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Abstract

Many have commented on potential problems associated with using under-

graduate psychology students as research participants (e.g. Arnett, 2008; Hen-

rich, Heine, & Norenzayan, 2010; Highhouse & Gillespie, 2009; Rosenthal & Ros-

now, 1969). However, little research has been directed at demonstrating the

extent of bias that may result from such practices and how to address this bias.

In this dissertation, I investigate how the F statistic and treatment effects are

affected when researchers use a convenience sample. I show that without measur-

ing and modeling the selection variable, these parameter estimates are biased. I

also show that covariate adjustments can mitigate bias when interactions do not

occur between the treatment effect(s) and the selection variable. When interac-

tions do exist, however, it is impossible to eliminate bias, particularly for the F

statistic.
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Introduction

Many statistical procedures rely on several assumptions, including indepen-

dence, normality, and homoskedasticity. In addition, there are two critical as-

sumptions that are sometimes overlooked in statistical textbooks. These assump-

tions are random sampling and random assignment to treatment conditions (see

Rubin, 1974; West & Sagarin, 2000). Unfortunately, both of these last two as-

sumptions are seldom met (Rubin, 1974).

The problem of non-random assignment to treatment conditions has been

thoroughly investigated, and an entire body of literature is devoted to overcom-

ing this problem (e.g., Cook & Campbell, 1979; Rubin, 2005, 1974; Shadish,

Cook, & Campbell, 2002). However, the problem of non-random selection has

not received much research attention, despite the fact that it is so common. It

has been estimated that between 67% (Arnett, 2008) and 92.7% (Kulich, Sel-

don, Richardson, & Servies, 1978) of published experiments in psychology are

performed on undergraduate psychology students. Although many acknowledge

this as a limitation when conducting research (Highhouse & Gillespie, 2009), the

majority do not. Furthermore, few researchers test whether their sample can be

considered as a random sample from the referent population (Arnett, 2008).

The problem of non-random selection becomes problematic when researchers

wish to generalize beyond the convenience sample. It has been suggested that

findings found within convenience samples may not generalize to the referent

population (e.g., Rosenthal & Rosnow, 1969). For example, Henrich et al. (2010)

list several psychological findings that fail to generalize across cultures. We show

in this paper that parameter estimates obtained from convenience samples may

overestimate or underestimate population parameters. Furthermore, we also show
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that some effects may be detected in a convenience sample that do not exist in

the population (and vice versa).

In the following section, we begin with a working definition of generalizability.

We also illustrate three ways in which results may not generalize to referent

populations. We then review several approaches other researchers have taken to

address problems with generalizability. Finally, we will introduce our approach,

then investigate its performance using Monte Carlo simulations. We show that

many parameter estimates can be recovered even when the researcher is working

within a selected sample.

Generalizability

Throughout this paper, we define generalizability as the ability of obtaining

unbiased estimates of population parameters when working with a subset of the

population. Put differently, generalizability fails when statistics computed within

a selected sample are biased estimates of their referent population. We address

three different conditions within the ANOVA paradigm under which parameter

estimates may be biased: a one-way ANOVA, a one-way ANOVA when the se-

lection variable interacts with the treatment effect, and a two-way ANOVA when

the selection variable interacts with the treatment effects.

One-way ANOVA

To illustrate a generalizability issue for the one-way ANOVA, we will use an

example. Suppose a researcher is interested in determining whether study skills

training helps improve classroom performance in the general population. The

researcher recruits undergraduate psychology students to participant in an exper-

iment where students are randomly assigned to treatment or control conditions.

2



Naturally, the students in this convenience sample are likely more intelligent than

the average population. Consequently, the students represent a biased sample of

IQ scores. For simplicity, we will assume that IQ is the sole characteristic on

which these students differ from a random sample. The researcher wishes to

generalize findings from this sample to the population.

Figure 1 shows several boxplots of the hypothetical distribution of class per-

formance scores. The shaded boxes represent the treatment condition. The white

ones represent the control conditions. The plots on the left are from a random

sample and the plots on the right are from a convenience sample (i.e., a sample

of only those who are highly intelligent).
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Figure 1. This figure plots a hypothetical scenario where individuals have been se-
lected on IQ, randomly assigned to treatment conditions, then measured on the DV
(Classroom Performance). The shaded boxes represent the treatment condition. The
white ones represent the control conditions. Also, the plots on the left are from the
random sample and the plots on the right are from the convenience sample.

There are several things worth mentioning about Figure 1. First, assum-

ing random assignment has occurred, estimated treatment effects (i.e., α, or
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X̄Treatment − X̄Control) will be unbiased. Notice in the plot that the difference

between medians in the control versus treatment is nearly identical for the ran-

dom and convenience samples. This is one of the reasons randomization is so

important: it tends to balance the treatment and control on all unconsidered

covariates. The end result of randomization is that the numerator of the F test1

(MSB) is unbiased. However, the denominator of the F test (MSW ) is not un-

biased; selection on a variable correlated with the DV shrinks the within group

variability, thus inflating the F statistic. This can be seen from the length of the

boxplots, which is proportional to MSW . We see that the length of the boxplots

for the random sample are much larger than the boxplots for the convenience

sample. In other words, when subject pools are used, and the selection vari-

able(s) are correlated with the dependent variable, Type I error rates are inflated

relative to a random sample. Under this condition, the F statistic computed in

the selected sample will always overestimate the population F . (See Appendix

for a mathematical explanation of this).

Using the terminology of Cook and Campbell (1979), Statistical Conclusions

Validity is threatened when the sample is non-random. Relative to a random

sample, parameters estimated from a convenience sample misestimate the signif-

icance of the treatment effect. It is important to note that this problem will not

be fixed by replacing estimates of statistical significance with effect sizes. Since

effect sizes often require an estimate of the variance (e.g., Cohen’s d), they too

will be affected.

