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Chapter 1

Introduction And Main Results

From the electric engineering field to the stock market, it is well known that

an abrupt change of a signal sometimes, if not most of time, is more important

to be detected. For example, a big crash or surge in stock market always easily

attracts people’s attention just like it is always easy to identify a few people

wearing red T-shirts among a crowd with white T-shirts. The common feature

in these examples is the difference or the edge. For one-dimensional signals,

an abrupt change is more important to be detected from massive amount of

data. The underlying philosophy is that the most important events (political,

economical, etc.) usually happen around these moments. For a given image, it

can be largely recognized from its edges but the map of the edges of the image

requires much less storage space than the image itself since it is just a binary

contour plot [1].

Edge detection usually refers to algorithms used to identify points of a sig-

nal, at which the signal values change sharply. There are many methods for edge

detection, but most of them can be grouped into two categories, search-based

methods, see. e.g. [2], [3], and zero-crossing based methods, see, e.g. [4], [5].
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To use the search-based methods, one first needs to compute a measure of edge

strength, usually a first-order derivative expression such as the gradient magni-

tude. Then one can search for local directional maxima of the gradient magni-

tude. The zero-crossing based methods search for zero crossings in a second-order

derivative expression, such as the zero crossings of the Laplacian or the zero cross-

ings of a non-linear differential expression. Thus both the search-based and the

zero-crossing based edge detection methods are based on computing the discrete

derivatives of the given signal. For smooth signals, it is reasonable and acceptable

to view the spikes and edges as the points at which the gradient has relatively

large norm or the second-order derivative equals zero. But for non-smooth sig-

nals, it does not make sense to take their derivatives.

In Chapter 2, we propose a novel approach to mathematically characterize

and detect the edges of signals. The basic principles in our approach stem from

the well-studied theory of nonlinear analysis, in particular from the theory of the

function spaces.

The classical method to represent a signal is to express it as a function

in the 𝐿2 function space, by using Fourier transform or its variations (Wavelet

transformation) [6]-[7]. The advantage of such approach is that one can easily

implement algorithms based on such mathematical theory [8]. Yet, it has certain

limitations. Among other things, it is not very sensitive to a rapid change of the

function (for example, the derivative of the function if it is differentiable) due to

the orthogonality property of different filters. For example, 𝑠𝑖𝑛𝑥 filter can only

be used to determine the coefficient of 𝑠𝑖𝑛𝑥 vibration in the Fourier transform,

but not for any other higher or lower vibrations. By taking into account the

derivative of a given function 𝑓(𝑥) defined on an interval (𝑎, 𝑏), one may think

about representing the given function in a so called Sobolev space 𝑊 1,𝑝(𝑎, 𝑏)

2



[9], which is defined as the closure of 𝐶∞(𝑎, 𝑏) (all smooth functions in (a, b))

under the norm ∣∣𝑓 ∣∣𝑊 1,𝑝 := ∣∣𝑓 ∣∣𝐿𝑝 + ∣∣𝑓𝑥∣∣𝐿𝑝 , where ∣∣𝑓 ∣∣𝑝𝐿𝑝 :=
∫ 𝑏
𝑎
∣𝑓 ∣𝑝𝑑𝑥 and

∣∣𝑓𝑥∣∣𝑝𝐿𝑝 :=
∫ 𝑏
𝑎
∣𝑓𝑥∣𝑝𝑑𝑥. To capture the change of a signal, it is natural to estimate

its gradient 𝐿𝑝 energy: ∣∣𝑓𝑥∣∣𝐿𝑝 . However it is not feasible to apply the theory

directly in practice. For an irregular signal, it is very unstable to compute its

gradient 𝐿𝑝 norm.

The essential idea in our approach is to estimate the integral of certain

function (we call it the energy) of a given signal. Based on the mathematical

theory we established, one can see that the larger energy implies large gradient

𝐿𝑝 norm for the signal. For one dimensional signal, the initial mathematical

model is built on the following theorem in Chapter 2.

Theorem 2.10. For any function 𝑓(𝑥) ∈ 𝑊 1,1(0, 1),

∫ 1

0

𝑒∣𝑓−𝑓𝐴∣𝑑𝑥 ≤ 𝑒
∫ 1
0 ∣𝑓𝑥∣𝑑𝑥,

where 𝑓𝐴 =
∫ 1

0
𝑓𝑑𝑥. The constant is optimal and the equality holds if and only if

𝑓(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

Generally for 𝑓 ∈ 𝑊 1,1(𝑎, 𝑎+𝜆), we can use rescaling and shifting of variable

to obtain

1

𝜆

∫ 𝑎+𝜆

𝑎

𝑒∣𝑓−𝑓𝐴∣𝑑𝑥 ≤ 𝑒
∫ 𝑎+𝜆
𝑎 ∣𝑓 ′∣𝑑𝑥, (1.1)

where 𝑓𝐴 = 1
𝜆

∫ 𝑎+𝜆
𝑎

𝑓𝑑𝑥. From inequality (1.1), we know that for a given smooth

function 𝑓(𝑥) on (𝑎, 𝑎 + 𝜆), the large integral
∫ 𝑎+𝜆
𝑎

exp{∣𝑓 − 𝑓𝐴∣}𝑑𝑥 implies a

large integral of its derivative. For a mere integrable function 𝑓(𝑥), we thus

detect its abrupt change by seeking for the interval (𝑎, 𝑎 + 𝜆) where integral∫ 𝑎+𝜆
𝑎

exp{∣𝑓 − 𝑓𝐴∣}𝑑𝑥 is large.
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The mathematical proof of Theorem 2.10 is shown in Section 2.3.2. Based

on Theorem 2.10, we develop edge detection algorithms for both one-dimensional

signals and two-dimensional images in Section 2.4. We also illustrate the perfor-

mance of the algorithms with examples in Section 2.4.

In Chapter 3, we study curve motions based on differential equations. Curve

motion equations are classified into two types: adaptive equations (which depends

on the choice of coordinate systems) and non-adaptive equations. Examples from

both types of equations are studied, and the global existences for these equations

are proved based on integral estimates.

Let 𝐹 (𝑢): [0, 1] → ℝ2 be a closed plane curve imbedded in ℝ2. The evolution

of 𝐹 (𝑢) along its normal direction in ℝ2:

𝐹𝑡 = 𝑓(𝑘)𝑁, (1.2)

where 𝑁 is the inner unit norm of the curve 𝐹 , 𝑘 is its curvature and 𝑓(⋅) is a

given function, is widely studied since the early work of Gage [15] and Gage and

Hamilton [16]. For 𝑓(𝑥) = 𝑥, it is the well-known curve shortening flow. For

𝑓(𝑥) = 𝑥1/3, it is equivalent to the affine curvature flow, which was studied by

Sapiro and Tannenbaum [17], and by Alvarez, et al. [18], see also, the work of

Ni and Zhu [19]-[20]. Most of the studies in curve motion problems have direct

impacts in digital image processing including image segment, edge detection,

image denoise and many other applications [22]-[23]. We study curve motion

equations like (1.2) from the view point of gradient flow of certain total energy.

The study is motivated by the early work on conformal curvature flow of Ni and

Zhu [19]-[20].

For any positive, 2𝜋 periodic function 𝜌(𝜃) ∈ 𝐶2[0, 2𝜋], and a given positive
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parameter 𝛼, its 𝛼-flow constant is defined in [19] by

𝑅𝛼
𝜌 = 𝜌3(𝛼𝜌𝜃𝜃 + 𝜌). (1.3)

𝑅𝛼
𝜌 is introduced in [19] as 𝛼-scalar curvature if 𝜌 is given via a conformal trans-

form, which generalizes the notion of scalar curvature as well as the affine curva-

ture for one-dimensional curves. For instance, if 𝛼 = 1 and 𝜌 is one-third power

of the curvature of a given curve, then the 1-scalar curvature is in fact the affine

curvature of the curve. The corresponding curvature flows were introduced in

[19]. The global existences and the convergence of curvatures for these flows were

obtained in [20]. Here we shall consider (1.3) from pure differential equation point

of view. Define the average 𝛼- flow constant by

𝑅
𝛼

𝜌 =

∫ 2𝜋

0
𝜌(𝛼𝜌𝜃𝜃 + 𝜌)𝑑𝜃∫ 2𝜋

0
𝜌−2𝑑𝜃

. (1.4)

We introduce our motion equation as

𝜌𝑡 =
1

4
(𝑅𝛼

𝜌 −𝑅
𝛼

𝜌 )𝜌, that is 𝜌𝑡 =
𝛼

4
𝜌4𝜌𝜃𝜃 +

1

4
𝜌5 − 1

4
𝑅
𝛼

𝜌𝜌. (1.5)

We will proof the following theorem.

Theorem 3.4. For 𝛼 ≥ 4, if 𝜌(𝜃, 𝑡) satisfies (1.5) with 𝜌(𝜃, 0) = 𝜌0(𝜃), where

𝜌0(𝜃) ∈ 𝐶0[0, 2𝜋] is a positive, 2𝜋 periodic function, then 𝜌(𝜃, 𝑡) exists for all

𝑡 > 0.

One particular application of this theorem is to consider 𝜌(𝜃) as the polar

distance for a given star-shaped polar curve: (𝜃, 𝜌(𝜃)). The flow may converge to

its steady state 𝜌(∞) which has constant 𝑅𝛼
𝜌 . It is interesting to point out here

that, even though a circle has constant 𝑅𝛼
𝜌 , however when 𝛼 = 4, a closed curve
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𝑟 = 𝜌(𝜃) with constant 𝑅𝛼
𝜌 may not be a circle or an ellipse. See subsection 3.2.3.

The global existence and convergence of flow (1.5) for 𝛼 ∈ (0, 4) are wide

open, except for the case of 𝛼 = 1 and 𝜌 satisfying certain orthogonal conditions

(so that the flow is equivalent to an affine flow).

Comparing with curvature flow equations studied in [19]-[20], we classify

flow (1.5) as adaptive flows when 𝜌 is the polar distance functions, since the

deformation of curves depends on both the shape of the figures and also the

location (or coordinate systems). On the other hand, a flow which does not

depend on the choice of coordinate system, such as conformal curvature flow,

is classified as a non-adaptive flow. In particular, if 𝜌 is given as a curvature

function of a given curve in (1.5), then it is a non-adaptive flow. Unfortunately,

for parameter 𝛼 ∕= 1 and 𝜌 given as a function of curvature, a closed curve may

not be closed anymore under the flow (1.5).

Another family of non-adaptive flows is the following curvature flows:

𝑘𝑡 = 𝑘2 ⋅ (𝜏𝜃𝜃 + 𝜏), (1.6)

where 𝑘(𝜃, 𝑡) is the curvature and 𝜏 is a function of 𝑘. Under the flow, one can

check that the orthogonal condition

∫ 2𝜋

0

cos 𝜃

𝑘
𝑑𝜃 =

∫ 2𝜋

0

sin 𝜃

𝑘
𝑑𝜃 = 0 (1.7)

holds for all 𝑡 > 0, which guarantees that 𝑘(𝜃, 𝑡) is the curvature function of a

closed curve. In fact, (1.6) is equivalent to the generalized curve shortening flow

(1.3) with 𝑓(𝑘) = 𝜏. From PDE point of view, we shall give another proof for the

global existence when 𝜏 = 𝑘𝑝 + 𝜆 for 𝑝 > 1 and 𝜆 ≥ 0.
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Theorem 3.10. Assume that 𝜏 = 𝑘𝑝 + 𝜆 for 𝑝 > 1 and 𝜆 ≥ 0 in (1.6). Then

solution 𝑘(𝜃, 𝑡) to (1.6) with 𝑘(𝜃, 0) = 𝑘0(𝜃) ∈ 𝐿∞(𝑆1) satisfying (1.7) exists for

all 𝑡 > 0.

One can see from the isoperimetric ration that a closed curve under the

normalized flow when 𝑘 is the curvature function will converge to a circle.

Our approach enables us to obtain global existence to a more general adap-

tive flow. For any positive, 2𝜋 periodic function 𝜌(𝜃) ∈ 𝐶2[0, 2𝜋], and given

positive parameters 𝛼 and 𝑝, we define its 𝛼-shorten-flow constant by

𝑅𝛼
𝑝 = 𝜌(𝛼(𝜌𝑝)𝜃𝜃 + 𝜌𝑝). (1.8)

The average 𝛼-shorten-flow constant is given by

𝑅
𝛼

𝑝 =

∫ 2𝜋

0
𝑅𝛼
𝑝 ⋅ 𝜌𝑝−1𝑑𝜃∫ 2𝜋

0
𝜌𝑝−1𝑑𝜃

for 𝑝 ∕= 1, and

𝑅
𝛼

1 =
1

2𝜋

∫ 2𝜋

0

𝑅𝛼
1𝑑𝜃

for 𝑝 = 1.

Considering the normalized flow

𝜌𝑡 = (𝑅𝛼
𝑝 −𝑅

𝛼

𝑝 )𝜌, (1.9)

we will proof the following theorem.

Theorem 3.14. Assume that 𝑝 > 1 and 𝛼 > 0 in (1.9). Then for any positive

function 𝜌0 ∈ 𝐿∞(𝑆1), solution 𝜌(𝜃, 𝑡) satisfying (1.9) with 𝜌(𝜃, 0) = 𝜌0(𝜃) exists

for all 𝑡 > 0.
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The proof of Theorem 3.14 is similar to that of Theorem 3.10. The method

seems not work for 𝑝 ≤ 1. The case of 𝑝 ∈ [1/3, 1] can be settled by utilizing the

proof of Theorem 3.4.

Theorem 3.17. Assume that 𝑝 ∈ [1/3, 1] and 𝛼 ≥ 4 in (1.9). Then for any

positive function 𝜌0 ∈ 𝐿∞(𝑆1), solution 𝜌(𝜃, 𝑡) satisfying (1.9) with 𝜌(𝜃, 0) = 𝜌0(𝜃)

exists for all 𝑡 > 0.

In fact, for 𝑝 = 1/3, equation (1.9) is equivalent to equation (1.5).

If 𝜌(𝜃) is the polar distance for a given star-shaped polar curve: (𝜃, 𝜌(𝜃)), one

shall expect that the curve under the flow will converge to its steady state 𝜌(∞),

which has constant 𝑅𝛼
𝑝 . The rigorous proof will be discussed in the future. Based

on certain Sobolev type inequalities (see Lemma 3.6), we see that the limiting

shape for 𝛼 ≥ 4 must be a circle; However we will present an example to show

that when 𝛼 < 4, a closed curve 𝑟 = 𝜌(𝜃) with constant 𝑅𝛼
𝑝 may not be a circle

any more. The case of 𝛼 = 1 was discussed by Andrews [25].

The adaptive flows corresponding to conformal curvature flow are studied in

Section 3.2 and Theorem 3.4 is proved in Section 3.2. The curve shorten flows are

re-visited, and the global existence for general nonhomogeneous flow (Theorem

3.10) is proved in Section 3.3. Finally we study the adaptive flows corresponding

to curve shortening flows in Section 3.4.
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Chapter 2

𝐿𝑝 Theory On Discrete

Derivative And Edge Detection

2.1 Sobolev Spaces And Inequalities

In this section, we quote some basic facts about the Sobolev spaces and

Sobolev inequalities from Even’s book [9].

