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Abstract 

 

The concept of the niche has been a central theme of ecology for over half a century. 

With recent advances in Geographic Information Systems (GIS) and statistical 

procedures, the inferential method of ecological niche modeling (ENM) has emerged as 

an important tool for studies in ecology and evolutionary biology. This method consists 

of modeling species’ distributions based on attributes of the environment that should be 

correlated with species’ niche requirements. The models assume that geographic 

distribution and characteristics of the environment are related to the species niche, and 

therefore are tied to ecological niche theory. Over the past several years, ENM has been 

widely used to address numerous research questions in ecology, evolutionary biology, 

and conservation. Here I applied ENM in novel ways, focusing on central themes in 

Macroecology, Biogeography, and Conservation. First, I analyzed species richness in the 

Brazilian Cerrado, identifying areas of high richness and analyzing the relationship 

between richness and climatic variables to test predictions of large-scale hypotheses 

concerning determinants of species richness. Second, I assessed the performance of two 

ENM algorithms in predicting species richness and composition of an unsampled area of 

conservation interest in the Brazilian Cerrado. These analyses provided an overall 

assessment of the weaknesses and strengths of ENM for conservation planning. Lastly, I 

applied ENM to two different situations in an effort to understand and disentangle the 

relative contributions of abiotic factors, competition, dispersal barriers, and biotic 

interactions in determining species’ range limits. Overall, I was able to show that by 

applying ENM techniques it is possible to gain insights into a vast number of ecological 



 ix 

questions. These studies highlight the complexity of studying species range limits, but 

reiterate that an integrative approach is necessary to understand this phenomenon. 
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Chapter I 

 

Squamate richness in the Brazilian Cerrado and its environmental–climatic 

associations 

 

(formatted for Diversity and Distributions) 
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ABSTRACT 

We investigated patterns of squamate species richness in the Brazilian Cerrado, 

identifying areas of particularly high richness, and testing predictions of large-scale 

richness hypotheses by analyzing the relationship between species richness and 

environmental climatic variables. We used point localities from museum collections to 

produce maps of the predicted distributions for 237 Cerrado squamate species, using 

niche-modeling techniques. We superimposed distributions of all species on a composite 

map, depicting richness across the ecosystem. Then, we performed a multiple regression 

analysis using eigenvector-based spatial filtering (Principal Coordinate of Neighbor 

Matrices – PCNM) to assess environmental–climatic variables that are best predictors of 

species richness. We found that the environmental–climatic and spatial filters multiple 

regression model explained 78% of the variation in Cerrado squamate richness (r²= 0.78; 

F = 32.66; P < 0.01). Best predictors of species richness were: annual precipitation, 

precipitation seasonality, altitude, net primary productivity, and precipitation during the 

driest quarter. A model selection approach revealed that several mechanisms related to 

the different diversity hypothesis might work together to explain richness variation in the 

Cerrado. Areas of higher species richness in Cerrado were located mainly in the 

southwest, north, extreme east, and scattered areas in the northwest portions of the biome. 

Partitioning of energy among species, habitat differentiation, and tolerance to variable 

environments may be the primary ecological factors determining variation in squamate 

richness across the Cerrado. High richness areas in northern Cerrado, predicted by our 

models, are still poorly sampled and biological surveys are warranted in that region. The 

southwestern region of the Cerrado exhibits high species richness and is also undergoing 
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high levels of deforestation. Therefore, maintenance of existing reserves, establishment 

of ecological corridors among reserves, and creation of new reserves are urgently needed 

to ensure conservation of species in these areas. 

 

Key words: Conservation, niche-modeling, reptiles, richness gradients, spatial statistics, 

species distribution. 
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INTRODUCTION 

The Cerrado is the second largest biome in South America, originally occupying about 

20% of Brazil’s land surface (Ab'Saber, 1977; Ratter et al., 1997; Silva & Bates, 2002). It 

is located mainly in central Brazil and shares contact zones with almost all other 

Brazilian biomes. The Cerrado consists of savanna vegetation distributed in a gradient 

from open grassland to forested sites with closed canopy (Eiten, 1972). A recent 

overview of the Cerrado fauna and flora is available in Oliveira & Marquis (2002). 

Along with 34 other ecosystems, the Cerrado is considered a global biodiversity 

“hotspot,” as defined by diversity, endemism, and human threats (Myers, 2003; 

Mittermeier et al., 2005). A recent estimate based on satellite remote sensing shows that 

approximately 55% of the Cerrado’s original vegetation has been removed, and the 

annual deforestation rate is higher than that in the Amazon (Machado et al., 2004b). If the 

current destruction rate is not reversed, no natural areas will remain in the Cerrado by 

2030 (Machado et al., 2004b). Agriculture and cattle farming, the major economic 

activities in Brazil, are the main threats to Cerrado, and the pace of deforestation is not 

likely to change in the near future (Klink & Moreira, 2002; Klink & Machado, 2005). 

Hence, Cerrado conservationists face the challenge of preserving the maximum amount 

of biodiversity using an ever-decreasing available space. Immediate action is needed 

because every year vast areas of the Cerrado are lost (Machado et al., 2004b). 

Despite its great diversity, endemism, and level of deforestation, less than 3% of 

the Cerrado’s land area is protected in reserves (Machado et al., 2004a; Rylands et al., 

2005). To identify priority areas for conservation, detailed information on species 

distributions is necessary. Vast areas of Cerrado are still poorly sampled (Silva, 1995; 
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Ratter et al., 1997; Aguiar, 2000; Felfili et al., 2004) and biological surveys require 

significant investments of both time and money. Unfortunately, the speed at which the 

Cerrado is being destroyed does not allow sufficient time to adequately survey the entire 

region. 

 Recently, new advances in Geographical Information Systems (GIS) allow 

modeling of species’ distributions based on attributes of the environment that should be 

correlated with species’ niche requirements (Peterson, 2001; Guisan & Thuiller, 2005).  

These models identify previously unsampled locations where the species has a high 

probability of occurrence because the environment is similar to conditions at known 

occurrence localities. These techniques do not account for species interactions or 

historical factors, but they combine spatially explicit factors to yield potential geographic 

distributions of species (Araujo & Guisan 2006). These methods have been successfully 

applied to several animal groups in different ecosystems, including butterflies in Finland 

(Luoto et al., 2002), birds in North America (Peterson, 2001), and lizards in Madagascar 

(Raxworthy et al., 2003). A recent study comparing different methods for predicting 

species distributions using presence-only data concluded that overall, these techniques 

produce good results (Elith et al., 2006). 

 Additionally, niche modeling can be used to generate distribution maps for 

individual species, which can be superimposed to generate maps showing gradients in 

species richness. The occurrence and determinants of large-scale patterns of species 

richness are fundamental questions in ecology that are still far from being resolved 

(Ricklefs, 2004). Several hypotheses exist to explain such patterns, some of which relate 

richness to particular environmental–climatic parameters (see Table 1 for a list of current 
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hypotheses and how they relate to environmental–climatic variables). For example, the 

“available energy hypothesis” states that energy partitioning among species is the most 

important factor limiting species richness (Wright, 1983). According to the predictions of 

this hypothesis, richness should be highly correlated with temperature, precipitation, and 

potential evapotranspiration because higher available energy can support more species 

(Fraser & Currie, 1996; Moser et al., 2005). 

 The goal of our study was two-fold. First, we applied niche-modeling techniques 

to a large dataset on Cerrado squamate (lizards, snakes, and amphisbaenians) occurrences 

to produce distribution maps for all Cerrado species. We superimposed these maps to 

make a single map that depicts patterns of squamate species richness across the biome. 

After that, we analyzed the richness map generated using multiple regression and spatial 

analysis techniques to determine which environmental–climatic variables exert a greater 

influence on species richness, and we used model selection to evaluate which hypothesis 

best explains species richness gradients in the Brazilian Cerrado.  

 Second, we provided biological information to support conservation decisions. 

Using the richness map produced, we identified areas of high richness within the 

Cerrado. Although we used only squamate reptiles, previous works have shown that 

richness across large geographical scales is correlated among several different animal 

groups (Lamoreux et al., 2006); thus, patterns that emerge from this analysis can be 

extrapolated for other animal groups in Cerrado. This analysis will provide substantial 

data for further studies on identifying priority areas for conservation. 

 

METHODS 
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Data collection 

We collected locality data for squamate species occurring in the Cerrado from museums, 

literature, and fieldwork, and created a database with species names, localities, and 

geographical coordinates. The database consists of records from the major collections for 

Cerrado squamates: Coleção Herpetológica da Universidade de Brasília (CHUNB), 

Museu de Zoologia da Universidade de São Paulo (MZUSP), and Instituto Butantan (IB). 

When available, we used geographical coordinates from museum databases or published 

studies, and in other instances, we approximated point localities from locality 

descriptions using georeferencing techniques and gazetteers (NGA, 2005). 

 In the analysis, we used only those species that had at least one data point within 

the Cerrado biome. However, for species whose distributions spanned multiple biomes, 

we also included data points outside the Cerrado, because characteristics of these points 

can help identify suitable regions for species occurrence within the Cerrado. At the time 

of the analysis the database contained a total of 237 species known to occur in the 

Cerrado (Appendix A). 

 

Niche-modeling 

For each of the 237 species, we produced predicted distribution maps, using the software 

DesktopGARP®. This software uses the GARP algorithm (Genetic Algorithm for Rule-

set Prediction), which includes several distinct algorithms in an iterative, artificial 

intelligence approach based on species presence data points (Stockwell & Peters, 1999). 

DesktopGARP® software generates each species’ predicted distribution based upon 

characteristics of environmental–climatic variables for localities in which a given species 
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has been previously collected. We used a total of 22 variables (Supplementary material). 

Variables were downloaded from the Worldclim project (Hijmans et al., 2005). Details, 

descriptions, and files for downloading are available free on-line at: 

http://www.worldclim.org/. 

 We used the following options while running the software: Optimization 

parameters – 20 runs, 0.001 convergence limit, and 1000 maximum interactions; Rule 

Types – Atomic, Range, Negated Range, and Logistic regression; Best subset active, 5% 

omission error, 40% commission error, and 50% of points for training; Omission measure 

= extrinsic, and Omission threshold = Hard; 10 models under hard omission threshold. 

 The output of DesktopGARP® consists of Arc/Info grid maps with ‘zeros’ where 

the species do not occur and ‘ones’ where the species are predicted to occur. We used the 

area covered by the coincidence of 7 of the 10 models in the best subset selection 

(optimum models considering omission/commission relationships; Anderson et al 2003) 

as the estimation of the distribution of each species. This approach is called ensemble 

forecasting and has been recently reviewed by Araujo & New (2007). By doing that and 

by setting the commission error to 40%, we believe we added a component of 

conservatism in the predictions of GARP that otherwise could extrapolate too much in 

the direction of areas too far from where the species have previously been collected. 

After producing such maps using the same criteria for all 237 species, we overlaid the 

distributions of all species into a composite map using the software ArcGis™ 

(Environment Systems and Research Institute Inc. Redlands, California). This final map 

consisted of a grid where the value of each cell was the predicted number of species 
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(species richness), calculated by summing the number of overlaid corresponding cells 

with positive occurrence results. 

 

Multiple Regression 

We performed a multiple regression analysis to evaluate which environmental–climatic 

variables are the best predictors of squamate richness. We selected 300 random points in 

the Cerrado region using a filter option in the software IDRISI Kilimanjaro (Eastman, 

2003). Values of richness (dependent variable) and environmental variables (independent 

variables) for the selected points were used to build a matrix. We did not use all 

environmental variables used to run GARP, because including many highly correlated 

variables in a multiple regression creates several theoretical and statistical problems, 

especially in the estimation of partial regression coefficients (Tabachnick, 2000). We 

selected variables that were previously identified as influencing species richness patterns 

and were not highly correlated (r < 0.9) (Table 1, Appendix B). We add to the regression 

the variable net primary productivity downloaded from the Atlas of Biosphere website: 

http://www.sage.wisc.edu/atlas. This variable has been previously suggested to influence 

species richness (Table 1). We performed an exploratory analysis of the data matrix 

where we identified and eliminated univariate and multivariate outliers. The spatial 

distribution of points used in the analysis can be seen in Figure 1. 

 Ecologists have long recognized that macroecological and biodiversity data show 

strong spatial patterns, which are driven by structured biological processes and, therefore, 

are usually spatially autocorrelated (Legendre, 1993; Diniz-Filho et al., 2003). Spatial 

autocorrelation occurs when variable values at a certain distance apart are more (positive 
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autocorrelation) or less similar (negative autocorrelation) than expected by chance 

(Legendre, 1993). Failure to account for spatial autocorrelation in multiple regression 

analysis results in inflation of Type I error (Legendre, 1993; Diniz-Filho et al., 2003). To 

alleviate this problem, we used spatial filters obtained by Principal Coordinates 

Neighbour Matrices (PCNM). This method partitions variation between spatial and 

environmental components, and works well at different spatial scales (Borcard & 

Legendre, 2002; Borcard et al., 2004; Diniz-Filho & Bini, 2005). In the analysis, we 

treated the filters as candidate predictor variables, along with other environmental 

predictors. Using this approach, the effects of environmental predictors are evaluated as 

partial effects, taking space into account explicitly (Rangel et al., 2006). We selected 

filters in an iterative process, by examining the pattern of spatial autocorrelation of 

regression residuals. Filters were selected to minimize both the autocorrelation among 

residuals and the number of filters used in regression. To investigate the presence of 

spatial autocorrelation, we used Moran’s coefficient, the most commonly used statistic 

for autocorrelation analysis in macroecology and biogeography (Diniz-Filho et al., 2003). 

 In addition, based on r square values for partial regressions made with filters 

alone, and environmental predictors alone we divided the total variation explained by the 

model into: explained by space only, explained by the environmental variables only, and 

shared explained variance. All spatial analyses were performed in SAM – Spatial 

Analysis in Macroecology (Rangel et al., 2006), which is freely available at: 

www.ecoevol.ufg.br/sam. 

 In order to determine which hypotheses best explained variation in species 

richness in the Cerrado squamates, we conducted separate regressions to fit each of the 
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hypothesis presented in Table 1 (with the addition of two mixed models, one 

incorporating all variables related to each hypothesis, and other using only the variables 

pointed out as significant by the multiple regression). We used model selection based on 

the sample corrected Akaike Information Criteria (AICc). We used AIC because 

information–theoretic approaches are strongly recommended alternatives to traditional 

hypothesis testing. Particularly, AIC is more tolerant to violations of the assumptions of 

parametric statistics that are commonly encountered in ecological data (e.g. normality), it 

is specially useful when comparing multiple working hypotheses, and it does not rely 

solely on the use of random P-values for determining significance (Anderson et al., 2000, 

Burnham & Anderson, 2004) 

 Finally, to compare the pattern predicted by niche modeling with the actual 

available data, we mapped species locality points and determined species richness for a 

Cerrado grid consisting of 100,000 ha cell size (Figure 2). This approach allowed us to 

identify whether a spatial bias in sampling effort was present in the final modeling map 

(i.e., areas that have more species collected coincide with the areas the model pointed out 

as having higher richness). 

