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ABSTRACT 
 

Outbreaks of severe weather affect the majority of the conterminous United 

States.  An outbreak is characterized by multiple severe weather occurrences within a 

single synoptic system.  Outbreaks can be categorized by whether or not they produce 

tornadoes.  It is hypothesized that the antecedent synoptic signal contains important 

information about outbreak type.  Accordingly, the scope of this research is to 

determine the extent that the synoptic signal can be utilized to classify outbreak type 

at various lead times. 

Outbreak types are classified using the NCEP/NCAR reanalysis data, which are 

arranged on a global 2.5º latitude-longitude grid, include 17 vertical pressure levels, 

and span from 1948 to the present (2008).  Fifty major tornado outbreak (TO) cases 

and fifty major non-tornadic severe weather outbreak (NTO) cases are selected for 

this work.  Two types of analyses are performed on these cases to assess 

discrimination ability.  One analysis involves outbreak classification using the 

Weather Research and Forecasting (WRF) model initialized with the NCEP/NCAR 

reanalysis dataset.  Meteorological covariates are computed from the WRF output and 

used in training and testing of statistical classification models.  The covariate fields 

are depicted on a 21 X 21 gridpoint field with an 18 km grid spacing centered on the 

outbreak.  Covariates with large discrimination potential are determined using 

permutation testing.  A P-mode principal component analysis (PCA) is used on the 

subset of covariates determined by permutation testing to reduce data dimensionality, 

since numerous redundancies exist in the initial covariate set.  Three statistical 

classification models are trained and tested with the resulting PC scores: a support 
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vector machine (SVM), a logistic regression model (LogR), and a multiple linear 

regression model (LR).  Promising results emerge from these methods, as a 

probability of detection (POD) of 0.89 and a false alarm ratio (FAR) of 0.13 are 

obtained from the best discriminating statistical technique (SVM) at 24-hours lead 

time.  Results degrade only slightly by 72-hours lead time (maximum POD of 0.833 

and minimum FAR of 0.276). 

Synoptic composites of the outbreak types are the second analysis considered.  

Composites are used to reveal synoptic features of outbreak types, which can be 

utilized to diagnose the differences between classes (in this case, TOs and NTOs).  

The composites are created using PCA.  Five raw variables, height, temperature, 

relative humidity, and u and v wind components, are extracted from the NCEP/NCAR 

reanalysis data for North America.  Converging longitude lines with increasing 

latitude on the reanalysis grid introduce bias into correlation calculations in higher 

latitudes; hence, the data are mapped onto both a latitudinal density grid and a 

Fibonacci grid.  The resulting PCA produces two significant principal components 

(PCs), and a cluster analysis on these PCs for each outbreak type results in two types 

of TOs and NTOs.  TO composites are characterized by a trough of low pressure over 

the central United States and major quasigeostrophic forcing features such as an upper 

level jet streak, cyclonic vorticity advection increasing with height, and warm air 

advection.  These dynamics result in a strong surface cyclone in most tornado 

outbreaks.  These features are considerably less pronounced in NTOs.  The statistical 

analyses presented herein were successful in classifying outbreak types at various lead 

times, using synoptic scale data as input.  
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1.  INTRODUCTION 

a) Motivation 

According to the American Meteorological Society (AMS), tornadic severe 

weather occurs with a highest frequency over the United States (Glickman 2000). 

Tornadic severe thunderstorms are characterized by large, damaging hail, strong wind 

gusts, and tornadoes.  While over 1000 tornadoes affect the United States per year 

(Glickman 2000), groups of these events, known as outbreaks, are comparatively 

uncommon events (only 20-30 outbreak days per year, Schneider et al. 2004).  These 

outbreaks are considerably more dangerous than individual tornadoes, since they can 

result in multiple, significant tornado occurrences that affect a relatively large 

geographic region.   

In addition to tornado outbreaks (hereafter TOs), numerous primarily 

nontornadic outbreaks of severe weather (hereafter NTOs) impact the United States 

annually.  NTOs are more common (50 or more per year) than TOs (20-30 per year, 

Glickman 2000).  However, NTOs are generally less threatening to life than TOs.  

Advance knowledge of outbreak type would aid forecasters and emergency 

management teams in anticipation of these dangerous events. 

 Many studies (section 1.2) classify different types of TOs and NTOs, but no work 

has appraised the potential to distinguish between these two main classes at various 

lead times.  The scope of this project is to assess the disparities between TOs and 

NTOs through statistical objective methods.  These goals will be accomplished 

through statistical outbreak classification and synoptic storm typing of TOs and 

NTOs.   
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b)  Literature Review 

1)  SEVERE WEATHER OUTBREAK REVIEW 

The AMS glossary (Glickman 2000) defines a TO as “multiple tornado 

occurrences within a single synoptic-scale system.”   An early study of a TO (Carr, 

1952) examined the significant 21-22 March 1952 event which encompassed the 

lower Mississippi Valley and the Tennessee Valley.  This study analyzed surface 

features contributing to the event (low pressure system with associated cold front over 

Louisiana) and described significant weather occurrences produced by the event.  

Many classes of TOs have been defined in previous studies, including Pautz (1969), 

who defined TOs based on their size (small, medium, and large), and Galway (1975), 

who considered the number of tornado deaths by state and compared that with the 

Pautz (1969) outbreak definitions.  Galway (1977) classified three different types of 

TOs:  a local outbreak (those confined to radii not exceeding 10 000 square miles), a 

progressive outbreak (an outbreak that advances from west to east with time in which 

the distance between the first and last tornado report generally exceeds 350 miles), 

and a line outbreak (one in which the tornadic thunderstorms form along a narrow 

corridor).  Grazulis et al. (1993) categorized TOs as groups of 6 or more tornadoes 

within a single synoptic system. 

While many studies had grouped TOs into different categories, Doswell et al. 

(2006), [hereafter called D06] presented the first objective ranking of TOs based on 

the AMS glossary (Glickman 2000) definition of a TO.  The TO database used in D06 

was documented by Schafer and Edwards (1999) and included data related to 

individual TOs which occurred on a single day (1200 UTC through 1159 UTC the 
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following day).  D06 formulated an index (O - index) based on weighting different 

TO parameters, including total path length of all tornadoes, the destructive potential 

index (DPI, Thompson and Vescio 1998), the number of killer tornadoes, the number 

of deaths, etc.  D06 found that small permutations in the weights led to significant 

differences in the rankings, revealing the highly subjective nature of the definition of 

a TO that was manifest in the numerous types of TOs in previous research.   

 D06 ranked NTOs in the same manner as TOs, although a different set of 

weighting parameters was selected.  They defined an NTO as a severe weather 

outbreak with 6 or fewer tornadoes.  The NTO ranking index (S – index) was 

formulated from a weighted sum of the total number of severe weather reports, the 

number of significant wind reports, the number of significant hail reports, the number 

of tornadoes, the number of wind reports, and the number of hail reports.  Some NTO 

events consisted of individual smaller outbreaks from independent synoptic systems 

that occurred on the same day.  These NTOs were geographically widespread, and a 

purely objective ranking of NTOs classified these events as significant, despite 

multiple independent synoptic systems triggering the storms.  To account for this 

geographic distribution of the NTOs, D06 sorted the individual severe weather reports 

based on latitude and longitude and retained the middle 50% of the latitude-longitude 

distribution.  They scaled the resulting area to the order of the S- index and subtracted 

this scaled variable as a new S- index, which thereby included information of the 

severe weather report spatial distribution.  The D06 top 50 ranked cases of TOs and 

NTOs were used in the present research for the statistical classification and 

compositing. 
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Many outbreak studies, including D06, have ranked the 3 April 1974 

“superoutbreak” as the most important outbreak of tornadoes in recorded history, with 

over 100 long path significant tornadoes observed (Fig. 1).  Fujita (1974) noted many 

synoptic precursors that led to the April 1974 TO.  However, some TOs were less 

synoptically evident, such as the 3 May 1999 outbreak (ranked 20 in D06).  

Numerous investigators have investigated this TO (Roebber et al. 2002, Edwards et 

al. 2002, Stensrud and Weiss 2002, Thompson and Edwards 2000, others), noting that 

it had atmospheric features that did not suggest convection would initiate (weak 

dryline convergence, cirrus deck reducing instability, etc.).   Accordingly, forecasters 

were unable to determine if convection would occur a few hours prior to initiation. 

 

 

Fig. 1.  Storm reports from 3 April 1974, courtesy of the Storm Prediction Center 
Severe Plot software (Hart 1993).  Red lines represent tornado tracks; blue crosses 
represent severe wind reports, and green points represent severe hail reports.   
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 Marginal outbreaks, such as 3 May 1999 TO, helped motivate the current work, 

since they are more poorly understood than the classic outbreaks (i.e. 3 April 1974).  

Whereas the physics of convective development in forecast TOs and NTOs (e.g. 3 

May 1999) lies outside the scope of this project, the application of statistical methods 

to classify TOs and NTOs can provides a baseline to motivate such research.   

2)  STATISTICAL METHODS REVIEW 

The classification of outbreak classes was investigated in the present study 

through the use of artificial intelligence (AI) techniques and statistical classification 

methods, all of which have been used in previous meteorological research.  Some AI 

studies have considered severe weather problems, including Trafalis et al. (2005) 

[hereafter T05], who used AI to revise the mesoscale detection algorithm (MDA) on 

the WSR-88D Doppler radar system.  The MDA, designed to detect storm-scale 

circulations within radar echoes, is currently used by the National Weather Service as 

a tool for issuing tornado warnings.  The goal of T05 was to implement AI techniques 

to improve the ability of radar to detect a tornado signature, increasing the likelihood 

of a correctly issued tornado warning.  Marzban and Stumpf (1996) provided the 

motivation for this idea through applying an artificial neural network (ANN) to the 

MDA.  

In T05, several learning techniques were compared within the context of the 

MDA, ANN, support vector machines (SVM), Bayesian neural networks (BNN – 

MacKay 1992), and minimax probability machines (MPM - Lanckriet et al. 2002).  A 

set of roughly 800 training samples was used for training and testing of these learning 

algorithms.   In order to determine the sensitivity of the algorithms to tornadic events, 
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the amount of tornado data in the test datasets varied from 2% to 10%.  Multiple 

experiments with different statistical model parameters (i.e. cost, kernel function, etc.) 

were conducted, and the best model parameters were selected based on a series of 

forecast evaluation indices that produced the most accurate forecasts.   The 

methodology employed herein follows closely with that of T05.  The framework 

employed by T05 is similar to the current study.  

In addition to statistical classification methods, this study presented composite 

fields of TOs and NTOs, which showed the physical features of each outbreak type.  

A commonly used compositing methodology, which was applied herein, is rooted in 

principal component analysis (PCA – Wilks 1995).  Jones et al. (2004) used a PCA 

and a binary classification on 100 000 MDA instances to observe the MDA’s tornado 

detection capability.  In their study, many aspects of the MDA were shown to be 

useful for tornado detection, including the neural network tornado detection algorithm 

(Marzban and Stumpf 1996), the mesocyclone strength index, maximum gate-to-gate 

velocity difference, the mesocyclone depth, and the mesocyclone rank.  Lanicci and 

Warner (1991) performed a mean composite analysis on severe weather soundings to 

search for the type 1 tornado sounding (Fawbush and Miller 1952).  Their work used 

mean severe weather parameters to analyze the temporal development of the type 1 

sounding.  They found a relationship between the intensity of the type 1 sounding and 

the intensity of the associated severe weather.  Schaefer and Doswell (1984) 

employed empirical orthogonal functions (EOFs – Wilks 1995) in the creation of 

synoptic storm types of TOs.  The EOFs revealed different synoptic features of 

different TO storm types.  An updated synoptic storm typing approach was applied 
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herein to determine NTO and TO types, and these types will help accomplish the 

main goals of the present research. 

c)  Objectives 

The scope of this investigation is to assess the ability to discriminate between 

TOs and NTOs using primarily objective methods.  It is hypothesized that the 

synoptic-scale signal contains pertinent information of the impending outbreak type, 

but the details of this relationship are not well understood (Doswell and Bosart 2001).  

To specify the details of this relationship, synoptic-scale data were used for initial 

input into the statistical and numerical methods.  A set of 50 significant TOs and 

NTOs were classified by statistical methods and synoptic storm typing in order to 

determine if the capability to distinguish between the two exists.  It is important to 

emphasize that all cases selected included an outbreak, and the study determined the 

ability of the synoptic scale input data to classify the outbreak type.  Null cases (no 

outbreak) or weakly severe outbreaks were not tested.  If the outbreak classification of 

the distinct events is successful, it is of interest to know how far in advance of the 

outbreak the classification performs well.  If the methods used in this study cannot 

distinguish between these extremely distinct TO and NTO outbreak types, further 

investigation into marginal TOs and NTOs or null cases (outbreak versus no 

outbreak) likely would not be warranted.  Accordingly, the present work sets a 

baseline for future research on this topic.   

The objective statistical classification of outbreak type involved a binary 

decision, since two only outbreak types were considered.   Three statistical methods, 

SVM, logistic regression (LogR), and linear regression (LR), were tested to document 
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the method which classifies with the most success.  These three methods were 

selected since they include a linear technique, a non-linear technique working in a low 

dimensional space, and a non-linear technique working in a high dimensional space.   

To facilitate description of the severe weather atmosphere, which is typically done in 

a mesoscale framework, 17 covariates (Brown and Murphy 1996) computed using 

output from the Weather and Research Forecast (WRF) model (Skamrock et al. 2005) 

were considered for the statistical classification.  These covariates are severe weather 

parameters which are often used to describe the severe weather environment .  

Numerous combinations of covariates were analyzed to determine those with the 

highest classification capability. 

Synoptic storm types were computed from the NCEP/NCAR reanalysis dataset 

(Kalnay et al. 1996) at 17 vertical levels over the continental United States.  These 

storm types were developed to provide insight into the synoptic precursors of TOs 

and NTOs.  Five raw variables were included in the composites, including 

temperature, relative humidity, height, u-component wind, and v-component wind.  

These statistical methods provided an excellent capability to discriminate these 

distinct TOs and NTOs, which set the baseline for additional research on outbreak 

classification. 

The methods used in creation of the synoptic storm types and in the statistical 

classification are given in Chapter 2.  Chapter 3 provides results from the statistical 

classification, and Chapter 4 shows the storm type results.  Chapter 5 summarizes the 

classification capabilities of the methods presented herein. 

    



 

9 

2.  METHODOLOGY 

 a.  Data 

One goal of this work is outbreak type discrimination; therefore, the top 50 ranked 

NTOs and TOs (Appendix A) from D06 were retained to provide the strongest (most 

robust) contrast for statistical analyses. All cases, except for 8 July 1980, had an 

outbreak valid time near 0000 UTC, (the valid time for 8 July 1980 was 1200 UTC). 

Therefore, that case was eliminated from the NTO set, leaving 49 NTOs.   

Once a robust set of TOs and NTOs was obtained, meteorological data, from the 

event days, were required.  One of the primary goals of this study was to determine 

the role of synoptic scale influences on outbreak classification based on model 

forecasts.  To help assess these effects, an input dataset with a synoptic-scale grid 

spacing over the United States was needed.  As a result, the NCEP/NCAR reanalysis 

data (Kalnay et al. 1996), which reside on a 2.5º longitude by 2.5º latitude global grid 

and 17 vertical levels (synoptic-scale grid spacing), were selected as source data for 

this study.   

The NCEP/NCAR reanalysis data are based on the assimilation of model-derived 

quantities and observations, which results in varied reliability of the reanalysis 

variables.  Kalnay et al. (1996) ranked the reliability of all of the NCEP/NCAR 

reanalysis variables based on their observational and model-derived input.  Variables 

ranked “A” were based primarily on observations and were considered the most 

reliable variables in the dataset.  As model-derived input was introduced into the 

calculation of other variables, the reliability grade was lowered to a “B” or a “C”.  
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Parameters based almost entirely on climatology and model-derived input were 

graded as “D” variables.   

The NCEP/NCAR reanalysis data were used for both the objective statistical 

classification and the synoptic storm typing.  The objective classification 

methodology required WRF simulations (Section 2.2.1) of the 100 cases, and several 

reanalysis variables were required for WRF initialization.  The synoptic storm typing 

methodology used five reanalysis variables (temperature, relative humidity, u-wind, 

v-wind, and height).  Since the dependability of the reanalysis variables varied, the 

reliability of each variable used was needed.  Table 1 lists the NCEP/NCAR 

reanalysis variables used herein, as well as their reliability grade. 

Table 1.  List of variables used in WRF simulations and synoptic storm types, their 
level (upper air or surface) and reliability grade described by Kalnay et al. (1996).  
Note that some variables considered “surface” variables are near-surface (lowest 
sigma layer or within 30 hPa of surface pressure). 
  

Input Variable (U)pper air or (S)urface Grade
Ice Concentration (1=ice/0=no ice) S D
Land-Sea mask (1=land/0=sea) S D
Geopotential Height U/S A
Temperature U/S A
Relative Humidity U/S B
"Best" 4-layer lifted index U B
Lifted Index S B
U-wind component U/S A
V-wind component U/S A
Absolute Vorticity U/S A
Mean sea level pressure S A
Tropopause pressure U A
Precipitable water U/S B
Vertical speed shear at the tropopause U A
Vertical velocity U/S B
Surface pressure S B
Volumetric soil moisture content S C
Specific humidity S B
Temperature between two layers below surface S C
Temperature at depth below surface S C
2 meter temperature S B
10 meter U-wind S B
10 meter V-wind S B
Water equivalent of accumulated snow depth S C  
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 b.  Objective Statistical Classification  

The first analysis conducted with the NCEP/NCAR reanalysis data was a 

classification study, which used statistical techniques to determine the ability to 

discriminate outbreak type from the WRF simulations.  A summary of the methods 

used in the objective statistical classification follows.  

1)  WRF SIMULATIONS 

For optimal classification of outbreak type, the statistical models required 

comprehensive local information about the severe weather environment for each case.  

Raw synoptic-scale variables (height, u-wind, v-wind, temperature, etc.) do not 

provide this information (only a few gridpoints per case exist in the outbreak region).   

As a result, numerical model simulations (the WRF in the present study) were needed 

to obtain detailed mesoscale knowledge of each outbreak.  This mesoscale output 

from the WRF simulations was used in the statistical classification techniques.   

The WRF simulations used model physics summarized in Table 2 and employed 

five two-way nested domains (Fig. 3). The first (“mother”) domain was fixed and had 

a grid spacing of 162 km.  Domain 2 was positioned surrounding the contiguous 

United States, and had a grid spacing of 54 km.  Domain 3, used in the objective 

statistical classification, was positioned according to the general location of the 

simulated outbreak and had a grid spacing of 18 km.  Domains 4 and 5 had grid 

spacing of 6 km and 2 km, respectively, and were outbreak-relative.  All domains had 

31 vertical levels (Table 3), defined by the η coordinate, which was the default output 

for WRF.  WRF required the grid spacing to decrease by a factor of 3 (other factors 

resulted in large model instability on all domains) with additional nested domains, so 
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the grid spacing values were selected by increasing the spacing by a factor of 3 from 

storm scale (2 km, domain 5).  The mother domain grid spacing of 162 km is 

comparable to the 2.5º native grid spacing on the NCEP/NCAR reanalysis (about 250 

km). 

 

Table 2.  WRF physical schemes used by Shafer (2007) for simulation of the 100 
cases.  Adapted from Shafer (2007). 
 

Model Physics References

WRF Single Moment 6-class (WSM6) microphysics
Lin et al. (1983); Dudhia (1989); Hong et al.
(1998); Skamarock et al. (2005)

Grell-Devenyi convective scheme Grell and Devenyi (2002)
Yonsei University planetary boundary layer scheme Hong and Pan (1996)
MM5-derived surface layer scheme Skamarock et al. (2005)
5-layer thermal diffusion land surface model Skamarock et al. (2005)
Rapid radiative transfer model for longwave radiation Mlawer et al. (1997)
Dudhia shortwave radiation scheme Dudhia (1989)  
 
 
 
 

 
 
Fig. 3.  A sample of the five domains used in WRF simulations by Shafer (2007) valid 
for 3 May 1999 (see Fig. 2 for outbreak on this day).  Output from domain three 
centered on the outbreak was used in the objective discrimination of outbreak type.  
Taken from Shafer et al. (2008).   
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Table 3.  The 31 eta levels and their corresponding pressure level using standard 
pressure (i.e. 1013.25 mb) as the surface pressure and 10 mb as the top of the 
atmosphere.  
 

 
 
 
 
 
 
 
 
 
 
 

 

Eta Level Pressure Level (mb)

1.000 1013.25

0.993 1006.23

0.880 993.19

0.966 979.14

0.950 963.09

0.933 946.03

0.913 925.97

0.892 904.90

0.869 881.82

0.844 856.74

0.816 828.65

0.786 798.56

0.753 765.45

0.718 730.33

0.680 692.21

0.639 651.08

0.596 607.94

0.550 561.79

0.501 512.63

0.451 462.47

0.398 409.29

0.345 356.12

0.290 300.94

0.236 246.77

0.188 198.61

0.145 155.47

0.108 188.35

0.075 85.24

0.046 56.15

0.021 31.07

0.000 10.00
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2)  COVARIATES 
 

 Given that the WRF simulations do not make explicit predictions of the 

occurrence of tornadoes, some way to distinguish between outbreak types in the 

simulations is necessary.  To diagnose outbreak type in the statistical classification 

techniques, fields of meteorological covariates were computed from the domain 3 

WRF output.  Domain 3 was chosen since most of the selected covariates were 

commonly defined in the mesoscale (i.e. synoptic-scale and storm-scale CAPE was 

not desirable).  Since domain 3 provided thousands of gridpoints, a smaller 

subdomain of domain 3 was used to narrow the analysis region for the statistical 

classification techniques.  To accomplish this, a subjective center of each TO and 

NTO (Fig. 4) was determined through inspection of the storm reports as provided in 

the Storm Prediction Center’s SeverePlot software (Hart 1993), and a subdomain of 

21 X 21 gridpoints, centered on the subjective outbreak center, was preserved from 

the domain 3 output for each covariate.  This subdomain size encompassed most TOs.  