2.1.1 Weak Derivatives

Let 𝑈 ⊂ ℝ𝑛 be a domain and 𝐶∞
0 (𝑈) denote the space of infinitely differ-

entiable functions 𝜙 : 𝑈 → ℝ, with compact support in 𝑈 . 𝛼 = (𝛼1, ⋅ ⋅ ⋅ , 𝛼𝑛) is
a multi-index of order 𝑘. That is, 𝛼𝑖 are non-negative integers for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛
and ∣𝛼∣ = 𝛼1 + ⋅ ⋅ ⋅ + 𝛼𝑛 = 𝑘. Let 𝐶𝑘(𝑈) be the space of all 𝑘−th order differ-

entiable functions and 𝐿1
𝑙𝑜𝑐(𝑈) be the space of functions which are integrable in

any compact sets of 𝑈 .
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For a function 𝑢 ∈ 𝐶𝑘(𝑈), we define

𝐷𝛼𝑢 =
∂𝛼1

∂𝑥𝛼1
1

⋅ ⋅ ⋅ ∂
𝛼𝑛

∂𝑥𝛼𝑛
𝑛

(𝑢).

Using integration by parts ∣𝛼∣ times, we know that for a function 𝑢 ∈ 𝐶𝑘(𝑈),

∫
𝑈

𝐷𝛼𝑢 ⋅ 𝜓𝑑𝑥 = (−1)∣𝛼∣
∫
𝑈

𝑢 ⋅𝐷𝛼𝜓𝑑𝑥 (2.1)

holds for all 𝜓 ∈ 𝐶∞
0 (𝑈). We observe that the right hand side in (2.1) is well

defined for any 𝑢 ∈ 𝐿1
𝑙𝑜𝑐(𝑈) but the expression “𝐷𝛼𝑢” on the left hand side

of (2.1) has no obvious meaning for some functions 𝑢 ∈ 𝐿1
𝑙𝑜𝑐(𝑈) which are not

differentiable. This prompts us to introduce the definition of weak derivative.

Definition 2.1. Let 𝑢(𝑥) ∈ 𝐿1
𝑙𝑜𝑐(𝑈) and 𝛼 is a multi-index. We say that 𝑢 has a

𝛼-weak derivative if there is a function 𝑣(𝑥) ∈ 𝐿1
𝑙𝑜𝑐(𝑈) such that

∫
𝑈

𝑢 ⋅𝐷𝛼𝜓𝑑𝑥 = (−1)∣𝛼∣
∫
𝑈

𝑣 ⋅ 𝜓𝑑𝑥 (2.2)

holds for all 𝜓 ∈ 𝐶∞
0 (𝑈). We write

𝐷𝛼𝑢 = 𝑣.

Example 1. Consider 𝑈 = (0, 2) ⊂ ℝ and 𝑢 ∈ 𝐿1
𝑙𝑜𝑐(𝑈) given by

𝑢(𝑥) =

⎧⎨⎩ 𝑥 𝑖𝑓 0 < 𝑥 ≤ 1

1 𝑖𝑓 1 ≤ 𝑥 < 2.
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We will show that 𝑢 has a weak derivative given by

𝑣(𝑥) =

⎧⎨⎩ 1 𝑖𝑓 0 < 𝑥 ≤ 1

0 𝑖𝑓 1 < 𝑥 < 2.

To see this, we need to show that for any 𝜙 ∈ 𝐶∞
0 (0, 2),

∫ 2

0

𝑢(𝑥)𝜙′(𝑥)𝑑𝑥 = −
∫ 2

0

𝑣(𝑥)𝜙(𝑥)𝑑𝑥.

In fact,

∫ 2

0

𝑢(𝑥)𝜙′(𝑥)𝑑𝑥 =

∫ 1

0

𝑥𝜙′(𝑥)𝑑𝑥+
∫ 2

1

𝜙′(𝑥)𝑑𝑥

= 𝑥𝜙(𝑥)∣10 −
∫ 1

0

𝜙(𝑥)𝑑𝑥+ 𝜙(2)− 𝜙(1)

= −
∫ 1

0

𝜙(𝑥)𝑑𝑥

= −
∫ 2

0

𝑣(𝑥)𝜙(𝑥)𝑑𝑥.

So 𝑢′ = 𝑣 in the weak sense.

For some functions 𝑢 ∈ 𝐿1
𝑙𝑜𝑐(𝑈), the weak derivatives may not exist.

Example 2. Let 𝑛 = 1, 𝑈 = (0, 2) and

𝑢(𝑥) =

⎧⎨⎩ 𝑥 𝑖𝑓 0 < 𝑥 ≤ 1

2 𝑖𝑓 1 < 𝑥 < 2.

We assert 𝑢
′
does not exist in the weak sense. To check this we need to show

11



that there does not exist any function 𝑣 ∈ 𝐿1
𝑙𝑜𝑐(𝑈) satisfying

∫ 2

0

𝑢𝜙′𝑑𝑥 = −
∫ 2

0

𝑣𝜙𝑑𝑥, (2.3)

for all 𝜙 ∈ 𝐶∞
0 (𝑈). Suppose, to the contrary, (2.3) were true for some 𝑣 and all

𝜙 ∈ 𝐶∞
0 (𝑈). Then

−
∫ 2

0

𝑣𝜙𝑑𝑥 =

∫ 2

0

𝑢𝜙′𝑑𝑥

=

∫ 1

0

𝑥𝜙′𝑑𝑥+ 2

∫ 2

1

𝜙′𝑑𝑥

= −
∫ 1

0

𝜙𝑑𝑥− 𝜙(1).

Choose a sequence {𝜙𝑚}∞𝑚=1 of smooth functions satisfying

0 ≤ 𝜙𝑚 ≤ 1, 𝜙𝑚(1) = 1, 𝜙𝑚(𝑥) → 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∕= 1.

Replacing 𝜙 by 𝜙𝑚 and sending 𝑚→ ∞, we can find

1 = lim
𝑚→∞

𝜙𝑚(1) = lim
𝑚→∞

(

∫ 2

0

𝑣𝜙𝑚𝑑𝑥−
∫ 1

0

𝜙𝑚𝑑𝑥) = 0,

which is a contradiction.

Lemma 2.2. A weak 𝛼𝑡ℎ-partial derivative of u, if it exists, is uniquely defined

up to a set of measure zero.

Proof. Assume that 𝑣, 𝑣 ∈ 𝐿1
𝑙𝑜𝑐(𝑈) satisfy

∫
𝑈

𝐷𝛼𝑢𝜙𝑑𝑥 = (−1)∣𝛼∣
∫
𝑈

𝑣𝜙𝑑𝑥 = (−1)∣𝛼∣
∫
𝑈

𝑣𝜙𝑑𝑥

12



for all 𝜙 ∈ 𝐶∞
0 (𝑈). Then ∫

𝑈

(𝑣 − 𝑣)𝜙𝑑𝑥 = 0 (2.4)

for all 𝜙 ∈ 𝐶∞
0 (𝑈); Hence 𝑣 − 𝑣 = 0 a.e.

It follows from the lemma that if a function 𝑢 ∈ 𝐶𝑘(𝑈) then for 𝑘 = ∣𝛼∣, the
regular partial derivative 𝐷𝛼𝑢 equals the weak derivative 𝑣 a.e.

2.1.2 Sobolev Spaces

Fix 1 ≤ 𝑝 ≤ ∞ and let 𝑘 be a nonnegative integer.

Definition 2.3. The Sobolev space

𝑊 𝑘,𝑝(𝑈)

consists of all locally integrable functions 𝑢 : 𝑈 → ℝ such that for each multi-

index 𝛼 with ∣𝛼∣ ≤ 𝑘, 𝐷𝛼𝑢 exists in the weak sense and belongs to 𝐿𝑝(𝑈).

Definition 2.4. If 𝑢 ∈ 𝑊 𝑘,𝑝(𝑈), we define its norm to be

∥𝑢∥𝑊𝑘,𝑝(𝑈) =

⎧⎨⎩ (
∑

∣𝛼∣≤𝑘
∫
𝑈
∣𝐷𝛼𝑢∣𝑝𝑑𝑥) 1

𝑝 𝑖𝑓 1 ≤ 𝑝 <∞,∑
∣𝛼∣≤𝑘 𝑒𝑠𝑠 𝑠𝑢𝑝𝑈 ∣𝐷𝛼𝑢∣ 𝑖𝑓 𝑝 = ∞.

Definition 2.5. We denote by

𝑊 𝑘,𝑝
0 (𝑈)

the closure of 𝐶∞
0 (𝑈) in 𝑊 𝑘,𝑝(𝑈).

Thus 𝑢 ∈ 𝑊 𝑘,𝑝
0 if and only if there exist functions 𝑢𝑚 ∈ 𝐶∞

0 (𝑈) such that

𝑢𝑚 → 𝑢 in 𝑊 𝑘,𝑝(𝑈), which means lim𝑚→∞ ∥𝑢𝑚 − 𝑢∥𝑊𝑘,𝑝(𝑈) = 0.
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2.1.3 Sobolev Inequalities

In this section we assume 1 ≤ 𝑝 < 𝑛 and we will see that for certain 1 ≤ 𝑞 <

∞,

∥𝑢∥𝐿𝑞(ℝ𝑛) ≤ 𝐶∥𝐷𝑢∥𝐿𝑝(ℝ𝑛) (2.5)

holds for all functions 𝑢 ∈ 𝐶∞
0 (ℝ𝑛), where the constants 𝐶 > 0 and 𝑞 should not

depend on 𝑢.

We will show that the inequality of the form (2.5) holds if 𝑞 is chosen with

a specific value. We first choose a function 𝑢 ∈ 𝐶∞
0 (ℝ𝑛), 𝑢 ∕= 0, and define for

𝜆 > 0 the rescaled function

𝑢𝜆(𝑥) = 𝑢(𝜆𝑥) (𝑥 ∈ ℝ𝑛).

If we apply (2.5) to the rescaled function 𝑢𝜆, we find

∥𝑢(𝜆𝑥)∥𝐿𝑞(ℝ𝑛) ≤ 𝐶∥𝐷𝑢(𝜆𝑥)∥𝐿𝑝(ℝ𝑛). (2.6)

Now we can change variable and set 𝑦 = 𝜆𝑥 then

∥𝑢(𝜆𝑥)∥𝑞𝐿𝑞(ℝ𝑛) =

∫
ℝ𝑛

∣𝑢(𝜆𝑥)∣𝑞𝑑𝑥

=
1

𝜆𝑛

∫
ℝ𝑛

∣𝑢(𝑦)∣𝑞𝑑𝑦,

and

∥𝐷𝑢(𝜆𝑥)∥𝑝𝐿𝑝(ℝ𝑛) =

∫
ℝ𝑛

∣𝐷𝑢(𝜆𝑥)∣𝑝𝑑𝑥

=
𝜆𝑝

𝜆𝑛

∫
ℝ𝑛

∣𝐷𝑢(𝑦)∣𝑝𝑑𝑦.
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Inserting these equalities into (2.6), we get

1

𝜆𝑛/𝑞
∥𝑢(𝑥)∥𝐿𝑞(ℝ𝑛) ≤ 𝐶

𝜆

𝜆𝑛/𝑝
∥𝐷𝑢(𝑥)∥𝐿𝑝(ℝ𝑛),

and so

∥𝑢(𝑥)∥𝐿𝑞(ℝ𝑛) ≤ 𝐶𝜆1−
𝑛
𝑝
+𝑛

𝑞 ∥𝐷𝑢(𝑥)∥𝐿𝑝(ℝ𝑛). (2.7)

Thus the inequality (2.5) holds only if 1− 𝑛
𝑝
+ 𝑛

𝑞
= 0. Otherwise we can send 𝜆

to either 0 or ∞ in (2.7) to obtain a contradiction. Thus if any inequality of the

form (2.5) holds, the number 𝑞 can not be arbitrary, we must necessarily have

𝑞 = 𝑛𝑝
𝑛−𝑝 .

Definition 2.6. If 1 ≤ 𝑝 < 𝑛, the Sobolev conjugate of 𝑝 is

𝑝∗ =
𝑛𝑝

𝑛− 𝑝
. (2.8)

Note that

1

𝑝∗
=

1

𝑝
− 1

𝑛
, 𝑝∗ > 𝑝.

The foregoing scaling analysis shows that the estimate (2.5) can only possible

be true for 𝑞 = 𝑝∗.

Theorem 2.7. Assume 1 ≤ 𝑝 < 𝑛. There exists a constant 𝐶, depending only

on 𝑝 and 𝑛, such that

∥𝑢∥𝐿𝑝∗ (ℝ𝑛) ≤ 𝐶∥𝐷𝑢∥𝐿𝑝(ℝ𝑛), (2.9)

for all 𝑢 ∈ 𝐶1
0(ℝ𝑛).

This estimation is called Gagliardo-Nirenberg-Sobolev inequality and the

detail of the proof of this theorem can be found in [9].
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The next theorem follows from the Hölder inequality and the density prop-

erty of 𝐶∞
0 (𝑈) in 𝑊 1,𝑝

0 (𝑈).

Theorem 2.8. Assume 𝑈 is a bounded, open subset of ℝ𝑛. Suppose 𝑢 ∈ 𝑊 1,𝑝
0 (𝑈)

for some 1 ≤ 𝑝 < 𝑛. Then we have the estimate

∥𝑢∥𝐿𝑞(𝑈) ≤ 𝐶∥𝐷𝑢∥𝐿𝑝(𝑈)

for each 𝑞 ∈ [1, 𝑝∗], the constant 𝐶 depending only on 𝑝, 𝑞, 𝑛 and 𝑈 .

2.2 Edge Detection And Discrete Derivative

Figure 2.1 describes the variation of natural gas price on November 11, 2007

in one hour period (courtesy of Dr. Zhen Zhu from C.H. Guernsey & Company

and University of Central Oklahoma). Due to the large amount of data, we do

not intent to understand all of the data. Instead, we would like to find out the

moments when the price changes more dramatically.

0 100 200 300 400 500 600
7.9

8

8.1

8.2

8.3

8.4

8.5
Gas price data

Figure 2.1: Gas price

A common method to capture the spikes or edges of a signal is to compute

the magnitude of its discrete derivative. The large values of the magnitude will

imply the spikes of the signal. There are many different ways to define the discrete
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derivative of one-dimensional signals [10]. Two most popular definitions are given

as following.

