 assimilations of data

using the EnKF with multiscale parameterization (Case 3) with the corresponding

results obtained using the standard parameterization but the same initial ensemble

(Case 2). The properties obtained from Case 2 are unrealistic compared to the mag-

nitudes shown in the initial ln k and updated ln k from Case 3. The results from Case

2 indicate that improved initial realizations alone may not lead to good assimilation

results, suitable parameterization (or in other words, what parameters are chosen to

put in the state vector for being updated) is equally important. The porosity and

log permeability that are simulated using multiscale stochastic model do not follow a

Gaussian distribution, although the non-Gaussianity is not so strong as to appear as

bi-modal. Results from updating of such non-Gaussian parameters using the EnKF

(Case 2) is not as good as results from updating the multiscale parameters using the

EnKF (Case 3), since the multiscale parameters (including heterogeneity and trend

coefficients) have Gaussian distributions. Because of the incomplete data assimila-

tion of Case 2, we only compare the results from Case 1 and Case 3 in the rest of the

section.

The predictions during history matching process from Cases 1 and 3 are shown
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(a) Initial ln k (b) Updated ln k (Case 2) (c) Updated ln k (Case 3)

Figure 3.7: Comparison of the updated log permeability of Realization 8 from Case
2 and Case 3 after 14 data assimilation times.

in Fig. 3.8, in which only production data that were not well matched using manual

history matching are included. The standard EnKF (Case 1) did not give a totally

satisfactory history match as shown in the first column of Fig. 3.8. Specifically,

none of the realizations were able to correctly predict water breakthrough of P 1 by

implementing the standard EnKF. Moreover, the ensemble predictions of bottom hole

pressure of P 5 are much higher than the observations before the shut in period. Also,

although not shown here, the ensemble predictions of field gas production total are

generally lower than the observations. Many factors can influence the performance of

the standard EnKF, but one of the primary reasons appears to be the relatively small

variability in the initial reservoir property fields, which limits the adjusting space of

EnKF. By generating the initial ensemble of porosity and permeability based on the

assumption of a stationary mean defined by the given simulation model, it seems

that the uncertainty existing in the model was underestimated. The EnKF with

multiscale parameterization was able to match water breakthrough in well P 1 and

was able to obtain a better match of bottom hole pressure in P 5. Both methods,

however, achieved better results than the manual history match. Fig. 3.9 shows

the final estimates of water saturation maps. Comparing the final water saturation

map from the EnKF with multiscale parameterization with those maps obtained from
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standard EnKF and manual history matching shown in Fig. 3.2(c), it is observed that

the EnKF with multiscale parameterization method has resulted in further advance

of water fronts from the injectors to producer P 1.

Fig. 3.10 and Fig. 3.11 compare the final estimates of porosity and log perme-

ability fields and the corresponding final standard deviation maps. In both cases,

the standard deviations of reservoir properties are substantially reduced around the

drilled area although the multiscale method maintained larger variability in the re-

gions far from the wells. In Fig. 3.12, we see that the larger variability is a result

of increased variability between ensemble members; the realizations from the multi-

scale method look plausible after updating when the trend parameters are included

in the updating. The EnKF with multiscale parameterization is more effective than

the other methods we investigated in terms of matching data and estimating model

variable distributions.

Fig. 3.13 shows the histograms of the initial and final realizations of trend coef-

ficients. We observe a large influence of production data on the estimates of trend

coefficients. The largest change is a substantial reduction in uncertainty in the trend

coefficients c2 and c3 describing the quadratic trends in the property fields by sequen-

tially assimilating the dynamic production data.
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Figure 3.8: The production data during the history matching process and prediction
using the EnKF with multiscale parameterization and the standard EnKF. (The black
lines denote the results from different ensemble members and the red dots denote
observations.)
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(a) Case 1 (b) Case 3

Figure 3.9: Final estimate (ensemble mean) of water saturation of model layer 1.
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Figure 3.10: Final estimates (ensemble mean) and associated standard deviations of
porosity of model layer 1.
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Figure 3.11: Final estimates (ensemble mean) and associated standard deviations of
log permeability of model layer 1.
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Figure 3.12: Several examples of initial and corresponding final realizations of log
permeability of model layer 1 for the EnKF with multiscale parameterization (Case
3).
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Figure 3.13: Histograms of trend coefficients before and after assimilation of pro-
duction data.
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3.5 Chapter summary

Because of the complexity of the relationships between data and model variables, it is

generally difficult to achieve well-by-well manual history matches that are geologically

plausible. The field example discussed in this chapter shows such a case. EnKF as

an assisted history matching method, circumvents these difficulties inherent to the

manual process. However when EnKF is applied for history matching, because of the

implicit assumption of Gaussianity, Gaussian simulation is often used for generating

the initial ensemble of rock properties, which, at the same time, causes a systematic

underestimation of the geostatistical uncertainty. We have shown that multiscale

stochastic structure provides a way to increase the variability of reservoir property

fields and avoids the overshooting problem by introducing an appropriate transfor-

mation to property fields. The results of the field case study show that the ability to

match the water cut and other production data was improved by adding uncertainty

in trends. Compared to the standard EnKF, the EnKF with multiscale parameteri-

zation provided better uncertainty quantification. The results also indicated that an

improvement in the generation of the initial ensemble and in the variables describing

the property fields gave an improved history match with plausible spatial distributions

of petrophysical properties.
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CHAPTER IV

BOOTSTRAP-BASED SCREENING OF

KALMAN GAIN

The EnKF technique often performs well for data assimilation when the ensemble

size is sufficiently large, but the computational cost grows with the ensemble size.

As a result, it is always desirable to use as small an ensemble as possible. When a

small ensemble size is used, however, the underlying probability distribution can not

be well sampled. The introduced sampling error lead to spurious correlations in the

estimates of covariances and Kalman gain. Spurious correlations are defined as the

correlations that are not present in reality between two variables. The harmful effect

of spurious correlations is the unrealistic changes to the model and state variables

(e.g. porosity, log permeability, pressure, etc.). After several assimilation times with

poor updates, it is possible that the variability in the ensemble collapses (Lorenc,

2003).

A commonly used method for eliminating spurious correlations is distance-dependent

localization, however, this method is lacking in generality for application and there

are several difficulties for practical application as discussed in Chapter 1. Anderson

(2007) proposed a hierarchical filter, which is a general framework for improving the

estimate of Kalman gain, however, the high computation cost presents challenge for

practical application. In this chapter, we introduce a bootstrap version of hierar-

chical filter that improves the robustness of the estimate of Kalman gain and also

substantially reduces the computation cost of the hierarchical filter in its original ver-

sion as the challenge of evaluating a large number of realizations is avoided by using
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bootstrap.

4.1 Bootstrap concepts

Bootstrap is a nonparametric computer-intensive resampling method for statistical

inference. Bootstrapping uses repeated samples from the parent data set to compute

the statistics of interest, such as, confidence intervals, bias, and variance of an es-

timator θ. For our problem, the parent data set is the forecast ensemble, which is

actually a sample from the underlying probability distribution.

The augmented state vector that includes model parameters, state variables and

the corresponding simulated data is defined as

ψfi =

yfi
dfi

 , i = 1, 2, . . . , Ne .

Each augmented state vector contains Ny + Nd entries (Ny is the dimension of yfi ,

and Nd is the dimension of dfi ). The augmented forecast ensemble containing Ne

augmented state vectors is denoted using Ψf . In the bootstrapping framework, we

randomly sample from Ψf with replacement to generate NB bootstrapped samples of

the augmented forecast ensemble, Ψf∗ that has the same ensemble size as the original

ensemble Ψf . In this work, our interest lies in estimating the variances of θ, where θ

is any quantity of interest. If the objective is to quantify the uncertainty in Kalman

gain, θ denotes Kalman gain (Ke). If the goal is to assess the uncertainty associated

with the covariance matrices, θ stands for Cf
yd or Cf

dd. The θ∗ calculated from the NB

augmented forecast ensemble forms an empirical distribution, which is an estimate

of the underlying unknown theoretical distribution of θ. For each element in θ, the

plug-in estimate of variance is calculated as

σ̂2
θi,j

=

∑NB
m=1(θ

∗
i,j,m − θ̄i,j)2

NB

, (4.1)
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and subsequently, the squared variation coefficient is defined as the ratio of the vari-

ance to the squared mean

Ĉ2
vi,j

=
σ̂2
θi,j

θ̄2i,j
, (4.2)

where the lower and upper limits of subscripts i and j depend on the definition of θ.

If θ denotes Cf
yd or Ke, i ∈ [1, Ny] and j ∈ [1, Nd]. If θ denotes Cf

dd, i ∈ [1, Nd] and

j ∈ [1, Nd]. In this chapter, we concentrate on eliminating the spurious correlations

in the estimate of Kalman gain, the denoising process on covariances will be discussed

in next chapter. Thus, θ denotes Ke in this chapter. About the value of NB, there

is no specific requirement. The larger the number of bootstrapped samples, the more

reliable the estimate of variation coefficient will be, but NB = 50 is often enough to

give a good estimate of standard error (Efron and Tibshirani, 1993).

Bootstrapping allows one to gather many alternative versions of the single statistic.

The empirical distribution of the bootstrap statistic and Ĉ2
vi,j

are measures of the

reliability of θ. Such information can be used to reduce the magnitude of the unreliable

entries in θ, which can be achieved through the element-wise multiplication of θ with

factor that is inferred from the empirical distribution of θ∗. Since the function of the

factors is to screen out unreliable entries, the factors are termed as screening factor

in this work. In the rest of the chapter, two more ways of defining screening factors

are derived followed by the bootstrap version of hierarchical filter.

4.2 Bootstrapped version of hierarchical filter

Anderson (2007) proposed a hierarchical filter for reducing the effect of spurious

correlations on the estimate of the Kalman gain, in which the confidence factors in

the regression coefficients (similarly to components of the Kalman gain) are estimated

from a group of independent ensembles of model realizations. In other applications

(Vallès and Nævdal, 2008), the confidence factor has been applied directly to the

component of the Kalman gain instead of the regression coefficient; so, for simplicity,
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that is how it is applied here. In this method, m groups of Ne-member ensembles

are generated and an estimate of the Kalman gain is computed for each ensemble. A

confidence factor, for the entry (i, j) in the Kalman gain, is then defined as the value

of αi,j that minimizes the expression

m∑
p=1

m∑
q=1,q 6=p

(αi,jK
p
ei,j
−Kq

ei,j
)2.

The optimal value for αi,j in the hierarchical filter is

αi,j =
m−R2

i,j

(m− 1)R2
i,j +m

,

where R2
i,j = σ̂2

ki,j
/K̄2

ei,j
is squared variation coefficient. The reason of using R2

i,j

instead of Ĉ2
vi,j

is that the way of calculating variance (σ̂2
Ki,j

) is not plug-in estimate

as shown in Eq. 4.1, because the mean K̄ei,j is unknown and an unbiased estimate of

variance should be used, in other words, the denominator is m− 1 not m. Anderson

(2007) suggests that αi,j be truncated so that it does not take negative values. The

purpose of the multiple ensembles is to provide estimates of mean and variance of

Ke. The confidence factors provide an assessment of the accuracy of the correlations

present in the Kalman gain matrix. Small value of αi,j suggests that the correlation

of the corresponding state variable with the data is unreliable and thus should be

eliminated or reduced in magnitude. Hence, in this work, we would like to refer to

confidence factors as screening factors.

