Name: Milton B. Friesen
Date of Degree: May E6. 1957
Institution: Oklahoma A. and M. College Location: Stiliwater, Oklahoma
Title of study: THE SUBJECT MATTER CONTENT OF JUNIOR HIGH SCHOOI, MATHEMATICS

Pages of Studys 34 Candidate for Degree of Master of Science
Major Field Natural Science
Scope of Study: The needs of the compiex tsohnological society in which We live has increased the need for more training in science and mathematics. Mathematics is needed not only by the scientist but also by the average oitizen. Since all methematics mist rest on a strong foundation of previous work, this report is a study of the subject matter offered in grades seven, eight, and nine. Of special interest is the "double track" progran as proposed by the Commission of Post-War Plans of the National. Council of Teachers of Mathematics. The proposal provides one track for training the scientist by the traditional courses and the other track for those students who will not need the specialized training but who will need a wide understanding of methematios in its averyday applications if they are to be effective citizens. The materials used in this study are chiefly (1) courses of study from a number of states, (2) recent books and articles in periodicals written by authorities in the field, and (3) textbooks in current use.

ADVISER:S APPROVAL

THE SUBJECT MATTER CONTENT OF JUNIOR

HIGH SCHOOL MATHBMATICS

\author{
By
 \section*{MILTON B. FRIESEN}
 Bachelor of Science
 Panhandle Agrioultural and Mechanical College
 Goodvel1. Oklehoma
 1939
 ```
Submitted to the flaculty of the Graduate Sehool of the Oklahome Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of MASTER OF SC IEMCE鲑. 1957

```
}

THE SUBJECT MATTER COHTENT OF JUNIOR
HIGH SCHODL MATHEMATICS

Thesis Approved:


\section*{ACKMONLEDGEMEITT}

The writer wishes to express his appreaiatian and gratitude to Dr. James H. Zant, Director of the Supplementary Irain ing Program for High School Science and Mathematies Teachers of the National. Science Foundation, for his helpful suggestions and counsel in the proparation of this report.

\section*{TABIE OF CONTENTS}
Chapter Page
I. ITATRODUCTTON ..... 1
II. THE OBJECTIVES OF JUNIOR HIGH SCHOOL NATHBMATICS ..... 3
III. THE SUBJECT HATIER CONTENT OF SEVENTH GRADE МАТНВММТ ICS ..... 8
IV. THE SUBJBCT MATTER CONTENT OF EIGHT GRADE MATHPMATTCS ..... \(\Psi_{4}\)
V. THE DOUBLE TRACK PROGRAY IN THE NIITH GRADE ..... 18
VI. TYE SUBJECT YATPER CONTENT OP NTNTH GRNDE GENERAL MATHEM, TICS ..... 23
VII. THR SUBJECT MAITTER CONTERT OF NITTH GRADE ALGEBRA ..... 27

\section*{GHAPTER I}

\section*{INTRODUCTION}
in America we have been made increasingly conscious of a serious threat to our way of life unless we inorease the number of scientistt, mathematicians and other technically trained personnel. We need more of thom and we noed them with a graater amount of training. We need then to work in and for a rapidly advaneing tochnological industry. This industry, although repileto with an astounding number of automatic labor seving devices, faces a shortage of trained personnel to make, maintain. and replace those devices and find new applications for them. For example, the modern electronic computor with its phenomenal capabilities will need 60,000 operetors with mathematies majors ranging from B.S. to Ph.D. degrees in the next three to five years. Other industries are likewise looking for trained men and women to man their mehines.

This technological advanse also maken it necessary for the average \(\operatorname{man}\) to have a wider understanding of science fageneral and mathematics in particular if he is to be an effective citizen.

Since mathematics has always been the hand-maid of science and since soience and soientific principles are being used to a greater and greater extent in all fields ineluding biology, statistics, and various social fields, the responsibility of a mathamatics education to meet the present and future needs of our citizens is becoming more exacting.

The junior high school years are crucial ones in the development of potenticl seiontists and mathematicians. It is in these years that a
sound foundation for future decisions must be established. Huch good can be eccomplished by the right; approach and the right subject matter in mathematics and, on the other hand. great benefits may be lost if we fail. This report is a study of what is being done in the field of subject matter in the junior high school mathomatics courses as shown by state curriculum guides, recent publications and textbooks.

\section*{CHAPTER II}

\section*{THS OBJECTIVES OF JUNIOR HIGH SCHOOL MATHEXATICS}

The problems of a sound program of mathematical instruation is not undque to the jumior high school. It is the problem of the entire sohool from the fisst grade through the twelfth grade The instruction of any one grade lavel must be related to that which preceded it. Thererore, in considering what the objeotives of the junior high school ares we must consider the mathematioa program as a. whole and then, within this lerger area point out the speoific needs that should be met in the junior high school, grades seven, eight, and nine.

The overall objective is sumed up in the first thesis of the Second Heport of the Comission on Post Wer Plans:
"Thesis I. The sehool should guarantee functional competence In mathematies to all who can possibly eohleve it. "l

In commeotion with this they recogeize two enspects to be taken into consideration in secondery oducetion:

Hhe high school needs to oome to grips with its dual responsi-bility- (1) To provide sound mathematical training for our future loedern of science, mathematics, and other learned fields. and (2) to insure mathomatical competence for the ordinary affairs of life to the extent that this can be done for all citisems as a part of a general education appropriate for the major fraction of the high school population. "2.

This indfeates that there should be on appronch made to offer an enlarged mathematics progran or at least revise the existing ones so that

\footnotetext{
\({ }^{1}\) The secand Report of the Comaission on Post-War Plans. The Mathematics Teacher: \(38.195-221\). May 1945. p. 196.