For one-dimensional function 𝑓(𝑥) which has been sampled to produce the

discrete sequence 𝑓(𝑖), for 𝑖 = 1, 2, 3, ⋅ ⋅ ⋅ , the discrete derivative usually is defined

as either

∂

∂𝑥
𝑓(𝑥)∣𝑥=𝑖 = 𝑓(𝑖)− 𝑓(𝑖− 1), 𝑓𝑜𝑟 𝑖 = 2, 3, 4, ⋅ ⋅ ⋅ , (2.10)

or

∂

∂𝑥
𝑓(𝑥)∣𝑥=𝑖 = 𝑓(𝑖+ 1)− 𝑓(𝑖− 1)

2
, 𝑓𝑜𝑟 𝑖 = 2, 3, 4, ⋅ ⋅ ⋅ . (2.11)

The magnitude of the derivative is correspondingly defined as

∣ ∂
∂𝑥
𝑓(𝑥)∣𝑥=𝑖 = ∣𝑓(𝑖)− 𝑓(𝑖− 1)∣, 𝑓𝑜𝑟 𝑖 = 2, 3, 4, ⋅ ⋅ ⋅ ,

or

∣ ∂
∂𝑥
𝑓(𝑥)∣𝑥=𝑖 = ∣𝑓(𝑖+ 1)− 𝑓(𝑖− 1)

2
∣, 𝑓𝑜𝑟 𝑖 = 2, 3, 4, ⋅ ⋅ ⋅ .

Example 3. Suppose we have a signal S with length 𝑁 = 20, and

𝑆 = [4, 4, 3.5, 4, 3, 4, 3, 4.5, 4, 15, 14.5, 14, 14.5, 14, 14, 14.5, 14, 14.5, 14, 14.7].

Then its discrete derivative

𝐷𝑆(𝑖) = 𝑆(𝑖)− 𝑆(𝑖− 1), 𝑓𝑜𝑟 𝑖 = 2, 3, 4 ⋅ ⋅ ⋅ 20.
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Thus

𝐷𝑆 = [0,−1, 1,−1, 1.5,−0.5, 11,−0.5,−0.5, 0.5,−0.5, 0, 0.5, 0.2],

and the magnitude of 𝐷𝑆 is

∣𝐷𝑆∣ = [0, 1, 1, 1, 1.5, 0.5, 11, 0.5, 0.5, 0.5, 0.5, 0, 0.2].

From the magnitude of 𝐷𝑆, we can easily find where the spike of the signal

is. As shown in figure 2.2, the spike of the signal is around the point where the

magnitude of its derivative is much bigger than that of other points. However it

is challenge to find the spikes for a noised signal.

0 5 10 15 20
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12

14

16

spike

(a) Original signal
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0
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8

10

12

(b) Magnitude of derivative

Figure 2.2: Edge of smooth signal

Example 4. Suppose 𝑆 is a noised signal with length 𝑁 = 20 as shown in figure

2.3, and

𝑆 = [4, 0, 5.5, 4.8, 0.5, 1, 4, 6, 8, 10, 12, 16, 18, 15, 16, 11, 13, 15, 14, 15.5].

We compute the discrete derivative of this signal with two different methods
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defined in (2.10) and (2.11) respectively. Then

𝐷𝑆1(𝑖) = 𝑆(𝑖)− 𝑆(𝑖− 1), 𝑓𝑜𝑟 2 ≤ 𝑖 ≤ 20,

and

𝐷𝑆2(𝑖) =
𝑆(𝑖+ 1)− 𝑆(𝑖− 1)

2
, 𝑓𝑜𝑟 2 ≤ 𝑖 ≤ 19.

The magnitudes of 𝐷𝑆1 and 𝐷𝑆2 are shown in figure 2.4. We can not find any

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

spike

Figure 2.3: A noised signal

point in figure 2.4 at which the magnitude of the derivative is obviously larger

than that of other points. The point, at which the magnitude of the derivative

is the largest, is not the location of the spike of the signal. Thus we can not find

the spike of the signal from the magnitude of its discrete derivative.

One of the reasons for this problem is that the signal has been corrupted

with noise and it does not make sense to take the discrete derivative of a noised

signal. In fact, even for some mathematically smooth functions, the discrete data

are very unstable. Another reason is that the discrete derivative can not reflect

the duration of spikes very well and it is also the reason why the spike in figure

2.3 has been missed.
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Figure 2.4: where is the spike?

2.3 New Approach For Edge Detection

In this section, we introduce our new approach for edge detection.

2.3.1 Sobolev Type Inequalities

Let 𝑈 ⊂ ℝ𝑛 be a bounded domain and 𝑓(𝑥) be a 𝑛−dimensional function

defined on 𝑈 . We also use the notation

𝐷𝑓(𝑥) = (
∂𝑓

∂𝑥1
, ⋅ ⋅ ⋅ , ∂𝑓

∂𝑥𝑛
).

If 𝑓𝑥𝑖(𝑥) are all continuous, then 𝑓(𝑥) is in the function space 𝑊 1,𝑝(𝑈). For

1 ≤ 𝑝 < 𝑛, if 𝑓 ∈ 𝑊 1,𝑝(𝑈), then 𝑓(𝑥) ∈ 𝐿𝑞(𝑈), for 1 ≤ 𝑞 ≤ 𝑝∗ = 𝑝𝑛/(𝑛− 𝑝). And

∣∣𝑓 − 𝑓𝐴∣∣𝐿𝑞 ≤ 𝐶𝑞,𝑛∣∣𝐷𝑓 ∣∣𝐿𝑝 , (2.12)

where 𝐶𝑞,𝑛 is a universal constant depending only on 𝑞 and 𝑛, 𝑓𝐴 =
∫
𝑈
∣𝑓 ∣𝑑𝑥/∣𝑈 ∣ =

average of 𝑓 over 𝑈 and ∣𝐷𝑓 ∣ = √
𝑓 2
𝑥1

+ ⋅ ⋅ ⋅ 𝑓2
𝑥𝑛 .

Inequality (2.12) indicates that for a smooth function, the larger ∣∣𝑓 − 𝑓𝐴∣∣𝐿𝑞

is, the larger the derivative norm ∣∣𝐷𝑓 ∣∣𝐿𝑝 is. However ∣∣𝑓 − 𝑓𝐴∣∣𝐿𝑞 is well defined
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for any measurable functions. This enables us to adopt a new approach to describe

the edges of a digital signal.

If we want to use the 𝐿1 norm of the derivative,
∫
𝑈
∣𝐷𝑓 ∣𝑑𝑥, to find the

spikes, we can compute ∣∣𝑓 − 𝑓𝐴∣∣𝐿𝑞 for any 𝑞 ≤ 𝑛/(𝑛 − 1) locally and search

for the locations where its values are relative large. But the problem is which 𝑞

we should choose to compute the norm. Suppose 𝑞1 < 𝑞2 < 𝑝∗, then by Hölder

inequality we have

∫
𝑈

∣𝑓 ∣𝑞1 ⋅ 1𝑑𝑥

≤ (

∫
𝑈

(∣𝑓 ∣𝑞1)
𝑞2
𝑞1 𝑑𝑥)

𝑞1
𝑞2 ⋅ (

∫
𝑈

1𝑞∗𝑑𝑥)
1
𝑞∗

≤ 𝐶(

∫
𝑈

∣𝑓 ∣𝑞2𝑑𝑥)
𝑞1
𝑞2 ,

where

𝑞∗ =
𝑞2

𝑞2 − 𝑞1
.

Thus

∥𝑓∥𝐿𝑞1 ≤ 𝐶∥𝑓∥𝐿𝑞2 ,

where 𝐶 is a constant. By Theorem 2.8 we also have

∥𝑓∥𝐿𝑞2 ≤ 𝐶𝑞2,𝑛∥𝐷𝑓∥𝐿𝑝 .

Thus, if the 𝐿𝑞2 norm of a function 𝑓 is large then it implies that the gradient

𝐿𝑝 norm is also large. On the other hand, it can not imply if the 𝐿𝑞1 norm of

the function is large or not. If we measure the edge with the 𝐿𝑞1 norm which is

small we may say it is not an spike. Thus we can capture more spikes by using

𝐿𝑞2 norm than using 𝐿𝑞1 norm.
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Remark 2.9. Due to Hölder inequality, we prefer to choose 𝑞 as large as possible.

However one shall be caution in dealing with one-dimensional signal because

it is the case that 𝑛 = 𝑝. From the definition of the Sobolev conjugate we know

that 𝑝∗ = 𝑛𝑝
𝑛−𝑝 → +∞ as 𝑝→ 𝑛, thus we might hope that 𝑓 ∈ 𝐿∞(𝑈). For 𝑛 > 1,

it is not true.

Example 5. let 𝑈 = 𝐵(0, 1) ∖ {0} in ℝ𝑛, and

𝑢 = ln ln(1 +
1

∣𝑥∣).

Since 1 + 1
∣𝑥∣ can go to infinity and 𝑙𝑛 is a increasing function, it is obvious that

𝑢 doesn’t belong to 𝐿∞(U). If we write 𝑟 = ∣𝑥∣, then for 𝑛 > 1

∫ 1

0

∣𝑢𝑟∣𝑛𝑟𝑛−1𝑑𝑟 =

∫ 1

0

∣ 1

𝑙𝑛(1 + 1
𝑟
)
∣𝑛( 1

𝑟 + 𝑟2
)𝑛𝑟𝑛−1𝑑𝑟

≤
∫ 1

0

1

𝑟∣𝑙𝑛𝑟∣𝑛𝑑𝑟

<∞,

and obviously ∫ 1

0

∣𝑢(𝑟)∣𝑛𝑟𝑛−1𝑑𝑟 <∞.

Thus, we know that the function 𝑢 belongs to the space 𝑊 1,𝑛.

But for 𝑛 = 1, it is not clear yet whether a one variable function in 𝑊 1,1(𝑈)

will also be in 𝐿∞(𝑈) or not. Even if the function belongs to 𝐿∞(𝑈), it is still

quite inaccurate to estimate its 𝐿∞ norm if the function is discontinuous. From
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the definition of 𝐿∞ norm we know that

∥𝑓∥∞ = 𝑒𝑠𝑠 𝑠𝑢𝑝∣𝑓(𝑡)∣

= 𝑖𝑛𝑓{𝑀 : 𝑚{𝑡 : ∣𝑓(𝑡)∣ > 𝑀} = 0}.

If the function is not continues, it is hard to say what is the measure of the set

on which ∣𝑓(𝑡)∣ > 𝑀 . In this regard, we will use the following inequality.

Theorem 2.10. For any function 𝑓(𝑥) ∈ 𝑊 1,1(0, 1),

∫ 1

0

𝑒∣𝑓−𝑓𝐴∣𝑑𝑥 ≤ 𝑒
∫ 1
0 ∣𝑓𝑥∣𝑑𝑥, (2.13)

where 𝑓𝐴 =
∫ 1

0
𝑓𝑑𝑥. The constant is optimal and the equality holds if and only if

𝑓(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

2.3.2 Mathematical Proof

Proof. Let 𝑎 ∈ (0, 1). We claim that: ∀𝑢(𝑠) ∈ 𝐶1(0, 𝑎) with 𝑢(𝑎) = 0,

∫ 𝑎

0

𝑒∣𝑢∣𝑑𝑠 ≤ 𝑎 ⋅ 𝑒
∫ 𝑎
0 ∣𝑢′∣𝑑𝑠. (2.14)

In fact if we let 𝑟 = − ln 𝑠
𝑎
, then 𝑑𝑟 = −1

𝑠
𝑑𝑠 and 𝑠 = 𝑎𝑒−𝑟. Thus

∫ 𝑎

0

𝑒∣𝑢(𝑠)∣𝑑𝑠 =
∫ ∞

0

𝑎𝑒∣𝑢(𝑟)∣

𝑒𝑟
𝑑𝑟,

and ∫ 𝑎

0

∣𝑢𝑠∣𝑑𝑠 =
∫ ∞

0

∣𝑢𝑟∣𝑑𝑟.
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Moreover, 𝑢(𝑠)∣𝑠=𝑎 = 0 yields 𝑢(𝑟)∣𝑟=0 = 0. It follows that

∣𝑢(𝑟)∣ = ∣
∫ 𝑟

0

𝑢𝑡𝑑𝑡∣ ≤
∫ ∞

0

∣𝑢𝑡∣𝑑𝑡. (2.15)

Thus ∫ ∞

0

𝑒∣𝑢(𝑟)∣

𝑒𝑟
𝑑𝑟 ≤ 𝑒{

∫∞
0 ∣𝑢𝑡∣𝑑𝑡} ⋅

∫ ∞

0

1

𝑒𝑟
𝑑𝑟 = 𝑒{

∫∞
0 ∣𝑢𝑡∣𝑑𝑡},

which yields ∫ 𝑎

0

𝑒∣𝑢∣𝑑𝑠 ≤ 𝑎 ⋅ 𝑒
∫∞
0 ∣𝑢𝑟∣𝑑𝑟 = 𝑎 ⋅ 𝑒

∫ 𝑎
0 ∣𝑢𝑠∣𝑑𝑠.

Similarly, for 𝑎 ∈ (0, 1) we can prove that: ∀𝑢 ∈ 𝐶1(𝑎, 1) with 𝑢(𝑎) = 0,

∫ 1

𝑎

𝑒∣𝑢∣𝑑𝑠 ≤ (1− 𝑎) ⋅ 𝑒
∫ 1
𝑎 ∣𝑢′∣𝑑𝑠. (2.16)

Return to the proof of Theorem 2.10: first, if 𝑓(𝑥) ∈ 𝐶1(0, 1) then from∫ 1

0
(𝑓 − 𝑓𝐴)𝑑𝑥 = 0, we know that there exists 𝑎 ∈ (0, 1) such that 𝑓(𝑎)− 𝑓𝐴 = 0.

From (2.14) and (2.16) we have

∫ 1

0

𝑒∣𝑓−𝑓𝐴∣𝑑𝑥 =

∫ 𝑎

0

𝑒∣𝑓−𝑓𝐴∣𝑑𝑥+
∫ 1

𝑎

𝑒∣𝑓−𝑓𝐴∣𝑑𝑥

≤ 𝑎 ⋅ 𝑒
∫ 𝑎
0 ∣𝑓 ′∣𝑑𝑥 + (1− 𝑎) ⋅ 𝑒

∫ 1
𝑎 ∣𝑓 ′∣𝑑𝑥

≤ 𝑎 ⋅ 𝑒
∫ 1
0 ∣𝑓 ′∣𝑑𝑥 + (1− 𝑎) ⋅ 𝑒

∫ 1
0 ∣𝑓 ′∣𝑑𝑥

= 𝑒
∫ 1
0 ∣𝑓 ′∣𝑑𝑥.

Since 𝐶1(0, 1) is dense in 𝑊 1,1(0, 1), (2.13) follows from standard density argu-

ment.

Note that if 𝑓(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then (2.13) is an identity, thus coefficient 1 is

optimal. Moreover, it is easy to see from (2.15) that the equality holds only if
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𝑓 ′ = 0, that is, 𝑓(𝑥) is a constant function.

