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Abstract

The question of how the Casimir effect relates to a system’s geometry is of fundamental

interest. In this thesis, we present new results for interior Casimir self-energies of

various integrable geometries and show interesting systematic relations between these

energies. In particular, we consider prisms with triangular cross sections (equilateral,

hemiequilateral, and right isosceles triangles), triangular polygons of the same cross

sections, and three tetrahedra. The triangular prisms are of infinite or finite lengths.

We obtain interior Casimir energies for these cavities subject to Dirichlet and Neumann

boundary conditions. In addition to these boundary conditions, we also obtain

electromagnetic Casimir energies for the infinite prisms.

These energies are regularized using various consistent methods, one of which is

regularization by point-splitting. Summing these modes explicitly using a cylinder

kernel formulation, we show that the correct Weyl divergences are obtained. We also

give closed-form results for the infinite triangular prisms. In order to understand the

geometry dependence of these energies, we rederive well-known results for rectangular

parallelepipeds (including the cube) and infinite rectangular prisms.

The analysis of these self-energies yields intriguing results. By plotting the scaled

energies against the appropriately chosen isoperimetric or isoareal quotients, we

observe interesting patterns, which hint towards a systematic functional dependence.

In addition to the calculation of new Casimir energies, this constitutes a significant

contribution to the theoretical understanding of self-energies and has interesting

implications.

x



Chapter 1

Introduction

1.1 Historical Background

In 1953, when H. B. G. Casimir proposed his model of the electron [1], few would

have convincingly thought otherwise. After all, in 1948, Casimir had shown the

world that energy differences in the vacuum due to the imposition of two parallel

conducting plates resulted, in theory, in a net attractive force between the plates [2].

He predicted that two infinite perfectly conducting plates separated by a distance a

would experience an energy per area,

E = − π2~c
720 a3

, (1.1)

which implies a force per area on the plates:

F = − d

da
E = − π2~c

240 a4
. (1.2)

The first attempt to measure this force, on the order of −1.30×10−27 N m2 a−4 [3], was

an inconclusive experiment in 1958 by Sparnaay [4]. More conclusive measurements

followed towards the end of the 20th century [5–8]. However, in 1953, Casimir’s

previous attractive result for two parallel plates pointed overwhelmingly to a model of

the electron where a similar attractive force due to bounded quantum fluctuations

or zero-point energy would offset a repulsive force due to the innate negative charge

distribution of the electron. This was not the first of such hypotheses, in fact, it

followed in the tradition of the Abraham-Lorentz and Poincaré models for the electron.
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Casimir hypothesized that if the electron were considered as a perfectly conducting

shell of radius R, a change in the zero-point energy of the system due to quantum

vacuum fluctuations would be observed of the form,

C
~c
R
, (1.3)

with C = e2/(2~c), obtained by a comparison with the electrostatic self-energy. The

hypothesis seemed plausible, yet a theoretical verification, at the very least, was still in

order. As expected, the verification arrived, almost fifteen years later, in the arduous

thesis work of T. H. Boyer [9]. To Boyer’s and most of the now-termed Casimir

Effect community’s astonishment, the calculated self-energy of a perfectly conducting

spherical shell,

E w +0.09
~c
2R

, (1.4)

was of the opposite sign, a repulsive force! This result was verified on numerous

occasions using various methods and even improved upon [10–15],

E = +0.092353
~c
2R

. (1.5)

The fact that the electromagnetic self-energy of a conducting spherical shell is repulsive

is now accepted knowledge, but such an unexpected dénouement stirred further

questions. One, in particular, concerned the link between a system’s geometry and

its self-energy, since Boyer’s result showed a non-intuitive dependence. To this end,

numerous calculations have been performed over the years for different geometries:

parallelepipeds, cubes, hypercubes, cylinders,..., with no conclusive verdict [16–20].

2



1.2 Outline

The work presented in this thesis follows in this same vein, but with new and intriguing

results [21–23]. In particular, this work showcases new interior Casimir self-energy

results for various integrable cavities: triangular prisms, triangular polygons, and

tetrahedra. Although, these are new results and deserve attention, the real highlights of

this work are the intriguing systematic dependences observed between the geometries’

self-energies and their aptly chosen geometric invariants. These systematics are

observed for well-known results as well as the newer ones being presented.

We will start with an introduction to the evaluation of Casimir energies by direct

mode summation, emphasizing in particular the approach utilizing Green’s function.

Next, will be a review of the regularization methods which are used for calculations,

followed by a section on integrable domains. The last sections will focus on the new

Casimir energy results for triangular prisms, and tetrahedra, and an overall analysis

and conclusion. Unless explictly given, most of the results in this work will be in

natural units, where ~ = 1 = c. We will adopt the convention of assigning the symbol

E to Casimir energies of closed cavities and E to Casimir energies per length or area.

A likely source of confusion, prisms will sometimes be referred to as cylinders with

a cross-sectional distinction. For instance, an infinite equilateral triangular cylinder

would denote a prism of equilateral triangular cross section and infinite length. The

term waveguide will refer to prisms or polygonal cylinders of infinite length.

3



Chapter 2

Casimir Energy: Mode Summation

2.1 Introduction

The Casimir or vacuum energy of a system is the regularized sum of its modal

energies. There are various ways of performing such calculations, yet the most direct

method remains the explicit summation over the eigenvalues of the system. As

a rough explanation, the quantum mechanical energy of a harmonic oscillator is,

En = (n+ 1/2)~ω, which implies a residual “vacuum” energy when n = 0, a particular

feature of quantum mechanics (the actual relevant theory is quantum field theory).

Therefore, the sum of these residual energies is simply,

E =
∑
n

(
1

2
~ωn

)
. (2.1)

Of course, this is only possible if the eigenvalues are known explicitly, which is the

case for integrable domains. One would also need to regularize Eq. (2.1), which is

formally divergent, with an ad-hoc method such as a regulator function or zeta function

regularization. When the eigenvalues are known implicitly, similar methods such as

the Argument Principle are useful. The classic example for a direct mode summation

is the parallel conducting plate system, Casimir’s original 1948 calculation [2]. Casimir

starts with Eq. (2.1) for the energy per unit area, which he then writes out explicitly,

E =
~c
2π2

∫ ∞
0

dkx dky

∞∑
n=−∞

√
(nπ/a)2 + k2x + k2y , (2.2)
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where a is the plate separation distance. Switching to polar coordinates, dkxdky →

k dkdθ, the previous expression becomes,

E =
~c
π

∫ ∞
0

k dk
∞∑

n=−∞

√
(nπ/a)2 + k2 , (2.3)

after the integral on θ. Casimir then subtracts the limit of this expression when

a → ∞ to obtain the change in the energy of the system due to the two parallel

conducting plates being in place,

∆E =
~c
2π

(
1

2

∫ ∞
0

k dk
∞∑

n=−∞

√
(nπ/a)2 + k2− a

π

∫ ∞
0

x dx

∫ ∞
0

dkz
√
x2 + k2z

)
. (2.4)

This previous expression still appears to be divergent, so the author introduces a

regulator f(k/km), where km is a physically motivated cutoff frequency. The idea is

that modes of higher frequency are barely contained by the conducting boundaries

and therefore contribute less to the energy. The regulator, f , is chosen such that

f(k/km) → 0 as k → ∞ and f(k/km) = 1 for k << km. Finally, after a successive

change of variables, Eq. (2.4) can be written in the form,

∆E =
~cπ2

4a3

(
1

2

∞∑
n=−∞

F (n)−
∫ ∞
0

dnF (n)

)
, (2.5)

in terms of,

F (n) =

∫ ∞
n2

dκ
√
κ f (κπ/akm) . (2.6)

He, then, makes use of the Euler-Maclaurin formula for an even function, F (−n) =

F (n), to obtain:

∞∑
n=0

F (n)− 1

2
F (0)−

∫ ∞
0

F (n)dn = − 1

12
F ′(0) +

1

720
F (3)(0) + . . . , (2.7)

5



and obtains a single physical contribution from the third-derivative term (the other

higher terms are ignored because they contain powers of πa/km, and the result should

be independent of km),

∆E = − π2~c
720 a3

, (2.8)

which yields, indeed, an attractive force (See Eq. (1.2)),

F = − π2~c
240 a4

. (2.9)

2.2 Green’s Function Approach

A roundabout way of summing modal energies directly is the method of Green’s

function, which has the advantage of automatically generating a regularization method

instead of using an ad-hoc method. For the sake of simplicity, we consider a scalar

field satisfying Dirichlet or Neumann boundary conditions. The quantum vacuum

expectation value of the field’s energy density at a point, x = (r, t), in space-time is

given by [3],

〈t00(x)〉 = lim
x→x′

1

i
∂t∂

′

tG(x, x′) , (2.10)

where G(x, x′) is Green’s function satisfying the differential equation,

(
∂2t −∇2

)
G(x, x′) = δ(x− x′) , (2.11)

and the appropriate system boundary conditions. We begin by taking the Fourier

transform of time,

G(x, x′) =

∫ ∞
−∞

dω

2π
e−iω(t−t

′)g(r, r′;ω). (2.12)

6



The goal, now, is to solve for Green’s reduced function g(r, r′;ω). First, we observe

that the eigenfunctions of the Laplacian,

−∇2φm(r) = λ2mφm(r) , (2.13)

form a complete set: ∑
m

φm(r)φ∗m(r′) = δ(r− r′) . (2.14)

After substituting Eq. (2.12) in Eq. (2.11), one notices that Green’s reduced function

can be defined as,

g(r, r′;ω) =
∑
m

φm(r)φ∗m(r′)

λ2m − ω2
. (2.15)

After applying a Euclidean rotation, ω → iζ and (t− t′)→ iτ , the energy density is

then written in the form,

〈t00(r)〉 = lim
τ→0

∑
m

φm(r)φ∗m(r)

∫ ∞
−∞

dζ

2π

(−ζ2) eiζτ

λ2m + ζ2
. (2.16)

We are now free to perform the integral as a contour integral to obtain,

〈t00(r)〉 =
1

2
lim
τ→0

∑
m

φm(r)φ∗m(r)
√
λ2m e−|τ |

√
λ2m . (2.17)

To obtain the energy, we simply integrate the energy density over the system’s volume

while choosing τ > 0,

〈T 00〉 = E =
1

2
lim
τ→0

∑
m

√
λ2m e−τ

√
λ2m . (2.18)

Again, we have used the orthonormality relation of Laplacian eigenfunctions,

∫
V

drφm(r)φ∗m(r) = 1 . (2.19)

7



This approach gives a consistent and automatically point-split regulated expression of

the divergent expression in Eq. (2.1) in terms of a traced cylinder kernel [24],

E =
1

2
lim
τ→0

(
− d

dτ

)∑
m

e−τ
√
λ2m . (2.20)

For a cylinder or infinite prism, the energy per unit length is slightly different from

the previous expression with an integral over the continuous mode number,

E =
1

2
lim
τ→0

(
− d

dτ

)∫ ∞
−∞

dk

2π

∑
m

e−τ
√
k2+λ2m . (2.21)

However, these expressions (Eqs. (2.20) and (2.21)), in their current forms, are

meaningless because they contain divergences as τ → 0. We must remove the

divergences in order to obtain a physical result, the change in the vacuum energy of

the system.
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Chapter 3

Regularization Methods

3.1 Point-Splitting Regularization

The regularization method of choice in this work is the point-splitting method. It flows

directly and consistently from the formalism of Green’s function. In addition, it allows

one to unambiguously identify the divergent pieces, the Weyl terms, while giving the

finite parts, the Casimir energies, which can be expressed as sums of Epstein zeta

functions. A typical point-split expression for a three-dimensional closed integrable

cavity with eigenvalues λ2m is Eq. (2.20):

E =
1

2
lim
τ→0

(
− d

dτ

)∑
m

e−τ
√
λ2m . (3.1)

The mode numbers, m = (k,m, n), are constrained to specific ranges depending on the

type of boundary condition considered. These constrained ranges may be reformulated

in terms of equivalent expressions with unconstrained ranges through a process of

addition and subtraction of terms while keeping track of degeneracies. It is then

possible to resum such expressions using Poisson’s summation formula,

∞∑
m=−∞

f(m) =
∞∑

n=−∞

(∫ ∞
−∞

e2πimnf(m) dm

)
, (3.2)

basically a Fourier transform, to separate parts that diverge as τ → 0 from other finite

parts. Given a traced cylinder kernel of an arbitrary real quadratic form,

S =
∞∑

m1,...,mn=−∞

e−τ
√

(m+a)j Ajk (m+a)k , (3.3)
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we obtain after following the procedure outlined above (see Appendix A),

S =
2nπ(n−1)/2 Γ((n+ 1)/2)

|det (A)|1/2
∞∑

m1,...,mn=−∞

τ e−2πimj aj

(τ 2 + 4π2kj kj)
(n+1)/2

, (3.4)

where one can now clearly identify finite and divergent terms as τ → 0. The above

formula allows us, for instance, to give useful formulæ in regularizing divergent

expressions for three-dimensional cavities,

(
− d

dτ

) ∞∑
p,q,r=−∞

e−τ
√
α(p+a)2+β(q+b)2+γ(r+c)2 (3.5)

=
24π√
αβγ τ 4

− 1

2π3
√
αβγ

∞∑′

p,q,r=−∞

e−2πi(pa+qb+rc)

(p2/α + q2/β + r2/γ)2
,

(
− d

dτ

) ∞∑
p,q=−∞

e−τ
√
α(p+a)2+β(q+b)2 (3.6)

=
4π√
αβ τ 3

− 1

4π2
√
αβ

∞∑′

p,q=−∞

e−2πi(pa+qb)

(p2/α + q2/β)3/2
,

(
− d

dτ

) ∞∑
p=−∞

e−τ
√
α(p+a)2 =

2√
α τ 2

−
√
α

2π2

∞∑′

p=−∞

e−2πi(pa)

p2
. (3.7)

The prime, here, means that all positive and negative integers are included in the sum,

but not the case where all the integers are zero.