1Although a t test would typically be used in this situation, we focus on the F statistic for
consistency throughout the paper.
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One-way ANOVA, Selection Variable Interacts

Now suppose the selection variable (in this case, IQ) interacts with the treat-

ment effect such that the size of the treatment effect varies as a function of the

selection variable. The researcher may or may not be aware of this interaction.

Figure 2 illustrates this situation. The vertical gray line represents the cut-off

point for IQ. In other words, no students were sampled with an IQ lower than

approximately 112. The solid line represents the treatment condition, while the

dashed line represent the control. Notice that for intelligent students, the treat-

ment is beneficial. However, for students who are lower in intelligence, the treat-

ment is not and may in fact harm their performance. This interaction between

the selection variable and the treatment effect distorts power and the interpre-

tation of the main effect. In other words, the numerator of the F statistic is

biased.

Under this situation, estimates of the treatment effect (i.e., the “marginal

effect”; Cramer & Applebaum, 1980) will be biased estimates of the population

effect. Note that even with random assignment, these estimates will be biased

because they are only estimated within the convenience sample.

Two-way ANOVA, Selection Variable Interacts

For our final example, let us suppose that in addition to study-skills training,

the researcher also manipulates whether students receive memory training. These

two variables are crossed so that interactions can be detected. Let us also suppose

that the selection variable (IQ) interacts with these two variables. Is it possible

to find a significant two-way interaction in the sample that does not exist in the

population?

Figure 2 shows one example of this situation. The solid lines represent the

5



80 100 120 140

40
60

8
0

1
0
0

IQ (Unmeasured)

C
la

ss
ro

om
 P

er
fo

rm
an

ce

Treatment
Control

Unselected Selected Sample

Figure 2. This figure plots a hypothetical relationship between IQ and Classroom
Performance, conditional on whether subjects receive the treatment (a study skills
training). If the researcher is working with a selected sample (i.e., the individuals to
the right of the vertical gray line), estimates of the treatment effect will be misleading if
there is an interaction between the selection variable (IQ in this case) and the treatment
effect.

means of those who received memory training, while the dashed lines represent

those who did not. Also, the left dots represent the means of those in the study

skills training while the right dots represent the mean of those who did not.

The Y-axis is the score on the outcome variable. Notice how the nature of the

interaction is reversed from the selected (top half of the plot) to the unselected

sample (bottom half of the plot). For example, in the selected group performance

is best when both or neither memory/study skills training are administered. On

the other hand, the selected group performs best when only one training or the

other is performed.2

Although interactions were found in either the selected or unselected group

2We offer no theoretical reason why this may happen in empirical data. We only offer this
example for illustrative purposes.
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Figure 3. This figure plots a hypothetical relationship between IQ and the two treat-
ment effects (memory training and study skills training). The top half of the plot shows
the interaction in the selected group between the two treatments and the bottom half
of the plot shows the interaction in the unselected group. Notice that the nature of the
interaction reverses from the selected to the unselected group.

alone, at the population level the two-way interaction does not exist. Put dif-

ferently, after averaging the two-way effects across the selection variable, the net

effect is zero. Recall that a three-way interaction is present when the nature of the

two-way interaction changes as a function of a third variable. This example has a

significant three-way interaction, but the two-way interaction is non-existent. If

the F statistic of the A by B interaction were estimated in the selected sample,

it would be quite biased.

Summary

We have shown that generalizing from selected samples to referent populations

presents several difficulties. If the selection variable is correlated with the DV,

non-random sampling leads to biased F statistics, as well as misleading treatment
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and interaction effects. In fact, sometimes estimated effects may reverse direc-

tions in the unselected sample. Given the fact that the majority of experimental

research is performed on non-random samples, we think these results cannot be

ignored. In the following section we will review several approaches that have

been proposed to obtain unbiased estimates. We then introduce our approach to

handling bias.

Previous Approaches to Non-random Sampling

Alternative Convenience Samples

Several authors have noted that convenience sampling is not a “lazy-dodge”

on the part of the researcher, but an intelligent choice given the cost of random

sampling (Farber, 1952, p. 102). Consequently, it is understandable that many

researchers might be reluctant to abandon convenience sampling.

Some have suggested drawing from other “convenient” samples besides under-

graduate students. Murray, Rugeley, Mitchell, and Mondak (2013), for example,

commented on the practice of sampling from jury pools. Because jury pools are

randomly sampled within communities, they will likely be more heterogeneous

and thus better reflect population characteristics.

Another alternative convenience sample that has been suggested is campus

staff (Kam, Wilking, & Zechmeister, 2007). Kam et al. compared a sample of

local residents3 to a sample of campus staff. They found few significant differences

in terms of demographics between the two.

While both sampling methods will certainly increase the heterogeneity of par-

ticipants, neither is ideal for two reasons. First, although more convenient than a

3The authors did not randomly select local residents. Instead, they drew a random sample
of 1,500 individuals to invite to the study. 11.9% of that random sample chose to participate.
Thus their comparison sample was self-selected.

8



truly random sample, both methods are still not as convenient as undergraduates.

Consequently, it is unlikely such practices would be adopted in mass. Second,

even with these samples there still may be substantial bias in parameter estima-

tion, depending on the referent population. Neither sampling procedure escapes

the problem of regional effects. For example, a random sample of individuals

from Omaha Nebraska likely will not generalize to New York City or Tokyo.

Potential Outcomes (Counterfactual) Approach

The second approach to address non-random sampling is called the counterfac-

tual or potential outcomes approach. This method of causal modeling considers

two scenarios: Y(1) is the potential outcome had the treatment been received.

