THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DISCRIMINATION OF TORNADIC AND NON-TORNADIC SEVERE

WEATHER OUTBREAKS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfilment of the requirements for the
Degree of

DOCTOR OF PHILOSOPHY

BY

ANDREW EDWARD MERCER
Norman, Oklahoma
2008



DISCRIMINATION OF TORNADIC AND NON-TORNADIC SEVERE
WEATHER OUTBREAKS

A DISSERTATION APPROVED FOR THE
SCHOOL OF METEOROLOGY

By

Michadl B. Richman, Chair

Charles A. Doswell 111

Kelvin K. Droegemeier

LanceM. Ledlie

TheodoreB. Trafalis



© Copyright by ANDREW EDWARD MERCER 2008
All Rights Reserved.



ACKNOWLEDGEMENTS

| wish to thank my advisor, Dr. Michael Richman, for constantly supporting me
through this process and for allowing me to work with him on this project. | would
also like to thank my colleague, Chad Shafer, for his time spent on providing the
WRF simulations which were used in the objective discrimination in this study, as
well as for his insight into many other aspects of the project. | wish to thank Dr.
Charles Doswell Il for his help in the writing of this document, as wellss hi
assistance in understanding the physical processes that are underlyisglitee re
below. | wish to thank Dr. Lance Leslie for his constant support and positive
reinforcement through this process, as well as his numerical modeling imé@tite
project. | would like to acknowledge my other two committee members, Dr.
Theodore Trafalis and Dr. Kelvin Droegemeier, for their time spent reading my
documents and their assistance in my completing my degree. Thank you for CIMMS
for assistance in my financial issues. Thank you to OSCER for providing the
supercomputing facilities for which the WRF simulations were conducted.yihal
wish to thank my wife Jaimie for her constant support as | went back to school to get
my doctorate, and my extended family for their constant support and encouragement
through this process. Jaimie, you are a blessing to my life and | could not have
accomplished what | have without your support. | also want to acknowledge my
daughter Albany for providing distractions when | needed a break from this work and

for being such a wonderful girl. 1 am truly blessed to have you in my life.



TABLE OF CONTENTS

ABSTRACT

1 INTRODUCTION
a. Motivation
b. Literature Review
1) Severe Weather Outbreak Review
2) Statistical Methods Review
c. Objectives
2 METHODOLOGY
a. Data
b. Objective Statistical Classification
1) WRF Simulations
2) Covariates
3) Permutation Testing
4) Statistical Classification Models
i) Linear Regression (LR)
i) Logistic Regression (LogR)
iii) Support Vector Machines (SVM)
5) Contingency Statistics
6) Objective Classification Methodology
c. Storm Typing Methodology
1) Correlation Matrix Calculation
2) Eigenanalysis
3) Creation of Storm Types
3 OBJECTIVE DISCRIMINATION RESULTS
a. 24 Hour Results
1) SVM Contingency and Confidence Limit Results
2) LogR Contingency and Confidence Limit Results
3) LR Contingency and Confidence Limit Results
4) Synthesis
5) Case-by-Case Performance Assessment
b. 48 Hour Results
1) SVM Contingency and Confidence Limit Results
2) LogR Contingency and Confidence Limit Results
3) LR Contingency and Confidence Limit Results
4) Synthesis
5) Case-by-Case Performance Assessment
C. 72 Hour Results
1) SVM Contingency and Confidence Limit Results
2) LogR Contingency and Confidence Limit Results
3) LR Contingency and Confidence Limit Results

Page

vii

N B

~N o

11
11
14

16
27
27
28
29
32
35
38
40
45
48

52
53
57
61
65
66
72
72
76
80
84
84
87
87
91
95



4) Synthesis
5) Case-by-Case Performance Assessment
4 COMPOSITE RESULTS
a. TOs
b. NTOs
c. Outbreak Type Synthesis
5 SUMMARY AND CONCLUSIONS
a. Summary
1) Objective Methodology and Results Summary
2) Compositing Methodology and Results Summary
b. Conclusions

REFERENCES

APPENDIX A: CASE LIST

APPENDIX B: COVARIATE DESCRIPTION
APPENDIX C: JACKKNIFE SVM SPLUS CODE
APPENDIX D: SAMPLE STORM TYPE SPLUS CODE

Vi

99
100

102
112
121

123
123
129

131

134
139
141
148
150



ABSTRACT

Outbreaks of severe weather affect the majority of the conterminous United
States. An outbreak is characterized by multiple severe weathereswms within a
single synoptic system. Outbreaks can be categorized by whether or nobthasepr
tornadoes. It is hypothesized that the antecedent synoptic signal containsntmporta
information about outbreak type. Accordingly, the scope of this research is to
determine the extent that the synoptic signal can be utilized to classifyakutiype
at various lead times.

Outbreak types are classified using the NCEP/NCAR reanalysisndatd, are
arranged on a global 2.5° latitude-longitude grid, include 17 vertical pressus level
and span from 1948 to the present (2008). Fifty major tornado outbreak (TO) cases
and fifty major non-tornadic severe weather outbreak (NTO) cases areddtec
this work. Two types of analyses are performed on these cases to assess
discrimination ability. One analysis involves outbreak classification using the
Weather Research and Forecasting (WRF) model initialized with théRNCEAR
reanalysis dataset. Meteorological covariates are computed from the WREFand
used in training and testing of statistical classification models. The atevéalds
are depicted on a 21 X 21 gridpoint field with an 18 km grid spacing centered on the
outbreak. Covariates with large discrimination potential are determined using
permutation testing. A-Pode principal component analysis (PCA) is used on the
subset of covariates determined by permutation testing to reduce data dimégsional
since numerous redundancies exist in the initial covariate set. Thretcsiatis

classification models are trained and tested with the resulting PC:szerggport
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vector machine (SVM), a logistic regression model (LogR), and a multnaarli
regression model (LR). Promising results emerge from these methods, as a
probability of detection (POD) of 0.89 and a false alarm ratio (FAR) of 0.13 are
obtained from the best discriminating statistical technique (SVM) at 24-reads |
time. Results degrade only slightly by 72-hours lead time (maximumd?OB33
and minimum FAR of 0.276).

Synoptic composites of the outbreak types are the second analysis considered.
Composites are used to reveal synoptic features of outbreak types, which can be
utilized to diagnose the differences between classes (in this casend @3 @s).

The composites are created using PCA. Five raw variables, height, tengeratur
relative humidity, andi andv wind components, are extracted from the NCEP/NCAR
reanalysis data for North America. Converging longitude lines with inageas

latitude on the reanalysis grid introduce bias into correlation calculationghierhi
latitudes; hence, the data are mapped onto both a latitudinal density grid and a
Fibonacci grid. The resulting PCA produces two significant principal components
(PCs), and a cluster analysis on these PCs for each outbreak type results pe$wo ty
of TOs and NTOs. TO composites are characterized by a trough of low pressure ove
the central United States and major quasigeostrophic forcing featuheassan upper
level jet streak, cyclonic vorticity advection increasing with height, andhvear
advection. These dynamics result in a strong surface cyclone in most tornado
outbreaks. These features are considerably less pronounced in NTOs. Theaktatisti
analyses presented herein were successful in classifying outbreakttypesus lead

times, using synoptic scale data as input.
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1. INTRODUCTION
a) Motivation

According to the American Meteorological Society (AMS), tornadic sver
weather occurs with a highest frequency over the United States (Gli@G6an
Tornadic severe thunderstorms are characterized by large, damagistgdrag wind
gusts, and tornadoes. While over 1000 tornadoes affect the United States per year
(Glickman 2000), groups of these events, known as outbreaks, are comparatively
uncommon events (only 20-30 outbreak days per year, Schneider et al. 2004). These
outbreaks are considerably more dangerous than individual tornadoes, since they can
result in multiple, significant tornado occurrences that affect a relataelg
geographic region.

In addition to tornado outbreaks (hereafter TOs), numerous primarily
nontornadic outbreaks of severe weather (hereafter NTOs) impact thd Btates
annually. NTOs are more common (50 or more per year) than TOs (20-30 per year,
Glickman 2000). However, NTOs are generally less threatening to life @an T
Advance knowledge of outbreak type would aid forecasters and emergency
management teams in anticipation of these dangerous events.

Many studies (section 1.2) classify different types of TOs and NTOs, but no work
has appraised the potential to distinguish between these two main classesiat va
lead times. The scope of this project is to assess the disparities betwseandl O
NTOs through statistical objective methods. These goals will be acconaplishe
through statistical outbreak classification and synoptic storm typing of A®s a

NTOs.



b) Literature Review

1) SEVERE WEATHER OUTBREAK REVIEW

The AMS glossary (Glickman 2000) defines a TO as “multiple tornado

occurrences within a single synoptic-scale system.” An early study of(€diQ
1952) examined the significant 21-22 March 1952 event which encompassed the
lower Mississippi Valley and the Tennessee Valley. This study analyZedesur
features contributing to the event (low pressure system with associatecoolovier
Louisiana) and described significant weather occurrences produced by the event.
Many classes of TOs have been defined in previous studies, including Pautz (1969),
who defined TOs based on their size (small, medium, and large), and Galway (1975),
who considered the number of tornado deaths by state and compared that with the
Pautz (1969) outbreak definitions. Galway (1977) classified three differentdiypes
TOs: alocal outbreak (those confined to radii not exceeding 10 000 square miles), a
progressive outbreak (an outbreak that advances from west to east with timehin whic
the distance between the first and last tornado report generally excOaudeis,
and a line outbreak (one in which the tornadic thunderstorms form along a narrow
corridor). Grazulis et al. (1993) categorized TOs as groups of 6 or more tornadoes
within a single synoptic system.

While many studies had grouped TOs into different categories, Doswell et al
(2006), [hereafter called D0O6] presented the first objective ranking of T<asl loa
the AMS glossary (Glickman 2000) definition of a TO. The TO database used in D06
was documented by Schafer and Edwards (1999) and included data related to

individual TOs which occurred on a single day (1200 UTC through 1159 UTC the



following day). D06 formulated an indef® ¢ index) based on weighting different
TO parameters, including total path length of all tornadoes, the destructargiglot
index (DPI, Thompson and Vescio 1998), the number of killer tornadoes, the number
of deaths, etc. D06 found that small permutations in the weights led to significant
differences in the rankings, revealing the highly subjective nature of tmétidefiof
a TO that was manifest in the numerous types of TOs in previous research.

D06 ranked NTOs in the same manner as TOs, although a different set of
weighting parameters was selected. They defined an NTO as a seatrerwe
outbreak with 6 or fewer tornadoes. The NTO ranking in@exiidex) was
formulated from a weighted sum of the total number of severe weatheistepert
number of significant wind reports, the number of significant hail reports, the number
of tornadoes, the number of wind reports, and the number of hail reports. Some NTO
events consisted of individual smaller outbreaks from independent synoptic systems
that occurred on the same day. These NTOs were geographically widespread, and a
purely objective ranking of NTOs classified these events as signjfobesyite
multiple independent synoptic systems triggering the storms. To account for this
geographic distribution of the NTOs, D06 sorted the individual severe weather reports
based on latitude and longitude and retained the middle 50% of the latitude-longitude
distribution. They scaled the resulting area to the order @-imelex and subtracted
this scaled variable as a n&aindex, which thereby included information of the
severe weather report spatial distribution. The D06 top 50 ranked cases of TOs and
NTOs were used in the present research for the statistical clatssifiand

compositing.



Many outbreak studies, including D06, have ranked the 3 April 1974
“superoutbreak” as the most important outbreak of tornadoes in recorded history, with
over 100 long path significant tornadoes observed (Fig. 1). Fujita (1974) noted many
synoptic precursors that led to the April 1974 TO. However, some TOs were less
synoptically evident, such as the 3 May 1999 outbreak (ranked 20 in D0O6).

Numerous investigators have investigated this TO (Roebber et al. 2002, Edwards et

al. 2002, Stensrud and Weiss 2002, Thompson and Edwards 2000, others), noting that
it had atmospheric features that did not suggest convection would initiate (weak
dryline convergence, cirrus deck reducing instability, etc.). Accordifaycasters

were unable to determine if convection would occur a few hours prior to initiation.
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Fig. 1. Storm reports from 3 April 1974, courtesy of the Storm Prediction Center
Severe Plot software (Hart 1993). Red lines represent tornado tracks; blue crosse
represent severe wind reports, and green points represent severe hail reports.



Marginal outbreaks, such as 3 May 1999 TO, helped motivate the current work,
since they are more poorly understood than the classic outbreaks (i.e. 3 April 1974).
Whereas the physics of convective development in forecast TOs and NTOs (e.g. 3
May 1999) lies outside the scope of this project, the application of statisti¢eddset
to classify TOs and NTOs can provides a baseline to motivate such research.

2) STATISTICAL METHODS REVIEW

The classification of outbreak classes was investigated in the present study
through the use of artificial intelligence (Al) techniques and statistiaasification
methods, all of which have been used in previous meteorological research. Some Al
studies have considered severe weather problems, including Trafalis et al. (2005)
[hereafter TO5], who used Al to revise the mesoscale detection algorithm (MDA)
the WSR-88D Doppler radar system. The MDA, designed to detect storm-scale
circulations within radar echoes, is currently used by the National We&aghédce as
a tool for issuing tornado warnings. The goal of TO5 was to implement Al techniques
to improve the ability of radar to detect a tornado signature, increasifigeiiteood
of a correctly issued tornado warning. Marzban and Stumpf (1996) provided the
motivation for this idea through applying an artificial neural network (ANNhe
MDA.

In TO5, several learning techniques were compared within the context of the
MDA, ANN, support vector machines (SVM), Bayesian neural networks (BNN —
MacKay 1992), and minimax probability machines (MPM - Lanckriet et al. 2002). A
set of roughly 800 training samples was used for training and testing of¢hasiad

algorithms. In order to determine the sensitivity of the algorithms to tareadnts,



the amount of tornado data in the test datasets varied from 2% to 10%. Multiple
experiments with different statistical model parameters (i.e. casiglkd®inction, etc.)
were conducted, and the best model parameters were selected based omfa series
forecast evaluation indices that produced the most accurate forecasts. The
methodology employed herein follows closely with that of TO5. The framework
employed by TO5 is similar to the current study.

In addition to statistical classification methods, this study presented cienpos
fields of TOs and NTOs, which showed the physical features of each outbreak type.
A commonly used compositing methodology, which was applied herein, is rooted in
principal component analysis (PCA — Wilks 1995). Jones et al. (2004) used a PCA
and a binary classification on 100 000 MDA instances to observe the MDA'’s tornado
detection capability. In their study, many aspects of the MDA were stk t
useful for tornado detection, including the neural network tornado detection algorithm
(Marzban and Stumpf 1996), the mesocyclone strength index, maximum gate-to-gate
velocity difference, the mesocyclone depth, and the mesocyclone rank. Ladicci a
Warner (1991) performed a mean composite analysis on severe weather soundings to
search for the type 1 tornado sounding (Fawbush and Miller 1952). Their work used
mean severe weather parameters to analyze the temporal developmentps the ty
sounding. They found a relationship between the intensity of the type 1 sounding and
the intensity of the associated severe weather. Schaefer and Doswell (1984)
employed empirical orthogonal functions (EOFs — Wilks 1995) in the creation of
synoptic storm types of TOs. The EOFs revealed different synoptic feafures

different TO storm types. An updated synoptic storm typing approach was applied



herein to determine NTO and TO types, and these types will help accomplish the
main goals of the present research.
c) Objectives

The scope of this investigation is to assess the ability to discriminate betwee
TOs and NTOs using primarily objective methods. It is hypothesized that the
synoptic-scale signal contains pertinent information of the impending outbreak type,
but the details of this relationship are not well understood (Doswell and Bosart 2001).
To specify the details of this relationship, synoptic-scale data werearsiedial
input into the statistical and numerical methods. A set of 50 significant TOs and
NTOs were classified by statistical methods and synoptic storm typmglér to
determine if the capability to distinguish between the two exists. It is tergdo
emphasize thatll cases selected included an outbreak, and the study determined the
ability of the synoptic scale input data to classify the outbreak type. Null @eses
outbreak) or weakly severe outbreaks were not tested. If the outbreak cliassibta
the distinct events is successful, it is of interest to know how far in advance of the
outbreak the classification performs well. If the methods used in this sindgtc
distinguish between these extremely distinct TO and NTO outbreak typest furthe
investigation into marginal TOs and NTOs or null cases (outbreak versus no
outbreak) likely would not be warranted. Accordingly, the present work sets a
baseline for future research on this topic.

The objective statistical classification of outbreak type involved a binary
decision, since two only outbreak types were considered. Three statisttbalds,

SVM, logistic regression (LogR), and linear regression (LR), weted¢s document



the method which classifies with the most success. These three methods were
selected since they include a linear technique, a non-linear technique workiogvin a
dimensional space, and a non-linear technique working in a high dimensional space.
To facilitate description of the severe weather atmosphere, which isliypicae in

a mesoscale framework, 17 covariates (Brown and Murphy 1996) computed using
output from the Weather and Research Forecast (WRF) model (Skamrock et al. 2005)
were considered for the statistical classification. These covaaatesevere weather
parameters which are often used to describe the severe weather environment .
Numerous combinations of covariates were analyzed to determine those with the
highest classification capability.

Synoptic storm types were computed from the NCEP/NCAR reanalysistdatase
(Kalnay et al. 1996) at 17 vertical levels over the continental United Statese The
storm types were developed to provide insight into the synoptic precursors of TOs
and NTOs. Five raw variables were included in the composites, including
temperature, relative humidity, heightcomponent wind, andcomponent wind.
These statistical methods provided an excellent capability to discrimivesie t
distinct TOs and NTOs, which set the baseline for additional research on outbreak
classification.

The methods used in creation of the synoptic storm types and in the statistical
classification are given in Chapter 2. Chapter 3 provides results from ts@csthti
classification, and Chapter 4 shows the storm type results. Chapter 5 sumtharizes

classification capabilities of the methods presented herein.



2. METHODOLOGY
a. Data

One goal of this work is outbreak type discrimination; therefore, the top 50 ranked
NTOs and TOs (Appendix A) from D06 were retained to provide the strongest (most
robust) contrast for statistical analyses. All cases, except for 8 July E@Banh
outbreak valid time near 0000 UTC, (the valid time for 8 July 1980 was 1200 UTC).
Therefore, that case was eliminated from the NTO set, leaving 49 NTOs.

Once a robust set of TOs and NTOs was obtained, meteorological data, from the
event days, were required. One of the primary goals of this study was to determi
the role of synoptic scale influences on outbreak classification based on model
forecasts. To help assess these effects, an input dataset with a synaptgeidcal
spacing over the United States was needed. As a result, the NCEP/N&¥aR/s&s
data (Kalnay et al. 1996), which reside on a 2.5° longitude by 2.5° latitude global grid
and 17 vertical levels (synoptic-scale grid spacing), were selectedrasg slata for
this study.

The NCEP/NCAR reanalysis data are based on the assimilation of modeldderi
quantities and observations, which results in varied reliability of the resagaly
variables. Kalnay et al. (1996) ranked the reliability of all of the NCEPRICA
reanalysis variables based on their observational and model-derived input. Variables
ranked “A” were based primarily on observations and were considered the most
reliable variables in the dataset. As model-derived input was introduced into the

calculation of other variables, the reliability grade was lowered to ar@™g".



Parameters based almost entirely on climatology and model-derived iefgut w
graded as “D” variables.

The NCEP/NCAR reanalysis data were used for both the objective sstistic
classification and the synoptic storm typing. The objective classificati
methodology required WRF simulations (Section 2.2.1) of the 100 cases, and several
reanalysis variables were required for WRF initialization. The synoptimgyping
methodology used five reanalysis variables (temperature, relative hyraidiigd,
v-wind, and height). Since the dependability of the reanalysis variabled,\thee
reliability of each variable used was needed. Table 1 lists the NCEP/NCAR
reanalysis variables used herein, as well as their reliability grade.

Table 1. List of variables used in WRF simulations and synoptic storm types, their
level (upper air or surface) and reliability grade described by Kalnaly @t996).

Note that some variables considered “surface” variables are near-qlofeest
sigma layer or within 30 hPa of surface pressure).

Surface pressure

Volumetric soil moisture content

Specific humidity

Temperature between two layers below surface
Temperature at depth below surface

2 meter temperature

10 meter U-wind

10 meter V-wind

Water equivalent of accumulated snow depth

Input Variable (U)pper air or (S)urface Grade
Ice Concentration (1=ice/0=no ice) S D
Land-Sea mask (1=land/O=sea) S D
Geopotential Height U/S A
Temperature U/S A
Relative Humidity U/S B
"Best" 4-layer lifted index U B
Lifted Index S B
U-wind component U/S A
V-wind component U/S A
Absolute Vorticity U/S A
Mean sea level pressure S A
Tropopause pressure U A
Precipitable water U/S B
Vertical speed shear at the tropopause U A
Vertical velocity U/S B
B
C
B
C
C
B
B
B
C

njnlnlnjnlnjninln
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b. Objective Statistical Classification

The first analysis conducted with the NCEP/NCAR reanalysis data was a
classification study, which used statistical techniques to determinébitite ta
discriminate outbreak type from the WRF simulations. A summary of the methods
used in the objective statistical classification follows.

1) WRF SIMULATIONS

For optimal classification of outbreak type, the statistical models required
comprehensive local information about the severe weather environmentHarasac
Raw synoptic-scale variables (heigiiyind, v-wind, temperature, etc.) do not
provide this information (only a few gridpoints per case exist in the outbreah)yeqgi
As a result, numerical model simulations (the WRF in the present study) eestech
to obtain detailed mesoscale knowledge of each outbreak. This mesoscale output
from the WRF simulations was used in the statistical classificatibnitpges.

