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ABSTRACT 

 

An accurate wellbore stability analysis depends strongly on the state of knowledge of the 

problem at hand. Almost in all cases, the state of knowledge for wellbore stability 

analyses is poor. Values of many parameters and variables (so-called prior geological 

information) are poorly constrained and various assumptions of the adopted wellbore 

models are easily violated. The dilema is that using a model requiring few input 

parameters would suffer from a large number of model assumptions and simplifications; 

while using a complex model requiring a large number of input parameters which have 

wide ranges of possible values. Therefore, assessing the uncertainty (or degree of 

confidence) for different possible wellbore stability/instability scenarios remains difficult. 

Current sensitivity analyses, which consider varying possible values of one parameter 

while keeping others constant, are suboptimal and may not provide the correct effects of 

the parameters’ uncertainties on the overall uncertainty of the wellbore stability 

prediction.  

 

Recent technological advances such as logging-while-drilling (LWD) and measuring-

while-drilling (MWD) enable real-time updating of measured rock properties values and 

in-situ conditions. This means the ranges and uncertainties of parameters for wellbore 

stability analyses can be adjusted in real-time, during drilling. This aspect has not been 

developed into a self-updating, real-time wellbore stability analysis approach yet. 
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As a step toward that goal, this dissertation presents several studies covering different 

aspects of wellbore stability. In particular, the uncertainties of input parameters and 

selected models are treated using a probabilistic framework combining Monte Carlo 

simulations and Bayesian statistics.  

 

The uncertain nature of both input parameters and model assumptions and their effects on 

the uncertainties of wellbore stability predictions are investigated. It is shown that, 

depending on the severity of parameters’ uncertainties, the use of complex wellbore 

models might not necessarily reduce the uncertainty of the predictions, contrary to 

popular belief. 

 

The following studies explore the quantifications of rock parameters’ uncertainties 

(ranges) that are used as input in a wellbore stability analysis. Firstly, three equivalent 

forms of Gassmann’s equation are presented. These equations were applied to several 

sets of laboratory measurements (Berea sandstones and Bedford limestones) to determine 

the grain matrix bulk modulus and Biot-Willis coefficient based on measured 

compressive and shear velocities. A stochastic simulation was performed to examine the 

effect of uncertainty and/or measurement errors on calculated grain matrix bulk modulus 

and Biot-Willis coefficient. The results showed that the calculated grain matrix bulk 

modulus is relatively constant with applied differential pressure (up to 50 MPa) for 

sedimentary rocks, whereas Biot-Willis coefficient is a function of the confining 

pressure. Small errors in dry and saturated bulk modulus values (or of velocities), 
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however, can significantly affect the calculated grain bulk modulus and Biot-Willis 

coefficient values.  

 

The uncertainties of rock failure parameters (Uniaxial Compressive Strength, cohesion, 

and internal friction angle) obtained from laboratory experiments are considered next. It 

is shown that different testing procedures and data analysis methods result in very 

different input rock failure parameter values. A new analytical solution to find the best-fit 

Mohr-Coulomb failure envelope from � Mohr’s circles based on Least-Absolute Errors is 

presented, showing comparable results with those deduced from established least-square 

regression approaches. The problem is converted into � linear systems that can be solved 

readily using a common linear programming method. This method is found to be more 

useful than least-square regression when one has to deal with data sets of mixed qualities. 

 

Finally, a wellbore stability analysis demonstration using a probabilistic approach is 

presented for the Barnett Shale. The selected porothermoelastic model shows that the 

cooling effect due to a ~30 °C temperature difference between the drilling mud and the 

formation is most likely the cause of the transverse tensile failures observed in horizontal 

open-hole borehole imaging logs. 
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CHAPTER 1 

I�TRODUCTIO� 

 

1.1. WELLBORE STABILITY PROBLEMS 

With the cost for remediation of wellbore instability reaching billions of dollars 

worldwide each year (Sayers and Dewhurst, 2008), wellbore instability has become an 

important problem throughout the life of a well, from drilling, completion, to production, 

enhanced recovery, and workover. Furthermore, with the oil and gas industry moving 

further and further to unconventional frontiers, from permafrost regions to deep seas, 

preliminary wellbore stability analyses, those that need to be done before a well is drilled, 

or before a production rate is set, have become more and more critical. However, 

continuous assessment, the ability to incorporate incoming new information to provide 

updated analyses and evaluation for control strategy, especially with measuring-while-

drilling (MWD) and logging-while-drilling (LWD) data, is still being developed (i.e. 

Goobie et al., 2008).   

The questions for wellbore instability problems can be grouped into the following 

categories:  

- What is the “safe” drilling window (azimuth, deviation, mud weight) for a new 

well or a new lateral? 

 - What are the troubled sections where casing needs to be set? 

 - What should be the type of completion? 

 - What should be the production or injection rate? 

- If instability is unavoidable or has occurred, what are the remediation options? 
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Answering these questions is difficult, due not only to the large amount of needed 

information (rock properties, fluid properties, in-situ conditions) and knowledge of 

governing physical-chemical processes, but also the various degrees of uncertainties 

associated with the overall system of equations and parameters. 

 

1.2. WELLBORE STABILITY PROBLEMS: THE UNCERTAINTY 

Until now, solutions to various wellbore stability problems have always carried 

undefined uncertainty. The problem is two-fold: firstly, different geological information 

has different degrees of uncertainty or reliability. The non-linear relationships among the 

parameters make it difficult to track the propagation of these uncertainties to the 

parameters being investigated. Secondly, in most cases, the amount of available 

information is vastly inadequate due to constraints of human resources, time, and/or 

money. The geological information, therefore, is not only à priori components of the 

solutions but also limits the number of available or applicable solutions. The problem 

solver – e.g. a petroleum engineer or a geomechanics expert, will have to make subjective 

decisions (based on their experience, sometimes even gut feeling), in order to come up 

with a solution. The assumptions and limitations of an approach (theory) may severely 

reduce the reliability of the results.  

Because the uncertainty is not clearly defined, the conclusions from the 

preliminary analyses, those that contain very few verified input data, are often presented 

and taken with much higher degree of confidence than they should be. This can prove 

fatal for managers, who have to make business decisions based on these results. With this 
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traditional approach, when new information (field or lab data) becomes available, the 

new analysis results can be vastly different from the original assessment. 

To date, uncertainty in a wellbore instability analysis has not been treated 

adequately (i.e. with Bayesian statistics). In most cases, a sensitivity analysis for a single 

parameter is carried out while other parameters are assumed to have no uncertainty. The 

process is then repeated for other input parameters. The results from such sensitivity 

analyses are sub-optimal. They can be erroneous if the value of a “fixed” parameter 

controls the sensitivity of the investigated parameter in a non-linear fashion. Also, such 

analysis does not provide the correct uncertainty for the whole system. 

Bayesian analyses provide a great framework for this type of probabilistic 

analysis. In fact, geological prior information has been used within a Bayesian framework 

to solve problems in many different domains: earthquake prediction (Kagan and Jackson, 

2000; Holliday et al, 2007), excavation and foundation in civil engineering, underground 

storage or waste disposal (Chapman and McCombie, 2003). In the oil and gas industry, 

geological information is used to assess hydrocarbon potentials (i.e. Gray et al., 2007, 

Wolff, 2010). 

In this approach, the uncertainty for each parameter and method is quantified, 

subjected to the experience and expertise of the person or group doing the analysis. Thus, 

the propagation and interactions of those uncertainties are accounted for in the 

investigated parameter(s). A progressive reduction of uncertainty in the conclusion can be 

achieved as more information becomes available (Fig. 1.1). 

For example, an engineer is given a task of analyzing the wellbore instability risk 

for a well to be drilled in a newly discovered field. He/She has to: (1) determine a model 
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or theory that will give the resulting stresses around a borehole (elasticity, poroelasticity, 

etc.) in an isotropic or anisotropic medium; (2) determine a failure criterion for the rock 

given the calculated stresses (Mohr-Coulomb, Mogi-Coulomb, Hoek-Brown, etc.); and, 

(3) determine an associated uncertainty to his/her selected approaches.  Most often, the 

available data for the problem is insufficient even for the simplest model; therefore 

he/she will have to adopt input taken from somewhere, preferably from published data on 

a similar field. In the end, a traditional, overconfident conclusion: “(I think) there will be 

no instabilities” is not as useful to a manager as a conclusion that says: “With the updated 

information, there is a three-to-one chance that the well will not fail but there is still a 

remaining 40% uncertainty due to lack of information”. Such conclusion with quantified 

uncertainty would force the manager to make a subjective judgment on whether he/she 

could accept the current uncertainty, or he/she needs to invest more for new information 

to further reduce the uncertainty to a better, acceptable level. 

Bayesian analysis has its own disadvantages. In each step of the aforementioned 

example, the geoscientist(s) or engineer(s) will have to make decisions based on their 

experience and knowledge (choosing models, assigning values for unknown input 

parameters, assigning uncertainties reflecting their confidence on those values). These 

subjected decisions are prone to various biases. Given the same input data, different 

engineers can come up with not only different conclusions but also different degrees of 

confidence. Understanding these biases is critical to constructing a correct analysis, 

which will be reviewed in details in the next chapters.  
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1.3. OBJECTIVES OF THIS DISSERTATION 

This dissertation explores several problems in wellbore stability analyses and 

proposes the use of stochastic Monte Carlo simulations to quantify the uncertainty of the 

resulting prediction. The outline of this dissertation is as follows: Chapter 2 deals with 

quantifying uncertainties of pre-existing (measured) input data using new forms of the 

Gassmann’s relation. Chapter 3 deals with quantifying uncertainties of rock failure 

parameters from experimental triaxial data. Chapter 4 deals with the nature of drilling-

induced transverse tensile fractures observed in borehole images of the Barnett Shale 

(Fort Worth, Texas). Using a recent porothermoelastic wellbore stability model, the 

probability of having the transverse fractures with given drilling conditions is calculated. 

Chapter 5 examines the effects of input parameters on the creation and the length of these 

transverse fractures. Finally, conclusions and recommendations are presented in Chapter 

6. 
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CHAPTER 2 

DIFFERE�T FORMS OF GASSMA��’S EQUATIO� A�D U�CERTAI�TY 

QUA�TIFICATIO�S OF ROCK PROPERTY ESTIMATES 

 

Rock bulk modulus and Biot-Willis coefficient depend on both grain and saturated fluid 

properties. In this chapter, three new Gassmann’s equations that are useful for different 

scenarios of available input data are presented. The effects of input data uncertainty on 

the calculated values are investigated.  

 

2.1. INTRODUCTION 

The Gassmann’s equations (Gassmann, 1951) have been used extensively in the 

oil and gas industry for fluid identification and reservoir monitoring applications (despite 

its various assumptions (Smith et al., 2003; Adam et al., 2006)). The first Gassmann’s 

equation provides a relationship between the saturated bulk modulus of a rock and its dry 

frame bulk modulus, porosity, bulk modulus of the mineral matrix, and bulk modulus of 

the pore-filling fluid; whereas, the second Gassmann’s equation simply states that the 

shear modulus of the rock is independent of the presence of the saturating fluid:   

( )φαφ

α

−+
+=

m

f

f

drysat

K

K

K
KK

2

                                        (2-1) 

drysat GG = ,     (2-2) 

where Ksat, Kdry, Km, and Kf are the bulk moduli of the saturated undrained rock, dry rock, 

grain matrix, and saturated fluid, respectively; Gsat and Gdry are the shear moduli of the 
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saturated and dry rock, respectively; φ is the rock porosity; and α is the Biot-Willis 

coefficient (Biot and Willis, 1957) defined as: 

 
m

dry

K

K
−=1α .          (2-3) 

The moduli are related to the seismic velocities and density by: 

 






 −= 22

3

4
sp VVK ρ      (2-4) 

 
2

sVG ρ=      (2-5) 

Berryman and Wang (2001) gave a concise derivation of Gassmann’s equations 

for an isotropic and homogeneous medium using the quasi-static poroelastic theory. 

Other forms of Eq. (2-1) can be found in Mavko et al. (1998). Zimmermann (1991) 

presented an equivalent form in term of compressibilities. However, Eq. (2-1) is probably 

the most intuitive in describing the effect of fluid presence on the bulk modulus.  

 

White and Castagna (2002) argued that, since all input parameters for Gassmann’s 

equations carry some degrees of uncertainty, fluid modulus inversion should be 

performed using a probabilistic approach. Artola and Alvarado (2006) evaluated the 

effect of uncertainty of different input parameters and showed that the computed 

compressional velocity of a saturated rock is most sensitive to uncertainties in the rock 

bulk density, the dry bulk and shear moduli, while other parameters (porosity, grain 

matrix and fluid bulk moduli) have negligible effects.  

 

Note that the three parameters: dry frame modulus (Kdry), Biot-Willis coefficient (α), and 

grain matrix bulk modulus (Km) are related by Eq. (2-3); in many instances they are 
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unknowns. The grain matrix bulk modulus, however, is expected to be relatively constant 

with applied pressure (Simmons and Wang, 1971). Thus, if a back-calculated Km profile 

shows a dependence on the applied pressure, it implies errors of input parameters. The 

Biot-Willis coefficient, also known as the effective stress coefficient, can differ 

significantly from the commonly assumed value of 1 (e.g. Todd and Simmons, 1972; 

Shafer et al., 2008). The fluid saturated bulk modulus (Ksat) and fluid bulk modulus (Kf) 

can also be unknowns (e.g. in fluid substitution problem). As a result, empirical 

correlations have been developed to address this problem. However, the applicability of 

such correlations is often limited due to pressure constraint and the uncertainty of the 

estimated value is often neglected. For example, Batzle and Wang (1992) provided 

empirical equations to estimate velocities, densities, and bulk moduli of oil, gas, and 

water as functions of pressure and temperature. At high differential pressure (40 MPa), 

Han and Batzle (2004) proposed α to be a polynomial function of porosity for 

sandstones: 

32 143.1349.3206.3 φφφα +−=                      (2-6) 

In this chapter, three equivalent forms of Gassmann’s equation that are useful for three 

different scenarios of available data are presented. These equations are applied to several 

sets of laboratory measurements to determine the profiles of grain matrix bulk modulus 

and Biot-Willis coefficient as functions of applied pressure. Since this relation consists of 

six parameters (Ksat, Kdry, Km, Kf, φ, α), each having different levels of uncertainty, a 

Monte Carlo simulation was performed to examine the effect of uncertainty and/or 

measurement errors on the calculated values.  
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2.2. THE EQUIVALENT GASSMANN EQUATIONS 

2.2.1. When (Kdry, Ksat, Kf, and φ) are known 

In this case, α and Km are unknowns. This is generally the case for laboratory 

measurements on dry and wet rock samples (e.g. dry- and brine-saturated acoustic 

velocities are measured as functions of differential pressure). One can rewrite Eq. (2-1) as 

a function of Biot-Willis coefficient α (see Appendix A for the detailed derivation): 

0111)1(2 =









−








−+








−+−

f

dry

sat

dry

sat

dry

K

K

K

K

K

K
φαφα    (2-7) 

Eq. (2-5) is a quadratic equation 02 =++ CBA αα , where 

  1=A ,      (2-8) 









−+−=

sat

dry

K

K
B 1)1(φ ; and,    (2-9) 


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







−








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f

dry

sat

dry

K

K

K

K
C 11φ .    (2-10) 

This equation has two solutions: 

A

B

2
2,1

∆±−
=α , where ACB 42 −=∆ .   (2-11) 

However, Berryman and Milton (1991) showed that α is physically bounded 

between 0 and 1. Eqs. (2-9) and (2-10) show that B is negative since Kdry<Ksat, and C is 

also negative since Kf <Kdry for consolidated rocks. Therefore, α1 is the only possible 

solution since α2 is negative.  

The corresponding grain matrix bulk modulus can be calculated from Eq. (2-3): 

  
α−

=
1

dry

m

K
K      (2-12) 
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Therefore, instead of having two non-linear equations for two unknowns (α and Km), the 

problem is reduced to one simple quadratic equation (Eq. 2-7) that always gives one 

physically realistic solution.  

This provides an independent method to estimate the grain matrix bulk modulus 

of a rock, assuming that other inputs are known. Traditionally, the grain matrix bulk 

moduli are estimated from averages of the rock mineralogical composition (e.g. Voigt-

Reuss-Hill average or Hashin-Shtrikman bounds (Hill, 1952; Hashin and Shtrikman, 

1963; Berryman, 1995)). These bounds may carry large uncertainties since many 

minerals, especially clays, have a high variance in their bulk modulus values depending 

on the measurement conditions (Katahara, 1996; Wang et al., 1998). One can further 

postulate that: (a) the grain matrix calculated from Gassmann’s equation must lie between 

the two bounds obtained from mixture theory; and, (b) the calculated grain matrix values 

are insensitive to the first order to the applied pressure (Simmons and Wang, 1971). Eq. 

(2-7) can also be used to verify the applicability of existing empirical correlations (e.g. 

Eq. 2-6) to a certain rock. 

 

2.2.2. When (Ksat1, Ksat2, Kf1, Kf2, and φ) are known 

This case can be encountered in the field. The same rock can be fully saturated 

with brine in one well while having oil or gas in another well; or it can have different 

saturation zones in the same well
1
. In this case, Kdry, Km, and α are unknown in a system 

of three non-linear equations (two Eq. 2-1 for two different saturation fluids and Eq. 2-3). 

Starting from Eq. (2-7) instead, one finds (see Appendix B for detailed derivations): 

                                                           
1
 Thus, one has two saturated bulk modulus values Ksat1 and Ksat2 as the rock is saturated by two different 

fluids having bulk moduli Kf1 and Kf2. 



 

11 

 

( )[ ] 







−−+−










−=










−

21212211

11
1

1111

satsatff

dry

fsatfsat KKKK
K

KKKK
φφαφφ        (2-13) 

One can write Eq. (2-13) in a more convenient form for numerical calculations: 
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Kdry, α, and Km can now be calculated using the following simple iteration using Eqs. (2-

14) and (2-7): 

- Step 1: Make an initial guess for Kdry, e.g.  

{ }21,min5.0 satsatdry KKK ×=        

- Step 2: Use the guessed Kdry value in Eq. (2-7) to find two Biot-Willis 

coefficients 1fα and 2fα (for two saturations): 

 0111)1(
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- Step 3: Compute the average for a new Biot-Willis coefficient: 

 ( ) 2/21 ff ααα +=  

- Step 4: Use this new α value in Eq. (2-14) to find new Kdry. 

- Step 5: Repeat steps 2 to 4 until Kdry converges: ε<








 −

newdry

olddrynewdry

K

KK

,

,,
 

- Step 6: Use Eqs. (2-7) and (2-12) to find the corresponding α and Km. 

 

Note that one has assumed there are no softening or hardening effects caused by 

the saturating fluids on the grain bulk modulus (i.e. Km is a constant). The second 
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assumption is that the rock dry frame is stiffer than both saturating fluids, 

{ }21,max ffdry KKK > , so that Eq. (2-7) still gives only one positive (physically realistic) 

root. This assumption is generally valid for consolidated sedimentary rocks.  

 

2.2.3. When (Km, Ksat, Kf, and φ) are known 

In this case Kdry and α are unknowns while Km is estimated from the mineralogical 

composition of the rock (FTIR, XRD, thin section, or mineralogy log). Gassmann’s 

equation can be reduced to (see Appendix C for the detailed derivations): 
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K
KKK

K

K
KKK 11 φαφ         (2-15) 

from which α can be readily calculated and Eq. (2-3) gives Kdry. This is equivalent to the 

Kdry solution of Zhu and McMechan (1990) in terms of Ksat. 

  

2.3. NUMERICAL EXAMPLES 

Eq. (2-7) was applied to the pressure-dependent dry and brine saturated velocities 

and moduli of a porous sandstone sample described in Han and Batzle (2004). The wet 

and dry densities were estimated from Eqs. (2-4) and (2-5). The porosity values were 

calculated using the density relationship: 

  fdrysat φρρρ +=                        (2-16) 

The calculated Biot-Willis coefficient and grain matrix modulus as functions of pressure 

are plotted in Fig. 2.1. The Biot-Willis coefficient versus pressure profile is remarkably 

similar to the result measured on a 26% porosity Boise sandstone sample by Fatt (1959). 

The grain matrix modulus, as expected, is relatively constant around 39 GPa, indicating a 
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quartz-rich rock. Note that for the Biot-Willis coefficient α, estimation using Gassmann’s 

equation at 40 MPa differential pressure is 0.73, significantly higher than Han and 

Batzle’s porosity-based Eq. (2-6) estimation of 0.63. 

 
Figure 2.1: Grain bulk modulus and Biot-Willis coefficient of a sandstone sample as a 

function of pressure back-calculated from its dry and brine saturated moduli (Han & 

Batzle, 2004) using Gassmann’s equation. The relatively constant value of the grain bulk 

modulus (39 GPa) as a function of pressure is a good indicator that Gassman’s equation 

is applicable for this rock. The variation of grain bulk modulus at low confining pressure 

(<10 MPa) implies a higher uncertainty in input values (i.e. higher noise-to-signal ratio 

from velocity signals), and/or violations of Gassmann’s assumptions (i.e. presence of 

cracks) 

 

The iteration procedure described in Section 2.2.2 using Eqs. (2-7) and (2-14) was 

employed for water- and benzene-saturated “Bedford C” limestone sample reported by 

Coyner (1984) (Fig. 2.2). The fluid pore pressure in both cases was maintained at 10 MPa 

and both measurements were made at room temperature. The porosity of the rock is 

11.9%. The shear modulus profiles are almost identical for all vacuum dry, water 
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saturated, and benzene saturated cases, suggesting that Gassmann’s equation is valid for 

this rock. 

The grain matrix bulk modulus and Biot-Willis coefficient profiles obtained from 

the rock water- and benzene-saturated moduli are shown in Fig. 2.3. The back-calculated 

dry bulk modulus is shown in Fig. 2.2. While the grain matrix bulk modulus is similar to 

Coyner’s reported value of 65 GPa, the back-calculated dry bulk modulus versus 

differential pressure profile is consistently higher than the measured vacuum-dry modulus 

profile by approximately 2.5 GPa (or 5-9%). This is other evidence supporting the 

argument that the vacuum dry measured bulk modulus is too dry and may not be used as 

Kdry in Gassmann’s equation (Clark et al., 1980).  
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Figure 2.2: Bulk and shear moduli as a function of differential pressure for Bedford C 

limestone (from Coyner, 1984). The dashed line is the dry bulk modulus calculated from 

Gassmann’s equation with water- and benzene-saturated bulk moduli as input showing an 

approximately 2.5 GPa (or 5-9%) higher trend than the measured vacuum dry bulk 

modulus. At 10 MPa pore pressure, Kwater =2.24 GPa, Kbenzene=1.21 GPa. Along with 

Figure 2.3, this is other evidence suggesting that vacuum dry values should not be used as 

dry values in Gassmann’s equation (Clark et al., 1980; Mavko et al., 1998).    
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Figure 2.3: Grain matrix bulk modulus and Biot-Willis coefficient of Bedford limestone 

sample as a function of pressure back-calculated from its water- and benzene- saturated 

moduli (Coyner, 1984) using Gassmann’s equation. The grain matrix bulk modulus is 

relatively constant and in good agreement with Coyner’s reported value of 65 GPa. 

Applying Eq. (2-7) with vacuum-dry values and either water- or benzene- saturated 

values, however, gives unrealistically high grain matrix bulk modulus (not shown).  

 

 

2.4. MONTE CARLO SIMULATION 

Measured values always have some associated errors. Velocities, especially shear 

wave velocities, may carry significant uncertainties. In order to determine the effects of 

uncertainties from porosity, Kdry, Ksat, and Kf on the uncertainty of the predicted Km, a 

Monte Carlo (stochastic) simulation was used. 

Table 1 summarizes the input parameters values and their ranges of uncertainties. 

The rock sample is Berea sandstone sample with Voigt-Reuss-Hill average grain bulk 

modulus of 39.6 GPa from its mineralogical composition (Tran et al., 2008). All 
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parameters were assumed to have a normal distribution with means being the measured 

values and the errors representing the 95% confidence interval. Thus, the relative error 

(uncertainty) of each parameter is defined as: 

  % error %100
2

⋅=
mean

s
        (2-17) 

where s is the standard deviation of the parameter’s sample.  

For each set of perturbed errors, 10,000 sets of (porosity, dry bulk modulus, wet 

bulk modulus, fluid modulus) values were generated to compute 10,000 grain bulk 

moduli, from which the mean and standard deviation were determined.  

Table 2.1: Mean measured values of a Berea sandstone sample (Tran et al., 2008) and 

ranges of uncertainties used in Monte Carlo simulations. 