Y(0) is the potential outcome had the treatment not been received. The differ-

ence for a particular individual between Y(1) and Y(0) is defined as the causal

effect of the treatment. When averaged across individuals, it is called the av-

erage causal effect. However, only one of the two will be observed; either the

subject will receive treatment or he/she will receive a control. Assuming random

assignment, the potential outcome score for the treatment condition not assigned

is considered missing completely at random (MCAR). For example, if Subject

A had been assigned the treatment, their potential outcome for the control is

missing, or counterfactual. (For a review, see Rubin, 1974, 2004; Shadish, 2010).

This potential outcomes model is often called Rubin’s Causal Model (Holland,

1986), although a similar framework was also proposed by Neyman (1923). When

proposed by Rubin (1974), the potential outcomes approach was a stepping stone

towards generalizing to a well-defined population of interest; one first general-

ized to the potential outcome not received, then generalized beyond the sample.

The second generalization requires either random sampling or“subjective random
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sampling,” where the researcher has reason to believe that the individuals in the

study can be considered a random sample of the population (Rubin, 1974, p. 698;

see also Fisher, 1955).

Although Rubin originally conceptualized the potential outcomes approach

as a stepping-stone to generalizing to the population, other researchers have ad-

vocated methods that seek to generalize only within the sample. For example,

Reichardt and Gollob (1999) introduced an alternative equation for the t test

that enhances power. However, the increase of power comes at the cost of gen-

eralizability; it assumes the potential outcomes model, and thus can only be

“transported” (Pearl & Bareinboim, 2011) to the potential outcomes observed

within the sample. Because most researchers would rather think their results

have application beyond the sample, we do not recommend this procedure.

Bayesian Networks

Bayesian Networks (Pearl, 1985) are an approach to causal inferences that

grew out of computer science. The methodology was developed as an efficient

approach to machine learning, but has broad implications for causal inferences.

The details of Bayesian Networks (or Probabilistic Directed Acyclic Graphical

Models) is beyond the scope of this paper. Interested readers are invited to read

Pearl (2009).

Recent papers (e.g. Bareinboim & Pearl, 2012; Cooper, 1995; Didelez, Kreiner,

& Keiding, 2010; Geneletti, Richardson, & Best, 2009; Didelez et al., 2010) have

used Bayesian Networks to address the problem of non-random sampling and

have developed a set of theorems to test whether results from a sample can be

transported back to the population. The basic approach is similar to the one

we introduce, namely using covariates to adjust treatment effects. However, our
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approach will be couched within familiar ANOVA/ANCOVA terminology. Inter-

ested readers are invited to read Bareinboim and Pearl (2012) for an excellent

review.

ANCOVA Approach

The approach we advocate adjusts treatment effects using carefully selected

covariates. This approach to adjusting sample-based estimates is not new. Rubin

(1974) suggested it in passing many years ago. However, we know of no other

publications in the social sciences that have fully explored the strengths and lim-

itations of this method. Additionally, in our literature search, no experimental

studies attempted to adjust treatment effects for non-random selection of sub-

jects.

We begin by introducing several definitions and assumptions, after which we

will explain the rationale behind covariate adjusted treatment effects and why

they should yield unbiased estimates of some population parameters. We also

note similarities between our approach and common approaches to handling non-

random assignment (e.g., propensity score matching and covariance adjustments).

We will then investigate the performance of this method using Monte Carlo sim-

ulations.

Definitions

Throughout our simulations, we make use of four variables: A, B, Y , and Z.

We define A and B as the treatments, and Y will be the outcome measure. Z is a

variable that is correlated with Y on which selection has taken place. To simulate

a non-random sample, we sorted the dataset according to Z, then selecting the

top 50% of observations. Z can be considered a single variable or a collection of

11



variables. However, for simplicity of explication, we treat Z as if it is a single

variable.

We also make a distinction between missing scores and missing cases. Missing

scores occur when data is missing on one, but not all variables. The left image in

Figure 4 illustrates missing scores. The solid boxes represent information that is

available while the dashed lines represent information that is unavailable. Labels

that are subscripted with OBS represent information that is observed, while MZ

represents missing information due to selection on Z. The left image illustrates

missing scores, where half of the Y scores are missing because of Z, while the right

image illustrates missing cases. Missing cases occur when data are missing for

all variables. Notice all information for those who scored poorly on Z is missing.

Though we have graphed this figure such that half the scores are missing, in

reality the number missing may be unknown.

Returning to our previous example, A is the study skills training, B is the

memory training, and Y is classroom performance. However, the sample of under-

graduate psychology volunteers represent a non-random sample. The collection

of variables that differentiates them from a random sample is Z, which may be

IQ, SES, conscientiousness, etc. An unknown quantity of certain types of indi-

viduals (e.g., a 95-year-old retired man) have almost a zero probability of being

selected, and thus those people would be in the dashed boxed area.

In this paper, we attempt to tackle estimation under missing cases. Readers

interested in estimating under missing scores are invited to read the selection

literature (see Sackett & Yang, 2000; Thorndike, 1949, for a review), where cor-

rections are fairly straightforward.

12
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Figure 4. This image illustrates the difference between missing cases and missing
scores. Solid lines represent data that is available (as indicated by the subscript OBS ),
while dashed lines represent information that is unavailable (i.e., it is missing because of
selection on Z) as indicated by the subscript MZ. Missing scores have missing informa-
tion on some, but not all variables (the left figure) while missing cases have information
missing on all variables (right figure).

