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Abstract

In this dissertation we study identi�cation of complex dynamic systems as well as hybrid

system estimation. For the identi�cation part, we propose a scheme to identify an autonom-

ous complex stochastic dynamic system based on a black-box model, that is, the system is

modeled based on output data only. The system under study is a system whose underlying

space is the union of strong attraction domains. The system exhibits a behavior such that

it spends a long time in one strong attraction domain before transitioning to another one.

Systems showing this behavior can be found in many applications ranging from biology

to power systems to chemical processes. Considering the nature of this type of a system,

we model it as a hybrid system. In particular, it is a strong attraction domain featured

hybrid system (SAFHS). Two principal features of this type of a hybrid system are that

the boundaries between the modes (strong attraction domains) are nonlinear and the dy-

namic behavior within each mode can be highly nonlinear, e.g. limit cycle. Identi�cation

algorithms for this kind of hybrid system are not well developed. In this dissertation we

propose our �rst result for identi�cation of this type of system. The resulting model is hy-

brid in nature. We detect the multi-modal dynamics as well as local dynamics within each

mode, thus providing a complete uni�ed approach of identi�cation of the system dynam-

ics. The approach developed in this dissertation is based on �nite dimensional approxima-

tions of compact operators, spectral theory for non-reversible Markov chains, identi�cation

techniques for hidden Markov models (HMM), and identi�cation techniques for linear and

non-linear dynamics. Examples are carried out to verify our analysis and to illustrate the

effectiveness of the proposed algorithms. In the estimation part, we present a high accuracy,

low computational load method for a nonlinear/non-Gaussian hybrid system, motivated by

the need to get a better trade-off between ef�ciency and accuracy which is a crucial issue

ix



in real time estimation problems. The ef�ciency and accuracy of the proposed algorithm

are illustrated by examples. Moreover, its good performance makes it practical and robust

for tracking a target in a complex situation, as we demonstrate by a simulated maneuvering

target tracking example.
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CHAPTER 1

Introduction

1.1 Background

System identi�cation and state estimation are important branches in modern control theory.

In order to develop ef�cient and accurate control strategies, it is necessary to know "what

the system is" and "what the system is doing", i.e. to identify the system and to estimate

the state of the system.

Techniques that construct models from observed data are known as system identi�ca-

tion in the control area. System identi�cation bridges real applications and abstract math-

ematical models.

According to the degree of availability of the prior knowledge, system identi�cation

falls into three types of models [36]:

� White box models: In this case the model structure is usually completely derived

from �rst principles, i.e., physical, chemical, biological, economical, etc. laws, while

the parameters are either known or estimated from data.

� Black box models: No or very little prior knowledge is available. Both model struc-

ture and parameters are determined from experimental and mathematical modeling.

� Gray box models: These represent a compromise or combination between white and

black box models. Typically, the determination of as much as possible the model

structure relies on prior knowledge while the model parameters are mainly determ-

ined by measurement data.
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As for real applications, most system identi�cation algorithms are of the black box

or dark gray box type. There are a lot of well developed linear black-box models, while

identi�cation of nonlinear black-box models is a challenge because nonlinear processes can

have very many distinct dynamic properties. It is dif�cult to work out simple, accurate, and

general models for nonlinear systems, especially in black-box cases.

Large scale real engineered systems that are subject to performance and operational

constraints often exhibit complex behavior that was not anticipated at design time. This

type of systems can be found in numerous applications [48], ranging from power [2], [60]

and communication networks to biological and chemical processes [12], [21], where the

system dynamic model is nonlinear and needs to be identi�ed on the basis of experimental

data since it is hard to develop models from �rst principles. System identi�cation for these

systems is thus a nonlinear black-box problem. Moreover, it is frequently too complicated

for conventional identi�cation techniques to work out a global model that covers many

cases or branches for these systems. We denote these systems as complex dynamic systems.

An alternative modeling way for complex dynamic system is to utilize the system structure

or attributes for partitioning it into simpler components where conventional techniques

are easier to be employed and are accurate within each component. In this context, the

description of complicated dynamic systems is equivalent to a hybrid systemmodel. Hybrid

systems are heterogeneous dynamic systems whose behavior is determined by interacting

continuous and discrete dynamics [37]. Moreover, it has to be stressed here that in real

applications, the system usually suffers from both process noise and observation noise,

which makes the system a stochastic system. Note that in many cases, the process and the

observation noise are originated from system parameter variations as well as sensor noise.

Frequently noise processes of this type are small and in such instances the stochastic system

can be treated as a deterministic system disturbed by small noise. Note here by small noise

we mean the relative value of the noise to the typical values of the system state and output

is small.
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In this dissertation we are going to identify complex stochastic dynamic system based

on a black-box model, that is, the system is modeled based only on output data. Thus the

problem considered here is a data driven identi�cation approach.

As mentioned above, when a system is too complex to develop a global model, an

alternative choice is to develop local models and treat the global model as a composition

of the local models. That is, to model the complex system in hybrid system framework.

In order to develop a hybrid system model that represents the original system of interest,

it is necessary to specify the discrete states (modes), the number of the discrete states, the

modal dynamics and the continuous dynamics (the local dynamics) of the hybrid model.

The theory and identi�cation approaches for stochastic complex dynamic system in

hybrid system modeling framework are not fully developed, but there is a lot of current

research, some of which will be described in Section 1.2.1.

Given "what the system is" and the observations, it is also of interest to �nd out �what

the system is doing�. This is an estimation problem or, equivalently, a �ltering problem.

Bayesian estimation is a powerful approach for state estimation given stochastic system

state-space models. The central idea of Bayesian estimation is to construct the posterior

probability density function (pdf) of the state conditioned on all the available measure-

ments. In principle, an optimal (with respect to any criterion) estimate of the state may be

obtained from the pdf. [3]

In real applications, it is expected for an ef�cient method to be capable of on-line,

real-time estimation of the stochastic dynamic systems. In this case a recursive Bayesian

�ltering is a convenient solution. A recursive �ltering approach means that the measure-

ments can be processed sequentially rather than as a batch so that it is not necessary to

store the complete data set nor to reprocess existing data if a new measurement becomes

available.[3]

There exist many well developed recursive Bayesian �lters for general (non hybrid)

system state estimation, e.g. Kalman �lter for linear stochastic systems with Gaussian
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process and measurement noises, extended Kalman �lter, multigrid based �lter, particle

�lter, etc. for nonlinear systems with Gaussian or non-Gaussian noises. Moreover, the

existing recursive Bayesian �lters have been successfully extended to hybrid system cases.

For the estimation problem in this dissertation, we concentrate on the hybrid system

estimation for the following reasons: �rst, the hybrid system framework matches the model

we will develop for stochastic complex dynamic system through our identi�cation scheme;

second, hybrid models have been considered as an effective way of modeling a large class

of systems that exhibit complex system behavior [47], e.g. systems in �elds of signal

processing including seismic signal processing [34], digital communications [30] and target

tracking [32], where state estimation and mode detection are of considerable interests.

Some of the current hybrid system estimation algorithms based on recursive Bayesian

�lters will be described in Section 1.2.2.

1.2 Related Work

1.2.1 Identi�cation

In the last decade hybrid systems have been developed actively for the description of many

complex dynamic systems. In hybrid model description for complex dynamic system, a

considerable effort has been devoted to develop piecewise af�ne (PWA) models, see e.g.

[56], [57], [4], [19]. It has been shown that PWA models are equivalent to several classes

of linear hybrid system formulations.

Several different data driven techniques developed for PWA model identi�cation were

compared in [25] and a good overview was presented. One of the existing representative

PWA identi�cation approaches is based on algebraic techniques and generalized principal

component analysis (GPCA) [56], [57]. In this approach the identi�cation problem of the

multiple models is formulated as an identi�cation of a single "lifted" model in a bigger

space and then the parameters of the submodels identi�ed from the lifted model. In this ap-
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proach the order of the models is not required apriori and the number of submodels is estim-

ated as well. Another approach is based on a Bayesian procedure, where prior knowledge

about the modes and parameters of the model are assumed and then the data is classi�ed

through a data classi�cation procedure with the maximal probability [24]. The procedure

is carried out by sequentially processing the data and iteratively updating the parameter

vectors. The regions are subsequently estimated using a modi�cation of a standard multic-

ategory robust linear programming procedure (MRLP) [24]. In the Bayesian procedure the

model order and number of submodels are �xed. The third procedure, so-called bounded-

error procedure, is based on set membership identi�cation ideas where model parameters

are selected based on a bounded error criteria between the data and model output [4]. An-

other class of methods are so-called clustering procedures that utilize the assumption that

the PWA system is locally linear (i.e. in each mode) and consequently data points belonging

to the same submodel (and region) are spatially close. The method consists of constructing

"feature vectors" from the data and partitioning the feature vectors into q groups by apply-

ing a so-called K-means clustering algorithm. The clustering procedure assumes that the

model order and the number of submodels are �xed.

In general, the discrete state in PWA models is determined by a polyhedral partition of

the state-input domain, where on each partition a linear af�ne system model is considered.

Finally, the identi�cation of hybrid systems with nonlinear domain boundaries and non-

linear local dynamics has only been studied in a limited manner in the literature, e.g. [17].

1.2.2 Estimation

In the estimation of hybrid systems a multiple model (MM) approach is generally em-

ployed. It is assumed that the system obeys one of a �nite number of models at each time,

and switches between models are based on a �nite state Markov chain. Usually �lters are

matched to different models and the state estimation is then a weighted sum of the estim-

ate from each �lter. The method is decision free since the weights are determined as the
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probability of each model being correct given the current measurement.

A variety of algorithms has been proposed in the literature for the solution of MM

problems, e.g. the Interacting multiple model (IMM) [7] and the generalized pseudo-Bayes

(GPB) algorithms [11]. Both the IMM and GPB algorithms are based on deterministic

�nite Gaussian mixture approximations and have the assumption that the hybrid system

under study is Jump Markov Linear System. Basically, these two algorithms can both be

treated as the variants of a Kalman �lter in multiple modal application.

Since in reality, the system models always have nonlinear characteristics, extended Kal-

man �lters (EKF) are usually used as model matching �lters. However, because of its

�rst-order linearization of the nonlinear models, EKF can introduce large estimated er-

rors. Another possible strategy is to compute a �xed grid approximation to the �ltered

state density. This involves approximating the continuous-valued process by a �nite state

process with �xed states. The �ltered state density and �ltered state estimates can then be

computed easily at these grid points according to Bayes' rule. Unfortunately, such a �xed

grid approximation suffers from the curse of dimensionality [3].

Recently particle �ltering (PF) has been recognized as a superior alternative to tra-

ditional estimation methods as it is suitable for both linear/non-linear and Gaussian/non-

Gaussian systems. Particle �lter is a Monte Carlo based method that deduces the represent-

ation of the state distribution iteratively using large number of weighted samples (particles).

Estimators based on particle �lters have been successfully applied to stochastic hybrid sys-

tems [33] [9] [14].

In [33], a standard bootstrap PF has been extended to hybrid system estimation. A ma-

jor drawback of standard bootstrap PF in hybrid system estimation is that the number of

particles in a speci�c mode is proportional to the mode probability and, consequently, if

the mode probability is very low, only few particles can reside in that mode. To alleviate

this problem, several PF algorithms with �xed number of particles in each mode, e.g. the

interacting multiple model particle �ltering (IMMPF), the observation and transition-based
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most likely modes tracking particle �ltering (OTPF), etc. have been proposed [10], [5],

[49]. These methods have been shown to improve the estimation accuracy to a consider-

able extent. In [49], the algorithm OTPF is proposed and compared with KMPF, which is

a standard particle �lter that has complete knowledge of the real mode at all times (KMPF

can be considered the benchmark that all hybrid system particle algorithms should be com-

pared to). It turns out that for some problems OTPF performs not much worse than KMPF

but in other problems the performance is considerably worse. Another algorithm that has

been proposed is the so-called IMMPF [10], [5]. This algorithm has shown very promising

performance for a large class of problems but at the expense of heavy computational cost.

It can be seen that compared to IMMPF algorithms the merit of OTPF is its lower computa-

tional load but at the expense of accuracy since OTPF is biased and sensitive to observation

outliers.

As mentioned above, particle �lter is a sample (particle) based �ltering algorithm. At

each time step, all the particles take part in the calculation, which introduces relatively high

computational burden. Therefore, when a particle �lter is applied to a hybrid system, the

trade off between estimation accuracy and calculation ef�ciency is of major concern.

1.3 Problem Description and Approach

1.3.1 Identi�cation

In our research we propose a hybrid model description for a complex dynamic system based

on the system's inherent structure or attributes. The resulting hybrid model has discrete

states (modes) represented by nonlinear partition of the underlying space of the system as

well as nonlinear dynamics within each mode. The approach presented here is completely

different from the ones presented in [17] and provides further insight into the intricacies of

identi�cation of complex dynamic systems.

When analyzing large scale complex dynamic system, which is complex enough so that
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it contains many attractors, we are frequently interested in partitioning the underlying space

into a union of strong attraction domains. In particular, we are interested in partitioning the

space into regions where the system exhibits a behavior such that it spends a long time in

one region before transitioning to another one. We call such regions strong attraction do-

mains. The dynamics within each strong attraction domain can be quite complex and highly

nonlinear and, in fact, can contain more than one dynamic attractor of the system. There

are two principal reasons for analyzing the complex system in terms of strong attraction

domains. The �rst is for the identi�cation and estimation bene�t. In particular, realizing

that complex dynamic systems are frequently too complicated for conventional estimation

and identi�cation techniques we seek alternative methods that utilizes the system structure

for partitioning it into simpler components where conventional techniques are easier to be

employed. The second is for the control aim. Combining the knowledge of system behavior

corresponding to the strong attraction domains, one can design a control law for the system

and make it switch from the attraction domains that represent suboptimal or even failed

operations to the ones that represent desired or optimal behavior. We remark that if we

associate with each strong attraction domain a discrete valued modal variable and consider

the corresponding dynamics within each domain, the resulting model is hybrid in nature.

In order to differentiate the hybrid system described above from general hybrid systems

we call this speci�c hybrid system a Strong Attraction domain Featured Hybrid System,

denoted as SAFHS. In the above description the complex dynamic system of interest is a

SAFHS with two features: �rst, the system switches between unknown nonlinear dynamics

and second, the boundaries between the strong attraction domains are nonlinear.

Our research aims at detecting modal clusters, i.e. the strong attraction domains (modes)

of the SAFHS, and the modal dynamic behavior of SAFHS. Then the data can be clas-

si�ed into modal clusters where the local dynamics within each mode can be identi�ed

based on the classi�ed data series. As a result this allows for identi�cation of nonlinear

local dynamic behavior such as limit cycles. Moreover, since there is no assumption for
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the structure of the underlying space partition, the partitioned regions can have nonlinear

boundaries.

The methodology to be developed in this dissertation applies to discrete time system

whose state behavior is governed by a Markov process and whose output is a noise corrup-

ted function of the state. In particular, we consider an autonomous discrete time dynamic

system given by a state space model of the form

xk+1 = f (xk;vk) (1.1)

yk = g(xk)+wk

where xk 2 Rnx is the state; yk 2 Rny is the output, vk and wk are process and output noises.

We assume that the process noise is i.i.d. (independent and identically distributed). In this

case xk is a Markov process and yk can be treated as a hidden Markov process. For x 2 Rnx

and a Borel set A2B(Rnx)we let p(x;A) = Pr(xk+1 2 A jxk = x) be the transition function

for the process. Moreover, we denote byM (Rnx) the space of all probability measures on

Rnx :

Example 1 A simple example of a dynamical system that has strong attraction domains

is the case when system (1.1) is deterministic system perturbed by additive noise which

has q asymptotically stable equilibrium points with domains of attraction A1; : : : ;Aq that

form a partition of the underlying space. If the process noise vt is assumed to be small

(with variance of order ε2) it can be shown using large deviations theory that the transition

probabilities between domains of attraction are of the order O(e�
1

ε2 ) (see [18]).

As we mentioned earlier, we are going to model a complex system as SAFHS and

develop an identi�cation procedure based on output data. The basic identi�cation problem

is to identify the regions where the dynamics are concentrated, the transition dynamics

between the regions, and the dynamics within each region. We note that for a given division

of the state space into regions there is a corresponding division of the output space. As a
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result, when we discuss identi�cation of multi-modal behavior in this dissertation we are

either discussing identi�cation in the output or state space and the space of interest should

be clear from the context at each time.

To make the objectives more precise assume that the state space can be treated as the

union of strong attraction domains A1, : : : ; Aq of Rnx for which the system dynamics are

concentrated on and switch between. Given a sequence of output data y1;y2; : : : the problem

we consider is the identi�cation of the following quantities.

� Identi�cation of the number q of state partition components and the partition A1, : : : ;

Aq of the state space.

� Identi�cation of the dynamics that govern the transition dynamics between the parti-

tion components.

� Identi�cation of the dynamic laws that govern the system dynamics within each par-

tition component.

The approach developed in this dissertation is based on �nite dimensional approxima-

tions of compact operators, spectral theory for non-reversible Markov chains, identi�cation

techniques for hidden Markov models (HMM), and identi�cation techniques for linear and

non-linear dynamics. It has the following main steps.