 

RESULTS 

The composite map summing all 237 species individual maps is shown in Figure 3. In 

this map, areas with greater species richness are located mainly in the southwest portion 

of the Cerrado biome, in areas corresponding to the southern portion of Góias state (GO), 

northern portion of Mato Grosso do Sul state (MS), and the very southern part of Mato 

Grosso state (MT). An interesting pattern is the presence of an area with high richness in 
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northern Cerrado, corresponding to the border between the states of Tocantins (TO) and 

Maranhão (MA). In addition, areas of high richness exist in the extreme west portion of 

Cerrado in Minas Gerais state (MG) and scattered areas in Mato Grosso and Rondônia 

(RO) states (Figure 3). 

 Mapping of raw data shows a slight sampling bias toward the southeastern portion 

of Cerrado, where the largest biological collections (MZUSP and IB) are located (Figure 

2A). However, the results of our modeling are not highly influenced by this bias, since 

areas with the greatest diversity in Cerrado do not overlay completely with this pattern. In 

addition, high richness areas were found by the modeling in regions where the sampling 

effort was extremely poor, such as the northern portion of Cerrado (Figure 2B). 

 In the iterative process of filter selection for the multiple regression analysis, nine 

eigenvector spatial filters (PCNM) were sufficient to remove most spatial autocorrelation 

in regression residuals (Figure 4). An examination of the spatial correlogram based on 

Moran’s coefficient of the dependent variable (species richness) and regression residuals 

confirmed this pattern (Figure 4). Addition of more filters did not significantly reduce 

autocorrelation in the residuals; therefore, we used only the best nine filters to minimize 

the number of independent variables. 

 The climatic–environmental and spatial filters (PCNM) multiple regression model 

explained 78% of the variation in Cerrado squamate richness (r²= 0.78; F = 32.66; P < 

0.01). The partial regression approach revealed that the variance explained by space alone 

was 37%, the variance explained by the environmental variables alone was 12%, and the 

shared explained variance was 28%. 
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 Based on the analysis including both climatic–environmental variables and the 

PCNM spatial filters, annual precipitation, precipitation seasonality, altitude, net primary 

productivity, and precipitation of the driest quarter were the best predictors of species 

richness (Table 2). Using spatial filters in this analysis ensured that environmental 

variables were evaluated while taking into account spatial autocorrelation. 

 The model with the lowest AICc, and therefore the most parsimonious, was the 

mixed model, which contained all variables related to several different hypotheses (Table 

3). All other models had considerably less support (∆AICc > 10 and low values of 

Akaike weight, see Burnham & Anderson, [2004]). These results suggest that an 

interaction of factors related to the different hypotheses may be the best explanation for 

the variation on squamates species richness in the Cerrado. 

   

DISCUSSION 

Our results based on the multiple regression and the model selection suggest that several 

mechanisms related to the different diversity hypotheses might work together to explain 

richness variation in the Cerrado. Annual precipitation was the most important climatic 

variable that predicted Cerrado squamate richness, supporting the species-energy 

hypothesis. Several studies on different organisms and at different geographical scales 

have found that species richness was correlated with available energy (Currie et al., 2004, 

Hawkins et al., 2003). Results of our study join the body of literature that corroborates 

the species-energy hypothesis. 

 The species-energy hypothesis posits that the amount of energy available and 

energy partitioning among species limit species richness (Wright, 1983). A mechanism 
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explaining how diversity gradients are produced based on energy is lacking but several 

hypotheses exist (Clarke & Gaston, 2006). Exciting recent studies suggest that variation 

in temperature results in variation in DNA substitution rates and may influence rates of 

evolution (Wright et al., 2003; Allen & Gillooly, 2006; Allen et al., 2006). Although this 

mechanism may be operating on a global scale, whether it is important at smaller 

geographical scales such as the Cerrado region remains undetermined.  

 The environmental stability hypothesis posits that physiological tolerances of 

species to variable environments may limit species richness, leading to higher diversity in 

more stable environments (Pianka, 1966; Currie, 1991). Although the rationale behind the 

hypothesis seems reasonable, recent studies failed to support this hypothesis (Velho et 

al., 2004; Mora & Robertson, 2005). We found supporting evidence for the 

environmental stability hypothesis in that precipitation seasonality was the second best 

climatic variable in predicting squamate richness. The Cerrado is a highly seasonal 

environment with two well-defined seasons, one dry and cold, and the other wet and 

warm. This seasonality may influence variation in species richness because some species 

may not be able to physiologically tolerate the harsh dry season, and/or areas with less 

severe conditions may be colonized by species that primarily occur in other biomes, such 

as the Amazon forest. 

 Altitude was important in predicting Cerrado squamate species richness. 

Correlations of species richness with altitude suggest that the environmental 

heterogeneity hypothesis, which posits that habitat differentiation and resource 

partitioning facilitate coexistence and enhance species richness (Richerson & Lum, 

1980), may play a role in large-scale patterns of species richness. Relationships of species 
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richness to topographic and environmental heterogeneity have been shown previously, 

especially at smaller spatial scales (Bohning-Gaese, 1997; Cleary et al., 2005; Triantis et 

al., 2005). In addition, some studies supporting the species-energy hypothesis have also 

found a significant effect of topography or landscape heterogeneity as in South American 

birds (Diniz-Filho & Bini, 2005) and plants (Lavers & Field, 2006). 

 Altitude may have had an historical influence on the distribution and composition 

of Cerrado fauna and flora (da Silva, 1996; Meio et al., 2003; Colli, 2005). In birds 

Amazonian elements are restricted to gallery forests at lower altitude, whereas Atlantic 

elements are found in higher altitudes (da Silva, 1996). The same pattern is repeated for 

species of trees and shrubs (Meio et al., 2003). A crucial event responsible for current 

patterns of species distribution of Cerrado squamates was the uplift of the Central 

Brazilian Plateau in the Tertiary (Colli, 2005), again providing evidence for the 

importance of altitude and topography. 

 The above hypotheses are not mutually exclusive and, based on results of the 

model selection, which pointed out that the best model to explain species richness is a 

combination of the different hypothesis, we advance the idea that partitioning of energy 

among species, habitat differentiation, and tolerance to variable environments are the 

primary ecological factors determining variation in squamate richness across Cerrado. 

Others studies in the literature also suggested that a combination of different hypotheses 

may best explain species richness patterns (Bohning-Gaese, 1997; Hurlbert, 2004; Diniz-

Filho & Bini, 2005). Additional studies that examine richness at different spatial scales 

are necessary, as well as studies that explore other factors known to affect species 

richness, such as historical factors (e.g. geographical barrier and/or effect of regional pool 
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of species) and ecological interactions such as competition and predation. The Cerrado is 

a highly heterogeneous landscape, composed of a mosaic of edaphic conditions and 

different vegetation types, and it would be constructive to investigate how finer scale 

environmental and landscape variables affect species richness. For instance, Nogueira 

(2005) studied a lizard assemblage in the central Cerrado and found that richness is 

higher in the open landscape when compared with forested habitats. 

 Deforestation of Cerrado has accelerated during the past 20 years, and landcover 

has shifted greatly toward planted pastures and agriculture (Klink & Moreira, 2002; 

Klink & Machado, 2005). The central portion of Cerrado and areas of the southern 

portion of Góias state (GO) and northern portion of Mato Grosso do Sul state (MS), all of 

which coincide with large patches of high squamate richness (Figure 3), are of particular 

concern because these areas have been largely converted into pasture and agriculture 

(Silva et al., 2006). Due to its fragmentation, maintenance and protection of current 

reserves, establishment of ecological corridors among existing reserves, and creation of 

new reserves are urgently needed to ensure the conservation of squamate richness in 

these regions. 

 The northern portion of Cerrado also exhibited high richness of squamate species. 

Luckily, most of the remaining pristine native Cerrado areas are located in this region. 

Recent infrastructure development is changing this situation, and large portions of native 

vegetation are being replaced by soybean plantations.  However, these areas remain 

poorly sampled (Figure 2A). Lack of sampling is a major issue in the Neotropics and 

particularly in the Cerrado. Bini et al. (2006) modeled range distributions of Cerrado 

amphibian species based on habitat suitability and number of inventories, and reached 



 17 

conclusions similar to this study regarding the importance for conservation of the 

northern areas of the Cerrado. Consequently, priorities for this region should begin with 

biological surveys, followed by the creation of new reserves where deemed necessary. 

 Overall, the level of deforestation and threats to Cerrado biodiversity are so 

alarming that any action toward conservation is important. Because both time and 

monetary resources are limited, decisions often must be based upon available data. Thus 

it is crucial to maximize utility of these data. However, results of species niche modeling 

studies cannot be considered unequivocally true, and repeated verification based on 

fieldwork is necessary to ensure that proper decisions are being made. Biodiversity data, 

in the form of compilations of revised point-localities, are crucial for interpreting richness 

patterns and are highly informative to conservation. In addition, niche-based models 

cannot account for factors that may have limited species distributions historically, such as 

geographical barriers, resulting in speciation events. In Madagascar, niche models 

predicted occurrence of known species, but fieldwork revealed that closely related and 

ecologically similar undescribed species lived in the predicted areas (Raxworthy et al., 

2003). 

 To complement and add utility of the information provided by our study, 

additional studies on the geographic patterns of endemism in Cerrado species and the 

temporal and spatial pattern of deforestation are needed. Analyzing patterns of species 

richness and endemism and correlating them with patterns of deforestation and human 

occupation can help define conservation strategies and minimize conflicts between 

development and conservation (Whittaker et al., 2005; Diniz-Filho et al., 2006). Our 

results are an initial step toward the development of a large comprehensive dataset on 
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richness, endemism, and patterns of deforestation that will provide the necessary 

information to support conservation decisions for the Cerrado. 
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Table 1. General hypotheses explaining species richness patterns, environmental characteristics traditionally used to test these 

hypotheses, and variables used in this paper in the regression models to access the importance of each hypothesis for Cerrado 

squamates. Adapted from: (Moser et al., 2005). 

 

Hypothesis Argument Factor used to test In this paper 

Available energy* Partitioning of energy among species 

limits richness 

Temperature, potential 

evapotranspiration, and 

precipitation 

Annual Precipitation, Net 

Primary Productivity 

Environmental 

stress† 

Fewer species are physiologically 

equipped to tolerate harsh environments 

Minimum values of temperature 

and potential evapotranspiration 

Precipitation of Driest Quarter, 

Mean Temperature of Driest 

Quarter 

Environmental 

favorableness 

Better life conditions promote higher 

species numbers 

Maximum values of temperature 

and potential evapotranspiration 

Mean Temperature of Warmest 

Quarter, Precipitation of 

Warmest Quarter,  
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Environmental 

stability§ 

Fewer species are physiologically 

equipped to tolerate variable 

environments 

Annual variation in temperature Temperature Seasonality, 

Temperature Annual Range, 

Precipitation Seasonality 

Environmental 

heterogeneity¶ 

Habitat differentiation and resource 

partitioning facilitate coexistence and 

enhance species richness 

Topographic, spatial climatic, 

edaphic and land-use 

heterogeneity 

Altitude, Terrain declivity 

*(Wright, 1983) 

†(Fraser & Currie, 1996) 

(Pianka, 1966; Richerson & Lum, 1980) 

§(Pianka, 1966; Fraser & Currie, 1996) 

¶(Richerson & Lum, 1980) 
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Table 2. Partial regression coefficients of the multiple regression model (b), t statistics 

and associated P-values for species richness of Brazilian Cerrado squamates regressed 

against environmental variables. Spatial structure was accounted for in the multiple 

regression by adding 9 eigenvector filters produced with the method of Principal 

Coordinates of Neighbour Matrices (PCNM). Filters were omitted from table. 

 

Variables b T P 

Annual precipitation -0.04 -5.08 <0.01 

Precipitation seasonality -1.23 -4.75 <0.01 

Altitude 0.03 3.28 <0.01 

Precipitation of driest quarter -0.28 -2.93 <0.01 

Net primary productivity 23.6 2.52 0.01 

Mean temperature of driest quarter 0.92 2.39 0.02 

Temperature annual range 0.21 2.04 0.04 

Precipitation of warmest quarter 0.02 1.87 0.06 

Terrain declivity 0.11 1.32 0.20 

Mean temperature of warmest quarter -0.20 -0.45 0.65 

Temperature seasonality 0.004 0.425 0.67 
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Table 3. Summary of the model selection procedure. The model with the lowest AICc 

value is the most parsimonious one among the fitted models and is selected (marked in 

bold). ∆AICc is the difference in AICc to the selected model. Wi is the Akaike weight 

and it indicates the relative support a given model has when compared with the other 

models. K is the number of parameters of the model (no. of variables + intercept). 

 

Model  AICc ∆AICc K Wi 

Available energy 1290.74 65.56 3 0.00 

Environmental favorableness 1301.10 75.92 3 0.00 

Environmental heterogeneity 1289.53 64.35 3 0.00 

Environmental stability 1256.76 31.58 3 0.00 

Environmental stress 1293.06 67.88 3 0.00 

* Mixed model 1225.18 0.00 12 1.00 

† Only significant 1262.44 37.26 8 0.00 

* All 11 variables used in the multiple regression. 

† Only the significant variables (p <0.05) from the multiple regression. 
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FIGURE LEGENDS 

Figure 1 – Spatial distribution within Cerrado of points used in the multiple regression 

analysis. The area in gray corresponds to the Cerrado limits and transition areas with 

other biomes. 

 

Figure 2 – Number of species per unit area (cell) based on museum collections. The grid 

corresponds to the approximate area of the Cerrado biome. The area of each cell is 

100,000 ha. (A) Number of species based on the raw data. Blank cells have no specimen 

based on the major Cerrado collections; (B) Number of species based on the niche 

modeling of 237 species. 

 

Figure 3 – Raster grid of Cerrado squamate species richness based on the sum of 237 

individual species maps. 

 

Figure 4 – Moran’s index correlogram for squamate species richness and the residuals of 

multiple regression with environmental predictors. 
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Appendix A. List of the 237 species used in the analysis. 