 

Parameters Mean values 

(measured) 

% error standard 

deviation 

Porosity 17.6% ±1% - 15% ±0.09%-1.3% 

Effective dry bulk modulus 16.8 GPa ±1% - 15% ±0.25-1.26 GPa 

Effective wet bulk modulus 21.1 GPa ±1% - 15% ±0.32-1.58 GPa 

Fluid bulk modulus (water) 2.2 GPa ±0% - 30% ±0-0.33 GPa 

 

For the base case, porosity is assigned a 1% uncertainty, Kdry and Ksat are each 

assigned a 3% uncertainty, and Kf carries a 10% uncertainty. The resulting Km is also a 

Gaussian distribution with a mean of 44.6 GPa and a standard deviation of 3.45 GPa. The 

95% confidence interval is, therefore, from 37.7 GPa to 51.5 GPa (or 16% error). The 

Biot-Willis coefficient α also has a Gaussian distribution with a mean of 0.62 and a 

standard deviation of 0.03. The 95% confidence interval is from 0.56 to 0.68 (or 10% 

error).  
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Figure 2.4: % error (uncertainty as defined in Eq. 2.17) of the computed grain matrix bulk 

modulus Km using Gassmann’s equation as functions of percent error in one input 

parameter (Kf, φ, Kdry, or Ksat), while the remaining input parameters carry the same 

uncertainties as of the base case. Errors from Ksat and Kdry have the largest effect on the 

uncertainty of Km. Porosity and fluid bulk modulus, on the other hand, show negligible 

effect.  

 

Fig. 2.4 shows the uncertainty of the computed grain matrix bulk modulus Km as 

functions of percent error in one input parameter (Kf, φ, Kdry, or Ksat), while the remaining 

input parameters carry the same uncertainties as of the base case. Errors from Ksat and 

Kdry have the largest effects on the uncertainty of Km. Minor errors in Kdry and Ksat (even 

within laboratory measurement standards) can result in large errors in the estimated value 

of Km. Therefore, if Km is known (i.e. from rock mineralogical composition averages), 

calibration of laboratory measured dry and wet velocity profiles can be made, especially 

at low pressures when the noise level is higher. Porosity and fluid bulk modulus, on the 



 

19 

 

other hand, show negligible influence. This result is not surprising, as Kf, φ and Km should 

be uncorrelated parameters. 

This is one of the simpler cases of sensitivity analysis, which involved only four 

input parameters (Kdry, Ksat, Kf, and φ), and two equations (Eq. (2-3) and (2-7)). The range 

for each parameter is well-established with laboratory control. A Monte Carlo simulation 

with 10,000 case runs to estimate uncertainty in Km is more than adequate since it is 

equivalent to a six- or seven-level full factorial design analysis (4^6=4096 cases). The 

results, therefore, not only reveal the general trend of uncertainty in Km due to that of 

each input parameter, but also show the non-linear effects. For example, an uncertainty 

level of 20% error on Kf in Fig. 2.4 starts to significantly affect the Km results. 

Another note in the Monte Carlo simulation program is the 

dependence/independence of the input mean values and its uncertainties and its effect on 

the quality of assessing uncertainty in the results. The mean (measured) values and the % 

error (columns 2 and 3 of Table 2.1) can be entered as independent priors; whereas 

measured values and the standard deviations (columns 2 and 4 of Table 2.1) are 

dependent. They represent different levels of subjective judgment from the “experts.” 

Using the standard deviations as inputs means the expert believes more in the data 

available to him/her (i.e. from measurements or references). These data are just a fraction 

of the overall population. In elicitation theory, Garthwaite and Al-Awadhi (2001) 

proposed that the means and their variances should be asked and evaluated independently 

of each other for a least biased assessment of uncertainty.  

 

 



 

20 

 

2.5. CONCLUSIONS 

Three equivalent forms of Gassmann’s equation were presented that can be useful 

for the determination of the Biot-Willis coefficient, dry bulk modulus, and/or grain 

matrix bulk modulus of a rock. These equations were applied to several sets of laboratory 

measurements to determine the grain matrix bulk modulus. A stochastic simulation was 

performed to examine the effect of uncertainty and/or measurement errors on calculated 

grain matrix bulk modulus and Biot-Willis coefficient. The results showed that the 

calculated grain matrix bulk modulus is relatively constant with applied differential 

pressure (up to 50 MPa) for sedimentary rocks, while Biot-Willis coefficient is a function 

of confining pressure. However, uncertainty of dry and/or saturated bulk modulus values 

(or of velocities) can significantly increase the uncertainty in back-calculated grain bulk 

modulus. The back-calculated dry bulk modulus using Gassmann’s equation is also found 

to be consistently higher than the measured vacuum-dry values. This opens the 

application of Gassmann’s equation to effectively quantify the uncertainty of dry and 

saturated bulk modulus (and subsequently, the seismic velocities) in fluid identification 

or reservoir monitoring applications. 
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CHAPTER 3 

QUA�TIFICATIO� OF ROCK FAILURE PARAMETERS FROM 

LABORATORY TRIAXIAL TESTI�G DATA 

 

Experimental triaxial testing data can be interpreted by different methods to derive rock 

failure parameters. In this chapter, a new analytical method to calculate the best-fit 

tangent line to a set of Mohr’s circles is presented. The new method is based on least-

absolute-error (LAE) criterion and the calculated failure parameters are shown to be less 

affected by the presence of outliers than common methods using least-squared regression 

(LSR) technique. 

 

3.1. INTRODUCTION 

A rock failure criterion is essential for any wellbore stability, sand production, or 

hydraulic fracturing analysis. Rocks fail in tension and in shear. For shear failure, a rock 

fails when the shear stress acting on a plane exceeds a critical value (a function of normal 

stresses and rock failure strength). The simplest case requires two parameters (Mohr-

Coulomb, Drücker-Prager, Hoek-Brown, modified Lade, Mogi-Coulomb etc.) (Al-Ajmi  

(2006) for example, provides an extensive review). Among those criteria, the Mohr-

Coulomb failure criterion has been extensively used in the oil and gas industry because: 

- Its rock failure parameters (cohesion, angle of internal friction, uniaxial 

compressive strength) have physical meaning and the ranges of these 

parameters have been established for many rocks; 
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- It defines the failure plane orientation being the (σ1-σ3) plane, which has 

always been observed in lab experiments; and, 

- It gives a quantitative measure of how far or how close a rock element is to 

shear failure under a given applied loading condition. 

Therefore, for other failure criteria like Mogi-Coulomb, the failure parameters are also 

related back to Mohr-Coulomb failure parameters.  

There are two common, equivalent ways to write the Mohr-Coulomb failure criterion. 

The first one provides the threshold for the maximum allowable shear stress τ compared 

to the normal stress, σn, in a plane: 

                                φστ tan0 nc +=    (3-1) 

whereas, the second one relates the maximum  and minimum principal stresses (Franklin, 

1971):  

 )4/2/(tan 2

31 πφσσ ++=UCS    (3-2) 

The rock failure parameters for Mohr-Coulomb’s failure criterion are the angle of internal 

friction φ, cohesion co, and uniaxial compressive strength UCS. Only two are independent 

variables since the three parameters are related to each other via the following 

relationship: 

 








 +=

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2

πφ
φ

φ
oo ccUCS

   (3-3)

 

These parameters are often acquired from triaxial testing of rock samples (or more 

accurately, biaxial testing, since σ2=σ3) by the construction of the rock failure envelope 

using Mohr’s circles (Fig. 3.1). 
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Figure 3.1: Mohr circles and construction of the rock failure envelope (adapted from 

Hudson and Harrison, 1997). 

 In a conventional triaxial test, several samples are subjected to different confining 

pressures (σ3) and the axial loads (which give σ1) are increased until failure is observed. 

The failure envelope is then defined to be the common tangent line to all the Mohr’s 

failure circles. The slope gives the tangent of the rock’s angle of internal friction, and the 

intersection with the y-coordinate yields the cohesion, co (Jaeger et al., 2007). 

 The conventional single-stage rock testing method is still used today due to its 

simplicity. However, the use of different rock samples provides a large uncertainty in the 

resulting parameters due to sample heterogeneity. Moreover, the test is not repeatable due 

to its destructive nature. In reality, if three samples, or more, are triaxially tested to 

construct the failure envelope, there is no common tangent line to all the Mohr’s failure 

circles. Drawing a line to represent the rock failure envelope becomes an (non-linear) 

optimization problem.   

 Lisle & Strom (1982) provided the least-square solution for the failure envelope 

from Mohrs’ circles in the (σn-τ) space (i.e. Eq. 3.1, which gives c0 and m = tanφ). 

Meanwhile, Franklin (1971) and Kulatilake (1988) used least-squared regression (LSR) 

to find UCS and tan
2
(φ/2 + π/4) from the linear relation in the (σ1- σ3) space (i.e. Eq. 3.2); 
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then used Eq. (3.3) to calculate (c0 and φ) in order to transform the result back into the 

(σn-τ) plane. For the same data set, these two least-squares regression approaches provide 

slightly different values for the rock failure parameters, as will be demonstrated later. 

This method is theoretically correct but the deduced values can be easily affected by a 

bad input datum (outlier). 

A similar problem also occurs with multistage triaxial testing which uses only one 

rock sample. Triaxial multistage testing approach, first described by Kovari and Tisa 

(1975), refers to the protocol in which a single sample is tested at several confining 

pressures to axial stress levels which do not cause permanent or irreversible damage. The 

rock is loaded at one confining pressure and the axial load is applied to a “common 

stopping point.” The axial load is unloaded back to the confining pressure and a new 

stage is carried out at a higher confining pressure. In the last stage, the sample is loaded 

until failure. While Young’s modulus and Poisson’s ratio can still be determined from the 

resulting stress-strain curves, the failure envelope now must be estimated from one 

failure Mohr’s circle obtained from the last loading stage and several non-failure Mohr’s 

circles obtained from the previous stages.  

Similar to conventional triaxial testing, the determination of the common tangent 

line of the non-failure Mohr’s circles is a non-linear optimization problem and can be 

treated with the same least-squared regression (LSR) methods of Lisle & Strom (1982) or 

Franklin (1971).  

However, the “stopping point” for each stage is still a debate among investigators, 

since that point should be clearly discernable for different rocks (i.e. from stress-strain 

curves) and also should be in range of linear elastic behavior (the sample is not cracked 
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or failed before the final stage). The relationship between that stopping point and the 

failure point should also be clearly established. Kovari and Tisa (1975) and Kovari et al. 

(1983) suggested stopping the triaxial test at the point before the sample exhibits signs of 

approaching failure on the stress-strain curves.  This is the ISRM suggested method. 

However, Kim and Ko (1979) showed the dependency of the effectiveness of this method 

on the type of stress-strain curves – the post failure behavior of the rock strongly affects 

the quality of the derived failure envelope. Crawford and Wylie (1987) defined the 

termination point to be when the volumetric strain reaches zero. Recently, Taheri (2008) 

proposed the termination point to be when the secant Young’s modulus becomes constant 

and starts to decrease. All aforementioned methods suffer from the following drawbacks: 

(a) the sample can fail (or deform irreversibly) before the termination point criterion is 

observed (Fig. 3.2); and, (b) the relationship between non-failure Mohr circles and failure 

ones for each loading stage is subjective and not well-established.  

Currently, the approach of Pagoulatos (2004) using the inflection point of 

volumetric strain (
σ
ε
d

d vol = 0) coupled with acoustic emission rate monitoring is probably 

the best available approach in reducing uncertainty and premature failure. Pagoulatos 

(2004) demonstrated that the inflection point is always realized for Berea sandstones at 

various applied confining pressure. Moreover, he demonstrated that in the brittle failure 

regime, the difference between σfailure and σinflection point is relatively constant for different 

confining pressures (Fig. 3.3). Thus, it means that the best-fit lines for non-failure circles 

and failure Mohr’s circles have the same slope on the (σ1- σ3) plane instead of the (σn- τ) 

plane, contrary to Pagoulatos’ assumption in Fig. 3.4. In his approach, the common 
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tangent line of all non-failure Mohr’s circles provides the slope on the (σn- τ) plane, and 

the failure Mohr’s circle is used to find the cohesion via a simple translation (Fig. 3.4).  

In the next section, a new analytical solution to find the best-fit common tangent 

line using least-absolute errors (LAE) criterion is presented. By a method of substitution, 

the non-linear optimization problem is converted back to a system of linear inequalities 

for linear programming. The method is applied with lab data of Pagoulatos (2004) on 

Berea sandstones. It is compared with current LSR methods to show that for multi-stage 

testing, LAE can provide a better estimate of failure parameters that is much more 

insensitive of outliers. 

 

 

Figure 3.2: Measured axial (red), lateral (blue), and computed volumetric (pink) strain 

curves as a function of effective stress (σ1- σ3) for a Berea sample at confining pressure 

σ3 = 34.48 MPa (5000 psi). The sample failed before a zero volumetric strain value could 

be reached (Crawford & Wylie criterion). Above the volumetric strain inflection point, 

the rock dilates with increasing load and non-linear behavior is evident. (Adapted from 

Pagoulatos, 2004). 
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Figure 3.3: Relatively constant stress difference between the failure and the deflection of 

volumetric strain for Berea sandstones for confining pressures less than 40 MPa (adapted 

from Pagoulatos, 2004). This information is critical in determining brittle failure regime 

of a rock, as well as deducing the Mohr failure envelope and its uncertainty from multi-

stage rock testings. 

 

 

 

Figure 3.4: Pagoulatos (2004) construction of the rock failure envelope from multistage 

triaxial testing results. The confining pressure and maximum axial stress of each loading 

stage provide the non-failure Mohr circles. The non-failure Mohr’s circles provide the 

slope and the failure circle from the last stage provides the cohesion. Using different 

termination point criteria will result in different non-failure Mohr circles and therefore, 

different failure envelopes. 
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3.2. THE OPTIMIZATION PROBLEM 

3.2.1. Problem statement:  

Given � Mohr’s circles (N≥2), each centered on the x-axis at xi = 






 +

2

,3,1 ii σσ
 

and having radii Ri = 






 −

2

,3,1 ii σσ
, where i denote the loading stage,  find the line that 

best represents the common tangent line of these circles. 

 

3.2.2. Solution:  

Assuming that the later stages are at higher confining pressures and their stopping 

points are at higher axial load; meaning: for i<j, then σ3,i < σ3,j  and σ1,i < σ1,j. 

Or, xi < xj and Ri < Rj (similar to Figs 3.1 and 3.4). Also assuming that the Mohr’s 

circles of consecutive stages intersect each other, which means the next confining 

pressure (σ3,i+1) does not exceed the previous stopping axial stress  (σ1,i). 

For �=2 (i.e. only two Mohr’s circles are available), the problem reduces to 

finding the common tangent line of two intersecting circles. There are two such tangent 

lines and the one with positive slope is: 

== φtanm
)(

2

1

2

1

RA

R

−
 (3-4)

 

 where,  

 A =
21

1221
1

RR

RxRx
x

−
−

+
   (3-5)

 

and the cohesion is the intercept:  
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 co = 








−
−

⋅
21

1221

RR

RxRx
m .   (3-6) 

For �>2, the problem becomes finding m and co that minimize the following 

objective function (OBJF): 

OBJF =∑
=

−
�

i

ii Rh
1

|| ,                      (3-7) 

where hi is the distance from the center of the i-th Mohr’s circle to the failure envelope: 

hi =
1

|.|

2 +

+

m

cxm oi

 (3-8)

 

and the |  | bracket denotes taking absolute value of the inside term. 

The square root in the calculation of hi makes this optimization problem not only 

non-linear but also convex. This is one main reason that previous researchers had to use 

different means and approximations to obtain the failure envelope from lab results, which 

further increased the uncertainty of the derived parameters. 

From Fig. 3.2 it can be observed that there are at least two solutions for Eq. (3-7) 

(two best-fit common tangent lines above and below the Mohr’s circles), and the solution 

of our interest should give m>0 and c0 >0. 

The exact analytical solution is presented below using the following lemma: The 

line that minimizes the OBJF has to be the tangent line of at least one Mohr’s circle 

(which will be denoted with the subscript i0). The proof for this lemma is provided in 

Appendix B. 

With this lemma one has:  

 
00 ii Rh = or 

00
/||1 0

2

ii Rcmxm +=+
    (3-9) 

with some i0 in [1, N]. 
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The problem represented by Eq. (3-7) is now equivalent to the following 

optimization problem: 

 

Find (m, c0) that minimizes  ∑
=

−
+
+�

i

i

i

i
i R

mcx

mcx
R

1 0

0

|/|

|/|

0

0

   (3-10)

 

Let u = c0 / m, u > 0, so the inner absolute bracket is redundant. The problem (3-

10) is now equivalent to: 

Find u that minimizes  ∑
=

−
+

+�

i

i

i

i
i R

ux

ux
R

1
0

0

     (3-11)

 

Let uxt i +=
0      (3-12)

 

The problem (3-11) becomes find t that minimizes ∑
=

−
+−�

i

i

ii

i R
t

txx
R

1

0

0

  

   

Or, find t that minimizes ∑
=

−






 +−
�

i

iiii Rxx
t

R
1

1)(
1

00

                                       

(3-13)

 

Let v = 1 / t, v > 0       (3-14) 

Then Eq. (3-13) is equivalent to the following problem: 

Find v that minimizes  

 ( )∑
=

−+−
�

i

iiiii RRvxxR
1

000
)(

     (3-15)
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In this form, the problem is now linear and can be easily rewritten to a standard 

linear programming (optimization) problem: 

(3-15) � Find (v, s) that minimizes ∑
=

�

i

is
1

 

such that: 

            ( ) iiiiii sRRvxxR ≤−+−
000

)(  

           ( ) iiiiii sRRvxxR ≤−−−−
000

)( , 

or, 

           iiiiii RRvxxRs +−≤−+−
000

)(  

           iiiiii RRvxxRs −≤−−−
000

)( ,          (3-16) 

The problem (3-7) is now reduced to solving � systems of Eq. (3-16) for � 

different choices of xi0, which can be solved readily (for example, using the simplex 

method). By comparing � solutions, the system that gives the smallest ∑
=

�

i

is
1

is the 

solution of (3-7).  

By back-substitution, the ratio u = c0 / m can be found. Replacing c0 = u.m in 

00
/||1 0

2

ii Rcmxm +=+ gives two solutions of m:  

22

00

0

)(
tan

ii

i

Rux

R
m

−+
±== φ  

The positive m is the desired answer, for the angle of internal friction should be in 

the range (0, π/2). Finally, from u and m, c0 can be easily deduced. 
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3.3. COMPARISON OF FAILURE ENVELOPES  

Fig. 3.5 shows the Mohr-Coulomb failure envelopes of Berea sandstones using 

current approximation (red) and this new solution (green), using single stage testing data 

of Pagoulatos (2004, Tables 3.1 and 3.3). The slopes of the two lines are significantly 

different. Also, it is clear that the current approximation method using points of 

maximum shear gives a very conservative estimate of the failure envelope. 

 
 

Figure 3.5: Comparison between Mohr-Coulomb failure envelopes using the new 

solution (green) and current approximation (red) (data are from Pagoulatos, 2004, Table 

5.1) for conventional (single-stage) rock testing. The best-fit common tangent line has a 

much higher angle of internal friction (40.5° compared to 32°) and a different cohesion. 

 

For multi-stage rock testing, the current method utilizes parallel shifting from the 

calculated non-failure envelope to the maximum shear stress point of the final failure 

circle, as Pagoulatos (2004) demonstrated that the stress difference between the point of 

failure and the deflection point of volumetric strain are relatively constant for brittle 

failure (Fig. 3.3). Therefore, the current approximation gives the same slope for non-

failure and failure envelope. It is not the case with the new method, and the stress 
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difference information (obtained from the last stage of the test) is used to estimate the 

failure stresses of previous stages, and the problem is solved similar to that of single-

stage rock testings. 

Table 3.1 shows the calculated failure envelopes from the two methods applied to 

Berea sandstone multistage data. The rock has a stress difference σfailure - σinflection point 

=32.9 ± 2.7 MPa in the brittle region (Pagoulatos, 2004).  

 
 

Figure 3.6: Comparison between Mohr-Coulomb failure envelopes using the new 

solution (green) and current approximation (red) (data are from Pagoulatos, 2004, Table 

5.10) for multi-stage rock testing. The best-fit common tangent line has a steeper angle of 

internal friction (33.9° compared to 29.5°) and a different cohesion value. 

 

 

 

 

 

 



 

34 

 

Table 3.1: Comparison of two methods in estimating parameters for non-failure and 

failure envelopes. The new method gives a slightly higher angle of internal friction (10%) 

for both cases. 

Non-failure envelope Maximum shear approximation:  
φ = 29.5° (slope m = 0.57); b = 9.5 MPa 

Best-fit common tangent line method:  

φ = 34.5° (slope m = 0.69); b = 12.5 MPa 

Mohr-failure envelope Maximum shear approximation:  
φ = 29.5° (slope m = 0.57), c0 = 27.3 MPa 

Best-fit common tangent line method:  

φ = 33.9° (slope m = 0.67); c0 = 21.1 MPa 

 

3.4. MONTE CARLO SIMULATION 

The angle of internal friction and cohesion found in the previous multi-linear 

programming problems should not be treated with 100% certainty. The experiment is not 

repeatable since the rock sample is damaged after the test. Any other experiments using 

samples cored next to the previous one will give different values. Therefore, to account 

for this uncertainty, it is proposed that the Mohr’s circles from which c0 and φ are 

deduced be treated as variables with means being experimental values and some 

associated uncertainty. By assuming either a normal or a uniform distribution for these 

Mohr’s circles, the ranges and uncertainties of the derived angle of internal friction and 

cohesion can be established using Monte Carlo (stochastics) simulations.  

 

3.4.1 Application to experimental data – the Barnett shale 

For this rock, only two conventional tests at two different confining pressures 

were performed (Table 3.2). Considering a common triaxial cell used for these 

experiments, the associated error for the controlled confining pressure is about 0.1% (up 

to ±5 psi). The uncertainty for the observed failure stress is given at 1% (up to ±75 psi). 
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Table 3.2: Barnett Shale conventional triaxial test results and associated errors that are 

used to find the rock failure parameters (c0 and φ). 

σσσσc (psi) σσσσf (psi) 

2310 ± 0.1 % 

3465 ± 0.1 % 
11,000 ± 1% 

15,600 ± 1% 
 

Apparently, the best-fit line through the points of maximum shear stress (which 

are points 






 −+
2

,
2

3131 σσσσ
 on the Mohr’s circles) of each loading cycles as employed 

by Pagoulatos (2004) can’t be the failure envelope as it would give a negative cohesion 

value of -450 psi and an internal angle of friction of 56°. The resulting failure parameters 

from 10,000 sets of (σc1, σf1) and (σc2, σf2) are c0 = 450 ± 61.6 psi and φ =36.8 ± 0.5°. 

The standard deviations of c0 and φ double if the error of σf is changed to 2%. 

3.4.2 Application to experimental data – The Berea Sandstone 

In this case the multi-stage triaxial test at five different confining pressures were 

performed (Table 3.3, from Pagoulatos, 2004). Considering a common servo-controlled 

triaxial cell (i.e. MTS-215), the associated error for the controlled confining pressure is 

about 0.1% (up to ±5 psi). The uncertainty for the maximum stress values where zero 

derivative of the volumetric strain is observed is given at 1%. 

 

Table 3.3: Multi-stage triaxial test results and associated errors that are used to find the 

rock failure parameters (c0 and φ) for a Berea sandstone (measured data are from 

Pagoulatos, 2004). 

σσσσc (MPa) σσσσdeflection (MPa) σσσσf (MPa)    
3.45 ± 0.1% 

6.9 ± 0.1 % 

17.2 ± 0.1% 

24.1 ± 0.1% 

34.2 ± 0.1% 

63 ± 1% 

84 ± 1% 

124 ± 1% 

148 ± 1% 

178 ± 1 % 

 

 

 

 

190 ±1 % 
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The resulting failure parameters from 10,000 sets of (σci, σdefi) (i=1, 5) are c0 = 

20.4 ± 2.1 MPa and φ =35.5 ± 0.4°. The mean values are comparable with results from 

Aldrich (1969) and slightly higher from Pagoulatos reported values of c0 = 18 MPa and φ 

= 31°.  

 

3.5. CONCLUSIONS 

In this chapter, a new analytical solution for constructing the rock Mohr-Coulomb 

failure envelope using linear programming and a procedure for determining the range of 

the calculated parameters using a Monte Carlo (stochastic) simulation are presented. It is 

demonstrated that the current approximation method is a conservative approach and can 

be significantly different from the best-fit common tangent line to the Mohr circles. Our 

proposed approach not only gives the best possible failure parameter values from 

experimental data, but also provides the associated uncertainties that can be incorporated 

into wellbore failure analyses. 
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CHAPTER 4 

TE�SILE I�DUCED FRACTURES DUE TO THERMAL EFFECTS OF 

I�JECTIO� FLUID I� THE BAR�ETT SHALE A�D THEIR IMPLICATIO�S 

TO GAS SHALE FRACABILITY 

 

Recent resistivity imaging logs of horizontal boreholes in the Barnett Shale provide 

intriguing and unique drilling-induced fractures that are normal to the borehole. In this 

chapter, the nature of these fractures is investigated using a porothermoelastic wellbore 

stability model. It is demonstrated that thermal effects, due to temperature difference 

between the drilling mud and the formation, are key to the creation of these fractures. 

 

4.1 INTRODUCTION 

During drilling and hydraulic fracturing, there is commonly a temperature 

difference between the reservoir temperature and wellbore fluid. The resulting thermal 

diffusion (cooling or heating) into the vicinity of the wellbore has a large effect on the 

stress concentration profile, especially for brittle rocks having a high Young’s modulus. 

For the Barnett shale, micro-imaging logs reveal a unique and intriguing drilling-induced 

fracture pattern: a closely-spaced set of transverse fractures perpendicular to the wellbore 

axis. These fractures are even perpendicular to rock bedding in horizontal wells. 