Additionally,  the top 50 NTOs as defined by D06 encompassed a small domain (this 

was a criteria in D06 for ranking the NTOs).   

The covariates included 17 commonly used severe weather parameters that 

measured thermodynamics, shear, and vorticity (Appendix B describes each covariate 

in detail).  The product of CAPE and bulk shear (Appendix B.10) is a covariate which 

has not been considered in the literature previously, but is included to provide another 

measure combining instability and shear.   

One issue in the covariate computation was noted.  The WRF computation of 

surface based CIN was suspect, since CIN typically forms in the lowest 1-2 km.  This 
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1-2 km depth includes 8-10 WRF vertical levels (Table 3) which is incapable of 

resolving CIN accurately.  This might have an impact on how effectively CIN would 

serve as a useful covariate.   

 The 17 covariates selected were the base set of parameters for the statistical 

classification.  Many of these covariates are highly correlated (e.g., the different EHI 

values had a Pearson correlation higher than 0.98 for many TOs), suggesting 

redundancies in the variables, that could cause instability in subsequent statistical 

analyses.  Many redundant covariates (such as those that were considered over 

multiple layers), were removed by permutation testing. 

 
 

Fig. 4.  Outbreak centers determined subjectively using SeverePlot.  Panel (a) 
represents TOs, while panel (b) represents NTOs.  Some overlap in points exists, 
leading to fewer than 50 points per panel.  
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3) PERMUTATION TESTING 

According to Efron and Tibshirani (1993), a permutation test determines if the 

means of two data samples are the same at a statistical significance level of the user’s 

choosing.  The null hypothesis (H0) for the permutation test is that the mean of the 

two samples is the same, or that their mean difference is zero.  Figure 5illustrates the 

permutation testing method.  Initially, two separate data distributions (the dark gray 

pools) are tested.  The mean of each pool is computed first, and the difference 

between the two means is stored.  The two data distributions are then combined into a 

single pool (the white pool), and two random permutations are sampled with 

replacement from the pool.  The mean difference between these two permutations is 

stored and compared to the initial mean difference.  If the difference of the 

permutation means is larger than the initial mean difference, the permutation is 

counted toward the p-value.  This process is repeated many times (1000 times), and 

the percentage of permutations that are counted is the corresponding probability that 

the two distributions are the same, known as a p-value.  P-values closer to zero 

represent a higher probability that one can reject H0.  The permutation test, unlike 

other commonly used hypothesis tests, such as the t-test, does not make assumptions 

of the data distribution.  Since the distribution of each covariate is unknown, this 

property of the permutation test makes it ideal for the present work. 
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Fig. 5.  Illustration of the permutation methodology presented above. 

 

Permutation testing was used to determine each covariate’s ability to distinguish 

between TOs and NTOs.  Those covariates which showed large regions of small p-

values were described as proficient outbreak discriminators.   All NTOs and TOs 

were tested initially.  In addition to the entire case set, cases west and east of the 

Mississippi River (Fig. 4) were tested separately, to show which covariates 

discriminate best in each geographic region.  Finally, any regional dependence within 

each outbreak type was tested (west cases versus east cases for each outbreak type).  

The intra-outbreak regional tests revealed covariates whose magnitudes strongly 

depended on geographic region (an undesirable property for this study).   

Since fields of the covariates resulted from the WRF simulations, permutation 

testing on a gridpoint by gridpoint basis was performed, with each gridpoint assigned 

a p-value based on the results of the test.  P-values were plotted on the 21 X 21 

covariate grid, with values of 0.1, 0.05, and 0.01 displayed.  These three p-values are 
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consistently used to show statistical significance throughout the literature (Daley and 

Chervin 1985, Wilks 1996).    

Figure 6 shows an example of a covariate that exhibits statistically significant 

differences (0-1 km SREH) at 24-hours lead time.  The gray and black colors in 

panels a – c of Fig. 6 represent regions of statistical significance, which indicate areas 

where the covariate discriminates outbreak type successfully.  Panels d and e, which 

represent the regional dependence of each covariate, show multiple p-values, 

indicating that 0-1 km SREH has modest regional dependence.  However, the modest 

regional dependence of 0-1 km SREH was not significant enough to ignore its good 

discrimination capabilities, resulting in retaining this covariate.  

To contrast a covariate capable of outbreak classification, Fig. 7 illustrates 

permutation test results from a poor classifier, surface based CAPE.  The southern 

portion of the domain in panel a shows some differences (darker colors), but most of 

the region is not statistically significant.  These results were observed when 

considering eastern and western outbreaks as well (panels b and c).  Little regional 

dependence of CAPE was observed (panels d and e), but the limited discrimination 

capabilities of CAPE, as revealed by the permutation testing, led to rejection of this 

covariate from use in the objective statistical classification. 

Similar analyses to those presented above were conducted for all covariates at 24-

hour, 48-hour, and 72-hour lead times, in order to determine the best covariate set for 

the objective discrimination.  Percentages of the fields which were significant to a 

particular p-value were tabulated and used to reduce the base set of covariates to 

those best suited for outbreak classification at each lead time. 
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     (a) 
 

 
                                (c) 
 

 
   (e) 

 
                               (b) 
 

 
                                    (d) 
 
 
 
Fig. 6.  P-values of 0-1 km SREH at 24-
hours lead time.  The shading represents p-
values of 0.1 (light gray), 0.05 (dark gray), 
and 0.01 (black).  Panel (a) represents 
comparisons between all TOs and NTOs, 
panel (b) represents comparisons between 
TOs and NTOs for the western set of cases, 
panel (c) represents comparisons between 
TOs and NTOs for the eastern set of cases, 
panel (d) represents comparisons between 
the eastern and western case sets of NTOs, 
and panel (e) represents comparisons 
between the western and eastern case sets of 
TOs.



 

20 

 
     (a) 
 

 
                                (c) 
 

                               (e) 

 
                               (b) 
 

 
                                    (d) 
 
 
 
Fig. 7.  Same as Fig. 6, but for surface based 
CAPE at 24 hour lead times.
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A summary of a percentage of gridpoints significant to each p-value (0.1, 0.05, and 

0.01) at 24 hours lead time is given in Table 4.  As previously discussed, SREH at 0-1 

km at 24-hours lead time was retained for the statistical outbreak classification owing to 

its low p-values in the discrimination fields, whereas surface-based CAPE showed little 

discrimination capability.  Surface based CIN, SREH at 0-3 km, and LCL exhibited 

good discrimination ability with modest regional dependence, so these were preserved.  

Additional covariates show good discrimination ability with little regional biases, 

including 0-1 km bulk shear, 0-1 km EHI, and the product of 0-1 km bulk shear and 

CAPE.  This smaller covariate set consists mostly of shear or vorticity parameters, 

which are widely considered to be good indicators of tornadic development (see 

Appendix B).  
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Table 4.  Percent of gridpoints that are significant to α=0.1, α=0.05, and α=0.01.  The 
first column uses all cases in the permutation testing, while the second uses cases east of 
the Mississippi River.  The third column considers cases west of the Mississippi River.  
The fourth and fifth columns compare the western and eastern region for each outbreak 
type to test for regional dependence.  Values near 100% in columns 1-3 and near 0% in 
columns 4 and 5 are best. 
 

Covariate All East West Tornado East vs West Severe East vs West
Surface Based CAPE 39.46 37.87 23.36 13.83 2.95
Surface Based CIN 99.77 35.60 84.35 3.85 2.95
LCL 98.19 100.00 86.39 39.00 38.32
LFC 26.08 4.31 34.92 8.39 18.59
0-1 km Bulk Shear 100.00 100.00 100.00 48.30 18.82
0-3 km Bulk Shear 100.00 100.00 70.98 96.83 0.23
0-6 km Bulk Shear 100.00 100.00 61.90 98.41 40.36
0-1 km SREH 100.00 100.00 85.26 61.22 65.99
0-3 km SREH 100.00 100.00 56.92 98.87 79.82
BRN Shear 74.38 100.00 20.63 99.32 58.50
Storm Relative Flow 99.55 100.00 43.76 89.80 100.00
0-1 km EHI 88.66 100.00 58.05 17.69 54.42
0-3 km EHI 79.37 100.00 40.59 23.81 64.17
Vorticity Generation Potential 39.00 67.80 44.67 16.33 57.14
Product of 0-1 km shear and CAPE 79.59 45.35 55.10 9.52 10.43
Product of 0-3 km shear and CAPE 64.17 37.19 39.91 11.34 15.87
Product of 0-6 km shear and CAPE 61.45 46.26 28.80 8.39 35.60

Covariate All East West Tornado East vs West Severe East vs West
Surface Based CAPE 29.48 15.87 18.37 2.72 1.13
Surface Based CIN 91.84 22.22 69.84 0.00 1.13
LCL 94.56 100.00 82.31 23.13 22.22
LFC 17.46 2.49 25.17 2.72 9.07
0-1 km Bulk Shear 100.00 100.00 100.00 25.62 10.66
0-3 km Bulk Shear 100.00 100.00 63.72 93.42 0.00
0-6 km Bulk Shear 100.00 100.00 52.38 96.37 9.98
0-1 km SREH 100.00 100.00 80.27 50.11 48.98
0-3 km SREH 98.64 100.00 50.34 93.88 66.89
BRN Shear 67.35 100.00 11.79 98.64 32.20
Storm Relative Flow 97.96 100.00 37.19 78.68 100.00
0-1 km EHI 83.90 100.00 49.89 8.62 43.99
0-3 km EHI 71.66 100.00 31.07 14.06 56.69
Vorticity Generation Potential 29.93 48.53 35.15 11.34 42.86
Product of 0-1 km shear and CAPE 71.43 27.44 45.35 3.40 2.27
Product of 0-3 km shear and CAPE 48.53 25.17 25.17 5.22 7.71
Product of 0-6 km shear and CAPE 47.85 35.37 15.42 4.54 23.36

Covariate All East West Tornado East vs West Severe East vs West
Surface Based CAPE 16.10 0.23 11.34 0.00 0.00
Surface Based CIN 50.79 4.54 26.98 0.00 0.00
LCL 84.35 93.65 70.29 9.52 2.72
LFC 4.08 0.00 9.98 0.23 0.00
0-1 km Bulk Shear 100.00 100.00 100.00 1.36 0.45
0-3 km Bulk Shear 98.19 100.00 50.34 77.10 0.00
0-6 km Bulk Shear 98.19 100.00 34.69 86.17 0.00
0-1 km SREH 99.32 100.00 65.99 13.38 21.09
0-3 km SREH 94.10 100.00 35.60 77.55 28.12
BRN Shear 54.20 100.00 2.95 92.52 0.68
Storm Relative Flow 93.20 100.00 24.72 50.34 98.41
0-1 km EHI 73.47 98.64 35.83 0.91 11.34
0-3 km EHI 53.51 94.56 16.55 2.95 30.84
Vorticity Generation Potential 16.10 29.25 16.33 3.63 12.70
Product of 0-1 km shear and CAPE 44.67 10.20 25.85 0.23 0.00
Product of 0-3 km shear and CAPE 22.00 15.19 3.17 0.91 0.68
Product of 0-6 km shear and CAPE 22.68 21.32 1.81 0.68 5.90

 p ≤ 0.05 

 p ≤ 0.1 

 p ≤ 0.01 
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Forty-eight hours prior to outbreak initiation, the permutation testing (Table 5) results 

varied slightly from those at 24-hours lead time.  Surface-based CIN, which was selected 

at 24-hours lead time, was not chosen at 48-hours lead time due to poor discrimination 

capability (p-values > 0.1 throughout the fields).  In contrast to 24-hours lead time, all 

three layers of bulk shear (0-1 km, 0-3 km, and 0-6 km) showed large discrimination 

capability and little regional bias, so all were retained.  The LCL and the two layers of 

SREH (0-1 km and 0-3 km) continued to exhibit large discrimination capability and 

modest regional biases, so these were included in the statistical classification analysis.  

Most of the 48-hour reduced covariate set consists of shear or vorticity parameters, which 

was a result consistent with 24-hours lead time.  Additionally the limited number of 

instability variables retained demonstrated the inability of these covariates to 

discriminate outbreak type.   
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Table 5.  Same as Table 4, but for 48-hours lead time. 

Covariate All East West Tornado East vs West Severe East vs West
Surface Based CAPE 49.66 2.04 57.14 58.28 0.00
Surface Based CIN 68.25 39.68 44.44 23.81 8.62
LCL 87.98 92.29 61.45 87.30 27.66
LFC 6.58 41.27 0.00 69.39 21.54
0-1 km Bulk Shear 100.00 100.00 100.00 21.09 73.02
0-3 km Bulk Shear 100.00 100.00 93.88 47.17 0.00
0-6 km Bulk Shear 100.00 100.00 86.85 49.66 3.40
0-1 km SREH 100.00 100.00 89.57 36.05 12.93
0-3 km SREH 100.00 100.00 78.23 58.73 10.66
BRN Shear 97.05 100.00 44.67 58.05 6.35
Storm Relative Flow 100.00 100.00 41.04 68.03 100.00
0-1 km EHI 88.89 100.00 26.76 60.32 13.61
0-3 km EHI 63.04 100.00 19.95 59.64 39.68
Vorticity Generation Potential 21.32 91.84 27.66 80.27 0.91
Product of 0-1 km shear and CAPE 67.80 71.88 14.06 60.77 3.17
Product of 0-3 km shear and CAPE 46.03 83.45 12.47 62.59 0.68
Product of 0-6 km shear and CAPE 42.40 99.09 19.50 63.72 4.99

Covariate All East West Tornado East vs West Severe East vs West
Surface Based CAPE 40.14 0.00 46.71 45.35 0.00
Surface Based CIN 58.50 31.75 25.85 15.42 1.13
LCL 81.18 85.49 48.07 66.89 7.94
LFC 1.13 36.28 0.00 59.64 0.68
0-1 km Bulk Shear 100.00 100.00 100.00 14.51 52.61
0-3 km Bulk Shear 100.00 100.00 90.93 39.00 0.00
0-6 km Bulk Shear 100.00 100.00 76.87 40.36 0.00
0-1 km SREH 100.00 100.00 83.67 27.89 5.90
0-3 km SREH 100.00 100.00 70.29 51.93 2.04
BRN Shear 90.02 100.00 36.05 46.49 0.91
Storm Relative Flow 100.00 100.00 35.15 57.60 100.00
0-1 km EHI 77.55 100.00 20.63 52.61 0.00
0-3 km EHI 54.88 100.00 10.66 53.29 17.23
Vorticity Generation Potential 13.83 80.95 12.02 71.20 0.00
Product of 0-1 km shear and CAPE 54.88 50.57 7.03 53.06 1.36
Product of 0-3 km shear and CAPE 30.39 64.85 4.54 54.20 0.00
Product of 0-6 km shear and CAPE 28.57 87.98 7.71 53.51 0.68

Covariate All East West Tornado East vs West Severe East vs West
Surface Based CAPE 25.85 0.00 26.08 11.34 0.00
Surface Based CIN 34.24 18.37 0.91 0.68 0.00
LCL 63.72 73.02 20.18 29.25 0.00
LFC 0.00 30.61 0.00 37.19 0.00
0-1 km Bulk Shear 100.00 99.55 100.00 5.22 35.83
0-3 km Bulk Shear 100.00 100.00 82.77 24.26 0.00
0-6 km Bulk Shear 99.55 100.00 58.96 19.27 0.00
0-1 km SREH 100.00 100.00 71.88 12.02 0.00
0-3 km SREH 100.00 100.00 52.38 39.23 0.00
BRN Shear 63.49 97.05 24.04 19.95 0.00
Storm Relative Flow 99.09 100.00 25.17 36.28 95.24
0-1 km EHI 59.18 100.00 7.03 22.68 0.00
0-3 km EHI 35.60 100.00 2.95 38.78 0.00
Vorticity Generation Potential 4.54 53.06 0.91 38.55 0.00
Product of 0-1 km shear and CAPE 20.41 16.78 0.23 8.84 0.00
Product of 0-3 km shear and CAPE 6.12 16.55 0.00 22.45 0.00
Product of 0-6 km shear and CAPE 3.40 32.88 0.23 19.05 0.00

 p ≤ 0.05 

 p ≤ 0.1 

 p ≤ 0.01 
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Most of the covariates used at 48-hours and 24-hours prior to the outbreak showed the 

highest discrimination capability at 72-hours as well (LCL, bulk shear, SREH – Table 6).  

However, at 72-hours, 0-1 km bulk shear showed no discrimination ability when 

considering all outbreaks, and was rejected from the final 72-hour set.  The 0-1 EHI, 

which showed good discrimination ability at 24-hours lead time, was retained at 72-hours 

as well, as a large percentage of the domain (over 90%) was significant at p < 0.1.  The 

final covariate set at 72-hours lead time included 0-3 and 0-6 km bulk shear, 0-1 and 0-3 

km SREH, the LCL, and 0-1 km EHI.  Primarily, these covariates consist of shear and 

vorticity measures, which is consistent with the previous two lead times.  Clearly, the 

permutation testing selects covariates that correspond well with the literature (Appendix 

B) and reinforce the ideas presented in Rasmussen and Blanchard (1998) that CAPE 

cannot distinguish between tornadic and non-tornadic supercells to any statistical 

significance but shear parameters can distinguish with up to a 99% confidence. 
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Table 6.  Same as Table 4, but for 72-hours lead time.  

Covariate All East West Tornado East vs West Severe East vs West
Surface Based CAPE 21.77 4.76 21.32 16.55 50.11
Surface Based CIN 74.83 84.13 12.47 0.00 46.94
LCL 81.63 94.56 79.37 66.67 90.02
LFC 11.11 0.00 36.96 27.89 82.99
0-1 km Bulk Shear 0.00 100.00 0.00 44.44 0.00
0-3 km Bulk Shear 100.00 100.00 92.74 62.13 8.62
0-6 km Bulk Shear 100.00 100.00 59.86 44.44 0.00
0-1 km SREH 100.00 100.00 71.88 85.03 1.81
0-3 km SREH 100.00 100.00 60.77 80.95 0.00
BRN Shear 90.25 100.00 13.15 35.15 13.83
Storm Relative Flow 84.58 100.00 8.62 80.73 96.15
0-1 km EHI 97.05 97.05 48.98 54.20 1.13
0-3 km EHI 0.00 90.25 0.00 51.93 0.00
Vorticity Generation Potential 1.81 18.59 5.90 47.39 19.95
Product of 0-1 km shear and CAPE 54.88 1.36 36.05 43.08 64.40
Product of 0-3 km shear and CAPE 52.61 4.08 36.96 35.15 44.22
Product of 0-6 km shear and CAPE 54.42 9.52 34.01 28.80 16.78

Covariate All East West Tornado East vs West Severe East vs West
Surface Based CAPE 16.55 0.68 2.95 4.76 25.62
Surface Based CIN 53.74 65.08 5.44 0.00 35.15
LCL 72.11 61.68 71.43 50.57 82.77
LFC 6.12 0.00 20.63 17.46 60.77
0-1 km Bulk Shear 0.00 100.00 0.00 31.52 0.00
0-3 km Bulk Shear 100.00 100.00 76.87 52.61 2.72
0-6 km Bulk Shear 100.00 100.00 44.22 29.02 0.00
0-1 km SREH 100.00 100.00 61.68 78.23 0.00
0-3 km SREH 100.00 100.00 51.93 73.70 0.00
BRN Shear 72.79 96.83 3.17 14.97 0.00
Storm Relative Flow 73.70 100.00 4.08 65.76 78.00
0-1 km EHI 89.34 91.38 40.82 47.62 0.00
0-3 km EHI 0.00 83.45 0.00 44.67 0.00
Vorticity Generation Potential 0.00 9.75 1.59 39.00 2.27
Product of 0-1 km shear and CAPE 31.52 0.00 26.30 35.15 51.02
Product of 0-3 km shear and CAPE 13.61 0.68 28.57 27.89 28.57
Product of 0-6 km shear and CAPE 36.73 4.99 24.49 20.63 3.40

Covariate All East West Tornado East vs West Severe East vs West
Surface Based CAPE 6.80 0.00 0.00 0.00 0.91
Surface Based CIN 23.58 24.04 0.00 0.00 7.71
LCL 44.67 23.58 26.98 27.66 43.08
LFC 0.45 0.00 9.30 0.45 24.49
0-1 km Bulk Shear 0.00 99.32 0.00 3.17 0.00
0-3 km Bulk Shear 99.32 99.77 37.19 29.71 0.00
0-6 km Bulk Shear 97.51 99.77 20.41 7.48 0.00
0-1 km SREH 98.41 100.00 48.75 60.32 0.00
0-3 km SREH 93.42 99.77 38.78 53.97 0.00
BRN Shear 35.37 53.97 0.00 0.00 0.00
Storm Relative Flow 45.35 100.00 1.59 36.28 39.68
0-1 km EHI 65.08 71.66 18.37 31.52 0.00
0-3 km EHI 0.00 57.37 0.00 30.84 0.00
Vorticity Generation Potential 0.00 0.45 0.00 24.26 0.00
Product of 0-1 km shear and CAPE 0.45 0.00 13.38 14.29 0.68
Product of 0-3 km shear and CAPE 0.00 0.00 4.31 9.07 0.91
Product of 0-6 km shear and CAPE 0.00 0.23 0.45 2.95 0.00

 p ≤ 0.05 

 p ≤ 0.1 

 p ≤ 0.01 
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4) STATISTICAL CLASSIFICATION MODELS 
 

Once a robust set of covariates was found for the three lead times considered, 

objective statistical classification was performed using the reduced covariate sets.  Three 

statistical methods were chosen: LR, LogR, and SVMs.   