Ameiva ameiva, Amphisbaena alba, A. anaemariae, A. camura, A. crisae, A. fuliginosa, 
A. leeseri, A. mensae, A. mertensi, A. miringoera, A. neglecta, A. sanctaeritae, A. 
silvestrii, A. talisiae, A. vermicularis, Anilius scytale, Anisolepis grillii, Anolis 
chrysolepis , Anolis meridionalis, Anops bilabialatus, A. albicollaris, Apostolepis 
ammodytes, A. assimilis, A. cearensis, A. cerradoensis, A. cf. longicaudata, A. 
christineae, A. dimidiata, A. flavotorquata, A. goiasensis, A. intermedia, A. lineata, A. 
longicaudata, A. nigroterminata, A. sp., A. polylepis, A. vittata, Atractus albuquerquei, A. 
latifrons, A. pantostictus, Bachia bresslaui, B. cacerensis, Boa constrictor, Boiruna 
maculata, Bothrops alternatus, B. itapetiningae, B. lutzi, B. mattogrossensis, B. moojeni, 
B. neuwiedi, B. pauloensis, Bothrops sp., Briba brasiliana, Bronia bedai, B. kraoh, B. 
saxosa, Cercolophia roberti, C. steindachneri, Cercosaura albostrigatus, C. ocellata, C. 
parkeri, C. schreibersii, Chironius bicarinatus, C. exoletus, C. flavolineatus, C. laurenti, 
C. quadricarinatus, C. scurrulus, C. laevicollis, C. multiventris, Clelia bicolor, C. clelia, 
C. plumbea, C. quimi, C. rustica, Cnemidophorus aff. parecis, C. mumbuca, C. gr. 
ocellifer, C. parecis, Coleodactylus brachystoma, C. meridionalis, Colobosaura modesta, 
Corallus hortulanus, Crotalus durissus, Dipsas indica, Dracaena paraguayensis, 
Drymarchon corais, Drymoluber brazili, Taeniophallus occipitalis, Enyalius bilineatus, 
E. brasiliensis, E. catenatus, Epicrates cenchria, Erythrolamprus aesculapii, Eunectes 
murinus, E. notaeus, Gomesophis brasiliensis, Gonatodes humeralis, Gymnodactylus 
amarali, G. guttulatus, Helicops angulatus, H. gomesi, H. infrataeniatus, H. leopardinus, 
H. modestus, H. polylepis, H. trivittatus, Hemidactylus mabouya, Heterodactylus lundii, 
Hoplocercus spinosus, Hydrodynastes bicinctus, H. gigas, Iguana iguana, Imantodes 
cenchoa, Kentropyx aff. paulensis, K. calcarata, K. paulensis, K. vanzoi, K. viridistriga, 
Leposternon infraorbitale, L. microcephalum, L. polystegum, Leptodeira annulata, 
Leptophis ahaetulla, Leptotyphlops brasiliensis, L. dimidiatus, L. koppesi, Liophis 
almadensis, L. dilepis, L. frenatus, L. jaegeri, L. maryellenae, L. meridionalis, L. miliaris, 
L. paucidens, L. poecilogyrus, L. reginae, L. taeniogaster, L. typhlus, Liotyphlops beui, L. 
schubarti, L. ternetzii, Lygodactylus wetzeli, Lystrophis matogrossensis, L. nattereri, 
Mabuya dorsivittata, M. frenata, M. guaporicola, M. heathi, M. nigropunctata, 
Mastigodryas bifossatus, M. boddaerti, Micrablepharus atticolus, M. maximiliani, 
Micrurus brasiliensis, M. aff. ibiboboca, M. frontalis, M. lemniscatus, M. spixii, M. 
surinamensis, M. tricolor, Ophiodes fragilis, O. "striatus", Ophiodes sp 1, Ophiodes sp 2, 
Oxybelis aeneus, O. fulgidus, Oxyrhopus guibei, O. petola, O. rhombifer, O. trigeminus, 
Phalotris concolor, P. labiomaculatus, P. lativittatus, P. mertensi, P. multipunctatus, P. 
nasutus, P. tricolor, Philodryas aestiva, P. livida, P. mattogrossensis, P. nattereri, P. 
olfersii, P. patagoniensis, P. psammophidea, P. viridissima, Phimophis guerini, P 
iglesiasi, Phyllopezus pollicaris, Polychrus acutirostris, P. marmoratus, Psedablabes 
agassizii, Pseudoboa coronata, P. neuwiedii, P. nigra, Pseudoeryx plicatilis, Pseustes 
sulphureus, Psomophis genimaculatus, P. joberti, Rhachidelus brazili, Sibynomorphus 
mikanii, S. turgidus, S. ventrimaculatus, Simophis rhinostoma, S. leucocephalus, S. 
longicaudatus, S. worontzowi, Spilotes pullatus, Stenocercus aff. dumerilii, Stenocercus 
aff. tricristatus, Stenocercus caducus, S. dumerilii, Tantilla boipiranga, T. 
melanocephala, Teius teyou, Thamnodynastes chaquensis, T. hypoconia, T. rutilus, 
Tropidurus etheridgei, T. guarani, T. hispidus, T. insulanus, T. itambere, T. montanus, T. 
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oreadicus, T. semitaeniatus, T. torquatus, Tupinambis duseni, T. merianae, T. 
quadrilineatus, T. teguixin, Typhlops brongersmianus, Vanzosaura rubricauda, 
Waglerophis merremii, Xenodon rhabdocephalus, X. severus, Xenopholis undulatus. 
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Appendix B Correlation matrix of the variables selected for the multiple regression analysis. The variables were selected in a way to 

minimize the correlation among each other and to relate to different hypothesis to explain patterns of species richness. 

 

Variables 

Variables ALT BIO4 BIO7 BIO9 BIO10 BIO12 BIO15 BIO17 BIO18 DECL NPP 

ALT – 0.44** 0.18* -0.72** -0.84** -0.28** 0.19** -0.10 0.37** 0.21** 0.22** 

BIO4  – 0.40** -0.86** -0.56** -0.40** -0.38** 0.57** 0.60** 0.11 0.29** 

BIO7   – -0.49** -0.38** 0.08 -0.17* 0.14* 0.52** 0.01 0.30** 

BIO9    – 0.89** 0.24** 0.25** -0.41** -0.71** -0.15* -0.48** 

BIO10     – 0.07 0.05 -0.18* -0.61** -0.17* -0.52** 

BIO12      – -0.28** 0.16* 0.23** -0.18** 0.44** 

BIO15       – -0.90** -0.37** 0.01 -0.28** 

BIO17        – 0.43** 0.00 0.34** 

BIO18         – -0.09 0.55** 

DECL          – 0.05 

NPP           – 

** Correlation is significant at the 0.01 level. 

* Correlation is significant at the 0.05 level 

38 

 



Chapter II 

 

Sampling bias and the use of ecological niche modeling in conservation 

planning: A field evaluation in a biodiversity hotspot 

 

(formatted for Conservation Letters) 

 

39 



 

 40 

Abstract 

Ecological niche modeling (ENM) has become an important tool in conservation biology. 

Despite its recent success, several basic issues related to the performance of the 

algorithms are still being debated. We assess the ability of two of the most popular 

algorithms, GARP and Maxent to predict distributions when sampling is geographically 

biased. We use an extensive data set collected in the Brazilian Cerrado, a biodiversity 

hotspot in South America. We found that both algorithms underestimate species richness 

from a study site far removed from the region for which we have the best sampling data. 

We also found that Maxent tends to be more sensitive to sampling bias than GARP. 

However, Maxent performs better when sampling is poor (e.g., low number of data 

points). Our results demonstrate that extreme care should be applied when examining 

outputs from ENM for conservation planning and decision-making. This is particularly 

critical when dealing with regions where sampling is geographically biased or poor. 
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Introduction 

Sound conservation strategies depend heavily on biodiversity information, especially 

species distributions. However, knowledge about biodiversity remains inadequate, 

particularly in the highly speciose Tropics, where many species remain formally 

undescribed (Linnean shortfall) and poorly understood in terms of their geographical 

distribution (Wallacean shortfall) (Lomolino 2004; Whittaker et al. 2005). As a result, 

biodiversity databases, although extremely useful, may suffer strong limitations even for 

groups and/or regions that have been well studied (Soberón et al. 2000; Hortal et al. 

2007; Soberón et al. 2007). Recently a new methodological approach, ecological niche 

modeling (ENM), has emerged as a powerful tool to reconstruct or predict species 

distributions. The method uses geo-referenced known occurrence points of the species 

under study that are linked with abiotic and/or biotic variables from each point locality. A 

particular algorithm processes information and then a predicted ‘niche’ envelope in 

which the species is likely to occur is produced (see Elith et al. 2006 for a review on the 

methods). 

ENM has been applied in conservation biology to identify species richness 

‘hotspots’ (Garcia 2006; Costa et al. 2007), sample for rare species (Guisan et al. 2006), 

predict effects of climate change on species’ distributions (Araújo & Rahbek 2006; 

Hijmans & Graham 2006), and assess potential invasion and proliferation of exotic 

species (Peterson & Vieglais 2001). Despite the recent growth and diversity of studies 

that apply ENM to address conservation and/or evolutionary questions, several basic 

issues related to the performance of the algorithms remains unsettled. Among the most 

important issues is how the accuracy of ENM is influenced by factors such as sample size 
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(Stockwell & Peterson 2002; Hernandez et al. 2006), spatial scale (Lassueur et al. 2006; 

Guisan et al. 2007a; Trivedi et al. 2008), the nature of the environmental data set (Parra 

et al. 2004; Peterson & Nakazawa 2008), species traits (Poyry et al. 2008), biotic 

interactions (Araújo & Luoto 2007; Heikkinen et al. 2007), and finally, which particular 

algorithm is being used (Segurado & Araújo 2004; Elith et al. 2006). 

Another important issue is how ENM models are influenced by geographical bias 

in the sampling points used to train the models. For example, a previous study found that 

the frequency of plant observations near roads was greater than that expected from a 

spatially random distribution such that predictive maps based on near-road observations 

were less accurate than those based on observations corrected for roadside bias (Kadmon 

et al. 2004). On a larger spatial scale, Loiselle et al. (2008) found that although localities 

based on herbarium collections did not represent well the entire climatic gradient in 

which most species occur, this existing climatic bias however, did not greatly affect 

distribution predictions when compared with an unbiased data set. Therefore, determining 

how well ENM can reconstruct a species distribution providing only with a biased subset 

of the whole species range is a crucial matter to establish ENM utility as a conservation 

tool. 

We use two of the most commonly used ENM algorithms (GARP and Maxent) to 

predict the distribution of squamate reptiles (lizards, snakes, and amphisbaenas) in the 

Brazilian Cerrado, one of the 34 world biodiversity hotspots (Myers 2003; Mittermeier et 

al. 2005), a region for which a strong sampling bias exists (Costa et al. 2007). We tested 

performance of these two methods by first predicting species richness and composition of 

an unsampled area of conservation interest using ENM, and then conducting field surveys 
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to determine actual species richness and composition. The poorly sampled region lies 

near the northern edge of the Cerrado region. We identify both limitations and strengths 

of ENM as a tool in conservation planning and biodiversity studies. 

 

Methods 

Ecological Niche Modeling 

We used GARP and Maxent to model the distributions of all known (at the time of 

analysis) squamate species occurring in the Cerrado, a total of 237 species based on an 

extensive existing database. We used only species for which at least one data point 

existed within the Cerrado biome. For species whose distributions spanned multiple 

biomes, we also included data points outside of the Cerrado, because characteristics of 

these points can help identify suitable regions for species occurrence within Cerrado. 

Locality data for each species were collected from museums, literature, and previous 

fieldwork (see Costa et al. 2007; Nogueira et al. In press for details). All specimen 

records were checked for accurate taxonomy and the most precise locality information, a 

critical need, as museum data can be error-prone. Locality data varied between 3–256 

(mean = 35.58, standard deviation = 39.32) unique point localities per species. The 

dataset contains a clear geographical sampling bias; most records come from the central 

and southeastern portion of the Cerrado, where the majority of research institutions are 

located, and very few inventories have been made in the Northern parts of the Biome 

(Fig. 1). 

We used the implementation of GARP provided by the software OpenModeller. 

The algorithm divides occurrence points into training and extrinsic test data. The 
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extrinsic test dataset is divided evenly into true training data (for model rule 

development) and intrinsic test data (for model rule evaluation and refinement). Models 

are based on presence-only data, with absence information included via random sampling 

of 1250 pseudo-absence points from the set of pixels at which the individual species were 

not collected. The algorithm works in an iterative process of rule selection, testing, and 

incorporation or rejection. More details on algorithm function are provided by Stockwell 

& Noble (1992). We used the default parameters of the OpenModeller version of GARP 

with the best subset selection option (optimum models considering omission/commission 

relationships; see Anderson et al. 2003). 

 Maxent fits a probability distribution for species occurrence to the set of pixels 

across the region of interest. The algorithm is based on the principle that, given the 

appropriate constraints, the best explanation to unknown phenomena will maximize the 

entropy of the probability distribution. For ecological niche modeling, these constraints 

derive from the values of those pixels at which the species has been detected. More 

details on Maxent function are provided by Phillips et al. (2004) and Phillips et al. 

(2006). We used the default parameters for Maxent v.3.2.1, which were adjusted based on 

a recent comprehensive evaluation (Phillips & Dudik 2008). The output format for 

Maxent and GARP are raster grids with values ranging from 0-1 for Maxent and 0-100 

for GARP. To transform the models into discrete presence or absence, selection of a 

threshold is necessary. We selected threshold values where sensitivity (proportion of true 

positive predictions vs. the number of actual positive sites) is equal to specificity (the 

proportion of true negative predictions vs. the number of actual negative sites). This 

approach maximizes agreement between observed and modeled distributions balancing 
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the cost arising from an incorrect prediction against the benefit gained from correct 

prediction (Manel et al. 2001; Pearson et al. 2006). In addition, to evaluate effects of 

threshold selection on the ability of the models to predict species presence in our study 

site, we determined the largest predicted value (if any) that would ensure presence of the 

species that were collected (i.o.w. which minimum threshold value would be necessary to 

assure species presence in the study site). We then plotted these values against the 

number of training points to address the question of whether the choice of threshold is 

influenced by the number of training points. 

 For both GARP and Maxent we used environmental variables from the Worldclim 

project (Hijmans et al. 2005), which are available for download at 

http://www.worldclim.org. We constructed a correlation matrix among all variables and 

selected for the modeling only the variables that were not highly correlated (r > 0.9). 

After applying this criterion we used the following environmental variables: altitude, 

annual precipitation, isothermality, maximum temperature of warmest month, mean 

diurnal range, mean temperature of warmest quarter, mean temperature of wettest quarter, 

minimum temperature of coldest month, precipitation of coldest quarter, precipitation of 

driest month, precipitation of warmest quarter, precipitation of wettest month, 

precipitation seasonality, temperature annual range, and temperature seasonality. All 

variables were at 1 km resolution. 

 

Model Evaluations 

To statistically evaluate model performance we used the area under the curve (AUC) on 

receiver operating characteristic (ROC). ROC analysis is a method designed to evaluate 
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the specificity (absence of commission error) and sensitivity (absence of omission error) 

of a diagnostic test (Zweig & Campbell 1993; Fielding & Bell 1997). The AUC provides 

a threshold-independent measure of model performance as compared with that of null 

expectations (Fielding & Bell 1997), and it is the most commonly used statistic to 

evaluate ENM performance (Elith et al. 2006; Guisan et al. 2007b; Peterson et al. 2007). 

When the AUC is 0.50, the model is performing no better than random. Higher AUC 

values indicates better model performance; and a perfect prediction would have the value 

1.0 (Hanley & Mcneil 1982). 