दIbId p. 195.
}
a greater number of students may benefit from it. The demands made on mathematios have inoreased not only in industry but in the everydey life of the average citizen. In grandfathers day the ability to oompate accurately when dealing with whole numbers, fractions and peroent was adequate but now we have advanced beyond that. The training that; grandfather would have olassed as specialized has invaded our homes. In the past we have done fairly well in training for leadership and spectalized fields but we have fallen down in aducating for citizenship competency.

Students planning to major in subjects other than mathematies in college are finding that the mathematical requi.rements in all fields have risen sherply. Students who drop out of achool. find that modern industry requires of its labor, skilled or unskilled, to be acquainted with the escentials of arithmatic, algebra and geonetry.

1athematical competence is required in the home and community activities, in the problems of consumership and public aftairs, in loisure and recreationsl aotitities. These requirements are inereasing and the responsibility of giving all who can an opportunity to become mathematileally competent is becoming more challenging and important than ever.

The meaning of mathematical competence is best; described in the eheck list prepered by a comittee at the National Counoil of Teachers of Mathematices and included in The Second Report of The Comission on PostWar. Plans, 3 It ineludes such itams as the fundamental operations with whole numbers and fractions, use of tables, understending of simple graphs and statistics, understanding and using geometry, measuring, formalas and equations, signed numbers, and the application and understanding of mathematics used in everyday life. Thesel are the essential.

\section*{\({ }^{3}\) mid.}
part of practical mathematics that the average citizen will need and might well be taken as a goel to accomplish during the junior high school years ospecially since this will be the last formal mathematios training that some students will have.

Dr. Zant, in speaking of the aims for the grade school. through the eight grado, says:
"The mathematical afms for this period should include provisions for developing a genuine understending and appreciation of the fundamental operations of addition, subtraction, multiplication, and division of whole numbers, decimals, and fractions, sone idea of the principles and modes of thinking so well illustrated by mathomaties, a substantial introduction to the mathematies of everyday life and a dependable foundation for life nesds and for subsequent courses in mathematios. \({ }^{4} 4\)

The Mational Comittee on Mathematical Requirements broadly describes
the junior high sohool mathematicssas:
m... an introductory, basic, exploratory course, in which the simple and significant principles of arithmetic, algebra. geometry, statisties, and numerical trigonometry are taught so as to emphasis their natural and numerous relations." 5

The student during these years should be given an idea of the possibilIties in the whole field of mathematios and of its many applications even in the more social aspects of life. He should be given the opoortunity to explore his own abilities and segure information and experiences thet will help him to choose more wisely his later courses in school and ultimetely his life work. The teacher should point out to him the beauty of mathematics and its power for those who achieve mastery in it. By contrast, also, it should be pointed out what cannot be done without mathematics. The far-reaching implications of the students ohoice are well summed up in these words:

\footnotetext{
4 Jemes E. Zaut "What are the Hathemetical Needs of the High School Student The Mathematics Teacher, \(42: 75-78\), February 1949. p. 75.

Staoien B. Kinney, Editor "ia thematios in Junior High S chool". The Mathomaties Teacher, 49:33-36, Jonuery, 1955, p. 34 .
}
> "Tho student who drops high school mathematies at the same time drops medicine, engineering, chemistry, biglogy, physics. economies, social science and psychology. \({ }^{\text {n6 }}\)

Because the junlor high school stadent's choice of vootion may change many times, the teacheris responsibility is increased to show him the whole field and the mathemeticel interrelationships of the various vocations. This is necessery so that he and his counselors wili have the best possible chance of making the right final ohoice.

The junior high sohool has a four-fold responsibility that it must assume: (1) It must provide adequate and natural continuance of the worl of the elementary school. The work must be built on the foundation of the previous experiences and must provide a link between them and the future mathematics courses. (2) It mast correct, if at all possible, ali mathematical retardation and shortages existing in any of the students. This is exceedingly difficult to do leter on. Mathematics is one subject that is hard to moake up or "piok up". (3) It must; provide an expending and deepening experience with the problems of every day living. This means that the concepts that the student has learned must be applied often and naturally to new and more difficult situations in keeping with the student's interests and needs, (4) It must; strengthen and extend the foundations for subsequent experiences with mathemntics. 7

The junior high school years are a trensition period. The students come in as children and go out as young adults. They are making many adjustments. Previously their activities were a.ll directed and supervised by the teacher; now they are entering a period where they must start making their own decisions and move on their own initiative. Blessed is

6William Betz, "Funational Competence in Mathematics - Its meaning and its attainment, "The Mathematics Teacher. 41:195-198, Narch 19L8, p. 195 .

7Mary Rogers "Possible Artioulation for Jumior High Schorl with the Elementary Schooi and with the Secondary School. The Methematics Teacher 38: 272-8. October 1945.
the teacher who aecepts this challenge and helps them on their way, better prepared for whatever vocation they mey choose to follow.

\section*{CHAPTER III}

THE SUBJECT MATTER CONTENT OF SEVENTH GRADE MATHENATICS

The cholee of subject matter for the seventh grade mathematios is made more significant by the fact that the students who enter this grade have a wide variety of educational backgrounds. The student is at a crucial stage in his ife. He has many adjustments to make sooially and educationally. Instead of oniy one teacher to direct all of his activitias, he may now have as many teachers as he hes subjects. As a result the teecher is farther removed from him and he becomes more and more only a name in the grade book. He mast leara to move under his own power:

The students vary greatiy in the is mathematical abilities. Some have been oareinlly taught and have become fairly proficient in computation. Othors, not so fortwate, have either through laok of teaching or Lack of natural ability not accomplished as much. The students coming Irom differont classrooms have been taught the concepts and processes of mathematics in different ways. Some have studied a larger smount of subject matter. Some are interested in mathematiest others are note The personal differences are at; a peak. The students vary in their plans end probable future needs. All of these are factors that challenge the teacher as he faces the task of instrueting boys and girls in the mathomatics thet will help them now and also when they assume their roles in an adult world where functional mathematical ability is a must.

