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ABSTRACT 

 

Silica sol-gel is a transparent, highly porous silicon oxide glass made at room 

temperature by sol-gel process. The name of silica sol-gel comes from the observable 

physical phase transition from liquid sol to solid gel during its preparation. Silica sol-gel 

is chemically inert, thermally stable, and photostable, it can be fabricated into different 

desired shapes during or after gelation, and its porous structure allows encapsulation of 

guest molecules either before or after gelation while still retaining their functions and 

sensitivities to surrounding environments. All those distinctive features make silica 

sol-gel ideal for sensor development. Study of guest-host interactions in silica sol-gel is 

important for silica-based sensor development, because it helps to tailor local 

environments inside sol-gel matrix so that higher guest loading, longer shelf-life, higher 

sensitivity and faster response of silica gel based sensors could be achieved. 

We focused on pore surface modification of two different types of silica sol-gel by 

post-grafting method, and construction of stable silica hydrogel-like thin films for 

sensor development. By monitoring the mobility and photostability of rhodamine 6G 

(R6G) molecules in silica alcogel thin films through single molecule spectroscopy 

(SMS), the guest-host interactions altered by post-synthesis grafting were examined. 

While physical confinement remains the major factor that controls mobility in modified 

alcogels, both R6G mobility and photostability register discernable changes after 

surface charges are respectively reversed and neutralized by aminopropyltriethoxysilane 

(APTS) and methyltriethoxysilane (MTES) grafting. The change in R6G photostability 
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was found to be more sensitive to surface grafting than that of mobility. In addition, 

silica film modification by 0.4% APTS is as efficient as that by pure MTES in lowering 

R6G photostability, which suggests that surface charge reversal is more effective than 

charge neutralization in disrupting R6G/silica attraction.  

Similar post-grafting method was applied to highly hydrated silica hydrogel 

monoliths. Rhodamine 6G (R6G) and fluorescein (Fl) molecules were used as probes to 

monitor the surface modification inside silica hydrogel by measuring anisotropy values 

of doped dyes. Due to the larger pore sizes, pore surface modification inside hydrogel 

was more effective than in alcogel. Surface modification by chemical reactions of 

3-Aminopropyltrimethoxysilane (APTS) and methyltriethoxysilane (MTES) showed 

dramatic effect on guest molecule mobility, whereas surface modification by physical 

method, that is to increase ionic strength by using 1.0 M sodium chloride or to 

neutralize pore surfaces by adding pH 2.0 hydrochloric acid, barely showed any effect. 

Charge-reversal by APTS is a more effective way to modify pore surfaces in hydrogel 

than hydrophobic capping from MTES. The ease of tracking surface modification inside 

hydrogel by simply locating R6G dye band, and the negligible pore fluid effect on R6G 

in modified hydrogel makes R6G a better probe than Fl to monitor the pore surface 

modification process in silica hydrogel monoliths.  

During the study of post-grafting on silica alcogel thin film, a new approach to 

produce stable silica hydrogel-like thin films was discovered. Homogeneous thin film 

hydrogel-like samples with thickness between 100 nm and 300 nm were produced, and 

they showed a very hydrophilic surface, high dye loading capacity, and the support of 

molecular diffusion. The reactive stage of starting silica gel matrix was elongated by 
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increasing environmental humidity, the reproducibility of sample preparation was 

greatly improved by controlling environmental humidity, and the dye loading capacity 

of samples was improved more than ten times by using phosphate buffer solutions 

(PBS). The concentration of R6G trapped inside hydrogel-like thin film could reach as 

high as 900 times of its saturated aqueous solution. Dye encapsulation can simply be 

accomplished by dipping a chemically reactive alcogel thin film into a dye-doped buffer 

solution. Since alcohol exposure can be kept to a minimum during dye encapsulation, 

this new silica film makes a promising candidate for biomolecule encapsulation and 

thus biosensor development. A prototype silica hydrogel-like thin film pH sensor was 

also constructed and tested, and it showed faster response than the corresponding 

alcogel thin film sensor.   
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CHAPTER 1 INTRODUCTION 

 

1.1 SOL-GEL PROCESS 

1.1.1 Sol-gel Reactions 

    Sol-gel process is a popular approach to synthesize inorganic oxide materials using 

inorganic metal salts or organic metal alkoxides as precursors.1-2 Usually, sol-gel 

process is carried out at room temperature and is realized by a two-step reaction. Since 

this dissertation focuses on studies of silica sol-gel (or referred as sol-gel silicate) 

material, we’ll use silicate gels as examples to illustrate this process.  

    Tetralkyl orthosilicates, such as tetraethyl orthosilicate (TEOS) and tetramethyl 

orthosilicate (TMOS), are the most widely used precursors to make sol-gel silicates. As 

illustrated in Figure 1.1, three reactions perfectly describe the sol-gel process. Briefly, 

with the presence of acid or base as a catalyst, silicon alkoxide reacts with water and 

undergoes a hydrolysis process to produce silanols, and then those partially hydrolyzed 

silanols are involved in condensation reactions to form a porous, three-dimensional 

Figure 1.1 Reactions in sol-gel process. R represents alkyl group. 

Si OR + H2O Si OH + ROH

Si OR + Si O + ROHHO Si Si

Si OH + Si O + H2OSiHO Si

Hydrolysis

Condensations

Si OR + H2O Si OH + ROHSi ORSi OR + H2O Si OHSi OH + ROH

Si OR + Si O + ROHHO Si SiSi ORSi OR + Si O + ROHHO SiHO SiSi SiSi

Si OH + Si O + H2OSiHO SiSi OHSi OH + Si O + H2OSiSiHO SiHO SiSi

Hydrolysis

Condensations
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framework of silicon oxide. The name of silica sol-gel comes from the observable 

physical phase transition from liquid sol to solid gel during its preparation. In short, 

once silica alkoxide molecules hydrolyze and start condensation, depending on the 

reaction conditions, they turn into clusters of either dense oxide particles or branched 

macromolecules and suspend in the liquid, which is sol (“a colloidal suspension of solid 

particles in a liquid”)1; With the growth of clusters by aggregation of particles or 

condensation of macromolecules, the moment when clusters collide and the last link is 

formed between them, the sol solution suddenly loses its fluidity and turns into an 

elastic solid, that is a gel. This sudden physical phase change is called gelation, and the 

time it takes from sol to gel is gelation time or gel time. 

1.1.2 Sol-gel Mechanisms 

The hydrolysis and condensation rates are affected by many factors, such as the 

precursor type and concentration, the molar ratio of H2O : Si, the catalyst type and 

concentration, the solvent, temperature, pressure and the existence of electrolytes.1, 3-5 

Although there are many mechanisms of sol-gel process proposed by different research 

groups, it is generally agreed that hydrolysis follows “a bimolecular displacement 

mechanism”,1, 4, 6 and condensation involves bimolecular nucleophilic substitution 

reaction with a penta- or hexacoordinate transition intermediate or state.1, 6 In an 

acid-catalyzed hydrolysis, an alkoxide group is first rapidly protonated and then 

subjected to attack by water to form a pentacoordinate intermediate or transition state, 

which decays by the displacement/generation of an alcohol. Under basic condition, 

hydrolysis proceeds by the rapid dissociation of water into a nucleophilic hydroxyl 

anion first, followed by its attack to silicon atom to form a pentacoordinated 



3 

intermediate or state, which decays by the displacement/generation of an alkoxide anion. 

In a condensation reaction, if it is acid-catalyzed, a silanol is rapidly protonated first and 

turns electrophilic, which make it susceptible to nucleophilic attack from a neutral 

silanol, finally the reaction ends with formation of siloxane bond and by-product of 

protonated water; while if it’s base-catalyzed, condensation proceeds by the rapid 

deprotonation of silanol first, followed by its attack to a neutral silanol to form a stable 

penta- or hexacoordinate transition intermediate or state, which decays by the 

displacement/generation of an alkoxide anion or hydroxyl.            

1.1.3 Sol-gel Structures 

By adjusting the reaction conditions to control the relative rates of hydrolysis and 

condensation, we can obtain silica gels with different structures and properties. The 

pore size of silica gel could vary from as small as 1 nm in diameter to as large as more 

than 200nm in diameter.7-11 First of all, as the mechanisms suggest, hydrolysis and 

condensation reaction rates are pH dependent. Figure 1.2 illustrates different structures 

of silica sol-gel prepared under different pH conditions.4 Generally, under low pH 

conditions (pH ≤ 2), the hydrolysis rate is far higher than the rate of condensation, 

resulting in silica sol-gel with weakly-branched polymer network. Under high pH 

conditions (pH > 8), for example the conditions used by StÖber (the molar ratio of H2O : 

Si is between 7.5 and 50 or even higher, and the concentration of catalyst NH3 is 1 ~ 7 

M),12 condensation was much faster than hydrolysis, and uniform spherical particles 

with sizes ranged from 50 nm to 2000 nm in diameter were obtained. Under 

intermediate pH conditions (pH = 3 ~ 8), depending on the pH and the molar ratio of 

H2O : Si, silica sol-gel with structures from weakly-branched to uniformly porous, to 



4 

surface fractals, to mass fractals, to even smooth monosized silica spheres are all able to 

be obtained.1, 4, 13 The structure and properties of silica sol-gel can also be tuned by 

varying the molar ratio of starting materials,12, 14-15 by introducing reactive additives 

such as organically modified silanes,16-17 other metal alkoxides,18-19 and polymers20-22 to 

initial sol preparation to make hybrid sol-gel, or by mixing surfactants,23-26 organic dye 

molecules24, 27-29 or enzymes20-21, 30 during gelation to template the pore sizes and shapes. 

In addition, the solvent, temperature, pressure and the existence of electrolytes during 

sol-gel preparation were all observed to affect the hydrolysis or condensation rate so 

that resulting in differently structured silica gel.1, 3.        

Figure 1.2 Schematic of silica sol-gel structure affected by pH. Reproduced with permission from 

ref. 4. Copyright 1989 the Swiss Chemical Society (SCS) and its Divisions. 
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Hydrolysis and condensation reactions don’t stop at the gelation point, but 

continue for weeks or even months during aging.1 New –Si-O-Si– bonds are created by 

the continued poly-condensation reactions, which not only help strengthening and 

stiffening the gel network, but also result in the shrinkage of gel. When gel shrinking 

and solvent evaporation happen simultaneously during aging, pores collapse. It is very 

obvious that the structure and properties of silica gel keeps changing during aging. 

Scherer et al did extensive studies to report how silica sol-gel structure evolves during 

aging, and factors that could affect the gel structure, such as aging time, temperature, 

pore fluids and pH, were explored.7-8, 31-37  

There are two types of silica sol-gel investigated in this dissertation: silica alcogel 

and silica hydrogel. The difference between alcogel and hydrogel is the dispersion 

medium, with the former is alcohol and the latter is water. Traditionally, alcohol such as 

ethanol or methanol was always mixed with silane precursors and water to initialize the 

sol-gel process, because water and most alkoxysilanes are immiscible, alcohol can work 

as a homogenizing agent.1 Silica sol-gel which is produced in an alcohol-water system 

throughout the whole sol-gel process is generally categorized as alcogel. In 1987, Avnir 

and Kaufman first successfully synthesized silica sol-gel without adding alcohol as a 

mutual solvent, and they explained that since alcohol is a by-product of hydrolysis and 

the initial release of alcohol is sufficient to homogenize the reaction system.38 Today, 

alcohol-free route becomes very common for making biocompatible silica hydrogel. 

One of the most popular procedures to make silica hydrogel is a two-step sol-gel 

process, which involves an acid-catalyzed hydrolysis step, and then a neutral 

condensation-gelation step.14, 39-40 TMOS is a more preferable precursor than TEOS 
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since the by-product methanol is less toxic to biological molecules than ethanol.21 

Alcohol generated in hydrolysis step is usually removed before the 

condensation-gelation step by natural evaporation or rotary evaporation,41 or could be 

removed by rinsing after gelation.42 After the homogeneous sol is generated in the first 

step, usually buffer solution or growth media of cells is mixed with sol to conduct the 

condensation-gelation in the second step. By adjusting the volume ratio of sol and the 

buffer solution, silica hydrogel with different pore sizes could be achieved. The higher 

the portion of buffer solution, the longer the gel time, and the larger the pore size will be 

obtained. Hydrogel usually contains up to 99% of water. Compared to hydrogel, alcogel 

has a denser internal structure.43 

It is worth to point out that there are another three terms often used to describe 

dried silica sol-gel materials. They are xerogel, aerogel and ambigel. If a wet gel 

(regardless hydrogel or alcogel) undergoes natural evaporation, a xerogel is obtained; if 

the wet gel is dried by a supercritical drying process, an aerogel is produced; if the wet 

gel contains high portions of hydrophobic groups in the matrix or on the pore surfaces, 

after evaporation, it turns into ambigel.10, 20  

 

1.2 GUEST - HOST INTERACTIONS IN SILICA SOL-GEL 

Ever since the pioneer work of Avnir et al. on the entrapment of an organic dye in 

silica gel (composites) in 1984,44 and the subsequent discovery that trapped molecules 

in sol-gel matrix were sensitive to the surrounding solvent environment,45-46 intense 

interest has been focused on the construction of silica gel based sensors. Since then, a 
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lot of silica gel based chemical sensors and biosensors have been developed, such as pH 

sensors, ion sensors, glucose sensors.11, 21-22, 30, 47-51 

The investigation of guest-host interactions inside silica sol-gel is important for 

sensor development, because understanding the interactions helps to manipulate the 

properties of silica gel materials so that gaining control over sensor development. Local 

environment of the guest molecule inside silica gel greatly affects how guest-host 

interacts. Generally, there are four different regions in sol-gel matrix: liquid region in 

pores, pore wall, the interface between pore wall and pore liquid, and constraining 

region between pore walls with similar dimension as trapped molecules.5 Molecules 

located in liquid region of pores behave similar as those in bulk solution, the 

interactions between guest molecules and solvent molecules dominate, as a result the 

properties of the solvent, such as composition,45-46, 52-53 pH,53-54 polarity55-56 and 

viscosity,57-58 greatly affect the characters and motions of them. However, the influence 

from the pore size or pore surfaces also can’t be neglected, especially when the pore 

sizes are getting smaller and smaller during aging, interactions between guest molecules 

and pore surfaces become stronger. Hydrogen-bonding56, 59 or electrostatic interactions28, 

54, 60 are believed to contribute to the attachment of molecules to the pore surfaces. 

Molecules in the interface region between pore wall and pore liquid usually show 

significantly different properties from those molecules in bulk solution.44, 61 Because of 

the existence of electric double layer on pore surface and the adsorption-desorption 

equilibrium of guest molecules on pore surfaces, the interactions between guest 

molecules and sol-gel matrix get more complicated. Zheng and coworkers studied the 

fluorescence properties of Rhodamine 6G (R6G) at the silica/water interface, they found 
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that R6G showed totally different responses to pH and ionic strength when at the 

interface and in bulk solution; 62-63 in another related study by Chen et al, 61 5 nm 

red-shift was observed from the fluorescence spectra of R6G at the interface compared 

to that in bulk solution, and the rotational movement of R6G molecules was distinctly 

restricted at the interface. When molecules are trapped in the constraining region, they 

cannot move around. Physical confinement is usually used to describe this situation. 

 

1.3 PORE SURFACE MODIFICATION OF SILICA SOL-GEL  

Introducing organic groups to silica gel to make an inorganic-organic hybrid 

material is on one hand replacing the brittleness with rubber elasticity, and on the other 

hand improving its biocompatibility. Since H. Schmidt in 1985 first successfully 

synthesized the inorganic-organic hybrid silica gel (ormosils),64 sol-gel research has 

experienced an explosion of development, and it also marks the second important period 

of sol-gel process.65-66 Currently, there are two well-developed approaches to synthesize 

organically modified silica gel: one-pot synthesis and stepwise post-grafting.17, 67-68  

H. Schmidt initiated the one-pot approach, which is by mixing all precursors 

(including the organosilanes) and solvents in one pot for the sol-gel process. Since those 

organosilanes are directly involved in the sol-gel reactions, organic functional groups 

turn into part of the sol-gel matrix, and the distribution of them is homogeneous. High 

loading of the organic functional groups can be easily achieved by increasing the 

relative amount of organosilanes at the beginning of sol-gel process. Additionally, the 

preparation time is short. It is now still the traditional method used to make 

inorganic-organic hybrid silica materials. As its name indicates, post-grafting method 
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involves more than one step, which is the major reason why it received less attention 

than the one-pot method. Generally, the silica gel has been prepared by 

tetraalkoxysilane precursors in the first step, and then organosilanes are mixed with the 

gel for a second-step reaction to introduce organic functional groups. Since 

organosilanes are introduced after gelation, the loading of organic functional groups is 

limited, and the surface coverage of organic groups is not uniform. However, 

post-grafting can overcome the weakened mechanical strength of hybrid material made 

by one-pot approach,69 whereas introduce almost any functionality without changing the 

framework and distorting porosity.70 In addition, post-grafting provides better defined 

silica structure, better hydrothermal stability, and more accessible functional groups 

than one-pot method does even with the same organosilane modifying reagent.17, 67 

 

1.4 ADVANTAGES AND APPLICATIONS OF SILICA SOL-GEL 

MATERIALS 

Silica sol-gel framework has many distinguishing advantages. It is non-toxic, 

non-volatile, non-flammable, optically transparent, structure-tunable, chemically inert, 

thermally and mechanically stable.1, 27, 49-50, 71 There are some features of silica sol-gel 

deserving more discussion.  

First of all, low temperature preparation process. The low temperature sol-gel 

process not only saves energy, minimizes evaporation losses and air pollution and so on, 

it also makes the encapsulation of biological molecules possible while still retaining 

their bioactivity.21, 72-73 This possibility opened a new area of silica gel based 

biomaterials, which are suitable for many applications, such as biosensors,22, 30, 50, 74 
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biocatalysts,11, 20, 72, 75-76 stationary phases for affinity columns,10-11, 77 bioreactors.10, 21, 78 

In recent years, progress has been made in drug release systems79-80 and bioactive 

materials11, 21, 81.  

Secondly, transparency of silica sol-gel matrix. Optical transparency down to 250 

nm makes silica gel suitable for different types of quantitative spectrometric tests, such 

as absorption and fluorescence. It is also essential for optical sensor development.  

Thirdly, mechanical workability. Silica gel can be made into all kinds of desired 

shapes before or during gelation. Powders and spheres,12, 82 fiber coatings,83-84 bulk gels 

including monoliths39-40, 85-87 and thin films88-92 are all the common configurations. If 

the smallest dimension of the gel is greater than a few millimeters, the object is 

generally called a monolith; if it is less than one micrometer in thickness, it is usually 

called a thin film.1 Thin film is the most special configuration of sol-gel, because it 

overcomes most of the disadvantages of sol-gel processing.1 Prepared by dipcoating24, 68, 

93-94 or spincoating,95 thin film only requires few raw materials, which greatly lowers the 

material cost. Its preparation process is fast and allows multiple-layer configuration. 

Most importantly, thin films experience less cracking than bulk gels during drying or 

upon liquid exposure. Due to these extraordinary features of thin film, it becomes to the 

most popular form for silica gel based sensor developing.96-98        

Fourthly, porous structure. The highly porous structure of silica gel provides the 

possibilities of trapping guest functional molecules either before or after the gelation, 

while encapsulated molecules still retain most of their functional characteristics21, 72-73 

and even exhibit enhanced stability.44, 71, 99 The sensitivity of trapped molecules to their 
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surrounding solvent environment triggered the development of silica gel for sensor 

applications.45-46  

Besides those applications of silica sol-gel mentioned above, silica sol-gel has also 

been applied to make optical materials such as non-doped100-101 and doped glasses,102-103 

contact lenses,64 to make scratch resistant coatings,1-2, 64 conductive coatings,104 

antireflection coatings,105 biocompatible coatings,106 and to make membranes for 

filtration or separation.107-108  

 

1.5 RESEARCH FOCUS AND SIGNIFICANCE 

As a widely-explored subject for numerous applications, silica sol-gel has attracted 

the attention of our group for sensor development. This study focused on pore surface 

modification of two different types of silica sol-gel by post-grafting method, and 

construction of stable silica hydrogel-like thin films. By monitoring the mobility and 

photostability of rhodamine 6G (R6G) molecules in silica alcogel thin films through 

single molecule spectroscopy (SMS), the guest-host interactions altered by 

post-synthesis grafting were examined. Similar post-grafting method was then applied 

to highly hydrated silica hydrogel monoliths; more efficient surface modification was 

expected, because larger pore sizes in hydrogel provide higher accessibility of 

organosilane reagents. During the study of post-grafting on alcogel thin film, a new 

approach to produce stable silica hydrogel-like thin films was discovered. A lot of effort 

has been made to improve the reproducibility of sample preparation, and the guest 

loading capacity of silica hydrogel-like thin films. A prototype silica hydrogel-like thin 

film pH sensor was also constructed and tested.   
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Understanding how guest-host interactions can be affected by silane modifications 

is critical to sensor development. It helps tailoring the local environments inside silica 

sol-gel matrix, so that higher guest loading, longer shelf-life, higher sensitivity and 

faster response of silica gel based sensors could be achieved. Stable silica hydrogel-like 

thin film with a thickness only around 200 nm, which to the best of our knowledge has 

never been accomplished before, is expected to be a better substrate for sensing devices 

that demand faster response than thick monoliths.  
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CHAPTER 2 EXPERIMENTAL: SAMPLE PREPARATION, 

INSTRUMENTATION, AND DATA ANALYSIS 

 

2.1 ABSTRACT  

    This chapter provides details of the experimental processes, brief background 

information about the techniques, and methods of data analysis which have been used in 

the subsequent research work. Procedures for preparation of silica alcogel thin films and 

the following surface modification of alcogel thin film by post-grafting method, 

preparation of silica hydrogel monoliths and the pore surface modification, as well as 

the novel protocol to produce stable silica hydrogel-like thin films are presented. 

Different instrumental methods such as single molecule spectroscopy (SMS), contact 

angle measurements, thermogravimetric analysis (TGA), steady-state fluorescence 

anisotropy measurements, absorption spectra, fluorescence recovery after 

photobleaching (FRAP), profile thickness measurements, atomic force microscope 

(AFM), and scanning electron microscope (SEM) have been applied during the 

investigations.      

  

2.2 INTRODUCTION 

    Based on the two-step sol-gel process, typical procedures to produce silica gel 

materials, such as powders,1-2 bulk gels3-7 or thin films,8-12 have been developed by a lot 

of research groups. By adjusting the H2O : Si ratio and the concentration of catalysts 

(acids or bases), silica gels with different structures and properties can be produced.13 
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Our protocols to prepare silica alcogel thin films and silica hydrogel monoliths were 

based on their previous work, mainly the work from Higgins’ group11 and Zink’s group5 

respectively, and were finalized after some modifications by several group members. 

Procedures for the pore surface modification in alcogel thin film and hydrogel monolith 

were developed and optimized by myself. During the study of surface modification on 

alcogel thin film, we had an exciting discovery that that is to produce stable silica 

hydrogel-like thin film from nascent silica alcogel thin film. Stable hydrogel thin film  

has never been accomplished before. With the availability of different instruments, I 

was able to learn the techniques, polish my experimental skills, and finally get all my 

research work done.     

 

2.3 SAMPLE PREPARATION 

2.3.1 Materials 

Tetraethyl orthosilicate (TEOS 99.9%+), Tetramethyl orthosilicate (TMOS 99+%), 

95% ethanol (spectroscopic grade), o-phosphoric acid (85 wt %), fluorescein sodium 

salt (Fl) and Nile blue chloride (NBC) were purchased from Sigma-Aldrich; chloroform 

(99.8%+), hydrochloric acid (37.1%) and sodium phosphate were purchased from 

Fisher Chemicals; sodium phosphate monobasic was purchased from Mallinckrodt AR; 

3-Aminopropyltrimethoxysilane (APTS) and methyltriethoxysilane (MTES) were 

purchased from Gelest Inc.; whereas Rhodamine 6G chloride (R6G) was purchased 

from Molecular Probes. All chemicals were used as received. R6G and Fl were chosen 

because of their high fluorescence quantum yields and exceptional photostability. NBC 

was chosen because it is highly sensitive to pH change and good for pH sensor 
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development. Chemical structures and the wavelengths of maximum absorption and 

maximum emission of them are provided in Figure 2.1.  

All aqueous reagents, aqueous solutions were prepared using distilled-deionized 

water, including usage of water during all sample preparations. Microscope cover 

glasses (Fisher Premium) were purchased from Fisher Scientific. Standard VWR 

microscope slides and 900nm CVD (chemical vapor deposition) SiO2/Si wafers were 

provided by Dr. Matt B. Johnson’s lab in the department of physics and astronomy. As 

the substrates to deposit gel, they have all been thoroughly cleaned by sonications in 

10% sodium hydroxide solution (room temperature), distilled water (room temperature), 

acetone (0 oC), and distilled-deionized water (room temperature) for 1 hr each before gel 

deposition. Thin film gel samples were usually deposited on Fisher Premium cover 

slides unless specified individually. 

 
Figure 2.1 Basic information of the three dye molecules used in investigations. 
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2.3.2 Preparation of Silica Alcogel Thin Films 

The procedure for preparing silica alcogel thin films was the same as previously 

published protocol from our group.14 Briefly, a liquid sol was first prepared by an 

acid-catalyzed hydrolysis reaction of TEOS in an ethanol-water solution mixture in 

1:8:7 molar ratios. The materials were added in the following order: 1% by volume 

diluted phosphoric acid (1.95 L), distilled-deionized water (100 L), 95% ethanol 

(352.1 L), and TEOS (176.4 L). The resultant mixture was then sonicated in an 

ice-water bath for 2 hrs to facilitate hydrolysis and minimize polycondensation, and 

then became one homogeneous liquid sol. 

Blank alcogel thin film samples: after the liquid sol (without any dyes) was aged in 

dark overnight (18 to 20 hrs), 60 µL of the sol was spun cast onto a cleaned cover slide 

at 6100 rpm for 1.1 minute  

R6G-doped alcogel thin film samples (investigated in Chapter 3): 1.1 L of 0.11 

M R6G in ethanol was added into the liquid sol immediately after sonication. For thin 

films to be subjected to post-synthesis grafting, 6.5 L of 0.11 M R6G in ethanol was 

used instead. The larger dye volume employed did not result in a higher R6G 

concentration in the modified film as plenty of R6G molecules would be washed away 

during the modification reaction and after repeated rinsing. The R6G-doped liquid sol 

was then vortexed and allowed to age in darkness overnight. After ~18 to 20 hrs of 

aging, 60 L of the R6G-doped liquid sol was spun cast onto a cleaned cover glass at 

6100 rpm for 1.1 min. All resultant sol-gel thin films were either subjected to the 

post-synthesis grafting reactions or used as a regular sample and aged for one more day 

in the dark before they were ready for single molecule measurements. 
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Nile blue chloride (NBC)-doped alcogel thin film samples (investigated in Chapter 

5): ~80 mg NBC powder was mixed with the liquid sol right after sonication, and the 

sol was allowed to age overnight (18 to 20 hrs). 60 µL of the NBC-doped sol was spun 

cast onto a cleaned cover slide at 6100 rpm for 1.1 minute, and NBC-doped alcogel thin 

film sensor was then obtained. Thin film sensors were kept in dark for two days before 

pH response, leaching and reversibility investigations. 

