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Abstract 

This dissertation describes a study of some of the fundamental chemical 

properties of some dinitrosyl iron phosphine complexes and a study of the dimer-

monomer equilibrium of 2-methyl-2-nitrosopropane in various solvents. 

Chapter 2 describes the study of some dinitrosyl iron phosphine complexes.  

Dinitrosyl iron complexes (DNICs) have been invoked as viable entities that contribute 

towards the biological action of nitric oxide (NO).  DNICs derive their basic functionality 

from the dinitrosyl Fe(NO)2 moiety.  Thus, it is important to understand how ancillary 

ligands bound to the metal affect the fundamental properties of the Fe(NO)2 unit.  We 

have prepared a homologous series of dinitrosyl iron phosphine complexes and 

characterized them by FTIR and 31P NMR spectroscopy, X-ray crystallography, cyclic 

voltammetry and fiber-optic infrared spectroelectrochemistry.  We then determine and 

explain the observed trends in the data as a function of phosphine substitution. 

Chapter 3 describes the study of a C-nitroso compound, namely the dimeric 2-

methyl-2-nitrosopropane, in various solvents.  Interest in the fundamental properties of 

C-nitroso compounds has been increasing due to the recent recognition of the roles they 

play in various biological processes (e.g., "shutting down" the activities of various heme 

enzymes).  Our interest in the fundamental chemistry of C-nitroso compounds has led us 

to study the equilibrium established by the dimer 2-methyl-2-nitrosopropane containing a 

tertiary C-NO group.  We have combined a kinetics and equilibrium study into a single 

project involving a series of solvents over a sufficient temperature range that allows for 

the calculation of thermodynamic data.  The dependence of the rate and equilibrium 

constants on various solvent parameters is then determined. 
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Chapter 1.  Introduction 

Several small molecule gases play crucial roles in the atmosphere and in the urban 

environment.  Species such as ozone and dioxygen have been studied for quite some 

time, and much is known about their chemistry.  Other species such as the diatomic 

molecule nitric oxide (NO) were for a long time considered to be hazardous gases that 

were a nuisance to humanity.  For example, NO produced from high-temperature 

combustion devices (from the reaction of nitrogen and oxygen) reacts with urban ozone 

to produce the brown gaseous derivative that is responsible for the smog in the Los 

Angeles area.1  Indeed, much effort in the 20th century was devoted to getting rid of this 

small NO molecule.  Surprisingly, however, in the late 1980s it was discovered that the 

human body makes NO naturally and that NO was responsible for the maintenance of 

normal blood pressure in humans.  It has now been nearly two decades since Science 

magazine selected NO as the 1992 Molecule of the Year.2-3  Since that time, a tremendous 

amount of research has gone towards learning more about the role of NO in biological 

systems, further steering its image away from that of a nasty pollutant and industrial 

byproduct to that of an essential physiological component.  Consistent with its 

importance, the Nobel prize in Physiology or Medicine was, in 1998, awarded to Robert 

F. Furchgott, Louis J. Ignarro and Ferid Murad for their individual research contributions 

that led to the recognition of the role that NO plays in diverse processes in physiology.4 
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At the present time, the roles of NO in biology, in earth science, and in the 

chemical industry is well established among scientists.  However, the public-at-large 

would probably be surprised to know that a small, seeming inconsequential, molecule has 

such wide-ranging effects on our daily lives. 

It is well known that NO can react with metals, usually via the nitrogen atom, to 

form what are known as metal nitrosyl (M−NO) compounds.  NO can also bridge two 

metals.  Alternatively, two NO molecules can bind a single metal to form what are known 

as “metal dinitrosyls”.  NO can also attach to various organic fragments to form a variety 

of nitroso (termed X-NO) derivatives.1 

NO is produced in the body by the enzyme “nitric oxide synthase” that catalyzes 

the oxidation of the amino acid L-arginine to citrulline.  Once produced, NO targets metal 

containing enzymes such as soluble guanyl cyclase and cytochrome P450.  NO also binds 

to some essential protein sites altering their normal function.3 

Fundamental research in the area of NO chemistry has lead to numerous 

discoveries including the roles that NO plays in the immune defense system, blood 

pressure regulation, and in the nervous system.3 

My Ph.D. research involved two important aspects of NO chemistry that had not 

been studied previously.  They include: (i) a study of some of the fundamental chemical 

properties of the iron-NO group in dinitrosyl derivatives, and (ii) an equilibrium and 

kinetics study of an organic nitroso compound that models the chemical and physical 

behavior of nitroso species as a function of its immediate solvent environment.  Both 

projects were undertaken with the goal of taking graduate-level research projects and 

placing them in an environment conducive for undergraduate student learning.  At the 
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beginning of my Ph.D. program, I was very interested in undergraduate education and 

research.  Thus, I sought to develop strong chemistry-based thesis projects that could be 

further developed into undergraduate capstone activities or used as starting points for 

independent undergraduate research projects. 

It is becoming more recognized that excellent research and teaching go hand-in-

hand, and that they are not mutually exclusive activities.  In fact, there are many efforts 

underway internationally to encourage and recognize synergistic relationships between 

research and teaching.  In their report, the Boyer commission (sponsored by Carnegie 

Foundation for the Advancement of Teaching) wrote in part 

“The university’s essential and irreplaceable function has 
always been the exploration of knowledge. This report 
insists that the exploration must go on through what has 
been considered the “teaching” function as well as the 
traditional “research” function. The reward structures in 
the modern research university need to reflect the synergy 
of teaching and research…” 

 

My thesis will lay out two different research projects that have the potential to be 

further developed into undergraduate research-teaching experiences.  In the next Chapter, 

I will describe the preparation and chemical properties of a series of new dinitrosyl iron 

diphosphine complexes.  In Chapter 3, I will describe the dimerization/monomerization 

behavior of a dimeric nitrosoalkane.  Both of these projects cover a number of 

fundamental concepts commonly taught in undergraduate courses and would make an 

excellent undergraduate teaching laboratory experience. 
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Chapter 2.  Fiber-optic Infrared Reflectance 
Spectroelectrochemical Studies of Some Dinitrosyl Iron 

Diphosphine Complexes, Fe(NO)2L2 (L = P(C6H4X)3) 

2.1.  Introduction 

Iron is a major target for NO in biological systems and in the environment.  As 

mentioned in the Introduction chapter, NO usually binds to Fe via the N atom to give an 

FeNO moiety.  Here, the Fe–N–O link may be linear or bent.  NO can also interact with 

more than one metal center to give μ-NO bridged species.  Conversely, more than one 

NO molecule can react with Fe to generate Fe(NO)x products. 

The dinitrosyl Fe(NO)2 moiety has been invoked as a biologically relevant entity 

by several researchers, notably by Vanin.1-8  Exogenous and endogenous NO, upon 

exposure to and contact with Fe-containing biomolecules, generates a species exhibiting a 

strong EPR g = 2.03 signal attributed to an “Fe(NO)2”-containing compound.4  The exact 

identity of these species remains elusive due to the fact that other ligands coordinate to 

the Fe(NO)2 unit to give in reality Fe(NO)2(L)x compounds.  These latter species are 

collectively referred to as “dinitrosyl iron compounds” (DNICs).  DNICs, although 

mostly discussed in the literature in the realm of biology, also have significance as 

potential industrial catalysts.  Their syntheses and characterization, to a large extent, 

preceded their discovery in biology. 

Synthetic DNICs display a variety of properties including the ability to transfer 

oxygen atoms from molecular oxygen to phosphines or alkenes.9-18  For example, Postel 

and co-workers demonstrated that dinitrosyl compounds such as [Fe(NO)2X]2 (X = Cl, I) 

react with oxygen in the presence of PPh3 or OPPh3 to produce nitrato complexes such as 



 

 
 

6 

Fe(NO3)2X(OPPh3)2.
9-13  These latter nitrato complexes were shown to transfer oxygen 

atoms to phosphines or cyclohexene and regenerate the nitrosyl moiety.  The scheme 

using PPh3 or OPPh3 is shown in Figure 2.1.12 

 

 

 

Figure 2.1. Reaction scheme (unbalanced) depicting the oxidation of bis(nitrosyl) iron 
dimers by molecular oxygen in the presence of PPh3 or OPPh3.  The 
generated Fe(NO)2XL compound can be recycled as an additional starting 
material; thus making the O atom transfer process catalytic. 

 

In 1965, Maxfield (Bartlesville, OK) reported in a patent the use of dinitrosyl iron 

halides as effective catalysts for the dimerization of diolefins.18  Others later 

demonstrated that Fe(NO)2-containing compounds could be used for the 

cyclodimerization of diolefins.16  Candlin reported the dimerization of butadiene and 

isoprene by Fe(NO)2(CO)2, and Gadd et al. proposed that the photocatalytic dimerization 

might occur via Fe(NO)2(η
2-C4H8)(η

4-C4H8) as an intermediate (Figure 2.2).14-15  In 
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1994, Li et al. supported this proposal reporting Fe(NO)2PPh3(η
2-TCNE) as the first 

stable compound containing an olefin π-bonded to an iron dinitrosyl group.19 

 

 

Figure 2.2. Schematic depicting Gadd’s proposed intermediate in the photocatalyic 
dimerization of olefins. 