Statistical models using input from numerous closely-spaced gridpoints may suffer 

from problems with multiplicity.    However, the covariate fields selected from the 

permutation testing reside on 21 X 21 point spatial grids.  In order to reduce the 

dimensionality of these covariate grids to individual variables for each case, a P-mode 

PCA (detailed description in section 2.3.1) was conducted on the data.  The PCA resulted 

in a reduced number (less than 7) of statistically independent variables (PC scores) for 

each case, which was more desirable, since the number of variables was reduced but the 

scores implicitly contained spatial structure of the covariates.  The three statistical 

classification methods which use these PC scores for outbreak discrimination are 

summarized below. 

(i) Linear Regression (LR) 

The LR model was included to determine the discriminatory capability of a traditional 

method with a long history of meteorological applications (e.g., Marzban et al. 1999, 

Reap and Foster 1979, and Michaels and Gerzoff 1984), and to incorporate several 

covariates as predictors, simultaneously.   The prediction equation for multiple LR 

(Wilks 1995) is given as: 

∑
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where βi represents the coefficients analogous to the slope of the regression line, βo 

represents the y-intercept, xi are the covariates, and Ŷ are the predictions.  The βi 

coefficients are computed by: 
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In (2), n represents the number of cases being analyzed, xij represents the covariates, and 

yj represents the observation, in this case, coded with a 1 (or a 0) tag for a TO (or a 

NTO).  The predictions obtained from (1) ranged from near 0 to near 1, as opposed to 

individual classes.  Therefore, a threshold of 0.5 was set as the limit between classifying 

outbreak types.  Values larger than this threshold were classified as a TO, while those 

less than the value were called a NTO.  Other threshold values were tested, but no 

significant improvement in the classification was achieved.   

(ii)  Logistic Regression (LogR) 

The LogR method is suited by its design for classification (e.g. Billet et al. 1997, 

Schmeits et al. 2005).  Wilks (1995) defines LogR by the prediction equation: 
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LogR will assign a probability toŶ , based on the ratio of the probability of a TO versus a 

NTO (known as a logit).  The logistic regression equation is derived by considering the 

natural log of the logit as the dependent variable of a multiple LR: 
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Assigning the logit from the regression equation to Ŷ and solving forŶ , gives: 
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Dividing through by the exponential term in the numerator yields the final form for the 

LogR prediction equation, given in (3).  This regression type only applies to binary 

classification problems (such as the current study since there are two outbreak types) that 

allow for computation of the logit.   

(iii)   Support Vector Machines 

In addition to two statistical classification techniques, an artificial intelligence (AI) 

technique known as SVM was used for outbreak type classification.  This non-linear 

learning method fits a decision hyperplane to a linearly separable dataset (e.g. Fig. 8).  

From Haykin (1999), a decision hyperplane is first determined, given by: 

0=+ bT xw       (6) 

which can then be divided into two parts to be used for classification, namely: 
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where w is the vector of weights for the decision hyperplane and x is the input data 

vector.  When a separating hyperplane is applied to a set of positive and negative 

classifiers, the distance (margin) between the closest points to the separating hyperplane 

of each class (support vectors) should be maximized.  In other words, the quadratic 

optimization problem for support vector machines is given as: 
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In order to find the minimum, the Lagrangian for the quadratic optimization function is 

computed: 
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where λi represents Lagrange multipliers.  The optimality conditions for L are:  
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These partial derivatives are solved using a nonlinear optimization method such as 

steepest descent, which ensures a local or global minimum results from the 

differentiation.  After differentiation, the optimal value for w is given as: 
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Substituting (10) and (11) into (9) gives the dual formulation (so called as it is a second 

formulation that solves the same optimization problem) of the quadratic optimization 

function: 
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In this problem, data points which correspond to λ values greater than zero are called 

support vectors.  Solving this quadratic optimization problem will yield values of λ, 

which in turn can be used to determine the optimal values for w and b, and thus give a 

classification algorithm.   

 

 

 
 

Fig. 8.  Idealized SVM application for two linearly separable classes.  The support 
vectors touch the solid boundaries of the margin.  The norm of the w vector is minimized 
in the primal optimization solution of SVMs (adapted from T05). 
 
 
 

Most binary classification datasets, including the current dataset, cannot be linearly 

separated initially.  In these scenarios, the use of a kernel function will map the dataset 

into a higher dimensional space in which it is linearly separable (similar to Fig. 8, but 

with higher dimensionality).  The kernel function does not compute the explicit 

coordinates of the data point in the higher dimensional (feature) space, which is 

computationally expensive, but instead is comprised of the product of the image φ(x) of 

the input vectors in the feature space (i.e. φ(xi)
T φ(xj) = k(xi,xj) where k is the kernel 

function – Cristianini and Shawe-Taylor 2000).  Hence, the exact dimensionality of the 

feature space can be unknown and is not necessary to determine for SVMs, since the 
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kernel function maps to this higher dimensionality directly.  This method does not 

guarantee linear separability (since 100% accuracy is not achieved by mapping with a 

kernel function), but significant improvement for non-linearly separable datasets is seen 

when using a kernel function with SVMs.  Some families of kernel functions include: 

1.  polynomial                            pk )1(),( += yxyx T                (13) 

2. radial basis function                  k(x, y) = 
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− 2
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||||
2

1

exp
yx

σ     (14) 

3.  tangent hyperbolic             )tanh(),( 1ββ += yxyx T
ok          (15) 

where x and y are the data (inputs) and output vectors, respectively.  The non-linear map 

function φ(x) can replace x in (12), and since the dot product of x is given in (12), one is 

replacing this dot product with the kernel matrix.  Due to this inclusion of the kernel 

matrix, SVMs are also known as kernel methods.  Multiple SVM experiments are 

required to determine the kernel function which provides the best classification.  For the 

current study, the radial basis function was most successful [not shown] in classifying 

outbreak type based on contingency statistics.   

5) CONTINGENCY STATISTICS 

The three classification methods each produced a binary output, either a 0 for a 

NTO or a 1 for a TO.  Binary output is often verified by using a contingency table.  

This 2x2 table (Table 7) organizes the classification results into four categories. The 

upper left value of the contingency table represents correctly classified 1 (TO) outputs, 

the upper right represents a forecast 1 value when a 0 (NTO) value is observed, the 

lower left represents a forecast value of 0 when 1 is observed, and the lower right 

represents a correctly forecast 0 value.  Contingency statistics are formulated from the 
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results in the contingency table.  Several contingency statistics are used in the present 

study, and are described below. 

 

Table 7.  Sample contingency table.  In the 2x2 contingency table, a represents the 
correctly classified 1 value, b represents the incorrectly classified 1 value , c represents 
the incorrectly classified 0 value, and d represents the correctly classified 0 value. 
 

     

The most basic contingency statistic measures the number of correctly classified 

outbreaks versus the total number of classifications.  This statistic, known as the hit 

rate (HR), is defined in Wilks (1995) as: 

n

da
HR

+
=      (16) 

where n is the total number of cases for the entire set and a and d represent the number 

of correctly classified TOs and NTOs (Table 7).  A HR of 1 represents a perfect 

classification, so values closer to 1 are desirable.  This statistic credits correctly 

classified TOs and NTOs equally.  However, it provides no information on the two 

error types (variables b and c), which are treated differently in most meteorological 

applications.  Hence, additional contingency statistics with information on 

misclassifications is needed.   

A commonly applied contingency statistic which measures the likelihood that a 

“yes” (in this study, a TO) is correctly classified is known as the probability of 

detection (POD).  According to Wilks (1995), the POD is given as: 

TO (1) NTO (0)

TO (1) a b

NTO (0) c d

Forecast

Observations
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ca

a
POD

+
=      (17) 

where a represents correctly classified TOs and c represents the number of TOs that are 

observed when an NTO was predicted.  A perfect TO classification has a POD of 1, so 

values closer to 1 are desirable.  The POD represents the fraction of TOs that were 

correctly predicted by the classification scheme.  Forecasters often are most concerned 

with high POD values to ensure that no “yes” (for the present study, TOs) events are 

missed.  However, the POD does not provide a measure of the number of incorrectly 

classified TOs, which also is of interest to forecasters wishing to reduce the rate of 

false alarms.   

To account for the number of incorrectly classified TOs, the false alarm ratio (FAR) 

is computed from the classification results.  The FAR is represented in Wilks (1995) as: 

ba

b
FAR

+
=      (18) 

The FAR represents the ratio of forecast TO events (a + b) that fail to become TOs (b).  

A perfect classification will have a FAR of 0, so smaller FAR values are desirable.   

Although these contingency statistics provide different properties of the 

classification results, a summary performance measure for each classification method is 

helpful.  A commonly used skill statistic that provides a performance measure is the 

Heidke skill score (HSS).  Wilks (1995) defines the HSS as: 

d)b)(b(ad)c)(c(a

bc)2(ad
HSS

+++++
−

=     (19) 

The HSS provides a measure of the likelihood that the HR for the given statistical 

method is obtained by random chance instead of by skill.  Values nearer to 1 indicate a 

higher skill, hence a lower probability that the HR results are from random chance.  
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The HSS has been used in numerous classification studies as a measure of 

classification performance (Doswell et al. 1990, McGinley et al. 1991, Schaefer 1990, 

others).  The HSS provides a skill measure using all members of the contingency table, 

which is desirable.    

A final contingency statistic, bias, has been calculated. According to Wilks (1995), 

the bias is computed as: 

ca

ba
B

+
+

=      (20) 

The bias represents the ratio of the number of TO forecasts (a + b) to the number of TO 

observations (a + c).  An unbiased result will have a value of B = 1. When B > 1, TOs 

are overforecast, whereas B < 1 indicates that NTOs are overforecast.  This measure 

allows the user to adjust individual model parameters (such as the classification threshold 

in LR, section 2.5.1) to produce a bias value closer to 1.  The bias reveals any artificially 

inflated POD or FAR values that are due to overforecasting of a particular outbreak type, 

as well.   

6)   OBJECTIVE CLASSIFICATION METHODOLOGY 

Proper statistical classification methods employ a training and testing phase for their 

development.  The training phase is implemented by taking a subset of the total input 

dataset and computing the model coefficients (β terms in LR and LogR, w in SVM) for 

that subset of data.  The data withheld from the training phase then are input into the 

resulting statistical models to determine their performance through the contingency 

statistics (the testing phase).  This training and testing methodology for statistical 

modeling is called cross-validation.  Many cross-validation methods exist, including the 

“leave one out” approach, which uses all data but one point for training and tests on the 



 

36 

point that has been “left out”, and simply dividing the data in half, using half for training 

and half for testing. The current study used a cross-validation method known as a 

“jackknife”.   The jackknife is a resampling technique that samples without replacement, 

and is often considered a “leave one out” approach.  However, the jackknife cross-

validation method employed in this study used a large percentage of the data for training 

(85%) and withheld a smaller subset for testing (15%) as a first iteration. After the first 

iteration was complete, the first point of the testing set was used for training and the first 

point of the training set was used for testing in the second iteration.  That is, for the first 

jackknife iteration, cases 1-84 were used for training and 85-99 are used for testing.  

Once results were compiled for the first iteration, a second iteration, which used cases 2 – 

85 for training and 86 – 99 and case 1 for testing, was conducted.  This was applied for 

all data, so all cases were used 15 times for testing and 84 times for training.  This 

method provided a more robust solution for the contingency statistics, as many 

combinations were considered.  This technique had several disadvantages though, since 

jackknifing resulted in an overestimation of variability in the results versus sampling 

with replacement (the bootstrap) which can result in a less representative result for the 

data distribution, and this method generated multiple (99) models.  With this multiplicity 

of models, another objective method would seem to be required to determine the best 

model of the 99 produced by the jackknifing.  However, since this was a purely 

diagnostic study (as opposed to a forecasting study addressing the development of a 

forecast application, which would require the best model of the 99), the contingency 

statistics were able to be computed on the 99 jackknife model outputs simultaneously.   
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To improve the jackknife contingency results, backward elimination of covariates 

was conducted on the input datasets.  This technique yielded the opportunity to improve 

the contingency statistic results by removing covariates which were worsening the results 

and simplified the datasets being input into the statistical models.  Often, results were 

improved by removing further covariates from the sets obtained from the permutation 

testing. 

To facilitate finding the optimal combinations of covariates which accomplish 

superior classification ability, bootstrap confidence intervals were computed on the 

contingency statistics.  The bootstrap sample, according to Efron and Tibshirani (1993), 

is a sample of n size, where n represents the length of the data vector being considered, 

that is randomly drawn from the initial dataset.  Numerous iterations (e.g., 1000 in the 

present study) of this bootstrap sampling show the uncertainty of the statistic being 

estimated.  Knowledge of this uncertainty allows for decisions to be made about the 

statistic that are not possible without bootstrapping.   

The mean contingency statistics from the 99 jackknife iterations were bootstrapped, 

providing 1000 sample mean values of each contingency statistic.  These sample means 

are presented using boxplots, which show the median (central line in the boxplot), the 

first and third quartiles (bottom and top of the box, respectively), and 1.5 * the 

interquartile range (IQR – the range between the first and third quartiles, shown by the 

whiskers).   

While the aforementioned statistical analyses described overall performance of the 

classification schemes, these methods do not evaluate individual cases.  In order to assess 

the statistical classification performance on individual cases, the number of correct and 
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incorrect classifications of each case was retained.  This additional step identified 

specific cases that were classified poorly, which then were studied to determine possible 

causes for statistical model failure on these events.  Chapter 3 summarizes the results 

from the objective classification methods discussed previously. 

c.  Storm Typing Methodology 

A second statistical analysis, synoptic storm typing, was undertaken as well, which 

provided physical fields associated with each outbreak class.  The storm types were 

created through a statistical compositing method, and were determined from 72 hours 

prior to the outbreak to 6 hours prior at 6 hour intervals.  Several methods were 

considered, including mean fields (Mercer and Richman 2007), canonical correlation 

analysis (CCA - Barnston and Ropelewski, 1992), and PCA (Jones et al. 2004).  Mean 

fields are not robust enough for the current compositing since the sample size of each 

outbreak type was small enough for outliers to affect the results. Additionally, when 

datasets exhibit high variability between events, the mean likely will not capture the true 

composite storm type.  As a simple way of seeing this, if the sample includes an equal 

number of cases with northwesterly and southwesterly airflow, the mean would be pure 

westerly, which would represent none of the actual cases.  CCA is not appropriate for this 

study either, since it requires pairs of input data vectors from unique datasets to be 

transformed to single fields and assumes that predictors (the input data vectors) are used 

to find predictands (the output fields).  PCA does not presume the data are predictors or 

predictands, but instead assumes the data are interrelated and can be projected onto a new 

set of orthogonal basis vectors.  As a result, PCA, which provides individual fields of 
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TOs and NTOs and accounts for data variability, is selected as the compositing method 

for this study.  

PCA is a technique that projects a large dataset onto a set of independent basis 

vectors. The basic model equation for PCA is given as: 

TFAZ =       (21) 

where Z represents a standardized (mean removed from the original data) input data 

matrix, F represents a matrix of principal component (PC) scores (defined below), and A 

represents PC loadings, which are the independent basis vectors.  The PC score matrix F 

represents the relationship between the loading matrix A and the original standardized 

data.  Larger PC scores for a particular input data point indicate a stronger relationship 

between the loading matrix and the standardized data (i.e. a large score on PC1 for a 

given case means that the high magnitude absolute loadings on PC1 are important for 

that event).  The PC scores also contain spatial structure of the data, as they can be 

multiplied by the loading matrix to recreate the original standardized data Z.  As 

mentioned previously, PC scores were used as input into the objective classification 

schemes. 

In order to obtain the PC loading and score matrices, several calculations are 

required.  First, a correlation or covariance matrix must be computed from the original 

standardized data.  An eigenanalysis is performed to diagonalize the correlation or 

covariance matrix, and the resulting eigenvalue and eigenvector matrices are used for 

computation of the PC loading matrix A.  Finally, a least squares approach to inverting 

the PC loading matrix is used in combination with (21) to compute the PC score matrix.  

A detailed description of these methods follows. 
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1)  CORRELATION MATRIX CALCULATION  

A series of matrix calculations is required to obtain the PC loading matrix A and the 

PC score matrix F.  First, a correlation matrix on the standardized input matrix Z is 

computed by: 

)1( −
=

n

TZZ
R                 (22) 

The correlation matrix, which is computed on TOs and NTOs separately, represents the 

correlations between the individual TO and NTO cases.   

The distance between the gridpoints in Z can affect the calculation of R, since 

gridpoints which are geographically closer likely will be more highly correlated, possibly 

leading to more highly correlated cases.  Since the NCEP/NCAR reanalysis data reside 

on a latitude-longitude grid (Fig. 9a), the distance between gridpoints decreases with 

increasing latitude (longitude lines converge with increasing latitude).  This longitudinal 

convergence artificially inflates correlation calculations in northern latitudes.   

Several methods exist to remove biases from converging longitude lines, and two are 

tested herein.  The first technique, proposed by Araneo and Compagnucci (2004), uses a 

latitudinal density correction to obtain an equally spaced grid, such as the one seen in 

Fig. 9b.  The latitudinal density λ is calculated using: 
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=      (23) 

where n is the number of gridpoints on a reference latitude φ0 and L represents the 

approximate length of a longitude circle calculated by: 

)cos(2)( 00 ϕπϕ RL =      (24) 



 

41 

R is the radius of the Earth at the equator.  Once λ is determined, the number of 

gridpoints N on the reference latitude φ0 is used to determine the number of gridpoints 

n(φ) for a given latitude by (25). 
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n =        (25) 

Once n(φ) is computed, the grid spacing is given by: 
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360
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=∆       (26) 

For the current study, the reference latitude φ0 selected was the equator, since this led to 

equal grid spacing in the latitudes and longitudes.   

In addition to the latitudinal density grid, a Fibonacci grid (Swinbank and Purser 

2006, Figure 9c) was tested remove biases from converging longitude lines.  The 

Fibonacci grid uses the Golden ratio, Φ = (1 + 5 )/2, a pre-determined number of 

gridpoints N, and a latitude equation (27) and longitude equation (28).   

12

2
sin

+
=

N

i
iθ      (27) 

12 −Φ= ii πλ       (28) 

In (27) and (28), i represents the i th gridpoint of the N chosen.  The Fibonacci grid places 

gridpoints which are slightly offset from the poles and does not require an arbitrary 

reference latitude, although the user must select a predetermined number of gridpoints N.  

For the current study, N was selected to be 3000, as this gave the closest grid spacing to 

that seen from the latitudinal density grid.  Since the grid spacing between these two 

methods is similar, a comparison to determine the superior method is possible. 
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(a) 

 
(b) 

 
(c) 
 

Fig. 9.  Plots of the reanalysis grid (a), the latitudinal grid (b), and the Fibonacci grid (c).  
Convergence of gridpoints in (a) requires the need for additional grid types, such as (b) 
and (c).  The subtle convergence of gridpoints with increasing latitude in panels (b) and 
(c) is caused of the map projection (polar stereographic). 
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Before each grid type could be applied to the PCA, an interpolation technique was 

required to convert the NCEP/NCAR reanalysis grid to the latitudinal density grid or the 

Fibonacci grid.  A one-pass Barnes analysis (Barnes 1964) was used for this 

interpolation.  The scale length selected for the Barnes analysis was: 

n
o

∆
=

2

κ
κ       (29) 

where κ0 is the reference scale length (5.052) and ∆n represents the average grid spacing 

(taken to be 250 km for the reanalysis grid).  The Great Circle Distance formula was used 

to compute distances between the longitudes and latitudes, which were needed for the 

Barnes analysis.  The Great Circle Distance formula is given as: 
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where λi are the longitudes of the two points, θi are the latitudes of the two points, and R 

is the Earth radius in meters.  An error analysis of the one-pass Barnes technique was 

performed to assess any interpolation errors, interpolating the reanalysis 500 hPa height 

field to the Fibonacci grid and back to the reanalysis.  Root mean square errors (RMSE) 

of the heights were computed, and RMSE values are less than 20 m (less than 1% of the 

mean) were noted, validating the interpolation technique.   

Since two methods were tested, an analysis of each method’s performance was 

required to select the best one.  Both methods were compared by plotting fields of 24-

hours 500-hPa height anomalies after a PCA was performed with each grid type (Fig. 

10). A single case, 26 April 1994, corresponded to the highest PC loading from both 

methods, so this field was plotted as well to provide a comparison to the anomaly fields.  

An anomaly ridge over western Canada using the latitudinal density PCA (Fig. 10a) did 
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not correspond with the 500 mb height field on 26 April 1994 (Fig. 10c).  This anomaly 

ridge in Fig. 10a displaced the anomaly trough over eastern Canada present in both grid 

type PCA fields (Figs. 10a and 10b).  Since the latitudinal density grid PCA presented 

anomaly features in the northern latitudes which were not consistent with the case set, the 

Fibonacci grid was selected for the calculation of the correlation matrix. 

Once the proper grid type was selected, two methods of correlation matrix 

computation were possible.  An O-mode analysis involves computation of the correlation 

matrix along the input (cases) dimension of the correlation matrix and requires the other 

dimension to be parameters for the cases (as is the case in this study).  When the 

correlation matrix is computed along the parameter dimension, the method is called a P-

mode analysis.  The O-mode analysis was chosen for the present study since knowledge 

of the correlation between cases was needed for the synoptic storm types.  Additionally, 

the OU Supercomputing Center for Education and Research (OSCER) did not allow for 

the solution of a large eigenproblem (53000 X 53000 correlation matrix) which was 

needed for a P-mode PCA in this study. 