Common wellbore stability analyses using elastic or poroelastic models that neglect the 

coupled thermal effects could not explain these features. Moreover, these induced-drilling 

transverse fractures are easily mistaken to be natural ones. 
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The Mississippian-age Barnett shale in North Texas was the main major 

unconventional gas success that helped triggered exponential growth in gas shale and 

tight gas development in North America this last decade. The field has already produced 

more than 5 Tcf by 2009 with 15-40 Tcf of technically recoverable gas remaining 

(Stevens & Kuuskraa, 2009). Beside its economical impact, the Barnett has been the 

testing ground for many new technologies and applications that helped provide numerous 

information and lessons for other unconventional gas development; from extended 

laterals, massive hydraulic fracturing with slick water, to passive seismic monitoring.  

 
Figure 4.1: FMI image of an intact vertical borehole showing thin layers of the Barnett 

shale having contrasting resistivity (from Waters et al., 2006). Dark layers are conductive 

ones while light layers correspond to resistive ones. 

 

Despite being the most dominant sedimentary rock type in the subsurface, shales 

are still the least known rocks compared to sandstones and carbonates, both due to 

historical reasons - their properties were not required in reservoir simulations for 

conventional reservoirs, as well as their anisotropic nature. Drilling and completion 

problems associated with shale formations are causing billions of dollars in losses every 

year (Sayers and Dewhurst, 2008). For the Barnett, image tools such as micro-resistivity 
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log have been used extensively for formation evaluation and wellbore integrity studies 

(Waters et al., 2006). This is an essential step for stimulation and completion design. 

Electrical images, either from wireline logging tools or logging while drilling tools, 

reveal changes in resistivity associated with variable mineralogy and structure, thus 

features such as bedding planes, natural and induced fractures in the borehole can be 

easily identified. Fig. 4.1 shows the FMI image of an intact vertical borehole through 

shale displaying near horizontal bedding plane (Waters et al., 2006). Figs 4.2 and 4.3 are 

the borehole mages (FMI & LWD, respectively) of horizontal wells drilled in the 

direction of minimum horizontal stresses, showing both shale layers and conductive 

transverse fractures
1
.  

 

 
       

Figure 4.2: FMI image of a Barnett horizontal well drilled in the direction of the 

minimum horizontal stress showing fractures in both longitudinal and transverse 

directions (dark colors), (from Waters et al., 2006). The two longitudinal fractures run 

along the wellbore at 180 degrees from each other and are at the top and low sides of the 

horizontal borehole. They are intersected by a series of evenly spaced, small transverse 

fractures of similar lengths. The background shows shale beddings (lighter colors) being 

parallel to the wellbore. The transverse fracture indicated by the red arrows may be of 

different origin (see Discussions section). 

 

                                                           
1
 Please note that the terms “longitudinal” and “transverse” fractures considered here are totally different 

from (vertical) hydraulic fractures which are created by hydraulic fracturing stimulation that can be 

detected and mapped using microseismic, and can also run parallel or orthogonal to the borehole, 

respectively (i.e. as used in Casero et al., 2009). Instead, the terms “longitudinal fractures” and “transverse 

fractures” are used here to describe strictly a near-wellbore phenomenon observed from borehole imaging 

logs. 
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The nature of these transverse fractures, why and how they were formed has not 

been adequately addressed. The nature of these transverse fractures, being very tightly 

spaced and of similar lengths and even perpendicular to rock beddings in case of 

horizontal wells, is the topic for much speculation and debate (Waters et al. 2006; Ketter 

et al., 2006; Janwadkar et al., 2007; Janwadkar, 2008; Parshall, 2008; Duncan, 2009). In 

this chapter, it is demonstrated that thermal effects – and for these specific cases, due to 

the drilling mud being cooler than the reservoir rock, are the main reason for the creation 

of these fractures. The temperature difference also controls the length of these fractures. 

For gas shale and tight gas plays, where hydraulic fracturing stimulation is a must for 

economic production, this can play an important role in improving fracture initiation. 

 

Figure 4.3: LWD resistivity imaging log shows closely-spaced induced transverse tensile 

fractures intersecting two drilling-induced longitudinal tensile fractures in a horizontal 

borehole (from Duncan, 2009). The longitudinal fractures partially reopen the natural 

cemented fractures (pink sinusoidal curves). The fracture growth of the transverse 

fractures seems to be affected by the bedding planes.  
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The chapter consists of two parts. The first part introduces an analytical wellbore stability 

model incorporating both poro- and thermal effects (Ekbote, 2002). Our main emphasis 

will be on how applicable the model is with a brittle, low porosity, low permeability rock 

like the Barnett. In the second part, numerical examples for vertical and horizontal wells 

are presented, showing conditions for creating independently longitudinal and transverse 

fractures. 

 

4.2. THE POROTHERMOELASTIC SINGLE WELLBORE MODEL 

 There are many models in the literature that can be used for calculating stresses 

around a borehole in isotropic or transversely isotropic media (Bradley, 1979; Aadnoy 

1987; Detournay & Cheng, 1988; Cui, 1995; Li et al., 1998; Ekbote, 2002). In order to 

capture both the anisotropic nature of shale and poro-thermo effect, we employed 

Ekbote’s porothermoelastic model (Ekbote, 2002) to calculate the stresses and pore 

pressure in the vicinity of a long borehole (Figs. 4.4 and 4.5). The model allows stresses 

and pore pressures calculations around a borehole drilled parallel to the rock axis of 

symmetry, which is generally assumed to be perpendicular to the bedding plane.  
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Figure 4.4: The borehole coordinate system with respect to the Earth’s North-East-TVD 

axes. 

  

 Fig. 4.5 summarizes the initial and boundary conditions for our problem in the 

borehole coordinate system. At far-field, there are six stress components, the original 

formation pore pressure p0, and the formation temperature T0. At the wellbore, we have 

wellbore (mud) pressure pw and mud temperature Tw. For simplicity, wellbore pressure 

and temperature are assumed to remain constant during the time of interest.  

 

Figure 4.5: Boundary conditions in borehole coordinate system. The rock can be 

transversely isotropic when the borehole is along its axis of symmetry. 

 

 By assuming a long borehole so that one obtains plane strain conditions in the z- 

direction, the boundary conditions presented in Fig. 4.5 can be decomposed into three 
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sub-problems with simpler boundary conditions (Fig. 4.6) (Ekbote, 2002) and the 

solution of the complex problem is obtained from superposition of all simpler sub-

problems. This approach is similar to Detournay & Cheng (1988) and Cui (1995) for 

isotropic rocks. The problem is therefore reduced to 2-D; i. e. all strain components, pore 

pressure, and temperature are independent along the borehole z-direction. 

The first subproblem (Fig. 4.6, left) accounts for the in-plane stresses (xOy plane, 

perpendicular to the borehole), pore pressure, and temperature. A portion of the far-field 

normal stress (Sz
1
) is applied here so that plane strain conditions are maintained. This first 

sub-problem is further divided into three simpler loading modes which are independent 

from each other: Mode 1 accounts for the hydrostatic loading; Mode 2 accounts for the 

pore pressure and temperature differences between the formation and the wellbore; and 

Mode 3 accounts for the poroelastic coupling due to in-plane shear stresses. Mode 1 

solution is purely elastic, while those of Mode 2 and 3 are time-dependent due to 

hydraulic and thermal diffusions. 

      

Figure 4.6: Decomposition of the initial and boundary conditions in Fig. 4.5 into three 

sub-problems (Ekbote, 2002). Only the first one is of porothermoelastic nature, while the 

latter two are purely elastic. Note that the original normal stress Sz is divided into two 

components (Sz
1
 + Sz

2
) so that in the first sub-problem, there is no resulting strain in z-

direction.  

 

+ + 
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The second subproblem (Fig. 4.6, center) considers only the remainder of the 

normal stress Sz that is not accounted for in the first subproblem, while the third 

subproblem (Fig. 4.6, right) considers only the effects of two far-field anti-plane shears. 

Both solutions for these two subproblems are elastic and independent of time. 

 

4.3. GOVERNING EQUATIONS 

 The governing equations considered in the model are: 

(i) Conservation of momentum (with absence of body forces): 

  0, =jijσ                            (4-1) 

 Eq. 4-1 is written in Einstein’s convention, where repeated suffix implies 

summation with respect to that suffix and comma denotes differentiation.  

(ii) Conservation of (fluid) mass: 

 0, =+
∂
∂

iiq
t

ζ
     (4-2) 

where ζ is the variation of fluid content and q is the relative fluid flux. 

(iii) Conservation of energy: 

 The equation governing energy transfer is: 

 [ ] [ ]TTvCqC
dt

dT
C mgrVgrrfVfV ∇−∇−∇+−= λρρρ ..,,   

 (4-3) 

 The first term in the right-hand side corresponds to convective heat transport 

while the second term corresponds to heat conduction. For low porosity, low permeability 
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shales like the Barnett, heat conduction is the dominant term (Li et al., 1998). Thus, heat 

transfer in Eq. (4-3) can be reduced to thermal diffusion only (Fourier’s law): 

  02 =∇− Tc
dt

dT
h      (4-4) 

where the heat diffusivity coefficient, ch, that governs thermal diffusion process is: 

  
V

h
C

c
ρ
λ

=       (4-5) 

where λ is the (averaged) rock thermal conductivities, ρ is the rock bulk density, and CV is 

the (averaged) rock heat capacity.  

 As a result, in the case of shales, Eq. 4-4 is uncoupled from rock deformation and 

pore pressure. The temperature field can be solved first and separately in our 

porothermoelastic model.  

(iv) Darcy’s law for fluid flow: 

 The fluid flux, due to the symmetry of the model, is only in the rock’s plane of 

isotropy and is proportional to the pore pressure gradient, i.e. 

  pqr ∇−= κ      (4-6) 

where µκ /k= is the ratio of rock permeability over fluid viscosity and called rock 

hydraulic diffusivity.  

 

(v) Generalized Hooke’s law: 

 The stress-strain relation considering the effects of pressure and temperature is 

(Ekbote, 2002): 

 TpM βαεσ −−= &      (4-7) 
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where σ and ε are the stress and strain tensors, respectively;M& is the drained stiffness 

tensor; α and β are poroelastic and thermic coefficient tensors, respectively.  

 The variation in fluid content, ζ,is: 

 Tp
M

sf

zzrr

b

βεααεαεζ θθ −+++= '
1

   (4-8) 

where Mb is the Biot’s modulus and β
sf 
is the thermal coefficient of the pore fluid 

accounting for the volume expansion of the rock grain. The Biot’s modulus Mb and 

poroelastic tensors (Biot-Willis’ coefficients, α, and Skempton’s coefficients, B) are hard 

to obtained parameters but can be estimated from rock grain and fluid moduli (Kgr and Kf, 

respectively). The drained stiffness tensor, M& , can be calibrated using the 

micromechanical approach of Cheng (1997). However, they must be checked so that the 

values are within physical bounds (i.e. αi and Bi are within 0 and 1). 

 

(vi) Fluid diffusivity equations: 

 By combining Darcy’s law, the continuity equation, and Hooke’s law, and under 

small strain and linear poroelasticity, one can deduce the two diffusivity equations for 

pore pressure and variation in fluid content: 

  
t

T
cpc

t

p
hff ∂

∂
=∇−

∂
∂ 2     (4-9) 

and,      [ ] 022 =∇+∇−
∂
∂

Tcc
t

f ζ
ζ

       (4-10) 
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where cf is the fluid diffusivity:  
b
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fluid coefficients relate the effect of temperature change to the pore pressure and 

variation in fluid content; and, therefore, make the porothermoelastic solution completely 

different from the poroelastic solution.  

 

4.4. STRESS, PORE PRESSURE, AND TEMPERATURE SOLUTIONS 

The stress, pore pressure, and temperature for any given point (r, θ), r≥R 

(wellbore radius), in borehole coordinate and at time t, are then obtained from 

superimposing the solutions of all subproblems (Ekbote, 2002): 
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where σrr
(1)
, σrr

(2)
, σrr

(3)
, σθθ

 (1)
, σθθ

 (2)
, σθθ

 (3)
, σrθ

3)
, p

(2)
, p

(3)
, and T

(2)
 are solutions of 

different plane strain “Modes” of the first subproblem; R is the wellbore radius; ν & ν’ 

are the rock Poisson’s ratios; α & α’ are Biot’s poroelastic parameters (also known as 

“effective stress coefficients”); β and β’ are the thermal coefficients (the apostrophe 

indicates properties measured in direction of the rock’s axis of symmetry, i.e. normal to 

the bedding plane); P0 and S0 are the far-field in-plane mean stress and deviator stress, 

respectively. And θr is the rotating angle in xOy plane in which the in-plane shear 

stresses vanish: 

 [ ])/(2tan 1

2
1

yxxyr SSS −= −θ      (4-12a) 

 2/)(0 yx SSP +=       (4-12b) 

 22

2
1

0 4)( xyyx SSSS +−=      (4-12c) 

 The details of the subproblems’ solutions are presented in the Appendix C. Cui 

(1995) provided detailed derivations for poroelastic solutions which can be extended for 

this porothermoelastic case with little difficulty, as the difference is only in the Mode 2 

solution of the first subproblem. 

 

4.5. FAILURE CRITERIA 

The resulting stresses, pore pressure, and temperature found in Eqs. 4-11a to 4-

11h are only valid when the rock is still intact. Once the rock strength is exceeded at any 

point inside the domain, the predictions for later times no longer hold. Thus this model, 

equipped with rock failure criteria, can predict fracture initiation but not propagation. The 

rock can fail in tension and/or in shear. In this study, a simple tensile failure criterion and 

Mohr-Coulomb shear failure criterion were used.   
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4.5.1. Tensile failure 

Tensile failure occurs when the local effective minimum principal stress (σ3’) 

exceeds the tensile strength (TS) of the rock: 

 σ3-p = σ3’ ≤ -TS     (4-13) 

 Rocks are very susceptible to tensile failure and generally have a low tensile 

strength (Bradley, 1979). Tensile strength is most often estimated from the rock uniaxial 

compressive strength (UCS) as: 

 TS = UCS/10      (4-14) 

In many cases, TS can be reasonably assumed to be zero. For the Barnett, Waters et al. 

(2006) correlate TS with depth via the following relation: 

  TS = 0.05(psi/ft) x depth (ft)       (4-15) 

Fig. 4.7 displays three types of tensile failures that can occur around a wellbore that 

coincides with one of the in-situ principal stresses. It will be shown in the next section 

that all three types of tensile failures can occur in the Barnett Shale. 

 

Figure 4.7: Three possible tensile failure orientations on a rock element near the wellbore 

that is drilled in the direction of one in-situ principal stresses as a result of (a) effective 

tangential (hoop) stress being in tension; (b) effective axial stress being in tension; and 

(c) effective radial stress being in tension.  
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4.5.2. Mohr-Coulomb criterion 

The Mohr-Coulomb criterion states that rock failure in compression occurs when 

the maximum shear stress τmax reaches a value that is sufficient to overcome the natural 

cohesion of the rock, c0, as well as the frictional force that opposes movement along the 

failure plane. It is related to the effective maximum and minimum principal stresses by 

the following linear relation: 

0max tan cn += φστ
     (4-16)

 

where ( )312
1

max σστ −=  and ( )312
1 σσσ +=n ; φ is the angle of internal friction; and c0 is 

the rock cohesion.  

The rock uniaxial compressive strength (UCS), which can be easily determined from 

laboratory testing, is related to φ and c0 by: 

  )sin1/(cos2 0 φφ −= cUCS     (4-17) 

 

4.6. ASSUMPTIONS AND APPLICABILITY OF THE MODEL TO THE BARNETT 

SHALE 

The main assumptions in developing solutions for this analytical fracture 

initiation model are: 

(1) The rock is homogeneous, linear, isotropic or transversely isotropic (TI). If the 

rock is TI, then the well must be drilled along the rock’s axis of symmetry (i.e. 

normal to bedding).  

(2) The rock properties (Young’s moduli, Poisson’s ratios, Biot’s parameters, 

thermal capacities etc.) are independent of stresses and temperatures. 
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(3) Gravitational effect is negligible. 

(4) Heat transport is dominated by heat conduction instead of convection 

(Fourier’s law applies). 

(5) Single-phase, Darcy’s flow.  

(6) Negligible Joule-Thomson effects (no temperature change due to pressure 

change). 

(7) Plane strain conditions prevail in the borehole z-direction.  

(8) Infinitesimal resulting strains until brittle (tensile and/or shear) failure. 

(9) Rock failure parameters (tensile strength, UCS, friction angle coefficient) are 

isotropic. 

 Of the above assumptions, some are particularly reasonable for the tight gas sands 

and gas shales like the Barnett. Barnett Shale is a brittle and competent mudstone with 

high Young’s modulus and moderate Poisson’s ratio (assumption #8). Wang and 

Papamichos (1994) reported that a pressure increase of 30 MPa in crude oil increased the 

fluid temperature by 3 °C, which is generally much smaller than the temperature 

difference between the drilling mud and the formation (#6). Its approximately 5% 

porosity and microdarcy-nanodacry permeability make conductive heat via the rock 

minerals the dominant mode of heat transfer (>98%) compared to convective (fluid flow) 

heat (Li et al., 1998) (#4). Hadgu et al. (2007) showed that minerals’ heat capacities 

increase slightly with increasing temperature, but are constrained within a range of 0.8-

1.2 kJ/kg-K for temperature ranging from 25-325°C (Fig. 4.8). The average thermal 

conductivity values reported in the literature for various rock types, except for coal, is in 

the 2-4 W/m.K range (Table 4.1). The range for coefficient of thermal expansion of 
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quartz-rich rocks and shales is limited from 9-11x10
-6
 /°C. For the Barnett Shale with 

porosity much less than 10%, the average heat diffusivity coefficient of the rock is, from 

Eq. 4-5, independent of the saturated fluid(s) and is in the range of 0.5-1.0x10
-6
 m

2
/s. The 

very slow thermal diffusion is summed up by Jaeger et al. (2007): “[t]he thermal pulse 

will require a few days to travel 1 m into the rock, about one year to extend 10 m into the 

rock, and about one hundred years to extend 100 m into the rock.”  

Some assumptions are not as reasonable but are rather necessary for the 

derivations of an analytical solution (#1, 2, 5, 7, 8, 9). As demonstrated in Chapter 2, 

Biot-Willis coefficient is significantly dependent of the applied effective stresses. Brown 

et al. (1989) showed that the Young’s modulus decreases significantly at low effective 

stresses, especially for weak rocks (#2). Darcy’s flow is not typically applicable for 

shales (Javadpour, 2009) (#5). Some assumptions are due to lack of experimental data 

(#9). UCS of the Barnett shale can range anywhere from 2,000 to 30,000 psi and the 

internal friction angle is generally ranging from 30° to 40° (Ian Walton, 2008, personal 

communication). Waters et al. (2006) used a gradient of 0.05 psi/ft to estimate the tensile 

strength of the Barnett shale. 

 Of particular interest is the plane strain condition in the z-direction assumption 

(#7). The original thought was that the wellbore is (infinitely) long and is drilled 

“instantaneously” (Detournay and Cheng, 1988; Cui, 1995; Ekbote, 2002). However, 

since the stress-pore pressure-temperature solutions are time-dependent, the assumption 

means that the wellbore segment of interest is drilled much faster than the rates of 

hydraulic and thermal diffusion, so that 3D effects (e.g. stress conditions at the bottom of 

the borehole) are not observed (Ito et al., 1998). Therefore, this “instantaneously drilled 
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long borehole” assumption is not applicable for permeable rocks since it requires an 

unrealistic drilling rate. However, for the Barnett shale and other gas shales, the drilling 

rate of penetration (ROP) can easily exceed 7x10
-3
m/s (80 ft/hr) (Ketter, 2008, personal 

communication). This assumption #7 is, therefore, reasonable as the characteristic times 

for both hydraulic and thermal diffusions are one to two orders of magnitude smaller than 

“the time needed to drill over a distance equal to about five times the radius of the 

borehole” (Detournay & Cheng, 1988). For the Barnett shale as well as other gas shales 

and tight sands with ultra-low permeability, the fluid diffusivity coefficient cf is in the  

10
-5
 -10

-6
 m

2
/s range (Eqs. 4.9 and 4.10) while the heat diffusivity coefficient ch is in the 

10
-6
 m

2
/s range (Eqs. 4 and 5). Therefore, for example, a well of radius 0.1m (4 in) drilled 

at ROP 7x10
-3
m/s (80 ft/hr) would have characteristic times of s

c

R
t

f

hydraulicc

3
2

, 10~==  and 

s
c

R
t

h

heatc

4
2

, 10~== , while the required time to drill a distance 5*R is only 

s
ROP

R
t R 70~

5
5 == . 
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Table 4.1: Average thermal conductivity values reported in the literature for various rock 

types. 

Lithology Average thermal 

conductivity (W/m.K) 

References 

Chert 2.33 1, 9 

Claystone 2.07 2, 3, 8 

Coal 0.22 1, 6, 9 

Dolomite 4.18 8 

Granite 3.15 4, 8 

Limestone 2.69 1-9 

Mudstone 2.37 6, 7, 8 

Sandstone 3.45 1-9 

Shale 1.69 1, 4, 5, 8, 9 

Siltstone 2.67 1-3, 6-8 

Data sources: 1 Majorowicz & Jessop (1981); 2 Hurtig & Schlosser 

(1976a); 3 Hurtig & Schlosser (1976b); 4 Clark (1966); 5 Garland & 

Lennox (1962); 6 Funnell et al. (1996); 7 Norden & Forster (2006); 8 

Baker (1996); 9 Beach et al. (1987) 

 

Figure 4.8: Specific heat capacities of selected minerals are constrained within a range of 

0.8-1.2 kJ/kg-K for temperature ranging from 50 to 325°C (after Hadgu et al., 2007). 

 

4.7. NUMERICAL EXAMPLES 

The codes for this wellbore stability analysis were written in Matlab and can be 

found in Appendix F. 
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4.7.1 Case 1: Vertical Borehole in an Anisotropic Rock 

In this case a vertical wellbore drilled normal to the bedding of a transversely 

isotropic rock is examined. The input data for in-situ conditions and rock properties are 

summarized in Table 4.2. The Young’s modulus along the axis of symmetry is smaller 

than that in the plane of isotropy (Ev/Eh =0.5). The rock strength is moderate. Note that 

the borehole mud temperature is 35°C (64°F) cooler than the rock formation. Two in-situ 

stress and two pore pressure conditions are considered.  

• Case 1a: 

In this case we have symmetrical loading (Sh =SH) and no pore pressure difference 

between the wellbore and the formation (p0 =pw); therefore, there is no poromechanical 

effect. The poroelastic solution reduces to the elastic case and is time independent, 

showing a symmetric shear failure around the borehole (Fig. 4-9a). When considering a 

35 °C (64 °F) temperature difference (mud temperature is cooler than the reservoir 

temperature), the thermoelastic solution (which is the same as porothermoelastic in this 

case) show a much less severe shear failure region around the wellbore at short time and 

the condition for shear failure approaches that of elastic solution at long times (Figs. 4.9 

b, c, and d).  

 The figure is color-coded such that red and yellow denote possible shear failure; 

cyan and blue denote possible tensile failure; and green denotes regions of stability. The 

values corresponding to those colors (in GPa) denote how far the stress condition has 

exceeded Mohr-Coulomb or tensile failure 0criteria (as defined in Eqs. 4-13 and 4-15). 

Fig. 4.9 shows that cooling (considered in porothermoelastic solution) will reduce the 

stress concentration around the borehole and strengthen the borehole at short time. 
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Table 4.2: Input data for Case 1 

 

In-situ conditions: 

Sv = 41.4 MPa (6000 psi);  SH = 24.1 MPa (3500 psi);  

Sh = SH (Cases 1a & b)  

                   or Sh = 20.7 MPa (3000 psi) (Case 1c) 

p0 = 17.9 MPa (2600 psi);  

pw = p0 (case 1a)  

                    or pw = 20.7 MPa (2850 psi) (Cases 1b & c); 

T0 = 73°C (164 °F); Tw = 38°C (100 °F) 

 

Vertical wellbore 

 

Rock properties: 

Young’s Moduli Ev/Eh =1/2; Ev =8.3 GPa (1.2x10
6
 psi) 

Poisson’s ratios νv/νh =1.0; νv =0.12; 

permeability k = 10
-4
mD; porosity φ =6% 

Kgr = 36 GPa;   

Kf =2.15 GPa (water) 

Poro- coefficients: 

  α=0.76; α’ = 0.87; Mb = 21.1 GPa 

Thermo- coefficients:  

  αs
=αs’

 = 11x10
-6
/K; αsf

 =2.1x10
-4
/K; ch =1.0x10

-6 
m

2
/s 

 

Failure parameters: 

UCS = 13.8 MPa (2000 psi); φ = 35°;  
TS = 1.4 MPa (200 psi) 
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Figure 4.9: In-plane view of stability prediction around the wellbore for Case 1a 

(symmetric loading and no pore pressure gradient). As a result, there was no 

poromechanical effect. (a) Elastic solution. (b), (c), and (d): thermoelastic solution at time 

10
2
, 10

4
, and 10

5
 seconds. The porothermoelastic prediction approaches the elastic one 

for long time. Both solutions suggest compressive (shear) failure in the near region 

around the wellbore. 