 

Returning to the biological significance of DNICs, it was originally thought that 

DNICs formed by reaction of NO with the active center of iron sulfur proteins.20-22  

Indeed, Ricci and co-workers have reported the crystal structure of a stable complex of 

human glutathione transferase P1-1 containing a post-translationally modified 

dinitrosyliron glutathionyl moiety.23  It is now generally accepted, however, that the iron 

in biological Fe(NO)2 DNICs comes predominately from “freely chelatable iron storage 

units” and not from FeS proteins.6, 24-25  For example, Lancaster et al. recently published 

work describing the direct reaction of NO with the intercellular labile iron and found that 

NO rapidly and quantitatively reacts with the iron to form stable DNICs detectable by 

EPR.24 
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All DNICs derive their basic functionality from the dinitrosyl Fe(NO)2 moiety.  

Given their occurrence in biological systems, it is important that we have a better 

understanding of their fundamental properties.  There is a need to study the inorganic 

chemistry of the Fe(NO)2 compounds as this will assist with determining the kind of 

chemistry available to the Fe(NO)2 moiety.  Understanding how ancillary ligands bound 

to the metal affect the fundamental properties of the Fe(NO)2 unit will provide important 

insight which may be exploited in future reaction studies. 

It is known that the carbonyl ligands of Fe(NO)2(CO)2 can be replaced with sigma 

donor ligands (L, L’) to yield dinitrosyl complexes of the form Fe(NO)2L2 or 

Fe(NO)2L’L.26 Our objective has been to determine how the spectroscopic and 

electrochemical properties of the Fe(NO)2 group are affected by small changes on the 

periphery of some dinitrosyliron diphosphine complexes ( i.e. Fe(NO)2L2 with L = 

P(C6H4X)3 ).  To that end, we have prepared and characterized a homologous series of 

dinitrosyl iron diphosphine complexes by FTIR and 31P NMR spectroscopy, X-ray 

crystallography, cyclic voltammetry and fiber-optic infrared spectroelectrochemistry. 

2.2.  Experimental 

2.2.1  General 

All reactions were performed under an atmosphere of pre-purified nitrogen using 

standard Schlenk glassware and/or in a Labmaster 100 inert atmosphere glove box 

(Innovative Technology, Inc. Newburyport, MA).  Unless otherwise indicated, all 

experiments were carried out at ambient room temperature. 
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2.2.2  Chemicals 

Solvents were distilled under nitrogen from appropriate drying agents (CaH2 or 

Na) or collected under nitrogen from a Pure Solv 400-5-MD Solvent Purification System 

(Innovative Technology).  Fe(NO)2(CO)2 was prepared using a published method 

developed by Hieber and Beutner as described by King.27  Tris(p-

methoxyphenyl)phosphine (98%), tri-p-tolylphosphine (98%), tri-m-tolylphosphine 

(98%), tri(p-chlorophenyl)phosphine (99%), and tris(p-fluorophenyl)phosphine (99%), 

were purchased from Strem Chemical Company (Newburyport, MA).  Iron 

pentacarbonyl, triphenylphosphine, (99%), tris(p-trifluoromethylphenyl)phosphine (97%) 

and tetrabutylammonium hexafluorophosphate (98%) were purchased from Sigma-

Aldrich Chemical Company (Milwaukee, WI).  Chloroform-d (99.8%) was purchased 

from Cambridge Isotope Laboratories (Andover, MA) in single-use ampoules and used as 

received or drawn from a stock reagent bottle and subjected to at least three freeze-pump-

thaw cycles and stored over Grade 514 Type 4A molecular sieves. 

2.2.3  Instrumentation 

 Infrared spectra were recorded using a Bio-Rad FTS 155 FT-IR spectrometer.  

31P{1H} NMR spectra were obtained using a Varian Mercury-VX 300 MHz spectrometer 

equipped with a four-nuclei autoswitchable pulsed field gradient probe.  All chemical 

shifts (δ, ppm) are reported relative to 85% H3PO4 (δ = 0 ppm) as an external reference 

standard. 

 Cyclic voltammograms were obtained using a BAS CV-50W Voltammetric 

Analyzer (Bioanalytical Systems, Inc., West Lafayette, IN) equipped with a three-
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electrode cell (3 mm Pt disk working electrode, Pt wire auxiliary electrode and a 

Ag/AgCl or Ag wire quasi-reference electrode).  Solutions used were 1 mM in analyte 

and 0.1 M in [NBu4][PF6] in CH2Cl2.  Ferrocene ((C5H5)2Fe), or decamethylferrocene 

((C5Me5)2Fe) (-0.55 V vs. Fc/Fc+) were used as internal reference standards.  All 

potentials (V) are reported relative to the ferrocene-ferrocenium couple (Fc/Fc+; ~+0.46 V 

vs. SCE). 

 Infrared spectroelectrochemical measurements were recorded using a Bruker 

Vector 22 FT-IR spectrometer equipped with a Remspec mid-IR fiber-optic dip probe 

and a liquid nitrogen cooled MCT detector (Remspec Corporation, Charlton City, MA).  

The stainless steel mirror on the liquid transmission head of the fiber-optic dip probe was 

replaced with a 3 mm Pt disk working electrode and equipped with a custom-made 

electrochemical cell including a Pt wire auxiliary electrode and a Ag/AgCl or Ag wire 

quasi-reference electrode as previously described.28 

2.2.4  Synthesis 

 Each of the dinitrosyl iron diphosphine complexes was prepared using a method 

based on slightly modified literature procedures.29-30  To our knowledge, only 4, 

Fe(NO)2(PPh3)2, has been previously prepared.29  At the conclusion of each preparative 

reaction, the complexes were isolated by solvent removal in vacuo and purified by 

dissolution in CH2Cl2 or CHCl3 followed by filtration through Celite®.  After 31P NMR 

spectroscopic analyses of aliquots indicated pure products, small amounts of pentane or 

hexane were added to the filtrates, and the products were allowed to recrystallize by slow 

solvent evaporation under nitrogen. 
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2.2.4.1  Fe(NO)2(P(C6H4-p-OCH3)3)2  (1) 

 Dark red Fe(NO)2(CO)2 (20 µL, 0.18 mmol) was added by syringe to a toluene 

solution (5 mL) of P(C6H4-p-OCH3)3 (0.129 g, 0.37 mmol) in a Schlenk tube.  The light 

red solution was stirred, heated and allowed to reflux under nitrogen over a period of 3 h.  

The solution changed from light red to black/dark brown within the first 20 min.  The 

reaction was monitored by infrared spectroscopy and stopped when the infrared spectrum 

indicated the absence of characteristic carbonyl stretching frequencies for Fe(NO)2(CO)2 

(νCO = 2090 cm-1 and 2040 cm-1) and for the expected mono-carbonyl species (νCO = 

2002 cm-1).  Isolated yield: 27%.  IR (toluene, cm-1): νNO = 1711 s and 1667 s; also 1306 

w, 1287 s, 1255 s, 1184 w, 1097 w, 826 w, 798 w.  31P{1H} NMR (CDCl3): δ 56.4 (s). 

2.2.4.2  Fe(NO)2(P(C6H4-p-CH3)3)2  (2) 

 Dark red Fe(NO)2(CO)2 (20 µL, 0.18 mmol) was added by syringe to a colorless 

toluene solution (5 mL) of P(C6H4-p-CH3)3 (0.111 g, 0.36 mmol) in a Schlenk tube.  The 

mixture was stirred and heated to reflux under nitrogen for a period of ~3 h.  A color 

change from light red to black/dark brown was observed within the first 30 min.  The 

reaction was stopped when the infrared spectrum indicated the absence of characteristic 

carbonyl stretching frequencies for Fe(NO)2(CO)2 (νCO = 2090 cm-1 and 2040 cm-1) and 

for the expected mono-carbonyl species (νCO = 2003 cm-1).  Isolated yield: 31%.  IR 

(toluene, cm-1): νNO = 1714 s and 1670 s; also 1197 w, 1189 w, 1116 w, 1095 w, 806 s.  

31P{1H} NMR (CDCl3): δ 58.4 (s). 
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2.2.4.3  Fe(NO)2(P(C6H4-m-CH3)3)2  (3) 

Fe(NO)2(CO)2 (22 µL, 0.20 mmol) was added by syringe to a colorless toluene 

solution (5 mL) of P(C6H4-m-CH3)3 (125 mg, 0.41 mmol) in a Schlenk tube.  The mixture 

was stirred, heated and allowed to reflux under nitrogen for a period of 4.75 h.  The 

solution became much darker within the first 30 min and was black/brown by the end of 

the reaction time.  The reaction was stopped when the infrared spectrum indicated the 

absence of characteristic carbonyl stretching frequencies for Fe(NO)2(CO)2 (νCO = 2090 

cm-1 and 2040 cm-1) and for the expected mono-carbonyl species (νCO = 2005 cm-1).  

Isolated yield: 23%.  IR (toluene, cm-1): νNO = 1715 s and 1671 s; also 779 m, 588 w, 549 

w.  31P{1H} NMR (CDCl3): δ 60.9 (s). 

2.2.4.4  Fe(NO)2(PPh3)2  (4) 

 The known Fe(NO)2(PPh3)2 was prepared using a modified literature method.29  A 

toluene solution ( 5 mL) of P(C6H5)3 (94 mg, 0.36 mmol) was treated with Fe(NO)2(CO)2 

( 20 µL, 0.18 mmol) under nitrogen.  The mixture was heated and allowed to reflux over 

a period of ~3 h.  The reaction was monitored by infrared spectroscopy and stopped once 

Fe(NO)2(CO)2 (νCO = 2090 cm-1 and 2040 cm-1) or the known Fe(NO)2(PPh3)(CO) (νCO = 

2005 cm-1) were no longer detected.  Isolated yield: 22%.  IR (toluene, cm-1): νNO = 1719 

s and 1678 s; also 1203 m, 1119 m, 543 m.  31P{1H} NMR (CDCl3): δ 60.9 (s). 