The weakness of the hierarchical filter is the high computation cost of propagating

the multiple Ne-member ensembles. In the proposed bootstrap version of the hierar-

chical filter method, we treat the original ensemble as the population and randomly

resample with replacement to generate NB bootstrapped ensembles. The objective

behind the bootstrap resampling in the current study is to assess the accuracy of

Kalman gain, as in the hierarchical filter, but without the cost of generating addi-

tional ensembles.
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A bootstrapped sample of the Kalman gain matrix, K∗e , is computed from each of

the NB resampled ensembles. By minimizing the same form of objective function as

used in Anderson (2007), the screening factor for the entry (i, j) in the Kalman gain

matrix is computed as,

αi,j =
1− Ĉ2

vi,j
/(NB − 1)

1 + Ĉ2
vi,j

. (4.3)

The detail derivation is provided in Appendix A.1. We use the expected bootstrap

mean (E[K∗e ] = Ke) instead of the sample bootstrap mean ( 1
NB

∑NB
p=1K

∗p
e ) as the

estimate of the population mean of the Kalman gain matrix. The bootstrapped

samples of Kalman gain are, however, used to estimate the variance of the population

using Eq. 4.1. The estimate of αi,j will be positive for NB > Ĉ2
vi,j

+ 1. Although the

possibility of negative values for αi,j can be reduced through the use of a large NB,

we follow the suggestion of Anderson (2007) for the hierarchical filter and truncate

the negative values to zero.

Once we have the computed screening factors of all elements, the screened Kalman

gain is computed by multiplying the screening factors with the estimate of Kalman

gain obtained from the standard EnKF in an element-wise manner:

Ks
e = α ◦Ke ,

where ◦ denotes a Schur or Hadamard product. Following the screening of the original

Kalman gain matrix, the standard updating (or analysis) step is carried out.

4.3 Alternative screening algorithms using boot-

strap

One disadvantage of the previous method is that the optimal choice of αi,j is some-

times negative, in which case the value is truncated at αi,j = 0. In order to avoid

truncation, we put regularization on the estimate of screening factor. Thus, an alter-

native screening factor that is defined as the value of α that minimizes the following

objective function
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S(α) = Sk(α) + Sα(α) , (4.4)

where Sk(α) is a measure of the difference between the screened estimate of Kalman

gain and the true Kalman gain. Since we do not know the true Kalman gain, we use

the expected bootstrap mean to approximate the true Kalman gain, then Sk(α) is

expressed using Frobenius matrix norm as following

Sk(α) =
1

2NB

NB∑
p=1

‖ (α ◦K∗ep −Ke) ◦ λk ‖2F , (4.5)

where λk is a matrix composed of the reciprocal of standard deviation for each entry

(1/σ̂ki,j).

Sα(α) is a regularization term on the estimation of α that can be simple or with

some complexity. If the variables to be updated are spatially correlated and preserving

smoothness is desirable, Sα(α) could be defined to minimize the magnitude of the

derivative of α. In the following sections, we will introduce two types of Sα(α).

4.3.1 Using a simple regularization term

Sα(α) =
1

2
‖ α ◦ λα ‖2F , (4.6)

where λα is a matrix containing 1/σα for all entries. σα is a weighting factor for

regularizing the estimation of α.

After substituting Eqs. 4.5 and 4.6 into Eq. 4.4, the 2nd derivative of S(α) is

seen to be positive definite. Thus, the least square solution for screening factor is

obtained by differentiating Eq. 4.4 with respect to α and equating it to zero. (Detailed

derivation is included in Appendix A.2.) To avoid confusion, we use αr to denote the

regularized point-wise estimate of screening factor,

αri,j =
1

1 + (1 + 1/σ2
α)Ĉ2

vi,j

. (4.7)
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When a regularization term is used in the definition of the screening factor, the

solution depends on both the squared variation coefficient, Ĉ2
vi,j

, and on the value

chosen for σ2
α. Although many criteria could be used to select α, this particular

objective function S(α) has the property that if the variance of the estimate of the

Kalman gain is small, then the first term will be heavily weighted and the optimal α

will be approximately 1. If the variance of the estimate of the Kalman gain is large

compared to the numerator, then the second term is weighted more heavily and α

will be approximately 0.

The effectiveness of eliminating spurious correlations increases as the value of σ2
α

is decreased, but, at the same time, the possibility of removing true correlations also

increases. There is a tradeoff between the benefit of eliminating spurious correlations

and the harm done by removing true correlations that must be balanced when select-

ing the value for σ2
α. Cross-validation has been used in previous studies to select the

optimal values of shrinkage parameters for covariance estimation (Friedman, 1989). It

would be possible to use cross-validation in a similar way to select a value of σα that

minimizes the RMSE in the estimate of model variables, but in this study we selected

σα as an ad-hoc balance of reduction in spurious correlation against reduction of true

correlations. Clearly, it is advantageous for α to be approximately equal to 0 when

the correlation between data and model variables is small. The choice of σα will be

addressed in the 1-dimensional linear example.

4.3.2 Using a smoothing regularization term

In the previously derived two expressions (Eq. 4.3 and Eq. 4.7), the screening factors

are estimated individually without considering the smoothness of estimates. The es-

timated screening factors may fluctuate spatially. Instead of point-wise estimate, we

can include the neighboring screening factors into the estimation process by minimiz-

ing the magnitude of the derivative of α. Sk(α) remains unchanged while Sα(α) is
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expressed as

Sα(α) =
1

2
(αT (W TW +

1

σ2
α

I)α) , (4.8)

where I denotes identity matrix, W is an approximated second order derivative op-

erator matrix (Oliver et al., 2008). Substituting Eq. 4.8 into Eq. 4.4. Taking the 1st

order derivative of Eq. 4.4 and setting it equal to zero, we obtain

(W TW + Λ)αs = γ , (4.9)

where γ = [ 1

Ĉ2
v1

, 1

Ĉ2
v2

, · · · , 1

Ĉ2
vNm

]T , the subscript Nm is the model dimension (for 2D or

3D model, Nm is the number of grids in xy plane), and αs denotes the smooth estimate

of screening factor, Λ is a diagonal matrix with each element Λi,i = 1
σ2
α

+ 1 + 1

Ĉ2
vi

.

A number of methods can be used to solve the linear system of equations given

in Eq. 4.9. For a small model, Gaussian elimination could be a good choice, how-

ever, iterative methods can be a practical choice for a large model. The application

on a 2D nonlinear problem showed that Gauss-Seidel iterative algorithm has better

convergence than Jacobi algorithm for solving Eq. 4.9.

Fig. 4.1 illustrates the workflow of a general bootstrap-based screening algorithm.

By bootstrapping the original ensemble, multiple replicates of Kalman gain are ob-

tained and form an empirical distribution. Based on the empirical distribution, the

squared variation coefficients (Ĉ2
v ) are computed, which are finally used for calculat-

ing the screening factors. So far, we have introduced three different ways of defining

the screening factors: point-wise estimate without regularization (Eq. 4.3), regular-

ized point-wise estimate (Eq. 4.7), and estimate with smooth regularization (Eq. 4.9).

These three types of screening factors all use the information from Ĉ2
v , but apply dif-

ferent level of regularization on the estimation of α, in other words, different level

of prior information about α is introduced into the optimization process. Regardless

of the type of regularization, the resulting screening factors are multiplied with the

estimate of Kalman gain obtained from the standard EnKF in an element-by-element
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manner. Improved estimate of Kalman gain (Ks
e) is obtained through screening as

shown in the subfigure at the end of the flowchart.

!"#$%&'()"()&*'(!((+&',-(

."")/)&%$(,0/)&01*2"3("4(

Figure 4.1: An illustration of the workflow of bootstrap-based screening algorithm.

4.4 Linear example

Consider a correlated 1D Gaussian random vector Z = {Z1, . . . , Z100} whose prior

mean is 0 and whose covariance is only a function of the distance between entries, i.e.

cov(Zi, Zj) = C(|i − j|). The covariance function is in the exponential family with

an exponent of 1.5 and a practical range of 40:

C(h) = exp[−3.(|h|/40.)1.5].

A single measurement, dobs = 2, with additive Gaussian noise (standard error of

0.05) is made of Z1. The initial ensemble is generated as independent, unconditional

realizations from the same distribution as the prior for Z. For all the bootstrap

based screening algorithms, the number of bootstrap replicates, NB=100. Because

this problem is relatively small, the true Kalman gain for this problem can be easily

computed.
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When the true covariance is known, the optimal value of screening factors can be

computed using the method of Furrer and Bengtsson (2007, Eq. 20). Although the

assumption of known covariance is generally impractical, it allows a useful evaluation

of the effect of σα on the localization. Fig. 4.2 shows a comparison of the optimal

localization for an ensemble size of 400 compared to the estimates of screening factors

computed using Eq. 4.7 with σα ranging from 0.1 to 5. While small values of σα are

effective at eliminating spurious correlations, they eliminate too much of the Kalman

gain in the intermediate region. Based on the overall performance in regions of weak

and strong correlations, we chose to use σα = 0.6 for all screening with regularization

(Eq. 4.7 and Eq. 4.9).
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Figure 4.2: Expected values of the screening coefficient α for updating variables to
an observation of the first variable with ensemble size of 400. The solid blue curve is
the optimal localization of Furrer and Bengtsson (2007).

Fig. 4.3 shows the mean values of screening factors, computed from averages of

100 ensembles for four different ensemble sizes for the three methods that have been

proposed here. It is observed that as the ensemble size increases, the size of the

region of localization for this example also increases for all the three methods. (Not

all problems would have spatially correlated variables.) Note, however, that the

widths of the localization region are slightly wider for the point-wise estimate without

regularization (Eq. 4.3) than the regularized point-wise estimate (Eq. 4.7) and the

estimate with smooth regularization (Eq. 4.9). The other evident difference between
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the estimate of screening factor shown in Fig. 4.3 (a) and those regularized estimates

shown in Figs. 4.3 (b) and (c) is in the mean value of screening factor at large distances

from the measurement location. In none of the methods does the mean value of

screening factor approach zero. The value is approximately 0.15 for the regularized

point-wise estimate (αr) and the smooth estimate (αs), while for point-wise estimate

(α), the value is approximately 0.30. In this regard, the use of regularized estimates

of screening factor would be preferred. The only difference between the regularized

point-wise estimate (αr) and the smooth estimate (αs) is the level of smoothness.
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Figure 4.3: Mean values of the screening factors computed for different ensemble size
(Ne).

The benefit of using bootstrap method is that screening factor can be computed

from a single ensemble, without the need to generate and evaluate multiple ensembles.

When screening factor is computed from a single ensemble, however, the estimate may

not be very close to the mean values shown in Fig. 4.3. Based on the screening factors

calculated from each of the 100 ensembles, the variability of the estimates of screening

factor was computed for the three methods. Fig. 4.4 compares the variability of the

estimates of screening factor from the three methods. Note that the variability in

screening factor is always small near the measurement location, although that would

not be true for other types of data for which the true covariance is not distance-

dependent.

The objective of estimating screening factor is to reduce the effect of spurious

correlations on the Kalman gain. The correct Kalman gain is shown as a red curve
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Figure 4.4: Comparison of the variability shown in the three types of estimates of
the screening factors for the case of Ne = 400.

in each of the subplots of Fig. 4.5. Note that the Kalman gain estimates from the en-

semble are generally quite good in the vicinity of the measurement location, but that

spurious correlations are present even when the Kalman gain should be zero. When

the ensemble size is small (for the case of Ne = 30), significant spurious correlations

are observed in the standard estimate of Kalman gain (black curve). Through screen-

ing, the resulting estimates of the Kalman gain are improved as the use of screening

factors has removed most of the spurious correlations, but has slightly underesti-

mated part of the true Kalman gain. In terms of the performance of eliminating

spurious correlations, the EnKF with screened Kalman gain (EnKF-SKe) using αr

and EnKF-SKe (αs) are better than EnKF-SKe (α).