2.3.4 Surface Modification of Silica Alcogel Thin Films by Post-grafting Synthesis 

This procedure is applied to samples studied in Chapter 3. Silica sol-gel pore 

surface modification was performed immediately after the spincoating process. First, all 

freshly made alcogel thin films were set to age in the darkness for 1 hr, which was then 

followed by another 30 minutes in distilled-deionized water. This initial procedure 

performed on all nascent silica films is called “pre-treatment”, and those samples are 

called “pretreated” samples (reasons for pretreatment will be discussed later in Chapter 

3.3.1.1). Afterward, the pretreated films were blown dry by nitrogen gas and be ready 

for surface grafting. Pore surface modification was carried out by dipping the pretreated 

sol-gel films into either a 0.4% (v/v) APTS aqueous solution or a 10% (v/v) MTES in 

chloroform mixture. After a predetermined reaction time for pore surface modification, 

the films were then taken out of the organosilane solution and rinsed in either water 

(APTS modification) or chloroform (MTES modification) for 5 minutes. The control 

samples were prepared by dipping pretreated alcogel films into distilled-deionized water 

and chloroform respectively, for the same amount of time as the corresponding 

organosilane modified sample. Finally, the wet films were dried with nitrogen gas and 
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allowed to age for one more day in the darkness before they are ready for single 

molecule measurements or contact angle measurements. 

2.3.5 Preparation of Silica Hydrogel Monoliths 

This procedure is applied to samples studied in Chapter 4. The silica sol solution 

was prepared by an acid-catalyzed hydrolysis of tetramethylorthosilicate (TMOS) in 

water.15 Briefly, 562.5 L TMOS, 120L double-distilled water, and 11.25L 0.01 M 

hydrochloric acid were mixed and sonicated in an ice-water bath for 20 minutes. For 

dye-doped hydrogel samples, referred as “trapping-first”, one volume of sol was mixed 

with ten volume of 1.0 x 10-5 M R6G or Fl in 0.01 M pH 7.0 phosphate buffer solution. 

For dye-infused hydrogel samples, referred as “grafting-first”, the sol was then mixed 

with ten times the amount of 0.01M pH 7.0 phosphate buffer solution for hydrogel 

formation. Before the gel solidified, hydrogel monolith samples for anisotropy 

measurements were prepared by pipetting 750L sol-gel solution into a 1.5 

mL-polystyrene cuvet. Usually, gelation takes about 30 minutes. There are two 

exceptions in sample preparation: samples for chloroform and 10% MTES/chloroform 

modifications (shown in Figure 4.2) were prepared in glass tubes, and samples in Table 

4.1 were 1000 L-size hydrogel samples in polystyrene cuvets instead of 750 L-size.   

2.3.6 Surface Modification of Silica Hydrogel Monoliths  

This procedure is applied to samples studied in Chapter 4. Pore surface 

modification was performed right after gelation by a top-to-bottom diffusion process. 

750L of pre-made modification reagents such as 0.4% APTS aqueous solution was 

added to the top of a monolith sample, and the modification reaction was allowed to 

happen for two days. For those control samples, distilled-deionized water, chloroform 
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or 38% ethanol was added to the top instead. After two-day surface modification, 

“trapping-first” samples would be ready for anisotropy measurement. For 

“grafting-first” samples, the surface modification solution was decanted, 750L of 1 x 

10-5 M R6G or Fl solution was added, and dye solution was allowed to diffuse one day 

before the samples were ready for measurements. Some measurements were based on 

longer-time diffusion, which will be addressed individually. All samples were sealed 

with Parafilm and stored in dark during surface modification and dye diffusion 

processes. 

2.3.7 Preparation of Silica Hydrogel-like Thin Films and Prototype pH Sensors 

All silica hydrogel-like thin films were made from silica alcogel thin film samples. 

The procedure for preparing silica alcogel thin films was the same as described above in 

section 2.3.2, referring to blank alcogel thin films. The following procedures are applied 

to samples investigated in Chapter 5. 

Water-modified silica alcogel: nascent alcogel thin films were allowed to age 

various times from 0 min to 1 hr, and then were dipped into distilled-deionized water 

for 1 hr to induce the formation of thin film hydrogel-like samples. Resultant thin films 

were then blown dry with N2 and kept in dark for one day before subjected to contact 

angle measurement.   

Water-modified silica alcogel doped with fluorescein (Fl): nascent alcogel thin 

films were allowed to age 0 min (due to the operation gap, the minimum aging time was 

controlled less than 15 s) or 1 hr, and then were dipped into 1 mM Fl aqueous solution 

for 1hr to induce the formation of thin film hydrogel-like samples. Resultant thin film 

samples were rinsed three times with distilled-deionized water and then blown dry to 
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keep in dark. Before subjected to FRAP experiment, Fl-doped samples were stored 

overnight in chambers equilibrated with water moisture. 

Water-modified silica alcogel doped with Rhodamine 6G (R6G): nascent alcogel 

thin films were allowed being aged for various times from 0 min to 1 hr before they 

were dipped into aqueous R6G solutions for 1 hr to induce the formation of thin film 

hydrogel-like samples. As specified individually later in Chapter 5, humidity control 

was applied during spincoating and the followed aging process for some preparations, 

which was realized by adjusting the humidity in the spincoater with a water bubbling 

system while the sample was inside. Two methods were used for encapsulation of R6G 

molecules. The first method was labeled as “real-time trapping”, and samples were 

prepared by dipping alcogel thin films into variously concentrated R6G (from 0.1 mM 

to 1 mM) in 10 mM pH 7 phosphate buffer solutions (PBS), with dye trapped during gel 

formation. The second method was labeled as “post-trapping”, and samples were 

prepared by dipping alcogel thin films in 10 mM pH 7 PBS to form the gel first and 

then being soaked in variously concentrated R6G aqueous solutions to trap dye 

molecules afterwards. Resultant thin film hydrogel-like samples were rinsed three times 

with distilled-deionized water and then blown dry to keep in dark before they were 

subjected to absorption spectrum, fluorescence imaging, and thickness measurements 

1hr after preparation. SEM and AFM imaging of samples were conducted over a couple 

of days, but no difference was caught due to sample aging.  

Prototype hydrogel-like thin film pH sensor doped with Nile blue chloride (NBC): 

nascent alcogel thin films were aged for various times from 0 min to 5 min before they 

were dipped into aqueous NBC solutions for 1 hr to induce the formation of thin film 
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hydrogel-like samples. Humidity control was applied during spincoating and the 

followed aging process. NBC aqueous solutions with concentrations of 0.35 mM, 0.035 

mM and 0.025 mM either in pure distilled-deionized water or in 5 mM pH 7 phosphate 

buffer solutions (PBS) were used to induce the formation of hydrogel-like thin films. 

Resultant prototype hydrogel-like thin film sensors were rinsed three times with 

distilled-deionized water and then blown dry to keep in dark for two days before pH 

response, leaching and reversibility investigations.  

In Chapter 5, dye-doped hydrogel-like thin film samples were prepared by 

“real-time trapping” method, unless specified individually. To differentiate the aging 

time before thin films were dipped into aqueous solution for induction of hydrogel 

formation from the aging time after sample preparation, the former is labeled as sample 

“delay time”, and the latter is labeled as sample “aging time”. Under the same humidity, 

the delay time which corresponds to the hydrogel-like thin film sample with highest 

absorbance is labeled as ‘”peak-delay-time”, and the sample is labeled as 

“peak-delay-sample”.
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2.4 INSTRUMENTATION 

2.4.1 Single Molecule Spectroscopy (SMS) 

2.4.1.1 Background information and advantages 

In the past two decades, single molecule spectroscopy (SMS) has grown into one 

of the powerful techniques to study the physical and optical properties of individual 

molecules in complex local environments. With the experimental advances in solid-state 

technology, SMS has now been applied into many different systems at either low or 

room temperature in different fields such as physics,16-19 chemistry12,20-22 and 

biology,23-27 and its applications continue burgeoning. It is worth pointing out that 

room-temperature operation has made SMS applications in the biological field to 

undergo an explosive development.  

Intense interest of SMS from so many different research groups is due to its 

distinct advantages.18-19,28-29 First of all, compared to all other traditional spectroscopies, 

SMS completely removes the ensemble averaging, thus provides most detailed 

information of molecules. For example, the frequency histogram of polarization or 

survival lifetime of single molecules contains a lot more information than just an 

average value alone.30-31 Secondly, SMS is sensitive to spatial heterogeneity, and a 

single molecule can act as a local reporter of its surrounding nanoenvironment. This is 

especially important for heterogeneous systems such as polymers, real crystals, glasses 

and biomolecules.25,32-33 There’s a good review about using dye as probes to explore the 

pore environment and molecule-matrix interactions in silica sol-gel.34 Thirdly, SMS 

makes the study of time-dependent processes much easier than that of ensemble 

samples. For example, it is always difficult to measure the triplet lifetime by ensemble 
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measurements, because it requires synchronizing large number of molecules to undergo 

intersystem crossing, on the contrary, SMS only focuses on one molecule at a time, and 

removes the difficulty of synchronization process. Additionally, SMS collects the 

time-dependant data of many single molecules rather than an average value of them. 

Most importantly, SMS helped discover a lot of new phenomena which have been 

obscured by ensemble averaging. Famous examples like photon bunching22 and 

antibunching,35 quantum jumps,36 and observations of conformational states and 

dynamics of biological molecules.37 It is believed that SMS will help reveal more and 

more new effects in unexplored regimes. 

Bright                         Dark

A B

Bright                         DarkBright                         Dark

A B

 

SMS is achieved by pumping an electronic transition of one molecule resonant 

with the optical wavelength, and then detecting the fluorescence emission from that 

molecule, as shown in Figure 2.2. (A). Generally, the process is described by a 

three-state model.29,38-39 As illustrated in Figure 2.2. (B), after the molecule absorbs 

light or more accurately photons (hv), it undergoes transitions from the ground 

Figure 2.2 (A) An excited single molecule in the optical beam focal region (triangles). (B) The 

three-state model of a single molecule. Reprinted with permission from Moerner, W. E.; Fromm, 

D. P. Rev. Sci. Instrum. 2003, 74, 3597. Copyright 2003, American Institute of Physics.  
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vibrational level of the ground singlet state (S0), to different vibrational levels in the 

first excited singlet state (S1), and then the molecule rapidly undergoes a nonradiative 

relaxation process to the lowest level of the first excited singlet state (S1). If the 

molecule involves singlet-singlet transition from the lowest level of the first excited 

singlet state to the ground singlet state, photons will be emitted and fluorescence 

emission (dotted-line arrows) will be detected. Usually, we call this molecule is in 

bright state. However, sometimes the molecule undergoes an intersystem crossing (kISC) 

from S1 to T1, and then decays from the triplet state to the ground state (kT). When the 

molecule is trapped in the triplet state, it doesn’t emit photons, corresponding to the 

dark state of the molecule. What we observe is that sometimes the molecules is in bright 

state, sometimes it is in dark state. This phenomenon is called blinking. Blinking effect 

is very common in single molecule systems, and is easily detected when the relaxation 

from triplet state to the ground state is long (millisecond timescale).       

2.4.1.2 Instrumental set-up 

Currently, there are four well-developed SMS techniques. They are two scanning 

methods: confocal microscopy and near-field scanning optical microscopy, and two 

methods for wide-field study: epifluorescence microscopy and total internal reflection 

microscopy. Compared to wide-field methods, scanning methods involve a smaller 

illumination volume, thus provide lower background and better single-to-noise ratio, in 

the meanwhile, scanning methods always come with higher-resolution detectors such as 

avalanche photodiodes (APDs), they offer higher sensitivity and better temporal 

resolution. However, wide-field methods are able to observe several single molecules 

simultaneously, thus offers the real-time observation of molecular motions in 
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microscopic distances. Details about the experimental set-up, advantages and 

disadvantages of them were fully reviewed by Moerner and Fromm.29 In our lab, we use 

confocal SMS microscopy (as illustrated below in Figure 2.3).  

 

 

Fluorescence images and kinetic traces of R6G molecules were acquired by this 

home-built sample scanning confocal microscope equipped with a feedback-controlled 

nanostage. Briefly, the 514 nm line of an Ar+ laser was made into circularly polarized, 

to ensure the even excitation of randomly oriented R6G molecules, and was directed 

into the epi-illumination port of an inverted microscope (Nikon TE-300). The laser 

excitation was then reflected up by a dichroic beamsplitter and focused at a silica thin 

film sample by a 100 1.25 NA oil immersion objective, which was also used to collect 

Figure 2.3 Schematic of the confocal microscope for SMS. The major part of the set-up is 

installed inside a black plexiglass box. 
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emission from the sample. After passing the dichroic beamsplitter, emission from the 

sample was subsequently directed to a polarizing beam splitter cube to be resolved into 

a parallel (III(t)) and a perpendicular (I(t)) polarization component. The polarization 

resolved emission was then detected by two separate avalanche photodiode (APD) 

detectors. Fluorescence images were obtained by raster scanning the sample. In a 

typical experiment, fluorescence images of 10 µm  10µm were recorded to locate 

single R6G molecules. Once their locations were identified, the fluorescence kinetics 

trace of each chosen molecule could be collected by transporting the molecule back to 

the laser focus and subjected the molecule to continuous laser excitation. 

2.4.1.3 Fluorescence imaging 

  

 
For single molecule study, the final dye concentration of dye-doped samples was 

controlled in nM scale, while the exact concentration depends on test conditions, thus 

Figure 2.4 Fluorescence images of (A) blank alcogel thin film sample and (B) R6G-doped 

alcogel thin film sample. Spots in dashed-line circles are molecules experienced photobleaching 

during scanning. 
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providing lowest background and best single-to-noise ratio. Since fresh samples give 

streaks on imaging due to active motion of molecules, all samples for fluorescence 

imaging were aged one day before use. Fluorescence images were obtained by raster 

scanning the selected 10 µm  10µm areas in 100 nm step increments (100 x 100 pixels). 

Typical fluorescence images of one-day-aged alcogel thin film samples are shown in 

Figure 2.4. With the same excitation intensity, blank alcogel samples usually show 

background noise within 10 counts, while those bright spots represent individual single 

molecules with intensity between 50 and 300 counts or even higher. Incompleteness of 

the spots in dashed-line circles indicates the photobleaching of molecules before the 

scanning is complete. 

2.4.1.4 Kinetic traces of fluorescent molecules by photobleaching 

Molecules photobleach during SMS experiments, especially at room temperature 

under atmospheric conditions. Due to photobleaching, a single molecule only emits a 

certain number of photons and then doesn’t fluoresce any more. The mechanism of 

photobleaching is still not fully understood, while there are some common features 

observed during photobleaching studies, such as excitation-intensity dependence, 

environmental effect (especially atmospheric oxygen), and enhancement by 

multiple-photon absorption.40-41   

To study the dynamic behaviors of single molecules, a higher excitation intensity 

than that for fluorescence imaging was chosen to photobleach the molecules, making 

sure most molecules survive less than 120 s. Kinetics traces of fluorescent molecules 

were then obtained. Examples of three different kinetics traces are demonstrated in 

Figure 2.5. Dark blue trace and red trace represent fluorescence signals of the parallel or 
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horizontal (III(t)) polarization 

component and the perpendicular or 

vertical (I(t)) polarization component 

from two detectors, respectively. In 

Figure 2.5 (A), both traces of 

fluorescence signals remain constant 

along with time, but the intensities of 

these two traces are different. In Figure 

2.5 (B), both traces of fluorescence 

signals keep fluctuating along with time, 

sometimes even go down to 0 count, 

and the intensities of these two traces 

are different. This molecule 

demonstrates a good example of 

blinking phenomena. In Figure 2.5 (C), 

both traces of fluorescence signals 

remain constant along with time, and the intensities of these two traces are the same. 

According to the method of mobility classification which will be discussed later in 

section 2.5.1, the three molecules in Figure 2.5 are categorized as fixed, intermediate 

and tumbling molecule, respectively.  

2.4.2 Contact Angle Measurements 

Contact angle can reflect the hydrophobicity of a surface.33,42 Usually, hydrophobic 

surfaces result in large contact angles and hydrophilic surfaces lead to small contact 

Figure 2.5 Kinetic traces of three different types of 

R6G molecules (A) a fixed molecule (B) an 

intermediate molecule and (C) a freely tumbling 

molecule. 
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angles. Contact angle measurement was employed to examine the extent of surface 

modification by post-synthesis grafting in Chapter 3 and was also used to monitor the 

surface hydrophobicity change of water-treated thin film samples in Chapter 5.  

 

All samples subjected to contact angle measurement were aged one day. Static 

contact angles of differently modified silica sol-gel films were obtained from a model 

190-F1 goniometer manufactured by Ramé-Hart. Images of water droplets on different 

thin film surfaces were captured and then analyzed using the accompanying 

DROPimage CA software. Water droplet was dripped to the center of each sample, and 

then five successive images were captured with 20 s intervals for each sample. Typical 

images of water-treated nascent, pretreated, APTS-, and MTES-modified sol-gel silica 

films investigated in Chapter 3 are shown in Figure 2.6. The contact angle () is found 

to increase in the following order nascent < pretreated < APTS < MTES. What caused 

differences between them will be extensively discussed in Chapter 3.3.1.

Figure 2.6 Contact angle images of a water droplet on (A) water-treated nascent, (B) 

pretreated, (C) APTS-grafted, and (D) MTES-grafted silica alcogel films. 
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2.4.3 Thermogravimetric Analysis (TGA) 

TGA was used to estimate the amount of organics post-grafted on the silica film 

surface. Although TGA is a robust technique to determine the amount of surface 

attached organics on silica surface, it is noted that all previous post-grafted silica 

research has been focused on silica particles, which have a much larger surface area to 

mass ratio than our samples.43-45 In our thin film samples, the surface area to mass ratio 

is substantially lower, which may not be able to produce a reliable measure on the 

amount of surface attached APTS or MTES on our silica films. Despite numerous 

efforts, we saw no discernable weight loss from our sample upon heating to 500 ºC. As 

a result, we are still not able to provide a quantitative estimate on the amount of surface 

attached APTS or MTES. This unfortunate outcome is entirely due to the limit of 

sensitivity of the TGA technique because of the low surface area to mass ratio of our 

sample.   

All the samples were stored in atmospheric condition overnight before subjected to 

TGA. In a typical TGA experiment, ~ 50 mg of broken microscope coverglass pieces 

coated with APTS or MTES modified silica film was used. TGA measurement was 

carried out with DuPont model 951 thermogravimetric analyzer by using a Thermal 

Analyst 2000 data system., which is capable of detecting weight loss as small as 34 g. 

TGA thermograms were collected from 25 ºC to 500 ºC with a heating rate of 20 ºC 

min-1. The air flow rate was 50 mL/min. 
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2.4.4 Steady-state Fluorescence Anisotropy Measurements 

Quantitative measurements of fluorescence anisotropy were performed on a 

Shimadzu RF-5310PC fluorometer, which has a single emission channel. Schematic 

diagrams for the measurements of fluorescence anisotropy are shown in Figure 2.7.46 

For R6G, spectra were collected at λex = 514 nm, whereas λex = 488 nm for Fl. Typically, 

four measurements should be performed for each sample to obtain IHH, IHV, IVV and IVH. 

Fluorescence anisotropy value r will be calculated according to Equations 2.1.46 IHH, IHV, 

IVV and IVH represent fluorescence intensities with different polarized excitation and 

emission. H means horizontally polarized, and V means vertically polarized. G is a 

correction factor used to correct the birefringence of the fluorometer. Large r values 

indicate slow rotations or restricted molecules, whereas small r values indicate fast 

rotations or freely tumbling molecules.  

 

                                                                   2.1 

Figure 2.7 Schematic diagrams of fluorescence anisotropy measurements (A) vertically 

polarized excitation, and (B) horizontally polarized excitation. Figure based on ref. 46.  

 

r 
IVV GIVH

IVV  2GIVH

G 
IHV

IHH

IV

IVV

IVH

polarizers

IH

IHH

IHV

polarizers

IV

IVV

IVH

polarizers

IV

IVV

IVH

polarizers

IH

IHH

IHV

polarizers

IH

IHH

IHV

polarizers



41 

0

100

200

300

400

520 540 560 580 600

Wavelength (nm)

Fl
uo

re
sc

en
c

e
In

te
n

si
ty

 (A
. U

.)

HH

HV
VV
VH

0

100

200

300

400

520 540 560 580 600

Wavelength (nm)

Fl
uo

re
sc

en
c

e
In

te
n

si
ty

 (A
. U

.)

HH

HV
VV
VH

 

Figure 2.8 shows the four fluorescence emission spectra collected from a 

water-modified hydrogel sample doped with R6G. The values of IHH, IHV, IVV and IVH 

were calculated by averaging the twenty emission intensities in  10 nm range of λmax 

(the wavelength corresponding to the peak intensity of each individual spectrum). They 

were 225.98, 202.67, 386.32 and 234.54 respectively, according to Equations 2.1, G 

factor was 0.8968, and the anisotropy value would be 0.218, which indicated that most 

R6G molecules were immobilized in this hydrogel sample.  

2.4.5 Absorption Spectra 

Absorption spectra of solutions and thin film samples were measured on a 

Shimadzu UV-2101PC, UV-VIS Scanning Spectrophotometer, operated in the parallel 

two beam configuration. For consistency, the absorption spectra of R6G doped thin film 

samples were collected 1 hr after preparation. Two peaks at 532 ± 2 nm and 498 ± 2 nm 

were observed in the absorption spectra of most R6G doped thin film samples and R6G 

aqueous solutions (when concentration was higher than 0.01 mM), representing 

monomer and dimer peaks of R6G respectively. R6G absorption spectra were all fitted 

with Gaussian equations, and one example will be shown in section 2.5.3. For 

convenience, only data from R6G monomer peak at 532 nm were plotted and compared 

in Chapter 5. In Chapter 5, during the pH response, leaching and reversibility 

Figure 2.8 Polarized fluorescence 

intensity of R6G in a 

water-modified hydrogel sample.
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investigations, NBC doped silica hydrogel-like thin film sensors and alcogel thin film 

sensors were blown dry before taken absorption spectra. Due to the sensitivity of NBC 

to pH, the major absorption peaks of NBC samples (both solution and doped thin film 

samples) changed with pH, so no Gaussian fitting was applied to them. 

2.4.6 Fluorescence Recovery after Photobleaching (FRAP)47-49 

FRAP started in 1970s, and was originally used to study molecular mobility in 

biological samples. It now becomes to a very versatile tool for mobility and interaction 

measurements in pharmaceutical field, and it is ideal to study mobility or diffusion of 

molecules and particles on a microscopic level in all kinds of environments, especially 

in polymers and gels. FRAP experiment is fast and convenient, can be finished in 

minutes; while provides high resolutions both in spatial (m) and in temporal (s); most 

importantly for biological samples, it allows study in intact samples. Due to the 

noninvasive nature, it has been widely applied both in vivo and in vitro experiment.    

 

FRAPs of fluorescein (Fl) in thin film hydrogel were performed on the home-built 

sample scanning confocal microscope equipped with a feedback-controlled nanostage 

described in section 2.4.1.2. A representative schematic of FRAP experiment is shown 

in Figure 2.9:47 Basically, an area on the sample was chosen and moved into the laser 

focus. A low-power probe laser light was used to obtain a stable initial fluorescence 

Figure 2.9 Schematic of a FRAP 

experiment. Reproduced with 

permission from ref. 47. Copyright 

1999 Springer. 
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intensity (F(i)). Once a stable fluorescence from the selected area has been established, 

the laser power was then increased by 104 ~106 fold to photobleach the dye with the 

selected area for 10 s. Right after the photobleaching, the laser power was decreased 

back to the probe level to monitor the recovery of fluorescence due to the subsequent 

diffusion of dye molecules from outside the bleached area. 

F(i) is the initial fluorescence before photobleaching, F(0) is the fluorescence after 

beaching, and F(∝) is the fluorescence after recovery. The FRAP data were fit with 

Equation 2.2:  

I(t) = A(1 – exp(- krecovert)) + C    

Where I(t) is the fluorescence intensity, krecover is the recovery rate constant. A is the 

recovered fluorescence intensity minus the fluorescence intensity after photobleaching 

(F(∝) –F(0)), and C is F(0). 

2.4.7 Profile Thickness Measurements 

 
A strip of gel layer from the thin 

film sample was removed with a razor 

blade, held in a “snow plow” fashion. 

The step height was then measured 

through a XP-2 stylus profilometer by 

Ambios Technology Inc.. Figure 2.10 

shows what actually happens during a 

scan. Once the stylus tip approaches the 

sample surface close enough, the camera 

Figure 2.10 Schematic of a profile thickness scan. 

2.2
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would be able to capture the motion of stylus and display it in the program window. 

Typically, two images of the stylus head are found in the captured region. As shown in 

Figure 2. 10, right one is the real image of the stylus head, and the left one is a mirror 

image of the stylus due to reflection. First, the interested spot on the sample was located 

by adjusting the position of the stylus (all directions applicable), once you start the scan, 

the stylus head moves to –X direction, when the stylus tip hits the sample surface 

(illustrated by the meet of two images), the stylus will start scanning from +Y to –Y 

direction. After the scanning completes, a profile of the sample surface will be 

generated. In my experiment, the scan speed was 0.05 mm/s, measured length was 0.8 

mm, the applied force was 0.5 mg, and the range was 10 m. Usually, sample thickness 

was measured on the day of preparation, and the thickness was an average of values 

from at least two spots and four measurements from the sample. 

2.4.8 Atomic Force Microscope (AFM) 

AFM was invented in 1986 by G. Binnig, C. F. Quate and Ch. Gerber.50 It is one 

type of scanning probe microscopy (SPM), which is based on scanning the surface of 

the sample in an x/y raster pattern with a very sharp tip that moves up and down along 

the z axis when the surface topography changes. AFM can be used to image virtually 

both conducting and insulating surfaces at microscopic and nanoscopic levels. It has 

proven to be a powerful tool for chemical, physical and biological studies.51-55 There are 

three imaging modes to operate AFM: contact mode, tapping mode or intermittent mode, 

and non-contact mode.51,55 The classification of the operation modes is strictly related to 

the region of the force field between the tip and the imaging surface. When the 

microscope works in contact mode, the tip is permanently in contact with the sample 
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surface, and the repulsive interaction dominates. In tapping mode operation, the tip 

contacts with the sample surface for only a short time periodically and then is mostly 

removed from the surface, so the resultant image depends both on the repulsive and 

attractive forces. For the non-contact mode, the tip-cantilever system is placed at the 

attractive region all the time, and the force gradients caused by attractive interactions 

are detected. AFM images are obtained by measuring the force between the tip and the 

sample, so the performance of an AFM is strongly dependent on the physical 

characteristics of the tip and the cantilever. 