Remark 2.11. Generally for 𝑓 ∈ 𝑊 1,1(𝑎, 𝑎+ 𝜆), we can use rescaling and shifting

of variable to obtain

1

𝜆

∫ 𝑎+𝜆

𝑎

𝑒∣𝑓−𝑓𝐴∣𝑑𝑥 ≤ 𝑒
∫ 𝑎+𝜆
𝑎 ∣𝑓 ′∣𝑑𝑥, (2.17)

where 𝑓𝐴 = 1
𝜆

∫ 𝑎+𝜆
𝑎

𝑓𝑑𝑥. It is also clear from the proof of Theorem 2.10 that a

function in 𝑊 1,1(𝑎, 𝑎+ 𝜆) is in fact in 𝐿∞(𝑎, 𝑎+ 𝜆).

From (2.17) we know that for a given smooth function 𝑓(𝑥) on (𝑎, 𝑎 + 𝜆),

the larger is the integral
∫ 𝑎+𝜆
𝑎

exp{∣𝑓 − 𝑓𝐴∣}𝑑𝑥, the larger is the integral of its

derivative. Thus the larger is the change. For a mere integrable function 𝑓(𝑥),

we thus detect its abrupt changes by seeking for the intervals (𝑎, 𝑎 + 𝜆) where

integral
∫ 𝑎+𝜆
𝑎

exp{∣𝑓 − 𝑓𝐴∣}𝑑𝑥 is large.

Remark 2.12. Using the integral of exponential function is optimal in the follow-

ing sense: Sobolev-Poincaré inequality says that for any 𝑝 ∈ (1,+∞), there is a

constant 𝐶𝑝,𝜆 depending on 𝑝 and 𝜆 such that

(

∫ 𝑎+𝜆

𝑎

∣𝑓 − 𝑓𝐴∣𝑝𝑑𝑥)1/𝑝 ≤ 𝐶𝑝,𝜆

∫ 𝑎+𝜆

𝑎

∣𝑓 ′∣𝑑𝑥.

Thus, a large ∣∣𝑓 − 𝑓𝐴∣∣𝐿𝑝 norm implies a large ∣∣𝑓 ′∣∣𝐿1 norm and can also be used

to represent a large change. On the other hand, a large integral ∣∣𝑓 − 𝑓𝐴∣∣𝐿𝑝 does

yield a large
∫ 𝑎+𝜆
𝑎

𝑒𝑥𝑝{∣𝑓 − 𝑓𝐴∣}𝑑𝑥 norm, but not vice verse.
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2.4 Applications In Digital Signal Processing

2.4.1 Applications In One Dimensional Signal Processing

In this section, we develop an algorithm based on the Sobolev type inequality

(2.17) to detect the spikes for one-dimensional signals. we test the performance

of the algorithm with some examples.

We denote the given discrete signal with 𝑆(𝑘) for 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑙, where 𝑙 is
the length of the signal. The algorithm is as following.

Algorithm1:

Step 1. Choose the length of spikes 𝑛𝑖 ∈ (1, 𝑙), 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚.
Step 2. For each 𝑛𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚, set the 𝑗−th piece signal with length 𝑛𝑖 as

𝑆𝑗𝑛𝑖
= (𝑆(𝑗), 𝑆(𝑗 + 1), ⋅ ⋅ ⋅ , 𝑆(𝑗 + 𝑛𝑖)), for 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑙 − 𝑛𝑖.

Step 3. Compute the average of 𝑆𝑗𝑛𝑖

𝑎𝑛𝑖
(𝑗) =

1

𝑛𝑖

𝑗+𝑛𝑖−1∑
𝑘=𝑗

𝑆(𝑘),

for 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑙 − 𝑛𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚.
Step 4. For each piece of signal 𝑆𝑗𝑛𝑖

, compute the the coefficient

𝐶𝑛𝑖
(𝑗) =

1

𝑛𝑖
⋅
𝑗+𝑛𝑖−1∑
𝑘=𝑗

𝑒∣𝑆(𝑘)−𝑎𝑛𝑖 (𝑗)∣, (2.18)

for 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑙 − 𝑛𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚.
Step 5. Choose the threshold value 𝑇 and define the vectors 𝑃𝑛𝑖

as following to
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indicate the intervals where the rapid changes occur.

𝑃𝑛𝑖
(𝑗) =

⎧⎨⎩ 1 if 𝐶𝑛𝑖
(𝑗) ≥ 𝑇

0 if 𝐶𝑛𝑖
(𝑗) < 𝑇,

for all intervals (𝑗, 𝑗 + 𝑛𝑖), where 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑙 − 𝑛𝑖 and 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚.

Step 6. Define the processed signal by

𝑅𝑆(𝑗 + 𝑘) =

⎧⎨⎩ 𝑆(𝑗 + 𝑘) if 𝑃𝑛𝑖
(𝑗) > 0

0 if 𝑃𝑛𝑖
(𝑗) = 0,

for 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑙 − 𝑛𝑖, 𝑘 = 0, 1, ⋅ ⋅ ⋅ , 𝑛𝑖 and 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚.

In this algorithm, the length of each piece of signal, the value of 𝑛𝑖, certainly

affects the outcome of computation. For relative stable result, we require that 𝑛𝑖

can not be too small in applications.

In fact, we can modify the coefficients in (2.18) and make the spikes with

different sizes more comparable. Without loss of generality, we assume that

𝑛1 < 𝑛2 < ⋅ ⋅ ⋅ < 𝑛𝑚. For all 𝑛𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚, we define

𝐶𝑚
𝑛𝑖
(𝑗) = (

1

𝑛𝑖
⋅
𝑗+𝑛𝑖−1∑
𝑘=𝑗

𝑒𝑆(𝑘)−𝑎𝑛𝑖 (𝑗))
𝑛𝑚
𝑛𝑖 , (2.19)

for 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑙 − 𝑛𝑖 and 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚. We then threshold among all coeffi-

cients

{𝐶𝑚
𝑛1
(𝑗)}𝑙−𝑛1

𝑗=1 , {𝐶𝑚
𝑛2
(𝑗)}𝑙−𝑛2

𝑗=1 , ⋅ ⋅ ⋅ , {𝐶𝑚
𝑛𝑚

(𝑗)}𝑙−𝑛𝑚
𝑗=1 .

Now we test the performance of algorithm 1 with some examples. We analyze

the natural gas price data which has been shown in figure 2.1. In all figures, we

show the original signal with dot line and the detected spikes with solid line.
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Example 6. We first test the effect of changing the threshold value. Let 𝑛 = 8 and

compute the coefficients 𝐶𝑛(𝑗) in (2.18). We take the maximum of the coefficients

as the threshold value 𝑇 and show the detected spike in figure 2.5 (a). Then we

change the threshold value 𝑇 properly such that 1% coefficients are larger than

the threshold value. The detected spikes are shown in figure 2.5 (b). We can see

that more spikes are found.

0 100 200 300 400 500 600
7.9

8

8.1

8.2

8.3

8.4

8.5

(a) keep the largest coefficient

0 100 200 300 400 500 600
7.9

8

8.1

8.2

8.3

8.4

8.5

(b) Keep 1% coefficients

Figure 2.5: 𝑛 = 8

In the following two examples we test the effect of computing different type

coefficients when the length of spikes has multi-choices.

Example 7. Let 𝑛1 = 4, 𝑛2 = 8, 𝑛3 = 16 and the threshold value 𝑇 equal the

maximum of the coefficients. We first compute the coefficients 𝐶𝑛𝑖
(𝑗) in (2.18)

and show the detected spike in figure 2.6 (a). We can see that the spike in figure

2.6 (a) is the same as the spike in figure 2.5 (a). It is because that the largest

coefficient is one of the coefficients with 𝑛2 = 8. Then we compute the coefficients

𝐶𝑚
𝑛𝑖
(𝑗) in (2.19) and show the detected spike in figure 2.6 (b). We still find the

spike at the same location as in figure 2.6 (a) but the spike is shorter than the

spike in figure 2.6 (a). The reason is that the largest coefficient among 𝐶𝑚
𝑛𝑖
(𝑗) is

a coefficient with 𝑛1 = 4. Thus we make the shorter spike are more comparable
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to the longer one by computing coefficients 𝐶𝑚
𝑛𝑖
(𝑗).
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(a) Compute 𝐶𝑛𝑖(𝑗)
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(b) Compute 𝐶𝑚
𝑛𝑖
(𝑗)

Figure 2.6: Let 𝑛1 = 4, 𝑛2 = 8, 𝑛3 = 16 and only keep the largest coefficient

Example 8. Let 𝑛1 = 4, 𝑛2 = 8, 𝑛3 = 16. In this example, we choose the threshold

value 𝑇 properly such that 4 coefficients are larger than the threshold value. We

first compute the coefficients 𝐶𝑛𝑖
(𝑗) in (2.18) and show the detected spikes in

figure 2.7 (a). It looks that there is only one spike in figure 2.7 (a) but the spike

is longer than the spike in figure 2.6 (a). The reason is that we find more spikes

that are overlap with each other. We then compute coefficients 𝐶𝑚
𝑛𝑖
(𝑗) in (2.19)

and show the detected spikes in figure 2.7 (b). In this case, we find spikes at two

different locations.

From these examples, we can see how the threshold value,the length of spikes

and the different type coefficients affect spike detection results.

2.4.2 Applications In Image Edge Detection

The edges of an image are the sudden, sustained changes in average image

intensity that extend along a contour [10]. The purpose of detecting the edges

of an image is to capture the important information and structure of the image.
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(a) Compute 𝐶𝑛𝑖(𝑗)
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(b) Compute 𝐶𝑚
𝑛𝑖
(𝑗)

Figure 2.7: Let 𝑛1 = 4, 𝑛2 = 8, 𝑛3 = 16 and keep 4 large coefficients

There are many edge detection methods, but most of them are based on com-

puting the discrete derivatives of images. In this section, we develop an edge

detection algorithm which is based on the Sobolev type inequality in Theorem

2.10.

For a 𝑁 ×𝑀 image 𝐼(𝑖, 𝑗), 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 , we view each

row and each column of the image as one-dimensional signals and cut them into

small pieces. The algorithm is following.

Algorithm 2.

step1. Choose a value 𝑛 with 𝑛 < 𝑁 and 𝑛 < 𝑀 , which is the length of each

small piece of signal.

step2. Set 𝑎𝑥(𝑖, 𝑗) = 1
𝑛

∑𝑗+𝑛−1
𝑘=𝑗 𝐼(𝑖, 𝑘), and 𝑏𝑥(𝑖, 𝑗) = 1

𝑛

∑𝑗+𝑛−1
𝑘=𝑗 𝑒∣𝐼(𝑖,𝑘)−𝑎𝑥(𝑖,𝑗)∣, for

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 − 𝑛.

step3. Set 𝑎𝑦(𝑖, 𝑗) = 1
𝑛

∑𝑖+𝑛−1
𝑘=𝑖 𝐼(𝑘, 𝑗), and 𝑏𝑦(𝑖, 𝑗) = 1

𝑛

∑𝑖+𝑛−1
𝑘=𝑖 𝑒∣𝐼(𝑘,𝑗)−𝑎𝑦(𝑖,𝑗)∣, for

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 𝑛, 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 .

step4. Set 𝑏(𝑖, 𝑗) =
√
𝑏𝑥(𝑖, 𝑗)2 + 𝑏𝑦(𝑖, 𝑗)2, for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁−𝑛, 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑀−

𝑛.
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step5. Choose the threshold value 𝑇 and define the edge function 𝑒 as :

𝑒(𝑖, 𝑗) =

⎧⎨⎩ 1 𝑖𝑓 𝑏(𝑖, 𝑗) ≥ 𝑇

0 𝑖𝑓 𝑏(𝑖, 𝑗) < 𝑇,

for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 𝑛, 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 − 𝑛.

In this algorithm, the detected edges may be thick due to the large value of

𝑛. Thus we can apply an edge thinning process if needed and modify algorithm

2 by setting the edge function 𝑒 as following,

𝑒(𝑖, 𝑗) =

⎧⎨⎩ 1 𝑖𝑓 𝑏(𝑖, 𝑗) ≥ 𝑇, 𝑏(𝑖− 1, 𝑗) < 𝑇, 𝑏(𝑖, 𝑗 − 1) < 𝑇

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 𝑛, 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑀 − 𝑛.

We now test the performance of algorithm 2 with some examples. We first

use algorithm 2 to process some simple images in figure 2.8 and we indicate the

detected edge locations using white contours in the map of edges(edge-map).

(a) Image A (b) Image B (c) Image C

Figure 2.8: where are the edges?

Example 9. We first let 𝑛 = 3 and the threshold value 𝑇 = 0. The edge-maps are

shown in figure 2.9. From these edge-maps, we can see that we find the edge in
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(a) Edge-map A (b) Edge-map B (c) Edge-map C

Figure 2.9: Small scale edges

the middle of image A and four edges in image B. For image C, we find the edge

in the middle of the image and a lots of small edges on the right half part of the

image.

Example 10. Now we let 𝑛 = 10, 𝑇 = 0 and we apply the edge thinning process

to detected edges. The edge-maps are shown in figure 2.10. The edge in the

(a) Edge-map A (b) Edge-map B (c) Edge-map C

Figure 2.10: large scale edges

middle of image A and the edge in the middle of image C are detected. Only two

edges are detected in image B. Some edges in image B and image C are missed

due to the larger value of 𝑛.

Example 11. In this example, we let 𝑛 = 3, but we increase the threshold value of

each image to the average of the coefficients matrix 𝑏. The edge-maps are shown
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(a) Edge-map A (b) Edge-map B (c) Edge-map C

Figure 2.11: Sharper small scale edges

in figure 2.11. We find the edge in the middle of image A, the edge in the middle

of image C and a lots of small edges on the right part of image C because all of

them are the edges between black and white, the sharpest edge for gray images.

For image B, two edges are blocked by the higher threshold value because they

are not considered as an edge under the higher threshold value.

From these examples, we can see that we can use algorithm 2 to detect

different type edges by adjusting the value 𝑛 and 𝑇 . Before we process some

more typical images with algorithm 2, we introduce three common edge detection

operators: Roberts operator, Prewitt operator and Sobel operator. All these

edge detection operators are based on computing the partial discrete derivatives

of images.

For a 𝑁 ×𝑁 gray image 𝐼(𝑖, 𝑗), 𝑖, 𝑗 = 1, 2, 3, ⋅ ⋅ ⋅ , 𝑁 , the Roberts operator is

defined as

𝑅(𝑖, 𝑗) =
√

(𝐼(𝑖, 𝑗)− 𝐼(𝑖+ 1, 𝑗 + 1))2 + (𝐼(𝑖, 𝑗 + 1)− 𝐼(𝑖+ 1, 𝑗))2,

for 𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 . In the implementation of Roberts operator, two templates
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are introduced as following:

⎛⎜⎝ 1 0

0 −1

⎞⎟⎠ ,

⎛⎜⎝ 0 1

−1 0

⎞⎟⎠ . (2.20)

To detect edges with Roberts operator, we first compute the two-dimensional

convolution of the image and these two matrices respectively and get two matrices

𝑀1, 𝑀2. Then we can get the matrix 𝑅 by setting

𝑅(𝑖, 𝑗) =
√
𝑀1(𝑖, 𝑗)2 +𝑀1(𝑖, 𝑗)2, 𝑓𝑜𝑟 𝑖, 𝑗 = 1, 2, 3, ⋅ ⋅ ⋅ , 𝑁.