Fig. 4.6 compares the mean Kalman gains with their associated variability for the

standard EnKF and for the three EnKF-SKe methods, which are obtained based on

100 evaluations with different randomly generated initial ensemble. The standard

estimate of the Kalman gain has the largest variability, but is unbiased (Fig. 4.6 (a)).

The three screened estimates (Figs. 4.6 (b), (c) and (d)) all have smaller variability

compared to the unscreened Kalman gain, but the average estimates are biased. Since

here we use a very small ensemble size of 30, the standard estimate of Kalman gain

for that intermediate region (where showing strong bias) often has smaller or larger

magnitude than the correct Kalman gain, and may even has an opposite sign, which
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Figure 4.5: The estimates of Kalman gain obtained from different methods for the
cases with different ensemble sizes (Ne).

indicates that the standard estimate for the region of low-level true correlations is

unreliable and screening factor is most likely to be lower than 1.0. Multiplying the

screening factors with values lower than 1.0 leads to the bias shown in the statistical

mean of screened estimates from 100 ensembles. For the standard estimate that has

different sign from the correct Kalman gain, or that has the same sign but larger

magnitude than the correct Kalman gain, the screened estimate gets closer to the

correct Kalman gain through multiplying with the screening factors. In the case of

negative biased standard estimate (that has the same sign but smaller magnitude than

the correct Kalman gain), multiplying with screening factors results in an estimate

that is even further from the correct Kalman gain. In the uncorrelated region, the

standard errors vary from 0.2 (standard EnKF), to 0.15 (EnKF-SKe (α)), to 0.08

(EnKF-SKe (αr) and EnKF-SKe (αs)).

We further investigated the performance of the EnKF-SKe methods on a history
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(a) Standard EnKF (b) EnKF-SKe (α)

(c) EnKF-SKe (αr) (d) EnKF-SKe (αs)

Figure 4.6: Mean estimate of the Kalman gain with one standard deviation for the
case of Ne = 30. Dashed curve in all subfigures shows the correct Kalman gain.

matching problem of a 2-dimensional, 2-phase reservoir model. The results from the

proposed methods are also compared with the results obtained from the implemen-

tation of the standard EnKF on the same history matching problem.

4.5 Comparison study on the 2-dimensional, 2-phase

reservoir model

The EnKF-SKe methods are applied to a 2-dimensional water flooding reservoir his-

tory matching problem. In order to analyze the ability of the newly proposed method

for screening out the spurious correlations, the standard EnKF is also used on the

same history matching problem and the performances from the EnKF with/without

screening are compared. In case of a multiphase reservoir history matching problem,

the relationship between the production data and the model parameters (e.g. porosity

and permeability) is highly nonlinear during transient flow period.
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4.5.1 Model description and production profiles from the reference model

The synthetic “true” reservoir model has grid dimensions of 50 × 50 × 1 and an in-

dividual gridblock dimension is 30 ft × 30 ft × 20 ft. There are 4 producers and 1

injector in the field. Both the log permeability and the porosity fields are generated

using isotropic Gaussian variogram models with a practical range of 8.5 (≈ 15/
√

3)

grids. The resulting porosity and log permeability fields are multivariate Gaussian

with means of 0.25 and 5.2 and standard deviations of 0.03 and 0.8, respectively. The

coefficient of correlation between the log permeability and porosity is 0.5. Fig. 4.7

shows the contour plots of the reference log permeability and porosity fields. In these

figures, the black points indicate the locations of the five wells in the field. Table 4.1

summarizes the exact well locations, the primary constraints, and the secondary pro-

duction constraints on individual well.

10 20 30 40 50

10

20

30

40

50

0.30

0.28

0.27

0.25

0.23

0.22

0.20

0.18

0.17

0.15

Well 4Well 3

Well 1

Well 2 Well 5

10 20 30 40 50

10

20

30

40

50

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

Well 4Well 3

Well 1

Well 2 Well 5

(a) Porosity (b) Log permeability

Figure 4.7: The true porosity and log permeability fields.

The reference reservoir model is produced for a total of 520 days. Fig. 4.8 shows

the profiles of the production data from the reference model which include the oil and

water production rates for the four producers as well as the bottom hole pressure for

the injector.
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Table 4.1: Description of the wells (“-” denotes the same specifications are used for
the rest of the wells as those are used for well 2).

Well 1 2 3 4 5
x location 25 9 9 41 41
y location 25 5 45 45 5
Well type injector producer - - -

Constraints 4000 stb/day 1000 psia - - -
Limits 6000 psia 4500 stb/day - - -
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Figure 4.8: The production profiles of the true model.

4.5.2 Data assimilation setup

The total production period for this reservoir model is 520 days out of which the

period of the first 160 days is treated as the production history and the period from

day 161 to day 520 is treated as the prediction period. The water injection was started

from day 0 and was continued until the end of the production period (520 days). The

oil and water production rate data from each producer and the bottom hole pressure

data of the injector are used as the observations during data assimilation. These

observations are taken at day 2, day 10, and thereafter every 30 days until day 160.

Thus, there are a total of 7 data assimilation time steps and 9 production data at

each assimilation step. The measurement noise for the injector bottom hole pressure

is assumed to have a mean and a standard deviation of 0 psi and 3 psi, respectively.

The measurement noise for the oil production rate has a mean of 0 stb/day and

a standard deviation of 3 stb/day. For water production rate data, the standard
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deviation of measurement error is assumed to be 1% of the actual observation value.

In the current study, we wanted to verify the ability of the proposed EnKF-SKe

methods for removing the spurious correlations. Therefore, a small ensemble of size

30 was used for introducing significant sampling errors. We included porosity, log

permeability, pressure, and water saturation data for each gridblock into the state

vector. Thus, each state vector contained 10,000 state variables.

4.5.3 Results and discussions

4.5.3.1 History matching production data

The ensemble of 30 realizations was continually updated by assimilating 9 production

data at each data assimilation time step. We had 7 data assimilation time steps and

thus, a total of 63 observations were assimilated during the entire history matching

process. Once the data assimilation was complete over all the data assimilation time

steps, the final updated ensemble of porosity and log permeability was evaluated from

the beginning (day 0) up to the end of production period (day 520) using a commercial

reservoir simulator. Fig. 4.9 through Fig. 4.11 show the results of the production

data obtained by rerunning the final updated ensembles that are obtained from the

standard EnKF and the three EnKF-SKe methods with NB = 50. For reference,

we also run a case of standard EnKF with Ne = 1000. Since the effect of spurious

correlations should be small in an ensemble of this size, it provides a good basis for

comparison.

In Fig. 4.9 through Fig. 4.11, the red dots denote the observations which were

assimilated for estimating the model variables and the green dots denote the observa-

tions from the reference model during the prediction period. The observations from

the prediction period were used for comparing the forecast results from the final en-

sembles resulted from different methods. The boxplot at each data assimilation time

step summarizes the ensemble outputs. It is evident that the proposed EnKF-SKe

methods provided better history matching results compared to the standard EnKF
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with Ne = 30, especially for the water production rate data. Compare to the results

of EnKF with Ne = 1000, EnKF-SKe methods result in a little biased predictions for

some production data.
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´́

´́

´́

´
´

´́
´́ ´́ ´́ ´́ ´́

´́ ´́ ´́ ´́ ´́ ´́ ´́

2 160 520
2000

2500

3000

3500

4000

4500

5000

Time HdayL

B
o

tt
o

m
h

o
le

p
re

s
s
u

re
Hp

s
ia
L

Well 1

´
´́́́́́

´

´́́́́́́
´́́́

´́́ ´́́́́́́

´́́́́́́́́́́́́
´

´́́́́́

´́́́́́́́
´
´́́

´́́́́́́́́́́́́́́
´́́́́́́́

´́́́́́́́́́́́́́́́́́́́́
´ ´́́́

´́́ ´́́́́́́́́

´́́́́́́
´

´́́́́́́́́́

´́́́́́́́́́
´

´́́́́́́́́́́

´́́́́
´́
´

´́́́́́́́

´́́́́
´́

´́́́́́́́

´́́
´́
´

´́́́́́́́

´́́́
´́

´́́́́́

´́́́
´́

´́́́́́́́

´́́́́
´́

´́́́́́́́

´́́́́
´́

´́́́́́́́

´́́́́
´́

´́́́́́́

´́́́́
´́

´́́́́́́́

´́́́́
´́

2 160 520
2000

2500

3000

3500

4000

4500

5000

Time HdayL

B
o

tt
o

m
h

o
le

p
re

s
s
u

re
Hp

s
ia
L

Well 1

EnKF-SKe (α) EnKF-SKe (αr) EnKF-SKe (αs)

´

´

´́

´́

´

´́

2 160 520
2000

2500

3000

3500

4000

4500

5000

Time HdayL

B
o

tt
o

m
h

o
le

p
re

s
s
u

re
Hp

s
ia
L

Well 1

´́

´́

´́

´́

´́

´́

2 160 520
2000

2500

3000

3500

4000

4500

5000

Time HdayL

B
o

tt
o

m
h

o
le

p
re

s
s
u

re
Hp

s
ia
L

Well 1

´́

´́

2 160 520
2000

2500

3000

3500

4000

4500

5000

Time HdayL

B
o

tt
o

m
h

o
le

p
re

s
s
u

re
Hp

s
ia
L

Well 1

Figure 4.9: Comparison of production profiles: bottom hole pressure of the injector.
(The observations are denoted by red dots (used for assimilation) and green dots (for
reference in prediction period).)

4.5.3.2 Investigation of the Kalman gain

The only difference between the standard EnKF and the EnKF-SKe methods is the

manner in which the Kalman gain is computed. In EnKF-SKe methods, the Kalman

gain is screened using the screening factors whereas in the standard EnKF, there is

no postprocessing of the Kalman gain. In order to explore the features of Kalman

gain matrices obtained from these methods, we carried out additional investigations

on the Kalman gain.
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Figure 4.10: Comparison of production profiles: oil production rate. (The observa-
tions are denoted by red dots (used for assimilation) and green dots (for reference in
prediction period).)
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Figure 4.11: Comparison of production profiles: water production rate. (The obser-
vations are denoted by red dots (used for assimilation) and green dots (for reference
in prediction period).)
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Each element of the Kalman gain matrix is proportional to the correlation between

state variables and predicted data, but is inversely proportional to the uncertainty of

forecasted data and observation noises. Each column from the Kalman gain matrix

corresponds to one datum or a measurement and each element in a column corre-

sponds to a state variable. Every element from the Kalman gain matrix can be

thought of as a weight that gets multiplied with the data mismatch, finally resulting

into the increments (updates) to the corresponding state variable. For the present

history matching problem, the 4th column from the Kalman gain matrix corresponds

to the oil production rate (OPR) measurement at well 5. Fig. 4.13 and Fig. 4.14

show contour maps of the Kalman gain matrix which correspond to the OPR data of

well 5 and different state variables at two different data assimilation time steps (1st

and 7th). The significant difference observed in Fig. 4.13 between the Kalman gains

obtained from the EnKF and EnKF-SKe methods is that the Kalman gain obtained

from the EnKF-SKe methods showed greater numbers of regions with a value of zero

as compared to the standard EnKF. The estimates of Kalman gain obtained from

EnKF-SKe (αr) and EnKF-SKe (αs) show a smaller amount of spurious correlations

than that from EnKF-SKe (α). Fig. 4.12 shows the screening factors multiplied with

the Kalman Gain that is corresponding to the OPR data of well 5 and log permeabil-

ity. The values shown in the point-wise estimate (α) are much higher than the values

shown in the other two estimates.

It is evident that the EnKF-SKe methods are successful in removing most of the

unrealistic correlations. However, the methods are clearly not able to eliminate them

completely, as can be seen by comparing to the maps from EnKF with Ne = 1000.