In my experiment, all images were acquired in non-contact mode by TopoMetrix 

EXPLORER, with a scan rate of 5 m/s for 5 m x 5 m size images and 20m/s rate 

for 20m x 2m images. Integrated tip sets from MikroMasch were used in all 

experiments. Three n-type silicon tips were grown on no Al-coated silicon cantilevers 

(NSC35/ no Al) with spring constant of 4.5, 7.5 or 14.0 N/m respectively. Root mean 

square (RMS) roughness based on AFM images was calculated by Gwyddion 2.19. 

2.4.9 Scanning Electron Microscope (SEM)56 

The first SEM image was obtained by Max Knoll in 1935, which was an image of 

silicon steel showing electron channeling contrast. After development of several 

researchers, SEM was first marketed in 1965 by the Cambridge Instrument Company as 

the "Stereoscan". Today, SEM becomes into a standard technique to study the surface 

properties of solid samples. Application fields include chemistry, material science, 

geology, and biology. SEM images are obtained by scanning the sample surface with a 

high-energy beam of electrons in a raster scan pattern. It can provide information not 

only about surface topography but also the composition and other properties such as 
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electrical conductivity of the sample. SEM can produce very high-resolution images of 

a sample surface, down to less than 1 to 5 nm in size. Wide range of magnifications 

from 10 times to more than 500,000 times can all be achieved by SEM.  

SEM images of samples with different magnifications from 20x to 100,000x were 

collected on JEOL JSM-880 high resolution scanning microscope. Silica samples on 

glass slides were sputter-coated with a ~5nm Au-Pd layer before imaging. 

 

2.5 DATA ANALYSIS 

2.5.1 Polarization Calculation, Mobility Classification and the Error Calculation of 

Mobility Population  

Fluorescence polarization reflects the relative angle between the orientation of 

polarized absorption light and emission light of a fluorophore. The value of polarization 

is between - 1 and 1. In an isotropic solution, fluorescent molecules are randomly 

oriented, which results in polarization value of 0. The polarization (P(t)) of a single 

molecule can be calculated from the collected kinetic trace signals III(t) and I(t), 

according to Equation 2.3: 

      
   tItxI

tItxI
tP










||

||
.  

P(t) is a time-dependent function, and x is a scaling factor to correct for the 

birefringence accumulated from various optical components plus the different 

sensitivities of the two APD detectors. The value of x was determined daily by forcing 

the average of P(t) ( P ) of a R6G solution to zero to represent isotropic emission. The 

standard deviation (iso) of P  from the R6G solution was also determined and used 

2.3



47 

for classifying the mobility of single R6G molecules in other samples according to the 

following scheme:14 

Fixed molecule:          constant tP  and isoP  

Intermediate molecule:     constant tP  

Tumbling molecule:       constant tP  and isoP  

Figure 2.11 nicely demonstrates single molecules in three different mobility states. 

Green traces in the graphs represent the 

time dependent P(t), pink straight lines 

indicate the average of P(t) ( P ) for 

each single molecule. After all P s of 

single molecules were calculated, 

usually a histogram of P was plotted.  

Figure 2.12 below shows the 

polarization distribution of R6G in 

regular alcogel thin films, based on a 

collection of 131 R6G single molecules. 

The frequency distribution followed a 

Gaussian form, with the mean value of 

this set of P s around 0.4, which 

suggests that most portion of the 

molecules are either in fixed or 

intermediate category. 

Figure 2.11 Polarization traces of three 

different types of R6G molecules (A) a fixed 

molecule (B) an intermediate molecule and (C) 

a freely tumbling molecule.  
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    After the category of each single molecule was identified according to its 

polarization trace, the mobility distribution or percentage of this set of molecules can be 

calculated. The error for each mobility category percentage was calculated under a 

binomial sampling distribution assumption according to Equation 2.4.  

Error = (p q n) 1/2 

The error calculated represents the number of molecules whose category is uncertain. p 

is the molecule fraction within the category considered, q is the fraction not within the 

category (1-p), and n is the total number of sampled molecules. As the sampling size 

increases, the relative uncertainty of categorizing decreases. Usually, we collected 150 

to 200 molecules to reduce the sampling error.    

2.5.2 Bi-exponential Decay Fitting of Molecular Survival Lifetimes 
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Figure 2.12 A P  histogram of R6G 

in regular thin film alcogel samples. 

Figure 2.13 Bi-exponential decay 

fitting of R6G molecular survival 

lifetimes in regular thin film alcogel 

samples. Inset table is a summary 

of fitted data  
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Using the number of R6G molecules that remains fluorescent upon continuous 

excitation (f) as y axis, the survival lifetime of R6G in all samples are best fitted by a 

bi-exponential decay function, Equation 2.5, revealing the spatial heterogeneity of the 

sol-gel silica films. Figure 2.13 shows a typical fitting graph, which based on 131 R6G 

single molecules in regular thin film alcogel samples. Gray columns are the statistical 

numbers of molecules remaining survived at each lifetime, and the black curve is the 

fitting curve according to Equation 2.5.  

 

21  21
 tt eAeAf    

A1 is the number of molecules with survival lifetime τ1, and A2 is the number of 

molecules with survival lifetime τ2. After the fraction (%) of each set of molecule was 

calculated, the average survival lifetime τave of the collected molecules was then able to 

be obtained. Longer survival lifetime reflects higher photostability of molecule. 

2.5.3 Gaussian Fittings of Absorption Spectra 
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As our hydrogel-like thin film samples have a very high dye loading capacity, they 

are able to accumulate a lot more molecules in a unit volume than in aqueous solution, 

so dimers are easily formed. As shown in Figure 2.14 (the gray solid line), two peaks at 

Figure 2.14 Three-peak 

Gaussian fitting of the R6G 

absorption spectrum. 

2.5
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532 ± 2 nm and 498 ± 2 nm were found in the absorption spectra of most R6G doped 

thin film hydrogel-like samples, representing monomer and dimer peaks of R6G 

respectively. There’s another peak at 505 ± 2 nm usually was hidden by the other two, 

representing the vibronic peak of R6G monomer. Figure 2.14 demonstrates a typical 

three-peak Gaussian fitting of a spectrum. The black dashed-line curve on the top is the 

fitted curve, and the three bottom black dashed-line curves represent the three 

components of it. Equation 2.6 was used to do all the Gaussian fittings.   

 

bkgAeAeAeAA   2
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2
2
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/)(
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

 

Amax is the maximum intensity of a single peak, λmax is the wavelength corresponding to 

Amax, and ω is the full width at half maximum (FWHM). Subscripts 1, 2 and 3 represent 

the three components or the three peaks. Abkg is the background noise.  

2.5.4 Error Calculation of Multiple Variables 

    When the experiment result is determined by several parameters, the uncertainty of 

the data points is propagated to the parameters, which will affect the determination of 

the final result. The error or uncertainty of the experiment result, which is determined 

by two variables, can be calculated according to Equation 2.7.57  

2222 )
)/(

()()
)/(

()()/(
H

HA
H

A

HA
AHA








   

Specifically, we use this equation to calculate the error of the unit absorbance of 

R6G-doped hydrogel-like thin film samples. Unit absorbance (A/H, m-1) of a sample 

helps us to compare the dye loading capacity of each sample by eliminating the 

thickness influence. A is the average value of absorbance, δA is the variation of 

2.7

2.6
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absorption measurements, H is the average value of sample thickness in m, and δH is 

the variation of thickness measurements. 

 

2.6 CONCLUSION 

This chapter presented the general protocols of sample preparation, basic 

background information of the instruments, different types of experimental data 

obtained from those instrumental measurements, and methods of data analysis. All those 

fundamental information makes the discussions in the following chapters possible. 
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CHAPTER 3 PROBING THE EFFECT OF POST-SYTHESIS 

GRAFTING ON GUEST-HOST INTERACTIONS IN SOL-GEL 

SILICA WITH SINGLE-MOLECULE MOBILITY AND 

PHOTOSTABILITY 

 

3.1 ABSTRACT  

The mobility and photostability of single rhodamine 6G (R6G) molecules 

encapsulated in organosilane modified silica alcogel films were used to examine how 

post-synthesis grafting alters guest-host interactions. While physical confinement 

remains the major factor that controls mobility in modified alcogels, both R6G mobility 

and photostability register discernable changes after surface charges are respectively 

reversed and neutralized by aminopropyltriethoxysilane (APTS) and 

methyltriethoxysilane (MTES) grafting to weaken R6G/silica attraction on pore surfaces. 

Among the two methods, the change in R6G photostability was found to be more 

sensitive to surface grafting, which is more capable of inducing localized dynamic 

motions than full scale molecular rotation under the stringent physical confinement 

inside alcogel films. In addition, silica film modification by 0.4% APTS is as efficient 

as that by pure MTES in lowering R6G photostability, which suggests that surface 

charge reversal is more effective than charge neutralization in disrupting R6G/silica 

attraction. Collectively, our results demonstrate that single-molecule mobility and 

photostability can be used to monitor the extent of grafting reaction underneath a film 
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surface and complement other surface characterization techniques that are only sensitive 

to modifications made on a film surface. 

3.2 INTRODUCTION 

Mesoporous silica synthesized by the sol-gel process has long been a subject of 

intense interest. The ease of guest molecule encapsulation, its ability to protect the 

encapsulated molecules from degradation and denaturation, the inertness of silica, and 

the benign chemical reactions involved in the sol-gel process have made sol-gel silica a 

popular substrate for widespread applications ranging from nonlinear optics1 to 

anticorrosion coatings2-3 to chemical and biosensor developments.4-9 A major advantage 

of the sol-gel process is that it is highly adaptable to modifications, which makes it quite 

easy to alter the external appearance, internal structure, as well as the surface property 

of the resultant silica. Thus, silica sol-gel can be dip-coated or spin-coated into thin 

films upon rapid drying or it can be made into thick monoliths if allowed to solidify 

slowly. In addition, it can be prepared as an alcogel10 that possesses a dense internal 

structure or as a hydrogel11-14 consisting of a highly porous framework that filled with 

water. Finally, the surface chemistry of silica sol-gel, both internally and externally, can 

be fine tuned by additional reaction with organosilanes either through a one-pot 

synthesis carried out simultaneously with the sol-gel formation process15-22 or in a 

stepwise fashion as a post-gelation modification approach.23-27 It is worth pointing out 

that even when the same organosilane modifying reagent is employed, the two 

approaches do not usually produce silica sol-gel with similar internal microstructures. 

The ease of the one-pot approach to introduce alternative functionality to regular 

sol-gel silica together with more homogeneously distributed functional groups have 
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been the major driving force for the study of organically modified siloxanes (ormosils). 

Numerous investigations have been devoted to examining the properties of ormosils and 

their potential applications.28-30 Unlike the one-pot approach, post-synthesis surface 

grafting has received much less attention, partly because of the more lengthy stepwise 

reaction involved. Poor diffusion, especially in the denser alcogel, has also called into 

question of whether the internal pore surface of a silica sol-gel is accessible to silane 

modifications. Nevertheless, post-synthesis grafting does offer distinct advantages in a 

better defined silica structure and more accessible functional groups that are unmatched 

by the one-pot approach.31 With the handful of studies on post-synthesis grafting, it has 

already been demonstrated that a gas sensor can be built from the dielectric response of 

a modified film;32 thiol functionalized films have been made into an electrochemical 

sensor of metal ions;33 and even gold nanowires can be grown inside amino derivatized 

films.34 

Various X-ray techniques such as photoelectron spectroscopy (XPS), small angle 

scattering (SAXS), and reflectometry (XRR) are regularly used to characterize the 

internal structure of silica films.31 Film surface morphology can be examined by various 

scanning probe microscopic techniques like TEM, SEM, and AFM, whereas the extent 

of modification can be monitored by contact angle measurements, FTIR, solid-state 

NMR, and thermogravimetric analysis (TGA).35-36 Besides these basic structural 

analyses, there has been a gathering interest in characterizing the functional group 

imparted into the silica films. An earlier report based on nitrogen adsorption/desorption 

and bromination kinetics suggested that functional groups anchored on the external 

surface or near channel openings are more available for reactions.37 Most recently, 
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amino-functionalized mesoporous silica films were found to be reactive toward 

amidation, with ~37% post-gelation grafted amino groups available for the reaction as 

opposed to ~16% from films obtained through a one-pot reaction.31 Together, these two 

studies reveal that relative to the one-pot approach, functional groups introduced by 

post-synthesis grafting have a bigger influence on silica pores and channels that are 

readily accessible to external reagents. This has a strong implication in the design of 

silica based sensor, reactor, and catalyst as their performance are almost certainly 

originated from chemical species encapsulated inside those more accessible pores and 

channels. 

In addition to accessibility, understanding how guest-host interactions can be 

affected by silane modifications is also critical to sensor development. In this study, we 

employ the mobility and photostability of rhodamine 6G (R6G) to examine how 

guest-host interactions are altered by post-synthesis grafting. R6G is a positively 

charged molecule, which is normally attracted to the negatively charged silica surface at 

neutral pH. Capping the silica surface with amino and methyl functional group 

respectively using aminopropyltriethoxysilane (APTS) and methyltriethoxysilane 

(MTES) has the potential of weakening R6G-silica interactions. In previous 

single-molecule investigations on regular silica sol-gels, we have successfully 

demonstrated that both mobility and photostability can be measured simultaneously 

from single molecules, that enhanced photostability of an encapsulated probe is mostly 

due to increasing constraint imposed by the mesoporous silica, and that mobility of the 

encapsulated probe can be enhanced by neutralizing the surface charge of silica with a 

low pH buffer.38-41 Since mobility and photostability are very sensitive to the local 
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environment surrounding a silica encapsulated molecule, they are ideal for monitoring 

changes in guest-host interaction as a result of post-synthesis grafting. Moreover, 

single-molecule measurements were used exclusively in this investigation in order to 

identify subtle changes in guest-host interactions that may otherwise escape ensemble 

detection due to the averaging effect. The ability to resolve spatial heterogeneity in the 

nanometer length scale has made single-molecular spectroscopy one of the powerful 

techniques to examine amorphous materials like mesoporous silica. The applications of 

single-molecule spectroscopy in studying silica sol-gel materials have been reviewed 

recently.42  

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Sol-Gel Pore Surface Modification 

3.3.1.1 Initial water treatment 

The extent of surface modification was monitored by contact angle measurement. 

For a hydrophobic surface, a large contact angle will be resulted, whereas a hydrophilic 

surface should lead to a smaller contact angle.35 Figure 3.1 (A) shows the effect of water 

on the contact angle of silica so-gel film spun-cast on glass coverslips. In this 

experiment, freshly prepared silica sol-gel films were dipped in water for various 

durations that range from 0 to 26 hr. The contact angles of all films were then measured 

24 hr after the water treatment. As illustrated, a 24-hr old silica sol-gel film that had not 

been treated with water (treatment time = 0) exhibits a fairly hydrophobic surface, 

producing a contact angle of 45º±2º. The process of dipping a nascent silica sol-gel film 

in water dramatically reduces the contact angle to well below 10º. Afterward, water 
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does not seem to have much effect as the contact angle from samples subjecting to 

longer water treatment only fluctuate mildly around 5º±1º. This suggests that whatever 

causes the substantial reduction in contact angle initially is most likely completed in 30 

minutes, the shortest treatment time employed in this study. 

Figure 3.1 (B) indicates that when cleaned glass coverslips (with no silica film) 

underwent an identical water treatment, the contact angle was found to cluster around 

9º±3º. The difference in contact angle between the silica film and coverslip suggests 

that the dramatic reduction of contact angle in silica film upon water treatment was not 

caused by peeling off of the silica film and exposing the underlying coverslip surface. 

Indeed, upon closer inspection, the once clear nascent silica film always turned into an 

opaque white film after the water treatment. This opaque silica film is most likely due to 

the rapid coarsening of the film surface when in contact with water, indicating that the 

silica film surface is still chemically active immediately after spin-coating. It is known 

Figure 3.1 Contact angles of (A) nascent 
silica sol-gel films and (B) cleaned glass 
coverslips that were immersed in water for 
various durations. (C) Contact angle 
measurements on 4 sets of untreated 
(diamonds), immediately water-treated 
(squares), and 1 hr aging before 
water-treated (triangles) silica sol-gel films. 
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that silica colloids with mean hydrodynamic radius ranging from 1.5 nm to 4.5 nm are 

produced when sodium silicate is added to an aqueous solution to form silica 

hydrogel.13-14,43-44 A similar reaction could be happening to the nascent silica film 

surface, which contains many reactive nucleation sites for colloidal silica particle to 

grow, except that the silica particles so produced would stay on the film surface instead 

of dispersing into the solution, leaving behind an opaque white film. The fact that an 

apparently rougher surface could lead to a surprisingly smaller contact angle implies 

that the opaque silica film were made of extremely water rich hydrogel colloids, hence a 

very small resultant contact angle. It is worth noting that this chemically active stage 

does not last long, as Figure 3.1 (C) indicates that letting the nascent silica film age 

under ambient conditions for 1 hr first before dipping in water for 30 minutes would 

result in a clear silica film with an intermediate contact angle of 24º±2º, suggesting that 

the film no longer support silica particle growth after 1 hr of aging. Since optical 

measurements can be easily obscured by strong scattering from the opaque silica film 

and that chemically active silica film may influence surface modification in an 

unpredictable fashion, freshly spin-coated silica films for all subsequent studies were 

immediately set to age in air for 1 hr and then dipped in water for another 30 minutes 

before they were subjected to different post-synthesis grafting reactions. Hereafter, this 

initial procedure performed on all nascent silica films will be called pre-treatment, and 

those samples are called “pretreated” samples. This pre-treatment protocol would 

consistently prepare silica films with contact angle of 24º±2º before any surface 

modification.
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3.3.1.2 Aminopropyltriethoxysilane (APTS) modified silica film 

Figure 3.2 (A) illustrates the effect of APTS surface modification on a chemically 

active nascent film. The contact angle of the nascent film decreases gradually upon 

exposing to 0.4% aqueous APTS. The contact angle eventually settled at ~10º after 10 

hr of treatment. This resultant contact angle is substantially lower than the 41º±3º 

observed from a 0.4% APTS modified glass coverslip as illustrated in Figure 3.2 (B). It 

is apparent that the surface chemistry of the former sample is influenced by the 

combination effects of water on nascent film and APTS modification as the resultant 

contact angle appears to sandwich between 5º and 41º, respectively. The production of 

water-rich silica colloid on a film surface might have significantly lowered the number 

of surface modification site and thus caused the contact angle of the APTS modified 

film to drop from 41º to ~10º. 

When nascent silica films were subjected to the pre-treatment protocol first, the 

Figure 3.2 Contact angles of (A) nascent 

silica sol-gel films, (B) cleaned glass 

coverslips, and (C) pre-treated silica sol-gel 

films that were modified by 0.4% APTS for 

various durations. 
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effect of water on nascent films appeared to be eliminated. The end result is that the 

effect of APTS became more reproducible as well as more consistent with those 

observed from glass coverslips. Figure 3.2 (C) shows the contact angles of modified 

silica films as the reaction time of APTS modification varies. It is obvious from the plot 

that surface modification is practically completed in as little as 15 minutes. The contact 

angle increases from 20º±2º to 37º±1º after 1 hr of APTS modification, approaching that 

of an APTS modified glass coverslip. It is worth noting that despite the hydrophilic 

amino group, the relatively high contact angle shown in APTS grafted silica sol-gel 

surface indicates that the hydrophobic propyl group in APTS has a more dominant 

effect in altering surface chemistry. It is quite possible that the amino-tail of APTS is 

attracted to the silica film surface either through Coulombic attraction as positively 

charged ammonium ion or through H-bonding as the neutral amine,45-47 forcing APTS 

molecules to lie flat on the film surface and exposing the propyl group to result in a 

more hydrophobic surface, hence the high contact angle observed. Since there is 

practically no increase in contact angle between a 0.5-hr and a 1-hr modified sample, all 

APTS modified samples employed in this work were prepared by dipping the silica film 

in 0.4% APTS for 0.5 hr after the pre-treatment protocol. 0.4% APTS was chosen since 

the use of a moderately higher 1.0% APTS would lead to irreproducible, thick, and 

uneven coating on the silica film (data not shown). The fast reaction kinetics observed 

here is typical of silane modifying reaction using APTS.  It has been suggested by 

previous reports that this unique characteristic of APTS is likely due to the catalytic 

effect of the amino group possibly serving to enhance the nucleophilicity of surface 
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silanols to facilitate the condensation of APTS directly onto the silica film by bypassing 

the hydrolysis of its ethoxy groups altogether.48 

The contact angle of our sample is consistently lower than the approximately 60º 

reported by others, where glass and silicon substrates were modified with higher 

concentration of anhydrous APTS followed by drying at elevated temperatures.49-50 The 

use of anhydrous APTS would eliminate the hydrolysis of APTS and limit all reactions 

at the solid-liquid interface, which prevents APTS condensation from occurring at high 

concentration and avoids the formation of uneven surface coating. A higher APTS 

concentration may ensure a more complete surface modification and thus a higher 

resultant contact angle. In addition, any residual water inside or on a modified surface 

would be vaporized after the drying process, leaving the modified surface less 

hydrophilic, hence a higher contact angle. Regardless of the treatments, most studies 

register an approximately 20º increase in contact angle upon APTS modification, which 

is fairly consistent with what have been observed in our samples.49-51 

3.3.1.3 Methyltriethoxysilane (MTES) modified silica film 

MTES of 3% and 10% in chloroform were used to determine the optimal 

concentration for MTES modification. As illustrated in Figure 3.3, the contact angles of 

Figure 3.3 Rising of contact angle 

as a function of MTES 

modification time. Solid lines are 

fitting to the data according to 

Equation 3.1 
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all silica films seem to settle above 50º regardless of MTES concentration used, which 

probably signifies the completion of surface modification reaction. However, the rate of 

surface modification (k) does depend on MTES concentration, with the lower the MTES 

concentration, the longer it takes for a modification reaction to complete. Assuming a 

first order rate law, the contact angles () in Figure 3.3 were fit to the following 

Equation 3.1:  

  kt
ifi e 1   

Where i and f are initial and final contact angles, respectively. According to the 

fitting, the rate constant for the 3% MTES reaction stands at 0.75º hr-1 whereas the 10% 

MTES reaction displays a faster rate constant at 1.55º hr-1. Thus, the reaction employing 

10% MTES exhibits a noticeably faster reaction rate as it takes approximately 1 hr to 

raise the contact angle toward 50º. In about 2 hours of reaction time, the surface 

modification reaction appears to almost complete in 10% MTES as the contact angle 

increases from 26º±2º to 52º±2º. Although the contact angle continues to rise marginally, 

the data from the 2- and 4-hr samples suggest that there is little gain in stretching the 

MTES surface modifying reaction beyond 2 hours. Unlike APTS where its amino-tail 

catalyzes the surface modifying reaction, MTES contains no catalytic functional group 

and the surface modifying reaction could only proceed normally with a considerably 

slower reaction rate. 

It is also noted that MTES produces a surface with a higher contact angle than that 

from APTS, consistent with the more hydrophobic nature of MTES relative to APTS, as 

the amino end group inevitably reduces the overall hydrophobicity of APTS. In addition 

to hydrophobicity, surface roughness also plays a significant role in determining the 

3.1
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contact angle of a surface, with smoother surface usually leads to smaller contact 

angles.52 It is also known that the amino-tail of a surface attached APTS can catalyze its 

own dissociation from the film surface, especially in the presence of water.53 This may 

kinetically favor a process similar to Ostwald ripening where smaller scale surface 

roughness due to uneven APTS coverage can be removed by APTS dissociation during 

the course of the surface modification reaction. This would result in a smoother film and 

hence a smaller contact angle than that from MTES modification where both surface 

association and dissociation of MTES are not catalyzed. Since the concentration of 

MTES employed appeared to only influence the reaction time to complete surface 

modification, all MTES modified samples employed in this work were prepared by 

dipping the silica film in 10% MTES for 1 hr after the pre-treatment protocol, which 

corresponds to more than 90% completion of the surface modification reaction. Similar 

to the case of APTS, the contact angle of our MTES modified film is lower than the 

approximately 80º reported in the literature for short n-alkyl organosilanes 

modification.54-55 In this case, it seems that removing water by drying contributes 

mostly to the discrepancy as the 10% MTES concentration employed in this study is 

comparable to those in other studies. In fact, when drying at an elevated temperature is 

not included, our results seems to agree quite well with the literature where an 

advancing and receding contact angle of 58º and 54º have been reported, respectively.56 

3.3.1.4 Thermogravimetric analysis (TGA) of APTS and MTES modified silica 

thin films 

Thermogravimetric curves in Figure 3.4 were obtained from pretreated alcogel thin 

film, MTES-grafted alcogel thin film, APTS-grafted alcogel thin film, and pure APTS 
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coated alcogel thin film, respectively. Pure APTS coated alcogel thin film was prepared 

by adding large amount of pure APTS on the surface of an alcogel thin film sample for 

30 min and then let dry overnight. The sample surface turned rough and irregular with a 

thick layer of APTS. The purpose of this pure APTS coated alcogel thin film was to 

make sure weight loss of –CH2CH2CH2NH2 groups could be detected within 500 oC 

range by the instrument. As shown in Figure 3.4 (A), pure APTS coated alcogel thin 

film showed ~ 1% weight loss of adsorbed solvent (which should be the liquid APTS 

residue) when T ˂ 120 oC, and ~ 3% weight loss at 400 ~500 oC, which corresponded to 

the decomposition of –CH2CH2CH2NH2 groups.57 As a control sample, pretreated 

alcogel thin film was not expected any weight loss, which was nicely demonstrated in 

Figure 3.4 (B). Neither MTES-grafted alcogel thin film nor APTS-grafted alcogel thin 

film showed discernable weight loss, even in the expanded Figure 3.4 (B). The slight 

upwards or downwards trend of those three samples in Figure 2.7 (B) was indeed due to 

the fluctuations of the measurement. This suggests that either the concentration of 

94

95

96

97

98

99

100

101

0 100 200 300 400 500 600

Temp (oC)

W
ei

gh
t 

%

99.8

99.85

99.9

99.95

100

100.05

100.1

0 100 200 300 400 500 600

Temp (oC)

W
ei

gh
t 

%

A B

94

95

96

97

98

99

100

101

0 100 200 300 400 500 600

Temp (oC)

W
ei

gh
t 

%

99.8

99.85

99.9

99.95

100

100.05

100.1

0 100 200 300 400 500 600

Temp (oC)

W
ei

gh
t 

%

94

95

96

97

98

99

100

101

0 100 200 300 400 500 600

Temp (oC)

W
ei

gh
t 

%

99.8

99.85

99.9

99.95

100

100.05

100.1

0 100 200 300 400 500 600

Temp (oC)

W
ei

gh
t 

%

A B

Figure 3.4 (A) From top to the bottom, thermogravimetric curves of MTES-grafted alcogel thin 

film (black long-dashed line), pretreated alcogel thin film (black solid line), APTS-grafted alcogel

thin film (black short-dashed line), and pure APTS coated alcogel thin film (gray solid line). (B) is 

an expanded view of (A) near 100 weight %.  
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APTS or MTES on the silica film surface is very low or weight loss by the 

decomposition of surface attached APTS or MTES was below the detection limit of the 

instrument. We believe it is the latter case that led to the apparent absence of weight 

loss implied by the thermogram. To support our argument, we provide an estimate of 

the weight loss that would have been observed in our TGA measurements. 