1. For the identi�cation of the number of partition components as well as the partition

itself we utilize spectral theory for non-reversible Markov chains and HiddenMarkov

Models (HMM). In particular, we discretize the state and output spaces and approx-

imate the underlyingMarkov process and corresponding output process by �nite state

processes. Then utilizing HMM techniques we identify the state and transition laws

for the Markov chain. Finally, spectral theory for non-reversible Markov chains is

used to identify the number of partition components as well as the partition itself,

and the transition law between those components. We remark that the coarseness of

10



the discretization of the underlying state and output spaces affects the accuracy of

the description of the (boundary of) the partition components but no restriction is put

on the "shape" of the partition.

2. For the identi�cation of the local dynamics within each partition component we util-

ize conventional system identi�cation ideas. In particular, once we have identi�ed the

partition A1, : : : ; Aq of the state space and the association between state and output

sequences we identify a corresponding partition of the output space. We then map

the output sequence onto the partition components of the output space. Based on a

preliminary analysis of the output sequences within each output partition component

we choose a identi�cation procedure for the dynamics for that component. We em-

phasize that for the identi�cation of the local dynamics we use the original data (i.e.

not discretized). Furthermore, based on the local behavior, the type of model used

within each partition component can different.

Once we complete the above identi�cation procedure we obtained a �nite collection of

local dynamic models as well as a Markov transition law that governs the switching among

the local models. The resulting model is therefore of hybrid nature, i.e. associated with

each local model is a modal variable taking value in a �nite set, the dynamics of the modal

variable is governed by a �nite state Markov process. Furthermore, each local model is

associated with a particular partition component of the output space.

The identi�cation procedure described above is developed for a class of systems de-

scribed by system equation (1.1). Furthermore, we remark that the procedure assumes or

requires the following.

� The stochastic complex dynamic system of interest is subjected to small process

and observation noise so that the stochastic system can be treated as a deterministic

system disturbed by small noise. Note, as before, here by small noise we mean the

relative value of the noise to the typical values of the system state and output is small.
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� The system dynamic model is autonomous. Therefore, external measurable inputs

are not included or have been incorporated through a closed loop control policy.

� The state space can be partitioned into a �nite number of strong attraction domains,

i.e. sets that the system spends a long time in before transitioning to another such do-

main. This requires in particular that the local dynamics are stable in an appropriate

sense.

1.3.2 Estimation

In hybrid system estimation, the system is usually described by a stochastic state-space

model,

xk = frk(xk�1;vk) (1.2)

yk = grk(xk;wk)

where rk is a discrete-time M-state Markov chain with transition probabilities πs;t , Prfrk
= t j rk�1 = sg for any s, t 2M, whereM, f1;2; � � � ;Mg, xk 2Rnx is the system state and

yk 2 Rny is observation at time k. The variables vk 2 Rnv and wk 2 Rnw are process and

measurement noise vectors at time k and are assumed to be of known statistics, which can

be Gaussian or non-Gaussian. The functions frk and grk are the state function and observa-

tion function respectively in mode rk at time k. It is assumed that the initial distribution of

state x0 is known.

The estimation problem we consider is to detect the mode rk and estimate the state xk

based on the measurements yk and the system model formulated above.

As described in Section 1.2.2, particle �ltering is a superior candidate for linear/non-

linear and Gaussian/non-Gaussian system estimation and has been successfully applied

to stochastic hybrid systems. However, it suffers from the relatively high computational

burden. In particular, when particle �ltering is applied to a hybrid system, the trade off
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between estimation accuracy and calculation ef�ciency is of principal concern.

In this dissertation we are going to propose a new high accuracy and reduced compu-

tational load algorithm for stochastic hybrid system state estimation and mode detection.

The proposed algorithm combines two existing particle �ltering based algorithms: OTPF

and IMMPF. The basic idea of the new algorithm comes from observing the estimation

performance of the IMMPF algorithm. It can be seen that in the IMMPF algorithm most

of the time the particles in the real mode (i.e. correct mode) dominate the estimation, i.e.

the particles of the real mode have dominant weights compared to the particles of other

modes. Furthermore, we observe that in this situation (i.e. when the real mode dominates

the estimation) the OTPF algorithm is an accurate algorithm for estimating the mode and

state. On the other hand, when mode switching takes place or when there are observation

outliers, the dominance of one mode is not obvious. In this case, it is not suitable to just

retain particles in the mode corresponding to the largest weight and evolve based on them

like what is done in OTPF. In fact in this case the IMMPF is a better choice to get high ac-

curacy estimation. Inspired by this, we present here an algorithm that combines OTPF and

IMMPF by introducing a threshold value to select which estimation algorithm should be

used at each time step. This new technique aims at improving the computation ef�ciency

without losing much estimation accuracy.

1.4 Outline

The dissertation is organized as follows. In Chapter 2, some of the basic mathematical

preliminaries and concepts, including concepts relevant to Markov processes, attributes of

process with small noise, �nite dimensional approximations of Markov processes, meta-

stability and multi-modal behavior, hidden Markov models, non-negative matrix factoriza-

tion, kernel principal component analysis (KPCA) as well as IMM estimation structure and

particle �ltering, are introduced. In Chapter 3, the identi�cation of complex dynamic sys-

tem in SAFHS framework is proposed. In particular, the partitioning of underlying space
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of the complex dynamic system will be speci�ed. That partition corresponds to the discrete

state (mode) of SAFHS. Moreover, the modal transition probability and the local dynamics

will be identi�ed. Chapter 3 is the main contribution in this dissertation. Chapter 4 tackles

the hybrid system estimation problem. A new particle �ltering based algorithm is proposed

to get a better trade off between calculation ef�ciency and estimation accuracy. In Chapter

5 conclusions and future work are discussed.
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CHAPTER 2

Preliminaries

In this Chapter, we give an overview of some of the mathematical techniques that will be

employed in the solution of the complex dynamic system identi�cation problem. A brief

introduction to IMM estimation structure and particle �ltering is also included, upon which

the main results of system estimation rely.

2.1 Concepts for Markov Process

We begin by introducing a couple concepts of Markov Chains that are used frequently in

the remainder of the dissertation.

De�nition 1 A Markov chain on N=f1; � � � ;Ng is called reversible if it's transition matrix

P 2 RN�N satis�es

π ipi j = π jp ji; 1� i; j � N

A Markov chain that is not reversible is said to be non-reversible.

De�nition 2 A Markov chain on N is called ergodic if it is irreducible, positive recurrent

and aperiodic. Equivalently, it can also be de�ned as a process whose statistical properties

(such as its mean and variance) can be deduced from a single, suf�ciently long sample

(realization) of the process.

2.2 Process with Small Noise

Here we discuss properties of a stochastic system with small noise. Consider the stochastic

system (1.1), and suppose the process noise and observation noise are small. We consider
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the special case of (1.1):

xε
k+1 = b(xε

k)+ εσ (xε
k)vk; x

ε
0 = x (2.1)

yε
k = g(xε

k)+ εwk

Assume that vk is a sequence of i.i.d. random variables with distribution with density q(v)

with mean zero and �nite second moments and wk is a standard white noise process (mean

zero and unit variance) independent of vk: The processes xε
k and y

ε
k can be viewed as being

the results of a small additive random perturbation of the deterministic system

xdk+1 = b
�
xdk
�
; xd0 = x (2.2)

ydk = g
�
xdk
�

In the stochastic system (2.1) we assume for simplicity that EvkvTk = I . Furthermore we

assume that b : Rnx ! Rnx and σ : Rnx�nr ! Rnx satisfy a Lipschitz condition and grow no

faster than linearly, i.e. there existsC > 0 so that

kb(x)�b(y)k � Ckx� yk ;
q

∑i; j
�
σ i j (x)�σ i j (y)

�2 �Ckx� yk (2.3)

kb(x)k2 � C2
�
1+kxk2

�
; ∑i; j

�
σ i j (x)

�2 �C2�1+kxk2�

Moreover, assume g : Rnx ! Rny is Lipschitz, i.e. for someC > 0;

kg(x)�g(y)k �Ckx� yk (2.4)

For a sequence rk let ri: j =
�
ri;ri+1; : : : ;r j

�
and for two sequences rk and sk de�ne the

distance between the strings ri: j and si: j as

dist
�
ri: j;si: j

�
=

q
∑ j
l=i krl� slk

2
2
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where k�k2 is the standard Euclidean norm.

The following theorem is a discrete time adoption of results from [18].

Theorem 1 For any L0 > 0 and δ > 0 we have

E
xε
k � xdk

2 � ε
2aε (k)

for a monotonically increasing function aε (k) that depends on x and C: Furthermore,

lim
ε!0

Pr

 
sup
0�k�L0

xε
k � xdk

> δ

!
= 0

Proof. We note that since vk is a sequence of i.i.d. random variables it follows from (2.1)

that xε
k and vk are independent. Now,

E
xε
k+1� xdk+1

2 = E
b(xε

k)�b
�
xdk
�
+ εσ (xε

k)vk
2 (2.5)

= E
b(xε

k)�b
�
xdk
�2+2εE Db(xε

k)�b
�
xdk
�
;σ (xε

k)vk
E

+ε
2E kσ (xε

k)vkk
2

For the second term on the right hand side of (2.5) we have using the independence of xε
k

and vk

E
D
b(xε

k)�b
�
xdk
�
;σ (xε

k)vk
E
= E hb(xε

k) ;σ (x
ε
k)vki�E

D
b
�
xdk
�
;σ (xε

k)vk
E

= E∑i bi (xε
k)∑ jσ i j (xε

k)v
j
k�E∑i bi

�
xdk
�

∑ jσ i j (xε
k)v

j
k

= ∑i∑ jEbi (xε
k)σ i j (x

ε
k)Ev

j
k�∑i∑ jEbi

�
xdk
�

σ i j (xε
k)Ev

j
k

= 0
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Thus we have (again using the independence of xε
k and vk)

E
xε
k+1� xdk+1

2 = E
b(xε

k)�b
�
xdk
�2+ ε

2E kσ (xε
k)vkk

2

= E
b(xε

k)�b
�
xdk
�2+ ε

2E hσ (xε
k)vk;σ (x

ε
k)vki

= E
b(xε

k)�b
�
xdk
�2+ ε

2∑i∑ j∑l Eσ i j (xε
k)σ il (x

ε
k)Ev

j
kv
l
k

= E
b(xε

k)�b
�
xdk
�2+ ε

2∑i; jE
�
σ i j (xε

k)
�2

� C2E
xε
k � xdk

2+ ε
2C2
�
1+E kxε

kk
2
�

Then by Lemma 2 below we have (assuming for simplicity that C 6= 1) and noting that

E
xε
0� xd0

2 = 0
E
xε
k � xdk

2 � ε
2C2
�
1+E kxε

kk
2
� 1�C2k
1�C2 (2.6)

Thus if we show that 1+ E
xε
k
2 is bounded above we have the �rst statement of the

Theorem. For this note that (using a similar argument as before)

1+E
xε
k+1
2 = 1+E kb(xε

k)+ εσ (xε
k)vkk

2

= 1+E kb(xε
k)k

2
+2εE hb(xε

k) ;σ (x
ε
k)vki+ ε

2E kσ (xε
k)vkk

2

= 1+E kb(xε
k)k

2
+ ε

2E kσ (xε
k)vkk

2

= 1+E kb(xε
k)k

2
+ ε

2∑i; jE
�
σ i j (xε

k)
�2

� 1+C2
�
1+E kxε

kk
2
�
+ ε

2C2
�
1+E kxε

kk
2
�

= 1+C2
�
1+ ε

2��1+E kxε
kk
2
�

Thus, by Lemma 2

1+E kxε
kk
2 �

�
1+kxk2

��
C2
�
1+ ε

2��k+ 1� �C2 �1+ ε2
��k

1�C2 (1+ ε2)
= �aε (k)
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Therefore, (2.6) becomes

E
xε
k � xdk

2 � ε
2C2
�
1+E kxε

kk
2
� 1�C2k
1�C2 � ε

2C2
1�C2k
1�C2 �a(k) = ε

2aε (k) (2.7)

Turning now to the second statement of the Theorem. De�ne

zεi+1 =

8><>:
xε
i+1� xdi+1

 ; if max
1� j�i

xε
j � xdj

< δ

zεi ; otherwise

Then

Pr

 
max
1�k�L0

xε
k � xdk

> δ

!
= Pr

�
zεL0 > δ

�
� 1

δ
2E
h
(zεL)

2
i

by Chebyshev's inequality. By de�nition of zεi , if max
1� j�L0�1

xε
j � xdj

 < δ then zε
L0
=xε

L0
� xd

L0

 and else zεL0 = zεL0�1: Similarly, if max
1� j�L0�1

xε
j � xdj

> δ and max
1� j�L0�2

xε
j � xdj

<
δ then zε

L0
= zε

L0�1 =
xε

L0�1� x
d
L0�1

. Continue in this manner until we reach a k̄ so that
max

1� j�k̄�1

xε
j � xdj

 < δ and thus zεk̄ =
xε

k̄ � x
d
k̄

 : Furthermore, we note that zεL0 = zεL0�1 =
: : := zεk̄ =

xε

k̄ � x
d
k̄

 and thus
Pr

 
max
1�k�L0

xε
k � xdk

> δ

!
= P

�
zεL0 > δ

�
� 1

δ
2E
��
zεL0
�2�

=
1

δ
2E
xε

k̄ � x
d
k̄

2
� 1

δ
2 ε
2aε
�
k̄
�

Lemma 2 Consider a sequence fk that satis�es

fk+1 � a fk+b
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for some positive constants a and b: Then

fk �

8><>: f0+b1�a
n

1�a a 6= 1

f0+nb a= 1

Proof. Trivial by iteration.

Let xε
k and x

d
k be the solutions of (2.1) and (2.2) and let x

ε

0:L0
= (xε

0; : : : ;x
ε

L0
) and similarly

for xd
0:L0
: De�ne as before

dist
�
xε

0:L0 ;x
d
0:L0
�
=

q
∑L
0

i=0
xε
k � xdk

2
The following follows immediately from Theorem 1.

Proposition 3 For any L0 > 0 and δ > 0

lim
ε!0

Pr
�
dist
�
xε

0:L0 ;x
d
0:L0
�
> δ

�
= 0

Proof. De�ne ek =
xε
k � xdk

 ; k= 0; : : : ;L0 and view e= �e1; : : : ;eL0�T as a random vector
in RL

0
: Then by equivalence of norms on RL

0
we have

kek∞ � kek2 �
p
L0 kek∞

Therefore, if kek2 > δ then kek∞ >
δp
L0
and thus

Pr(kek2 > δ )� Pr
�
kek∞ >

δp
L0

�

Noting that kek2 = dist
�
xε

0:L0
;xd
0:L0
�
and kek∞ = max

0�k�L0

xε
k � xdk

 completes the proof.
Now de�ne dist

�
yε

1:L0
;yd
1:L0
�
in a similar way as dist

�
xε

0:L0
;xd
0:L0
�
.
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Proposition 4 For any L0 > 0 and δ > 0;

lim
ε!0

Pr
�
dist
�
yε

1:L0 ;y
d
1:L0
�
> δ

�
= 0

Proof. It follows using a similar argument as in the proof of Theorem 1 that for any

k 2
h
0; : : : ;L0

i
;

E
yε
k � ydk

2 = E g(xε
k)�g

�
xdk
�
+ εwk

2 = E g(xε
k)�g

�
xdk
�2+ ε

2E kwkk2

� CE
xε
k � xdk

2+ ε
2E kwkk2 �Ca(ε)+ ε

2E kwkk2 = A(ε)

Also,

Pr
�yε

k � ydk
2 > δ

�
� 1

δ
2E
yε
k � ydk

2 � 1
δ
2A(ε)

Thus, Pr
�yε

k � ydk
2 > δ

�
! 0 as ε! 0: The rest of the proof now follows from a similar

argument as before.

Note that the above proofs for a discrete time stochastic system can be extended easily

to a discrete time discrete state stochastic system case.

2.3 Finite Dimensional Approximations of Markov Processes

In this section we present a �nite dimensional approximate model for a class of general

Markov processes such as the one in (1.1).

When the process noise sequence in the �rst equation in (1.1) is a sequence of i.i.d.

random variables the state process xk is a Markov process. Let p(x;A), x2Rnx , A2B(Rnx)

be the transition function for the process. Then if the initial state x0 has distribution ν 2

M (Rnx), where M (Rnx) denotes the set of probability measures on Rnx ; the distribution

of x1 is

Pν (A) =
Z
p(x;A)ν (dx)
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where P is the so-called Perron-Frobenius operator. By iteration the distribution of xk is

Pkν (A) : Furthermore, if the process is ergodic it is well known thatPkν (A)! µ (A) as

k! ∞ where µ 2M (Rnx) is the invariant measure for the process. The invariant measure

can be shown to be a �xed point of the operatorP:

Let m be the Lebesgue measure on Rnx and assume that p(x; �) has a transition density

t (x;y) with respect to m: Obviously t (x; �) 2 L1 (m) and t (x;y)� 0: Note that we denote by

LK (m) the LK on Rnx . In this case we can considerP as an operator on L1 (m) ;

Pg(y) =
Z
Rnx
t (x;y)g(x)m(dx) for all g 2 L1 (m)

Obviously, if g is the density for ν thenPg is the density forPν : If the transition density

t (x;y) satis�es Z Z
t (x;y)m(dx)m(dy)< ∞

then P : L2 (m) ! L2 (m) can be shown to be compact. In this case if Vl; l � 1 is a

sequence of subspaces of L2 and Ql : L2 ! Vl is a sequence of projections such that Ql

converge to the identity on L2 as l ! ∞; then the approximate operator Pl = QlP has

the property kP�Plk ! 0 as l ! ∞: If we let B1; : : : ;Bl be a partition of Rnx and let

Vl = spanfϕ1; : : : ;ϕ lg where ϕ i are the characteristic functions of Bi and we choose Ql to

be the Galerkin projection of L2 onto Vl then the approximate Pl has a (stochastic) matrix

representation with entries p̄i j =
D
Pϕ j;ϕ i

E
where h�; �i is the inner product on L2:

In the following analysis it is assumed that the approximate �nite dimensional Markov

Chain for the dynamic system is Pl . Indeed, if a �nite dimensional transition matrix P is

constructed from a data sequence using a counting process as that will be described later

and the process satis�es some appropriate technical conditions then for suf�ciently large

data records the data constructed transition matrix converges to the matrix Pl:
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2.4 Metastability and Multi-modal Behavior

In this section, we introduce the notion of metastability and its relationship to multi-modal

behavior.