The WRF simulations used model physics summarized in Table 2 and employed
five two-way nested domains (Fig. 3). The first (“mother”) domain was firelchad
a grid spacing of 162 km. Domain 2 was positioned surrounding the contiguous
United States, and had a grid spacing of 54 km. Domain 3, used in the objective
statistical classification, was positioned according to the generablocdtthe
simulated outbreak and had a grid spacing of 18 km. Domains 4 and 5 had grid
spacing of 6 km and 2 km, respectively, and were outbreak-relative. All domains had
31 vertical levels (Table 3), defined by theoordinate, which was the default output
for WRF. WRF required the grid spacing to decrease by a factor of 3 (ottwes fac

resulted in large model instability on all domains) with additional nested dgmsains

11



the grid spacing values were selected by increasing the spacingdbgraofe8 from
storm scale (2 km, domain 5). The mother domain grid spacing of 162 km is
comparable to the 2.5° native grid spacing on the NCEP/NCAR reanalysis (about 250

km).

Table 2. WRF physical schemes used by Shafer (2007) for simulation of the 100
cases. Adapted from Shafer (2007).

Model Physics References
. . . Lin et al. (1983); Dudhia (1989); Hong et al.
WRF Single Moment 6-class (WSM6) microphysics (1998); Skamarock et al. (2005)
Grell-Devenyi convective scheme Grell and Devenyi (2002)
Yonsei University planetary boundary layer scheme Hong and Pan (1996)
MM5-derived surface layer scheme Skamarock et al. (2005)
5-layer thermal diffusion land surface model Skamarock et al. (2005)
Rapid radiative transfer model for longwave radiation Mlawer et al. (1997)
Dudhia shortwave radiation scheme Dudhia (1989)
185 ¥
B

16 0|

L

3w

Fig. 3. A sample of the five domains used in WRF simulations by Shafer (2007) valid
for 3 May 1999 (see Fig. 2 for outbreak on this day). Output from domain three
centered on the outbreak was used in the objective discrimination of outbreak type.
Taken from Shafer et al. (2008).

12



Table 3. The 31 eta levels and their corresponding pressure level using standard
pressure (i.e. 1013.25 mb) as the surface pressure and 10 mb as the top of the
atmosphere.

Eta Level Pressure Level (mb)
1.000 1013.25
0.993 1006.23
0.880 993.19
0.966 979.14
0.950 963.09
0.933 946.03
0.913 925.97
0.892 904.90
0.869 881.82
0.844 856.74
0.816 828.65
0.786 798.56
0.753 765.45
0.718 730.33
0.680 692.21
0.639 651.08
0.596 607.94
0.550 561.79
0.501 512.63
0.451 462.47
0.398 409.29
0.345 356.12
0.290 300.94
0.236 246.77
0.188 198.61
0.145 155.47
0.108 188.35
0.075 85.24
0.046 56.15
0.021 31.07
0.000 10.00

13



2) COVARIATES

Given that the WRF simulations do not make explicit predictions of the
occurrence of tornadoes, some way to distinguish between outbreak types in the
simulations is necessary. To diagnose outbreak type in the statisticéilcaltiss
techniques, fields of meteorologiaavariateswere computed from the domain 3
WREF output. Domain 3 was chosen since most of the selected covariates were
commonly defined in the mesoscale (i.e. synoptic-scale and storm-scale G&APE w
not desirable). Since domain 3 provided thousands of gridpoints, a smaller
subdomain of domain 3 was used to narrow the analysis region for the statistical
classification techniques. To accomplish this, a subjective center of each TO and
NTO (Fig. 4) was determined through inspection of the storm reports as provided in
the Storm Prediction Center’s SeverePlot software (Hart 1993), and a subdomain of
21 X 21 gridpoints, centered on the subjective outbreak center, was preserved from
the domain 3 output for each covariate. This subdomain size encompassed most TOs.
Additionally, the top 50 NTOs as defined by D06 encompassed a small domain (this
was a criteria in D06 for ranking the NTOs).

The covariates included 17 commonly used severe weather parameters that
measured thermodynamics, shear, and vorticity (Appendix B describes eadateovar
in detail). The product of CAPE and bulk shear (Appendix B.10) is a covariate which
has not been considered in the literature previously, but is included to provide another
measure combining instability and shear.

One issue in the covariate computation was noted. The WRF computation of

surface based CIN was suspect, since CIN typically forms in the lowest 1-2tksn. T
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1-2 km depth includes 8-10 WRF vertical levels (Table 3) which is incapable of
resolving CIN accurately. This might have an impact on how effectively CINdwoul
serve as a useful covariate.

The 17 covariates selected were the base set of parameters forigheadtat
classification. Many of these covariates are highly correlated (eegdjfterent EHI
values had a Pearson correlation higher than 0.98 for many TOs), suggesting
redundancies in the variables, that could cause instability in subsequent altatistic
analyses. Many redundant covariates (such as those that were considered over

multiple layers), were removed by permutation testing.

a)
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Fig. 4. Outbreak centers determined subjectively using SeverePlot. Panel (a)
represents TOs, while panel (b) represents NTOs. Some overlap in points exists
leading to fewer than 50 points per panel.
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3) PERMUTATION TESTING

According to Efron and Tibshirani (1993), a permutation test determines if the
means of two data samples are the same at a statistical signileagloaf the user’s
choosing. The null hypothesid{) for the permutation test is that the mean of the
two samples is the same, or that their mean difference is zero. Figuredidsishe
permutation testing method. Initially, two separate data distributions (tkece/
pools) are tested. The mean of each pool is computed first, and the difference
between the two means is stored. The two data distributions are then combined into a
single pool (the white pool), and two random permutations are sampled with
replacement from the pool. The mean difference between these two permusations
stored and compared to the initial mean difference. If the difference of the
permutation means is larger than the initial mean difference, the paonusgat
counted toward the p-value. This process is repeated many times (1000 times), and
the percentage of permutations that are counted is the corresponding probability tha
the two distributions are the same, known psvalue. P-values closer to zero
represent a higher probability that one can rdjectThe permutation test, unlike
other commonly used hypothesis tests, such astéds, does not make assumptions
of the data distribution. Since the distribution of each covariate is unknown, this

property of the permutation test makes it ideal for the present work.
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Fig. 5. lllustration of the permutation methodology presented above.

Permutation testing was used to determine each covariate’s abilityihguwish
between TOs and NTOs. Those covariates which showed large regions of-small p
values were described as proficient outbreak discriminators. Al NTOs and TOs
were tested initially. In addition to the entire case set, cases westshiod e
Mississippi River (Fig. 4) were tested separately, to show which caariat
discriminate best in each geographic region. Finally, any regional depensiimo
each outbreak type was tested (west cases versus east cases for eahtgpt)re
The intra-outbreak regional tests revealed covariates whose magnitudes/strongl
depended on geographic region (an undesirable property for this study).

Since fields of the covariates resulted from the WRF simulations, permutation
testing on a gridpoint by gridpoint basis was performed, with each gridpoighedsi
ap-value based on the results of the téstvalues were plotted on the 21 X 21

covariate grid, with values of 0.1, 0.05, and 0.01 displayed. Thesegthedges are
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consistently used to show statistical significance throughout thediter@aley and
Chervin 1985, Wilks 1996).

Figure 6 shows an example of a covariate that exhibits statistigalificant
differences (0-1 km SREH) at 24-hours lead time. The gray and black colors in
panels a — c of Fig. 6 represent regions of statistical significance, wiichte areas
where the covariate discriminates outbreak type successfully. Panels,ddmche
represent the regional dependence of each covariate, show multiple p-values,
indicating that 0-1 km SREH has modest regional dependence. However, the modest
regional dependence of 0-1 km SREH was not significant enough to ignore its good
discrimination capabilities, resulting in retaining this covariate.

To contrast a covariate capable of outbreak classification, Fig. 7 illigstrate
permutation test results from a poor classifier, surface based CAPE. Thersouthe
portion of the domain in panel a shows some differences (darker colors), but most of
the region is not statistically significant. These results were obsehat w
considering eastern and western outbreaks as well (panels b and c). Ldtelreg
dependence of CAPE was observed (panels d and e), but the limited discrimination
capabilities of CAPE, as revealed by the permutation testing, led toogajettihis
covariate from use in the objective statistical classification.

Similar analyses to those presented above were conducted for all covatri2de
hour, 48-hour, and 72-hour lead times, in order to determine the best covariate set for
the objective discrimination. Percentages of the fields which were significant
particularp-value were tabulated and used to reduce the base set of covariates to

those best suited for outbreak classification at each lead time.
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Fig. 6. P-values of 0-1 km SREH at 24-
hours lead time. The shading represents
values of 0.1 (light gray), 0.05 (dark gray),
and 0.01 (black). Panel (a) represents
comparisons between all TOs and NTOs,
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panel (c) represents comparisons between
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A summary of a percentage of gridpoints significant to @aciiue (0.1, 0.05, and
0.01) at 24 hours lead time is given in Table 4. As previously discussed, SREH at 0-1
km at 24-hours lead time was retained for the statistical outbreak classifiowing to
its low p-values in the discrimination fields, whereas surface-based CAPE shoveed littl
discrimination capability. Surface based CIN, SREH at 0-3 km, and LCL esdhibit
good discrimination ability with modest regional dependence, so these wenwgulese
Additional covariates show good discrimination ability with little regionakes,
including 0-1 km bulk shear, 0-1 km EHI, and the product of 0-1 km bulk shear and
CAPE. This smaller covariate set consists mostly of shear or vogaiigmeters,
which are widely considered to be good indicators of tornadic development (see

Appendix B).
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Table 4. Percent of gridpoints that are significant20.1,0=0.05, andx=0.01. The

first column uses all cases in the permutation testing, while the second usesasasé

the Mississippi River. The third column considers cases west of the Mississippi R

The fourth and fifth columns compare the western and eastern region for eachkoutbrea
type to test for regional dependence. Values near 100% in columns 1-3 and near 0% in
columns 4 and 5 are best.

p<0.1
Covariate All East West Tornado East vs West | Severe East vs West
Surface Based CAPE 39.46 37.87 23.36 13.83 2.95
Surface Based CIN 99.77 35.60 84.35 3.85 2.95
LCL 98.19 100.00 86.39 39.00 38.32
LFC 26.08 4.31 34.92 8.39 18.59
0-1 km Bulk Shear 100.00 100.00 100.00 48.30 18.82
0-3 km Bulk Shear 100.00 100.00 70.98 96.83 0.23
0-6 km Bulk Shear 100.00 100.00 61.90 98.41 40.36
0-1 km SREH 100.00 100.00 85.26 61.22 65.99
0-3 km SREH 100.00 100.00 56.92 98.87 79.82
BRN Shear 74.38 100.00 20.63 99.32 58.50
Storm Relative Flow 99.55 100.00 43.76 89.80 100.00
0-1 km EHI 88.66 100.00 58.05 17.69 54.42
0-3 km EHI 79.37 100.00 40.59 23.81 64.17
Vorticity Generation Potential 39.00 67.80 44.67 16.33 57.14
Product of 0-1 km shear and CAPE 79.59 45.35 55.10 9.52 10.43
Product of 0-3 km shear and CAPE 64.17 37.19 39.91 11.34 15.87
Product of 0-6 km shear and CAPE 61.45 46.26 28.80 8.39 35.60
p £0.05
Covariate All East West Tornado East vs West | Severe East vs West
Surface Based CAPE 29.48 15.87 18.37 2.72 1.13
Surface Based CIN 91.84 22.22 69.84 0.00 1.13
LCL 94.56 100.00 82.31 23.13 22.22
LFC 17.46 2.49 25.17 2.72 9.07
0-1 km Bulk Shear 100.00 100.00 100.00 25.62 10.66
0-3 km Bulk Shear 100.00 100.00 63.72 93.42 0.00
0-6 km Bulk Shear 100.00 100.00 52.38 96.37 9.98
0-1 km SREH 100.00 100.00 80.27 50.11 48.98
0-3 km SREH 98.64 100.00 50.34 93.88 66.89
BRN Shear 67.35 100.00 11.79 98.64 32.20
Storm Relative Flow 97.96 100.00 37.19 78.68 100.00
0-1 km EHI 83.90 100.00 49.89 8.62 43.99
0-3 km EHI 71.66 100.00 31.07 14.06 56.69
\orticity Generation Potential 29.93 48.53 35.15 11.34 42.86
Product of 0-1 km shear and CAPE 71.43 27.44 45.35 3.40 2.27
Product of 0-3 km shear and CAPE 48.53 25.17 25.17 5.22 7.71
Product of 0-6 km shear and CAPE 47.85 35.37 15.42 4.54 23.36
p <0.01
Covariate All East West Tornado East vs West | Severe East vs West
Surface Based CAPE 16.10 0.23 11.34 0.00 0.00
Surface Based CIN 50.79 4.54 26.98 0.00 0.00
LCL 84.35 93.65 70.29 9.52 2.72
LFC 4.08 0.00 9.98 0.23 0.00
0-1 km Bulk Shear 100.00 100.00 100.00 1.36 0.45
0-3 km Bulk Shear 98.19 100.00 50.34 77.10 0.00
0-6 km Bulk Shear 98.19 100.00 34.69 86.17 0.00
0-1 km SREH 99.32 100.00 65.99 13.38 21.09
0-3 km SREH 94.10 100.00 35.60 77.55 28.12
BRN Shear 54.20 100.00 2.95 92.52 0.68
Storm Relative Flow 93.20 100.00 24.72 50.34 98.41
0-1 km EHI 73.47 98.64 35.83 0.91 11.34
0-3 km EHI 53.51 94.56 16.55 2.95 30.84
Vorticity Generation Potential 16.10 29.25 16.33 3.63 12.70
Product of 0-1 km shear and CAPE 44.67 10.20 25.85 0.23 0.00
Product of 0-3 km shear and CAPE 22.00 15.19 3.17 0.91 0.68
Product of 0-6 km shear and CAPE 22.68 21.32 1.81 0.68 5.90
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Forty-eight hours prior to outbreak initiation, the permutation testing (Tablel{sres
varied slightly from those at 24-hours lead time. Surface-based CIN, whichleaede
at 24-hours lead time, was not chosen at 48-hours lead time due to poor discrimination
capability p-values > 0.1 throughout the fields). In contrast to 24-hours lead time, all
three layers of bulk shear (0-1 km, 0-3 km, and 0-6 km) showed large discrimination
capability and little regional bias, so all were retained. The LCL andvth&ayers of
SREH (0-1 km and 0-3 km) continued to exhibit large discrimination capability and
modest regional biases, so these were included in the statistical cidissifanalysis.
Most of the 48-hour reduced covariate set consists of shear or vorticity parsmétich
was a result consistent with 24-hours lead time. Additionally the limited number of
instability variables retained demonstrated the inability of these et@atio

discriminate outbreak type.
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Table 5. Same as Table 4, but for 48-hours lead time.

p<0.1
Covariate All East West Tornado East vs West | Severe East vs West
Surface Based CAPE 49.66 2.04 57.14 58.28 0.00
Surface Based CIN 68.25 39.68 44.44 23.81 8.62
LCL 87.98 92.29 61.45 87.30 27.66
LFC 6.58 41.27 0.00 69.39 21.54
0-1 km Bulk Shear 100.00 100.00 100.00 21.09 73.02
0-3 km Bulk Shear 100.00 100.00 93.88 47.17 0.00
0-6 km Bulk Shear 100.00 100.00 86.85 49.66 3.40
0-1 km SREH 100.00 100.00 89.57 36.05 12.93
0-3 km SREH 100.00 100.00 78.23 58.73 10.66
BRN Shear 97.05 100.00 44.67 58.05 6.35
Storm Relative Flow 100.00 100.00 41.04 68.03 100.00
0-1 km EHI 88.89 100.00 26.76 60.32 13.61
0-3 km EHI 63.04 100.00 19.95 59.64 39.68
Vorticity Generation Potential 21.32 91.84 27.66 80.27 0.91
Product of 0-1 km shear and CAPE 67.80 71.88 14.06 60.77 3.17
Product of 0-3 km shear and CAPE 46.03 83.45 12.47 62.59 0.68
Product of 0-6 km shear and CAPE 42.40 99.09 19.50 63.72 4.99
p £0.05
Covariate All East West Tornado East vs West | Severe East vs West
Surface Based CAPE 40.14 0.00 46.71 45.35 0.00
Surface Based CIN 58.50 31.75 25.85 15.42 1.13
LCL 81.18 85.49 48.07 66.89 7.94
LFC 1.13 36.28 0.00 59.64 0.68
0-1 km Bulk Shear 100.00 100.00 100.00 14.51 52.61
0-3 km Bulk Shear 100.00 100.00 90.93 39.00 0.00
0-6 km Bulk Shear 100.00 100.00 76.87 40.36 0.00
0-1 km SREH 100.00 100.00 83.67 27.89 5.90
0-3 km SREH 100.00 100.00 70.29 51.93 2.04
BRN Shear 90.02 100.00 36.05 46.49 0.91
Storm Relative Flow 100.00 100.00 35.15 57.60 100.00
0-1 km EHI 77.55 100.00 20.63 52.61 0.00
0-3 km EHI 54.88 100.00 10.66 53.29 17.23
Vorticity Generation Potential 13.83 80.95 12.02 71.20 0.00
Product of 0-1 km shear and CAPE 54.88 50.57 7.03 53.06 1.36
Product of 0-3 km shear and CAPE 30.39 64.85 4.54 54.20 0.00
Product of 0-6 km shear and CAPE 28.57 87.98 7.71 53.51 0.68
p £0.01
Covariate All East West Tornado East vs West | Severe East vs West
Surface Based CAPE 25.85 0.00 26.08 11.34 0.00
Surface Based CIN 34.24 18.37 0.91 0.68 0.00
LCL 63.72 73.02 20.18 29.25 0.00
LFC 0.00 30.61 0.00 37.19 0.00
0-1 km Bulk Shear 100.00 99.55 100.00 5.22 35.83
0-3 km Bulk Shear 100.00 100.00 82.77 24.26 0.00
0-6 km Bulk Shear 99.55 100.00 58.96 19.27 0.00
0-1 km SREH 100.00 100.00 71.88 12.02 0.00
0-3 km SREH 100.00 100.00 52.38 39.23 0.00
BRN Shear 63.49 97.05 24.04 19.95 0.00
Storm Relative Flow 99.09 100.00 25.17 36.28 95.24
0-1 km EHI 59.18 100.00 7.03 22.68 0.00
0-3 km EHI 35.60 100.00 2.95 38.78 0.00
Vorticity Generation Potential 4.54 53.06 0.91 38.55 0.00
Product of 0-1 km shear and CAPE 20.41 16.78 0.23 8.84 0.00
Product of 0-3 km shear and CAPE 6.12 16.55 0.00 22.45 0.00
Product of 0-6 km shear and CAPE 3.40 32.88 0.23 19.05 0.00
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Most of the covariates used at 48-hours and 24-hours prior to the outbreak showed the
highest discrimination capability at 72-hours as well (LCL, bulk shear, SRE#&ble 6).
However, at 72-hours, 0-1 km bulk shear showed no discrimination ability when
considering all outbreaks, and was rejected from the final 72-hour set. The 0-1 EHI,
which showed good discrimination ability at 24-hours lead time, was retainechati®2-
as well, as a large percentage of the domain (over 90%) was significantat p R@.1. T
final covariate set at 72-hours lead time included 0-3 and 0-6 km bulk shear, 0-1 and 0-3
km SREH, the LCL, and 0-1 km EHI. Primarily, these covariates consist of sttear a
vorticity measures, which is consistent with the previous two lead timestlyCtha
permutation testing selects covariates that correspond well with tiaures (Appendix
B) and reinforce the ideas presented in Rasmussen and Blanchard (1998) that CAPE
cannot distinguish between tornadic and non-tornadic supercells to any statistica

significance but shear parameters can distinguish with up to a 99% confidence.
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Table 6. Same as Table 4, but for 72-hours lead time.

p<0.1
Covariate All East West Tornado East vs West | Severe East vs West
Surface Based CAPE 21.77 4.76 21.32 16.55 50.11
Surface Based CIN 74.83 84.13 12.47 0.00 46.94
LCL 81.63 94.56 79.37 66.67 90.02
LFC 11.11 0.00 36.96 27.89 82.99
0-1 km Bulk Shear 0.00 100.00 0.00 44.44 0.00
0-3 km Bulk Shear 100.00 100.00 92.74 62.13 8.62
0-6 km Bulk Shear 100.00 100.00 59.86 44.44 0.00
0-1 km SREH 100.00 100.00 71.88 85.03 1.81
0-3 km SREH 100.00 100.00 60.77 80.95 0.00
BRN Shear 90.25 100.00 13.15 35.15 13.83
Storm Relative Flow 84.58 100.00 8.62 80.73 96.15
0-1 km EHI 97.05 97.05 48.98 54.20 1.13
0-3 km EHI 0.00 90.25 0.00 51.93 0.00
Vorticity Generation Potential 1.81 18.59 5.90 47.39 19.95
Product of 0-1 km shear and CAPE 54.88 1.36 36.05 43.08 64.40
Product of 0-3 km shear and CAPE 52.61 4.08 36.96 35.15 44.22
Product of 0-6 km shear and CAPE 54.42 9.52 34.01 28.80 16.78
p <0.05
Covariate All East West Tornado East vs West | Severe East vs West
Surface Based CAPE 16.55 0.68 2.95 4.76 25.62
Surface Based CIN 53.74 65.08 5.44 0.00 35.15
LCL 72.11 61.68 71.43 50.57 82.77
LFC 6.12 0.00 20.63 17.46 60.77
0-1 km Bulk Shear 0.00 100.00 0.00 31.52 0.00
0-3 km Bulk Shear 100.00 100.00 76.87 52.61 2.72
0-6 km Bulk Shear 100.00 100.00 44.22 29.02 0.00
0-1 km SREH 100.00 100.00 61.68 78.23 0.00
0-3 km SREH 100.00 100.00 51.93 73.70 0.00
BRN Shear 72.79 96.83 3.17 14.97 0.00
Storm Relative Flow 73.70 100.00 4.08 65.76 78.00
0-1 km EHI 89.34 91.38 40.82 47.62 0.00
0-3 km EHI 0.00 83.45 0.00 44.67 0.00
Vorticity Generation Potential 0.00 9.75 1.59 39.00 2.27
Product of 0-1 km shear and CAPE 31.52 0.00 26.30 35.15 51.02
Product of 0-3 km shear and CAPE 13.61 0.68 28.57 27.89 28.57
Product of 0-6 km shear and CAPE 36.73 4.99 24.49 20.63 3.40
p £0.01
Covariate All East West Tornado East vs West | Severe East vs West
Surface Based CAPE 6.80 0.00 0.00 0.00 0.91
Surface Based CIN 23.58 24.04 0.00 0.00 7.71
LCL 44.67 23.58 26.98 27.66 43.08
LFC 0.45 0.00 9.30 0.45 24.49
0-1 km Bulk Shear 0.00 99.32 0.00 3.17 0.00
0-3 km Bulk Shear 99.32 99.77 37.19 29.71 0.00
0-6 km Bulk Shear 97.51 99.77 20.41 7.48 0.00
0-1 km SREH 98.41 100.00 48.75 60.32 0.00
0-3 km SREH 93.42 99.77 38.78 53.97 0.00
BRN Shear 35.37 53.97 0.00 0.00 0.00
Storm Relative Flow 45.35 100.00 1.59 36.28 39.68
0-1 km EHI 65.08 71.66 18.37 31.52 0.00
0-3 km EHI 0.00 57.37 0.00 30.84 0.00
Vorticity Generation Potential 0.00 0.45 0.00 24.26 0.00
Product of 0-1 km shear and CAPE 0.45 0.00 13.38 14.29 0.68
Product of 0-3 km shear and CAPE 0.00 0.00 4.31 9.07 0.91
Product of 0-6 km shear and CAPE 0.00 0.23 0.45 2.95 0.00
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4) STATISTICAL CLASSIFICATION MODELS

Once a robust set of covariates was found for the three lead times considered,
objective statistical classification was performed using the reducedatevsets. Three
statistical methods were chosen: LR, LogR, and SVMs.