Based on pervious reports of grafting APTS on surface etched non-porous glass 

beads with surface area to mass ratio between 4 and 500 m2 g-1, the amount of weight 

loss from TGA measurements was found to be around 5 ~ 6 %.58-60 Our silica films 

were spun-coated on 1”  1” microscope coverslips that weight ~0.244 g per slide. As a 

result, the surface area to mass ratio is approximately 1 square inch per 0.244 g, which 

is equivalent to 2.644  10-3 m2 g-1. Assuming the smallest surface area to mass ratio of 

4 m2 g-1 from the previous reports, this would still translate to a factor of ~1500 less 

surface area in our sample for the same amount of material used in a TGA measurement. 

Using the 6 percent weigh loss from the previous reports, the percentage weight loss in 

our sample would be around 0.004 %, which is equivalent to 2 g. This is clearly below 

the detection limit of our TGA instrument (34 g) and therefore explains why we were 

not able to observe any prominent weight loss from TGA experiment.  

3.3.2 The Effect of Surface Modification on Rotational Mobility 

Contact angle measurement is a surface probing technique that is sensitive to 

changes occurring at macroscopic length scales. While contact angle can respond to 

changes in hydrophobicity roughness of a silica film surface, its usefulness in reporting 

chemical modification below the film surface is questionable. In this part, the rotational 

mobility of R6G is employed to examine whether silane modification can alter the 
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internal chemical composition of an alcogel film, which is characterized by mesopores 

that are known to significantly impair diffusion or even completely block the infusion of 

molecules that are much bigger than the silica pores. This will cause the internal 

structure of an alcogel film less accessible to external reactants and potentially render 

the approach of post-synthesis grafting ineffective. 

3.3.2.1 APTS modified film 

In Table 3.1, the mobility distributions of R6G in silica film with and without 

APTS modification are compared. Similar to our previous reports, R6G molecules are 

separated into three categories of rotational mobility in accordance with their respective 

emission polarizations.39 For R6G trapped inside regular sol-gel silica films, 

approximately 40% were found to be fixed, with a good majority of the remaining 

molecules (~56%) exhibiting limited mobility. Since physical confinement is the major 

factor that control mobility inside alcogels where silica pores are usually no more than a 

few nanometers big, R6G encapsulated inside is expected to display rather restricted 

mobility. 

Sample Tumbling Fixed Intermediate
Number of 

molecules studied

Dry silica sol-gel 4.6 ± 1.8 % 39.7 ± 4.3 % 55.7 ± 4.3 % 131 

After immersion 
in water 

1.2 ± 0.8 % 62.3 ± 3.7 % 34.5 ± 3.7 % 170 

After modified by 
0.4% APTS 

6.2 ± 1.7 % 57.9 ± 3.4 % 35.9 ± 3.3 % 209 

Table 3.1 Mobility distribution of R6G before and after APTS modification. 
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The ~5% tumbling R6G molecules recorded are either trapped inside bigger pores 

or residing near the film surface and possibly fairly unrestrained. These molecules are 

relatively free to rotate and therefore emit un-polarized fluorescence. However, these 

same molecules are possibly most vulnerable to rinsing and thus can be easily washed 

away upon immersion in water, which can cause a significant shift in R6G mobility. 

Since R6G-doped silica films are dipped into 0.4% APTS solution during APTS 

grafting, the effect of rinsing should not be neglected. To account for the rinsing effect 

and to really determine whether APTS grafting can reach below the film surface, R6G 

mobility in an APTS modified film should be compared to an identically prepared film 

that was immersed in water for the same amount of reaction time as the APTS modified 

film. 

As indicated in Table 3.1, the percentage of fixed R6G molecule after rinsing 

increases dramatically from ~40% to ~62%. This is accompanied by a concomitant 

decrease in the more mobile tumbling and intermediate molecules as they are more 

likely to be washed off. In an APTS modified film, however, there is a noticeable 

increase in the percentage of tumbling molecule at the expense of the fixed molecules 

while the percentage of intermediate molecule remains unchanged. The approximately 

5-fold (1.2%  6.2%) increase in the percentage of tumbling molecule in the APTS 

treated silica film may be an indication of successful APTS pore surface modification. 

Since the capping of a pore surface with APTS will effectively reverse the surface 

charge from negative SiO to positive SiORNH3
+ at neutral pH. As a result of this 

charge reversal, positively charged R6G will be more likely to repel from the pore 

surface instead of being attracted to it, hence a higher rotational mobility. It is also 
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evident from Table 3.1 that despite the 5-fold increase in tumbling molecules, the 

mobility of R6G in the silica film is still dominated by fixed molecules (~58%), 

implying that either there are a lot of pores that are inaccessible to APTS modification 

or R6G are physically confined in pores that are too small to permit rotation even 

though APTS has turned the pore surface repulsive to R6G. The facts that APTS is a 

fairly small molecule and that guest-host interactions are usually dominated by physical 

confinement in alcogel samples has led us to believe that the latter explanation is most 

likely responsible for the lack of R6G mobility in an APTS modified silica film. This 

argument is also supported by the study of R6G photostability in subsequent sections. 

3.3.2.2 MTES modified film 

Although MTES does not introduce any positive charge to a silica pore surface, it 

is still capable of capping the negative surface SiO group with a non-polar methyl 

group and thereby weakening the attraction of R6G toward the surface and enhancing 

R6G mobility. Thus, it has been reported that the mobility of Nile Red was found to 

increase with the amount of isobutyltrimethoxysilane used in an ormosil film.61-62 

Similar to the case of APTS modification, Table 3.2 indicates that a significant amount 

of mobile R6G molecules were washed off upon immersing the silica film in 

chloroform, the solvent used for MTES modification reaction. Relative to the dry film, 

the percentage of fixed R6G molecule increased from ~40% to ~65% after treating the 

film with chloroform. Unlike water, however, a chloroform wash only decreases the 

percentage of tumbling molecule marginally from 4.6% to 3.6%. Presumably tumbling 

molecules are fully solvated by water or water/ethanol mixture in a dry silica film and 

that access to this group of molecule is effectively blocked by the surrounding solvent 
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shell as chloroform and water are fairly immiscible. On the other hand, intermediate 

molecules may lack the protection of a complete solvent shell and are more likely to be 

washed away by chloroform. This may explain why only a dramatic decrease in the 

percentage of intermediate molecule was observed after the chloroform treatment. 

Table 3.2 also illustrates that the methyl group in MTES has a moderate effect on 

R6G mobility. The percentage of tumbling molecule only increases slightly upon MTES 

modification, although there is a noticeable transfer of fixed molecules to intermediate 

molecules. Despite a different surface capping group than APTS, MTES produces very 

similar R6G mobility distributions in a silica film. This suggests that both charge 

reversal (APTS) and charge neutralization (MTES) are able to alter R6G and silica pore 

surface interactions to a similar extent. Moreover, when pure instead of 10% MTES was 

used for surface modification, we found that the mobility of encapsulated R6G 

molecules can be further enhanced, yielding 8.8% tumbling R6G molecules as opposed 

to 5.6%. This is very different from APTS modification as concentration as low as 1.0% 

APTS would lead to irreproducible, thick, and uneven silica film due to APTS 

condensation. When considering that like-charge repulsion is more effective in inducing 

motion than non-charge interaction, the higher percentage of tumbling molecule 

Sample Tumbling Fixed Intermediate
Number of 

molecules studied 

After immersion in 
CHCl3 

3.6 ± 1.5 % 64.8 ± 3.7 % 31.5 ± 3.6 % 165 

After modified by 
10% MTES 

5.6 ± 1.7 % 55.0 ± 3.7 % 39.4 ± 3.6 % 180 

After modified by 
pure MTES 

8.8 ± 2.0 % 53.4 ± 3.5 % 37.8 ± 3.4 % 204 

Table 3.2 Mobility distribution of R6G before and after MTES modification 
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achievable in MTES suggests that post-synthesis grafting can be driven to higher 

surface coverage in MTES than in APTS simply because of a much wider workable 

concentration range. 

Although rotational mobility is able to reveal the effect of silane modification on 

R6G/pore surface interactions, the observed increase in R6G mobility as a result of 

charge reversal (APTS) and neutralization (MTES) is rather marginal. These subtle 

shifts in rotational mobility is arguably due to the fact that physical confinement 

dominates R6G mobility in silica alcogel such that full scale molecular rotation rarely 

occurs even though R6G is attracted to the silica surface to a lesser extent after silane 

modifications. This is possibly an inevitable outcome of the post-gelation modification 

approach as Coulombic attraction between R6G and silica oligomers has been the major 

guiding force to a tight silica pore structure surrounding all R6G molecules during the 

gelation process.63 After gelation, successful silane modification can only alter pore 

surface chemistry but it is expected to have a negligible effect on the already formed 

mesoporous silica structure. As physical confinement continues to restrict molecular 

rotation, hence the very small change in R6G rotational mobility observed after silane 

modification. 

3.3.3 The Effect of Surface Modification on Photostability 

Intuitively, photostability should provide a more sensitive probe to R6G/silica 

interaction than molecular rotation when R6G is under stringent physical confinement. 

Since photostability strongly depends on the dynamic interaction between a guest 

molecule and its local surrounding, any subtle change in R6G/silica interaction because 

of silane modification will be reflected by the change in R6G photostability. In this 
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work, both APTS and MTES serve to reduce the attraction between R6G and silica pore 

surface, which will allow more dynamic motions in a less surface-bound R6G molecule. 

As more dynamic motions usually lead to additional photodegradation pathways, R6G 

photostability is expected to decrease upon APTS and MTES modification. As long as 

R6G becomes less surface-bound, this decrease in photostability should apply even to 

those R6G molecules that are elusive to rotational mobility detection because of their 

trapping in very tight cavities that preclude full scale molecular rotation. 

Table 3.3 lists the survival lifetimes of R6G in silica films before and after silane 

modification. As illustrated, the survival lifetime of R6G in all samples, as the fraction 

of R6G that remains fluorescent (f) upon continuous excitation, are best fitted by a 

bi-exponential decay function, Equation 3.2, revealing the spatial heterogeneity of the 

sol-gel silica films. Evidently, silane modification does not seem to alleviate the spatial 

heterogeneity inside the modified films. 

   21  1 11
 tt eAeAf     

 

Sample A1 1 (s) 2 (s) avg(s) 2

Dry 0.54 ± 0.07 14.1 ± 1.9 72.0 ± 8.3 40.7 ± 6.3 0.150 

Water 0.63 ± 0.03 19.6 ± 1.4 112 ± 9 53.2 ± 5.1 0.061 

0.4% APTS 0.57 ± 0.02 5.19 ± 0.32 43.0 ± 2.3 21.5 ± 1.4 0.148 

CHCl3 0.74 ± 0.04 18.5 ± 1.2 108 ± 14 41.7 ± 5.6 0.143 

10% MTES 0.47 ± 0.02 7.20 ± 0.66 73.1 ± 3.6 41.9 ± 2.5 0.341 

Pure MTES 0.69 ± 0.02 7.04 ± 0.35 70.8 ± 5.1 27.1 ± 2.1 0.168 

 

Table 3.3 Survival lifetime of R6G in various silica alcogel thin films. 

 

The survival lifetime of R6G in a dry, unmodified silica film is fairly close to 

evenly split between 14 s and 72 s, which lead to a avg of 40.7 s. After immersing in 

3.2 
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water, there is a noticeable increase in both 1 and 2 for the remaining molecules. The 

longer  values, which signify a higher photostability, is the direct result of a loss in 

R6G mobility after the more mobile molecules had been washed away. The bigger 

resultant avg value of 53.2 s relative to the 40.7 s of a dry film is consistent with the 

idea that less mobile molecules exhibit less dynamic motions that cause 

photodegradation, hence a higher photostability and therefore a longer avg in the water 

treated silica film. 

Compared to water, the effect of CHCl3 is less pronounced as avg only increases 

marginally to 41.7 s after a dry film is immersed in chloroform. As pointed out before, 

CHCl3 is much less effective in removing mobile R6G molecules from the dry film 

because water and CHCl3 are immiscible. As a result, both rotational mobility and avg 

register only minor changes to lower mobility after the CHCl3 treatment. Despite a 

small change in avg, there are unmistaken signs in the longer 1 and 2 that the 

remaining R6G molecules are less prone to photodegradation after the CHCl3 wash, 

indicating that the remaining R6G molecules are less mobile and more photostable. 

Table 3.3 also indicates that R6G becomes much less photostable in an APTS 

modified silica film as the attraction between R6G and silica surface is effectively 

eliminated. Relative to the water treated film, the value of avg drops dramatically from 

53.2 s to 21.5 s, implying that R6G is capable of much more dynamics motions in an 

APTS modified film, which lead to a lower photostability. This lower photostability is 

also reflected in 1 and 2 as both values decrease by ~4-fold and ~3-fold, respectively. 

Such a big decrease in survival lifetime suggests that charge-charge repulsion is very 

effective in disrupting R6G/silica attraction. Although the tight silica cavity in alcogel 
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still disfavors full scale R6G rotation in an APTS modified film, as seen in the 

rotational mobility measurements, the release of R6G from silica surface attraction to 

permit more localized dynamic motions upon APTS capping is sufficient to impart a 

significant drop in R6G photostability. 

Similar to the case of rotational mobility, the effect of surface charge neutralization 

by MTES on R6G photostability is much more subdued than seen in APTS modification. 

When a silica film is modified by 10% MTES, it causes almost no change to the avg 

value of R6G relative to that from the CHCl3 treated film. This agrees quite well with 

the rotational mobility study, where R6G mobility only increases marginally upon 10% 

MTES modification. Although there are more than 2-fold decrease in 1 and ~32% 

decrease in 2 to signify a less photostable R6G after MTES modification, the averaged 

R6G photostability instead remains statistically identical to those from the CHCl3 

treated sample as the apparent loss of R6G photostability is more than compensated by 

the considerable amount of population transfer from less to more photostable R6G. 

When pure instead of 10% MTES was used, however, there is a more discernable effect 

of MTES on the photostability of R6G. While 1 and 2 remain practically the same in 

both MTES modified films, there is a significant reversal of population transfer from 

more to less photostable R6G when pure MTES was used, causing a substantial drop in 

avg from 41.9 s to 27.1 s. The constancy in 1 and 2 suggests that the local environment 

surrounding R6G inside the modified film did not change very much when higher 

MTES concentration was used. Rather, the shift in R6G population implies that pure 

MTES only led to more comprehensive pore surface modification inside the silica film, 

causing a more noticeable drop in R6G photostability. This is further supported by the 
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considerable higher contact angle of 65.7º observed in silica films modified by pure 

MTES relative to the ~55º obtained from the 10% MTES modification protocol. It is 

worth noting that both 1 and 2 in the MTES modified film are longer than those in 

APTS modified film, indicating that R6G is more likely to be more mobile in an APTS 

than a MTES modified film. This reinforces the notion that charge repulsion is more 

effective in inducing localized dynamic motions of R6G than charge neutralization. 

Generally speaking, since charge-charge interaction is expected to be stronger than 

non-charge interaction, we believe that this observation should not be limited to R6G 

alone but apply to all kinds of guest molecules encapsulated inside silica films. In 

retrospect, the bigger effect of pure MTES modification on silica sol-gel encapsulated 

R6G is not completely surprising as we have demonstrated that the concentration of 

MTES used in a modification reaction appears to only affect the time it takes to reach a 

desirable level of surface modification. In addition to being an uncatalyzed reaction, the 

fact that water and CHCl3 are immiscible seems to also play a part in the much longer 

time required in MTES modification. Thus pure MTES is going to provide the most 

comprehensive pore surface modification in the shortest period of time. We also believe 

that if not for the less polar silica surface to facilitate CHCl3 and MTES diffusion, the 

reaction time for MTES modification would have been much longer. Nevertheless, 

MTES modification is not expected to reach very deep into a silica film because of the 

immiscibility issue. Finally, the ability to cause a significant decrease in avg in APTS 

and MTES modified films whereas the same modification only result in a small change 

in R6G mobility distribution has confirmed that photostability is a more sensitive probe 
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for guest-host interactions than molecular rotation when a guest molecule is tightly 

constrained inside a cavity that disfavors full scale molecular rotation. 

 

3.4 CONCLUSIONS 

Post-synthesis grafting protocols to modify sol-gel pore surfaces using APTS and 

MTES have been developed, which is potentially applicable to tailor local environments 

to manipulate guest-host interactions. It is discovered that nascent silica film prepared 

by the spin coating method contains many active sites and is unsuitable for 

post-synthesis grafting. Thus, an hour-long aging followed by a 30-minute water 

treatment is necessary to prepare the silica film for pore surface modification. Contact 

angle measurement alone is capable of monitoring chemical modifications on a film 

surface, but it does not provide any clue on the extent of modification underneath. Due 

to the limited sensitivity of TGA technique, it can’t detect the weight loss of APTS and 

MTES modified silica thin films because of the low surface area to mass ratio of our 

samples. Using R6G as a fluorescence probe, we measured the change in rotational 

mobility and photostability from single molecules to monitor post-synthesis grafting 

beneath the film surface. The inclusion of repeated rinsing after the grafting reaction 

helps remove all surface-bound R6G and ensure that emission is mostly originated from 

R6G trapped inside the silica films. It was found that R6G experiences a 5-fold increase 

in the percentage of tumbling molecule in APTS modified samples as a result of charge 

reversal, but only a slight increase in the percentage of tumbling molecule when 

modified by MTES. R6G photostability decreased upon both APTS and MTES 

modifications, which suggested that pore surface grafting induces more R6G dynamic 
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motions that lead to faster photodegradation. In both cases, only a very small change in 

R6G rotational mobility was observed after silane modification, and fixed molecule was 

still the dominate category, which emphasized that physical confinement is still the 

major factor that control guest-host interaction in modified alcogel films. Nevertheless, 

we have demonstrated that photostability measurement is a more sensitive technique to 

probe guest-host interactions when full scale molecular rotation is disfavored. The 

substantial changes in R6G photostability caused by surface grafting also convinced us 

that the grafting reaction can be controlled to reach deep underneath the film surface. In 

the case of MTES grafting, the further decrease in R6G photostability upon using pure 

MTES is entirely the result of population shift toward less photostable R6G, which can 

be attributed to the result of more extensive surface grafting. The practically constant 

R6G survival lifetime for the dual population of R6G regardless of MTES concentration 

is also consistent with the notion that organosilane reagents only alter the chemical 

composition of silica pore surface. They have very little influence on the already formed 

pore structure, which should have a more direct impact on the survival lifetime of an 

encapsulated guest molecule. 

Most of the results in this chapter have been published in 2009 on Journal of 

Physical Chemistry C. (Lei, Q.; Yip, W. T., J. Phys. Chem. C 2009, 113 (50), 

21130-21138.) 
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CHAPTER 4 USING DYE AS PROBES TO MONITOR THE 

SURFACE MODIFICATION INSIDE SILICA HYDROGEL 

 

4.1 ABSTRACT 

Rhodamine 6G (R6G) and fluorescein (Fl) molecules were used as probes to 

monitor the surface modification inside silica hydrogel. The modification process can 

be easily tracked by locating R6G dye band, or be precisely monitored by measuring 

anisotropy values of doped dyes. Due to the larger pore sizes, pore surface modification 

inside hydrogel was more effective than in alcogel. Surface modifications by 

post-grafting of 3-Aminopropyltrimethoxysilane (APTS) and methyltriethoxysilane 

(MTES) showed significant effect on guest molecule mobility, whereas surface 

modifications by physical method, that is by using 1.0 M sodium chloride to increase 

ionic strength or by adding pH 2.0 hydrochloric acid to neutralize pore surfaces, barely 

showed any effect. Charge-reversal by APTS is a more effective way to modify pore 

surfaces than hydrophobic capping from MTES, simply because Columbic interactions 

dominate inside hydrogel. Multiple-step section measurements revealed more than bulk 

measurements did, and demonstrated that pore surface modification showed a combined 

effect from the pore fluid and post-grafted functional groups. The ease of tracking 

surface modification inside hydrogel by locating R6G dye band, and the negligible pore 

fluid effect on R6G in modified hydrogel makes R6G a better probe than Fl to monitor 

the pore surface modification process in silica hydrogel monoliths.  
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4.2 INTRODUCTION 

Even since the pioneer work of H. Schmidt in 1985 on the preparation and 

investigation of inorganic-organic hydrid silica gel (ormosils),1 and the first report about 

an organic dye doped silica gel (composites) by Avnir et al.,2 sol-gel research has 

experienced an explosion of development. They also marked the second important 

period of sol-gel process.3-4 When Braun et al. successfully trapped enzymes into 

TEOS-derived sol-gel matrix with remained bioactivities in 1990,5 intense interest has 

been focused the development of biocomposites associated with organically modified 

silica matrix.6-7 There are two different approaches to synthesize organically modified 

silica gel: one-pot co-condensation and stepwise post-grafting.8-10 Tailoring the surface 

of silica matrix with organic groups improves its biocompatibility,6-7,11 and replaces the 

brittleness with rubber elasticity; however, the mechanical strength is compromised if 

one-pot approach was used,12 whereas post-grafting can introduce almost any 

functionality without changing the framework and distorting porosity.13 In addition, 

post-grafting provides better defined silica structure, better hydrothermal stability, and 

more accessible functional groups than one-pot method does even with the same 

organosilane modifying reagent.8,10 Among all silica gels, hydrogel attracted attentions 

because it contains more than 50% of water, which generates large pore sizes and makes 

itself highly biocompatible. Up to date, most biocomposites studies were based on 

one-pot synthesized silica gel, such as polymer hybrid hydrogel, a lot of stabilizing 

additive mixed gel, and ormosils, 6-7 instead of post-synthesis grafted silica hydrogel.  

No one has ever reported post-synthesis grafting on highly hydrated silica hydrogel 

monolith. To well tailor the mesoporous structure of silica hydrogel to be adapted to 
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trapped molecules, investigations on surface modification effect to encapsulated 

molecules become important. Our previous research on post-synthesis grafted alcogel 

thin film samples has demonstrated that:14 (1) Sol-gel pore surfaces can be successfully 

modified after sol-gel network is formed. (2) By introducing positively-charged groups, 

such as amino groups, to sol-gel pore surface, positively charged R6G molecules 

become more freely tumbling because charge-reversal on the pore surfaces. (3) By 

introducing hydrophobic groups, such as methyl groups, to sol-gel pore surface, the 

interactions between negatively charged sol-gel network and positively charged R6G 

molecules are weakened and partially replaced by van der Waals’ forces, which leads to 

more free R6G molecules. But due to the dense structure of alcogel thin films, even 

though pore surfaces have been modified, R6G molecules were still strictly confined 

inside those pores, and only a subtle change in R6G mobility was observed after silane 

modifications. Compared to alcogel thin film samples, hydrogel samples exhibit larger 

pore sizes and should provide the possibility of higher efficiency for pore surface 

modification after gelation; the dominating electrostatic interactions inside hydrogel 

system should lead to a much more sensitive response to pore surface modification. In 

this study, 3-aminopropyltrimethoxysilane (APTS) and methyl triethoxysilane (MTES) 

have been used to introduce new functional groups to the pore surfaces by chemical 

bonding, pH 2.0 HCl has been used to minimize the electrostatic interaction between 

dyes molecules and pore surfaces, and 1.0 M NaCl solution has been used to increase 

ionic strength and weaken electrostatic interactions. A protocol was developed to 

modify hydrogel pore surfaces by post-grafting, and R6G and Fl were used as probes to 
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track the modification process by locating dye band and by fluorescence anisotropy 

measurements.   

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Development of the Experimental Protocol 

A lot of efforts have been made to develop the protocol, such as to determine 

whether trapping dyes into hydrogel before surface modification or modifying the pore 

surfaces before dye infusion, to determine the suitable sample size for the measurements, 

the duration of pore surface modification, and the duration of dye infusion. In this 

research, R6G and Fl solutions were used as reference samples, and had been measured 

whenever taking the anisotropy measurements of hydrogel samples.  

4.3.1.1 APTS modification 

Since 0.4% APTS was aqueous solution, silica hydrogel samples modified by pure 

distilled-deionized water were prepared as the corresponding control samples. Table 4.1 

compares the anisotropy values of R6G and Fl in aqueous solutions and in silica 

hydrogel prepared by two different procedures described in Chapter 2.3.5 and 2.3.6. In 

aqueous solution, R6G and Fl are freely mobile molecules, as expected, they both 

showed very small r values close to 0.01. But after they have been encapsulated into 

silica hydrogel, they behave dramatically different. These phenomena have been 

reported and explained by many groups. 15-17  

R6G showed a significant loss of mobility in hydrogel, registering a big r between 

0.24 and 0.27 when prepared by both “grafting-first” and “trapping-first” methods. 

Even though in both cases, R6G molecules were quite immobilized, there’s a major 
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difference between them. When encapsulated by “trapping first” method, R6G 

molecules were trapped during gel formation and were embedded deep inside, resulting 

in physical confinement dominating; if encapsulated by “grafting-first” method, R6G 

molecules infused into gel matrix after gel network had formed, and they had relatively 

more freedom to choose where to stay, with larger-size pores more preferable. In this 

case, Columbic interactions dominated. Due to the strong Columbic attractions between 

positively-charged R6G and negatively-charged pore surfaces, most R6G molecules 

were still immobilized. While larger pores restricted R6G molecules less than those in 

smaller pores by “trapping first” method, leading to the slight drop of anisotropy value 

of R6G from 0.264 in “trapping-first” method to 0.243 in “grafting-first”. On the 

contrary, there’s no detectable difference between anisotropy values of Fl when 

encapsulated by either method, with r less than 0.02 in both cases, due to the 

remarkably strong Columbic repulsions between negatively-charged Fl and pore 

surfaces.  