Let A and B be measurable sets on Rnx ; assume that the distribution of the initial state

is the invariant measure µ and de�ne the transition probability from B into A as

p(A jB) = Pr(ξ 1 2 A jξ 0 2 B) =
Pr(ξ 1 2 A;ξ 0 2 B)

Pr(ξ 0 2 B)
=

R
B p(ξ ;A)µ (dξ )

µ (B)

if µ (B) > 0; and p(A jB) = 0 otherwise. Note that p(A jB) characterizes the dynamic

�uctuations of the distribution of the Markov chain within the invariant distribution µ: The

following de�nition is from [22].

De�nition 3 A Borel set A is said to be invariant if p(A jA)= 1 and metastable if p(A jA)�

1: Therefore, a metastable set is almost invariant.

If a set A is invariant then a trajectory that starts in A stays in there forever. On the other

hand if the initial state belongs to a metastable set then the system state will stay there for a

long time but will eventually exit the set with positive probability, which matches the multi-

modal behavior of the system of interest in this dissertation where the system is represented

by SAFHS. Consider all possible partitions A1; : : : ;Aq of the state space Rn; with [qi=1Ai =

Rn and Ai \A j = 0 unless i = j: Finding a partition such that ∑qi=1 p(Ai jAi ) � q, i.e. a

metastable partition, is of interest. Note that the partition sets obtained in this manner

are in fact the partition regions of interest of the underlying space of the SAFHS system

under consideration. For such a partition, if it exists, the transitions between the metastable

components can be approximated by an appropriately de�ned q dimensional Markov chain:

This Markov chain describes the system's modal dynamics.

We remark that the partition region estimation of the underlying space of the system of

interest is closely related to the characterization of a metastable partition in the same space.
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The characterization of a metastable partition is in general a dif�cult problem. This

problem has been considered in detail in [22], [42] for a reversible Markov chain. As

most real engineered systems are represented by a non-reversible Markov process, in our

research an approach for identifying a metastable partition for the general non-reversible

case for �nite dimensional Markov chains [38] will be utilized.

With the concept of metastability, part of the objectives of the proposed identi�cation

approach for SAFHS can be restated as identifying from noisy output data the metastable

partition of the state space and the dynamics of the metastable components.

2.5 Hidden Markov Models

When only output data is available from measurements, system (1.1) can be viewed as a

HMM process. Next we brie�y introduce the concept of HMM.

HMM is a statistical model in which the system being modeled is assumed to be a

Markov process with unknown parameters and this Markov process is observed by out-

comes generated according to the associated state-output probability distribution. A �nite

dimensional HMM is characterized by the following: N, the number of states in the model;

M, the discrete alphabet size of observations; P= fpi jg, the state transition probability dis-

tribution; B= fb j(l)g, the state to observation probability distribution; π0 = fπ0i g, the ini-

tial state distribution [31]. By denoting the individual states and the individual observation

symbols as X =
�
x1; : : : ;xN

	
and Y =

�
y1; : : : ;yM

	
, express pi j = P(x̄k+1 = x j j x̄k = xi),

b j(l) = Pfȳk = yl j x̄k = x jg and π0i = Pfx̄0 = xig where x̄k and ȳk are the state and output

of the Markov chain at time k, respectively, and i; j 2 f1; :::Ng, l 2 f1; :::Mg. If the under-

lying state process is ergodic then there exists an unique stationary distribution π = fπ ig;

i 2 f1; :::Ng such that

lim
n!∞

pni j = π j

where pni j is the (i; j) entry of Pn:
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The basic identi�cation problem for the HMM is the following: given an output ob-

servation series, estimate the corresponding state sequence and estimate model parameters

λ = (P;B;π). Since the complex dynamic system (1.1) can be approximated by a HMM,

solutions to above problems for the HMM are suitable for characterizing the dynamic sys-

tem. Estimation of the state sequence from the observation sequence is one of the principal

tasks in HMM modelling. In [16] and [53] several algorithms for this purpose are dis-

cussed. The newly developed algorithm in [53] has been shown to have better performance

than the classic Baum-Welch algorithm. Finally, for the complex hybrid system the identi-

�cation of one additional parameter, i.e. the transition probability between modes, is also

treated as a modelling problem in order to describe the system behavior between modes as

well as within each mode. In fact, the identi�cation of the modal transition matrix depends

on the properties of the transition matrix P.

2.6 Non-negative Matrix Factorization (NMF)

NMF is a recently proposed method for generating a low rank approximation for a matrixV

with non-negative entries (in the remainder of the dissertation we refer to such matrix as be-

ing non-negative), see e.g. [28], [29]. In particular, given a non-negative matrix V 2Rn�m,

NMF �nds an approximate factorization V � WH into smaller size non-negative matrix

factors W 2 Rn�r and H 2 Rr�m, where r � min(n;m). NMF can capture the intrinsic

structure underlying the object being described by the matrix V and has been successfully

applied to a variety of data sets, e.g. in image processing, document classi�cation, acous-

tics, and so on. In [53], NMF has been utilized for state estimation for a hidden Markov

process.

Given a non-negative matrix V 2 Rn�m, there are no closed form solutions for �nding

non-negative factors W and H which satisfy V = WH. Lee, et al. proposed an iterative

numerical algorithm to minimize the error betweenV and the calculatedWH. The iterative

algorithm for NMF developed in [28] is as follows,
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� InitializeW and H to random non-negative matrices

� repeat until convergence

� Hi;l  Hi;l
∑sWs;i

Vs;l
(WH)s;l

∑sWs;i

� Wk;i Wk;i
∑ jHi; j

Vk; j
(WH)k; j

∑ jHi; j

We remark that it is shown in [28] that the W and H matrices calculated in this way

minimize the Kullback-Leibler divergence, which is a matrix distance measure, between V

andWH.

When NMF is utilized in seeking only aW; H pair which satis�esWH = V , then the

uniqueness of the solution of the NMF is not necessarily important. However, whenW and

H have physical meanings and are calculated by applying NMF to the corresponding matrix

V , then the existence of unique solution to NMF is of primary importance. Unfortunately,

getting a unique solution is not guaranteed in the NMF algorithm.

Denote real true model matrices as W tr and Htr which satisfy V =W trHtr. We note

that for any invertible matrix T we have V =W trHtr =W trTT�1Htr and therefore, if we

de�ne W =W trT and H = T�1Htr we see that there exist a large number of matrices W

and H; that lead to a positive factorization of V; i.e. any T that results in positive factors

will suf�ce. Recall thatW;W tr 2 Rn�r and H;Htr 2 Rr�m, where r �min(n;m). It is easy

to show that in the r = 2 case NMF always results inW and H matrices such that V =WH

andW =W trT , H = T�1Htr, where T is a permutation matrix. That is, when r = 2, NMF

has a unique solution up to a permutation matrix. However, such uniqueness of NMF is not

guaranteed for r > 2.

In many applications the data matrix V is generated as the product of real true model

matrices W tr and Htr. In such cases when NMF is utilized to recover the (true) system

matrices the issue of the uniqueness becomes of paramount importance. The uniqueness of

NMF solution has been discussed in few papers for speci�c situations, see [50], [13], [27].
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2.7 Kernel Principal Component Analysis

In this section we introduce so-called kernel principal component analysis (KPCA). For

completeness, we state background on principal component analysis (PCA) and kernel

methods �rst.

PCA is a classical method that is commonly used to �nd relationship between points in

a data set with high dimensionality and in turn to reduce the dimensionality of a data set

consisting of a large number of interrelated variables, while retaining as much as possible

of the variation present in the data set [23]. In particular, PCA provides a sequence of best

linear approximations to a given high-dimensional observation. The basic procedure for

PCA is to execute an eigenvalue decomposition of the covariance matrix of the data, the

highest eigenvalues correspond to the eigenvectors that represent the principal components.

Once the principal components (major contributing components) have been found, the data

can be compressed from the higher dimension space into a lower dimension space charac-

terized by the principal components without much loss of information. PCA is a popular

model reduction or data compression algorithm. However, its effectiveness is limited by its

global linearity. Good tutorials on PCA can be found in [45], [44].

Kernel methods [55], [41] map an input vector xi 2 RL to a high dimensional feature

space of vectors Φ(xi), where Φ : RL! RH , L� H, through a nonlinear mapping. When

a kernel function k(u;v) satis�es the so-called Mercer's condition [55], the inner product

in the high dimensional feature space can be calculated using a positive de�nite kernel

function without making direct reference to the vectors Φ(xi), i.e. using the relationship

k(xi;x j) =


Φ(xi);Φ(x j)

�
. This is known as the �kernel trick�. The most commonly used

kernels include the Gaussian kernel where k(xi;x j) = exp(�
kxi�x jk
2σ2 ) and the polynomial

kernel where k(xi;x j) =
�
1+ xTi x j

�p. The Gaussian kernel gives a feature space of in�nite
dimension, while the polynomial kernel gives a feature space of �nite dimension.

The idea of kernel methods can help solving the nonlinear problem in the input space
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through just performing conventional linear algorithms in the high-dimensional feature

space, e.g. the kernel recursive least square (KRLS) algorithm [51], [15]. Kernel prin-

cipal component analysis (KPCA) [39], [40] is also such a algorithm. As a nonlinear

method, KPCA is nothing but the PCA in the feature space associated with a kernel func-

tion [61]. KPCA �nds principal components that are nonlinearly related to the input space

by performing PCA in the high dimensional feature space, where the discovery of low-

dimensional latent structure is expected to be easier.

2.7.1 KPCA

Here we give the brief procedure of the KPCA, the reader is referred to [39], [40] for

detailed information.

� Select N data points x1 � � �xN in a L dimensional space as a training set.

� Choose an appropriate kernel function k(:; :) and calculate k(xi;x j), i; j 2 f1; � � � ;Ng

� Center in order to remove the mean from data Φ(x) in feature space, i.e.

�k(xi;x j) = k(xi;x j)�Exi[k(xi;x j)]�Ex j [k(xi;x j)]+Exi[Ex j [k(xi;x j)]]

� Let K , f�k(xi;x j)g and note that K = KT . Let K have eigenvalues λ
n and eigen-

vectors αn. (We note that due to symmetry the eigenvalues and eigenvectors are

real.) Then, for samples in the feature space, the most representative m dimensional

features are the following vectors:

N
∑
j=1

α1jk(x j;x)p
λ
1

;

N
∑
j=1

α2jk(x j;x)p
λ
2

; � � � ;

N
∑
j=1

αmj k(x j;x)
p

λ
m (2.8)

where α1j ; � � �αmj are the m eigenvectors associated with the �rst m largest eigenval-

ues λ
1; � � � ;λm of K. Based on the essence of the PCA methodology, the feature
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extraction procedure based on (2.8) produces the minimum reconstruction error.

2.8 IMM Estimation Structure

IMM estimation was �rst proposed by Blom in [8] and has triggered a large variety of

related approaches to hybrid system state estimation and mode detection. The IMM estim-

ator requires the same number of �lters as the number of system modes. With the �lters

operating in parallel at all times, all modes are processed in parallel and the mode prob-

ability is used to detect the correct mode. Moreover, a combination (weighted sum) of the

state estimates of all �lters yields the state estimate [32]. The IMM estimator has shown

excellent estimation performance but is of relatively high computational cost. Here we give

an introduction to the IMM estimation structure.

Consider a �lter circle from one measurement update up to and including the next

measurement update. In the IMM estimation scheme, this circle is decomposed into a

sequence of transitions [7]:

prk�1jyk�1 ! prkjyk�1

pxk�1jrk�1;yk�1 ! pxk�1jrk;yk�1

pxk�1jrk;yk�1 ! pxkjrk;yk�1

prkjyk�1 ! prkjyk

pxkjrk;yk�1 ! pxkjrk;yk

This can be generalized into three steps [43]: 1) mixing/interaction of the mode-conditioned

estimates at the beginning of the estimation cycle; 2) mode-conditioned state estimation

(prediction and update of the state), done independently for each mode by appropriate

(mode-matched) �lter modules; 3) mode probability update and estimation, done using the

outputs of all the mode-conditioned �lters.
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The IMM estimator proposed by Blom and Shalom originally made use of Gaussian

mixtures as an approximate information state. Since then several algorithms that fall under

this estimation structure have been presented. Of special interest are recent algorithms that

combine IMM and particle �ltering, readers can resort to [5] [10] [6] for more information.

2.9 Particle Filtering

A Particle �lter is a fairly recently developed estimation method which can be used in both

linear and nonlinear system with Gaussian or non-Gaussian noise processes. A particle

�lter is a sequential Monte Carlo based method that allows for a complete representation

of the state distribution using weighted samples (particles). The particles evolve randomly

in time according to a simulation-based rule. The weights of the particles are updated

according to Bayes' rule.

Next we will introduce the basic idea of particle �ltering for the system model (1.1).

The key idea of particle �ltering is to represent the required posterior distribution p(xkjyk; : : :,

y1) = p(xkjy1:k) by a set of random samples fxik; i= 1; � � � ;Nsg with associated weights ω it :

pxkjy1:k �=
Ns
∑
i=1

ω
i
kδ (xk� xik)

and to compute estimates based on these samples and weights [3]. It can be shown that the

weights satisfy the iterative equation,

ω
i
k = ω

i
k�1
p(ykjxik)p(xikjxik�1)
q(xikjxi0:k�1;y1:k)

where q(�) is called the importance density [3]. Samples xik are generated from q(�).

There are several ways for choosing q(�). In the bootstrap particle �lter [20] (also

called condensation algorithm) q(�) is chosen to be p(xkjxik�1). This seems to be the most

common choice of importance density since it is intuitive and simple to implement. With
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this choice of q(�), the weight evolution becomes

ω
i
k = ω

i
k�1p(ykjxik)

The above bootstrap algorithm can be extended to hybrid system estimation easily as in

[33] where the details can be found.
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CHAPTER 3

Identi�cation of Multi-Modal Complex Dynamic System

In Section 1.3.1 we introduced the identi�cation problem that we study in the dissertation

and how we can treat the system of interest as a SAFHS system and identify it through

the modeling of SAFHS. In this Chapter, we develop the scheme of the identi�cation of

SAFHS based on output data. The basic identi�cation procedure includes two parts, �rst

is to identify the multi-modal behavior of the SAFHS system, which includes identifying

the regions where the dynamics are concentrated and the transition dynamics between the

regions. The second part of the identi�cation procedure is to detect the dynamics within

each region, i.e. to detect the local dynamics. These two identi�cation tasks are presented

in detail below.

3.1 Identi�cation of Multi-Modal Behavior

In this section we formulate the identi�cation of the system's multi-modal behavior. We

consider the discrete time dynamic system given by (1.1), where the state process xk is a

Markov process and yk is the output of the corresponding hidden Markov process. Suppose

that the output space is discretized resulting in the discretized output process ȳk on Y =�
y1; : : : ;yM

	
. Moreover, with discretization, the underlying Markov process xk on Rnx is

represented by the �nite dimensional Markov Chain x̄k on X , where X =
�
x1; : : : ;xN

	
. In

order to simplify notation, in the following we use f1; : : : ;Mg to denote the output space of

the chain. The corresponding �nite dimensional Markov chain (to be identi�ed) has state

space X =
�
x1; : : : ;xN

	
, f1; : : : ;Ng. Note that process ȳk is the output of a hidden Markov

process since the discretized process x̄k is still Markov.
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Given the output sequence yk, after discretization we have sequence ȳk, the objectives

for identi�cation of the multi-modal behavior are 1) calculate the transition matrix of the

hidden Markov state x̄; 2) characterize the state-output transition probability; 3) determine

the dimension of the modal dynamics, i.e. the number of clusters (modes) of the system;

4) determine the partition regions in discretized state space corresponding to the clusters

(modes); 5) �nd the modal transition probability matrix. With these objectives, our system

identi�cation approach includes the following three steps:

� In the �rst step, the underlying state sequence is estimated directly from the output

series. We adopt the newly developed algorithm [53] for this purpose. Moreover, we

analyze the system attributes of (1.1) needed for the application of this algorithm.

� Given the state sequence estimated from Step 1, we estimate state Markovian trans-

ition matrix and the state-output transition matrix by a counting type algorithm.

� Given the state transition matrix estimated in Step 2, we determine the number of

modes, determine the corresponding modal regions of the state space and calculate

the mode transition matrix that describes the modal behavior. This step is based on

the previous work on model reduction of non-reversible Markov processes [38].