One computational complication resulting from the O-mode analysis was the 

combination of numerous variables for each case which have extremely different 

magnitudes (i.e. 100 mb height magnitudes are on the order of 10000, while relative 

humidity magnitudes range from 0 to 100).  Each raw variable at each of the 17 vertical 

levels was standardized individually to account for disparate means.  This standardization 

subtracted the mean and divided by the standard deviation, so that the variables for each 

case had a mean of zero and a standard deviation of one.  This standardization would not 
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have been necessary with a P-mode analysis, since vectors of the same variable for 

different cases were used in the calculation of R in (22).   

2) EIGENANALYSIS 

Once the R matrix, which is 50 X 50 (or 49 X 49 for NTOs), was computed, an 

eigenanalysis was performed on R to obtain an eigenvector matrix V and an eigenvalue 

diagonal matrix D.  The eigenvector and eigenvalue matrices are calculated from: 

R = V D VT       (31) 

Typically, an eigensolver such as S-Plus (Insightful 2007 – used in the present study) is 

used to obtain V and D.  These eigenvectors define a new coordinate system which has 

the same number of variables as the smaller of the number of columns or number of rows 

minus one in Z.  Geometrically, the first eigenvector will point in the direction of the 

largest variability in the dataset, and will be associated with the largest eigenvalue.  

Subsequent eigenvectors will describe monotonically lower variability and are associated 

with monotonically smaller eigenvalues (e.g., λ1 ≥  λ2 ≥  λ3 ≥... λn). 

Since real datasets include both signal and noise, if too many eigenvectors are 

retained, noise in the data dominates the signal in the latter eigenmodes.   However, if too 

few eigenvectors are retained, some of the physical signal will be discarded.  The scree 

test is one method to determine the number of eigenvectors to retain so that the important 

signal information is kept without excess noise.  For a scree test, the eigenvalues are 

plotted (Y-axis) sequentially for each root number (X-axis), and when the eigenvalues 

subjectively level off (a scree), eigenvectors prior to this point should be retained.  To 

obtain more sensitivity, it is customary to plot a subset of the largest eigenvalues.  Figure 

9 shows a sample scree test plot indicating two possible truncation locations (either at 2 
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or 5 eigenvectors).  This subjectivity can result in removal of important signal 

information or inclusion of noise data, so an objective truncation method would be 

helpful. 

 
Fig. 9.  Scree test plot of TO data from 24-hour lead times prior to the outbreak.  The y-
axis is the magnitude of the eigenvalue, ordered in descending variance explained, while 
the x-axis represents the eigenvalue number.  Note that only the variance associated with 
the first 10 eigenvectors is shown  
 
 
 

A purely objective test introduced in Richman (1986) is based on the so-called 

congruence coefficient η.  This method requires the computation of the loading matrix A 

from an initial guess set of eigenvectors.  The loading matrix is computed by: 

A = V D1/2       (32) 
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In the current study, the congruence coefficient was computed on the first two 

eigenvectors initially.  The congruence coefficient is given by: 

∑ ∑
∑=

2/122 )( YX

XY
η      (33) 

where X represents the vector of the original correlation matrix associated with the 

largest absolute loading magnitude in the loading vector Y.  As an example from the 

current study, the computation of η for the first principal component (PC1, first column 

of the loading matrix A) involves ranking the loading vector associated with PC1 based 

on absolute magnitude.  The largest magnitude in PC1 corresponds to a vector in the 

correlation matrix (i.e., if the 12th loading were largest, the 12th column of the correlation 

matrix is X).  The magnitude of η is then computed from X and Y.  If the value of the 

congruence coefficient for the first PC is larger than 0.81 (deemed by Richman 1986 as a 

reasonable match), this PC is retained.  If both PCs have η values larger than 0.81, three 

PCs are tested.  This process continues until a value of 0.81 or less for η is discovered. 

The congruence coefficient approach is superior to the scree test, as it provides a single, 

well-defined best answer, and its computation is based on the embedded signal in the 

correlation matrix, which guarantees the physical structure is part of the decision process. 

The congruence coefficient test in the current study yielded two main PCs for NTOs 

and TOs for each lead time.  Once the optimal number of PCs to retain was determined 

for the different outbreak types and different lead times, the PC loading and PC score 

matrices were computed.  The PC loading matrix A was computed from the truncated 

eigenvector matrix V through (32).  Once A was determined, the base model equation 

was solved for F, the PC score matrix.  However, since A was not symmetric, the inverse 

of A required a least-squares solution, so that the PC score matrix results from: 



 

48 

1)(*)( −= AAAZF T

     (34) 

Since an O-mode analysis was used in the computation of R, the PC score matrix 

represents the relationship between the individual gridpoints and the PC loading matrix 

A.  The PC score matrix had a dimensionality of 53000 X 2, where the 2 represented the 

2 PCs which were retained and the 53000 indicated the number of gridpoints.  The PC 

scores from this O-mode analysis represented standardized anomalies of the gridpoint 

values.  Since vectors (columns) of F represented gridpoint fields, weighted sums of the 

columns of F were used to create the synoptic storm types. 

3) CREATION OF STORM TYPES 

The PC score matrix F provides anomaly patterns of two PCs of each outbreak type.   

However, these anomaly patterns do not represent the synoptic storm types, which are 

computed using weighted sums of the PC scores.  In order to determine the number of 

TO and NTO types, a cluster analysis (Wilks 1995) was employed.  The cluster analysis 

conducted herein considered the Euclidian distance of a set of PC loadings for the 50 

cases and used an average linkage method (Wilks 1995).  These Euclidian distances are 

graphically grouped with others whose distance is within a certain threshold via a 

dendrogram.  A typical example of a dendrogram (Fig. 10) shows groupings of storms at 

any given Euclidean distance (Y-axis), and these groups can be combined to determine 

storm types.  The groups share similar physical properties and/or values of the raw 

variables that are used in the PCA.   

To provide an example of the cluster analysis, the entire 100 case set of TOs and 

NTOs was analyzed in an O-mode PCA.  PC loadings from the PCA were input into the 

cluster analysis, and the resulting dendrogram (Fig. 10) showed two main groups which 
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largely corresponded with the TOs and NTOs.  The point at which two cases merge on 

the dendrogram represents their Euclidian distance, and the largest Euclidian distances on 

Fig. 10 are near 0.2.  At this level on the dendrogram, two clusters are visually apparent.  

Areas below this do not reveal significantly distance  groupings of cases, so two storm 

types are noted.   However, there was some overlap between the two outbreak types in 

the cluster analysis (Fig. 11), which underscores the need for statistical methods to aid in 

classification of TOs and NTOs.   

Once the cluster analysis provided storm types (two for each outbreak type), the mean 

loading of the events within a particular cluster was computed and squared, since the 

mean provided an explained-variance measure which was used to weight the PC scores.  

The weighted PC scores were summed to obtain anomaly patterns which represented the 

storm types.  Chapter 4 provides the results from performing this methodology from 72 

hours prior to the outbreak to 6 hours prior to the outbreak. 
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Fig. 10.  Dendrogram from a cluster analysis of the PC loadings from a PCA involving 
all TO and NTO cases.  Cases 1-50 along the bottom represent TOs, and 51-99 represent 
NTOs.  Two main groups are apparent, although these do not correspond directly with 
the TO and NTO case numbers. 
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Fig. 11.  Scatterplot of PC1 loadings and PC2 loadings from the PCA which considered 
all TOs and NTOs.  Triangles represent TOs and crosses represent NTOs.  This diagram 
shows some overlap, indicating the difficulty in separating these classes without some 
other statistical methods. 
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3. OBJECTIVE DISCRIMINATION RESULTS 

The objective statistical classification of outbreaks was accomplished through three 

statistical methods (defined in Chapter 2) for 24-, 48-, and 72- hours prior to the 

outbreak.  Tables of the contingency statistics are presented for each model type and each 

lead time, and boxplots of the contingency statistics’ distributions are shown.  The 

performance of the statistical methods with each case is assessed as well. 

a.  24 Hour Results 

At 24-hours prior to the outbreak, the contingency results generally were nearest to 

the ideal values.  From the permutation testing, the optimal covariates included 0-1 km 

EHI, surface based CIN, 0-1 km bulk shear, the product of surface based CAPE and 0-1 

km bulk shear, LCL, 0-1 km SREH, and 0-3 km SREH.  Initially, the statistical models 

were trained and tested using these 7 covariates.  Subsequent model tests were 

conducted, removing covariates individually to attempt to achieve better results than the 

initial analysis.  If all of the contingency statistics improved from removing a covariate,  

the other covariates were individually removed in a second analysis.  Single covariates 

were tested as well, to provide some insight as to each covariate’s classification ability.  

In total, 26 covariate combinations were tested.  The jackknife cross-validation results 

from these covariate combinations were bootstrapped, and boxplots of their distributions 

were created in order to determine the best covariate set.  These boxplots show the 

median, the first and third quartiles, and the last data point prior to the 1.5 * IQR 

location.  Models with a higher median and a smaller IQR are better (since they have less 

classification variability), and the best of these are deemed the best covariate 

combination for the particular statistical technique. 
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1)  SVM CONTINGENCY AND CONFIDENCE LIMIT RESULTS 

SVMs provided the best contingency results when both shear variables were culled 

(Table 8).  While removing individual covariates during the initial analysis (models 2-8, 

Table 8a), it was noted that removal of the product of CAPE and 0-1 km bulk shear 

resulted in the highest POD (0.864).  As a result, a second analysis (Table 8b) was 

conducted which removed this product and the other 6 covariates individually.  This 

additional testing was conducted to determine if the results of the initial analysis (Table 

8a) could be improved.  The best SVM results  (POD of 0.894, FAR of 0.161) were 

obtained by removing surface based CIN and the product of CAPE and 0-1 km bulk 

shear.  The HSS values for this combination of covariates were high as well (0.725).  

Thus, for SVMs, the best parameter combination for classification was combination 25.  

The covariates rejected included a measure of stability or instability, which was not 

thought to vary significantly between outbreak type (see Appendix B).   

The boxplots of the 26 covariate combinations for HR (Fig. 12) and POD (Fig. 13) 

reveal interesting features, and the most noticeable feature is the large IQR associated 

with models 9-19.  These models only considered one or two covariates (Table 8), and 

such small covariate sets resulted in large variability in the contingency statistics.  This 

large variability appeared consistently with all three statistical methods at all three lead 

times tested.  Five models showed a large median value of POD and HR (1, 9, 20, 21, 

and 25).  The FAR (Fig. 14) and HSS (Fig. 15) results corresponded well with the POD 

and HR results, as results from models 9 and 25 maintained the lowest FAR and highest 

HSS medians of all 26 combinations.  However, model 9 consistently showed large IQR 

in the boxplots, which led to rejecting it as the best covariate set.  Model 25 contained 
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few outliers as well.  Model 25 rejected the measure of CAPE and bulk shear and 

surface based CIN, which was consistent with the results in Table 8.   

 

Table 8.  24 hour contingency table results for SVMs.  Table (a) represents covariate 
combinations as stated and Table (b) leaves off the poorest covariate from Table (a) (in 
this case, the product of CAPE and bulk shear) and combines other parameters.   
 

Model # Variable(s) HR POD FAR HSS BIAS
1 All 0.865 0.859 0.132 0.731 0.989
2 No LCL  0.836 0.838 0.168 0.673 1.007
3 No 0-1 km capeshear  0.824 0.864 0.202 0.649 1.083
4 No 0-1 km bulk shear  0.700 0.713 0.310 0.399 1.033
5 No surface CIN  0.758 0.762 0.248 0.515 1.014
6 No SREH (0-1 km)  0.799 0.800 0.205 0.597 1.007
7 No SREH (0-3 km)  0.777 0.754 0.213 0.554 0.958
8 No EHI (0-1km)  0.811 0.816 0.195 0.623 1.014
9 No Shear variables 0.853 0.880 0.167 0.707 1.057

10 No SREH variables 0.729 0.688 0.255 0.458 0.924
11 Only LCL  0.776 0.763 0.221 0.551 0.980
12 Only surface CIN  0.565 0.351 0.396 0.126 0.581
13 Only 0-1 km bulkshear  0.752 0.815 0.279 0.505 1.131
14 Only 0-1 km capeshear  0.737 0.799 0.293 0.474 1.129
15 Only 0-1 km SREH 0.807 0.833 0.211 0.614 1.056
16 Only 0-3 km SREH 0.793 0.803 0.216 0.585 1.024
17 Only 0-1 km EHI 0.778 0.887 0.274 0.558 1.222
18 Only SREH  0.782 0.801 0.231 0.565 1.042
19 Only shear  0.697 0.750 0.326 0.395 1.112  

(a) 
 

Model # Variable(s) HR POD FAR HSS BIAS
20 No 0-1 km EHI 0.827 0.831 0.179 0.654 1.012
21 No 0-1 km bulk shear 0.853 0.880 0.167 0.707 1.057
22 No 0-1 km SREH 0.826 0.839 0.186 0.651 1.031
23 No 0-3 km SREH 0.826 0.845 0.188 0.653 1.041
24 No LCL 0.778 0.790 0.232 0.556 1.030
25 No surface based CIN 0.863 0.894 0.161 0.725 1.065
26 No SREH variables 0.775 0.739 0.207 0.550 0.932  

(b) 
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Fig. 12.  Boxplots for SVM HR results.  Model numbers correspond with the row 
number in Table 8.   
 

 
Fig. 13.  Same as Fig. 12, but for POD. 
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Fig. 14.  Same as Fig. 12, but for FAR. 

 

 
Fig. 15.  Same as Fig. 12, but for HSS. 
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2)  LOGR CONTINGENCY AND CONFIDENCE LIMIT RESULTS  

Results in Table 9 suggest that LogR discriminates outbreak type successfully.  .  

Rejection of the product of CAPE and bulk shear (the same as with SVMs), provided 

the highest HR, POD, and HSS results and the lowest FAR results of the initial 

analysis.  To determine if more improvement was possible, the CAPE-bulk shear 

product was rejected in a second analysis (Table 9b), as was the case with SVMs.  

Overall, modest improvement was noted when considering combination 25.   

The HR and POD boxplots (Figs. 15 and 16) portrayed models 9, 20, 21, and 25 as 

the best (highest median value).   The FAR results (Fig. 17) and HSS results (Fig. 18) 

were consistent with the HR and POD results as well.  All of these combinations 

suggested rejection of the product of 0-1 km bulk shear and CAPE, which supported the 

previous conclusion that instability was a poor discriminator of outbreak type.  

However, SVMs provided a more compact set of possible covariate combinations, 

which implied that SVMs may be the best classification method at 24-hours prior to 

outbreak initiation. 
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Table 9.  Same as Table 8, but for LogR. 

 
Model # Variable(s) HR POD FAR HSS BIAS

1 All 0.782 0.778 0.220 0.564 0.997
2 No LCL  0.751 0.756 0.256 0.502 1.016
3 No 0-1 km capeshear  0.836 0.853 0.178 0.671 1.038
4 No 0-1 km bulk shear  0.754 0.731 0.238 0.507 0.959
5 No surface CIN  0.745 0.716 0.243 0.491 0.946
6 No SREH (0-1 km)  0.755 0.750 0.246 0.510 0.995
7 No SREH (0-3 km)  0.748 0.716 0.239 0.496 0.940
8 No EHI (0-1km)  0.767 0.751 0.228 0.534 0.973
9 No Shear  0.831 0.848 0.182 0.662 1.037

10 No SREH  0.705 0.664 0.281 0.410 0.924
11 Only LCL  0.765 0.788 0.250 0.530 1.050
12 Only surface CIN  0.572 0.514 0.424 0.144 0.893
13 Only 0-1 km bulkshear  0.739 0.737 0.265 0.477 1.003
14 Only 0-1 km capeshear  0.639 0.705 0.381 0.279 1.139
15 Only 0-1 km SREH 0.800 0.816 0.213 0.600 1.037
16 Only 0-3 km SREH 0.793 0.830 0.231 0.585 1.079
17 Only 0-1 km EHI 0.698 0.752 0.326 0.396 1.116
18 Only SREH  0.782 0.812 0.237 0.565 1.064
19 Only shear  0.643 0.706 0.377 0.287 1.133  

(a) 
 

Model # Variable(s) HR POD FAR HSS BIAS
20 No 0-1 km EHI 0.837 0.864 0.183 0.674 1.057
21 No 0-1 km bulk shear 0.831 0.848 0.182 0.662 1.037
22 No 0-1 km SREH 0.808 0.816 0.200 0.616 1.020
23 No 0-3 km SREH 0.828 0.818 0.168 0.656 0.982
24 No LCL 0.824 0.838 0.188 0.647 1.033
25 No surface based CIN 0.842 0.856 0.169 0.685 1.030
26 No sreh (all) 0.751 0.735 0.245 0.501 0.973  

(b) 
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Fig. 16.  Same as Fig. 12, but for LogR. 

 

 
Fig. 17.  Same as Fig. 16, but for POD. 
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Fig. 18.  Same as Fig. 16, but for FAR. 

 

Fig. 19.  Same as Fig. 16, but for HSS. 
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3)  LR CONTINGENCY AND CONFIDENCE LIMIT RESULTS 
 

The contingency statistics for LR from the initial analysis (Table 10a) showed 

rejection of the product of CAPE and shear at 0-1 km provided the best contingency 

statistic values.  When rejecting this product and the other covariates individually 

(Table 10b), the best contingency results were seen when surface based CIN was 

rejected.  This covariate set was identical to the two obtained by LogR and SVM.   

The HR and POD distributions (Figs. 20 and 21) revealed five different models 

which provided the highest medians (models 9, 20, 21, 23, and 25).  This set of 

combinations, along with numerous other combinations, produced low FAR results 

(Fig. 22).  The HSS (Fig. 23) results showed these models as having the highest 

medians and smallest IQRs.  In essence, it was not possible to determine which of these 

combinations was best.  Since LR is a purely linear method, small adjustments to the 

threshold for classification (0.5 in the present study) can increase the prediction of TOs 

or NTOs.  This can introduce artificial bias towards an outbreak type into the statistical 

model, which may be a cause of the low FAR results observed in the five models 

above.  Overall, the simple linear method was successful at classifying outbreak type 

24-hours prior to the event. 
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Table 10.  Same as Table 8, but for LR. 
 

Model # Variable(s) HR POD FAR HSS BIAS
1 All 0.776 0.793 0.237 0.552 1.039
2 No LCL  0.761 0.797 0.260 0.522 1.078
3 No 0-1 km capeshear  0.827 0.844 0.186 0.654 1.037
4 No 0-1 km bulk shear  0.748 0.717 0.240 0.496 0.943
5 No surface CIN  0.747 0.714 0.240 0.493 0.940
6 No SREH (0-1 km)  0.756 0.755 0.248 0.511 1.004
7 No SREH (0-3 km)  0.750 0.722 0.239 0.500 0.950
8 No EHI (0-1km)  0.780 0.771 0.219 0.559 0.988
9 No Shear  0.830 0.839 0.180 0.659 1.023

10 No SREH  0.729 0.668 0.245 0.457 0.884
11 Only LCL  0.771 0.792 0.243 0.542 1.046
12 Only surface CIN  0.595 0.479 0.382 0.189 0.776
13 Only 0-1 km bulkshear  0.738 0.756 0.274 0.476 1.042
14 Only 0-1 km capeshear  0.638 0.710 0.383 0.278 1.151
15 Only 0-1 km SREH 0.788 0.852 0.248 0.576 1.132
16 Only 0-3 km SREH 0.759 0.841 0.281 0.519 1.169
17 Only 0-1 km EHI 0.706 0.789 0.326 0.414 1.171
18 Only SREH  0.760 0.846 0.282 0.520 1.178
19 Only shear  0.641 0.707 0.379 0.283 1.140  

(a) 
 

Model # Variable(s) HR POD FAR HSS BIAS
20 No 0-1 km EHI 0.826 0.857 0.195 0.653 1.065
21 No 0-1 km bulk shear 0.830 0.839 0.180 0.659 1.023
22 No 0-1 km SREH 0.809 0.811 0.195 0.619 1.007
23 No 0-3 km SREH 0.830 0.823 0.168 0.661 0.989
24 No LCL 0.793 0.861 0.245 0.587 1.140
25 No surface based CIN 0.838 0.880 0.190 0.677 1.087
26 No sreh (all) 0.770 0.744 0.219 0.540 0.952  

(b) 
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Fig. 20.  Same as Fig. 12, but for LR. 
 

 
Fig. 21.  Same as Fig. 20, but for POD. 
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Fig. 22.  Same as Fig. 20, but for FAR. 
 

 
Fig. 23.  Same as Fig. 20, but for HSS. 
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4) SYNTHESIS 

As a means of comparing the three statistical techniques, the best covariate 

combination (determined subjectively to be combination 25 for all boxplot results) was 

compared between the three methods.  The individual techniques were judged based on 

the median value for the four contingency statistics and on the size of the IQR.  Table 11 

shows confidence limits of the bootstrap results for each of the four contingency 

statistics. 

 
Table 11.  Inter comparison of the three methods employed for classification.   

 
 

The results in Table 11 reveal SVM as the optimal method when considering the HR 

(median SVM HR is larger than the 95% limit HR in LogR and LR), FAR (SVM is 

superior to LogR only), and HSS (SVM is clearly better than both other methods).  

Hence, the confidence limits show to a 90% confidence that SVM has the best 

bootstrapped contingency statistics and is the best method to use. 

 

5% Limit Median 95% Limit

SVM 0.847 0.862 0.877

LogR 0.829 0.843 0.856

LR 0.824 0.839 0.853

SVM 0.810 0.832 0.854

LogR 0.813 0.840 0.863

LR 0.791 0.814 0.837

SVM 0.096 0.116 0.139

LogR 0.123 0.141 0.159

LR 0.097 0.114 0.132

SVM 0.698 0.728 0.785

LogR 0.652 0.681 0.708

LR 0.662 0.691 0.718

FAR

HSS

HR

POD
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5)  CASE-BY-CASE PERFORMANCE ASSESSMENT 

The performance of each statistical technique on each individual case was assessed 

as well.  This analysis shows which cases were the most difficult to classify, which 

allows for subsequent investigation into the reasons for these difficulties.  Each case 

was tested 15 times in the jackknifing methodology, and 26 covariate combinations 

were used.  This resulted in 390 individual classification attempts by the statistical 

techniques for each case.   