The variety of needs and beckground call for a reteaching and review, The work must be closely geared and related to previous work. The concepts
taught in previous years must be reviewed in a veriety of new and more difficult experiences. A rehashing of old experiences will not do. The teacher must teach for the understanding of a. process rather than taehing the process as a mechanical menipuletion. This is especially true es the previous teachers may heve presented concepts by different methods. The teacher must take the student where he is and work from there.

Alang with the program of review and reteachings a continuing testing program is essential to discover the student's abilities and needs. Deficiencies must be removed as early as possible so that the student can progress further. The \(a\) in should be to develop a reasonable degree of mastery of the four fundamental operations and procedures for checking results. The program must be flexible to allow for continuous adjustanent to the student's growth and needs. Sinoe he will learn best that which has maning to him, the soneepts should be applied to his everyday problems and he should he shown thoir further applieations in life. Nowr concepts must be brought in and related to previous anes. The student must be introduced to the mathematical principles necessary to understand our incroasingly complicated enviromment and to shows at least in a limited ways the role of mathematics in the verious flelds of humen endeavor. Most of the authorities agree that the work of grades seven and eight are closely conneoted. The Pennsylvenia State Currieulum guide plays dowa the grade lavel and suggests teaching these two years as a bloo. W. D. Reeve would include 17 three grades in one unit. \({ }^{2}\) The Second Report of the Comaission on Post-War Plans includes three theses that refer direetly

\footnotetext{
\({ }^{1}\) Course of Study, Methematies in Secondary Schools, Bulletin 360 , Commomwealth of Pemnsylvania. Department of Rublic Inst. Page 7.

2William David Reove "What Should be the Reture and Content of Junior High School Mathomatics? The Mathematies Teecher, \(48: 413-415\) October 1955. p. 414 .
}
to these two grades:
"Thesis 9. The mathematical problem of grades seven and eight should be essentially the same for all normal pupile.".

\section*{They should:}
"a. Provide an adequate, organic continuation of the work of gradea one through six.
b. Provide a substantial beginning in schieving functional competence.
c. Provide a dependable foundation for subsequent courses in mathemeties."
"Thesis 10. The mathematios for grades seven and eight should be planned as a unified program and should be built around a few broad categories."

The program should be organized sround (1) numbers and computation; (2) the geometry of everyday life; (3) graphic representations end (4) an introduction to the essentiels of elementary a. gebre. formulas and aquations."
"Thesis 11: The mathematies program of grades seven and eight should be so organized as to eneble the pupils to achieve mathematheal maturity and power."3

Thus the seventh grede functions as a vital connecting link between the work that was arithmetic in the lower gra, des and the more teohnionl and abstred mathemathos that the student will receive later. It is a period of strengthening the stakes and reinforeing the structure of his methema.tical house

A study of available state curriculum guides and textbooks shows that a program of reteaching and review is the practice. The previous number experiences in the fundmental processes are raviewed. Percentage problems deeling, with the socisi experiences in the home, school and commuity sre introduced. Seale drawing and ratio are extended by the use of fleor niens and maps. Measurgment is extended and the basie oonceptos of geometry ere introduced by the use of angles and other simple geometrio figures. The concept of volume and area are extended. The students are

\footnotetext{
ZIne Seaond Report of the Commission on Post-Har Plans. The Mathematical Teacher. \(38: 195-221\). May 1945: p. 204.
}
given experiences in making and reading graphs. The concept of rounding off numbers is developed in connection with graphs and estimating answers. Algebra is usually linited to the introduction of symbols in formulas. Vritten problems are used and related to the student's experionces. The alert teacher should use these problems and introduce loal life situations for the students. A vocabulary of new words is veluable to help the student cheok his understanding.

A sucgested outline of minimum essentials for the seventh grade is included es a part of this report.

The seventh grader when he is finished with the work as outlined should be well on his may to achieving computational competency. Most of his deficiencies and retardation should be made up so that he will be eble to achiave mastery during the next two years even as he achieved additional skill and understanding in the seventh grade work.
```

I. Number Systom.
A. Understanding of place value.
B. Ability to reed mumbers through billions.
C. Learaing to use rounded numbers.
II. Reteaching the finer fundamentals with whole numbers.
A. Ail for 100% aecuracy and understanding.
E. Dovelop an appreciation for the fundamontals and en ability to choose the correct process in a problen situation.
C. Emphesize chocking of results.
III. Retorch Common and Deeimal fractions.
A. Teach for understanding and meaning.
B. Underctanding the reasons for procesces uaed in

1. The four fundamental processes.
2. Reducing the lowest terms.
3. Changing inixed numbers to improper iractions and reverse.
C. Ability to use common fractions or decimal interchangeably.
IV. Problem solving.
A. Learning to read and interprat problems. 1. Doeide what problem asks. 2. Discard unrelatod faots.
B. Learaing to fudge the reasonebleness of anmers.
V. Eroyhes as means of comparing data.
A. Taach for high dogree of mastory in interprotation and madium skill in construction.
4. Pletographs, bar graphs, line graphs, divided bar and circle grephs.
a. ehoosing proper units to fit data.
VI. Poroentage.
A. Learning to use percent, common freotions and deeimels interehengeably. Bmphasize thirds, fourthe, fifths, Eixths, and oights.
B. Finding the percentege of a number.
C. Finding what porcont ons number is of another.
VII. Moasuroment and Geomotry.
A. Beoome acquainted with unita most comnonly used for length. woights, liquid end dry measure and time. 1. Show all masurements are only approximations.
B. Develop akill with donominete numbers.
G. Introduce metric system and show similarity to our money systarn.
D. Rocognize lines (straight, curved, broken), (perpendiouler. parallsi), recognize acute, obtuse, right angles.
E. Resognize square, rectangle parallelogran, triangle, hexagon, circle.
P. Learn usi of protractor for neesuring and constructing angles.
G. Develop formula for perimeter and erea of rectengle, square, parallelogram, triangles.
5. Express formula in words and in symbols.
```
H. Develop concept of eircle.
I. Develop understanding of volume of rectangular solids.
VIII. Ratios.
A. Introduce ratios as a way of comparing numbers.
B. Use ratios in simple scale drawings.
IX. Business prectices.
A. Keoping simple accounts.
B. Filing out simple bills and recoipts.
C. Benking practices.
1. Gherking account, savings account, deposit slips, checka. D. Making change.