2.2.4.5  Fe(NO)2(P(C6H4-p-F)3)2  (5) 

 A light yellow toluene solution (5 mL) of P(C6H4-p-F)3 (127 mg, 0.40 mmol) was 

charged with Fe(NO)2(CO)2 (21 µL, 0.19 mmol).  The light red/orange solution was 
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heated and stirred under nitrogen for 3.25 h after which time the infrared spectrum was 

consistent with the presence of the product and no trace of Fe(NO)2(CO)2 (νCO = 2090 

cm-1 and 2040 cm-1) or the mono-carbonyl species (νCO = 2009 cm-1) was observed.  

Isolated yield: 23%.  IR (toluene, cm-1): νNO = 1720 s and 1682 s; also 1589 w, 1300 w, 

1234 s, 1161 m, 1094 w, 1013 w, 828 s.  31P{1H} NMR (CDCl3): δ 59.3 (s). 

2.2.4.6  Fe(NO)2(P(C6H4-p-Cl)3)2  (6) 

A colorless toluene solution (4 mL) of P(C6H4-p-Cl)3 (126 mg, 0.35 mmol) was 

charged with Fe(NO)2(CO)2 (20 µL, 0.18 mmol).  The light red solution was heated and 

stirred under nitrogen.  After 20 min the color of the solution had changed to 

black/brown.  The reaction was allowed to proceed for 3.5 h until the infrared spectrum 

was consistent with the presence of the dinitrosyl product and the absence of 

Fe(NO)2(CO)2 (νCO = 2090 cm-1 and 2040 cm-1) and the mono-carbonyl species (νCO = 

2010 cm-1).  Isolated yield: 33%.  IR (toluene, cm-1): νNO = 1722 s and 1682 s; also 1099 

w, 1012 m 818 m.  31P{1H} NMR (CDCl3): δ 60.9 (s). 

2.2.4.7  Fe(NO)2(P(C6H4-p-CF3)3)2  (7) 

A colorless toluene solution (7 mL) of P(C6H4-p-CF3)3 (165 mg, 0.35 mmol) was 

charged with Fe(NO)2(CO)2 (22 µL, 0.20 mmol).  The red solution was heated to reflux 

and turned black within 60 min.  The reaction was monitored with infrared spectroscopy 

and stopped once no trace of the mono-nitrosyl species (νCO = 2014 cm-1) was detected 

and the spectrum was consistent with the formation of the dinitrosyl product.  Isolated 
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yield: 33%.  IR (toluene, cm-1): νNO = 1728 m and 1687 s; also 1397 w, 1321 m, 1281 w, 

1185 w, 1169 m, 1129 m, 1062 w, 1015 w, 832 m.  31P{1H} NMR (CDCl3): δ 63.8 (s). 

2.2.5  X-ray Crystallography 

 Suitable crystals for the structural analyses of compounds 1-2 and 5-7 were grown 

by slow evaporation of solvent under nitrogen at ambient room temperature.  X-ray 

diffraction studies were carried out by Dr. Douglas R. Powell of this department.  All 

samples were mounted on the end of a plastic loop using an inert oil (Paratone N).  The 

samples were cooled to 100(2) K and maintained at this temperature throughout the 

duration of the experiment.  Intensity data for each compound were collected using a 

diffractometer equipped with a Bruker APEX ccd area detector and graphite-

monochromated Mo Kα radiation (λ = 0.71073 Å).  The structures were solved by direct 

methods using the SHELXTL software package (Version 6.10) and refined by full-matrix 

least-squares methods on F2.  All non-hydrogen atoms were refined anisotropically and 

all hydrogen atoms were included using idealized parameters.  Crystallographic 

collection and refinement parameters for Fe(NO)2(PAr3)2 are given in Table 2.1.  The 

molecular structures for compounds 1-2 and 5-7 are shown in Figures 2.8 – 2.12 in the 

results section. 

2.2.5.1  Fe(NO)2(P(C6H4-p-OCH3)3)2  (1) 

A red plate-shaped crystal of dimensions 0.50 x 0.31 x 0.08 mm was selected for 

structural analysis.  Cell parameters were determined from a non-linear least squares fit 

of 6550 peaks in the range 2.34 < θ < 27.91°.  A total of 29988 reflections were measured 
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in the range 2.02 < θ < 26.00° using ω oscillation frames.  The data were corrected for 

absorption by a semi-empirical method giving minimum and maximum transmission 

factors of 0.774 and 0.962.  The data were merged to form a set of 7618 independent data 

with R(int) = 0.0353 and a coverage of 99.6 %.  The monoclinic space group P21/c was 

determined by systematic absences and statistical tests and verified by subsequent 

refinement. 

The molecular structure for 1 is shown in Figure 2.8.  One of the p-

methoxyphenyl groups was disordered.  The occupancies of the disordered groups refined 

to 0.521(3) and 0.479(3).  Restraints on the positional parameters of the disordered atoms 

were required.  The displacement ellipsoids are drawn at the 50% probability level. 

2.2.5.2  Fe(NO)2(P(C6H4-p-CH3)3)2  (2) 

A red prism-shaped crystal of dimensions 0.34 x 0.29 x 0.29 mm was selected for 

structural analysis.  Cell parameters were determined from a non-linear least squares fit 

of 8062 peaks in the range 2.32 < θ < 28.26°.  A total of 39881 reflections were measured 

in the range 1.88 < θ < 26.00° using ω oscillation frames.  The data were corrected for 

absorption by a semi-empirical method giving minimum and maximum transmission 

factors of 0.840 and 0.866.  The data were merged to form a set of 14767 independent 

data with R(int) = 0.0252 and a coverage of 99.6 %.  The triclinic space group P⎯1 was 

determined by statistical tests and verified by subsequent refinement. 

The molecular structure for 2 is shown in Figure 2.9.  There are two molecules 

per asymmetric unit of the cell.  The displacement ellipsoids are drawn at the 50% 

probability level. 
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2.2.5.3  Fe(NO)2(P(C6H4-p-F)3)2  (5) 

 A red prism-shaped crystal of dimensions 0.44 x 0.22 x 0.04 mm was selected for 

structural analysis.  Cell parameters were determined from a non-linear least squares fit 

of 5630 peaks in the range 2.41 < θ < 25.70°.  A total of 22634 reflections were measured 

in the range 1.96 < θ < 25.00° using ω oscillation frames.  The data were corrected for 

absorption by a semi-empirical method giving minimum and maximum transmission 

factors of 0.721 and 0.972.  The data were merged to form a set of 6325 independent data 

with R(int) = 0.0562 and a coverage of 98.3 %.  The monoclinic space group P21/c was 

determined by systematic absences and statistical tests and verified by subsequent 

refinement. 

The molecular structure for 5 is shown in Figure 2.10.  The structure included one 

metal complex molecule and one chloroform solvent molecule. (not shown)  The 

displacement ellipsoids are drawn at the 50% probability level. 

2.2.5.4  Fe(NO)2(P(C6H4-p-Cl)3)2  (6) 

 A red plate-shaped crystal of dimensions 0.38 x 0.19 x 0.04 mm was selected for 

structural analysis.  Cell parameters were determined from a non-linear least squares fit 

of 8898 peaks in the range 2.97 < θ < 26.84°.  A total of 24943 data were measured in the 

range 2.97 < θ < 26.00° using ω oscillation frames.  The data were corrected for 

absorption by a semi-empirical method giving minimum and maximum transmission 

factors of 0.702 and 0.966.  The data were merged to form a set of 7073 independent data 

with R(int) = 0.0233 and a coverage of 99.0 %.  The monoclinic space group P21/n was 



 

 
 

17 

determined by systematic absences and statistical tests and verified by subsequent 

refinement. 

The molecular structure for 6 is shown in Figure 2.11.  The displacement 

ellipsoids are drawn at the 50% probability level. 

2.2.5.5  Fe(NO)2(P(C6H4-p-CF3)3)2  (7) 

 A red prism-shaped crystal of dimensions 0.33 x 0.25 x 0.15 mm was selected for 

structural analysis.  Cell parameters were determined from a non-linear least squares fit 

of 9530 peaks in the range 2.29 < θ < 28.26°.  A total of 22582 reflections were measured 

in the range 1.61 < θ < 26.00° using ω oscillation frames.  The data were corrected for 

absorption by a semi-empirical method giving minimum and maximum transmission 

factors of 0.843 and 0.928.  The data were merged to form a set of 8855 independent data 

with R(int) = 0.0183 and a coverage of 99.1 %.  The triclinic space group P⎯1 was 

determined by statistical tests and verified by subsequent refinement. 