The proposed algorithm is illustrated in Figure 1.

Output  series

State sequence

State transition
matrix

Stateoutput
transition matrix

Step 1 State Estimation

Step 2 Matrix Calculation

Step 3 Mode Detection

State transition
matrix

Modes

Mode transition matrix
Partition regions

Figure 1 Proposed system identi�cation approach
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The three parts of the algorithm will be described in detail next and examples will be

given to illustrate the proposed approach.

3.1.1 Estimation of State Process from Output Process

Consider the discretized system corresponding to (1.1), we can treat the discretized ob-

servation sequence ȳk as the output of a �nite state hidden Markov chain with x̄k being the

underlying �nite state Markov process. Estimation of the state process from the observation

sequence ȳ1:L is one of the principal tasks in HMM modelling. In [16] several algorithms

for this purpose are discussed.

In this dissertation, we adopt the newly developed non-negative matrix factorization

(NMF) based algorithm presented in [53] for this estimation purpose. This novel algorithm

has been shown, in a 2-dimensional (denoted as N = 2) state space case, to lead to much

better estimation accuracy compared to that of the classical Baum-Welch HMM identi�c-

ation algorithm. However, as we will see later, unlike the 2-dimensional state space case,

when N > 2 the uniqueness of NMF is not guaranteed, which in turn results in non-unique

state estimation. We begin in this subsection by introducing the NMF based hidden state

process identi�cation algorithm proposed in [53]. Moreover, we will extend the algorithm

to high dimensional state space case as well as explore the system attributes that lead to a

unique NMF based state estimation solution.

Non-negative Matrix Factorization based HMM identi�cation in [53]

In this subsection we describe the NMF based HMM identi�cation algorithm proposed in

[53]. We begin by stating two assumptions made in [53] and discuss how these assumptions

are satis�ed in our system identi�cation context. The �rst assumptions is that the HMM

is ergodic. We note that, in our system identi�cation context, if the underlying system

can be decomposed into strong attraction domains then ergodicity of the Markov process

(1.1) in an appropriate sense is a natural consequence. Furthermore, if (1.1) is ergodic then
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the discretized process is ergodic as well. The second assumption is that the underlying

states have initial distribution that is equal to a stationary distribution π of the HMM. This

assumption can be justi�ed as follows. For an ergodic process the distribution converges

to the invariant distribution at a rate jλ 1jn where n denotes time and λ 1 is the eigenvalue

of the transition matrix with the second largest magnitude, jλ 1j < 1: Consequently, in our

system identi�cation context, by choosing n suf�ciently large the distribution can be made

arbitrarily close to π: If data records are long and we dismiss the �rst n data points the

remaining record looks like a data record from a system with initial distribution close to π:

Since the NMF based HMM estimation algorithm in [53] considers a Mealy HMM

model, we will differentiate the Mealy HMM model and the alternatively de�ned HMM

model, i.e. the Moore HMM, in order to facilitate the following discussion. The following

de�nition of these two types of HMM models are taken from [54]:

De�nition 4 A Mealy HMM is de�ned as a quadruple (X ;Y;Π;π), where X and Y are the

�nite state and output alphabet, respectively; Π is a mapping from Y to RjX j�jX j+ with the

matrix ΠX := ∑y2Y Π(y) such that ΠXe = e, Πi j(y) = Pfx̄t+1 = x j; ȳt = y j x̄t = xig; π is

the initial state distribution. Note here jX j denotes the size of state alphabet.

De�nition 5 A Moore HMM is speci�ed by (X ;Y;ΠX ;β ;π), where X , Y and π have the

same meanings as in Mealy HMM; while ΠX with ΠXe = e is the state transition matrix,

de�ned as (ΠX)i j = Pfx̄t+1 = x j j x̄t = xig; β is a mapping from Y to RjX j+ with β i(y) =

Pfȳt = y j x̄t = xig.

We remark that in the Mealy formulation for HMM the state and output probabilities are

combined in the map Π whereas in the alternative Moore formulation these two quantities

are treated separately.

As in [53], de�ne Π(y) , fΠi j(y)g, where Πi j(y) = Pfx̄t+1 = x j; ȳt = y j x̄t = xig and

let P(u), P(ȳ1:juj = u) = P(ȳ1 = u1; ȳ2 = u2; :::ȳjuj = ujuj) be an output string probability,

where ui 2 f1; :::Mg and u=u1:::ujuj with juj denoting the length of u. Denote P(x̄1 = xi)
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by π i (recall that π is invariant distribution). Then it is easy to show that

P(u) = πΠ(u)e (3.1)

where e= [1; :::;1]T , Π(u) =Π(u1)Π(u2) � � �Π(ujuj) and π = [π1; � � �πN ]:

Consider now a matrix V (i1; i2) with entries (V (i1; i2))kl = P(ukvl), where uk denotes

the kth possible i1 length output string: uk = ȳ1ȳ2 � � � ȳi1 , vl denotes the lth possible i2 length

output string: vl = ȳi1+1ȳi1+2 � � � ȳi1+i2, with k 2 f1; :::Mi1g, l 2 f1; :::Mi2g, where as noted

earlier M is the alphabet size for the output sequence; P(ukvl) denotes probability of the

i1+ i2 length output string concatenated by uk and vl . Note that since the distribution of the

states is assumed to be stationary, the probability of one speci�c i1+ i2 length output string

is the same at all times. Thus, with the assumption of ergodicity, by observing L length

output series with L>>Mi1+i2 , P(ukvl) is estimated by:

P(ukvl)�
Number of times ukvl is detected

L� (i1+ i2)+1

By running through all possible string combinations we obtain the matrixV: From (3.1) we

obtain,

P(ukvl) = πΠ(ukvl)e= πΠ(uk)Π(vl)e

De�ne a Mi1�N matrixW tr and a N�Mi2 matrix Htr as

W tr =

266666664

πΠ(u1)

πΠ(u2)
...

πΠ(uMi1 )

377777775
Htr =

�
Π(v1)e Π(v2)e � � � Π(vMi2 )e

�
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It is easy to see that

V =W trHtr (3.2)

Note that N, the size of state alphabet, which satis�es N < min(Mi1;Mi2); is assumed to

be known (the N is bounded below by the rank of V and can be estimated by calculating

the so-called positive rank of V , see [52]). Moreover, a simple calculation shows that the

elements ofW tr are

W tr
k;i = P(ȳ1:i1 = uk; x̄i1+1 = x

i)

while the elements of Htr are

Htri;l = P(ȳi1+1:i2 = vl j x̄i1+1 = xi)

AssumingW tr is known, (e.g. obtained through the factorization of V ), de�ne

U tr = (diag(W tre))�1W tr

Then

U trk;i = P(x̄i1+1 = x
i j ȳ1:i1 = uk)

Thus given ȳ1:i1 = uk, the estimated state can be chosen as the maximum likelihood estimate

�xi1+1 = x
argmaxλUk;λ . With the ability to estimate �xi1+1 based on each possible i1 length

output string ȳ1:i1 , the state sequence �xi1+1:D+1 can be estimated by sliding a window of

�xed length i1 through the D length output series.

Note a critical step in applying this algorithm is utilizing NMF to calculate W tr and

Htr based on the V matrix. We emphasize that hereW tr and Htr are entities with speci�c

physical meanings. That is, the uniqueness of NMF factorization is of principal importance.

As we discussed in Section 2.6, when N = 2 (here we use N in place of the r in Section

2.6), NMF has a unique solution up to a permutation matrix. In this state estimation context,
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N = 2 in Section 2.6 corresponds to that the state space being 2-dimensional. That is, when

the state space is 2-dimensional, the NMF based estimation algorithm has unique solution

up to a permutation matrix. Moreover, it has been shown in [53] that in the 2-dimensional

state space case, the above algorithm can lead to much better estimation accuracy compared

to that of the classical Baum-Welch HMM identi�cation algorithm [53]. However, as we

mentioned in Section 2.6, the uniqueness of NMF is not guaranteed for N > 2, which in

turn results in non-unique state estimation.

In the next subsection we will extend the NMF based HMM identi�cation algorithm to

high-dimensional state space, i.e. N > 2; case. Moreover, we will explore system attrib-

utes which result in a unique solution to the NMF based estimation problem in the general

N > 2 case. As we will see later, in the stochastic system state estimation context, utilizing

further structural constraints onW tr and Htr combined with other system attributes leads to

a unique NMF factorization ofV in the sense that any T matrix obtained in NMF algorithm

described in Section 2.6 is a permutation (or an approximate permutation) which, in turn,

results in a unique NMF based state estimation. Since the state dimension N in the estima-

tion context corresponds to r in NMF formulation in Section 2.6, in the following we will

use N instead of r in analyzing NMF algorithm.

Non-negative Matrix Factorization based HMM identi�cation for High-dimensional

State Space

In [53], a HMM identi�cation algorithm has been proposed based on NMF approach. How-

ever, as we mentioned before, unlike the 2-dimensional state space case, when N > 2, the

unique estimation based on NMF is not guaranteed. We note that this issue was not dis-

cussed in [53].

In this subsection, we will extend the algorithm in [53] to high dimensional state space

case and explore the system attributes that lead to unique NMF based state estimation

solution. The NMF based HMM estimation algorithm here is similar to that in [53]. Our
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effort here is concentrated on the discussion about system attributes that lead to unique

estimation in context similar to that in [53].

Here we consider small noise disturbed stochastic system because in many cases, the

process noise and the observation noise are originated from system parameter variations

and sensor noise, which frequently makes the noises small. In such instances the stochastic

system can be treated as a deterministic system disturbed by small noise. It has to be

stressed again that by small noise we mean that the relative value of the noise to typical

values of the system state and output is small.

We consider the small noise disturbed stochastic system (2.1) described in Section 2.2

and treat that as the deterministic system (2.2) disturbed by small noise. We remark that

if the same discretization is used in the state space of system (2.1) and system (2.2) and

the discretization is �ne enough, then one can easily extend Propositions 3 and 4 to the

discretized systems. We omit the details of these extensions. In the remainder of this

section when we refer to the stochastic and deterministic systems we mean the discretized

versions of (2.1) and (2.2).

Now we extend the state estimation based on NMF to high dimensional (N > 2) state

space case.

Uniqueness of State Estimation The discussion in this section is divided into three parts.

First, we will develop conditions onW tr and Htr that make NMF have unique solution up

to a permutation matrix T . Second, attributes of the stochastic system will be related to the

conditions on W tr and Htr. Finally, the uniqueness of NMF based state estimation for a

system with the given attributes will be proved.

Note, as before, in the following discussion byW tr andHtr wemean the true matrices of

interest, byW and H we mean the matrices obtained by NMF from the givenV matrix, and

by T matrix we mean the matrix relatingW andW tr (or H and Htr) throughW =W trT (or

H = T�1Htr). Note as well that matricesW tr, Htr,W and H all contain only non-negative
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entries.

Matrix Constraints In this subsection we �rst explore the conditions onW tr and Htr

which make the T matrix a permutation matrix, i.e. make NMF have unique solution up

to a permutation matrix. Second, we will relax the conditions so that the T matrix is an

almost permutation matrix, i.e. T has the form T = T0+ εL where T0 is a permutation, L

is an arbitrary matrix and ε is a small parameter. The relaxed conditions will be related to

attributes of the stochastic system in the next subsection. Moreover, as we will see later,

with T matrix being an almost permutation matrix, the NMF based state estimation is still

unique.

Proposition 5 If all rows of Htr and H sum to 1, then the T and T�1 matrices have rows

that sum to 1 as well.

Proof. Since Htr = TH, we have Htri;l = ∑kTi;kHk;l and

∑
l
Htri;l = ∑

l
∑
k
Ti;kHk;l

= ∑
k
Ti;k∑

l
Hk;l

= ∑
k
Ti;k = 1;8i

That is, ∑kTi;k = 1;8i. In similar way, we also have ∑kT�1i;k = 1;8i:

De�ne a matrixU tr = (diag(W tre))�1W tr and letU = (diag(We))�1W , then

U = (diag(We))�1W = (diag(W trTe))�1W trT

= (diag(W tre))�1W trT =U trT

Here we see the T matrix relating U and U tr is the same as the one relating H and Htr as

well asW andW tr: Furthermore, through the construction of U and U tr we see that these

two matrices contain only nonnegative entries.

40



Proposition 6 If, after appropriate reordering of columns and rows, Htr and U tr contain

a N�N identity submatrix respectively, then T and T�1 contain only non-negative entries.

Proof. Denote the N �N identity submatrix contained in Htr as Htr1 . Then there is a

submatrix contained in H, denoted by H1, which satis�es T�1Htr1 = H1: It is easy to see

that sinceHtr1 andH1 both contain positive entries andH
tr
1 is a identity matrix, T

�1 contains

only non-negative entries.

Similarly, if U tr contain N�N identity submatrix, we can show that T contains only

non-negative entries.

Proposition 7 If T and T�1 both have nonnegative entries, and ∑
j
Ti; j = 1; 8i, then T and

T�1 are both permutation matrices.

Proof. Let

T =

266666664

T11 T12 � � � T1N

T21 T22 � � � T2N
...

...

TN1 TN2 � � � TNN

377777775
and

Q= T�1 =

266666664

Q11 Q12 � � � Q1N

Q21 Q22 � � � Q2N
...

...

QN1 QN2 � � � QNN

377777775
then

∑
j
Ti; jQ j;l = δ (i� l); ∑

j
Qi; jTj;l = δ (i� l);

∑
j
Ti; j = 1; 8i
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Since Ti; j � 0 and Q j;l � 0, we get

fTi; j 6= 0=) Q j;l = 0g;8i 6= l;8 j

We know that rank(T ) = N. Therefore for any i, there exists j s.t. Ti; j 6= 0) Q j;l = 0,

l = 1;2; � � � ; i�1; i+1; � � �N, that means Q j;i 6= 0 (otherwise rank(Q) 6= N), which in turn

means that Ti;l = 0, 8l 6= j. So we see that in the ith row of T there is only one non-zero

entry, which is Ti; j. This is true for any i. Accordingly, we see that T matrix has a general

permutation form. Moreover, since ∑ j Ti; j = 1 and Ti; j � 0;8i; j, we conclude that T is a

permutation matrix. With T being a permutation matrix, it is easy to show that T�1 is also

a permutation matrix.

We conclude that under the above conditions where T is a permutation matrix, we know

the solution H andW of NMF is equivalent to the Htr andW tr matrices up to a permutation

matrix T . We next extend this result to the case whereHtr andW tr have an "almost" identity

submatrix. This corresponding to a system perturbed by small noise.

Proposition 8 Assume Htr andU tr contain a submatrix of the form I�εL, where I denotes

the N�N identity submatrix, ε is a small parameter and L an arbitrary N�N matrix. Then

T and T�1, denoted as Tε and T�1ε are almost permutation matrices, i.e. Tε has the form

Tε = T0+O(ε) �L, where T0 is a permutation and �L is some N�N matrix (and similarily for

T�1ε ).

Proof. To emphasize the dependence on ε we denote Htr and U tr as Htrε and U trε We

assume that U trε has a submatrix of the form I� εL: Recall that for any other Uε derived

from a factorization of Vε (again we emphasize the dependence on ε by replacing V by Vε)

we have the relationshipUε =U trε Tε and thusU1ε = (I� εL)Tε for some submatrixU1ε (the

almost identity submatrix) ofUε :We note that the entries ofU1ε take values in the interval

[0;1] : It follows that the limit of U1ε as ε ! 0 exists and we denote it as U10 :We also note

that for small enough ε we have (I� εL)�1 = ∑∞
i=0 (εL)

i = I+ ε ∑∞
i=1 ε i�1Li = I+ εFε : It
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follows that (I� εL)�1! I as ε! 0: For small enough ε we have Tε = (I� εL)�1U1ε and

thus Tε ! T0 =U10 as ε ! 0: Note that similarly, from Hε = KεHtrε we can show that K0

exists. We want to show that T0 and K0 are permutations.

Recall that Vε =W tr
ε Htrε and for any other factorization of Vε we have Vε =WεHε =

W tr
ε TεT�1ε Htrε . Under the assumption that U trε and Htrε have almost identity submatrices

and using the fact that their entries belong to [0;1] we know that the limits lim
ε!0
W tr

ε =W tr
0

and lim
ε!0
Htrε = Htr0 exist and thus V0 =W

tr
0 H

tr
0 : Furthermore, since W

tr
0 , H

tr
0 ; T0 and K0

exist we have V0 =W0H0 =W tr
0 T0K0H

tr
0 , where K0 can be shown to be K0 = T

�1
0 : Thus

W0 =W tr
0 T0 and H0 = T

�1
0 Htr0 exists.

Finally, asU tr0 andH
tr
0 both have an identity submatrix, from Proposition 3.1.1 we know

that any T�10 that satis�es T�10 Htr0 = H0 with H0 being the limit as ε ! 0 of Hε will be a

permutation. Similarly we see that T0 is a permutation.

With T0 being a permutation matrix, we conclude that Tε is an almost permutation

matrix, denoted as Tε = T0+O(ε) �L; because Tε ! T0 as ε ! 0: In similar way, we can

prove that T�1ε is also an almost permutation matrix.