Assumptions

Since our procedure relies on the Analysis of Variance, we make the same

assumptions made in all linear models. Namely, we assume homoscedasticity,

linearity, independence, and normality. In addition, we assume that subjects have

been randomly assigned to treatment conditions and that top-down selection has

occurred. This last assumption is not critical; if selection takes place from the

bottom-up, the results will often be opposite of that presented.

ANCOVA with Missing Subjects

Recall that an analysis of covariance (ANCOVA) conditionalizes a treatment

effect on the value of one or more covariates. In order to understand how this

fact helps with the missing cases problem, consider Figure 5. Suppose this sliced
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ellipsoid represents the shape of a three-dimensional scatterplot. However, notice

that values below a particular Z are missing (i.e., they are missing cases). Re-

call that a partial correlation measures the relationship between two variables,

conditional on a third variable. Geometrically, the partial can be thought of as

the correlation in the light colored area: it is the relationship between X and Y ,

at a particular level of Z. Notice that it does not matter that we have limited

information on Z; under standard statistical assumptions, the partial is approxi-

mately the same at every level of Z (see Fife & Mendoza, 2013). In other words,

we could cut Z at a different level, and the shape of the light ellipse will be the

same.

Figure 5. This image shows a three-dimensional ellipsoid where selection has occurred
on Z. Note that the partial between X and Y is unaffected by selection—-It does
not matter whether the researcher has full or partial information, the shape of the
two-dimensional ellipse between X and Y does not change.

Like a partial correlation, an ANCOVA conditionalizes on the values of the

covariates. Theoretically, we can obtain unbiased estimates of the Type III Sums

14



of Squares (partial) of the F statistic, whether we have full information or not on

the selection variables, provided that they are included in the ANCOVA model.

The procedure we propose for handling missing cases is to simply covary the

variable(s) that cause selection. Note that this method is very similar to how

one might handle non-random assignment. Under non-random assignment, the

researcher may identify the variables that distinguish the two groups then covary

them out. (Although propensity-score matching is another attractive alterna-

tive). Likewise, we suggest carefully identifying the variable (or set of variables)

that cause selection, then covary those variables out, similar to how propensity

score matching is done. In the following section, we introduce the Monte Carlo

method we used to investigate the ability of the ANCOVA to recover population

parameters from a selected sample.

Method

Earlier we illustrated how generalizability is affected under three conditions:

a one-way ANOVA, a one-way ANOVA when an interaction exists between the

treatment effect and the selection variable, and a two-way ANOVA when an

interaction exists between the interaction effect and the selection variable. In

the Monte Carlo, we sought to determine under which of these three conditions

population parameters could be recovered by covarying the selection variable. To

do this, we did the following.

1. Generate 100 scores for Z. We first created a normally distributed random

variable which we called Z. It had a mean of zero and a standard deviation of 1.

2. Generate 100 scores for Y , conditional on the treatment(s)/covariate. Us-

ing the equations shown in Table 1, we generated 100 dependent variable (Y )

scores. The coefficients for these models were chosen somewhat arbitrarily. How-
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ever, the resulting data had the problems illustrated in Figures 2 and 3.4

3. Generate a “convenience sample” based on values for Z. To simulate a

convenience sample, the dataset was sorted according the values on Z, then the

top 50% of scores were selected for subsequent analysis. This sample we will call

SC , where C denotes its a convenience sample.

4. Generate a random sample for comparison. For comparison purposes, a

random sample of 50 participants was selected. We will call this sample SR.

5. Compute parameter estimates. For each ANOVA/ANCOVA condition, the

F statistics and the treatment/interaction effects were estimated for all of the

variables included in the model. This was done using both an ANOVA (ignoring

Z) as well as the ANCOVA (which included Z).

6. Estimate percent bias. Each of the parameter estimates for the convenience

sample (SC) were compared to the estimates from the random sample (SR). To

compute percent bias, we used the equation

% Bias =
EC − ER

ER

× 100 (1)

where EC refers to the estimate in the convenience sample, and ER refers to

the estimate in the random sample. Percent bias was computed using both an

ANOVA and an ANCOVA, where the selection variable was covaried out.

7. Repeat 10,000 times. Each of these steps were repeated 10,000 times in

order to simulate a sampling distribution and to compute standard errors.

4The problems we refer to are as follows: Model 2 generated data where the estimate of the
main effect differed in the random versus convenience sample. Model 3 generated data where
the nature of the two-way interaction (between A and B) reversed from the convenience to the
unselected sample and the net effect of the two-way interaction is zero.

16
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Results

One-Way Anova, No Interaction

Table 2: Median Percent Bias in Parameter Estimates for the One-Way ANOVA

ANOVA ANCOVA
F 42 -1
A -1 -1

Table 2 shows the results of the first simulation, where no interaction exists

between the selection variable and the independent variable. Recall that the data

were generated using the equation Y = A+ .6Z + ε. The left column of the table

(labeled ANOVA) shows the median degree of bias when the main effect (Type I

SS) of A is estimated using the model Y = A for both the selected and unselected

sample. The right column of the table (labeled ANCOVA) shows the results of

estimating the main effect (Type III SS) of A using the data generation model

(Y = A+Z), for both the selected and unselected sample. The median percentage

difference between the selected and the unselected F is shown. As mentioned

previously, when the selection variable (Z) is not included in the model, the F

statistic is positively biased (42%). On the other hand, the estimates for A are

unbiased with or without including Z in the model in Table 2. Furthermore,

including Z using an ANCOVA makes the Type III estimate of the F unbiased

(see right column of Table 2).

Figure 6 plots the distribution of 100 × (FC − FR)/FR, or the percentage

difference between estimates in the random and convenience samples for the first

Monte Carlo. As indicated in Table 2, the ANCOVA distribution centers around

zero, while the ANOVA distribution does not. Furthermore, the variability is

much greater in the ANOVA distribution.
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Figure 6. Distribution of the bias in estimating the F statistic for the ANOVA and the
ANCOVA for the A effect. For these results, the interaction variable does not interact
with the treatment effect.