Statistical models using input from numerous closely-spaced gridpointsuffey s
from problems with multiplicity. However, the covariate fields seleai@u the
permutation testing reside on 21 X 21 point spatial grids. In order to reduce the
dimensionality of these covariate grids to individual variables for eaeh adnode
PCA (detailed description in section 2.3.1) was conducted on the data. The PCA resulted
in a reduced number (less than 7) of statistically independent variables (PQ fezores
each case, which was more desirable, since the number of variables wad bedulce
scores implicitly contained spatial structure of the covariates. The dtagstical
classification methods which use these PC scores for outbreak discrimination ar
summarized below.

() Linear Regression (LR)

The LR model was included to determine the discriminatory capability atidgidnal
method with a long history of meteorological applications (e.g., Marzban et al. 1999,
Reap and Foster 1979, and Michaels and Gerzoff 1984), and to incorporate several
covariates as predictors, simultaneously. The prediction equation for muRiple L

(Wilks 1995) is given as:

?:ﬂoéﬁixi ®)

27



wherep; represents the coefficients analogous to the slope of the regressiga line,

represents the y-intercept,are the covariates, antlare the predictions. Thi

coefficients are computed by:

nz X Y~ Z X Z Y
,Bi _ j=1 =1 j=1

Ny ()7 - (X %,)?

(@)

In (2), n represents the number of cases being analygeepresents the covariates, and
y; represents the observation, in this case, coded with a 1 (or a 0) tag for a TO (or a
NTO). The predictions obtained from (1) ranged from near O to near 1, as opposed to
individual classes. Therefore, a threshold of 0.5 was set as the limit betwedyirtpss
outbreak types. Values larger than this threshold were classified asailéthose
less than the value were called a NTO. Other threshold values were tested, but no
significant improvement in the classification was achieved.

(i) Logistic Regression (LogR)

The LogR method is suited by its design for classification (e.g. Rillat 1997,
Schmeits et al. 2005). Wilks (1995) defines LogR by the prediction equation:

1

Y= - (3)
1+expE(8, + Y. Bl

LogR will assign a probability 8 , based on the ratio of the probability of a TO versus a
NTO (known as a logit). The logistic regression equation is derived by congideei

natural log of the logit as the dependent variable of a multiple LR:

P(Y=1)) S
|n(m}—ﬂo +§ﬂixi (4)
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Assigning the logit from the regression equatiorY tand solving fo¥ , gives:

_explB, + ) ix]
Y = k=1

: )
1+exp[B, + ;ﬁkxk]
Dividing through by the exponential term in the numerator yields the final forihé
LogR prediction equation, given in (3). This regression type only applies to binary
classification problems (such as the current study since there are twakuyipres) that
allow for computation of the logit.
(i) Support Vector Machines
In addition to two statistical classification techniques, an artifiotglligence (Al)
technique known as SVM was used for outbreak type classification. This non-linear
learning method fits a decision hyperplane to a linearly separabletdatgsé-ig. 8).
From Haykin (1999), a decision hyperplane is first determined, given by:
w'x+b=0 (6)
which can then be divided into two parts to be used for classification, namely:

w'x+b>0fory=1
(7)

w'x+b<0fory=0

wherew is the vector of weights for the decision hyperplandx is the input data
vector. When a separating hyperplane is appliedget of positive and negative
classifiers, the distance (margin) between theeslogoints to the separating hyperplane
of each class (support vectors) should be maximizether words, the quadratic

optimization problem for support vector machinegii®en as:
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ming(x) =iw'w
subject to (8)
y,(w'x, +b)>1i=1..

In order to find the minimum, the Lagrangian foe tjuadratic optimization function is

computed:
) |
L(w,b,A) = 4|w?| - D> AL, (wx +b)~1] (9)
i=1
where/; represents Lagrange multipliers. The optimaldgditions forL are:

|
LWDA) Sy o

oL(w,b,A) : N (10)
W

SN N v =0

b Zl Y

These partial derivatives are solved using a nealimptimization method such as
steepest descent, which ensures a local or gloin&inoim results from the

differentiation. After differentiation, the optirhaalue forw is given as:
|
W= 4y (11)
i=1

Substituting (10) and (11) into (9) gives the disamulation (so called as it is a second
formulation that solves the same optimization peab)l of the quadratic optimization

function:

maxF(A) =3 4 =333 A4 Yy XX,

| |
i=1 i=1 j=1

slubject to (12)
Zﬂ’i Yi = 0

i=1

A =20
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In this problem, data points which correspond t@lues greater than zero are called
support vectors. Solving this quadratic optimizatproblem will yield values of,
which in turn can be used to determine the optwaales forw andb, and thus give a

classification algorithm.

(ux, +b)=0

datapoints

(ver, +8) = -1

Fig. 8. Idealized SVM application for two lineadgparable classes. The support
vectors touch the solid boundaries of the mardine norm of thev vector is minimized
in the primal optimization solution of SVMs (adagheom TO5).

Most binary classification datasets, including thierent dataset, cannot be linearly
separated initially. In these scenarios, the fisekernel function will map the dataset
into a higher dimensional space in which it is éifg separable (similar to Fig. 8, but
with higher dimensionality). The kernel functiooes not compute the explicit
coordinates of the data point in the higher dimameii (feature) space, which is
computationally expensive, but instead is comprietie product of the imaggXx) of
the input vectors in the feature space (b(e(;)T o(X;) = k(xi,x;) wherek is the kernel
function — Cristianini and Shawe-Taylor 2000). Eenthe exact dimensionality of the

feature space can be unknown and is not necessdgt@érmine for SVMs, since the
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kernel function maps to this higher dimensionadityectly. This method does not
guarantee linear separability (since 100% accusangt achieved by mapping with a
kernel function), but significant improvement famlinearly separable datasets is seen

when using a kernel function with SVMs. Some faasilof kernel functions include:

1. polynomial k(x,y)=(x"y +1P (13)
‘—1||x—y||ﬂ

2. radial basis function k(x,y) = exp[z"2 (14)

3. tangent hyperbolic K(x,y) =tanh(Bx"y + £3) (15)

wherex andy are the data (inputs) and output vectors, resgeygti The non-linear map
functiong(x) can replace in (12), and since the dot producbois given in (12), one is
replacing this dot product with the kernel matrRue to this inclusion of the kernel
matrix, SVMs are also known as kernel methods. tiglel SVM experiments are
required to determine the kernel function whichvpies the best classification. For the
current study, the radial basis function was mostsssful [not shown] in classifying
outbreak type based on contingency statistics.

5) CONTINGENCY STATISTICS

The three classification methods each producedaypoutput, either a 0 for a
NTO or a1 fora TO. Binary output is often vezdiby using a contingency table.
This 2x2 table (Table 7) organizes the classifaratiesults into four categories. The
upper left value of the contingency table representrectly classified 1 (TO) outputs,
the upper right represents a forecast 1 value \ai@fNTO) value is observed, the
lower left represents a forecast value of 0 whéendbserved, and the lower right

represents a correctly forecast 0 value. Contiogstatistics are formulated from the
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results in the contingency table. Several conticgestatistics are used in the present

study, and are described below.

Table 7. Sample contingency table. In the 2x2ingency tablea represents the
correctly classified 1 valud,represents the incorrectly classified 1 valaeepresents
the incorrectly classified 0 value, addepresents the correctly classified 0 value.

Observations
TO (1) NTO (0)
Forecast TO (1) a b
NTO (0) C d

The most basic contingency statistic measuresuhear of correctly classified
outbreaks versus the total number of classificatiofhis statistic, known as the hit
rate (HR), is defined in Wilks (1995) as:

_a+d
n

HR

(16)

wheren is the total number of cases for the entire sdteeendd represent the number
of correctly classified TOs and NTOs (Table 7)HR of 1 represents a perfect
classification, so values closer to 1 are desirablas statistic credits correctly
classified TOs and NTOs equally. However, it pd@a no information on the two
error types (variablels andc), which are treated differently in most meteordadagdy
applications. Hence, additional contingency diagswith information on
misclassifications is needed.

A commonly applied contingency statistic which meas the likelihood that a
“yes” (in this study, a TO) is correctly classifisdknown as the probability of

detection (POD). According to Wilks (1995), the[P@ given as:
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POD=—2— (17)
a+cC

wherea represents correctly classified TOs angpresents the number of TOs that are
observed when an NTO was predicted. A perfect [BSsdication has a POD of 1, so
values closer to 1 are desirable. The POD represea fraction of TOs that were
correctly predicted by the classification scherRerecasters often are most concerned
with high POD values to ensure that no “yes” (fog present study, TOs) events are
missed. However, the POD does not provide a meadithe number of incorrectly
classified TOs, which also is of interest to forsteas wishing to reduce the rate of
false alarms.

To account for the number of incorrectly classifigds, the false alarm ratio (FAR)
is computed from the classification results. THAdRHRs represented in Wilks (1995) as:

FAR= 2 (18)
a+b

The FAR represents the ratio of forecast TO ev@ntsb) that fail to become TO®Y).

A perfect classification will have a FAR of 0, soaler FAR values are desirable.
Although these contingency statistics provide défe properties of the

classification results, a summary performance nreasu each classification method is

helpful. A commonly used skill statistic that pides a performance measure is the

Heidke skill score (HSS). Wilks (1995) defines H8S as:

2(ad-bc)

- (19)
(@a+c)(c+d)+(a+b)(b+d)

The HSS provides a measure of the likelihood thatHR for the given statistical
method is obtained by random chance instead okitly ¥alues nearer to 1 indicate a

higher skill, hence a lower probability that the IFRults are from random chance.
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The HSS has been used in numerous classificatioiestas a measure of
classification performance (Doswell et al. 1990 Gitdey et al. 1991, Schaefer 1990,
others). The HSS provides a skill measure usihgn@mbers of the contingency table,
which is desirable.

A final contingency statistic, bias, has been dakewd. According to Wilks (1995),
the bias is computed as:

g_ath (20)
a+c

The bias represents the ratio of the number of dr@chstsd + b) to the number of TO
observationsg + ). An unbiased result will have a value of B 3\hen B > 1, TOs
are overforecast, whereas B < 1 indicates that NAr®@®verforecast. This measure
allows the user to adjust individual model paramgetsuch as the classification threshold
in LR, section 2.5.1) to produce a bias value ¢ltsd. The bias reveals any artificially
inflated POD or FAR values that are due to ovedasting of a particular outbreak type,
as well.

6) OBJECTIVE CLASSIFICATION METHODOLOGY

Proper statistical classification methods empldnaaing and testing phase for their
development. The training phase is implementethkiyng a subset of the total input
dataset and computing the model coefficiefite(ms in LR and LogRy in SVM) for
that subset of data. The data withheld from thmiing phase then are input into the
resulting statistical models to determine theif@@nance through the contingency
statistics (the testing phase). This training &sting methodology for statistical
modeling is called cross-validation. Many crosdation methods exist, including the

“leave one out” approach, which uses all data Ioegt@oint for training and tests on the
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point that has been “left out”, and simply dividitige data in half, using half for training
and half for testing. The current study used assk@didation method known as a
“jackknife”. The jackknife is a resampling techuae that samples without replacement,
and is often considered a “leave one out” approdtbwever, the jackknife cross-
validation method employed in this study used gdarercentage of the data for training
(85%) and withheld a smaller subset for testing@4)L&s a first iteration. After the first
iteration was complete, the first point of the itegiset was used for training and the first
point of the training set was used for testinghie $econd iteration. That is, for the first
jackknife iteration, cases 1-84 were used for ingirand 85-99 are used for testing.
Once results were compiled for the first iteratiarsecond iteration, which used cases 2 —
85 for training and 86 — 99 and case 1 for testivegs conducted. This was applied for
all data, so all cases were used 15 times fontgsind 84 times for training. This
method provided a more robust solution for the iogeincy statistics, as many
combinations were considered. This technique badral disadvantages though, since
jackknifing resulted in an overestimation of vari@pin the results versus sampling
with replacement (the bootstrap) which can resuét less representative result for the
data distribution, and this method generated mal{i@9) models. With this multiplicity
of models, another objective method would seenetcequired to determine the best
model of the 99 produced by the jackknifing. Hoesmsince this was a purely
diagnostic study (as opposed to a forecasting stddyessing the development of a
forecast application, which would require the bastlel of the 99), the contingency

statistics were able to be computed on the 99 jat&kknodel outputs simultaneously.
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To improve the jackknife contingency results, baakidvelimination of covariates
was conducted on the input datasets. This tecknioplded the opportunity to improve
the contingency statistic results by removing c@atas which were worsening the results
and simplified the datasets being input into tla¢istical models. Often, results were
improved by removing further covariates from thts s#tained from the permutation
testing.

To facilitate finding the optimal combinations awariates which accomplish
superior classification ability, bootstrap confiderintervals were computed on the
contingency statistics. The bootstrap sample,rdoog to Efron and Tibshirani (1993),
is a sample o size, wheren represents the length of the data vector beingiderex,
that is randomly drawn from the initial datasetunierous iterations (e.g., 1000 in the
present study) of this bootstrap sampling showutieertainty of the statistic being
estimated. Knowledge of this uncertainty allowsdecisions to be made about the
statistic that are not possible without bootstragpi

The mean contingency statistics from the 99 jadikkiberations were bootstrapped,
providing 1000 sample mean values of each continygstatistic. These sample means
are presented using boxplots, which show the mgdmmtral line in the boxplot), the
first and third quartiles (bottom and top of thexj@spectively), and 1.5 * the
interquartile range (IQR — the range between tis¢ &ind third quartiles, shown by the
whiskers).

While the aforementioned statistical analyses desdroverall performance of the
classification schemes, these methods do not eealodividual cases. In order to assess

the statistical classification performance on imdlinal cases, the number of correct and
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incorrect classifications of each case was retaiféds additional step identified
specific cases that were classified poorly, whiedmtwere studied to determine possible
causes for statistical model failure on these ewe@thapter 3 summarizes the results
from the objective classification methods discugseyiously.
c. Storm Typing Methodology

A second statistical analysis, synoptic storm tgpwmas undertaken as well, which
provided physical fields associated with each aakiclass. The storm types were
created through a statistical compositing methad,v@ere determined from 72 hours
prior to the outbreak to 6 hours prior at 6 hotelmals. Several methods were
considered, including mean fields (Mercer and Righr2007), canonical correlation
analysis (CCA - Barnston and Ropelewski, 1992),R8@ (Jones et al. 2004). Mean
fields are not robust enough for the current contipgssince the sample size of each
outbreak type was small enough for outliers tocffiee results. Additionally, when
datasets exhibit high variability between everits,rhean likely will not capture the true
composite storm type. As a simple way of seeiig ththe sample includes an equal
number of cases with northwesterly and southwegséarllow, the mean would be pure
westerly, which would represent none of the actasks. CCA is not appropriate for this
study either, since it requires pairs of input degetors from unique datasets to be
transformed to single fields and assumes that gi@di (the input data vectors) are used
to find predictands (the output fields). PCA doespresume the data are predictors or
predictands, but instead assumes the data areciated and can be projected onto a new

set of orthogonal basis vectors. As a result, P@#Ach provides individual fields of
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TOs and NTOs and accounts for data variabilitgelected as the compositing method
for this study.

PCA is a technique that projects a large datadetaset of independent basis
vectors. The basic model equation for PCA is giaen

Z=FAT (21)
whereZ represents a standardized (mean removed from ifjiealrdata) input data
matrix, F represents a matrix of principal component (P@)ex (defined below), arl
represents PC loadings, which are the independesid bectors. The PC score maffix
represents the relationship between the loadingxnatand the original standardized
data. Larger PC scores for a particular input gatat indicate a stronger relationship
between the loading matrix and the standardizeal @lat a large score on PC1 for a
given case means that the high magnitude absalatings on PC1 are important for
that event). The PC scores also contain spatiattsre of the data, as they can be
multiplied by the loading matrix to recreate thegoral standardized data Z. As
mentioned previously, PC scores were used as infiuthe objective classification
schemes.

In order to obtain the PC loading and score matriseveral calculations are
required. First, a correlation or covariance mxatnust be computed from the original
standardized data. An eigenanalysis is perforretiaggonalize the correlation or
covariance matrix, and the resulting eigenvalueagédnvector matrices are used for
computation of the PC loading matAx Finally, a least squares approach to inverting
the PC loading matrix is used in combination wizh)(to compute the PC score matrix.

A detailed description of these methods follows.
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1) CORRELATION MATRIX CALCULATION
A series of matrix calculations is required to abthe PC loading matriA and the
PC score matri¥. First, a correlation matrix on the standardirgalit matrixZ is

computed by:

7'z
~(n-)

(22)

The correlation matrix, which is computed on TOd BIT Os separately, represents the
correlations between the individual TO and NTO sase

The distance between the gridpointZican affect the calculation &%, since
gridpoints which are geographically closer likeliilwe more highly correlated, possibly
leading to more highly correlated cases. Sincé\itiEP/NCAR reanalysis data reside
on a latitude-longitude grid (Fig. 9a), the disabetween gridpoints decreases with
increasing latitude (longitude lines converge viitreasing latitude). This longitudinal
convergence artificially inflates correlation cdhtions in northern latitudes.

Several methods exist to remove biases from comgigngitude lines, and two are
tested herein. The first technique, proposed @nao and Compagnucci (2004), uses a
latitudinal density correction to obtain an equalbaced grid, such as the one seen in

Fig. 9b. The latitudinal densityis calculated using:

n(e,)
L(®,)

A@,) = (23)

wheren is the number of gridpoints on a reference latitigandL represents the
approximate length of a longitude circle calculated by:

L(¢,) = 27Rcos(p,) (24)
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Ris the radius of the Earth at the equator. Onisadetermined, the number of
gridpointsN on the reference latitudg is used to determine the number of gridpoints
n(p) for a given latitude by (25).

() = int[ -0
co

] (25)

0
Oncen(p) is computed, the grid spacing is given by:

Alp) = :(—fg (26)

For the current study, the reference latituglselected was the equator, since this led to
equal grid spacing in the latitudes and longitudes.
In addition to the latitudinal density grid, a Fitaecci grid (Swinbank and Purser

2006, Figure 9c) was tested remove biases fromergmg longitude lines. The

Fibonacci grid uses the Golden ratioz= (1 + \/E)IZ, a pre-determined number of
gridpointsN, and a latitude equation (27) and longitude equa28).

2i

27
2N +1 1)

sing, =

A =2mid™ (28)
In (27) and (28)j represents thd' gridpoint of theN chosen. The Fibonacci grid places
gridpoints which are slightly offset from the pokesd does not require an arbitrary
reference latitude, although the user must selpot@etermined number of gridpoims
For the current studyy was selected to be 3000, as this gave the clgadsipacing to
that seen from the latitudinal density grid. Sitlee grid spacing between these two

methods is similar, a comparison to determine tipesor method is possible.
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Fig. 9. Plots of the reanalysis grid (a), thetlalinal grid (b), and the Fibonacci grid (c).
Convergence of gridpoints in (a) requires the rfeeddditional grid types, such as (b)
and (c). The subtle convergence of gridpoints witheasing latitude in panels (b) and
(c) is caused of the map projection (polar steraglgjc).
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Before each grid type could be applied to the P&Ainterpolation technique was
required to convert the NCEP/NCAR reanalysis grithe latitudinal density grid or the
Fibonacci grid. A one-pass Barnes analysis (Bat8é4) was used for this

interpolation. The scale length selected for taenBs analysis was:

K,
=2 29
x 2AN (29)

wherex is the reference scale length (5.052) dndepresents the average grid spacing
(taken to be 250 km for the reanalysis grid). Tneat Circle Distance formula was used
to compute distances between the longitudes aitddas, which were needed for the

Barnes analysis. The Great Circle Distance fornsugaven as:

d(4,,0,;2,,0,) = 2Rsin1(\/sin[/12%ﬂij2 + cos(ﬂl)cos@z)sin(ez—;alj2 (30)
where/; are the longitudes of the two poinfisare the latitudes of the two points, dd
is the Earth radius in meters. An error analysihe one-pass Barnes technique was
performed to assess any interpolation errors,potating the reanalysis 500 hPa height
field to the Fibonacci grid and back to the reasialy Root mean square errors (RMSE)
of the heights were computed, and RMSE valueseggethan 20 m (less than 1% of the
mean) were noted, validating the interpolation tegie.