SVMs classified nine cases with 100% accuracy (i.e. the cases were classified 

correctly each time they were used for testing in all 26 covariate combinations).  A 

majority of these were TOs, as only two NTOs were classified with 100% accuracy.  

Analysis of the worst 10 cases revealed that five TOs and five NTOs were handled 

poorly by SVMs.  LogR and LR were more successful than SVMs with the more 

obvious outbreak types (over 15 classified with 100% accuracy by both methods).  

However, 24% of the bottom 10 cases were correctly classified by SVM, whereas only 

14% were classified correctly with LogR and 9% with LR.  Since SVMs perform better 

on the marginal cases, by this analysis, SVMs are still the best classification method at 

24-hours. 

Since individual case results were retained, investigation into causes of the poor 

classification of these worst 10 cases was performed.  This investigation involved 

analysis of each case’s covariate fields to determine of it was obvious which outbreak 

type was progged to occur by the WRF output.  The bulk shear 24-hour WRF forecast, 

which was shown previously to be a good discriminator of outbreak type, was 

compared to the eventual outbreak storm reports (e.g. Fig. 24) to determine if the 
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placement of the covariate suggested the correct outbreak location.  If this location is 

incorrect, it is likely that the statistical method will not be able to distinguish the 

outbreak type correctly, since the input data into the method are not correctly located.  

This error type was denoted herein as “WRF error”.  Additionally, if the atmosphere 

produced conditions which appeared as one outbreak type (i.e. small shear values 

should result in an NTO, provided an outbreak occurs) and the other occurred, this was 

denoted as “WRF error” as well.  However, if atmospheric conditions appeared like an 

outbreak type that later developed, and that event was misclassified by the statistical 

methods, these errors were denoted as “statistical model error.” 

To show examples of these error types, three sample events are provided.  One 

event (7 April 1980 – Fig. 24) was classified perfectly by SVMs at 24 hours.  

Noticeably large bulk shear values over the outbreak region indicated an eventual TO, 

and the SVMs detected this feature and classified this outbreak correctly each time.  To 

contrast the 7 April 1980 event, a poorly classified case by SVMs (26 April 1994 – Fig. 

25) was considered.  On this day, large bulk shear values existed over the Ohio Valley, 

but no shear was forecast by the WRF over the Red River Valley, where many 

tornadoes occurred.  Hence, the WRF produced conditions which were not expected to 

be associated with a TO.  This error type was classified as a “WRF error.”  The final 

event (26 September 1973 – Fig. 26) given was also classified poorly by SVMs.  This 

TO showed large magnitudes of 0-1 km bulk shear over the eventual outbreak region 

24-hours prior to the outbreak.  In spite of this evidence of a looming TO, SVMs 

classified this event as a NTO over 50% of the time.  These analyses were conducted 

for the worst 10 cases for each statistical technique.  
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(a) 
 

 
(b) 

Fig. 24.  Plot of 0-1 km bulk shear valid at the time of the outbreak for 07 April 1980.  
Contributed by Shafer (2007). 
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(a) 
 

 
(b) 

 
Fig. 25.  Same as Fig. 24, but for 26 April 1994 
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(a) 
 

 
 
Fig. 26.  Same as Fig. 24, but for 26 September 1973. 
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The case error analysis results (Table 12) reveal that of the 30 bottom 10 cases for 

the three statistical techniques; only 14 cases are seen, revealing significant overlap 

between the worst 10 cases for each techniques.  These results did not present a distinct 

source of error, since seven cases were classified poorly due to “WRF error” and seven 

were classified poorly owing to statistical model error.  Model verification, which is 

outside of the scope of this project, combined with further training of marginal cases, 

will provide more insight as to the true source of these errors. 

 
Table 12.  Source of errors for the 14 cases that were in the bottom 10 for each 
statistical technique at 24-hours lead time. 
 

 
 

 

 

 

 

 

 

Case WRF Error? Statistical Model Error? Which Technique?

010409 x LR, LogR, SVM

020508 x LR, LogR, SVM

700417 x LR, LogR, SVM

930507 x LR, LogR, SVM

891120 x SVM

940410 x LR, LogR, SVM

030506 x x SVM

940426 x SVM

000423 x LR, LogR

990503 x LR, LogR, SVM

010414 x LR

730526 x LR, LogR

990408 x LR

020816 x SVM, LogR
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b)  48 Hour Results 
 

At 48-hours, the results from the permutation testing suggested different shear 

covariates (0-6 km and 0-3 km bulk shear and BRN shear) and fewer instability 

covariates were best for 48-hour classification.  Backward elimination of covariates was 

conducted as well, yielding 25 covariate combinations. 

1)  SVM CONTINGENCY AND CONFIDENCE LIMIT RESULTS 

The contingency statistics (Table 13) for SVMs are somewhat degraded from those 

obtained at 24-hours, as might be expected.  In the initial analysis, the best POD and 

FAR results result from the culling of 0-3 km SREH, consistent across all three 

statistical methods.  The second stage culled 0-3 km SREH and an additional covariate 

(Table 13b).  The best contingency statistics are associated with model 22.   

 The SVM boxplots are similar to those at 24-hours, as many of the covariate 

sets which considered only one or two covariates resulted in large variability.  The HR 

results (Fig. 27) reveal that model 22 had the smallest variability and highest median of 

all of the combinations, consistent with the POD boxplots (Fig. 28).  However, model 

22 was subject to higher FAR than either models 7 or 23 (Fig. 29), and the HSS results 

(Fig. 30) showed either 1, 22, or 23 had the best overall performance as input into the 

SVMs.  This result implied no single covariate combination was best for 48-hour 

classification.  Additionally, median values of the contingency statistics at 48-hours 

were generally less than 10% worse than those at 24-hours, revealing only modest 

degradation of results with 24 hours more lead time.  Since numerical weather 

prediction simulations generally worsen with increased lead time, this result was 
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expected, but the relatively slow degradation is encouraging and obviously warranted 

further investigation into the classification performance at 72-hours. 

 

Table 13.  Contingency table results for SVMs.  Table (a) represents the variables as 
stated, while Table (b) removes the stated variable and 0-3 km SREH. 
  

Model # Variable(s) HR POD FAR HSS BIAS
1 All 0.808 0.810 0.196 0.616 1.007
2 No LCL 0.770 0.805 0.251 0.541 1.075
3 No shear (0-6 km) 0.810 0.815 0.196 0.620 1.014
4 No shear (0-3 km) 0.817 0.829 0.193 0.634 1.027
5 No shear (0-1 km) 0.768 0.795 0.248 0.537 1.057
6 No SREH (0-1 km) 0.789 0.795 0.218 0.577 1.016
7 No SREH (0-3 km) 0.808 0.838 0.212 0.616 1.064
8 No BRN shear 0.812 0.804 0.186 0.624 0.988
9 No shear variables 0.801 0.824 0.216 0.602 1.052

10 No SREH variables 0.822 0.833 0.187 0.644 1.024
11 Only shear variables 0.770 0.815 0.256 0.540 1.095
12 Only SREH variables 0.711 0.774 0.316 0.423 1.132
13 Just LCL 0.749 0.778 0.269 0.498 1.064
14 Just shear (0-6 km) 0.721 0.709 0.278 0.441 0.982
15 Just shear (0-3 km) 0.770 0.812 0.254 0.541 1.088
16 Just shear (0-1 km) 0.752 0.714 0.232 0.503 0.931
17 Just SREH (0-3 km) 0.714 0.766 0.310 0.428 1.110
18 Just SREH (0-1 km) 0.689 0.752 0.336 0.379 1.133
19 Just BRN shear 0.692 0.709 0.319 0.383 1.041  

(a) 
 

Model # Variable(s) HR POD FAR HSS BIAS
20 No LCL (all) 0.724 0.782 0.303 0.448 1.122
21 No shear (0-6) (all) 0.801 0.820 0.214 0.601 1.044
22 No shear (0-3 km) 0.830 0.844 0.182 0.659 1.031
23 No shear (0-1 km) 0.820 0.863 0.208 0.641 1.088
24 No SREH (0-1 km) 0.822 0.833 0.187 0.644 1.024
25 No BRN shear (all) 0.807 0.797 0.189 0.615 0.984  

(b) 
 

 



 

74 

 
 
Fig. 27.  Boxplots for 48 hour SVM HR.  Model numbers correspond with the row 
number in Table 13.   
 

 
Fig. 28.  Same as Fig. 27, but for POD. 

 



 

75 

 

Fig. 29.  Same as Fig. 27, but for FAR. 

 

Fig. 30.  Same as Fig. 27, but for HSS. 
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2)  LOGR CONTINGENCY AND CONFIDENCE LIMIT RESULTS 

The initial jackknife contingency statistic results for LogR (Table 14) were 

consistent with the SVM results, as rejecting 0-3 km SREH improved results.  In 

contrast to the SVM results, further rejection of covariates besides 0-3 km SREH 

resulted in reduced accuracy, so no additional culling of covariates was done.  Model 

seven was the best model in terms of the jackknifed contingency statistics. 

 The HR and POD statistics (Figs. 31 and 32) show the narrowest IQR and 

highest median value in model seven, consistent with the jackknife contingency results.  

The FAR calculations (Fig. 33) showed models two or seven as having the lowest FAR, 

and the HSS results (Fig. 34) supported the conclusion that model seven provided the 

superior results.  One feature of the boxplots not seen with SVM was the large 

variability in model four, which only rejected 0-3 km bulk shear.  This result supports 

0-3 km bulk shear as a good covariate, but is not consistent with the previous 

conclusion that more covariates input into the model produced less variability in the 

boxplots.  As with SVM, the boxplot and jackknife contingency results were within 

10% of the 24-hour results, which further supports the conclusion that little drop-off of 

the classification ability of these methods was noted at 48-hours prior to the outbreak.  
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Table 14.  Same as Table 13, but for LogR. 

Model # Variable(s) HR POD FAR HSS BIAS
1 All 0.817 0.839 0.200 0.634 1.049
2 No LCL 0.811 0.844 0.211 0.622 1.069
3 No shear (0-6 km) 0.810 0.819 0.198 0.620 1.022
4 No shear (0-3 km) 0.805 0.808 0.201 0.609 1.011
5 No shear (0-1 km) 0.785 0.829 0.242 0.569 1.093
6 No SREH (0-1 km) 0.803 0.834 0.217 0.607 1.065
7 No SREH (0-3 km) 0.838 0.844 0.169 0.675 1.015
8 No BRN shear 0.801 0.822 0.215 0.601 1.046
9 No shear variables 0.804 0.822 0.209 0.608 1.039

10 No SREH variables 0.776 0.818 0.248 0.553 1.087
11 Only shear variables 0.826 0.845 0.189 0.651 1.042
12 Only SREH variables 0.760 0.810 0.267 0.520 1.105
13 Just LCL 0.691 0.684 0.311 0.382 0.993
14 Just shear (0-6 km) 0.772 0.780 0.236 0.543 1.020
15 Just shear (0-3 km) 0.786 0.808 0.230 0.572 1.049
16 Just shear (0-1 km) 0.763 0.740 0.228 0.526 0.959
17 Just SREH (0-3 km) 0.754 0.786 0.265 0.509 1.069
18 Just SREH (0-1 km) 0.733 0.788 0.294 0.466 1.116
19 Just BRN shear 0.741 0.774 0.278 0.482 1.072  

(a) 
 

Model # Variable(s) HR POD FAR HSS BIAS
20 No LCL (all) 0.776 0.812 0.245 0.553 1.076
21 No shear (0-6) (all) 0.803 0.800 0.199 0.605 0.999
22 No shear (0-3 km) 0.807 0.808 0.196 0.615 1.005
23 No shear (0-1 km) 0.791 0.818 0.227 0.583 1.057
24 No SREH (0-1 km) 0.776 0.818 0.248 0.553 1.087
25 No BRN shear (all) 0.795 0.800 0.212 0.589 1.015  

(b) 
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Fig. 31.   Same as Fig. 27, but for LogR. 

 

 
Fig. 32.  Same as Fig. 31, but for POD. 
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Fig. 33.  Same as Fig. 31, but for FAR. 
 

 
Fig. 34.  Same as Fig. 31, but for HSS. 
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3)  LR CONTINGENCY AND CONFIDENCE LIMIT RESULTS 

The initial LR jackknife contingency statistics (Table 15) show the best results 

when 0-1 km SREH was rejected.  This result differs from both LogR and SVM, which 

suggested removing 0-3 km SREH.  However, consistent with LogR, additional 

rejection of covariates with LR led to accuracy reductions.  Since three different 

covariate sets were determined from the three statistical methods, as lead time 

increases, the best covariate combination becomes more dependent on the statistical 

method being tested. 

 For the boxplot LR results, the HR (Fig. 35) and POD (Fig. 36) show the 

highest medians when considering model six, consistent with the jackknife contingency 

statistic results.  Numerous covariate combinations resulted in low FAR results (Fig. 

37), and it was not possible to distinguish which one was superior.  The HSS results 

provided an overall performance measure of LR (Fig. 38), and show model six with the 

highest median value.  These results are consistently within 10% of those at 24-hours, a 

result common to the three statistical methods tested. 
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Table 15. Same as Table 13, but for LR. 
 

Model # Variable(s) HR POD FAR HSS BIAS
1 All 0.818 0.856 0.208 0.635 1.080
2 No LCL 0.776 0.856 0.265 0.552 1.165
3 No shear (0-6 km) 0.809 0.822 0.202 0.618 1.030
4 No shear (0-3 km) 0.807 0.823 0.205 0.615 1.035
5 No shear (0-1 km) 0.785 0.842 0.247 0.571 1.118
6 No SREH (0-1 km) 0.828 0.857 0.193 0.655 1.063
7 No SREH (0-3 km) 0.816 0.860 0.212 0.633 1.091
8 No BRN shear 0.807 0.827 0.207 0.615 1.044
9 No shear variables 0.807 0.841 0.216 0.614 1.072

10 No SREH variables 0.774 0.829 0.256 0.548 1.114
11 Only shear variables 0.758 0.839 0.281 0.517 1.167
12 Only SREH variables 0.754 0.837 0.286 0.508 1.171
13 Just LCL 0.686 0.683 0.318 0.371 1.001
14 Just shear (0-6 km) 0.745 0.793 0.280 0.490 1.102
15 Just shear (0-3 km) 0.752 0.796 0.272 0.503 1.094
16 Just shear (0-1 km) 0.723 0.754 0.293 0.447 1.067
17 Just SREH (0-3 km) 0.766 0.842 0.273 0.532 1.158
18 Just SREH (0-1 km) 0.743 0.830 0.296 0.488 1.178
19 Just BRN shear 0.744 0.808 0.287 0.489 1.133  

(a) 
 

Model # Variable(s) HR POD FAR HSS BIAS
20 No LCL 0.763 0.831 0.272 0.527 1.141
21 No shear (0-6 km) 0.795 0.814 0.218 0.591 1.041
22 No shear (0-3 km) 0.798 0.815 0.215 0.596 1.038
23 No shear (0-1 km) 0.785 0.827 0.241 0.569 1.090
24 No SREH (0-1 km) 0.774 0.829 0.256 0.548 1.114
25 No BRN shear 0.784 0.804 0.230 0.568 1.045  

(b) 
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Fig. 35.  Same as Fig. 27, but for LR. 

 

Fig. 36.  Same as Fig. 35, but for POD. 
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Fig. 37.  Same as Fig. 35, but for FAR. 

 

Fig. 38.  Same as Fig. 35, but for HSS. 
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4)  SYNTHESIS 

Since the optimal covariate sets are consistently different between the three 

statistical techniques considered, the best set from each technique (model 22 for SVM, 

model seven for LogR, and model six for LR) was compared to determine the most 

favorable technique at 48-hours.  Other than the LogR POD result being statistically 

significantly larger than the LR POD result (Table 16), no significant differences 

between the three methods are observed at 48-hours.  Hence, either SVM or LogR, 

since they are in a statistical tie for the four contingency statistics, are the best methods 

to use. 

Table 16.  Same as Table 10, but for 48-hours lead time. 

 

5)  CASE-BY-CASE PERFORMANCE ASSESSMENT 

The first result, which was surprising owing to the increased lead time, was that 

more cases were classified with 100% accuracy by all three methods at 48 hours lead 

time (17 for SVMs, 31 for LogR, and 28 for LR).  For SVMs, roughly the same number 

5% Limit Median 95% Limit

SVM 0.812 0.830 0.847

LogR 0.822 0.838 0.854

LR 0.808 0.827 0.846

SVM 0.806 0.835 0.862

LogR 0.821 0.840 0.861

LR 0.786 0.813 0.838

SVM 0.146 0.165 0.184

LogR 0.127 0.152 0.180

LR 0.124 0.147 0.171

SVM 0.615 0.652 0.686

LogR 0.640 0.672 0.703

LR 0.611 0.650 0.688

FAR

HSS

HR

POD
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of TOs and NTOs were classified with 100% accuracy, which showed that SVMs 

increased in ability to classify NTOs by 48-hours.  This was not the case for LogR or 

LR, which classified both types equally at 24 and 48-hours.  The worst cases were 

classified best by SVM (6% correct), but these results were only trivially better than 

LogR (5% correct) and LR (4% correct).  Since LogR classified the most cases with 

100% accuracy, LogR was deemed the best method for 48-hour classification of 

outbreak type.   

 Table 17 compares the type of error for the bottom 10 cases for each technique, 

where the error definitions are consistent with those provided at 24-hours.  In contrast 

to 24-hours, the 48-hour results showed that “WRF error” was consistently responsible 

for erroneous outbreak classification of these bottom 10 cases.  Since statistical model 

error was not as prevalent at 48-hours, the selection of covariates at 48-hours may have 

been responsible for the better case-by-case results at 48-hours.  Of the covariates 

selected at 48-hours, no measure of instability was included.  This covariate, which was 

seen to introduce error into the results at 24-hours, may have worsened case-by-case 

performance results, since all 26 covariate combinations at 24-hours were considered in 

the performance analysis.   
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Table 17.  Source of errors for the 14 cases that were in the bottom 10 for each 
statistical technique at 48-hours lead time.   

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case WRF Error? Statistical Model Error? Which Technique?

010409 x LR, LogR, SVM

800712 x LR, SVM

700417 x LR, LogR, SVM

930507 x LR, LogR

891120 x LR, LogR, SVM

890521 x LR, LogR, SVM

730925 x LR, LogR, SVM

840607 x LogR, SVM

900416 x LR, LogR, SVM

990503 x LR, LogR, SVM

730526 x LR, LogR, SVM
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c)  72 Hour Results 
 

Since only relatively little degradation of results was found between 24 and 48 

hours prior to the outbreak, an analysis at 72-hours prior to the outbreak was conducted.  

The permutation testing covariate set included a different combination of six of the 

same covariates used at 24- and 48-hours lead time.  Since fewer covariates were used, 

fewer model combinations (22) were tested at 72-hours.   

1)  SVM CONTINGENCY AND CONFIDENCE LIMIT RESULTS 

The SVM jackknife contingency statistic results (Table 18) showed a larger drop-

off (exceeding 10%) of contingency statistics from the values noted at 48-hours. The 

best POD results were noted in model 13, which only used 0-3 km SREH when 

classifying outbreak type.  This result was surprising since single covariates did not 

classify well at shorter lead times.  The initial analysis also showed that culling 0-1 km 

EHI produced lower FAR but also lower HSS.  As a result, 0-1 km EHI was rejected, 

and a secondary analysis was conducted.  The best overall contingency results were 

obtained through rejection of 0-1 km EHI and 0-3 km SREH (model 18).   

The boxplot results for SVM HR and POD (Figs. 39 and 40) reveal large median 

values of the statistics in models 13 and 18.  However, model 13, which includes a 

single covariate, produced significantly large IQR, which is undesirable.  This large 

IQR might not have been detected without a boxplot analysis, which could have lead 

incorrectly to recommending model 13 for outbreak classification.  Model 18, which 

rejected 0-1 km EHI and 0-3 km SREH, shows the highest HR results in the jackknife 

contingency results.  The FAR (Fig. 41) is smallest with model 13, but model 13 shows 

large IQR on the FAR results as well.  Models 1, 8, 18, and 22 produce the best FAR 
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results of those boxplots with small IQR.  The highest median HSS results (Fig. 42) are 

observed from model 18, implying that for SVMs, model 18 is the best covariate 

combination to use. 

 
Table 18.  Contingency table results for SVMs.  Table (a) represents the variables as 
stated, while Table (b) removes the stated variable and 0-1 km EHI.   
 