 After constructing niche models and calculating the AUC statistics, we tested 

performance of ENM in predicting species diversity and distributions by surveying a 

remote and previously unsampled area. This allowed us to evaluate the effect of sampling 

bias on the ability of ENM to project distributions into unsampled regions, and to 

determine whether GARP and/or Maxent are differentially affected by sampling bias. 

Using this approach, several scenarios are possible. First, when sampling points are 

concentrated in a subset of the species range, ENM is (a) capable of predicting the 

species occurrence or (b) not able to predict the occurrence of the species in the 

unsampled region outside of the major concentration of sampling (Fig. 2a, b). Second, 

when the sampling points are more dispersed throughout a species’ range, ENM is (c) 

capable of predicting the species occurrence or (d) not able to predict the species 

occurrence (Fig. 2c, d) in the area. 

 

Study Area and Field Sampling 
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We chose a study site located within the northern portion of the Cerrado Biome in the 

“Parque Nacional da Chapada das Mesas” (PNCM -7º10’S, 47º9’W), a recently created 

160,000 ha conservation unit in the Brazilian state of Maranhão (Fig. 1). This area is 

ideal for evaluating sampling bias in ENM because it is relatively undisturbed, poorly 

sampled, and a recent niche modeling exercise predicted high squamate species diversity 

(Costa et al. 2007). 

 We collected squamates from November 30th to December 17th 2007, using 48 

arrays of pitfall traps and 24 arrays of funnel traps resulting in 5,184 trap days. Traps 

were divided among six sampling points, which were located inside PNCM and were 

chosen in order to sample the full range of landscape and vegetation cover variation 

within PNCM. Each array of pitfall traps consisted of four 35 l buckets arranged in a Y-

shape (one at the center and one on each of the three ends). Buckets were 5 m from each 

other, and 50 cm high plastic fences (bottom edge buried) spanned the distance between 

buckets. The funnel trap arrays consisted of a single 5 m long, 50 cm high plastic fence 

with a pair of funnel traps at each end (one on each side). Arrays were spaced 

approximately 20 m apart. All traps were checked daily. All specimens collected were 

deposited at the Coleção Herpetológica da Universidade de Brasília (CHUNB). In 

addition to our trapping methods, we collected animals by hand, noose, or using a 

shotgun during haphazard searches of various habitats within PNCM. We also routinely 

drove roads both during the day and night for snakes in the process of crossing or that 

had been killed by vehicles. Road collecting is a common and effective survey method 

for snakes (Sullivan 1981). 

 To estimate species richness of the region based on our sampling, we produced a 
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species accumulation curve using the software EstimateS v.8 (Colwell 2005). EstimateS 

randomizes the sampling order to generate smooth species accumulation curves and 

species richness estimators. Resulting values are numbers of species expected based on 

empirical data (Colwell et al. 2004). We used the Abundance-based Coverage Estimator 

(ACE) to estimate species richness based on the sampling (Chazdon et al. 1998; Chao et 

al. 2000), and performed 10,000 randomizations without replacement. In addition, we 

fitted our data to three different accumulation curve mathematical models, Clench, 

Logarithmic, and Exponential. Model fitting was performed using methods and software 

described by Díaz-Francés & Soberón (2005). The model providing the best fit can then 

be used to estimate the asymptote (i.e., total species richness) of the species accumulation 

curve. 

 

Statistical Analysis 

We used the statistical package R to perform a two-sample test for equality of proportions 

with continuity correction to determine whether a difference exists in the proportion of 

species successfully predicted between GARP and Maxent. We also developed a multiple 

logistic regression model to explore different factors that may influence the probability of 

GARP and Maxent to successfully predict species occurrence in our study site. The 

dependent variable was the prediction success (0 = fail, 1 = success), and our independent 

variables were: 1 – Nearest neighbor index, which is calculated based on the average 

distance of each point to its nearest point. Low values of the index indicate a distribution 

more clumped than expected by chance whereas high values indicate a more dispersed 

distribution; 2 – Number of locality points used in the modeling exercise; and 3 – 
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Distance from the nearest locality point to PNCM. We ran the regression with all species 

collected in our field survey (N = 48) and also using only the species that had more than 

15 known locality points (N = 42). 

 For both methods, a species was considered present in PNCM if any pixel of the 

final predicted distribution map (see above for details on how we obtained the final 

presence/absence maps) for that species lied within the PNCM limits (Fig. 1). Because 

we cannot distinguish between species that do not occur in the region from species that 

do occur but were not collected because of sampling deficiency, we restrict our 

evaluations to only the species that we collected during the field survey. One species 

(Amphisbaena sp.) was removed from all analyses due to taxonomic uncertainties. 

Calculations of the nearest neighbor index, and distance to the nearest point, were 

performed in ArcGIS 9.2. The multiple logistic regression was performed in SAS 9.1. 

 

Results 

We collected a total of 49 species of squamates in PNCM (Table 1). Our accumulation 

curve analysis indicated that our sampling efforts were far from stabilizing and the true 

richness of squamates in the region may be over 70 species (Fig. 3). The ACE richness 

estimation was 74 species and the model that produced the best fit was the logarithmic. 

Usually, when this model produces the best fit it is because the sample area is too large 

and/or the taxa are poorly known (Soberón & Llorente 1993). Such results are well 

known for Neotropical squamates, which require long-term fieldwork in order for 

sampling to stabilize (Duellman 1978), often because of snake species that are rare or 

difficult to sample. 



 

 50 

 GARP predicted 59 species within PNCM; we collected 35. The method failed to 

predict the presence of 13 species that were collected in our survey. Maxent predicted 51 

species within PNCM and, among those, we collected 22. Maxent failed to predict the 

presence of 26 species that we collected in our fieldwork (Table 1). In addition, the two-

sample test for equality of proportions with continuity correction showed that the ratio 

between predicted and surveyed species was higher for GARP (χ2 = 4.46, P = 0.03). 

However, Maxent models had higher AUC values (GARP x̄ = 0.78 ± 0.12, Maxent x̄ = 

0.91 ± 0.04; F = 51.7, P < 0.01, all AUC values are in Table 1). 

 GARP predicted 15 species we collected in the area that Maxent failed to predict. 

Of those 15 species, seven followed the pattern described in Figure 2a, where the known 

sampled localities were concentrated in the central part of the Cerrado. None or very few 

known localities were in the northern part of the Cerrado where PNCM is located. We 

illustrate three of those cases in Fig. 4a-c. The remaining eight species follow a pattern 

similar to the one described in Fig. 2c, where sampling is more spread throughout the 

Cerrado and PNCM was surrounded by known sampled localities. We illustrate three of 

those cases in Fig. 4d-f. For some species such as Fig. 4a-f, the prediction of GARP that 

includes PNCM is a narrow extension from the main predicted area for the species, which 

is located in Central Brazil. This kind of pattern is particularly relevant for the issue of 

how different ENM algorithms deal with sampling bias on the training points, and we 

will comment on that further in the discussion. 

 Maxent successfully predicted three species in PNCM that GARP failed to 

predict, two of those cases were species that had low numbers of known localities (e.g. 

Leptotyphlops brasiliensis Fig. 5b). The other species showed a pattern similar to Fig. 2a 
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where the majority of points used to train the model are away from PNCM, however the 

highest concentration of points was not on the south central part of the Cerrado (Bothrops 

lutzi Fig. 5a). Both methods successfully predicted 20 species and failed to predict 10 

species that we actually collected in the area. Some of the species that both methods 

failed to predict showed the pattern described in Figure 2b, where the model’s predictions 

were concentrated near the known localities (e.g. Thamnodynastes hypoconia Fig 5f). 

The other species that both methods failed to predict were likely affected by low numbers 

of known localities available for the modeling (e.g. Apostolepis polylepis Fig 5c). 

 The list of species successfully predicted in PCNM by ENM would not change 

much with selection of different thresholds. For GARP, only with the selection of much 

lower thresholds the species in which the method failed would be included, and that 

would result in models with very large commission errors. For Maxent, a few species 

would be added to the list with the selection of slightly lower thresholds, but for the 

majority, a much lower threshold would be necessary (see Table 1, maximum values 

column). For GARP the largest predicted values were significantly related to the number 

of points used to train the models (F = 24.6, P < 0.01, r2 = 0.35; Fig. 6), whereas for 

Maxent there was no relationship (F = 0.1, P = 0.77; Fig. 6). This result is a consequence 

of many zero predicted values in PNCM for GARP models produced by low number of 

training points (see Table 1 maximum values column). 

 The multiple logistic regression results show that GARP models were not 

significantly influenced by any of the variables in the regression model. The same result 

was found when species with low known locality points were removed from the analysis 

(Table 2). Maxent predictions were influenced by the distance to the nearest point. After 
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eliminating the species with few known localities, predictions were still influenced only 

by the distance to the nearest point. 

 

Discussion 

Based on our accumulation curve analysis, both ENM methods underestimated species 

richness. Our richness estimator (ACE) and accumulation curve predicted that the 

richness for the region should be more than 70 species, which is still a rather conservative 

estimate considering other well-sampled Cerrado localities (Colli et al. 2002; França & 

Araújo 2007). Therefore, even if all species predicted by both ENM methods were 

collected in the region, ENM would have still underpredicted species richness. Although 

ENM has been successfully used for various conservation applications (Domínguez-

Domínguez et al. 2006; García 2006; Pawar et al. 2007), our results indicate that 

predictions from ENM should be examined carefully when working with regions where 

sampling is geographically biased or low. 

Although Maxent models produced higher AUC values, GARP models better 

predicted species richness and composition of our study area. Previous work has 

suggested that Maxent may be more sensitive to geographical bias in the training points 

(Peterson et al. 2007). Two alternative hypotheses may explain why GARP better predict 

species occurrence in PCNM despite having lower AUC models. First, Maxent models 

are better than GARP models but our approach of evaluating the presence of the species 

in a specific region does not characterize well the performance of the models in their 

entire distribution. Second, the AUC statistics does not provide the best possible 

evaluation of the models. A lot more data and analysis would be necessary to assess the 
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first hypothesis. However, previous studies have provided support for the second (Raes & 

ter Steege 2007; Lobo et al. 2008). Some recent work shows that reliance on AUC as the 

only estimate of model success needs to be re-examined (Austin 2007). Either way, better 

methods to statistically evaluate ENM models are likely to be a major topic of future 

research (Raes & ter Steege 2007; Lobo et al. 2008; Peterson et al. 2008). 

In some cases, even when most of the known locality points where far away from 

PNCM, GARP was able to correctly predict the occurrence of species. This ability of 

GARP may be desirable in different applications of ENM, including the discovery of new 

populations and/or species. For example, in Madagascar, field survey of areas with 

similar sampling characteristics lead researchers to the discovery of several undescribed 

species of chameleons (Raxworthy et al. 2003). In our system, we discovered no obvious 

undescribed closely-related species; nevertheless, future genetic studies may reveal 

hidden diversity because populations of some species appear to be separated by areas 

where environmental conditions are predicted to be unsuitable. Recent studies in other 

Cerrado areas have been revealing new Squamate species, including some with restricted 

ranges, and from poorly studied taxa. (Nogueira & Rodrigues 2006; Rodrigues et al. 

2007; Rodrigues et al. 2008). Because these species show high endemism and restricted 

ranges, they have are of special concern for conservation. Modeling of closely related 

species may help to identify regions where these species occur. 

The ability to project distributions in areas distant from known localities may also 

be useful in ecosystems such as the Cerrado in which species’ range extensions of several 

hundred of kilometers are commonly recorded (e.g. Filho & Montigelli 2006; Freitas et 

al. 2007; Silveira 2007). This may also be important in other uses of ENM. For some 
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applications of ENM in ecology and evolutionary biology, precisely reconstructing 

species’ distributions is not expected or desired from ENM; rather ENM is used to 

estimate a map of the environmental space in which the species is likely to occur. In these 

cases, contrasting where the species is predicted to occur with where the species does 

occur can provide insights into interesting biogeographical or ecological factors shaping 

the species’ distribution (Anderson et al. 2002; Costa et al. 2008). A method that is too 

sensitive to sampling bias will be less useful to address such questions. 

 The multiple logistic regression models showed no effect of the nearest neighbor 

index in the probability of GARP or Maxent to successfully predict species’ distribution. 

However, the distance to the nearest point influenced Maxent. This suggests that as long 

as a known locality exists close to the region, the algorithm will successfully predict 

species’ presence even if the distribution of points is clustered. We found that Maxent 

tended to produce better estimates of species’ distributions than GARP when a low 

number of localities are used in modeling. Also, the largest predicted values at PCNM 

were significantly related to the number of points used to train the GARP models, 

whereas for Maxent there was no relationship. This result is in agreement with a recent 

study using geckos in Madagascar, which showed Maxent performing better than GARP 

when sample size was smaller than 10 points (Pearson et al. 2007). 

 The Cerrado is a global biodiversity “hotspot” as defined by species richness, 

endemism, and human threats (Myers et al. 2000; Mittermeier et al. 2005). The region is 

being destroyed at a high rate with 55% of its original vegetation already removed 

(Machado et al. 2004; Klink & Machado 2005). Given the urgency to conserve habitats 

and species, time to conduct adequate surveys of the entire region is not available. In 
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such a scenario, ENM may prove to be a useful tool in conservation planning. However, 

our results indicate that relying only on maps provided by ENM may underestimate 

species diversity, especially if strong geographical biases exist in the dataset used to 

generate the models. ENM may be a useful tool to guide survey efforts but may not be 

sufficient to justify management decisions and the design of protected area systems. As in 

most of the Neotropical region most conservation opportunities lies in remote and 

generally poorly sampled regions, where data generated by ENM provide a useful first 

evaluation. However, for reliable conservation decisions ENM data must be followed by 

well-designed field inventories. 
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Table 1 – Species collected in the survey of PNCM. Number of points used to train the 

model, GARP and Maxent predictions (0 = did not predict, 1 = predict to occur at 

PCNM), and maximum value predicted in the PNCM. AUC values for each species for 

both methods are shown within parenthesis. GARP values were adjusted from 0-100 to a 

0-1 scale. 