System Attributes After working out the conditions on Htr and U tr which lead to

uniqueness of the NMF, we will next specify system attributes that correspond to the matrix

conditions. Note that theW tr,Htr andU tr matrices de�ned in Section 3.1.1 in the stochastic

system context match the ones used in the following. For the discretized deterministic

system let ȳ1:D (x̄) denote the output string of length D originating at x̄0 2 X :

We begin with several assumptions about the system under study,

A1 The discretized deterministic system corresponding to (2.2) is observable. That is,

there exists aK> 0 such that any initial state x̄0 2X can be uniquely (with probability

1) determined by the corresponding ȳ1:K (x̄0). Note that since, in the discretized

deterministic system, each x̄0 leads to a unique output string ȳ1:K , we can say that the

initial state x̄0 and the output string ȳ1:K are in a one to one correspondence for the
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observable system.

A2 The stochastic system of interest is given by (2.1) for some 0< ε � 1.

A3 The probability of any state at any time is bounded below.

Proposition 9 De�ne Htri;l = Pr(ȳ
ε
1:K = vl j x̄ε

0 = x
i) and assume A1 and A2. Then the matrix

Htr 2MK�N contains an almost identity submatrix.

Proof. Referring to the discretized version of Proposition 4 we see that, originating from

a speci�c initial state x̄0, the stochastic system will have the same output string as the

corresponding deterministic system with probability close to 1; while output strings which

are not equal to that of the deterministic system will have probability close to 0. This is true

for every x̄0. Consequently, in each row of Htr there will be one element close 1, while all

the other elements are close to 0. As we mentioned before, for the observable deterministic

system, the initial states and possible output strings are in a one to one correspondence,

thus we will have in each column of the Htr matrix at most one element close to 1. That is,

Htr contains an almost identity submatrix of the form I� εL; where ε is small.

Proposition 10 De�neU trk;i= Pr(x̄
ε
i1+1= x

i j ȳε
1:i1 = uk) and assume A1-A3. Then the matrix

U tr 2 N�Mi1 contains an almost identity submatrix.

Proof. Recall that

U trk;i = Pr(x̄ε
i1+1 = x

i j ȳε
1:i1 = uk)

= ∑x0l Pr(x̄
ε
i1+1 = x

i j ȳε
1:i1
= uk; x̄ε

0 = x0l)

�Pr(x̄ε
0 = x0l j ȳε

1:i1 = uk)

(3.3)

Consider the Pr(x̄ε
i1+1 = x

i j ȳε
1:i1 = uk; x̄

ε
0 = x0l) part in (3.3) �rst. For the deterministic

system, given xi, there always exists a initial state x0i s.t.

Pr(x̄i1+1 = x
i j x̄0 = x0i) = 1
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Then for stochastic system, referring to the Proposition 3, we have

Pr(x̄ε
i1+1 = x

i j x̄ε
0 = x0i)� 1

and since
Pr(x̄ε

i1+1 = x
i j ȳε

1:i1 = uk; x̄
ε
0 = x0i)

� Pr(x̄ε
i1+1 = x

i j x̄ε
0 = x0i)

we get that

Pr(x̄ε
i1+1 = x

i j ȳε
1:i1 = uk; x̄

ε
0 = x0i)! 1

Consider now the Pr(x̄ε
0 = x0l j ȳε

1:i1 = uk) part in (3.3). From the proof of Proposition

9 we know that Pr(ȳε
1:i1 = uk j x̄

ε
0 = x0i)! 1 as ε ! 0 when uk is the same as the output

string resulting from initial state x0i in the deterministic system. Moreover,

Pr(ȳε
1:i1
= uk j x̄ε

0 = x0i)

=
Pr(ȳε

1:i1
=uk;x̄ε

0=x0i)
Pr(x̄ε

0=x0i)

=
Pr(x̄ε

0=x0ijȳε
1:i1
=uk)Pr(ȳε

1:i1
=uk)

Pr(x̄ε
0=x0i)

=
Pr(x̄ε

0=x0ijȳε
1:i1
=uk)

Pr(x̄ε
0=x0i)

�∑x0l Pr(ȳ
ε
1:i1 = uk j x̄

ε
0 = x0l)Pr(x̄

ε
0 = x0l)

(3.4)

Since we know that Pr(ȳε
1:i1 = uk j x̄

ε
0 = x0i)! 1 as ε! 0 , it is easy to show Pr(ȳε

1:i1 = uk j

x̄ε
0 = x0 j; j 6= i)! 0, assuming that i1 � K. Thus we have

∑x0l Pr(ȳ
ε
1:i1 = uk j x̄

ε
0 = x0l)Pr(x̄

ε
0 = x0l)

� Pr(ȳε
1:i1 = uk j x̄

ε
0 = x0i)Pr(x̄

ε
0 = x0i)

= Pr(x̄ε
0 = x0i)
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Finally we can express (3.4) as

Pr(ȳε
1:i1 = uk j x̄

ε
0 = x0i)

�
Pr(x̄ε

0=x0ijȳε
1:i1
=uk)

Pr(x̄ε
0=x0i)

Pr(x̄ε
0 = x0i)

= Pr(x̄ε
0 = x0i j ȳε

1:i1 = uk)

That means we can treat
�
x̄ε
0 = x0i

	
and

n
ȳε
1:i1 = uk

o
as almost the same events, and

Pr(x̄ε
0 = x0i j ȳε

1:i1 = uk)! 1 as ε! 0. Moreover, we get Pr(x̄ε
0 = x0 j; j 6= i j ȳε

1:i1 = uk)! 0.

Since in the deterministic system, for each x0i, there is exactly one xi that it reaches in

i+ 1 steps, then referring to the Proposition 3 we have Pr(x̄ε
i1+1 = x

i j x̄ε
0 = x0i)! 1, and

accordingly Pr(x̄ε
i1+1 = x

j; j 6= i j x̄ε
0 = x0i)! 0 as ε ! 0: Moreover, since we can treat�

x̄ε
0 = x0i

	
and

n
ȳε
1:i1 = uk

o
as almost the same events, we have Pr(x̄ε

i1+1 = x
j; j 6= i j x̄ε

0 =

x0i; ȳε
1:i1 = uk)! 0 as ε ! 0.

In summary we have the following: if x0i! xi in deterministic system in i+ 1 steps,

with
�
x̄ε
0 = x0i

	
�
n
ȳε
1:i1 = uk

o
; we have U trk;i � 1; on the other hand, if xi and uk do not

match through any x0i, thenU trk;i� 0. That is,U tr matrix contains almost identity submatrix.

Unique Estimation Up to this point, we have shown that, if the deterministic system

is observable and the noise intensity in the stochastic system is small, thenU tr andHtr both

contain an almost identity submatrix. Combining this with the proof of Proposition 10 we

know that the solutionW =W trT , H = T�1Htr to NMF algorithm in the stochastic system

state detection has the feature that T is an almost permutation matrix. Given such T , we

will prove the uniqueness of the NMF algorithm based estimation.

Proposition 11 If T is an almost permutation matrix, and the noises in the stochastic sys-

tem are small, then the optimal state estimates obtained from U and U tr are the same.
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Proof. As is shown in [53], for a givenU the optimal maximum likelihood state estimate

for the observed output string ūk of length i1 is �xi1+1 = argmax
l

Uk;l: Let the corresponding

optimal estimate obtained fromU tr be �xtri1+1:We know thatU =U
trT where T is a nonsin-

gular matrix. Furthermore, in the small noise case we have established that T has the form

T = T0+O(ε)L where T0 is a permutation matrix and the small parameter ε represents the

noise intensity. From this we see that U is just the U tr matrix with different column order

plus small additive noise of the order O(ε). That is, the entry of order one in the kth row

of U is in a one to one correspondence to the order one entry in corresponding row in Utr

through the permutation T0. Therefore, the optimal state estimation obtained from U and

U tr is the same as long as the noise intensity is suf�ciently small.

We note that Proposition 11 is equivalent to the statement that the state estimation by

NMF for the stochastic system is unique, provided the noise intensity is small enough.

Example In this subsection we will apply the NMF based state estimation algorithm to a

discrete time discrete state stochastic system which is represented by an HMM. The system

is constructed from an observable deterministic system that is subject to small process and

output noises. We will experimentally verify the uniqueness estimation analysis presented

in above as well as show the effectiveness of the proposed NMF based estimation algorithm.

Example 2 The stochastic system under consideration has a four state alphabet f1;2;3;4g

corresponding to 4 real states, i.e. (xk(1);xk(2)) 2 f(1;1);(1;2);(2;1);(2;2)g. The state

transition matrix is denoted by P. The unperturbed output is given by xk(1)+ xk(2) and is

easily seen to take real values in f2;3;4g; which corresponds to a size 3 output alphabet

f1;2;3g:We assume that the output noise is such that the noise perturbed output process

yk = xk(1)+ xk(2)+ v̄k (3.5)

takes values in f2;3;4g as well.
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State and output series were generated according to the state transition matrix P and the

state-output relationship. In the following, we will consider the alphabet of the state and

output rather than the real ones.

Consider a deterministic system represented by a Markov model with

P0 =

266666664

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

377777775
and a state-output equation

yk = xk(1)+ xk(2)

Then we can easily see that this system is observable in K = 2 steps, where the following

pairs have one to one relationship

xi 1 2 3 4

yi+1:i+2 1;2 2;3 2;2 3;1

Assume that by adding small noise to the system dynamics the Markov transition matrix P

becomes

P=

266666664

� � 0:95 �

� � � 0:95

� 0:95 � �

0:95 � � �

377777775
where � are small values. Then, with small output noise added as well, we have constructed

a stochastic system from the observable deterministic system. Based on the output series

generated by this stochastic system, we obtain fromU generated by NMF and the trueU tr
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the T matrix

T =

266666664

0:00 0:89 0:14 �0:02

0:96 0:00 0:09 �0:05

�0:09 0:00 0:18 0:91

0:00 �0:07 1:06 0:00

377777775
Clearly, in this case, the NMF factorization yields a factorization that is equivalent to the

true matrices up to an almost permutation matrix. Furthermore, based on the calculatedU

matrix we see that the state series are estimated with 5:29% error rate.

In summary, through the example system simulation, we see that when NMF is applied

to a system with the attributes speci�ed earlier, the NMF based estimation is unique, and the

estimation error rate is low, which not only veri�es our previous analysis but also illustrates

the effectiveness of NMF based estimation algorithm in this type of system.

Conclusion

In this section we introduced the novel NMF based HMM state estimation algorithm pro-

posed in [53]. As we treat the stochastic system of interest as equivalent to a HMM, we can

apply the same algorithm for the stochastic system state process estimation. Recognizing

that the uniqueness of NMF based hidden state estimation is only satis�ed in 2-dimensional

state space case, we developed conditions under which NMF will have unique solution in

the stochastic system state estimation context. Moreover, we explored the system attributes

corresponding to those conditions. In this way, we extended the NMF based state estima-

tion algorithm to high-dimensional state space case. An example was presented to illustrate

the uniqueness of NMF based estimation under the stated conditions and to manifest the

effectiveness of the proposed NMF based state estimation algorithm in systems that satisfy

the constraints. The proposed algorithm estimates the state purely based on output series.

It can be treated as a data driven state estimation algorithm and the estimated state can be

used further to identify the system model, e.g. the state transition matrix, system modal
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dynamics, and so on.

3.1.2 Transition Matrix Calculation

So far we have the developed an approach for estimating a state sequence from the given

output series. Next we develop methods for calculating the state transition matrix and the

state-output matrix. Here a counting measure mc is introduced to facilitate the description.

Given a L length time series evolving according to an ergodic Markov model, the num-

ber of times the process visits set Ai is denoted by (mc(Ai))L, while the number of times it

visits set A j in one step from Ai is (mc(A jjAi))L. Let Ai = fxig, then the transition probab-

ility of the Markov chain is given by:

P(x j j xi) = lim
L!∞

P(L)(x j j xi)

where

P(L)(x j j xi) = (mc(A jjAi))L
(mc(Ai))L

The state-output matrix is calculated in similar fashion.

3.1.3 Identi�cation of Multi-modal Behavior Based on State Process

Recall we are interested in a multi-modal dynamic system with states evolving accord-

ing to a non-reversible ergodic Markov chain on a �nite dimensional state space X =�
x1; : : : ;xN

	
, f1; : : : ;Ng. In the previous section we estimated the transition matrix P

of the non-reversible Markov chain. We discuss next how the system modal behavior can

be extracted from the state transition matrix P.

As mentioned in Section 2.4, the modal behavior analysis of SAFHS is closely related

to the characterization of metastable partition of the space. Thus the previously developed

technique in [38] which identi�es the metastable partition for a general non-reversible �nite

dimensional Markov chain is used here for this purpose. We brie�y present the developed
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technique in two steps: 1) at given time n, construct a reduced order approximate operator

πν
an for πν

n that is good for all initial distributions ν such that πν
an captures the clustering

phenomena of original system. Here πν
n denotes the system distribution at time n with

initial distribution ν . Note that in �nite dimensional Markov system, we have πν
n = νPn.

In particular, through spectral analysis of πν
n we detect the number of modes (number of

clustering components); 2) based on πν
an we detect the modal dynamics of the original

system, and estimate the partition in the state space of the original system accordingly.

Find reduced order approximate operator

Consider the non-reversible ergodic Markov chain with transition matrix P and de�ne the

multiplicative reversibilization M (P) of P by

M (P) = P �P

where �P=D�1PTD, D= diag(π0; : : : ;πN�1) and π = [π0; : : : ;πN�1] is the unique station-

ary distribution for P with π i > 0; i = 0; : : : ;N� 1. Then M (P) is a reversible transition

matrix which has eigenvalues fβ 0; : : :βN�1g with 1 = β 0 � β 1 � : : : � βN�1 � 0, where

β i = jλ ij2; i= 0; : : : ;N�1, with λ i denoting the eigenvalues of P:Moreover,M (P) has the

same stationary distribution π as P:

The following theorem has been proved in [38].

Theorem 12 Assume that P has a unique stationary distribution π with π i> 0; i= 0; : : : ;N�

1. Then the weighted distance between the distributions νPn and νP̄an with weights wi= 1
π i
;

i= 0; : : : ;N�1 satis�es

kνPn�νP̄ankw �
��λ q��nq
min

0�i�N�1
π i

where q is the number of dominant eigenvalues of M (Pn) (and Pn) and λ q is the eigenvalue

of P such that
��λ nq��2 = β

n
q where β

n
q is the q+1 largest eigenvalue of M (Pn) :
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It can be seen from Theorem 12 that, for the original non-reversible system, the distance

between πν
n and π is bounded from above by O((β 1 (M))

n=2), for any initial distribution

ν . If β 1 is small, the convergence of the distribution of the Markov chain at time n to the

stationary distribution π is fast and the stationary distribution π is a good low dimensional

approximate model. Thus we have πν
an = π . On the other hand, ifM (P) has several eigen-

values close to one then the convergence is not as fast. In this case we want to construct an

approximate operator πν
an to πν

n with the distance between πν
n and πν

an converging to zero

considerably faster than (β 1 (M))
n=2 :

Let ψ
(n)
i and ϕ

(n)
i ; i = 0; : : : ;N � 1 denote the right and left eigenvectors of M (Pn)

respectively. Then it is shown in [38] that

M (Pn) =
N�1
∑
k=0

β
n
kψ

n
k (ϕ

n
k)
T

Assume that β 0; : : :β q�1 are of comparable size (close to one) and β q� β q�1; i.e., q is the

number of dominant eigenvalues ofM (Pn). Note here the number of dominant eigenvalues

of M (Pn) is the same as that of Pn, which is known equal to the number of the metastable

sets of the original system. If the approximate reversibilized model is chosen as

Ma (Pn) =
q�1

∑
k=0

β
n
kψ

n
k (ϕ

n
k)
T

it is easy to see that kM (Pn)�Ma (Pn)k is bounded above by O(β nq), which means that the

approximated reversibilized model at time n converges to the reversibilized model of the

original non-reversible Pn system fast. Based on such an approximate model Ma (Pn), we

want to recover a good approximate operator πν
an = νP̄an to πν

n = νPn, with P̄an satisfying

Ma (Pn) = P̄anD�1P̄TanD. If we let

P̄an = D�1=2VJaV TD1=2Pn
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where Ja = diag(Iq;0), V = D
1
2 [ψ

(n)
1 ; : : : ;ψ

(n)
N�1], then P̄an can be shown as a good approx-

imation to Pn (see [38] for details).

Modal dynamics detection and partition estimation

Based on the approximate operator P̄an, a new Markov chain on the lower q dimensional

space that characterizes the modal behavior of the system can be constructed.