 

 

•  Case 1b: 

 In this case we also consider symmetrical loading (Sh=SH) but the wellbore is 

pressurized (pw - p0 = 400 psi). The elastic and thermoelastic solutions are still the same 

as in Case 1a. However, the poroelastic and porothermoelastic solutions are different and 

both time-dependent. For the poroelastic solution, the region susceptible to shear failure 

is much smaller at short time (t = 100s) (Fig. 4.10a), and it approaches closer to elastic 

solution at long times (10
4
 & 10

5
 seconds) (Figs 4.10b-c and Fig. 4.9a). The 
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porothermoelastic solution, on the other hand, shows an even stronger response of the 

rock with a smaller shear failure band around the borehole due to the cooling effect (Figs 

4.10 d-f). 

 
 

Figure 4.10: Stability analysis around the wellbore for Case 1b (symmetric loading and a 

400 psi mud overpressure). (a)-(c): poroelastic solution shows strengthening effect for 

short times and approaching elastic solution at long time. (d)-(f): porothermoelastic 

solution shows a little stronger response due to the cooling effects to both the pore fluid 

and the rock matrix. 
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Figure 4.11: Pore pressure (a & c) and tangential stress (b & d) profiles at different times 

inside the rock along θ = 0.  Left: (a)-(b): poroelastic solution. Right: (c)-(d): 

porothermoelastic solution with 35 °C (64 °F) initial temperature difference between 

borehole mud and the rock formation. The later show a drastic decrease of both pore 

pressure and hoop stress near the wellbore due to the cooling effect from wellbore mud. 

 

 Fig. 4.11 shows the tangential stress (or “hoop” stress) and pore pressure profiles 

at three different times that reveal the effect of cooling. A 35 °C (64 °F) difference 

significantly reduces the hoop stress and pore pressure near the wellbore. However due to 

the rock being stiffer, the effective hoop stress (σθθ - p) will decrease in the region near 

the borehole (compared to the poroelastic solution). If the temperature difference is large 

enough, the effective hoop stress can easily be in tension and becomes the local minimum 

principal stress near the wellbore. 
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• Case 1c: 

 In this case we considered the effect of asymmetric loading (SH = 3500psi 

whereas Sh = 3000 psi) as well as pore pressure gradient between the wellbore mud 

pressure and the formation pressure.  

 Fig. 4.12 reveals that the effective tangential normal stress (hoop stress) exceeds 

the tensile strength of the rock around θ=π/2 & 3π/2 (directions of maximum horizontal 

principal stress), the result of which initiates the commonly observed longitudinal tensile 

fractures. The stability evaluation results for different times are plotted in Fig. 4.13.  

 Due to the presence of the in-plane deviatoric stress, the stresses and pore 

pressure are not only a function of distance from the wellbore but also depend on the 

angle (i.e. from Sh). The rock fails in tensile near the borehole at two “wings” - 180° from 

each other (blue bands in Fig. 4.13) while the rest fails in shear (yellow and red regions in 

Fig. 4.13). Again, note that the stress conditions and stability predictions at later times 

(Figs. 4.13 b & c) only hold if the rock has not failed earlier (Fig. 4.13 a). Nevertheless, it 

shows that the stress conditions for stability get worse with time.  
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Figure 4.12: Effective normal stresses around the borehole wall at t =100s for Case 1c 

showing only effective tangential normal stresses (green curve) being in tension (around 

θ=π/2 & 3π/2, or SH direction), which initiates two commonly observed longitudinal 

drilling-induced tensile fractures (parallel with borehole).   
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Figure 4.13: Stability analysis around the wellbore for Case 1c at different times of 

interest. The in-situ deviatoric stress causes a redistribution of fluid pressure inside the 

formation, creating two bands of tensile failure in the direction of SH. 



 

63 

 

 

4.7.2 Case 2: Horizontal Borehole in an Isotropic Rock 

If the shale is assumed to be isotropic, this model can be used to investigate 

horizontal wellbores that were drilled horizontal to the shale beddings. Horizontal drilling 

has seen steady increase since 2003. In the Barnett Fort-Worth basin, Devon alone has 

drilled 1,450 horizontals with horizontal sections ranging from 1,500 to 4,500 ft 

(Parshall, 2008). Input data from the Barnett shale (Ketter et al., 2006) were used and 

summarized in Table 2. Note that this case the rock is considered to be very strong (USC 

= 25,000 psi) and has a tensile strength of 2500 psi. 

Table 4.3: Input data for Case 2 

 

In-situ conditions: 

Sv = 59.6 MPa (8644 psi);  SH = 42.2 MPa (6120 psi);  

Sh = 32.7 MPa                   

p0 = 29.0 MPa (4208 psi);  

pw = p0 (Case 2a) or pw = 38 MPa (5518 psi) (Cases 2b); 

T0 = 73°C (164 °F); Tw = 38°C (100 °F) 

Horizontal well drilled in Sh direction 

Rock properties: 

Young’s Moduli Ev/Eh =1; Ev =20.7 GPa (3x10
6
 psi) 

Poisson’s ratios νv/νh =1.0; νv =0.24; 

permeability k = 10
-4
mD; porosity φ =5% 

Kgr = 36 GPa;  Kf =2.15 GPa (water) 

Poro- coefficients: 

  α = α’ = 0.632; Mb = 25.4 GPa 

Thermo- coefficients:  

  αs
=αs’

 = 11x10
-6
/K; αsf

 =2.1x10
-4
/K; ch =1.0x10

-6 
m

2
/s 

Failure parameters: 

UCS = 172.4 MPa (25,000 psi); φ = 35°;  
TS = 17.2 MPa (2500 psi) 
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Figure 4.14: Pore pressure profile along θ = 0° as a function of time and radial distance 

from the borehole for the balanced drilling scenario. Elevated pore pressure inside the 

rock due to poroelastic effect can be seen at short-time (t=100s, blue curve), while fluid 

cooling effect reduces the pore pressure at long-times (t=10
4
 and t=10

5
 s, green and red 

curves, respectively).  

 

 
Figure 4.15: Temperature profile along θ = 0° as a function of time and radial distance 

from the borehole. Compared to the previous figure, heat diffusion is much slower than 

pore pressure diffusion. 
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Figure 4.16: Effective normal axial stress profile along θ = 0° as a function of time and 

radial distance from the borehole for the balanced drilling scenario. With time, the rock 

shrinks not only in the radial direction but also the axial direction, and the resulting 

effective normal stresses can be tension. 

Figs 4.14-4.16 show the stress, pore pressure, and temperature profile for the case 

of balanced drilling (pw = p0). Due to the existence of a deviatoric stress, pore pressure 

increases near the wellbore at short time (peak at t =100s has a 5MPa difference) and 

diffuses quickly with time due to the cooling effects. Also, heat diffusion process is much 

slower compared to fluid diffusion. 

In the case of overbalanced drilling (wellbore pressure gradient is 0.73 psi/ft), the 

stress concentration solutions are dramatic as both effective tangential stress (σθθ - p) and 

axial stress (σzz - p) are tensile. The result is tensile failures perpendicular to the borehole 

as the effective normal axial stress exceeds the tensile strength of the rock at the top and 

low sides of the borehole (Figs. 4.17 and 4.18). This stress condition can only occur with 

coupled poro-thermo effects. Again, we have assumed a very strong rock with tensile 

strength of 17.2 MPa (2,500 psi) and UCS of 172 MPa (25,000 psi). If the tensile strength 



 

66 

 

is set below 10 MPa (1450 psi) (for example, ~400 psi using Eq. 4.15), tensile failures 

will be initiated both parallel and perpendicular to the borehole.  

 
Figure 4.17: Effective normal stresses around the borehole wall at t =100s showing both 

tangential and axial normal stresses being in tension (green and red curves, respectively). 

Depending on the rock tensile strength, the resulting stress condition can induce fractures 

being perpendicular and/or parallel to the borehole. 

 
Figure 4.18: In-plane stability prediction around a horizontal wellbore for Case 2. 2-D 

cross section of the region around the wellbore shows two wings of tensile failures (180° 

degrees from each other). In this Barnett well where the overburden is higher than the 

maximum horizontal principal stress (Sv > SH) in the horizontal section, it corresponds to 

tensile induced failure in the top and low sides of the wellbore. 
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Figs. 4.17 and 4.18 essentially explain the borehole images in Figs. 4.2 and 4.3 

showing transverse and/or longitudinal induced fractures. The cooling effect of the 

drilling mud can reduce the effective axial stress into tension and crack even the strongest 

rock. Independently, the tangential (hoop) stress can also be in tension and initiate the 

common longitudinal fractures in the top and low sides of the horizontal wellbore.  

 

4.8. DISCUSSIONS 

In Case 1 (a, b, and c) considered above, the thermoporoelastic solution shows a 

much less severe shear/tensile failure region around the wellbore at short-time; the stress 

conditions for failure only approach elastic solution at long times (Figs. 4.9a-d, 4.10a-d, 

4.13a-c). This phenomenon is sometimes referred to as a “delayed wellbore 

failure/instability” (i.e. Hodge et al., 2006), implying the conditions for wellbore stability 

get worse with time. However, in this case, we suggest it be interpreted as “short-time 

wellbore strengthening” due to the fact that instability is clearly unavoidable at long time 

(i.e. elastic solution); the combined thermo-poro diffusions help make the wellbore much 

less susceptible to failure at short-times.  

In Case 2, as we assume plane strain condition in the borehole z-direction, the 

cross-section of the borehole is arbitrary. Therefore, the transverse tensile failures are 

expected to be everywhere along the borehole section. In reality, as shown in Figs. 4.2 

and 4.3 (see also Figs. 7 and 8 of Ketter et al. (2008)), the shrinking of the rock in z-

direction results in a closely-spaced set of transverse tensile cracks with similar crack 

lengths. The transverse fracture spacing (up to a several cracks per foot) reflects the fact 
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that the drilling rate is finite instead of instantaneous. Faster ROP would result in tighter 

fracture spacing. 

As shown in Fig. 4.17, the effective normal axial stress can be entirely in tension 

around the borehole cross-section due to cooling. Therefore, depending on the rock 

tensile strength or temperature difference between the drilling mud and the rock 

formation, the length of the transverse fractures can be two short arcs 180° from each 

other (as shown in Fig. 4.19, or borehole images in Figs. 4.2 and 4.3), or they can 

circumvent the whole borehole. The cooler the mud is compared to the formation, the 

longer the transverse fractures are. It may be difficult to discern between drilling-induced 

transverse fractures that circumvent the borehole with hydraulic fractures of a near-by 

horizontal well that intersect the borehole. An example can be seen in Fig. 4.2, as Waters 

et al. (2006) argued that the odd fracture located four-fifth to the right of the figure 

(indicated by the red arrows) is a hydraulic fracture from a near-by well that intersects the 

borehole. 

Rock heterogeneity is not considered in the model but has been shown to strongly 

affect the length and growth of induced-drilling fractures around the borehole. Fig. 4.3 

shows the effects of natural fractures and beddings to the induced drilling fractures (see 

also Waters et al, 2006 (Fig. 7) and Janwadkar, 2008). The healed natural fractures in the 

Barnett, which have lower tensile strength than the rock, can be partially reactivated at 

the top and low sides of the borehole. The variation in tensile strength of the thin shale 

layers can also affect the growth of both longitudinal and transverse induced fractures.  

When considering hydraulic fracture initiation at the borehole and its propagation 

during stimulation, thermally-induced transverse fractures can greatly benefit stimulation 
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in the Barnett Shale and other gas shale and tight gas plays, especially with multistage 

hydraulic fracturing treatments. In horizontal wells drilled in the direction of minimum 

horizontal principal stress, these transverse fractures align in vertical planes normal to the 

minimum horizontal principal stress; thus require no twisting and turning as the hydraulic 

fracture propagates toward the direction of maximum horizontal principal stress, which is 

the expected path of least resistance. Ketter et al. (2008) reported microseismic events 

during a multistage hydraulic fracturing treatment of a horizontal well. The microseismic 

events were long and narrow for the horizontal section having only transverse fracture 

results, whereas they were short and wide for the section having both transverse and 

longitudinal fractures. 

 

4.9. MONTE CARLO SIMULATION 

Similar to problems addressed in previous chapters, virtually all parameters used 

in this porothermoelastic model, from in-situ stress conditions to rock and fluid 

properties, contain some degree of uncertainty. The model prediction, therefore, can vary 

from one set of parameters from each other. The range of possible parameter values for 

Case 2 is shown in Table 4.4. Note that for simplicity, the probability density distribution 

for each parameter is considered uniform. 
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Table 4.4: Possible ranges of Input data for Case 2 

 

In-situ conditions: 

Sv = 8644±25 psi;  SH = 6120±25 psi;  

Sh = 4750±50 psi                   

p0 = 4200±50 psi;  

pw = 4600±50 psi; 

T0 = 164±5 °F; Tw = 100±20 °F 

Horizontal well drilled in Sh direction 

Rock properties: 

Young’s Moduli Ev/Eh =1; Ev =3x10
6
 psi ±3% 

Poisson’s ratios νv/νh =1.0; νv =0.24±0.04; 

permeability k = 10
-4±1

mD; porosity φ =5%±0.5% 

Kgr = 38±4 GPa;  Kf =2.15 GPa±30% 

Poro- coefficients: 

  α = α’ = 0.632±10%; Mb = 25.4 GPa 

Thermo- coefficients:  

  αs
=αs’

 = 11x10
-6
/K±10%; αsf

 =2.1x10
-4
/K±10%; ch =1.0x10

-6±1 
m

2
/s 

Failure parameters: 

UCS = 10,000-25,000 psi; φ = 35°±3°;  
TS = 1000-2500 psi 

 

10,000 samplings of the input data were generated and the resulting wellbore 

prediction probability is shown in Fig. 4.19. The result shows that the drilling conditions 

will generate induced-drilling failures at the wellbore in all cases, but different types of 

failures have their own probability. For example, probability of having transverse tensile 

fractures is only 31.5%. 

It took approximately a week to run the stochastic simulation on a desktop 

computer (dual core CPU at 2.4GHz, 2GB RAM, Windows XP OS). However, despite 

the long simulation time, the number of considered cases (10,000) is not a representative 

number of samplings of the 20 plus-parameter domain. If for each input parameter, three 

values were to be considered (min, max, and average) then the total numbers of 
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simulations is 3
N
. For N=20, that means 3.5x10

9
 cases and thus the required computing 

time would become impractical. 10,000 cases represent a very sparse sampling of the 

possible scenarios in this analysis. 

 
 

Figure 4.19: Probability of different wellbore stability scenarios for drilling conditions in 

Case 2 using Monte Carlo simulation.  

 

 

However, if computing time could be reduced to hours or minutes, and the 

analysis can provide probability of different scenarios with given drilling conditions. This 

capability will be of special interest for real-time drilling assessment and optimization. 

 

4.10. SUMMARY 

In this chapter, the applicability of the analytical wellbore stability model for a 

transversely isotropic rock incorporating effects of rock anisotropy, in-situ stress 
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anisotropy, wellbore pressure and temperature for the Barnett Shale was considered. The 

various assumptions made the model only applicable to hard shale & tight gas sand like 

the Barnett with low porosity, permeability, and high rock strength. The model reduced to 

elastic and poroelastic solutions in special cases. The results of two case studies showed 

that the coupled poro-thermo effects were important and could not be ignored in wellbore 

stability analysis for low porosity, ultra-low permeability rocks. The results also showed 

that for a horizontal well in the Barnett, the poro-thermo effects due to only a ~30°C 

temperature difference between the borehole fluid and the rock formation could easily 

induce transverse tensile failure as observed from borehole imaging logs, even when the 

rock has very high rock strength.  Thermal stress, therefore, was useful prior to or during 

hydraulic fracturing stimulations in hard strong shale formations. 
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CHAPTER 5 

EFFECTS OF ROCK PROPERTIES A�D DRILLI�G CO�DITIO�S O� THE 

CREATIO� A�D LE�GTH OF DRILLI�G-I�DUCED TRA�SVERSE 

FRACTURES 

 

5.1 INVESTIGATED PARAMETERS 

In order to establish the effects of input parameters on the creation of drilling-

induced fractures (longitudinal and/or transverse), and on the length of transverse 

fractures, additional sensitivity analyses were performed with thirteen varying rock-fluid 

properties and drilling conditions. The low, average, and high values for each 

investigated parameter are shown in Table 5.1. The well is assumed to be drilled in the 

direction of minimum horizontal stress Sh, similar to Case 2 in the previous chapter. 

When one input parameter is investigated at either low or high value, the remaining input 

parameters are kept constant with their average values. The tensile strength of the rock is 

set at 10.3 MPa (1500 psi). 

Table 5.1: Low, average, and high values for investigated parameters. The well is 

assumed to be drilled in the direction of Sh, similar to Case 2 in Chapter 4. 

Parameter Low Average High 

Vertical stress Sv (MPa) 55 60 65 

Max Horizontal Stress SH (MPa) 37 42 47 

Min Horizontal Stress Sh (MPa) 32 37 42 

Reservoir pressure p0 / vertical stress Sv ratio 0.5 0.55 0.6 

Overbalanced pressure pw-p0 (MPa) 0 5 10 

Temperature difference T0-Tw (K) 0 25 50 

Young’s modulus E’ (GPa) 10 20 30 

E’/E ratio 0.8 1.0 1.2 

Poisson’s ratio ν1  0.1 0.2 0.3 

ν1/ ν 1.0 1.1 1.2 

Porosity φ 0.01 0.05 0.09 

Hydraulic diffusivity (k/µ) (m2
/(GPa.s)) 10

-8 
10

-7 
10

-6 

Fluid bulk modulus Kf (GPa) 1.5 2.15 2.8 
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5.2 RESULTS AND DISCUSSION 

For the average case, transverse fractures are predicted at the top and low sides of 

the horizontal borehole (Fig. 5.1). The angular measure of one transverse fracture is 35°. 

Although the tangential (hoop) stress is also in tension around the top and the low sides 

of the borehole, it is lower than the specified tensile strength of the rock (10.3 MPa). 

Thus, no longitudinal fractures at the top and low sides of the borehole are created. 

 

The effect of each parameter on the creation and the length of transverse fractures 

are tabulated in Table 5.2 

 

 
Figure 5.1: Effective normal stresses around the horizontal borehole for the average case. 

With a tensile strength of 10.3 MPa, no longitudinal fractures are created. The top and the 

lower sides of the borehole fail axially and generate two 35° transverse fractures.  
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Table 5.2: Sensitivity analysis results showing effects of investigated parameters on the 

creation of fractures and the length of transverse fractures. The average case predicted no 

longitudinal fractures and two 35° transverse fractures. 

Investigated  

Parameter 

Low 

 

High 

 

Longitudinal 

Frac? 

Transverse 

Frac? Angle? 

Longitudinal 

Frac? 

Transverse 

Frac? Angle? 

Sv  No No Yes Yes (74°) 

SH  Yes Yes (51°) No No 

Sh  No Yes (91°) No No 

p0/Sv  No No Yes Yes (71°) 

∆p = pw - p0  No No Yes Yes (65°) 

∆T=T0-Tw  No No Yes Yes (108°) 

E’ (GPa) No No Yes Yes (82°) 

ν1  No No Yes Yes (73°) 

E’/E  Yes Yes (45°) Yes Yes (26°) 

ν1/ ν No Yes (36°) No Yes (34°) 

Porosity No Yes (31°) No Yes (37°) 

 (k/µ)  No
 

Yes (33°)
 

No Yes (40°) 

 Kf  No Yes (37°) No Yes (34°) 

 

5.2.1 Parameters showing negligible effects: 

The ratio of two Poisson’s ratios, hydraulic diffusivity (which is rock 

permeability/fluid viscosity), porosity, and fluid bulk modulus have little effects on the 

creation as well as the length of transverse fractures. The ratio of two Young moduli also 

has little effect on the length of transverse fractures, but affects the tangential stress and 

creation of longitudinal fractures along the borehole.  

 

5.2.2 Parameters affecting the creation of longitudinal fractures: 

The creation of longitudinal fracture along the borehole is highly controlled by the 

deviatoric stress Sv-SH. This is expected from the elastic solution as the effective 

tangential (hoop) stress at the top and the low sides of the borehole decreases with 

increasing (Sv-SH). High pore pressure (low in-situ effective stress) and/or high borehole 
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pressure also leads to hoop stress failure. This is the conceptual basis of hydraulic 

fracturing stimulation. Rocks having high Young’s modulus and/or Poisson’s ratio are 

also more susceptible to induce longitudinal fractures. Finally, thermal (cooling) effect 

due to temperature difference between the mud and the borehole is also an important 

factor. 

  

5.2.3 Parameters affecting the creation and the length of transverse fractures: 

In term of degrees of importance, parameters affecting the creation and the length 

of transverse fractures are: (1) the temperature difference; (2) the minimum horizontal 

principal stress Sh , (3) rock Young’s modulus and Poisson’s ratio; and (4) pore and 

borehole pressures, and deviatoric stress SV-SH. The temperature difference and the 

overbalance pressure are only two parameters that we can control to induce these 

transverse fractures. The length of these induced transverse fractures increases with 

cooler mud and/or higher overbalance pressure. Regions having low minimum horizontal 

principal stress, high Young’s modulus and/or Poisson’s ratio, and high Sv-SH stress 

difference are also susceptible to have transverse fractures. 

 

5.2.4 Explanation of sensitivity analysis results from porothermoelastic solution: 

The effects of aforementioned input parameters on the creation and length of 

induced transverse fractures can be qualitatively deduced from the porothermoelastic 

solution shown in Chapter 4. For a wellbore drilled in the direction of minimum 

horizontal principal stress Sh, Eq. (4-12) becomes: 

2
0

HV SS
P

+
= ;       (5-1a) 
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2
0

HV SS
S

−
=        (5-1b) 

and, 0=rθ        (5-1c) 

The far-field shear components (Sxy, Syz, Sxz) vanish and at the borehole wall one 

has the following boundary conditions (in solid mechanic sign convention, i.e. positive 

means tension): 

wrr pRr −== )(σ
      (5-2a) 

wpRrp == )(
       (5-2b) 

wTRrT == )(
       (5-2c)

 

The equations for tangential and axial stresses (Eqs. 4-11b & f) can be simplified 

at the high and low sides of the horizontal borehole (θ=π/2 or θ=3π/2; r = R), and for 

early time (t � 0
+
), as follows (again in solid mechanic sign convention): 

 
)3()2()1(

00 θθθθθθθθ σσσσ ++++−= SP
                  (5-3a) 

 

TppSSS wHvhzz ∆−+∆−−+−++−= )'2'()'2'()(' βνβανασνσ θθ

        (5-3b) 

where:  

)( 0ppp w −=∆ : the overbalance pressure, 

 )( 0 wTTT −=∆ : the temperature difference between formation and the mud, 

and σθθ
(1)
, σθθ

(2)
, and σθθ

(3)  
are solutions of three modes of sub-problem 1 as defined in 

Appendix C (Eqs. C3-C6).
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For )0;
2

3

2
;( +→=== torRr

π
θ

π
θ , from (Eqs. 5-1, C5, and C6), one obtains (also see 

Detournay and Cheng, 1988 for derivation of 
)3(

θθσ limit as t�0
+
 ): 

 ww pPpP +−=−−= 00

)1(
)(θθσ      (5-4b) 

( )Tp
M

M s∆+∆−







−= βασθθ

11

12)2(
1      (5-4c) 










−⋅
−

−−=
2

2
0

)3(
41~

AED

AD
Ss θθσ      (5-4d) 

where, 
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12

M
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D

α
= ;        (5-4e) 

 
)()(

)(2

2

1

RKR
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E

ξξ
ξ

=        (5-4f) 
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b
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M
A

2
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α
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=        (5-4g) 

 
b

b
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A

2
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2

1211
2

2

α
α

+

++
=       (5-4h) 

Examination of the ratio of two modified Bessel functions reveals that at large time E�1.  

Therefore, 
)3(

θθσ � 03S , as expected from the elastic solution. At short time, E �0 and 

)3(

θθσ � 






 −








−

−
2

14
2

2 Hv SS

A

DA
       (5-5) 

The drained stiffness tensor components in (Eq. 5-4c) are related to Young’s 

moduli and Poisson’s ratios by (Amadei, 1983): 

 
)'2'')(1(

)'''(
2

2

11 υυυ
υ

EEE

EEE
M

−−+
−

=       (5-6) 
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Thus, 
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From Eqs. (5-4) to (5-8) one obtains (again in solid mechanic sign convention):   
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   (5-9) 

TppSSS wHvhzz ∆−+∆−−+−++−= )'2'()'2'()(' βνβανασνσ θθ

  (5-10)

 

Eqs. (5-9) to (5-10) qualitatively show the degree of influence of each input 

parameter on the magnitude of tangential and axial stresses at the top and low side of a 

horizontal borehole. Longitudinal fractures develop if the effective tangential stress 

exceeds the tensile strength of the rock. Similarly, transverse fractures develop if the 

effective axial stress exceeds the tensile strength of the rock. Eq. (5-9) shows that the 

tangential stress will be more likely to be under tension with high borehole pressure (pw), 

high (Sv-SH) stress difference, and high (T0-Tw) temperature difference. The axial stress is 

more likely to be under tension with low minimum horizontal stress (Sh), high (Sv-SH) 

stress difference, and high (T0-Tw) temperature difference. Porosity and fluid modulus 

affect the tangential and axial stresses via their control on the Biot-Willis parameter (α) 

and Biot modulus Mb. The ratio of two Poisson’s ratios and the ratio of two Young’s 

moduli also affect the tangential and axial stresses. 
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5.3 SUMMARY 

This chapter presents a sensitivity analysis on the effects of rock properties and 

drilling conditions on the creation and length of the drilling-induced transverse fractures 

observed in Chapter 4. The ratio of two Poisson’s ratios, the hydraulic diffusivity (which 

is rock permeability/fluid viscosity), porosity, and fluid bulk modulus have little effects. 