One-Way Anova, With Interaction

The results for the second simulation are shown in Table 3. Recall that the

data were generated using the equation Y = µ + A + .8AZ + ε, where µ was

zero and A was -1. This resulted in a model where there was an interaction

between the treatment effect and the selection variable such that the treatment

improved performance for those selected, but hurt performance for those not

selected (see Figure 2 for a graphical depiction). As before, the left column tries

to estimate the model Y = A using the convenience and random samples, while
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Table 3: Median Percent Bias in Parameter Estimates for the One-Way ANOVA when
an Interaction Exists Between the Selection Variable (Z) and the Treatment Effect (A).

ANOVA ANCOVA
FA -81 -87
FZ -64
FAZ -65
A -63 -0
βZ -51
βAZ -1

the right model uses the model that actually generated the data. The results, as

before, are presented as the median percentage difference between the random and

convenience sample. Notice that the F statistic was underestimated in all cases,

whether Z was included in the model or not. For example, the F statistic for the

A effect was biased in both the ANOVA (-81%) as well as the ANCOVA (-87%).

However, including the selection variable mostly removes bias in estimating the

β parameters.5

Figure 7 shows the distribution of bias for both the ANOVA and the ANCOVA

when the selection variable interacts with the treatment effect. Note that the

estimate of the F is consistently underestimated using a selected sample when

an ANOVA is used. However, when the selection variable is covaried out of the

model, the estimate of the main effect of A is unbiased even with a selected

sample.

Two-Way Anova, With Interaction

Our final table (Table 4) shows what happens when an interaction existed

between the selection variable (Z) and the two treatment effects. Recall that the

5The raw value for βZ was very near zero. Because the percent bias computation divided
by a value near zero, it tended to make the percentage bias look quite extreme. However, the
average raw difference between the two was quite small (in the third decimal place).
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Figure 7. Distribution of bias in estimating the F statistic for the ANOVA and the
ANCOVA for the A effect. For these results, the interaction variable does interact with
the treatment effect, such that the treatment effect depends on the level of the selection
variable.

data were simulated in such a way that the two-way interaction was non-existent

in the population, but existed in the selected sample. As mentioned previously

the data generating model was Y = µ+−10Z + 9AZ + 9BZ − 6ABZ + ε, where

µ = 1. The ANOVA model fitted was Y = A+ B + AB. Note that nearly all of

the estimates (both F and β) are quite biased. The degree of bias for the main

effects of A and B in the ANOVA were 7% and 18%, while the maximum for the

main effects in the ANCOVA were -52% and -16%. However, the β parameters

that involve Z are unbiased, never exceeding 1%.
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Table 4: Percent Bias in Parameter Estimates for the Two-Way ANOVA when an
Interaction Exists Between the Selection Variable (Z) and the Treatment Effects (A
and B).

ANOVA ANCOVA
FA 7 -52
FB 18 -16
FAB 2857 3402
FZ -64
FAZ 6
FZB -46
FAZB -66
A -116 -49
B -49 -48
AB -155 -51
βZ -0
βAZ -1
βZB 0
βAZB -0

Discussion

The majority of psychological research violates two key assumptions: first,

that subjects have been randomly assigned to treatment conditions. Second,

they have been randomly selected from a well-defined population (Rubin, 1974).

Our paper has focused on the second violation. We have suggested that covarying

out the selection variable may reduce or eliminate bias in estimating population

parameters under certain conditions. Our first Monte Carlo demonstrated that an

ANCOVA was sufficient to eliminate bias in the F and treatment effect estimates

in a non-random sample, assuming the selection variable has been included in the

model.

However, when the selection variable interacts with the treatment effect(s),

unbiased estimates of the F statistic are elusive at best. In each of our simula-

tions where there was an interaction between the two, all estimates of treatment
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effect(s) were biased, even if all the selection variable was correctly identified and

the correct model was estimated. The problem in this case is not a misspecified

model, but rather the problem is non-random sampling.

Although the F seems to be biased whenever there is an interaction present,

the treatment effects were not as troublesome. With the one-way ANOVA, nearly

all β coefficients and treatment effects could be reproduced. In other words, al-

though the F statistic could not be recovered, unbiased linear regression equations

could. Using this information, perhaps future researchers could devise a correc-

tion for the F based off of the unbiased regression function by correcting the error

term.

Unfortunately, estimating population parameters becomes increasingly com-

plicated when the selection variable interacts with two treatment effects. We

showed that it is possible to detect a two-way interaction in a selected sample

that does not exist in the population. Efforts to recover parameters from a se-

lected sample fail, even if all the correct variables are included in the model.

Table 4 shows that all parameters related to the main effects and two-way inter-

actions between A and B are biased. Although, estimates related to Z itself are

unbiased, typically these estimates are not of interest.

It may be tempting to suggest that estimating effect sizes instead of the F will

solve the problem of convenience sampling. Indeed, many suggested that effect

size estimates could solve the “problem” of Null Hypothesis Significance testing

(see Rodgers, 2010, for a review). However, the problems we have demonstrated

will not be resolved by resorting to effect sizes. Recall that the F statistic can

be expressed as a function of an effect size. For example, on effect size measure

(R2) is related to the F as follows
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F =
R2

1−R2
× df2
df1

In other words, the F is a product of two functions, one related to degrees of

freedom and the other related to the effect size. Since the degrees of freedom are

unaffected by convenience sampling, the effect size will also be biased.