 To study the effect of APTS modification to trapped molecules, hydrogel samples 

encapsulated with R6G or Fl molecules by both methods were examined. In 

“trapping-first” method, dye molecules were doped inside hydrogel before surface 

modification by 0.4% APTS. For R6G and Fl, neither APTS modified sample showed 

any change of anisotropy value compared to unmodified samples: R6G samples stayed 

Hydrogel 
Trapping-first Grafting-first  Solution 

H2O APTS H2O APTS 

R6G 
0.013 
±0.007 

0.264 
±0.003 

0.267 
±0.004 

0.243 
±0.003 

0.122 
±0.009 

Fl 
0.011 
±0.005 

0.019 
±0.006 

0.018 
±0.006 

0.015 
±0.003 

0.076 
±0.015 

Table 4.1 Comparison of anisotropy values of R6G and Fl (based on 1000 L-size. samples) 
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~ 0.26, and Fl kept ~0.02. This indicates that either the surface modification reaction 

didn’t happen or the modified surface with amino groups couldn’t affect the motion of 

pre-trapped molecules. The first assumption can’t be true, since APTS modified silica 

materials by post-grafting have been intensively studied by many groups, including the 

mechanism of the reaction and the surface properties after grafting.14,18-23 With the 

presence of water, it’s a fast self-catalyzed reaction. However, the objects they studied 

were porous silica powder, glass slides, silicon wafers or silica alcogel thin films, and 

the organosilane modification reaction can easily happen on the surfaces or very thin 

films. No one has ever reported an APTS post-grafting on pores inside thick silica 

hydrogel monoliths. The modification inside hydrogel monolith could be hindered by 

the slow top-to-bottom diffusion of APTS, and the grafting didn’t go deep enough to 

affect the overall anisotropy value of the sample. Even in the top part of hydrogel that 

APTS molecules had reached, there were two situations which would result in no 

observation of surface modification effect: (1) APTS was able to access the pores and 

amino groups were introduced to pore surfaces, however, R6G molecules were strictly 

confined inside the pores beforehand, they can’t move around even though there’s 

strong Columbic repulsions between positively-charged R6G and positively-charged 

amino groups; (2) APTS couldn’t access some of the pores which had R6G molecules 

trapped inside. Overall, if samples were prepared by “trapping-first”, slow diffusion, 

physical confinement, and pore accessibility all possibly concealed the effect of pore 

surface modification on guest molecules, which made “trapping-first” method 

unsuitable for dye encapsulation. 
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Whereas, in “grating-first” method, dye molecules infused into gel after surface 

modification completed. Dramatic change of anisotropy values of both R6G and Fl 

samples were observed. There’s a 50% drop of r value from 0.243 to 0.122 for 

positively-charged R6G, and there’s a 5-fold increase of r from 0.015 to 0.076 for 

negatively-charged Fl. Since pore surfaces were modified before dye molecules were 

trapped, those dye molecules can access and then stay inside those modified pores, 

unlike the first method APTS cannot access some of those pores trapped with dyes. 

Introduction of positively-charged amino groups to originally negatively-charged pore 

surfaces turned R6G molecules more mobile, and slowed Fl molecules down. When 

investigating samples prepared by this method, only charge-charge interactions 

dominated and the effect of pore surface modification was clearly demonstrated. 

Because “grafting-first” method provided us the evidence of successful surface 

modification and helped tracking the modification process, hereafter, all samples were 

prepared by “grafting-first” method.  

 

Figure 4.1 APTS modified hydrogel infused with 

R6G by “grafting-first” method. Short solid line 

indicates the top boundary of the gel sample, 

and the dashed line marks the bottom of R6G 

dye band, which represents the boundary of 

unmodified region. Rectangle points out the 

observation area.
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As shown in Figure 4.1, R6G encapsulated in APTS modified hydrogel can be 

used as an indicator to track the modification process. The yellow band, where most 

R6G molecules accumulate, provided us the information about how far R6G molecules 

could diffuse to, or precisely, how deep the APTS modification can go. The bottom of 

dye band, showed as dash line in Figure 4.1, marked the interface of modified and 

unmodified regions. Without the charge-reversal from APTS modification, R6G 

molecules would be strongly attracted by negatively-charged pore surfaces and get 

stuck at the very top of gel sample; as the modification went deeper with time, the dye 

band moved deeper. R6G dye band provided us an easy way to track the modification 

process inside silica hydrogel. Dye band was also used to help optimizing experiment 

protocol. As the study object, the modified region should fit in the observation window, 

and the dye band should pass beyond the window. APTS modification before dye 

infusion were tested with different times from 24hr to 72hr, and it was found that 

24hr-modification was not long enough to exclude dye band out of observation window, 

while 48hr and 72hr modifications marginally did. For another 24hr, the dye band of 

72hr-modified sample was wider and only a little bit deeper. The gain was not 

impressive, so 48hr-modification was chosen as the standard process for sample 

preparation. Regarding the sample size, it takes longer for modification reagents and 

dye molecules to diffuse down if larger volume gel sample size was used, finally, 750 

L was determined to be a proper sample size, as it only took one-day dye diffusion to 

fit the observation window. 
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4.3.1.2 MTES modification 
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At the beginning, 10% of MTES in chloroform was used to modify hydrogel pore 

surfaces. Various MTES modification times from 1-day to 4-day have been tested, and 

R6G solution was allowed to diffuse one day before the measurements were taken. 

Since MTES was dissolved in chloroform, chloroform modified hydrogel was used as a 

control sample for MTES modification. As shown in Figure 4.2, the anisotropy values 

of R6G were practically unchanged before and after MTES modification. Even after 

being modified for as long as four days, samples didn’t show a certain upward or 

downward trend in anisotropy values. The average r of all chloroform control samples 

was 0.270±0.011, and the average r of all MTES/CHCl3 samples was 0.273±0.008. The 

small difference between those values falls in the error range of the technique. We 

believe that MTES in CHCl3 mixture didn’t modify pore surfaces in hydrogel.  

What caught our attention was the immiscibility of chloroform with water, as 

observed, a thin layer of dye stuck to the glass tube surface instead of penetrating into 

hydrogel samples. Hydrogel contains more than 90% of water, which makes it hard for 

MTES/chloroform mixture to diffuse into the gel. The modification reaction possibly 

could only happen on the surface of the gel. Whereas the modification of alcogel thin 

Figure 4.2 Anisotropy value 

change of R6G in CHCl3 

modified hydrogel (diamonds) 

and 10% MTES/CHCl3 modified 

hydrogel (squares) with 

modification time. 
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films by 10% MTES/CHCl3 were successful,14 one reason is that alcogel thin films are 

dry samples, MTES in chloroform can easily get into pores by natural diffusion, and 

another reason could be those samples are very thin (~200 nm). For those ~ 2 cm-thick 

hydrogel monolith samples filled with water, the solvent for MTES must be miscible 

with water to help MTES diffusing into the gel and then modifying the pore surfaces. 

Ethanol with a concentration (vol %) from 38% to 95% were tested, MTES cannot 

dissolve well in ethanol when its concentration was less than 38%. To make sure the 

concentration of ethanol wouldn’t become an issue to cause the change of anisotropy 

values, a series of control hydrogel samples modified by different concentrated ethanol 

from 38% to 95% were prepared and compared. As shown in Figure 4.3, the 

concentration of ethanol did affect the motion of R6G molecules, the higher the 

concentration of ethanol, the faster R6G molecules move. In this graph, data of 0% 

ethanol, which is pure distilled-deionized water, were also included. The anisotropy 

value reached to a plateau as the ethanol concentration dropped. The anisotropy values 

dropped about 25% from the plateau ~0.21 to the minimum ~0.16. As reported by P. J. 

Davis, G. W. Scherer et al.,24-26 pore structure can be affected by the pore fluid during 

aging, and larger pore volumes were observed for gels aged in ethanol compared to 

those dried in water. R6G in larger pores of ethanol modified samples would be less 

restricted than those in water modified samples. At the same time, R6G has a better 

solubility in ethanol than in water, which also helps to improve the mobility of R6G 

molecules thus decreasing anisotropy values. Both factors are contributing to the 

anisotropy value drop of R6G with increased ethanol concentration. When comparing 

the anisotropy values of R6G in 38% ethanol modified hydrogel samples and 
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distilled-deionized water modified samples, they were 0.202±0.008 and 0.212±0.012, 

respectively, and they both fell into the plateau region. The difference of those two 

samples was small enough to be neglected, so it won’t become an issue if we try to 

compare samples modified by organosilane reagents dissolved in these two solvents. 

Thereafter, 38% ethanol was used as the solvent for MTES modification.   
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4.3.2 R6G Study 

4.3.2.1 Bulk measurements 

Basically, the four IHH, IHV, IVV and IVH spectra were collected by sampling what 

fits in the observation window of that hydrogel sample, and the anisotropy value 

calculated was an average. It is known that at neutral pH, silica sol-gel network is 

negatively charged, R6G molecule is positively charged, and the strong Columbic 

attractions dominate in this hydrogel system. To study the effects of surface 

modification on the electrostatic interactions between R6G molecules and the gel, four 

different reagents were used to attempt to weaken the Columbic attractions. APTS was 

used to introduce positively-charged amino groups to the pore surfaces, MTES was used 

to introduced nonpolar methyl groups to capping the negative surfaces, pH 2.0 

hydrochloric acid was used to neutralize the negatively-charged pore surfaces, and 1.0 

Figure 4.3 Anisotropy values 

of R6G encapsulated into 

hydrogel modified by variously 

concentrated ethanol. 
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M sodium chloride was used to increase ionic strength to weaken Columbic interactions 

and hydrogen bonding between R6G molecules and the pores. In Table 4.2, the 

anisotropy values of R6G in hydrogel modified by different reagents are compared. 

Since 1.0 M sodium chloride solution, pH 2.0 hydrochloric acid and 0.4% APTS are 

aqueous solution, and MTES is dissolved in 38% ethanol, hydrogel samples modified 

by pure distilled-deionized water and 38% ethanol were prepared as control samples.  

 

As shown in Table 4.2, the anisotropy value of R6G in hydrogel with or without 

the existence of 1.0 M NaCl barely changed. It has been reported by several groups27-29 

that ionic strength affected not only the adsorption rate of R6G on negatively charged 

silica surface, but also the amount of adsorbate. The presence of electrolytes e.g. NaCl 

caused the decrease of R6G adsorption on silica substrate due to the change of the 

structure of electric double layer near the surface. Because of the much smaller size, 

Na+ is sterically more competitive than positively charged R6G to occupy the site of 

compact layer, and then reduce the amount of R6G absorbed, leaving more R6G freely 

moving in pore solution. The anisotropy value would be expected to decrease. However, 

those studies were all based on a simple one layer water/silica interface model, and 

focused on a few molecules on the silica surface. For the highly porous hydrogel 

monolith we studied, there are numerous pores inside, and when bulk measurements 

were performed, the anisotropy value should reflect the average motion of R6G 

 H2O 1.0 M NaCl pH 2.0 HCl 0.4% APTS 38% EtOH 10% MTES

r 
0.210 
±0.012 

0.226 
±0.006 

0.218 
±0.003 

0.070 
±0.007 

0.202 
±0.008 

0.163 
±0.002 

Table 4.2 Comparison of anisotropy values of R6G after different modifications. 
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molecules, not just those absorbed on the pore surfaces but all of them in the pore 

solution. As a result, addition of 1.0 M NaCl didn’t change the anisotropy value of R6G 

in hydrogel based on bulk measurement. 

pH 2.0 HCl solution was used to equilibrated with pH 7 hydrogel for two days, and 

the purpose was to neutralized negative Si-O- on pore surfaces by protons and disrupt 

the attraction between R6G and hydrogel, but no effect was observed. We know that it’s 

very difficult to change the pH value of this type of hydrogel because of the slow 

diffusion process and the buffer capacity of the gel itself. After being equilibrated by pH 

2.0 HCl for two days, the pH value of hydrogel could still be around 7, and we know 

that the isoelectric point of HCl catalyzed silica is 2.0±0.2,29-30 therefore, the hydrogel 

pore surfaces were still negatively-charged even after two-day equilibrium with pH 2.0 

HCl. In addition, Zheng et al. reported that the number of adsorbed R6G molecules on 

silica surface is independent of bulk acidity, 31 which suggests that even there’s a slight 

pH drop of pH 2.0 HCl sample, it would not affect the amount of R6G adsorbed on pore 

surfaces, so no change on the population of adsorbed and freely moving molecules in 

the gel matrix. Hence, no change of R6G anisotropy values would be expected, which 

matched up with our observation from pH 2.0 HCl modified hydrogel sample. The 

anisotropy values of R6G in H2O modified and pH 2.0 HCl modified hydrogel samples 

were 0.210 and 0.218 respectively, and the small difference was probably due to 

fluctuation of anisotropy measurements.    

For R6G encapsulated inside 0.4% APTS modified hydrogel, the anisotropy 

dropped ~67% to a value of 0.07 relative to 0.21 obtained from the water modified 

control sample. This is a dramatic improvement of mobility from mostly immobilized to 
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mostly mobile, unlike those R6G molecules in APTS modified alcogel thin film 

samples, in which the majority ~58% of trapped R6G remained fixed as compared to 

~62% fixed in water immersed alcogel samples, and only 5% more tumbling molecules 

were observed after modification.14 This big difference of molecular behaviors after 

APTS modification confirmed our hypothesis that larger pore size of hydrogel provides 

a higher efficiency for pore surface modification than inside alcogel. As the pore sizes 

are larger, the steric hindrance becomes less when APTS diffuses into the pores, and 

more negative Si-O- would be accessible to be turned into positive Si-O-R-NH3
+ at 

neutral pH. As a result of this charge reversal on the pore surface, R6G will be repelled 

from the surface instead of being strongly attracted to it, hence r dropped to 0.07 from 

0.21.  

Table 4.2 also illustrated that the introduced methyl groups had a moderate effect 

on R6G mobility. The anisotropy value of R6G dropped ~20% from ~0.20 to ~0.16 

after pore surface modification. MTES modified hydrogel pore surfaces turned more 

hydrophobic, which weakened the charge-charge attractions between R6G and gel 

network, thus made the R6G guest molecules relatively more mobile. Similarly, the 

effect of MTES modification on R6G molecules in hydrogel is greater than that in 

alcogel,14 due to the same reason (larger pores) as explained earlier for APTS 

modification. When compared to the ~67% drop of anisotropy value caused by APTS 

modification, ~20% drop by MTES modification was not comparably effective. In 

summary, in silica hydrogel the non-charge interactions such as van der Waals forces 

are not as competitive as charge-charge interactions, as a result, charge neutralization by 
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MTES was not efficient as charge-reversal by APTS to modify pore surfaces in silica 

hydrogel.  

In addition to the change of R6G anisotropy values, it was noticed that MTES 

modified hydrogel strongly accumulated R6G at the interface of dye solution and the 

gel, and retarded dyes to diffuse deeper. After 24 hr dye diffusion, the color of the top 

dye solution in MTES sample was a lot lighter than the solution in EtOH sample, and 

the R6G dye band was much darker than the one in EtOH soaked gel. After two weeks 

diffusion, the differences became even more obvious, as demonstrated by the emission 

and absorbance spectra of EtOH sample and MTES sample in Figure 4.4 (A) and 4.4 

(B). With the same amount of R6G molecules being added to the top of EtOH and 

MTES modified hydrogel samples respectively, the amount of dyes left (after two-week 

diffusion) in top solution of EtOH sample was ~17 times that of MTES sample 

(indicated Figure 4.4 (A)), which suggests that MTES modification helped attracting 

and then encapsulating a lot more R6G molecules into the gel. As further substantiated 

by the absorption spectra of EtOH sample and MTES sample in Figure 4.4 (B), the 

amount of R6G trapped in MTES sample was ~2.1 times that in EtOH sample. After the 

absorption spectra were resolved by Gaussian fitting, the monomer/dimer ratio was 

found to be ~16 in EtOH sample and ~13.8 in MTES sample, and a 6 nm red-shift of 

λmax (peak wavelength) from 526 nm in EtOH sample to 531 nm in MTES sample was 

observed (a 7 nm red-shift was also observed from emission spectra). Apparently, 

nonpolar methyl groups helped the formation of R6G dimers and aggregates, and were 

also responsible for the slight red shift. Studies from other groups have proved that less 

polar and more hydrophobic groups such as methyl groups can help dye molecules form 
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cluster on the inhomogeneous silica surface, both the polarity change of the local 

environments of dyes and the aggregation of dyes could cause the red shift of 

absorption and emission peaks.28-29,32-34 And because of the large size of dimers and 

aggregates, R6G molecular diffusion inside hydrogel was hindered and they 

accumulated in the very thin top layer of hydrogel sample. 
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4.3.2.2 Section measurements 

Although bulk measurements can provide us an overall picture of the surface 

modification effect, some details could be overlooked. Modification reagents couldn’t 

penetrate as deep as 2 cm of the whole monolith sample in two days, the deeper inside 

the gel, the less extent of modification would be achieved. From top to the bottom of 

those samples, there should be a transition from completely modified, partially modified 

to unmodified regions. To track the heterogeneity of the modification process and study 

its effect on the motion of guest molecules, section measurements were then taken by 

collecting the fluorescence emission spectra of the gel samples from top to the bottom 

every 1.6 mm (accessible depth was ~13mm).  

Figure 4.4 (A) Fluorescence emission spectra and (B) absorption spectra of R6G in 38% EtOH 

modified gel (dashed line) and 10% MTES modified gel (solid line) after two-week dye diffusion. 
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As illustrated clearly in Figure 4.5 (A) and (C), the locations, the shapes and colors 

of R6G dye bands provided us a rough idea about how different modification reagents 

greatly affected the travelling of R6G molecules inside the gel. For H2O and EtOH 

samples, after one day diffusion (as shown in Figure 4.5 (A)), most R6G molecules 

were concentrated at the top of gel and hardly diffused into the unmodified region, 

because they were strongly attracted by negatively charged pore surfaces and got stuck 

Figure 4.5 (A) from left to right, samples modified by H2O, 0.4% APTS, 38% EtOH and 10% 

MTES for two days, followed by one-day dye diffusion, (B) section measurement of anisotropy 

values of R6G in samples from (A), (C) same samples as in (A), with thirteen more days dye 

diffusion, (D) section measurement of anisotropy values of R6G in samples from (C). In (B) 

and (D), hollow diamonds, solid diamonds, hollow triangles and solid triangles represent H2O, 

0.4% APTS, 38% EtOH and 10% MTES modified samples, respectively. The solid line at 0.25 

in (B) and (D) indicates the boundary of unmodified region. 
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once they diffused into the gel. In MTES sample, R6G molecules were restricted in an 

even smaller area (the dye band was thinner than that of H2O and EtOH samples), as 

explained earlier, methyl groups turned the pore surface more hydrophobic, which 

helped the aggregation of R6G molecules, because the size of the aggregates are larger 

than monomer, the downward dye diffusion became harder, and the molecules then 

piled up in a narrower space. In APTS sample, R6G molecules went as deep as the 

modification had reached, indicated by the dye band located at the half way of the 

sample, because positively charged amino groups on the modified surface drove 

positively charged R6G molecules mobile. After another thirteen-day dye diffusion (as 

shown in Figure 4.5 (B)), the dye band of H2O, EtOH and MTES samples didn’t 

migrate deeper, but only became wider due to natural diffusion, and more R6G 

molecules diffused into the unmodified region. It’s worth to point out that, in EtOH 

sample, a lot of R6G molecule traveled all the way down to the bottom of the gel, 

probably because the remaining small amount of ethanol around the molecules lowered 

the surface tension26 and made the diffusion easier than in H2O sample. APTS sample 

behaved differently; not only more dye diffused into the unmodified region, but the dye 

band migrated deeper from half way to the bottom, this is because APTS not only 

turned the pore surfaces positively charged to drive R6G molecules mobile, but also 

made the surface more hydrophobic, which helps decrease surface tensions35 and makes 

the molecular diffusion of R6G easier.  

Anisotropy data of samples were demonstrated in Figure 4.5 (B) and (D). The 

transition from modified to unmodified region was clearly shown, and the anisotropy 

values of all samples settled between 0.25 and 0.30 regardless of the modification 
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reagents used. We defined the region with anisotropy values between 0.25 and 0.30 as 

the unmodified region for two reasons: (1) Immobilized R6G molecules in hydrogel 

register an anisotropy value ≥ 0.25 (referring to section 4.3.1.1), (2) the anisotropy 

value of R6G at 0.25 always corresponded to the 1.6 mm section of the sample, in 

which the bottom of the dye band was included. We thus believe r at 0.25 marked the 

boundary of unmodified region. However, the samples didn’t show the same rate or 

pattern of anisotropy value increment. MTES sample was the fastest one, and APTS 

sample was the slowest. 

In Figure 4.5 (D), for the first 1.6 mm-thick section of the samples, all of them 

registered an anisotropy value ≤ 0.16. R6G in H2O sample and EtOH sample should 

be affected by pore fluid effect, as reported by C. J. Brinker et al., before drying, gel 

structure and chemistry can be dramatically changed by the varied aging conditions 

such as time, temperature, pH and pore fluid.26,36-38 The condensation and cross-linking 

reactions didn’t stop at the gel point, but continue during aging, which could last a few 

weeks to months.39 When H2O, 0.4% APTS, 38% EtOH and 10% MTES/38% EtOH 

were added to the top of monolith samples right after gelation, they would involve in 

the ongoing cross-linking, condensation processes and increased the molar ratio of 

water : sol in some extent. Higher ratio of water : sol made the pore size larger, which 

leads to a smaller anisotropy value of trapped dyes. This explains the much smaller 

anisotropy value ~0.15 of H2O and EtOH samples in the first 1.6mm region compared 

to those values of ~ 0.25 in unmodified region. R6G molecules in APTS and MTES 

samples would be affected not only by introduced organic groups but also the solvent of 

organosilane reagents, and the anisotropy values of R6G should reflect a combined 
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effect of chemically post-grafting and pore fluid, between which surface grafting 

dominated. The anisotropy value of the 1st 1.6 mm region of APTS sample was as low 

as 0.023, which is comparable as the value 0.013 ± 0.007 of R6G in aqueous solution. 

This suggests a highly amino groups covered pore surface. The anisotropy value of R6G 

in APTS sample gradually increased as it went deeper, until dye got restricted and 

started accumulating at 8 mm depth with an anisotropy value of 0.207, and then the dye 

band stopped at 12.8 mm. On the contrary, MTES didn’t help R6G molecules migrate 

deeper, but only turned R6G molecules more mobile, as a relatively low value of 0.103 

was observed from the 1st 1.6 mm region of MTES sample. Most R6G molecules in 

MTES sample were restricted at 3.2 mm depth with an anisotropy value of 0.192, and 

the dye band stopped at 4.8mm depth, similarly as those R6G in H2O sample and EtOH 

sample. Overall, both post-grafting samples showed very obvious effect on the mobility 

of encapsulated R6G molecules, especially at the very top layer of the gel which was in 

direct contact with modification reagents. This suggests that as long as the hydrogel 

monolith is thin enough, post-synthesis grafting can modify pore surfaces completely or 

at least to a very high extent. That’s what we couldn’t realize in silica alcogel thin films.  

4.3.3 Fl Study 

Similarly as R6G study, both bulk and section measurements were taken to study 

the surface modification effect on Fl molecules. Results from bulk measurements were 

summarized in Table 4.3. Because of the strong Columbic repulsion between negatively 

charged Fl and negatively charged gel network, all Fl samples were quite mobile 

regardless of what modifications had been done, and no dye band was observed in any 

sample. Thus, in Fl doped hydrogel samples, the modification process can only be 
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tracked by monitoring the change of anisotropy values, unlike R6G samples can be 

monitored both by locating dye band and measuring anisotropy values. Control samples 

modified by H2O and 38% EtOH registered anisotropy values of 0.017±0.005 and 0.012

±0.002 respectively, which are very close to the anisotropy value of Fl in aqueous 

solution 0.011±0.005.  

 

Fl in pH 2.0 HCl equilibrated sample showed slightly restricted rotation, as the 

anisotropy value increased to 0.064±0.005. This was possibly due to the neutralization 

of negative Si-O- on surfaces by protons, which weakened the repulsion between Fl and 

hydrogel. But it has to be pointed out that pH 2.0 HCl not only introduced protons into 

hydrogel surfaces and but also lead to protonation of Fl molecules, because a ~75% 

drop of the fluorescence intensity was observed. As reported,40-42 the fluorescence of Fl 

is very pH sensitive, especially at pH values lower than 7.0. The relative fluorescence 

intensity dropped dramatically from 82.7 to 10.0 when pH changed from 6.99 to 5.11.41 

The protonation of some Fl molecules from Fl2- to less charged Fl- and neutral Fl 

species could weaken the repulsions between Fl and silica pore surfaces, which caused 

the increase of anisotropy value. 

Fl in 0.4% APTS modified sample showed a 6-fold increase of anisotropy value 

(0.017 to 0.097), indicating that Fl molecules moved slower due to the charge-reversal 

 H2O pH 2.0 HCl 0.4% APTS
0.4% 

APTS-1M 
NaCl 

38% EtOH 10% MTES

r 
0.017 
±0.005 

0.064 
±0.005 

0.097 
±0.008 

0.087 
±0.006 

0.012 
±0.002 

0.029 
±0.005 

Table 4.3 Comparison of anisotropy values of Fl after different modifications 
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on pore surfaces by positively-charged amino groups. When 1.0 M NaCl was mixed 

with Fl solution to be introduced to APTS modified hydrogel, the increased ionic 

strength was expected to weaken the charge-reversal by APTS modification, thus 

increase the mobility of Fl molecules,43 but it would be arguable if we attribute the 

slight anisotropy value drop of 0.01 (from 0.097 to 0.087) to the increased ionic strength, 

because this small difference fell in the error range of our technique (±0.01). 10% 

MTES modified sample showed a 2.5-fold increase of anisotropy value (0.012 to 0.029), 

accredited to the introduced hydrophobic methyl groups, which helped capping the 

highly negatively charged surface and weakened the repulsion between Fl and pore 

surfaces. Although both post-synthesis grafting reagents showed effects on Fl mobility, 

charge-reversal by APTS was more effective than hydrophobic capping.  
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From section measurements as illustrated in Figure 4.6, Fl molecules can penetrate 

as deep as 10 mm in all samples after two-week diffusion. H2O and EtOH samples 

showed a flat line pattern with an anisotropy value of 0.014±0.003, suggesting that 

those two samples were homogeneous from top to the bottom. Solvent effect was 

negligible for H2O and EtOH samples. However, after Fl molecules were restricted by 

introduced amino and methyl groups, solvent effect cannot be neglected. From previous 

Figure 4.6 Section measurements 

of anisotropy values of Fl in H2O 

(hollow diamonds), 0.4% APTS 

(solid diamonds), 38% EtOH (hollow 

triangles), 10% MTES (solid 

triangles) modified silica hydrogel 

samples. 
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R6G study we know that solvents caused anisotropy values drop, the effect was very 

clear at the top layer of gel, and then attenuated with the depth of the gel (illustrated in 

Figure 4.5 (D)). Without any solvent mixed, if Fl doped hydrogel samples were 

modified by pure MTES or APTS, the anisotropy values should increase, but because of 

the top-to-bottom diffusion modification process, the deeper the smaller the increase of 

anisotropy value. When the solvent effect was comparable to the post-synthesis grafting 

effect on Fl molecules, these two effects were combined to create a gradual increase to a 

peak and then slow decreased pattern of APTS and MTES samples shown in Figure 4.6.  
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4.4 CONCLUSIONS 

Post-grafting protocol to modify silica hydrogel pore surfaces has been developed. 