Since two methods were tested, an analysis of m&thod’s performance was
required to select the best one. Both methods eargared by plotting fields of 24-
hours 500-hPa height anomalies after a PCA wasmeed with each grid type (Fig.
10). A single case, 26 April 1994, correspondethé&ohighest PC loading from both
methods, so this field was plotted as well to pileva comparison to the anomaly fields.

An anomaly ridge over western Canada using thethtial density PCA (Fig. 10a) did
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not correspond with the 500 mb height field on 28ilX1994 (Fig. 10c). This anomaly
ridge in Fig. 10a displaced the anomaly trough @astern Canada present in both grid
type PCA fields (Figs. 10a and 10b). Since thieuldinal density grid PCA presented
anomaly features in the northern latitudes whichewmt consistent with the case set, the
Fibonacci grid was selected for the calculatiothefcorrelation matrix.

Once the proper grid type was selected, two metbbdsrrelation matrix
computation were possible. An O-mode analysisliresocomputation of the correlation
matrix along the input (cases) dimension of theetation matrix and requires the other
dimension to be parameters for the cases (as ageein this study). When the
correlation matrix is computed along the parameiension, the method is called a P-
mode analysis. The O-mode analysis was chosahd@resent study since knowledge
of the correlation between cases was needed faytieptic storm types. Additionally,
the OU Supercomputing Center for Education and &ebg OSCER) did not allow for
the solution of a large eigenproblem (53000 X 536@0elation matrix) which was
needed for a P-mode PCA in this study.

One computational complication resulting from thenOde analysis was the
combination of numerous variables for each casewhave extremely different
magnitudes (i.e. 100 mb height magnitudes are @wttier of 10000, while relative
humidity magnitudes range from 0 to 100). Eachvaviable at each of the 17 vertical
levels was standardized individually to accountdigparate means. This standardization
subtracted the mean and divided by the standardto®y, so that the variables for each

case had a mean of zero and a standard deviatimmeofThis standardization would not
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have been necessary with a P-mode analysis, sauters of the same variable for
different cases were used in the calculatioR af (22).

2) EIGENANALYSIS

Once ther matrix, which is 50 X 50 (or 49 X 49 for NTOs), sveomputed, an
eigenanalysis was performed Rrto obtain an eigenvector matikand an eigenvalue
diagonal matriX>. The eigenvector and eigenvalue matrices are cadtlfeom:

R=VDV' (31)
Typically, an eigensolver such as S-Plus (Insigi#007 — used in the present study) is
used to obtaiv andD. These eigenvectors define a new coordinatersystaich has
the same number of variables as the smaller afidh&ber of columns or number of rows
minus one irZ. Geometrically, the first eigenvector will pointthe direction of the
largest variability in the dataset, and will becesated with the largest eigenvalue.
Subsequent eigenvectors will describe monotonidalser variability and are associated
with monotonically smaller eigenvalues (e)g> A2> Az>... Ap).

Since real datasets include both signal and nibise many eigenvectors are
retained, noise in the data dominates the sigrtaldnatter eigenmodes. However, if too
few eigenvectors are retained, some of the physigahl will be discarded. The scree
test is one method to determine the number of e&tars to retain so that the important
signal information is kept without excess noiser & scree test, the eigenvalues are
plotted (Y-axis) sequentially for each root numpéaxis), and when the eigenvalues
subjectively level off (a scree), eigenvectors ptoothis point should be retained. To
obtain more sensitivity, it is customary to plaiubset of the largest eigenvalues. Figure

9 shows a sample scree test plot indicating twasiptestruncation locations (either at 2
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or 5 eigenvectors). This subjectivity can resultéamoval of important signal
information or inclusion of noise data, so an otiectruncation method would be

helpful.

20

Eigenvalue magnitude

10
|

T T T T T
2 4 6 8 10

Root number

Fig. 9. Scree test plot of TO data from 24-hoadlémes prior to the outbreak. The y-
axis is the magnitude of the eigenvalue, orderatestending variance explained, while
the x-axis represents the eigenvalue number. thateonly the variance associated with
the first 10 eigenvectors is shown

A purely objective test introduced in Richman (1p8tased on the so-called
congruence coefficient This method requires the computation of theilggdhatrix A
from an initial guess set of eigenvectors. Thelilogmatrix is computed by:

A =V D' (32)
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In the current study, the congruence coefficierd e@mputed on the first two

eigenvectors initially. The congruence coefficisngiven by:

~ XY
n= (zxzzYz)l/z (33)

whereX represents the vector of the original correlati@atrix associated with the

largest absolute loading magnitude in the loadieggarY. As an example from the
current study, the computationpfor the first principal component (PC1, first coln
of the loading matrix A) involves ranking the loagivector associated with PC1 based
on absolute magnitude. The largest magnitude ih @@responds to a vector in the
correlation matrix (i.e., if the {2loading were largest, the "1 2olumn of the correlation
matrix isX). The magnitude of is then computed froid andY. If the value of the
congruence coefficient for the first PC is lardeart 0.81 (deemed by Richman 1986 as a
reasonable match), this PC is retained. If both R&ve; values larger than 0.81, three
PCs are tested. This process continues untiluee\afl0.81 or less for is discovered.
The congruence coefficient approach is superitiécscree test, as it provides a single,
well-defined best answer, and its computation geldlaon the embedded signal in the
correlation matrix, which guarantees the physitaicsure is part of the decision process.
The congruence coefficient test in the currentysgaelded two main PCs for NTOs
and TOs for each lead time. Once the optimal nurobBCs to retain was determined
for the different outbreak types and different léatkes, the PC loading and PC score
matrices were computed. The PC loading matrixas computed from the truncated
eigenvector matri¥/ through (32). OncA was determined, the base model equation
was solved foF, the PC score matrix. However, sifc@vas not symmetric, the inverse

of A required a least-squares solution, so that thed®@ matrix results from:
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F=Z(A)*(ATA)™ (34)

Since an O-mode analysis was used in the compntati®, the PC score matrix
represents the relationship between the individudpoints and the PC loading matrix
A. The PC score matrix had a dimensionality of ®8R®, where the 2 represented the
2 PCs which were retained and the 53000 indicd&tedtimber of gridpoints. The PC
scores from this O-mode analysis represented st@izdd anomalies of the gridpoint
values. Since vectors (columns)Fofepresented gridpoint fields, weighted sums of the

columns ofF were used to create the synoptic storm types.

3) CREATION OF STORM TYPES

The PC score matrik provides anomaly patterns of two PCs of each oakbrgpe.
However, these anomaly patterns do not represersiytfioptic storm types, which are
computed using weighted sums of the PC scoresrdir to determine the number of
TO and NTO types, a cluster analysis (Wilks 19983 wmployed. The cluster analysis
conducted herein considered the Euclidian distaheeset of PC loadings for the 50
cases and used an average linkage method (Wilky.19%ese Euclidian distances are
graphically grouped with others whose distanceiikiwva certain threshold via a
dendrogram. A typical example of a dendrogram.(E@) shows groupings of storms at
any given Euclidean distance (Y-axis), and thesemg can be combined to determine
storm types. The groups share similar physicgbgnttes and/or values of the raw
variables that are used in the PCA.

To provide an example of the cluster analysisgtiitee 100 case set of TOs and
NTOs was analyzed in an O-mode PCA. PC loadirgge the PCA were input into the

cluster analysis, and the resulting dendrogram (F9y showed two main groups which
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largely corresponded with the TOs and NTOs. Thet@d which two cases merge on
the dendrogram represents their Euclidian disteene the largest Euclidian distances on
Fig. 10 are near 0.2. At this level on the dendhnyg two clusters are visually apparent.
Areas below this do not reveal significantly distangroupings of cases, so two storm
types are noted. However, there was some ovbdapeen the two outbreak types in
the cluster analysis (Fig. 11), which underscdneseed for statistical methods to aid in
classification of TOs and NTOs.

Once the cluster analysis provided storm types {tweach outbreak type), the mean
loading of the events within a particular clustesveomputed and squared, since the
mean provided an explained-variance measure whachused to weight the PC scores.
The weighted PC scores were summed to obtain aggratkrns which represented the
storm types. Chapter 4 provides the results frerfopming this methodology from 72

hours prior to the outbreak to 6 hours prior todhtbreak.
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Fig. 10. Dendrogram from a cluster analysis ofR@loadings from a PCA involving

all TO and NTO cases. Cases 1-50 along the bapnmesent TOs, and 51-99 represent
NTOs. Two main groups are apparent, although tteset correspond directly with

the TO and NTO case numbers.
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Fig. 11. Scatterplot of PC1 loadings and PC2 logslifrom the PCA which considered
all TOs and NTOs. Triangles represent TOs andsemorepresent NTOs. This diagram
shows some overlap, indicating the difficulty ippagating these classes without some
other statistical methods.
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3. OBJECTIVE DISCRIMINATION RESULTS

The objective statistical classification of outlkgavas accomplished through three
statistical methods (defined in Chapter 2) for 28-, and 72- hours prior to the
outbreak. Tables of the contingency statisticpaesented for each model type and each
lead time, and boxplots of the contingency stasstlistributions are shown. The
performance of the statistical methods with eade ¢éaassessed as well.
a. 24 Hour Results

At 24-hours prior to the outbreak, the contingeresults generally were nearest to
the ideal values. From the permutation testing,aiptimal covariates included 0-1 km
EHI, surface based CIN, 0-1 km bulk shear, the pecodf surface based CAPE and 0-1
km bulk shear, LCL, 0-1 km SREH, and 0-3 km SRHiltially, the statistical models
were trained and tested using these 7 covari@aebsequent model tests were
conducted, removing covariates individually to iapé to achieve better results than the
initial analysis. If all of the contingency staits improved from removing a covariate,
the other covariates were individually removed seaond analysis. Single covariates
were tested as well, to provide some insight asati covariate’s classification ability.
In total, 26 covariate combinations were testetle jackknife cross-validation results
from these covariate combinations were bootstrapgoedl boxplots of their distributions
were created in order to determine the best caessizt. These boxplots show the
median, the first and third quartiles, and the dizta point prior to the 1.5 * IQR
location. Models with a higher median and a sm#(R are better (since they have less
classification variability), and the best of these deemed the best covariate

combination for the particular statistical techraqu
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1) SVM CONTINGENCY AND CONFIDENCE LIMIT RESULTS

SVMs provided the best contingency results wheh bBbear variables were culled
(Table 8). While removing individual covariatesidg the initial analysis (models 2-8,
Table 8a), it was noted that removal of the prodfi€@ APE and 0-1 km bulk shear
resulted in the highest POD (0.864). As a resudiecond analysis (Table 8b) was
conducted which removed this product and the dlemvariates individually. This
additional testing was conducted to determineefrésults of the initial analysis (Table
8a) could be improved. The best SVM results (RDD.894, FAR of 0.161) were
obtained by removing surface based CIN and theyatoof CAPE and 0-1 km bulk
shear. The HSS values for this combination of dates were high as well (0.725).
Thus, for SVMs, the best parameter combinatiorckassification was combination 25.
The covariates rejected included a measure ofligyatni instability, which was not
thought to vary significantly between outbreak typee Appendix B).

The boxplots of the 26 covariate combinations f& (fig. 12) and POD (Fig. 13)
reveal interesting features, and the most notieefgaiture is the large IQR associated
with models 9-19. These models only consideredooreo covariates (Table 8), and
such small covariate sets resulted in large vditiaim the contingency statistics. This
large variability appeared consistently with ateth statistical methods at all three lead
times tested. Five models showed a large mediare wd POD and HR (1, 9, 20, 21,
and 25). The FAR (Fig. 14) and HSS (Fig. 15) rsstbrresponded well with the POD
and HR results, as results from models 9 and 25taiaed the lowest FAR and highest
HSS medians of all 26 combinations. However, m8densistently showed large IQR

in the boxplots, which led to rejecting it as tlestcovariate set. Model 25 contained
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few outliers as well. Model 25 rejected the meaxirCAPE and bulk shear and

surface based CIN, which was consistent with tealtein Table 8.

Table 8. 24 hour contingency table results for SVMable (a) represents covariate
combinations as stated and Table (b) leaves offdloeest covariate from Table (a) (in
this case, the product of CAPE and bulk shear)cantbines other parameters.

Model # Variable(s) HR POD | FAR | HSS | BIAS
1]All 0.865| 0.859 | 0.132 | 0.731] 0.989
2|No LCL 0.836] 0.838 | 0.168 | 0.673] 1.007
3|No 0-1 km capeshear 0.824| 0.864 | 0.202 | 0.649| 1.083
4[No 0-1 km bulk shear |0.700| 0.713 ]| 0.310 | 0.399| 1.033
5|No surface CIN 0.758| 0.762 ] 0.248 | 0.515] 1.014
6|No SREH (0-1 km) 0.799] 0.800 | 0.205 | 0.597] 1.007
7|No SREH (0-3 km) 0.777) 0.754 | 0.213 ] 0.554] 0.958
8|No EHI (0-1km) 0.811) 0.816 | 0.195 ] 0.623] 1.014
9|No Shear variables 0.853| 0.880 ] 0.167 | 0.707| 1.057

10{No SREH variables 0.729| 0.688 ]| 0.255 | 0.458] 0.924
11|Only LCL 0.776] 0.763 | 0.221 ] 0.551] 0.980
12|Only surface CIN 0.565] 0.351 | 0.396 | 0.126] 0.581
13|Only 0-1 km bulkshear |0.752| 0.815 | 0.279 | 0.505] 1.131
14|Only 0-1 km capeshear [0.737| 0.799 | 0.293 | 0.474] 1.129
15|Only 0-1 km SREH 0.807) 0.833 | 0.211 ] 0.614] 1.056
16/Only 0-3 km SREH 0.793| 0.803 | 0.216 | 0.585] 1.024
17[Only 0-1 km EHI 0.778] 0.887 | 0.274 | 0.558]| 1.222
18|Only SREH 0.782] 0.801 | 0.231 ] 0.565] 1.042
19|Only shear 0.697] 0.750 | 0.326 | 0.395] 1.112
(a)

Model # Variable(s) HR | POD | FAR | HSS | BIAS
20|No 0-1 km EHI 0.827]0.831] 0.179] 0.654 | 1.012
21|No 0-1 km bulk shear 0.853] 0.880] 0.167 | 0.707 | 1.057
22|No 0-1 km SREH 0.826] 0.839] 0.186 | 0.651 | 1.031
23|No 0-3 km SREH 0.826] 0.845] 0.188 ] 0.653 | 1.041
24|No LCL 0.7781 0.790] 0.232] 0.556 | 1.030
25|No surface based CIN 0.863 | 0.894 | 0.161] 0.725| 1.065
26|No SREH variables 0.775] 0.739] 0.207 | 0.550 | 0.932

(b)
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Fig. 12. Boxplots for SVM HR results. Model numbeorrespond with the row

number in Table 8.
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Fig. 13. Same as Fig. 12, but for POD.
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Fig. 14. Same as Fig. 12, but for FAR.
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2) LOGR CONTINGENCY AND CONFIDENCE LIMIT RESULTS

Results in Table 9 suggest that LogR discriminatgbreak type successfully. .
Rejection of the product of CAPE and bulk sheae @ame as with SVMs), provided
the highest HR, POD, and HSS results and the low&Rtresults of the initial
analysis. To determine if more improvement wasiibs, the CAPE-bulk shear
product was rejected in a second analysis (Tablea8bwas the case with SVMs.
Overall, modest improvement was noted when consigleombination 25.

The HR and POD boxplots (Figs. 15 and 16) portragedels 9, 20, 21, and 25 as
the best (highest median value). The FAR reghlts 17) and HSS results (Fig. 18)
were consistent with the HR and POD results as wallof these combinations
suggested rejection of the product of 0-1 km bakas and CAPE, which supported the
previous conclusion that instability was a poorcdminator of outbreak type.
However, SVMs provided a more compact set of péssivariate combinations,
which implied that SVMs may be the best classifamamethod at 24-hours prior to

outbreak initiation.
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Table 9. Same as Table 8, but for LogR.
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Model #|Variable(s) HR | POD | FAR | HSS | BIAS
1]All 0.782 | 0.778 ] 0.220| 0.564 | 0.997
2|No LCL 0.751 ] 0.756 ] 0.256 | 0.502 | 1.016
3|No 0-1 km capeshear 0.836 ] 0.853|0.178| 0.671 | 1.038
4|No 0-1 km bulk shear 0.754 | 0.731] 0.238] 0.507 | 0.959
5[No surface CIN 0.7451 0.716 ] 0.243] 0.491 | 0.946
6|No SREH (0-1 km) 0.755] 0.750] 0.246 | 0.510 | 0.995
7|No SREH (0-3 km) 0.748] 0.716 ] 0.239 0.496 | 0.940
8|No EHI (0-1km) 0.767 | 0.751]0.228] 0.534 | 0.973
9|No Shear 0.831 | 0.848]0.182] 0.662 | 1.037

10{No SREH 0.705| 0.664 ] 0.281| 0.410 | 0.924
11|Only LCL 0.765] 0.788] 0.250 0.530 | 1.050
12]|Only surface CIN 0.572 | 0.514]0.424] 0.144 | 0.893
13]Only 0-1 km bulkshear 0.739| 0.737]0.265] 0.477 ] 1.003
14]0Only 0-1 km capeshear 0.639] 0.705|0.381| 0.279] 1.139
15|Only 0-1 km SREH 0.800 | 0.816] 0.213] 0.600 | 1.037
16]|Only 0-3 km SREH 0.793 ] 0.830] 0.231] 0.585| 1.079
17]Only 0-1 km EHI 0.698 | 0.752]0.326] 0.396 | 1.116
18|Only SREH 0.782] 0.812] 0.237| 0.565 | 1.064
19|Only shear 0.643] 0.706 ] 0.377 0.287 | 1.133
(a)

Model # |Variable(s) HR | POD | FAR | HSS | BIAS
20|No 0-1 km EHI 0.837]0.864]0.183] 0.674 | 1.057
21|No 0-1 km bulk shear 0.831]0.848] 0.182] 0.662 | 1.037
22|No 0-1 km SREH 0.808] 0.816] 0.200] 0.616 | 1.020
23|No 0-3 km SREH 0.8281 0.818] 0.168| 0.656 | 0.982
24{No LCL 0.82410.838]0.188] 0.647 | 1.033
25|No surface based CIN 0.84210.856] 0.169] 0.685 1.030
26|No sreh (all) 0.751]0.735] 0.245] 0.501 { 0.973

(b)
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Fig. 16. Same as Fig. 12, but for LogR.
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Fig. 17. Same as Fig. 16, but for POD.
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Fig. 18. Same as Fig. 16, but for FAR.
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Fig. 19. Same as Fig. 16, but for HSS.
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3) LR CONTINGENCY AND CONFIDENCE LIMIT RESULTS

The contingency statistics for LR from the initgedalysis (Table 10a) showed
rejection of the product of CAPE and shear at @nlpkovided the best contingency
statistic values. When rejecting this product #redother covariates individually
(Table 10b), the best contingency results were sdwm surface based CIN was
rejected. This covariate set was identical totweeobtained by LogR and SVM.