Recall that the distribution of the system state at time n starting form the initial distri-

bution ν is πν
n = νPn and the corresponding approximate operator is πν

an = νPan. For two

initial distributions ν and µ de�ne the weighted L2 distance (so-called diffusion distance

in the language of [35]) as

D2n (µ;ν) = kπµ
n �π

ν
nk
2
w =

N�1
∑
i=0

��
π

µ
n
�
i� (π

ν
n )i
�2

π i

Let ν i be the initial distribution concentrated at state xi: Then if X partitions into q dis-

joint components A1; : : : ;Aq that the system dynamics cluster on (i.e. metastable compon-

ents), two initial states xi and x j will belong to the same cluster (metastable component)

if D2n
�
ν i;ν j

�
is small and will belong to different clusters if D2n

�
ν i;ν j

�
is large. We re-

mark that in terms of the approximate operator, D2n (µ;ν) � D2an (µ;ν) =
π

µ
an�πν

an
2
w :

Furthermore, using πν
n = νPn we have

D2n
�
ν i;ν j

�
=

π
ν i
n �π

ν j
n

2
w

=
�
ν i�ν j

�
PnD�1

�
PT
�n �

ν i�ν j
�

=
�
ν i�ν j

�
M (Pn)D�1

�
ν i�ν j

�
=

�
ν i�ν j

�N�1
∑
k=0

β
n
kψ

n
k (ψ

n
k)
T �

ν i�ν j
�

Note that ν i = eTi where ei is the ith unit vector in RN : Therefore ν iψ
n
k = e

T
i ψnk =ψnk(i) and
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with Ψn (ν i) =
�p

β
n
0ψ

n
0(i); : : : ;

p
β
n
N�1ψ

n
N�1(i)

�T
we have

D2n
�
ν i;ν j

�
=
Ψn (ν i)�Ψn

�
ν j
�2

where k�k is the Euclidean norm on RN : Furthermore,

D2n
�
ν i;ν j

�
� D2an (µ;ν) =

Ψan (ν i) �Ψan
�
ν j
�

where Ψan (ν i) =
�p

β
n
0ψ

n
0(i); : : : ;

q
β
n
q�1ψ

n
q�1(i)

�T
2 Rq: We select a threshold value

0 < δ � 1 and classify two initial states to belong to the same cluster if D2an
�
ν i;ν j

�
< δ

and different clusters if D2an
�
ν i;ν j

�
> δ (we note that the value δ may have to be adjusted

to identify q clustering components) This procedure results in the desired partition of X

into q disjoint metastable components A1; : : : ;Aq that characterize the modal behavior of

the system. Obviously, the transition matrix Pq that describes the transition dynamics of

the system between these components is Pq (i; j) = p
�
A jjAi

�
.

Remark 1 We note that Ψn de�nes a nonlinear map of the original data and in terms of

the Ψn the diffusion distance is a simple Euclidean distance. We remark the similarity with

the KPCA method in Section 2.7 with the noticeable difference that here the map Ψn is

de�ned by the system itself.

3.1.4 Example

In this section we present a complete identi�cation procedure for a system that has two

strong attraction domains.

Example 3 Consider a nonlinear discrete time stochastic dynamic system onR2 described
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by the equations

xt+1 = f (xt)+ ε1wt

yt+1 = xt+ ε2wt

where x=
�
x1 x2

�T
, y=

�
y1 y2

�T
, w=

�
w1 w2

�T
is a sequence of i.i.d. standard

Gaussian random variables, and

f (x) =

264 x1+δ tx2

x2+δ t(�x2+α(βx1�
�
x1
�3
))

375
Here we choose α = β = 1, δ t = 0:2, ε1 = ε2 = 0:1. The system has three equilibrium

points, an unstable one at the origin and stable equilibria at
�
�
p

β 0
�T
. These two

stable equilibria correspond to the two modes of the system.

A simulation of the stochastic system for a typical initial condition is shown in Figure

2. For simplicity the output space is divided into 6 pieces such that output space contains

6 alphabets. The same division is adopted for the state space, based on the assumption that

the output is the state perturbed by a small additive noise. Given the observation series, we

estimate the state transition matrix system using the identi�cation approach presented in

Section 3.1 to be

Pe =

2666666666666664

0:74 0:26 0:00 0:00 0:00 0:00

0:17 0:78 0:05 0:00 0:00 0:00

0:00 0:18 0:75 0:07 0:00 0:00

0:00 0:00 0:07 0:69 0:24 0:00

0:00 0:00 0:00 0:08 0:74 0:18

0:00 0:00 0:00 0:00 0:25 0:75

3777777777777775
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which is close to the transition matrix calculated from the true state sequence,

P=

2666666666666664

0:82 0:18 0:00 0:00 0:00 0:00

0:12 0:83 0:05 0:00 0:00 0:00

0:00 0:15 0:79 0:05 0:00 0:00

0:00 0:00 0:06 0:78 0:16 0:00

0:00 0:00 0:00 0:05 0:83 0:12

0:00 0:00 0:00 0:00 0:18 0:82

3777777777777775
The x̄ to ȳ transition matrix is estimated to be:

Be =

2666666666666664

0:74 0:26 0:00 0:00 0:00 0:00

0:17 0:72 0:10 0:00 0:00 0:00

0:00 0:18 0:68 0:14 0:00 0:00

0:00 0:00 0:07 0:68 0:25 0:00

0:00 0:00 0:00 0:08 0:74 0:18

0:00 0:00 0:00 0:00 0:25 0:75

3777777777777775
Since y is equal to x with small additive Gaussian noise, the B matrix is expected be close

to identity. We note that for any i 2 f1;2; :::;6g; Pr(ȳ= i jx̄= i) is dominant, as expec-

ted. It has been detected that the system dynamics have 2 modes and the identi�ed modal

transition matrix is

P2 =

264 0:9586 0:0413

0:0412 0:9587

375
Furthermore, the states in state space divide into two groups. These two groups are marked

in Figure 2 with different colors. The division of the state space into the two groups �ts the

dynamic system's two real attractors very well.
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Figure 2 Output Trajectories

3.1.5 Conclusion

In this section we proposed an approach for the modal behavior identi�cation of SAFHS

equivalent complex dynamic system. It is demonstrated in an example that the state trans-

ition matrix, state-output matrix, system modes, state space partition regions as well as the

modal transition matrix are accurately estimated, which demonstrates the effectiveness of

the proposed method.

With the multi-modal behavior for the hybrid system being identi�ed successfully, what

remains to complete the identi�cation of a SAFHS model is to characterize local dynamics,

which corresponds to the identi�cation of local dynamic model in each of the clustering

components. We discuss the local dynamics identi�cation next.

57



3.2 Identi�cation of Local Dynamics

Assume we have completed the identi�cation procedure in the previous section and have

the partition A1; : : : ;Aq and the identi�ed state sequence �x1; �x2; : : : . We can map the state

sequence onto the partition and through the association between the state and output strings

we classify the output symbols (and substrings) into q partition components (clusters) as

well, say Y1; : : : ;Yq. Note that some of the output partition components may be identical,

i.e. two or more components of the state partition could be mapped into the same out-

put components. This results in a redundancy that can be reduced after the identi�cation

procedure is complete.

Now given a suf�ciently long substring, say yi:i+k 2Y j, of the original measured output

string (not the discretized string), we can employ conventional identi�cation techniques

for the identi�cation of a submodel on component Yj: If a preliminary analysis of the data

string yi:i+k indicates that the data clusters around a single point we may assume that Yj

contains a stable "equilibrium point" and use linear identi�cation techniques. On the other

hand, if the preliminary analysis of the data indicates periodic motion or some other non-

linear type behavior we have to employ nonlinear identi�cation techniques. Since linear

identi�cation methods have been extensively studied during the last several decades we

refer to the system identi�cation toolbox from Matlab for those techniques and concentrate

on the much less studied nonlinear case here.

3.2.1 Nonlinear Identi�cation Techniques

Nonlinear local dynamic identi�cation is dif�cult because of the variety of nonlinear be-

haviors that can be expected. In our current work, we have mainly concentrated on the

identi�cation for a nonlinear periodic behavior, i.e. limit cycle. The development of the

identi�cation techniques for the other nonlinear type behaviors will be considered in our

future work.
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Limit Cycle Behavior Identi�cation

Identi�cation of limit cycle behavior is considered to be a fundamental problem in many

real systems and applications. In the following we give a description of limit cycle behavior

models as well as propose an identi�cation algorithm for that model.

System Models Many nonlinear systems, e.g. tunnel diodes, pendulums, biological

predator�prey systems and frequency synthesizers [26], that generate periodic signals can

be described by second-order nonlinear ordinary differential equations (ODEs) with poly-

nomial right hand side [59], [58], [46], [1].

In [59], it has been shown that the second order ODE

ÿ(t) = �f ( �y(t);y(t); �θ)

accurately represents a large class of periodic signals. We assume that y(t) is our measured

signal and choose state variables as

0B@ x1(t)

x2(t)

1CA=
0B@ y(t)

�y(t)

1CA
Then we have in state space form

0B@ �x1(t)

�x2(t)

1CA =

0B@ x2(t)

�f (x1(t);x2(t); �θ)

1CA (3.6)

y(t) = ( 1 0 )

0B@ x1(t)

x2(t)

1CA
Note that the states are deferent from those de�ned in Section 3.1. In particular, the states

de�ned here represent the local dynamics corresponding to the output data string y within
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Yj. As we mentioned earlier, it has been shown that the right-hand-side of the state space

function can be represented accurately by a multivariable polynomial which has an un-

known parameter �θ to be identi�ed.

In real applications, since the measurements are usually in discrete time, we study the

discretized form of (3.6). The discretization can be developed using any of a number of

well known procedures which we omit here. The resulting discretized system is

0B@ x1(k+1)

x1(k+2)

1CA =

0B@ x2(k)T + x1(k)

f (x1(k);x1(k+1); �θ)

1CA (3.7)

y(k) = ( 1 0 )

0B@ x1(k)

x2(k)

1CA
where T denotes the sampling interval. As the states here correspond to the output data

string y within Yj, if we have the polynomial function f identi�ed, we have equivalently

�gured out the regression for y .

Remark 2 Obviously the above discussion assumes that the output y(t) is scalar valued.

The multivariable case will be considered in our future work.

Algorithm Development In the past decade, kernel methods have attracted much atten-

tion in regression. Moreover, using kernel functions, many linear methods can be extended

to the nonlinear case almost straightforwardly, e.g., the KPCA extended from PCA. When

KPCA is applied to extract features or applied to regression, all kernel functions are cal-

culated based on the current sample and the feature vectors which are calculated based on

all the training samples. Accordingly, as the size of the training sample set increases, the

computational complexity increases rapidly.

Here we develop a reduced KPCA algorithm where the feature vectors are calculated

from the considerably reduced number of training data, which will in turn reduce the com-

putational complexity.
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Suppose we want to identify the function f (x). A reduced KPCA is used as the �rst

step to detect the feature vectors fxq1;xq2; � � � ;xqqg from the training set fx1;x2; � � � ;xMg,

where xi 2 RL; q�M. The local dynamics of interest can then be expressed as

f (x) = ∑ql=1θ lk(x;xql)+b

Since for any x, k(x;xql); l 2 f1; � � � ;qg can be calculated based on the pre-chosen kernel

function k(�; �), the only unknown parameters are θ l and b. Note as we have noted before,

f (x) has polynomial form so we consider a polynomial kernel here. The second step is to

estimate the unknown parameters through minimum least square method. In the following

we focus on introducing the �rst identi�cation step since the least square estimation in the

second step is a well developed algorithm.

Reduced Kernel PCA We have introduced the idea of KPCA in Section 2.7.1 and

mentioned that in KPCA, all the training data are used as the feature vectors. In the follow-

ing we introduce a reduced KPCA algorithm which reduces the number of feature vectors

which are chosen from the training data sets.

Given a training set fx1;x2; � � � ;xMg with sizeM, we regularize the training set by mul-

tiplying vector xi by a scalar so that 8i, jxij � 1. SupposeM is large enough so that 8x2RL;

there exists fβ 1;β 2; � � � ;βMg s.t. Φ(x) = ∑Mi=1β iΦ(xi), where Φ : RL! F is the function

that maps the data to the feature space with


Φ(xi);Φ(x j)

�
= k(xi;x j) and F � RH is the

range of Φ. We remark that Φ is injective and for a polynomial kernel H is �nite.
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Construct the matrix

CM�M =

266666664

ΦT (x1)Φ(x1) ΦT (x1)Φ(x2) � � � ΦT (x1)Φ(xM)
... . . .

ΦT (xM)Φ(x1) � � � ΦT (xM)Φ(xM)

377777775
,

�
c1 c2 � � � cM

�

Since the C matrix is symmetric, it has M orthonormal eigenvectors fv1;v2; � � � ;vMg; vi 2

RM corresponding toM real eigenvalues assigned in decreasing order λ 1 � λ 2 � �� � � λM.

Then by executing PCA on the C matrix, we can get a set of orthonormal eigenvectors

fv1;v2; � � � ;vqg, vi 2 RM corresponding to the dominant eigenvalues, λ 1;λ 2; � � �λ q of C.

Construct a matrix �C as

�C = [ v1 v2 � � � vq ]

266666664

λ 1

λ 2

. . .

λ q

377777775
[ v1 v2 � � � vq ]

T

,
�
�c1 �c2 � � � �cM

�

Note that
C� �C = λ q+1, where λ q+1 is the q+ 1th largest eigenvalue of C matrix. By

choice of q; λ q+1 is generally very small. Moreover, we have

�Cvi = λ ivi;8i= 1; :::q

thus

vi =
1
λ i
�Cvi = ∑Mj=1η j �c j;8i= 1; :::q

that is, vi can be represented as a linear combination of f �c1; �c2; � � � ; �cMg. It can also be

62



shown that R( �C), the range of �C; is spanned by vi, i = 1; :::q. Accordingly, given q linear

independent vectors f �cq1; �cq2; � � � ; �cqqg; �cqi 2 R( �C), we can express vi as

vi = ∑qj=1 �η i; j �cq j;8i= 1; :::q

Here we give the algorithm to select q linear independent vectors f �cq1; �cq2; � � � ; �cqqg from

f �c1; �c2; � � � ; �cMg

� let li = k �cik2 ; i 2 f1; :::Mg; L= fl1; � � � ; lMg;Ctemp = f �c1; � � � ; �cMg;

� n= 1; �cq1 = f �ci : ε i =maxfLgg;

� remove �ci from Ctemp;

� when n� q

� do until �cqn is independent to �cq1; � � � �cq(n�1) the angle between �cqn and the space

spanned by �cq1; � � � �cq(n�1) is bigger than a preset value ϖ .

�cqn = f �ci : li =maxfLgg;

remove �ci from Ctemp;

� end do

� n= n+1;

� end when

� end

Using this algorithm we get q linear independent vectors f �cq1; � � � ; �cqqg which are close

to the vectors fcq1; � � � ;cqqg because
C� �C= λ q+1. Note

cqi =

�
ΦT (xqi)Φ(x1) ΦT (xqi)Φ(x2) � � � ΦT (xqi)Φ(xM)

�T
=

�
k(xqi;x1) k(xqi;x2) � � � k(xqi;xM)

�T
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where k (�; �) is the kernel function. Since cqi is close to �cqi and k (�; �) is continuous, we

approximate

�cqi �
�
k(xqi;x1) k(xqi;x2) � � � k(xqi;xM)

�T
(3.8)

=

�
ΦT (xqi)Φ(x1) ΦT (xqi)Φ(x2) � � � ΦT (xqi)Φ(xM)

�T

Proposition 13 f (x) can be approximated by the linear combination of k(x;xqi), i2f1; � � � ;qg

in the form f (x) � ∑ql=1θ lk(x;xqi)+ b, where the error bound can be shown to be less or

equal to O(λ q+1), that is, xqi, i 2 f1; � � � ;qg can be treated as the feature vectors.

Proof. We start with the expression of f (x) based on the feature vectors that contain all

the training data, we have

f (x) = ∑Mi=1α ik(x;xi)+b (3.9)

= ∑Mi=1α iΦT (xi)Φ(x)+b

= ∑Mi=1α i∑Mj=1β jΦ
T (xi)Φ(x j)+b

= ∑Mi=1α i

�
β 1 β 2 � � � βM

�
�
�

ΦT (xi)Φ(x1) ΦT (xi)Φ(x2) � � � ΦT (xi)Φ(xM)
�T
+b

� ∑Mi=1α i

�
β 1 β 2 � � � βM

�
∑ql=1 γ i;lvl+b

= ∑Mi=1α i

�
β 1 β 2 � � � βM

�
∑ql=1 γ i;l∑

q
j=1 �η l; j �cq j+b
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Now, substituting (3.8) into (3.9) gives

f (x) � ∑Mi=1α i

�
β 1 β 2 � � � βM

�
∑ql=1 γ i;l

�∑qj=1 �η l; j

�
ΦT (xq j)Φ(x1) ΦT (xq j)Φ(x2) � � � ΦT (xq j)Φ(xM)

�T
+b

= ∑Mi=1α i(

�
β 1 β 2 � � � βM

�
∑ql=1 γ i;l

�∑qj=1 �η l; j

�
Φ(x1) Φ(x2) � � � Φ(xM)

�T
Φ(xq j))+b

= ∑Mi=1α i(∑ql=1 γ i;l∑
q
j=1 �η l; j(∑

M
t=1β tΦ

T (xt))Φ(xq j))+b

� ∑Mi=1α i(∑ql=1 γ i;l∑
q
j=1 �η l; jΦ

T (x)Φ(xq j))+b

= ∑ql=1θ lΦT (x)Φ(xq j)+b

Note that the following approximation has been made in (3.9)

∑Mi=1α i

�
β 1 β 2 � � � βM

�
�
�

ΦT (xi)Φ(x1) ΦT (xi)Φ(x2) � � � ΦT (xi)Φ(xM)
�T
+b

� ∑Mi=1α i

�
β 1 β 2 � � � βM

�
∑ql=1 γ i;lvl+b
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We now calculate the error bound for this approximation. Note that

∑Mi=1α i

�
β 1 β 2 � � � βM

�
�
�

ΦT (xi)Φ(x1) ΦT (xi)Φ(x2) � � � ΦT (xi)Φ(xM)
�T
+b

=

�
β 1 β 2 � � � βM

�
∑Mi=1α ici+b

=

�
β 1 β 2 � � � βM

�
∑Mi=1α i∑Ml=1 c

T
i vlvl+b

=

�
β 1 β 2 � � � βM

�
∑Mi=1α i∑Ml=1λ lvilvl+b

=

�
β 1 β 2 � � � βM

�
∑Mi=1α i

�
v1 v2 � � � vM

��
λ 1vi1 λ 2viM � � � λMviM

�T

=

�
β 1 β 2 � � � βM

��
v1 v2 � � � vM

�
266666664

λ 1

λ 2

. . .