Model # Variable(s) HR POD FAR HSS BIAS
1 All 0.669 0.770 0.363 0.339 1.210
2 No LCL 0.657 0.729 0.366 0.315 1.151
3 No bulkshear (0-6 km) 0.668 0.766 0.363 0.337 1.203
4 No bulkshear (0-3 km) 0.652 0.751 0.377 0.305 1.205
5 No SREH (0-1 km) 0.670 0.755 0.358 0.341 1.177
6 No SREH (0-3 km) 0.675 0.705 0.339 0.350 1.067
7 No EHI (0-1 km) 0.706 0.735 0.309 0.413 1.063
8 No Shear 0.657 0.765 0.375 0.315 1.223
9 No SREH 0.696 0.727 0.319 0.393 1.067

10 Only LCL 0.650 0.731 0.375 0.301 1.169
11 Only bulkshear (0-3 km) 0.698 0.759 0.327 0.397 1.128
12 Only bulkshear (0-6 km) 0.721 0.725 0.285 0.442 1.014
13 Only SREH (0-1 km) 0.713 0.819 0.327 0.427 1.218
14 Only SREH (0-3 km) 0.662 0.781 0.373 0.325 1.245
15 Only EHI (0-1 km) 0.616 0.793 0.418 0.235 1.362
16 Only SREH variables 0.636 0.750 0.393 0.273 1.235
17 Only shear variables 0.682 0.758 0.345 0.365 1.158  

 
(a) 

 
 
 

 
 
 

(b) 
 
 

Model # Variable(s) HR POD FAR HSS BIAS
18 No SREH (0-3 km) 0.738 0.762 0.276 0.476 1.053
19 No bulkshear (0-3 km) 0.662 0.702 0.354 0.324 1.087
20 No bulkshear (0-6 km) 0.668 0.693 0.344 0.336 1.056
21 No SREH (0-1 km) 0.696 0.727 0.319 0.393 1.067
22 No LCL 0.679 0.754 0.348 0.359 1.156
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Fig. 39.  Boxplots for 72 hour SVM HR.  Model numbers correspond with the row 
number in Table 18.   

 

Fig. 40.  Same as Fig. 39, but for POD. 
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Fig. 41.  Same as Fig. 39, but for FAR. 

 

Fig. 42.  Same as Fig. 39, but for HSS. 
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2)  LOGR CONTINGENCY AND CONFIDENCE LIMIT RESULTS 

The LogR results (Table 19) reveal the best HR (0.748) and FAR (0.259) values 

when only considering 0-6 km bulk shear.  These values are slightly better than the 

SVM results, although their differences are likely not statistically significant.  This 

single covariate optimality is consistent with model 13 classifying with the highest 

POD for SVMs, but may be subject to large variability.  The highest probability of 

detection values are obtained from culling the LCL (0.812).  The best HSS values are 

obtained from only using 0-6 km bulk shear (0.496), which is consistent with FAR and 

HR.    

In the HR and POD boxplot results (Figs. 43 and 44), models 12 and 13 (median 

overlaps the 3rd quartile in model 12) clearly have the highest median values.  However, 

large variability associated with these two models led to their rejection.  Numerous 

models with smaller IQR values have high medians for HR and POD (models 7, 19, 

and 20), and it was not possible to determine the best with any statistical confidence.  

The FAR median values (Fig. 45) are lowest in models two, seven, and 18, while the 

HSS medians (Fig. 46) are highest in model seven.  These results indicate model seven, 

which culls 0-1 km EHI, produces the best results for all contingency statistics and is 

the best covariate combination for LogR.  As was true with SVMs, the contingency 

statistics at 72-hours worsen by 10-20% with LogR compared to 48-hours lead time, a 

result that can be attributed to diminished WRF performance with increased lead time. 
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Table 19.  Same as Table 18, but for LogR. 

Model # Variable(s) HR POD FAR HSS BIAS
1 All 0.703 0.773 0.325 0.407 1.146
2 No LCL 0.701 0.812 0.339 0.403 1.229
3 No bulkshear (0-6 km) 0.706 0.771 0.322 0.412 1.137
4 No bulkshear (0-3 km) 0.709 0.770 0.317 0.419 1.128
5 No SREH (0-1 km) 0.669 0.722 0.351 0.339 1.113
6 No SREH (0-3 km) 0.729 0.777 0.295 0.458 1.102
7 No EHI (0-1 km) 0.734 0.804 0.298 0.469 1.146
8 No Shear 0.702 0.754 0.320 0.405 1.109
9 No SREH 0.677 0.724 0.342 0.355 1.099

10 Only LCL 0.621 0.595 0.377 0.241 0.955
11 Only bulkshear (0-3 km) 0.732 0.767 0.287 0.464 1.076
12 Only bulkshear (0-6 km) 0.748 0.755 0.259 0.496 1.019
13 Only SREH (0-1 km) 0.691 0.732 0.328 0.382 1.088
14 Only SREH (0-3 km) 0.676 0.767 0.355 0.353 1.189
15 Only EHI (0-1 km) 0.615 0.725 0.410 0.231 1.229
16 Only SREH variables 0.700 0.766 0.327 0.401 1.137
17 Only shear variables 0.706 0.717 0.302 0.413 1.027  

(a) 
 

Model # Variable(s) HR POD FAR HSS BIAS
18 No SREH (0-3 km) 0.727 0.808 0.308 0.455 1.167
19 No bulkshear (0-3 km) 0.731 0.777 0.292 0.462 1.098
20 No bulkshear (0-6 km) 0.731 0.774 0.291 0.462 1.093
21 No SREH (0-1 km) 0.677 0.724 0.342 0.355 1.099
22 No LCL 0.675 0.774 0.357 0.352 1.204  

(b) 
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Fig. 43.  Same as Fig. 39, but for LogR. 

 

Fig. 44.  Same as Fig. 43, but for POD. 
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Fig. 45.  Same as Fig. 43, but for FAR. 

 

Fig. 46.  Same as Fig. 43, but for HSS. 
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3)  LR CONTINGENCY AND CONFIDENCE LIMIT RESULTS 

The 72-hour LR jackknife contingency results (Table 20) are similar to the LogR or 

SVM results.  The best HR results are noted when only considering 0-3 km bulk shear 

(0.735).  Rejecting only the LCL produced the highest POD of all three methods 

(0.844), while the best FAR results (0.284) for LR were obtained when only 

considering 0-6 km bulk shear.  The best 72-hour LR results for HSS were seen when 

0-1 km EHI was rejected (0.614).  In essence, numerous covariate combinations 

produced the best contingency statistics for LR.   

The boxplot results provided additional insight as to the best covariate combination 

or combinations for LR.  The HR results (Fig. 47) showed the highest median value 

with model 13, which was consistent with SVM and LogR.  This model had large IQR 

though, so it was not selected as the best covariate combination.  Many combinations 

with low IQR had high median HR and POD (Fig. 48) values, including 7, 18, 19, and 

20.  The FAR results (Fig. 50) revealed the lowest medians associated with small IQR 

from models 2, 7, 18, and 22.  Model 7 produced superior HSS results (Fig. 50) as well.  

As a result, the best covariate combination for LR at 72-hours lead time was model 7.  

The results at 72-hours degraded from those at 48-hours for LR, but the magnitude of 

degradation was the smallest for LR versus the other two methods (only 10-15%).  

Thus, as lead time increased, simpler statistical models were able to adjust to the more 

suspect WRF input. 
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Table 20.  Same as Table 18, but for LR. 

Model # Variable(s) HR POD FAR HSS BIAS
1 All 0.697 0.777 0.334 0.395 1.166
2 No LCL 0.690 0.844 0.358 0.382 1.313
3 No bulkshear (0-6 km) 0.700 0.776 0.330 0.400 1.158
4 No bulkshear (0-3 km) 0.704 0.778 0.325 0.410 1.154
5 No SREH (0-1 km) 0.669 0.739 0.355 0.340 1.146
6 No SREH (0-3 km) 0.723 0.790 0.307 0.447 1.140
7 No EHI (0-1 km) 0.741 0.833 0.300 0.482 1.189
8 No Shear 0.703 0.776 0.326 0.407 1.151
9 No SREH 0.685 0.743 0.338 0.370 1.122

10 Only LCL 0.618 0.584 0.378 0.236 0.939
11 Only bulkshear (0-3 km) 0.735 0.774 0.286 0.470 1.084
12 Only bulkshear (0-6 km) 0.733 0.762 0.284 0.466 1.064
13 Only SREH (0-1 km) 0.694 0.777 0.337 0.390 1.171
14 Only SREH (0-3 km) 0.694 0.814 0.346 0.390 1.245
15 Only EHI (0-1 km) 0.611 0.736 0.415 0.223 1.259
16 Only SREH variables 0.727 0.844 0.319 0.454 1.239
17 Only shear variables 0.712 0.729 0.299 0.424 1.041  

(a) 
 

Model # Variable(s) HR POD FAR HSS BIAS
18 No SREH (0-3 km) 0.716 0.801 0.319 0.433 1.177
19 No bulkshear (0-3 km) 0.719 0.786 0.311 0.438 1.141
20 No bulkshear (0-6 km) 0.715 0.778 0.313 0.431 1.132
21 No SREH (0-1 km) 0.685 0.743 0.338 0.370 1.122
22 No LCL 0.699 0.815 0.342 0.399 1.238  

(b) 
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Fig. 47.  Same as Fig. 39, but for LR. 

 

Fig. 48.  Same as Fig. 47, but for POD. 

 



 

98 

 

Fig. 49.  Same as Fig. 47, but for FAR. 

 

Fig. 50.  Same as Fig. 47, but for HSS. 
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4)  SYNTHESIS 

In order to determine which statistical technique performed best at 72-hours, the 

results from the best covariate combination for each method were compared.  One 

optimal set of covariates was obtained for each method, (models 18 for SVM, seven for 

LogR and LR), which was a good result.  The results of the statistical technique 

comparison (Table 21) show LR as statistically superior to SVM when regarding FAR, 

indicating that SVM is not the superior method at 72-hours lead time.  All other 

contingency statistics are tied with all three methods, so either LogR or LR is the best 

method to use for 72-hour classification.   

 

Table 21.  Same as Table 10, but for 72-hours lead time. 

 

 

 

 

5% Limit Median 95% Limit

SVM 0.720 0.738 0.755

LogR 0.714 0.734 0.751

LR 0.719 0.740 0.762

SVM 0.691 0.718 0.745

LogR 0.677 0.703 0.728

LR 0.673 0.700 0.726

SVM 0.218 0.258 0.299

LogR 0.174 0.199 0.224

LR 0.150 0.174 0.198

SVM 0.416 0.455 0.491

LogR 0.431 0.469 0.507

LR 0.444 0.484 0.525

FAR

HSS

HR

POD
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5)  CASE-BY-CASE PERFORMANCE ASSESSMENT 

At 72-hours, SVM only classified seven outbreak cases perfectly (two TOs and five 

NTOs severe), which is a significant degradation from 48-hours (17 correct) and 24-

hours (nine correct).  The LogR method discriminated 18 cases with 100% accuracy at 

72-hours, consistent with results at 24-hours but significantly worse than results at 48 

hours (31 classified with 100% accuracy).  The LR results classified 19 cases with 

100% accuracy, consistent with 24-hours but a degradation of the 48-hour results.  Of 

the cases classified with 100% accuracy by the three techniques, less than 40% were 

TOs.  This shows that the difficulty of discriminating TOs at 72-hours is larger than 

that at 48-hours (about a 50-50 spread) and 24-hours (more TOs were classified with 

100% accuracy).  The bottom 10 cases for each method were mostly TOs as well (over 

70%).  Clearly, as lead time increases, the ability to discriminate TOs deteriorates.  

SVM continues its tendency to classify the bottom 10 cases best (8% accuracy versus 

2% accuracy for both LogR and LR), although this difference is small.  Overall, 

multiple methods were needed to produce the best results at 72-hours. 

Table 23 shows the breakdown of “WRF error” versus statistical model error for the 

bottom 10 cases of each statistical technique.  For this error analysis, “WRF error” 

continues to be the primary source for classification failure of the statistical techniques,.  

However, more statistical model error appeared at 72-hours than at 48-hours, implying 

that statistical classification performance degrades from 48-hours to 72-hours, an 

implication confirmed by the contingency statistics.   
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Table 22.  Source of errors for the 14 cases that were in the bottom 10 for each 
statistical technique at 72-hours lead time.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Case WRF Error? Statistical Model Error? Which Technique?

700417 x SVM

730526 x LR, LogR

730527 x LR, LogR, SVM

800712 x LR, LogR

840607 x LR, LogR

850531 x LR, LogR, SVM

890521 x LR, LogR

900416 x LR, LogR

920615 x LR, LogR, SVM

930507 x LR, LogR, SVM

950527 x SVM

990408 x LR, SVM

990503 x SVM

010409 x SVM

030506 x LogR, SVM
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4. COMPOSITE RESULTS 
 

To complement the aforementioned objective discrimination results, synoptic 

storm types of TOs and NTOs were created using the methods described in Chapter 

2.  A cluster analysis of the principal components loadings revealed two groupings 

of loadings for each outbreak type, indicating two storm types.  Storm type fields 

were created over a domain encompassing the United States at the 17 NCEP/NCAR 

reanalysis vertical levels.   

In order to determine objectively those regions where the storm types exhibit 

different features, permutation testing was conducted on the raw case data for the 

different events within each cluster following the method described in Chapter 2.  

Fields of p-values resulting from the permutation testing were used to assess 

regions of significant difference in the different raw fields.  Examples of the 

composites are presented to complement the permutation testing discussion.  In 

order to assess the low-level and mid-level differences or similarities between the 

storm types, gridpoint permutation testing was conducted on the 850 mb and 500 

mb height fields. 

a)  TOs 

Two distinct storm types (Fig. 51) resulted from the cluster analysis of the TO 

loadings at 24-hours lead time.  The cluster analyses at other lead times resulted in 

very similar clusters to those obtained at 24-hours, so 24-hours is presented.  The 

corresponding dendrogram (Fig. 52) shows two main clusters separated by a 

Euclidian distance that is larger than 0.5, supporting the conclusion of two distinct 

TO map types.  
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Fig. 51.  Scatterplot of PC1 loadings versus PC2 loadings for the 50 TO cases at 24-
hours.  The triangles represent TO type 1, and the crosses represent type 2.  The 
Fig. illustrates the clustering of the two storm types and the separation between 
them at 24-hours. 
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Fig. 52.  Dendrogram of Euclidian distance of PC loadings for TOs at 24-hours lead 
time.  The Fig. suggests two main branches spanning from the merge at the 0.5 
Euclidian distance level.   
 

 The low-level features for both TO types showed large regions of difference 

significant to a p-value of 0.01 (Fig. 53c).  The two 850 mb composites (Figs. 53a 

and b) both show some similar synoptic characteristics (i.e. trough over the western 

portion of the domain, thermal gradient deforming around the 850 mb trough), 

although the magnitudes of these characteristics are slightly different.  The 850 mb 

permutation fields suggest that statistically significant differences in the two map 

types exist in numerous locations.  These locations appear similar in a visual 

inspection in the two map types (and these maps have a correlation of 0.864).  

Since the fields are similar spatially, magnitude differences must have resulted in 

the regions of low p-values.    
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      (a) 

 
 

(b) 

 
             (c) 
Fig. 53.  The 850 mb TO1 and TO2 map types (panels a and b) and the permutation 
testing results, showing differences between them.  In panels a and b, solid lines are 
height lines, dashed lines are isotherms, and dotted lines are isohumes.  In panel c, 
white areas indicate p > 0.1, light gray areas represent p < 0.1, dark gray areas 
represent p < 0.05, and black areas represent p < 0.01. 
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The mid-level analyses (Fig. 54) support the results from the low-level 

analyses, showing some regions of significant difference.  As was true at low-

levels, the patterns of the 500 mb heights are highly correlated (0.931).  Since the 

patterns are highly correlated and the permutation testing is showing numerous 

regions of low p-values, the differences between the two map types must be in 

magnitude.  Visual inspection (confirmed by computing the difference of the 

gridpoint magnitudes between the two map types, not shown) of the two map types 

shows that in the regions that are synoptically active (i.e. near the trough over the 

western third of the domain, near the ridge in the eastern portion of the domain), the 

differences suggest a more curved trough-ridge system (lower heights in the trough 

and higher heights in the ridge).  However, these two map types, while significantly 

different in terms of magnitude, are not easily distinguished by inspection since the 

patterns appear so similar.   
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(a) 

 
            (b) 

 
              (c) 
 
Fig. 54.  Same as Fig. 53, but for TO2. 
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In order to assess the similarities and differences between the two TO types 

further, the two TO cases nearest the cluster dividing line in Fig. 51 (denoted herein 

as “marginal cases”) and the two cases farthest from the line in the different groups 

(known herein as “extreme cases”) are considered.  Since composite analyses are 

essentially mean fields, small details unique to each outbreak are damped out by the 

mean.  Thus, the general patterns of these cases are compared to the composites.     

The two marginal events (27 March 1994 for TO1 and 17 April 1970 for TO2 – 

Fig. 55) have numerous similar synoptic characteristics (i.e. the cyclone over 

eastern Canada, a weak cyclone in the Great Basin), yet are poorly correlated 

(0.671).  This poor correlation implies that the spatial differences between these 

two cases are significant, which contrasts the composite results that reveal 

magnitude differences are the main discrepancy.  The TO1 outbreak is much more 

synoptically dynamic (tighter gradients, stronger low-level flow), which is reversed 

from what is observed in the composites (i.e. TO2 is slightly more synoptically 

dynamic in the composites).  A forecaster analyzing these two marginal cases might 

have classified them as either map type, supporting their close Euclidian distance in 

the cluster analysis.   
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(a) 
 

 
(b) 

 
Fig. 55.  850 mb plots from 15 March 1982 (panel a) and 17 April 1970 (panel b), 
providing the “marginal” TO1 (a) and TO2 (b) cases.  Solid lines are isohypses, 
dashed lines are isotherms, and dotted lines are isohumes.   
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Numerous visual differences are apparent in the extreme events (1 March 1997 

for TO1 and 31 May 1985 for TO2 – Fig 56); yet, they are more highly correlated 

than the marginal cases (0.787).  The higher correlation in these extreme cases 

indicates that their large Euclidian distance is likely a result of the significant 

magnitude differences between the two events.  The height gradient in the TO1 case 

over the East that is significantly tighter than the gradient observed in the TO2 

event is an example of these magnitude differences.  Hence, these two events 

exhibit the differences which are observed in the composites, an expected result 

owing to the large Euclidian distance between the events.  Overall, the spatial 

similarities of the two TO types do not allow for an easy discrimination between the 

two storm types, in spite of the magnitude differences in the height fields that are 

suggested by the permutation testing and confirmed by the two extreme events.   
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(a) 
 

 
(b) 

 
Fig. 56.  Same as Fig. 56, but for two extreme events from the cluster analysis.  The 
1 March 1997 TO (panel a) was used to illustrate an extreme TO1 outbreak, while 
the 31 May 1985 (panel b) outbreak was used to demonstrate an extreme TO2 
outbreak. 
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b)  NTOs 

Two NTO types were specified by the cluster analysis (Figs. 57 and 58) as well.  

Seasonal biases in the NTO case set were resolved by the cluster analysis, as all 

summer NTOs but two (06 June 1985 and 07 June 1985) grouped into the first 

NTO type (hereafter NTO1) and all non-summer NTOs but one (11 September 

2000) clustered into the second NTO type (hereafter NTO2).  The scatterplot of the 

24-hour PC loadings (Fig. 57) shows separation (albeit less pronounced than with 

the 24-hour TO cluster analysis) between the two groups, as was the case with TOs, 

and are consistent with the dendrogram (Fig. 58) results for NTOs.  The Euclidian 

distance between these two NTO groups (> 0.5) was larger than what was observed 

with TOs (~0.5).   

 
 

Fig. 57.  Same as Fig. 51, but for NTOs at 24-hours. 
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Fig. 58.  Same as Fig. 52, but for NTOs at 24-hours.   
 

The two NTO 850 mb map types (Fig. 59) exhibit some similar synoptic 

characteristics (thermal maximum over the western third of the domain as well as a 

weak trough, weak synoptic flow throughout the domain in both map types), but 

their correlation is considerably lower than was observed with TOs (0.538).  This 

result implies some spatial differences between the two NTO map types exists, 

which is a reasonable assessment from analyzing the composite fields (Figs. 59a 

and b).  The permutation testing results (Fig. 59c) confirm these implications, since 

p-values smaller than 0.01 are present over all but a small portion of the southern 

quarter of the domain.   
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     (a) 

 
(b) 

 
(c) 

 
Fig. 59.  Same as Fig. 53, but for NTO1. 
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Mid-level features (Fig. 60) appear similar as well, although the height gradient 

is slightly tighter over the center of the domain for NTO1.  The correlation between 

these map types is much higher than was observed at 850 mb (0.717) but is still 

considerably lower than those observed for TOs.  Thus, some noticeable spatial 

differences in the two NTO types should exist and are manifest in the tighter height 

gradient in NTO1.  The permutation testing field (Fig. 60c) appears nearly identical 

to that at 850 mb, which is expected since the height magnitudes are nearly constant 

across the southern quarter of both the 850 mb and 500 mb composite domains.  

These permutation test results and low correlations suggest that some large 

differences exist between these two storm types, which are apparent in the different 

height gradients and height magnitudes in NTO1 and NTO2.   
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    (a) 

 
(b) 

 
(c) 

 
Fig. 60.  Same as Fig. 59, but for NTO2. 
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As done with TO types, NTO cases nearest the separation line in Fig. 57 

(marginal cases) and those which are the most distant (extreme cases) are 

compared.  The two marginal cases selected (20 June 1997 for NTO1, 21 May 1989 

for NTO2 – Fig. 61) have numerous synoptic similarities (i.e. closed low over 

central Canada, second low in the eastern third of the domain) and are marginally 

correlated (0.759).  Since both magnitude and spatial differences are present in the 

two storm types, it is expected that these two marginal cases be similar in 

magnitude and orientation since their Euclidian distance is so small (0.162), and the 

correlation results and visual inspection of the fields confirms this expectation.   
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(a) 
 

 
(b) 

 
Fig. 61.  850 mb fields for the 20 June 1997 NTO (panel a) and the 21 May 1989 
outbreak (panel b) over the central Plains.  These cases are examples of marginal 
outbreaks. 
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The extreme events (6 August 1985 for NTO1 and 10 April 1994 for NTO2 - 

Fig. 62), which have a large Euclidian distance (0.839), are more strongly 

correlated than the marginal events (correlation of 0.798).  Since the orientations of 

these two fields are similar, as indicated by their relatively high correlation, 

magnitude differences (which are present on the fields, note the shortwave over the 

Great Lakes as an example) must have led to their large Euclidian distance.  Thus, 

as the Euclidian distance between NTO cases increases, magnitudes of the synoptic 

features in the storm types become more separated, whereas the orientations of the 

fields change only slightly.   
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(a) 
 

 
(b) 

 
 

Fig. 62.  850 mb plots of the 6 August 1985 NTO (panel a) and the 10 April 1994 
NTO (panel b) used to illustrate the extreme cases from the NTO cluster analysis. 
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c)  Outbreak Type Synthesis 

Since one of the main goals of this study is to distinguish between TOs and 

NTOs, an inter-comparison of these four map types is needed.  Thus, permutation 

testing on the four possible combinations of the composites (i.e. NTO1 and TO1, 

NTO1 and TO2, NTO2 and TO1, and NTO2 and TO2 – Fig. 63) was conducted to 

determine if these composites showed statistically significant differences.  It is 

apparent from this permutation testing that all four combinations have noticeable 

similarities.  Over 90% of the permutation fields are significant to a p-value less 

than 0.01, except for the extreme southern portion of each domain.  These non-

significant regions represent the tropics, which tend to remain near mean conditions 

throughout the year (so no composite differences would be apparent in these 

regions).   