Using dye as probes, the process of pore surface modification inside hydrogel can be 

monitored by locating R6G dye band, or be precisely tracked by monitoring the change 

of anisotropy values. R6G dye band has also been used to optimize the protocol. As a 

continued work of our previous publication,14 this study verified the applicability of our 

post-synthesis grafting protocol, and confirmed the hypothesis that pore surface 

modification is more effective in silica hydrogel than that in silica alcogel. To eliminate 

the effect of physical confinement on guest molecules and the limited accessibility of 

modification reagents to pores, dye molecules must be infused into hydrogel after pore 

surfaces have been modified. It was found that chloroform was an unsuitable solvent for 

MTES modification in hydrogel because of the immiscibility of chloroform with water, 

which hindered MTES from penetrating highly hydrated hydrogel; ethanol was a good 

solvent for MTES modification, although it showed pore fluid effect and caused a slight 

decrease of anisotropy value. From bulk measurements, we found that increasing ionic 

strength by 1.0 M sodium chloride didn’t help weakening the strong Columbic 

interactions between guest R6G or Fl molecules and pore surfaces. Introducing protons 

to cap the negatively charged pore surfaces by pH 2.0 hydrochloric acid didn’t affect the 

mobility of R6G molecules, but did slow Fl molecules down, which possibly because 

that R6G was not sensitive to pH, but Fl was, and some Fl2- turned into Fl- and Fl by 

protonation. Charge-reversal of pore surfaces by APTS modification showed a greater 

effect on guest molecules mobility than the hydrophobic capping by MTES 

modification: APTS modification caused the anisotropy value of R6G to drop ~67%, 
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and MTES modification only caused a ~20% drop; For Fl molecules, APTS 

modification showed a 6-fold increase of anisotropy value, whereas MTES only brought 

a 2.5-fold increase. Thus, charge-reversal is believed to be a more effective way to 

modify pore surfaces than hydrophobic capping in silica hydrogel. The multiple-step 

section measurement of anisotropy values provided more information than bulk 

measurement did, and it helped to understand the top-to-bottom diffusion modification 

process better by tracking the gradual change of anisotropy values. From section 

measurements, we found that the mobility of encapsulated molecules were affected not 

only by post-grafting of surfaces but also the solvent for modification reagents, though, 

for R6G molecules the solvent effect was negligible compared to post-grafting 

modification, for Fl molecules solvent effect can’t be neglected. Moreover, the ease of 

locating dye band to track modification process was another reason to make R6G a 

better probe than Fl to monitor the pore surface modification in silica hydrogel.         
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CHAPTER 5 DEVELOPMENT OF SILCA HYDROGEL-LIKE 

THIN FILM FOR FAST SENSOR MATRIX 

 

5.1 ABSCTRACT 

  The protocol to produce stable hydrogel-like thin film was developed and 

optimized. Contact angle measurement, fluorescence imaging, fluorescence recovery 

after photobleaching (FRAP), absorption spectrum, profilometry, atomic force 

microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize 

this new thin film material. Homogeneous hydrogel-like thin film samples with 

thickness between 100 nm and 300 nm were produced. This new film was highly 

hydrophilic, enabled high-guest-loading capacity, and supported molecular diffusion. 

The reproducibility of sample preparation was greatly improved by controlling 

environmental humidity, guest loading capacity of samples was improved more than ten 

times by using buffer solutions, and the concentration of R6G trapped inside 

hydrogel-like thin film could reach as high as 900 times of its saturated aqueous 

solution. Encapsulation of guest dye molecules can be accomplished simply by dipping 

a chemically reactive precursor alcogel film into a dye-doped buffer solution. Because 

alcohol exposure can be kept to a minimum during dye encapsulation, this new silica 

thin film makes a promising candidate for biomolecule encapsulation and thus biosensor 

development. A prototype hydrogel-like thin film pH sensor doped with Nile blue 

chloride (NBC) was constructed and it showed faster response time than the 

corresponding alcogel thin film sensor.
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5.2 INTRODUCTION 

In 1984 Avnir et al. first reported the entrapment of an organic dye in silica gel 

(composites),1 and soon it was discovered that the trapped molecules in sol-gel matrix 

were sensitive to solvent environment.2-3 Those findings led people to think about the 

possibilities for construction of silica gel-based chemical sensors. Since then, silica 

sol-gel has been extensively studied for sensor development.4-11 Based on their 

functions, the requirement of response time, sensitivity, detection limit and loading 

capacity of functional molecules, several practical sensor configurations have been 

developed. Packed powder, doped monoliths, coated optical fibers, sandwich 

configuration, coated electrodes, and thin films are the common types.12-14 Thin film has 

been recognized as the most promising configuration, due to low materials cost, fast 

response, adaptability to device miniaturization and less cracking upon liquid 

exposure.9,11,15 Most work to date has focused on silica alcogel thin films. Highly 

porous silica hydrogel thin films have never been successfully prepared, because high 

water content renders hydrogel mechanically fragile.16 The essential elements of a fast 

sensory matrix, such as thin, high porosity films and high loading capacity of functional 

guest molecules, can all be realized simultaneously if a stable hydrogel thin film could 

be produced. Many attempts have been made to improve the mechanical strength of 

silica hydrogel, such as to make an intertwined or crosslinked hybrid network of 

hydrogel by doping the silica with hydrophilic polymers,17-19 or to create 

double-network hydrogels to provide a stronger support.20-21 Despite those 

improvements, the hydrogel composites are still produced into either monoliths or thick 

films.  
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Here we report an optimized protocol to produce stable silica hydrogel-like thin 

films. With thickness around 200 nm, our silica hydrogel-like film is expected to be a 

better substrate for devices that demand faster response than thick monoliths. Stable thin 

film hydrogel with such a small thickness has never been accomplished before. The 

hydrogel-like film is derived from a silica-alcogel thin film, which also determines the 

final film thickness. It was produced by immersing nascent silica alcogel thin film to 

aqueous solution, and showed a very hydrophilic surface, high dye loading capacity and 

the support of molecular diffusion. We suspected that the hydrophilic film was made of 

extremely water rich surface-bound hydrogel colloids, produced by the rapid coarsening 

of the chemically reactive nascent silica film upon contacting water. It was also 

discovered that the chemical reactive stage to produce hydrogel-like thin film from 

alcogel could last 10 min under ambient conditions. Through extensive 

characterizations of this new gel material by different techniques, such as contact angle 

measurement, absorption spectrum, fluorescence imaging, atomic force microscope 

(AFM), scanning electronic microscope (SEM) and profile thickness measurement, we 

understood more about its characteristics, improved the reproducibility of film 

preparation and the guest loading capacity, and were able to extend the reactive stage of 

the precursor alcogel thin film matrix. The microstructure of hydrogel-like thin films 

was also examined. The underlying chemistry and mechanism of gel formation were 

proposed. At the end, a prototype hydrogel-like thin film pH sensor doped with Nile 

blue chloride (NBC) was developed and tested.
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5.3 RESULTS AND DISCUSSION 

5.3.1 Characteristics of silica hydrogel-like thin films 

5.3.1.1 Hydrophilic surface 
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Contact angle can reflect the hydrophobicity of a surface.22-23 Usually, 

hydrophobic surfaces result in large contact angles and hydrophilic surfaces lead to 

small contact angles. Figure 5.1 illustrates the significant difference in contact angle 

between a clean bare coverslip (A1), an alcogel film that reacted with water right after 

spincoating (A2), and an alcogel film that reacted with water one hour after spincoating 

(A3). As stated in Chapter 2.3.7, the aging time before reacting with water is labeled as 

“sample delay time” in this chapter. If allowed to age for one hour before reacting with 

water, the alcogel surface appears fairly hydrophobic, with contact angle of 24±2º 

(A3). This is in sharp contrast to the contact angle 5±1º obtained from an alcogel that 

Figure 5.1 Contact angles of (A1) bare coverslip; (A2) water-modified nascent alcogel; (A3) 

water-modified 1 hr-delayed alcogel. Fluorescence images of rhodamine 6G (R6G) doped (B1) 

bare coverslip; (B2) water-modified nascent alcogel. (B3) water-modified 1 hr-aged alcogel. 
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reacts with water immediately after spin-coating (A2). Such a small contact angle in 

(A2) can be due to: (1) the alcogel turning into a very hydrophilic film after reacting 

with water or (2) the washing off of the alcogel film to expose the fairly hydrophilic 

coverslip underneath. The noticeable difference in contact angle between the bare 

coverslip in (A1) (9º±3º) and the film in (A2) (5º±1º) is consistent with the first 

interpretation (1). This is further substantiated by the corresponding fluorescence 

images collected from the rhodamine (R6G) doped samples. As shown in Figure 5.1 

(B1) and (B2), the R6G fluorescence intensity from water-modified nascent alcogel is 

substantially higher than that from the R6G-doped bare coverslip, which is indicative of 

the presence of a thin layer of porous silica matrix remaining on the coverslip for 

efficient R6G encapsulation. Meanwhile, the fluorescence image in Figure 5.1 (B3) 

reveals that R6G distribution inside this film is not homogeneous as dark areas might 

mark regions that were less accessible to R6G molecules. The considerable differences 

in contact angle and R6G distribution between these two alcogel films suggest that 

reacting a nascent alcogel with water at different aging times will produce thin films 

with different characteristics. It is well known that a silica hydrogel monolith can be 

prepared by adding a large amount of aqueous buffer to silica sol or sodium silicate.24 

We suspect that the surface of a nascent alcogel film will still be in a chemically 

reactive stage that resemble a thin film of liquid sol, and that a similar reaction leading 

to hydrogel formation will occur when a nascent alcogel film reacts with water. This 

may lead to a rapid coarsening of the film surface and produce a highly porous 

hydrogel-like film that is made of extremely water-rich surface-bound silica colloids, 

which trap whatever guest molecules are present in water while the colloids are forming.
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5.3.1.2 High guest loading capacity 

Absorbance of R6G doped hydrogel-like thin films can reflect the guest loading 

capacity of them. As discussed above, sample delay time is an important factor that 

affects characteristics of produced thin films, we thus prepared a series of R6G doped 

hydrogel-like thin film samples with delay time ranging from 0 min to 60 min to 

explore the guest loading capacity of them (referring to Chapter 2.3.7 for sample 

preparation). Figure 5.2 (A) compares the maximum absorption of R6G monomer at 

532 nm from different samples. R6G absorbance underwent a rapid increase at short 

delay time, reached the peak at 3±0.5 min before its rapid decline back to the 

background level at 10 min delay time. The decline in R6G absorbance after 3±0.5 min 

can be understood as the nascent alcogel becomes less reactive toward water at longer 

delay time, rendering the resultant film more alcogel-like and less capable of trapping 

R6G. So the chemical reactive stage to produce hydrogel-like thin film from alcogel 

Figure 5.2 Variation of (A) R6G 

absorbance of monomer peak and 

(B) film thickness with sample delay 

time. Gray line in (B) is the average 

thickness (192 nm) of all films with 

2-min or longer delay times. 

Samples in (A) and (B) are 

comparable samples. 
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could last 10 min under ambient conditions. It is worth noting that the dye loading 

capacity is approximately 18 times higher in the 3-min delayed hydrogel-like film when 

compared to the 60 min-delayed alcogel-like film, presumably due to higher porosity of 

the hydrogel-like film. The low R6G absorbance recorded from the very short delay 

time was most likely caused by the partial wash off of the nascent alcogel film by water 

before it had sufficient time to develop a stable 3-dimensional gel network. This led to a 

thinner film and thus lower R6G loading. 

The thicknesses of R6G doped hydrogel-like thin film samples with different delay 

times are shown in Figure 5.2 (B). The 0-min delayed film was too thin to produce a 

reliable estimate whereas the 1-min delayed sample was about 161±5 nm thick. This is 

~30 nm thinner than the average thickness of all other films with 2-min or longer delay 

times, which stabilized at 192±10 nm. These thickness measurements helped confirm 

our previous interpretation that the very low R6G absorbance at short delay time was 

indeed due to partial gel loss, and that the subsequent decrease in R6G absorbance after 

the peak at 3-min delay time was only caused by declining nascent alcogel reactivity 

with aging and was unrelated to film thickness, which remains practically unchanged. 

Also worth mentioning is even for the more hydrogel-like sample that displays the 

largest R6G absorbance, its thickness is not far from a similarly prepared alcogel film. 

This should provide reliable thickness control for the hydrogel-like film by adjusting the 

thickness of the precursor alcogel film.  

5.3.1.3 Support of molecular diffusion 

Because our new films are derived from alcogel films, molecular transport inside is 

expected to lie between that of an alcogel and a hydrogel. Diffusion of small molecules 
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inside the new film was examined by fluorescence recovery after photobleaching 

(FRAP) using fluorescein (Fl) as the probe (Procedures for FRAP experiment are 

described in Chapter 2.4.6). It is known that physical confinement and electrostatic 

interactions are the dominating factors that control guest mobility in alcogel and 

hydrogel, respectively.25 As such, Fl in alcogel is expected to be physically immobilized 

and display no FRAP, which is nicely demonstrated in trace B in Figure 5.3. Being 

more alcogel-like, the alcogel that aged for an hour before reacting with water (trace C) 

doesn’t show FRAP either. This is because the aging time had resulted in the loss of 

chemical reactivity and thus inefficient Fl trapping, producing poor signal and no 

fluorescence recovery.  

 

The presence of a substantial FRAP signal from the treated nascent film in Figure 

5.3 (trace A) reveals that Fl has a high degree of mobility in this film. Unlike the other 

two samples (trace B and C), mobility inside the new film appears to be dominated by 

electrostatic repulsion, which might render Fl mobile by keeping the anionic Fl away 

from silica surfaces. The much higher Fl mobility thus leads us to believe that the 

structural characteristics of the new film are more hydrogel-like than alcogel-like. To 

quantify the diffusion rate of Fl inside this new film, we fit the recovery portion of the 

Figure 5.3 FRAP traces from Fl (A) 

in a treated nascent alcogel film, (B) 

an alcogel thin film, and (C) a 

treated 1h-delayed alcogel film. The 

abrupt drop to zero fluorescence in 

all traces is due to the blocking of 

detector while the samples were 

being photobleached for 

approximately 10 seconds. The 

solid black line with open circles in 

the recovery portion represents the 

fit according to Equation 5.1 
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FRAP traces collected from different locations of the new film according to a 

normalized first-order rate equation (Equation 5.1). 

 

I(t) = A(1 – exp(-krecoveryt)) + I(0)     

where I(t) is the fluorescence intensity; krecovery is the recovery rate constant; A is the 

recovered fluorescence intensity minus the fluorescence intensity immediately after 

photobleaching (I(∞) – I(0)). The solid black line with open circles in Figure 5.3 

illustrates one example of six such fittings. The average krecovery is 0.019±0.005 s-1. 

Using 6.4 x 10-6 cm2 s-1 for the diffusion coefficient of Fl in water as a reference,26 the 

averaged recovery rate of 0.0190.005 s-1 found in the hydrogel-like silica film would 

translate to a Fl diffusion coefficient of ca. 1.7 x 10-7 cm2 s-1. This is about a factor of 

10 slower than the diffusion of Fl in a regular hydrogel monolith. The smaller Fl 

diffusion coefficient could be due to the close proximity of Fl to silica surfaces or lower 

water content because of fast evaporation from such a thin film. Higher humidity 

resulting in faster recovery rate was indeed observed, which is discussed in section 

5.3.3.3. 

In summary, this new hydrogel-like thin film exhibits highly hydrophilic surface, 

and a much higher dye loading capacity relative to that of a typical alcogel film. The 

chemical reactive stage to produce hydrogel-like thin film from alcogel could last 10 

min under ambient conditions, and the thickness can be controlled via the precursor 

silica alcogel film. FRAP measurements revealed that this new film can support 

molecular diffusion.  

5.1
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5.3.2. The Change of Gel Characteristics with Sample Delay Time 

    The characteristics of our hydrogel-like thin films showed high dependence on the 

sample delay time, as nicely demonstrated from the contact angle measurements and 

fluorescence imaging (Figure 5.1), FRAP (Figure 5.3), and the investigation of guest 

loading capacity with sample delay time (Figure 5.2). To understand more about the 

change of gel characteristics with samples delay time, we extended the contact angle 

measurement and fluorescence imaging to a series of thin film samples with different 

delay times, just like the guest loading capacity and sample thickness investigations 

discussed in section 5.3.1.2. 

5.3.2.1 Contact angle measurements 

 
 

To investigate how sample delay time affects the surface hydrophobicity of sample 

after water treatment, a series of thin film samples with different delay time ranging 

from 0 min to 50 min were prepared in pure distilled-deionized water (referring to 

Chapter 2.3.7 for sample preparation). 24 hr after sample preparation, the contact angles 

of all resultant thin film samples were then measured. Figure 5.4 shows a representative 

pattern of how contact angle changed with sample delay time under ambient conditions. 

Figure 5.4 Variation of contact 

angle with sample delay time. 

Inset: one typical SEM image of 

circled samples. 
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The contact angles slightly increased from 4±2o to 9±2o in 0 min to 3 min range, 

followed by a sudden drop to 4±1o at 4 min-delay, and then a rapid increase until 

contact angle settled down at 23±1o after about 1 hr delay. Both the slight increase and 

the later rapid increase can be understood as that aging of sample turned the surface 

more hydrophobic. There are two major reasons for increased hydrophobicity with 

aging time: (1) During aging, the ongoing condensation reactions consumed Si-OR 

groups and hydrophilic Si-OH groups to produce more and more hydrophobic Si-O-Si 

bonds as silica samples were aged longer. (2) As aging progresses, more and more 

Si-OR groups were consumed, upon water treatment, less and less amount of 

hydrophilic Si-OH groups will be produced from Si-OR hydrolysis.  

The sudden drop of contact angle at 4 min delay corresponded to an opaque white 

film sample, unlike those clear samples with 0 to 3 min delay or beyond 15 min delay. 

Upon closer inspection of sample by SEM (Figure 5.4 inset), the opaqueness of sample 

was found due to the cracking of gel surface. Samples with delay time from 4 min to 10 

min showed whole to partial opaqueness on the film, which corresponded to high to low 

extent of cracking of the sample surface. It is known that cracking is caused by the 

differential contraction in the gel network and it occurs when the stress in the network 

exceeds its strength; usually, silica alcogel thin films thinner than ~ 0.5 m do not crack, 

regardless of the drying rate.24 Our hydrogel-like thin film samples are all thinner than 

0.35 m. What caused the cracking of samples with delay time from 4 min to 10 min is 

possibly related the hydrogel-like structure of those samples. Silica hydrogel has 

larger-size pores and less dense structure than alcogel, which makes hydrogel mechanic 

fragile. As demonstrated in section 5.3.1.2, the chemical reactive stage of nascent 
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alcogel samples lasted 10 min under ambient conditions, so samples with delay time no 

longer than 10 min should have all resembled hydrogel after being treated by water. 

Water modified thin film samples with delay time longer than 10 min resembled more 

alcogel-like, that’s why they didn’t crack. But why cracking didn’t happen to the 

hydrogel-like samples with short 0 min to 3 min delay but only those with 4 min to 10 

min delay is still not clear.  

Based on the profile thickness measurements (Figure 5.2 (B)), we’ve noticed that 

hydrogel-like thin film samples produced from nascent alcogel thin films with very 

short delay time were thinner than the rest due to the gel loss in sample preparation, and 

the sample thickness stabilized after 2 ~ 3 min delay time. It’s highly possible that it is 

the thickness that influenced the hydrogel-like thin films to crack or not. When a film is 

thin enough, the energy invested to form the crack is greater than the elastic energy 

released by cracking a thin film, cracking won’t happen.24,27 This argument was also 

supported by Thouless’ work,28 who reported that the stress intensity at the tip of a 

crack is proportional to the square root of the thickness of film, when the thickness is 

small enough, the stress intensity falls below the critical stress intensity of this material. 

This theory can also be applied to our hydrogel-like thin film samples. Because silica 

hydrogel is more fragile than silica alcogel, hydrogel thin film must be thinner than 

alcogel thin film to keep stable configuration. Since the thickness corresponding to 

cracking samples was 190±10 nm, we assume the maximum thickness of stable 

hydrogel-like thin film produced in water (hmax, water) should be less than 190 nm.  

Fortunately, later the cracking problem was solved by preparing thin film samples 

in dye solutions or dye-doped pH 7 PBS. Considering the fluid-like nature of nascent 
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alcogel thin film, it resembled a thin film of liquid sol, when dipped into water or 

aqueous solution, the condensation-gelation would happen to strengthen the structure of 

gel network. The trapped R6G molecules made the surface more hydrophobic, which 

helped to reduce surface tension and contributed to less cracking of gel network.29      

It has to be pointed out that even though the contact angle-sample delay time 

experiment followed the same pattern on different days, the delay time corresponding to 

the first cracking sample varied from day to day. As we’ll discuss later in section 5.3.3.1, 

humidity affected the thickness of hydrogel thin films. When humidity changed from 

day to day, the delay time it took for hmax, water to be reached would vary from day to day, 

and so caused the shift of the first cracking sample. The interesting shift was also 

observed in absorption-sample delay time experiment: the peak-delay-time (see 

definition in Chapter 2.3.7) varied from day to day. Usually higher humidity resulted in 

a longer peak-delay-time and lower humidity corresponded to a shorter peak-delay-time. 

Details about how humidity affects the absorbance and thickness of hydrogel-like 

samples are discussed in section 5.3.3. 

5.3.2.2 Fluorescence imaging 

Figure 5.5 Variation of R6G 

fluorescence intensity with 

sample delay time. Insets: (left) 

fluorescence image of 3 

min-delay sample, (right) 

fluorescence image of 12 

min-delay sample. 
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Fluorescence images were collected from water modified thin film samples 

prepared in 1 mM R6G solution under ambient conditions, and the fluorescence 

intensity of each sample was quite consistent from day to day. As shown in Figure 5.5, 

the 0 min-delay alcogel thin film treated by R6G solution showed fluorescence intensity 

10 times as that of bare glass substrate, which indicates that the resultant hydrogel-like 

thin film encapsulated a lot more R6G molecules than what physically adsorbed on bare 

glass. Along with sample delay time, the fluorescence intensity first increased and 

reached a peak-intensity over 1000 at 3 min-delay, then started to decrease, which 

matched the trend of absorbance-sample delay time experiment discussed in section 

5.3.1.2 (Figure 5.2 (A)). The pattern of fluorescence intensity change with sample delay 

time should be due to the same reasons as that of the absorbance change. The initial loss 

of fluorescence intensity was partially caused by gel loss of those samples, and the 

intensity drop after 3 min-delay resulted from loss of chemical activity upon aging. 

With the samples resembling alcogel more, the pore sizes continued to shrink, leading 

to poor or no dye encapsulation in some areas, hence, the fluorescence dropped with 

sample delay time. Samples with delay time from 0 to 3 min showed homogeneous 

fluorescence images, as shown in Figure 5.5 inset (left), once the alcogel thin film was 

aged as long or longer than 12 min before dipped into R6G solution, the resultant thin 

film samples all showed a heterogeneous distribution of encapsulated R6G in 

fluorescence images. As interpreted in section 5.3.1.1, dark areas in Figure 5.5 inset 

(right) might represent regions with such small-size pores that no dye molecules could 

diffuse into, and they also contributed to the big standard deviation of fluorescence 

intensities from samples with 60 min and 120 min delay times.  
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Absorption measurements, contact angle measurements and fluorescence imaging 

based on a full set of delay time samples all revealed that nascent alcogel thin films 

were chemically reactive, the reactive stage persisted ~ 10 min under ambient 

conditions, and most importantly the sample delay time resulted in dramatically 

different characteristics of produced thin film samples, with shorter-delay-time samples 

resembling hydrogel more and longer-delay-time samples resembling alcogel more. 

Both contact angles and absorption spectra were affected by environmental humidity, 

whereas fluorescence imaging was not so sensitive to it.   

5.3.3 The Change of Gel Characteristics with Humidity 

5.3.3.1 Profile thickness measurements 

It has been mentioned earlier in the contact angle-sample delay time and 

absorbance-sample delay time studies, humidity could affect the thickness of produced 

thin film samples. As described in Chapter 2.3.7, the humidity control during sample 

preparation was realized by adjusting the humidity in spincoater through a water 

bubbling system while the sample was inside. Figure 5.6 demonstrates how humidity 

Figure 5.6 Effect of relative 

humidity (RH) on sample 

thickness. Three sets of 

samples prepared under 

different RH are compared. 
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affected sample thickness. All water modified thin film samples were prepared in 1 mM 

R6G aqueous solution. Under 63% RH, which was the most common ambient humidity 

in our lab, 0 min-delay sample was too thin to produce a reliable estimate, 1 min-delay 

sample was 161±5 nm, and the rest settled down at 192±10 nm in thickness; under 70 % 

RH, both 0 min and 1 min-delay samples were too thin to be measured, 2 min-delay 

sample was 158±1 nm, and the rest were stabilized at 170±6 nm thick; under 80 % RH, 

0min, 1min and 2min-delay were all too thin to be measured, the other three samples 

remained at a thickness of 123±7 nm. It’s safe to conclude that the higher the RH, the 

thinner the sample and the more samples have unmeasurable thickness. This is possibly 

because higher humidity can keep the nascent alcogel thin films more moisturized and 

made the stage of fluid-like structure last longer, leading to easier gel loss during 

preparation. As shown in Figure 5.6, at 3 min-delay time, regardless of RH all samples 

remained at a measurable thickness and the sample thickness started stabilizing with 

delay time.  

 

Figure 5.7 Thickness variation 

of 3 min-delay samples with RH. 
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To understand further about how exactly humidity affects the sample thickness, we 

fixed sample delay time at 3 min, a wider RH range from 82 % to 30% was examined. 

Three min-delay was chosen because that’s the point where sample thickness started 

stabilizing regardless of humidity variation. The thickness of 3 min-delay sample should 

reflect the rough thickness of the whole set of samples prepared under the same RH. 

Seven hydrogel-like thin film samples were prepared with 3 min-delay time in 1 mM 

R6G aqueous solution under the controlled humidity. As shown in Figure 5.7, the 

thicknesses of them were compared. The sample thickness decreased 46% from 248±2 

nm to 134±1 nm when RH increased from 30% to 82%, and the rate of decrease was 

slow at the beginning and became faster after RH passed 50%. When RH increased 

from 50% to 72%, which was the ambient humidity range of our lab, the sample 

thickness dropped from 236±10 nm to 168±10 nm. Since environmental humidity 

showed a non-negligible effect on sample thickness, all samples were prepared under a 

controlled humidity hereafter, unless specified individually. 

5.3.3.2 Absorption measurements 

 
 

Figure 5.8 Variation of R6G 

absorbance with RH. Samples 

prepared under three different 

RHs are displayed. 
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Environmental humidity during sample preparation also affected the absorbance of 

dye doped samples, or precisely the guest loading capacity of samples. As shown in 

Figure 5.8, the absorbance of three full sets of R6G doped thin film samples is 

compared. They were the same sets of samples described in Figure 5.6, being prepared 

under RH of 63%, 70% and 80% separately. Regardless of the humidity, they all 

showed a similar trend of absorbance variation with sample delay time, that is a rapid 

increase followed by a slow decrease. As explained in section 5.3.1.2, the initial loss of 

absorbance intensity was partially caused by gel loss, and the gradual decrease of 

absorbance intensity after peak-delay-time (see definition in Chapter 2.3.7) was due to 

passing of the reactive stage. However, both the peak absorbance and the 

peak-delay-time varied with RH. The peak-delay-time was 2 min under 63% RH, 

increased to 5 min under 70% RH, and was then extended to 10 min under 80% RH. 