For a horizontal well drilled in the direction of minimum horizontal principal stress, 

longitudinal fractures at the top and low sides along the borehole are expected for regions 

having high Sv-SH stress difference, high rock Young’s moduli and Poisson’s ratio, 

and/or high pore pressure. Drilling conditions such as high overbalance pressure and high 

temperature difference (cooling) can effectively promote the creation of these fractures. 

For creation and length of transverse fractures, the thermal (cooling) effect is the most 

important factor, followed by the magnitudes of minimum horizontal stress; rock 

Young’s moduli and Poisson ratios; pore and borehole pressures; and deviatoric stress 

SV-SH. 
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CHAPTER 6 

CO�CLUSIO�S A�D RECOMME�DATIO�S 

 

6.1 CONCLUSIONS 

This dissertation presented several new findings for various wellbore stability 

problems, as well as demonstrated the use of Monte Carlo simulations to deal with 

unavoidable uncertainties while doing such analyses.  

After exploring the nature of such uncertainties, four types are recognized to exist 

(system, scenario, model, and parameters) but are closely related to each other.  The most 

severe uncertainty due to the lack of information and/or knowledge (a.k.a. prior 

geological information) leads to the possibility of having several different inferences 

(prior probabilities) that are all coherently constrained with available data. In addition, 

subjective judgments and various types of human biases make it difficult to quantify the 

uncertainty (or confidence level) of the analysis prediction. In such cases, using a more 

complicated model (i.e. porothermochemicoviscoelastic) not necessarily result in better 

wellbore stability predictions. Such models represent more closely the system behaviors 

but the uncertainties from input parameters may cancel the confidence gain from 

reducing unreasonable assumptions.  The number of model parameters, their associated 

uncertainties (i.e. ranges of possible values), as well as their existing non-linear 

relationships make traditional sensitivity analysis sub-optimal. Whereas, the stochastic 

Monte Carlo simulation approach, which considers the whole multi-dimensional domain 

of possible values, is computing-intensive; but it can quantify the probabilities (thus, 

uncertainty) of different possible wellbore stability scenarios. 
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Three new equivalent forms of Gassmann’s equation were also presented. These 

are useful for the determination of the Biot-Willis coefficient, dry bulk modulus, and/or 

grain matrix bulk modulus of a rock, which are essential parameters for wellbore stability 

analyses. These Gassmann equations were applied to several sets of laboratory 

measurements to determine the grain matrix bulk modulus, and a stochastic Monte Carlo 

simulation was performed to examine the effect of uncertainty and/or measurement errors 

on the calculated grain matrix bulk modulus and Biot-Willis coefficient. The results 

showed that the calculated grain matrix bulk modulus is relatively constant with applied 

differential pressure (up to 50 MPa) for sedimentary rocks as expected, while Biot-Willis 

coefficient is a strong function of confining pressure. It is found that uncertainty of dry 

and saturated bulk modulus values (or of velocities) can significantly affect the trend. 

This opens the application of Gassmann’s equation to effectively quantify the uncertainty 

of dry and saturated bulk modulus (and subsequently, the seismic velocities) in fluid 

identification or reservoir monitoring applications. 

Next, a new analytical solution for constructing the rock Mohr-Coulomb failure 

envelope from triaxial testings using linear programming and a procedure for determining 

the range of the calculated parameters using a Monte Carlo (stochastic) simulation was 

presented. The analytical solution finds a best-fit failure envelope that gives minimum 

absolute difference (Least-Absolute Errors, or LAE) from the constructed Mohr circles. It 

was demonstrated that the current approximation method using maximum shear points is 

a conservative approach and can give significantly different failure parameters (by more 

than 10% in case of Berea sandstones) from those derived from the best-fit common 

tangent line to the Mohr circles. This new approach is also different from existing 
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methods in dealing with multi-stage triaxial test data. The main advantage of this LAE 

approach is that the estimated failure parameter values are much less sensitive to bad 

input data (i.e. mixing brittle and ductile data for the same rock). Coupled with a 

stochastic simulation, this approach not only gives the best possible failure parameter 

values from experimental data, but also provides the associated uncertainties which can 

be incorporated into wellbore failure analyses. 

Finally, the nature of drilling-induced transverse tensile fractures recently 

observed in borehole images in the Barnett Shale was explained. The applicability of a 

recent analytical thermoporoelastic wellbore stability model for a transversely isotropic 

rock incorporating effects of rock anisotropy, in-situ stress anisotropy, wellbore pressure 

and temperature were considered. The discussions lead to the conclusion that despite 

considerations of complex physical processes, the model’s assumptions make it 

applicable only to hard shales like the Barnett Shale and tight gas sands with low 

porosity, permeability, and high strength. The model reduced to the elastic and 

poroelastic solutions in special cases. The results from two case studies showed that the 

coupled poro-thermo effects were important and could not be ignored in wellbore 

stability analyses, especially for low porosity, ultra low permeability rocks. The results 

also showed that for a horizontal well in the Barnett, the poro-thermo effects due to only 

a ~30°C temperature difference between the borehole fluid and the rock formation could 

easily induce transverse tensile failure as observed from borehole imaging logs, even 

when the rock was assigned very high rock strengths.  Thermal stress, therefore, is useful 

for fracture initiation before and/or during hydraulic fracturing stimulations in hard 

strong shale formations. However, Monte Carlo simulation approach for this model was 
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found to be very computing-intensive due to the large number of model parameters; the 

number of simulations makes implementation impractical. If this obstacle can be 

overcome, it can provide a quantified, probabilistic prediction of possible 

stability/instability scenarios. 

 

6.2 RECOMMENDATIONS  

There are several resulting applications as well as additional research works that 

can be envisioned from the conclusions of this study: 

- Using log data (compressional and shear wave velocities, density, 

porosity, and spectral mineralogy) and Gassmann’s equation to estimate the in-

situ fluid bulk modulus based on Monte Carlo simulation (or other sampling 

methods). The unknown fluid bulk modulus in the formation can be given as a 

probability density function (pdf), (i.e. a normal distribution with varying means). 

The desired mean value is one that minimizes the variance (or standard deviation) 

in the back-calculated rock grain bulk modulus pdf from Gassmann’s equation. 

This can be automated for both fluid identification during drilling and completion 

(i.e. discerning oil from water, or even methane from carbon dioxide), and for 

reservoir monitoring (changes in fluid saturation and/or reservoir pressure) during 

production and enhanced recovery. Note that log porosity and densities should 

also be given appropriate uncertainties due to the nature of the measurements and 

log calibrations.  

- The current practice of reporting single values from experiments and 

analyses should be discouraged and replaced by statistical/probability estimates. 
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For example, one can develop a database for rock failure parameters with using 

the new analytical approach and Monte Carlo simulation with existing triaxial 

data and known uncertainties in each measuring process. Such database will be 

dynamic (self-updating when new data are entered) and will provide prior 

probability (possible ranges of rock parameters) for similar wellbore stability 

analyses lacking real data.  

- Improving the time required for simulation, especially for models 

involving too many unknown parameters (large ranges of possible values). This 

can be done by using parallel computing, supercomputers, or by developing better 

sampling approaches than the simple Monte Carlo method. 

- The effect of the thermally-induced (both transverse and longitudinal) 

fractures in the Barnett warrant further investigations, especially in developing 

applications of actively controlling mud temperature. By controlling the mud 

temperature, one may be avoid wellbore instability while drilling, as well as 

weaken the stress concentration (“stress cage”) around the borehole by creating 

these thermal cracks before hydraulic fracturing stimulation to reduce the required 

treatment pressure. 

- As discussed in Chapter 4, complex models using porothermoelasticity, 

porothermochemoelasticity, etc. use a large number of input parameters, many of 

which are unknown. The uncertainty level in the wellbore stability analyses, 

therefore, switches from model uncertainties (assumptions and approximations) to 

parameter uncertainties. In cases where prior geological data are severely lacking, 

predictions using complex models should not be taken with higher confidence 
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than that of simple models. Therefore, along with developing new sophisticated 

wellbore stability models and introducing new parameters, one should consider 

developing experimental procedures to obtain the values of these parameters, 

especially at in-situ, coupled conditions. 
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�OME�CLATURE 

 

Chapter 2: 

 

K = bulk modulus (general) (GPa or psi) 

Ksat = saturated rock bulk modulus (GPa or psi) 

Kdry = dry rock bulk modulus (GPa or psi)  

Kf = fluid bulk modulus (GPa or psi) 

Km = rock grain matrix bulk modulus or grain bulk modulus (GPa or psi) 

α = Biot-Willis poroelastic parameter or effect stress coefficient (dimensionless) 

φ = porosity (dimensionless) 

G = shear modulus (general) (GPa or psi) 

Gsat = saturated rock shear modulus (GPa or psi) 

Gdry = dry rock shear modulus (GPa or psi) 

ρ = density (general) (g/cc) 
ρsat = saturated rock bulk density (g/cc) 

ρdry = dry rock bulk density (g/cc) 

ρf = fluid density (g/cc) 

VP = compressional wave velocity (km/s) 

VS = shear wave velocity (km/s) 

 

Chapter 3: 

 

τ = shear stress (MPa or psi) 

σn = normal stress (MPa or psi) 

co = rock cohesion (MPa or psi) 

φ = angle of internal friction (dimensionless) 

UCS = uniaxial compressive strength (MPa or psi) 

σ1 = maximum principal stress (axial stress in compressive triaxial testings) (MPa or psi) 

σ3 = minimum principal stress (confining stress in compressive triaxial testings) (MPa or 

psi) 

σf  = failure stress (MPa or psi) 

σinfl  = stress at volumetric strain inflection point (MPa or psi) 

σc = confining pressure (also σ3 in compressive triaxial testings) (MPa or psi) 
εA = axial strain (dimensionless) 

εL = lateral strain (dimensionless) 

εvol = volumetric strain (dimensionless) 

σvol=0 = stress at which volumetric strain becomes zero (in compressive triaxial testings) 

(MPa or psi) 

m = tanφ  = friction coefficient (dimensionless) 

 

Chapter 4: 

 

ζ  = variation of fluid content (dimensionless) 
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q = relative fluid flux (m/s) 

Cv = (constant volume) specific heat capacity (general) (J/(kg.K)) 

Cv,f = (constant volume) specific heat capacity of saturated fluid (J/(kg.K)) 

Cv,gr = (constant volume) specific heat capacity of rock grain matrix (J/(kg.K)) 

ρCv = volumetric heat capacity (J/(m
3
.K)) 

ρ = rock bulk density (g/cc) 
ρgr = rock grain density (g/cc) 

ρf = fluid density (g/cc) 

qr = fluid flux (relative to rock grain matrix) (m/s) 

vm = velocity of rock grain matrix (zero with infinitesimal strain assumption) 

T = temperature (K or °C) 

λ = (averaged) rock thermal conductivity (W/(m.K)) 

k = rock permeability (md or m
2
) 

µ = fluid viscosity (cp or Pa.s) 
µκ /k=  = rock hydraulic diffusivity (m

2
/(GPa.s)) 

σ = (σij)3x3 = stress tensor (MPa) 

ε = (εij)3x3 = strain tensor (MPa) 

M& = (Mij)3x3 = drained stiffness tensor (MPa) 

α = (αi)i=1..3 =  Biot-Willis poroelastic coefficient tensor (dimensionless) 

β = (βi)i=1..3 = thermal coefficient tensor (GPa/K) 

Mb = Biot’s modulus (GPa) 

β
sf 
= thermal coefficient of the pore fluid accounting for the volume expansion of the rock 

grain (/K) 

cf = fluid diffusivity (m
2
/s) 

chf = rock heat-fluid flow coupling coefficient (pressure diffusivity equation Eq. 5-9) 

(GPa/K) 

c = rock heat-fluid coupling coefficient (variation of fluid content diffusivity equation 

Eq. 5-10) (GPa/K) 

ν = Poisson’s ratio (dimensionless) 

p = pore pressure (MPa) 

T = temperature (K or °C) 

P0 = far-field in-plane (normal plane to the borehole) mean stress (MPa) 

S0 = far-field in-plane (normal plane to the borehole) deviator stress (MPa) 

Sx = far-field in-plane (normal plane to the borehole) normal stress in x-direction (MPa) 

Sy = far-field in-plane (normal plane to the borehole) normal stress in y-direction (MPa) 

Sxy = far-field in-plane (normal plane to the borehole) shear stress (MPa) 

Sz = far-field anti-plane (plane parallel to the borehole) normal stress in z-direction (MPa) 

Sxz,, Syz = far-field anti-plane (plane parallel to the borehole) shear stresses (MPa) 

TS = tensile strength (MPa) 

Sh = minimum horizontal in-situ stress (MPa) 

SH = maximum horizontal in-situ stress (MPa) 

SV = vertical in-situ stress (MPa) 
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Appendix D: 

 

 

D = silo opening diameter (m) 

rb = particle (ball) radius (m) 

h = assembly height (m) 

φ = particles’ angle of internal friction (rad) 
f = silo wall-particle friction coefficient (dimensionless) 

θ = silo half-angle (rad) 
g = gravitational acceleration (m

2
/s) 

ρb = particles’ density (kg/m
3
) 

m& = mass discharge flow rate (kg/s) 

dp/dr = fluid pressure gradient  (Pa/m) 

ρf = fluid density (kg/m
3
) 

µf = fluid viscosity (kg/m
3
) 

 

Appendix E: 

 

P = probability 

A, B, C = propositions (data and/or hypotheses) 

P(A|C) = probability of A being true given C is true 

P(AB|C) = probability of both A & B being true given C is true 

P(A|BC) = probability of A being true given both B & C are true 
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APPE�DIX A 
 

DERIVATIO�S OF THE EQUIVALE�T GASSMA�� EQUATIO�S  

(CHAPTER 2) 

 

A.1 DERIVATION OF EQUATION (2.7) 

Eq. (2.3) can be rewritten as: 
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The Gassmann’s equation can now be rewritten as a function of α, the Biot-Willis 

coefficient: 
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Multiplying both sides with 
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which is Eq. (2-7).  
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A.2 DERIVATION OF EQUATION (2.13) 

If the same rock is subjected to two different saturation fluids, then one has two 

equations in form of Eq. (2-7): 
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Subtracting Eq. (A-6) from Eq. (A-5) gives: 
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Canceling Kdry on both sides and rearranging Eq. (A-7) leads to: 
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which is Eq. (2-13). Eq. (2-14) is obtained by multiplying both sides by (Ksat1Ksat2). 
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A.3 DERIVATION OF EQUATION (2.15) 

 

If the Km value can be obtained independently (e.g. using mixture theory), then 

one can substitute mdry KK )1( α−= into Gassmann’s equation and rearrange Eq. (2-1) as a 

function of α, the Biot-Willis coefficient only: 

[ ] 2)()1( αφαφα f

m

f

msat K
K

K
KK =








−+−−    (A-8) 

Expanding the LHS and subtracting Kfα2
 from both sides, one obtains: 

( ) 0)1( =
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−+−+
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
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m

satf

fmsatfm

m

fsat

K

KK
KKKKK

K

KK
φφφα  (A-9) 

or equivalently,  

( ) ( ) 
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
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


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






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




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m

f
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m
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K
KKK

K

K
KKK 11 φαφ  

which is Eq. (2-15). 
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APPE�DIX B 

LEMMA I� CO�STRUCTI�G MOHR FAILURE E�VELOPE (CHAPTER 3) 

 

The proof of the lemma used in order to convert Eq. (3.5) – a non-linear optimization 

problem, into N piece-wise linear problems, i.e. Eq. (3.19), is presented below. 

Lemma:  

Let (P) be the set of all optimal line equations of problem Eq. (3.5). Show that there 

exists ∈p ( P) such that p is tangent to at least one circle. 

Proof:  

Consider an optimal solution ∈*p ( P) that is �OT a tangent to any circle. The line 

equation representing p
*
 is (m

*
x + c0

*
).  

The optimal value of the OBJF is α*
 =∑

=

−
�

i

ii Rh
1

*
|| , where hi

*
 is the distance from the 

center of the i-th Mohr’s circle to (m
*
x + c0

*
). 

It is then now possible to construct a solution p: (m
*
x + c0) that gives the same value for 

the OBJF and is a tangent line to at least one circle: 
*

1

|| αα =−= ∑
=

�

i

ii Rh , 

The line representing p
*
 is (m

*
x + c0

*
) which divides the plane into two half-planes 

(denoted as + and – on Figure B.1). The Mohr’s circles can be divided into 5 groups as 

follows: 

Group I0: circles whose centers are on p*. 

Group I1
+
: circles whose center is on + half-plane and hi

* 
> Ri (not intersecting p*). 

Group I1
-
: circles whose center is on - half-plane and hi

* 
> Ri (not intersecting p*). 
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Group I2
+
: circles whose center is on + half-plane and hi

* 
< Ri (intersecting p*). 

Group I2
-
: circles whose center is on - half-plane and hi

* 
< Ri (intersecting p*). 

 

 
Figure B.1: Possible relative positions of Mohr’s circles to a line. 

 

Consider a line p+ which is parallel to p* on the + half plane and separated by a very 

small distance ε >0. Then for p+:  

αi = |hi – Ri| increases (by an amount ε) for i ∈I1
-
 and I2

+
; and, 

αi = |hi – Ri| decreases (by an amount ε) for i ∈I0, I1
+
, and I2

-
.  

The difference between the two objective functions for the two lines is: 

( ) 0|||||||||| 02121

* ≤+−−+=− +−−++ IIIII εεαα   (B-1) 

since α*
 is the optimal (minimium) value. 

Similarly, consider a line p- which is parallel to p* on the - half plane and separate by a 

very small distance ε >0, then: 

( ) 0|||||||||| 02121

* ≤+−−+=− −++−− IIIII εεαα    (B-2) 

where |.|  denotes the cardinality (number of elements) of each set of circles. 

From Eqs. (B-1) and (B-2), one obtains: 

|I0| = 0 (or the set I0 is empty), and 



 

103 

 

|||||||| 2121

−++− −=+ IIII  

which also means that both p+ and p- are optimal solutions. 

Therefore, for any ∈*p ( P) that is not a tangent to any Mohrs’ circles, one can translate it 

up or down toward the closest circle to get another optimal solution which is also tangent 

to at least a Mohr’s circle. Q.E.D. 
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APPE�DIX C 

STRESSES, PORE PRESSURE, A�D TEMPERATURE SOLUTIO�S FOR THE 

FIRST SUB-PROBLEM (CHAPTER 4) 

  

Due to several typographical errors propagating in the literature (Abousleiman & 

Ekbote
1
, 2005), the solutions for the three modes of the first sub-problem for a 

transversely isotropic medium are again provided here for the sake of completeness. 

 The first subproblem accounts for the in-plane stresses (xOy-plane, perpendicular 

to the borehole), pore pressure, and temperature. A portion of the far-field normal stress 

(Sz
1
) is applied here so that plane strain conditions prevail in the borehole z-direction: 

 
00

1
)'2'()'2'()(' TpSSS yxz βνβαναν −−−−+=               (C-1) 

 By rotating the (xOy) plane by an angle (θr), the three in-plane stresses (Sx, Sy, 

and shear stress Sxy) are reduced to two: the far-field mean stress P0 and stress deviator S0 

(as defined in Eq. 4.12).  

 The problem can be divided further into three simpler loading modes with 

independent solutions as follows: 

Mode 1: This mode accounts for the hydrostatic part of the boundary stresses: 

 σrr
(1)
=P0 – pw ;  σrθ

(1)
= p

(1)
 = 0; T

(1)
 = 0    (C-2) 

 The solution of this mode is purely elastic and independent of θ: 

 







−=

2

2

0

)1(
][

r

R
pP wrrσ     (C-3a) 

                                                           
1
 Specifically, in Abousleiman & Ekbote, 2005 paper, Eqs. A1d, A1f, A2a, A4b, and A5d contain 

typographical errors. 



 

105 

 

 







−−=

2

2

0

)1(
][

r

R
pP wθθσ     (C-3b) 

Mode 2: This mode accounts for temperature and pore pressure differences between the 

wellbore and the formation, the boundary conditions at the wellbore are: 

σrr
(2)
= σrθ

(2)
= 0 ;  p

(2)
 = (pw – p0) ;   T

(2)
 = Tw – T0  (C-4) 

 The solution is time-dependent due to thermal and hydraulic diffusions. It is 

obtained in Laplace’s domain and inverted to the real time domain using the Stehfest 

algorithm (Stehfest, 1970): 
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where, 
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 )()()( xxx Ψ+Φ=Ω      (C5-g) 

where Kn is the modified Bessel function of the second kind of order n (Abramowitz and 

Stegun, 1972), and, 
hc

s
=ω ; 

fc

s
=ξ       (C5-h) 
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Mode 3: This mode accounts for the far-field asymmetric stresses charactering the 

poroelastic coupling. The far-field deviatoric loading (in the plane of rock isotropy) 

generates the redistribution of pore pressure (Skempton’s effect) which diffuses with time 

and is coupled with the deformation of the rock. The solution is also time-dependent and 

can only be obtained analytically in Laplace’s domain using the approach of Detournay 

and Cheng (1988). Real time domain solution is again obtained numerically using 

Stehfest algorithm. 
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where Kn is the modified Bessel function of the second kind of order n (Abramowitz and 

Stegun, 1972). The constants for permeable boundary conditions at the borehole wall are 

given as: 
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 For elasticity (Biot’s coefficients α �0 or at infinite time and under isothermal 

condition), Mode 2 becomes trivial as pore pressure is in equilibrium throughout the 
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space domain, whereas for Mode 3 of asymmetrical loading, A1C1 � 0; C2 �4/A2; and 

C3 �-1. For general isothermal conditions, the solutions reduce to those of poroelastic 

models (Cui, 1995). 
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APPE�DIX D 

�UMERICAL SIMULATIO�S OF SILO FLOW A�D IMPLICATIO�S FOR 

PROPPA�T FLOWBACK, SA�DI�G, A�D SCREE�OUT PROBLEMS 

  

D.1 INTRODUCTION 

Theories and models for granular flow are still being pursued due to the unique 

characteristic of granular assemblies: they can flow like a fluid when poured (liquefied), 

but also have a macroscopic friction so that heavier particles and objects do not 

necessarily sink to the bottom. Interactions among the fluid, particles, and assembly 

geometry can further complicate the problem. 

 

Silo flow, i.e. the flow of granular assemblies through a limited opening, is best 

modeled by the discrete element method (DEM), since it is the only one that accounts for 

the extremely complex interaction among granular particles, wall boundaries, and fluids.  

  

In the petroleum industry, screenout, proppant flowback control, and sanding are 

problems closely related to silo flow phenomena. Screenout describes the drilling 

completion condition when proppants can not be pumped into the hydraulic fracture, 

resulting in poor proppant placement and low fracture conductivity. Proppant flowback is 

the reverse problem in which fluid drag forces pull the proppants from the fracture wings 

back into the wellbore, resulting in potentially severe damage to tubing, casing, downhole 

as well as surface equipment. Sanding is very similar to proppant flowback, however the 

produced solids are the reservoir fines and scales (particles). 
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Current solutions to screenout, proppant flowback control as well as sanding 

control are presently based mostly on trial-and-error approaches (e.g. perforation 

diameter should be 6 times greater than proppant diameters to avoid bridging, or resin-

coated proppant is better for proppant flowback control). However, the choices may pose 

a new set of problems. For example, gravel packing with screens can effectively reduce 

sanding, but at the same time introduce a positive skin
1
 to the well which may greatly 

reduce productivity. Resin-coated proppants are a very good solution for proppant 

flowback control, but come with worse screenout problems: proppant placement rates as 

low as 10% have been reported, and rates less than 50% are common (Baihly et al., 

2006). 

The study for the ultimate solution of these aforementioned problems, as well as 

silo flow, leads to the study of arching (or mechanical bridging) phenomena. Arching is 

the condition when granular particles rearrange so that the assembly obtains a stable 

geometry against the applied loads. For silo flow and proppant placement, arching is 

detrimental and should be avoided. However, for proppant flowback control and sanding 

control, arching can be the best possible solution. 

It is important to distinguish the difference between 2-D arching (i.e. proppant 

flowback) and 3-D arching (i.e. screenout). In 2-D arching/bridging, each arch member 

                                                           
1
 Wellbore skin (s) is a dimensionless factor that determines the production efficiency of a well by 

comparing actual conditions with theoretical conditions. It relates the effective (or apparent) wellbore 

radius to actual wellbore radius: 
s

wwa err −= . A positive skin indicates some damage or influences 

(i.e.gravel packing) that impair well productivity. A negative skin indicates enhanced productivity, often 

due to stimulation.  
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must be supported on both sides to transfer the applied load, whereas a 3-D arch is more 

like a dome, which can be stable even when there are holes in it (Matchett, 2007). 

 

Depending on the relative magnitude of the driving forces (i.e. pressure gradient, 

particle density) and the retaining forces (i.e. friction coefficients, opening diameter, fluid 

viscosity), the silo flow can be in one of the following flow regimes: 

- Accelerating flow: the flowrate is increasing with time. (i.e. when the particle 

radius is small compared to the opening and particles’ coefficient of internal 

friction is negligible). 