If a few or all of the mode numbers were continuous (one mode number in the case

of infinite cylinders), then the results would be similar except for some subtle changes

(see Appendix A). For example, Eqs. (3.5), (3.6), and (3.7) would be slightly modified:

(
− d

dτ

)∫ ∞
−∞

dp
∞∑

q,r=−∞

e−τ
√
α(p+a)2+β(q+b)2+γ(r+c)2 (3.8)

=
24π√
αβγ τ 4

− 1

2π3
√
αβγ

∞∑′

q,r=−∞

e−2πi(qb+rc)

(q2/β + r2/γ)2
,
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(
− d

dτ

)∫ ∞
−∞

dp
∞∑

q=−∞

e−τ
√
α(p+a)2+β(q+b)2 (3.9)

=
4π√
αβ τ 3

− 1

4π2
√
αβ

∞∑′

q=−∞

e−2πi(qb)

(q2/β)3/2
,

(
− d

dτ

)∫ ∞
−∞

dp e−τ
√
α(p+a)2 =

2√
α τ 2

. (3.10)

3.1.1 Weyl Terms

The divergent parts one obtains after regularizing the energy are known as Weyl terms.

Weyl’s work on the asymptotic distribution of eigenvalues showed that, asymptotically,

the number of eigenvalues of the Laplacian for a cavity or membrane is related to

the geometrical properties of the cavity such as the volume, surface area, etc. [25–28].

This result is known commonly as Weyl’s law. Also an outcome of Weyl’s law, we

note that the divergent parts of a regularized cylinder kernel for a cavity or membrane

are related to its geometrical attributes. For a closed integrable cavity with Dirichlet

(D) or Neumann (N) boundary conditions, the divergent parts are of the form,

E
(D,N)
div =

3V

2π2τ 4
∓ S

8πτ 3
+

C

48πτ 2
, (3.11)

where the −/+ sign is associated respectively with Dirichlet/Neumann boundary

conditions and the corner term is defined as [29],

C =
∑
j

(
π

αj
− αj

π

)
Lj , (3.12)

with αj and Lj designating respectively the dihedral angles and their corresponding

edge lengths. For an infinite prism or polygonal cylinder, the Dirichlet and Neumann

11



divergent parts are similarly proportional to the area, perimeter, and a corner term,

E (D,N)
div =

3A

2π2τ 4
∓ P

8πτ 3
+

C

48πτ 2
. (3.13)

The new corner term is defined differently from Eq. (3.12),

C =
∑
i

(
π

αi
− αi
π

)
. (3.14)

Only the dihedral angles αj are needed. This is to be expected, since one cannot

define an edge length for an infinite prism. The electromagnetic case for infinite prisms

is also feasible. Since it is known that the electromagnetic modes for a cylindrical

waveguide of arbitrary cross section separate into two types: one satisfying Dirichlet

boundary conditions and the other Neumann boundary conditions [30], we can show

that the electromagnetic energies and Weyl terms are simply the sum of their Dirichlet

and Neumann counterparts,

E (EM)
div =

3A

π2τ 4
+

C

24πτ 2
. (3.15)

Of course, the electromagnetic corner term C is defined identically in Eq. (3.14).

3.2 Dimensional Regularization

Another method of regularization is that of dimensional regularization where one

assumes an arbitrary number of dimensions, say d, which is then analytically continued

to the correct limit at the end of the calculation. This approach is particularly suited

for calculations geared towards dimensionally-related results. For instance, it is

convenient when calculating energies of infinite cylinders and their planar polygonal
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analogues, which we will demonstrate later in this work. However, compared to the

previous method of regularization via point-splitting, this approach fails to give the

divergent parts. We start with the Casimir energy per length, E , for infinite cylindrical

geometries, generally expressed as a sum over mode frequencies in the following form,

E =
1

2

∫ ∞
−∞

dk

2π

∑
m

√
k2 + λ2m , (3.16)

where λ2m are the eigenvalues of the two-dimensional Laplacian,

(
∇2
⊥ + λ2m

)
Φm(r⊥) = 0 , (3.17)

m = (m,n) is a pair of mode numbers satisfying completeness constraints, and

Φm(r⊥) satisfies the given boundary conditions on the cylinder’s surface. Here, r⊥

denotes the two coordinates transverse to the longitudinal cylinder axis. One proceeds

by extending the one dimension for the longitudinal wavevector k to d dimensions,

dk → ddk. Is then possible after a few manipulations to write Eq. (3.16) in the form,

E = − lim
d→1

Γ(−(1 + d)/2)

2d+2π(d+1)/2

∑
m

(
λ2m
)(1+d)/2

. (3.18)

One notes that in the limit d→ 1, we obtain a Γ(−1) divergence. However, one can

surmount this problem by analytic continuation. For the cylindrical and polygonal

geometries considered, which have two-dimensional cross sections, the eigenvalue

expression λ2m is a simple quadratic form in m and n. This allows us to employ the

Chowla-Selberg formula, an exact formula for a class of Epstein zeta functions [31,32],

given in Appendix B, and thereby utilize the reflection property of the zeta function,

Γ(s)ζ(2s)π−s = Γ

(
1− 2s

2

)
ζ(1− 2s)π−(1−2s)/2 , (3.19)

which allows us to analytically continue d→ 1.
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3.3 Closed-Form Zeta Regularization

For the particular cases of square, and right isosceles, equilateral, and hemiequilateral

triangular cross sections, it is possible to write the finite results in a closed-form. This

rather impressive possibility is due to the fact that certain Epstein zeta functions may

be written as products of other elementary functions [33–39]. While it is feasible to

obtain such closed-form results for integrable polygons and polygonal cylinders, it is

not the case, at least currently, for integrable polyhedral cavities.
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Chapter 4

Reflective Cavities

4.1 The Method of Images

A classic problem in electrostatics is finding the electric potential for a point charge in

front of an infinite grounded plate. It is often surprising to note that such a problem

has the same solution as that of two opposite point charges placed at equal distances

along a perpendicular to a hypothetical infinite plane. The second configuration

satisfies the boundary conditions of the first, and given the uniqueness of the solution,

one has indeed solved the problem. Note, however, that since we have essentially

solved the problem by introducing an image charge perpendicularly opposite to the

original charge, the solution is only valid in the region containing the original charge.

This is the well-known method of images.

One may wonder whether other situations may lend themselves to such a quirky

solution, and if so how many. Indeed, there are other cases that have been described in

various articles and books [30,40–43]; in particular, we will limit ourselves to polygonal

and polyhedral cases. There are, possibly, various methods to identify these cavities.

The one we outline in the following sections is mostly from Ref. [40].

4.1.1 Polygons

The key to being able to consistently introduce a set of image charges without any

overlapping is having the appropriate angles. By imagining a point charge wedged
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between two semi-infinite planes intersecting at an angle α, one observes that in order

to accommodate an even number of point charges one needs α to be an even fraction of

2π, which implies α = π/n, where n is a positive integer. This allows us to enumerate

all the possible wedge angles: π (an infinite plate), π/2, π/3. . . . Armed with this

knowledge, one can then construct polygons with these particular angles and therefore

guarantee the use of the image method. The sum of the angles for an n-sided polygon

is (n− 2)π, which when combined with the constraints on the choice of angles gives

four cases [40]:

• Right isosceles triangles (π/2|π/4|π/4)

• Equilateral triangles (π/3|π/3|π/3)

• Hemiequilateral triangles (π/2|π/3|π/6)

• Rectangles (π/2|π/2|π/2|π/2)

It appears there are few treatments of Casimir energy calculations for polygonal

domains. One reason may be that such geometries are less physically motivated.

Two prominent articles are Refs. [19, 44]. The first reference considers the square

geometry when computing zero-point energies for hypercubes; the second reference

gives the self-energy for an equilateral geometry with Dirichlet boundary conditions.

In this work we will give new self-energies for the last two triangles: right isosceles

and hemiequilateral triangles. These results are for Dirichlet and Neumann boundary

conditions.
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Figure 4.1: Primitive cell for an equilateral triangle. This is obtained by

repeated reflections across the triangle’s boundaries meeting at the origin.

With repeated translations along primitive lattice vectors, this cell tiles

the plane. For an electrostatic problem, the red and blue circles would

represent positive and negative charges.

4.1.2 Polyhedrons

Similar conditions apply for reflective polyhedrons. By analogy, we should seek to

construct these polyhedrons with special corners which allow a consistent set of

reflected images. First, one considers a point charge wedged in a corner resulting from

the intersection of n planes and starts by enforcing the dihedral angles of the corner to

be of the form π/m, where m is again a positive integer. Since the sum of the interior

dihedral angles αj must satisfy the inequalities,

(n− 2)π <
∑
j

αj < (n+ 2)π , (4.1)

the allowed corners are all found to be trihedral corners [40]:

• (π/2|π/2|π/n), where n is a positive integer

• (π/2|π/3|π/3)
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• (π/2|π/3|π/4)

• (π/2|π/3|π/5)

Such corners are known as Möbius corners. Again, building polyhedrons out of these

trihedral corners yields a finite number of cases [40,42]:

• Three tetrahedra

• Three triangular prisms

• Rectangular prisms

The prisms can be of finite or infinite length. Casimir energy calculations for rect-

angular prisms can be found in many articles [16–19]; however, almost no attention

has been paid to the integrable tetrahedra and triangular prisms. Moreover, the

only treatments of such cavities, Refs. [45–47] appear to be erroneous. In the coming

sections, we will present new and correct treatments of these cavities. First, we will

address the construction of eigenfunctions and eigenvalues for reflective domains.

4.2 Eigenmodes

The cavities listed in the previous sections are all soluble using the method of images.

The approach we describe below is found in Terras and Swanson’s elegant work [40,41,

48], in particular Ref. [48]. The authors find that solutions for reflective domains are

best expressed in the language of group theory. They first start with a few preliminary

definitions.
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Let En be the space of real cartesian vectors of the form (x1, x2, . . . , xn). For

our work we will consider n = 2 or 3. Let V denote a domain or cavity in En with

boundaries defined by linear equations, in other words lines or planes depending on

the dimension. Let G be the space group associated with the domain V . In order for

V to be an image domain, i.e. an integrable cavity, the set {g · x|g ∈ G} must have

one and only one element in V . If there were to be more than one element in V , then

it would be impossible to apply the image method, and V would not be an image

domain.

The space group G is defined in terms of (S, L), where S is the point group

generated by reflections across the domain’s boundaries, and L is the corresponding

primitive lattice. The symmetries of the space group consist of the combination of

the point group operations σ (reflections, rotations, etc.) and translations by lattice

vectors n, which are succinctly defined as

(σ,n)r = σ · r + n . (4.2)

The set of dual lattice vectors L′ is chosen such that the inner product between a

primitive lattice vector and a dual lattice vector is an integer number,

L′ = {m ∈ En|〈m|n〉 ∈ Z,∀n ∈ L} . (4.3)
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4.2.1 Dirichlet BC

The Dirichlet eigenfunction for an image domain V is then written in a very convenient

form,

Φm(r) =
∑
j

det(σj) e
2πi〈m|σj |r〉 , (4.4)

where, j = 1, 2, . . ., is an index of the elements σj of the point group S, and m is

a dual lattice vector. In this form, it is straightforward to check that Φm(r) does

indeed satisfy Dirichlet boundary conditions. Using group properties and the previous

definitions, they observe that,

Φm((σb,n)r) = det(σb)Φm(r) = Φσb·m(r) . (4.5)

With σb, a reflection operator corresponding to one of the domain’s boundaries, one

sees that when r or m is chosen to lie on the said boundary, Φm(r) is null. This not

only shows that Eq. (4.4) satisfies Dirichlet boundary conditions, but also gives the

conditions on the mode numbers which make the eigenfunctions unphysical.

4.2.2 Neumann BC

Similary, with the usual definitions, the Neumann mode is written as,

Ψm(r) =
∑
j

e2πi〈m|σj |r〉 . (4.6)

Again, they observe that,

Ψm((σb,n)r) = Ψm(r) = Ψσb·m(r) , (4.7)

from which they conclude that with σb, a reflection operator of one of the cavity’s

boundaries, the normal derivative, (n̂b · ∇)Ψm(r) vanishes when r or m lies on the

20



mentioned boundary. This differs from the Dirichlet case, because one does not get a

similar explicit null constraint on the mode numbers for Ψm(r) itself but rather for its

normal derivative. These Neumann modes are unphysical when all mode numbers are

simultaneously null, m = 0.

4.2.3 Eigenvalues and Completeness

From Eqs. (4.4) and (4.6), one easily obtains the Laplacian eigenvalues (Eq. (2.13)),

λ2m = 4π2〈m|m〉 , (4.8)

in terms of the norm of the dual lattice vector. The same eigenvalue form is obtained

for both boundary conditions but with different constraints on the mode numbers.