The correlations between NTO1 and both TO1 and TO2 are nearly identical 

(0.743 and 0.754, respectively), which is an expected result since the two TO types 

are similarly oriented but have different magnitudes.  Interestingly, the NTO2 

composite has a strong negative correlation with both TO1 and TO2 (-0.827 and 

-0.835, respectively), which again shows the similar orientation of the two TO 

types.  This negative correlation is not surprising, since the key synoptic features in 

NTO2 are consistently west of those observed in the TO types, and instead some 

weak ridging exists in NTO2 where the significant shortwave trough resides in the 

TO1 and TO2 composites.  Overall, similar orientations of the four map types 

derived from the synoptic storm typing are noted, but large magnitude differences 
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in the different composites lead to statistically significant differences between the 

TO and NTO composites and allow for their discrimination.   

 
                     (a)                                                     (b) 

 

 
                     (c)                                                          (d) 

 
Fig. 63.  P-value plots for the four inter-map type comparisons described above.  
Panel (a) represents the comparison of TO1 and NTO1, panel (b) represents the 
comparison of TO2 and NTO1, panel (c) represents the comparison of TO1 and 
NTO2, and panel (d) represents the comparison of TO2 and NTO2. 
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5.  SUMMARY AND CONCLUSIONS 

a)  Summary 

 On a yearly basis, TOs and NTOs affect detrimentally numerous lives and cause 

extensive property damage each year.  Previously, studies have considered individual 

outbreak types, but no work has objectively investigated the differences between TOs 

and NTOs in an effort to determine the ability to discriminate between the two types.  

Thus, a need for advancing our knowledge of outbreak predictability exists, and this 

need motivates the current work.  One key hypothesis of the current study is that the 

synoptic signal would provide an unknown degree of discrimination ability between 

outbreak types.  To test this hypothesis, synoptic-scale data were used as input for two 

types of statistical analyses, a statistical objective classification, and synoptic storm 

typing.  Large discrimination ability was achieved by conducting these analyses on the 

synoptic scale input data, setting a baseline for future work on this topic.   

1)  OBJECTIVE METHODOLOGY AND RESULTS SUMMARY 

Statistical modeling of the two outbreak types was accomplished by simulating the 

top 100 TO and NTO cases (50 of each outbreak type) from D06 using the WRF model.  

Three lead times were considered in the objective discrimination analysis (24-, 48-, and 

72-hours before outbreak).  These lead times were chosen to determine the point prior 

to an outbreak that objective discrimination significantly worsens.   WRF was 

initialized with the NCEP/NCAR reanalysis data, which were available at a 2.5º by 2.5º 

latitude-longitude grid spacing and included 17 vertical levels.  This dataset was 

selected owing to its synoptic-scale spacing, since the synoptic-scale signal’s ability to 

distinguish outbreak type was one question being investigated.  The WRF simulations 
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used a nested grid approach, with 5 nests being tested (152, 54, 18, 6 and 2 km grid 

spacing).  Seventeen commonly used severe weather parameters or covariates, were 

computed from the domain 3 WRF output for use in the statistical models.  Domain 3 

was selected to provide a large number of gridpoints of each covariate for each case.  

Since the domain 3 output considered thousands of gridpoints, a subdomain of 21 X 21 

gridpoints centered on the given outbreak was obtained from domain 3.  The data on 

these subdomains was used in permutation testing, which allowed for the reduction of 

covariates to those which discriminated TOs and NTOs optimally.  The permutation 

test determines if the means of two data distributions are different; furthermore, it does 

not require that the initial distributions of the data be known.  P-values (the probability 

that the null hypothesis Ho, which says that the means of the two distributions are the 

same, should not be rejected) from the permutation testing were computed at each 

domain gridpoint of the covariate. Low p-values corresponded to larger differences 

between outbreak types of the particular covariate, which was desirable.  After this 

testing, a smaller subset of covariates (6 or 7) was retained for the statistical modeling. 

Since statistical models can be subject to errors due to multiplicity in the data, a 

method of reduction from the gridded covariate fields to individual variables was 

accomplished.  A PCA was applied to these data, and the subsequent rejection of 

higher-order eigenvalues thought to be associated with noise led to less than 7 PCs 

being retained for each PCA.  The associated PC scores were used as input into 

statistical models.  Three statistical models were trained and tested using these PC 

scores, including a linear regression model, a logistic regression model, and a support 

vector machine.  In order to obtain the best set of covariates from the base sets of 6 or 7 



 

125 

(depending on lead time), a backward elimination of covariates was conducted for each 

statistical model.  This backward elimination method improved results, and provided up 

to 26 covariate combinations for each lead time which were trained and tested with the 

statistical models.  The statistical models yielded classes, either a 0 for a NTO or a 1 for 

a TO.  A contingency table was created from the resulting classes, and contingency 

statistics were computed from the statistical technique forecasts, allowing the results to 

be objectively ranked in terms of their ability to discriminate outbreak type.  A 

jackknifing cross-validation procedure was applied in the training and testing of each 

statistical technique, providing a set of 99 statistical models for each method and 99 

sets of results.  The 99 result sets were bootstrapped to determine their distribution. 

Finally, the performance of the statistical methods on each individual case was 

assessed, providing sets of cases which were discriminated poorly.  Reasons for the 

poor classification of these cases were investigated.  Poorly classified cases were 

classified as subject to “WRF error” (the WRF or atmosphere produced conditions 

dissimilar from the eventual outbreak) or statistical model error (the environment was 

conducive for a type of outbreak, but the statistical models classified it incorrectly).   

At 24-hours lead time, the SVM results for POD, FAR, and HSS are statistically 

significantly superior to the other two methods at a 90% confidence.  Rejecting two 

instability covariates, (the product of CAPE and 0-1 km shear and surface based CIN) 

from the initial set of 7 covariates provided the best classification in all three methods.  

This result supports the conclusion that instability parameters classify outbreak type 

poorly (although the computation of the instability parameters may be suspect due to 

coarse vertical grid spacing from the WRF output in the boundary layer – Table 3).  
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POD values of 0.9 and FAR values of 0.15 to 0.2 were achieved with SVM, and 

median values were slightly lower than these for LogR and LR.  The boxplot results for 

this covariate combination support the contingency results, as a small IQR and high 

median from SVM for the four contingency statistics (hit rate, POD, FAR, and HSS) 

tested was observed.   

The classification evaluation indices at 48-hours did not deteriorate greatly  

(5-10% - Table 16 in Chapter 3), and the resulting distributions had the largest medians 

and smallest IQRs for LogR.  However, the confidence limits of SVM and LogR were 

within the 90% confidence limit, so neither method was proven superior.  POD values 

of 0.8 and FAR values of 0.2 to 0.25 were noted from all three statistical techniques, 

which were significant for a 48-hour lead time classification.   

LR results were better at 72-hours than with the other two techniques, with POD’s 

of 0.75 to 0.8 and FAR results of 0.25 to 0.3, which were still significant at 72-hours 

lead time.  Additionally, the FAR from SVM was statistically inferior to the other two 

methods, so SVM was rejected at 72-hours.  The successful outbreak classification 

observed at 72-hours suggested further lead times should be investigated in future work 

to determine at which temporal interval the classification ability significantly drops off.   

To demonstrate the need for additional time intervals in a future analysis, the POD 

and FAR performance with lead time for SVM is presented below (Fig. 64).  It is 

apparent that these contingency statistics do not worsen significantly between 24- and 

48-hours since the medians remain within the 90% confidence limit.  However, by 72-

hours, the FAR and POD are both statistically inferior to a 90% confidence with 

respect to the 24-hour and 48-hour values.  Hence, some evidence of a significant drop-
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off in performance is present by 72-hours, and investigating another 24 to 48 hours 

prior to the outbreak may provide a more significant drop-off of the contingency 

statistics.  Therefore, further investigation of additional lead times is needed to 

determine how far in advance the capability to successfully discriminate outbreak type 

exists.   

 
(a) 
 

 
(b) 

 
Fig. 64.  Median and confidence intervals of POD and FAR with lead time for SVMs.  
Panel (a) represents POD, and panel (b) represents FAR. 
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In addition to the contingency analysis, an assessment of the performance of the 

statistical techniques on each case was conducted.  Each case was tested 15 times in the 

jackknife methodology, and over 20 covariate combinations were considered.  Thus, a 

percentage that each technique classified each case correctly was formulated.  At 24 

hour leads, LogR and LR classified the most cases with 100% accuracy (17 and 18, 

respectively), while SVM classified 9 cases with 100% accuracy.  At 48-hours, the 

number of cases classified with 100% accuracy nearly doubled, but by 72-hours the 

results were similar to those at 24-hours.  The increase of 100% accurately classified 

cases at 48-hours is an unexpected result attributed to the covariate set chosen at 48-

hours, which contained no instability measure.   

At 24-hours, a larger percentage of the worst classified cases (the bottom 10 

performing cases for each statistical technique and each lead time) were classified 

correctly with SVM (24%) versus LogR (14%) and LR (9%).  This result supports 

SVM as the best technique at 24-hours, since perfectly classified cases are the “classic” 

outbreak scenarios that forecasters will likely be able to classify correctly.  At 48- and 

72- hours, no statistical technique correctly classified a significantly larger percentage 

of these marginal cases.    A subjective analysis of the source for the classification 

errors was conducted, and the marginal cases are classified as either “WRF” error or 

statistical model error (defined in Chapter 3).  Knowledge of the different error types 

allows for further fine tuning of the statistical models or the WRF to improve results.  

The “WRF” errors increased with increasing lead time, which was expected since WRF 

forecasts degrade with increasing lead time.  Statistical model error was lowest at 48-

hours, a result attributed to the covariate selection at this lead time.   
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2)  COMPOSITING METHODOLOGY AND RESULTS SUMMARY 

In addition to the objective statistical discrimination of outbreak type, a compositing 

methodology was used to reveal physical features of the outbreak types.  The composite 

fields utilized five raw NCEP/NCAR reanalysis meteorological variables (temperature, 

height, relative humidity, u and v wind).  The composites were created using a PCA.  

Since the NCEP/NCAR reanalysis data reside on a latitude-longitude grid, converging 

longitude lines with increased latitude artificially inflated the correlation values at 

northern latitudes.  A Fibonaaci grid, which provides equally spaced gridpoints in the 

latitudinal and longitudinal directions, was used to eliminate this bias.  An O-mode 

principal component analysis (one in which the correlation matrix is computed along 

the observation (case) axis) was conducted on the standardized (mean removed) input 

data matrix.   

 Once the PCA was complete, a cluster analysis of the resulting PC loadings was 

conducted for each individual outbreak to determine how the individual cases grouped 

together.  Two main groups resulted from the cluster analysis for both TOs and NTOs.  

The mean of the PC loadings from these groups was computed and squared, which 

provided a measure of the percentage of the distribution described by the PC, and these 

served as weights for the PC scores in the storm type creation.  The cluster analyses 

were visualized using scatterplots of the PC loadings and dendrograms (see Chapter 4).   

To assess the differences between the two map types for each outbreak type, 

gridpoint permutation testing using the same method as Chapter 2 was conducted on the 

two map types at different vertical levels.  The TO composites had several individual 

regions of statistical significance which corresponded with the individual areas of 
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enhanced synoptic activity (i.e. near troughs and ridges).  The correlations between the 

two TO map types were larger than 0.9, suggesting their orientations were virtually 

indistinguishable.  It was concluded that magnitude differences between the two TO 

map types in the regions of enhanced synoptic activity led to the low p-values in these 

regions, and these magnitude differences were evident in a visual inspection of the TO 

composites.  Overall, a slightly deeper composite cyclone and more highly curved 

troughs and ridges were noted in the TO2 type versus the TO1 type.   

The two NTO types were not as highly correlated at low-levels (near 0.5) as the two 

TO types, but at mid-levels the NTOs showed similar orientations (correlation over 

0.75).  The permutation testing showed the entire domain, except for the tropics in the 

extreme southern portion of the permutation field, significant to p < 0.01.  Since 

moderate correlations were present, these significant differences throughout the entire 

field were largely attributed to magnitude differences, as were observed in the TO 

composites.  This attribution was confirmed by analyzing marginal and extreme events, 

both of which were highly correlated, but the marginal cases had similar magnitudes 

and the extreme cases had vastly different magnitudes.  In essence, the increased 

Euclidian distance between cases resulted in larger magnitude differences without 

significantly changing the orientations of the height fields.   

In comparing TOs to NTOs, the p-value fields were significant to 0.01 everywhere 

but in the tropics for all possible TO and NTO map type combinations.  The 

correlations between an individual NTO type and the two TO types were nearly 

identical, further supporting the conclusion of similarly oriented TO fields.  One 

interesting finding revealed a highly negative correlation between NTO2 and the two 
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TO types, which was consistent with the placement of significant synoptic features in 

these composites (i.e. regions of low heights in TO1 or TO2 were regions of high 

heights in NTO2).  Overall though, the high correlations between all of these 

composites  suggest that large magnitude differences separate the individual map types, 

and that increased Euclidian distance between cases is a result of increased magnitude 

difference, not of significantly different orientations of the case height fields.  Both of 

these statistical analyses provided a substantial amount of classification capability 

between TOs and NTOs, accomplishing the primary goals of this study. 

b)  Conclusions 
  
 The goal of this work was to use strictly objective methods to discriminate TOs 

from NTOs.  One hypothesis tested herein was that the synoptic-scale signal provided 

information useful in distinguishing outbreak type.  Two statistical analyses were used 

to quantitatively assess these goals, including a statistical objective classification and 

synoptic storm typing.  This study successfully developed methods which were used to 

discriminate outbreak type objectively, allowing for additional outbreak scenarios to be 

considered in future work.   

 As is the case in most research endeavors, new research questions arise from the 

results which can be addressed in future studies.  The seasonal dependence of the 

results of the compositing suggest the statistical classification results may be artificially 

inflated (since the summertime NTO is distinctly different from the spring TO and the 

spring NTO); hence, it is important to remove this seasonal dependence by analyzing 

spring NTOs when comparing spring TOs.  Hence, additional spring cases should be 

added to the case set to address this problem.   
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Statistical technique errors observed from the statistical classification results can be 

improved by further training the statistical models on less ideal cases.  Since this work 

was conducted on the top 50 of each outbreak type, numerous cases which are not 

distinctly one type or another could fall into a third category of “marginal” outbreaks.  

Classification of these marginal outbreaks from TOs and NTOs could be attempted in 

future work, as well as attempting to classify null cases (those in which no outbreak 

occurs).  A larger case set will yield more robust composite fields and objective 

discrimination results as well, which is important further developing the ability to 

classify between TOs and NTOs.   

Forecast applications of this classification method should be investigated, as these 

methods can provide powerful tools for forecasters in providing outbreak type 

classification with a substantial lead time.  Some method of converting numerical 

model anomaly patterns into the composite fields, allowing them to be compared 

objectively for forecasters, should be considered.  The composite fields could be used 

in a data assimilation package to support the numerical model in simulation of 

outbreaks.  The statistical classification methods should be modified so that they can 

serve as an operational forecast tool by the Storm Prediction Center (SPC).  An 

algorithm which takes covariates output from a numerical simulation could use the 

statistical classification methods to warn SPC forecasters of a looming outbreak type.  

If SVMs are used, their training can be modified to output a probability of a given 

outbreak type, as opposed to one class or another.  This would be useful in supporting 

the issuing of convective outlooks by the SPC, since it would provide another idea as to 

the eventual outbreak type of the given day.  If knowledge of outbreak type exists with 
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some certainty up to 72-hours in advance, forecasters can warn the public to take steps 

to prepare for an impending outbreak.  Future studies in this area will be challenging, as 

the current study assumes that an outbreak will occur.  When adapting these ideas to a 

forecast application, it will not be possible to know in advance (besides an educated 

guess) whether an outbreak will even develop.  Additionally, the probability of a 

tornado outbreak on any given day is very small, so adapting this problem to include 

null cases will prove to be difficult.  Overall, the present study shows that a large ability 

to discriminate outbreak type exists, and these results can be applied to future studies to 

improve the overall understanding of these dangerous events, as well as the ability to 

forecast the outbreaks.   
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APPENDIX A:  CASE LIST 
 

Table A1.  List of 50 severe weather outbreaks used in the study.  The first column 
represents the date in yymmdd format, while the second and third columns are the 
subjectively determined outbreak centers for each outbreak. 
 

Date Lat Lon
020615 35.5 -100
931012 33 -99
000721 36.5 -99
870617 38.5 -98.5
810508 33.5 -98
850512 35.5 -98
900416 36 -97
800806 46.5 -96.5
940410 36.5 -96
990522 36.5 -96
890521 37 -96
920704 39 -96
850806 40 -96
020816 43 -96
830829 45.5 -96
950725 37 -95
010414 37.5 -95
860801 36 -94.5
010614 35.5 -93.5
970620 41.5 -93.5
960518 45 -93
820608 39.5 -92.5
000911 41 -91.5
830719 44 -90.5
850704 40.5 -89.5
960505 37.5 -88
820803 44 -88
870705 37.5 -87.5
800702 38 -87.5
810428 40.5 -86
890805 39 -85
860506 41 -85
030707 41.5 -85
980721 42 -85
030502 33.5 -84.5
800708 39.5 -84.5
850607 35 -83.5
800705 40.5 -83.5
020502 36 -83
800712 40.5 -83
850709 41 -83
830704 41 -82.5
850710 36 -81.5
850605 36 -81
010409 40.5 -81
850604 35.5 -80.5
950715 41 -80
800716 40.5 -78.5
891120 41 -75.5
850624 41 -74.5  
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Table A2.  Same as Table A1, but for the tornado outbreaks. 
 

Day Lat Lon
700417 35 -102
930507 39.5 -98.5
790410 34 -98
920615 39.5 -98
990503 36 -97.5
910426 37.5 -97.5
940426 35 -97
900313 38.5 -97
730925 40 -96.5
930607 44 -96.5
740608 36 -96
840426 39.5 -95.5
920616 44 -95.5
990504 35 -95
820315 37.5 -95
770504 42 -95
000423 32.5 -94
820402 34 -94
881115 36.5 -94
950527 41.5 -94
840607 43 -94
800407 35 -92.5
990408 40 -92.5
970301 35 -92
990121 35 -92
760329 35.5 -92
711214 36 -92
011123 33.5 -91.5
880508 41.5 -91.5
921121 31.5 -90.5
710221 33.5 -90.5
010224 34 -90.5
030510 40.5 -90.5
730526 36 -90
030504 36 -90
030506 37 -89
960419 38.5 -89
760320 39.5 -87.5
011124 34.5 -87
950518 35.5 -86
980416 36 -86
900602 39 -86
940327 34.5 -85
021110 36 -85
740403 37.5 -85
730527 35 -83
921122 34 -82
850531 41.5 -79.5
840328 34.5 -79
980531 42 -75  
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APPENDIX B:  DESCRIPTION OF THE COVARIATES 

B.1  Surface Based Convective Available Potential Energy (CAPE) 
 

 A measure of thermodynamic instability is one essential ingredient to severe 

thunderstorm development (Stensrud et al. 1997, Johns and Doswell 1992, others).  

Many severe weather studies have used CAPE as a measure of instability, including  

Brooks et al. (1994) which analyzed CAPE in mesoscale environments associated 

with severe weather and tornadoes, and Koch et al. which (1998) used CAPE to 

describe convective instability associated with a Palm Sunday TO in the Southeast.  

CAPE measures positive buoyancy of air parcels, an indicator of instability, and is 

defined as: 

∫
−

=
EL

LFC
dz

z

zz
gCAPE

)(

)()(

θ
θθ

       (B.1) 

where )(zθ represents the potential temperature as a parcel ascends a moist adiabat,  
 

)(zθ represents the environmental potential temperature as a function of height, 

LFC represents the level of free convection (section B.4), and EL represents the  

equilibrium level, which is the level at which ascending parcels become negatively 

buoyant (parcel potential temperature is less than atmospheric potential 

temperature).  The computation of CAPE from the WRF simulation requires 

vertically stacked gridpoints, and a vertical grid spacing of 31 levels (default for 

WRF) does not provide a dense vertical grid for its computation.  Thus, 

computations of CAPE may be subject to errors from large vertical grid spacing.  