Fig. 4.14 shows the estimates of Kalman gain at the 7th data assimilation timestep.

We can see the cumulative effects of removing spurious correlations at the 6 previous

data assimilation timesteps. The effect is most evident in the column of pressure. The

low-value region in the correlation map of EnKF (Ne = 1000) becomes a high-value
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Figure 4.12: The three types of estimates of screening factor multiplied with the
Kalman Gain corresponding to the OPR data of well 5 and log permeability.

region of EnKF (Ne = 30), while we do not observe such large difference in the three

maps of EnKF-SKe.

The results for the other columns from the Kalman gain matrix which correspond

to other different types of data were also analyzed. The results showed the same

characteristics as discussed in the case of Fig. 4.13 and Fig. 4.14 and therefore, they

are not included here.

4.5.3.3 Model parameter estimates

Fig. 4.15 shows the estimates of log permeability fields obtained from the standard

EnKF and the EnKF-SKe methods. Compared to the true log permeability field,

the final estimate of the log permeability field provided by the standard EnKF with

Ne = 30 does not look plausible as it contains a number of regions having extremely

high values and regions with extremely low values, and these values are beyond the

bounds of true log permeability field. Therefore, it is clear that the problem of

overshooting occurred in the case of the standard EnKF with Ne = 30. The final

estimates of the log permeability field from the EnKF-SKe methods are better than

the standard EnKF with Ne = 30 as the final estimated log permeability values lie in

the true range with only few locations having values beyond the limit values.
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The grid-based standard deviations of the final updated model parameters (poros-

ity and log permeability) among the ensemble members were calculated for all meth-

ods and shown in Fig. 4.16. The standard deviation values for the model parame-

ters obtained from the EnKF-SKe methods were nearly 10 times greater than those

obtained from the standard EnKF with Ne = 30. It was also observed that, the

EnKF-SKe methods did not consume a great amount of variability as compared to

the values of the initial standard deviation, which means that the EnKF-SKe method

can substantially increase the effective rank of the ensemble. The scale shown in the

STD maps of EnKF-SKe methods are comparable to those shown in the map from

EnKF with Ne = 1000, but EnKF with Ne = 1000 shows a very clear pattern which

cannot be found from the cases using a small ensemble size of 30, since the covariance

does not only contain spurious correlations but also underestimated true correlations.

The root mean squared error (RMSE) of the final updated model parameters from

the EnKF with/without screening were also computed and compared in Fig. 4.17. The

RMSE values shown in the plot of EnKF with Ne = 1000 are generally lower than 2.0,

while in the plots of EnKF-SKe methods the RMSE values are less than 2.0 for most

of the regions except few regions with values around 4.0. The EnKF-SKe methods,

however, resulted in a much better estimate of the model parameters than EnKF with

Ne = 30, as the RMSE values from the EnKF-SKe methods were lower than those

obtained from the standard EnKF with Ne = 30. We observed similar results for the

final estimates of porosity field.

Fig. 4.18 shows the same three realizations of the final updated log permeability

fields obtained from all the methods. Updated realizations from the large ensemble

appear to be similar in character to the initial realizations and have maintained

variability. The realizations obtained from the standard EnKF with Ne = 30 are

all nearly identical because of the total loss of variability in the ensemble. The

realizations obtained from the EnKF-SKe methods share some large-scale features,
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but have maintained variablility. A close examination of these realizations shows

a loss of smoothness, especially for EnKF-SKe (αr). It is difficult to quantify the

differences in the structure without analyzing the variograms (or covariances) for the

resulting realizations.

Fig. 4.19 compares experimental variograms for the realizations from the large final

ensemble (Ne = 1000) to realizations from the two smaller final ensembles (Ne = 30).

Two differences are apparent. First, the sill is extremely high (4.6) for the realization

from the standard EnKF with Ne = 30, compared to the sill (0.85) for the standard

EnKF with Ne = 1000, or to the sill (1.35) from the EnKF-SKe (αr) method with

Ne = 30. Second, while the range of the variogram is less with EnKF-SKe (6.4)

compared to either of the standard EnKF methods without screening (7.7 for Ne = 30

and 8.5 for Ne = 1000), the difference that is most apparent in the realizations

appears to be a result of the change in character of the variogram near the origin.

Instead of a Gaussian variogram that was used to generate the initial ensemble, the

realization from EnKF-SKe has a variogram that is intermediate between Gaussian

and exponential.
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Figure 4.13: At the 1st data assimilation time step, the Kalman Gain matrix corre-
sponding to the OPR data of well 5 and different state variables: φ (porosity), ln k
(log permeability), P (pressure).
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Figure 4.14: At the 7th data assimilation time step, the Kalman Gain matrix cor-
responding to the OPR data of well 5 and different state variables: ln k (log perme-
ability), P (pressure), Sw (water saturation)
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Figure 4.15: Final mean log permeability field.
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Figure 4.16: Final standard deviation of log permeability field.
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Figure 4.17: The root mean squared error (RMSE) of the estimate of log permeability
field.
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Figure 4.18: Three final updated realizations of log permeability from EnKF and
EnKF-SKe.
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Figure 4.19: Experimental variograms from final updated realizations of log perme-
ability.
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4.6 Chapter summary

In this paper, we proposed an efficient bootstrap version of Anderson’s (2007) hier-

archical filter and two alternative versions of ensemble Kalman filter with screened

Kalman gain (EnKF-SKe) with additional parameters to control the amount of reg-

ularization. The three versions of EnKF-SKe were tested on a linear example and a

highly nonlinear water flooding reservoir history matching problem. The applications

show that the proposed bootstrap methods provided an efficient way of detecting and

partially eliminating spurious correlations, and consequently improving the robustness

of the Kalman gain. Comparing the three versions of EnKF-SKe, the performance of

regularized estimates of screening factor was superior to that of screening factor with-

out regularization in terms of removing spurious correlations. The only additional

computational cost incurred by the EnKF-SKe methods is a result of computations

of the Kalman gains of the NB bootstrapped ensembles, but such cost is negligible

compared to the cost of running reservoir simulation models. Moreover, even a small

number of replicates were generally sufficient for achieving improved history matching

results.

Updated realizations from the bootstrapped estimates of the Kalman gain are

rougher than realizations from the ensemble of forecasts. One reason for the additional

roughness is that all localization methods will cause some reduction in the spatial

correlation length (Kepert, 2006). The hierarchical filter of Anderson (2007) and the

bootstrapped version described in this paper introduce additional small-amplitude,

small-scale roughness through the element-wise multiplication of the Kalman gain by a

realization of the screening factors. Localization methods in which the taper function

is a smoothly decaying function of distance from the observation location would not

inject additional small scale roughness, but lack the generality of bootstrap-based

screening method that makes no assumption on spatial continuity.
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CHAPTER V

EVALUATION AND ERROR ANALYSIS:

KALMAN GAIN REGULARIZATION VERSUS

COVARIANCE REGULARIZATION

In petroleum engineering, the ensemble Kalman filter is frequently used for estimating

large numbers (105−106) of reservoir model parameters and dynamic state variables.

The ensemble size is always small compared to the number of variables to be esti-

mated even under the presence of correlations between variables. A small ensemble

size introduces statistical sampling error. Under such a situation, we must face the

issues of rank deficiency and spurious correlations present in the covariances and the

corresponding Kalman gain. A popular method for dealing with these issues is the

distance-dependent covariance localization. The concept of localization was originally

applied to the covariance matrix. Improved results, however, were also obtained by

applying localization on the Kalman gain. In spite of the widespread applications of

these two ways of using localization, little in the literature addresses the difference

between these two ways of applying localization. This chapter presents a comparison

study between the covariance localization and the Kalman gain localization.

The distance-dependent localization is an effective method, but there are some

challenges associated with this method (discussed in Chapter 1 and Chapter 4). Thus,

in the previous chapter, we present the bootstrap-based screening methods, in which

bootstrap resampling method is used to assess the confidence level of each element

from the Kalman gain matrix and to filter out the unrealistic correlations from the
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Kalman gain. The bootstrap-based screening method was demonstrated to be effec-

tive at eliminating unrealistic correlations and easy to implement. In this chapter,

we applied the bootstrap-based screening methods on the covariance. A comparison

study was also conducted between covariance screening and Kalman gain screening.

Therefore, two regularization methods including the distance-dependent localization

and the bootstrap-based screening are considered in this work.

The investigations are carried out through two examples: a 1-dimensional linear

problem for which the exact solution can be computed and a 2-dimensional highly

nonlinear multi-phase reservoir flow problem. In detail, the subjects covered in the

investigations include: error evolution in the covariance regularization and Kalman

gain regularization, consistency conditions required for the covariance regularization

and the applicability of different regularization methods.

5.1 The distance-dependent localization

Distance-dependent localization is the most common method for eliminating spurious

correlations. Generally, localization is applied on the covariances by taking the Schur

product of covariances with the localization coefficients,

KLC
e = Cf

yd ◦ βyd(C
f
dd ◦ βdd + CD)−1 (5.1)

where superscript LC stands for localizing covariance, and ◦ denotes a Schur or

Hadamard product. Cf
yd and Cf

dd are the two covariances as introduced in Section 2.3.

On the other hand, they are also two correlated components of the Kalman gain. To

illustrate the relationship, the two covariances are rewritten in terms of linearized

sensitivity G

Cf
yd = E

[
(y − ȳ)(g(y)− ḡ(y))T

]
≈ E

[
(y − ȳ)(y − ȳ)TGT

]
≈ Cf

yyG
T (5.2)
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Cf
dd = E

[
(g(y)− ḡ(y))(g(y)− ḡ(y))T

]
≈ E

[
G(y − ȳ)(y − ȳ)TGT

]
≈ GCf

yyG
T . (5.3)

Thus, the relationship between the two covariance matrices is Cf
dd = GCf

yd or Cf
dd =

(Cf
yd)

T (Cf
yy)
−1Cf

yd. This relationship poses consistency requirement for applying co-

variance localization or other screening algorithms performed on covariances. If we

assume that the same consistency condition applies to the localized covariance, then

Cf
dd ◦ βdd = G(Cf

yd ◦ βyd) (5.4)

or

Cf
dd ◦ βdd = (Cf

yd ◦ βyd)
T (Cf

yy ◦ βyy)−1(C
f
yd ◦ βyd) . (5.5)

For cases, in which, G can be solved efficiently and the cost of computing the full

covariance matrix Cf
yy can also be afforded, there is no need to worry about con-

sistency issue, because the localized Cf
yd and localized Cf

dd can be obtained using

Eq. 5.2 and Eq. 5.3 with the localized full covariance Cf
yy ◦ βyy. For most practi-

cal applications, however, the problem is nonlinear and high-dimentional, G cannot

be computed efficiently and we cannot afford to calculate the full covariance either.

Thus, our starting point is the covariances Cf
yd and Cf

dd, and the problem is to reduce

spurious correlations in these two matrices through construction of taper matrices

βyd and βdd that satisfy the consistency conditions (Eq. 5.4 or Eq. 5.5). βyd always

can be defined according to the prior model, but it is not trivial to build βdd that is

consistent with βyd when the observations are nonlocal. So far, no general methods

for defining consistent βyd and βdd are available.

Instead of applying localization to the covariance matrices, an alternative is to

apply the localization directly on the Kalman gain by performing a Schur product

with βyd (Bergemann and Reich, 2009; Chen and Oliver, 2010; Zhang and Oliver,
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2009),

KLK
e = βyd ◦Ke , (5.6)

where superscript LK stands for localizing Kalman gain. Kalman gain localization

avoids the inconsistency issue, but presents other difficulties as discussed in Chapter 1.