λM

377777775

266666664

vT1

vT2
...

vTM

377777775

266666664

α1

α2
...

αM

377777775

=

�
β 1 β 2 � � � βM

�
C

266666664

α1

α2
...

αM

377777775
We remark that in the above λ jvij is the γ i; j in (3.9). Now using the fv1;v2; � � � ;vqg basis is

equivalent to approximate the above equation by

�
β 1 β 2 � � � βM

��
v1 v2 � � � vM

�
266666664

λ 1

. . .

λ q

0

377777775

266666664

vT1

vT2
...

vTM

377777775

266666664

α1

α2
...

αM

377777775
= ∑Mi=1α i

�
β 1 β 2 � � � βM

�
∑ql=1 γ i;lvl+b
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It is easy to show that the error bound of the approximation is less or equal to λ q+1 kαkkβk=

O(λ q+1).

In summary we have shown that f (x) � ∑Mi=1α ik(x;xqi)+ b, 8x 2 RL, which in turn

shows that xqi, i 2 f1; � � � ;qg can be treated as feature vectors.

As we mentioned before, once we identify the feature vectors fxq1;xq2; � � � ;xqqg, the

unknown parameters θ l and b can be easily found by the well known minimum least square

method, which completes the identi�cation of limit cycle system.

3.2.2 Linear Identi�cation Techniques

If based on some preliminary analysis of the data the attractor is detected to have an "equi-

librium point", then conventional linear identi�cation techniques can be utilized to approx-

imate the local dynamics. As we mentioned previously, there exists a large body of well

developed linear identi�cation techniques that have been developed into commercial codes.

In this dissertation, we use the system identi�cation toolbox from Matlab for the identi�c-

ation of linear local dynamics. We will not describe the application of linear identi�cation

methods in detail and refer the reader to the system identi�cation toolbox in Matlab for

further details.

3.2.3 Example

Now we illustrate the performance of techniques discussed above through examples for the

identi�cation of both linear and limit cycle local dynamics cases.

Strong Attraction Point Case (linear case)

Consider the example in Section 3.1.4, where the state space of the system has been de-

coupled into two clusters. We map the output data sequences into the two identi�ed (out-

put) groups and analyze the output data within each group. It can be easily found that the

data clustered around a point in each group and therefore a linear type system model is
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appropriate.

Since the output is two dimensional we consider a state space model of the af�ne form

x(k+1) = A(r)x(k)+b(r)+K (r)w(k)

y(k+1) = C (r)x(k+1)+w(k)

where b(r) is a bias vector, w(k) is a standard Gaussian noise and r denotes the state of

the modal transition dynamics taking value in f1;2g. The system identi�cation toolbox in

Matlab is used in the identi�cation of each of the two local af�ne models. It is found that

a system with state dimension n = 8 �ts the data nicely. Figure 3 gives the comparison

between a realization of the identi�ed system and the original output series. As is clearly

seen from Figure 3 the estimated system matches the original system very nicely.
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Figure 3. Comparison of original and simulated system dynamics.

Limit Cycle Case

In this example the identi�cation of Van Der Pol system is considered. The Van Der Pol

system is a limit cycle system given by (in continuous form)

0B@ �x1

�x2

1CA=
0B@ x2

0:5� (1� x21)� x2� x1

1CA
The Matlab routine ode45 was used to solve the equation. The sampling interval was

chosen as TS = 0:1s and the initial state was selected as (x1(0) x2(0))T = (1:5 1)T . An

observation noise was added to the measured signal,

y(k) = x1(k)+w(k)

where w(k) is Gaussian noise with σ = 0:002 (here y(k) = y(kTS)). We note that in practice

we could only observe the process at discrete times.

Next we model the discrete system corresponding to the original Van Der Pol system

based on the noisy observation y(k). The proposed reduced KPCA is used to identify the

system model. The kernel function is selected as a 3rd order polynomial kernel. Two

hundred data points have been used as training set in the kernel method and 18 feature

vectors chosen from the training set have been used for system identi�cation. Figure 4

and Figure 5 show the true and estimated phase plane plots and time series for the system

considered. We can see, either from the phase plane plot or from the time series graph, that
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the periodic dynamics of the Van Der Pol system can be identi�ed very accurately.
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Figure 4. Evaluation of the proposed local dynamics identi�cation
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Figure 5. Evaluation of the proposed local dynamics identi�cation
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3.2.4 Conclusion

In this subsection we assume that a suf�ciently long substring, say yi:i+k 2Yj, of the original

measured output string is given. We described how the local dynamics, both the nonlinear

case and the linear case can be identi�ed. For the linear case, we adopt conventional linear

identi�cation techniques and utilized the Matlab system identi�cation toolbox for this pur-

pose and have shown through an example that the estimated system matches the original

system very nicely. For the nonlinear limit cycle case, we proposed a reduced KPCA based

identi�cation algorithm, which has also been shown through a Van Der Pol system example

that it can identify the dynamic model accurately.

3.3 Conclusion

In this Chapter the identi�cation of a complex dynamic system that exhibits multi-modal

behavior is proposed based on SAFHS modeling. The developed approach divides the un-

derlying space of the system of interest in terms of strong attraction domains which usually

have nonlinear boundary, and then detects the local dynamics on the corresponding divided

output space. It is demonstrated in an example that the state transition matrix, state-output

association, system modes, state space partition regions, output partition region as well as

the modal transition matrix are accurately estimated, which illustrates the effectiveness of

the proposed multi-modal behavior identi�cation method. Furthermore, it is demonstrated

that, for some equilibrium attractor based systems, conventional identi�cation techniques

can be successfully used for the identi�cation of the local dynamic behavior within each

clustering component, while for the nonlinear local dynamics, e.g. the limit cycle case, the

reduced KPCA based identi�cation algorithm shows good performance.
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CHAPTER 4

Estimation of Hybrid Systems

In this Chapter we present a new high accuracy and reduced computational load particle

�ltering based algorithm for stochastic hybrid system state estimation and mode detection.

4.1 Algorithm Development

The estimation algorithm we present here combines IMMPF and OTPF �lters (to be de-

scribed in detail below) to estimate linear/nonlinear hybrid system mode and state. The

proposed algorithm is called reduced multiple model particle �lter (RMMPF). To facilitate

the development we organize this section into three parts: 1) IMMPF [5]; 2) OTPF [49]; 3)

RMMPF.

4.1.1 IMMPF

As discussed in Section 2.8 the IMM estimation scheme can be generalized into three

steps. We now describe the interacting multiple model particle �ltering (IMMPF) algorithm

developed in [5] in terms of these three steps.

Consider again the hybrid system in (1.2). Suppose that at time k� 1 there are N

samples in total for the M modes and each mode m has sample set Sm of size N=M (for

simplicity we assume that N is divisible by M). We denote the state and its associated

weight by fxi;mk�1;ω
i;m
k�1g; i 2 f1;2; : : :N=Mg, m 2 f1;2; : : :Mg. In addition, mode m has

posterior probability p(rk�1 = mjy0:k�1) at time k� 1. The Markov transition matrix for

the modal process rk is denoted by Π, with entries πs;t , s; t 2 f1;2; : : :Mg. One cycle of the

IMMPF algorithm at time k is described as follows:
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� Mixing/interaction step:

Mode switching:

p(rk = mjy0:k�1)�Ω�(rk = m) =
M
∑
s=1

N=M
∑
i=1

Πs;mω
i;s
k�1

Interaction resampling:
�
ω
i;m
k =Ω�(rk = m)M=N

If Ω�(rk = m) = 0, then �xi;mk�1 = x
i;m
k�1, else:

�xi;mk�1 �
M
∑
s=1

N=M
∑
j=1

Πs;mω
j;s
k�1δ (x� x

j;m
k�1)=Ω

�(rk = m)

where i 2 f1;2; : : :N=Mg;m 2 f1;2; : : :Mg

� Mode-conditioned state estimation step:

Prediction:

xi;mk = frk=m(
�xi;mk�1;v

i;m
k )

Correction:

ω
i;m
k =� ω

i;m
k p(ykjx

i;m
k ;rk = m)

Then normalize ω
i;m
k ; i 2 f1;2; : : :N=Mg;m 2 f1;2; : : :Mg:

� Output step:

p(rk = mjy0:k)�Ω(rk = m) =
N=M
∑
i=1

ω
i;m
k

if Ω(rk = m)> 0:

p(xkjy0:k;rk = m) =
N=M
∑
i=1

ω
i;m
k δ (x� xi;mk )=Ω(rk = m)
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4.1.2 OTPF

The observation and transition-based most likely modes tracking particle �ltering (OTPF)

algorithm is proposed in [49] as a method for both fault detection (discrete state) and state

estimation. In contrast to IMMPF, which takes all modes into account and assigns a �xed

number of particles to each mode at each time step with a �xed number of particles in each

mode evolving in time, OTPF chooses the most likely mode at each time step and only

particles in this mode evolve into the next time step.

Next we present more details on how the OTPF algorithm works. Consider again the

hybrid system in (1.2). Suppose at time k�1 the most likely mode is chosen to be rk�1=m,

there are N=M samples for mode rk�1 = m, denoted as fxi;mk�1;ω
i;m
k�1 = 1=(N=M)g; i 2

f1;2; : : :N=Mg, where M is the number of modes. As before the modal Markov transition

matrix is denoted as Π. One cycle of the OTPF algorithm at time k is described as follows:

� Interaction step:

For any mode rk = s;s 2 f1;2; : : :Mg such that πm;s is not zero,

�
ω
i;s
k�1 = πm;sω

i;m
k�1

�xi;sk�1 = x
i;m
k�1

� Mode-conditioned state estimation step:

Prediction:
�xi;sk = frk=s(

�xi;sk�1;v
i;s
k )

Correction:

ω
i;s
k =

�
ω
i;s
k�1p(ykjx

i;m
k ;rk = s)

where i 2 f1;2; : : :N=Mg:
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� Mode selection step:

Mode weight of rk = s;s 2 f1;2; : : :Mg is:

Ω(rk = s) =
N=M
∑
i=1

ω
i;s
k

Find the most likely mode:

rk = argmax
s2f1;2;:::Mg

fΩ(rk = s)g

Normalize the weights of particles within the most likely mode rk.

Distribution in the most likely mode rk :

p(xkjy0:k;rk) =
N=M
∑
i=1

ω
i;rk
k δ (x� xi;rkk )

here ω
i;rk
k is the normalized weight of particles in rk:

� Resampling step:

Resample within the most likely mode rk at time k to get N=M new particles fxi;rk=sk ;

ω
i;rk=s
k = 1=(N=M)g:

4.1.3 RMMPF

In the previous Sections we described in detail the IMMPF and OTPF algorithms, respect-

ively. It has been shown in [5] [43] that the IMMPF algorithm developed in [5] has very

good estimation performance. On the other hand, the OTPF algorithm is biased and is

easily affected by observation outliers. Thus in the terms of estimation accuracy, IMMPF

outperforms OTPF, but OTPF is simpler and requires less computational effort.

It is well known that when particle �lters are used in real time estimation their high com-

putational cost is of major concern. Therefore, the fact that OTPF outperforms IMMPF in
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terms of computational effort is of notable importance. To further illustrate this we analyze

the computational complexity for both IMMPF and OTPF following an approach similar to

the one in [62]. Suppose there areM modes and recall that in IMMPF each mode has N=M

samples. For one cycle in IMMPF the Mixing/interaction step for each mode requires about

O(N) operations to calculate the sample weights, additionalO((N=M) logN) operations are

necessary if the basic systematic resampling method is used; in the Mode-conditioned state

estimation step O(k1N=M) operations are needed to perform the prediction and O(k2N=M)

operations for the correction, where k1 and k2 are model dependent constants, independ-

ent of N and M: Finally, in the output step, estimation is achieved with about O(N) op-

erations for the whole system. Consequently, one cycle of the IMMPF algorithm re-

quires approximately (M + 1)O(N) +MO((N=M) logN) +M(O(k1N=M) +O(k2N=M))

operations. On the other hand, for one cycle in OTPF no computation is necessary in

the interaction step since ω
i;m
k�1 � 1=(N=M) and πm;sω

i;m
k�1 are previously known; in the

Mode-conditioned state estimation step, around O(k1N=M) +O(k2N=M) operations are

necessary to perform the prediction and correction in each mode; in the mode selection

and estimation step, about O(N) operations are needed for whole system; �nally, the last

step, resampling, can be performed with about O((N=M) log(N=M)) operations. Thus ap-

proximately O(N) +O((N=M) log(N=M)) +M(O(k1N=M) +O(k2N=M)) operations are

required in the OTPF algorithm. For large N , the calculation load in resampling step

dominates in both OTPF and IMMPF. It is easy to see that the computational load of

the OTPF algorithm is much less than that of the IMMPF algorithm or on the order of

(M�1)O((N=M) log(N=M)), where M << N.

When applying IMMPF in hybrid system estimation, the weight of the true mode

Ω(rk = m) is dominant most of the time, i.e. if the system is in mode rk = m at time k

then Ω(rk = m) t 1 while the weight of other modes is close to 0. In this case the differ-

ence between the performance of OTPF and IMMPF is small. In particular, in the IMMPF

method, if the particles of one mode have dominant weights (which makes the weight for
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this mode close to 1) then even if particles from the other modes are mixed with particles

from the almost dominant mode, during the resampling in the mixing/interaction step of

the IMMPF, most the particles from the non-dominant modes will be left out due to their

very small weights. Consequently we can use the OTPF algorithm in this case to save com-

putation without losing much accuracy. In other cases, which may happen after the system

switches modes, or when there are observation outliers, the dominance of one mode will

not be obvious. In order to avoid the evolution based on a wrong mode, which may occupy

similar mode weight to the correct one in this case, it is better to take all possible modes

into account rather than choose one mode based on a crude criteria as in OTPF. In this case

selecting the IMMPF algorithm is the better choice to improve estimation accuracy.

Based on the above observations a new estimator integrating IMMPF and OTPF is

proposed for the hybrid system (1.2). Initially a threshold 0< θ < 1 is selected (typically θ

is close to 1). This value is compared with maxs2f1;2;:::MgfΩ(rk = s)g after the calculation

at time step k. Note that Ω(rk = s) denotes the probability for mode s at time k, thus

∑sΩ(rk = s) = 1. If maxs2f1;2;:::MgfΩ(rk = s)g > θ it implies that at time k one mode is

dominant, i.e. the mode with maximum mode weight is very likely the true mode. Thus the

index factor, denoted by γ , is set to 1, which means that in the next time step only particles

switched from the most likely mode at time k are considered, i.e. OTPF is selected in the

next time step. If, on another hand, maxs2f1;2;:::MgfΩ(rk = s)g< θ , it implies that at time

k, no mode is obviously dominant, i.e. more than one mode is competitive to be the true

mode, which happens when the system mode is switching or there are observation outliers.

At this time, an index factor γ is set to 0, which means at the next time step particles

switched from the all modes should be considered, i.e. IMMPF algorithm is selected at the

next time step.

One cycle of the proposed RMMPF algorithm is described as follows:

if γ is 1:

� the most likely mode rk�1=m at k�1; feed particles fxi;mk�1;ω
i;m
k�1g; i2f1;2; : : :N=Mg,
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N=M
∑
i=1

ω
i;m
k�1 = 1 into OTPF;

� use the OTPF algorithm to calculate the mode weight Ω(rk = s);s2 f1;2; : : :Mg and

to estimate state at time k;

� if maxs2f1;2;:::MgfΩ(rk = s)g > θ and rk = argmaxs2f1;2;:::MgfΩ(rk = s)g equal to

rk�1 = m

γ = 1, keep only the particles in the most likely mode and normalize.

else

γ = 0, keep the particles in all modes

end

else if γ is 0:

� feed particles fxi;mk�1;ω
i;m
k�1g; i 2 f1;2; : : :N=Mg;m 2 f1;2; : : :Mg into IMMPF;

� use the IMMPF algorithm to calculate the mode weight Ω(rk = s);s 2 f1;2; : : :Mg

and to estimate state at time k;

� if maxs2f1;2;:::MgfΩ(rk = s)g > θ and rk = argmaxs2f1;2;:::MgfΩ(rk = s)g equal to

rk�1 = m

γ = 1, keep only the particles in the most likely mode and normalize.

else

γ = 0, keep the particles in all modes

end

end
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4.2 Performance Evaluation

In this section we will apply the RMMPF algorithm to the nonlinear hybrid system es-

timation example from [49] and compare it with KMPF/OTPF and IMMPF algorithm.

Moreover, based on the same example, we will show the sensitivity of RMMPF to the

value of parameters to address the performance of RMMPF better.