 

- Constant rate flow: the flowrate is constant with time (i.e. the sand hour-

glass). 

 

- Intermittent flow or two-phase flow: alternating between an active phase 

(constant rate) and an inactive phase (no flow). Intermittent flows were 

observed experimentally by Wu et al. (1993) in their hour-glass experiment, 

even with very small diameter sand (41µm) flowing through an orifice of 

radius 0.1cm. 

 

- Funnel flow (ratholing and dead storage): only a portion of the silo (in the 

middle) flows while the particles near the wall stay unmoved. (i.e. when silo 

half-angle is larger than the angle of repose for the particle assembly). 

(Nguyen et al., 1980) 
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- Arching (mechanical bridging): no flow 

 

 

D.2 THEORETICAL MODEL 

 

How the silo flow changes from one flow regime to another is not fully 

understood. In the following section dimensionless analysis has been used to specify 

important parameters that can have an effect on silo flow. Then, by simplifications, it can 

be reduced to hour-glass theory for constant flow rate prediction (Davidson & 

Nedderman, 1973, Crewdson et al., 1977). 

 

D.2.1 Dimensionless Analysis: 

1. �o fluid case (dry silo flow): 

In this case, there are 9 variables: 

 D: silo opening diameter, dimension [L] 

 rb: particle radius, dimension [L] 

 h: assembly height, dimension [L] 

 φ: particles’ angle of internal friction, dimensionless [ ] 

f: silo wall-particle friction coefficient, dimensionless [ ] 

θ: silo half-angle, dimensionless [ ] 

g: gravitational acceleration, dimension [LT
-2
] 

ρb: particles’ density, dimension [ML
-3
] 
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m& : mass discharge flow rate, dimension [MT
-1
] 

 
Figure D.1: Variables affecting discharge flow rate in silo flow. 

  

Hence, 6 independent dimensionless π groups exist, related by: 

),,,,(
2/5 D

h

D

r
f

Dg

m b

b

θφϕ
ρ

=
&

     (D.1) 

 where ϕ is a function to be determined experimentally. 

 

2. Fully saturated case (no gravitational acceleration, only fluid pressure gradient): 

In this case, instead of g, one has a fluid pressure gradient (dp/dr) as the driving 

force. There are also two additional variables:  

ρf: fluid density, dimension [ML
-3
] 

µf: fluid viscosity, dimension [ML
-1
T

-1
] 

 

Hence, 8 independent dimensionless π groups can be found, related by: 
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 where ϕ is a function to be determined from experiments. 

 

 

D.2.2 The hour-glass theory: 

 

Apparently, the empirical function for Eqs. (D.1) or (D.2) is not easily deduced 

since it has many independent π groups. Davidson & Nedderman (1973) and Crewdson et 

al. (1977) made the following assumptions: 

- The particle radius is small compared to the silo opening: rb/D << 1,  

- The height of the assembly is much larger than the silo opening: h/D >>1, 

- The wall-particle friction coefficient is zero (frictionless): f = 0, 

- Fluid is inviscid (nonviscous), µ = 0; 

- Fluid density is small compared to the density of the particles (i.e. air to sand):  

ρf/ρb << 1, 

- Gravity and fluid gradient can be superimposed into one driving force: 

   







+

dr

dp
g

bρ
1
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With these assumptions, the effects of 5 π groups: ,,,,
b

fb

D

h

D

r
f

ρ

ρ
and 

2/31
D

dr

dp

b

b

f

ρ
ρ

µ
 can be neglected, and the discharge rate equation in Eqs. (D.1) and 

(D.2) can be simplified as: 

)()(
1 2/5 θφ
ρ

ρ GFD
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dp
gCm

b

b ⋅⋅+=&      (D.3) 

where C is a constant and F & G are functions of φ & θ, respectively. 

 

For conical dry flow under gravity, Davidson & Nedderman (1973) propose: 
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)(G       (D.7) 

Eqs. (D.4) to (D.7) are also known as the hour-glass theory. Note that Eq. (D.4) 

should only be applied if silo flow is in constant flow regime. It contains several 

important implications. Firstly, the assembly height has no effect on the rate (as long as 

h/D >>1). It means that the additional stress from the height of the particles’ column 

(driving force) is effectively cancelled out by the increasing resisting frictional forces 

between the particles. Secondly, the discharge rate is proportional to D
5/2
, instead of D

2
 or 
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area. Therefore, a double increase/reduction in opening radius (or 4 times 

increase/reduction in opening area) leads to 5.66 times increase/reduction in the flowrate. 

The implication is that large perforation diameter and large screen opening are much 

more susceptible to proppant flowback or sanding problems. Lastly, the rate is 

proportional to g
1/2
 or (dp/dr)

1/2
 (the driving force). This may explain the spike in surface 

treating pressure when screenout is initiated during proppant placement stage. For 

example, to double the flowrate, the treating pressure needs to be increased four times if 

other parameters are kept constant. The effects of silo half-angle and particle angle of 

internal friction on the discharge flowrate can be seen in Fig. D.2. 
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Figure D.2: Theoretical effects of particles' angle of internal friction and the silo half-

angle to discharge rate according to the hour-glass theory (Davidson & Nedderman, 

1973). 

 

The next section presents numerical simulations testing the theory using the 

discrete element method model with PFC3D software (Itasca Consulting Groups). 
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D.3 NUMERICAL SIMULATIONS USING DISCRETE ELEMENT METHOD 

 

D.3.1 Assembly generation process: 

Two approaches were attempted to generate particles in a silo. The first method is 

described in Itasca PFC3D manual, which includes the following steps: 

- All particles are randomly generated in a specified cube containing the silo, 

with initial diameter being much smaller than (i.e. half of) the desired particles 

diameter;  

- Particles that are generated outside the silo are removed; 

- The particles diameter is then doubled. There will be some overlaps among 

particles and between particles and the silo wall; 

- A gravitational field is applied; and, 

- The assembly is cycled until a stable equilibrium
1
 is reached. 

This method was not applicable for our model. Assembly was cycled for days up to 10
8
 

cycles without reaching equilibrium. The main reason is that there are lots of overlaps 

among particles so that when the cycling calculation starts, many particles have very high 

initial velocities. In turn, each cycle can only cover a very short time due to rapid 

movements of particles.   

 

The second approach is to introduce the particles one-by-one in the middle of the silo and 

cycle (let them free fall under a gravitational field) until equilibrium is reached. Our 

criterion for assembly equilibrium is that the maximum particle velocity is less than 10
-3 

                                                           
1
 The assembly is considered in equilibrium when the total displacements (and/or velocities) of all particles 

in the assembly is lower than a predetermined small value.  
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m/s. The silo opening is closed at the beginning and only removed after a desirable 

number of particles have been generated and the equilibrium criterion is satisfied. With 

this approach, the corresponding time for each calculating cycle is significantly higher 

(i.e. several orders of magnitude compared to the previous approach). One could setup 

conical silos with 1000-2000 particles ready to test the theory within 2x10
7
 cycles. The 

software program was run on a desktop PC with Intel Dual-Core processor (2.4GHz 

CPU) and took an average 12 to 24 hours. 

 

Several conical silos with varying parameters were considered to test the theory 

(Table D.1). After the silo is opened, the number of discharged particles versus time was 

recorded (Figure D.3). Other parameters are summarized in Table D.2.  

Table D.1: PFC3D models and their assigned variable parameters. 

Case Silo half-angle 

(º) 

particle friction 

coefficient 

Silo opening 

diameter D0 (m) 

1 20 0.3 0.05 

2 40 0.3 0.05 

3 60 0.3 0.05 

4 20 0.3 0.08 

5 40 0.3 0.08 

6 60 0.3 0.08 

7 20 0.84 0.08 

8 20 0.57735 0.05 

9* 60 0.3 0.08 

10* 20 0.3 0.08 

 

 

Table D.2: Other PFC3D model parameters 

Model Parameters Value 

Particle radius (m) 0.01 

Particle density (kg/m3) 2,650 

Total number of particles 1002 or 2004 (for cases with *) 
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Figure D.3: Particles (color-coded to their beginning height in the silo) being discharged 

through the silo opening under gravitational force (Case 1). 
 

 

D.4 RESULTS AND DISCUSSIONS 

 

D.4.1 Observed flow regimes: 

  

The results are plotted in Fig. D.4. The slope of each case gives the discharge rate 

(number of particles/second), which can be easily converted to mass rate (by multiplying 

particle volume * density). Three types of flow were observed. The first type is “no-flow” 

as a stable arch is formed quickly above the opening due to a too narrow opening (i.e. 

cases 2, 3) or a high particle friction coefficient (i.e. case 7). The second type is 

intermittent flow in which arches are formed and broken (i.e. cases 1, 8). And the last 

flow type is continuous flow where the discharge rate is almost constant (i.e. cases 4, 5, 

6, 9, 10).  
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Figure D.4: Discharge amount versus time for different models showing three types of 

flow – some have constant flow rate, some have intermittent flow with unstable arching, 

and some have no flows (arching). 

 

 

D.4.2 Sensitivity analyses: 

 

Comparison of discharge rates to theoretical predictions (Eq. D.4) shows that the 

theoretical estimates are much higher than PFC3D simulation results (sometimes by two 

orders of magnitude for cases 4 and 6). This is expected since in PFC3D models, except 

for case 8, the wall is not smooth and has a ball-wall friction coefficient of 0.3 (shear 

stress on the wall is not zero). The relative changes (Table D.3), however, agree very 

well with theoretical predictions. 
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Parameters Theory 

prediction 

�umerical 

Simulation  
D (from 0.05 to 0.08) 3.24 times increase 3.4 times increase 

Silo half-angle θ (from 20° to 40°) 1.25 times decrease 1.29 times decrease 

Silo half-angle θ (from 20° to 60°) 3.24 times decrease 3.4 times decrease 

Angle of internal friction (from 16° to 40°) 2.42 times decrease Stable arching 

Numbers of particles in assembly (from 

1002 to 2004) 

No change No change 

Table D.3: Comparison between theory prediction and PFC3D results. 

Note that by changing the silo opening, the friction coefficient, or the silo angle, 

one can switch from one flow regime to another. This is an important observation since it 

means that each dimensionless group has a range outside which intermittent flow or 

arching regimes occur and hour-glass theory can no longer be applied. Current bridging 

criteria mostly focus on perforation diameter and/or applied pressure, but the results 

imply that by changing particle friction coefficient (type of proppants) or pressure 

gradient (pump/production rate), the flow regime of granular particles can also be 

changed and controlled. 

 

D.4.3 Effects of wall-ball friction coefficient – an anomaly: 

The hour-glass theory does not account for the wall-ball friction coefficient (it assumes a 

frictionless smooth wall). Therefore, the wall-particle interaction does not provide shear 

forces (hence rotating moment on the particles). This is generally not the case for sanding 

and proppant flow back problems. Figure D.5 shows the discharge results of three cases 

with different wall-ball friction coefficients while other parameters are kept constant 

(D=0.12m, rb = 0.01m, ρb = 2650kg/m
3
, g = 9.81m/s

2
, θ = 20°, and φ = 30°). As wall-ball 

friction coefficient is changed from 0.0 (frictionless) to 0.2, the discharge rate decreases 

significantly (by almost two times). However, as the wall-ball friction coefficient is 

changed from 0.2 to 0.4, the discharge rate increases back almost equal to frictionless 
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case (Fig. D.5). Furthermore, there was a period of unstable arching for the smooth wall 

case before constant discharge rate occurred. For proppant flowback, this anomaly 

implies that a very smooth or very rough hydraulic fracture surface may be more prone to 

proppant flowback because of the lack of particles rotations due to no (or too high) ball-

wall frictions. 
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Figure D.5: Reversal of flowrate with increasing wall-ball friction coefficient. Flow rate 

decreases as wall-ball friction coefficient changes from 0.0 (smooth wall) to 0.2, but then 

increases as friction coefficient increases to 0.4. Also notice an inactive phase (unstable 

arching) for the smooth wall case. 

 

D.4.4 Coarse grid fluid scheme with PFC3D: 

  

An attempt was made to apply fluid coupling to investigate the effect of fluid on 

discharge rate using Itasca coarse grid fluid scheme. A cubic fluid grid (20x20x10 cells) 

covers the whole conical silo and a pressure gradient was applied such 
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that 2/81.9
1

sm
dr

dp
g

b

==
ρ

. No gravitational acceleration was assigned. Fluid viscosity 

and fluid density were assigned very small values (0.0001Pa.s and 1kg/m
3
, respectively). 

However, results similar to the cases of dry silo flow were not obtained. For all cases, the 

contact forces among particles were 2-3 orders of magnitude smaller and therefore, no 

flow was observed. The reason is that PFC3D coarse grid fluid scheme uses fluid cell 

porosity to calculate particle-fluid interaction force i.e. Ergun’s equation (PFC3D 

manual): 
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ρρν   (Eq. D.8) 

where n is the fluid cell porosity, dp is is the particle diameter and u is the velocity. Eq. 

D.8 is erroneous in fluid cells having silo walls since it calculates a (incorrect) large 

porosity value, thus results in very small pressure drop. It means that for fluid coupling 

problem, the current approach is inapplicable. A smaller fluid grid model (i.e. using 

Lattice Boltzmann method) should be developed. 

 

D.5 SUMMARY AND FUTURE WORK 

 

In this study, the kinematics of granular assemblies as particles flow through a limited 

opening due to applied loads (or silo flow) was investigated. Results from PFC3D models 

were compared with theoretical predictions using the hour-glass theory from 

dimensionless analysis. Three types of flow were simulated via PFC3D models: 

continuous flow, when the flowrate is approximately constant; intermittent flow, 

characterized by constant flow rate in active phases followed by no flow inactive phases; 
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and stable arching, when the particles near the opening become interlocked, form a 

curved surface arch that retards the bulk flow. Effects of silo half-angle, opening 

diameter, and particle friction coefficient to flow rate from PFC3D models were found to 

be in very good agreement with theoretical predictions. The results can be applied to 

selection of proppant size and type, perforation diameter, and rate for better proppant 

placement as well as reduction in proppant flowback or sanding production due to 

arching formation. 

Further studies in this line of research are envisioned as follows: 

- Expansion of model to incorporate effect of viscous fluids. 

- Model geometry (e.g. parallel or angled plates for hydraulic fractures). 

- Effects of branching from main fracture (i.e. investigating proppant placement 

into reactivated natural fractures intersecting a main hydraulic fracture at 

various angles). 

- Investigating how granular flow and/or arching around perforations can be 

accomplished with varying operating parameters. For example, in sanding 

problem during production, if sands and/or proppants arching conditions can 

be achieved at the bottom hole (even intermittently), then increasing 

production (via choke control) would further improve the stability of the 

arching, thus reduce sanding. 
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APPE�DIX E 

THE I�FERE�CE PROBLEM I� WELLBORE STABILITY PREDICTIO� 

 

E.1 PROBABILITY IN BAYESIAN AND FREQUENTIST VIEWS 

There exist two main schools of thoughts in the theory of probability. The 

traditionalists define the probability as the frequency of a favored outcome in a (large) 

ensemble, whereas the Bayesian define probability as the likelihood or the reasonable 

expectation of that outcome in a single event (or trial) (Cox, 1946). The frequentist 

definition of probability is severely constrained by the requirement that a test (for a 

proposition) is repeatable and each test is stochastically independent (tossing a fair coin 

or dice, for example). The Bayesian approach covers a much larger set of probability 

problems, with the assignment of plausibility for hypotheses and beliefs as well as 

variables, and how these plausibilities can be changed in light of new evidence (Cox, 

1946; Jeffreys, 1961; De Finetti, 1974-1975). The other main difference of the Bayesian 

approach is the recognition of the possibility of having several different inferences that 

are all coherently constrained with data. The plausible reasoning process can be 

universal, but the assessment of uncertainty or measure of the degree of plausibility can 

vary significantly from one person to another (Lindley, 1986). This subjective aspect of 

probability can be best summed up by De Finetti (1974) exclamation: “Probability does 

not exist!” 

 

E.2 PLAUSIBLE REASONING 

Before Bayes’ paper in 1763 (published by his friend Richard Price two years 

after Bayes’ death), the only logic in reasoning process that could be captured 
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mathematically was the deductive reasoning of Aristotle, based solely on two strong 

syllogisms: 

Given the premise that: “If proposition A is true, then proposition B is true.” 

• Now, A is found to be true, therefore B is true. (First strong syllogism); or, 

• Now, B is found to be false, therefore A is false. (Second strong syllogism) 

Apparently, this type of logical deduction only works with propositions that are 

either certain or impossible. In reality, the problems are much more complicated. One can 

have several different propositions Ai that may lead to the conclusion of B being true. 

Therefore, one with reasonable mind comes up with conclusions for most propositions by 

using the logic of plausible reasoning (induction), seeking the magnitude of probability 

which is (or ought to be) based on the existing information and experience they have. The 

logic of plausible reasoning is based on the three weak syllogisms: 

  Given the premise that: “If A is true, then B is true.” 

• Now B is found to be true; therefore, A becomes more plausible (First 

weak syllogism); or, 

• Now A is found to be false; therefore, B becomes less plausible (Second 

weak syllogism). 

For example: Let’s consider propositions A: “A linear elastic model is applicable 

for well XYZ” and B: “Stresses around the wellbore are independent of time.” Applying 

the first weak syllogism, one sees that validation of B - a logical consequence of A, helps 

increase our confidence in A being true. Whereas the second syllogism state that just “A 

being false” does not prove that B is false. However, since one of possible reasons for B 

being true is gone, our confidence in B being true will decrease. 
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In general, acceptance or rejection of a proposed scientific theory or model is 

mostly based on observations of experimental works. This validation approach actually 

employs these two weak syllogisms frequently and extensively along with another, even 

weaker syllogism:   

Given the premise: “If A is true, then B becomes more plausible.” 

Now B is found to be true; therefore, A becomes more plausible (Third weak 

syllogism). 

For example, proposition A is: “The ratio of the two principal horizontal stresses is high 

in field location XY,” and B is “Induced drilling tensile fractures are encountered in the 

well.”  

Firstly, note that the premise of the third syllogism says even if A is true, it is not 

100% certain that B is true (e.g. the rock in the field can have a very high tensile 

strength). Secondly, there may be an entirely logical explanation for the observation of B 

that doesn’t need A to be true at all (e.g. due to the thermal effects of the drilling mud). 

However, the evidence (observation) of B can make us feel that A being true is 

“extremely plausible”, and sometimes engineers and geologists could easily accept the 

argument as if it had almost the power of deductive reasoning (Ketter et al., 2006, Waters 

et al., 2006). This reasoning will be visited later as Bayes’s theorem is introduced. 

  These examples show two common problems related to plausible reasoning logic 

in wellbore stability predictions. The first one is that there are no “correct” models. Every 

model is an abstract of reality that requires acceptance of several assumptions to arrive at 

a prediction. However, contrary to popular views, a violation (or some violations) of 

these assumptions does not necessarily render a model impossible and useless; it just 
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reduces the (subjective) confidence level, or the degree of plausibility, of the users 

(humans or products of humans such as a computer program) on the validity of the 

model’s conclusions/predictions. This change in “confidence level” depends much on 

how serious (note that another confidence level is introduced here!) the assumptions are 

violated. If one assumption for a wellbore stability model was that the wellbore has to be 

drilled perpendicular to the plane of isotropy in a transversely isotropic (TI) rock (i.e. 

Cui, 1995; Ekbote, 2002), and turned out it was drilled 3-5° off the rock’s axis of 

symmetry, it is very possible that that model can still produce some useful predictions. In 

this essence, one wants to be able to quantify the change in probability (a scale on which 

the degree of plausibility can be measured) of a model in wellbore stability prediction, 

before and after certain observations are made. With measuring while drilling (MWD) 

being used more every day, the prospect of updating wellbore stability predictions in real 

time with incoming new information for monitoring and prevention measures has become 

practical (i.e. Lüthje et al., 2009) uses MWD data for real-time updated pore-pressure 

prediction for sections ahead of the drill bit.  

The second problem related to plausible reasoning logic in wellbore stability 

analyses is very much related to the first one. The confidence level or probability of a 

proposition can vary from one person to another. The assignment of the degrees of 

plausibility based on given information and prior experience is subjective and often 

heuristic, and is prone to human biases (Capen, 1976; Anderson, 1998; Baddeley et al., 

2004; Bowden, 2004). The problem is therefore of interrogating and calibrating the 

experts’ opinions, each having his/her own background knowledge, to obtain the most 
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consistent and accurate probability.  The human biases can be grouped into the following 

two categories (Baddley et al., 2004; Skinner, 2009): 

- Individual bias: which includes (rational) motivational biases (reflecting 

individuals’ interests in a given problem) & (unconscious) cognitive biases 

(due to insufficient information or incorrect processing of information) 

- Group bias: which is a complex form of biases arising from group 

interactions, in which one individual’s bias can affect the knowledge and 

judgments of others (also called herding behaviors). 

Therefore, a framework for a correct (but still, subjective) assessment of the 

probability of a hypothesis or data is required. Jaynes and Bretthorst (2003) propose the 

following “desiderata” for a plausible reasoning process: 

(I) The degree of plausibility of any proposition is represented by a real 

number (so that it can be compared):  P(A|C)> P(B|C) means: given C 

being true, the probability for A to be plausible is higher than that of B (C 

can be any proposition or the background information). By convention, the 

scale [0, 1] is used, with 0 representing impossibility and 1 representing 

absolute certainty. 

(II) The reasoning direction when new information comes in is in accordance 

with common sense: If the old information C is updated to C’ such that the 

plausibility of A being true increases: P(A|C’) > P(A|C); however, the 

plausibility of B given A doesn’t: P(B|AC’) = P(B|AC), then by 

corresponding common sense one must expect the plausibility for both A 
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& B being true with the new information will increase: P(AB|C’) > 

P(AB|C). 

(III) Consistent reasoning (1):  If a conclusion can be reasoned out in more than 

one way then every possible way must lead to the same result (path 

independence). 

(IV) Non-ideological: one must always take into account all of the relevant 

evidence to a proposition. He/she can’t arbitrarily ignore some of the 

information and base the conclusions only on what remains. 

(V) Consistent reasoning (2): Equivalent states of knowledge must be 

represented by assigning an equivalent probability. 

Desiderata (I) and (V) allow comparison of probabilities of different events. 

When one says “there will be 60% chance of experiencing under-pressured zone when 

drilling the well,” it means that that chance is equivalent (indifferent to him/her in term of 

probability) to the chance of drawing out a white ball from a Bernoulli Urn having 10 

identical balls (except for the color), of which six balls are white. Note that others may 

assign totally different probabilities. 

Desideratum (II) allows building a framework in accordance with common sense; 

meanwhile, desideratum (IV) is required to reduce the human biases. 

Desideratum (III) is required to avoid self-contradiction and human biases. Let’s 

consider a simple example: Given the background information C, what is the probability 

of both propositions A & B being true (P(AB|C))? One can reason two different ways: 

For A&B both being true, first A has to be true, then B has to be true with A being true. 

Therefore, P(AB|C) = P(A|C).P(B|AC). The other way of reasoning is that first B has to 
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be true, then A has to be true with B being true. Therefore, P(AB|C) = P(B|C).P(A|BC). 

Desideratum (III) asking both approaches to provide the same probability, this leads to 

the Bayes’ theorem: 

)|(

)|(
)|()|(

CBP

ACBP
CAPBCAP ⋅=

                                         

(Eq. E.2-1) 

This is a powerful theorem and can be used in different ways, depending on A, B, 

and C; as it explains exactly all the weak syllogisms (our intuitive induction). For 

example with the third weak syllogism: 

 

Let A = some hypothesis (i.e. “the well have drilling-induced tensile fractures”), 

B = some evidence (i.e. “lost-circulation”), 

and C is the background, prior information of the field. 

Then the premise “if A is true, then B becomes more plausible” means: P(B|AC) 

> P(B|C); 

Now B is observed, then the new (posterior) probability of A being true is: 

)|(
)|(

)|(
)|()|( CAP

CBP

ACBP
CAPBCAP >⋅= ; or A has now become more plausible. 

 

Quantitatively, a large increase in the plausibility of A can occur when prior 

probability P(B|C) is very small (i.e. if previous wells in the area did not encounter any 

lost circulation). On the other hand, if knowing that A being true can make only a 

negligible increase in the plausibility of B, then observing B can, in turn, make only a 
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negligible increase in the plausibility of A. The ratio 
)|(

)|(

CBP

ACBP
 is therefore often 

grouped together as one term, carrying the “relative likelihood” of seeing B if A is true. 

The remaining (and the biggest) problem, as mentioned above, is the assignment 

of probability to all the prior information (reliability or confidence level of the 

experts/computers on the models and parameters). In wellbore stability predictions as 

well as in many other geosciences applications, insufficient knowledge about the system 

(the uncertainty) makes any assignment of probability non-unique. And as Wood and 

Curtis (2004) pointed out, the known knowledge and information (that they termed 

“geological prior information” or GPI) is not only a component of the solutions, but also 

constrain the available approaches (solutions) to the problem. 