The molecular structure for 7 is shown in Figure 2.12.  The structure included one 

n-pentane solvent molecule. (not shown)  The n-pentane was best modeled using the 

Squeeze program.31  The displacement ellipsoids are drawn at the 50% probability level. 
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Table 2.1. Crystallographic collection and refinement parameters for the Fe(NO)2(PAr3)2 products 

Complex 1 2 5  (CHCl3) 6 7  (C5H12) 

Empirical formula C42H42FeN2O8P2 C42H42FeN2O2P2 C37H25Cl3F6FeN2O2P2 C36H24Cl6FeN2O2P2 C47H36F18FeN2O2P2 

Formula weight 820.57 724.57 867.73 847.06 1120.57 

Crystal system Monoclinic Triclinic Monoclinic Monoclinic Triclinic 

Space group P21/c P⎯1 P21/c P21/n P⎯1 

Unit cell dimensions 
a (Å) 
b (Å) 
c (Å) 

 
14.467(4) 
10.936(4) 
24.848(8) 

 
10.240(2) 
19.409(4) 
21.040(4) 

 
13.994(5) 
15.746(6) 
16.716(6) 

 
10.340(3) 
35.025(10) 
10.589(3) 

 
10.933(2) 
13.024(2) 
16.851(3) 

α (°) 
β (°) 
γ (°) 

90 
98.498(8) 
90 

114.508(5) 
93.158(6) 
94.732(6) 

90 
97.651(8) 
90 

90 
108.399(8) 
90 

103.280(5) 
101.957(5) 
92.653(6) 

Volume (Å3) 3888(2) 3773.5(13) 3651(2) 3638.9(18) 2273.5(7) 

Z, Z' 4, 1 4, 2 4, 1 4, 1 2, 1 

Density (calculated) Mg/m3 1.402 1.275 1.579 1.546 1.637 

Wavelength (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 

Temperature (K) 100(2) 100(2) 100(2) 100(2) 100(2) 

F(000) 1712 1520 1752 1712 1132 

Absorption coefficient (mm-1) 0.527 0.522 0.789 0.980 0.519 

Max. and min. transmission 0.962 and 0.774 0.866 and 0.840 0.972 and 0.721 0.966 and 0.702 0.928 and 0.843 

Theta range for data collection (°) 2.02 to 26.00 1.88 to 26.00 1.96 to 25.00 2.97 to 26.00 1.61 to 26.00 

Reflections collected 29988 39881 22634 24943 22582 

Independent reflections 7618 [R(int) = 0.0353] 14767 [R(int) = 0.0252] 6325 [R(int) = 0.0562] 7073 [R(int) = 0.0233] 8855 [R(int) = 0.0183] 

Data / restraints / parameters 7618 / 141 / 569 14767 / 0 / 883 6325 / 0 / 478 7073 / 0 / 442 8855 / 0 / 604 

wR(F2 all data) a wR2 = 0.1136 wR2 = 0.0950 wR2 = 0.1148 wR2 = 0.0715 wR2 = 0.1031 

R(F obsd data) b R1 = 0.0420 R1 = 0.0347 R1 = 0.0419 R1 = 0.0275 R1 = 0.0380 

Goodness-of-fit on F2 1.038 1.012 1.019 1.000 1.004 

Observed data [I > 2σ(I)] 6330 12772 5006 6527 8196 

Largest and mean shift / s.u. 0.000 and 0.000 0.002 and 0.000 0.001 and 0.000 0.001 and 0.000 0.001 and 0.000 

Largest diff. peak and hole (e/Å3) 0.494 and -0.348 0.473 and -0.256 1.238 and -0.460 0.390 and -0.206 1.116 and -0.434 

a wR2 = { Σ [w(Fo
2 - Fc

2)2] / Σ [w(Fo
2)2] }1/2 b R1 = Σ ||Fo| - |Fc|| / Σ |Fo| 
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2.3.  Results 

2.3.1  Synthesis 

All of the compounds in this study were readily prepared using a modified 

literature procedure as depicted in Figure 2.3.29-30  Fe(NO)2(CO)2, the starting compound, 

was prepared using a published two step synthesis involving the reaction of Fe(CO)5 with 

NaNO2 and stored at -20 °C under nitrogen.  Fe(NO)2(CO)2 was then reacted with the 

desired phosphine in toluene under nitrogen to obtain the desired product. 

 

 

 

 1 2 3 4 5 6 7 
X1 OCH3 CH3 H H F Cl CF3 
X2 H H CH3 H H H H 

 

 

Figure 2.3. Reaction scheme depicting the formation of the Fe(NO)2(PAr3)2 products. 
 

 The isolated yields and colors for each compound are provided in Table 2.2.  Each 

reported yield and color refers to the isolated product after it had been purified and dried 

for several days under nitrogen.  The isolated wet products were in general the same color 

as the dried product, but appeared darker in all cases.  All of the compounds in this work 
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were found to be stable under nitrogen in the solid state for more than twelve months as 

determined by infrared spectroscopy and/or cyclic voltammetry. 

 

Table 2.2. Colors and isolated yields of the Fe(NO)2(PAr3)2 products 

Complex Substituent Color Isolated Yield 

1 p-OCH3 dark brown 27% 

2 p-CH3 brown 31% 

3 m-CH3 brown 23% 

4 p-H black 22% 

5 p-F black 23% 

6 p-Cl brown 33% 

7 p-CF3 lt. reddish brown 33% 

 

 

2.3.2  Infrared Spectroscopy 

The progress of the reactions to prepare the Fe(NO)2(PAr3)2 compounds were 

easily monitored by infrared spectroscopy.  The solution infrared spectrum of the starting 

compound, Fe(NO)2(CO)2, shown in Figure 2.4, exhibits two nitrosyl and two carbonyl 

signals which correspond to the symmetric and antisymmetric stretches of the dinitrosyl 

and dicarbonyl moieties.32  The carbonyl stretching vibrations (νCO = 2087 cm-1 and 2036 
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cm-1) appear at higher energy than the nitrosyl stretches (νNO = 1807 cm-1 and 1760 cm-1) 

and the symmetric stretch of each pair appears at higher energy than the antisymmetric 

stretch. 

 

 

Figure 2.4. Infrared spectrum of Fe(NO)2(CO)2 in CH2Cl2;  νCO (sym) = 2087 cm-1 
νCO (asym) = 2036 cm-1; νNO (sym) = 1807 cm-1, νNO (asym) 1760 cm-1. 

 

Addition of the desired phosphine to a stirred toluene solution of Fe(NO)2(CO)2 at 

room temperature under nitrogen resulted in the replacement of at least one carbonyl 

group as indicated by the disappearance of the associated infrared bands of the starting 

compound.  For example, the infrared spectrum of the reaction mixture containing 

Fe(NO)2(CO)2 and P(C6H4-p-F)3 before heating to full reflux is shown in Figure 2.5.  The 

spectrum indicates that a mixture of the mono and disubstituted products forms prior to 

reflux.  In addition to the bands assigned to the dinitrosyl group of the Fe(NO)2(P(C6H4-

p-F)3)2 product at 1720 cm-1 and 1682 cm-1, the band at 2009 cm-1 is assigned to the 

1600 1700 1800 1900 2000 2100 2200 

Wavenumber (cm-1) 
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carbonyl group of Fe(NO)2(P(C6H4-p-F)3)(CO), (only a single νNO is expected for this 

compound) and the bands at 1763 cm-1 and 1720 cm-1 are assigned to the dinitrosyl group 

of Fe(NO)2(P(C6H4-p-F)3)(CO).  All the bands are shifted to lower frequencies than those 

present in Fe(NO)2(CO)2. 

 

 

Figure 2.5. Infrared spectrum of the reaction mixture during the preparation of 
Fe(NO)2(P(C6H4-p-F)3)2 in toluene prior to full reflux containing a 
mixture of the mono and disubstituted products.  Fe(NO)2(P(C6H4-p-
F)3)(CO) (νCO = 2009 cm-1,  νNO = 1763 cm-1 and 1720 cm-1) and  
Fe(NO)2(P(C6H4-p-F)3)2 (νNO = 1720 cm-1 and 1682 cm-1). 

 

The remaining carbonyl group in Fe(NO)2(P(C6H4-p-F)3)(CO) was completely 

replaced upon the application of heat.  The infrared spectrum for the product, 

Fe(NO)2(P(C6H4-p-F)3)2, which lacks the peak for the carbonyl present in 

Fe(NO)2(P(C6H4-p-F)3)(CO), is shown in Figure 2.6. 

1600 1700 1800 1900 2000 2100 2200 

Wavenumber (cm-1) 
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Figure 2.6. Infrared spectrum of the reaction mixture during the preparation of 
Fe(NO)2(P(C6H4-p-F)3)2 in toluene after several hours of reflux;  νNO = 
1720 cm-1 and 1682 cm-1. 

 

As with the replacement of one carbonyl from Fe(NO)2(CO)2, replacement of the 

carbonyl from Fe(NO)2(P(C6H4-p-F)3)(CO) was accompanied with a decrease in the 

infrared stretching frequencies for the dinitrosyl group.  The dinitrosyl stretching 

frequencies, νNOs, in Fe(NO)2(P(C6H4-p-F)3)2 are lower relative to the νNOs present in 

both Fe(NO)2(CO)2 and Fe(NO)2(P(C6H4-p-F)3)(CO).  The IR spectral shifts for the 

reactions between Fe(NO)2(CO)2 and the other phosphines were similar.  At room 

temperature and prior to full reflux, mixtures of the mono and disubstituted products were 

evident in the infrared spectra.  In all cases, it was necessary to carry out the reaction at 

about 80°C to affect complete replacement of the second carbonyl.  This observation is 

consistent with other previous studies on dinitrosyl iron complexes.19, 29 
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The infrared data for each complex in three different solvents are summarized in 

Table 2.3.  The νNOs for compounds containing electron-donating substituents were lower 

than those for compounds containing electron-withdrawing substituents.  A solvent effect 

was observed on the νNOs.  In general, the νNOs obtained in CH2Cl2 were between those 

determined in toluene and in acetonitrile.  These results will be discussed later. 