Extension of peak-delay-time suggested elongated chemically reactive stage of nascent 

alcogel thin films. As indicated in Figure 5.8, under 63% RH, 5 min-delay sample 

almost lost its dye loading capacity with a very low absorbance of 0.013; under 70% 

RH, 5 min-delay sample was the peak-delay-sample with an absorbance of 0.070, even 

the 7 min-delay sample still showed good dye loading capacity with the absorbance of 

0.045; under 80% RH, the 60 min-delay sample still showed a good dye loading 

capacity with the absorbance of 0.034. When RH increased from 63% to 80%, the 

chemical reactive stage of nascent alcogel thin films was extended from 5 min to 

beyond 60 min. The peak absorbance of each set decreased with increased RH, which 

should be related to the thinner thickness of samples in higher RH. Increasing RH helps 

to extend the chemical reactive stage of nascent alcogel thin films, but at a price of gel 
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loss and consequently lower absolute dye loading capacity of the sample. One 

explanation for this behavior of new gel is that high humidity could maintain the 

fluid-like state of nascent alcogel thin films longer, thus leading to easier gel loss during 

preparation. 

 

To really quantify the effect of humidity on absorbance and eliminate the effect of 

sample delay time on absorbance, the same set of 3 min-delay time samples in Figure 

5.7 were compared, and RH still ranged from 82 % to 30%. 3 min-delay time was 

chosen for an additional reason, which is 3 min was the most often appeared 

peak-delay-time under ambient conditions. Higher absorbance signals would provide a 

better signal to noise (S/N) ratio. The effect of humidity on sample absorbance is shown 

in Figure 5.9. The overall trend was that when RH increased, sample absorbance 

decreased, which should be partially due to the drop of sample thickness. The only 

exception was the 50% RH sample, which kept a noticeably higher absorbance (0.090) 

than that of 30% RH sample (0.084). Considering the 7.3% relative experimental error 

of absorbance measurements (experimental error data is discussed in section 5.3.5.1), 

Figure 5.9 Absorbance 

variation of R6G doped 3 

min-delay hydrogel-like 

thin film samples with RH. 
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the difference between them could be neglected. Overall, when RH fell to between 30% 

and 60%, the absorbance of samples barely changed, once it passed 60%, sample 

absorbance decreased significantly with increased RH. 

5.3.3.3 Fluorescence recovery by photobleaching (FRAP) 
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Figure 5.10 (A) FRAP traces from Fl in six 0 min-delay hydrogel-like thin film samples 

under different humidity, and (B) the expanded view of the four samples circled in (A). 

 
Environmental humidity could affect the diffusion rate of Fl in hydrogel-like thin 

films. Because of the difficulty to control and measure the exact humidity around the 
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sample during FRAP experiment, we only did a rough humidity control of examined 

samples. Briefly, after sample preparation, a cuvet (both sides are open) was glued on 

the top of a gel sample, and then the sample was stored overnight in a chamber 

equilibrated with water moisture. When the cuvet-glued sample was taken out of the 

chamber, rough humidity control of each sample was then realized by sealing the open 

side of the cuvet after different delay time. Because the humidity in the chamber was 

higher than ambient humidity, we believe that the longer the delay time, the lower the 

local humidity would be obtained around the sample. Samples labeled with 1, 2, 3, 4, 5 

and 6 in Figure 5.10 represent samples with 1 min-delay, 2 min-delay, 4 min-delay, 5 

min-delay, 6 min-delay and 25 min-delay respectively before sealing, corresponding to 

humidity from high to low. 

Qualitatively, the higher the humidity, the faster Fl molecules diffuse in the silica 

hydrogel-like thin films. As samples 1 and 2 demonstrated in Figure 5.10 (A), when the 

local humidity of the sample was very high, molecular diffusion in the film was so fast 

that the fluorescence intensity had completely recovered before we unblocked the 

detector. And in both traces, the fluorescence after recovery (I(∝)) was about 85~95% 

of its initial fluorescence before photobleaching (I(i)), indicating that very high portion 

of Fl molecules were mobile. Since local humidity around sample 3 was a little bit 

lower than sample 1 and 2, Fl molecules diffused relatively slower, and the recovered 

portion was able to be partially captured after we unblocked the detector. I(∝) was 

about 80% of its I(i) in trace 3, indicating most Fl molecules were mobile in sample 3. 

In Figure 5.10 (B), as the local humidity went from high to low, sample 4 showed a 

faster recovery than sample 5, and sample 5 showed a much faster recovery than sample 
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6. In traces 4 and 5, the fluorescence after recovery (I(∝)) was about 50~80% of its 

initial fluorescence before photobleaching (I(i)), indicating that more than half Fl 

molecules were still mobile in samples 4 and 5. There was almost no recovery detected 

from sample 6, since it was delayed too long before being sealed, and it turned into a 

dry sample. Without much water around, most Fl molecules in sample 6 were 

immobilized, indicated by the very low I(∝) (only 10% of its I(i)). In summary, 

humidity can affect molecular diffusion inside silica hydrogel-like thin films. The 

higher the humidity, the faster guest molecules can diffuse. Low ambient humidity 

causes fast evaporation from such a thin film, thus lowering the water content of thin 

film and resulting in very slow or even no mobility of trapped molecules.  

5.3.4 The Change of Gel Characteristics with Sol Aging Time 

 

We’ve already demonstrated that sample delay time and environmental humidity 

are the two major factors to affect the characteristics of produced new gel samples. 

Since the new hydrogel-like thin film samples were produced from alcogel thin films, 

any factor affecting the structure of alcogel thin film would affect the structure of 

Figure 5.11 Absorbance 

variation of R6G doped 

3min-delay hydrogel-like 

thin film samples with sol 

aging time. 
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produced hydrogel-like thin films. With the same precursor, the same components of sol 

and the same spin-rate of gel deposition, the only factor that varied during sample 

preparation was sol aging time. To examine whether sol aging time could affect the 

produced new gel thin film, five samples were prepared in 1mM R6G solution with 3 

min-delay time under 65% RH, with sol aging time ranged from 17 hr to 22 hr. As 

shown in Figure 5.11, under a controlled humidity and fixed delay time, the sample 

absorbance practically didn’t change with sol aging time. The absorbance of all R6G 

doped hydrogel-like thin film samples was scattered around 0.07, with an average of 

0.071±0.002. As a result, we believed that sol aging time didn’t affect the characteristics 

of produced new hydrogel-like thin film samples. Usually, silica sols were aged 19 ~20 

hr before gel deposition on coverslips. 

5.3.5 Reproducibility of Sample preparation 

Reproducibility of sample preparations was examined by both absorption and 

thickness measurements. Hydrogel-like thin film samples under investigations were all 

prepared in 1 mM R6G solution with a fixed delay time under a controlled RH. 

5.3.5.1 Absorption measurements  

 

 
Table 5.1 R6G absorbance (monomer peak) of eight different 3 min-delay hydrogel-like thin film 

samples, prepared under 63% RH. 

 
Table 5.1 summarized the absorption measurement data from eight different 3 

min-delay samples prepared under 63 % RH on four different days. The absorbance of 

No. 1 2 3 4 5 6 7  8 Ave 

Abs. 0.073 0.077 0.077 0.066 0.077 0.078 0.073 0.064 
0.073 
±0.005
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these eight R6G doped samples was very close, with an average of 0.073±0.005, which 

indicates that our preparation protocol is highly repeatable. The relative standard 

deviation of absorption measurements was 7.3%, we thus assume any absorbance 

variation falling in the 7.3% range will be considered no change.  

5.3.5.2 Profile thickness measurements 

To determine the variation of thickness measurements from the profilometer, we 

scanned the same spot of a hydrogel-like thin film sample ten times and summarized the 

results in Table 5.2. The standard deviation was 5.7 nm, the relative standard deviation 

was 3.3%, and they reflect the instrumental error. To examine whether the location of 

scanning spot on the sample would cause a big fluctuation of thickness measurements, 

ten different spots were randomly chosen on one sample and scanned, with data 

summarized in Table 5.3. Compared to the instrumental error, the standard deviation of 

thicknesses on different spots increased about 3 nm to 8.8 nm, and the relative standard 

deviation increased to 5.2% from 3.3%. This increase relative to instrumental error is 

small, suggesting that the variation of sample thickness on different spots is most likely 

still due to instrumental error, and our hydrogel-like thin film has an even surface.  

No. 1 2 3 4 5 6 7 8 9 10 Ave 

H 

(nm) 
163.8 177.5 183.9 175.9 176.3 177.0 168.3 174.9 170.1 177.1

174.5

±5.7  

Table 5.2 Ten times thickness measurements of one spot on a sample, prepared in with 4 

min-delay time under 70 % RH. 
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Spot 

No. 
1 2 3 4 5 6 7 8 9 10 Ave 

H 

(nm) 
177.0 158.0 170.1 179.0 161.2 174.0 155.7 165.3 165.4 180.0

168.6

±8.8
 

Table 5.3 Thickness measurement of ten spots on the same sample in Table 5.2. 

 

 

Also, we had been monitoring the thickness of two different samples over a month, 

and tried to find out whether it is possible to collect reliable thickness data of samples 

even they have been aged for different days after preparation. Figure 5.12 demonstrated 

that sample thickness didn’t seem to change with its aging time. The 2 min-delay 

hydrogel-like thin film sample kept a thickness of 200.2±7.4 nm with a relative standard 

deviation of 3.7%, and the 10 min-delay sample remained 195.2±13.3 nm thick with a 

6.8% relative standard deviation. 3.7% and 6.8% are still close to or comparable to the 

instrumental error and the error due to sampling different spots, we thus believe 

thickness of hydrogel-like thin films doesn’t change within one-month aging.   

The reproducibility of sample preparation was also examined by thickness 

measurements from different samples. Table 5.4 summarized the results from six 

Figure 5.12 Variation of sample 

thickness with sample aging time. 

Squares: 2 min-delay hydrogel-like 

thin film sample prepared under 

63% RH; Circles: 10 min-delay 

sample prepared under 63% RH. 
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different 3 min-delay hydrogel-like thin film samples, which were prepared in 1mM 

R6G solution under 63% RH on four different days. The standard deviation was 10.7 

nm, and the relative standard deviation was 5.4%. By summarizing the results from 

those thickness tests, we chose the greatest standard deviation to represent the 

experimental error for thickness measurements, which is 13.3 nm. And the 

corresponding relative standard deviation was 6.8%. Thus, sample thicknesses varied in 

6.8% range will be considered the same. 

 

No. 1 2 3 4 5 6 Ave 

H (nm) 180.2 203.0 204.8 207.1 206.1 191.6 
198.8 

±10.7 
 

 
 
Table 5.4 Thickness measurement of six different 3 min-delay samples, prepared under 63% RH 

on different days. 

  
5.3.5.3 Unit absorbance 

After the experimental errors of absorption and thickness measurements were 

determined, we can calculate the error of the unit absorbance of hydrogel-like thin film 

samples. The unit absorbance of sample is the absorbance per unit height in m, which 

will help us to compare the dye loading capacity of each sample by eliminating the 

thickness influence. Since most of the samples were prepared under 63% RH, and 3 

min-delay samples were the most studied ones, data in Table 5.1 and Table 5.4 were 

used as representative values of absorbance (A) and thickness (H, m) to calculate the 

error of unit absorbance (A/H, m-1). A is 0.073, δA is 0.005, H is 0.1988 m, and δH 

is 0.0107 m. According to Equation 5.2,30 the error of unit absorbance A/H will be 

0.034 m-1, and the relative error will be 9.1%. The unit absorbance variation of 
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dye-doped hydrogel-like thin film samples within 9.1% range will be considered no 

change. 
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5.3.6 Homogeneity of Hydrogel-like Thin Film Samples 

Since the new gel film is derived from alcogel, even though it behaved 

dramatically different from alcogel, such as showing hydrophilic surface and supporting 

molecular diffusion, we still suspect there might remain some alcogel characteristics 

and it is actually a hybrid alcogel-hydrogel material. One convenient way to verify if 

it’s a hybrid gel or a homogeneous hydrogel is to examine whether the sample 

absorbance is linearly proportional to the sample thickness. If the absorbance is linearly 

related to sample thickness, the new gel thin film is homogeneous hydrogel, if it’s not, 

the gel should be a hybrid alcogel-hydrogel. Homogeneous hydrogel would evenly trap 

dye molecules (as demonstrated in Figure 5.1 (B2)), displaying a linear relation of 

absorbance to thickness. Because of the much higher guest loading capacity of hydrogel 

than that of alcogel (as demonstrated in Figure 5.2 (B)), if the new gel is a hybrid 

alcogel-hydrogel, hydrogel part would trap a lot more dye molecules than the alcogel 

part, at the same time, molecules encapsulated in the alcogel part would be unevenly 

distributed (as demonstrated in Figure 5.1 (B3)), and both should cause non-linear 

relation of sample absorbance with sample thickness.  

5.2
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In Figure 5.13, five hydrogel-like thin film samples with different thicknesses 

ranging from 200 nm to 550 nm were compared. They were all prepared in 1 mM R6G 

solution with 3 min-delay time under 63% RH, and the thickness variation was realized 

by changing the spin rate. As demonstrated in Figure 5.13, the absorbance of R6G 

doped new gel thin film was in a good linear relationship with its thickness, which 

suggests that the new gel thin film is indeed a piece of homogeneous hydrogel. 

Cracking of gel sample was observed when the thickness passed 350 nm. To make a 

piece of stable hydrogel-like thin film using the method we developed, the thickness is 

suggested to be controlled under 350 nm. 

5.3.7 Microstructure of the New Hydrogel-like Thin Films 

5.3.7.1 Unit absorbance 

According to Figure 5.14, the unit absorbance of samples underwent a gradual 

increase and then a relatively rapid decrease with sample delay time no matter under 

which RH. The unit absorbance of samples is calculated by using the absorbance and 

thickness data from Figure 5.8 and Figure 5.6.  

 

Figure 5.13 Absorbance variation 

of R6G doped hydrogel-like thin 

film sample with thickness. 
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Under a lower 63% RH, the unit absorbance of 1 min-delay sample (0.368 m-1), 

which was the only sample before peak-delay-sample, was pretty close to that of the 

peak-delay-sample (0.402 m-1). Considering 9.1% of the relative error of unit 

absorbance, technically there’s no difference between them. When RH increased to 70%, 

the difference of unit absorbance between the first two samples (~0.32 m-1) and the 

peak-delay-sample (~0.41 m-1) cannot be neglected any more, because the variation is 

more than 20%, but the one right before peak-delay-sample would be considered to 

have a comparable unit absorbance as that of peak-delay-sample. When RH increased 

even higher to 80%, the difference of unit absorbance between the first sample (3 

min-delay, 0.350 m-1) and the peak-delay-sample (0.470 m-1) was very obvious, more 

than 25%. Therefore, we can conclude that when RH increased from 63% to 80%, the 

difference of unit absorbance between samples with delay time shorter than the 

peak-delay-time and the peak-delay-sample gradually increased, which should be 

related to the longer reactive stage under higher RH. The longer the reactive stage, the 

more gradual change of samples could be tracked before peak-delay-time. Once the 

peak-delay-time was passed, the unit absorbance of samples under 63% RH rapidly 

Figure 5.14 Unit absorbance 

variation of R6G doped thin film 

samples with sample delay time 

Samples prepared under three 

different RHs are displayed. 
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decreased, at 5 min-delay time, the sample almost lost its dye loading capacity. Under 

70% RH, 5 min-delay sample was the peak-delay sample, showing maximum dye 

loading capacity, when delay time increased to 60 min, it showed complete loss of dye 

loading capacity. Under 80% RH, the 60 min-delay sample stilled remained 70% dye 

loading capacity compared to the peak-delay sample. Thus, high RH was found to help 

remaining high dye loading capacity of samples which passing peak-delay-time. It’s 

also worth pointing out that the unit absorbance of peak-delay sample under 80% RH 

(~0.47 m-1) was 15% higher than those of the peak-delay samples under 63% and 70% 

RH (~0.40 m-1). In summary, higher RH helped to prolong chemical reactive stage of 

nascent thin film alcogel, which provided enough time to track the gradual change of 

produced hydrogel-like thin film samples and helped most samples to maintain 

relatively high dye loading capacity. 

5.3.7.2 SEM images 

B C D EA B C D EA

 
 

Unit absorbance of thin film samples varied with sample delay time, suggesting 

that there must be some difference between the gel structures of different delay-time 

samples. In Figure 5.15 (B), a 0 min-delay hydrogel-like thin film deposited on a 

coverslip showed a rough surface with channels and pores distributed everywhere, 

whereas the surface of a 0 min-delay thin film on 900 nm CVD SiO2/Si (900 nm-thick 

Figure 5.15 SEM images of (A) clean bare coverslip, (B) 0 min-delay gel on coverslip, (C) 0 

min-delay gel on coverslip/VWR microscope slide, (D) 0 min-delay gel on VWR microscope 

slide, and (E) 0 min-delay gel on 900 nm CVD SiO2/Si. 
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SiO2 deposited on Si by chemical vapor deposition) shown in Figure 5.15 (E) was very 

smooth. There are two possible reasons for the difference. One is that, as the substrate 

for gel deposition, the coverslip (thickness: ~0.15 mm) is a lot thinner than SiO2/Si 

(thickness: ~0.60 mm), those channels and pores could be due to the bending of 

coverslip during spinning; another reason could be the different surface structure 

between glass coverslip and CVD SiO2. To find out whether it’s due to bending or 

different surface structure of substrates, SEM images of 0 min-delay samples deposited 

on different substrates were compared in Figure 5.15. The corresponding substrates are 

coverslip (size: 25 mm x 25 mm, thickness: 0.13~0.17 mm, Figure 5.15 (B)), the same 

size of coverslip glued on top of VWR microscope slide (size: 25 mm x 25 mm, 

thickness: ~1 mm, Figure 5.15 (C)), the same size VWR microscope slide (Figure 5.15 

(D)), and 900 nm SiO2/Si (size: 25 mm x 25 mm, thickness: ~0.6 mm, Figure 5.15 (E)). 

All the gel samples deposited on glass substrates showed similarly rough surface, no 

matter the substrate was thick or not, their surface was rougher than a bare coverslip 

(Figure 5.15 (A)), and the one on SiO2/Si (Figure 5.15 (E)) was the smoothest. This 

experiment demonstrated that the rough surface with channels and pores was not due to 

bending of substrate but different surface structure between regular glass surface and 

CVD SiO2. This interpretation was further confirmed by AFM roughness measurements 

in section 5.3.7.3. Because what we observed from the SEM images of 0 min-delay gel 

on different substrates was actually the topography of the underneath substrates, CVD 

SiO2 is a lot smoother than regular silica glass surfaces, that’s why that sample showed 

the smoothest surface.  
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A B C D E FA B C D E F

 

Figure 5.16 SEM images of hydrogel-like thin film samples with delay time of (A) 0 min, (B) 1 min, 

(C) 2 min, (D) 3 min, (E) 10 min, and (F) Alcogel 

 
When gel samples with various delay-times were prepared on coverslip, different 

roughness or pore sizes were expected. The 2 min peak-delay-sample was expected to 

have the roughest surface or largest-size of pores because it showed the highest guest 

loading capacity. However, as shown in Figure 5.16, 1 min-delay sample was the 

roughest, the 2 min peak-delay-sample was just as smooth as the other 

longer-delay-time samples and the alcogel sample. Based on thickness measurement, 

we know that samples before peak-delay-time were thinner than the others due to gel 

loss, and some of them were too thin to be measured by profilometer. The rough 

features shown on 0 min-delay and 1 min-delay samples possibly just reflect the 

underneath surface features of coverslip substrate instead of the features of gel samples 

themselves  
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5.3.7.3 AFM roughness measurements 

 
 
Figure 5.17 AFM RMS roughness of bare coverslips, different delay-time thin films and alcogel 

thin film. 

 
To examine what caused the roughness change and how exactly sample roughness 

changes with delay time, two coverslip substrates cleaned by acetone/methanol (5 min 

sonication in each solvent) and the regular NaOH cleaning procedure (referring to 

Chapter 2.3.1), and a series of delay samples were prepared. Their AFM images were 

collected and root-mean-square (RMS) roughnesses were then calculated based on 

AFM images. Glass 1 in Figure 5.17 represents the acetone/methanol cleaned coverslip, 

and Glass 2 represents the coverslip cleaned by our regular NaOH procedure. As shown 

in Figure 5.17, the roughness of acetone/methanol cleaned coverslip was ~1.5 nm, the 

regularly cleaned coverslip, the 0 min-delay and 1 min-delay samples showed a similar 

roughness between 2.5 ~ 3 nm, all the other delay samples and the alcogel sample 

showed a very small roughness ~ 0.3 nm. As reported by Pantano et al.,31 NaOH 

cleaning etched glass surface and created a surface with RMS roughness ~ 3 nm, which 

matched up what we observed from Glass 2. Acetone/methanol could not etch the glass 

surface and left the surface of Glass 1 smoother. The similarity of roughness between 
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Glass 2 and 0 min-delay or 1 min-delay hydrogel-like thin film samples indicates that 

what contributed to the roughness of those two short-delay-time samples was not the gel 

but the underlying features of glass substrate. When the gel thickness was thin enough, 

what we observed from the gel samples was indeed the topography of the substrate or 

the combined topographic features of gel and substrate. As sample delay time increased, 

sample thickness increased to a thickness much thicker than the 3 nm roughness of glass 

substrate, and what we observed from those samples would only reflect the real features 

of deposited gel surface. Those samples with delay time ≥ 2 min all showed a surface 

as smooth as the alcogel thin film sample, with the RMS roughness ~ 0.3 nm , which is 

the resolution of our AFM instrument. 

Even though variation of unit absorbance with sample delay time indicated that 

there must be some difference inside the structure between samples with different 

delay-times, with the techniques we used (SEM and AFM), no subtle difference of the 

gel structure was detected. High-resolution TEM would be helpful to solve the 

difference of microstructures between them if we can find a way to make the same type 

of thin film hydrogel on TEM grids.                 
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5.3.8 Improvement of Guest Loading Capacity  

5.3.8.1 Improvement of dye loading capacity 

 

 
 
Figure 5.18 Absorption spectra of 2 min-delay hydrogel-like thin film samples prepared in 1 mM 

R6G aqueous solution (lower), and in 1 mM R6G/10 mM pH 7 PBS (upper) under 63% RH. 

 
Improving guest loading capacity of silica matrix can improve the sensitivity and 

the shelf-life of silica based sensors. Figure 5.18 showed the significant difference 

between two R6G doped hydrogel-like thin film samples prepared with or without the 

existence of 10 mM pH 7 phosphate buffer solution (PBS). Dye loading capacity of the 

one prepared in R6G/PBS was improved more than ten times as that of the other one 

prepared in R6G solution only. Both SEM and AFM images were collected from these 

two types of samples, but no structure difference was detected from SEM images even 

with magnification as high as 100,000 x, neither any difference was detected from 

surface RMS roughness. With the limitation of our techniques, we still couldn’t find 

out the reason for this significant improvement of guest loading capacity.
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Sample Thickness 
Integrated 

Abs. 
Absolute 
Conc. (M) 

R6G Solution 0.1 mm 181.1 1.0 x 10-3 

Gel, without buffer 201.8 nm 30.1 0.082 

Gel, with buffer 188.6 nm 306.6 0.90 

 
Table 5.5 Comparison of R6G-doped hydrogel-like thin film samples with R6G aqueous solution. 

 
In Table 5.5, thickness and the integrated absorbance of the two R6G doped 

hydrogel-like thin film samples displayed in Figure 5.18 are summarized, and are 

compared with the data of 1 mM R6G aqueous solution. Absorption spectrum of the 1 

mM R6G solution was taken in a 0.1 mm-thick sandwich-structure cell (which was 

made by stacking two cover glasses together using double-sided tape as a spacer), 

whereas the spectra of those two gel samples were based on only ~200 nm thickness. 

Assuming they all contained the same species of R6G molecules, if we use the 1 mM 

aqueous R6G solution as a reference, based on Beer’s law, the absolute concentration of 

these two samples would be converted to 0.082 M and 0.90 M respectively, which were 

82 times and 900 times as that of the saturated R6G aqueous solution (1 mM) prepared 

at room temperature.       

5.3.8.2 The effect of ionic strength on dye loading capacity 

Since adding salt greatly improved the dye loading capacity of produced thin film 

hydrogel samples, to optimize the dye loading capacity of samples, PBS ranging from 

0.1 to 100 mM were used to make 0.1 mM R6G solutions. Concentration of 0.1 mM 

R6G was chosen because it provided better absorbance signals than any 

lower-concentrated R6G solution, and a wider range of PBS to mix with than the 

saturated 1 mM R6G solution. The experiment was repeated in two continuous days 

with ambient RH ~64%, and samples were all 2 min-delay hydrogel-like thin film 
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samples. As shown in Figure 5.19, when the concentration of PBS was 0.1 mM, the 

absorbance of monomer peak was 0.046±0.005, which is comparable to that of 2 

min-delay sample produced in 10 times more concentrated 1 mM R6G aqueous solution 

(0.058±0.002, Figure 5.18 (lower)). As the concentration of PBS kept increasing, the 

sample absorbance rapidly increased to a peak ~ 0.30, and then slowly decreased to 

~0.20 with PBS concentration of 100 mM. Considering the 7.3% experimental error of 

absorbance measurement, we believe that 0.5 mM to 10 mM would be the PBS range to 

provide maximum dye loading capacity of samples. The latter decreasing trend with 

PBS concentration was possibly because that salt molecules inside the solution can 

compete with dye molecules to occupy the sites in pores, thus leading to lesser amount 

of dye being encapsulated.   

 

Figure 5.19 Absorbance of R6G doped 2 min-delay hydrogel-like thin film samples prepared in 

0.1 mM R6G in variously concentrated pH 7 PBS. 
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5.3.8.3 Real-time trapping and post-trapping of R6G molecules 

To better understand the process of gel formation, two methods were used to trap 

R6G molecules. In Figure 5.20, “real-time trapping” samples were prepared by dipping 

2 min-delay alcogel thin films in variously concentrated R6G (from 0.1 mM to 1 mM) 

in 10 mM pH 7 PBS, and “post-trapping” samples were prepared by dipping 2 

min-delay alcogel thin films in 10 mM pH 7 PBS to form the gel first and then being 

dipped in variously concentrated R6G aqueous solutions to trap dye molecules 

afterwards. 10 mM PBS was chosen because it not only falls in the buffer range to 

provide the maximum loading capacity of sample but also is concentrated enough to 

eliminate the influence of dye concentration on ionic strength.  