\section*{GHAPTER IV}

\section*{THE SUBJECI MATTER COMTENE OF EIGHI GRADE MATHEMAYICS}

The work of the eight grade mathematies is closely related to the work of the seventh grade. With the roteaching and review exporinnced during the seventh grade, the elght grade student should achieve mastery In computation and a broader view of the mathematics, that will be such an important part of his future schooling and of his adult lifo. His … * - to read and analyze writton problems should be brought to a high level of effieienoy. His added maturity and soeial conseiousmess will stimulete his interest in the sociel aspects of mathematics. As a result of this, mueh emphesie should is placed on problen solving with speaial consideration being given to the soeial uses of arithmetie. The siudent should be givon the opportunity to use the ideas and skills he hes acquired to colve his own problems. \(H_{e}\) should see that arithmetic is not an end in itself but a means toward satisfactory performence of overydey duties of home and oomminity life.

In order to meet the future needs the student will be taken further into the field of algobra and geometry. The concepte of these subjects will be introduced by extending concepts thet he has already learned. Thus, where in the seventh grade algebra wes usod in the formulas for finding ares.c, this concept will nom be extended to other formulas. The concepte of geomotry will be extended from the mere rocognition of figures to a definition of them. He will learn to do some of the basic constructions. The concept of percentage will be extended in problems dealing
with comission, less and gain, successive discounts, etce The applieations of mathomaties in business practices will be extended. He will acquire appreaiation of taxes and insurance. Successful completion of this yaars study will be marked by mastery in the fundamental processea and a feir understanding of the basic concepts of algebra and informal geometry.

\section*{YTUTUTTE RSSENTIALS MRR EIGHT GRADE MATMERITTCS}
I. The fundamentel processes.
R. Review of the processes using intergers, frections, and percent. (Tesch for high degree of mestery.)
B. Bxtend understandings of number reletionships.
C. Continued use of processes in applied problems.
D. Develop habit of checking answers.
II. Geometry and meesurement.
A. Review developnent of formulas for area of rectangle, triangle. parallelograms, approximate nature of neasurement.
B. Develop and use the fomula for the area of a circle.
C. Reviev: the volume of rectanguler solid and develop formule for volume of oylinder, cone, pyranid. sphere.
D. Find latera? areas of rectanguler solids and cylindars.
E. Teach facts about right triangles and its use in problen solving.
1. Pythagorean theorem.
2. Finding square root of numbers from teble or by division.
F. Understanding of ratio and porportion es applied to soale drewing and similar triangles; indirect measurements.
G. Constructing perpendiculers, bisecting angles.
E. Study geometric design and symetry.
III. Percentrge (teach for business informetion and medium degree of efficiency.)
A. Review fundemental equivalent forms.
B. Finding a number when the percent is given.
C. Work with percents larger than \(100 \%\) and less than \(1 \%\).
D. hpplying percent to profit and loss, discount (single, suecessive). interest, increase, nd decrease, comission.
IV. Graphs.
A. Extending the understanding of graphs as means of comparing.
- data by reading end interpreting bar, line and ofrole granhs.
B. Constructing graphs to picture quantitative situations.
V. Business practices.
A. Banking, savings, and investments.
1. Introduction to commonly used forms; checks; notes, deposit slins.
2. Forms of investmentss stooks, bonds, mortages.
3. Forms of savings s postal savings, building end loan associetion.
B. Insurence.
1. Thderstanding the principle of "shered risk".
2. Knowing principle of life insurance, property, health and acoident.
C. Taxes.
1. Inderstand the necessity of local, state, and federal taxes as vay of paying for govermment services.
2. Studying the kinds of taxes.
VI. Algebra.
A. Further development of formulas as algebraic shorthand.
3. Developing understending of equetions and usinp simple equations in solving problems.

\section*{CHAMPRR V}

THIG DJUBIJE TRACK PROGRAIA IM GRADR IINE

After considering the more or less settled and established mathematical programs of the seventh and eighth grade, one is perplexed with the turmoil he finds at the ninth grade level. It is like a man jumping on his horse and galloping away in all different direotions. There has been agitation since the junior high school program was organized to teach. a mathematics course that would be of a more practical nature than the compartmentalized traditional algebra course that was being offered at this level. The Commission on Post-War Plans suggested a "double-track" program to meet the needs of the student who will use the traditional oourse in a later mathematics career and also to meet the needs of the larger group who will not need the specialized training. The Comenission's l2th