One may also consider another effect size estimate, Cohen’s d. Recall that

it is computed by dividing the mean difference between groups by the standard

deviation. We have seen that the standard deviation is affected by selection,

which will also yield biased estimates of Cohen’s d.

In summary, covarying the selection variable only works when the selection

variable does not interact with one or more treatment effects. Consequently, we

recommend future researchers carefully consider the variables that make their

sample non-random. If there is reason to believe any of these variables may

interact with the treatment effect(s), then we recommend researchers use other

sampling methods in order to obtain a more representative sample.

Is all this necessary?

Discussion centered around convenience sampling have been a hot topic in

psychological journals for decades. Many have already argued that convenience

sampling threatens the validity of psychological findings (see Arnett, 2008; Gor-

don, Slade, & Schmitt, 1986; Henrich et al., 2010; McNemar, 1946; Rosenthal,

1965; Rosenthal & Rosnow, 1969). Despite this fact, convenience sampling is

very much alive and shows no signs of yielding to random sampling.

Perhaps part of the reason for this is the mistaken belief that testing and

developing psychological theories does not require random sampling. Highhouse

and Gillespie (2009), for example, argued in behalf of the practice of undergrad-
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uate sampling. Citing several meta-analyses from the organizational literature

(see Anderson, Lindsay, & Bushman, n.d.; Eagly, Karau, & Makhijani, 1995;

Kluger & DeNisi, 1996; Kubeck, Delp, Haslett, & McDaniel, 1996; Sagie, 1994)

they concluded that effect sizes from samples rarely differ significantly from effect

sizes collected from organizations. They also argue that random samples are not

required in order to generalize theories. Rather, they are only required when one

wishes to describe the population of interest (see also Farber, 1952). To illustrate,

they offered the following example.

[I]magine a group of researchers with a theory about why some shows

are more popular than others. For example, what is it about Wheel

of Fortune that makes so many people want to watch it? One theory

might be that people like to solve puzzles. Another might be that

people enjoy seeing others compete for prizes. The researchers might

test these theories by surveying a sample of television viewers using

measures of attitudes toward puzzles and prizes. Another approach

would be to randomly assign shows that differ in degree of emphasis

on puzzles and prizes to a sample of television viewers. It is not

necessary that these samples are representative of the population of

all television viewers. (p. 257)

Let us further suppose the researcher couches his or her predictions using so-

phisticated psychological theories and terminology such as “need for cognition.”

If one theory is supported on an undergraduate sample, does that mean it is a

sound theoretical development?

We argue that it is not. The problem with this assertion is that it assumes the

theoretical effect (in this case, choosing puzzle-focused shows versus prize-based
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shows) does not depend on characteristics unique to the sample. However, it is

not hard to think of situations where sample-specific effects distort experimental

findings. For example, suppose the researcher finds through experimentation that

subjects tend to prefer puzzle-focused shows, supporting a need for cognition

theory. Unfortunately, this characteristic (enjoying puzzles) may be unique to

undergraduate psychology students. Suppose the same experiment was performed

on a sample of homemakers and the findings were in reverse—homemakers prefer

shows where hefty prizes are won or lost. If such were the case, any theory

developed within a sample of undergraduate students would be misguided.

Highhouse and Gillespie (2009) did recognize this as a limitation: “It is only

necessary that the sample does not systematically differ from the population in a

way that would plausibly interact with the constructs of interest” (p. 257). They

then recommend the researcher use theory to determine whether such an interac-

tion might exist. For example, Birnbaum and Martin’s (2003) theory predicted

that students in a particular context, given a choice between two slot machines,

would choose the one that gave fewer payoffs. This was indeed the case. Due to

concerns that these findings may not generalize to more sophisticated decision-

makers, they subsequently sampled decision-making scholars and the results were

the same.

We too recommend the researchers carefully consider characteristics that

might distort experimental findings. However, if a particular theory was devel-

oped in the lab it may not provide ample understanding of the unselected pop-

ulation to make such determinations. Furthermore, it is quite possible that the

selection variable(s) interact with the treatment effect in ways that are difficult to

anticipate. Consequently, although careful consideration may guide researchers

in better understanding the limitations of their theory, it is no substitute for
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better sampling.

Implications

We have demonstrated that population parameters such as the F statistic

are poorly estimated from convenience samples. In some cases, the F is over-

estimated, while it is underestimated in other cases. Because the majority of

experimental research in psychology is performed on undergraduate psychology

students, we have reason to suspect that many psychological findings have been

overstated, understated, or unfairly lost to the null hypothesis. In other words,

psychological journals may be rife with both Type I and Type II errors.

This is particular problematic for cross-cultural studies. As mentioned ear-

lier, many psychological findings fail to generalize across cultures (Henrich et al.,

2010). Perhaps covariate adjustments may help mitigate this problem and help

researchers understand how these findings differ across cultures.

Future Research

We have noted that covariate adjustments require information about the se-

lection variable. In reality, it may be difficult to determine what variable or set of

variables make subject pools non-random. Future research may compare under-

graduate subject pools to a random sample on many potential variables to help

determine where the significant differences lie. Using propensity score analysis,

perhaps researchers could discover a relatively small collection of variables where

the two samples differ. This may then inform future researchers on what variables

ought to be collected from experimental subjects.

In this paper we have assumed that the researcher perfectly measured the

selection variable(s). In reality, this would seldom occur. At best, researchers
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will have a variable or collection of variables that are highly correlated with the

selection variable(s). Future research may be directed at understanding how the

results presented in this study would be affected by covarying a proxy variable,

rather than the selection variable itself. We suspect that the results presented

would be even less promising and that bias would increase.