We threshold the matrix 𝑅 to produce the edge-map of the given image. Similar

to Roberts operator, the Prewitt operator can be implemented with the following

templates: ⎛⎜⎜⎜⎜⎝
−1 −1 −1

0 0 0

1 1 1

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
−1 0 1

−1 0 1

−1 0 1

⎞⎟⎟⎟⎟⎠ . (2.21)

For Sobel operator, the templates are

⎛⎜⎜⎜⎜⎝
−1 −2 −1

0 0 0

1 2 1

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
−1 0 1

−2 0 2

−1 0 1

⎞⎟⎟⎟⎟⎠ . (2.22)

In applications, the Prewitt operator and Sobel operator are not as sensitive to

noise as Roberts operator because they average the estimations of ∂
∂𝑥

and ∂
∂𝑦

along three rows and columns respectively.

The image processing toolbox of Matlab 7.9.0 provides a function for image

edge detection and the syntax is as following:
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BW = edge(I,‘method’);

BW = edge(I,‘method’,thresh);

BW = edge(I,‘method’,thresh,direction).

The parameter ‘method’ can be chosen as edge detection operators including

Roberts operator, Prewitt operator or Sobel operator. Now we use the command

BW = edge(I,‘method’) and different operators to process the camera man image.

The edge-maps are shown in figure 2.12. From these edge-maps we can see that

(a) Original camera man (b) Roberts operator

(c) Prewitt operator (d) Sobel operator

Figure 2.12: Edge detection with different operators

these three operators have very similar edge detection results for a smooth image.

We process the camera man image with algorithm 2 and compare the per-

formance of algorithm 2 with that of those edge detection operators.
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Example 12. We first let 𝑛 = 2 and the threshold value 𝑇 equal the average of

the coefficients matrix 𝑏. The edge-map is shown in figure 2.13 (a). We then

change the value of 𝑛 to 4 but still choose the average of the coefficients matrix

𝑏 as the threshold value. The edge-map is shown in figure 2.13 (b). The edges in

figure 2.13 (b) are thick since 𝑛 = 4 and no edge thinning process is applied to

the detected edges.

(a) n=2 (b) n=4

Figure 2.13: Edge detection with algorithm 2

Now we test the performance of these edge detection operators and algorithm

2 for noised images.

Example 13. Figure 2.14 (a) is the camera man image which has been corrupted

with a Gaussian noise. The mean of the noise is 0 and the variance is 0.05.

Figure 2.14 (b), (c) and (d) are the edge-maps produced by Roberts operator,

Prewitt operator and Sobel operator respectively. From these edge-maps, we can

see that for a noised image, the Prewitt operator and Sobel operator produce

better edge-maps.

We process the noised camera man image in figure 2.14 (a) with algorithm

2 in the following example.
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(a) Noised Image (b) Roberts operator

(c) Prewitt operator (d) Sobel operator

Figure 2.14: Edge detection for noised image

Example 14. To process the noised images, we adjust the value of 𝑛 in algorithm

2 to reduce its noise sensitivity and choose the average of the coefficients matrix

𝑏 as the threshold value 𝑇 . We first let 𝑛 = 3 and show the edge-map in figure

2.15 (a). Then we change the value of 𝑛 to 7 and show the edge-map in figure

2.15 (b). We can see that the algorithm 2 is sensitive to the noise very much

when 𝑛 = 3 and it produce better edge-map when 𝑛 = 7.
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(a) Algorithm 2 with n=3 (b) Algorithm 2 with n=7

Figure 2.15: Edge detection for noised image
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Chapter 3

Parabolic Equation Related To

Curve Motion

3.1 Curvature And Curve Evolution

In this section, we quote some basic definitions related to curve motion from

Do Carmo’s book [14].

Definition 3.1. A parametrized differentiable plane curve is a differentiable map

𝐹 : 𝐼 → ℝ2 of an open interval 𝐼 = (𝑎, 𝑏) of the real line ℝ into ℝ2.

It means that 𝐹 is a correspondence which maps each 𝑢 ∈ 𝐼 into a point

𝐹 (𝑢) = (𝑥(𝑢), 𝑦(𝑢)) ∈ ℝ2 and the functions 𝑥(𝑢), 𝑦(𝑢) are differentiable. The

variable 𝑢 is called the parameter of the curve.

The vector(𝑥′(𝑢), 𝑦′(𝑢)) = 𝐹 ′(𝑢) ∈ ℝ2 is called the tangent vector of the

curve 𝐹 at point 𝑢.

Definition 3.2. A parametrized differentiable plane curve 𝐹 : 𝐼 → ℝ2 is said to

be regular if 𝐹 ′(𝑢) ∕= 0 for all 𝑢 ∈ 𝐼.
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Given 𝑢 ∈ 𝐼, the arc length of a regular parametrized plane curve 𝐹 : 𝐼 → ℝ2

from the point 𝑢0, is define by

𝑠(𝑢) =

∫ 𝑢

𝑢0

∣𝐹 ′(𝑣)∣𝑑𝑣, (3.1)

where

∣𝐹 ′(𝑣)∣ =
√
𝑥′(𝑣)2 + 𝑦′(𝑣)2

is the length of the vector 𝐹 ′(𝑣).

Definition 3.3. Let 𝐹 : 𝐼 → ℝ2 be a plane curve parametrized by arc length

𝑠 ∈ 𝐼. The number ∣𝐹 ′′(𝑠)∣ = 𝑘(𝑠) is called the curvature of 𝐹 at 𝑠.

Let 𝐹 (𝑢): [0, 1] → ℝ2 be such a closed plane curve imbedded in ℝ2, 𝑘 be

its curvature, 𝑓(⋅) be a given function and 𝑁 be the inner unit normal vector

of the curve 𝐹 then the evolution of 𝐹 (𝑢) along its normal direction in ℝ2 is as

following :

𝐹𝑡 = 𝑓(𝑘)𝑁. (3.2)

If 𝑓(𝑥) = 𝑥, it is the well-known curve shortening flow [15]. It has been proved

in [16] that for the curve-shortening flow, the curvature evolves according to the

equation

∂𝑘

∂𝑡
=
∂2𝑘

∂𝑠2
+ 𝑘3. (3.3)

Let 𝜃 be the angle between the tangent vector and the 𝑥 axis. We can use the

angle 𝜃 as a universal parameter and the curvature can be written as 𝑘 = 𝑘(𝜃).

Then the equation (3.3) is equivalent to

∂𝑘

∂𝑡
= 𝑘2(

∂2𝑘

∂𝜃2
+ 𝑘). (3.4)

40



It is known (see, for example [16]) that a positive 2𝜋 periodic function 𝑘(𝜃)

represents the curvature function of a simple closed curve if and only if

∫ 2𝜋

0

cos 𝜃

𝑘(𝜃)
𝑑𝜃 =

∫ 2𝜋

0

sin 𝜃

𝑘(𝜃)
𝑑𝜃 = 0.

In the rest of this chapter, we study the curve motions based on differential

equations similar to (3.4). For given polar curves (𝜃, 𝜌(𝜃)), if the deformation of

curves depends on both the shape of the figures and the location(or coordinate

system), we classify it as an adaptive flow. On the other hand , if a curve flow

does not depend on the choice of the coordinate system, we classify it as a non-

adaptive flow. In particular, if 𝜌 is given as a curvature function of a given curve

, then it is a non-adaptive flow. We will study examples for both adaptive and

non-adaptive flows.

3.2 Adaptive Flows

We first introduce an adaptive curve flow where 𝜌(𝜃) can be considered as

the polar distance for a given star-shaped polar curve (𝜃, 𝜌(𝜃)).

For any positive, 2𝜋 periodic function 𝜌(𝜃) ∈ 𝐶2[0, 2𝜋], and a given positive

parameter 𝛼, its 𝛼-flow constant is defined in [19] by

𝑅𝛼
𝜌 = 𝜌3(𝛼𝜌𝜃𝜃 + 𝜌). (3.5)

Define the average 𝛼- flow constant by

𝑅
𝛼

𝜌 =

∫ 2𝜋

0
𝜌(𝛼𝜌𝜃𝜃 + 𝜌)𝑑𝜃∫ 2𝜋

0
𝜌−2𝑑𝜃

. (3.6)
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We introduce our motion equation as

𝜌𝑡 =
1

4
(𝑅𝛼

𝜌 −𝑅
𝛼

𝜌 )𝜌, that is 𝜌𝑡 =
𝛼

4
𝜌4𝜌𝜃𝜃 +

1

4
𝜌5 − 1

4
𝑅
𝛼

𝜌𝜌. (3.7)

We will show the following theorem.

Theorem 3.4. For 𝛼 ≥ 4, if 𝜌(𝜃, 𝑡) satisfies (3.7) with 𝜌(𝜃, 0) = 𝜌0(𝜃), where

𝜌0(𝜃) ∈ 𝐶0[0, 2𝜋] is a positive, 2𝜋 periodic function, then 𝜌(𝜃, 𝑡) exists for all

𝑡 > 0.

3.2.1 Basic Properties

Before we derive estimates on function 𝜌 which satisfies (3.7), we establish

certain general properties of the flow for 𝛼 > 0.

In this subsection, we assume that 𝜌 > 0. This assumption is satisfied by

solutions to the flow with positive initial data. It is easy to see from the definition

of the flow that along flow (3.7),

∂𝑡

∫ 2𝜋

0

𝜌−2𝑑𝜃 =
1

2

∫ 2𝜋

0

(𝑅
𝛼

𝜌 −𝑅𝛼
𝜌 )𝜌

−2𝑑𝜃 = 0. (3.8)

Due to this, we can assume, through the proof of Theorem 3.4, that
∫ 2𝜋

0
𝜌−2𝑑𝜃 =

2𝜋.

Lemma 3.5. Along flow (3.7), 𝑅 := 𝑅𝛼
𝜌 and 𝑅 := 𝑅

𝛼

𝜌 satisfy

𝑅𝑡 =
𝛼

4
𝜌2(𝜌2𝑅𝜃)𝜃 +𝑅(𝑅−𝑅), (3.9)

and

∂𝑡𝑅 =
1

4𝜋

∫ 2𝜋

0

(𝑅−𝑅)2𝜌−2𝑑𝜃. (3.10)
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Proof. The proof is essentially given in [19] in the language of conformal geometry.

We just re-cook the computation here:

𝑅𝑡 =(𝜌3(𝛼𝜌𝜃𝜃 + 𝜌))𝑡 = 3𝜌2𝜌𝑡(𝛼𝜌𝜃𝜃 + 𝜌) + 𝜌3(𝛼𝜌𝑡𝜃𝜃 + 𝜌𝑡)

= 3𝜌−1𝜌𝑡𝑅 + 𝜌3
(
𝛼(𝜌 ⋅ 𝜌𝑡

𝜌
)𝜃𝜃 + 𝜌 ⋅ 𝜌𝑡

𝜌

)
=

3

4
(𝑅−𝑅)𝑅 + 𝛼𝜌2(𝜌2 ⋅ (𝜌𝑡

𝜌
)𝜃)𝜃 +𝑅 ⋅ 𝜌𝑡

𝜌

=
𝛼

4
𝜌2(𝜌2𝑅𝜃)𝜃 +𝑅(𝑅−𝑅).

Here, the sort of magic computation

𝜌3
(
𝛼(𝜌 ⋅ 𝜌𝑡

𝜌
)𝜃𝜃 + 𝜌 ⋅ 𝜌𝑡

𝜌

)
= 𝛼𝜌2(𝜌2 ⋅ (𝜌𝑡

𝜌
)𝜃)𝜃 +𝑅 ⋅ 𝜌𝑡

𝜌

in facts is due to certain conformal covariant property, discovered in early work

of Ni and Zhu [19] (see the proof of Proposition 1 there). Since

∫ 2𝜋

0

𝜌−2𝑑𝜃 = 2𝜋, and 𝑅 =
1

2𝜋

∫ 2𝜋

0

𝑅𝜌−2𝑑𝜃,

we have

∂𝑡𝑅 =
1

2𝜋

∫ 2𝜋

0

𝑅𝑡𝜌
−2𝑑𝜃 − 1

𝜋

∫ 2𝜋

0

𝑅𝜌−3𝜌𝑡𝑑𝜃

=
𝛼

8𝜋

∫ 2𝜋

0

(𝜌2𝑅𝜃)𝜃𝑑𝜃 +
1

2𝜋

∫ 2𝜋

0

𝑅(𝑅−𝑅)𝜌−2𝑑𝜃 − 1

4𝜋

∫ 2𝜋

0

𝑅(𝑅−𝑅)𝜌−2𝑑𝜃

=
1

4𝜋

∫ 2𝜋

0

𝑅(𝑅−𝑅)𝜌−2𝑑𝜃

=
1

4𝜋

∫ 2𝜋

0

(𝑅−𝑅)2𝜌−2𝑑𝜃.
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From Lemma 3.5, it is clear that along flow (3.7), 𝑅
𝛼

𝜌 is monotonically in-

creasing. In order to prove the global existence of the flow for certain 𝛼, we need

to show that 𝑅
𝛼

𝜌 is bounded above for such 𝛼. In fact, for 𝛼 ≥ 4, such upper

bound follows from a sharp Sobolev type inequality on 𝑆1, due to Ni and Zhu

(see, e.g. Theorem 2 in [19]), and Hang [26].

Lemma 3.6. ([19], [26]) For any positive 𝑢(𝜃) ∈ 𝐻1(𝑆1),

∫ 2𝜋

0

(𝑢2𝜃 −
1

4
𝑢2)𝑑𝜃 ⋅

∫ 2𝜋

0

𝑢−2(𝜃)𝑑𝜃 ≥ −𝜋2,

and the equality holds if and only if

𝑢(𝜃) = 𝑐

√
𝜆2 cos2

𝜃 − 𝛼

2
+ 𝜆−2 sin2 𝜃 − 𝛼

2

for some 𝜆, 𝑐 > 0 and 𝛼 ∈ [0, 2𝜋).

Corollary 3.7. If 𝛼 > 4, then for all 𝑢(𝜃) ∈ 𝐻1(𝑆1) and 𝑢 > 0,

∫ 2𝜋

0

(𝛼𝑢2𝜃 − 𝑢2)𝑑𝜃 ⋅
∫ 2𝜋

0

𝑢−2(𝜃)𝑑𝜃 ≥ −4𝜋2,

and the equality holds if and only if 𝑢(𝜃) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

Proof.