\section*{Thesis reads :}
"The large high school should provide in grade nine, a double track in mathomaties: algebra for some and general mathemstios for the rest." \({ }^{\text {n }}\)
(The large high school is defined as one with more than 200 pupils). Many different approeches have been used in solving or trying to solve the double track problem, Huch difficulty has resulted beeeuse general mathematics has never been clearly defined. The ranfe of topics is as wide as the field of education i.tself. Often there has been opposition from teachers and administrators who did not see the challenge of teaching a mathematics for the masses. As a result general mathematics
has fallen into disrepute and algebre has often received an unvarranted halo that has only added to the onfusion. Several unsatisfactory solutions are given in the Commiseions Report. \({ }^{2}\) If caly general mathematies is offered the objection is reised that it deleys the appable student who wants to pursue a nathematien program in high school and collage. This objection is not valid in the majority of high schools sinee only a fev sehools will earry a full four yoar course of the traditional subjects. The objection also overlooks the fact that, in a properly administered general mathematics program the student will receive the fundamentals of algobra and geometry so thet in future ocursea he could combine the second and third semestar algabra in ono year and in the same manner the fundamentals of plane and aolid geometry could be taught in one yoar. The Minnesota currioulum guide suggests intermediate algebra inmediately following the goneral mathematics. 3 This would eliminate any delay and the loss that the studert might have had in subject matter would be more than made up by the greator funetional compteney trat, he has aequirad. \({ }^{4}\) Another unsatisfactory solution is in teacing only algebra and requiring all to take it. If the course is kept at a high levol so that it ohallenges those who are eapable it uaually leaves the average and below average studant frustrated and lacking the mathematical undorstanding that he neods. On int other hand, if the course is "watered down" so that the slover student can get it, it loses its challenge and interest for those who will need it for their future mathematies and denies them the more complex experisnoes that would be so valuable to them. Other unsetisfectory solutions are

\footnotetext{
\({ }^{2}\) Ibid, p. 204.
3Course of Study A Guide for Instruetion in Mathematies, Curriculum Bulletin \(10.20,1953\), Department of Education, St, Paul, IIInesotr, pe 156.

4H. Vernon Price "We Can Remove the stigma from Coneral Mathematies", School Seienco end Mathomatices 47sh46m40, May 1947: p. 448.
}
teaching cominereial arithmetic in the ninth grade or teaching work based on an extended program of arithmetic. The first fails because of the immaturity of tho students and the second fails because it usually administers only larger does of medicinethat did not help in the earlier courges.

The most logieal solution to this problem would be to teach a course in general mathematics including those basic concepts of algebra and geometry that would more nearly meet the needs of the majority of students. It would give those who are interested a "flying start" in algebra and geometry. It would also help them in that the methematios they will use in college will be taught to them just before they graduate, enabling them to do better work in their first college courses. Consideration must also be given that this general mathematies course will be terminal for some of the students. Surelys the student will be functionally more effective with a general course than with the more abstract notions of algebra or fecmetry that very few adults put to practical use.

Another way of meeting the problem and one that is frequently used is to offer a choice of either generel mathometios or algebre. This is especially useful in larger schools where there are a number of sections of the same class. This creates a problem in selecting the course that the student is to take. A part of this oroblem stams from the fact that algebre will. often be selected by the student because of its prestiger. Also there are those capable students who would do excellent work in algebra but elect the goneral mathematics as an asy way out. Both are problems that must bo handled by counseling with the student and often with his perents. The decisions should not be based on student whim or parental aspiration. Often it is the parents who are misinformed and
do not realize that changes ean be made for the student's benefit. It must be impressed on the minds of the student and his parents that the only difference in the courses is their aim. The course content of general mathematios on and should be such that it is as difficult and as exacting as algebra. It should require as much thought and effort as any other good mathematies course. Far from being a "dumbbell" course, its outeome should be every bit as vital as the outcome from the algebra course. The course should be unexcelled in its applications of basie mathomatical concepts to real life situations.

On what besis should the decision be made? Ta put it simply, the deelsion should. be made by the counselor and student working together and. using the broadest soope of information possible. The Ponnsylvania Course of Study for mathematios offers these suggestions as a basis for the decision: 5 the student's past mathematicel record, the teacher's estimete of the student's ability to profit fron the extended program, the student's scores ow mathematicel and general aptitude tests, and the parental interests, desires, and powers of support as related to the student's ex= tended education. Other authorities and ourrieulum guides are in olose agreoment with this. One thing is certain; the selection should not be made on scholastic ability alone, either to force a student into algebra or to force hlm into general mathematies. Human nature being what it is, counselor and student may malce a mistake in the choice of a course but by using the widest scope of factors possible, these mistalces will be held. to a minimam.

\footnotetext{
\({ }^{5}\) Course of Study, Mathematies for Secondary Schools, Bulletin 360, 1952. Commomealth of Pennsylvenia, De partment of Publio Instruction, Harrisburgs Pennsylvania. p. 105.
}

A special problem is created in the small high schools that make up the largest portion of the entire high school population. Where the large high school can section the class into two separate courses and then section the courses to get a more homogeneous grouping, the small high school may have barely enough students for a single course. Here, again, the curriculum guides and other authorities favored the teaching of general mathematics as the one subject but made provision for algebra by suggesting: (1) alternate courses in which general mathematics and algebra are taught in alternate years, (2) teaching two classes in one period, or (3) making provisions to have students take a correspondence course under the supervision of the school. It would be quite logical that algebra could be taught as an elective following general mathematics. Teaching the two classes in one period could have the advantage of correlating some areas, such as graphs, for the mutual benefit of both elasses.

A decided advantage of a general mathematics program in the ninth grade is that the student and his counselors are in a much better position to evaluate the student's needs and prospects. It should function to interest him in mathematics. His added maturity will make the student more aware of his limitations or capacities and help \(h\) im to progress faster in any subsequent mathematics he may choose to take.

CHAPTER VI

\section*{THE SUBJECT MATTER CONTENT OF NIITH GRADE MATHEMATICS}

To evaluate the choice of subject matter content in the ninth grade general mathematics, the purpose of the course must be considered. One such purpose is to correct those weaknesses which may arise because some of the work previously done in the lower grades has been deferred to later years. Along with other subjects there are more topics that must be taught in mathematics so that as earlier courses become overloaded, some of the topies are upgradede Even within the grades under consideration this has happened in that the elementary concepts of geometry as used in the seventh grade eaused some topies to be shifted to the eighth grade which then shifted some topies into the ninth grade. The work of the ninth grade in providing training in arithmetic, graphic representationss algebra, geometry, and numerieal trigonometry fills the needs of a student who will use them in subjects like physics, chemistry, economics, shopwork and soience. It shows more clearly how each subject is reinforeed and made clearer and more helpful by the other. Reeve puts it in this way:

The organizing and unifying principle of the general mathematies course should be the idea of functional relation - the dependence of one quantity upon another. \({ }^{n l}\)

In general mathematics the student is introduced to the basic concepts which then are applied to practioal situations, laying a foundation for the more diffioult mathematies which is to follow.