Summary

In summary, we have demonstrated that convenience sampling may have

unanticipated statistical problems that threaten the validity of experimental re-

search. The best approach to mitigating bias is to carefully consider what vari-

ables make the selected sample non-random, then covary these out through an

ANCOVA. Unfortunately, when an interaction exists between the selection vari-

able(s) and the treatment effect(s), it is presently impossible to generalize the

findings beyond the convenience sample. Although covarying the selection vari-

able may mitigate or eliminate bias, there is no substitute for better sampling.

28



References

Anderson, C. A., Lindsay, J. J., & Bushman, B. J. (n.d.). Research in the psychological

laboratory: Truth or triviality? Current Directions in Psychological Science, 8 ,

3-9.

Arnett, J. J. (2008). The neglected 95%: Why American psychology needs to become

less American. American Psychologist , 63 (7), 602 - 614.

Bareinboim, E., & Pearl, J. (2012). Controlling selection bias in causal inference. La

Palma, Canary Islands.

Birnbaum, M. H., & Martin, T. (2003). Generalization across people, procedures, and

predictions: Violations of stochastic dominance and coalescing. In S. L. Schneider

& J. Shanteau (Eds.), Emerging perspectives on judgment and decision research.

Cambridge, England.

Cook, T., & Campbell, D. (1979). Quasi-experimentation: Design & analysis issues

for field settings. Boston, MA: Houghton Mifflin.

Cooper, G. (1995). Causal discovery from data in the presence of selection bias.

Artificial Intelligence and Statistics, 140-150.

Cramer, E. M., & Applebaum, M. I. (1980). Nonorthogonal analysis of variance–once

again. Psychological Bulletin, 87 , 51-57.

Didelez, V., Kreiner, S., & Keiding, N. (2010). Graphical models for inference under

outcome-dependent sampling. Statistical Science, 25 (3), 368-387.

Eagly, A. H., Karau, S. J., & Makhijani, M. G. (1995). Gender and the effectiveness

of leaders: A meta-analysis. Psychological Bulletin.

Farber, M. L. (1952). The college student as laboratory animal. American Psychologist ,

7 , 102.

Fife, D., & Mendoza, J. L. (2013). The estimation of incremental validity in the

presence of missing data.

(Submitted for publication)

29



Fisher, R. A. (1955). Statistical methods and scientific induction. Journal of the Royal

Statistical Society, Series B , 17 , 69-78.

Geneletti, S., Richardson, S., & Best, N. (2009). Adjusting for selection bias in retro-

spective, case-control studies. Biostatistics, 10 (1).

Gordon, M. E., Slade, L. A., & Schmitt, N. (1986). The “science of the sophomore”

revisited: From conjecture to empiricism. Academy of Management Review , 11 ,

191-207.

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world?

Behavioral and Brain Sciences, 33 (2/3), 61 - 135.

Highhouse, S., & Gillespie, J. Z. (2009). Do samples really matter that much? In

C. E. Lance & R. J. Vandenberg (Eds.), Statistical and methodological myths and

urban legends: Doctrine, verity and fable in organizational and social sciences.

Taylor and Francis.

Holland, P. (1986). Statistics and causal inference. Journal of the American Statistical

Association, 81 , 945-960.

Kam, C., Wilking, J., & Zechmeister, E. (2007). Beyond the “narrow data base”:

Another convenience sample for experimental research. Political Behavior , 29 (4),

415 - 440.

Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on perfor-

mance: Historical review, meta-analysis and a preliminary feedback intervention

theory. Psychological Bulletin, 119 , 254-284.

Kubeck, J. E., Delp, N. D., Haslett, T. K., & McDaniel, M. A. (1996). Does job-related

training performance decline with age? Psychology and Aging .

Kulich, R., Seldon, J. W., Richardson, K., & Servies, S. (1978, May). Frequency of

employing undergraduate samples in psychological research and subject reaction

to forced participation. Chicago, IL. (Paper presented at the meeting of the

Midwest Psychological Association)

30



Levin, J. (1972). The occurrence of an increase in correlation by

restriction of range. Psychometrika, 37 , 93-97. Available from

http://dx.doi.org/10.1007/BF02291414 (10.1007/BF02291414)

McNemar, Q. (1946). Opinion-attitude methodology. Psychological Bulletin, 43 , 289-

374.

Murray, G. R., Rugeley, C. R., Mitchell, D. G., & Mondak, J. L. (2013). Convenient

yet not a convenience sample: Jury pools as experimental subject pools. Social

Science Research, 42 (1).

Neyman, J. (1923). Sur les applications de la theorie des probabilites aux experi-

ences agricoles: Essai des principes. Unpublished master’s thesis, University of

Kharkov.

Pearl, J. (1985, August 7-11, 2011). Bayesian networks: A model of self-activated

memory for evidential reasoning. University of California, Irvine, CA..

Pearl, J. (2009). Causality: Models, reasoning, and inference. New York, NY: Cam-

bridge University Press.

Pearl, J., & Bareinboim, E. (2011, August). External validity and transportability: A

formal approach. San Francisco, CA.

Pearson, K. (1903). Mathematical contributions to the theory of evolution. XI. on

the influence of natural selection on the variability and correlation of organs.

Philosophical Transactions of the Royal Society of London. Series A, Containing

Papers of a Mathematical or Physical Character , 200 , 1-66.

Reichardt, C. S., & Gollob, H. F. (1999). Justifying the use and increasing the power

of a t test for a randomized experiment with a convenience sample. Psychological

Methods, 4 (1), 117-128.

Rodgers, J. L. (2010). The epistemology of mathematical and statistical modeling: A

quiet methodological revolution. American Psychologist , 65 (1), 1 - 12.

Rosenthal, R. (1965). The volunteer subject. Human Relations, 18 , 389-406.