5.2 The bootstrap-based screening

In Chapter 4, we introduce the bootstrap resampling method to compute the vari-

ance of an estimator θ that stands for any quantity of interest such as Kalman gain

(Ke) or covariance matrices (Cf
yd and Cf

dd). By using bootstrap method, we avoid

evaluating a large number of simulations. The information obtained from bootstrap

distribution such as variance or squared variation coefficients are used for calculating

screening factor (α). The screening factor α provides an assessment on the accuracy

of θ. A small value of α suggests unreliable correlations which should be reduced in

magnitude. When θ denotes the Kalman gain, the screening factor αke is calculated

based on NB replicates of Kalman gain and the screening factor is multiplied to the

original estimate of Kalman gain in an element-wise manner:

KSK
e = αke ◦Ke , (5.7)

where superscript SK stands for screening Kalman gain. Following the screening of

the original Kalman gain matrix, the standard updating (or analysis) step is carried

out using KSK
e . For later comparison, here we term the EnKF using screened Kalman

gain with the short name of EnKF-SKe that is the same as that is used in Chapter 4.

Although three ways of defining screening factor are proposed in Chapter 4, only

the regularized point-wise estimation is used for obtaining αke because of its good

performance and generality for application.

Above is a review of Kalman gain screening, the covariance screening is similar.
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When θ denotes covariances, the screening factors αdd and αyd are calculated respec-

tively for Cf
dd and Cf

yd using regularized point-wise estimation. Similarly, the screen-

ing factors are multiplied to the standard estimates of covariances in an element-wise

manner:

KSC
e = αyd ◦ Cf

yd(αdd ◦ C
f
dd + CD)−1 , (5.8)

where the superscript SC denotes screening covariance. The consistency between αdd

and αyd is an issue to be discussed in later examples. This method is denoted as

EnKF-SCov.

5.3 1D linear problem

In this section, we investigate several approaches to the reduction of spurious corre-

lations in data assimilation on a 1D correlated random field X = {x1, x2, . . . , x100}

with prior mean 0 and exponential covariance as shown in Eq. 5.9. The covariance

function has an exponent of 1.5 and the range r varies in two testing scenarios,

C(h) = exp[−3.(|h|/r)1.5] (5.9)

where h is the distance between two points.

In this example, the observations are directly the measurements of state variables,

thus the sensitivity G is a matrix that contains 1 at a data location and 0 everywhere

else. The true Kalman gain for this problem is computed using the known sensitivity

matrix and prior covariance (Eq. 5.9). To compare the different ensemble-based esti-

mates of Kalman gain with and without screening or localization, an initial ensemble

of independent, unconditional realizations are drawn from the same distribution as

the prior for X.

The distance-dependent localization coefficients matrix βyy used in the algorithms

of covariance localization and Kalman gain localization is defined using the following
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equation (Furrer and Bengtsson, 2007)

β(h) =
1

1 + (1 + 1
C(h)2

)/Ne

. (5.10)

A consistent pair of βyd and βdd is always easy to build for the linear local measurement

problem. Because of the simplicity of the sensitivity, βyd and βdd are simply the block

matrices extracted from βyy by βyd = βyyG
T and βdd = Gβyd . For bootstrap-

based screening covariance methods, the consistency issue is addressed in the single

observation test.

In all the following testing scenarios, the number of bootstrapped ensembles, NB =

100, and all the screening factors (αdd, αyd, and αke) are calculated based on the

same set of bootstrap ensembles. The estimates of the Kalman gain using different

localizing or screening algorithms: KLC
e , KLK

e , KSK
e , and KSC

e are compared with

the true Kalman gain in the following two tests.

5.3.1 Single observation

The range, r = 40 and the ensemble size, Ne = 30 are used in this example. A single

measurement with additive Gaussian noise (mean 0 and standard error of 0.05) is

made at the first gridblock. Hence, the measurement error covariance CD is a scalar

and has a value of 0.0025.

For this linear local measurement problem, the screening covariance satisfies the

consistency condition (αdd = Gαyd) as long as the same value of σ2
α is used for

calculating both αyd and αdd. Fig. 5.1 shows estimates of Kalman gain from different

combinations of σ2
αyd

and σ2
αdd

. For the cases of σ2
αyd
6= σ2

αdd
, the estimate of Kalman

gain is not correct at the data location because the consistency condition is violated.

Fig. 5.1 (b) shows that when the same value of σ2
α is used for both covariance matrices,

the estimates are good at the data location.

Fig. 5.2 compares the standard estimate of the Kalman gain to the estimates of
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Figure 5.1: Influence and relations of σ2
αyd

and σ2
αdd

.

Kalman gain with screening or distance-based localization applied. Screening and lo-

calization both reduce the magnitude of spurious correlations present in the standard

estimate of Kalman gain. In this test, since βdd = 1.0, the estimate of Kalman gain

from covariance localization (KLC
e ) is exactly the same as the estimate from Kalman

gain localization (KLK
e ). The distance-based localization methods completely remove

the unreal non-zero values beyond grid 55 due to the zero values of coefficients βyd for

grids that are located outside the correlation length. Although the bootstrap-based

screening algorithms did not completely eliminate the spurious correlations, the mag-

nitudes of the spurious correlations were reduced. Screening Kalman gain performs

slightly better than screening covariance in this example.

In order to reduce the influence of randomness on results, this 1D single observa-

tion testing case was evaluated 100 times, each time with different randomly gener-

ated initial ensemble. The root mean squared error (RMSE) for different estimates

of Kalman gain are calculated using

RMSEi =

√∑100
n=1(Kei,n −Ki)2

100
, (5.11)

where n is the index of the trial, and i is the index of the element in the Kalman

gain. Ke denotes the ensemble-based estimate of Kalman gain from different methods,
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Figure 5.2: The estimates of Kalman gain.

and Ki is the true Kalman gain. Fig. 5.3 shows that the distance-based localization

methods have the lowest RMSE. Standard EnKF without localization or screening

resulted in the highest RMSE values in the region that is distant from data location.

Screening the Kalman gain results in smaller RMSE than screening the covariance.

Both screening methods, however, have high RMSE values around x20. The true

Kalman gain or Cyd is fairly large at x20, and the variability is also large. The screening

methods sometimes reduce the magnitude in that region more than necessary, so the

results from the screening methods are slightly worse on average than the standard

estimate in that region.
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Figure 5.3: Root mean squared error (RMSE) of Kalman gain estimates.
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Fig. 5.4 shows the mean estimate of Kalman gain along with one standard de-

viation from screening Kalman gain (KSK
e ), screening covariance (KSC

e ), localizing

covariance (KLC
e ), and localizing Kalman gain (KLK

e ). Localization and screening

result in some bias shown in the expected Kalman gain curve compared to the cor-

rect Kalman gain. Due to the effect of distance-based localization, the estimate of

Kalman gain obtained from localization methods only shows uncertainty within the

correlation length, beyond which the estimated values exactly go to zero. Screening

the covariance shows slightly larger standard deviation than screening the Kalman

gain.
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Figure 5.4: Mean estimate of Kalman gain with one standard deviation.

To understand why screening the covariance results in greater variability than

screening the Kalman gain, we look at the propagations of uncertainty (or error) in

these two algorithms. For any function, f(x, y), the linearized approximation to the

variance (or error) of f that is propagated from the variances in the scalar variables

x and y can be computed as

σ2
f = (

∂f

∂x
)2σ2

x + (
∂f

∂y
)2σ2

y + 2
∂f

∂x

∂f

∂y
σxσyρxy , (5.12)

where ρxy is the correlation coefficient between x and y, σx and σy are standard devi-

ations (or standard errors) associated with variables x and y respectively. Using this
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equation, we can estimate the variances within KSK
e and KSC

e due to the variability

in the screening coefficients.

For any element i in the example with a single observation,

KSK
e,i =

Cyd,i
Cdd + CD

αke,i

KSC
e,i =

Cyd,iαyd,i
Cddαdd + CD

.

The terms CD, Cyd,i, Cdd are common in the above two equations, thus we ignore

their contributions. KSK
e,i is a function of αke,i, and KSC

e,i is a function of both αyd,i

and αdd. Following Eq. 5.12, the relative variance σ̃2
f = σ2

f/f
2 for KSK

e,i is

σ̃2
sk,i =

σ2
αke,i

α2
ke,i

. (5.13)

Similarly, the relative variance for KSC
e,i is

σ̃2
sc,i =

σ2
αyd,i

α2
yd,i

+
σ2
αdd

(αdd + CD
Cdd

)2
− 2ρ

(
σαyd,i
αyd,i

)(
σαdd

αdd + CD
Cdd

)
. (5.14)

As mentioned previously, the variance of Ke is not included here, since it is common

for both KSK
e and KSC

e . Then, the relative variance of KSK
e is only determined by

variance of αke as shown in Eq. 5.13, while the relative variance of KSC
e is determined

by the sum of three error terms (Eq. 5.14). σ2
αdd

is definitely larger than zero, σ2
αyd

and σ2
αke

are comparable in scale as shown in Fig. 5.5.

In the neighborhood of data location (i = 1), σ2
αyd

is significantly larger than

σ2
αke

. The reason for σ̃2
sc,i ≈ 0 at data location as shown in Fig. 5.4 (a) is that

αyd,i = αdd, σαdd = σαyd,i , and the correlation coefficient ρ = 1 since αyd,i and αdd

are perfectly correlated. Moreover, CD
Cdd

is typically a very small value, which means

the absolute value of the negative term approximately equals to the positive terms.

The reason for σ̃2
sk,i ≈ 0 at data location is that the Kalman gain value at data

location is always approximately 1 as Ke,i = Cdd
Cdd+CD

at the data location, which does

not change with ensemble. As i increases, however, the standard deviation of KSC
e,i
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Figure 5.5: Mean estimates with one standard deviation for αke and αyd based on
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is constantly larger than KSK
e,i . This is because the correlation between data and

model parameter becomes smaller as we move away from the data location, which

leads to the decrease of the correlation coefficient between αyd,i and αdd. As ρ → 0,

σ̃2
sc,i →

σ2
αyd,i

α2
yd,i

+
σ2
αdd

(αdd+
CD
Cdd

)2
, and the positive term

σ2
αdd

(αdd+
CD
Cdd

)2
is the main contribution

for the constant difference between σ̃2
sc,i and σ̃2

sk,i in the region beyond correlation

length.

For multiple data, σ̃2
sk,i still only depends on σ2

αke,i
, but σ̃2

sc,i is a function of

Nd(Nd + 3)/2 variables (Nd is the number of data). Estimation of the Kalman gain

from screening the covariance is more error sensitive than screening the Kalman gain

directly. This conclusion is also true for covariance localization and Kalman gain

localization. Although for this 1D single measurement test, covariance localization is

exactly the same as Kalman gain localization, it is not generally the case for multiple

data. In addition, while the distance-based localization methods performed better

than the screening algorithms for this test, it should be noted that the localization

coefficients were calculated based on the true prior covariance, in a problem which was

ideal for application of distance-based localization. For more general real problems,

these ideal conditions for localization do not apply, and distance-based localization

can be difficult.
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5.3.2 Multiple observations

The screening and localization algorithms all performed well in the test involving a

single measurement. In the present scenario, we consider multiple spatially correlated

observations for the same 1-dimensional model. The main objective is to investigate

the impact of influence between different data on the estimates of Kalman gain from

EnKF with screening or localization. Five measurements at x1, x25, x50, x75 and x100

are used for data assimilation. The measurement error covariance CD is a diagonal

matrix with the same diagonal values of 0.0025. The ensemble size is 30. The range

of prior covariance is 100, so, the 5 measurements are spatially correlated with each

other. The true data covariance Cf
dd is



1. 0.702769 0.357364 0.148122 0.0520728

0.702769 1. 0.687289 0.346227 0.142479

0.357364 0.687289 1. 0.687289 0.346227

0.148122 0.346227 0.687289 1. 0.687289

0.0520728 0.142479 0.346227 0.687289 1.