\footnotetext{
3
- D. Reeve "General Mathomaties for Grades 9 to 12". School Soience and Mathematics. 49:99-110 February 1949. p. 101.
}

The ninth grade mathematics should, if at e.ll possible, help the student to achieve functional competence as defined by the Check List mentioned in Chapter One. This course is often needed to achieve this competence because of the upgrading of topios from lower grades. The general mathematics will also function to wify the mathematies progrems of secondary schools in the rural areas where the grade school and high school are separete and the pupils Irom many outiying grade schools are brought to a central high sohool for their secondary education.

The scope of general mathematics varies greatly in the currieulum guidos and even more so in the textivooks that wer checiced. Some of the books were only an extension of the work done in the last; two grades and contained very little algebra or geometry. Others went to the other extreme by devoting much tire to algebra. Aa there is always the danger of crowing too much work into a general mathematios course, the greatest responsibility for selecting the topios to be covered and the amount of time alloted to them falls on the teachpr. It is the teacher who mast judge the needs of the class and select those areas that will be most applicable to the local situation.

The scope should include a review of axithmetic based on diagnostic tests and followed by remedial reteaching as indicated. There should be an extension of the concepts of geometric forms, their measurements and their appijeation in life situations. There should be an extension of algebra and additional experiences in interpreting and understanding graphs and the ability to presont data in graphic form. There should be many written problems involving the mathematies of personal living, earaing money, budgeting, intelligent buying, saving and banking. The methematical situations should become progressivaly more difilcult and have very definite Implioations for living in an adult vorl.d.

A suggested outline for the minimum essentials is included as a part of this report.

IININU ESSENTIALS FOR NINFH: GRADE GBIERAL MATHEMATIOS
I. Reviev of fundamental processes. (Teach for mastery).
A. Integers, fractions, doeimels, percent. 1. Apply in written problems, check answers.
2. Rounding of numbers, significant digits.
=I. Businoss prectioes.
A. Banking and investmonts.
B. Percontage applications; profit and lossa commission, increase and decrease.
C. Insurance.
D. Taxes.

意. Installment buying.
F. Budgets.
G. Pubiic Ütilition。

IIT. Grapha and Statistics.
A. Eigh degree of skill in reading and interpreting data from grephe in every day 11fe.
B. Ability to convert data into graphical forme
C. Winderstending elementery statistieal terms; mean, mode, ote.
T. Geometry and Measurement.
A. Ability to recognizs and derino agles, triangles, rectengles, ato.
B. Gonstruet perpendioulers, parallol linos, triangles, reotangles.
C. Understand formilas connocted with right triangles. 1. Dee in indireet measuring.
D. Ratio and porportion.
E. Seale drawing house plans, maps, shop drawingse
F. Volum of solids including sones, spheres, pyramids.
V. Algebra.
A. Simple linear equations involving two steps.
1. Axioms applied to equations.
B. Formulas.
1. Substitution in and evaluation of simple formulas.
2. Bmphesis on formalas as shorthand.
C. Eacponents and roots.
D. Fundamental processes applied to monominie.
B. Graphing linear equations.
F. Signed numbere.
1. Deifinition and understandinge
2. Operations with signed nomomial.
G. Changing form of literel equation or formula.
H. Varriation and dependance.
i. Eactoring.
VI. Jathematies in everyday life.
A. Application of the foregoing concept;s in written problems within the student \({ }^{2}\) experiences.

\section*{CHAPTER VII}

\section*{THE SUBJECT MATTER CONTENT OF ALGEBRA FOR GRADE NINE}

To make the subject matter content of algebra meaningful to the student it must be related to the fundamental concepts as developed in arithmetic. These concepts are broadened and strengthened as a gradual transition to a workable understanding of the terminology, notation and symbolism of algebra is made. \(S \pm a\), the information and skill in the essentials of arithmetic are rapidly lost unless they are used, there should be opportunities for systematic review with reteaching if necow essary. Opportunities for renewing number skills in computation with whole numbers, fractions, and decimals should be made. The course should develop logioal thinking in developing a problemesolving approach in connection with everyday situations. The student should learn to Pormulate and evaluate formulas and to translate data into an equatiun and solvs the equation. \(H_{e}\) should see algebra as a "shorthand" way of axpressing mathematical relationships. He should also be able to estimate with reasonable accuracy the desired answer and use this as a cheok for eomputations. Above all he should appraciate the function rf algebre in everyday life, in the sciences, and as a foundation for higher mathomatios. The student should know that algebra is the universal lenguage of the mathematician and the soientist and that a high degree of skill is essential if he is to suceeed in anyr technicai field.
1. The formula.A. Heaning, substitution and evaluation.1. Use in area, volume, eto.B. Constructing formulas from simple rules.C. Changing form of formula.
if. Equations.A. Using the four exioms in solving equations.
B. Solve equations using several stow.
1. Chack by substituting back in equation.
C. Solving systems of linear equations and checking.D. Graphing lineer equations.
III. Directed lumbers:
A. Use in solving problems, formulas, and equations.
B. Removing parentheses in problems.
C. Using with oparations involving nonomials and polynomials.
IV. Factoring and speaial products.
A. Remove monomisil factors.B. Differences of squares with integeral coefficients.
C. Faotoring form \(x^{2}-b x=0\)
\(\quad\). Algebraic fraction .A. Add and subtraet two fractions.B. Nultiply and divide two fractions with factorable numeratorsand denominators.
VI. Graphs, their meaning and use.
A. High degree of skill in interpreting and reading ourrert graphs.
B. Construct graphs from data.
VII. Powers, roots and radicals.
A. Powers of monomials and their use in multiplication and division.
B. Meaning of square root and radioal.
1. Use of fractional exponents instead of radical.
C. Rationalizing the denominator.
D. Adding, subtracting, dividing, multiplying radicals,
E. Applications of square root.
1. Extracting square root of a number.
VIII. Suadratic equatiuns.
A. Solving by factoring.
B. Solving by completing the square.
C. Applying quadraties in probiems.
IX. Ratio variation. porportion.
A. Heaning and applioation.
B. Similar triangles.
C. Right triangles formulas.
L. Trigonometric ratios.
1. Meaning.
2. Kumerical values
3. Applications within pupils understanding.
X. Review of computational skills. A. Review of real life problems to maintain skil.ls of top efficiency.