4.2.1 Problem description

Consider the following nonlinear hybrid system from [49]. The system has 3 modes. The

state equation of the system has form

xk = fi (k;xk�1;vk) (4.1)

where i denotes the mode and

f1 (k;xk�1;vk) = 0:5xk�1+25
xk�1
1+ x2k�1

+8cos(1:2k)+ vk

f2 (k;xk�1;vk) = 0:5xk�1+25
xk�1
1+ x2k�1

+8cos(1:2k)+2+ vk

f3 (k;xk�1;vk) = 25
xk�1
1+ x2k�1

+8cos(1:2k)+ vk

For all the three modes the output equation is

yk =
x2k
20
+wk

In the above equations vk and wk are zero mean Gaussian noises with variances σ2vk and

σ2wk , respectively. In the remainder of this section we set σ2vk = σ2wk = σ2.

In simulation the system stays in mode 1 during 1� t < 30, switches to mode 2 at time
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t = 30 and stays in that mode for the interval 30 � t < 60, then during 60 � t < 100 the

system is in mode 3.

The initial distribution of system is assumed to be known. For all �lters the system

starts at same point. 100 runs have been performed for each of the �lters. Furthermore,

in order to make the comparison more meaningful, the same random number streams were

used for all �lters.

4.2.2 Comparison with KMPF/OTPF

In this part we compare the proposed algorithm with KMPF/OTPF. In order to make a

fair comparison with OTPF, we use the same performance measure, mean absolute er-

ror (MAE), the same particle size (N = 100), for KMPF (recall KMPF is the bench-

mark �lter that has full knowledge of the real mode), and the same variance parameters

(σ2 = 0:01;0:05;0:1;0:5;1), as have been used in [49]. We also use the same mode trans-

ition matrix Π as in [49], such that for each mode the mode transition probability to itself

is 0:95, while 0:025 to the other two modes. The threshold value θ for RMMPF is set to be

0.99.

Table 1 MAE for KMPF and RMMPF

σ2 0.01 0.05 0.1 0.5 1

KMPF 0.29 0.44 0.55 1.03 1.41

RMMPF(N=100) 0.32 0.49 0.71 1.37 1.78

Table 2 Average times IMMPF has been used

σ2 0.01 0.05 0.1 0.5 1

N = 100 29.7 44.0 50.1 69.3 78.73
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Figure 6 State estimation by RMMPF
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Figure 7 Mode estimation by RMMPF

Table 1 compares the performance for the estimation of the system state by KMPF and

RMMPF. The proposed RMMPF estimator was run with N=M = 100=3 � 33 particles in

each mode whereas KMPF was run with N = 100 particles. As is seen in Table 1 the

proposed method performs only about 10% worse than KMPF for noise σ2 � 0:05, around

30% worse for noise σ2 = 0:1 and 0:5, and around 25% worse for σ2 = 1. On the other

hand, it has been reported in [49] that in a similar comparison with KMPF with N = 100
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particles, the OTPF algorithm with N=M = 300=3 = 100 particles in one mode performs

more than 50% worse for σ2 � 0:05, more than 75% worse for σ2 = 0:1, and more than

45% and 40% worse with σ2 = 0:5 and 1; respectively. Moreover, in this example, it is

apparent that the RMMPF algorithm has less computational load than the OTPF algorithm

since the RMMPF uses only N=M= 100=3� 33 particles in each mode, which is one-third

size of that used in OTPF. Note however, that the number of times the IMMPF algorithm is

used in the execution of the RMMPF will affect the computational load, i.e. the more times

IMMPF is used the higher the computation cost will be. In order to evaluate how often

IMMPF has been executed in the proposed RMMPF estimator, we display in Table 2 the

average time in which IMMPF algorithm is executed for one 100 time step long run. We

can tell from Table 2 that, with the same threshold value, as the variance σ2 increases, the

rate of IMMPF being used in RMMPF increases as well. This is due to the fact that as the

noise level increases the mode weight gap between all possible modes decreases. Thus the

dominance of one mode does not happen frequently, which leads to high frequency of the

selection of IMMPF in the algorithm. Finally, in Figure 6 and Figure 7 we show the state

estimate and mode estimate performance of one typical run of the proposed algorithm for

N = 100 particles and variance σ2 = 0:5. It can be seen that the estimated state matches

the real state very well. Furthermore, as is seen in Figure 7 the mode estimation is very

accurate as well, only 1 time step delay happens when the system switches.

4.2.3 Comparison with IMMPF

In this section some simulation results are presented for the IMMPF and the proposed

RMMPF estimator. Both algorithms run with N=M = 300=3= 100 particles in each mode.
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The mode transition matrix Π is given by

Π=

266664
0:9 0:05 0:05

0:05 0:9 0:05

0:05 0:05 0:9

377775
and threshold value θ is set to be 0.9. The performance index is MAE, the same as before.

We present in Table 3 the performance of the IMMPF and RMMPF algorithms for

various noise variance values. These results show that the proposed RMMPF algorithm

can get similar estimation accuracy as IMMPF. Table 4 shows the average number of time

steps in which IMMPF algorithm is used in the RMMPF for one 100 time step run. Note

that when σ2 � 0:1, IMMPF is used in less than 20 time steps in a 100 time step run.

When σ2 = 0:5 or 1, the IMMPF is executed more often, but still less than 50% in one run.

The low frequency in which IMMPF is used in the RMMPF estimation contributes to its

computation ef�ciency, which is summarized in Table 5. Table 5 gives comparison between

the IMMPF and RMMPF in computational effort for various noise variance values. The

computation times are counted for 100 runs for each different variance case. We note that

the RMMPF saves 22:4% to 40:3% computational time compared to IMMPF algorithm.

Table 3 MAE for RMMF and IMMPF

σ2 0.01 0.05 0.1 0.5 1

RMMPF 0.25 0.47 0.63 1.29 1.72

IMMPF 0.26 0.46 0.62 1.29 1.73

Table 4 Average times IMMPF has been used

σ2 0.01 0.05 0.1 0.5 1

N = 300 11.5 16.6 19.2 33.4 44.9
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Table 5 Calculation time for RMMPF and IMMPF

σ2 0.01 0.05 0.1 0.5 1

RMMPF 20:1s 21:0s 21:9s 24:6s 26:1s

IMMPF around 33:6s

4.2.4 Sensitivity to θ

In order to gain insight into the sensitivity of RMMPF to the threshold θ we carried out

several simulations by varying the value of θ , while keeping all other parameters �xed, i.e.

σ2 = 0:1, Π the same as in Section 4.2.2 and N = 300. The performance of RMMPF as

function of the threshold value θ is compared with IMMPF both in terms of ef�ciency and

accuracy in Figure 8. We observe that as the threshold varies from a low to a high value,

the accuracy of RMMPF is improved, while the relative computational time of RMMPF

increases as the threshold increases. Note that when θ has value around 0.93, RMMPF

has performance as good as that of IMMPF, while the relative computational time is only

about 62% compared to IMMPF. When θ is increased further the performance of RM-

MPF remains the same while the relative calculation time (compared to IMMPF) increases

quickly and ends close to 1, corresponding to θ = 1. In fact, when θ = 1 RMMPF is the

same algorithm as IMMPF. We conclude that in this case, the value θ = 0:93 is the optimal
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threshold value.
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Figure 8. Performance versus Threshold

4.2.5 Number of particles

Next we illustrate the performance of RMMPFwith respect to different number of particles.

Here we have selected simulation parameters as: σ2 = 0:05;Π the same as in Section 4.2.2

and θ = 0:95: Similar to Section 4.2.4, the performance of RMMPF has been compared

with IMMPF in two ways, i.e. ef�ciency and accuracy. Moreover, KMPF has also been
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realized to offer a performance reference for different number of particles.
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Figure 9. Performance comparison

In Figure 9 we see that RMMPF and IMMPF have similar estimation accuracy as a

function of the number of particles. Furthermore, as the number of particles increases the

performance of both two �lters improves but remain inferior to the performance of KMPF.

We note at the same time that the relative calculation time of RMMPF to that of IMMPF

is decreasing. In particular, as the number of particles increases, RMMPF not only offers

more accurate estimation but also offers better ef�ciency relative to IMMPF.
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4.3 Application: Maneuvering Target Tracking

In this Section we intend to further validate the viability of the proposed RMMPF algorithm

through a simulated maneuvering target tracking example. We adopt the same maneuvering

target tracking example as the one addressed in [14]. Performance of RMMPF algorithm

is compared to that of IMMPF to illustrate the algorithm's ef�ciency.

The maneuver system of interest has the form (1.2), where now

frk (xk�1;vk) = Axk�1+Bvk+urk

grk (xk;wk) =Cxk+Dwk

and

A =

266666664

1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

377777775
; B= 0:1I4

C = I4; D=
p
3
2

266666664

20 0 0 0

0 1 0 0

0 0 20 0

0 0 0 1

377777775
The state of the target at the kth time step is de�ned as xk ,

�
dx;k;sx;k;dy;k;sy;k

�
, where

dx;k(or dy;k) and sx;k(or sy;k) denote the position and velocity of the target in the x (or y)

direction respectively. Noises vk andwk are both modeled as zero mean Gaussian sequences

with unit standard deviation. The sample time Ts is 2s. The switching relevant term is urk ,
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where rk is a three-state Markov chain with transition matrix Π given by

Π=

266664
0:9 0:05 0:05

0:05 0:9 0:05

0:05 0:05 0:9

377775
The following three modes correspond to three possible maneuver commands:

1. Straight, with u1 = [0;0;0;0]T ;

2. Left turn, with u2 = [�1:225;�0:35;1:225;0:35]T ;

3. Right turn, with u3 = [1:225;0:35;�1:225;�0:35]T .

A 100-time-step long target trajectory is generated as follows: 1) the target starts from

state [�500;0;�500;5] at time k = 0 and goes straight for 25 time steps; 2) a right turn is

executed for 10 time steps; 3) the target goes straight for another 25 time steps; 4) the target

turns left for 20 time steps; 5) the target goes straight again for 20 time steps.

In order to make a fair comparison, as before, we have the system start at a �xed point

for all �lters. One hundred simulation runs have been performed and the same random

number streams were used for all �lters. For RMMPF algorithm, the threshold θ is set to

be 0.85.
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Figure 10 Maneuvering target trajectory and tracking results

Figure 10 shows the simulated maneuvering target trajectory, the observations and the

estimated target trajectories resulting from the IMMPF and RMMPF algorithms for one

typical run. As displayed in Figure 10, both IMMPF and RMMPF can estimate the traject-

89



ory from observations very well.

Table 6 Comparison of IMMPF and RMMPF

Algorithm Time(s) MAE Times IMMPF used

IMMPF 838.9 7.25 /

RMMPF 651.3 7.43 56.9

In order to illustrate the viability and ef�ciency of RMMPF, we have compared in Table

6 the performance of RMMPF to IMMPF, based on 100 runs. The comparison of estimation

error in Table 6 shows the similar estimation accuracy of IMMPF and RMMPF. As for the

calculation ef�ciency, we see that RMMPF's calculation time is 22:4% less than that of

IMMPF. It is also shown in Table 6 that for one 100 time step long run, the average number

of times the IMMPF algorithm was executed was 56.9. It is worth mentioning that in

this example, the system is quite noisy. As we discussed in Section 4.2.2, the high noise

level would reduce the mode weight gap among all possible modes. Thus here one mode

does not dominate often and the frequency of using IMMPF in RMMPF algorithm is high,

which in turn causes more relative calculation time (compared to IMMPF). Another factor

causing the increase in the computation time is the high mode switching rate. In general,

mode switching makes several modes have comparable weights before the algorithm gets

stabilized in one mode. Consequently, the more often the mode switches, the higher the

computational cost in RMMPF comes. Note that although the high mode switching rate

increases the computation time of RMMPF, the increase is not as obvious as that caused by

the high noise level. As we can see, for this example, although the system is suffering from

those two factors mentioned above, RMMPF can still offer good computation ef�ciency,

together with good estimation accuracy.

Remark 3 In order to be consistent with [49] we have made all performance comparisons

here using the MAE index. However, we have also made the comparisons using the root
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mean square (RMS) of the estimation error which has shown similar results.

4.4 Conclusion

In this Chapter we presented a high accuracy, low computation load particle �lter algorithm

and compared its performance with OTPF and IMMPF algorithms. We demonstrated in

simulation that the proposed method outperforms OTPF not only in estimation accuracy

but also in terms of computational effort. Compared with IMMPF, the proposed method

has been shown to work almost as well as IMMPF in terms of estimation accuracy but with

considerably lower computational effort. The ef�ciency and good performance of the pro-

posed algorithm makes it practical and robust for tracking a target in a complex situation,

as we have demonstrated in Section 4.3 by the maneuvering target tracking example.

It is easy to see that the threshold value will affect both the estimation accuracy and

the computational time. Indeed, the closer the threshold value is to 1 the algorithm will

select the IMMPF at a higher rate at the expense of higher computational cost but with

increased accuracy in the estimation. As we demonstrated in Section 4.2.4, there exists an

optimal value for threshold value which offers the best combination of low computational

cost and high estimation accuracy for RMMPF algorithm. However, �nding the optimal

value in practical applications may require some extra research efforts. Furthermore, when

the number of particles is large, say N = 104, it may not be necessary to use all the particles

at each time step to select the correct mode. Instead, a smaller number of particles in each

mode may be suf�cient for this purpose. After the correct mode is estimated, full set of

particles in this mode can be used to estimate the state and to evolve into the next time step.

In this way, the computational ef�ciency is expected to get improved even further.
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation we studied the identi�cation of complex dynamic systems as well as

hybrid system estimation.

For the identi�cation part, we proposed a scheme to identify a complex stochastic dy-

namic system based on a black-box model, that is, the system is modeled based only on

output data. The system under study is a system whose underlying space is the union of

strong attraction domains. The system exhibits a behavior such that it spends a long time

in one strong attraction domain before transitioning to another one. System showing this

behavior can be found in many applications. Considering the nature of this system, we

modeled it as a hybrid system, in particular, it is a strong attraction domain featured hy-

brid system (SAFHS). Two principal features for this type of a hybrid system are that the

boundaries between the strong attraction domains (modes) are nonlinear and the dynamic

behavior within each strong attraction domain (modes) can be highly nonlinear, e.g. limit

cycle.

The identi�cation scheme developed in this dissertation was based on �nite dimensional

approximations of compact operators, spectral theory for non-reversible Markov chains,

identi�cation techniques for hidden Markov models (HMM), and identi�cation techniques

for linear and non-linear dynamics.

First, after we discretized the state and output spaces and approximated the underlying

Markov process and corresponding output process by a �nite state processes, we detected

the state sequence based on the output sequence through the identi�cation of a HMM,

92



where we have adopted a newly developed HMM identi�cation algorithm and extended it

to high dimensional state space case. Moreover, we have discussed the system attributes

which lead to the unique estimation for the hidden state. Then, through examples, we have

experimentally veri�ed the presented uniqueness estimation analysis as well as shown the

effectiveness of the proposed HMM identi�cation algorithm.

After identifying the state sequence utilizing HMMmodeling techniques we worked out

the transition laws for the Markov chain. Then spectral theory for non-reversible Markov

chains was used to identify the number of partition components (strong attraction domains,

modes) as well as the partition itself, and the transition law between those components. An

example for identifying a discrete time dynamics system that contains two strong attraction

domains (modes) was carried out. Through this example, it has been illustrated that the

proposed identi�cation approach can accurately estimate the state transition matrix, state-

output matrix, system modes, state space partition regions as well as the modal transition

matrix.

With the state space partition regions being identi�ed successfully, we next mapped

the state sequence onto the partition and through the association between the state and

output strings we classi�ed the output symbols (and substrings) into partition components

(clusters) in the output space corresponding to that in the state space. It has to be stressed

that the dynamics that govern the modal behavior in state space are the same as the ones

that govern the modal behavior in the output space. Given the output strings in each com-

ponents in output space, we identi�ed the local dynamics. For a partition component that

only contains an equilibrium point we adopted linear identi�cation techniques, while for

a partition component that contains highly nonlinear behavior, we explored a kernel based

identi�cation approach. So far we have identi�ed a typical nonlinear behavior, i.e. limit

cycle behavior through a kernel principal component analysis algorithm. For the local

dynamics identi�cation, examples were presented, both in linear identi�cation and non-

linear identi�cation cases, to demonstrate the performances of the techniques adopted or
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developed.

Once we complete the above identi�cation procedure we obtained a �nite collection

of local dynamic models as well as a Markov transition law that governs the dynamics

between the local models. The resulting model is therefore of hybrid nature, i.e. associated

with each local model is a modal variable taking value in a �nite set, the dynamics of the

modal variable is governed by the �nite state Markov process. Furthermore, each local

model is associated with a particular partition component of the output space. This ful�lled

our goals for the identi�cation of a complex dynamic system.

In the estimation part, we presented a high accuracy, low computational load method

for nonlinear/non-Gaussian hybrid system. The ef�ciency and accuracy of the proposed

algorithm have been illustrated by examples. Moreover, its good performance makes it

practical and robust for tracking a target in a complex situation, as we have demonstrated

by a simulated maneuvering target tracking example.

5.2 Future Work

In this dissertation, the complex dynamic system under study is an autonomous system,

i.e., it is a system without input. We plan to extend our research to systems with inputs and

develop input dependent hybrid models for such systems.

Second, in the local dynamics identi�cation part, we have only studied the behavior of

a limit cycle. The identi�cation of local dynamics for other types of highly nonlinear strong

attraction domains that contain more than one attractors or contain one attractor with other

nonlinear behaviors, e.g. strange attractors, have not yet been attempted. These will be part

of our future research interests as well.
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