The HR and POD distributions (Figs. 20 and 21) atackfive different models
which provided the highest medians (models 9, 2023, and 25). This set of
combinations, along with numerous other combinatignoduced low FAR results
(Fig. 22). The HSS (Fig. 23) results showed thmeedels as having the highest
medians and smallest IQRs. In essence, it wagasstible to determine which of these
combinations was best. Since LR is a purely limeathod, small adjustments to the
threshold for classification (0.5 in the presentlg) can increase the prediction of TOs
or NTOs. This can introduce artificial bias towsah outbreak type into the statistical
model, which may be a cause of the low FAR resaliterved in the five models
above. Overall, the simple linear method was sssfoéat classifying outbreak type

24-hours prior to the event.
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Table 10. Same as Table 8, but for LR.
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Model #|Variable(s) HR | POD | FAR | HSS | BIAS
1]All 0.776] 0.793] 0.237]| 0.552| 1.039
2|No LCL 0.761]| 0.797] 0.260| 0.522| 1.078
3[No 0-1 km capeshear 0.827] 0.844| 0.186] 0.654] 1.037
4|No 0-1 km bulk shear 0.748| 0.717] 0.240| 0.496] 0.943
5[No surface CIN 0.747| 0.714] 0.240| 0.493| 0.940
6|/No SREH (0-1 km) 0.756| 0.755| 0.248| 0.511| 1.004
7|No SREH (0-3 km) 0.750] 0.722]| 0.239| 0.500( 0.950
8[No EHI (0-1km) 0.780]| 0.771] 0.219] 0.559] 0.988
9[No Shear 0.830| 0.839] 0.180| 0.659| 1.023
10|No SREH 0.729| 0.668| 0.245| 0.457| 0.884
11|Only LCL 0.771] 0.792]| 0.243| 0.542| 1.046
12|Only surface CIN 0.595] 0.479| 0.382]| 0.189] 0.776
13|Only 0-1 km bulkshear 0.738] 0.756] 0.274] 0.476] 1.042
14|Only 0-1 km capeshear | 0.638| 0.710] 0.383| 0.278| 1.151
15|Only 0-1 km SREH 0.788| 0.852| 0.248| 0.576] 1.132
16|Only 0-3 km SREH 0.759| 0.841| 0.281]| 0.519] 1.169
17]|Only 0-1 km EHI 0.706| 0.789] 0.326| 0.414] 1.171
18]|Only SREH 0.760] 0.846| 0.282| 0.520| 1.178
19|Only shear 0.641] 0.707| 0.379] 0.283] 1.140

(a)

Model #|Variable(s) HR |POD |FAR |HSS |BIAS
20|No 0-1 km EHI 0.826] 0.857] 0.195] 0.653| 1.065
21|No 0-1 km bulk shear 0.830] 0.839] 0.180| 0.659| 1.023
22|No 0-1 km SREH 0.809] 0.811] 0.195] 0.619| 1.007
23|No 0-3 km SREH 0.830] 0.823] 0.168| 0.661| 0.989
24|No LCL 0.793] 0.861] 0.245] 0.587| 1.140
25|No surface based CIN 0.838] 0.880] 0.190{ 0.677| 1.087
26|No sreh (all) 0.770] 0.744] 0.219] 0.540] 0.952

(b)
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Fig. 20. Same as Fig. 12, but for LR.
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Fig. 21. Same as Fig. 20, but for POD.
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Fig. 22. Same as Fig. 20, but for FAR.
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Fig. 23. Same as Fig. 20, but for HSS.
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4) SYNTHESIS

As a means of comparing the three statistical tgci@s, the best covariate

combination (determined subjectively to be combama5 for all boxplot results) was

compared between the three methods. The individohhiques were judged based on

the median value for the four contingency statsstind on the size of the IQR. Table 11

shows confidence limits of the bootstrap resultefich of the four contingency

statistics.

Table 11. Inter comparison of the three methodsleyed for classification.

5% Limit | Median | 95% Limit
HR
SVM 0.847 0.862 0.877
LogR 0.829 0.843 0.856
LR 0.824 0.839 0.853
POD
SVM 0.810 0.832 0.854
LogR 0.813 0.840 0.863
LR 0.791 0.814 0.837
FAR
SVM 0.096 0.116 0.139
LogR 0.123 0.141 0.159
LR 0.097 0.114 0.132
HSS
SVM 0.698 0.728 0.785
LogR 0.652 0.681 0.708
LR 0.662 0.691 0.718

The results in Table 11 reveal SVM as the optimethod when considering the HR

(median SVM HR is larger than the 95% limit HR iogR and LR), FAR (SVM is

superior to LogR only), and HSS (SVM is clearlytbethan both other methods).

Hence, the confidence limits show to a 90% configathat SVM has the best

bootstrapped contingency statistics and is therbegitod to use.
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5) CASE-BY-CASE PERFORMANCE ASSESSMENT

The performance of each statistical technique ch ealividual case was assessed
as well. This analysis shows which cases werenibs difficult to classify, which
allows for subsequent investigation into the readonthese difficulties. Each case
was tested 15 times in the jackknifing methodola@ngd 26 covariate combinations
were used. This resulted in 390 individual clasatfon attempts by the statistical
techniques for each case.

SVMs classified nine cases with 100% accuracytfiecases were classified
correctly each time they were used for testingli@@&covariate combinations). A
majority of these were TOs, as only two NTOs weassified with 100% accuracy.
Analysis of the worst 10 cases revealed that fi@s &nd five NTOs were handled
poorly by SVMs. LogR and LR were more success$fahtSVMs with the more
obvious outbreak types (over 15 classified with%Qfccuracy by both methods).
However, 24% of the bottom 10 cases were corretdlsified by SVM, whereas only
14% were classified correctly with LogR and 9% wifR. Since SVMs perform better
on the marginal cases, by this analysis, SVMs ¢t best classification method at
24-hours.

Since individual case results were retained, ingagon into causes of the poor
classification of these worst 10 cases was perfdrnidiis investigation involved
analysis of each case’s covariate fields to detegrof it was obvious which outbreak
type was progged to occur by the WRF output. Tiike $hear 24-hour WRF forecast,
which was shown previously to be a good discrinunaf outbreak type, was

compared to the eventual outbreak storm repougs F&g. 24) to determine if the
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placement of the covariate suggested the corrébteak location. If this location is
incorrect, it is likely that the statistical methatl not be able to distinguish the
outbreak type correctly, since the input data theomethod are not correctly located.
This error type was denoted herein as “WRF errédditionally, if the atmosphere
produced conditions which appeared as one outliypak(i.e. small shear values
should result in an NTO, provided an outbreak ogcand the other occurred, this was
denoted as “WRF error” as well. However, if atmuesfic conditions appeared like an
outbreak type that later developed, and that ewastmisclassified by the statistical
methods, these errors were denoted as “statisticdel error.”

To show examples of these error types, three sagvelets are provided. One
event (7 April 1980 — Fig. 24) was classified petfieby SVMs at 24 hours.
Noticeably large bulk shear values over the outbregion indicated an eventual TO,
and the SVMs detected this feature and classifisdoutbreak correctly each time. To
contrast the 7 April 1980 event, a poorly clasdiftase by SVMs (26 April 1994 — Fig.
25) was considered. On this day, large bulk shelaes existed over the Ohio Valley,
but no shear was forecast by the WRF over the Rest Ralley, where many
tornadoes occurred. Hence, the WRF produced ¢onslitvhich were not expected to
be associated with a TO. This error type was ifladsas a “WRF error.” The final
event (26 September 1973 — Fig. 26) given wascssified poorly by SVMs. This
TO showed large magnitudes of 0-1 km bulk shear tihveeeventual outbreak region
24-hours prior to the outbreak. In spite of thiglence of a looming TO, SVMs
classified this event as a NTO over 50% of the tifibese analyses were conducted

for the worst 10 cases for each statistical teakiq
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Fig. 24. Plot of 0-1 km bulk shear valid at thediof the outbreak for 07 April 1980.
Contributed by Shafer (2007).
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Fig. 25. Same as Fig. 24, but for 26 April 1994
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The case error analysis results (Table 12) rewaaldf the 30 bottom 10 cases for
the three statistical techniques; only 14 casese®n, revealing significant overlap
between the worst 10 cases for each techniquesseTiesults did not present a distinct
source of error, since seven cases were clasgpifiedy due to “WRF error” and seven
were classified poorly owing to statistical modebe Model verification, which is
outside of the scope of this project, combined Vutther training of marginal cases,
will provide more insight as to the true sourcehafse errors.

Table 12. Source of errors for the 14 cases teat i the bottom 10 for each
statistical technique at 24-hours lead time.

Case WRF Error? | Statistical Model Error? | Which Technique?
010409 X LR, LogR, SVM
020508 X LR, LogR, SVM
700417 X LR, LogR, SVM
930507 X LR, LogR, SVM
891120 X SVM
940410 X LR, LogR, SVM
030506 X X SVM
940426 X SVM
000423 X LR, LogR
990503 X LR, LogR, SVM
010414 X LR
730526 X LR, LogR
990408 X LR
020816 X SVM, LogR
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b) 48 Hour Results

At 48-hours, the results from the permutation tessuggested different shear
covariates (0-6 km and 0-3 km bulk shear and BR&ighand fewer instability
covariates were best for 48-hour classificatiomcl8vard elimination of covariates was
conducted as well, yielding 25 covariate combinegio

1) SVM CONTINGENCY AND CONFIDENCE LIMIT RESULTS

The contingency statistics (Table 13) for SVMsssmewhat degraded from those
obtained at 24-hours, as might be expected. linthal analysis, the best POD and
FAR results result from the culling of 0-3 km SREidnsistent across all three
statistical methods. The second stage culled @ 3REH and an additional covariate
(Table 13b). The best contingency statistics ase@ated with model 22.

The SVM boxplots are similar to those at 24-hoassmmany of the covariate
sets which considered only one or two covariateslted in large variability. The HR
results (Fig. 27) reveal that model 22 had the stavariability and highest median of
all of the combinations, consistent with the PORots (Fig. 28). However, model
22 was subject to higher FAR than either models Z3q(Fig. 29), and the HSS results
(Fig. 30) showed either 1, 22, or 23 had the bestadl performance as input into the
SVMs. This result implied no single covariate camation was best for 48-hour
classification. Additionally, median values of ttentingency statistics at 48-hours
were generally less than 10% worse than those-hb@ds, revealing only modest
degradation of results with 24 hours more lead tiliemce numerical weather

prediction simulations generally worsen with inaeg lead time, this result was
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expected, but the relatively slow degradation ioenaging and obviously warranted

further investigation into the classification perfmnce at 72-hours.

Table 13. Contingency table results for SVMs. [&4h) represents the variables as
stated, while Table (b) removes the stated variabte0-3 km SREH.

Model # |Variable(s) HR | POD | FAR | HSS | BIAS
1Al 0.808] 0.810] 0.196 0.616] 1.007
2|No LCL 0.770] 0.805| 0.251{ 0.541] 1.075
3|No shear (0-6 km) 0.810] 0.815[ 0.196 0.620] 1.014
4|No shear (0-3 km) 0.817] 0.829| 0.193| 0.634] 1.027
5|No shear (0-1 km) 0.768] 0.795| 0.248| 0.537] 1.057
6|No SREH (0-1 km) 0.789] 0.795/ 0.218[ 0.577] 1.016
7|No SREH (0-3 km) 0.808] 0.838/ 0.212| 0.616] 1.064
8|No BRN shear 0.812] 0.804| 0.186 0.624] 0.988

9]|No shear variables 0.801] 0.824 0.216| 0.602 1.052
10|No SREH variables 0.822| 0.833]| 0.187( 0.644| 1.024
11]|Only shear variables |0.770] 0.815| 0.256| 0.540] 1.095
12|Only SREH variables |0.711]0.774]| 0.316] 0.423] 1.132
13|Just LCL 0.749| 0.778] 0.269( 0.498| 1.064
14]Just shear (0-6 km) 0.721]0.709| 0.278( 0.441| 0.982

=y
a1

Just shear (0-3 km) 0.770] 0.812] 0.254( 0.541] 1.088

16]Just shear (0-1 km) 0.752]| 0.714| 0.232| 0.503| 0.931
17]Just SREH (0-3 km) 0.714] 0.766| 0.310| 0.428| 1.110
18]|Just SREH (0-1 km) 0.689( 0.752| 0.336| 0.379| 1.133
19|Just BRN shear 0.692| 0.709( 0.319( 0.383| 1.041

(a)
Model # |Variable(s) HR | POD| FAR | HSS | BIAS
20[No LCL (all) 0.724] 0.782] 0.303| 0.448| 1.122

21|No shear (0-6) (all) 0.801] 0.820] 0.214| 0.601] 1.044
22|No shear (0-3 km) 0.830] 0.844] 0.182| 0.659] 1.031
23|No shear (0-1 km) 0.820] 0.863] 0.208| 0.641] 1.088
24{No SREH (0-1 km) 0.822] 0.833| 0.187| 0.644] 1.024
25[No BRN shear (all) 0.807| 0.797| 0.189| 0.615] 0.984

(b)
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Fig. 27. Boxplots for 48 hour SVM HR. Model numbeorrespond with the row

number in Table 13.
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Fig. 28. Same as Fig. 27, but for POD.
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Fig. 29. Same as Fig. 27, but for FAR.
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Fig. 30. Same as Fig. 27, but for HSS.
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2) LOGR CONTINGENCY AND CONFIDENCE LIMIT RESULTS

The initial jackknife contingency statistic resuits LogR (Table 14) were
consistent with the SVM results, as rejecting B38&REH improved results. In
contrast to the SVM results, further rejection ovariates besides 0-3 km SREH
resulted in reduced accuracy, so no additionalngubf covariates was done. Model
seven was the best model in terms of the jackkmfedingency statistics.

The HR and POD statistics (Figs. 31 and 32) stmanarrowest IQR and
highest median value in model seven, consisteifit thé jackknife contingency results.
The FAR calculations (Fig. 33) showed models twsewen as having the lowest FAR,
and the HSS results (Fig. 34) supported the coiotiubat model seven provided the
superior results. One feature of the boxplotsseen with SVM was the large
variability in model four, which only rejected Okén bulk shear. This result supports
0-3 km bulk shear as a good covariate, but is ansistent with the previous
conclusion that more covariates input into the rhpdaeduced less variability in the
boxplots. As with SVM, the boxplot and jackknifentingency results were within
10% of the 24-hour results, which further supptiresconclusion that little drop-off of

the classification ability of these methods waseddait 48-hours prior to the outbreak.
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Table 14. Same as Table 13, but for LogR.
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Model # |Variable(s) HR | POD| FAR | HSS | BIAS
1]All 0.817] 0.839| 0.200( 0.634| 1.049
2|No LCL 0.811| 0.844| 0.211( 0.622]| 1.069
3|No shear (0-6 km) 0.810] 0.819] 0.198( 0.620] 1.022
4|No shear (0-3 km) 0.805| 0.808| 0.201| 0.609] 1.011
5|No shear (0-1 km) 0.785] 0.829] 0.242( 0.569| 1.093
6|/No SREH (0-1 km) 0.803| 0.834| 0.217( 0.607| 1.065
7|No SREH (0-3 km) 0.838| 0.844| 0.169( 0.675] 1.015
8|No BRN shear 0.801| 0.822| 0.215( 0.601| 1.046
9|No shear variables 0.804| 0.822| 0.209( 0.608] 1.039
10{No SREH variables 0.776| 0.818] 0.248 0.553| 1.087
11]|Only shear variables | 0.826] 0.845]0.189| 0.651| 1.042
12|Only SREH variables | 0.760] 0.810] 0.267| 0.520] 1.105
13|Just LCL 0.691| 0.684| 0.311 0.382]| 0.993
14]Just shear (0-6 km) 0.772] 0.780] 0.236( 0.543] 1.020
15{Just shear (0-3 km) 0.786| 0.808| 0.230( 0.572| 1.049
16{Just shear (0-1 km) 0.763| 0.740] 0.228( 0.526] 0.959
17{Just SREH (0-3 km) ] 0.754] 0.786] 0.265| 0.509] 1.069
18|Just SREH (0-1 km) ]0.733]0.788] 0.294| 0.466] 1.116
19{Just BRN shear 0.741| 0.774| 0.278( 0.482]| 1.072

(@)

Model # |Variable(s) HR | POD| FAR | HSS | BIAS
20|No LCL (all) 0.776] 0.812]| 0.245( 0.553| 1.076
21|No shear (0-6) (all) 0.803| 0.800] 0.199( 0.605| 0.999
22|No shear (0-3 km) 0.807| 0.808| 0.196( 0.615| 1.005
23|No shear (0-1 km) 0.791] 0.818| 0.227( 0.583] 1.057
24|No SREH (0-1 km) 0.776] 0.818] 0.248( 0.553| 1.087
25|No BRN shear (all) 0.795] 0.800] 0.212 0.589] 1.015

(b)
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Fig. 32. Same as Fig. 31, but for POD.
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3) LR CONTINGENCY AND CONFIDENCE LIMIT RESULTS

The initial LR jackknife contingency statistics @a 15) show the best results
when 0-1 km SREH was rejected. This result diffesm both LogR and SVM, which
suggested removing 0-3 km SREH. However, congisigh LogR, additional
rejection of covariates with LR led to accuracyuetibns. Since three different
covariate sets were determined from the threestitati methods, as lead time
increases, the best covariate combination becornes dependent on the statistical
method being tested.

For the boxplot LR results, the HR (Fig. 35) a@P(Fig. 36) show the
highest medians when considering model six, carsistith the jackknife contingency
statistic results. Numerous covariate combinatresslted in low FAR results (Fig.
37), and it was not possible to distinguish whiole @as superior. The HSS results
provided an overall performance measure of LR (88, and show model six with the
highest median value. These results are condigtgithin 10% of those at 24-hours, a

result common to the three statistical methodsdest
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Table 15. Same as Table 13, but for LR.
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Model # |Variable(s) HR | POD| FAR | HSS | BIAS
1]All 0.818| 0.856| 0.208 0.635] 1.080
2|No LCL 0.776] 0.856| 0.265( 0.552| 1.165
3|No shear (0-6 km) 0.809| 0.822| 0.202( 0.618] 1.030
4|No shear (0-3 km) 0.807] 0.823] 0.205( 0.615] 1.035
5|No shear (0-1 km) 0.785] 0.842| 0.247(0.571] 1.118
6|/No SREH (0-1 km) 0.828] 0.857| 0.193( 0.655| 1.063
7|No SREH (0-3 km) 0.816| 0.860| 0.212( 0.633] 1.091
8|No BRN shear 0.807| 0.827| 0.207| 0.615| 1.044
9|No shear variables 0.807| 0.841| 0.216( 0.614| 1.072
10{No SREH variables 0.774| 0.829| 0.256( 0.548| 1.114
11]|Only shear variables | 0.758] 0.839]0.281| 0.517| 1.167
12{Only SREH variables | 0.754] 0.837] 0.286] 0.508] 1.171
13|Just LCL 0.686| 0.683| 0.318( 0.371] 1.001
14]Just shear (0-6 km) 0.745] 0.793] 0.280( 0.490] 1.102
15{Just shear (0-3 km) 0.752| 0.796| 0.272| 0.503| 1.094
16]Just shear (0-1 km) 0.723] 0.754] 0.293( 0.447] 1.067
17{Just SREH (0-3 km) ]0.766] 0.842] 0.273]| 0.532] 1.158
18|Just SREH (0-1 km) |0.743]0.830] 0.296| 0.488] 1.178
19{Just BRN shear 0.744] 0.808| 0.287( 0.489] 1.133

(@)

Model # |Variable(s) HR | POD| FAR | HSS | BIAS
20|No LCL 0.763| 0.831| 0.272( 0.527] 1.141
21|No shear (0-6 km) 0.795] 0.814] 0.218( 0.591] 1.041
22|No shear (0-3 km) 0.798] 0.815| 0.215( 0.596] 1.038
23|No shear (0-1 km) 0.785] 0.827] 0.241 0.569] 1.090
24|No SREH (0-1 km) 0.774| 0.829| 0.256 0.548| 1.114
25|No BRN shear 0.784] 0.804| 0.230( 0.568] 1.045

(b)
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4) SYNTHESIS

Since the optimal covariate sets are consisteiftigrdnt between the three

statistical techniques considered, the best set &ach technique (model 22 for SVM,

model seven for LogR, and model six for LR) was pared to determine the most

favorable technique at 48-hours. Other than thgRLBOD result being statistically

significantly larger than the LR POD result (Tab®, no significant differences

between the three methods are observed at 48-hblersce, either SVM or LogR,

since they are in a statistical tie for the fountoogency statistics, are the best methods

to use.

Table 16. Same as Table 10, but for 48-hourstieasl

5% Limit | Median | 95% Limit
HR
SVM 0.812 0.830 0.847
LogR 0.822 0.838 0.854
LR 0.808 0.827 0.846
POD
SVM 0.806 0.835 0.862
LogR 0.821 0.840 0.861
LR 0.786 0.813 0.838
FAR
SVM 0.146 0.165 0.184
LogR 0.127 0.152 0.180
LR 0.124 0.147 0.171
HSS
SVM 0.615 0.652 0.686
LogR 0.640 0.672 0.703
LR 0.611 0.650 0.688

5) CASE-BY-CASE PERFORMANCE ASSESSMENT

The first result, which was surprising owing to thereased lead time, was that

more cases were classified with 100% accuracylidiirgle methods at 48 hours lead

time (17 for SVMs, 31 for LogR, and 28 for LR). rF8VMs, roughly the same number
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of TOs and NTOs were classified with 100% accuradych showed that SVMs
increased in ability to classify NTOs by 48-houii$is was not the case for LogR or
LR, which classified both types equally at 24 aBehéurs. The worst cases were
classified best by SVM (6% correct), but these ltissuere only trivially better than
LogR (5% correct) and LR (4% correct). Since Lag@ssified the most cases with
100% accuracy, LogR was deemed the best metheBfbour classification of
outbreak type.

Table 17 compares the type of error for the bott@necases for each technique,
where the error definitions are consistent withsthprovided at 24-hours. In contrast
to 24-hours, the 48-hour results showed that “WR&rewas consistently responsible
for erroneous outbreak classification of thesedmotlO cases. Since statistical model
error was not as prevalent at 48-hours, the seledti covariates at 48-hours may have
been responsible for the better case-by-case sestudi8-hours. Of the covariates
selected at 48-hours, no measure of instabilityinelsded. This covariate, which was
seen to introduce error into the results at 24-#yauay have worsened case-by-case
performance results, since all 26 covariate contlana at 24-hours were considered in

the performance analysis.
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Table 17. Source of errors for the 14 cases teat wm the bottom 10 for each
statistical technique at 48-hours lead time.

Case WRF Error? | Statistical Model Error? | Which Technique?
010409 X LR, LogR, SVM
800712 X LR, SVM
700417 X LR, LogR, SVM
930507 X LR, LogR
891120 X LR, LogR, SVM
890521 X LR, LogR, SVM
730925 X LR, LogR, SVM
840607 X LogR, SVM
900416 X LR, LogR, SVM
990503 X LR, LogR, SVM
730526 X LR, LogR, SVM
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c) 72 Hour Results

Since only relatively little degradation of resultas found between 24 and 48
hours prior to the outbreak, an analysis at 72-puor to the outbreak was conducted.
The permutation testing covariate set includedfarént combination of six of the
same covariates used at 24- and 48-hours lead ®imee fewer covariates were used,
fewer model combinations (22) were tested at 72<hou

1) SVM CONTINGENCY AND CONFIDENCE LIMIT RESULTS

The SVM jackknife contingency statistic resultslfleal8) showed a larger drop-
off (exceeding 10%) of contingency statistics fritra values noted at 48-hours. The
best POD results were noted in model 13, which aed 0-3 km SREH when
classifying outbreak type. This result was surpgsince single covariates did not
classify well at shorter lead times. The initinhlysis also showed that culling 0-1 km
EHI produced lower FAR but also lower HSS. Assute 0-1 km EHI was rejected,
and a secondary analysis was conducted. The bestliccontingency results were
obtained through rejection of 0-1 km EHI and 0-3 8REH (model 18).