31



Rosenthal, R., & Rosnow, R. (1969). The volunteer subject. In Rosenthal & Rosnow

(Eds.), Artifact in behavior research. Academic Press.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and non-

randomized studies. Journal of Educational Psychology , 66 (5), 688-701.

Rubin, D. B. (2004). Teaching statistical inference for causal effects in experiments

and observational studies. Journal of Educational and Behavioral Statistics, 29 ,

343-367.

Rubin, D. B. (2005). Causal inference using potential outcomes. Journal of the

American Statistical Association, 100 (469), 322-331.

Sackett, P. R., & Yang, H. (2000). Correction for range restriction: An expanded

typology. Journal of Applied Psychology , 85 (1), 112-118.

Sagie, A. (1994). Participative decision making and performance: A moderator analysis.

Journal of Applied Behavioral Science.

Shadish, W. R. (2010). Campbell and rubin: A primer and comparison of their

approaches to causal inference in field settings. Psychological Methods, 15 (1), 3

- 17.

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-

experimental design for generalized causal inference. Boston, MA: Houghton

Mifflin.

Thorndike, R. L. (1949). Personnel selection: test and measurement techniques. Oxford

England: Wiley.

West, S. G., & Sagarin, B. J. (2000). Participant selection and loss in randomized

experiments. In L. Bickman (Ed.), Research design: Donald campbell’s legacy

(Vol. 2, p. 117-154). Thousand Oaks, CA: Sage Publications.

32



Appendix

Effects of Selection on the ANOVA

We begin by making several assumptions with regard to the ANOVA

1. The sample size of the selected sample (Ñ) is the same as the sample size of

the random sample (N). We make this assumption in order to make the estimates

comparable.6

2. The number of treatment levels (a) is the same for both the random and

selected sample. Otherwise, the estimates will be incomparable.

3. Subjects have been randomly assigned to treatment conditions

4. Selection results in a reduction in variance on the selected variable rather

than an enhancement. Although selection can cause enhancement (Levin, 1972),

this sort of selection is rare. However, if selection does actually increase variance,

then the results presented will be opposite of that shown (e.g., the F test will be

underestimated rather than overestimated).

Suppose we have three variables: Z (the selection variable), X (the treatment

assignments), and Y (the outcome of interest). Under selection, it is known that

σ2
y.z = σ̃2

y.z (A.1)

or the conditional variance of Y , given Z is unaffected by direct selection on Z

(Pearson, 1903). However, suppose we are interested in estimating σ2
y.x when

selection occurs on Z. It is generally not the case that σ2
y.x = σ̃2

y.x. In this case,

Y has been restricted indirectly via Z. (X, on the other hand, has not been

6Of course selection will reduce the net sample size. However, when this occurs, it is difficult
to determine whether differences in the F and/or standard errors are due to the differences in
sample size or differences in estimation. Consequently, we will assume the same N for both
estimates.
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indirectly selected as long as random assignment has occurred, simply because

the correlation between X and Z is zero.)

It is well known that the expected value of MSE is

E(MSE) = σ2
y.x (A.2)

However, under selection, the restricted expected value of MSE (σ̃2
y.x) tends to

underestimate the population value of σ2
y.x (because the poor performers within

a group are removed, making the scores more homogenous). In other words,

σ2
y.x > σ̃2

y.x =⇒ σ̃2
y.x = σ2

y.x − c (A.3)

where c is some positive constant that indicates the degree of bias of σ̃2
y.x in

estimating σ2
y.x.

The expected value of MSB (mean squares between) is

E(MSB) = σ2
y.x +

∑
j

njα
2
j/(a− 1) (A.4)

where nj is the sample size of treatment group j, αj is the treatment effect of

group j, and a is the number of treatments. Under selection, the following hold

α̃2
1 6= α2

1

α̃2
j = α2

j where j 6= 1,

=⇒ α̃2
j = α2

j + d (A.5)
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where group j = 1 is the control group, and d is a positive value indicating bias

in estimating α2
1 from α̃2

1 (and by implication indicates bias in estimating α2
j

from α̃2
j ). In other words, the effect of the treatment is unaffected by selection

because of random assignment. However, the “effect” of the control group is not

unaffected because the untreated sample is made up of individuals with higher

scores. Consequently, the quantity
∑
j

ñjα̃
2
j will overestimate

∑
j

njα
2
j by the

degree to which α̃2
1 > α2

1, which is indicated by d.

Recall that the F statistic is computed as follows

F =
MSR

MSE

F̃ =
˜MSR
˜MSE

(A.6)

Under selection F̃ will overestimate F . In order to demonstrate this fact, we

will use Equations A.2 and A.4, and using the inequalities expressed in Equations

A.3 and A.5

F̃ − F > 0

(σ2
y.x − c) + 1

a−1

∑
j

njα
2
j + d

σ2
y.x − c

−

(σ2
y.x) + 1

a−1

∑
j

njα
2
j

σ2
y.x

> 0

(A.7)

After some simplification, we get
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dσ2
y.x + c

a−1

∑
j

njα
2
j

σ2
y.xσ̃

2
y.x

> 0 (A.8)

Notice that all terms in the numerator are positive (c and d are positive be

definition, nj will be positive since it is the number of people in a treatment

group, a − 1 will always be positive since it is the number of treatment groups,

α2 will always be positive because it is a squared term, and the variance [σ2
x.y]

will always be positive barring heywood cases). Likewise, the denominator will

always be positive since both terms are variances. Therefore, under selection the

F̃ will always overestimate F .

Recall that the F statistic can be expressed as the product of an effect size

(SSB/SSE) and some function of the degrees of freedom (dfE/dfB). Because

degrees of freedom are unaffected by selection (according to Assumptions 1 and

2), effect sizes will also be overestimated.
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