 

Table 2.3. Infrared data for the Fe(NO)2(PAr3)2 products † 

 νNO (cm-1) 

 
Complex Substituent σ 

CH3CN CH2Cl2 C6H5CH3 
 

 
1 p-OCH3 -0.27 

1703 
1660 

1704 
1659 

1711 
1667 

 

 
2 p-CH3 -0.17 

1708 
1665 

1708 
1663 

1714 
1670 

 

 
3 m-CH3 -0.07 

1710 
1667 

1711 
1664 

1715 
1671 

 

 
4 p-H 0.00 

1712 
1670 

1715 
1670 

1719 
1678 

 

 
5 p-F 0.06 

1715 
1673 

1719 
1674 

1720 
1682 

 

 
6 p-Cl 0.23 

1720 
1677 

1723 
1678 

1722 
1682 

 

 
7 p-CF3 0.54 

1728 
1686 

1730 
1685 

1728 
1687 

 

† σ = the Hammett σp or σm substituent parameter 
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2.3.3  31P NMR Spectroscopy 

Each of the dinitrosyl compounds in this study was characterized using 31P NMR 

spectroscopy.  Proton decoupled spectra were obtained on a 300 MHz spectrometer at 

room temperature in CDCl3.  The chemical shifts δ(31P) for each compound along with 

the chemical shifts δ(31P) for the corresponding free ligands are shown in Table 2.4.  The 

spectrum for 5, Fe(NO)2(P(C6H4-p-F)3)2, is shown in Figure 2.7 as a representative 

example.  Each compound exhibited a single resonance consistent with two chemically 

equivalent phosphorus atoms in the range 57-64 ppm vs. 85% phosphoric acid as an 

external reference standard. 

 

Table 2.4. 31P{1H} NMR data for the Fe(NO)2(PAr3)2 products † 

 δ (ppm)  

 
Complex Substituent σ 

free ligand complex 
Δδ 

 

 
1 p-OCH3 -0.27 -9.6 56.4 66.0  

 
2 p-CH3 -0.17 -7.4 58.4 65.8  

 
3 m-CH3 -0.07 -4.7 60.9 65.6  

 
4 p-H 0 -4.9 60.9 65.8  

 
5 p-F 0.06 -8.6 59.3 67.9  

 
6 p-Cl 0.23 -8.0 60.9 68.9  

 
7 p-CF3 0.54 -5.5 63.8 69.3  

† Chemical shifts, δ (ppm), are referenced to 85% H3PO4 (δ = 0 ppm) 

 



 

26 
 

The resonances for the corresponding free phosphine ligands occur in the range -5 

to -11 ppm vs. 85% phosphoric acid.  Upon complexation, there was a coordination shift 

of about 70 ppm downfield.  Similar coordination shifts have been observed in other 

dinitrosyl phosphine complexes.26, 33-34 

 

 

Figure 2.7. 300 MHz 31P{1H} NMR spectrum of, 5, Fe(NO)2(P(C6H4-p-F)3)2 in 
CDCl3.  85% H3PO4 was used as an external reference (δ = 0 ppm). 

 

It is clear that the substituents on the P atom affect the 31P chemical shift value.  

In general, the compounds with electron-withdrawing substituents tend to have higher 

chemical shifts (δ) appearing further up field from the parent compound (p-H) while, in 

contrast, compounds with electron-donating substituents tend to have lower chemical 

shifts appearing farther downfield from the parent compound.  There seems to be some 

inconsistencies in this trend.  This is a point that will be addressed later in the discussion 

section.

-20020406080100120140

δ (ppm) 

59.3 
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2.3.4  X-ray crystallography 

 Despite the intense research efforts by many research groups into the chemistry 

and relevance of DNICs, it is surprising that very little structural data was available prior 

to my work on the Fe(NO)2(PAr3)2 compounds.  Suitable crystals for X-ray diffraction 

studies were grown by slow evaporation of solvent under nitrogen at ambient room 

temperature.  Molecular structures for compounds 1-2 and 5-7 are shown in Figures 2.8 – 

2.12.  Selected bond angles (°) and distances (Å) for Fe(NO)2(PAr3)2 are presented in 

Table 2.5 and in Table 2.6 respectively. 

 

Table 2.5. Selected bond angles (°) for the Fe(NO)2(PAr3)2 products 

Complex Substituent ∠P-Fe-P ∠N-Fe-N ∠O••Fe••O ∠Fe-N-O 

1 p-OCH3 105.97(3) 128.49(11) 127.96 
177.65(19) 

177.5(2) 

2 p-CH3 106.00(2) 129.89(7) 130.31 
179.31(16) 

175.05(15) 

  105.57(2) 124.29(8) 121.67 
179.10(16) 

173.84(15) 

*4 p-H 111.9(1) 123.8(4) 122.47 
178.2(7) 

178.2(7) 

5 p-F 108.27(4) 127.02(11) 125.62 
178.1(2) 

177.0(2) 

6 p-Cl 106.80(3) 127.78(7) 127.15 
178.76(15) 

177.67(14) 

7 p-CF3 105.25(2) 122.20(9) 118.46 
175.96(18) 

173.50(17) 

* The data for this compound was taken from the literature.35 
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Table 2.6. Selected bond distances (Å) for the Fe(NO)2(PAr3)2 products 

Complex Substituent C-P P-Fe Fe-N N-O 

1 p-OCH3 1.830(3) 
2.254(1) 
2.247(1) 

1.655(2) 
1.654(2) 

1.200(3) 
1.184(3) 

2 p-CH3 1.829(2) 
2.260(1) 
2.240(1) 

1.655(2) 
1.659(2) 

1.191(2) 
1.195(2) 

  1.825(2) 
2.257(1) 
2.245(1) 

1.651(2) 
1.652(2) 

1.190(2) 
1.187(2) 

*4 p-H 1.833(7) 2.267(2) 1.650(7) 
1.190(10) 
1.190(10) 

5 p-F 1.830(3) 
2.242(1) 
2.247(1) 

1.657(2) 
1.653(2) 

1.191(3) 
1.197(3) 

6 p-Cl 1.829(2) 
2.241(1) 
2.231(1) 

1.659(2) 
1.658(2) 

1.188(2) 
1.186(2) 

7 p-CF3 1.835(2) 
2.248(1) 
2.250(1) 

1.655(2) 
1.657(2) 

1.184(2) 
1.185(2) 

* The data for this compound was taken from the literature.35 
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Figure 2.8. Molecular structure of 1, Fe(NO)2(P(C6H4-p-OCH3)3)2.  Hydrogen atoms 
have been omitted for clarity.  The bottom figure depicts the disorder of 
one of the phenyl rings (indicated by the arrow) of one of the phosphine 
ligands. The displacement ellipsoids are drawn at the 50% probability 
level.
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Figure 2.9. Molecular structure of 2, Fe(NO)2(P(C6H4-p-CH3)3)2 showing the relative 
orientation of the 2 neighboring molecules.  There are two distinct 
molecules per asymmetric unit of the cell.  Hydrogen atoms have been 
omitted for clarity.  The displacement ellipsoids are drawn at the 50% 
probability level. 
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Figure 2.10. Molecular structure of 5, Fe(NO)2(P(C6H4-p-F)3)2.  Hydrogen atoms have 
been omitted for clarity. The displacement ellipsoids are drawn at the 50% 
probability level. 
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Figure 2.11. Molecular structure of 6, Fe(NO)2(P(C6H4-p-Cl)3)2.  Hydrogen atoms have 
been omitted for clarity.  The displacement ellipsoids are drawn at the 
50% probability level. 
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Figure 2.12. Molecular structure of 7, Fe(NO)2(P(C6H4-p-CF3)3)2.  Hydrogen atoms 
have been omitted for clarity. The displacement ellipsoids are drawn at the 
50% probability level. 
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2.3.5  Electrochemistry 

The redox behavior of compounds 1-7 were examined in CH2Cl2 using cyclic 

voltammetry.  Each compound undergoes a 1-electron oxidation process within the 

solvent potential range examined under the experimental conditions described in Section 

2.2.3.  No reduction processes were observed.  A representative cyclic voltammogram for 

5, Fe(NO)2(P(C6H4-p-F)3)2, is shown in Figure 2.13. 

 

 

Figure 2.13. Cyclic voltammogram for a 1 mM solution of Fe(NO)2(P(C6H4-p-F)3)2 in 
CH2Cl2 containing 0.1 M NBu4PF6 at a scan rate of 200 mV s-1. 

 

The cyclic voltammograms for compounds 1–3 (p-OCH3, p-CH3, and m-CH3) and 

5–6 (p-F and p-Cl) were similar to that of 4 (p-H) except that the formal electrode 

potential, E°’ = [(Epa + Epc)/2], was shifted more negative for 1–3 and more positive for 

5–6 relative to that of 4.  The Epa for 7, Fe(NO)2(P(C6H4-p-CF3)3)2, was the most positive 

-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 
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of the seven compounds studied and its cyclic voltammogram was significantly different 

from those of the other six compounds.  A representative cyclic voltammogram for 7 is 

shown in Figure 2.14. 

 

 

Figure 2.14. Cyclic voltammogram for a 1 mM solution of Fe(NO)2(P(C6H4-p-CF3)3)2 
in CH2Cl2 containing 0.1 M NBu4PF6 at a scan rate of 200 mV s-1

. 

 

The electrochemical data for each compound is summarized in Table 2.7.  