 

Species Number of points GARP Maxent Maximum value 

Ameiva ameiva 256 1 (0.57) 1 (0.82) 0.89/0.53 

Amphisbaena alba 41 1 (0.79) 0 (0.9) 0.79/0.42 

Anolis chrysolepis 39 1 (0.9) 1 (0.91) 0.7/0.65 

Apostolepis cearensis 3 0 (0.5) 0 (0.99) 0/0.3 

A. polylepis 3 0 (0.5) 0 (0.99) 0/0 

Boa constrictor 111 1 (0.78) 1 (0.92) 0.99/0.54 

Bothrops lutzi 15 0 (0.9) 1 (0.91) 0.4/0.64 

B. moojeni 112 1 (0.86) 0 (0.95) 0.89/0.04 

Chironius exoletus 21 1 (0.78) 1 (0.91) 0.29/0.77 

C. flavolineatus 38 1 (0.83) 1 (0.9) 0.59/0.4 

Cnemidophorus mumbuca 4 0 (0.5) 0 (0.98) 0/0.05 

Colobosaura modesta 44 1 (0.9) 1 (0.91) 0.89/0.59 

Corallus hortulanus 16 1 (0.89) 1 (0.93) 0.99/0.53 

Drymarchon corais 55 1 (0.8) 0 (0.89) 0.89/0.25 

Epicrates cenchria 103 1 (0.78) 1 (0.89) 0.79/0.52 

Gymnodactylus carvalhoi 36 1 (0.91) 1 (0.96) 0.89/0.57 
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Hemidactylus mabouia 119 1 (0.64) 0 (0.86) 0.99/0.3 

Hydrodynastes bicinctus 27 0 (0.88) 0 (0.93) 0.09/0.26 

Iguana iguana 103 1 (0.64) 1 (0.83) 0.99/0.6 

Imantodes cenchoa 24 0 (0.82) 0 (0.87) 0/0.3 

Kentropyx calcarata 90 1 (0.74) 1 (0.86) 0.99/0.63 

Leptotyphlops brasiliensis 5 0 (0.5) 1 (0.95) 0/0.64 

Liophis almadensis 70 1 (0.84) 1 (0.92) 0.79/0.41 

L. poecilogyrus 185 1 (0.81) 0 (0.94) 0.79/0.25 

L. reginae 82 1 (0.82) 0 (0.91) 0.99/0.24 

Liotyphlops ternetzii 9 0 (0.5) 1 (0.88) 0/0.33 

Mabuya heathi 54 1 (0.9) 0 (0.93) 0.79/0.32 

M. nigropunctata 132 1 (0.67) 1 (0.88) 0.89/0.48 

Mastigodryas bifossatus 104 1 (0.82) 0 (0.91) 0.99/0.06 

Micrablepharus maximiliani  50 1 (0.81) 1 (0.93) 0.99/0.66 

Micrurus brasiliensis 9 0 (0.94) 0 (0.95) 0.29/0.23 

Oxyrhopus trigeminus 111 1 (0.78) 1 (0.93) 0.99/0.75 

Philodryas nattereri 94 1 (0.82) 1 (0.93) 0.99/0.4 

P. olfersi 90 1 (0.77) 0 (0.9) 0.79/0.28 

Phimophis guerini 38 1 (0.77) 0 (0.91) 0.59/0.27 

P. iglesiasi 9 0 (0.89) 0 (0.94) 0/0.08 

Pseudoboa neuwiedii 24 0 (0.82) 0 (0.96) 0.29/0.16 

P. nigra 60 1 (0.81) 0 (0.93) 0.79/0.18 

Psomophis joberti 46 1 (0.79) 1 (0.91) 0.89/0.67 
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Sibynomorphus mikanii 97 1 (0.92) 1 (0.93) 0.69/0.36 

Spilotes pullatus 67 1 (0.85) 0 (0.9) 0.89/0.27 

Tantilla melanocephala 37 1 (0.81) 1 (0.91) 0.99/0.48 

Thamnodynastes hypoconia 21 0 (0.94) 0 (0.96) 0.2/0.38 

Tropidurus oreadicus 50 1 (0.8) 1 (0.92) 0.99/0.75 

Tupinambis merianae 66 1 (0.79) 0 (0.87) 0.99/0.31 

T. teguixin 48 1 (0.71) 0 (0.82) 0.99/0.47 

Typhlops brongersmianus 24 0 (0.84) 0 (0.93) 0.29/0.37 

Waglerophis merremi 136 1 (0.84) 0 (0.93) 0.69/0.16 

* Amphisbaena sp. was collected but not used in the analysis due to taxonomic 

uncertainties. 



Table 2. Results of multiple logistic regression to model the effects of: Degree of dispersal on sampled points (Nearest Neighbor); 

Distance from the closest point (DNP); and Number of Points used in the modeling, on the ability of GARP and Maxent to 

successfully predict species occurrence in PNCM (0 = fail, 1 = success). Results after slash are from regression after eliminating 

species with known locality points lower that 15. Degree of freedom is equal to 1 in all cases, and sample sizes are 49 and 42. β are the 

individual regression coefficients, which are tested using the Wald’s chi-square statistics. eβ is the odds ratio, which is the predicted 

change in odds for a unit increase in the corresponding independent variable. Odds ratios less than 1 correspond to decreases and odds 

ratios more than 1.0 correspond to increases in odds. Odds ratios close to 1.0 indicate that unit changes in that independent variable do 

not affect the dependent variable.  

 

Predictor β SE β Wald’s χ2 P eβ 

(odds ratio) 

GARP 

Intercept -9.90/-18.8 11.54/17.79 0.74/1.12 0.39/0.28 NA 

Nearest Neighbor 4.33/19.2 8.07/19.8 0.29/0.94 0.59/0.33 75.6/73.8 

DNP -0.07/-0.09 0.07/0.08 1.03/1.44 0.31/0.23 0.93/0.91 

68 
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Number of Points 0.72/0.98 0.68/0.81 1.12/1.46 0.29/0.23 2.06/2.65 

Maxent 

Intercept 3.21/3.23 1.75/2.10 3.35/2.37 0.06/0.12 NA 

Nearest Neighbor -0.86/-0.34 1.75/2.52 0.24/0.02 0.62/0.89 0.42/0.71 

DNP -0.01/-0.01 <0.01/<0.01 10.8/10.5 <0.01*/<0.01* 0.98/0.98 

Number of Points <-0.01/<-0.01 <0.01/<0.01 0.46/0.57 0.49/0.45 0.99/1.01 
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Figure Legends 

 

Figure 1 – Map of the study area and sampling profile for the dataset for the Brazilian 

Cerrado Squamates. On the upper figure, the gray shading corresponds to the limits of the 

Cerrado Biome. The inset on the map of Brazil shows the state of Maranhão in the black 

square, where PNCM is located. On the lower figure, Kernel density function was applied 

using all sampling points to create a smooth tapered surface. Darker regions indicate 

higher density of sampling points (more specimens were collected from  those regions).  

The star symbol represents the location of the field site in the Northern portion of the 

Cerrado.  

 

Figure 2 – Diagrams representing possible scenarios for ENM when sampling was biased 

in different ways. . Circles represent known localities, dashed lines represent areas 

surveyed, and gray areas represent the predicted distribution of the species based on 

ENM. For details, see text. 

 

Figure 3 – Results of the accumulation curve analysis. Open circles represent mean 

values from 10,000 randomizations without replacement of the original matrix.  

 

Figure 4 – Example of ENM results where GARP successfully predicted the presence of 

the species in PNCM, whereas Maxent failed to predict the presence. a-c, species follow 

the pattern described in Figure 2a; d-f, species follow the pattern described in Figure 2c 

(see text). Circles represent known localities, blue represents GARP predictions, green 
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Maxent predictions, and red the coincidence of both methods. (a) – Amphisbaena alba, 

(b) – Bothrops moojeni, (c) – Mastigodryas bifossatus, (d) – Drymarchon corais, (e) – 

Liophis poecilogyrus, (f) – Spilotes pullatus. 

 

Figure 5 – Example of ENM results where Maxent successfully predict the presence of 

the species in PNCM, whereas GARP failed to predict the presence. (a) – Bothrops lutzi, 

(b) – Leptotyphlops brasiliensis.   Both GARP and Maxent failed to predict species 

presence in some cases. (c) – Apostolepis polylepis (d) – Thamnodynastes hypoconia. 

 

Figure 6 – Relationship between number of points used to train the models and largest 

predicted value in PNCM. Circles represent GARP models, and triangles represent 

Maxent models. Closed symbols are for species correctly predicted by the method, and 

open symbols  for species collected in PCNM but not predicted by the method. 

Regression line is for GARP models (F = 24.6, P < 0.01, r2 = 0.35). 
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Chapter III 

 

Detecting the influence of climatic variables on species’ distributions: a test using GIS 

niche-based models along a steep longitudinal environmental gradient 

 

(formatted for Journal of Biogeography) 
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ABSTRACT 

Aim: To investigate the influence of climatic variables in shaping species’ distributions 

across a steep longitudinal environmental gradient. 

Location: The state of Oklahoma, south-central United States. 

Methods: We used Geographical Information Systems (GIS) niche-based models to 

predict the geographic distributions of six pairs of closely related amphibian and reptile 

species across a steep longitudinal environmental gradient.  We compared results from 

modelling with actual distributions to determine whether species’ distributions were 

primarily limited by environmental factors and to assess potential roles of competition 

and historical factors in influencing distributions. 

Results: For all species pairs, GIS models predicted an overlap zone in which both 

species should occur even though in some cases this area was occupied by only one of the 

species. We found that environmental factors clearly influence distributions of most 

species pairs. We also found evidence that suggests competition and evolutionary history 

have a role in determining distributions of some species pairs. 

Main conclusions: Niche-based GIS modelling is a useful tool to investigate species 

distribution patterns and factors affecting them. Our results showed that environmental 

factors strongly influenced species’ distributions, and that competition and historical 

factors may also be involved in some cases.  Further, results suggested additional lines of 

research, such as ecological comparisons among populations occurring inside and outside 

of predicted overlap zones, which may provide more direct insight into the roles of 

competitive interactions and historical factors in shaping species’ distributions. 
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INTRODUCTION 

 Factors that influence the geographic distributions of species include how 

organisms relate to their environment (i.e., niche requirements) and interspecific 

interactions such as competition, predation, and parasitism (MacArthur, 1984; Chesson, 

2000; Chave et al., 2002).  Historical factors such as geographic barriers and/or lack of 

sufficient dispersal opportunities also influence species distributions (Brown et al., 1996; 

Patterson, 1999). A species niche is defined as the set of environmental conditions 

required for the species to maintain a viable population in order to persist through time 

(Hutchinson, 1957; Chase & Leibold, 2003).  A species is seldom able to occupy all of its 

geographic potential range, and the presence of other species as well as historical factors 

often reduce distributions to a smaller subset of the potential range (Hutchinson, 1957; 

Chase & Leibold, 2003). 

 Teasing apart which factors exert the most influence is a major challenge when 

investigating how ecological and/or historical factors shape the distribution of a species 

(Endler, 1982).  Much of the difficulty stems from the lack of objective means for 

identifying regions of suitable habitat and integrating how ecological and/or historical 

factors shape the species’ actual distribution. Recent advances in Geographical 

Information Systems (GIS) allow modelling of species’ distributions based on attributes 

of the environment that should be correlated with niche requirements of species 

(Peterson, 2001; Guisan & Thuiller, 2005).  These models identify previously unsampled 

locations where the species has a high probability of occurrence and have been applied 

successfully to predict the geographic distributions of several animal groups in a variety 

of ecosystems (Peterson, 2001; Luoto et al., 2002; Raxworthy et al., 2003). However, 
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these techniques do not account for species interactions or historical factors (Araujo & 

Guisan 2006). By examining congruence or discordance between predicted distributions 

and actual distributions, researchers can evaluate the potential role of ecological and 

historical factors in determining a species geographic distribution (Anderson et al., 

2002a; Anderson et al., 2002b).  

 GIS niche-based models that focus on closely related species occurring in 

adjoining or slightly overlapping areas along a well-sampled environmental gradient 

might be useful in exploring the roles of competitive interactions and/or environmental 

characteristics in limiting and shaping the distributions of species. Results of such 

analyses can reveal three possible patterns (Fig. 1), each of which can be interpreted to 

support a specific factor in determining species’ distributions.  First, if a GIS niche-based 

model shows that two species do not overlap at all in their predicted distributions, then 

the most likely explanation is that the distributions of both species are limited by 

unfavourable environmental factors that prevent further expansion along an 

environmental gradient (Fig. 1A).  Second, if niche-based modelling predicts an overlap 

zone where both species are known to occur, then favourable environmental conditions 

exist that should allow both species to occur in the overlap zone (Fig. 1B). In this case, 

niche segregation at smaller spatial scales (e.g., microhabitat, activity period, diet, etc.) 

would be predicted to allow for coexistence of both species. In addition, if the species are 

sister taxa with different niche characteristics, niche lability or character displacement 

may be occurring to avoid competitive interactions (Losos et al., 2003). Alternatively, if 

evidence for niche partitioning (e.g., microhabitat segregation) is lacking, then resources 

may not be limiting, and species can occur together without niche or character shifts. 
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Coexistence may also be facilitated by other ecological interactions such as predation, 

where a top predator can regulate population size in a way that relaxes competition 

among closely related species (Hanski, 1981).  In the third possible pattern, only one 

species occupies the predicted overlap zone, indicating that favourable conditions may 

exist for both species, but either one species competitively excludes the other or some 

historical factor prevented one of the species from colonizing the area (Fig. 1C). In this 

case, if the species are sister taxa, theoretical and empirical evidence predict that niches 

are probably conserved (Peterson et al., 1999; Wiens & Graham, 2005). If natural history 

data confirm that they have similar niches, then competition or historical factors might 

determine their distributions in the overlap zone. However, if the species have different 

niches, then the absence of one species in the predicted overlap zone may reflect the 

impact of historical factors. 

 Here we investigate potential factors that limit the distributions of species by 

building niche-based models of geographic distributions of closely related species across 

a steep longitudinal environmental gradient. With a sharp transition from eastern 

deciduous forest in the east to open habitats in the west, the central United States is ideal 

for testing models of this type. To evaluate generality of the models, we selected six 

species pairs differing in evolutionary history, bauplan, and overall ecology (two scincid 

lizards, two ranid frogs, two viperid snakes, two microhylid frogs, two scaphiopodid 

frogs, and two colubrid snakes). 

 

MATERIAL AND METHODS 

Study area 
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 A distinct environmental gradient is ideal for investigating factors that influence 

the distributions of species.  Overall, a multitude of climatic–environmental variables 

show an east to west transition in the United States (Fig.2), and this transition is steepest 

in the state of Oklahoma (Figs. 2 and 3). Oklahoma is located in the south-central United 

States, bordered by Missouri and Arkansas to the east, Texas to the south, New Mexico to 

the west, and Colorado and Kansas to the north (Fig. 4). Oklahoma can be divided into 

nine major physiognomic regions (see Caire, 1989 and references therein for details). The 

eastern region of the state lies within the western edge of the Interior Highlands (Ozark 

and Ouachita uplifts) and primarily consists of oak–hickory forest. In contrast, the 

western region of the state lies within areas of sandstone and gypsum hills in a flatter 

grassland/prairie physiognomy (Johnson & Duchon, 1994).  The climate of Oklahoma 

exhibits a marked change along an east–west gradient, which in turn is mirrored by the 

state’s vegetation (Figs. 3 and 4). For example, mean annual precipitation varies from 

1270 mm in the southeast Ouachita Mountains to 600 mm in the high plains of the west 

(Fig. 3B). In addition, rainfall among years and different seasons (Fig. 3D) can be highly 

variable (Johnson & Duchon, 1994).  