How does one demonstrate that the set of eigenfunctions is complete? Terras and

Swanson consider Dirichlet modes as an example. Let us assume a function f(r) that

vanishes on the boundaries of the domain V . It is well known in lattice Fourier theory,

that a function which is invariant under a set of integral spatial translations n ∈ L,

f(r + n) = f(r) , (4.9)

may be written as a Fourier series of the form,

f(r) =
1

v(R)

∑
m∈L′

f̂(m) e−2πi〈m|r〉 , (4.10)

where m belongs to the set of dual vectors, and v(R) denotes the volume of the

primitive cell associated with the vectors n [49,50]. From simple Fourier analysis, one

can determine the coefficient,

f̂(m) =

∫
R

f(r) e2πi〈m|r〉dr . (4.11)
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Now, defining an alternating extension of a function g over space such that,

g((σ,n)r) = det(σ) g(r) , (4.12)

one notes that if f , of Eq. (4.10), is similarly extended in an alternating fashion, one

obtains,

f(r) =
1

nS v(R)

∑
m∈L′

f̂(m) Φ∗m(r) , (4.13)

using Eq. (4.4), and nS which is the order of the point group S. It follows then that,

f̂(m) =

∫
V

f(r) Φ∗m(r)dr . (4.14)

Although this may appear to be sufficient to show the completeness of Dirichlet

eigenfunctions, there is still a need to make sure that every dual vector m maps to a

unique eigenfunction Φm. It was noted earlier in Eq. (4.5) that Φm and Φσb·m differ

at most by a sign. Hence, if one were to choose m to be enclosed in a sector formed

by the corner boundaries of the cavity, but not on the boundaries, we would then

be able to uniquely define Φm. The authors point out that the corner in question is,

coincidentally, the cavity’s most acute corner. Finally, it has been shown that with

the right choice of dual vectors m, the Dirichlet eigenfunctions (Eq. (4.4)) do indeed

form a complete set, which one observes in the form of Fourier expansions (Eqs. (4.13)

and (4.14)). One would proceed in a similar way for Neumann modes, except this

time a symmetric extension would be used instead of an alternating extension,

g((σ,n)r) = g(r) , (4.15)

the mode numbers would be allowed to lie on the bounding planes, and the normaliza-

tions would be more complicated.
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Figure 4.2: Tiling the plane with the hexagonal primitive cells for an equilateral triangle.

4.3 Isoareal and Isoperimetric Quotients

4.3.1 Polygons

The isoperimetric quotient of a closed curve is defined as the ratio of its area A to the

area of a circle with the same perimeter P [51],

Q = 4π
A

P 2
. (4.16)

It has been known for a very long time, since the times of ancient Greece and possibly

even earlier, that the circle is a unique curve for which the isoperimetric quotient is

maximal, Q = 1. This is commonly known as the Isoperimetric Inequality [52], which

states that for any closed curve in the plane, Q ≤ 1. One way to rephrase this is that

for a given perimeter the circle encompasses the largest area or conversely, a circle of

fixed area has the smallest perimeter of all possible closed curves with the same area.

This property of planar curves appears to be of relevance when comparing Casimir

energies. Indeed, comparing different shapes, say a square and an ellipse, may not
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be unlike comparing an apple to an orange. The best way to do so is to define a

dimensionless quantity, which impartially reflects the characteristics of the shapes.

The isoperimetic quotient is a very good choice for that purpose.

Another interesting fact about the isoperimetric quotient is that the inequality

from which it is derived applies within well-defined geometric classes. For instance the

equilateral triangle has the highest Q amongst all triangles. Likewise, the square has

the highest Q amongst all rectangles. In general, one can show that a regular n-gon

has the highest isoperimetric quotient of all n-sided figures [53].

4.3.2 Polyhedrons

Comparing two polyhedrons poses the same problem as polygons. The isoareal quotient

Q of polyhedron is defined as the ratio of its squared volume to that of a sphere with

the same surface area S [51]

Q = 36π
V 2

S3
. (4.17)

This also follows from an equivalent Isoareal Inequality which states that of all the

closed three-dimensional surfaces, the sphere encloses the largest volume for a given

surface area or the converse: Q ≤ 1. Again, the isoareal quotient answers the need to

objectively compare three-dimensional closed surfaces. It will be of importance when

comparing Casimir energies of cavities.
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Chapter 5

Casimir Energies of Infinite Prisms and Polygons

There have been many attempts to understand how the vacuum self-energy of a

system depends on its geometry or boundaries. After many calculations and results, it

appears that the answer may not be intuitive. Nevertheless, one can always formulate

interesting hypotheses. If the self-energy of a system does, indeed, depend on its

geometry, then suppose we focus on just one aspect. For instance, if one were to

consider a set of infinite regular polygonal prisms, how would the vacuum energies

evolve as the number of sides increases (Fig.5.1)? Would the result eventually converge

to that of a cylinder (circular cross section)? Would results for cylinders of arbitrary

cross sections also follow the same behavior? The answers to such questions would

very likely advance our search.

The energy of an infinite cylinder of arbitrary cross section will certainly not depend

on its length but rather on its cross section or possibly a relation of its cross-sectional

attributes. Hence, working with a set of regular polygonal cross sections which displays

an interesting transition would be a perfect way to observe this behavior. Such work

is feasible, granted that the spectra for these geometries are known or derivable in

some way. Naturally, we turn to the integrable triangles and rectangles, whose spectra

are known exactly. Of course, one could also expect a similarly interesting behavior

for finite prisms or even polygons. We will, in fact, consider those cases. Although,

for the moment only for Dirichlet and Neumann boundaries. Cylinders of infinite

length with perfectly conducting boundary conditions or waveguides, on the other
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Figure 5.1: Regular polygons. How would the Casimir energies of these

regular polygonal prisms evolve?

hand, have long been a subject of interest to engineers and scientists. The solutions

for their electromagnetic modes have been shown repeatedly to reduce to two simpler

problems: Helmholtz equations for scalar fields satisfying Dirichlet and Neumann

boundary conditions [30].

The results we will obtain in the forthcoming sections will be exclusively for the

interior of the prisms [21, 23]. This is a shortcoming due to the method of images.

Nonetheless, this creates further opportunities to ponder the ramifications.

5.1 Equilateral Triangular Prism

A figure almost obscured by time, Lamé is known for many accomplishments, one

being the first to find the Laplacian eigenspectrum for an equilateral triangle [54].

This result has been re-examined or extended in many works [30, 43, 55–58]. The

Laplacian eigenvalues for an equilateral triangle bounded by the lines y = 0, y =
√

3x,

and y =
√

3 (a− x) are of the form [48]

λ2m =
16π2

9a2
(m2 −mn+ n2) , (5.1)
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Figure 5.2: Equilateral triangle of side a and height h =
√

3a/2.

where we have chosen a different but equivalent parametrization of Lamé’s result. We

will also choose to express our results in terms of the height, h =
√

3 a/2. The integers

m and n are positive or negative and satisfy completeness constraints that depend on

the boundary conditions.

5.1.1 Dirichlet BC

Following the procedure outlined in Chapter 4, the Dirichlet eigenfunctions fall into

two types. The unnormalized eigenfunction (4.4) is reduced into real and imaginary

parts [48]

Φm(r) = αm(r) + i βm(r) , (5.2)

where

αm(r) = sin

[
2π

3a
(m− 2n)x

]
sin

[
2π√
3a
my

]
(5.3)

− sin

[
2π

3a
(n− 2m)x

]
sin

[
2π√
3a
ny

]
− sin

[
2π

3a
(m+ n)x

]
sin

[
2π√
3a

(m− n)y

]
,
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and

βm(r) =− cos

[
2π

3a
(m− 2n)x

]
sin

[
2π√
3a
my

]
(5.4)

+ cos

[
2π

3a
(n− 2m)x

]
sin

[
2π√
3a
ny

]
+ cos

[
2π

3a
(m+ n)x

]
sin

[
2π√
3a

(m− n)y

]
.

The real modes αm and βm are both needed to form a complete set. One can see this

in the construction of Green’s function (2.15):

Φm(r)Φ∗m(r′) = αm(r)αm(r′) + βm(r)βm(r′) . (5.5)

From these explicit constructions, one can also check that the eigenfunctions vanish

for the choices of m = n, m = 0, and n = 0, and are invariant (up to a minus sign)

under the 6 symmetry transformations:

(x, y)→ (x, y) (5.6a)

→ (x, −y) (5.6b)

→ 1/2 (−x−
√

3 y, −
√

3x+ y) (5.6c)

→ 1/2 (−x−
√

3 y,
√

3x− y) (5.6d)

→ 1/2 (−x+
√

3 y, −
√

3x− y) (5.6e)

→ 1/2 (−x+
√

3 y,
√

3x+ y) (5.6f)
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Without further formalities, we proceed directly with the dimensionally regularized

expression (3.18) to give the Casimir energy for Dirichlet boundary conditions,

E (D)
Eq =− Γ(−(1 + d)/2)

2d+2π(d+1)/2

[
4

3

(π
h

)2](d+1)/2

× 1

6

( ∞∑′

m,n=−∞

(m2 −mn+ n2)(1+d)/2 − 6ζ(−1− d)

)
. (5.7)

The mode numbers form a complete set when 0 < m < n. The sum over this set is

given in an equivalent form by extending the ranges for m and n over all possible values,

subtracting the unphysical cases, and accounting for the 6 degeneracies. The double

sum on m and n is exactly of the type examined by Chowla and Selberg [32]. We,

therefore, use the Chowla-Selberg formula to obtain a rapidly converging numerical

result (see Appendix B). After a few manipulations such as the use of the reflection

property (3.19), d is then analytically continued to 1:

E (D)
Eq =

1

144π2h2

(
8πζ(3)− 33/2ζ(4) (5.8)

− 4π2(12)3/4
∞∑
n=1

n−3/2(−1)nσ3(n)K3/2(nπ
√

3 )

)
.

The above expression converges rapidly, reaching an accuracy of twenty decimal places

by summing just the first eight terms,

E (D)
Eq =

0.017789138469130117062

h2
. (5.9)

5.1.2 Neumann BC

The Neumann eigenfunctions (4.6) are slightly similar to the Dirichlet eigenfunctions.

Again, excecuting the method given in Chapter 4, we obtain a similar breakup into
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real and imaginary parts (5.2)

Ψm(r) = γm(r) + i δm(r) , (5.10)

where,

γm(r) = cos

[
2π

3a
(m− 2n)x

]
cos

[
2π√
3a
my

]
(5.11)

+ cos

[
2π

3a
(n− 2m)x

]
cos

[
2π√
3a
ny

]
+ cos

[
2π

3a
(m+ n)x

]
cos

[
2π√
3a

(m− n)y

]
,

and

δm(r) = sin

[
2π

3a
(m− 2n)x

]
cos

[
2π√
3a
my

]
(5.12)

+ sin

[
2π

3a
(n− 2m)x

]
cos

[
2π√
3a
ny

]
+ sin

[
2π

3a
(m+ n)x

]
cos

[
2π√
3a

(m− n)y

]
.

These real modes, together, also form a complete set. A glance at the previous two

equations reveals that they only yield unphysical information when m = 0 = n. The

completeness constraint is similar to the Dirichlet case: the mode numbers must

satisfy 0 ≤ m ≤ n, obviously excluding m = 0 = n. Summing over these ranges by

symmetrical extension, which we explained earlier for the Dirichlet calculation, we

obtain

E (N)
Eq = E (D)

Eq −
ζ(3)

6πh2
(5.13a)

= −0.045982

h2
. (5.13b)
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5.1.3 Electromagnetic BC

The Casimir energy per lenth for an electromagnetic field inside an infinitely long

equilateral triangular waveguide with perfectly conducting sides is simply the sum of

the previous two results:

E (EM)
Eq = E (D)

Eq + E (N)
Eq (5.14a)

= −0.028193

h2
. (5.14b)

Note that while the Dirichlet energy is positive, the electromagnetic energy is negative,

because the H (TE) mode contribution overwhelms that of the E (TM) mode [30].

Transverse electric TE or H modes are electromagnetic modes where the electric

field has no component in the longitudinal direction of the waveguide. The term H

mode is equivalent because the corresponding magnetic field has a component in the

longitudinal direction. One can extend the same definitions to transverse magnetic

(TM) modes, also known as E modes.

5.1.4 Point-splitting Regularization

We have shown how to calculate Casimir energies for an infinite equilateral triangular

cylinder using dimensional regularization. Equivalently, one can also use a point-

splitting regularization to obtain the same results in addition to explicitly isolating

the divergences. First let us apply a transformation on the mode numbers

m = r + s (5.15a)

n = r − s (5.15b)
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As a result,

λ2m → λ2m =
16π2

9a2
(3 r2 + s2) . (5.16)

The eigenvalues now appear in a diagonalized form with r and s taking integer as well

as half-integer values. Let

g(r, s) = e−τ
√
k2+λ2m , (5.17)

defined in terms of λ2m (5.16) and the continuous mode number k. As a function of g,

the Dirichlet zero-point energy is of the form:

E (D)
Eq =

1

12
lim
τ→0

(
− d

dτ

)∫ ∞
−∞

dk
∞∑

r,s=−∞

[
g(r, s) + g(r + 1/2, s+ 1/2) (5.18)

− 3 g(0, s) + 2 g(0, 0)

]
.

By definition, if one or more of the arguments of g are null then the sums are only

over the other arguments. For example, the sum over g(0, s) would only be over s, and

g(0, 0) would not be summed over. We can now freely use the regularization formulas

derived earlier in Chapter 3. Using Eqs. (3.8), (3.9), and (3.10), we quickly isolate the

divergent parts:

√
3h2

π2τ 4
−
√

3h

2πτ 3
+

1

3πτ 2
= 2

(
3A

2π2τ 4
− P

8πτ 3
+

C

48πτ 2

)
. (5.19)

We note that the volume and surface divergent terms, which are respectively propor-

tional to the area of the triangle A = h2/
√

3 and the perimeter P = 2
√

3h, are as

expected, and are presumably not of physical relevance. The last term, a constant

in h, certainly does not contribute to the self-stress on the cylinder. Only this term

reflects the corner divergences, and for the equilateral triangle we have C = 8 (3.14).
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The finite part is also easily extracted and simplified:

E (D)
Eq =

1

144π2h2

(
12πζ(3)− 10

√
3

3
ζ(4)− 16

√
3

3

∞∑
p,q=1

1 + (−1)p+q

(p2 + q2/3)2

)
. (5.20)

The double sum in the above expression converges slowly. Directly summing the first

500 terms for m and n, we only reach a seven-decimal accuracy,

E (D)
Eq =

0.0177891

h2
, (5.21)

which, regardless, agrees with Eq. (5.9). Because of the numerical agreement, one is

convinced that both regularization methods yield exactly the same answer and we

have thus shown that our calculations are correct and consistent.