Compounds containing electron-donating substituents had lower formal electrode 

potentials, E°’, while those with electron-withdrawing substituents had higher formal 

electrode potentials.  The cyclic voltammetry results obtained for 1 and 7 will now be 

described as representative examples and compared to the other compounds. 
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Table 2.7. Formal electrode potentials (V vs. Fc/Fc+) and related electrochemical 
data for the Fe(NO)2(PAr3)2 products in CH2Cl2 (scan rate = 0.1 V s-1) † 

Complex Substituent σ Epa Epc ΔEp E°’ ipc/ipa ΔEp(ref) 

1 p-OCH3 -0.27 -0.15 -0.27 0.12 -0.21 1.0 0.09 

2 p-CH3 -0.17 -0.12 -0.26 0.14 -0.19 0.97 0.11 

3 m-CH3 -0.07 -0.11 -0.21 0.10 -0.16 0.89 0.08 

4 p-H 0.00 -0.08 -0.17 0.09 -0.13 1.00 0.08 

5 p-F 0.06 0.10 0.00 0.10 0.05 1.00 0.09 

6 p-Cl 0.23 0.14 0.06 0.08 0.10 1.00 0.06 

7 p-CF3 0.54 0.51 -- -- -- -- 0.06 

† All potentials are referenced to the ferrocene-ferrocenium couple, Fc/Fc+.  σ = the Hammett substituent 
parameter; Epa and Epc = the anodic and cathodic peak potentials respectively.  E°’ = the formal electrode 
potential = (Epa + Epc)/2; ΔEp = | Epa - Epc |, ΔEp(ref) = ΔEp of the internal reference standard; ipc/ipa = the ratio 
of peak currents = (ipc)0/ipa + (0.485(isp)0)/ipa + 0.086. 

 

 

The cyclic voltammogram of 1, Fe(NO)2(P(C6H4-p-OCH3)3)2, in CH2Cl2 exhibits 

a reversible one-electron oxidation at E°’ = -0.21 V vs. Fc/Fc+ under the experimental 

conditions employed throughout this study.  At a scan rate, ν, of 0.10 V s-1, the separation 

in peak potentials, ΔEp, averages 120 mV.  The anodic to cathodic peak current ratio, 

ipa/ipc, is 1.0.  The ipa/ipc value is constant from a scan rate of 0.05 V s-1 to 1.2 V s-1.  The 

ipa value varies linearly with ν1/2 over the entire scan rate range employed.  The 

separation in peak potentials, ΔEp, increases slightly with increasing scan rate, being in 

one determination 98 mV at 0.10 V s-1 and 134 mV at 0.50 V s-1.  Under the same 

conditions, the internal reference standard, ferrocene, has a peak separation of 76 mV at 
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0.10 V s-1 and 97 mV at 0.50 V s-1.  Lastly, in the case of Fe(NO)2(P(C6H4-p-OCH3)3)2, if 

the scan is extended to the solvent limit, there is some evidence for a second oxidation, 

however, this wave cannot be fully determined using our solvent system. 

As mentioned previously the cyclic voltammogram of compound 7 is significantly 

different from the other six compounds.  The cyclic voltammogram of 7, 

Fe(NO)2(P(C6H4-p-CF3)3)2, in CH2Cl2 exhibits a chemically irreversible oxidation.  At a 

scan rate of 0.20 V s-1 the anodic peak potential occurs at Epa = 0.51 V vs. Fc/Fc+.  (point 

a on Figure 2.14)  A small cathodic peak occurs at Epc = -0.04 V vs. Fc/Fc+.  This peak 

(point b on Figure 2.14) appears larger if the scan is taken farther in the anodic direction 

(i.e. closer to the solvent limit).  A cyclic voltammogram showing only the anodic peak is 

shown in Figure 2.15.  The ipa value varies linearly with ν1/2 over the entire scan rate 

range employed.  Under the same conditions, the internal reference standard, (Cp*)2Fe, 

has a peak separation of 66 mV at 0.05 V s-1 and 83 mV at 0.50 V s-1. 

 

Figure 2.15. Cyclic voltammogram for a 1 mM solution of Fe(NO)2(P(C6H4-p-CF3)3)2 
in CH2Cl2 containing 0.1 M NBu4PF6 at a scan rate of 100 mV s-1

. 
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2.3.6  Infrared Spectroelectrochemistry 

 The infrared spectroelectrochemistry of each compound (1-7) was examined at 

room temperature in CH2Cl2 under the conditions described in Section 2.2.3.  The applied 

potential, Eappl, and the data obtained are summarized in Table 2.8.  Each of the 

electrogenerated compounds exhibited symmetric and antisymmetric nitrosyl stretching 

frequencies that were  ~100 cm-1 higher than the νNOs observed in the neutral compounds.  

The νNOs for compounds containing electron-donating substituents were lower than those 

for compounds containing electron-withdrawing substituents. 

 

Table 2.8. Infrared spectroelectrochemical data obtained for the Fe(NO)2(PAr3)2 
products in CH2Cl2 † 

νNO (cm-1) 
Complex Substituent σ Eappl 

Neutral Oxidized ΔνNO 

1 p-OCH3 -0.27 -0.05 
1704 
1659 

1805 
1758 

101 
99 

2 p-CH3 -0.17 -0.06 
1708 
1663 

1810 
1763 

102 
100 

3 m-CH3 -0.07 0.01 
1711 
1664 

1812 
1764 

101 
100 

4 p-H 0.00 0.04 
1715 
1670 

1816 
1767 

101 
97 

5 p-F 0.06 0.17 
1719 
1674 

1820 
1770 

101 
96 

6 p-Cl 0.23 0.26 
1723 
1678 

1823 
1772 

100 
94 

7 p-CF3 0.54 0.62 
1730 
1685 

1827 
1759,1778 

97 
74 

† Eappl is the applied potential (V) relative to the ferrocene-ferrocenium couple, Fc/Fc+.  Eappl was typically 
set at 0.05 V – 0.12 V more positive than Epa.  ΔνNO is the difference between νNO for the singly oxidized 
compound and the corresponding νNO for the neutral compound. 
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 A representative infrared difference spectrum recorded during controlled potential 

oxidation of Fe(NO)2(P(C6H4-p-F)3)2 is shown in Figure 2.16.  The νNOs for the neutral 

starting compound are shown as disappearing at 1674 cm-1 and 1719 cm-1.  The νNOs for 

the oxidized species appear at 1770 cm-1 and 1820 cm-1 which suggests the formation of a 

cationic Fe(NO)2 containing species such as [Fe(NO)2(P(C6H4-p-F)2]
+

. 

 

 

Figure 2.16. Infrared difference spectrum recorded during the oxidation of 5, 
Fe(NO)2(P(C6H4-p-F)3)2, in CH2Cl2 containing 0.1 M [NBu4][PF6] at Eappl 
= 0.17 V vs. Fc/Fc+.  νNOs for the neutral compound are shown growing 
downward at 1674 cm-1 and 1719 cm-1 while νNOs for the oxidized species 
appear growing upward at 1770 cm-1 and 1820 cm-1. 

 

 The difference spectra for the other compounds studied were all similar to that of 

5, Fe(NO)2(P(C6H4-p-F)3)2, except for the spectrum recorded during the oxidation of 

Fe(NO)2(P(C6H4-p-CF3)3)2 which is depicted in Figure 2.17. 
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Figure 2.17. Infrared difference spectrum recorded during the oxidation of 7, 
Fe(NO)2(P(C6H4-p-CF3)3)2, in CH2Cl2 containing 0.1 M [NBu4][PF6] at 
Eappl = 0.57 V vs. Fc/Fc+.  νNOs for the neutral compound are shown 
growing downward at 1685 cm-1 and 1730 cm-1 while evidence of the νNOs 
for the oxidized species appear growing upward at 1759 cm-1, 1778 cm-1 
and 1827 cm-1. 

 

 The peaks for the oxidized species in the spectrum for Fe(NO)2(P(C6H4-p-CF3)3)2 

are not as clearly defined as those for the other compounds which suggests that the 

formation of the presumed cationic Fe(NO)2 containing species such as 

[Fe(NO)2(P(C6H4-p-CF3)2]
+

 is short lived. 

 The starting compound for this work is itself a dinitrosyl compound.  Its 

properties are very different from the diphosphine complexes as a result of it having two 

carbonyl ligands (π-acids) instead of two phosphine ligands (Lewis bases).  Not 

surprisingly, the oxidation of Fe(NO)2(CO)2 under our conditions did not produce a 

useful result.  The electrochemical reduction of Fe(NO)2(CO)2 in dry DMF at an HMDE 
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had been previously reported.36  We were able to obtain the infrared difference spectrum 

of Fe(NO)2(CO)2 in CH2Cl2 solution.  As shown in Figure 2.18 the four IR bands for the 

neutral compound grow downward (νCO = 2087 cm-1 and 2036;  νNO = 1807 cm-1 and 

1760 cm-1) while the bands for the reduced species shown grow upward at lower 

wavenumbers (νCO = 1975 cm-1 and 1892;  νNO = 1622 cm-1 and 1567 cm-1). 

 

 

Figure 2.18. Infrared difference spectrum recorded during the reduction of 
Fe(NO)2(CO)2 in CH2Cl2 with 0.1 M [NBu4][PF6] at Eappl = -2.2 V vs. 
Fc/Fc+.  νNOs for the neutral compound are shown growing downward 
(νCO = 2087 cm-1 and 2036;  νNO = 1807 cm-1 and 1760 cm-1) while νNOs 
for the singly reduced compound are shown growing upward at lower 
wavenumbers.  (νCO = 1975 cm-1 and 1892 cm-1;  νNO = 1622 cm-1 and 
1567 cm-1) 
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2.4.  Discussion 

2.4.1  Synthesis 

The starting compound, Fe(NO)2(CO)2, is a toxic, air sensitive, deep red liquid.  