 In summary, we took advantage of a very interesting combination of factors that 

makes our analysis particularly meaningful. First, Oklahoma is situated within a sharp 

longitudinal environmental gradient (Fig. 2). Second, the western/eastern geographical 

limits of the distributions of the species lie within the state. Finally, our conclusions 

require good sampling inside the overlap zone, which we have for the region in which the 

steep environmental gradient exists (i.e., Oklahoma). Although adding the overlap zone 

north (e.g., Kansas) and/or south (e.g., Texas) of Oklahoma could be interesting in itself, 
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the additional variables (e.g., latitude, and their effects on species distributions and 

community structure, differences in steepness of the gradient, etc.) would divert the study 

from its primary focus (Why do ‘western species’ not occur further east, and why do 

‘eastern species’ not occur further west?). 

 

Species selection 

 Ectotherms such as amphibians and reptiles are good model organisms to study 

the effects of climatic–environmental characteristics on the distributions of species. Their 

thermal ecology, physiology, and behaviour are generally highly dependent upon 

environmental conditions, and in temperate-zone amphibians, which generally rely on 

aquatic habitats for reproduction, precipitation can be especially critical (Zug et al., 

2001). Thus, environmental characteristics are likely to have a strong influence on 

limiting species’ distributions in these groups. 

 The state of Oklahoma has a high diversity of amphibians and reptiles with 58 

species of amphibians and 102 species of reptiles (Sievert & Sievert, 2005). Additionally, 

many species reach their eastern or western distribution limits within the state (Sievert & 

Sievert, 2005). For this study, we selected pairs of closely related amphibian and reptile 

species from a diversity of higher taxonomic groups whose distributions show that one 

species is associated with the western region of the state and the other species is 

associated with the eastern region. We chose sister species or closely related species 

based upon recent phylogenetic hypotheses (Cole & Hardy, 1981; Brandley et al., 2005; 

Hillis & Wilcox, 2005). Six pairs of species met our criteria (three amphibian and three 

reptile species pairs): the microhylid frogs Gastrophryne olivacea–G. carolinensis; the 
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ranid frogs Rana blairi–R.sphenocephala; the scaphiopodid frogs Scaphiopus couchii–S. 

hurterii; the scincid lizards Eumeces obsoletus–E. fasciatus; the viperid snakes Sistrurus 

catenatus–S. miliarius; and the colubrid snakes Tantilla nigriceps–T. gracilis. 

 

Niche modelling 

Locality data from the state of Oklahoma for all species were collected primarily 

from voucher specimens and databases housed in the Herpetology collection of the Sam 

Noble Oklahoma Museum of Natural History (OMNH). Reptiles and amphibians of 

Oklahoma are particularly well represented in the collection, at over 28,000 specimens. 

In addition, to ensure that we sampled the full range of environmental conditions in 

which each species occurs, we included locality points from throughout their entire North 

American distributions. For records outside Oklahoma, we gathered museum specimen 

locality data from online databases such as HerpNet (http://www.herpnet.org) and GBIF 

(http://www.herpnet.org/gbif/gbif.html).  We selected one locality per county, where 

available, and either obtained geographic coordinates from collection databases or 

published studies, or georeferenced localities using locality descriptions (data available 

from G. Costa on request).  For pygmy rattlesnakes (Sistrurus), both species are wide-

ranging and may consist of multiple evolutionary lineages. Thus, we chose to limit our 

focus to only the subspecies occurring in Oklahoma, Sistrurus catenatus tergeminus and 

S. miliarius streckeri (Campbell et al., 2004) because these taxa are most relevant to our 

study.  Both subspecies are easily delimited by their distributions and morphological 

characteristics (Campbell et al., 2004). 
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 We used DesktopGARP® to create niche-based models of species’ distributions. 

This software uses the GARP algorithm (Genetic Algorithm for Rule-Set Prediction), 

which includes several distinct algorithms in an iterative, artificial-intelligence approach 

based on species presence data points (Stockwell & Peters, 1999). DesktopGARP® 

generates predicted distributions of each species based on characteristics of 

environmental–climatic variables for localities in which a given species has been 

previously documented. A database of climatic variables is created and loaded into the 

software program. We created a database using 20 variables available in the Worldclim 

project (Hijmans et al., 2005). Details, descriptions, and files for download are available 

free on-line at: http://www.worldclim.org/. 

 We used the following options while running DesktopGARP®: Optimization 

parameters – 100 runs, 0.001 convergence limit, and 1000 maximum interactions; Rule 

Types – Atomic Range, Negated Range, and Logistic regression; Best subset active, 5% 

omission error, 50% commission error, and 50% of points for training; Omission measure 

= extrinsic, and Omission threshold = Hard; 10 models under hard omission threshold. 

 The output of DesktopGARP® consists of Arc/Info grid maps with ‘zeros’ where 

the species does not occur and ‘ones’ where the species is predicted to occur. To generate 

a single distribution map for each species, we used the area covered by at least 5 out of 

the 10 models in the best subset selection. This procedure is called ‘ensemble forecasting’ 

and it has been discussed recently in detail by Araújo & New (2007). Using the area 

covered by of 5 out of 10 models is an arbitrary decision, but using less than 5 would 

result in more liberal predicted distributions, and using more than 5 would result in 

predictions that are too conservative.  In addition, by using only the models in the best 
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subset selection, we are optimizing our results with respect to omission/commission 

relationships (see Anderson et al., 2003). 

 

RESULTS 

 The models produced had very low values of commission and omission errors 

(Table 1). Overall results of niche modelling for all six species pairs are presented in Fig. 

5. None of the six species pairs exhibited the pattern described in Fig. 1A, because niche 

modelling always predicted some overlap in geographic distributions. As a general 

pattern, the overlap zone was always located in the central portion of the state (Fig. 5A–

F), coincident with the centre of the environmental variable curves (Fig. 3). In some 

cases, the overlap zone was relatively narrow (e.g., Scaphiopus couchii–S. hurterii and 

Sistrurus catenatus–S. miliarius; Figs. 5D and 5E, respectively), whereas in other cases, 

the overlap zone was wide (e.g., all other species pairs, Figs. 5A–C and 5F).  

 Four species pairs showed a pattern similar to Fig. 1B, where both species occur 

in the predicted overlap zone (Figs. 5A, 5C, and 5E–F). In the Eumeces obsoletus–E. 

fasciatus comparison (Fig. 5A), E. obsoletus reaches areas at the eastern limit of the 

predicted overlap zone, and E. fasciatus occurs in one area at the western limit of the 

overlap zone (Fig. 5A). In Rana blairi–R. sphenocephala (Fig. 5C), both species occur 

throughout the large predicted overlap zone with several areas where the species are 

known to occur syntopically.  Sistrurus catenatus–S. miliarius exhibited the narrowest 

overlap zone among all species pairs. The eastern species, S. miliarius, and the western 

species, S. catenatus, are both present in the central part of the overlap zone (Fig. 5E). 

Neither species, however, has yet been collected in most of the overlap zone. Finally, 
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Tantilla nigriceps–T. gracilis (Fig. 5F) also exhibited the pattern in Fig. 1B. Both species 

occur together in the western portion of the overlap zone; however, the eastern species 

extends farther westward than the western species extends eastward (Fig. 5F). 

 Two species pairs exhibited patterns similar to that shown in Fig. 1C. In the 

Gastrophryne olivacea–G. carolinensis comparison, most of the predicted overlap zone is 

dominated by the western species, G. olivacea. The eastern species, G. carolinensis, is 

restricted to the extreme eastern portion of the overlap zone, while the western species, 

G. olivacea, advances much farther east along the Arkansas River floodplain (Fig. 5B). In 

the Scaphiopus couchii–S. hurterii comparison, the predicted overlap zone is dominated 

by the western species, S. couchii, whereas the eastern species, S. hurterii, is restricted to 

the extreme eastern portion of the overlap zone (Fig. 5D).  

 

DISCUSSION 

 The observed patterns are clearly a reflection of the steep east to west gradient of 

climatic conditions that characterizes the state of Oklahoma. However, a predicted 

distribution overlap zone was present in all species pairs, suggesting that regions exist 

that have favourable macroenvironmental conditions for both species to occur. To 

understand factors that limit the distributions of these species, it is necessary to examine 

each case in detail. 

 The two species of skinks (Eumeces) selected for this study are closely related, 

appearing as sister taxa in the most recent phylogeny (Brandley et al., 2005), and E. 

obsoletus appears as the sister taxon to the clade containing E. septentrionalis + E. 

fasciatus in another study (Schmitz et al., 2004). Although these two species are closely 
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related, they clearly segregate in habitat use on a finer scale. Eumeces obsoletus is found 

in more xeric microhabitats in grasslands, prairies, and deserts (Fitch, 1955), whereas E. 

fasciatus is widely distributed throughout the deciduous hardwood forests of eastern 

North America (Conant, 1975). Therefore, microhabitat availability within the area of 

suitable macroenvironmental–climatic conditions may be the ultimate factor determining 

species presence in the overlap zone. 

 Five species of Gastrophryne are currently recognized (Frost, 2006); however, no 

phylogeny containing all species in the group is available. Previous work suggests that G. 

olivacea and G. carolinensis are sister species (Nelson, 1972), and hybridization between 

these species is known to occur (Blair, 1955). Gastrophryne olivacea occurs throughout 

the western three-fourths of the state whereas the distribution of G. carolinensis is limited 

to the eastern one-third. The predicted overlap zone is wide, but inhabited mainly by the 

western species.  Areas of sympatry are known from the coastal plain of east Texas 

through northeast Oklahoma (Blair, 1955). In areas of sympatry, the two species have 

significant differences in their mating calls compared to conspecific populations in 

allopatry (Blair, 1955; Loftus-Hills & Littlejohn, 1992), which suggests a possible 

mechanism to avoid hybridization (i.e., reproductive character displacement). Because of 

these characteristics, this species pair provides an ideal scenario to look for competitive 

interactions. Differences in diet, microhabitat use, breeding period, or other niche aspects 

between sites where these species are sympatric versus allopatric would be indicative of 

strong competitive interactions within the area of sympatry. In order to coexist, one 

species (or both) should diverge along one or more niche axes (i.e., niche segregation). In 

Oklahoma, the fact that the overlap zone is largely dominated by the western species 
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even though suitable habitat for the eastern species exists suggests that competition may 

play a role in determining the distributional limits of these species. 

 Although not sister taxa, Rana blairi and R. sphenocephala are closely related; R. 

sphenocephala is the sister taxon to the clade containing R. blairi (Hillis & Wilcox, 

2005). The niche models predicted a wide overlap zone where both species should be 

found, which is corroborated by the large number of known locality points for both 

species in the overlap zone. In addition, areas of sympatry are widespread and 

hybridization is common throughout the ranges of these species (Parris, 2001). This 

pattern suggests that the distributions of these species are not greatly influenced by 

competition. Studies that investigate populations of both species at a smaller spatial scale 

in the overlap zone may provide insight into whether character displacement or niche 

segregation occurs to allow coexistence and avoid competitive interactions. If resources 

are not limiting, the determining factors for the eastern species to invade habitats farther 

west and vice-versa may simply be the climatic–environmental conditions required by 

each species. 

 Spadefoot toads (Scaphiopus) exhibited an interesting pattern because the western 

species, S. couchii, predominates in the predicted overlap zone. The presence of just one 

of the species in the overlap zone predicted by the GIS models (Fig. 1C) indicates that 

competitive exclusion or historical factors influence the distributions of these species, 

especially if available microhabitats for S. hurterii are present. Because the species are 

closely related (Garcia-Paris et al., 2003), they are predicted to have similar niche 

requirements (Peterson et al., 1999). However, natural history data show that the species, 

in fact, occupy quite different microhabitats and thus, competitive exclusion is not 
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expected. Scaphiopus couchii occurs in deserts and xeric regions for which they have 

morphological, behavioural, and physiological adaptations (Mayhew, 1965), whereas S. 

hurterii occurs predominantly in areas of sandy, gravelly, or soft, light soils in open 

woodland, savanna, and mesquite scrub (Mayhew, 1965; Bartlett & Bartlett, 1999). 

Therefore, following our predictions, the best explanation for the observed pattern is that 

historical factors limit the distribution of S. hurterii (see comments on Fig. 1C). The main 

portions of the distributions of these species lie more to the south and southeast for S. 

hurterii, and to the southwest for S. couchii. Although environmental conditions suitable 

for both species occur in the overlap zone, especially in the northern portion of the state, 

it appears that the species have not colonized these areas.  It is possible that the species 

have not had sufficient dispersal opportunities. Pleistocene glaciations and their 

associated effects have been hypothesized to influence current distribution patterns of 

many eastern North American amphibians and reptiles (Hewitt, 1996, Howes et al., 

2006). 

 Considering pygmy rattlesnakes (Sistrurus), the eastern species, S. miliarius, is 

found in areas at the western limit of the overlap zone whereas the western species, S. 

catenatus, does not extend far eastward in the overlap zone. These two species are sister 

taxa (Knight et al., 1993), but differ considerably in microhabitat. Sistrurus catenatus, as 

currently recognized, is a wide-ranging species and although it is usually found in moist 

habitats such as swamps, marshes, bogs, wet meadows, or seasonally moist grasslands in 

the northeastern U.S., the species occurs in river bottoms, dry grasslands, mesquite 

plains, and other dry areas in the west (Ernst, 1992). Throughout most of its range, the 

eastern species, S. miliarius, occurs mainly near water in mixed pine–hardwood forest, 



 

 93 

scrub pinewood, sandhills, and wiregrass flatwoods.  In Texas and Oklahoma, the species 

is restricted to mesic grasslands (Ernst, 1992). In addition to habitat differences, dietary 

studies show that these species generally consume different prey (Werler & Dixon, 2000, 

Holycross & Mackessy, 2002). In this case, distributions of these two species are best 

explained by presence of the right kind of microhabitat and prey within the area of 

suitable macroenvironmental–climatic conditions. Support for our interpretation of 

results for Sistrurus suffers from lack of sampling points in most of the overlap zone. 

Additional sampling, especially in areas of predicted overlap, is needed to confirm our 

conclusions. 

 In black-headed snakes (Tantilla) used in this study, the predicted overlap zone is 

inhabited by both species. No comprehensive phylogeny for this genus is available, but a 

study with a limited number of taxa found that these species are not sister taxa, but 

closely related (Cole & Hardy, 1981). Natural history data show that these two species 

occupy similar habitats of rocky stretches, hillsides, rotten wood, and a surface of damp 

soil (Werler & Dixon, 2000). Following our predictions, segregation may occur in other 

aspects of their niches such as diet and/or daily activity. Not enough data are available on 

these ecological aspects; however, T. nigriceps can be up to 1.5 times larger than T. 

gracilis (Werler & Dixon, 2000), and body size differences are associated with dietary 

differences in snakes (Filippi et al., 2005, Mushinsky et al., 1982). The co-occurrence 

pattern is not evenly distributed; the eastern species, T. gracilis, occurs far westward into 

the overlap zone, whereas the western species, T. nigriceps, does not extend far eastward 

into the overlap zone. Further work should focus on investigating why the western 

species does not occupy areas farther east. 
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 Environmental conditions clearly affected the distributions of species along the 

environmental gradient we studied, demonstrating the utility of using niche models to 

investigate distribution patterns and the factors affecting them. Nevertheless, we cannot 

assign an active role to competition and historical effects based on these data alone. By 

using niche models as representations of the potential geographic distributions of species, 

we are able to provide directional hypotheses that can be tested in future studies. 