A virtue of the alternative form (5.20) is that it is now evident from Eq. (5.13a)

that in the electromagnetic energy (5.14a) the ζ(3) term completely cancels. As a

result, the electromagnetic energy is manifestly negative. This is a feature that will

persist in all the calculations for infinite prisms.

5.1.5 Closed-form Result

Although the consistency of two regularization methods is already sufficient, there is

yet a third and more impressive approach which gives closed-form results. Following

Refs. [35–39], we write for the equilateral triangular cross section, from Eq. (3.18),

E (D)
Eq = − lim

s→−1

1

2
(4π)s Γ(s)

(
4π2

3h2

)−s
[ζ(s)L−3(s)− ζ(2s)] , (5.22)

in terms of the single series

L−3(s) =
∞∑
n=0

[
1

(3n+ 1)s
− 1

(3n+ 2)s

]
. (5.23)
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Now, this function satisfies the reflection property

L−3(s)Γ(s) =

√
3 (2π/3)s

2 cos(sπ/2)
L−3(1− s). (5.24)

Then, using Eq. (3.19), we can take the limit s→ −1:

E (D)
Eq = − 1

96h2

[√
3L−3(2)− 8

π
ζ(3)

]
. (5.25)

In fact, the remaining sum has a closed form:

L−3(2) =
1

9
[ψ′(1/3)− ψ′(2/3)] , (5.26)

in terms of the polygamma function. Thus

E (D)
Eq = − 1

96h2

[√
3

9
[ψ′(1/3)− ψ′(2/3)]− 8

π
ζ(3)

]
=

0.0177891

h2
. (5.27)

It is a priori remarkable that such an explicit form can be achieved for a strong-coupling

problem.

In particular, from Eqs. (5.13a) and (5.14a), we see that the interior Casimir energy

for a perfectly conducting cylinder with equilateral triangular cross section has the

simple form

E (EM)
Eq = −

√
3

432h2
[ψ′(1/3)− ψ′(2/3)], (5.28)

that is, as we noted above, the ζ(3) cancels.

5.2 Hemiequilateral Triangular Prism

The hemiequilateral triangle or 30◦-60◦-90◦ triangle (Fig. 5.3) has an interesting relation

to the equilateral triangle as its name suggests. Let us, then, consider a hemiequilateral

34



Figure 5.3: Hemiequilateral triangle obtained by bisecting an equilateral triangle.

domain defined by the boundaries: y = 0, y = x/
√

3, and y =
√

3 (a − x). It is

obtained by halving the equilateral triangle of the previous section along one of its three

symmetry lines, y = x/
√

3. This relation between the two triangular figures, however,

extends further than their geometrical constructions into the realm of zero-point

energies. In fact, to start with, they share the same eigenvalue form:

λ2m =
16π2

9a2
(m2 −mn+ n2) , (5.29)

albeit, with different constraints. The energies are also related, which means that the

hemiequilateral Casimir energies can also be given in closed-form. In our calculations,

we will often replace a with the height h =
√

3 a/2 as the scale parameter.

5.2.1 Dirichlet BC

By simple observation, one can postulate that the Dirichlet eigenfunctions for the

hemiequilateral triangle could be a subset of the equilateral triangle’s. This subset

would be chosen such that the modes would vanish on the height common to both

35



triangles. An explicit construction of the modes quickly confirms this postulate:

Φm(r) = sin

[
2π

3a
(m− 2n)x

]
sin

[
2π√
3a
my

]
(5.30)

− sin

[
2π

3a
(n− 2m)x

]
sin

[
2π√
3a
ny

]
− sin

[
2π

3a
(m+ n)x

]
sin

[
2π√
3a

(m− n)y

]
.

This is one of the modes for the Dirichlet equilateral (5.4), and it is the type that

vanishes on the chosen perpendicular bisector. The mode numbers form a complete

set when n < m < 2n. Accounting for the 12 symmetries and 6 unphysical modes

{m = ±n,m = 0, n = 0,m = 2n, n = 2m}, the Casimir energy is obtained and

simplified in terms of the Dirichlet equilateral result:

E (D)
369 =

E (D)
Eq

2
+
ζ(3)

8πh2
=

0.0567229

h2
, (5.31)

again, a positive energy.

5.2.2 Neumann BC

The Neumann modes also follow suit:

Ψm(r) = cos

[
2π

3a
(m− 2n)x

]
cos

[
2π√
3a
my

]
(5.32)

+ cos

[
2π

3a
(n− 2m)x

]
cos

[
2π√
3a
ny

]
+ cos

[
2π

3a
(m+ n)x

]
cos

[
2π√
3a

(m− n)y

]
.

They are a subset of the equilateral Neumann modes (5.12), whose normal derivatives

vanish on the common height. The completeness properties are also similar to the
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corresponding Dirichlet’s: n ≤ m ≤ 2n excluding the possibility of m = 0 = n. By

symmetrical extension, we promptly write the zero-point energy, which we simplify in

terms of Eq. (5.13a):

E (N)
369 =

E (N)
Eq

2
− ζ(3)

8πh2
= −0.0708193

h2
, (5.33)

which is again negative.

5.2.3 Electromagnetic BC

The electromagnetic Casimir energy in the interior of an infinitely long cylinder of

hemiequilateral triangular cross section follows directly by adding the E and H mode

contributions,

E (EM)
369 = E (D)

369 + E (N)
369 =

1

2
E (EM)
Eq = −0.0140964

h2
, (5.34)

which is, remarkably, exactly one-half that of the energy of equilateral triangle, as

might have been anticipated naively.

5.3 Square Prism

Infinite prisms with square cross sections have long been considered for self-energy

calculations. The results we present here mirror a few previous works [16,19]. However,

it appears it has never been really appreciated that the self-energies for these infinite

square cylinders can be given in closed-form (Lukosz actually gives a closed-form

electromagnetic result as a limit from a finite prism [16]). We consider a square of

side length a formed by the lines x = 0, x = a, y = 0, and y = a. The eigenvalues for
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this geometry are of the simplest quadratic form,

λ2m =
π2

a2
(
m2 + n2

)
. (5.35)

This is a well-known result, as it appears in nearly every textbook on electromagnetism.

5.3.1 Dirichlet BC

The Dirichlet eigenfunctions for a square boundary are just as predictable:

Φm(r) = sin

(
2π

a
mx

)
sin

(
2π

a
ny

)
. (5.36)

For completeness, the mode numbers must be positive m > 0 and n > 0. With two

unphysical modes {m = 0, n = 0}, and a degeneracy of 4, we proceed just as in the

previous cases

E (D)
Sq =− 1

32π2a2

[
2ζ(4)− πζ(3) + 8π2

∞∑
l=1

l−3/2σ3(l)K3/2(πl)

]
(5.37a)

=− 1

32π2a2

[
4ζ(4)− 2πζ(3) + 4

∞∑
k,l=1

1

(k2 + l2)2

]
(5.37b)

= 0.00483155/a2 , (5.37c)

whereby we obtain a result consistent with Refs. [16, 19]. The closed-form result may

be obtained directly from the double sum [33,34,36],

∞∑
k,l=1

1

(k2 + l2)2
= ζ(2)L−4(2)− ζ(4), (5.38)

where

L−4(2) =
∞∑
m=0

(−1)m

(2m+ 1)2
= G. (5.39)
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The constant G = 0.915966 . . . is the well-known Catalan’s constant. Then

E (D)
Sq =

1

16πa2

[
ζ(3)− π

3
G
]

=
0.00483155

a2
. (5.40)

5.3.2 Neumann BC

The Neumann modes are also simple:

Ψm(r) = cos

(
2π

a
mx

)
cos

(
2π

a
ny

)
. (5.41)

Instead of sines (5.36) we now have cosines. The completeness constraints allow the

mode numbers to be null m ≥ 0 and n ≥ 0 but not simultaneously. The Neumann

energy in relation to the Dirichlet energy is

E (N)
Sq = E (D)

Sq −
ζ(3)

8πa2
= −0.0429968

a2
, (5.42)

which again reproduces the known result.

5.3.3 Electromagnetic BC

Summing Dirichlet and Neumann energies, we obtain the following electromagnetic

Casimir energy for the interior of a perfectly conducting square waveguide, expressed

only in terms of one transcendental number G:

E (EM)
Sq = E (D)

Sq + E (N)
Sq = − G

24a2
= −0.0381653

a2
. (5.43)

5.4 Right Isosceles Triangular Prism

The geometric relation of the isosceles right triangle to the square is analogous to

that of the hemiequilateral triangle to the equilateral triangle. Cutting along a square
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Figure 5.4: Isosceles right triangular waveguide, of side a.

diagonal produces an isosceles triangle (Fig. 5.4). Our triangle in question has for

boundaries y = 0, x = a, and y = x. It has the same eigenvalue form as its matching

square,

λ2m =
π2

a2
(
m2 + n2

)
, (5.44)

although, the right isosceles triangle modes are not exactly a subset of the square’s.

Rather, they are a linear combination of the latter [30, 43,48].

5.4.1 Dirichlet BC

The Dirichlet characteristic modes are of the form:

Φm(r) = sin

(
2π

a
mx

)
sin

(
2π

a
ny

)
− sin

(
2π

a
my

)
sin

(
2π

a
nx

)
. (5.45)

This particular combination of the square modes ( 5.36) is made so that Φ vanishes when

x = y. For completeness, m and n must satisfy m > n > 0. Just as in the previous

cases, the self-energy follows seamlessly. The sums over these ranges are symmetrically

extended over all values while the unphysical modes {m = 0, n = 0,m = ±n} are

removed and the 8 degeneracies are taken into account. The Casimir energy can be
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related to that of the Dirichlet square,

E (D)
Iso =

E (D)
Sq

2
+

ζ(3)

16πa2
=

0.0263299

a2
, (5.46)

a positive number again.

5.4.2 Neumann BC

The Neumann modes are symmetric under the exchange x↔ y,

Ψm(r) = cos

(
2π

a
mx

)
cos

(
2π

a
ny

)
+ cos

(
2π

a
my

)
cos

(
2π

a
nx

)
, (5.47)

and are unphysical only when m = 0 = n. The modes form a complete set for

m ≥ n ≥ 0 without m = 0 = n. The relation of the Neumann self-energy to the

square’s is then,

E (N)
Iso =

E (N)
Sq

2
− ζ(3)

16πa2
= −0.0454125

a2
, (5.48)

again a negative number.

5.4.3 Electromagnetic BC

We combine both results to obtain the electromagnetic Casimir energy for a perfectly

conducting waveguide of right isosceles triangular cross section,

E (EM)
Iso = E (D)

Iso + E (N)
Iso =

1

2
E (EM)
Sq = − G

48a2
= −0.0190826

a2
, (5.49)

again a remarkably simple and unexpected result.
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Cross section E (D,N) E (EM)

Hemiequilateral Tr.
[
±32ζ(3)− π

√
3L−3(2)

]
/192πh2 −

√
3L−3(2)/96h2

Isosceles Right Tr. [±9ζ(3)− πG] /96πa2 −G/48a2

Equilateral Tr.
[
±8ζ(3)− π

√
3L−3(2)

]
/96πh2 −

√
3L−3(2)/48h2

Square [±3ζ(3)− πG] /48πa2 −G/24a2

Table 5.1: Casimir energies per unit length (in closed-form) for cylinders

of integrable polygonal cross sections. The second and third columns

give the Dirichlet, Neumann, and EM (perfectly conducting) energies per

length. The +/− signs match with E(D)/E(N).

5.5 Rectangular Prisms

The square prism is just a particular element of the class of rectangular prisms, where

the side lengths are not necessarily equal. We take the liberty to explore this more

general geometry for a better understanding. For that matter, we consider an arbitrary

rectangle of side lengths a and b bounded by the lines x = 0, x = a, y = 0, and y = b.

The characteristic values of the Laplacian are then

λ2m = π2

(
m2

a2
+
n2

b2

)
, (5.50)

an obvious generalization of the square’s eigenvalues.

42



5.5.1 Dirichlet BC

The Dirichlet eigenfunctions are also more general:

Φm(r) = sin

(
2π

a
mx

)
sin

(
2π

b
ny

)
. (5.51)

An arbitrary rectangle has the same modal constraints and degeneracies as a square,

which allows us to evaluate the self-energy:

E (D)
Rect =− 1

32π2ab

[
−π b

a
ζ(3) + 2ζ(4) + 8π2

(
b

a

)1/2 ∞∑
l=1

l−3/2σ3(l)K3/2(2πlb/a)

]

(5.52a)

=
1

32π2a2

[(
1 +

(a
b

)2)
πζ(3)− 2

((a
b

)3
+
b

a

)
ζ(4)

− 4
(a
b

)3 ∞∑
m,n=1

(
m2 +

(
n
a

b

)2)−2]
. (5.52b)

For a = b, a square, the Dirichlet energy is positive, but when one side is much larger

than the other, the sign of the energy must change, for that situation corresponds

to the classic case of Casimir attraction. The Dirichlet Casimir energy vanishes for

b/a = 1.74437, and is negative for larger values of b/a. See Fig. 5.8a below. Note that

for a general rectangle, a 6= b, a closed-form expression for the energy is apparently

not achievable [37].

5.5.2 Neumann BC

The Neumann characteristic functions are

Ψm(r) = cos

(
2π

a
mx

)
cos

(
2π

b
ny

)
. (5.53)
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They also, obviously, share the same modal constraints as the square. So, as always,

we expres the Neumann energy in terms of the Dirichlet result

E (N)
Rect = E (D)

Rect −
(

1 +
(a
b

)2) ζ(3)

16πa2
. (5.54)

5.5.3 Electromagnetic BC

Although, we cannot give a closed-form expression for the electromagnetic energy

of an arbitrary rectangular cavity, we can nonetheless say that it is always negative.

From (5.54) and (5.52b), it is clear that the ζ(3) terms are cancelled in the sum and

the overall result is negative,

E (EM)
Rect =− 1

8π2a2

[((a
b

)3
+
b

a

)
ζ(4) + 2

(a
b

)3 ∞∑
m,n=1

(
m2 +

(
n
a

b

)2)−2]
. (5.55)

One can also note that the results (all three boundary conditions) for the square are

recovered when a = b.