Units of CAPE are J kg-1. 
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B.2  Surface Based Convective Inhibition (CIN) 

 In most severe weather environments, some measure of low-level stability is 

available to inhibit the formation of convection.  This is known in the literature as 

CIN (Markowski 2002), and is defined in the AMS glossary (Glickman 2000) as: 

∫ −−=
LFC

p vevpd pdTTRCIN
0

ln)(        (B.2) 

where Rd is the gas constant for dry air, Tvp is the virtual temperature of the 

ascending parcel, Tve is the virtual temperature of the environment, LFC represents 

the level of free convection (section B.4), and p0 represents the reference pressure 

where parcel ascension begins.  CIN is the negatively buoyant area below the LFC 

and inhibits convective development.  Since CIN is generally confined to the lowest 

1-1.5 km of the atmosphere, only a few vertical gridpoints (roughly 10 – Table 3) 

are used in its computation.   This issue leads to artificial errors in the WRF 

calculation of CIN.  CIN has units of J kg -1. 

B.3 Lifting Condensation Level (LCL) 

 The lifting condensation level (LCL) is the height at which an air parcel will 

become saturated if it is lifted dry adiabatically (Glickman 2000).  Many studies 

have related the LCL to the likelihood for tornado development, including 

Rasmussen and Blanchard (1998), who found that significant tornado development 

was related to lower LCL values.  Thompson et al. (2003) showed statistically 

significant differences between the mean-layer LCL values from model forecast 

soundings for different severe weather types.  Davies (2006) analyzed a few weak 

tornado cases in which high LCL values were observed, which contrasts current 

research on the LCL.  The LCL can be determined, using a thermodynamic 
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diagram, as the level at which a dry adiabat originating from the surface 

temperature intersects a mixing ratio line originating from the surface dewpoint.  

The units on the LCL are hPa.   

B.4  Level of Free Convection (LFC) 

 According to the AMS glossary (Glickman 2000), the LFC is the level at which 

a parcel of air, lifted dry adiabatically until it becomes saturated, and moist-

adiabatically afterward, will become warmer than the environment.  This level is 

determined on a thermodynamic diagram by following a moist adiabat from the 

LCL (B.3) until it intersects the temperature profile.  Once an air parcel reaches the 

LFC, it becomes positively buoyant.  Davies (2004) found that the threat for 

significant tornadoes decreased significantly with increased LFC height.  He 

determined that the LFC is more useful for tornado prediction in high CIN 

environments.  Inclusion of this covariate will account for these scenarios.  The 

units on the LFC are hPa. 

B.5  Bulk Shear 

  Another key ingredient required for tornadic supercell development is rotation.  

One common method which generates rotating flow in the atmosphere is called 

bulk shear, which the AMS glossary (Glickman 2000) defines as the “local 

variation of the wind vector or any of its components in a given direction”.  For the 

current study, bulk shear was computed on the u-wind component over three 

commonly analyzed vertical layers, 0-6 km, 0-3 km, and 0-1 km.  Tornadoes have 

been found to be associated with higher values of vertical bulk shear (Dowell and 

Bluestein 1997, Klemp and Rotunno 1983, others).  Colquhoun and Riley (1996) 
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used proximity soundings of tornadic thunderstorms to create mean soundings and 

hodographs that allowed for analysis of wind shear and thermodynamic parameters 

as a function of tornado intensity.  They found that increased tornado intensity is 

correlated strongly with higher values of bulk shear.  Weisman and Klemp (1984) 

performed comparisons using numerical simulations of supercell behavior as a 

function of directionally varying wind shear.  They noted that weak shear 

environments were conducive to short-lived air mass thunderstorms, while high 

shear environments were better suited for supercell development.  The units of bulk 

shear are m s-1. 

B.6  Storm Relative Environmental Helicity 

A measure of the streamwise vorticity of the inflow environment of a 

convective thunderstorm is known as storm relative environmental helicity (SREH).  

Many studies have observed the relation between high SREH values and the threat 

for tornadoes, including Kerr and Darkow (1996) which found that deep layer 

strong SREH was essential in their tornadic supercell model.  Colquhoun and Riley 

(1996) found a correlation of 0.56 between F-scale and SREH magnitude as well.  

Davies-Jones (1984) provided the theory of tornado development as it relates to 

streamwise vorticity, stating that a high correlation between vertical velocity and 

vertical vorticity was present in simulated tornadic supercells.  SREH is expressed 

mathematically in Colquhoun and Riley (1996) as:  

∫ −•= dzVVSREH s)(ω         (B.3) 
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where dzVdk /ˆ ϖ
×=ω , V represents the wind velocity vector, and Vs is the storm 

motion velocity vector.  For the present study, SREH was computed over the 0-1 

km layer and the 0-3 km layer.  The units for SREH are m2 s-2.   

B.7  Bulk Richardson Number Shear (BRN Shear) 

 The Bulk Richardson number (BRN) is used to determine the type of 

thunderstorms (multicells, supercells, etc.) expected to develop over a region.  The 

BRN is a ratio of CAPE and a measure of the vertical wind shear.  It is defined in 

Stensrud et al. (1997) as: 

)(5.0 22 VU

CAPE
BRN

+
=         (B.4) 

where CAPE has been defined previously and U and V represent the density 

weighted mean wind components over the lowest 6000 m and the lowest 500 m in 

the atmosphere.  For BRN shear, only the denominator of the BRN was considered.  

Droegemeier et al. (1993) found a high correlation (0.97) between vertical vorticity 

(a good indicator of storm rotation and possible tornadoes) and BRN shear.  

Thompson (1998) noted that BRN shear values typically ranged between 25 m2 s-2 

and 100 m2 s-2 for tornadic thunderstorms, and only 6% of the tornado events he 

considered had magnitudes higher than 100 m2 s-2. 

B.8  Storm Relative Flow 

In order to include information about storm motion, the storm relative flow at 

low levels (roughly 2 km) was considered as a covariate.  This parameter was the 

mean supercell motion from the model output, and was defined for the WRF as 

75% the magnitude of and 30° to the right of the mean wind vector between 3 km 

and 10 km above ground.  Many studies have analyzed storm motion within 
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tornadic thunderstorms (Lemon and Doswell 1979, Kerr and Darkow 1996, others), 

but there is a lack of work in using storm relative flow to distinguish between 

different types of severe weather.  The units of storm relative flow are m s-1. 

B.9  Energy Helicity Index (EHI) 

In addition to considering covariates which contained information on instability 

or the shear and vorticity profiles of the severe weather environment, covariates 

which combined these two properties into a single index were considered.  One 

such parameter is the energy helicity index (EHI), which is defined by Davies 

(1993) as: 

)
160000

(
SREH

CAPEEHI =         (B.5) 

where CAPE and SREH have been defined previously.  For this work, EHI was 

computed using SREH at 0-1 km and 0-3 km.  Davies (1993) found that for EHI 

values greater than 1, tornadoes often occurred, and when the value of EHI 

exceeded 2.5, strong or violent tornadoes were possible.  Many more recent severe 

weather studies examined EHI while observing severe weather environments, 

including McNulty (1995) who analyzed the use of EHI for tornado forecasting in 

the central United States, and Mead (1997) who found that for the southern United 

States, a tornadic supercell environment was characterized by a mean EHI of 3.6, 

while values less than 2.0 characterized a non-tornadic environment.   

B.10  Vorticity Generation Potential (VGP) 

Another covariate which considers shear and thermodynamic instability 

properties of the environment through a single index is known as the vorticity 

generation potential (VGP).  The VGP is defined by the WRF as the total shear 
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from 0 to 3 km above ground level multiplied by the square root of the CAPE of the 

parcel with maximum equivalent potential temperature below 3 km.  According to 

Rasmussen and Blanchard (1998), VGP is given as: 

w
t tilt

∇•=







∂
∂

η
ζ

         (B.6) 

where ζ represents the vertical vorticity, η represents the horizontal vorticity vector, 

and w represents the vertical velocity.  This parameter is intended to give a measure 

of the conversion of horizontal vorticity to vertical vorticity through tilting, a 

process thought to be crucial for tornado development.  Rasmussen and Blanchard 

(1998) find significant differences in values in VGP between three different 

thunderstorm categories (tornadic supercells, non-tornadic supercells, and ordinary 

thunderstorms).  Other studies have used this variable as a measure of the likelihood 

of tornado formation (Blanchard 1998, others).  The units of VGP are s-2.   

B.11  Product of CAPE and Bulk Shear 

The final covariate considered in this study is one not seen in the literature; the 

product of CAPE and bulk shear. This parameter is another index that considers 

values of CAPE and shear simultaneously.  This product is considered at 0-1 km, 0-

3 km, and 0-6 km.   
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APPENDIX C:  JACKKNIFE SVM S-PLUS CODE 
 

 Below is a sample of the code used to run the SVM jackknife methodology.   
 
svm.jackknife<-function(dataset,trainratio) { 
 
#  if (length(case1)==ncases) 
#  cbind(y,case1)->y 
# if (length(case2)==ncases) 
#  cbind(y,case2)->y 
# if (length(case3)==ncases) 
#  cbind(y,case3)->y 
# 
#This function will allow for a bootstrap using SVM.  It will bootstrap the 

different 
#cases selected by the sample command with replacement, and do svm's on these.  

It will 
#then train the different models and determine output statistics from the 

results. 
#The kernel must be changed manually if necessary using the fix svm.bootstrap 

command. 
#I may implement further kernel modification later on... 
# 
#This function is also only valid for classification, as of now regular.  It  
#can be modified relatively easily for regression at a later time by using fix 

svm.bootstrap 
# 
#Determine the dimensions of the input dataset for easier manipulation 
 
 
#These are required in order to capture which cases are failing 
#the most 
 
matrix(scan("case1.txt"),ncol=1,byrow=T)->case1 
matrix(scan("case2.txt"),ncol=1,byrow=T)->case2 
matrix(scan("case3.txt"),ncol=1,byrow=T)->case3 
 
dim(dataset)[1]->ncases 
dim(dataset)[2]->ncolumns 
numeric(ncases*(ncolumns-1))->normdata 
matrix(normdata,nrow=ncases)->normdata 
Normalize(dataset[,1:ncolumns],0,1)->normdata 
cbind(normdata,dataset[,ncolumns])->normdata 
  
   if (length(case1)==ncases) 
  cbind(case1,normdata)->normdata 
 if (length(case2)==ncases) 
  cbind(case2,normdata)->normdata 
 if (length(case3)==ncases) 
  cbind(case3,normdata)->normdata 
 
#Determine the sizes of the training and testing datasets 
trainratio*ncases->ntrainrows 
as.integer(ntrainrows)->ntrainrows 
ntestrows<-ncases-ntrainrows 
# 
#Declare the data to be manipulated 
c(1:ncases)->cases 
numeric(ntrainrows)->traincases 
numeric(ntestrows)->testcases 
numeric(3)->predictions 
numeric(ntrainrows*(ncolumns+1))->traindata 
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numeric(ntestrows*(ncolumns+1))->testdata 
predictions<-matrix(predictions,ncol=3,nrow=1) 
traindata<-matrix(traindata,ncol=ncolumns+1,nrow=ntrainrows) 
testdata<-matrix(testdata,ncol=ncolumns+1,nrow=ntestrows) 
 
 
#Begin the jackknifing 
for (i in 1:ncases) { 
 
   c(i:ncases,1:ncases)->casedata 
   casedata[1:ncases]->casedata 
   traincases<-casedata[1:ntrainrows] 
   testcases<-casedata[ntrainrows+1:ntestrows] 
 
 #Determine the training dataset using the sampled values from above  
 for (j in 1:ntrainrows) { 
    traindata[j,]<-normdata[traincases[j],] 
 } 
 
 #Determine the testing dataset using the sampled values from above 
 for (j in 1:ntestrows) { 
  testdata[j,]<-normdata[testcases[j],] 
 } 
 
 svm(traindata[,2:ncolumns],y=traindata[,ncolumns+1],type="C-

classification",cost=25000)->svm.model 
 
 predict(svm.model,testdata[,2:ncolumns])->y.hat 
#   ifelse(y.hat<0.65,0,1)->y.hat   #For regression combined with 

classification, uncomment this line 
 
   testdata[,ncolumns+1]->y 
   cbind(y.hat,y,testdata[,1])->y 
   rbind(y,predictions)->predictions 
   
    
 
}  # End of the big for loop for the bootstrap 
dim(predictions)[1]->removed 
predictions[-removed,]->predictions 
 
#table(predictions[,1],predictions[,2])->contingency 
#table.stats(contingency)->results 
 
return(predictions) 
 
}  #End of the function 
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APPENDIX D:  SAMPLE STORM TYPE S-PLUS CODE 
 

 Below is a sample of the code used to create the synoptic storm types for each 
outbreak type.   
 
matrix(scan("tdata_f_06.txt"),ncol=50,byrow=T)->tdata 
 
tdata[1:10591,]->tdata.1 
tdata[10592:21182,]->tdata.2 
tdata[21183:31773,]->tdata.3 
tdata[31774:42364,]->tdata.4 
tdata[42365:52955,]->tdata.5 
 
scale(tdata.1[1:623,])->tdata.1.10 
scale(tdata.1[624:1246,])->tdata.1.20 
scale(tdata.1[1247:1869,])->tdata.1.30 
scale(tdata.1[1870:2492,])->tdata.1.50 
scale(tdata.1[2493:3115,])->tdata.1.70 
scale(tdata.1[3116:3738,])->tdata.1.100 
scale(tdata.1[3739:4361,])->tdata.1.150 
scale(tdata.1[4362:4984,])->tdata.1.200 
scale(tdata.1[4985:5607,])->tdata.1.250 
scale(tdata.1[5608:6230,])->tdata.1.300 
scale(tdata.1[6231:6853,])->tdata.1.400 
scale(tdata.1[6854:7476,])->tdata.1.500 
scale(tdata.1[7477:8099,])->tdata.1.600 
scale(tdata.1[8100:8722,])->tdata.1.700 
scale(tdata.1[8723:9345,])->tdata.1.850 
scale(tdata.1[9346:9968,])->tdata.1.925 
scale(tdata.1[9969:10591,])->tdata.1.1000 
 
rbind(tdata.1.10,tdata.1.20,tdata.1.30,tdata.1.50,tdata.1.70,tdata.1.100,tdata

.1.150,tdata.1.200,tdata.1.250,tdata.1.300,tdata.1.400,tdata.1.500,tdata.1

.600,tdata.1.700,tdata.1.850,tdata.1.925,tdata.1.1000)->tdata.1 
 
scale(tdata.2[1:623,])->tdata.2.10 
scale(tdata.2[624:1246,])->tdata.2.20 
scale(tdata.2[1247:1869,])->tdata.2.30 
scale(tdata.2[1870:2492,])->tdata.2.50 
scale(tdata.2[2493:3115,])->tdata.2.70 
scale(tdata.2[3116:3738,])->tdata.2.100 
scale(tdata.2[3739:4361,])->tdata.2.150 
scale(tdata.2[4362:4984,])->tdata.2.200 
scale(tdata.2[4985:5607,])->tdata.2.250 
scale(tdata.2[5608:6230,])->tdata.2.300 
scale(tdata.2[6231:6853,])->tdata.2.400 
scale(tdata.2[6854:7476,])->tdata.2.500 
scale(tdata.2[7477:8099,])->tdata.2.600 
scale(tdata.2[8100:8722,])->tdata.2.700 
scale(tdata.2[8723:9345,])->tdata.2.850 
scale(tdata.2[9346:9968,])->tdata.2.925 
scale(tdata.2[9969:10591,])->tdata.2.1000 
 
rbind(tdata.2.10,tdata.2.20,tdata.2.30,tdata.2.50,tdata.2.70,tdata.2.100,tdata

.2.150,tdata.2.200,tdata.2.250,tdata.2.300,tdata.2.400,tdata.2.500,tdata.2

.600,tdata.2.700,tdata.2.850,tdata.2.925,tdata.2.1000)->tdata.2 
 
scale(tdata.3[1:623,])->tdata.3.10 
scale(tdata.3[624:1246,])->tdata.3.20 
scale(tdata.3[1247:1869,])->tdata.3.30 
scale(tdata.3[1870:2492,])->tdata.3.50 
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scale(tdata.3[2493:3115,])->tdata.3.70 
scale(tdata.3[3116:3738,])->tdata.3.100 
scale(tdata.3[3739:4361,])->tdata.3.150 
scale(tdata.3[4362:4984,])->tdata.3.200 
scale(tdata.3[4985:5607,])->tdata.3.250 
scale(tdata.3[5608:6230,])->tdata.3.300 
scale(tdata.3[6231:6853,])->tdata.3.400 
scale(tdata.3[6854:7476,])->tdata.3.500 
scale(tdata.3[7477:8099,])->tdata.3.600 
scale(tdata.3[8100:8722,])->tdata.3.700 
scale(tdata.3[8723:9345,])->tdata.3.850 
scale(tdata.3[9346:9968,])->tdata.3.925 
scale(tdata.3[9969:10591,])->tdata.3.1000 
 
rbind(tdata.3.10,tdata.3.20,tdata.3.30,tdata.3.50,tdata.3.70,tdata.3.100,tdata

.3.150,tdata.3.200,tdata.3.250,tdata.3.300,tdata.3.400,tdata.3.500,tdata.3

.600,tdata.3.700,tdata.3.850,tdata.3.925,tdata.3.1000)->tdata.3 
 
scale(tdata.4[1:623,])->tdata.4.10 
scale(tdata.4[624:1246,])->tdata.4.20 
scale(tdata.4[1247:1869,])->tdata.4.30 
scale(tdata.4[1870:2492,])->tdata.4.50 
scale(tdata.4[2493:3115,])->tdata.4.70 
scale(tdata.4[3116:3738,])->tdata.4.100 
scale(tdata.4[3739:4361,])->tdata.4.150 
scale(tdata.4[4362:4984,])->tdata.4.200 
scale(tdata.4[4985:5607,])->tdata.4.250 
scale(tdata.4[5608:6230,])->tdata.4.300 
scale(tdata.4[6231:6853,])->tdata.4.400 
scale(tdata.4[6854:7476,])->tdata.4.500 
scale(tdata.4[7477:8099,])->tdata.4.600 
scale(tdata.4[8100:8722,])->tdata.4.700 
scale(tdata.4[8723:9345,])->tdata.4.850 
scale(tdata.4[9346:9968,])->tdata.4.925 
scale(tdata.4[9969:10591,])->tdata.4.1000 
 
rbind(tdata.4.10,tdata.4.20,tdata.4.30,tdata.4.50,tdata.4.70,tdata.4.100,tdata

.4.150,tdata.4.200,tdata.4.250,tdata.4.300,tdata.4.400,tdata.4.500,tdata.4

.600,tdata.4.700,tdata.4.850,tdata.4.925,tdata.4.1000)->tdata.4 
 
scale(tdata.5[1:623,])->tdata.5.10 
scale(tdata.5[624:1246,])->tdata.5.20 
scale(tdata.5[1247:1869,])->tdata.5.30 
scale(tdata.5[1870:2492,])->tdata.5.50 
scale(tdata.5[2493:3115,])->tdata.5.70 
scale(tdata.5[3116:3738,])->tdata.5.100 
scale(tdata.5[3739:4361,])->tdata.5.150 
scale(tdata.5[4362:4984,])->tdata.5.200 
scale(tdata.5[4985:5607,])->tdata.5.250 
scale(tdata.5[5608:6230,])->tdata.5.300 
scale(tdata.5[6231:6853,])->tdata.5.400 
scale(tdata.5[6854:7476,])->tdata.5.500 
scale(tdata.5[7477:8099,])->tdata.5.600 
scale(tdata.5[8100:8722,])->tdata.5.700 
scale(tdata.5[8723:9345,])->tdata.5.850 
scale(tdata.5[9346:9968,])->tdata.5.925 
scale(tdata.5[9969:10591,])->tdata.5.1000 
 
rbind(tdata.5.10,tdata.5.20,tdata.5.30,tdata.5.50,tdata.5.70,tdata.5.100,tdata

.5.150,tdata.5.200,tdata.5.250,tdata.5.300,tdata.5.400,tdata.5.500,tdata.5

.600,tdata.5.700,tdata.5.850,tdata.5.925,tdata.5.1000)->tdata.5 
rbind(tdata.1,tdata.2,tdata.3,tdata.4,tdata.5)->scaled.tdata 
ifelse(is.na(scaled.tdata),0,scaled.tdata)->scaled.tdata 
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tmode.eigen<-eigen(cor(scaled.tdata)) 
plot(tmode.eigen$values[1:10]) 
 
tmode.load<-tmode.eigen$vectors[,1:2]%*%sqrt(diag(tmode.eigen$values[1:2])) 
 
rotate(tmode.load)->tmode.rot 
pc.scores(t(scaled.tdata),tmode.rot$rmat)->tmode.scores 
tmode.scores->tmode.scores.group 
 
matrix(scan("tdata_f06_group1.txt"),ncol=1,byrow=T)->group 
length(group)->len.group 
 
numeric(len.group * dim(tmode.rot$rmat)[2])->group.mat 
matrix(group.mat,ncol=dim(tmode.rot$rmat)[2])->group.mat 
 
for (i in 1:len.group) { 
 group.mat[i,]<-tmode.rot$rmat[group[i],] 
} 
 
apply(group.mat,2,mean)->group.means 
group.means<-group.means^2 
 
for (i in 1:dim(tmode.rot$rmat)[2]) { 
 tmode.scores[,i]*group.means[i]->tmode.scores.group[,i] 
} 
  
apply(tmode.scores.group,1,sum)->tmode.scores.group 
 
 
stdev.tdata<-apply(tdata,1,stdev) 
mean.tdata<-apply(tdata,1,mean) 
 
tmode.scores.group * stdev.tdata + mean.tdata ->tmode.output.group 
 
 
tmode.output.group ->finaldata 
 
rm(group) 
finaldata.pc1<-finaldata 
 
finaldata.temp.pc1<-finaldata[1:10591] 
finaldata.hgt.pc1<-finaldata[10592:21182] 
finaldata.rh.pc1<-finaldata[21183:31773] 
finaldata.ugrd.pc1<-finaldata[31774:42364] 
finaldata.vgrd.pc1<-finaldata[42365:52955] 

 