.

The true Kalman gain matrix consists of five columns that correspond to the five

measurements, respectively. These five columns are plotted together and are shown

in Fig. 5.6. The results from this test can be understood by analyzing the result of

any one column from the Kalman gain matrix. Therefore, only the results of column

1 will be presented here.

Fig. 5.7 shows the first column of ensemble-based estimates of Kalman gain from

different methods. Screening Kalman gain (KSK
e ) and localizing Kalman gain (KLK

e )

only reduce the magnitude of spurious correlations, and do not change the sign of

correlations, screening covariance and localizing covariance, however, can change the

structure of Kalman gain, for example, the negative values are changed to be positive

values between grid 80 to grid 100. It is highly possible that screening/localizing
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Figure 5.6: True Kalman gain consisting of 5 columns corresponding to data at: x1,
x25, x50, x75 and x100.

covariance can introduce spurious correlations of larger magnitude. The advantage

of screening Kalman gain over localizing Kalman gain is also indicated in Fig. 5.7.

Around grid 40, there are evidently spurious correlations present in the standard

estimate of Kalman gain (Ke) of opposite sign to the true correlations shown in

correct Kalman gain. The screening Kalman gain (KSK
e ) decreased the magnitudes,

but the localizing Kalman gain (KLK
e ) had no effect. As the correlation length is 100

for this test, the values of distance-based localization coefficients around grid 40 are

high, between 0.85 and 0.95, therefore, localization can not eliminate the spurious

correlations shown in the high correlation region.

In order to obtain reliable statistical conclusions, the test was repeated 100 times

with different initial ensembles. Fig. 5.8 shows the mean estimates of Kalman gain

with one standard deviation. The estimate from screening the Kalman gain has sig-

nificantly smaller standard deviation than the estimate from screening the covariance.

Similarly, the result from localizing the Kalman gain has smaller standard deviation

than that from localizing the covariance, especially between grid 80 and grid 100.

Fig. 5.9 shows the root mean squared error (RMSE) of estimates of Kalman gain

from the different methods. Only in the region (between grid 1 and grid 20) where
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Figure 5.7: The estimates of Kalman gain.

data and model parameters are most highly correlated, screening/localizing covari-

ance results in smaller RMSE values than screening/localizing Kalman gain. In the

rest of the region, screening/localizing covariance results in higher RMSE than screen-

ing/localizing Kalman gain, which is consistent with the conclusion from the error

analysis that the canceling effect of negative crossing terms vanishes as the correla-

tion coefficients get close to zero. The RMSE values are nearly zero at data locations,

because the measurements are directly of the model variables. The rows of Cdd are

identical to the rows of Cyd corresponding to the 5 data locations, thus the values of

the Kalman gain at the 5 data locations obtained from Cdd(Cdd + CD)−1, which is

approximately an identity matrix when the magnitudes of the entries in CD are very

small. Thus, regardless of the values in covariances Cdd or Cyd, the values of the 1st

column of Kalman gain matrix at 5 data locations are approximately 1, 0, 0, 0, 0

respectively. If we neglect the sharp decrease in RMSE values at data locations, the

RMSE values from the screening Kalman gain become smaller as the distance from

x1 increases. On the other hand, screening covariance shows an opposite trend.
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Figure 5.8: Mean estimate of Kalman gain with one standard deviation.
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In order to see to what extent the screening/localizing algorithms are influenced by

the ensemble size (Ne) or the number of bootstrap samples (NB), a simple sensitivity

study was performed. The criterion for quantifying the influence is the mean RMSE

computed using Eq. 5.15. Fig. 5.10 (a) shows the logarithm of RMSE versus ensemble

size Ne. The tested ensemble size is gradually increased from 5 to 200 by a step size of

5. When Ne = 5, screening Kalman gain has smallest RMSE value. When Ne ≥ 100,

RMSE is small for all methods. The RMSE of the estimate of the Kalman gain

is smaller from screening the Kalman gain than that obtained from screening the

covariance for all different ensemble sizes. Localizing the Kalman gain also results in

slightly smaller RMSE than localizing the covariance. Fig. 5.10 (b) shows how the

screening methods are influenced by the number of bootstrap samples for NB from 5

to 200. Screening Kalman gain is not very sensitive to NB, while screening covariance

seems to be influenced by NB, only when NB is very small. The RMSE values from

screening covariance are consistently higher than those from screening Kalman gain.

RMSE =

√∑Ny
i=1(Ke,i −Ki)2

Ny

(5.15)
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Figure 5.10: Sensitivity study.

In the 1D linear problem with single/multiple observations, we were able to use
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the true prior covariance and true range in the localization function. In sequential

data assimilation, this may not be the case, since the prior covariance changes with

time due to the assimilated data at each timestep (Chen and Oliver, 2009). Thus, in

the next section, a comparison study is carried on a sequential data assimilation on

a nonlinear 2D reservoir flow model.

5.4 2D highly nonlinear problem

5.4.1 Reference model

Reference data for evaluation of the methods are generated from a reference reservoir

model that is 100 × 100 with individual gridblock dimensions of 30 ft × 30 ft × 20

ft. The wells are drilled in a repeat five-spot water flooding pattern. There are 15

producers and 15 injectors in the field. Porosity is 0.20 for all gridblocks. The only

uncertain model parameter in this problem is log permeability at each grid block. The

reference log permeability field is generated using an isotropic exponential variogram

model with a practical range of 10 gridblocks, mean of 3.5, and standard deviation of

1.0. Fig. 5.11 shows the reference log permeability field with black circles denoting the

locations of production wells and triangles denoting the locations of water injection

wells.

The producers are controlled by fixed bottom hole pressure with maximum oil

production rate as the secondary constraint. The injectors are controlled by fixed

water injection rate with maximum bottom hole pressure as the secondary constraint.

The reference reservoir model is produced for a total of 520 days. Fig. 5.12 shows

the production data profiles from the reference model which include the oil and water

production rates for the producers as well as the bottom hole pressure of the injectors.

5.4.2 Test setup

The total production period for the reservoir model is 520 days. The time between

day 0 and day 250 is treated as the production history and the period from day
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Figure 5.11: The reference log permeability field.
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Figure 5.12: The production profiles from the reference model (different curves
denote different wells).
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251 to day 520 is considered as the prediction period. Water injection in the field

started from day 0 and continued until the end of the production period (520 days).

The oil and water production rate data from each producer and the bottom hole

pressure data from each injector are used as observations during data assimilation.

The observations are taken at day 10, and every 60 days thereafter until day 250.

Thus, there are a total of 5 data assimilation time steps and 45 production data at

each assimilation step. The measurement noise for the injector bottom hole pressure

and oil production rate are assumed to have a mean of 0 and the standard deviation of

measurement error is assumed to be 1% of the actual observation value. The standard

deviation of measurement error for water production rate data is assumed to be 2%

of the actual observation value.

In order to verify the ability of different screening and localizing algorithms for

eliminating spurious correlations, a small ensemble containing 30 members was used,

which is likely to result in significant sampling errors. There are a total of 225 data

to be assimilated during 5 data assimilation steps using this small ensemble. Log

permeability, pressure, and water saturation are included into the state vector. Thus,

the state vector for each ensemble member contains a total of 30,000 model parameters

and state variables.

For this high-dimensional data assimilation problem, the measurements are non-

local. A consistent covariance localization involves computing the full covariance

matrix. To avoid the intensive cost of computing the full covariance matrix, Chen

and Oliver (2009) proposed an approximate form for constructing βdd by replacing

βyy with an identity matrix,

βdd = βTydβyd . (5.16)

The authors also showed that acceptable results were obtained by using the proposed

approximation. Therefore, in this test, Eq. 5.16 is used for computing βdd, and βyd

is built using Eq. 5.10 with a range of 25 gridblocks that is determined based on the
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correlation length of the prior log permeability field together with the sensitivity and

well pattern information. The same localization function is used for all three types of

data. Both log permeability and dynamic state variables (including water saturation

and pressure) are updated with localization.

For the two bootstrap-based screening algorithms, NB = 50, σ2
α = 0.36, and the

same random seed is used during bootstrapping. Two more cases were also evaluated

for comparison, including the standard EnKF with a small ensemble size of 30 and

that with a fairly large ensemble size of 2000. For this complex flow model, we do

not know the exact Kalman gain so the estimate of Kalman gain from EnKF with

Ne = 2000 is used for comparison with the estimates from the other methods.

5.4.3 Match production data

The variability represented by the initial ensemble is able to cover most of the obser-

vations from the reference model. As an example, Fig. 5.13 (a) shows the predictions

of oil production rate of producer P 9 from the initial ensemble prior to assimilating

any observations. After assimilating 45 data at the first data assimilation step, the

updated ensemble from the standard EnKF loses nearly all the ensemble variability as

shown in Fig. 5.13 (b) and 5.13(c), which illustrate the necessity of applying screening

or localization algorithms.

Once the entire data assimilation process is complete, the final updated ensemble

of log permeability was evaluated from the beginning (day 0) up to the end of the

production period (day 520) using a commercial reservoir simulator (Schlumberger,

2007). Fig. 5.14 shows the predictions of different production data for three wells

obtained by rerunning the final updated log permeability fields from day 0 to day

520. The standard EnKF without covariance/Kalman gain regularization is not able

to match the production profiles because of the ensemble collapse that was observed
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Figure 5.13: The loss of ensemble variability for standard EnKF with an ensemble
size of 30 (red dots denote observations used for data assimilation, green dots denote
observations only for comparison, black curves denote ensemble outputs in subfigures
(a) and (b)).

at early data assimilation timesteps. The EnKF with screening covariance (EnKF-

SCov) shows larger ensemble variability, but does not match data well. The remaining

three methods (EnKF-SKe, EnKF-LKe, and EnKF-LCov) have comparatively good

matches to the reference production data from the reference model. In order to make

a quantitative evaluation of the data matches from different methods, two evaluation

criteria are defined including the average root mean squared error êd

êd =
1

NtNw

Nt∑
t=1

Nw∑
w=1

√√√√ 1

Ne

Ne∑
i=1

(dobst,w − dt,w,i)2 , (5.17)

and the average prediction spread σ̂d

σ̂d =
1

NtNw

Nt∑
t=1

Nw∑
w=1

√√√√ 1

Ne

Ne∑
i=1

(dt,w,i − 〈dt,w〉)2 , (5.18)

where Ne is the number of ensemble members, Nt is the number of data records, Nw is

the number of wells for the same type of data, dobst,w denotes observation, dt,w,i denotes

predicted data, and 〈dt,w〉 denotes the mean of ensemble prediction. Table 5.1 shows

the êd versus σ̂d for three types of data. The standard EnKF results in the largest êd

and smallest σ̂d, which is the worst case followed by EnKF with screening covariance

(EnKF-SCov). The other three methods result in similar êd for all data types, while
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EnKF-SKe has relatively smaller σ̂d than EnKF-LKe and EnKF-LCov.

Table 5.1: The average error versus average spread (êd/σ̂d) of the predictions of three
types of data: OPR (Oil Production Rate), WPR (Water Production Rate) and BHP
(Bottom Hole Pressure).