The boxplot results for SVM HR and POD (Figs. 38l 40) reveal large median
values of the statistics in models 13 and 18. H@wnenodel 13, which includes a
single covariate, produced significantly large I@®Rjch is undesirable. This large
IQR might not have been detected without a boxghatlysis, which could have lead
incorrectly to recommending model 13 for outbrelassification. Model 18, which
rejected 0-1 km EHI and 0-3 km SREH, shows thedsghR results in the jackknife
contingency results. The FAR (Fig. 41) is smalesh model 13, but model 13 shows

large IQR on the FAR results as well. Models 11.&,and 22 produce the best FAR
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results of those boxplots with small IQR. The lgfhmedian HSS results (Fig. 42) are
observed from model 18, implying that for SVMs, rabdl8 is the best covariate

combination to use.

Table 18. Contingency table results for SVMs. [&4h) represents the variables as
stated, while Table (b) removes the stated variabte0-1 km EHI.

Model # Variable(s) HR | POD| FAR | HSS | BIAS
1Al 0.669] 0.770] 0.363| 0.339] 1.210
2|No LCL 0.657] 0.729| 0.366{ 0.315] 1.151
3|No bulkshear (0-6 km) 0.668] 0.766] 0.363| 0.337] 1.203
4[No bulkshear (0-3 km) 0.652] 0.751]| 0.377{ 0.305] 1.205
5|No SREH (0-1 km) 0.670] 0.755| 0.358{ 0.341] 1.177
6|/No SREH (0-3 km) 0.675| 0.705] 0.339| 0.350] 1.067
7|No EHI (0-1 km) 0.706] 0.735| 0.309{ 0.413] 1.063
8|No Shear 0.657] 0.765]| 0.375[ 0.315] 1.223
9|No SREH 0.696] 0.727] 0.319{ 0.393] 1.067
10|Only LCL 0.650] 0.731]| 0.375[0.301] 1.169

11|Only bulkshear (0-3 km) ]0.698] 0.759] 0.327| 0.397] 1.128
12{Only bulkshear (0-6 km) [0.721|0.725| 0.285( 0.442| 1.014

13{Only SREH (0-1 km) 0.713] 0.819| 0.327( 0.427] 1.218
14[{Only SREH (0-3 km) 0.662| 0.781] 0.373| 0.325| 1.245
15{Only EHI (0-1 km) 0.616| 0.793| 0.418( 0.235| 1.362
16{Only SREH variables 0.636| 0.750| 0.393( 0.273| 1.235
17]|0Only shear variables 0.682] 0.758| 0.345( 0.365] 1.158
(a)
Model # |Variable(s) HR |POD |FAR [HSS [BIAS
18|No SREH (0-3 km) 0.738]|0.762]0.276( 0.476( 1.053

19(No bulkshear (0-3 km) 0.662| 0.702( 0.354| 0.324| 1.087
20[No bulkshear (0-6 km) 0.668] 0.693( 0.344] 0.336( 1.056
21{No SREH (0-1 km) 0.696]0.727(0.319] 0.393| 1.067
22|No LCL 0.679]0.754(0.348] 0.359( 1.156

(b)
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Fig. 40. Same as Fig. 39, but for POD.
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2) LOGR CONTINGENCY AND CONFIDENCE LIMIT RESULTS

The LogR results (Table 19) reveal the best HR4@®).and FAR (0.259) values
when only considering 0-6 km bulk shear. Thesaehre slightly better than the
SVM results, although their differences are likebt statistically significant. This
single covariate optimality is consistent with miotie classifying with the highest
POD for SVMs, but may be subject to large varigpiliThe highest probability of
detection values are obtained from culling the L(GI812). The best HSS values are
obtained from only using 0-6 km bulk shear (0.498)ich is consistent with FAR and
HR.

In the HR and POD boxplot results (Figs. 43 and Aadels 12 and 13 (median
overlaps the "8 quartile in model 12) clearly have the highest imedalues. However,
large variability associated with these two modiedsto their rejection. Numerous
models with smaller IQR values have high mediangi® and POD (models 7, 19,
and 20), and it was not possible to determine #st With any statistical confidence.
The FAR median values (Fig. 45) are lowest in metleb, seven, and 18, while the
HSS medians (Fig. 46) are highest in model seVdrese results indicate model seven,
which culls 0-1 km EHI, produces the best resutsafl contingency statistics and is
the best covariate combination for LogR. As was twith SVMs, the contingency
statistics at 72-hours worsen by 10-20% with LogRpared to 48-hours lead time, a

result that can be attributed to diminished WRFqgrerance with increased lead time.

91



Table 19. Same as Table 18, but for LogR.
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Model # Variable(s) HR | POD| FAR | HSS | BIAS
1Al 0.703| 0.773| 0.325( 0.407| 1.146
2|[No LCL 0.701] 0.812| 0.339( 0.403| 1.229
3|No bulkshear (0-6 km) 0.706| 0.771] 0.322(0.412] 1.137
4{No bulkshear (0-3 km) 0.709| 0.770] 0.317(0.419] 1.128
5[No SREH (0-1 km) 0.669| 0.722| 0.351(0.339] 1.113
6[No SREH (0-3 km) 0.729| 0.777] 0.295( 0.458] 1.102
7|No EHI (0-1 km) 0.734| 0.804| 0.298( 0.469| 1.146
8|No Shear 0.702]| 0.754] 0.320( 0.405| 1.109
9[No SREH 0.677] 0.724] 0.342| 0.355] 1.099
10{Only LCL 0.621] 0.595| 0.377( 0.241] 0.955
11]|Only bulkshear (0-3 km) [0.732]0.767| 0.287| 0.464] 1.076
12{Only bulkshear (0-6 km) |[0.748] 0.755| 0.259( 0.496| 1.019
13{Only SREH (0-1 km) 0.691| 0.732| 0.328( 0.382]| 1.088

14[{Only SREH (0-3 km) 0.676| 0.767]| 0.355( 0.353| 1.189

15{Only EHI (0-1 km) 0.615| 0.725| 0.410( 0.231] 1.229

16{Only SREH variables 0.700] 0.766] 0.327( 0.401| 1.137

17]|0Only shear variables 0.706] 0.717] 0.302| 0.413] 1.027
(@)

Model # |Variable(s) HR |POD [FAR [HSS |BIAS
18[No SREH (0-3 km) 0.727] 0.808| 0.308( 0.455| 1.167
19|No bulkshear (0-3 km) 0.731]0.777] 0.292| 0.462] 1.098
20|No bulkshear (0-6 km) 0.731]0.774] 0.291 0.462] 1.093
21|No SREH (0-1 km) 0.677| 0.724| 0.342( 0.355] 1.099
22|No LCL 0.675| 0.774| 0.357( 0.352| 1.204

(b)
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Fig. 43. Same as Fig. 39, but for LogR.
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Fig. 44. Same as Fig. 43, but for POD.
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Fig. 46. Same as Fig. 43, but for HSS.
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3) LR CONTINGENCY AND CONFIDENCE LIMIT RESULTS

The 72-hour LR jackknife contingency results (Ta20@ are similar to the LogR or
SVM results. The best HR results are noted whéynamsidering 0-3 km bulk shear
(0.735). Rejecting only the LCL produced the hggHeOD of all three methods
(0.844), while the best FAR results (0.284) for \wBre obtained when only
considering 0-6 km bulk shear. The best 72-hourésrlts for HSS were seen when
0-1 km EHI was rejected (0.614). In essence, nhausecovariate combinations
produced the best contingency statistics for LR.

The boxplot results provided additional insight@she best covariate combination
or combinations for LR. The HR results (Fig. 4@ywed the highest median value
with model 13, which was consistent with SVM an@jRo This model had large IQR
though, so it was not selected as the best cogar@hbination. Many combinations
with low IQR had high median HR and POD (Fig. 48ues, including 7, 18, 19, and
20. The FAR results (Fig. 50) revealed the lowestlians associated with small IQR
from models 2, 7, 18, and 22. Model 7 produceesapHSS results (Fig. 50) as well.
As a result, the best covariate combination foratR2-hours lead time was model 7.
The results at 72-hours degraded from those abdgstfor LR, but the magnitude of
degradation was the smallest for LR versus ther ¢the methods (only 10-15%).
Thus, as lead time increased, simpler statisticalets were able to adjust to the more

suspect WRF input.
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Table 20. Same as Table 18, but for LR.
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Model # Variable(s) HR | POD| FAR [ HSS [ BIAS
1Al 0.697] 0.777] 0.334] 0.395] 1.166
2|No LCL 0.690] 0.844]| 0.358{ 0.382] 1.313
3[No bulkshear (0-6 km) 0.700] 0.776] 0.330( 0.400] 1.158
4[No bulkshear (0-3 km) 0.704] 0.778] 0.325] 0.410] 1.154
5|No SREH (0-1 km) 0.669] 0.739] 0.355{ 0.340] 1.146
6|/No SREH (0-3 km) 0.723] 0.790] 0.307{ 0.447] 1.140
7|No EHI (0-1 km) 0.741] 0.833| 0.300{ 0.482] 1.189
8|No Shear 0.703] 0.776] 0.326{ 0.407] 1.151
9|No SREH 0.685] 0.743| 0.338{ 0.370] 1.122
10|Only LCL 0.618] 0.584| 0.378| 0.236] 0.939
11|Only bulkshear (0-3 km) |0.735] 0.774| 0.286] 0.470] 1.084
12]0Only bulkshear (0-6 km) |[0.733] 0.762| 0.284| 0.466| 1.064
13|Only SREH (0-1 km) 0.694] 0.777] 0.337{0.390] 1.171
14|Only SREH (0-3 km) 0.694] 0.814] 0.346| 0.390] 1.245
15|Only EHI (0-1 km) 0.611] 0.736] 0.415{ 0.223] 1.259
16|Only SREH variables 0.727]0.844] 0.319( 0.454] 1.239
17]|Only shear variables 0.712] 0.729] 0.299( 0.424( 1.041

(@)

Model # |Variable(s) HR |POD [FAR |HSS |BIAS
18|No SREH (0-3 km) 0.716] 0.801]| 0.319{ 0.433] 1.177
19|No bulkshear (0-3 km) 0.719] 0.786] 0.311( 0.438] 1.141
20|No bulkshear (0-6 km) 0.715]0.778] 0.313(0.431] 1.132
21{No SREH (0-1 km) 0.685] 0.743| 0.338[ 0.370] 1.122
22{No LCL 0.699] 0.815| 0.342{ 0.399] 1.238

(b)
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Fig. 47. Same as Fig. 39, but for LR.
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Fig. 48. Same as Fig. 47, but for POD.
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Fig. 49. Same as Fig. 47, but for FAR.
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Fig. 50. Same as Fig. 47, but for HSS.
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4) SYNTHESIS

In order to determine which statistical technigeef@rmed best at 72-hours, the

results from the best covariate combination fohaaethod were compared. One

optimal set of covariates was obtained for eacthotet(models 18 for SVM, seven for

LogR and LR), which was a good result. The resaflthe statistical technique

comparison (Table 21) show LR as statistically siopéo SVM when regarding FAR,

indicating that SVM is not the superior method 2thours lead time. All other

contingency statistics are tied with all three roet) so either LogR or LR is the best

method to use for 72-hour classification.

5% Limit | Median | 95% Limit
HR
SVM 0.720 0.738 0.755
LogR 0.714 0.734 0.751
LR 0.719 0.740 0.762
POD
SVM 0.691 0.718 0.745
LogR 0.677 0.703 0.728
LR 0.673 0.700 0.726
FAR
SVM 0.218 0.258 0.299
LogR 0.174 0.199 0.224
LR 0.150 0.174 0.198
HSS
SVM 0.416 0.455 0.491
LogR 0.431 0.469 0.507
LR 0.444 0.484 0.525

Table 21. Same as Table 10, but for 72-hourstiezsl
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5) CASE-BY-CASE PERFORMANCE ASSESSMENT

At 72-hours, SVM only classified seven outbreakesgserfectly (two TOs and five
NTOs severe), which is a significant degradatiamfed8-hours (17 correct) and 24-
hours (nine correct). The LogR method discrimiddt® cases with 100% accuracy at
72-hours, consistent with results at 24-hours lgifscantly worse than results at 48
hours (31 classified with 100% accuracy). The EBuits classified 19 cases with
100% accuracy, consistent with 24-hours but a diagi@n of the 48-hour results. Of
the cases classified with 100% accuracy by thestteehniques, less than 40% were
TOs. This shows that the difficulty of discrimiimag TOs at 72-hours is larger than
that at 48-hours (about a 50-50 spread) and 24sHowre TOs were classified with
100% accuracy). The bottom 10 cases for each metkoe mostly TOs as well (over
70%). Clearly, as lead time increases, the aliit§iscriminate TOs deteriorates.
SVM continues its tendency to classify the bottdircadses best (8% accuracy versus
2% accuracy for both LogR and LR), although thffedence is small. Overall,
multiple methods were needed to produce the bssliseat 72-hours.

Table 23 shows the breakdown of “WRF error” verstasistical model error for the
bottom 10 cases of each statistical technique.tH®error analysis, “WRF error”
continues to be the primary source for classiftzafailure of the statistical techniques,.
However, more statistical model error appeare®dtqurs than at 48-hours, implying
that statistical classification performance degsadem 48-hours to 72-hours, an

implication confirmed by the contingency statistics
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Table 22. Source of errors for the 14 cases teat in the bottom 10 for each
statistical technique at 72-hours lead time.

Case WRF Error? | Statistical Model Error? | Which Technique?
700417 X SVM
730526 X LR, LogR
730527 X LR, LogR, SVM
800712 X LR, LogR
840607 X LR, LogR
850531 X LR, LogR, SVM
890521 X LR, LogR
900416 X LR, LogR
920615 X LR, LogR, SVM
930507 X LR, LogR, SVM
950527 X SVM
990408 X LR, SVM
990503 X SVM
010409 X SVM
030506 X LogR, SVM
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4. COMPOSITERESULTS

To complement the aforementioned objective disecration results, synoptic
storm types of TOs and NTOs were created usingigtbods described in Chapter
2. A cluster analysis of the principal componéaglings revealed two groupings
of loadings for each outbreak type, indicating starm types. Storm type fields
were created over a domain encompassing the UStegds at the 17 NCEP/NCAR
reanalysis vertical levels.

In order to determine objectively those regions igttbe storm types exhibit
different features, permutation testing was corefiicin the raw case data for the
different events within each cluster following tinethod described in Chapter 2.
Fields ofp-values resulting from the permutation testing wesed to assess
regions of significant difference in the differeatv fields. Examples of the
composites are presented to complement the peiiorutasting discussion. In
order to assess the low-level and mid-level difiees or similarities between the
storm types, gridpoint permutation testing was cated on the 850 mb and 500
mb height fields.

a) TOs

Two distinct storm types (Fig. 51) resulted frora thuster analysis of the TO
loadings at 24-hours lead time. The cluster aealys other lead times resulted in
very similar clusters to those obtained at 24-hasw24-hours is presented. The
corresponding dendrogram (Fig. 52) shows two miaisters separated by a
Euclidian distance that is larger than 0.5, suppothe conclusion of two distinct

TO map types.
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Fig. 51. Scatterplot of PC1 loadings versus P@dilwgs for the 50 TO cases at 24-
hours. The triangles represent TO type 1, andith&ses represent type 2. The
Fig. illustrates the clustering of the two stormdyg and the separation between

them at 24-hours.
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Fig. 52. Dendrogram of Euclidian distance of P&diags for TOs at 24-hours lead
time. The Fig. suggests two main branches sparrongthe merge at the 0.5
Euclidian distance level.

The low-level features for both TO types showeddaegions of difference
significant to gp-value of 0.01 (Fig. 53c). The two 850 mb compess{fFigs. 53a
and b) both show some similar synoptic charactesigt.e. trough over the western
portion of the domain, thermal gradient deforminguad the 850 mb trough),
although the magnitudes of these characteristeslaghtly different. The 850 mb
permutation fields suggest that statistically digant differences in the two map
types exist in numerous locations. These locatammear similar in a visual
inspection in the two map types (and these maps aaorrelation of 0.864).

Since the fields are similar spatially, magnitud&edences must have resulted in

the regions of lowp-values.
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Fig. 53. The 850 mb TO1 and TO2 map types (pamalsd b) and the permutation
testing results, showing differences between thenpanels a and b, solid lines are
height lines, dashed lines are isotherms, anddibttes are isohumes. In panel c,
white areas indicate > 0.1, light gray areas represgrt 0.1, dark gray areas
represenp < 0.05, and black areas repregert0.01.
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The mid-level analyses (Fig. 54) support the reduttm the low-level
analyses, showing some regions of significant difiee. As was true at low-
levels, the patterns of the 500 mb heights arelyigirrelated (0.931). Since the
patterns are highly correlated and the permutdésting is showing numerous
regions of lowp-values, the differences between the two map typest be in
magnitude. Visual inspection (confirmed by compgtihe difference of the
gridpoint magnitudes between the two map typesshoivn) of the two map types
shows that in the regions that are synopticallivadi.e. near the trough over the
western third of the domain, near the ridge ingastern portion of the domain), the
differences suggest a more curved trough-ridgeesygtower heights in the trough
and higher heights in the ridge). However, theserhap types, while significantly
different in terms of magnitude, are not easilyidguished by inspection since the

patterns appear so similar.
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Fig. 54. Same as Fig. 53, but for TO2.
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In order to assess the similarities and differefsds/een the two TO types
further, the two TO cases nearest the cluster idigitine in Fig. 51 (denoted herein
as “marginal cases”) and the two cases farthest the line in the different groups
(known herein as “extreme cases”) are consideSce composite analyses are
essentially mean fields, small details unique thesutbreak are damped out by the
mean. Thus, the general patterns of these casesi@pared to the composites.

The two marginal events (27 March 1994 for TO1 aAndhpril 1970 for TO2 —
Fig. 55) have numerous similar synoptic charadiesigi.e. the cyclone over
eastern Canada, a weak cyclone in the Great Bgsindre poorly correlated
(0.671). This poor correlation implies that thatsgd differences between these
two cases are significant, which contrasts the @it results that reveal
magnitude differences are the main discrepancy Tl outbreak is much more
synoptically dynamic (tighter gradients, strongew{level flow), which is reversed
from what is observed in the composites (i.e. TORightly more synoptically
dynamic in the composites). A forecaster analytigge two marginal cases might
have classified them as either map type, suppottieig close Euclidian distance in

the cluster analysis.
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Fig. 55. 850 mb plots from 15 March 1982 (panedra) 17 April 1970 (panel b),
providing the “marginal”’ TO1 (a) and TO2 (b) cas&lid lines are isohypses,
dashed lines are isotherms, and dotted lines aneimses.
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Numerous visual differences are apparent in themd events (1 March 1997
for TO1 and 31 May 1985 for TO2 — Fig 56); yet ytlaee more highly correlated
than the marginal cases (0.787). The higher @irosl in these extreme cases
indicates that their large Euclidian distancekslly a result of the significant
magnitude differences between the two events. hEight gradient in the TO1 case
over the East that is significantly tighter thaa tradient observed in the TO2
event is an example of these magnitude differenesice, these two events
exhibit the differences which are observed in th@posites, an expected result
owing to the large Euclidian distance between trents. Overall, the spatial
similarities of the two TO types do not allow far @asy discrimination between the
two storm types, in spite of the magnitude diffeesnin the height fields that are

suggested by the permutation testing and confirbyettie two extreme events.
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Fig. 56. Same as Fig. 56, but for two extreme t&s/#om the cluster analysis. The
1 March 1997 TO (panel a) was used to illustratexdreme TO1 outbreak, while
the 31 May 1985 (panel b) outbreak was used to dstraie an extreme TO2

outbreak.
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b) NTOs

Two NTO types were specified by the cluster anal{Sigs. 57 and 58) as well.
Seasonal biases in the NTO case set were resopvibe [eluster analysis, as all
summer NTOs but two (06 June 1985 and 07 June I#86ped into the first
NTO type (hereafter NTO1) and all non-summer NTOisdme (11 September
2000) clustered into the second NTO type (here&fféd2). The scatterplot of the
24-hour PC loadings (Fig. 57) shows separatiore(less pronounced than with
the 24-hour TO cluster analysis) between the twoigs, as was the case with TOs,
and are consistent with the dendrogram (Fig. 58)lte for NTOs. The Euclidian
distance between these two NTO groups (> 0.5) arget than what was observed

with TOs (~0.5).
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Fig. 57. Same as Fig. 51, but for NTOs at 24-hours

112



0.4

0.3
|

0.2

0.1

0.0
|

Fig. 58. Same as Fig. 52, but for NTOs at 24-hours

The two NTO 850 mb map types (Fig. 59) exhibit s@mnelar synoptic
characteristics (thermal maximum over the westeind bf the domain as well as a
weak trough, weak synoptic flow throughout the diomia both map types), but
their correlation is considerably lower than waseed with TOs (0.538). This
result implies some spatial differences betweernwloeNTO map types exists,
which is a reasonable assessment from analyzingptigosite fields (Figs. 59a
and b). The permutation testing results (Fig. @cifirm these implications, since
p-values smaller than 0.01 are present over alalaumall portion of the southern

quarter of the domain.
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Same as Fig. 53, but for NTOL1.