The solid form melts at ~18 °C.27  Previous preparations of Fe(NO)2L2 (L = σ donor 

ligand) type compounds have involved carrying out the reaction directly with 

Fe(NO)2(CO)2 in a sealed vessel without solvent or from [Fe(NO)2(µ-X)]2 (X = Cl, Br, I) 

under reducing conditions.29-30, 37-38  These types of compounds have also been prepared 

by a reductive substitution reaction involving [(RS)2Fe(NO)2] anions with excess PPh3 

and by reaction of phosphines with Fe(NO)2(PR3)X as shown in Equations 1 and 2.39-40 

 

[(RS)2Fe(NO)2]
-  

(1,1-biphenyl) sodium
10 PPh3

⎯ →⎯⎯⎯⎯⎯⎯⎯   (Ph3P)2Fe(NO)2  +  2RS-      ( 1 ) 

Fe(NO)2(PAr3)X  +  PAr3  
Na(Hg)⎯ →⎯⎯⎯   Fe(NO)2(PAr3)2  +  NaX       ( 2 ) 

 

Bitterwolf recently published a one-pot synthesis of Fe(NO)2(PAr3)2 type 

compounds based on the reductive substitution (Equation 3) of Na2[Fe2(NO)4(µ-S2O3)2] 

in the presence of phosphines and phosphites.41 

 

[Fe2(NO)4(µ-S2O3)2]
2-  +  4PAr3  

Zn⎯ →⎯   2Fe(NO)2(PAr3)2  +  2S2O3
2-      ( 3 ) 
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The current preparation of Fe(NO)2(PAr3)2 type compounds is based on a 

modified literature procedure involving the reaction of Fe(NO)2(CO)2 with substituted 

triarylphosphines in toluene.29-30  Toluene was selected because it had a boiling point 

high enough to allow displacement of the second carbonyl ligand under refluxing 

conditions. 

2.4.2  Infrared Spectroscopy 

It is known that the substituents on the phenyl rings of triarylphosphines affect 

their basicities.42-45  The position of the dinitrosyl stretching frequency measured upon 

coordination with a phosphine ligand is related to the electron donor capacity or the 

Lewis basicity of the ligand and to the donor or acceptor capacity of the solvent in which 

the measurement is taken.46-49  Several methods have been used to quantify this type of 

substituent effect.  One of the most widely applied and useful is the Hammett substituent 

constant or Hammett parameter, σ.50 

Hammett parameters are linear free energy relationships that can be used as a 

measure of the electronic effects of ligands.51  They were first determined by Louis 

Hammett in the 1930s based on his study of benzoic and phenylacetic acid equlibria as a 

function of substituent groups on the aromatic ring.52  Hammett parameters can provide 

an approximate measure of the inductive effects from substituents positioned on the 

aromatic ring relative to the site of interest.  In this case they can be thought of as a 

relative measure of phosphine ligand basicity.  Hammett constants for each substituent 

used in this work and the corresponding pKas of the protonated phosphine ligands are 

given in Table 2.9.45 
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Table 2.9. Hammett parameters (σ) for substituents on substituted 

PAr3 and pKa values for the corresponding acids † 

 
Complex Substituent σ pKa 

 

 
1 p-OCH3 -0.27 4.57 

 

 
2 p-CH3 -0.17 3.84 

 

 
3 m-CH3 -0.07 3.30 

 

 
4 p-H 0.00 2.73 

 

 
5 p-F 0.06 1.97 

 

 
6 p-Cl 0.23 1.03 

 

 
7 p-CF3 0.54 -1.55 

 

† The cited pKa corresponds to the acid dissociation process: HPAr3
+  H+ + PAr3 

   The pKa data was obtained from the literature.45, 53  σ is the Hammett σp or σm parameter. 

 

It was previously reported and it is shown in Figure 2.19 that the Hammett 

parameter, σ, correlates linearly with the pKas of the phosphines used in this study.45  The 

order of ligand basicity is the same as the order of the Hammett σp and σm parameters 

(i.e. Hammett constants for substituents in para and meta positions).  The Hammett 

parameter for a hydrogen atom substituent is arbitrarily set to zero.  Electron donating 

groups have negative Hammett parameters while electron-withdrawing groups have 

positive Hammett parameters relative to the unsubstituted parent compound (i.e. p-H or 

m-H). 
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Figure 2.19 A plot depicting how the acid dissociation constant for substituted PAr3 is 
linearly related to the Hammett parameter for the substituents on PAr3.  
(The data for this plot was obtained from the literature.45, 53) 

 

We thus set out to determine if a correlation exists between σ and spectroscopic 

properties of the Fe(NO)2(PAr3)2 products.  A plot showing the infrared stretching 

frequencies for each substituted compound in three different solvents (toluene, CH2Cl2 

and acetonitrile) as a function of Hammett parameter is shown in Figure 2.20.  Separate 

plots of the infrared stretching frequencies for the dinitrosyl groups as a function of 

Hammett parameter in the same three solvents are shown in Figures 2.22 A - C  The IR 

data is given in Table 2.3 in the results section. 

In general, compounds with the more basic phosphines have lower νNOs while 

compounds with the less basic phosphines have higher νNOs.  The effect of solvent 

appears to be greater on the symmetric νNOs of compounds with electron-donating 
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7, p-CF3, are close together and appear to not be as affected by solvent differences as 

those with more electron donating substituents.  For most of the series, frequencies 

obtained in the non-polar and non-coordinating solvent toluene were higher than those 

obtained in CH2Cl2 (a polar non-coordinating solvent) or in acetonitrile (a polar 

coordinating solvent).  The νNOs obtained in CH2Cl2 were generally in-between those 

obtained in toluene and in acetonitrile although they tended to be closer to those obtained 

in acetonitrile as can be seen in Figure 2.20.  The effect of solvent on νNO appears to be 

greater on the compounds with the more basic ligands. 

 

 

Figure 2.20. Plot depicting the symmetric and antisymmetric νNOs in toluene, CH2Cl2 
and acetonitrile versus the Hammett substituent parameter. 
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In Figures 2.20 and 2.22 A - C it can be observed that electron-withdrawing 

substituents on the triarylphosphines, PAr3, shifted the νNOs to higher frequencies (by 9 – 

16 cm-1) relative to the parent compound Fe(NO)2(PPh3)2 (i.e. p-H).  In contrast, electron-

donating substituents shifted νNOs to lower frequencies. (by 8 – 11 cm-1).  The largest 

shifts in νNO were observed in the polar CH2Cl2 and the polar coordinating solvent 

acetonitrile. 

The shifts in νNO as a function of Hammett parameter can be rationalized on the 

basis of the ligand basicity and concept of back-bonding (Figure 2.21).  The more basic 

ligands (those with electron-donating substituents) contribute more electron density to the 

iron center and thus increase back-bonding from the filled d-orbitals on the metal to the 

anti-bonding orbitals on the nitrosyls resulting in a relatively lower νNO.  Conversely, the 

less basic ligands (those with electron-withdrawing substituents) contribute less electron 

density to the iron center and, as a result, the metal to ligand back-bonding is less as 

indicated by relatively higher νNOs. 

 

Figure 2.21. Schematic depicting metal-ligand back-bonding.  The coordination of the 
phosphine ligand (not pictured) on the metal increases electron density at 
the iron center, which in turn produces enhanced back-bonding from the 
filled d-orbital on the metal to the anti-bonding orbital on NO resulting in 
a lowering of νNO. 

Fe N O
σ

π∗d
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 While the plots for toluene and CH2Cl2 fit linearly with the Hammett parameter, a 

slight bending can be detected near the point where the substituents change from 

electron-withdrawing to electron-donating.  It is possible for the data to be fitted to two 

separate lines at this juncture as shown in Figures 2.22 A and B.  This observation tends 

to support having different modes of interaction between the different solvent types and 

the two classes of Fe(NO)2(PAr3)2 compounds.  In addition, the two lines may also be 

explained by the Fe(NO)2 moiety in the two classes adopting two slightly different 

conformations (or extent of attracto distortions) in different solvent types.  Toluene and 

CH2Cl2 are both non-coordinating solvents and the plots of νNO versus σ for both of these 

solvents possess the two-line feature.  Compound 3, Fe(NO)2(P(C6H4-m-CH3)3)2 deviates 

from the lines in CH2Cl2 and in toluene more than any of the para substituted 

compounds.  In contrast, the plot of νNO versus σ for acetonitrile is quite linear and 

cannot be fitted to two separate lines.  This suggests that the coordinating solvent 

interacts in a way not present in toluene or CH2Cl2. 
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Figure 2.22. Plots depicting the symmetric and antisymmetric νNOs for Fe(NO)2(PAr3)2 
compounds in (A) toluene, (B) CH2Cl2 and (C) acetonitrile vs. the 
Hammett substituent parameter. 
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For instance, if the oxygen atom on the dinitrosyl complexes acts as a donor to the 

solvent, there should be a relationship between the infrared stretching frequency and the 

solvent acceptor number (AN).54-56  The solvent acceptor number is a quantitiative 

empirical measure of the electrophillic behavior of a solvent.  It was developed by 

Gutmann and co-workers based on 31P chemical shift measurements of triethylphosphine 

oxide dissolved in the solvent of interest.  The 31P resonance of triethylphosphine oxide 

acts as a highly sensitive probe towards solvent change because the oxygen in the PO 

bond interacts differently with different solvents. 