 

E.3 BAYESIAN AND TRADITIONAL HYPOTHESIS TESTING APPROACHES 

In geosciences, in general, as well as in wellbore stability analyses, the amount of 

quantifiable geological information are often insufficient and, therefore, must be filled by 

the experts’ opinions based on their personal prior experience, which in turn, vary from 

one person to another. Uncertainty, therefore, is unavoidable and must be addressed. One 

can propose several theories/models as well as different data sets that he/she believes are 

representative of the system and come up with different results and predictions. The 

obvious questions are: a) how reliable is the assigned confidence for each proposition 

based on available prior information; b) how the confidences on different model 

predictions should be reassessed and compared with new incoming information; and c) 

how reliable is the new incoming information? Many researches showed that a traditional 
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Fisherian approach could not answer these questions (Cox. 1946; Jeffreys, 1961; De 

Finetti, 1974; D’Agostini, 2003; Christensen, 2005). 

For example: Some porosity measurements have been carried out for a reservoir 

rock. By assuming a Gaussian (normal) distribution, the porosity mean value φ̂ and its 

standard deviation s can be calculated. But there is absolutely no real reason for choosing 

a normal distribution over other types of distributions (i.e. uniform, gamma, or beta); it is 

just a convenient (subjective) choice. Using a Fisherian approach, the assumption is a 

null hypothesis, new available evidence will determine whether it should be rejected or 

still can be considered valid. 

Now consider that a new measurement is made and that the measured porosity on 

the same rock is out of the s2ˆ ±φ range. Fisher (1973) would say that since the data is 

outside the 95% confidence interval, the null hypothesis should be rejected. Some others 

will incorporate the new data with the old one to get new 'φ̂ and s’. These are incorrect 

attempts that try to answer only one of the three questions posed above. 

The types of uncertainty can be categorized into the following groups (Chapman 

& McCombie, 2003): 

- System uncertainty: The system is not sufficiently understood and 

characterized, and, therefore, the model is unable to represent the system 

completely. 

- Scenario uncertainty: How appropriate and how comprehensive or complete 

are the choices of scenarios used to make the assessment and predictions. 

- Model uncertainty: the algorithms and approximations used in solving the 

model equations. 
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- Parameter uncertainty: uncertainty over the values and ranges of parameters 

used in the model. It can be the natural variability of the system, or the 

imprecision or systematic error in measurement techniques. 

 

Figure E.1: Types of uncertainty can be classified as Aleatory (system variability) and 

Epistemic (lack of knowledge), all of which can be found in a typical wellbore stability 

analysis (from Bowden, 2004). While the aleatory uncertainties can be identified and 

quantified as probability functions, epistemic uncertainties are most often subjected to 

human biases. 
 

For example, for an undrilled well, one has control of the direction and size of the 

well, the mud type and mud weight, etc., but not the rock and reservoir fluid properties, 

the in-situ stresses and pore pressure, and the governing processes that influence the 
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behaviors of the system. This type of subjective judgments in many cases carries biases 

as mentioned in the previous section, no matter how reasonable it might be.  

It is also realized that for geosciences problems, the background information 

(GPI) can be quantifiable as well as non-quantifiable (Chapman & McCombie, 2003; 

Wood and Curtis, 2004; Bowden, 2004; Baddeley et al., 2004). Bowden (2004) proposed 

the use of an ad-hoc utility function that gives probability of a hypothesis (model) based 

on evidence for/against ratio and quality score of the evidence, accounting for the fact 

that different prior information in geological problems have different levels of quality. 

This will be revised later in Chapter 3 when one attempts to assign probability (our 

confidence level) to different choices of models and ranges of parameters.  

 

E.4 SUMMARY 

In summary, the uncertainty in wellbore stability prediction analyses requires that: 

a) parameters and data should be treated as probability distribution functions; b) models 

should be treated as hypotheses with their own assigned probabilities; and c) any 

prediction should be accompanied by an associated probability (or confidence level). A 

Bayesian approach provides a consistent framework to deal with geological prior 

information, compare the reliability of different models, reduce human biases, and 

especially incorporate new evidence into the analysis for updated uncertainty assessment 

and predictions. 
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APPE�DIX F 

WELLBORE STABILITY A�ALYSIS PROGRAM 

 

The following code (written in Matlab) is used for wellbore stability analysis in Chapters 

4 and 5. Lines starting with % symbol are comments. Input data can for Case 2 in chapter 

4 are presented here. 

File name: inputdata.m 

clear 
%define global parameters  
global p0 T0 pw Tw R  
global E E1 mu mu1 G G1 
global M Mu Mb alpha alpha1 B B1 alphas alphas1 alphaf 
global betas betasf k ch cf chf cbar F1 F2 A1 A2 
global poro perm visc 
global ome 

 
%-----------0. SELECTING MODEL ----------------------- 
% ome[1] = 1 == poro effect considered , 0: not considered 
% ome[2] = 1 == thermo effect considered, 0: not considered 
% ome= [0 0] == purely elastic solution. 
  
ome = [1 1]; %porothermoelastic model 
  
  
% INPUT DATA 
%  Sv, Sh1, Sh2: assumes to be principal stresses (Sh1=SH, Sh2=Sh) 
% Was1 == Sh1 azimuth from North (0->pi) 
% then Was2 == Was1-pi/2 = Sh2 azimuth from North 
% Wab == borehole azimuth from North (0->2*pi) 
% Wdb == borehole deviation angle from vertical (ie 0=vertical),   
% Since borehole direction is normal to the bedding plane: 
% Wab + pi/2 = strike of bedding plane (clockwise from North) 
% pi/2- Wdb = dip angle of bedding plane (from horizontal) 
  
%-----1. PRINCIPAL STRESSES & PORE PRESSURES & TEMPERATURES------- 
Sv=8644; %psi 
Sv=Sv/145040; %GPa 
  
Sh1 = 6120;%psi 
Sh1 = Sh1/145040;%GPa 
Sh2 = 4743/145040; %GPa  
  
%formation pore pressure: 
p0=4208;%psi 
p0=p0/145040; %GPa 
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% formation temperature: 
T0=164; %F 
T0=(T0-32)/1.8 + 273.15;% Kelvin 
  
%mud (borehole) pressure 
pw=5518; %psi 
pw=pw/145040;%GPa  
  
%mud (borehole) temperature 
Tw=100; %F 
Tw=(Tw-32)/1.8 + 273.15;% Kelvin 
 
%note that Tw=T0 will reduce to poroelastic solution  
if isequal(ome(2),0)  
    Tw=T0; 
end 
%----------------------------------------------------------- 
  
%-----2. AZIMUTHS & DIPS & DEVIATION ANGLES------------- 
%Sh1 azimuth from North 
Was1=0;  
%Sh2 azimuth from North 
Was2=Was1+pi/2;  
 
%borehole azimuth from North, not used in vertical borehole 
Wab=pi/180*90; %in direction of Sh2 
 
%borehole deviation angle from vertical 
Wdb=pi/180*90; %horizontal! 
 
%rock bedding plane coordinate (tied with borehole Wab & Wdb) 
bs=Wab-pi/2; %strike direction (clockwise from North) 
bd = Wdb; %bedding plane dip angle (from horizontal) 
  
%wellbore radius 
R=0.1; %m 
%-------------End of input for coordinate systems------------ 
  
%-------------3. ROCK & FLUID PARAMETERS----------------------- 
  
%-------------3.1 DRAINED ROCK ELASTIC CONSTANTS--------------- 
% drained Young's moduli & Poisson's ratios of the rock + shear modulus 
(fast Vs): E, E1, mu, mu1, G1 
% E, mu : in the plane of isotropy 
% E1, mu1, G1: in the direction of the axis of symmetry 
E=3.0e6;%psi 
E=E/145040;%GPa 
mu=0.24; 
  
EoverE1ratio=1.0;  %<==ratio E/E1,  
 
E1=E/EoverE1ratio;%GPa ; or can just assign E1 a number 
  
muovermu1ratio=1.0; %<==ratio mu/mu1,  
mu1 = mu/muovermu1ratio;% or can just assign mu1 a value 
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G1=8; %GPa  'guess - probably can derived from E45 & mu45 
G=E/(2*(1+mu));% Amadei 1983 
  
%drained elastic modulus (or stiffness) matrix  
M=stiffness(E,E1,mu,mu1,G1);  

 
%compliance matrix  
A=compliance(E,E1,mu,mu1,G1); 
%----------------End of 3.1---------------------------------- 
  
%-----3.2 ROCK PETROPHYSICAL PROPERTIES ---------------- 
%Rock permeability (assume isotropic) 
perm=1e-4 ;%md , will convert to m2 below 
perm=perm*9.86923e-16; % in m2 now 
  
%Rock porosity (single) 
poro=0.05; 
%-----------End of 3.2------------------------------------- 
  
%----3.3 UNDRAINED ROCK ELASTIC CONSTANTS & POROMECHANICAL PARAMETERS--  
% for poromechanical effects: NEED 3 MORE rock parameters among: grain 
& Biot's moduli, Skempton's coefficients, Biot's coefficients  
%     (or alternatively, 3 out of 4 undrained elastic moduli: M11, M12, 
M13, M33 or 3 out of 4 undrained E, E1, mu, mu1)   
%   plus rock permeability (or permeabilities - normal & parallel to 
bedding) & rock porosity;  
%   plus fluid viscosity nu & fluid bulk modulus Kf 
% 
% Here we use grain modulus Kgr, fluid modulus Kfl, and Biot's modulus 
Mb 
% Mb definition: reciprocal of "specific storage coefficient at 
constant strain" which is 
%              1/Mb = (dxi/dp)|volumetric strain = 0  
  
% & calculate other poromechanical parameters using relations given in 
A D-H Cheng (1997),  
% under assumption of micro-homogeneity & micro-isotropy! 
 
%fluid properties: 
Kf=2.15;%GPa (water) 
visc=1;% cp, will convert to Pa.s below 
visc=visc*0.001;%Pa.s 
  
%grain 
Kgr = 36.0;%GPa 
 
% Biot's modulus 
Mb=0; %GPa   
%If Mb is not specified (=0) then it will be calculated based on 
%poroelastic relations (Cheng, 1997; Ekbote, 2002) 
if isequal(Mb,0) 
    Mb=MBiot(M,Kgr,Kf,poro); 
end 
  



 

139 

 

%Biot's coefficients in isotropic plane & in direction of the axis of 
%elastic symmetry, only need grain bulk modulus: 
alpha=1-(M(1,1)+M(1,2)+M(1,3))/(3*Kgr); 
alpha1=1-(2*M(1,3)+ M(3,3))/(3*Kgr); 
  
%undrained stiffness matrix Mu 
Mu=undrainedm(M,Mb,alpha,alpha1); 
  
%Skempton's coefficients B & B1 
temp=skempton(Mu,Mb,alpha,alpha1); 
B=temp(1); 
B1=temp(2); 
clear temp; 
  
%undrained compliance matrix Au 
Au=inv(Mu); 
%undrained Young's moduli & Poisson's ratio: 
Eu=1/Au(1,1); 
Eu1=1/Au(3,3); 
muu=-Au(1,2)*Eu; 
muu1=-Au(1,3)*Eu1; 
  
%-----------------End of 3.3------------------------------------ 
  
  
%-------3.4 ROCK & FLUID THERMOMECHANICAL PROPERTIES-------- 
%linear expansion coefficients 
alphas=11.0e-6;% /K (of the Solid skeleton (grains), on isotropic plane 
alphas1=11.0e-6; %in direction of the axis of symmetry (z-direction) 
  
%volumetric expansion coefficient of the saturated fluid 
alphaf=2.1e-4;% /K  <-water 
  
%rock hydraulic diffusivity k 
k = perm/visc;%m^2/(Pa.s) 
k=k*10^9;%m^2/(GPa.s) 
  
%heat diffusivity coefficient 
% =thermal conductivity/(density*specific heat capacity @ const V) 
ch=1.0e-6; %m^2/s 
  
%fluid diffusivity 
cf = k*Mb*M(1,1)/Mu(1,1); %here k is perm/visc (m2/(GPa.s)=> unit m^2/s 
  
%Thermic coefficient tensor: unit GPa/K 
betas=[(M(1,1)+M(1,2))*alphas+M(1,3)*alphas1 
(M(1,1)+M(1,2))*alphas+M(1,3)*alphas1 2*M(1,3)*alphas+M(3,3)*alphas1 0 
0 0]'; 
  
%fluid thermic coefficient: 
betasf=2*alpha*alphas+alpha1*alphas1+poro*(alphaf-2*alphas-alphas1); 
  
%fluid-heat coupling constant: 
cbar=(alpha*betas(1)-M(1,1)*betasf)/M(1,1);% unit /K 
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%heat-fluid coupling constant: 
chf=cf/k*(betasf-alpha*betas(1)/M(1,1));% unit GPa/K 
  
%Sub-Problem 1 cases coefficients in the solution equations: 
%for case 2: 
F1=(pw-p0)-chf/(1-cf/ch)*(Tw-T0); 
F2=chf/(1-cf/ch)*(Tw-T0); 
%note F1==F2 in Ekbote & F2 here ==F3 in Ekbote 
  
%for case 3: 
A1=alpha*Mb/Mu(1,1); 
A2=(Mu(1,1)+Mu(1,2))/Mu(1,1); 
%---------------------End of 3.4-------------------------------- 
 
%-------4. Failure parameters-------------------------------- 
%Mohr-Coulomb & simple tensile failure criteria 
global UCS f cohesion TS 
f = 35*pi/180; %rad, internal friction angle 
UCS = 25000/145040; %GPa uniaxial compressive strength 
cohesion= UCS/(2*tan(f/2+pi/4)); % in GPa, cohesion 
TS= UCS/10.; % approximated tensile strength 
%------------------------------------------------------------- 

 
%-------5. Coordinate transformation-------------------------- 
 
% unit vectors for each coordinates 
% ew: unit vectors of borehole coordinates 
% es: unit vectors of in-situ stress coordinates (SH, Sh, & Sv) 
% eb: unit vectors of bedding plane coordinates 
  
global sigma S0 P0 thetar ew es eb 
%principal stresses on r-theta (or x-y) plane & rotation angle from x 
   
ew=[cos(Wdb)*cos(Wab) cos(Wdb)*sin(Wab) sin(Wdb);sin(Wab) -cos(Wab) 0;    
sin(Wdb)*cos(Wab) sin(Wdb)*sin(Wab) -cos(Wdb)]; 
es=[cos(Was1) sin(Was1) 0; cos(Was2) sin(Was2) 0; 0 0 1]; 
eb=[-cos(bd)*sin(bs) cos(bd)*cos(bs) sin(bd);cos(bs) sin(bs) 0;-
sin(bd)*sin(bs) sin(bd)*cos(bs) -cos(bd)]; 
  
%bedding to borehole transformation tensor: 
Btrans=ew*eb'; 
%in-situ to borehole transformation tensor: 
Strans=ew*es'; 
sigma=[-Sh1 0 0; 0 -Sh2 0; 0 0 -Sv];%original in earth coordinates; 
%minus signs = tensile is positive : solid mechs conventions 
sigma=stresstensor(sigma,Strans); %solid mechs conventions 
  
%hydrostatic & deviatoric parts of the stresses on the isotropic plane 
P0=-(sigma(1,1)+sigma(2,2))/2; % P0 & S0 both are positive!! 
S0=(((sigma(1,1)-sigma(2,2))/2)^2+sigma(1,2)^2)^0.5; 
 
if abs(S0)<1e-6 % less than 1 kPa 
    S0=0; %numerical errors round off, will speed up mode 3 calculation 
end 
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%thetar: counter-clockwise rotation angle about ew3 (borehole 
%direction) so that the in-plane shears vanish 
thetar=0.5*atan(2*sigma(1,2)/(sigma(1,1)-sigma(2,2))); 
 
%-------------End 4.------------------------ 
%-------------End inputdata.m------------------------ 

 

 

File name: stabilitytest.m (to be called after inputdata.m) 

 
%show results for t=100, 10000, & 100000s 
 
%----------------Initialization---------------------- 
global rratio qangle itime ltemp lpore lstress psdir ps failmode maxps 
minps midps 
global sigma p0 T0 mu1 betas alpha alpha1 R ome failanalysis 
  
%spatial - temporal space 
rratio = linspace(1,3,21);% r/R ratio 
qangle =linspace(0,2.0*pi,73); % theta, every 5 degrees 
itime = [100 10000 100000]; %seconds! time of interest,  

 
if isequal(0, (ome(1)+ome(2))) %elastic model only 
    itime=[1000]; %only 1 time is needed 
end 
 
%local temp 
ltemp=zeros(length(rratio),length(qangle),length(itime));  
%local pressure 
lpore = zeros(length(rratio),length(qangle),length(itime));  
%local stresses 
lstress = zeros(3,3,length(rratio),length(qangle),length(itime));  
 
% use 3,3 matrix to make use of mathlab built in function eig 
% ie to find principal stresses: 
%   [psdir(:,:,i,j) ps(:,:,i,j)]= eig( lstress(:,:,i,j) ) ; 
 
% local principle stresses directions in borehole coordinates 
psdir = zeros(3,3,length(rratio),length(qangle), length(itime));  
 
% local principle stresses diagonal  
ps =  zeros(3,3,length(rratio),length(qangle), length(itime));  
  
%For Failure criterion -tensile & shear 
 
%local maximum principal stress 
maxps=zeros(length(rratio),length(qangle),length(itime));  
%local minimum principal stress 
minps=zeros(length(rratio),length(qangle),length(itime));  
%local intermediate principal stress 
midps=zeros(length(rratio),length(qangle),length(itime));  
 
failmode=zeros(length(rratio),length(qangle),length(itime));  
   % negative if the rock fails in tensile mode,  
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   % positive if the rock fails in shear mode 
   %  0 means stable 
  
for ii=1:length(rratio) 
    disp('Calculating temp, stress, pressure at new r/R') 
    for jj=1:length(qangle) 
        for tt=1:length(itime) 
            %local stresses components, pore pressure, and temperature 

 
%temperature 

       ltemp(ii,jj,tt) = T(itime(tt),rratio(ii)*R); 
%pore 

            lpore(ii,jj,tt) = p(itime(tt),rratio(ii)*R,qangle(jj));             
            %sigmarr 
lstress(1,1,ii,jj,tt) = sigmarr(itime(tt),rratio(ii)*R,qangle(jj)); 

%sigmaqq 
lstress(2,2,ii,jj,tt) = sigmaqq(itime(tt),rratio(ii)*R,qangle(jj));             

%sigmarq 
lstress(1,2,ii,jj,tt) = sigmarq(itime(tt),rratio(ii)*R,qangle(jj)); 
lstress(2,1,ii,jj,tt) = lstress(1,2,ii,jj,tt); %symmetry 
            %sigmarz 
lstress(1,3,ii,jj,tt) = sigmarz(itime(tt),rratio(ii)*R,qangle(jj)); 
lstress(3,1,ii,jj,tt) = lstress(1,3,ii,jj,tt); %symmetry 

%sigmaqz 
lstress(2,3,ii,jj,tt) = sigmaqz(itime(tt),rratio(ii)*R,qangle(jj)); 
lstress(3,2,ii,jj,tt) = lstress(2,3,ii,jj,tt); %symmetry 
            %sigmazz (use calculated lstress values)  
  %constant components 
tmp=sigma(3,3)-mu1*(sigma(1,1)+sigma(2,2))+ome(1)*(alpha1-
2*mu1*alpha)*p0+ome(2)*(betas(3)-2*mu1*betas(1))*T0;  
  %time dependent components 
tmp=tmp+ mu1*(lstress(1,1,ii,jj,tt)+lstress(2,2,ii,jj,tt)); 
tmp=tmp-ome(1)*(alpha1-2*mu1*alpha)*lpore(ii,jj,tt)-ome(2)*(betas(3) 

-2*mu1*betas(1))*ltemp(ii,jj,tt); 

 
lstress(3,3,ii,jj,tt)=tmp; 
clear tmp; 

             
           %principal stresses 
    [psdir(:,:,ii,jj,tt) ps(:,:,ii,jj,tt)]=eig(lstress(:,:,ii,jj,tt)); 
            
           % Maximum & minimum principal stresses  
           %SWITCH TO ROCK MECHANICS SIGN CONVENTION FOR STRESSES  
maxps(ii,jj,tt) = max([-ps(1,1,ii,jj,tt) -ps(2,2,ii,jj,tt)  

-ps(3,3,ii,jj,tt)]) ;  
minps(ii,jj,tt) = min([-ps(1,1,ii,jj,tt) -ps(2,2,ii,jj,tt)  

-ps(3,3,ii,jj,tt)]) ;   
midps(ii,jj,tt) = -(ps(1,1,ii,jj,tt)+ps(2,2,ii,jj,tt)+ps(3,3,ii,jj,tt) 

+maxps(ii,jj,tt)+minps(ii,jj,tt));  
            
           %Check failure criteria 
failmode(ii,jj,tt)=MohrCoulombfailure(maxps(ii,jj,tt)-lpore(ii,jj,tt), 

minps(ii,jj,tt)-lpore(ii,jj,tt)); 
        end %time loop 
    end %angle loop 
end %radius loop 
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%---------------End stabilitytest.m ---------------- 
 

File name: c1k1.m 

 
function temp=c1k1(xi,r) 
% evaluates the product C1*K1(xi*r) used in case 3 problem 1 solution 
%where C1 = (1/B1)*4/(2*A1(B3-B2)/B1-A2); 
%      B1 = M(1,1)/(2*G*alpha)*K2(xi*R) 
%      A1, A2 are coef constants defined in inputdata.m 
%       B3-B2 =K1(xi*R)/(xi*R)  
global G alpha M R A1 A2 
if (xi*r)>600 
    if (xi*R)>600 %exponential approx 
        tmp=4/(2*A1*2*G*alpha/(M(1,1)*xi*R)*ratiokn1kn2(1,xi*R,2,xi*R)-
A2); 
        temp=(2*G*alpha/M(1,1))*ratiokn1kn2(1,xi*r,2,xi*R)*tmp; 
    else %tmp is exact 
        
tmp=4/(2*A1*2*G*alpha/(M(1,1)*xi*R)*besselk(1,xi*R)/besselk(2,xi*R)-
A2); 
        temp=(2*G*alpha/M(1,1))*ratiokn1kn2(1,xi*r,2,xi*R)*tmp; 
    end 
else 
    
tmp=4/(2*A1*2*G*alpha/(M(1,1)*xi*R)*besselk(1,xi*R)/besselk(2,xi*R)-
A2); 
    temp=(2*G*alpha/M(1,1))*besselk(1,xi*r)/besselk(2,xi*R)*tmp; 
end 
 

File name: c1k2.m 
function temp=c1k2(xi,r) 
% evaluates the product C1*K2(xi*r) used in case 3 problem 1 solution 
%where C1 = (1/B1)*4/(2*A1(B3-B2)/B1-A2); 
%      B1 = M(1,1)/(2*G*alpha)*K2(xi*R) 
%      A1, A2 are coef constants defined in inputdata.m 
%       B3-B2 =K1(xi*R)/(xi*R)  
global G alpha M R A1 A2 
if (xi*r)>600 
    if (xi*R)>600 %exponential approx 
        tmp=4/(2*A1*2*G*alpha/(M(1,1)*xi*R)*ratiokn1kn2(1,xi*R,2,xi*R)-
A2); 
        temp=(2*G*alpha/M(1,1))*ratiokn1kn2(2,xi*r,2,xi*R)*tmp; 
    else %tmp is exact 
        
tmp=4/(2*A1*2*G*alpha/(M(1,1)*xi*R)*besselk(1,xi*R)/besselk(2,xi*R)-
A2); 
        temp=(2*G*alpha/M(1,1))*ratiokn1kn2(2,xi*r,2,xi*R)*tmp; 
    end 
else %c1&k2 can both be exact with mathlab built-in func 
    
tmp=4/(2*A1*2*G*alpha/(M(1,1)*xi*R)*besselk(1,xi*R)/besselk(2,xi*R)-
A2); 
    temp=(2*G*alpha/M(1,1))*besselk(2,xi*r)/besselk(2,xi*R)*tmp; 
end 
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File name: c2.m 
function temp=c2(xi) 
%evaluates term C2 in solution for case 3 problem 1 
%C2 = -4/(2*A1*(B3-B2)/B1-A2); 
%   where A1 A2 coef constants defined in inputdata.m 
%         B3-B2 = K1(xi*R)/(xi*R); 
%         B1 = M(1,1)*K2(xi*R)/(2*G*alpha) 
global A1 A2 M R G alpha 
if (xi*R)>600 
 temp=-4/(2*A1*2*G*alpha/(M(1,1)*xi*R)*ratiokn1kn2(1,xi*R,2,xi*R)-A2); 
else 
 temp=-4/(2*A1*2*G*alpha/(M(1,1)*xi*R)*besselk(1,xi*R)/besselk(2,xi*R)-
A2); 
end 
 

 

File name: c3.m 
function temp=c3(xi) 
%evaluates term C3 in solution for case 3 problem 1 
% C3= (2*A1*(B2+B3)/B1+3A2)/(3*(2*A1*(B3-B2)/B1-A2)); 
% or C3 = 1/12* ((2*A1*(B2+B3)/B1+3A2))*c2(xi), since 
%C2 = 4/(2*A1*(B3-B2)/B1-A2); 
%   where A1 A2 coef constants defined in inputdata.m 
%         B3-B2 = K1(xi*R)/(xi*R); 
%         B2+B3 = 3*(K1(xi*R)+4*K2(xi*R)/(xi*R))/(xi*R) 
%         B1 = M(1,1)*K2(xi*R)/(2*G*alpha) 
global A1 A2 M R G alpha 
if (xi*R)>600 
   tmp=A1*G*alpha/(M(1,1)*xi*R)*(ratiokn1kn2(1,xi*R,2,xi*R)+4/(xi*R)) 
+A2/4; 
    temp=-tmp*c2(xi); 
else 
tmp=A1*G*alpha/(M(1,1)*xi*R)*(besselk(1,xi*R)/besselk(2,xi*R)+4/(xi*R))
+A2/4; 
    temp=-tmp*c2(xi); 
end 
 