\title{
BIBLIOGRAPHY OF TEXTBOOKS CHECKED \\ (Oklahoma Official Adoptions Marked *)
}

Grade Seven Mathematics
*Clark. John R., et al, Growth in Arithmetic, Yonkers-on-Huds on: World Book Company. 1952.

Gager, William A•, et, al, Functional Nathomaties No. 7. Mew York: Charles Seribner Sons. 1953.
*Kight, et. ai. Mathematios and Life. Atlanta: Scott Foresman and Co.. 1949.
*Morton, R. E., et al., Making Sure of Arithmetic, Chieago: Silver Burdett Company, 1952.
*Potter, Mary A., et al.g Ma,thematics for Everyone. Boston: Ginn and Company, 1945.

Grade Eight Mathematies
*Brueekner, Loo J., et. al., \(\mathbb{K n o w i n g ~ A b o u t ~ N u m b e r s . ~ P h i l a d e l p h i a : ~ T h e ~}\) John C. Winston Comoany, 1952.
*Clark. John R., et al., Growth in Arithmetie. Yonkers-on-Hudson: World Book Company, 1952.

Gager, William A., et al., Functional Mathematics No. 8. New York: Charles Scribner Sons. 1953.
*Knight, R.H., et. al., Mathomaties and Life No. 2. Atlanta: Scott Foresman and Compeny, 1948.
*Morton, R.E., et. al.s Making Sure of Arithmatic. Chicago: Silver Burdett Company. 1952.
*Potter, Mary Ao, et al., Mathematies Beary Day. New York: Ginn and Cu., 1945.
```

*Gager, William A., Punctional Methematics, No. 9. New York: Charles
Soribner Sons, 1953.
Hart, We.lter W., et al., Mathematios in Daily Use. Boston: D. C. Heath
and Compeny, 1950
blankford., Francis G.g Basic Ideas of Mathemetics. Yonkers-on-Hudson:
World Book Company, 1953.
Leonherdy, Adele, 胃thematics for Everyday Living. New York: D. Van
Nostrand Compary, Inc., 1954.
'Ieonhardy, Adele, et. al.e, Mathematics for Daily Liying. Hew York:
D. Van Nostrand and Company, Inces 1954.
*Potter, Mary A., Mathematics for Success, Hew York: Gim and Company.
1952.
*Potter, Mery Ap, ot al., Mathematics To Use., Boston: Gim and Compeny.
1950.
Schorling, Raleigh, Mathematics in Life. Yonkers-on-ludson: World Book
Compenys, 1937.
VanTuyl, George H_{0} : Mathematies at Work. New Yorle: American Book
Company, 1941.

```
                Grade Wine Algebra

Fehr, Howard P., et al., Algebra Curse I. Boston: D. C. Heath and Company. 1955.
*lert, Walter W., A First Course in Algebra. Boston: D. C. Heath end Company, 1951.

Smith, C. A.e et al., Algebre Book 1. Evanston: Row Peterson and Company. .1955.
*Smith, Rolland R., әt al.e Algebra \(I_{\text {, }}\) Yonkers-on-Fiudson: World Book Company. 1.953.

\section*{BIBLIOGRAPHY}

Bersteing Allen, "A Study of Remedial Arithmetic Conducted with Minth Grade Students \({ }^{\prime \prime}\). School Science and Mhematies, \(56: 25-26\), Jan. 1956.

Betz, Willian, "Functional Competence in Mathematies - It's leaning and It's Attainment". The Methematics Teacher 41:195-206, May 1948.

Breslich. G. R. "Gurriculum Trends in High Schooll Mathematics \({ }^{\text {W }}\). The Mathematics Teaoher 41:60-63, Peb. 1948.

Brock, Paul, "The New Role of Mathemeties in Education" The Mathomatics Teacher, 48:305-307. October 1955.

Brown, Kenneth Fie, "What is General Methomaties f The Mathematics Teacher, 39:329-331. November 1946.

Burr, Harriet, "Mathematies in General Bducation". The Mathematies Teacher: 40:58-61, February 1947.

Carnehan, W. H., "Adjusting the Teaching of Mathematies to the Requirements of General Education" The Mhematies Teacher, \(39: 211-216\), May 194.6.

Course of Study, Functional Mathematios in Secondary Sohools, Bulletin No. 36. 1955 Department of Education Tallanasse, Florida.

Course of Study, Wathematies for Junior andWSenior High Schools, Bulletin No. 212. 1950, Department of Tublie Instruction, Indlanapolis, Indiana.

Course of Study, A Guide for Instruction in Mathematics Gurrioulum Bulletin No. 20,1953 , Depertment of Education, St. Paul, Mimesota.

Courso of Study Mathematics for Mebraska Elementary School Children, 1945, Department of Pablic Instruction, Lincoln, Mebraska.

Course of Study, lhathematies for 411 High Sohool Iouth. 2955, Bureau of Seaondary Curriculum Development, The state Education Department, Albany, New York.

Couree of Study, A Suggested Guide for the Teaching of Mathematics; Bulletin No. 103. 1949. State Department of Educetion, Oklahona City, oklehoma.