114



Mid-level features (Fig. 60) appear similar as walthough the height gradient
is slightly tighter over the center of the domanRTO1. The correlation between
these map types is much higher than was obseng&sDanb (0.717) but is still
considerably lower than those observed for TOsusThome noticeable spatial
differences in the two NTO types should exist aredraanifest in the tighter height
gradient in NTO1. The permutation testing fieldg(F60c) appears nearly identical
to that at 850 mb, which is expected since thehteiagnitudes are nearly constant
across the southern quarter of both the 850 mtb@8dnb composite domains.
These permutation test results and low correlatsuggest that some large
differences exist between these two storm typegwdre apparent in the different

height gradients and height magnitudes in NTO1NRG?2.
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Fig. 60. Same as Fig. 59, but for NTOZ2.
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As done with TO types, NTO cases nearest the sgpatme in Fig. 57
(marginal cases) and those which are the mosindig&atreme cases) are
compared. The two marginal cases selected (201R8@for NTO1, 21 May 1989
for NTO2 — Fig. 61) have numerous synoptic simiiesi (i.e. closed low over
central Canada, second low in the eastern thitHeolomain) and are marginally
correlated (0.759). Since both magnitude and alpdifferences are present in the
two storm types, it is expected that these two maftgases be similar in
magnitude and orientation since their Euclidiartatise is so small (0.162), and the

correlation results and visual inspection of tie¢éd confirms this expectation.
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Fig. 61. 850 mb fields for the 20 June 1997 NT@ngl a) and the 21 May 1989
outbreak (panel b) over the central Plains. Tloases are examples of marginal
outbreaks.
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The extreme events (6 August 1985 for NTO1 and p6l A994 for NTO2 -
Fig. 62), which have a large Euclidian distanc830), are more strongly
correlated than the marginal events (correlatiod.898). Since the orientations of
these two fields are similar, as indicated by thelatively high correlation,
magnitude differences (which are present on tHdgjeote the shortwave over the
Great Lakes as an example) must have led to tirgje [Euclidian distance. Thus,
as the Euclidian distance between NTO cases ireseasgnitudes of the synoptic
features in the storm types become more sepasatedeas the orientations of the

fields change only slightly.
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Fig. 62. 850 mb plots of the 6 August 1985 NTOn@da) and the 10 April 1994
NTO (panel b) used to illustrate the extreme cé&®ses the NTO cluster analysis.
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c) Outbreak Type Synthesis

Since one of the main goals of this study is tdirgsiish between TOs and
NTOs, an inter-comparison of these four map typeseeded. Thus, permutation
testing on the four possible combinations of theosites (i.e. NTO1 and TO1,
NTO1 and TO2, NTO2 and TO1, and NTO2 and TO2 —&3).was conducted to
determine if these composites showed statistisadiyificant differences. Itis
apparent from this permutation testing that alr foembinations have noticeable
similarities. Over 90% of the permutation fields aignificant to a-value less
than 0.01, except for the extreme southern podfeach domain. These non-
significant regions represent the tropics, whictdte remain near mean conditions
throughout the year (so no composite differencesldvbe apparent in these
regions).

The correlations between NTO1 and both TO1 and d@2early identical
(0.743 and 0.754, respectively), which is an exgeoesult since the two TO types
are similarly oriented but have different magnitsidénterestingly, the NTO2
composite has a strong negative correlation with B®1 and TO2 (-0.827 and
-0.835, respectively), which again shows the sinatéentation of the two TO
types. This negative correlation is not surprisgigce the key synoptic features in
NTO2 are consistently west of those observed imtheypes, and instead some
weak ridging exists in NTO2 where the significambigwave trough resides in the
TO1 and TO2 composites. Overall, similar oriewtasi of the four map types

derived from the synoptic storm typing are noted,large magnitude differences
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in the different composites lead to statisticaigngficant differences between the

TO and NTO composites and allow for their discriation.
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Fig. 63. P-value plots for the four inter-map type comparsdescribed above.
Panel (a) represents the comparison of TO1 and Np&tel (b) represents the
comparison of TO2 and NTO1, panel (c) represemsdmparison of TO1 and
NTO2, and panel (d) represents the comparison & di@ NTO?2.
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5. SUMMARY AND CONCLUSIONS

a) Summary

On a yearly basis, TOs and NTOs affect detrimgntaimerous lives and cause
extensive property damage each year. Previousigies have considered individual
outbreak types, but no work has objectively ingeggd the differences between TOs
and NTOs in an effort to determine the ability tecdminate between the two types.
Thus, a need for advancing our knowledge of outbpeadictability exists, and this
need motivates the current work. One key hyposhefsihe current study is that the
synoptic signal would provide an unknown degredisérimination ability between
outbreak types. To test this hypothesis, syncgitale data were used as input for two
types of statistical analyses, a statistical objeatlassification, and synoptic storm
typing. Large discrimination ability was achieveglconducting these analyses on the
synoptic scale input data, setting a baselineuturé work on this topic.

1) OBJECTIVE METHODOLOGY AND RESULTS SUMMARY

Statistical modeling of the two outbreak types wesomplished by simulating the
top 100 TO and NTO cases (50 of each outbreak fype) D06 using the WRF model.
Three lead times were considered in the objectiserichination analysis (24-, 48-, and
72-hours before outbreak). These lead times wersen to determine the point prior
to an outbreak that objective discrimination siguaifitly worsens. WRF was
initialized with the NCEP/NCAR reanalysis data, ethivere available at a 2.5° by 2.5°
latitude-longitude grid spacing and included 17ieal levels. This dataset was
selected owing to its synoptic-scale spacing, siheesynoptic-scale signal’s ability to

distinguish outbreak type was one question beiagstigated. The WRF simulations
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used a nested grid approach, with 5 nests beiteptés52, 54, 18, 6 and 2 km grid
spacing). Seventeen commonly used severe weathmnpters or covariates, were
computed from the domain 3 WRF output for use endfatistical models. Domain 3
was selected to provide a large number of gridgahieach covariate for each case.
Since the domain 3 output considered thousandgdgaints, a subdomain of 21 X 21
gridpoints centered on the given outbreak was nbthfrom domain 3. The data on
these subdomains was used in permutation testimghvallowed for the reduction of
covariates to those which discriminated TOs and 8l®@timally. The permutation
test determines if the means of two data distrimgtiare different; furthermore, it does
not require that the initial distributions of thatd be known. P-values (the probability
that the null hypothesid,, which says that the means of the two distributenesthe
same, should not be rejectéd)m the permutation testing were computed at each
domain gridpoint of the covariate. Low p-valuesresponded to larger differences
between outbreak types of the particular covariatech was desirable. After this
testing, a smaller subset of covariates (6 or &) mgtained for the statistical modeling.
Since statistical models can be subject to erroestd multiplicity in the data, a
method of reduction from the gridded covariatedeto individual variables was
accomplished. A PCA was applied to these dataffamdubsequent rejection of
higher-order eigenvalues thought to be associaitdnwise led to less than 7 PCs
being retained for each PCA. The associated Pf@seeere used as input into
statistical models. Three statistical models viexmed and tested using these PC
scores, including a linear regression model, sstagregression model, and a support

vector machine. In order to obtain the best sebwfriates from the base sets of 6 or 7
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(depending on lead time), a backward eliminationaMariates was conducted for each
statistical model. This backward elimination methmproved results, and provided up
to 26 covariate combinations for each lead timectvivere trained and tested with the
statistical models. The statistical models yieldiedses, either a 0 fora NTO or a 1 for
a TO. A contingency table was created from thaltieg classes, and contingency
statistics were computed from the statistical tegl forecasts, allowing the results to
be objectively ranked in terms of their abilitydiscriminate outbreak type. A
jackknifing cross-validation procedure was appliethe training and testing of each
statistical technique, providing a set of 99 stiatié models for each method and 99
sets of results. The 99 result sets were boofsto determine their distribution.
Finally, the performance of the statistical methodsach individual case was
assessed, providing sets of cases which weremisaied poorly. Reasons for the
poor classification of these cases were investigaRoorly classified cases were
classified as subject to “WRF error” (the WRF anasphere produced conditions
dissimilar from the eventual outbreak) or statedtimodel error (the environment was
conducive for a type of outbreak, but the statdtinodels classified it incorrectly).

At 24-hours lead time, the SVM results for POD, FARd HSS are statistically
significantly superior to the other two methods &0% confidence. Rejecting two
instability covariates, (the product of CAPE andl Rm shear and surface based CIN)
from the initial set of 7 covariates provided thestclassification in all three methods.
This result supports the conclusion that instabpdrameters classify outbreak type
poorly (although the computation of the instabifgrameters may be suspect due to

coarse vertical grid spacing from the WRF outpuhmboundary layer — Table 3).
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POD values of 0.9 and FAR values of 0.15 to 0.2vemhieved with SVM, and
median values were slightly lower than these foyj@nd LR. The boxplot results for
this covariate combination support the contingamsylts, as a small IQR and high
median from SVM for the four contingency statisifbg rate, POD, FAR, and HSS)
tested was observed.

The classification evaluation indices at 48-houdsribt deteriorate greatly
(5-10% - Table 16 in Chapter 3), and the resultiisgributions had the largest medians
and smallest IQRs for LogR. However, the confideloits of SVM and LogR were
within the 90% confidence limit, so neither metheaks proven superior. POD values
of 0.8 and FAR values of 0.2 to 0.25 were notechfedl three statistical techniques,
which were significant for a 48-hour lead time siéisation.

LR results were better at 72-hours than with tieiotwo techniques, with POD’s
of 0.75 to 0.8 and FAR results of 0.25 to 0.3, whiere still significant at 72-hours
lead time. Additionally, the FAR from SVM was sséically inferior to the other two
methods, so SVM was rejected at 72-hours. Theesgbd outbreak classification
observed at 72-hours suggested further lead timadd be investigated in future work
to determine at which temporal interval the clasatfon ability significantly drops off.

To demonstrate the need for additional time intsriraa future analysis, the POD
and FAR performance with lead time for SVM is preed below (Fig. 64). Itis
apparent that these contingency statistics do natem significantly between 24- and
48-hours since the medians remain within the 90Bfidence limit. However, by 72-
hours, the FAR and POD are both statistically infeio a 90% confidence with

respect to the 24-hour and 48-hour values. Hesmrae evidence of a significant drop-
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off in performance is present by 72-hours, andstigating another 24 to 48 hours
prior to the outbreak may provide a more signiftadnop-off of the contingency
statistics. Therefore, further investigation ofliéidnal lead times is needed to
determine how far in advance the capability to easfully discriminate outbreak type

exists.
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Fig. 64. Median and confidence intervals of POD BAR with lead time for SVMs.
Panel (a) represents POD, and panel (b) repreBaRs
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In addition to the contingency analysis, an assesswf the performance of the
statistical techniques on each case was condu&iach case was tested 15 times in the
jackknife methodology, and over 20 covariate coratiams were considered. Thus, a
percentage that each technique classified eaclhcoasetly was formulated. At 24
hour leads, LogR and LR classified the most casgsM0% accuracy (17 and 18,
respectively), while SVM classified 9 cases witld¥accuracy. At 48-hours, the
number of cases classified with 100% accuracy nelaibled, but by 72-hours the
results were similar to those at 24-hours. Theeim®e of 100% accurately classified
cases at 48-hours is an unexpected result attdlatde covariate set chosen at 48-
hours, which contained no instability measure.

At 24-hours, a larger percentage of the worst dladscases (the bottom 10
performing cases for each statistical techniqueeauth lead time) were classified
correctly with SVM (24%) versus LogR (14%) and L9R4). This result supports
SVM as the best technique at 24-hours, since périgassified cases are the “classic”
outbreak scenarios that forecasters will likelyabée to classify correctly. At 48- and
72- hours, no statistical technique correctly dfeesba significantly larger percentage
of these marginal cases. A subjective analyidiseosource for the classification
errors was conducted, and the marginal casesassifttd as either “WRF” error or
statistical model error (defined in Chapter 3).okitedge of the different error types
allows for further fine tuning of the statisticabdels or the WRF to improve results.
The “WRF” errors increased with increasing leadetinvhich was expected since WRF
forecasts degrade with increasing lead time. Siedi model error was lowest at 48-

hours, a result attributed to the covariate saladcdi this lead time.
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2) COMPOSITING METHODOLOGY AND RESULTS SUMMARY

In addition to the objective statistical discrimtioa of outbreak type, a compositing
methodology was used to reveal physical featuréseobutbreak types. The composite
fields utilized five raw NCEP/NCAR reanalysis matgogical variables (temperature,
height, relative humidityy andvwind). The composites were created using a PCA.
Since the NCEP/NCAR reanalysis data reside ontadatlongitude grid, converging
longitude lines with increased latitude artificjailhflated the correlation values at
northern latitudes. A Fibonaaci grid, which prasdequally spaced gridpoints in the
latitudinal and longitudinal directions, was usecliminate this bias. An O-mode
principal component analysis (one in which the eatron matrix is computed along
the observation (case) axis) was conducted ontéinelardized (mean removed) input
data matrix.

Once the PCA was complete, a cluster analysiseofd@sulting PC loadings was
conducted for each individual outbreak to deternhioe the individual cases grouped
together. Two main groups resulted from the clustalysis for both TOs and NTOs.
The mean of the PC loadings from these groups wapuated and squared, which
provided a measure of the percentage of the disitito described by the PC, and these
served as weights for the PC scores in the stopmdyeation. The cluster analyses
were visualized using scatterplots of the PC lagglend dendrograms (see Chapter 4).

To assess the differences between the two map typeach outbreak type,
gridpoint permutation testing using the same meti®@hapter 2 was conducted on the
two map types at different vertical levels. The d@nposites had several individual

regions of statistical significance which correspesh with the individual areas of
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enhanced synoptic activity (i.e. near troughs aages). The correlations between the
two TO map types were larger than 0.9, suggeshien brientations were virtually
indistinguishable. It was concluded that magnitdifierences between the two TO
map types in the regions of enhanced synopticiaictad to the lowp-values in these
regions, and these magnitude differences were ®ide visual inspection of the TO
composites. Overall, a slightly deeper compositdone and more highly curved
troughs and ridges were noted in the TO2 type gaifsei TO1 type.

The two NTO types were not as highly correlateldatlevels (near 0.5) as the two
TO types, but at mid-levels the NTOs showed sinatégntations (correlation over
0.75). The permutation testing showed the entreain, except for the tropics in the
extreme southern portion of the permutation fisignificant top < 0.01. Since
moderate correlations were present, these signifatiEferences throughout the entire
field were largely attributed to magnitude diffecen, as were observed in the TO
composites. This attribution was confirmed by grnialg marginal and extreme events,
both of which were highly correlated, but the maagicases had similar magnitudes
and the extreme cases had vastly different magestuth essence, the increased
Euclidian distance between cases resulted in langgmnitude differences without
significantly changing the orientations of the lnifields.

In comparing TOs to NTOs, thevalue fields were significant to 0.01 everywhere
but in the tropics for all possible TO and NTO ntype combinations. The
correlations between an individual NTO type andtiine TO types were nearly
identical, further supporting the conclusion of gamty oriented TO fields. One

interesting finding revealed a highly negative etation between NTO2 and the two
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TO types, which was consistent with the placeméstgmificant synoptic features in
these composites (i.e. regions of low heights il DOTO2 were regions of high
heights in NTO2). Overall though, the high cortielas between all of these
composites suggest that large magnitude diffeseseparate the individual map types,
and that increased Euclidian distance between ctasa®sult of increased magnitude
difference, not of significantly different orieniats of the case height fields. Both of
these statistical analyses provided a substamtialat of classification capability
between TOs and NTOs, accomplishing the primarysgafethis study.

b) Conclusions

The goal of this work was to use strictly objeetmethods to discriminate TOs
from NTOs. One hypothesis tested herein was beasynoptic-scale signal provided
information useful in distinguishing outbreak typBwo statistical analyses were used
to quantitatively assess these goals, includirtgtésscal objective classification and
synoptic storm typing. This study successfullyeleped methods which were used to
discriminate outbreak type objectively, allowing &zlditional outbreak scenarios to be
considered in future work.

As is the case in most research endeavors, ne@argsquestions arise from the
results which can be addressed in future studiég. seasonal dependence of the
results of the compositing suggest the statistieasification results may be artificially
inflated (since the summertime NTO is distinctlffetient from the spring TO and the
spring NTO); hence, it is important to remove geasonal dependence by analyzing
spring NTOs when comparing spring TOs. Hence,taufdil spring cases should be

added to the case set to address this problem.
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Statistical technique errors observed from thessiedl classification results can be
improved by further training the statistical modefsless ideal cases. Since this work
was conducted on the top 50 of each outbreak typaerous cases which are not
distinctly one type or another could fall into @dhcategory of “marginal” outbreaks.
Classification of these marginal outbreaks from B@d NTOs could be attempted in
future work, as well as attempting to classify rases (those in which no outbreak
occurs). A larger case set will yield more rolemhposite fields and objective
discrimination results as well, which is importénther developing the ability to
classify between TOs and NTOs.

Forecast applications of this classification metkbduld be investigated, as these
methods can provide powerful tools for forecasiefzoviding outbreak type
classification with a substantial lead time. Sonethod of converting numerical
model anomaly patterns into the composite fieldsywéng them to be compared
objectively for forecasters, should be consideréde composite fields could be used
in a data assimilation package to support the nigalenodel in simulation of
outbreaks. The statistical classification methsltsuld be modified so that they can
serve as an operational forecast tool by the SRrediction Center (SPC). An
algorithm which takes covariates output from a nucaésimulation could use the
statistical classification methods to warn SPCdasters of a looming outbreak type.
If SVMs are used, their training can be modifiedtput a probability of a given
outbreak type, as opposed to one class or anofhes.would be useful in supporting
the issuing of convective outlooks by the SPC,esihevould provide another idea as to

the eventual outbreak type of the given day. twdedge of outbreak type exists with
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some certainty up to 72-hours in advance, forecastn warn the public to take steps
to prepare for an impending outbreak. Future sttt this area will be challenging, as
the current study assumes that an outbreak willrocé/hen adapting these ideas to a
forecast application, it will not be possible tamknin advance (besides an educated
guess) whether an outbreak will even develop. #althlly, the probability of a

tornado outbreak on any given day is very smalldapting this problem to include

null cases will prove to be difficult. Overall glpresent study shows that a large ability
to discriminate outbreak type exists, and thes@ltieesan be applied to future studies to
improve the overall understanding of these dangeevents, as well as the ability to

forecast the outbreaks.
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APPENDIX A: CASE LIST

Table Al. List of 50 severe weather outbreaks uséage study. The first column
represents the date in yymmdd format, while thers@¢@nd third columns are the
subjectively determined outbreak centers for eathreak.

Date Lat Lon
020615 35.5 -100
931012 33 -99
000721 36.5 -99
870617 38.5 -98.5
810508 33.5 -98
850512 35.5 -98
900416 36 -97
800806 46.5 -96.5
940410 36.5 -96
990522 36.5 -96
890521 37 -96
920704 39 -96
850806 40 -96
020816 43 -96
830829 45.5 -96
950725 37 -95
010414 37.5 -95
860801 36 -94.5
010614 35.5 -93.5
970620 41.5 -93.5
960518 45 -93
820608 39.5 -92.5
000911 41 -91.5
830719 44 -90.5
850704 40.5 -89.5
960505 37.5 -88
820803 44 -88
870705 37.5 -87.5
800702 38 -87.5
810428 40.5 -86
890805 39 -85
860506 41 -85
030707 41.5 -85
980721 42 -85
030502 33.5 -84.5
800708 39.5 -84.5
850607 35 -83.5
800705 40.5 -83.5
020502 36 -83
800712 40.5 -83
850709 41 -83
830704 41 -82.5
850710 36 -81.5
850605 36 -81
010409 40.5 -81
850604 35.5 -80.5
950715 41 -80
800716 40.5 -78.5
891120 41 -75.5
850624 41 -74.5
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Table A2. Same as Table Al, but for the tornadbreaks.

Day Lat Lon
700417 35 -102
930507 39.5 -98.5
790410 34 -98
920615 39.5 -98
990503 36 -97.5
910426 37.5 -97.5
940426 35 -97
900313 38.5 -97
730925 40 -96.5
930607 44 -96.5
740608 36 -96
840426 39.5 -95.5
920616 44 -95.5
990504 35 -95
820315 37.5 -95
770504 42 -95
000423 32.5 -94
820402 34 -94
881115 36.5 -94
950527 41.5 -94
840607 43 -94
800407 35 -92.5
990408 40 -92.5
970301 35 -92
990121 35 -92
760329 35.5 -92
711214 36 -92
011123 33.5 -91.5
880508 41.5 -91.5
921121 31.5 -90.5
710221 33.5 -90.5
010224 34 -90.5
030510 40.5 -90.5
730526 36 -90
030504 36 -90
030506 37 -89
960419 38.5 -89
760320 39.5 -87.5
011124 34.5 -87
950518 35.5 -86
980416 36 -86
900602 39 -86
940327 34.5 -85
021110 36 -85
740403 37.5 -85
730527 35 -83
921122 34 -82
850531 41.5 -79.5
840328 34.5 -79
980531 42 -75
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APPENDIX B: DESCRIPTION OF THE COVARIATES
B.1 Surface Based Convective Available Potential Energy (CAPE)

A measure of thermodynamic instability is one e8akingredient to severe
thunderstorm development (Stensrud et al. 199Ahslahd Doswell 1992, others).
Many severe weather studies have used CAPE assureed instability, including
Brooks et al. (1994) which analyzed CAPE in mesleseavironments associated
with severe weather and tornadoes, and Koch athéth (1998) used CAPE to
describe convective instability associated wittalrPSunday TO in the Southeast.
CAPE measures positive buoyancy of air parcel#@ainator of instability, and is

defined as:

CAPE=g Ji:%jwdz (B.1)

where 6(z) represents the potential temperature as a pawah@ds a moist adiabat,

0 (2) represents the environmental potential temperatsigefunction of height,

LFC represents the level of free convection (sedial), and EL represents the
equilibrium level, which is the level at which asdeng parcels become negatively
buoyant (parcel potential temperature is less #tarospheric potential
temperature). The computation of CAPE from the VéRRulation requires
vertically stacked gridpoints, and a vertical ggmhcing of 31 levels (default for
WRF) does not provide a dense vertical grid focdmputation. Thus,
computations of CAPE may be subject to errors fiange vertical grid spacing.