OPR (stb/day) WPR (stb/day) BHP (psi)
EnKF (Ne=30) 170/0.6 149/0.7 565/2.2

EnKF-SCov 190/33 144/24 220/32
EnKF-SKe 59/19 42/16 144/51
EnKF-LKe 68/46 43/29 89/75
EnKF-LCov 97/39 42/27 92/67

5.4.4 Estimates of model parameter (log permeability)

Fig. 5.15 shows the final estimates (ensemble mean) of log permeability obtained from

different methods. The estimate of log permeability from the standard EnKF (Ne =

30) shows extremely high and low values. For EnKF-SCov, the estimates also suffer

from the overshooting issue and are highly discontinuous. The other three methods

result in better estimates of log permeability as the magnitudes of estimates are

similar to those of the reference model. There are, however, some artificial phenomena

appearing in the estimate from EnKF-LCov as the log permeability values around the

production well P 2 (x = 59, y = 14) appear significantly different in magnitudes from

the region outside the neighborhood of well P 2. The inconsistency issue might be

responsible for this behavior. Table 5.2 shows the quantitative evaluation of the

estimates of log permeability obtained from different methods. Spatial mean is the

average value of log permeability over all gridblocks. The true spatial mean has a

value of 3.5, so two methods including EnKF-SKe and EnKF (Ne = 2000) provide

accurate estimates of the spatial mean. The ensemble STD is the average of grid-

based ensemble standard deviation of log permeability. Compared to the ensemble

STD obtained from EnKF (Ne = 2000), the ensemble STD from EnKF-LKe is high,

while the values from EnKF (Ne = 30) and EnKF-SCov are low. RMSE is the average
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Figure 5.14: Ensemble predictions based on final estimated log permeability fields for
wells P 1, P 13, Inj 10: observations used for data assimilation (red dots), observations
only for comparison (green dots), ensemble outputs (black lines).
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grid-based root mean squared error of estimates of log permeability. The RMSE

values from EnKF-SKe and EnKF-LCov are similar to the RMSE values obtained

from EnKF (Ne = 2000).
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Figure 5.15: Final estimates of log permeability. (Mean over the ensemble after all
data assimilation.)

Table 5.2: Statistical quantities of the final estimates of log permeability.
Ensemble Mean Ensemble STD RMSE

EnKF (Ne=30) 3.53 0.005 2.98
EnKF-SCov 3.21 0.04 4.41
EnKF-SKe 3.50 0.15 1.25
EnKF-LKe 3.65 0.95 1.5
EnKF-LCov 3.53 0.72 1.24

EnKF (Ne=2000) 3.50 0.87 1.23

5.4.5 The estimates of Kalman gain

The Kalman gain contains the weighted correlations between data and variables in the

state vector. For this 2D problem, there are 135 (45 data × 3 types of model variables)
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different weighted correlation maps at each data assimilation step. Comparing each

of them is time consuming. The effect of spurious correlations should be small in

an ensemble of size 2000, which provides a good basis for comparison. Thus, the

estimate of the Kalman gain from the EnKF with Ne = 2000 is treated as the true

Kalman gain, and the RMSE of estimates from other methods are computed. The

Kalman gain matrix is composed of 9 block matrices whose dimensions are 10,000 ×

15 as shown in Eq. 5.19,

Ke =



lnK1/OPR 1 · · · /OPR 15 /WPR 1 · · · /WPR 15 /BHP 1 · · · /BHP 15

...
...

...
...

...
...

...
...

...

lnK10000/OPR 1 · · · · · · · · · · · · · · · · · · · · · · · ·

P1/OPR 1 · · · · · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

P10000/OPR 1 · · · · · · · · · · · · · · · · · · · · · · · ·

Sw1/OPR 1 · · · · · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

Sw10000
/OPR 1 · · · · · · · · · · · · · · · · · · · · · · · ·



,

(5.19)

where lnK is log permeability, P is pressure, Sw is water saturation, OPR is the oil

production rate of a producer, WPR is the water production rate of a producer, and

BHP is the bottom hole pressure of an injector. An average RMSE of each block

matrix with respect to the Kalman gain obtained from the standard EnKF with

Ne = 2000 is calculated at two representative times to evaluate the quality of the

Kalman gain estimate for a particular type of data and model variable.

For the early time, before water arriving at producers from injectors (mainly the

first 2 data assimilation times), the estimates of Cf
dd are diagonally dominant, because

the predicted data are not highly correlated with other predicted data. Table 5.3

shows the average RMSE of the Kalman gain estimates at data assimilation time 1.
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Because the observed values of WPR are nearly zero, the average RMSE values are

not calculated for the blocks related to either WPR or Sw. The standard EnKF has

the highest average RMSE values for the estimates of the Kalman gain. The other

methods provide comparatively good estimates of the Kalman gain.

Table 5.3: Average RMSE of the Kalman gain estimates at data assimilation time
1.

Variable/Data EnKF (Ne=30) EnKF-SCov EnKF-SKe EnKF-LKe EnKF-LCov
lnK/OPR 0.0020 0.0008 0.0008 0.0008 0.0007
lnK/BHP 0.0004 0.0001 0.0001 0.0001 0.00006
P/OPR 0.65 0.57 0.50 0.53 0.57
P/BHP 0.1 0.05 0.03 0.03 0.02

By data assimilation time 4, most of the producers from the reference model

show significant water production and the correlations between different data become

stronger. Table 5.4 shows the average RMSE of the Kalman gain estimates at data

assimilation time 4. In this table, the results from the standard EnKF (Ne=30)

are not included, because the updated ensemble from the EnKF lost almost all the

ensemble variability at the 1st data assimilation time and the estimates of the Kalman

gain at later assimilation times do not contain any information. Comparing these

four methods in Table 5.4, EnKF-SCov shows much larger RMSE values than those

obtained from the other three methods, and EnKF-SKe generally results in the lowest

RMSE values, especially for lnK/WPR, P/WPR, and Sw/WPR.

5.4.6 Simultaneous estimation of spatially correlated and uncorrelated
model parameters

In the previous reservoir data assimilation example, we estimated log permeability,

which is a spatially correlated model parameter for which distance-dependent lo-

calization might be expected to work well. There are, however, sometimes model

parameters to be estimated for which the concept of distance is not meaningful. In
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Table 5.4: Average RMSE of the Kalman gain estimates at data assimilation time
4.

EnKF-SCov EnKF-SKe EnKF-LKe EnKF-LCov
lnK/OPR 0.04 0.001 0.002 0.001
lnK/WPR 5.4 0.01 0.2 1.1
lnK/BHP 0.002 0.0002 0.0002 0.0002
P/OPR 12.14 0.67 0.72 0.69
P/WPR 1629.1 3.3 36.7 1726.9
P/BHP 0.58 0.08 0.07 0.09
Sw/OPR 0.0038 0.0002 0.0002 0.0002
Sw/WPR 0.5 0.001 0.01 0.09
Sw/BHP 0.0002 0.00002 0.00002 0.00002

this section, faults with unknown transmissibilities are incorporated into the reser-

voir model that was used in the previous example. The objective of this test is to

see how the presence of spatially uncorrelated parameters in the state vector affects

the localization and screening algorithms involved in the EnKF process. The EnKF-

SCov method is not evaluated here because of its poor performance in the previous

example.

All test settings are the same as those used in the previous example, except that

10 faults are incorporated in the reservoir model as shown in Fig. 5.16, and that the

fault transmissibility multipliers for these 10 faults are to be estimated along with the

log permeability at 10,000 gridblocks. The fault geometry is kept simple (rectangular)

and all the gridblocks contained in one fault body are assumed to have the same fault

transmissibility multiplier. The initial ensemble of the transmissibility multipliers of

10 faults is generated from a uniform distribution between 0.0 and 0.1.

At each data assimilation time, truncation was used to maintain the updated fault

transmissiblity multiplier values within the range of 0.0 and 1.0. The final updated

fault transmissibility multipliers obtained at the end of the data assimilation process

are shown in Fig. 5.17. The ensemble estimates of fault transmissibility multipliers

from the standard EnKF (Ne = 30) have collapsed to values that are quite far from
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Figure 5.16: Reference log permeability field with 10 faults.

the reference values. The values of some estimates are substantially larger than 0.1.

The estimates of fault transmissibility multipliers from EnKF-LKe are similar to those

obtained from the standard EnKF (Ne = 30), because Kalman gain localization can

not be applied on fault transmissibility multipliers. The EnKF with covariance local-

ization (EnKF-LCov) shows the worst estimates of fault transmissibility multipliers.

The localization applied on Cf
dd seems to have a negative influence on the updating of

fault transmissibility multipliers. The EnKF-SKe method provides the best estimates

of fault transmissibility multipliers, although the estimates of multipliers for faults 6

and 10 are poor.

The estimates of log permeability from EnKF-LKe and EnKF-LCov appear to

have some extreme values (Fig. 5.18) and EnKF-LCov shows very strong artifacts

of the localization. The localization coefficients for EnKF-LCov are based on the

distance-dependence assumption which may be further weakened in the presence of

flow barriers in the reservoir model. Table 5.5 shows that EnKF-LCov and EnKF-

LKe result in larger RMSE values compared to the EnKF-SKe method. The ensemble

STD from EnKF-SKe shows the same value as obtained from the previous example,
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while the ensemble STD values from EnKF-LCov and EnKF-LKe vary slightly from

their values obtained in the previous example.

EnKF (Ne=30) EnKF-SKe

´́́

´́

´́

1 2 3 4 5 6 7 8 9 10
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Index of faults

T
ra

n
s
m

is
s
ib

ili
ty

m
u

lt
ip

lie
rs

´́

´́

´́

´́́

1 2 3 4 5 6 7 8 9 10
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Index of faults

T
ra

n
s
m

is
s
ib

ili
ty

m
u

lt
ip

lie
rs

EnKF-LKe EnKF-LCov

1 2 3 4 5 6 7 8 9 10
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Index of faults

T
ra

n
s
m

is
s
ib

ili
ty

m
u

lt
ip

lie
rs ´́

1 2 3 4 5 6 7 8 9 10
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Index of faults

T
ra

n
s
m

is
s
ib

ili
ty

m
u

lt
ip

lie
rs

Figure 5.17: Final updated transmissibility multipliers (In the whisker box plot, red
dots denote the true transmissibility multipliers).

Table 5.5: Statistical quantities of the final estimates of log permeability for the
example with fault transmissibility multipliers.

EnKF (Ne=30) EnKF-SKe EnKF-LKe EnKF-LCov
Ensemble STD 0.006 0.15 0.97 0.70

RMSE 2.29 1.21 1.56 1.40

With the final updated log permeability fields and fault transmissibility multipli-

ers, we rerun the simulations from time 0 to the end of the production period (day

520). Table 5.6 shows the error and spread of the data predictions from different

methods. The EnKF-SKe results in the lowest êd for OPR and WPR data, but shows

slightly higher values for BHP data.
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Figure 5.18: Final estimates of log permeability for the example with fault trans-
missibility multipliers.

Table 5.6: The average error versus average spread (êd/σ̂d) of the predictions of three
types of data for the example with fault transmissibility multipliers.

OPR (stb/day) WPR (stb/day) BHP (psi)
EnKF (Ne=30) 125/0.6 88/0.6 215/0.8

EnKF-SKe 64/19 41/15 213/46
EnKF-LKe 74/47 213/36 117/75
EnKF-LCov 77/35 106/26 82/51
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Compared to the standard EnKF of the same ensemble size, the EnKF with screen-

ing or localization introduces extra computational cost for calculating the Kalman

gain of bootstrapped ensembles and for computing the Schur product of the Kalman

gain and screening/localizing factors. The extra computational cost of resampling,

however, does not necessarily slow down the data assimilation process. On the con-

trary, Table 5.7 shows that EnKF with screening Kalman gain (EnKF-SKe) required

only about 65% of the total CPU time needed for the standard EnKF without screen-

ing or localization. The reduction in computational time in the case of EnKF-SKe

can be attributed to improved updates to model parameters leading to faster conver-

gence of the Newton or linear iterations for solving the system equations inside the

reservoir simulator.