Course of Study, Mathematics for Secondary Sehools, Bulletin 360, 1.952, Comonvealth of Perinsylvania, Department of Publio Instruction. Harrisburg. Pennsylvania.

Douglas, Harl R. Mathematics for All". The Mathematios Teacher, 25:212216. May 1942.

Elliott, Barl S.g "Mathematies and Guidance in Kanses Schools at Minthgrade Level." The Mathematies Teacher, 48: \(43-436\). December 2955.

Fabling. C. C.: "The Problems of a Non-College-Freparatory Curriculum in Mathematics and Suggestions for its Solution". The Mathomaties Teacher, 40:8-13. January 1947 .

Fehr, Hovard Fes "The Goal is Mathematies for All", Sehool Soience and Mathematies, 56:109-113. February 1947.

Gagers Willian A. "Mathematies for the Other BightyoFive Percont \({ }^{\text {EI }}\), School Science and Mathematies, 48 s296-301. Apri1 1948.

Gager, William A.e et al. Funotional. Mathomaties, Book l, Hev York: Charles Scribners Sons 1953.
- Funotional Ma.thematios, Grade 7. Mew York: Charlee Scribners Sons, 1953.

Hawicins, G. E. "Adjusting the Program in Mathematics to the Needs of the Pupils \({ }^{n}\). The Mathematies Teacher: \(39: 206-10\), May 1946.

Jeckson, William \(\mathbb{N}\). "The Interpretation of Data with Appilcation in Elementary Algebra". School Science and Mathematies, 56:181-3. April 1953.

Kinneys Leucien B. "Mernematios in Junior High School." The Mathematies Teacher, \(48: 33-36\). Janua ry 1955.

Kinney, Mucien and Furdy, C. Richard, Peaching Mathemeties in the Secondary Sehool. Wew York: Rinehart and Compenys Ine. 1953.

Lankford, Francis G., Mractical Mathemetics is Challenging to Students", The Mathematies Teacher, 48 L 401 -405, November 1955.

Marino, Anthony: "Methematies for the Mon-8cademia Student". The Mathemerties Teacher, \(39: 229-35\). May 1946.

MeGreery, Gome, "Mathematics for all the Students in High School". The Mathematies Teacher, \(4 \mathrm{I}: 302-8\). November 1948.

Wational Council of Teachers of Methematios, Fifteen Year Books 1940. Bureau af fublications, Peachers college, Columbia University. Hew York.

National Council of Teachers of lathematies, "Guidance Pamphlet in Hathem maties for High School Students". Final Report of the Commission on Post War Plans, The Mathenaties Teacher, \(40: 315-39\). November 1947.

Price, H. Vernorl, Ne Can Remove the Stigme From General Methematics" School Selence and Mathematies, 47, i46-50, May 1947 .

Reeve，W．D．，＂General Mathomatics for Grades 9－12＂．Sehool Seience and Mathematios＂．49：99－110，February 1948．
．What Should be the Mature and Content of Juaior High School Wathemeties＂．The Methematics Teacher，48：413－15．October 1955．

Rogers，Mery，＂Possible Articulation for the Junior High Sfohool With the Blementary School and with the Secondary School＂The Hethemetics Tes．cher． 38 ：252－58，lotober． 1946.

Schmidt，John，＂A Mathematies Course for Any Student：The Methemeties Tescher，42：227－29，May 1949．

Schult，Veryl．＂The Junior－High School Text－book－Plus＂，The 冓thematios Teacher，39：21．7－220，May 1946．

Schult，Veryl，＂通thematios Today＂，National Edueation Association Journal， p．24－26，January 1947．
＂The Second Report of the Comission on Rostiver Plans＂．The 期thematies Teacher，38：191－221，May 1945．

Truscott，George，et al．＂＂Who Tesches Algebra to Whom？The Mathematics Tea．cher， 48 ：257－61，角rch 1955.

Waddill．Thomas E．e＂Minth Grade General Mathematics＂．Tho Ththematios Teacher， \(48: 279-80\) ，May 1955．

Zant，James H．，＂The Improvement of High School Mathematics Courses as Recormended by the Cormission on Post War Plans＂，The 畄thematies Tescher． 39 s269－274．Oetober，1956．
－＂The Revision of Certificate Requirements for Secondary Whematies＂Teachers in Oklahoma．＂．The Mathematies Teacher，47：467－ 75．November 1954．

What；are the Mathematical Needs of the High School Studentis？The lathemathes Teacher， 42 ：75－78，Pebruary 1949.

\author{
Milton B. Priesen \\ Candidate for the Degree of \\ Master of Seience
}

\section*{Report: TGE SUBJECT MATTER CONTENT OF JUNIOR HIGH SGHOOL MATHGMATCS}

\author{
Mejor Fiold: Naturel Science
}

Biographical:
Personal datat Born near Hoaker, Oklahona, Harch 23. 1915, the som of Jacob F. and Fliesabeth Frieson.

Education: Attended grade school noer Hooker, Oklehomiay graduatod from Buhi.er High School, Buhler, Karuas, in 1934: received the Bachelor of Science degree from the Pounhandle Agricultural and Hechanical College, Goodwell. Oklahoma, with a major in Industrial Artes, in May, 1939; completed requirementel for the Master of Seience degree in lay. 1957.

Profossional Experiences Taught school at Adans, Oklahoma, \(1943-\) 19/4 sorved as principal in Eurelca Consolidated School, Baker. Oklahoma, 1944-1954 supervised the Post Cak Mission Schoal. Indiahoma. Oklahoma, 195h-1955; taught soience and mathematics in Balko High School, Balko, Oklahoma, 1955-1956; member of the National Science Foundation Supplementary Training Program for High School Seience Teachers, Oklahoma Agrieultural and Mochenical College, 1956-1957.```