5.5.4 Closed-form Results

For select values of the ratio a/b, we can give the zero-point energies for rectangles

in closed-form. By closed-form, we mean that the expression for the energy may be

simplified into a product of known and simpler transcendental functions. Based largely

on the extensive work of Glasser and Zucker [37], it has been shown that certain

Epstein zeta functions of quadratic forms can be written as products of Dirichlet L-

series, some of which can be further simplified for certain arguments. For example, the

values of (a/b)2 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, . . .} all admit simplified

forms. Note that the sequence of these numbers is not particularly enlightening; the
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reason why one can perform reductions for these particular numbers has to do with

number theory and it is almost a felicitous coincidence that we have a contiguous

sequence from 1 to 10. So far, the largest known number for (a/b)2 is 1848 with

sporadic stretches of contiguous numbers in between.

5.6 Circular Cylinder

The overall goal of these calculations is to detect a correlation between zero-point

energies and the varying cross sections of cylinders. It almost goes without saying

that the most symmetrical of all cross sections, the circle, must also be included.

This configuration was one of the earliest to be considered after Boyer’s work on the

spherical shell [20, 59–61]. We will not delve into the details of calculations, but point

out the crucial fact that just like the spherical shell, the zero-point energies for the

circular cylinder include both interior and exterior contributions. A more accurate

description would actually be circular cylindrical shell.

Interior and exterior contributions are needed because otherwise a finite energy

cannot be calculated. Due to the non-zero curvature, one encounters a logarithmic

term which adds to the interior energy. Therefore, it is difficult to unambiguously

find the energy because of this arbitrary scale. Furthermore, this logarithmic term

only vanishes when both interior and exterior energies are added. In essence, the

opposite signs for the curvatures on the interior and exterior cancel. The Dirichlet

and Neumann self-energies for a circular cylindrical shell of radius a are [15,59]:

E (D)
Circ =

0.000606

a2
, (5.56a)
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(a/b)2 E (D,N)
Rect × (32π2a2) E (EM)

Rect × (32π2a2)

1 ±2ζ(3)− 4ζ(2)L−4(2) −8ζ(2)L−4(2)

2 ±3ζ(3)− 2ζ(2)L−8(2) −4ζ(2)L−8(2)

3 ±4ζ(3)− 9
4
ζ(2)L−3(2) −9

2
ζ(2)L−3(2)

4 ±5ζ(3)− 7
4
ζ(2)L−4(2) −7

2
ζ(2)L−4(2)

5 ±6ζ(3)− ζ(2)L−20(2)− L−4(2)L5(2) −2ζ(2)L−20(2)− 2L−4(2)L5(2)

6 ±7ζ(3)− ζ(2)L−24(2)− L−3(2)L8(2) −2ζ(2)L−24(2)− 2L−3(2)L8(2)

7 ±8ζ(3)− 5
4
ζ(2)L−7(2) −5

2
ζ(2)L−7(2)

8 ±9ζ(3)− ζ(2)L−24(2)− L−3(2)L8(2) −2ζ(2)L−24(2)− 2L−3(2)L8(2)

9 ±10ζ(3)− 10
9
ζ(2)L−4(2)− L−3(2)L12(2) −20

9
ζ(2)L−4(2)− 2L−3(2)L12(2)

10 ±11ζ(3)− ζ(2)L−40(2)− L5(2)L−8(2) −2ζ(2)L−40(2)− 2L5(2)L−8(2)

Table 5.2: Table of closed-form energies for infinite rectangular prisms. The

results for Dirichlet, Neumann, and electromagnetic boundary conditions,

scaled by 32π2a2, are given for values of (a/b)2 ranging from 1 to 10. The

first row, (a/b) = 1, corresponds to the infinite square prism. The +/−

signs match respectively to Dirichlet/Neumann results.
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E (N)
Circ = −0.01416

a2
, (5.56b)

which together give the electromagnetic result [20]:

E (EM)
Circ = −0.01356

a2
. (5.57)

5.7 Casimir Energies of Polygons

The Casimir energies for integrable polygons may be readily obtained from the previous

results. In fact, the dimensionally regularized expressions, for example Eq. (5.22),

allow us simply to take the limit s→ −1/2 (for a prism of null length d→ 0). The

results could then be expressed in terms of Dirichlet L-series. Alternatively, the sums

E =
1

2

∑
m

√
λ2m , (5.58)

may also be performed directly using the Chowla-Selberg formula for numerical results,

which we list in Table 5.5. The results for the square (Dirichlet and Neumann) and

the equilateral triangle (Dirichlet) agree with previous calculations [19,44].

5.8 Analysis

Now, that we have obtained all these results for different cylinders and polygons,

how does one make sense of them? First, the energies have an explicit dependence

on a physical parameter of the concerned geometry. To put these energies on an

equal footing we must somehow scale these energies. Second, how should we compare

different geometries impartially?
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Cross section E(D,N)

Hemiequilateral Tr.
[
±
(
1 +
√

3
)

+ 12ζ(−1/2)L−3(−1/2)
]
π/24

√
3h

Isosceles Right Tr.
[
±
(
1 +
√

2
)

+ 12ζ(−1/2)L−4(−1/2)
]
π/48a

Equilateral Tr. [±1 + 12ζ(−1/2)L−3(−1/2)] π/12
√

3h

Square [±1 + 12ζ(−1/2)L−4(−1/2)] π/24a

Table 5.3: Casimir energies (in closed-form) for integrable polygons. The

second column gives the Dirichlet and Neumann energies. The +/− signs

are matched with E(D)/E(N). The parameter h denotes the height for the

figures derived from the equilateral triangle, and a represents the side

length for the figures derived from the square.

Let us consider the cylinders to start with. The energies per length for cylinders

are all of the form C/a2, where a is a length parameter of the system. One way, also

the most intuitive, is to rid the energies of this explicit dependence by scaling them

with the cross-sectional area A:

Esc = E × A . (5.59)

To compare different cross sections, we employ the well-known isoperimetric quotient

Q (4.16). The scaled energies and isoperimetric quotients are given in Table 5.4. They

are then plotted in Fig. 5.5. The curve corresponding to the Dirichlet energies displays

a strong systematic behavior while the Neumann and electromagnetic curves develop

dubious cusps on the square’s data point. This may be related to the fact that energies

plotted for the circular cylinder result from interior and exterior contributions. The
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Cross section E (D) × A E (N) × A E (EM) × A 4π × A/P 2

Hemiequilateral Tr. 0.0163745 −0.0204438 −0.00406928 0.4860

Isosceles Right Tr. 0.0131650 −0.0227063 −0.00954135 0.5390

Equilateral Tr. 0.0102705 −0.0265477 −0.0162772 0.6046

Square 0.00483155 −0.0429968 −0.0381653 0.7854

Circle 0.001904 −0.044485 −0.042581 1

Table 5.4: Casimir energies per unit length for cylinders of various cross sec-

tions. The second, third, and fourth columns give the Dirichlet, Neumann,

and electromagnetic (perfectly conducting) energies/length multiplied by

the cross sectional area. The fifth column gives the isoperimetric quotient

of the cross section. All results refer to interior contributions only, with

the exception of the final row, which gives the energies for a shell of

circular cross section including both interior and exterior modes.

question remains as how to obtain an unambiguous finite energy for just interior

modes. This will be addressed at a later time. Nevertheless, it is quite amazing that

we are able to observe such order in the graphs.

The situation is very similar for integrable polygons. After all, these polygons

share the same cross sections with the cylinders. One notable difference, however,

is that the zero-point energy for a disk cannot be determined unambiguously even

when both interior and exterior modes are taken into account: one encounters an

additional logarithmic scale. Therefore, we work only with the integrable triangles
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Figure 5.5: Graph of the interior Casimir energy per unit length E for

cylindrical waveguides with various cross sections, multiplied by the cross-

sectional area A. These are plotted as a function of the dimensionless

isoperimetric quotient Q = 4π × A/P 2. The points shown are for the

triangles (hemiequilateral, right isosceles, and equilateral) and the square.

The last point is for a circle, including both interior and exterior modes.

The upper curve shows the energy for E modes (Dirichlet), the lower

curve the energy for H modes (Neumann), and the intermediate curve the

energy for the sum of the two modes, that is, for a perfectly conducting

cylinder.
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Cross section E(D) E(N) 4π × A/P 2

Hemiequilateral Tr. 0.174790/h −0.238159/h 0.4860

Isosceles Right Tr. 0.113080/a −0.202939/a 0.5390

Equilateral Tr. 0.0877806/h −0.214519/h 0.6046

Square 0.0410406/a −0.220759/a 0.7854

Table 5.5: Casimir energies for plane figures. The second and third

columns give the Dirichlet and Neumann energies, expressed in terms of

the height h for the figures derived from the equilateral triangle, and the

side a for the figures derived from the square. The fourth column gives

the isoperimetric quotient of the cross section. All results refer to interior

contributions only.

and the square (Table 5.5). The energies are scaled by multiplying them with the

square-root of the area:

Esc = E ×
√
A . (5.60)

We, then, plot these scaled energies against the isoperimetric quotients. The curves in

Fig. 5.6 are exemplary in their systematic behavior.

Although it is easy to dismiss rectangles amidst these calculations, they are

nonetheless integrable geometries and provide further data. They also differ from the

other shapes by the fact that they have two independent lengths: a and b. The other

figures only have one. Scaling the energies is rather straightforward, but reducing two

parameters to one is trickier. We, first, note that the scaled energies depend on the
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Figure 5.6: Graph of the interior Casimir energy E for various plane

figures, multiplied by the square-root of the area A. These are plotted

as a function of the isoperimetric quotient, Q = 4π ×A/P 2. The points

shown are for the hemiequilateral triangle, the isosceles right triangle, the

equilateral triangle, and the square. The upper curve shows the result for

Dirichlet modes, the lower curve the energy for Neumann modes.

ratio b/a. It is then possible to write

b

a
=

4π − 8Q
32πQ

−
√
π2 − 4πQ

2Q
, (5.61)

where Q = 4π × A/P 2, the isoperimetric coefficient. Q takes on the maximum value

of π/4 for a square. Ideally, we would expect the data points for rectangular polygons

and cylinders to prolong the interesting behavior we have observed in Figs. 5.6 and 5.5,

but what we observe is even more interesting. These curves, for all the boundary

conditions considered, instead intersect at a point. In addition, it seems the triangles

and rectangles, each follow a certain hierarchy. The equilateral triangle has the least

energy for all the triangles, although it has the highest Q, and the square has the

highest energy amongst the rectangles while still having the highest isoperimetric
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quotient. We hypothesize that polygons with the same number of sides, say n, will

belong to the same curve. These curves will likely connect to a curve of maximal

isoperimetric quotients at the data points for the corresponding regular n-gons.
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(a) Dirichlet BC
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(b) Neumann BC

Figure 5.7: Graph of scaled Casimir energies for Dirichlet and Neumann

polygons vs. Q. Q is the isoperimetric quotient 4π ×A/P 2. The upper

curves connects the data points for the hemiequilateral, right isosceles,

equilateral triangles and the square. The lower curves are for the rectangles.

Note that they connect to the upper curves at the square’s markers.
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Figure 5.8: Graph of scaled Casimir energies, E × A, for Dirichlet and

Neumann cylinders vs. Q, the isoperimetric quotient. The markers for

the integrable triangular, square, and circular cylinders are connected by

the upper curves. The lower curves connects the markers for rectangular

cylinders. The curves join at the markers corresponding to the square

cylinders.
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Figure 5.9: Graph of scaled Casimir energies for EM cylinders vs. Q,

the isoperimetric quotient. The lower curve, connecting data points for

rectangular cylinders, joins the upper curve at the square’s data point.

The other markers on the upper curve, from left to right, are for the

hemiequilateral, right isosceles, equilateral triangles, (the square), and the

circular cylinder.
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Chapter 6

Casimir Energies of Finite Prisms

In the previous chapter, we derived Casimir energies for integrable polygons and

polygonal cylinders. Those were two extremes in height, the polygons are prisms

of zero height and the infinite prisms, of course, have infinite height. How about

the intermediate scenario where the height b is finite and in between those extremes,

0 < b <∞ ?

Indeed, one can obtain finite prisms that are integrable by simply choosing the

cross sections to be the previously mentioned integrable polygons. From these, one can

recover the infinite cylinder results as limits of the finite prisms(See Ref. [23]). The

zero height limit also reproduces Casimir’s parallel plate result [23]. To build these

finite prisms, the caps at the ends must form dihedral angles of π/2 with the other

intersecting planes. What this implies, is that the eigenfunctions and eigenvalues for

these new prisms are already known. All one has to do is to update the eigenvalues and

eigenfunctions in the previous chapter to reflect the newer quantization in the third

dimension, which we will label z. For prisms of height b, the Dirichlet eigenfunctions

would be of the form:

Φm(r) = [Φm(r⊥)] sin

(
πk

b
z

)
, (6.1)

where [Φm(r⊥)] are the modes given in Chapter 5. The Neumann characteristic

functions will also follow suit with:

Ψm(r) = [Ψm(r⊥)] cos

(
πk

b
z

)
. (6.2)
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As for the characteristic values, we simply add another mode number k:

λ2m =
[
λ2m
]

+
π2

b2
k2 . (6.3)

The expressions in the square brackets are the eigenvalues for the corresponding

integrable polygons, given in Chapter 5. The similarities do not end there; they extend

even to the completeness constraints and the degeneracies. For the completeness

constraints we add the conditions k > 0 and k ≥ 0, respectively for Dirichlet and

Neumann boundaries, to those of the polygons. As in all the Neumann cases covered so

far, the origin k = m = n = 0 must be removed. The number of degeneracies is simply

doubled. The sets of mode numbers which yield unphysical modes are obtained by

appending k = 0 to the previous ones. The results given in this chapter are obtained

by point-splitting regularization.