Since both sets of samples were prepared from differently concentrated R6G 

solutions, the change of R6G species along with concentration was studied. R6G 

absorption spectra were resolved into monomer and dimer peaks by Gaussian fitting 

(referring to Chapter 2.5.3). Figure 5.20 (left Y axis) demonstrates the change by 

monitoring R6G dimer/monomer peak ratio with concentration. In aqueous solution, 

when R6G concentration was equal to or lower than 0.1 mM, dimer/monomer ratio was 

smaller than 0.5, suggesting that monomers dominated; once the concentration passed 

0.1 mM, the ratio increased rapidly and reached 1.4 at 1mM concentration, suggesting 

more and more R6G dimers formed and then dominated. The relative amount of R6G 

monomers and dimers in solution affected the absorbance of R6G doped hydrogel-like 

thin film samples to different extent if prepared by different dye-trapping methods.    
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Figure 5.20 (Right Y axis) Absorbance of R6G doped 2 min-delay samples prepared by 

real-time trapping method (circles), and absorbance of R6G doped 2 min-delay samples 

prepared by post-trapping method (diamonds). (Left Y axis) R6G dimer/monomer peak ratios of 

variously concentrated R6G aqueous solutions (dashed line with square marks). 

 

The big difference between those two sets of samples was clearly demonstrated in 

Figure 5.20 (right Y axis). With real-time trapping method (circles), the absorbance of 

samples followed a fast-increase relationship with concentration of R6G solution; with 

post-trapping method (diamonds), the absorbance first slowly increased with R6G 

concentration, after reached a peak at 0.1 mM concentration, then dropped. In the 

former case, gel network was forming with R6G molecules around, due to the strong 

electrostatic attraction between negatively-charged gel surface and positively-charged 

R6G molecules, R6G molecules would be attracted to the surface and acted as templates 

to affect the pore sizes and shapes, thus a lot of R6G molecules would be encapsulated 

inside pores due to attraction; simultaneously, regular diffusion of R6G molecules also 

helped the encapsulation. Template encapsulation would not be limited by the size of 
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pores or dye molecules, whereas the diffusion encapsulation would be affected. As the 

concentration of R6G solution increased, more and more R6G dimers or aggregates 

existed, if the size of dimers and aggregates was larger than pore sizes, those dye 

molecules cannot be encapsulated any more, which leads to the amount of encapsulated 

dye molecules decreasing. In real-time trapping, even though encapsulation by diffusion 

was weakened, template encapsulation was still ongoing. The overall increase trend of 

absorbance with R6G concentration by real-time trapping method might suggest that 

template encapsulation is dominating in this case. On the contrary, if gel structure was 

formed before dye encapsulation by post-trapping method, encapsulation of dye 

molecules can only be realized through diffusion. As explained earlier, encapsulation by 

diffusion was limited by the size of dye molecules. When more and more R6G dimers 

or aggregates existed in higher concentrated R6G solution, the encapsulation of R6G 

molecules became harder, which explains why the absorbance of samples dropped at 1 

mM concentration compared to 0.1 mM concentration.  

It has to be pointed out that, when R6G monomers absolutely dominated in 

solution (concentration ≤ 0.01 mM), there was no difference of absorbance between 

R6G doped samples prepared by two different methods; as the concentration increased, 

the absorbance difference between the two sets of samples became larger and larger, 

once dimers absolutely dominated in solution at 1 mM concentration, the difference 

between them was huge: the peak absorbance of “real-time trapping” sample was 6.5 

times as that of the “post-trapping” sample. It is probably because at very low 

concentration, R6G monomers dominate, and monomers can be easily encapsulated by 

either method, at the same time, there are more than enough sites available inside gel 
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network for such small amount of molecules, so the amount of molecules that could be 

encapsulated depended on the amount of R6G molecules available in solution, and both 

methods were concentration-dependent, that’s why they showed similar dye loading 

capacity at very low concentration of R6G solution. When the concentration of R6G 

solution increased, on one hand, existence of more and more R6G dimers or aggregates 

would cause the amount of dye being encapsulated by post-trapping method to drop, but 

would not affect much to the sample prepared by real-time trapping method; on the 

other hand, the already formed gel has limited sites for dye encapsulation, when the 

concentration increased to a certain point, the amount of encapsulated dye would be 

limited by the available sites inside gel, whereas encapsulation during gel formation was 

not limited by sites. Molecular size and available sites both should contribute to the big 

difference of dye loading capacity between hydrogel-like thin film samples prepared by 

these two methods when the concentration of R6G solution increases. 

5.3.9 pH Sensor Study 

5.3.9.1 Prototype pH sensor development 
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Figure 5.21 (A) Variations of NBC absorbance with sample delay time, with all samples 

prepared under 63% RH in 0.35 mM NBC aqueous solution. (B) Variations of NBC absorbance 
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with environmental humidity, with all samples prepared with 3 min delay in 0.35 mM NBC 

aqueous solution. 

 
Based on the investigations of this new gel material doped with R6G, the 

development of prototype silica hydrogel-like thin film sensors doped with Nile blue 

chloride (NBC) was a lot easier. Since both sample delay time and environmental 

humidity can affect the characteristics of the hydrogel-like thin film, we studied the 

variation of NBC absorbance with sample delay time and humidity. There are two 

major peaks in NBC doped silica thin film samples, one peak is close to 596 nm, due to 

aggregation of NBC, and the other peak is close to 644 nm, which is the monomer peak 

of NBC.32 Between them, 596 nm-peak was dominating in our prototype hydrogel-like 

thin film sensors because of the very high concentration inside.  

In Figure 5.21 (A), five NBC doped hydrogel-like thin films were prepared under 

63% RH in 0.35 mM NBC aqueous solution, with delay time varied from 0 min to 5 

min. Such a small range of delay time was chosen because we know that R6G doped 

samples have a peak-delay-time close to 3 min if prepared under 63% RH. 0 to 5 min 

should cover the peak-delay-time of NBC doped samples. As demonstrated in Figure 

5.21 (A), only 0 min-delay and 1 min-delay samples show substantial decrease of 

absorbance due to gel loss, the other four samples with delay time from 2 min to 5 min 

all stabilized at absorbance ~ 0.03. We then chose 3 min as the standard delay time for 

preparation of all NBC doped samples. In Figure 5.21 (B), three NBC doped 

hydrogel-like thin films were prepared in 0.35 mM NBC aqueous solution with 

3min-delay time, under 63% RH, 50% RH and 30% RH, respectively. There’s a 

detectable drop of absorbance when RH decreased, however, the difference between 
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them was so small (< 6%), possibly just due to experimental error. We believe NBC 

doped samples are not sensitive to environmental humidity if RH ≤ 63%. Hereafter, all 

NBC doped thin film samples were prepared just under ambient conditions, with 

humidity monitored at 52 ± 2% RH.            

It has been demonstrated in section 5.3.8 that PBS buffer could improve guest 

loading capacity of hydrogel-like thin film samples, thus we applied the similar 

real-time trapping protocol to NBC doped thin film samples. As indicated in Figure 5.22, 

the dye loading capacity of sample was improved 1.6 times when prepared in 5mM PBS 

buffer. Even though the improvement was not as impressive as that of R6G doped 

samples, its intensity was good enough for the subsequent investigations. 
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Figure 5.22 Absorption spectra of 3 min-delay samples prepared in 0.025 mM NBC aqueous 

solution (lower), and in 0.025 mM NBC/5 mM pH 7 PBS (upper) under 52% RH. 

 
 
5.3.9.2 pH response, leaching and reversibility investigations 

Nile blue chloride is a pH indicator that undergoes color change from blue to red in 

pH range of 10.1 to 11.1. Before the investigation of pH response of NBC in our 

prototype hydrogel-like thin film sensors, we studied its pH response in aqueous 

solutions. A series of 0.005 mM ~ 0.01 mM NBC aqueous solutions in different pH 
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ranged from 0 to 13 were prepared. The collected absorption spectra of them are shown 

in Figure 5.23. In neutral aqueous solution, NBC shows a major monomer peak at 635 

nm, when the solution gets more concentrated, a peak at 596 nm indicates the 

aggregation of NBC molecules; Under strong acidic condition, it gets protonated and 

shows an additional peak at 457 nm; Under basic condition, its iminium group gets 

deprotonated, and it only shows one peak at 522 nm.32-34  
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Figure 5.23 NBC absorption spectra in different pH solutions. 

 

As demonstrated in Figure 5.23, with the same low concentration of NBC (0.005 

mM), when pH varied from 2 to 7, there’s no substantial change of the spectra in terms 

of both intensity and shape. It did show a detectable drop of the 635 nm-peak intensity 

at pH 2 and 4 compared to pH 7. When the solution became more acidic to pH 0, with 

the same 0.005 mM concentration, the 635 nm-peak intensity dropped to one fifth of the 

pH 7 sample, while a new peak appeared at 457 nm. To confirm this observation of this 

new peak, we doubled the concentration of NBC to 0.01 mM at pH 0, the two peaks at 

635 nm and 457 nm both became more obvious. When the solution became more basic 
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to pH 13, with the same 0.005 mM concentration, the spectrum turned into almost a flat 

line. After the concentrated was doubled to 0.01 mM, remaining pH 13, one huge bump 

appeared at 522 nm. From this experiment, we learned that the molar absorption 

coefficients of the basic and acidic species of NBC are smaller than its neutral species, 

and the concentration of NBC should be kept fairly high enough to observe the response 

of NBC to pH change. These observations match what was reported by Krihak and 

coworkers.32    

Prototype hydrogel-like thin film sensors for pH response, leaching and 

reversibility investigations were all 3 min-delay samples prepared in 0.025 mM NBC/5 

mM pH 7 PBS buffer under 52 ± 2% RH. Since in both hydrogel-like thin film sensor 

and the corresponding alcogel thin film sensor, only one peak dominated during the 

whole investigations, we monitored the dominated peak (λmax) and the corresponding 

peak absorption intensity (Imax) along with time. During the pH response, leaching and 

reversibility investigations, NBC doped silica hydrogel-like thin film sensors and 

alcogel thin film sensors were all blown dry before taken absorption spectra. 

NBC undergoes colorimetric change from blue to red around pH 10 ~ 11 range, 

three sodium hydroxide solutions with pH 11, 11.5 and 12 were used to test the pH 

response of our prototype thin film sensors. As shown in Figure 5.24 (A), in pH 11 

sodium hydroxide solution, the response of the sensor was very slow, after 25 min, λmax 

only dropped about 15 nm from 585 nm to 570 nm and then settled down, after one 

more hour it stayed at 570 nm, even after two more days, it still didn’t change (data not 

shown); in pH 11.5 sodium hydroxide solution, the response was much faster, after 25 

min, λmax dropped about 25 nm from 585 nm to 560 nm, after one more hour, it dropped 
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to 520 nm, which is the characteristic peak wavelength of NBC in basic condition; in 

pH 12 sodium hydroxide solution, the response rate was similar as in pH 11.5, but after 

25 min, the silica thin film was completely dissolved in the solution (as indicated by the 

0 absorption intensity in Figure 5.24 (B)). It is know that silica dissolves when pH > 

10.3.24,35 Results from Figure 5.24 (A) demonstrate that pH 11 was not basic enough to 

trigger obvious pH response, pH 12 was too strong for silica type pH sensors, and pH 

11.5 was the best solution to reveal the pH response of our hydrogel-like thin film 

sensor.  

A BA B

 

Figure 5.24 pH response and leaching of prototype NBC doped thin film sensors. (A) Peak 

wavelength (λmax, nm) and (B) peak absorption intensity (Imax) change with dipping time in pH 11, 

pH 11.5 and pH 12 NaOH solutions. 

 

In Figure 5.24 (B), by monitoring the peak intensity of each NBC doped sensor, we 

could study the leaching rates of them. In pH 11 sodium hydroxide solution, the sensor 

showed a slow leaching, peak intensity dropped ~15% from 0.13 to 0.11 after 85 min. 

In pH 11.5 sodium hydroxide solution, the peak intensity dropped faster, after 25 min, it 

dropped to half of the original intensity, and after one more hour, the intensity dropped 
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65% to 0.05. Three are three reasons for this faster intensity drop: (1) dissolving of 

silica thin film, (2) leaching of dye molecules, (3) the change of NBC species. As 

discussed in NBC solution study, the molar absorption coefficient of the basic species 

of NBC is smaller than its neutral species. More basic species in the sensor along with 

dipping time also resulted in a decrease of absorption intensity. Molecule leaching 

might only contribute a little to the intensity drop, compared to gel dissolving and NBC 

species change. As demonstrated by the sensor in pH 12 sodium hydroxide solution, the 

dissolving of silica thin film became dramatic, with the whole thin film completely gone 

in 25 minute.       

We also investigated the reversibility of the prototype sensors by dipping them in 

pH 11.5 and pH 7 solutions successively, and compared with the corresponding alcogel 

thin film sensors as well. As shown in Figure 5.25 (A), the new hydrogel-like thin film 

sensor underwent a significant λmax change from 582 nm to 532 nm in pH 11.5 solution 

for 65 min and stayed at 530 nm after additional one hour-dipping, which suggests that 

all NBC molecules turned into basic species. Followed by only 5 min-dipping in low pH 

7 PBS buffer, λmax rapidly increased from 530 nm to 576 nm, indicating that all basic 

NBC species completely turned back to neutral species in 5 min, after another 20 min 

exposure in pH 7 buffer, λmax showed a slight drop to 570 nm, which might be due to the 

fluctuation of the measurements caused by very low absorption signals. By contrast, the 

alcogel thin film sensor barely showed any response to high pH 11.5 exposure for as 

long as 125 min, with λmax only slowly decreasing from 594 nm to 581 nm, even after 

25 min exposure in pH 7 PBS buffer, λmax still remained between 583 nm and 587 nm, 

which suggests that most NBC molecules were still neutral species. So it’s safe to 
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conclude that during this reversibility investigation, alcogel thin film sensor doped with 

NBC didn’t show sensitivity to pH change, whereas the hydrogel-like thin film sensor 

was very sensitive. The big difference of the pH response between hydrogel-like thin 

film sensor and alcogel thin film sensor, demonstrated in Figure 5.25 (A), reflects the 

totally different internal structures of them, with the former more hydrogel-like and so 

more highly porous, which makes the encapsulated NBC molecules more accessible to 

external solvents and thus more sensitive to pH change, whereas the latter was denser 

and NBC molecules were deeply trapped or caged inside pores, thus much less 

accessible to surrounding solvent molecules, and caused very low sensitivity to pH 

change.       

A BA B

 

Figure 5.25 Comparisons of prototype NBC doped hydrogel-like (or new gel) thin film sensors 

and the corresponding alcogel thin film sensors. (A) Peak wavelength (λmax, nm) and (B) peak 

absorption intensity (Imax) change with time by dipping them in pH 11.5 NaOH solution and 5 mM 

pH 7 PBS buffer successively. 

 

The peak absorption intensity change of them shown in Figure 5.25 (B) also 

demonstrated the big difference between these two types of pH sensors. It is worth 

pointing out the difficulty of preparing similarly concentrated NBC doped alcogel thin 
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film. With an absorption intensity of 0.12 (which is the initial peak intensity of 

hydrogel-like thin film sensor) at 595 nm in a ~200nm-thick alcogel thin film, the bulk 

concentration of NBC doped sol would be converted to 0.35 M. It can be prepared by 

mixing 5 L of 44.1 M NBC aqueous solution with 630.45 L sol, or by mixing ~80 mg 

NBC powder with 630.45 L sol. Since 44.1 M is far higher than the saturated aqueous 

NBC (0.35 mM) we could prepare in the lab, it’s impossible to prepare the NBC doped 

sol by adding a small amount of highly concentrated NBC solution. ~80 mg NBC 

powder was then mixed with 630.45 L sol, and let it age overnight before spincoating 

to obtain the corresponding NBC doped alcogel thin film sensor (referring to Chapter 

2.3.2). Due to the limited solubility of NBC in sol, there were still a lot of NBC powders 

existed and suspended in the sol before spincoating. The huge difference of the initial 

peak absorption intensity between them should be due to the unmatchable NBC 

concentration in alcogel thin film compared to hydrogel-like thin film. Our 

hydrogel-like thin film can magically encapsulate 6 times as that amount of NBC 

molecules in alcogel thin film, or maybe even higher, because suspended NBC powder 

should also contribute to the absorption intensity. 

Figure 5.25 (B) shows that, when the hydrogel-like thin film sensor was exposed in 

pH 11.5 solution, its peak absorption intensity continuously dropped, and it showed a 

faster dropping rate in the first one hour with a 67% intensity drop and then slowed 

down. As explained earlier, the intensity drop in pH 11.5 solution was caused by 

dissolving of silica thin film, leaching of dye molecules, and the change of NBC species. 

After the sensor being immersed into pH 7 PBS, its peak intensity continued decreasing, 

indicating continuous leaching of molecules. Since Figure 5.24 (A) demonstrated that 
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all basic NBC species completely turned back to neutral species after 5 min-immersion 

in pH 7 buffer, this nonreversible dropping trend of peak intensity in pH 7 buffer should 

not be caused by the species change of NBC. Silica gel doesn’t dissolve at pH 7. The 

only possible reason could be that the gel structure became much looser after 

continuous gel dissolving upon previous 125 min-exposure in pH 11.5 solution, which 

makes the leaching of molecules easier. For hydrogel-like thin film sensor, the overall 

nonreversible dropping trend of peak intensity in pH 11.5 and pH 7 solutions should 

reflect a combined effect of silica gel dissolving, NBC species change and weak 

leaching.      

In Figure 5.25 (B), the peak intensity of the alcogel thin film sensor slowly 

increased from ~ 0.02 to ~ 0.03 when exposed in pH 11.5 solution for 125 min, and this 

continuous increase was probably due to improved solubility of NBC upon longer 

exposure in solution. But because of the limited guest loading capacity of alcogel thin 

film, the absorption intensity was still very low. When the alcogel thin film sensor was 

immersed into 5 mM pH 7 PBS buffer, the increase trend became more obvious, and 

peak intensity increased ~50% from 0.032 to 0.048 in 5 min, which should be resulted 

from the species change of NBC molecules from basic to neutral. Since in alcogel thin 

film sensor, most NBC molecules were caged inside pores, which makes them 

inaccessible to surrounding solvent molecules, the amount of NBC molecules that 

underwent species change was small. That explains why for another 20 min exposure in 

pH 7 PBS buffer, the peak intensity of alcogel sensor remained very low at 0.048. 

In summary, the prototype pH sensor showed a much faster pH response and much 

higher guest loading capacity than the corresponding alcogel sensor did. The 
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nonreversible absorption intensity drop of NBC doped hydrogel-like thin film sensor in 

pH 11.5 sodium hydroxide solution was mainly due to the dissolving of silica gel 

matrix. 

 

5.4 CONCLUSIONS 

The protocol to prepare stable hydrogel-like silica thin films was developed and 

optimized. This new film is highly hydrophilic, enables high guest loading capacity, and 

supports molecular diffusion. Studies on variations of absorbance, contact angle and 

fluorescence intensity with sample delay time all revealed that nascent alcogel thin 

films were chemically reactive, the reactive stage lasted ~ 10 min under ambient 

conditions, and most importantly sample delay time resulted in dramatically different 

characteristics of produced thin film samples, with shorter-delay-time samples 

resembling hydrogel and longer-delay-time samples resembling alcogel. It was 

discovered that hydrogel-like silica thin films produced in pure water easily cracked, 

and were not as stable as those produced in dye solutions or dye/PBS mixture, because 

the existence of hydrophobic dye molecules helped relieving surface tension in sol-gel 

matrix. And, it’s also discovered that environmental humidity significantly affected 

both thickness and dye loading capacity of thin film hydrogel samples. Sample 

thickness and absorbance both decreased with increased RH. For R6G doped 3 

min-delay samples, the sample thickness decreased 46% from 248±2 nm to 134±1 nm, 

and the absorbance dropped 30% from ~0.09 to ~0.06 when RH increased from 30% to 

82%. Higher RH helped to remain the fluid-like structure of nascent alcogel thin film, 

which leads to easier gel-loss during preparation, thus lower absorbance of dye-doped 
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sample. FRAP experiments demonstrated that humidity can affect molecular diffusion 

inside silica hydrogel-like thin films. The higher the humidity, the faster guest 

molecules can diffuse. Low ambient humidity causes fast evaporation from such a thin 

film, thus lowering the water content of thin film and resulting in very slow or even no 

mobility of trapped molecules. However, with a controlled RH and fixed delay-time, we 

found that sample absorbance was not affected by sol aging time. Usually, sols were 

aged 19 ~ 20 hr before gel deposition. Our reproducibility tests based on samples 

prepared under a controlled RH and fixed delay-time revealed that the relative 

experimental error of absorbance, thickness and unit absorbance were 7.3%, 6.8% and 

9.1% respectively. Sample thickness practically didn’t change with aging time over a 

month. Nice linear relationship of sample absorbance with sample thickness 

demonstrated that this new gel thin film was indeed a piece of homogeneous hydrogel. 

Since cracking of gel sample was observed when the thickness was close to 350 nm, the 

thickness is suggested to be controlled no thicker than 350 nm.  

Even though the unit absorbance of sample varied with sample delay time, 

suggesting the possible difference of internal structures between various-delay-time 

samples, no subtle difference of the gel structure was detected from SEM images and 

AFM roughness measurement. The unit absorbance comparison of three sets of R6G 

doped thin film sample prepared under different RH suggested that higher RH not only 

helped to prolong chemical reactive stage of nascent thin film alcogel, thus providing 

enough time to track the gradual change of produced thin film hydrogel samples, but 

also helped to keep the high dye loading capacity of samples.  
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Dye loading capacity of hydrogel-like thin film samples could be improved more 

than ten times by preparing samples in dye/PBS instead of dye aqueous solution itself. 

The reason for this significant improvement of guest loading capacity is still not clear. 

PBS with concentration ranged from 0.5 mM to 10 mM was found to provide maximum 

dye loading capacity of samples. Between the two methods of dye encapsulation, 

real-time trapping was hardly affected by the size of dyes or the available sites inside 

gel, whereas post-trapping was limited by both.    

A prototype hydrogel-like thin film pH sensor doped with NBC showed higher 

sensitivity and faster response time than the corresponding silica alcogel thin film 

sensor, and the nonreversible absorbance drop of it in pH 11.5 sodium hydroxide 

solution was mainly due to the dissolving of silica gel matrix at high pH.   

In summary, homogeneous thin film hydrogel-like samples with thickness between 

100 nm and 300 nm were produced. This new film is highly hydrophilic, enables high 

guest loading capacity, and supports molecular diffusion. The reproducibility of sample 

preparation was greatly improved by controlling environmental humidity, dye loading 

capacity of samples was improved by using PBS solutions, and the concentration of 

R6G trapped inside hydrogel-like thin film could reach as high as 900 times of its 

saturated aqueous solution. Real-time trapping can simply be accomplished by dipping 

a chemically reactive precursor alcogel film into a dye buffer solution, and provided 

very high guest loading capacity. Since alcohol exposure can be kept to a minimum 

during dye encapsulation, this new silica film makes a promising candidate for 

biomolecule encapsulation and thus biosensor development.  
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Experimental results in section 5.3.1 have been submitted to Journal of the 

American Chemical Society in 2010, pending review. 
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CHAPTER 6 CONCLUSIONS 

 
This dissertation summarizes all the major research works I accomplished during 

the past six years. The focus of my research is to study different silica gel materials for 

sensor development. Included are the study of guest-host interactions altered by pore 

surface modification in silica alcogel and silica hydrogel, and the development of stable 

silica hydrogel-like thin films for fast sensor matrix. Understanding the molecular 

interactions between guest molecules and silica gel matrix before and after organosiline 

modification helps to manipulate the properties of silica gel materials so that gaining 

control over sensor development. 

Post-synthesis grafting protocols to modify pore surfaces in silica alcogel thin film 

using APTS and MTES were developed, which is potentially applicable to tailoring 

local environments to manipulate guest-host interactions. Contact angle measurement 

alone is capable of monitoring chemical modifications on a film surface, but it does not 

provide any clue on the extent of modification underneath. Post-synthesis grafting 

beneath the film surface can be monitored by measuring the change in rotational 

mobility and photostability from single R6G molecules. The fact that R6G experienced 

a 5-fold increase in the percentage of tumbling molecule in APTS modified samples, 

but only a slight increase when modified by MTES proves that charge-reversal is a 

more effective way to modify pore surface than charge-neutralization is. R6G 

photostability decreased upon both APTS and MTES modifications, which suggests that 

pore surface grafting induces more R6G dynamic motions that lead to faster 

photodegradation. In both cases, only a very small change in R6G rotational mobility 
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was observed after silane modification, and fixed molecule was still the dominate 

category, which emphasizes that physical confinement is still the major factor that 

control guest-host interaction in modified alcogel films. Nevertheless, we have 

demonstrated that photostability measurement is a more sensitive technique to probe 

guest-host interactions when full scale molecular rotation is disfavored.  

For the first time, post-grafting method was successfully applied to modify pore 

surfaces of highly hydrated silica hydrogel. This study verified the applicability of our 

post-synthesis grafting protocol, and confirmed the hypothesis that pore surface 

modification is more effective in hydrogel than that in alcogel. To eliminate the effect 

of physical confinement on guest molecules and the limited accessibility of modifying 

reagents to pores, dye must be infused into hydrogel after pore surfaces have been 

modified. Charge-reversal of pore surfaces by APTS modification showed a greater 

effect on guest molecules mobility than the hydrophobic capping by MTES 

modification: APTS caused the anisotropy value of R6G drop ~67%, MTES only 

caused a ~20% drop. For Fl, APTS modification showed a 6-fold increase of anisotropy 

value, whereas MTES brought a 2.5-fold increase. However, surface modifications 

through physical method, that is to increase ionic strength by adding 1.0 M sodium 

chloride or to neutralize pore surfaces by using pH 2.0 hydrochloric acid, barely 

affected the mobility of guest molecules. It was discovered that the mobility of 

encapsulated molecules were affected not only by post-grafting on pore surfaces but 

also the solvent for organosiliane reagents. The ease of locating dye band to track 

modification process makes R6G a better probe than Fl to monitor the pore surface 

modification in hydrogel. 
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The protocol to prepare stable hydrogel-like silica thin films was developed and 

optimized. By varying the aging time of nascent silica alcogel thin films before 

hydrogel induction, silica thin films with different characteristics could be produced, 

with shorter aging-time samples resembling hydrogel more and longer aging-time 

samples resembling alcogel more. Environmental humidity significantly affected both 

thickness and dye loading capacity of thin film hydrogel-like samples, which both 

decreased with increasing RH. Reproducibility of sample preparations was greatly 

improved by controlling the aging time and environmental humidity. Nice linear 

relationship of sample absorbance with sample thickness demonstrated that this new gel 

thin film was indeed a piece of homogeneous hydrogel. The reactive stage of precursor 

silica alcogel thin film matrix could be elongated by increasing environmental humidity, 

and the dye loading capacity of samples could be improved more than ten times by 

using buffer solutions. Since dye encapsulation is simply accomplished by dipping a 

chemically reactive alcogel thin film into a dye-doped buffer solution, alcohol exposure 

can be kept to a minimum during dye encapsulation, which makes this new silica film a 

promising candidate for biomolecule encapsulation and thus biosensor development. At 

the end, a prototype silica hydrogel-like thin film pH sensor was also constructed and it 

showed much faster response than the corresponding alcogel thin film sensor.  
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