Investigations at smaller spatial scales on the ecology of the species studied here, 

especially comparisons among populations occurring inside and outside the predicted 

overlap zone, will give more conclusive results about the roles of competitive interactions 

and historical factors in shaping the distributions of species. 
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Table 1: Statistical parameters for the 10 models in the best subset selection. N = Total 

number of points used in the modelling exercise. χ2 = Chi-square statistics. P = 

Probability that a random prediction has the same number of correct predicted points as 

the one generated by DesktopGARP®. Commission = Percentage of the predicted area 

that exceeds the recorded occurrence. Omission (Int) = Intrinsic omission, the percentage 

of training points that are predicted absent but are presence records. Omission (Ext) = 

Extrinsic omission, the percentage of test points that are predicted absent, but are 

presence records. Values represent the average of the 10 models in the best subset 

selection. 

 

Species N (χ2) P Commission Omission 

(int) 

Omission 

(ext) 

Eumeces fasciatus 323 795.52 <0.01 15.39 3.90 4.47 

E. obsoletus  200 799.7 <0.01 10.70 0.32 1.61 

Gastrophryne olivacea  260 928.7 <0.01 11.23 1.94 4.19 

G. carolinensis 427 1953.7 <0.01 9.25 0.09 3.05 

Rana blairi 343 1350.6 <0.01 10.61 0.00 2.92 

R. sphenocephala 415 1353.6 <0.01 12.64 1.45 2.42 

Scaphiopus couchii 108 596.2 <0.01 7.98 0.00 1.86 

S. hurterii  50 543.8 <0.01 3.99 0.00 4.80 

Tantilla gracilis 204 924.8 <0.01 9.20 0.05 3.82 

T. nigriceps 160 671.4 <0.01 10.04 0.00 2.64 

Sistrurus miliaris 109 549.25 <0.01 8.53 0.67 2.40 

S. catenatus 94 1184.2 <0.01 3.43 0.00 2.91 
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Figure Legends 

Figure 1. Predicted results of using niche modelling to investigate factors that may affect 

distributions of closely related species along an environmental gradient. (A) Species do 

not overlap in their predicted distributions. (B) Both species occur in the predicted 

overlap zone. (C) Only one species occupies the predicted overlap zone.  

 

Figure 2. Relationships of six of the 20 climatic–environmental variables used in the 

niche modelling along a longitudinal axis across the continental United States (this subset 

of variables was chosen specifically to illustrate the longitudinal gradient). A – Altitude. 

B – Mean annual precipitation. C – Precipitation of the driest quarter. D – Precipitation 

seasonality. E – Minimum temperature of the coldest month. F – Temperature 

seasonality. Data from Worldclim (http://www.worldclim.org/). In the graphs, each point 

represents the mean value for eight latitudes (ranging from 33ºN to 40ºN) within the 

same longitude; X -axis is longitude and Y-axes are environmental variables. 

Temperature variables are in degrees Celsius x 10, precipitation variables are in mm, and 

altitude is in meters above sea level. Dashed lines represent the longitudes in which the 

state of Oklahoma lies. 

 

Figure 3. Relationships of six of the 20 climatic–environmental variables used in this 

study along a longitudinal axis within the state of Oklahoma, illustrating the east-west 

gradient. A – Altitude. B – Mean annual precipitation. C – Precipitation of the driest 

quarter. D – Precipitation seasonality. E – Minimum temperature of the coldest month. F 

– Temperature seasonality. Data from Worldclim (http://www.worldclim.org/). In the 
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graphs, each point represents the mean value for eight latitudes within Oklahoma 

(ranging from 34ºN to 37ºN) within the same longitude; X-axis is longitude and Y-axes 

are environmental variables. Temperature variables are in degree Celsius x 10, 

precipitation variables are in mm, and altitude is in meters above sea level. 

 

Figure 4. Map of the south–central United States showing the state of Oklahoma, and the 

major vegetation types of the region. 

 

Figure 5. Niche modelling maps for the six species pairs. For each species pair, open 

circles on each map represent known localities for the species generally restricted to the 

western part of the state, whereas closed circles represent localities for the eastern 

species. Yellow represents the predicted distribution of the western species, blue 

represents the predicted distribution of the eastern species, and red is the predicted 

overlap zone based on the models. Photographs next to each map correspond to the 

western species (above) and the eastern species (below). (A) Eumeces obsoletus–E. 

fasciatus. (B) Gastrophryne olivacea–G. carolinensis. (C) Rana blairi–R.sphenocephala. 

(D) Scaphiopus couchii–S. hurterii. (E) Sistrurus catenatus–S. miliarius. (F) Tantilla 

nigriceps–T. gracilis. 
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Chapter IV 

Biogeography of the Amazon molly: ecological niche and range limits of an asexual 

hybrid species 

 

(formatted for Proceedings of the Royal Society B) 
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Species range limits are complex biological phenomena where many factors interact to 

determine a species distribution. In this study we apply ecological niche modelling to 

understand relative contributions of environmental factors, dispersal limitations, and 

biotic interactions in limiting the distribution of the Amazon molly (Poecilia formosa), a 

sperm-dependent unisexual species of hybrid origin. We also used a recently developed 

metric to calculate the degree of niche overlap between the hybrid and its parental 

species. ENM produced highly significant models (AUC > 0.99). Annual mean 

temperature and minimum temperature of the coldest month were the variables that best 

explained the distribution of the P. formosa. Two different processes are acting to limit 

the distribution of P. formosa. At the northern limit of the range, suitable environmental 

conditions are absent, even though the host species is present further north. At the 

southern limit, the host species is present and areas with appropriate environmental 

conditions are present further south, suggesting that dispersal ability is the limiting factor. 

The niche overlap analysis showed that P. formosa is not more similar than expected by 

chance to either parental species, therefore having its own niche identity. 

 

Keywords: Amazon molly, biogeography, hybrids, niche modelling, niche overlap, range 

limits 
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1. INTRODUCTION 

One of the greatest challenges in biogeography is to understand factors that shape the 

distributions of species. What key elements allow a species to colonize certain areas and 

not others? How do competition, dispersal limitation, and/or environmental requirements 

interact to determine a species distribution? Understanding ecological and evolutionary 

dynamics at species range limits can provide valuable insights into a wide range of 

biological phenomena such as biological invasions (e.g. Peterson 2003), organisms’ 

responses to large-scale environmental fluctuations in the past (Graham et al. 1996) 

and/or predicted responses in the future due to climate change (Pearson & Dawson 2003). 

Species distributions are complex and many factors can interact to determine the 

limit of a species range (Holt 2003; Holt & Keitt 2005). A widely accepted notion in 

ecology is that physiological environmental tolerance will be correlated with a species 

distribution (i.e. a species niche requirements; see Soberón 2007 for a review on niche 

concepts and their relation to geographic distributions). However, characterizing a 

species’ niche may not be sufficient to explain its range limits. Species can occur in 

habitats outside their niche because recurrent migration sustains ‘sink’ populations (Holt 

1997; Pulliam 2000) or a species may be absent from habitats within its niche because of 

dispersal barriers, or the presence of competitors. Also, a species’ niche is not necessarily 

fixed, and species may be able to adapt to different environments, resulting in a change in 

distribution. Populations can become adapted in response to localized selection regimes, 

which has been demonstrated during biological invasions where niche shifts allowed a 

species to spread into areas outside its native niche envelope (Broennimann et al. 2007).  



 

 112 

Another scenario that can influence species range limits is when a strong biotic 

interaction is present such as occurs in parasite/host relationships or in specialized 

herbivores. In these cases, the distribution of the species will obligatorily depend on the 

distribution of its host, and strong coevolved patterns in phylogeography and 

diversification may emerge (Attwood et al. 2007; Toon & Hughes 2008; Whiteman et al. 

2007). We use ecological niche modelling on three species of fish that are linked through 

an unusual biotic relationship: one species, the unisexual hybrid Amazon molly (Poecilia 

formosa) relies on sperm from one of the parental species (either Sailfin molly – P. 

latipinna or Atlantic molly – P. mexicana) for triggering embryogenesis. We explore the 

relative importance of presence of a host for P. formosa, abiotic factors, and dispersal 

limitations to determine the species range limits. We also investigate how similar the 

niche requirements of the hybrid are to those of the parental species.. In addition, we 

evaluate a more recent range expansion of P. formosa that can be traced to the first 

introduction of P. latipinna as a host in central Texas, followed by the introduction of P. 

formosa about two decades later. We evaluate whether abiotic factors can predict this 

successful introduction, or whether niche shifts may have occurred to allow the 

colonization of a novel habitat. 

 

2. MATERIAL AND METHODS 

(a) Biological system 

Poecilia formosa is a unisexual species of hybrid origin. It reproduces by sperm-

dependent parthenogenesis, termed gynogenesis, in which the sperm serves only to 

stimulate the development of unreduced eggs but normally makes no genetic 
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contribution. The maternal ancestor of this species was P. mexicana, and the paternal 

ancestor was P. latipinna (Avise et al. 1991; Schartl et al. 1995; Tiedemann et al. 2005; 

Lampert & Schartl 2008). Both P. mexicana and P. latipinna are widely distributed 

species and occupy different microhabitats. P. formosa occupies only a fraction of the 

areas occupied by its hosts. Understanding why the Amazons do not occupy the entire 

range of their hosts has remained a puzzle. Previous work has highlighted the importance 

of the presence of suitable hosts, but the role of abiotic factors was not prominently 

considered (Schlupp et al. 2002). 

In addition, P. latipinna was introduced into the San Marcos River in central 

Texas in the 1930s where it established a successful population (Brown 1953). In the 

1950s, a few specimens of P. formosa were introduced to the same area and were able to 

use the P. latipinna already present as hosts to establish a new mating complex (Hubbs et 

al. 1991; Hubbs et al. 1953). 

 

(b) Ecological Niche Modelling 

Ecological niche modelling (ENM) uses abiotic and/or biotic variables to model potential 

distributions of species based on known areas of occurrence (Peterson 2001; Peterson et 

al. 2002). Many methods are available to perform ENM, all of which apply essentially 

the same principles. First, georeferenced known-occurrence points of the species under 

study are linked with variables at each locality. Next, an algorithm uses this information 

to determine the probability that the species will be found at any point along each 

variable axis. The information is then combined for all variable axes to generate a ‘niche’ 

envelope in which suitable conditions for the species to occur are predicted to exist. This 
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prediction is then projected onto a map of the geographic region of interest (see Elith et 

al. 2006 for a review on the algorithms). This approach makes it possible to map areas 

that are environmentally suitable for a species. ENM has become an important tool for 

studies in ecology, evolution, and conservation biology (Guisan & Thuiller 2005; Kozak 

& Wiens 2006; Wiens et al. 2006). ENM can also be a powerful tool in biogeography. By 

examining congruence and/or discordance between potential and actual distributions, 

researchers may be able to disentangle the roles of ecological and historical factors in 

shaping species distributions (Anderson et al. 2002; Costa et al. 2008; Swenson 2006). In 

this study, by using only abiotic variables in the ENM we attempt to contrast the relative 

importance of environmental variables and biotic interactions (presence of the host). 

To generate a map of suitable conditions for P. formosa and its parental species, 

we used the Maxent algorithm, which requires only presence (not absence) species 

records and has been shown to perform well in comparison with other approaches (Elith 

et al. 2006). The algorithm works by fitting a probability distribution for species 

occurrence to the set of pixels across the region of interest. The algorithm is based on the 

mathematical principle that, given the appropriate constraints, the best explanation to 

unknown phenomena will maximize the entropy of the probability distribution. In 

ecological niche modelling, these constraints consist of the values of the environmental 

variables in the pixels at which the species has been documented. More details on how 

Maxent works are provided by Phillips et al. (2006) and Phillips et al. (2004). In our 

modelling exercise, we used the default parameters for Maxent v.3.2.1, which were based 

on maximizing the results in a diverse set of modelling situations. Details are described in 

a recent publication (Phillips 2008). 
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We obtained known locality points for P. formosa, P. mexicana, and P. latipinna 

from collection databases (http://www.gbif.org/), our own fieldwork, and the literature 

(Darnell & Abramoff 1968; Miller et al. 2005). When available, we used geographic 

coordinates directly from museum databases or published studies, and in other instances, 

we approximated point localities from locality descriptions using georeferencing 

techniques. We used the environmental variables from the Worldclim project (Hijmans et 

al. 2005), which are available for download at http://www.worldclim.org. Next, we built 

a correlation matrix among all variables and selected only variables that were not highly 

correlated (r > 0.9) for the modelling (Table 1). This approach allows us to better 

interpret the output of the models in terms of the individual contribution of each variable 

in the model. Although, fish distributions in a smaller spatial scale are likely to be more 

affected by variables that are related do water properties, at a larger spatial scale such as 

in this study, macroclimatic variables are likely to be informative and have been 

successfully applied in niche modelling of fish species (Chen et al. 2007; Domínguez-

Domínguez et al. 2006). 

To statistically evaluate model performance we used the area under the curve 

(AUC) on receiver operating characteristic (ROC). ROC analysis is a method designed to 

evaluate the specificity (absence of commission error) and sensitivity (absence of 

omission error) of a diagnostic test (Fielding & Bell 1997; Zweig & Campbell 1993). The 

AUC provides a threshold-independent measure of model performance as compared with 

that of null expectations (Fielding & Bell 1997), and it is the most commonly used 

statistic to evaluate ENM performance (Elith et al. 2006). When the AUC is 0.50, the 

model is performing no better than random. Higher AUC values indicates better models; 
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and a perfect prediction would have the value 1.0 (Hanley & Mcneil 1982). Although 

some studies have been pointing out problems with the AUC approach in ENM (Lobo et 

al. 2008; Peterson et al. 2008; Raes & ter Steege 2007), most of the problems concern the 

use of AUC in comparing among different ENM methods, which is not the case in the 

present exercise. 

 

(c) Statistical Analysis 

To assess whether the environmental conditions in the native range of P. formosa, and P. 

latipinna are different from the conditions in the introduced area in the San Marcos 

River, we conducted a principal components analysis (PCA) using climatic data extracted 

from the localities of both species, and from 25 random points extracted within a 50-km 

buffer from the introduced locality. We also extracted climate data for 25 points in the 

Florida Lower Peninsula, where the models predicted P. formosa, but the species does 

not occur (see results). The PCA used the correlation matrix of the 16 bioclimatic 

variables included in the climatic niche models described above. For each ‘group’ (P. 

formosa, P. latipinna, Texas, and Florida) we calculated mean and standard deviation of 

PC scores along the two first axes (80% of total variation). We tested for differences in 

the means among groups along the two first PC axes using ANOVAs with post hoc 

Tukey’s HSD tests. Statistical analyses were performed in SAS v.9.1. 