6.1 Equilateral Triangular Prism

z

x
y

A

B C

D

E F

Figure 6.1: Equilateral prism. |DE| = |EF | = |FD| = a, and |BE| = b.
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6.1.1 Dirichlet BC

Let g be the function defined by

g(r, s, k) = e−τ
√
λ2m , (6.4)

where the eigenvalues are written the diagonalized form (5.16):

λ2m =
16π2

9a2
(3 r2 + s2) +

π2

b2
k2 . (6.5)

The mode numbers r and s can be integers as well as half-integers, whereas k can only

be an integer. After symmetrically extending the sums, we obtain the energy,

E
(D)
EqP =

1

24
lim
τ→0

(
− d

dτ

) ∞∑
r,s,k=−∞

[
g(r, s, k) + g(r + 1/2, s+ 1/2, k) (6.6)

− 3 g(0, s, k)− g(r, s, 0) + 3 g(0, s, 0) + 2 g(0, 0, k)

]
.

In the expression above, the mode numbers are all integers and we follow the same

convention, described in the previous chapter, regarding the significance of the ar-

guments being null. Applying the appropriate regularization formulæ, we write the

Casimir energy, in terms of χ ≡ (b/a)2:

E
(D)
EqP =

1

a

{
−
√

3χ

π2

[
Z3(2; 3, 9, 16χ) + Z3c(2; 3, 9, 16χ)

]
+

5

48π
ζ(3/2)L−3(3/2) (6.7)

+
1

24π
Z2b(3/2; 1, 3) +

3
√
χ

2π
Z2(3/2; 9, 16χ)− π

36
− π

72
√
χ

}
,

where we used [37]

∞∑′

m,n=−∞

(m2 + 3n2)−s = 2(1 + 21−2s) ζ(s)L−3(s) . (6.8)
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The Epstein zeta functions Z3, Z3c, etc. are defined in Appendix A. This particular

configuration was considered earlier by Ahmedov and Duru [47], although their result

appears misleading.

6.1.2 Neumann BC

After following the same approach and further simplifications, we can relate the

Neumann result to the Dirichlet result,

E
(N)
EqP = E

(D)
EqP −

1

24πa

[
5 ζ(3/2)L−3(3/2) + 2Z2b(3/2; 1, 3) (6.9)

+ 72
√
χ Z2(3/2; 9, 16χ)

]
.

6.2 Hemiequilateral Triangular Prism

z

x y

A
B

C

D
E

F

Figure 6.2: Hemiequilateral prism. |DF | = a
√

3/4, |EF | = a/2, |DE| = a, and |BE| = b.
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6.2.1 Dirichlet BC

The spectrum for the hemiequilateral prism of finite height b is of the same form as the

equilateral’s (6.5). Again, in terms of χ ≡ (b/a)2, we find that the Dirichlet Casimir

energy is of the form

E
(D)
HemP =

1

2
E

(D)
EqP +

√
3χ

4πa
Z2(3/2; 3, 16χ)− π

72a

(√
3 +

3

4
√
χ

)
. (6.10)

6.2.2 Neumann BC

In relation to the previous result, we write

E
(N)
HemP =

1

2
E

(N)
EqP −

√
3χ

4πa
Z2(3/2; 3, 16χ)− π

72a

(√
3 +

3

4
√
χ

)
. (6.11)

6.3 Cube

6.3.1 Dirichlet BC

The Dirichlet Casimir energy for a cube of edge length a is simply

E
(D)
Cube =

1

a

[
− 1

32π2
Z3(2; 1, 1, 1) +

3

16π
ζ(3/2)β(3/2)− π

32

]
, (6.12)

from which we obtain the finite part, a result which matches that of Ref. [19]:

E
(D)
Cube = −0.0157321825

a
. (6.13)

6.3.2 Neumann BC

The Neumann result can be related to the Dirichlet result with

E
(N)
Cube = E

(D)
Cube −

3

8πa
ζ(3/2)β(3/2), (6.14)
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which gives a numerical value already confirmed in Ref. [19]:

E
(N)
Cube = −0.2853094722

a
. (6.15)

6.4 Right Isosceles Triangular Prism

z

x
y

A
B

C

D

E F

Figure 6.3: Right isosceles prism. |DE| = |EF | = a, |DF | = a
√

2, and |BE| = b.

6.4.1 Dirichlet BC

Just like the previous prisms, the spectrum and other relevant information for the right

isosceles triangular prism of finite height can be inferred from the details furnished

in the previous chapter. From these, we deduce that the Casimir energy, in terms of

χ ≡ (b/a)2, is:

E
(D)
RIsoP =

1

a

[
−
√
χ

64π2
Z3(2; 1, 1, χ) +

1

32π
ζ(3/2)β(3/2) +

√
χ

64π
Z2(3/2; 1, χ) (6.16)

+

√
χ

32π
Z2(3/2; 1, 2χ)− π

64
√
χ
− π(1 +

√
2)

96

]
.
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When χ = 1, which makes that particular prism a section of a cube with edge length

a, we can write:

E
(D)
RIsoP =

1

2
E

(D)
Cube +

1

96πa

[
3 ζ(3/2)L−8(3/2)− π2

(
1 +
√

2
)]

. (6.17)

6.4.2 Neumann BC

In terms of the Dirichlet result, we find:

E
(N)
RIsoP = E

(D)
RIsoP −

1

32πa

[
2 ζ(3/2)β(3/2) +

√
χZ2(3/2; 1, χ) (6.18)

+ 2
√
χZ2(3/2; 1, 2χ)

]
.

Likewise, when χ = 1, we can relate the energy to a cube of corresponding edge length

a:

E
(N)
RIsoP =

1

2
E

(N)
Cube −

1

96πa

[
3 ζ(3/2)L−8(3/2) + π2

(
1 +
√

2
)]

. (6.19)

6.5 Rectangular Parallelepipeds

6.5.1 Dirichlet BC

The cube is a specific element of the class of rectangular parallelepipeds, much like

the square belongs to the set of rectangles. Just like the previous cases, the Casimir

energy may be written in terms of Epstein zeta functions and the ratios χ ≡ (b/a)2

and σ ≡ (c/a)2:

E
(D)
P =

1

a

{
−
√
χσ

32π2
Z3(2; 1, χ, σ) +

1

64π

[√
χσ Z2(3/2;χ, σ) (6.20)

+
√
σ Z2(3/2; 1, σ) +

√
χZ2(3/2; 1, χ)

]
− π

96

(
1 +

1
√
χ

+
1√
σ

)}
.
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6.5.2 Neumann BC

In terms of the Dirichlet result we obtain

E
(N)
P = E

(D)
P − 1

32πa

[√
χσ Z2(3/2;χ, σ) +

√
σ Z2(3/2; 1, σ) (6.21)

+
√
χZ2(3/2; 1, χ)

]
.

When σ = 1, we will refer to this configuration as a square prism. If both σ and χ are

equal to one, then we recognize this geometry as the cube.

6.6 Analysis

Now that we have calculated scalar Casimir energies for finite prisms (Dirichlet and

Neumann boundary conditions), we can proceed with the analysis just like the ones

for the infinite prisms and polygons. Likewise, we begin by finding an objective way

to relate these energies to their geometries. Since these finite prisms are polyhedra, we

must employ the isoareal quotient, which we introduced in Chapter 4 earlier (4.17),

Q = 36π
V 2

S3
. (6.22)

The energies must also be scaled in order to be rid of the explicit dependence on the

system’s size. For the polygons and infinite prisms we simply multiplied the energies

by the cross-sectional area or its square-root as needed. Here, however, the scale factor

is a combination of two geometrical properties V/S, the ratio of the volume to the

surface area. We define the scaled energy for a polyhedron as,

Esc = E
V

S
. (6.23)
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Cross section E
(D)
sc E

(N)
sc Qmax

Hemiequilateral Tr. −0.004483 −0.034166 0.324004

Isosceles Right Tr. −0.004028 −0.035478 0.359341

Equilateral Tr. −0.003571 −0.037783 0.403067

Square −0.002622 −0.0475552 0.523599

Table 6.1: Scaled Casimir energies for finite prisms having maximal

isoareal quotients Qmax. The second and third column from the left give,

respectfully, the scaled Dirichlet and Neumann energies. Of note, the

square prism (rectangular parallelepiped with σ = 1) having maximal Q

is none other than the cube.

Listed in Table 6.1 are the scaled energies for the finite prisms having the maximal

isoareal quotients of their categories. In other words, these energies are for the finite

prisms that have the maximal isoareal quotients for a specific choice of edge lengths a

and b. We plot the information given in Table 6.1 in Figs. 6.4a and 6.4b, to find an

interesting hierarchy. It appears, the triangular prisms of maximal Q tend to line up,

in the same order as the infinite prisms and polygons. However, they differ in subtle

ways: the Dirichlet energies are now increasing instead of decreasing, for example.

For the triangular polygons and their infinite counterparts, the equilateral triangle

had the minimal scaled energy. For the finite triangular prisms having Qmax, the

equilateral triangle has the maximal scaled energy. The cube, which is the square

prism of maximal Q, also follows directly after the equilateral triangular prism’s data
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point, thus continuing the apparent ascension. Later, in a more inclusive analysis, we

will show that this apparent ascension may be more than apparent when we include

the results for a spherical shell.

à

à

à

à
àààààààààààààààà

à

à

à

à
à

à
à

à
à

à
à

à
à

à
à

à
à

à
à
à

ø

ø

ø
ø
øøø

øøøøøøøøøøøøø
ø

ø
ø

ø
ø

ø
ø
ø
ø
ø
ø
ø
ø
ø
ø
ø

ò

ò

ò

ò
ò
òò

òòòòò
òòòòòòòòòòòòòòòòò

ò

ò

ò

ò

ò
ò

ò
ò

ò
ò

ò
ò
ò
ò
ò
ò
ò

õ

õ

õ
õ
õõ
õõõõõõõõõõõõõõ

õ

õ

õ

õ

õ

õ

õ

õ

0.0 0.2 0.4 0.6 0.8 1.0

-0.006

-0.004

-0.002

0.000

0.002

Q

E
´

V
�S

(a) Dirichlet BC

à

à

à

à

à
à

à
ààààààà

àààààà
àààààààààààààààààààà

à
à

à
à

à
à

à
à

à
à

à
à

à
à

à
à

à
à
à
à
ø

ø

ø
ø
ø
øø
øøø
øøøøø
øøøøø

øøøøøøøøøøø
ø

ø
ø

ø
øøøøøøøøøøøøøøøøøøøøøøøøøø

ò

ò

ò

ò

ò
ò
ò
òò

òò
òòò
òòòò
òòòòòòò
òòòòò

òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò
ò

ò
ò
ò
ò
ò
òòòòòòòòòòòòòòòòòòòòòòòò

õ

õ

õ

õ

õ
õ
õ
õ
õõ
õõ
õõõ
õõõ
õõõõõ
õõõõõõ

õõõõõõõõõõõõõõõõõõõõõ
õ

õ
õ

õ
õ
õ
õ
õ
õ
õ
õ
õ
õ
õ
õõõõõõõõõõõõõõõõ

0.0 0.2 0.4 0.6 0.8 1.0
-0.10

-0.08

-0.06

-0.04

-0.02

0.00

Q

E
´

V
�S

(b) Neumann BC

Figure 6.4: The scaled energies for Dirichlet (left) and Neumann (right)

finite prisms are plotted against the isoareal quotients Q. From left

to right, the plotted curves are for the hemiequilateral, right isosceles,

equilateral triangular prisms, and the square prims. The circular markers

indicate the particular configurations having the maximal Q for each cross

section.

What we are observing in these plots and data begins to reinforce the idea that

these energies, at least, follow certain hierarchies within a chosen class of geometries.

It seems plausible that we could have different branches for different geometry classes

which are then inter-related by the relations of their respective elements having the

highest Q.

When we pay closer attention to Figs. 6.4a and 6.4b, we also notice that for

the same value of Q, there can be two corresponding energies. This could mean
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that in order to specify a unique configuration, we need more that just the isoareal

quotient. We do know that the scaled energies for finite prisms do depend on the ratio

χ ≡ (b/a)2. Would plotting scaled energies with respect to Q and χ or some other

geometric invariant display patterns of interest? One geometric invariant related to

χ is b2/A, the ratio of the square of the height to the cross-sectional area. Plotting

Q against these two variables in Figs. 6.5a and 6.5b, we see that Q has a smoother

dependence on the b2/A. Hence, we choose to plot the scaled energies Esc against Q

and b2/A in Fig. 6.6. It seems, though, that not much information can be gathered in

the previously mentioned plot that is not already displayed in the other plots.

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

Χ

Q

(a)

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

b2�A

Q

(b)

Figure 6.5: In the left figure, the isoareal quotients Q are plotted against

χ = (b/a)2. To the right, the isoareal quotients are plotted against the geo-

metric invariant b2/A (A is the cross-sectional area). From bottom to top,

the curves correspond to the hemiequilateral, right isosceles, equilateral

finite triangular prisms, and the square prism.
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Figure 6.6: Scaled Dirichlet energies of prisms vs. isoareal quotients Q

and b2/A, where A is the cross-sectional area. Starting from the lowest

Q-values, the curves correspond respectively to hemiequilateral, right

isosceles, and equilateral triangular prisms, and square prisms (paral-

lelepipeds with σ = 1). The prominent circular markers are for the

configurations having the maximal Q.
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Chapter 7

Casimir Energies of Tetrahedra

In Chapter 4, we listed all the polyhedral cavities for which the method of images

applies. So far, we have looked at almost every case except the three integrable

tetrahedra. The eigenfunctions and eigenvalues for these tetrahedral domains can

be obtained using the straightforward approach described in the latter chapter. In

fact, they are not recent discoveries. The information about the eigenvalues and

eigenfunctions for such tetrahedra is present in a few articles [40, 62, 63]. The Casimir

energy results we give in this section are new. There appears to be only one earlier

Casimir energy treatment for one of these tetrahedra, which we denote here as the

small tetrahedron. That result, however, is erroneous. We will successively look at

the large, medium, and small tetrahedra, as defined below, and obtain interior scalar

Casimir energies for Dirichlet and Neumann boundary conditions.