∫ 2𝜋

0

(𝛼𝑢2𝜃 − 𝑢2)𝑑𝜃 ⋅
∫ 2𝜋

0

𝑢−2(𝜃)𝑑𝜃 ≥ −4𝜋2 +

∫ 2𝜋

0

(𝛼− 4)𝑢2𝜃𝑑𝜃 ⋅
∫ 2𝜋

0

𝑢−2(𝜃)𝑑𝜃

≥ −4𝜋2,

and the equality holds if and only if
∫ 2𝜋

0
𝑢2𝜃 = 0, that is, 𝑢(𝜃) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

44



From the definition of 𝛼-flow constant, we obtain immediately

Corollary 3.8. (I). If 𝛼 > 4, then

𝑅
𝛼

𝜌 ≤ 4𝜋2,

and the equality holds if and only if 𝜌(𝜃) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

(II). If 𝛼 = 4, then

𝑅
𝛼

𝜌 ≤ 4𝜋2,

and the equality holds if and only if

𝜌(𝜃) = 𝑐

√
𝜆2 cos2

𝜃 − 𝛼

2
+ 𝜆−2 sin2 𝜃 − 𝛼

2

for some 𝜆, 𝑐 > 0 and 𝛼 ∈ [0, 2𝜋).

3.2.2 Global Existence For 𝛼 ≥ 4

We prove Theorem 3.4 in this subsection. Throughout this subsection we

always assume that 𝛼 ≥ 4.

Suppose that 𝜌(𝜃, 𝑡) satisfies (3.7) and 𝜌(𝜃, 0) = 𝜌0(𝜃), where 𝜌0(𝜃) is a

positive, 2𝜋 periodic function in 𝐶0(𝑆1). Then the local existence follows from

the standard argument via fixed point theorem. The global existence follows from

parabolic estimates and the following a priori estimate.

Proposition 3.9. Suppose 𝜌(𝜃, 𝑡) satisfies (3.7) and 𝜌(𝜃, 0) = 𝜌0(𝜃). If 𝜌0(𝜃) > 0

and 𝛼 ≥ 4, then for any given 𝑡0 > 0, there is a positive constant 𝑐 = 𝑐(𝑡0) > 0

such that

1

𝑐(𝑡0)
≤ 𝜌(𝜃, 𝑡) ≤ 𝑐(𝑡0), ∀𝑡 ∈ [0, 𝑡0].

45



Proof. The essential idea is the same as that in [20]. For simplicity, we use 𝑅 to

replace 𝑅𝛼
𝜌 and 𝑅 to replace 𝑅

𝛼

𝜌 in the proof. From (3.9) we know that

𝑅𝑡 +𝑅𝑅 ≥ 𝛼

4
𝜌2(𝜌2𝑅𝜃)𝜃.

It follows from the maximum principle that

𝑅(𝜃, 𝑡) ≥ min
𝜃
𝑅(𝜃, 0) ⋅ 𝑒−

∫ 𝑡
0 𝑅𝑑𝜏 . (3.11)

From Corollary 3.8 we know that 𝑅 ≤ 1. Thus there is a constant 𝑐1(𝜌0(𝜃)) (it

might be negative), depending on 𝜌0(𝜃), such that

𝑅(𝜃, 𝑡) ≥ 𝑐1(𝜌0(𝜃)), 𝑡 ∈ [0, 𝑡0]. (3.12)

It then follows from (3.7) that there is a positive constant 𝑐2(𝜌0(𝜃), 𝑡0), depending

on 𝜌0(𝜃) and 𝑡0, such that

𝜌(𝜃, 𝑡) = 𝜌0(𝜃) ⋅ 𝑒 1
4

∫ 𝑡
0 (𝑅−𝑅)𝑑𝜏 ≥ 𝑐2(𝜌0(𝜃), 𝑡0) > 0, 𝑡 ∈ [0, 𝑡0]. (3.13)

To estimate the upper bound on 𝜌(𝜃, 𝑡), we first observe that for fixed 𝑡, 𝜌 satisfies

𝛼𝜌𝜃𝜃 + 𝜌 = 𝑅𝜌−3, 𝜌 > 0, and

∫ 2𝜋

0

𝜌−2𝑑𝜃 = 2𝜋.

Multiplying the above by 𝜌 and then integrating it from 0 to 2𝜋, we obtain

∫ 2𝜋

0

𝜌2𝑑𝜃 − 𝛼

∫ 2𝜋

0

𝜌2𝜃𝑑𝜃 =

∫ 2𝜋

0

𝑅𝜌−2𝑑𝜃 = 2𝜋𝑅 ≥ 2𝜋𝑅0, (3.14)
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where 𝑅0 = 𝑅(𝑡)∣𝑡=0. The last inequality follows from (3.10) in Lemma 3.5. Let

𝑀(𝑡) = ∣{𝜃 : 𝜌(𝜃, 𝑡) ≥ 2}∣. Then (3.13) implies

2𝜋 =

∫ 2𝜋

0

𝜌−2𝑑𝜃 =

∫
𝜌≥2

𝜌−2𝑑𝜃 +

∫
𝜌<2

𝜌−2𝑑𝜃

≤𝑀(𝑡)

4
+ (2𝜋 −𝑀(𝑡))𝑐2(𝜌0(𝜃), 𝑡0)

−2.

Therefore there exists 𝛿(𝑡0) > 0, such that 2𝜋 −𝑀(𝑡) ≥ 𝛿(𝑡0). That is

∣{𝜃 : 𝜌(𝜃, 𝑡) ≤ 2}∣ > 𝛿(𝑡0), for 𝑡 ∈ [0, 𝑡0].

If sup𝑡∈[0,𝑡0)
∫ 2𝜋

0
𝜌2(𝑡)𝑑𝜃 = ∞, then there exists a sequence 𝑡𝑖 → 𝑡∗ ≤ 𝑡0, such that∫ 2𝜋

0
𝜌2(𝑡𝑖)𝑑𝜃 = 𝜏 2𝑖 → ∞ as 𝑖→ ∞. We define 𝑣𝑖(𝜃) = 𝜌(𝜃, 𝑡𝑖)/∣𝜏𝑖∣. It follows from

(3.14) that 𝑣𝑖 satisfies

∫ 2𝜋

0

𝑣2𝑖 𝑑𝜃 = 1, and 𝛼

∫ 2𝜋

0

(𝑣𝑖)
2
𝜃𝑑𝜃 ≤

∫ 2𝜋

0

𝑣2𝑖 𝑑𝜃 −
2𝜋𝑅0

𝜏 2𝑖
≤ 𝑐3,

which yields that {𝑣𝑖} is a bounded set in 𝐻1 ↪→ 𝐶0, 1
2 . Therefore up to a subse-

quence 𝑣𝑖 ⇀ 𝑣0 in 𝐻1 weakly and 𝑣0 ∈ 𝐶0, 1
2 . From Sobolev compact embedding

we know that 𝑣0 satisfies
∫ 2𝜋

0
𝑣20𝑑𝜃 = 1, 𝑣0(𝜃) ≥ 0, ∣{𝜃 : 𝑣0(𝜃) = 0}∣ ≥ 𝛿1(𝑡0) > 0.

Also, from the weak convergence 𝑣𝑖 ⇀ 𝑣0 in 𝐻1, we know that
∫ 2𝜋

0
(𝑣0)

2
𝜃𝑑𝜃 ≤

lim𝑖→∞
∫ 2𝜋

0
(𝑣𝑖)

2
𝜃𝑑𝜃, thus

0 ≤
∫ 2𝜋

0

𝑣20𝑑𝜃 − 𝛼

∫ 2𝜋

0

(𝑣0)
2
𝜃𝑑𝜃.

On the other hand, for an interval 𝐼 ⊂ (0, 2𝜋) with positive measure if 𝑢 ∈ 𝐻1(𝑆1)
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with 𝑢 = 0 in 𝐼 and 𝑢 ≥ 0, then for any 𝛼 ≥ 4,

∫ 2𝜋

0

𝑢2𝑑𝜃 − 𝛼

∫ 2𝜋

0

(𝑢)2𝜃𝑑𝜃 ≤ 0

and ” = ” holds if and only if 𝑢 ≡ 0. Contradiction. Therefore
∫
𝜌2𝑑𝜃 is bounded

on [0, 𝑡0], so is
∫
𝜌2𝜃𝑑𝜃. Thus 𝜌(𝜃, 𝑡) is bounded in 𝐻1 ↪→ 𝐶0, 1

2 , which implies that

there exists a 𝑐(𝑡0) > 0 such that

1

𝑐(𝑡0)
≤ 𝜌(𝜃, 𝑡) ≤ 𝑐(𝑡0), 𝑡 ∈ [0, 𝑡0].

3.2.3 Limiting Shapes

It is clear from the proof of Theorem 3.4 (in particular, from (3.13)) that

𝜌(𝜃, 𝑡) can be bounded from below by a universe positive constant independent

of 𝑡0 if the curve has initial non-negative flow constant 𝑅(𝜃, 0) ≥ 0. One could

further prove that ∣∣𝑅 − 𝑅∣∣𝐿∞ → 0, which could yield that as 𝑡 → ∞, 𝜌(𝜃, 𝑡) →
𝜌∞(𝜃) with constant 𝑅. It can be directly checked that the only 2𝜋 periodic

solution to 𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 for 𝛼 > 4 is 𝜌∞(𝜃) = 𝑐𝑜𝑛𝑠𝑡. Thus the limiting shape

is a circle. On the other hand, for 𝛼 = 4, we know from Lemma 3.6 that 𝜌∞(𝜃)

may not be constant. Some limiting shapes for 𝛼 = 4 are illustrated in figure 3.1.

3.3 Curve Shortening Type Flows-Revisit

A family of non-adaptive flows is the following curvature flows:

𝑘𝑡 = 𝑘2 ⋅ (𝜏𝜃𝜃 + 𝜏) (3.15)
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(a) Curve 𝜌 = ((𝜆2/2 + 1/2𝜆2) +
(𝜆2/2− 1/2𝜆2)𝑐𝑜𝑠(𝜃))1/2 for 𝜆 = 2.
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(b) Curve 𝜌 = ((𝜆2/2 + 1/2𝜆2) +
(𝜆2/2− 1/2𝜆2)𝑐𝑜𝑠(𝜃))1/2 for 𝜆 = 8.

Figure 3.1: Limiting shape is not a circle for 𝜆 ∕= 1.

where 𝑘(𝜃, 𝑡) is the curvature and 𝜏 is a function of 𝑘. Under the flow, one can

check that the orthogonal condition

∫ 2𝜋

0

cos 𝜃

𝑘
𝑑𝜃 =

∫ 2𝜋

0

sin 𝜃

𝑘
𝑑𝜃 = 0 (3.16)

holds for all 𝑡 > 0, which guarantees that 𝑘(𝜃, 𝑡) is the curvature function of a

closed curve. In fact, (3.15) is equivalent to the generalized curve shortening flow

(3.5) with 𝜙(𝑘) = 𝜏. From PDE point of view, we shall give another proof for the

global existence when 𝜏 = 𝑘𝑝 + 𝜆 for 𝑝 > 1 and 𝜆 ≥ 0.

Theorem 3.10. Assume that 𝜏 = 𝑘𝑝 + 𝜆 for 𝑝 > 1 and 𝜆 ≥ 0 in (3.15). Then

solution 𝑘(𝜃, 𝑡) to (3.15) with 𝑘(𝜃, 0) = 𝑘0(𝜃) ∈ 𝐿∞(𝑆1) satisfying (1.7) exists for

all 𝑡 > 0.

In order to introduce non-adaptive flows for a convex, simple closed curve 𝐹

in ℝ2 with curvature function 𝑘(𝜃) (𝜃 ∈ [0, 2𝜋]), for the time being we introduce

non-adaptive curvature 𝑅𝜏,𝛼 (similar to [19]) by

𝑅𝜏,𝛼 = 𝑘(𝛼𝜏𝜃𝜃 + 𝜏),

where 𝛼 > 0 and 𝜏 is a function of 𝑘. We then introduce the following non-
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adaptive curve flow

𝑘𝑡 = 𝑅𝜏,𝛼𝑘 = 𝑘2(𝛼𝜏𝜃𝜃 + 𝜏). (3.17)

However, to assure that 𝑘(𝜃, 𝑡) will be a curvature of a simple closed curve along

the flow, we need to choose 𝛼 = 1, since only in the case of 𝛼 = 1, we have

∂𝑡

∫ 2𝜋

0

cos 𝜃

𝑘
𝑑𝜃 = −

∫ 2𝜋

0

cos 𝜃

𝑘2
⋅ 𝑘𝑡𝑑𝜃

= −
∫ 2𝜋

0

cos 𝜃 ⋅ (𝜏𝜃𝜃 + 𝜏)𝑑𝜃

= −
∫ 2𝜋

0

𝜏 ⋅ ((cos 𝜃)𝜃𝜃 + cos 𝜃) = 0,

and

∂𝑡

∫ 2𝜋

0

sin 𝜃

𝑘
𝑑𝜃 = 0,

which guarantee that, for all 𝑡 > 0, the orthogonal condition is preserved:

∫ 2𝜋

0

sin 𝜃

𝑘
𝑑𝜃 =

∫ 2𝜋

0

cos 𝜃

𝑘
𝑑𝜃 = 0. (3.18)

On the other hand, it can be shown (see, e.g. [16]) that flow

𝑘𝑡 = 𝑘2(𝜏𝜃𝜃 + 𝜏) (3.19)

with the initial curvature satisfying (3.18) is equivalent to curve shortening flow:

𝐹𝑡 = 𝜏𝑁

where 𝑁 is the inner unit norm of the curve 𝐹 .
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3.3.1 Homogeneous Curve Shortening Flows

From the view point of curvature flow, we shall give a direct proof of the

global existence for homogeneous curve shortening flow (i.e. 𝜏 = 𝑘𝑝) for 𝑝 > 1.

Throughout this subsection, we always assume that 𝑝 > 1, and use

𝑅𝑝 = 𝑘((𝑘𝑝)𝜃𝜃 + 𝑘𝑝) (3.20)

to represent the 𝑝− 1-curve shortening flow curvature. The 𝑝− 1-curvature flow

is defined as:

𝑘𝑡 = 𝑅𝑝𝑘.

Introducing the average of curvature by

𝑅𝑝 =

∫ 2𝜋

0
𝑅𝑝 ⋅ 𝑘𝑝−1𝑑𝜃∫ 2𝜋

0
𝑘𝑝−1𝑑𝜃

, (3.21)

we will consider its normalized curve shortening flow:

𝑘𝑡 = (𝑅𝑝 −𝑅𝑝)𝑘. (3.22)

Proposition 3.11. For 𝑝 > 1, if 𝑘(𝜃, 𝑡) satisfies (3.22) with 𝑘0(𝜃) = 𝑘(𝜃, 0) > 0

satisfying (3.18), then 𝑘(𝜃, 𝑡) > 0 exists for all 𝑡 > 0.

Proof. Again, we only need to derive the positive lower bound and upper bound

for 𝑘(𝜃, 𝑡). From the strong Maximal Principle we know that 𝑘(𝜃, 𝑡) > 0.