To determine whether P. formosa has its own niche identity and how 

similar/dissimilar the niche use of the hybrid and parentals is, we used a new metric 

developed by Warren et al. (2008) which is calculated in the software ENMTools 
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(available from the authors in Warren et al. 2008). This new metric is based on the 

Hellingar distance (H) (Van der Vaart 1998) and is defined as  

 

where I is a similarity index of niche space use for a given species pair. I can vary from 0 

(no overlap) to 1 (niche models are identical). pX,i (or pY,i) denotes the probability 

assigned by the ENM (output of Maxent in this case) for species X (or Y) to cell i. Due to 

the nature of ENM models, this new metric has advantages over traditional niche overlap 

measures of ecological data (e.g. Schoener 1968) because it carries no biological 

assumptions concerning the meaning of pX,i (or pY,i), treating pX and pY as probability 

distributions. For additional information and details on I see Warren et al. (2008). 

After calculating the values of I for the species pairs P. formosa – P. mexicana, 

and P. formosa – P. latipinna, we used two different randomization procedures to 

determine whether or not the ENMs produced for the parental and the hybrids are 

statistically different. The first procedure randomized the identity of occurrence points 

while keeping sample sizes constant. For a given species pair comparison X ,Y with nX, nY 

occurrences, a set of pseudoreplicate datasets is randomly created by partitioning the 

pooled set of nX + nY occurrences into new sets of size nX and nY. Then, niche models for 

each pseudoreplicate dataset are created and the similarity measure I is calculated. This 

process is repeated m times to create a null distribution of I values. We used m = 100 

because this is enough to reject the null hypothesis with high confidence while keeping 

computer processing time feasible. The observed values of I are compared to the 



 

 118 

generated null distribution to evaluate the hypothesis that the niche models for X and Y 

are not statistically different. If the observed value falls below 95% of the distribution of 

simulated values, then null hypothesis is rejected. A significantly lower observed I value 

in the hybrid – parental comparisons would suggest that the hybrid has their own niche 

identity rather than having equivalent niche requirements to the parental species. This 

procedure is referred by Warren et al. (2008) as a test for niche equivalency, and it is also 

implemented in the software ENMTools for details see Warren et al. (2008). 

We also used a second randomization procedure that takes into account 

differences in the environmental background to determine whether hybrid and parentals 

are more or less similar than expected by chance. In this case, instead of using the pooled 

dataset of nX + nY occurrences to draw sets of size nX and nY. Sets of nX occurrences are 

drawn randomly from the whole region where Y may occur and sets of nY occurrences are 

drawn randomly from the region where X may occur. We selected the regions where X 

and Y may occur by applying an absence/presence threshold to the Maxent output for 

species X and Y. Threshold selection in ENM is a research topic in itself (Jiménez-

Valverde & Lobo 2007; Liu et al. 2005). We used threshold values where sensitivity 

(proportion of true positive predictions vs. the number of actual positive sites) is equal to 

specificity (the proportion of true negative predictions vs. the number of actual negative 

sites). This approach maximizes agreement between observed and modelled distributions 

balancing the cost arising from an incorrect prediction against the benefit gained from a 

correct prediction (Manel et al. 2001; Pearson et al. 2006). In addition, to evaluate 

whether or not the results of this analysis are influenced by the selection of a specific 

threshold, we repeated the analysis using different threshold values. Because there was no 
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difference among the different threshold values used, we present only the result of the 

first analysis. 

The null hypothesis that measured niche overlap between hybrid and parentals is 

explained by regional similarities or differences in available habitat is rejected if the 

empirically based similarity between hybrid and parentals falls outside the 95% 

confidence limits of the null distribution. Rejection of the null hypothesis indicates that 

the niche models of hybrid and parentals are more similar or different (depending on 

which side of the distribution the observed value falls) than would be expected by 

chance. Rejection of the null hypothesis also indicates that the observed niche 

differentiation between hybrid and parental species may be a function of habitat selection 

and/or suitability rather than simply an artifact of the underlying environmental 

differences between habitats available to the species. Failure to reject the null hypothesis 

does not necessarily imply no niche differentiation or niche similarity, rather it may 

indicate that the sample size or distribution of habitat is such that there is insufficient 

power to make inferences regarding niche differences between hybrid and parental 

species. This procedure is referred to by Warren et al. (2008) as a test for niche similarity, 

and it is also implemented in the software ENMTools (for details see Warren et al. 2008). 

 

3. RESULTS 

All models produced were highly significant based on the ROC analysis (all AUC > 0.99, 

Table 1). For P. formosa annual mean temperature (34.5%) and minimum temperature of 

the coldest month (20.2%) were the variables that contributed the most to the model. For 

P. latipinna, altitude (63.3%) had the greatest individual contribution, whereas in P. 
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mexicana, minimum temperature of the coldest month (69.7%) was the most important 

variable in the model (Table 1). 

The model for P. formosa shows that, with the exception of south Florida, not 

many areas beyond the known distribution of the species contain environmental 

conditions required by the species (Fig 1A). In the model for P. latipinna this scenario 

was even more extreme, with virtually no areas outside the known distribution of the 

species having conditions within the species niche envelope. This species seems to be 

restricted to low altitude areas along the gulf coast from central Mexico to Florida and up 

the Atlantic coast the southeast United States (Fig 1B). The model for P. mexicana also 

predicted suitable environmental conditions for the species in south Florida, beyond that 

it mainly described the known range of the species (Fig 1C). 

The PCA showed that conditions in the area where P. latipinna and P. formosa 

were introduced in Texas are significantly different from conditions present in their 

native ranges (Fig. 2). The ANOVA on PC1 was significant (F = 112.6, P < 0.01, with all 

pairwise Tukey’s HSD comparisons P < 0.05 except P. formosa – Florida and P. 

latipinna – Florida). On PC2, the ANOVA was also significant (F =46.4, P <0.01 with all 

pairwise Tukey’s HSD comparisons P < 0.05 except P. latipinna – Florida). Therefore, 

these analyses demonstrated that despite being geographically more distant, the 

environmental conditions in Florida are more similar to those in the native range of P. 

formosa, than to environmental conditions in Texas. 

 The measured niche overlap (I) between P. formosa and P. latipinna was 0.46, 

and between P. formosa and P. mexicana was 0.51. Both I values were significantly 

lower (P < 0.01) from a null distribution based on the randomization of the identity points 
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(Fig. 3A–B). These results indicate that the hybrid species has its own niche identity, 

rather than having niche requirements equivalent to either of the parental species. These 

values, however, were not statistically lower or higher from what would be expected 

based on comparison to random predictions taking into account environmental 

similarities between the regions they occur (Fig. 3C–D).  

 

4. DISCUSSION 

Ecological niche modelling usually ignores biotic interactions (e.g., competition) and 

emphasizes the role of abiotic factors. With respect to the distribution of Amazon 

mollies, we initially questioned whether that ENM would be able to predict its natural 

distribution because of the importance of the presence of a suitable host species, which 

was not accounted for in modelling. Based only on the presence of a suitable host, the 

Amazon mollies should have a much larger distribution because the distribution of P. 

latipinna extends northward to the distribution of P. formosa, and P. mexicana occurs 

continuously in areas hundreds of kilometres further south than the known range of P. 

formosa. Other sperm dependent hybrid species are known to have distributions that 

more closely match one of their hosts (e.g. Poeciliopsis Wetherington et al. 1989, 

Ambystoma Conant 1986, Rana Kuzmin 1995). Therefore, it is clear that other factors are 

acting to restrict the distribution of the Amazon molly. Previous work has suggested that 

dispersal limitation is the main factor explaining this pattern, highlighting the role of 

natural barriers such as near coast marine currents and the Sierra Madre Oriental 

(Schlupp et al. 2002). However, to fully assess the dispersal limitation hypothesis, it is 

necessary to examine environmental suitability of the areas beyond the known range of P. 
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formosa. If those areas in fact possess the necessary conditions for the species to occur, 

then the dispersal limitation hypothesis would be more strongly supported. On the other 

hand, if environmental conditions in those areas are not within the species niche 

requirements, then dispersal limitation is not what is restricting the species distribution. 

Our results showed that in general, P. formosa appear to have colonized almost all 

areas where suitable environmental conditions for the species exist. Only an area in South 

Florida, which is separated from the continuous natural range by several thousand 

kilometres, would provide additional suitable habitat. Interestingly it seems that two 

different processes are acting to limit the distribution of P. formosa. No suitable 

environmental conditions exist for P. formosa at the northern limit, even though the host 

species occurs further north. In contrast, the host species is present at the southern limit, 

and areas that are predicted to have suitable conditions for P. formosa are currently 

unoccupied by the species. This pattern provides strong evidence for the dispersal 

limitation hypothesis at the southern limit of P. formosa range. P. formosa is 

hypothesized to have originated ca 100,000 generations ago in the region near its current 

southern range limit (Schartl et al. 1995; Schlupp et al. 2002). Therefore, the fact that the 

species has spread northward considerably more than southward, also corroborates the 

dispersal limitation hypothesis at the southern limit. 

The ENMs do not predict the occurrence of P. latipinna or P. formosa in the area 

they were introduced in central Texas. However, these populations appear to be well-

established, having co-occurred in the area for more than 50 years (Hubbs et al. 1991; 

Hubbs et al. 1953). The area in Texas is different climatically from the native ranges of 

both species, as shown by our PCA and ANOVAs. Therefore, this result does not seem to 
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be a failure of the ENM to identify regions of suitable habitat for the species, but 

highlights the fact that the species are maintaining viable populations in an area well 

outside the climate characteristics of their native ranges. Many hypotheses may explain 

this pattern including phenotypic plasticity and/or adaptation to local environments. 

Previous work has shown that species may occur outside their native climate range after 

being introduced in a novel habitat (Broennimann et al. 2007). Another possible 

explanation is that because of ecological or historical reasons, both P. formosa and P. 

latipinna are not occurring in all areas that they could physiologically tolerate.  Future 

laboratory experiments may help to address this question. 

Interestingly, our niche overlap analysis showed that the hybrid species overlaps 

in a similar way with both parental species while still having its own niche identity. 

However, the niche similarity test showed that the hybrid is not more or less similar to 

the parental species than would be expected based on comparison to random predictions 

taking into account environmental similarities between the regions they occur. The 

analysis of niche overlap of ENMs was conceived and so far applied only to address 

niche conservatism; that is whether closely related species are more similar in their niche 

requirements than expected by chance (Warren et al. 2008). In their study, Warren et al. 

(2008) used several pairs of sister taxa and found that they were more similar than 

expected by chance. The failure to reject the null hypothesis in the niche similarity test 

does not necessarily imply a lack of niche differentiation or niche similarity (see 

methods) between hybrid and parental species. However, this result makes biological 

sense given models of allopatric speciation by niche conservatism (Wiens 2004; Wiens & 

Graham 2005). Under these models, speciation will occur in the geographical space 
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without considerable ecological divergence (Kozak & Wiens 2006; Peterson et al. 1999), 

resulting in sister species being more similar than expected by chance. Hybrids originate 

by fusion of genomes of two often ecologically divergent species (degree of difference 

can vary depending on the hybrid). In this case, a certain degree of similarity is expected 

between hybrids and parental species, but because the hybrid is inheriting characteristics 

of both parental species, the hybrid may appear to have its own identity while also not 

being more similar to either one of its parental species than expected by chance. 

In summary, we have shown that by applying ENM techniques we can explore 

factors influencing species range limits and have a better understanding of the relative 

contribution of different factors such as biological interactions, abiotic factors, and 

dispersal limitations. Our results regarding the region where the species were introduced 

have in fact raised more questions about physiological tolerance and niche requirements, 

and how that translates into predicting geographic range limits. Our study highlights the 

complexity of studying species range limits, but reiterates that an integrative approach is 

necessary to understand this phenomenon. 
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Table 1 – Variables used in our modelling exercise, their Bioclim code, and a heuristic estimate of the relative contributions for each 

environmental variable to the Maxent model of each species. Estimation is based on the increase in regularized gain that is added to 

the contribution of the corresponding variable. Within parenthesis are the AUC values of the model for each species. 

 

Species Variable Code 

P. formosa 

(0.997) 

P. latipinna (0.994) P. mexicana (0.992) 

Annual mean temperature Bio 1 34.5* 0.1 0.4 

Mean diurnal range Bio 2 0.2 2.0 1.9 

Isothermality Bio 3 0.3 0.2 1.9 

Temperature seasonality Bio 4 15.1 5.8 12.5 

Max. temperature of warmest month Bio 5 0.0 0.1 0.0 

Min. temperature of coldest month Bio 6 20.2* 9.2 69.7* 

Mean temperature of wettest quarter Bio 8 2.7 7.0 0.3 

Mean temperature of driest quarter Bio 9 0.6 4.4 0.2 
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Mean temperature of warmest quarter Bio 10 0.0 0.0 0.8 

Annual precipitation Bio 12 0.4 0.0 0.5 

Precipitation seasonality Bio 15 3.8 1.3 3.1 

Precipitation of wettest quarter Bio 16 0.3 0.1 0.1 

Precipitation of driest quarter Bio 17 11.9 2.7 6.8 

Precipitation of warmest quarter Bio 18 0.0 3.8 1.2 

Precipitation of coldest quarter Bio 19 5.8 0.0 0.4 

Altitude Alt 4.2 63.3* 0.1 

* Variables with the most important relative contribution to the model for the species. 
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Figure Legend 

Figure 1 – Results of ENM for (A) P. formosa; (B) P. latipinna; and (C) P. mexicana. 

Black dots are the locality points used in the modelling. Maxent default output format is 

called logistic and depicts probability values ranging from 0-1, where higher values 

indicates higher environmental suitability and therefore higher probability of species 

occurrence (Phillips & Dudik 2008). 

 

Figure 2 – Principal component analyses (PCAs) of the climate niche space occupied by 

P. formosa, P. latipinna, areas in Florida where P. formosa is absent but predicted, and 

areas in central Texas where both P. formosa and P. latipinna where introduced. The 

mean principal component scores and standard deviations are shown. First principal 

component explains 50% of the variation and was mainly influenced by minimum 

temperature of the coldest month, and temperature seasonality. Second principal 

component explains 30% of the variation and was mainly influenced by annual 

precipitation, and maximum temperature of the warmest month. 

 

Figure 3 – Results of comparisons of observed values of I (Indicated by arrows) to null 

distributions generated by 100 pseudoreplicates. A – Results for the niche equivalency 

test (see methods) comparing observed values of I in P.formosa – P. latipinna (P < 0.01), 

and B – P.formosa – P. mexicana (P < 0.01) to the distribution of null values of I, C – 

Results of niche similarity test (see methods) comparing observed values of I in 

P.formosa – P. latipinna (P = 0.72), and D – P.formosa – P. mexicana (P = 0.79) to the 

distribution of null values of I. 
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