7.1 Large Tetrahedron

We label the most symmetrical of these tetrahedra, sketched in Fig 7.1, as large.

Comparatively it seems to be the largest, since one can obtain a medium tetrahedron

by halving a large tetrahedron and idem for a small and medium tetrahedron. These

terms, large, medium, and small, are merely labels since one can always rescale each

tetrahedron independently of the others. Therefore, one should be careful not to

ascribe much meaning to these labels. The eigenvalues for a large tetrahedron are of
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Figure 7.1: Large tetrahedron: −x < z < x and x < y < 2a− x.

the form:

λ2m =
π2

4a2
[
3(k2 +m2 + n2)− 2(km+ kn+mn)

]
, (7.1)

where k,m, n are integers.

7.1.1 Dirichlet BC

The Dirichlet eigenfunctions for a large tetrahedron, bounded by the planes z = x,

z = −x, y = x, and y = 2a− x, take the form (after simplifications) [40]:

Φm(r) = αm(r)− i βm(r) (7.2)

where we write succinctly,

αm(r) =

∣∣∣∣∣∣∣∣∣∣∣∣

cos(πp x/2a) cos(πp y/2a) cos(πp z/2a)

cos(πq x/2a) cos(πq y/2a) cos(πq z/2a)

cos(πr x/2a) cos(πr y/2a) cos(πr z/2a)

∣∣∣∣∣∣∣∣∣∣∣∣
(7.3)
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and

βm(r) =

∣∣∣∣∣∣∣∣∣∣∣∣

sin(πp x/2a) sin(πp y/2a) sin(πp z/2a)

sin(πq x/2a) sin(πq y/2a) sin(πq z/2a)

sin(πr x/2a) sin(πr y/2a) sin(πr z/2a)

∣∣∣∣∣∣∣∣∣∣∣∣
. (7.4)

For simplicity, the variables p, q, and r are actually defined in terms of the mode

numbers: p = k +m− n, q = k −m+ n, and r = −k +m+ n. αm and βm, together,

form the set of all possible eigenfunctions. To form a complete set, we must constrain

the mode numbers to 0 < n < m < k. To symmetrically extend these constrained

sums over all possible values, we need to remove all the unphysical cases, and account

for the degeneracies. We can check that the modes (7.3) and (7.4) are degenerate for

24 operations on the x,y,z coordinates and that all the unphysical cases correspond to

{k = 0,m = 0, n = 0, k = m, k = n,m = n}. Using this information and the function

g(p, q, r) = e−τ
√

(π/a)2(p2+q2+r2) , (7.5)

the unregularized Casimir energy is of the form

E =
1

48
lim
τ→0

(
− d

dτ

) ∞∑
p,q,r=−∞

[
g(p, q, r) + g(p+ 1/2, q + 1/2, r + 1/2) (7.6)

− 6 g(p, q, q)− 6 g(p+ 1/2, q + 1/2, q + 1/2)

+ 8 g(
√

3p/2, 0, 0) + 3 g(p, 0, 0)
]
.

The sums extend over all positive and negative integers including zero. (In the third

and fourth terms only p and q are summed over, while in the last two terms only

p is summed.) We then extract the finite part using the regularization formulæ in

Eqs. (3.5), (3.6), and (3.7). The Epstein zeta functions Z3, Z3b, etc. are defined in
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Appendix B,

E
(D)
L =

1

a

{
− 1

96π2

[
Z3(2; 1, 1, 1) + Z3b(2; 1, 1, 1)

]
+

1

8π
ζ(3/2)L−8(3/2) (7.7)

+
1

16π
Z2b(3/2; 2, 1)− π

96
− π
√

3

72

}
,

where (the prime means the origin is excluded) [37]

∞∑′

m,n=−∞

(m2 + 2n2)−s = 2ζ(s)L−8(s) . (7.8)

The energy then evaluates numerically to

E
(D)
L = −0.0468804266

a
. (7.9)

The divergent parts, also extracted from the regularization procedure, follow the

expected form of Weyl’s law (3.11)

E
(D)
div =

3V

2π2τ 4
− S

8πτ 3
+

C

48πτ 2
. (7.10)

7.1.2 Neumann BC

The Neumann modes are similar to the Dirichlet ones, except they are a symmetric

sum instead of an antisymmetric sum. We have

Ψm(r) = γm(r)− i δm(r) , (7.11)

where γm is the symmetric sum version of αm (7.3), and δm has the same relation

to βm (7.4). The completeness constraints are 0 ≤ n ≤ m ≤ k excluding the origin

k = m = n = 0. After regularizing the resulting expression, we can simplify the

expression in terms of the Dirichlet result:

E
(N)
L = E

(D)
L − 1

8πa

[
2 ζ(3/2)L−8(3/2) + Z2b(3/2; 2, 1)

]
, (7.12)
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which gives us a numerical value of

E
(N)
L = −0.1964621484

a
. (7.13)

The divergent parts also match the expected Weyl terms for Neumann boundary

conditions.

7.2 Medium Tetrahedron

z

x y

A

B

D

C

Figure 7.2: Medium tetrahedron: 0 < z < x and x < y < 2a− x.

The medium tetrahedron, sketched in Fig. 7.2, can be obtained by halving the

large tetrahedron in Fig. 7.1 across the z = 0 plane. The eigenvalue spectra are of the

same form (7.1), but the constraints are obviously not.
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7.2.1 Dirichlet BC

The Dirichlet modes for a medium tetrahedron [40] with the specifications given in

Fig. 7.2 are a subset of the large tetrahedron’s (7.4):

Φm(r) =

∣∣∣∣∣∣∣∣∣∣∣∣

sin(πp x/2a) sin(πp y/2a) sin(πp z/2a)

sin(πq x/2a) sin(πq y/2a) sin(πq z/2a)

sin(πr x/2a) sin(πr y/2a) sin(πr z/2a)

∣∣∣∣∣∣∣∣∣∣∣∣
. (7.14)

These are, in fact, the modes for the large tetrahedron that vanish for z = 0. p, q, and

r have the same definitions in terms of the integers k,m, n given in Section 7.1.1. The

completeness constraints are n < m < k < m+n. This time there are 48 degeneracies,

and the unphysical modes have the mode numbers {k = 0,m = 0, n = 0, k = m, k =

n,m = n, k = m + n,m = k + n, n = k + m}. The energy, in terms of the large

tetrahedron’s result, is

E
(D)
M =

1

2
E

(D)
L +

1

96πa

[
3 ζ(3/2)β(3/2)− (1 +

√
2)π2

]
, (7.15)

where we used [37]
∞∑′

m,n=−∞

(m2 + n2)−s = 4ζ(s)β(s) . (7.16)

The Casimir energy evaluates to

E
(D)
M = −0.0799803933

a
. (7.17)

Here the function β is also defined in Appendix B.
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7.2.2 Neumann BC

The Neumann modes are also a subset of the large tetrahedron’s (Neumann modes).

They are labeled as δm in the previous section. The constraints for the complete set of

modes is also a more inclusive version of the Dirichlet constraint: n ≤ m ≤ k ≤ m+n,

which still excludes the origin k = m = n = 0. We express this result in terms of the

large tetrahedron’s energy (7.13):

E
(N)
M =

1

2
E

(N)
L − 1

96πa

[
3 ζ(3/2)β(3/2) + (1 +

√
2)π2

]
= −0.1997008024

a
. (7.18)

7.3 Small Tetrahedron

z

x
y

A

B

D

C

Figure 7.3: Small tetrahedron: 0 < z < x and x < y < a.

The small tetrahedron in Fig. 7.3 can be thought of as the result of dividing the

medium tetrahedron (Fig. 7.1) across the y = a plane. The eigenvalues, this time,

however, are of a different form

λ2m =
π2

a2
(
k2 +m2 + n2

)
. (7.19)
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They are actually of the same form as a cube’s eigenvalue spectrum1, although as we

expect they have different modal constraints.

7.3.1 Dirichlet BC

For Dirichlet boundary conditions, the modes are similar to βm in Eq. (7.4),

Φm(r) =

∣∣∣∣∣∣∣∣∣∣∣∣

sin(πk x/a) sin(πk y/a) sin(πk z/a)

sin(πmx/a) sin(πmy/a) sin(πmz/a)

sin(πnx/a) sin(πn y/a) sin(πn z/a)

∣∣∣∣∣∣∣∣∣∣∣∣
, (7.20)

but here the sines are functions of k, m, and n, which are integers, not combinations of

integers. To specify a complete set of modes, we must have 0 < n < m < k. To obtain

the zero-point energy, we proceed with our method of symmetrical extension, where

we remove the unphysical cases {k = 0,m = 0, n = 0, k = ±m, k = ±n,m = ±n} and

account for the 48 degeneracies. The finite part obtained is thus

E
(D)
S =

1

a

[
− 1

192π2
Z3(2; 1, 1, 1) +

1

16π
ζ(3/2)L−8(3/2) +

1

32π
ζ(3/2)β(3/2)

− π

64
− π
√

3

72
− π
√

2

96

]
, (7.21)

which evaluates to

E
(D)
S = −0.10054146218

a
. (7.22)

This particular configuration was considered in Ref. [46], where it was called a

pyramidal cavity. The result given in that reference, however, is likely wrong and the

issue appears to stem from a mode-counting error.

1This spectrum is actually the same as that for the other tetrahedra, given in Eq. (7.1), with the
additional restriction that m+ n+ k be even.
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7.3.2 Neumann BC

For Neumann boundaries, the treatment is just as straightforward. The modes are

also of the same form as the medium tetrahedron’s, which we give explicitly:

Ψm(r) = cos(πkx/a)
[

cos(πmy/a) cos(πnz/a) + cos(πny/a) cos(πnz/a)
]

(7.23)

+ cos(πmx/a)
[

cos(πky/a) cos(πnz/a) + cos(πny/a) cos(πkz/a)
]

+ cos(πnx/a)
[

cos(πmy/a) cos(πkz/a) + cos(πky/a) cos(πmz/a)
]
.

Again, k,m, n ∈ Z. We symmetrically extend the sums, which are constrained by

0 ≤ n ≤ m ≤ k minus the origin k = m = n = 0, and we obtain the energy

E
(N)
S = E

(D)
S − 1

16πa
ζ(3/2)

[
2L−8(3/2) + β(3/2)

]
, (7.24)

in terms of E
(D)
S (7.22). This gives a numerical value of

E
(N)
S = −0.2587920021

a
. (7.25)

7.4 Analysis

To try to make sense of, or rather discover the underlying mechanism responsible for

the geometry-energy conundrum we will plot the scaled energies of the tetrahedra

with respect to their isoareal quotients Q. Both quantities have been introduced

in the previous analyses for the finite prisms in Section 6.6. We compile the data

for these scaled energies and isoareal quotients in Table 7.1, and later plot them in

Figs. 7.4a, 7.4b, 7.5a, and 7.5b.
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At this stage, it is quite unclear what the nature of these curves are, like all the

other geometries analyzed so far. These curves, for the tetrahedra, do not display

the monotonic behavior observed for the prisms, for example. Although this may be

counter-intuitive, one must be open to the various possibilities presented. In fact,

three data points may not be enough to capture the salient characteristics of a curve.

Furthermore, how does this fit with the systematics we have already observed?

Cavity Q E
(D)
sc E

(N)
sc

Small T. 0.22327 −0.00694 −0.01787

Medium T. 0.22395 −0.00696 −0.01739

Large T. 0.27768 −0.00552 −0.02315

Cube 0.52359 −0.00262 −0.04755

Spherical Shell 1 0.00093 −0.07459

Table 7.1: Scaled energies and isoareal quotients. The last row is for a

spherical shell. In contrast to the polyhedral results, which are only from

interior contributions, the spherical shell’s energies are the result of adding

interior and exterior contributions [15,64].
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Figure 7.4: Scaled energies of Dirichlet integrable tetrahedra vs. Q. The

figure on the left plots the energies for all three tetrahedra. In order of

increasing Q, the plot markers correspond to the small, medium, and large

tetrahedra. The figure on the right shows the relative positions of the

small and medium tetrahedra’s plot markers.
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Figure 7.5: Scaled energies of Neumann integrable tetrahedra vs. Q. The

figure on the left plots the energies for all three tetrahedra. In order of

increasing Q, the plot markers correspond to the small, medium, and large

tetrahedra. The figure on the right shows the relative positions of the

small and medium tetrahedra’s plot markers.
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Chapter 8

Analysis and Conclusions

To recapitulate, the aim of this work is to seek a better understanding of the geometry-

energy relation for the Casimir effect. In the past chapters, we derived and analyzed

the Casimir energies for integrable cavities within their own categories. The question,

though, remains about how the energies of vastly different geometries would compare.

Plotting the scaled energies for the finite prisms, tetrahedra, and spherical shell

against their isoareal quotients on the same graph, we observe that there is an

overall hierarchy for these clusters of data points. For example, in Fig. 8.1 where we

consider Dirichlet boundaries, the tetrahedra have the lowest energies, followed by the

finite prisms, and eventually the spherical shell. The order is reversed for Neumann

boundaries (Fig. 8.2). These are interesting behaviors. There is, however, a concern

regarding whether it is valid to compare the interior Casimir energies for polyhedra to

a spherical shell’s, which is obtained by adding both interior and exterior energies.

Although one cannot directly answer this question, the approach taken in this

analysis is certainly a way to find a solution. Since the energies for polyhedral cavities

are unambiguous (only the interior contributes), one would expect an interesting

transition as the number of boundaries increases indefinitely to give a smooth boundary,

for example a sphere. This would also allow one to assign an unambiguous interior

energy for smooth boundaries, a problem which has often surfaced in bag model

calculations.