File name: compliance.m 
function A=compliance(E,E1,mu,mu1,G1) 
% compliance: 6x6 compliance matrix for a TI medium 
% for general Hooke's law relating stresses to strains 
% Amadei (1983) 
  
A=zeros(6,6); 
  
A(1,1) = 1/E; 
A(2,2)=A(1,1); 
  
A(1,2)=-mu/E; 
A(2,1)=A(1,2); 
  
A(1,3)=-mu1/E1; 
A(3,1)=A(1,3); 
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A(2,3)=A(1,3); 
A(3,2)=A(1,3); 
  
A(3,3)=1/E1; 
  
A(4,4)=1/G1; 
A(5,5)=A(4,4); 
  
A(6,6)=2*(1+mu)/E; 
 

Filename: H.m 
function heaviside = H(x) 
% H - Heaviside function 
% H(x) = 0 x <=0 else H(x) = 1 x>0 
if x > 0 
    heaviside=1; 
else 
    heaviside=0; 
end 
 

Filename: Lp2.m 
function temp=Lp2(s,r) 
%Lp2 gives pore pressure solution of case 2 problem 1 in Laplace domain 
global F1 F2 cf ch 
xi=(s/cf)^0.5; 
omeg=(s/ch)^0.5; 
temp=1/s*(F1*phi(xi,r)+F2*phi(omeg,r)); 
 

Filename: Lp3.m 
function temp=Lp3(s,r,theta) 
%Lp3: pore pressure solution for case 3 problem 1 in Laplace domain 
global S0 cf thetar 
xi=(s/cf)^0.5; 
temp=S0/s*(term1Lp3(xi,r)+term2Lp3(xi,r))*cos(2*(theta-thetar)); 
 

Filename: Lsigmaqq2.m 
function temp=Lsigmaqq2(s,r) 
%Lsigmaqq2 = circumferential normal stress for case 2 of problem 1 in 
Laplace domain 
global alpha M F1 F2 ch cf betas Tw T0 ome 
  
omeg=(s/ch)^0.5; 
tmp=1-M(1,2)/M(1,1); 
  
if isequal(1,ome(1)) %poro effect included 
    xi=(s/cf)^0.5; 
    temp=1/s*(-alpha*tmp*(F1*omega(xi,r)+F2*omega(omeg,r))-
betas(1)*tmp*(Tw-T0)*omega(omeg,r)); 
  
else %only thermal if Tw <>T0; 
 temp=1/s*(-betas(1)*tmp*(Tw-T0)*omega(omeg,r)); 
end 
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Filename: Lsigmaqq3.m 
function temp=Lsigmaqq3(s,r,theta) 
% Lsigmaqq3=circumferential normal stress solution for case 3 problem 1 
in Laplace domain 
global S0 cf thetar R ome  
xi=(s/cf)^0.5; 
  
if isequal(1,ome(1)) %poro effect 
   temp=S0/s*(-term1Lsigmaqq3(xi,r)+3*c3(xi)*(R/r)^4)*cos(2*(theta-
thetar)); 
else %elastic 
    %C3 => -1 
    temp=S0/s*(-3*(R/r)^4)*cos(2*(theta-thetar)); 
end 
 

Filename: Lsigmarq3.m 
function temp=Lsigmarq3(s,r,theta) 
%Lsigmarq3: gives shear stress r-theta for case 3 problem 1 in Laplace 
%domain 
global S0 thetar cf R A2 ome 
xi=(s/cf)^0.5; 
if isequal(1,ome(1)) %poro effect 
temp=S0/s*(term1Lsigmarq3(xi,r)-A2/2*c2(xi)*(R/r)^2-
3*c3(xi)*(R/r)^4)*sin(2*(theta-thetar)); 
else %elastic 
    %A2*C2 => 4;  
    % C3 => -1 
    temp=S0/s*(-2*(R/r)^2 + 3*(R/r)^4)*sin(2*(theta-thetar)); 
end 
 

Filename: Lsigmarr2.m 
function temp=Lsigmarr2(s,r) 
%Lsigmarr2 = radial normal stress for case 2 of problem 1 in Laplace 
domain 
global alpha M F1 F2 ch cf betas Tw T0 ome 
  
omeg=(s/ch)^0.5; 
tmp=1-M(1,2)/M(1,1); 
  
if isequal(0,ome(1)) %no poro-effect 
    temp=1/s*(betas(1)*tmp*(Tw-T0)*psi(omeg,r)); 
  
else %poro-effect 
 xi=(s/cf)^0.5;     
 temp=1/s*(alpha*tmp*(F1*psi(xi,r)+F2*psi(omeg,r))+betas(1)*tmp* 

(Tw-T0)*psi(omeg,r)); 
end 
 

Filename: Lsigmarr3.m 
function temp=Lsigmarr3(s,r,theta) 
% Lsigmarr3:  radial normal stress solution for case 3 problem 1 in 
Laplace domain 
global S0 cf thetar ome R 
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if isequal(1,ome(1)) %poro effect 
xi=(s/cf)^0.5; 
temp=S0/s*(term1Lsigmarr3(xi,r)-term2Lsigmarr3(xi,r) 

-term3Lsigmarr3(xi,r))*cos(2*(theta-thetar)); 
else %elastic solution 
    temp=S0/s*(-4*(R/r)^2 + 3*(R/r)^4)*cos(2*(theta-thetar)); 
end 
 

Filename: LT2.m 
function temp=LT2(s,r) 
%LT2 - Temperature solution for case 2 of problem 1 in Laplace domain 
global Tw T0 ch 
omeg=(s/ch)^.5; 
temp=1/s*(Tw-T0)*phi(omeg,r); 
 

Filename: MBiot.m 
function temp=MBiot(M,Kgr,Kf,poro) 
%Give Biot's modulus, from Cheng 1997 
Mbar=0; 
for i=1:3 
    for j=1:3 
        Mbar=Mbar+M(i,j); 
    end 
end 
temp=Kgr^2/(Kgr*(1+poro*(Kgr/Kf-1))-Mbar/9); 
 

Filename: MohrCoulombfailure.m 
function temp=MohrCoulombfailure(maxp,minp) 
%Mohr-Coulomb failure criterion 
%given max & min principal stresses 
%if fail in shear, return the difference between maxp_f & maxp 
global cohesion f TS 
  
% check if fail in tension first: 
if (minp + TS) < 0 
    temp = minp + TS ; %degrees of tensile failure (negative) 
else 
%check if fail in shear: 
    %find maxp_f 
maxpf = minp*(sin(f)+1)/(1-sin(f)) + 2*cohesion*cos(f)/(1-sin(f)); 
if maxpf > maxp %safe no shear failure 
    temp=0; % stable; 
else 
    temp=maxp-maxpf; %degrees of shear failure (positive) 
end 
end     
 

Filename: omega.m 
function temp=omega(x,r) 
% last of the three supported functions for problem I case 2 solution 
temp=phi(x,r)+psi(x,r); % Eq. C-5g 
 
 

Filename: p.m 
function temp=p(t,r,theta) 
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%final solution using superposition principle for pore pressure 
global p0 ome 
  
if isequal(0,ome(1)) 
    temp=p0; %no poro-effect 
else 
temp=p0+p2(t,r)+p3(t,r,theta); 
end 
 
Filename: p2.m 
function temp=p2(t,r) 
% using Stehfest's numerical technique to inverse Laplacian solution to 
% time domain (Lp2(s,r)) 
N=12; %  
tmp=0; 
for i=1:N 
    tmp=tmp+V(i,N)*Lp2(log(2)*i/t,r); 
end 
temp=tmp*log(2)/t; 
end 
 

 

Filename: p3.m 
function temp=p3(t,r,theta) 
% using Stehfest's numerical technique to inverse Laplacian solution to 
% time domain (Lp3(s,r,theta)) 
N=12; %  
tmp=0; 
for i=1:N 
    tmp=tmp+V(i,N)*Lp3(log(2)*i/t,r,theta); 
end 
temp=tmp*log(2)/t; 
end 
 

 

Filename: phi.m 
function temp=phi(x,r) 
% first of the three supported functions for problem I case 2 solution 
% phi(x) = K0(x*r)/K0(x*R); (Eq. C5-e) 
global R 
if isequal(r,R) 
    temp=1; 
elseif (x*r)>600  
    temp=ratiokn1kn2(0,x*r,0,x*R); 
else 
    temp=besselk(0,x*r)/besselk(0,x*R); 
end 
 

Filename: precisefact.m 
function temp=precisefact(k) 
% calculate (2k)!/(k!*(k-1)!) without calc every factorial (overflow) 
% used for Stehfest method of Laplace inversion 
if isequal(k,1) 
    temp=2; 
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else 
    tmp=1; 
    for i=1:(k-1) 
        tmp=tmp*(k+i)/i; 
    end 
temp=tmp*2*k; 
end 
 

Filename: psi.m 
function temp=psi(x,r) 
% second of the three supported functions for problem I case 2 solution 
%psi(x) = K1(x*r)/(x*r*K0(x*R))-R*K1(xR)/(x*r^2*K0(x*R); (Eq. C5-f) 
%use exponential expansion for large x*r & x*R; 
%see ratiokn1kn2.m for more details 
  
global R 
if isequal(r,R) 
    temp=0; 
elseif (x*r)>600 
    if (x*R)>600 

temp=1/(x*r)*(ratiokn1kn2(1,x*r,0,x*R) 
-(R/r)*ratiokn1kn2(1,x*R,0,x*R)); 

    else %can evaluate K1(x*R) & K0(x*R) 
temp=1/(x*r)*ratiokn1kn2(1,x*r,0,x*R) 

-R/(x*r*r)*besselk(1,x*R)/besselk(0,x*R); 
    end 
else 
temp=besselk(1,x*r)/(x*r*besselk(0,x*R)) 

-R*besselk(1,x*R)/(x*r*r*besselk(0,x*R)); 
end 
 
Filename: ratiokn1kn2.m 
function temp=ratiokn1kn2(n1,z1,n2,z2) 
%ratio between K_n1(z1)/K_n2(z2) - modified Bessel function K 
%using polynomial expansion of K_n(z) for real z & integer n 
%Abramowitz & Stegun (1970) Handbook, formula 9.7.2 p 378 
%this is used when z1, z2 are large  
% ie z>600 Mathlab gives besselk(n,z)=0 
%so the ratio may be incorrectly returned as 0/0=NaN 
if z2>600  
    nterms=10;%number of terms in polynomial expansion 
else 
    nterms=50; 
end 
temp=(z2/z1)^0.5*exp(-(z1-
z2))*polyf(4*n1*n1,z1,nterms)/polyf(4*n2*n2,z2,nterms); 
 
function y=polyf(n,z,nterms) 
tmp=1;%initial 
for i=1:nterms 
   prod=1; 
   for j=1:i 
       prod=prod*(n-(2*j-1)*(2*j-1))/(j*8*z); 
   end 
   tmp=tmp+prod; 
end 
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y=tmp; 
end 
end 
 

File name: sigmaqq.m 
function temp=sigmaqq(t,r,theta) 
% final solution using superposition principle 
global P0 S0 thetar 
  
temp=-P0-S0*cos(2*(theta-thetar))+sigmaqq1(t,r) 

+sigmaqq2(t,r)+sigmaqq3(t,r,theta); 
 
File name: sigmaqq1.m 
function temp=sigmaqq1(t,r) 
%sigmaqq1= circumferential normal stress for case 1 of Problem 1 (GPa) 
%  r is radius from borehole center (m), t is time (sec)  
% P0-pw (GPa), note that P0 is the average normal stress @ infinity <> 
% p0, the original pore pressure 
global P0 pw R 
temp=-H(t)*(P0-pw)*(R/r)^2; 
 

File name: sigmaqq2.m 
function temp=sigmaqq2(t,r) 
% using Stehfest's numerical technique to inverse Laplacian solution to 
% time domain (Lsigmarr2(s,r)) 
N=10; % will see 
tmp=0; 
for i=1:N 
    tmp=tmp+V(i,N)*Lsigmaqq2(log(2)*i/t,r); 
end 
temp=tmp*log(2)/t; 
end 
 

File name: sigmaqq3.m 
function temp=sigmaqq3(t,r,theta) 
% using Stehfest's numerical technique to inverse Laplacian solution to 
% time domain (Lsigmaqq3(s,r,theta)) 
N=10; % will see 
tmp=0; 
for i=1:N 
    tmp=tmp+V(i,N)*Lsigmaqq3(log(2)*i/t,r,theta); 
end 
temp=tmp*log(2)/t; 
 
File name: sigmaqz.m 
function temp=sigmaqz(t,r,theta) 
%this is the also solution for problem 3 - anti-shear farfield effect 
% uncoupled with diffusions (actually independent of time). 
global sigma R 
temp=-(sigma(1,3)*sin(theta)+sigma(2,3)*cos(theta))*(1+H(t)*(R/r)^2); 
 
File name: sigmarq.m 
function temp=sigmarq(t,r,theta) 
% final solution using superposition principle 



 

151 

 

global S0 thetar 
  
 temp=-S0*sin(2*(theta-thetar))+ sigmarq3(t,r,theta); 
%shouldn't have effect of P0 on shear!!!! 
% typo in eq (3.56) of Ekbote thesis, also Abousleiman & Ekbote 2005 
  
 
File name: sigmarq3.m 
function temp=sigmarq3(t,r,theta) 
% using Stehfest's numerical technique to inverse Laplacian solution to 
% time domain (Lsigmarq3(s,r,theta)) 
N=10;   
tmp=0; 
for i=1:N 
    tmp=tmp+V(i,N)*Lsigmarq3(log(2)*i/t,r,theta); 
end 
temp=tmp*log(2)/t; 
end 
 
 

File name: sigmarr.m 
function temp=sigmarr(t,r,theta) 
%final solution using superposition  
global P0 S0 thetar  
temp=-P0+S0*cos(2*(theta-thetar))+sigmarr1(t,r) 

+ sigmarr2(t,r)+sigmarr3(t,r,theta); 
  
File name: sigmarr1.m 
function temp=sigmarr1(t,r) 
%sigmarr1= radial normal stress for case 1 of Problem 1 (GPa) 
%  r is radius from borehole center (m), t is time (sec)  
% P0-pw (GPa); note that P0 is the average normal stress @ infinity <> 
p0 the pore pressure 
global P0 pw R 
temp=H(t)*(P0-pw)*(R/r)^2; 
 

File name: sigmarr2.m 
function temp=sigmarr2(t,r) 
% using Stehfest's numerical technique to inverse Laplacian solution to 
% time domain (Lsigmarr2(s,r)) 
N=10; %  
tmp=0; 
for i=1:N 
    tmp=tmp+V(i,N)*Lsigmarr2(log(2)*i/t,r); 
end 
temp=tmp*log(2)/t; 
end 
 

File name: sigmarr3.m 
function temp=sigmarr3(t,r,theta) 
% using Stehfest's numerical technique to inverse Laplacian solution to 
% time domain (Lsigmarr3(s,r,theta)) 
N=10; % will see 
tmp=0; 
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for i=1:N 
    tmp=tmp+V(i,N)*Lsigmarr3(log(2)*i/t,r,theta); 
end 
temp=tmp*log(2)/t; 
 

 

File name: sigmarz.m 
function temp=sigmarz(t,r,theta) 
%this is the also solution for problem 3 - anti-shear farfield effect 
% uncoupled with diffusions (actually independent of time & theta). 
%note that we are in solid mech convention (tensile positive): 
global sigma R 
temp=(sigma(1,3)*cos(theta)+sigma(2,3)*sin(theta))*(1-H(t)*(R/r)^2); 
 
File name: skempton.m 
function temp=skempton(Mu,Mb,alpha,alpha1) 
% calculate Skempton's coefficients for a transversely isotropic medium 
% Mu is undrained stiffness matrix (6x6), will use only first 3x3 
though 
% Mb is Biot's Modulus 
% alpha, alpha1 are Biot's coefficients 
% see Cheng (1997) for details 
  
%Dung Tran: Note that there is an interesting case: 
% if (all undrained values) E/E' = (1-mu)/(2*mu'^2) then 
% one of the 2 Skempton's coefficients is independent  
% (i.e. must obtained from test) 
% or our input values for (Biot's Mb, K_grain, alpha, alpha1) are wrong 
% examples: isotropic with poisson's ratio mu=mu'->0.5 
%           or mu=mu'=0.2; E/E' = 10 
% 
% 3Mb*[alpha alpha alpha1 0 0 0]' = udM*[B B B1 0 0 0] 
% where udM is the undrained stiffness matrix; 
% reduce to 2 equations to unknowns here: 
  
udM=[Mu(1,1)+Mu(1,2) Mu(1,3); 2*Mu(1,3) Mu(3,3)]; 
alphas3M=3*Mb*[alpha alpha1]'; 
if det(udM)==0 
    if isequal(udM(1,1)/udM(2,1),udM(1,2)/udM(2,2)) 
        disp('One of Skempton''s coefficients is independent') 
        disp('assume B/B''=1') 
        tmp=3*Mb*alpha1/(udM(2,1)+udM(2,2)); 
        temp=[tmp tmp]'; 
    else 
        error('Errors in input data!!!') 
        temp=zeros(2,1); 
    end 
else 
    temp=inv(udM)*alphas3M; 
end 
 
File name: stiffness.m 
function M=stiffness(E,E1,mu,mu1,G1) 
% stiffness: 6x6 Matrix of drained elastic moduli for transversely 
isotropic medium 
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% Amadei (1983)  
% relations can be found in Cheng 1997 
M=zeros(6,6); 
  
M(1,1)=E*(E1-E*mu1*mu1)/((1+mu)*(E1-E1*mu-2*E*mu1*mu1));%M11 
M(2,2)=M(1,1);%for transverse isotropy 
  
M(1,2)=E*(E1*mu+E*mu1*mu1)/((1+mu)*(E1-E1*mu-2*E*mu1*mu1));%M12 
M(2,1)=M(1,2);%for transverse isotropy 
  
M(1,3)=E*E1*mu1/(E1-E1*mu-2*E*mu1*mu1); 
M(3,1)=M(1,3);%for transverse isotropy 
  
M(2,3)=M(1,3);%for transverse isotropy 
M(3,2)=M(1,3);%for transverse isotropy 
  
M(3,3)=E1*E1*(1-mu)/(E1-E1*mu-2*E*mu1*mu1); 
  
M(4,4)=G1; 
M(5,5)=G1;%for transverse isotropy 
  
M(6,6)=E/(2*(1+mu)); % G 
 
 

File name: stresstensor.m 
function sigma=stresstensor(A,Strans) 
% STRESS TENSOR MATRIX 3x3 
% transforms the stress tensor from in-situ stress coordinates to 
borehole coordinates,  
% using the transformation tensor S, where Sij = ew(i).es(j) (dot 
product here) 
% or S = ew*es' 
% ew(i), i = 1:3, unit vectors of borehole coordinates 
% es(j), j = 1:3, unit vectors of in-situ stress coordinates 
% transformed stress tensor sigma = SAS' 
sigma=Strans*A*Strans'; 
 

 

File name: T.m 
function temp=T(t,r) 
%final solution 
global T0 
temp=T0+T2(t,r); 
 

File name: T2.m 
function temp=T2(t,r) 
% using Stehfest's numerical technique to inverse Laplacian solution to 
% time domain (LT2(s,r)) 
N=10; % 
tmp=0; 
for i=1:N 
    tmp=tmp+V(i,N)*LT2(log(2)*i/t,r); 
end 
temp=tmp*log(2)/t; 
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end 
 

File name: term1Lp3.m 
function temp=term1Lp3(xi,r) 
%gives the first term in eqn for Lp3 solution which is: 
%cf/(2*G*k)*C1*K2(xi*r) ; k is hydraulic diffusivity 
%where xi = (s/cf)^.5 
%     C1 = 4/(2*A1*(b3-b2)-A2*b1) 
%         A1, A2 constants in "inputdata.m" 
%         b3-b2 = K1(xi*R)/(xi*R); 
%         b1=M(1,1)/(2*G*alpha)*K2(xi*R); 
%        C1*K2(xi*r) in function c1k2(xi,r) 
global G cf k 
  
temp=cf*c1k2(xi,r)/(2*G*k); 
end 
 

File name: term1Lsigmaqq3.m 
function temp=term1Lsigmaqq3(xi,r) 
%gives the first term in eqn for Lsigmaqq3 solution which is: 
%A1*(C1*K1(xi*r)/(xi*r)+(1+6/(xi*r)^2)*C1*K2(xi*r)); 
global A1 
temp=A1*(c1k1(xi,r)/(xi*r)+(1+6/(xi*r)^2)*c1k2(xi,r)); 
 

File name: term1Lsigmarq3.m 
function temp=term1Lsigmarq3(xi,r) 
%gives the first term in eqn for Lsigmarq3 (shear stress) solution 
which is: 
%2*A1/(xi*r)*(C1*K1(xi*r)+3/(xi*r)*C1*K2(xi*r)); 
global A1 
temp=2*A1/(xi*r)*(c1k1(xi,r)+3/(xi*r)*c1k2(xi,r)); 
 

 

File name: term1Lsigmarr3.m 
function temp=term1Lsigmarr3(xi,r) 
%gives the first term in eqn for Lsigmarr3 solution which is: 
%A1/(xi*r)*(C1*K1(xi*r)+6*C1*K2(xi*r)/(xi*r)); 
global A1 
temp=A1/(xi*r)*(c1k1(xi,r)+6*c1k2(xi,r)/(xi*r));     
 

File name: term2Lp3.m 
function temp=term2Lp3(xi,r) 
%gives the second term in eqn for Lp3 solution which is: 
%A1*C2*R^2/r^2 
%where C2 = 4/(2*A1(B3-B2)/B1 - A2) 
%       A1, A2 constant defined in inputdata.m 
%       B3-B2 = K1(xi*R)/(xi*R) 
%       B1 = M(1,1)/(2*G*alpha)*K2(xi*R) 
global R A1  
temp=A1*(R/r)^2*c2(xi); 
end 
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File name: term2Lsigmarr3.m 
function temp=term2Lsigmarr3(xi,r) 
%gives the second term in eqn for Lsigmarr3 solution which is: 
%A2*C2*R^2/r^2 
%where C2 = 4/(2*A1(B3-B2)/B1 - A2) 
%       A1, A2 constant defined in inputdata.m 
%       B3-B2 = K1(xi*R)/(xi*R) 
%       B1 = M(1,1)/(2*G*alpha)*K2(xi*R) 
global A2 A1 
temp=(A2/A1)*term2Lp3(xi,r);     
 

File name: term2Lsigmarr3.m 
function temp=term3Lsigmarr3(xi,r) 
%gives the third term in eqn for Lsigmarr3 solution which is: 
%3*C3*R^4/r^4 
%where C3 = (2A1(B2+B3)/B1+3A2)/(3*(2*A1(B3-B2)/B1 - A2)) 
%       A1, A2 constant defined in inputdata.m 
%       B3-B2 = K1(xi*R)/(xi*R) 
%       B1 = M(1,1)/(2*G*alpha)*K2(xi*R) 
%       B2+B3 = 3K1(xi*R)/(xi*R)+12*K2(xi*R)/(xi*R)^2 
global R 
temp=3*c3(xi)*(R/r)^4; 
 

File name: undrainedm.m 
function Mu=undrainedm(M,Mb,alpha,alpha1) 
%undrainedm: 6x6 matrix of undrained moduli 
%for transversely isotropic medium with drained modulus matrix M 
%Mb is Biot's modulus 
%alpha, alpha1 are Biot's coefficients in isotropic plane & in the 
%direction of the axis of elastic symmetry. 
%relations from Cheng (1997)  
  
Mu=zeros(6,6);  
for ii=4:6 
    Mu(ii,ii)=M(ii,ii); %shear moduli not affected by fluid presense 
end 
  
Mu(1,1) = M(1,1)+alpha*alpha*Mb; 
Mu(2,2)=Mu(1,1); 
Mu(1,2)=M(1,2)+alpha*alpha*Mb; 
Mu(2,1)=Mu(1,2); 
Mu(1,3)=M(1,3)+alpha*alpha1*Mb; 
Mu(3,1)=Mu(1,3); 
Mu(3,3)=M(3,3)+alpha1*alpha1*Mb; 
Mu(2,3)=Mu(1,3); 
Mu(3,2)=Mu(1,3); 
 

File name: V.m  
function temp=V(i,N) 
%term Vi in Stehfest inversion technique 
%N must be an even number (>=8) 
%Vi = (-1)^(N/2+i) Sum(k^(N/2)*(2k)!/(((N/2)-k)!k!(k-1)!(i-k)!(2k-i)!); 
  
uplim=min(i,N/2); 
lowlim=floor((i+1)/2); 
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powercoef=mod(N/2+i,2); 
tmp=0; 
for k=lowlim:uplim 
    tmp=tmp+k^(N/2)*precisefact(k)/(prod(1:(N/2-k))*prod(1:(i-
k))*prod(1:(2*k-i))); 
end 
temp=tmp*(-1)^powercoef; 
end 
 
 