Table 5.7: Total CPU time required for data assimilation and final rerun using 3
processors for the example with fault transmissibility multipliers.

EnKF (Ne=30) EnKF-SKe EnKF-LKe EnKF-LCov
CPU time (minutes) 24 16 15 12

5.5 Chapter summary

In this work, we evaluated and compared several methods of regularizing the Kalman

gain and regularizing the covariance matrices used for computation of the Kalman

gain. The performance of the methods was based on improvement in the estimates

of the Kalman gain, quality of data prediction, and the estimates of model variables.

Distance-dependent localization and bootstrap-based screening were both evaluated.

The error analysis carried out in the 1D linear example showed that covariance reg-

ularization is more error prone than the Kalman gain regularization. This point is

clearly illustrated by the dramatically different performances of Kalman gain screen-

ing and covariance screening. The performances of the distance-based covariance lo-

calization and Kalman gain localization, however, are not significantly different when
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the state vector contains only spatially correlated variables. This is probably because

knowledge of the correlation length, sensitivity, and well pattern used for constructing

the localization coefficients substantially reduces the error in the coefficients.

We also showed that when regularization is applied to the covariance matrices,

a consistency condition must be satisfied. For the problem of assimilating multi-

ple, non-local observations, it is difficult to satisfy the consistency condition for the

distance-dependent covariance localization. In the 2D nonlinear example, an approx-

imately consistent form of covariance localization was applied with acceptable results

in terms of matching data and maintaining ensemble effective rank. Some extreme

values were observed in the final estimates of log permeability fields, however, es-

pecially for the case of estimating fault transmissibility multipliers. Certainly, these

extreme values are not only caused by inconsistency, but also the assumption that

the true correlations can be localized spatially. One key limitation of distance-based

localization is that, when the distance from a gridblock to the data location is beyond

the specified range, the correlation value at that gridblock is assumed to be zero, in

which case, the Kalman gain value at that gridblock is determined only by the data

whose correlation at that gridblock is non-zero. This can result in magnification of the

influence from a particular data, which leads to over-correction on model variables.

The distance-dependence assumption appears to be delicate and should probably be

used with caution in the presence of complex geology.

The results from both 1D and 2D examples clearly show that screening Kalman

gain (EnKF-SKe) worked well on a variety of problems with few assumptions. In the

algorithm of screening Kalman gain, we directly calculate the replicate of Kalman gain

from each bootstrap ensemble, and quantify the confidence level of the Kalman gain

directly from the NB bootstrap replicates of the Kalman gain. No assumption about

the prior covariance is required in this case. The method can be used for estimating

both spatially correlated and uncorrelated variables. Despite the apparent cost of
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resampling the Kalman gain multiple times, the total computational cost for EnKF-

SKe was less than that for standard EnKF because of reduced time for reservoir

simulation.
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CHAPTER VI

CONCLUSIONS

Sequential reservoir updating and performance prediction with valid uncertainty quan-

tification continues to be a main direction of assisted history matching method, es-

pecially as the closed-loop reservoir management gets popular. In this direction,

the ensemble Kalman filter (EnKF) is one of the most promising methods. This

dissertation is focused on several challenging problems encountered in the practical

application of the EnKF, which are related to the reduced-order representation of

the covariance matrix, non-Gaussian prior distributions of model variables, and the

implementation on large-scale oil field models. Although the work is for improving

the performance of EnKF in reservoir engineering applications, the proposed methods

and findings are also useful for other areas. In this chapter, the presented work is

summarized.

In Chapter 2, a multiscale parameterization method for estimating non-Gaussian

model parameters and better uncertainty quantification in reservoir characterization

has been presented. With the multiscale parameterization, we showed that it is

possible to update the multiscale features of reservoir properties using the ensemble

Kalman filter by continual assimilation of production data. To avoid non-physical

values of updated model variables, a transformation step is added in the framework of

EnKF with multiscale parameterization. The applicability of the proposed method is

verified by the successful history matching of the deepwater reservoir PFJ2. Without

quantifying the uncertainty in regional trend, the water cut history of a main producer

in PFJ2 was not be able to be matched, which evidently shows the importance of

multiscale parameterization in real field applications.
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The second major topic presented in the dissertation is the bootstrap-based screen-

ing algorithms that do not require pre-specifying localization range or evaluating large

numbers of simulations. The investigation of the methods on covariance regulariza-

tion and Kalman gain regularization resulted in three primary conclusions. First, if

the localization of the two covariance matrices required for Kalman gain estimation

are not consistent, the estimate of the Kalman gain will generally be poor at the

observation location. The consistency condition can be difficult to apply for nonlocal

observations. Second, the estimate of the Kalman gain that results from covariance

regularization is generally subject to greater errors than the estimate of the Kalman

gain that results from Kalman gain regularization. Third, in terms of removing spu-

rious correlations in the estimation of spatially correlated variables, the performance

of screening Kalman gain is comparable with the performance of localization methods

(applied on either covariance or Kalman gain), but screening Kalman gain outper-

forms the distance-based localization methods in terms of generality for application,

as the screening method can be used for estimating both spatially correlated and

uncorrelated variables, and moreover, no assumption about the prior covariance is

required during the process. The self-adaptive bootstrap-based screening methods

seem promising as a default method for regularization in EnKF software, since it

does not require any expertise on the part of the user. This is exactly the significance

of this piece of work.

The performance of EnKF is being improved as new techniques are proposed,

but several challenges still remain. First, the statistical error introduced by the lim-

ited ensemble size results in noise in the estimate of covariance and consequentially

the estimate of Kalman gain. The distance-based localization methods and the pro-

posed bootstrap-based screening methods can reduce the noise to a certain level, but

definitely cannot eliminate the noise completely. Moreover, the absolute values of

low-level true correlations, in the statistical sense, are likely to be underestimated
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(or estimated with negative bias) using the screening methods, because the standard

estimate of such low-level correlations based on a small ensemble is mostly off from

the true correlation values. A statistical method that can detect the sign of the bias

(positive or negative) in the absolute values of standard estimate might be useful, in

which case, screening factor is only multiplied with the estimate having positive bias.

In that situation, we might be able to improve the estimate of true weak correlations.

Second, as data are assimilated, the loss of ensemble variability is usually greater than

required by the data. In such scenario, the contributions of data assimilated earlier

are larger than the recent data. Although methods have been proposed to partially

solve this problem, including covariance inflation and using different Kalman gain to

update different individual realization, more systematic investigations are required.
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APPENDIX A

DERIVATION OF SCREENING FACTOR

A.1 Point-wise estimate without regularization (α)

The screening factor in the bootstrap version of hierarchical filter is defined to min-

imize the squared difference of estimated Kalman gain matrices obtained from the

NB bootstrapped ensembles. The following derivation (similar as that is shown in

Anderson (2007)) is for each entry in the Kalman gain, but the entry index (i, j) is

neglected for convenience.

The screening factor α is defined to minimize,

1

2

NB∑
q=1

NB∑
p=1,p 6=q

(αK∗ep −K
∗
eq)

2 , (A-1)

where p and q are the indices of bootstrapped samples. The least square solution of

Eq. A-1 is obtained by taking the 1st order derivative with respect to α and setting

it equal to zero,

α

NB∑
q=1

NB∑
p=1,p 6=q

K∗
2

ep −
NB∑
q=1

NB∑
p=1,p 6=q

K∗epK
∗
eq = 0 .

Solve the equation for α,

α =

∑NB
q=1

∑NB
p=1,p 6=qK

∗
epK

∗
eq∑NB

q=1

∑NB
p=1,p 6=qK

∗2
ep

=
(
∑NB

p=1K
∗
ep)

2 −
∑NB

p=1K
∗2
ep

(NB − 1)
∑NB

p=1K
∗2
ep

(A-2)

=
1

NB − 1
(
(
∑NB

p=1K
∗
ep)

2∑NB
p=1K

∗2
ep

− 1) .
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Using K̄e to denote the mean of the NB Kalman gain samples, we can represent

(
∑NB

p=1K
∗
ep)

2 as

(

NB∑
p=1

K∗ep)
2 =(NBK̄e)

2

=N2
BK̄

2
e . (A-3)

The variance of the NB Kalman gain samples is calculated as

σ̂2
k =

1

NB

NB∑
p=1

(K∗ep − K̄e)
2 ,

which can be rearranged as

NBσ̂
2
k =

NB∑
p=1

(K∗
2

ep − 2K̄eK
∗
ep + K̄2

e )

=

NB∑
p=1

K2
ep − 2K̄e(

NB∑
p=1

Kep) +

NB∑
p=1

K̄2
e (A-4)

=

NB∑
p=1

K∗
2

ep − 2NBK̄
2
e +NBK̄

2
e

=

NB∑
p=1

K∗
2

ep −NBK̄
2
e .

Rearranging Eq. A-4,
∑NB

p=1K
∗2
ep can be expressed as,

NB∑
p=1

K∗
2

ep = NB(σ̂2
k + K̄2

e ) . (A-5)

Substituting Eq. A-3 and Eq. A-5 into Eq. A-2, we obtain

α =
1

NB − 1
(

N2
BK̄

2
e

NB(σ̂2
k + K̄2

e )
− 1)

=
1

NB − 1
(

NB

σ̂2
k/K̄

2
e + 1

− 1)

=
1

NB − 1
(
NB

Ĉ2
v + 1

− 1)

=
1− Ĉ2

v/(NB − 1)

1 + Ĉ2
v

.
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A.2 Regularized point-wise estimate (αr)

The objective function to be minimized is

S(αr) =
1

2NB

NB∑
p=1

‖ (αr ◦K∗ep − K̄e) ◦ λk ‖2F +
1

2
‖ αr ◦ λα ‖2F

=
1

2
(
∑
i

∑
j

∑NB
p=1(αri,jK

∗p
ei,j
− K̄ei,j)

2

NBσ̂2
ki,j

) +
1

2
(
∑
i

∑
j

α2
ri,j

σ2
α

) . (A-6)

Minimizing Eq. A-6 is equivalent to minimize the following objective function for

individual entry in the Kalman gain matrix (where the subscrits i and j are ignored

for convenience),

S(αr) =

∑NB
p=1(αrK

∗
ep − K̄e)

2

2NBσ̂2
k

+
α2
r

2σ2
α

,

Taking the 1st order derivative of S(αr) with respect to αr and setting it to zero,

we obtain

(

∑NB
p=1K

∗2
ep

NBσ̂2
k

+
1

σ2
α

)αr −
K̄e

∑NB
p=1K

∗
ep

NBσ̂2
k

= 0 . (A-7)

Substituting Eq. A-5 and
∑NB

p=1K
∗
ep = NBK̄e into Eq. A-7 and rearranging, we

can get the final form for αr,

αr =
1

1 + (1 + 1/σ2
α)Ĉ2

v

.

A.3 Smooth estimate (αs)

The objective function is defined as

S(αs) =
1

2NB

NB∑
p=1

‖ (αs ◦K∗ep −Ke) ◦ λk ‖2F +
1

2
(αTs (W TW +

1

σ2
α

I)αs) .

The optimal condition is

(I + Γ)αs − γ + (W TW +
1

σ2
α

I)αs = 0 , (A-8)
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where Γ is a diagonal matrix with diagonal element Γi,i = 1

Ĉ2vi
, and γ = [ 1

Ĉ2
v1

, 1

Ĉ2
v2

, · · · , 1

Ĉ2
vNm

]T .

Rearranging Eq. A-8 leads to

(W TW + Λ)αs = γ ,

where Λ is a diagonal matrix with each element Λi,i = 1
σ2
α

+ 1 + 1

Ĉ2
vi

. We can also

express αs as

αs = (W TW + Λ)−1γ .
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