Units of CAPE are J kY
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B.2 Surface Based Convective Inhibition (CIN)
In most severe weather environments, some meatlowe-level stability is
available to inhibit the formation of convectiomhis is known in the literature as

CIN (Markowski 2002), and is defined in the AMS ggary (Glickman 2000) as:
LFC
CIN = —Rdjp (T,, ~T.)dInp (B.2)

whereRy is the gas constant for dry iy, is the virtual temperature of the
ascending parcel,. is the virtual temperature of the environment, LlEEGresents
the level of free convection (section B.4), gadepresents the reference pressure
where parcel ascension begins. CIN is the nedgatineyant area below the LFC
and inhibits convective development. Since Clyaserally confined to the lowest
1-1.5 km of the atmosphere, only a few verticatigoints (roughly 10 — Table 3)
are used in its computation. This issue leadsttficial errors in the WRF
calculation of CIN. CIN has units of J Kg

B.3 Lifting Condensation Level (LCL)

The lifting condensation level (LCL) is the heiglttwhich an air parcel will
become saturated if it is lifted dry adiabatic{Btickman 2000). Many studies
have related the LCL to the likelihood for tornatkvelopment, including
Rasmussen and Blanchard (1998), who found thaifisggmt tornado development
was related to lower LCL values. Thompson et20008) showed statistically
significant differences between the mean-layer M3lues from model forecast
soundings for different severe weather types. &a{2006) analyzed a few weak
tornado cases in which high LCL values were obsknuhich contrasts current

research on the LCL. The LCL can be determinedgus thermodynamic
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diagram, as the level at which a dry adiabat oagng from the surface
temperature intersects a mixing ratio line origimgfrom the surface dewpoint.
The units on the LCL are hPa.
B.4 Leve of Free Convection (LFC)

According to the AMS glossary (Glickman 2000), theC is the level at which
a parcel of air, lifted dry adiabatically untilidecomes saturated, and moist-
adiabatically afterward, will become warmer thaa émvironment. This level is
determined on a thermodynamic diagram by follovangoist adiabat from the
LCL (B.3) until it intersects the temperature pl@fi Once an air parcel reaches the
LFC, it becomes positively buoyant. Davies (20@ind that the threat for
significant tornadoes decreased significantly witdreased LFC height. He
determined that the LFC is more useful for tornpregliction in high CIN
environments. Inclusion of this covariate will aoat for these scenarios. The
units on the LFC are hPa.
B.5 Bulk Shear

Another key ingredient required for tornadic supé development is rotation.
One common method which generates rotating flothénatmosphere is called
bulk shear, which the AMS glossary (Glickman 208€fines as the “local
variation of the wind vector or any of its compotsein a given direction”. For the
current study, bulk shear was computed oruthénd component over three
commonly analyzed vertical layers, 0-6 km, 0-3 lamd 0-1 km. Tornadoes have
been found to be associated with higher valuegrfoal bulk shear (Dowell and

Bluestein 1997, Klemp and Rotunno 1983, others)lg@houn and Riley (1996)
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used proximity soundings of tornadic thunderstotonsreate mean soundings and
hodographs that allowed for analysis of wind skea thermodynamic parameters
as a function of tornado intensity. They found ihareased tornado intensity is
correlated strongly with higher values of bulk ghe&/eisman and Klemp (1984)
performed comparisons using numerical simulatidrsipercell behavior as a
function of directionally varying wind shear. Thegted that weak shear
environments were conducive to short-lived air nthaaderstorms, while high
shear environments were better suited for supedegitlopment. The units of bulk
shear are m’s
B.6 Storm Relative Environmental Helicity

A measure of the streamwise vorticity of the inflemvironment of a
convective thunderstorm is known as storm relativeronmental helicity (SREH).
Many studies have observed the relation betwedn $IREH values and the threat
for tornadoes, including Kerr and Darkow (1996) evhiound that deep layer
strong SREH was essential in their tornadic supleraedel. Colquhoun and Riley
(1996) found a correlation of 0.56 between F-saalk SREH magnitude as well.
Davies-Jones (1984) provided the theory of torrdelelopment as it relates to
streamwise vorticity, stating that a high correlatbetween vertical velocity and
vertical vorticity was present in simulated torrasiipercells. SREH is expressed

mathematically in Colquhoun and Riley (1996) as:

SREH=_[a)o(V—VS)dz (B.3)
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where w = k x d\/w/dz, V represents the wind velocity vector, ands the storm
motion velocity vector. For the present study, 8Ritas computed over the 0-1
km layer and the 0-3 km layer. The units for SRieInf s°.

B.7 Bulk Richardson Number Shear (BRN Shear)

The Bulk Richardson number (BRN) is used to deteerthe type of
thunderstorms (multicells, supercells, etc.) expetd develop over a region. The
BRN is a ratio of CAPE and a measure of the vdriiead shear. It is defined in
Stensrud et al. (1997) as:

CAPE

BRN = ?
05U 2 +V?)

(B.4)

where CAPE has been defined previously BndndV represent the density
weighted mean wind components over the lowest 8@hd the lowest 500 m in
the atmosphere. For BRN shear, only the denomiwdtine BRN was considered.
Droegemeier et al. (1993) found a high correla{d87) between vertical vorticity
(a good indicator of storm rotation and possible@adoes) and BRN shear.
Thompson (1998) noted that BRN shear values tylpicahged between 25782
and 100 rhs?for tornadic thunderstorms, and only 6% of the adimevents he
considered had magnitudes higher than 16@m
B.8 Storm Relative Flow

In order to include information about storm motitme storm relative flow at
low levels (roughly 2 km) was considered as a datar This parameter was the
mean supercell motion from the model output, and eefined for the WRF as
75% the magnitude of and 30° to the right of themeind vector between 3 km

and 10 km above ground. Many studies have analgtoeth motion within
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tornadic thunderstorms (Lemon and Doswell 1979y idad Darkow 1996, others),
but there is a lack of work in using storm relatilMev to distinguish between
different types of severe weather. The units ofrstrelative flow are ms

B.9 Energy Helicity Index (EHI)

In addition to considering covariates which corgdimformation on instability
or the shear and vorticity profiles of the sevesather environment, covariates
which combined these two properties into a singtkex were considered. One
such parameter is the energy helicity index (Ettbich is defined by Davies
(1993) as:

SREH
16000(

EHI = CAPE( ) (B.5)

where CAPE and SREH have been defined previolay.this work, EHI was
computed using SREH at 0-1 km and 0-3 km. Davie83) found that for EHI
values greater than 1, tornadoes often occurretiwéen the value of EHI
exceeded 2.5, strong or violent tornadoes wereldessMany more recent severe
weather studies examined EHI while observing sewe@her environments,
including McNulty (1995) who analyzed the use oflEbt tornado forecasting in
the central United States, and Mead (1997) whoddbat for the southern United
States, a tornadic supercell environment was cteraed by a mean EHI of 3.6,
while values less than 2.0 characterized a noratbcrenvironment.
B.10 Vorticity Generation Potential (VGP)

Another covariate which considers shear and theymadic instability
properties of the environment through a single xnde&known as the vorticity

generation potential (VGP). The VGP is definedh®yWRF as the total shear

146



from 0 to 3 km above ground level multiplied by stpiare root of the CAPE of the
parcel with maximum equivalent potential temperatpelow 3 km. According to

Rasmussen and Blanchard (1998), VGP is given as:

96} .
(at jmt S (56)

where( represents the vertical vorticity represents the horizontal vorticity vector,
andw represents the vertical velocity. This paramistartended to give a measure
of the conversion of horizontal vorticity to vedlovorticity through tilting, a
process thought to be crucial for tornado develagmBasmussen and Blanchard
(1998) find significant differences in values in P®etween three different
thunderstorm categories (tornadic supercells, nomatlic supercells, and ordinary
thunderstorms). Other studies have used thishlaras a measure of the likelihood
of tornado formation (Blanchard 1998, others). This of VGP are’s
B.11 Product of CAPE and Bulk Shear

The final covariate considered in this study is noeseen in the literature; the
product of CAPE and bulk shear. This parametendgheer index that considers
values of CAPE and shear simultaneously. Thisyxbi$ considered at 0-1 km, 0-

3 km, and 0-6 km.
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APPENDIX C: JACKKNIFE SVM S-PLUS CODE

Below is a sample of the code used to run the Sa@iinife methodology.

svm.jackknife<-function(dataset,trainratio) {

# if (length(casel)==ncases)
# chind(y,casel)->y

# if (length(case2)==ncases)
# chind(y,case2)->y

# if (length(case3)==ncases)
# chind(y,case3)->y

#
#

This function will allow for a bootstrap using SVM. It will bootstrap the

different

#cases selected by the sample command with replacement, and do svm's on these.
It will

#then train the different models and determine output statistics from the
results.

#The kernel must be changed manually if necessary using the fix svm.bootstrap
command.

#|l may implement further kernel modification later on...

#

#This function is also only valid for classification, as of now regular. It

#can be modified relatively easily for regression at a later time by using fix
svm.bootstrap

#

#Determine the dimensions of the input dataset for easier manipulation

#These are required in order to capture which cases are failing
#the most

matrix(scan("casel.txt"),ncol=1,byrow=T)->casel
matrix(scan("case2.txt"),ncol=1,byrow=T)->case2
matrix(scan("case3.txt"),ncol=1,byrow=T)->case3

dim(dataset)[1]->ncases
dim(dataset)[2]->ncolumns
numeric(ncases*(ncolumns-1))->normdata
matrix(normdata,nrow=ncases)->normdata
Normalize(dataset[,1:ncolumns],0,1)->normdata
cbind(normdata,dataset[,ncolumns])->normdata

if (length(casel)==ncases)
chind(casel,normdata)->normdata
if (length(case2)==ncases)
chind(case2,normdata)->normdata
if (length(case3)==ncases)
chind(case3,normdata)->normdata

#Determine the sizes of the training and testing datasets
trainratio*ncases->ntrainrows
as.integer(ntrainrows)->ntrainrows
ntestrows<-ncases-ntrainrows

#

#Declare the data to be manipulated
c(1l:ncases)->cases
numeric(ntrainrows)->traincases
numeric(ntestrows)->testcases
numeric(3)->predictions
numeric(ntrainrows*(ncolumns+1))->traindata
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numeric(ntestrows*(ncolumns+1))->testdata
predictions<-matrix(predictions,ncol=3,nrow=1)
traindata<-matrix(traindata,ncol=ncolumns+1,nrow=ntrainrows)
testdata<-matrix(testdata,ncol=ncolumns+1,nrow=ntestrows)

#Begin the jackknifing
for (i in 1:ncases) {

c(i:ncases,1l:ncases)->casedata
casedata[l:ncases]->casedata
traincases<-casedata[1:ntrainrows]
testcases<-casedata[ntrainrows+1:ntestrows]

#Determine the training dataset using the sampled values from above
for (j in 1:ntrainrows) {
traindata[j,]<-normdata[traincasesj],]

}

#Determine the testing dataset using the sampled values from above
for (j in 1:ntestrows) {

testdata[j,]<-normdata[testcases[j],]
}

svm(traindata[,2:ncolumns],y=traindata[,ncolumns+1],type="C-
classification",cost=25000)->svm.model
predict(svm.model,testdata[,2:ncolumns])->y.hat
# ifelse(y.hat<0.65,0,1)->y.hat #For regression combined with
classification, uncomment this line
testdata[,ncolumns+1]->y

cbind(y.hat,y,testdatal,1])->y
rbind(y,predictions)->predictions

} # End of the big for loop for the bootstrap
dim(predictions)[1]->removed
predictions[-removed,]->predictions

#table(predictions[,1],predictions[,2])->contingency
#table.stats(contingency)->results

return(predictions)

} #End of the function
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APPENDIX D: SAMPLE STORM TYPE S-PLUS CODE

Below is a sample of the code used to createyhepsic storm types for each
outbreak type.

matrix(scan("tdata_f_06.txt"),ncol=50,byrow=T)->tdata

tdata[1:10591,]->tdata.1

tdata[10592:21182,]->tdata.2
tdata[21183:31773,]->tdata.3
tdata[31774:42364,]->tdata.4
tdata[42365:52955,]->tdata.5

scale(tdata.1[1:623,])->tdata.1.10
scale(tdata.1[624:1246,])->tdata.1.20
scale(tdata.1[1247:1869,])->tdata.1.30
scale(tdata.1[1870:2492,])->tdata.1.50
scale(tdata.1[2493:3115,])->tdata.1.70
scale(tdata.1[3116:3738,])->tdata.1.100
scale(tdata.1[3739:4361,])->tdata.1.150
scale(tdata.1[4362:4984,])->tdata.1.200
scale(tdata.1[4985:5607,])->tdata.1.250
scale(tdata.1[5608:6230,])->tdata.1.300
scale(tdata.1[6231:6853,])->tdata.1.400
scale(tdata.1[6854:7476,])->tdata.1.500
scale(tdata.1[7477:8099,])->tdata.1.600
scale(tdata.1[8100:8722,])->tdata.1.700
scale(tdata.1[8723:9345,])->tdata.1.850
scale(tdata.1[9346:9968,])->tdata.1.925
scale(tdata.1[9969:10591,])->tdata.1.1000

rbind(tdata.1.10,tdata.1.20,tdata.1.30,tdata.1.50,tdata.1.70,tdata.1.100,tdata
.1.150,tdata.1.200,tdata.1.250,tdata.1.300,tdata.1.400,tdata.1.500, tdata.1
.600,tdata.1.700,tdata.1.850,tdata.1.925,tdata.1.1000)->tdata.1

scale(tdata.2[1:623,])->tdata.2.10
scale(tdata.2[624:1246,])->tdata.2.20
scale(tdata.2[1247:1869,])->tdata.2.30
scale(tdata.2[1870:2492,])->tdata.2.50
scale(tdata.2[2493:3115,])->tdata.2.70
scale(tdata.2[3116:3738,])->tdata.2.100
scale(tdata.2[3739:4361,])->tdata.2.150
scale(tdata.2[4362:4984,])->tdata.2.200
scale(tdata.2[4985:5607,])->tdata.2.250
scale(tdata.2[5608:6230,])->tdata.2.300
scale(tdata.2[6231:6853,])->tdata.2.400
scale(tdata.2[6854:7476,])->tdata.2.500
scale(tdata.2[7477:8099,])->tdata.2.600
scale(tdata.2[8100:8722,])->tdata.2.700
scale(tdata.2[8723:9345,])->tdata.2.850
scale(tdata.2[9346:9968,])->tdata.2.925
scale(tdata.2[9969:10591,])->tdata.2.1000

rbind(tdata.2.10,tdata.2.20,tdata.2.30,tdata.2.50,tdata.2.70,tdata.2.100,tdata
.2.150,tdata.2.200,tdata.2.250,tdata.2.300,tdata.2.400,tdata.2.500,tdata.2
.600,tdata.2.700,tdata.2.850,tdata.2.925,tdata.2.1000)->tdata.2

scale(tdata.3[1:623,])->tdata.3.10
scale(tdata.3[624:1246,])->tdata.3.20
scale(tdata.3[1247:1869,])->tdata.3.30
scale(tdata.3[1870:2492,])->tdata.3.50
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scale(tdata.3[2493:3115,])->tdata.3.70
scale(tdata.3[3116:3738,])->tdata.3.100
scale(tdata.3[3739:4361,])->tdata.3.150
scale(tdata.3[4362:4984,])->tdata.3.200
scale(tdata.3[4985:5607,])->tdata.3.250
scale(tdata.3[5608:6230,])->tdata.3.300
scale(tdata.3[6231:6853,])->tdata.3.400
scale(tdata.3[6854:7476,])->tdata.3.500
scale(tdata.3[7477:8099,])->tdata.3.600
scale(tdata.3[8100:8722,])->tdata.3.700
scale(tdata.3[8723:9345,])->tdata.3.850
scale(tdata.3[9346:9968,])->tdata.3.925
scale(tdata.3[9969:10591,])->tdata.3.1000

rbind(tdata.3.10,tdata.3.20,tdata.3.30,tdata.3.50,tdata.3.70,tdata.3.100,tdata
.3.150,tdata.3.200,tdata.3.250,tdata.3.300,tdata.3.400,tdata.3.500,tdata.3
.600,tdata.3.700,tdata.3.850,tdata.3.925,tdata.3.1000)->tdata.3

scale(tdata.4[1:623,])->tdata.4.10
scale(tdata.4[624:1246,])->tdata.4.20
scale(tdata.4[1247:1869,])->tdata.4.30
scale(tdata.4[1870:2492,])->tdata.4.50
scale(tdata.4[2493:3115,])->tdata.4.70
scale(tdata.4[3116:3738,])->tdata.4.100
scale(tdata.4[3739:4361,])->tdata.4.150
scale(tdata.4[4362:4984,])->tdata.4.200
scale(tdata.4[4985:5607,])->tdata.4.250
scale(tdata.4[5608:6230,])->tdata.4.300
scale(tdata.4[6231:6853,])->tdata.4.400
scale(tdata.4[6854:7476,])->tdata.4.500
scale(tdata.4[7477:8099,])->tdata.4.600
scale(tdata.4[8100:8722,])->tdata.4.700
scale(tdata.4[8723:9345,])->tdata.4.850
scale(tdata.4[9346:9968,])->tdata.4.925
scale(tdata.4[9969:10591,])->tdata.4.1000

rbind(tdata.4.10,tdata.4.20,tdata.4.30,tdata.4.50,tdata.4.70,tdata.4.100,tdata
.4.150,tdata.4.200,tdata.4.250,tdata.4.300,tdata.4.400,tdata.4.500,tdata.4
.600,tdata.4.700,tdata.4.850,tdata.4.925,tdata.4.1000)->tdata.4

scale(tdata.5[1:623,])->tdata.5.10
scale(tdata.5[624:1246,])->tdata.5.20
scale(tdata.5[1247:1869,])->tdata.5.30
scale(tdata.5[1870:2492,])->tdata.5.50
scale(tdata.5[2493:3115,])->tdata.5.70
scale(tdata.5[3116:3738,])->tdata.5.100
scale(tdata.5[3739:4361,])->tdata.5.150
scale(tdata.5[4362:4984,])->tdata.5.200
scale(tdata.5[4985:5607,])->tdata.5.250
scale(tdata.5[5608:6230,])->tdata.5.300
scale(tdata.5[6231:6853,])->tdata.5.400
scale(tdata.5[6854:7476,])->tdata.5.500
scale(tdata.5[7477:8099,])->tdata.5.600
scale(tdata.5[8100:8722,])->tdata.5.700
scale(tdata.5[8723:9345,])->tdata.5.850
scale(tdata.5[9346:9968,])->tdata.5.925
scale(tdata.5[9969:10591,])->tdata.5.1000

rbind(tdata.5.10,tdata.5.20,tdata.5.30,tdata.5.50,tdata.5.70,tdata.5.100,tdata
.5.150,tdata.5.200,tdata.5.250,tdata.5.300,tdata.5.400,tdata.5.500,tdata.5
.600,tdata.5.700,tdata.5.850,tdata.5.925,tdata.5.1000)->tdata.5

rbind(tdata.1,tdata.2,tdata.3,tdata.4,tdata.5)->scaled.tdata

ifelse(is.na(scaled.tdata),0,scaled.tdata)->scaled.tdata
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tmode.eigen<-eigen(cor(scaled.tdata))
plot(tmode.eigen$values[1:10])

tmode.load<-tmode.eigen$vectors[,1:2]%*%sqrt(diag(tmode.eigen$values[1:2]))
rotate(tmode.load)->tmode.rot
pc.scores(t(scaled.tdata),tmode.rot$rmat)->tmode.scores

tmode.scores->tmode.scores.group

matrix(scan("tdata_f06_groupl.txt"),ncol=1,byrow=T)->group
length(group)->len.group

numeric(len.group * dim(tmode.rot$rmat)[2])->group.mat
matrix(group.mat,ncol=dim(tmode.rot$rmat)[2])->group.mat

for (i in 1:len.group) {
group.mat[i,]<-tmode.rotSrmat[group]i].]

apply(group.mat,2,mean)->group.means

group.means<-group.means”2

for (i in 1:dim(tmode.rot$rmat)[2]) {
tmode.scoresl,i]*group.means[i]->tmode.scores.groupl,i]

}

apply(tmode.scores.group,1,sum)->tmode.scores.group

stdev.tdata<-apply(tdata,1,stdev)

mean.tdata<-apply(tdata,1,mean)

tmode.scores.group * stdev.tdata + mean.tdata ->tmode.output.group

tmode.output.group ->finaldata

rm(group)
finaldata.pcl<-finaldata

finaldata.temp.pcl<-finaldata[1:10591]
finaldata.hgt.pcl<-finaldata[10592:21182]
finaldata.rh.pcl<-finaldata[21183:31773]
finaldata.ugrd.pcl<-finaldata[31774:42364]
finaldata.vgrd.pcl<-finaldata[42365:52955]
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