Understanding self-energies is a fundamental problem which will certainly have
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Figure 8.1: The scaled energies for Dirichlet integrable cavities (finite

prisms, tetrahedra, including the spherical shell) are plotted against the

isoareal quotients Q. From left to right, we combine the plots for the

tetrahedra (Fig. 7.4a), the finite prisms (Figs. 6.4a), and a red circular

marker for a Dirichlet spherical shell (see Table 7.1).
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Figure 8.2: The scaled energies for Neumann integrable cavities (finite

prisms, tetrahedra, including the spherical shell) are plotted against the

isoareal quotients Q. From left to right, we combine the plots for the

tetrahedra (Fig. 7.5a), the finite prisms (Fig. 6.4b), and a red circular

marker for a Neumann spherical shell (see Table 7.1).

positive repercussions. For instance, one could think of the dark energy problem in

cosmology. Nanotechnology, where one is concerned with small scales, will also benefit

from a better understanding of the Casimir effect. At the very least, the results obtained

in this work are of mathematical significance. In the meantime, extending these results

to other boundary conditions, notably electromagnetic boundary conditions, and

higher dimensions is under way.
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[8] R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya, D. E. Krause, and
V. M. Mostepanenko, Ann. Phys. 318, 37 (2005).

[9] T. H. Boyer, Phys. Rev. 174, 1764 (1968).

[10] B. Davies, J. Math. Phys. 13, 1324 (1972).

[11] R. Balian and B. Duplantier, Ann. Phys. 112, 165 (1978).

[12] K. A. Milton, L. L. D. Jr., and J. Schwinger, Ann. Phys. 115, 388 (1978).

[13] S. Leseduarte and A. Romeo, Ann. Phys. 250, 448 (1996).

[14] S. Leseduarte and A. Romeo, Europhys. Lett. 34, 79 (1996).

[15] V. V. Nesterenko and I. G. Pirozhenko, Phys. Rev. D 57, 1284 (1998).

[16] W. Lukosz, Physica 56, 109 (1971).

[17] W. Lukosz, Z. Phys. 262, 327 (1973).

[18] W. Lukosz, Z. Phys. 258, 99 (1973).

[19] J. Ambjørn and S. Wolfram, Ann. Phys. 147, 1 (1983).

[20] L. L. DeRaad, Jr. and K. A. Milton, Ann. Phys. 136, 229 (1981).

[21] E. K. Abalo, K. A. Milton, and L. Kaplan, Phys. Rev. D 82, 125007 (2010).

[22] E. K. Abalo, K. A. Milton, and L. Kaplan, (2011), (To appear in IJMPCS
Proceedings of QFEXT11).

[23] E. K. Abalo, K. A. Milton, and L. Kaplan, (2012), (Submitted to J. Phys. A).

[24] S. A. Fulling, J. Phys. A 36, 6857 (2003).

82



[25] H. Weyl, Nachr. Königl. Gesell. Wiss. Göttingen 110 (1911).

[26] H. Weyl, Mathematische Annalen 71(4), 441 (1912).

[27] H. Weyl, J. Reine Angew. Math. 141, 1 (1912).

[28] H. Weyl, J. Reine Angew. Math. 141, 163 (1912).

[29] B. V. Fedosov, Sov. Math. Dokl. 4, 1092 (1963).

[30] K. A. Milton and J. Schwinger, Electromagnetic Radiation: Variational Methods,
Waveguides and Accelerators (Springer-Verlag, Berlin, 2006).

[31] E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and S. Zerbini, Zeta
Regularization Techniques with Applications (World Scientific, Singapore, 1994).

[32] S. Chowla and A. Selberg, J. Reine Angew. Math. 227, 86 (1967).

[33] L. Lorenz, Matematisk Tidsskrift 1, 97 (1871).

[34] G. H. Hardy, Messenger Math. 49, 85 (1919).

[35] A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of
Mathematical Tables (Blackwell, London, 1962), Vol. 1, p. 95.

[36] I. J. Zucker, J. Math. Phys. 15, 187 (1974).

[37] M. L. Glasser and I. J. Zucker, Theoretical Chemistry: Advances and Perspectives
(Academic, New York, 1980).

[38] C. Itzykson, P. Moussa, and J. M. Luck, J. Phys. A 19, L111 (1986).

[39] C. Itzykson and J. M. Luck, J. Phys. A 19, 211 (1986).

[40] R. Terras and R. Swanson, J. Math. Phys. 21, 2140 (1980).

[41] R. Terras and R. A. Swanson, Am. J. Phys. 48, 526 (1980).

[42] J. B. Keller, Communications on Pure and Applied Mathematics 6, 505 (1953).

[43] J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W.-y. Tsai, Classical Electro-
dynamics (Westview Press, New York, 1998).

[44] N. Inui, J. Phys. Soc. Jpn. 76, 114002 (2007).

[45] H. Ahmedov and I. H. Duru, J. Math. Phys. 45, 965 (2004).

[46] H. Ahmedov and I. H. Duru, J. Math. Phys. 46, 022303 (2005).

[47] H. Ahmedov and I. H. Duru, Turk. J. Phys. 30, 345 (2006).

83



[48] R. Terras, Math. Proc. Camb. Phil. Soc. 89, 331 (1981).

[49] C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, Hoboken, NJ, 2005).

[50] M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press,
New York, 1956).

[51] H. Kremer and E. W. Weisstein, From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/IsoperimetricQuotient.html .

[52] E. W. Weisstein, From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/IsoperimetricInequality.html .

[53] P. J. Nahin, When least is best (Princeton University Press, Princeton, NJ, 2004).
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Appendix A

Poisson Resummation Formulæ

A.1 Discrete Mode Numbers

We consider the Poisson resummation of the traced cylinder kernel of an arbitrary

real quadratic form,

S =
∞∑

m1,...,mn=−∞

e−τ
√

(m+a)j Ajk (m+a)k . (A.1)

Taking the Fourier transform of the summand of S and using Eq. (3.2) gives

S =
∞∑

m1,...,mn=−∞

∫ ∞
−∞

n∏
j=1

duj e
2πiujmje−τ

√
(ui+ai)Aik(uk+ak) . (A.2)

We shift the variables

uj → uj − aj , (A.3)

and diagonalize A

Bij = Uik Akm U
T
mj . (A.4)

A redefinition of the integration variables follows,

vj = Ujkuk , (A.5)

as well as the summation variables,

qj = Ujkmk . (A.6)

As a result of these transformations, we recognize that the Jacobian of the transfor-

mation matrix is unity,
n∏
j=1

duj =
n∏
j=1

dvj . (A.7)
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We are now ready to change to hyperspherical coordinates. First, we define

Rj =
√
Bjj vj (A.8)

and

kj =
qj√
Bjj

(A.9)

which allows us to write

vj qj = kR cos θ . (A.10)

Effectuating the change of variables gives us

n∏
j=1

dvj = |det (B)|−1/2Rn−1dR dφ (sin θ)n−2 dθ
n−3∏
j=1

(sin θj)
j dθj . (A.11)

The φ-integral produces a 2π and the integrals for the first (n− 3) θj angles give

n−3∏
j=1

(∫ π

0

sinj θ dθ

)
=

π(n−3)/2

Γ((n− 1)/2)
. (A.12)

We are now able to focus on the remaining θ-integral,

∫ π

0

(sin θ)n−2 e2πikR cos θ dθ = π(3−n)/2Γ((n− 1)/2) (kR)(2−n)/2 J(n−2)/2 (2πkR) .

(A.13)

The last integral, the R-integral, is evaluated rather straightforwardly,

∫ ∞
0

dRRn/2J(n−2)/2 (2πkR) e−τR =
τ 2n−1π(n−3)/2k(n−2)/2Γ ((n− 1)/2)

(τ 2 + 4π2kj kj)
(n+1)/2

, (A.14)

and putting everything together we obtain:

S =
2nπ(n−1)/2 Γ((n+ 1)/2)

|det (A)|1/2
∞∑

m1,...,mn=−∞

τ e−2πimj aj

(τ 2 + 4π2kj kj)
(n+1)/2

. (A.15)
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A.2 Discrete and Continuous Mode Numbers

If S, in Eq. (A.1), were to have discrete as well as continuous mode numbers,

S =

∫ ∞
−∞

α−1∏
i=1

dmi

∞∑
mα,...,mn=−∞

e−τ
√

(m+a)j Ajk (m+a)k , (A.16)

where the indices j, k run from 1 to n and 1 ≤ α ≤ n, we would simply obtain a

slightly modified version of Eq. (A.15):

S =
2nπ(n−1)/2 Γ((n+ 1)/2)

|det (A)|1/2
∞∑

mα,...,mn=−∞

τ e−2πimj aj

(τ 2 + 4π2kj kj)
(n+1)/2

. (A.17)

The sum would now be only over the mode numbers {mα, . . . ,mn} and we would also

have

mj aj = mα aα + · · ·+mn an , (A.18)

kj kj = kα kα + · · ·+ kn kn , (A.19)

with kj defined in the previous section (A.9).

A.3 Continuous Mode Numbers

In particular, if we set α = n+ 1 in Eq. (A.16) or in other words the case where all

mode numbers are continuous, S would become:

S =

∫ ∞
−∞

n∏
i=1

dmi e
−τ
√

(m+a)j Ajk (m+a)k . (A.20)

The result, after performing the integrals in hyperspherical coordinates would be of

the simple form:

S =
2nπ(n−1)/2 Γ((n+ 1)/2)

|det (A)|1/2 τn
. (A.21)

87



Appendix B

Mathematical Functions

B.1 Epstein Zeta Functions

We define the following Epstein zeta functions:

Z3(s; a, b, c) =

∞∑′

k,m,n=−∞

(a k2 + bm2 + c n2)−s, (B.1)

Z3b(s; a, b, c) =

∞∑′

k,m,n=−∞

(−1)k+m+n(a k2 + bm2 + c n2)−s, (B.2)

Z3c(s; a, b, c) =

∞∑′

k,m,n=−∞

(−1)k+m(a k2 + bm2 + c n2)−s, (B.3)

Z2b(s; a, b) =

∞∑′

m,n=−∞

(−1)m+n(am2 + b n2)−s. (B.4)

Here, sums are over all integers, positive, negative, and zero, excluding the single point

where all are zero. They are summed numerically using Ewald’s method [37,65,66]:

Z3(s; a, b, c) =
1

Γ(s)

[
− αs

s
− π3/2αs−3/2

(3/2− s)
+

∞∑′

k,m,n=−∞

Γ(s;α[ak2 + bm2 + cn2])

(ak2 + bm2 + cn2)s

+ π2s−3/2
∞∑′

k,m,n=−∞

Γ(3/2− s; π2/α[k2/a+m2/b+ n2/c])

(k2/a+m2/b+ n2/c)3/2−s

]
, (B.5)

Z3b(s; a, b, c) =
1

Γ(s)

[
− αs

s
+

∞∑′

k,m,n=−∞

(−1)k+m+nΓ(s;α[ak2 + bm2 + cn2])

(ak2 + bm2 + cn2)s
(B.6)

+ π2s−3/2
∞∑

k,m,n=−∞

Γ(3/2− s; π2/α|q + c|2)
|q + c|3−2s

]
,

Z3c(s; a, b, c) =
1

Γ(s)

[
− αs

s
+

∞∑′

k,m,n=−∞

(−1)k+m
Γ(s;α[ak2 + bm2 + cn2])

(ak2 + bm2 + cn2)s
(B.7)

+ π2s−3/2
∞∑

k,m,n=−∞

Γ(3/2− s; π2/α|q + d|2)
|q + d|3−2s

]
,
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Z2b(s; a, b) =
1

Γ(s)

[
− αs

s
+

∞∑′

m,n=−∞

(−1)m+nΓ(s;α[am2 + bn2])

(am2 + bn2)s
(B.8)

+ π2s−1
∞∑

m,n=−∞

Γ(1− s; π2/α[(m+ 1/2)2/a+ (n+ 1/2)2/b])

[(m+ 1/2)2/a+ (n+ 1/2)2/b]1−s

]
,

where we have occasionally used the definitions q = (k/
√
a,m/

√
b, n/
√
c), c =

1
2
(1/
√
a, 1/
√
b, 1/
√
c), and d = 1

2
(1/
√
a, 1/
√
b, 0). The constant α is chosen such that

0 < α < ∞; for the sake of simplicity and computational efficiency it may be set

α = 1. A few specific Epstein zeta values needed for calculations:

Z3(2; 1, 1, 1) = 16.5323159598, (B.9)

Z3b(2; 1, 1, 1) = −3.8631638072, (B.10)

Z3c(2; 1, 1, 1) = −1.8973804658, (B.11)

Z2b(3/2; 1, 2) = −1.9367356117, (B.12)

Z2b(3/2; 1, 3) = −1.8390292892. (B.13)

B.2 Dirichlet L-series

The Dirichlet L-series are defined as Lk(s) =
∑∞

n=1 χk(n)n−s where χk is the number-

theoretic character [37]. The Dirichlet beta function, also known as L−4, is usually

defined as β(s) =
∑∞

n=0(−1)n(2n+ 1)−s.
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B.3 Chowla-Selberg Formula

The Chowla-Selberg formula, for Re s > 1 and ∆ = 4ac− b2 > 0 is,

∞∑′

m,n=−∞

(am2 + bmn+ cn2)−s = 2a−sζ(2s) +
22s
√
πas−1

Γ(s)∆s−1/2 ζ(2s− 1)Γ(s− 1/2)

+
2s+5/2πs

Γ(s)∆s/2−1/4√a

∞∑
n=1

ns−1/2σ1−2s(n) cos(nπb/a)K1/2−s(nπ
√

∆/a). (B.14)

The prime indicates m = n = 0 is excluded from the summation range. The divisor

function, σk(n), is the sum of the k-th powers of the divisors of n,

σk(n) ≡
∑
d|n

dk. (B.15)
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