The main step in obtaining the upper bound for 𝑘(𝜃, 𝑡) is to show that for

any given time 𝑡0 > 0,
∫ 2𝜋

0
𝑘𝑝−1𝑑𝜃, as well as

∫ 2𝜋

0
[(𝑘𝑝)𝜃]

2 − [𝑘𝑝]2𝑑𝜃 are bounded

for 𝑡 ∈ (0, 𝑡0).
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We first observe that flow (3.22) preserves
∫ 2𝜋

0
𝑘𝑝−1𝑑𝜃:

∂𝑡

∫ 2𝜋

0

𝑘𝑝−1𝑑𝜃 = (𝑝− 1)

∫ 2𝜋

0

(𝑅𝑝 −𝑅𝑝)𝑘
𝑝−1𝑑𝜃 = 0.

Without loss of generality, we can assume that
∫ 2𝜋

0
𝑘𝑝−1𝑑𝜃 = 2𝜋 for all 𝑡 > 0. It

follows that for any 𝛿 > 0, there is a constant 𝐶𝛿 > 0 such that 𝑘 ≤ 𝐶𝛿 except on

intervals of length less than or equal to 𝛿. We use the assumption of 𝑝 > 1 here.

Also, we have, along the flow, that

∂𝑡

∫ 2𝜋

0

𝑅𝑝 ⋅ 𝑘𝑝−1𝑑𝜃 = ∂𝑡

∫ 2𝜋

0

𝑘𝑝((𝑘𝑝)𝜃𝜃 + 𝑘𝑝)𝑑𝜃

=

∫ 2𝜋

0

(𝑘𝑝)𝑡((𝑘
𝑝)𝜃𝜃 + 𝑘𝑝)𝑑𝜃 +

∫ 2𝜋

0

𝑘𝑝(((𝑘𝑝)𝑡)𝜃𝜃 + (𝑘𝑝)𝑡)𝑑𝜃

= 2

∫ 2𝜋

0

(𝑘𝑝)𝑡((𝑘
𝑝)𝜃𝜃 + 𝑘𝑝)𝑑𝜃

= 2𝑝

∫ 2𝜋

0

𝑘𝑝−1𝑘𝑡((𝑘
𝑝)𝜃𝜃 + 𝑘𝑝)𝑑𝜃

= 2𝑝

∫ 2𝜋

0

(𝑅𝑝 −𝑅𝑝)𝑅𝑝𝑘
𝑝−1𝑑𝜃

= 2𝑝

∫ 2𝜋

0

(𝑅𝑝 −𝑅𝑝)
2𝑘𝑝−1𝑑𝜃

≥ 0.

Note: ∫ 2𝜋

0

𝑅𝑝 ⋅ 𝑘𝑝−1𝑑𝜃 =

∫ 2𝜋

0

(−[(𝑘𝑝)𝜃]
2 + 𝑘2𝑝)𝑑𝜃.

So we know that there is a constant 𝐷 depending only on 𝑘0 such that

∫ 2𝜋

0

(
∂(𝑘𝑝)

∂𝜃
)2𝑑𝜃 ≤

∫ 2𝜋

0

𝑘2𝑝𝑑𝜃 +𝐷. (3.23)

Finally, we follow the proof of the pointwise estimate in Gage and Hamilton
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[16] to obtain the upper bound for curvature. Let 𝑘(𝜓0) = max[0,2𝜋] 𝑘(𝜃), and

𝜓 ∈ [𝑎, 𝑏] so that 𝑘 > 𝐶𝛿 in interval (𝑎, 𝑏) and 𝑘(𝑎) = 𝐶𝛿. Then the length of

[𝑎, 𝑏] is less than or equal to 𝛿. For any 𝜓 ∈ [𝑎, 𝑏],

𝑘(𝜓)𝑝 = 𝑘(𝑎)𝑝 +

∫ 𝜓

𝑎

∂(𝑘𝑝)

∂𝜃
𝑑𝜃

≤ 𝐶𝑝
𝛿 +

√
𝛿(

∫ 𝜓

𝑎

(
∂(𝑘𝑝)

∂𝜃
)2𝑑𝜃)1/2

≤ 𝐶𝑝
𝛿 +

√
𝛿(

∫ 2𝜋

0

(
∂(𝑘𝑝)

∂𝜃
)2𝑑𝜃)1/2

≤ 𝐶𝑝
𝛿 +

√
𝛿(

∫ 2𝜋

0

𝑘2𝑝𝑑𝜃 +𝐷)1/2.

It follows that for 𝑘𝑀𝐴𝑋 = max𝑡∈[0,2𝜋] 𝑘(𝜃, 𝑡),

𝑘𝑝𝑀𝐴𝑋 ≤ 𝐶𝑝
𝛿 +

√
2𝜋

√
𝛿𝑘𝑝𝑀𝐴𝑋 +

√
2𝜋𝛿𝐷.

Choosing 𝛿 small enough we derive that

𝑘𝑀𝐴𝑋 < 2𝐶𝛿 + (2𝛿𝐷)
1
2𝑝 . (3.24)

To show that 𝑘 is bounded from below, we observe that

𝑅𝑝 =

∫ 2𝜋

0

𝑘2𝑝 − (𝑘𝑝)2𝜃𝑑𝜃 ≤ 𝐷1. (3.25)

Let

𝑘 = 𝑘 ⋅ 𝑒
∫ 𝑡
0 𝑅𝑝𝑑𝑠.

𝑘 satisfies

𝑘𝑡 = 𝑒−(𝑝+1)
∫ 𝑡
0 𝑅𝑝𝑑𝑠 ⋅ (𝑘2(𝑘𝑝)𝜃𝜃 + (𝑘)𝑝+2).
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The Maximal Principle yields that min𝜃∈[0,2𝜋] 𝑘(𝜃, 𝑡) is monotonically non-decreasing

in 𝑡. Combining this with (3.24), we have: for any 𝑡0 > 0,

𝑘(𝜃, 𝑡0) ≥ min 𝑘0(𝜃) ⋅ 𝑒−
∫ 𝑡0
0 𝑅𝑝𝑑𝑠 ≥ 𝐶(𝑡0). (3.26)

From (3.24) and (3.26) we know the solution exists for all time 𝑡 to equation

𝑘𝑡 = 𝑘2(𝑘𝑝)𝜃𝜃 + 𝑘𝑝+2 −𝑅𝑝𝑘,

which is the same as (3.22).

We shall discuss the limiting shape under the flow at the end of this section.

Remark 3.12. The proof does not work for 𝑝 = 1. Even though we can show that∫ 2𝜋

0
ln 𝑘𝑑𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 under the normalized flow for 𝑝 = 1, we can not show that

𝑘(𝜃) is bounded from below from the equation. On the other hand, we know that

singularity does arise for an immersion convex curve under curve shortening flow

for 𝑝 = 1, see for example, Angenent [24].

3.3.2 Non-homogeneous Curve Shortening Flows

More generally, one considers the following non-homogenous curve shorten-

ing flow. Define the curvature

𝑅𝑝𝜆 = 𝑘((𝑘𝑝)𝜃𝜃 + 𝑘𝑝) + 𝜆𝑘 = 𝑘((𝑘𝑝 + 𝜆)𝜃𝜃 + (𝑘𝑝 + 𝜆)),

where 𝜆 is a parameter. The corresponding curvature flow is given by

𝑘𝑡 = 𝑅𝑝𝜆𝑘 = 𝑘2((𝑘𝑝)𝜃𝜃 + 𝑘𝑝) + 𝜆𝑘2.
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Define

𝑅𝑝𝜆 =

∫ 2𝜋

0
𝑅𝑝𝜆𝑘

𝑝−1𝑑𝜃∫ 2𝜋

0
𝑘𝑝−1𝑑𝜃

.

For 𝑝 > 1 and 𝜆 ≥ 0, we will show the global existence to the above flow (Theorem

3.10) via proving the global existence to the normalized flow

𝑘𝑡 = (𝑅𝑝𝜆 −𝑅𝑝𝜆)𝑘. (3.27)

Proposition 3.13. For 𝑝 > 1 and 𝜆 ≥ 0, if 𝑘(𝜃, 𝑡) satisfies (3.27) with 𝑘0(𝜃) =

𝑘(𝜃, 0) > 0 satisfying (3.18), then 𝑘(𝜃, 𝑡) > 0 exists for all 𝑡 > 0.

The proof is quite similar to that for homogeneous curve shortening flow.

We shall just sketch it here.

Proof. Since 𝜆 ≥ 0, from the strong Maximal Principle we know that 𝑘(𝜃, 𝑡) > 0.

Again we first observe that flow (3.27) preserves
∫ 2𝜋

0
𝑘𝑝−1𝑑𝜃:

∂𝑡

∫ 2𝜋

0

𝑘𝑝−1𝑑𝜃 = (𝑝− 1)

∫ 2𝜋

0

(𝑅𝑝𝜆 −𝑅𝑝𝜆)𝑘
𝑝−1𝑑𝜃 = 0.

Without loss of generality, we assume that
∫ 2𝜋

0
𝑘𝑝−1𝑑𝜃 = 2𝜋 for all 𝑡 > 0. It

follows that for any 𝛿 > 0, there is a constant 𝐶𝛿 > 0 such that 𝑘 ≤ 𝐶𝛿 except on

intervals of length less than or equal to 𝛿. The assumption of 𝑝 > 1 is used here.

Consider energy

𝐹𝜆(𝑘) :=

∫ 2𝜋

0

𝑘𝑝((𝑘𝑝)𝜃𝜃 + 𝑘𝑝 − 2𝜆)𝑑𝜃 =

∫ 2𝜋

0

{𝑘2𝑝 − 2𝜆𝑘𝑝 − [(𝑘𝑝)𝜃]
2}𝑑𝜃.
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Along the flow we have

∂𝑡𝐹 (𝑘) = ∂𝑡

∫ 2𝜋

0

{𝑘2𝑝 − 2𝜆𝑘𝑝 − [(𝑘𝑝)𝜃]
2}𝑑𝜃

=

∫ 2𝜋

0

{(2𝑝𝑘𝑡𝑘2𝑝−1 − 2𝜆𝑝𝑘𝑡𝑘
𝑝−1 − 2(𝑘𝑝)𝜃(𝑘

𝑝)𝑡𝜃}𝑑𝜃

= 2𝑝

∫ 2𝜋

0

𝑘𝑡𝑘
𝑝−1{𝑘𝑝 − 𝜆+ (𝑘𝑝)𝜃𝜃}𝑑𝜃

= 2𝑝

∫ 2𝜋

0

(𝑅𝑝𝜆 −𝑅𝑝𝜆)𝑅𝑝𝜆𝑘
𝑝−1𝑑𝜃

= 2𝑝

∫ 2𝜋

0

(𝑅𝑝𝜆 −𝑅𝑝𝜆)
2𝑘𝑝−1𝑑𝜃

≥ 0.

Thus, there is a constant 𝐷2 depending only on 𝑘0 such that

∫ 2𝜋

0

(
∂(𝑘𝑝)

∂𝜃
)2𝑑𝜃 ≤

∫ 2𝜋

0

𝑘2𝑝𝑑𝜃 +𝐷2. (3.28)

From here, one can show that 𝑘 is bounded from above and from below by a

positive constant, similar to the proof of Proposition 3.11. This yields the global

existence for the flow.

3.3.3 Limiting Shapes

If 𝑘 is the curvature of a simple and closed convex curve, (3.27) is equivalent

to nonhomogeneous curve shortening flow

𝐹𝑡 = (𝑘𝑝 − 𝜆)𝑁. (3.29)
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Let 𝜏 = 𝑘𝑝 − 𝜆. Consider its geometric normalized flow

𝐹𝑡 = (𝜏 − 𝜏𝑎)𝑁, (3.30)

where 𝜏𝑎 =
∫ 𝐿
0
𝜏𝑑𝑠/𝐿 =

∫ 2𝜋

0
𝑘𝑝𝑑𝑠/𝐿− 𝜆. Then it is an area-preserving flow:

∂𝑡(𝑎𝑟𝑒𝑎) = −
∫ 𝐿

0

(𝜏 − 𝜏𝑎)𝑑𝑠 = 0.

On the other hand, we observe that

∂𝑡(𝑙𝑒𝑛𝑔𝑡ℎ) = −
∫ 𝐿

0

(𝜏 − 𝜏𝑎)𝑘𝑑𝑠

= −
∫ 𝐿

0

𝑘𝑝+1𝑑𝑠+

∫ 𝐿
0
𝑘𝑝𝑑𝑠 ⋅ ∫ 𝐿

0
𝑘𝑑𝑠

𝐿

≤ 0.

Thus, the isoperimetric constant is decreasing along the flow, which indicate the

limit shape to flow (3.30) will be a circle. However, this does not indicate that the

limiting shape for flow (3.27) is also a circle. In fact, when 𝑝 = 1/3, 𝜆 = 0, above

argument indicates that limiting shape for (3.30) is a circle, but the limiting

shape for (3.27) (which is the normalized affine curvature flow) in fact is known

to be an elliptic point.

3.4 New Adaptive Flows

Our understanding of curve flow problem from curvature flow equation prompts

us to consider a new adaptive flows as follows.

For any positive, 2𝜋 periodic function 𝜌(𝜃) ∈ 𝐶2[0, 2𝜋], and a given positive
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parameter 𝛼, we define its (𝛼, 𝜏)-shorten-flow constant by

𝑅𝛼
𝜏 (𝜌) = 𝜌(𝛼(𝜏)𝜃𝜃 + 𝜏),

where 𝜏 is a function of 𝜌. The average (𝛼, 𝜏)- shorten-flow constant is given by

𝑅
𝛼

𝜏 =

∫ 2𝜋

0
𝑅𝛼
𝜏 ⋅ 𝜌𝑝−1𝑑𝜃∫ 2𝜋

0
𝜌𝑝−1𝑑𝜃

.

Then the new adaptive motion equation can be defined as

𝜌𝑡 = (𝑅𝛼
𝜏 −𝑅

𝛼

𝜏 )𝜌.

Here we shall just focus on a concrete example: 𝜏 = 𝜌𝑝 for 𝑝 > 0, and call

the corresponding (𝛼, 𝜏)-shorten-flow constant the (𝛼, 𝑝)-flow constant:

𝑅𝛼
𝑝 (𝜌) = 𝜌(𝛼(𝜌𝑝)𝜃𝜃 + 𝜌𝑝). (3.31)

The average (𝛼, 𝑝)- flow constant is given by

𝑅
𝛼

𝑝 =

∫ 2𝜋

0
𝑅𝛼
𝑝 ⋅ 𝜌𝑝−1𝑑𝜃∫ 2𝜋

0
𝜌𝑝−1𝑑𝜃

, (3.32)

and the adaptive motion equation is defined as

𝜌𝑡 = (𝑅𝛼
𝜌 −𝑅

𝛼

𝜌 )𝜌, that is 𝜌𝑡 = 𝛼𝜌2(𝜌𝑝)𝜃𝜃 + 𝜌𝑝+2 −𝑅
𝛼

𝑝𝜌. (3.33)

Our current methods enable us to obtain the global existence to above equa-

tion for 𝑝 ≥ 1
3
for certain range of 𝛼.
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3.4.1 The Case of 𝑝 > 1

We first prove the following theorem.

Theorem 3.14. For 𝛼 > 0 and 𝑝 > 1, if 𝜌(𝜃, 𝑡) satisfies (3.33) with 𝜌(𝜃, 0) =

𝜌0(𝜃), where 𝜌0(𝜃) ∈ 𝐿∞[0, 2𝜋] is a positive, 2𝜋 periodic function, then 𝜌(𝜃, 𝑡)

exists for all 𝑡 > 0.

Proof. The proof is almost the same as that of Proposition 3.11. The strong

Maximal Principle yields that 𝜌(𝜃, 𝑡) > 0.

First, observe that flow (3.33) preserves
∫ 2𝜋

0
𝜌𝑝−1𝑑𝜃:

∂𝑡

∫ 2𝜋

0

𝜌𝑝−1𝑑𝜃 = (𝑝− 1)

∫ 2𝜋

0

(𝑅𝛼
𝑝 −𝑅

𝛼

𝑝 )𝜌
𝑝−1𝑑𝜃 = 0.

Without loss of generality, we can assume that
∫ 2𝜋

0
𝜌𝑝−1𝑑𝜃 = 2𝜋 for all 𝑡 > 0.

Next, we only need to show that
∫ 2𝜋

0
𝛼[(𝜌𝑝)𝜃]

2−[𝜌𝑝]2𝑑𝜃 are bounded for 𝑡 ∈ (0, 𝑡0).

Then, similar to the proof of Proposition 3.11, from these we can show that 𝜌 is

bounded from below and above by some positive constants for fixed time 𝑡0 > 0,

which yields the global existence of solution.
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Along the flow, we have

∂𝑡

∫ 2𝜋

0

𝑅𝛼
𝑝 ⋅ 𝜌𝑝−1𝑑𝜃 = ∂𝑡

∫ 2𝜋

0

𝜌𝑝(𝛼(𝜌𝑝)𝜃𝜃 + 𝜌𝑝)𝑑𝜃

=

∫ 2𝜋

0

(𝜌𝑝)𝑡(𝛼(𝜌
𝑝)𝜃𝜃 + 𝜌𝑝)𝑑𝜃 +

∫ 2𝜋

0

𝜌𝑝((𝛼(𝜌𝑝)𝑡)𝜃𝜃 + (𝜌𝑝)𝑡)𝑑𝜃

= 2

∫ 2𝜋

0

(𝜌𝑝)𝑡(𝛼(𝜌
𝑝)𝜃𝜃 + 𝜌𝑝)𝑑𝜃

= 2𝑝

∫ 2𝜋

0

𝜌𝑝−1𝜌𝑡(𝛼(𝜌
𝑝)𝜃𝜃 + 𝜌𝑝)𝑑𝜃

= 2𝑝

∫ 2𝜋

0

(𝑅𝑝 −𝑅
𝛼

𝑝 )𝑅𝑝𝜌
𝑝−1𝑑𝜃

= 2𝑝

∫ 2𝜋

0

(𝑅𝑝 −𝑅
𝛼

𝑝 )
2𝜌𝑝−1𝑑𝜃

≥ 0.

Note: ∫ 2𝜋

0

𝑅𝑝 ⋅ 𝜌𝑝−1𝑑𝜃 =

∫ 2𝜋

0

(−𝛼[(𝜌𝑝)𝜃]2 + 𝜌2𝑝)𝑑𝜃.

So we know that there is a constant 𝐷3 depending only on 𝑘0 such that

∫ 2𝜋

0

(𝛼[(𝜌𝑝)𝜃]
2 − 𝜌2𝑝)𝑑𝜃 ≤ 𝐷3.

3.4.2 Limiting Shapes

Since 𝜌 is an arbitrary positive, 2𝜋 periodic function, we can not expect to

show that the flow will converge to circle via isoperimetric inequality. Rather,

the limiting shapes, if the flow converges, are rather complicated. The main

difficulty is due to the lack of understanding of 2𝜋 periodic positive solution
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following equation

𝛼𝑢𝜃𝜃 + 𝑢 = 𝑢−
1
𝑝 on 𝑆1. (3.34)

It is unknown whether 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 is the only solution. For 𝑝 > 1 and 𝛼 close to

zero, we will show that most likely that there are non-constant solutions.

For 𝑢 ∈ 𝐻1(𝑆1), we define

ℱ𝛼,𝑝(𝑢) =

∫
𝑆1

(𝑢2𝑝 − 𝛼(𝑢𝑝)2𝜃)𝑑𝜃,

and

Γ𝑝,2𝜋 = {𝑢 ∈ 𝐻1(𝑆1) :

∫ 2𝜋

0

𝑢𝑝−1𝑑𝜃 = 2𝜋}.

From the proof of Theorem 3.14 we know that along flow (3.33), if initial func-

tion 𝜌0 ∈ Γ𝑝,2𝜋, then 𝜌 ∈ Γ𝑝,2𝜋, and energy ℱ𝛼,𝑝(𝜌) is monotonically increasing.

Moreover, we know 𝜌 is uniformly bounded with respect to time 𝑡, thus ℱ𝛼,𝑝(𝜌)

is bounded above. These shall imply that 𝜌(𝜃, 𝑡) → 𝜌∗(𝜃) in suitable sense, where

𝑅𝛼
𝑝 (𝜌∗) = 𝑅

𝛼

𝑝 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

On the other hand, if 𝜌0 ∈ Γ𝑝,2𝜋 is not a constant, then we know that

∫ 2𝜋

0

𝜌2𝑝0 𝑑𝜃 >
( ∫ 2𝜋

0

𝜌𝑝−1
0 𝑑𝜃

) 2𝑝
𝑝−1 ⋅ 2𝜋 𝑝+1

𝑝−1 = 2𝜋.

Thus, there is a 𝛼0 > 0, such that for 𝛼 ∈ (0, 𝛼0), ℱ𝛼,𝑝(𝜌) > 2𝜋, this indicates

that the limit 𝜌∗ can not be constant.

For general 𝛼 ∈ (0, 4), one may find 𝜌0 given by

𝜌𝑝0 = 𝑐𝑝

√
𝜆2 cos2

𝜃

2
+ 𝜆−2 sin2 𝜃

2
,
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for suitable 𝜆 > 0 and 𝑐𝑝 so that 𝜌0 ∈ Γ𝑝,2𝜋 and ℱ𝛼,𝑝(𝜌) > 2𝜋. With such initial

data, the limiting of 𝜌 could not be constant if it converges. We shall not pursue

the details here.

3.4.3 The Case Of 𝑝 ∈ [1/3, 1)

We shall show that the proof of Proposition 3.9 can be adapted to establish

Proposition 3.15. For 𝛼 ≥ 4 and 𝑝 ∈ [1/3, 1), if 𝜌(𝜃, 𝑡) satisfies (3.33) with

𝜌(𝜃, 0) = 𝜌0(𝜃), where 𝜌0(𝜃) ∈ 𝐶1[0, 2𝜋] is a positive, 2𝜋 periodic function, then

𝜌(𝜃, 𝑡) exists for all 𝑡 > 0.

Proof. Again, we only need to show that for any given 𝑡0 > 0, there is a positive

constant 𝐶4 = 𝐶4(𝑡0) depending on 𝑡0, such that

1

𝐶4(𝑡0)
≤ 𝜌(𝜃, 𝑡) ≤ 𝐶4(𝑡0).

Since the flow preserve
∫ 2𝜋

0
𝜌𝑝−1𝑑𝜃, without loss of generality, we assume that∫ 2𝜋

0
𝜌𝑝−1𝑑𝜃 = 1.

We first derive the low bound: Let

𝜌 = 𝜌 ⋅ 𝑒
∫ 𝑡
0 𝑅

𝛼
𝑝 𝑑𝑠.

Then 𝜌 satisfies

𝜌𝑡 = 𝑒−(𝑝+1)
∫ 𝑡
0 𝑅

𝛼
𝑝 𝑑𝑠 ⋅ (𝜌2(𝜌𝑝)𝜃𝜃 + (𝜌)𝑝+2).

The Maximal Principle yields that min𝜃∈[0,2𝜋] 𝑘(𝜃, 𝑡) is monotonically non-decreasing
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in 𝑡, thus for any 𝑡0 > 0,

𝜌(𝜃, 𝑡) ≥ min 𝜌0(𝜃) ⋅ 𝑒−
∫ 𝑡0
0 𝑅

𝛼
𝑝 𝑑𝑠, ∀𝑡 ∈ [0, 𝑡0].

On the other hand, since 𝛼 ≥ 4, using Corollary 3.7 and Hölder inequality,

we have

𝑅
𝛼

𝑝 =

∫ 2𝜋

0

(𝜌𝑝)2 − 𝛼[(𝜌𝑝)𝜃]
2𝑑𝜃 ≤ 4𝜋2(

∫ 2𝜋

0

(𝜌𝑝)−2𝑑𝜃)−1

≤ 𝐶(

∫ 2𝜋

0

𝜌𝑝−1𝑑𝜃)
2𝑝
𝑝−1

= 𝐶.

So we obtain the low bound for 𝜌(𝜃, 𝑡). To obtain the upper bound, we first

observe that for all 𝛼 > 0, along the flow,

∂𝑡

∫ 2𝜋

0

𝑅𝛼
𝑝 ⋅ 𝜌𝑝−1𝑑𝜃 = 2𝑝

∫ 2𝜋

0

(𝑅𝑝 −𝑅
𝛼

𝑝 )
2𝜌𝑝−1𝑑𝜃 ≥ 0.

Thus, ∫ 2𝜋

0

(𝜌𝑝)2 − 𝛼[(𝜌𝑝)𝜃]
2𝑑𝜃 ≥ 𝑅

𝛼

𝑝 (0), (3.35)

where 𝑅
𝛼

𝑝 (0) = 𝑅
𝛼

𝑝 (𝑡)∣𝑡=0.

Similar to the proof of Proposition 3.9, since 𝜌 is bounded from below by a

positive constant and
∫ 2𝜋

0
𝜌𝑝−1𝑑𝜃 = 1, we know that there is a constant 𝛿1(𝑡0) > 0,

such that

∣{𝜃 : 𝜌(𝜃, 𝑡) ≤ 2}∣ > 𝛿1(𝑡0), for 𝑡 ∈ [0, 𝑡0]. (3.36)

Similar to the proof of Proposition 3.9, from (3.35) and (3.36), we can show that∫ 2𝜋

0
𝜌2𝑝𝑑𝜃 is bounded. In turn, from (3.35) we know that

∫ 2𝜋

0
[(𝜌𝑝)𝜃]

2𝑑𝜃 is bounded.
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Thus 𝜌 is bounded due to Sobolev embedding 𝐻1(𝑆1) ↪→ 𝐶0, 1
2 (𝑆1).

3.4.4 The Case Of 𝑝 = 1

For 𝑝 = 1, we define the average total curvature as

𝑅
𝛼

1 =

∫ 2𝜋

0

𝑅𝛼
1𝑑𝜃,

and consider the normalized flow

𝜌𝑡 = (𝑅𝛼
1 −𝑅

𝛼

1 )𝜌. (3.37)

We will show

Proposition 3.16. For 𝛼 ≥ 4 if 𝜌(𝜃, 𝑡) satisfies (3.37) with 𝜌(𝜃, 0) = 𝜌0(𝜃),

where 𝜌0(𝜃) ∈ 𝐶1[0, 2𝜋] is a positive, 2𝜋 periodic function, then 𝜌(𝜃, 𝑡) exists for

all 𝑡 > 0.

Proof. First, we check that

∂𝑡

∫ 2𝜋

0

ln 𝜌𝑑𝜃 =

∫ 2𝜋

0

(𝑅𝛼
1 −𝑅

𝛼

1 )𝑑𝜃 = 0.

Without of loss of generality,we can assume that
∫ 2𝜋

0
ln 𝜌𝑑𝜃 = 1. Using Corollary
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3.7, we have

𝑅
𝛼

1 =

∫ 2𝜋

0

𝜌2 − 𝛼𝜌2𝜃𝑑𝜃 ≤ 4𝜋2(

∫ 2𝜋

0

𝜌−2𝑑𝜃)−1

≤ 𝐶(

∫ 2𝜋

0

𝜌𝛼−1𝑑𝜃)
2𝛼
𝛼−1 (for any 𝛼 ∈ (1/3, 1))

≤ 𝐶 ⋅ 𝑒𝑥𝑝{ 1

2𝜋

∫ 2𝜋

0

ln 𝜌𝑑𝜃}

≤ 𝐶1.

Similar to the proof of Proposition 3.15, the upper bound for 𝑅
𝛼

1 yields the

positive lower bound for 𝜌.

Also, along the flow,

∂𝑡

∫ 2𝜋

0

𝑅𝛼
1𝑑𝜃 = ∂𝑡

∫ 2𝜋

0

𝜌(𝛼𝜌𝜃𝜃 + 𝜌)𝑑𝜃

=

∫ 2𝜋

0

𝜌𝑡(𝛼𝜌𝜃𝜃 + 𝜌)𝑑𝜃 +

∫ 2𝜋

0

𝜌(𝛼𝜌𝑡𝜃𝜃 + 𝜌𝑡)𝑑𝜃

= 2

∫ 2𝜋

0

𝜌𝑡(𝛼𝜌𝜃𝜃 + 𝜌)𝑑𝜃

= 2

∫ 2𝜋

0

(𝑅1 −𝑅
𝛼

1 )𝑅1𝑑𝜃

= 2

∫ 2𝜋

0

(𝑅𝑝 −𝑅
𝛼

𝑝 )
2𝑑𝜃

≥ 0.

Thus ∫ 2𝜋

0

𝜌2 − 𝛼𝜌2𝜃𝑑𝜃 ≥ 𝑅
𝛼

𝑝 (0), (3.38)

where 𝑅
𝛼

1 (0) = 𝑅
𝛼

1 (𝑡)∣𝑡=0. Since 𝜌 is bounded from below by a positive constant
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and
∫ 2𝑝𝑖

0
ln 𝜌𝑑𝜃 = 1, we have

∣{𝜃 : 𝜌(𝜃, 𝑡) ≤ 2}∣ > 𝛿2(𝑡0), for 𝑡 ∈ [0, 𝑡0] (3.39)

for some positive constant 𝛿2(𝑡0). We then can derive the upper bound for 𝜌 from

(3.38) and (3.39). The global exsitence then follows from the standard parabolic

estimates.

Combining the Proposition 3.15 and 3.16, we have the following theorem.

Theorem 3.17. Assume that 𝑝 ∈ [1/3, 1] and 𝛼 > 0 in (3.33). Then for any

positive function 𝜌0 ∈ 𝐿∞(𝑆1), solution 𝜌(𝜃, 𝑡) satisfying (3.33) with 𝜌(𝜃, 0) =

𝜌0(𝜃) exists for all 𝑡 > 0.

Remark 3.18. In fact, for 𝑝 = 1/3, equation (3.33) is equivalent to equation (3.7)
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