Similarly, if the solvent behaves as a donor towards the dinitrosyl compounds of 

interest there should be a relationship between the νNO and the solvent donor number 

(DN).55-57  The donor number is a measure of the basicity or donor ability of a solvent.  

Also developed by Gutmann, it is defined as the negative enthalpy of reaction of a base 

with the Lewis acid antimony pentachloride, SbCl5.  Higher donor numbers are 

associated with stronger Lewis bases.  The donor and acceptor numbers for the solvents 

used in this work and for some other representative solvents are provided in Table 2.10. 

Plots showing the influence of the solvent acceptor number on νNO are shown in 

Figures 2.23 A - B and plots showing the influence of the solvent donor number on νNO 

are shown in Figures 2.24 A - B.  From these plots it can be seen that both the donor and 

acceptor properties of the solvents clearly have an effect on νNO.  As the solvent acceptor 

number increases νNO generally decreases.  This trend is generally consistent throughout 

the series.  Some small exceptions occur upon going from the polar coordinating 

acetonitrile solvent to the polar non-coordinating CH2Cl2. 
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Table 2.10. Solvent Acceptor and Donor numbers† 

Solvent AN DN 

Cyclohexane 0 0 

Ether 3.9 19.2 

Toluene 8.2 0.1 

CCl4 8.6 0 

Dioxane 10.8 14.8 

Acetonitrile 18.9 14.1 

Dichloromethane 20.4 1 

Chloroform 23.1 4 

† The units for both DN and AN are kcal mol-1.  The values in this table 
were taken from references.54, 56, 58-59 
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Figure 2.23. Plots depicting (A) the symmetric and (B) the antisymmetric νNO for each 
Fe(NO)2(PAr3)2 as a function of solvent acceptor number.  The solvents 
are (from left to right) toluene, acetonitrile, and CH2Cl2.  (AN = 8.2, 18.9 
and 20.4 respectively) 
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Figure 2.24. Plots depicting (A) the symmetric νNO and (B) the antisymmetric νNO for 
each Fe(NO)2(PAr3)2 as a function of solvent donor number.  The solvents 
are (from left to right) toluene, CH2Cl2 and acetonitrile.  (DN = 0.1, 1.0 
and 14.1 respectively) 
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 As shown on the previous page an interesting pattern is also observed when the 

νNO data is plotted against the solvent donor number (Figures 2.24 A - B).  In general, 

νNO decreases with increasing donor number.  The effect is much more pronounced upon 

moving from the less basic phosphines to the more basic phosphines (top-to-bottom in 

the plots).  Two exceptions stand out among the symmetric νNO data in that the p-CF3 and 

the p-Cl compounds both increase slightly before decreasing. 

 These solvent acceptor and donor number analyses herein are consistent with the 

notion that the DNICs studied can behave as both donors toward the solvent and 

acceptors from the solvent.  The results suggest an interaction between the solvent 

acceptor orbitals and the basic dinitrosyl oxygens.  Essentially the NO ligands behave as 

Lewis bases toward the solvent.  However, dinitrosyl moieties are rather complex as there 

is not a single νNO trend to follow.  In general, as the solvent’s ability to accept electron 

density increases (i.e. increasing AN), we observe lower νNOs.  These results also support 

the notion that the solvent may donate electron density to the DNICs.  As the solvent 

donor number increased, the νNOs generally decreased, which is an observation consistent 

with the fact that increased electron density at the metal results in enhanced metal to 

ligand backdonation of electron density.  While the donor number results do not show a 

large steady decrease in νNO over the entire range studied, there is a clear initial decrease 

in νNO upon going from the non-polar and non-coordinating toluene to the more polar 

solvents.  Both the solvent acceptor and the donor number results nicely support some 

previous related solvent effects studies involving Fe(NO)2(P(C6H5)3)2 and some related 

DNICs.47-48 
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Gutmann described the variation of νNOs on complexes of the type Fe(NO)2(CO)L 

(where L = CO, P(OC6H5)3, As(C6H5)3, P(C6H5)3 and P(C6H11)3 ) in three different 

solvents (C6H12, CCl4 and CHCl3) and found that the frequency differences of the iron 

nitrosyl carbonyl derivatives of the type Fe(NO)2(CO)L were increased by increased 

solvent acceptor number and in the order of increasing basicity of the ligand.48  The 

results of this current work are consistent with his finding even though our set of ligands 

are more uniform and the changes between each ligand are relatively small  (i.e. the para 

or meta substituent) and far removed from the coordination center. 

2.4.3  31P NMR spectroscopy 

The 31P NMR data as a function of the Hammett parameter σp can immediately be 

fitted to two separate lines as shown in Figure 2.25. 

 

 

Figure 2.25. Plot depicting the δ(31P) chemical shifts for each Fe(NO)2(PAr3)2 as a 
function of the Hammett parameter. 
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The line on the left (compounds 1, 2 and 4) consists of the chemical shifts of 

compounds with electron-donating substituents on PAr3.  A second line on the right 

(compounds 5, 6 and 7) consists of the chemical shifts of compounds with electron-

withdrawing substituents on PAr3.  As mentioned in the previous section on infrared 

spectroscopy, the Hammett parameter σp can be thought of as a measure of ligand 

basicity.  Thus, in general, on going from the more basic phosphines to the less basic 

phosphines the chemical shift appears further upfield.  It is not entirely clear why there is 

a break in the linear trend in 31P chemical shifts on going from electron-donating 

substituents to electron-withdrawing substituents.  However, the absence of a single 

linear correlation between the chemical shift and basicity indicates that the inductive 

effect that controls basicity is not the major influence on the chemical shift in these 

complexes. 

Upon closer inspection of the Hammett plot in Figure 2.25 it can be seen that it is 

possible to group the 31P NMR data in a different way.  Some of the substituents contain 

lone pairs (p-OCH3, p-F, p-Cl) and are thus able to participate in a direct resonance 

interaction with the phosphorus atom.  Considering only those substituents capable of 

direct resonance yields a clear linear correlation (Figure 2.24).  Curiously, the p-CF3 

substituent also falls on the trend line. 
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Figure 2.26. Plot depicting the δ(31P) chemical shifts for each Fe(NO)2(PAr3)2 as a 
function of the Hammett parameter; an alternative correlation for Figure 
2.25.  The dark filled markers indicate those substituents capable of 
participating in a direct resonance interaction with the phosphorus atom. 

 

It is known that the Hammett parameter gives poor correlations when resonance 

interactions are involved.  A separate set of linear free energy relationships (LFER) like 

Hammett parameters are available for use in cases where resonance interactions are 

possible.  A plot of δ(31P) versus the Brown-Okamoto constant σp
+ gives a straight line as 

shown in Figure 2.27. 
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Figure 2.27. Plot depicting the δ(31P) chemical shifts for each Fe(NO)2(PAr3)2 as a 
function of the Brown-Okamoto constant σp

+.  The Brown-Okamoto 
constant is used in cases where substituents are capable of participating in 
a direct resonance interaction with the phosphorus atom. 

 

 It is evident that the 31P NMR chemical shift is affected by small changes on the 

periphery of the PAr3 ligands.  Based on our data, some combination of ligand basicity 

and resonance factors play important roles.  However, the relative contribution of each 

factor is not clear. 

 

 

 

1 

2 

4 

5 

6 

7 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 

δ 
(p

pm
) 

6σp
+ 



 

59 
 

2.4.4  X-ray Crystallography 

As has been discussed in the previous sections, the electron density at the iron 

atom in Fe(NO)2(PAr3)2 compounds is affected by the use of different substituents 

attached to the aromatic rings of the phosphine ligands.  It is reasonable to expect 

structural differences in the Fe(NO)2 fragment as a consequence of different substituents 

being attached. 

 All of the studied compounds possess a distorted tetrahedral geometry around at 

the iron center.  The iron is bound to two nitrosyl groups via the nitrogen atoms and to 

two phosphine ligands via the phosphorus atom.  The N-Fe-N bond angles are in the 

range 122° – 130° while the P-Fe-P bond angles are in the range 105° - 109°.  The Fe-N-

O bond angles range between 173° - 180°.  As a whole, the Fe(NO)2 unit is in an 

“attracto” conformation where the O••Fe••O < N-Fe-N bond angle (Figure 2.28). 

 

 

 

Figure 2.28. Schematic depicting “attracto” and “repulso” conformations of the 
Fe(NO)2 group.32 
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The “attracto” conformation tends to be characteristic of first row transition-

metal dinitrosyls, which incorporate good pi-accepting ligands.32  The Fe-N bond lengths 

of ~1.65 Å are all shorter than 1.688(3) found in Fe(NO)2(CO)2.
60 

 There doesn’t appear to be a clear pattern in the X-ray data.  This is likely due to 

the fact that the changes are very small.  However, some noteworthy observations can be 

made by comparing the two extremes (electron-donating substituents vs. electron-

withdrawing substituents) relative to the parent Fe(NO)2(PPh3)2 compound. 

 The O••Fe••O bond angle of the parent compound is ~122.47°.  Replacement of 

the hydrogen with the more electron donating methoxy group is accompanied by an 

increase in the O••Fe••O bond angle of ~5.5°  Conversely, replacement of the of the 

hydrogen with CF3, a more electron withdrawing group is accompanied by a ~4.0° 

decrease in the O••Fe••O bond angle.  All three of these phosphines have cone angles of 

~145° and thus we would expect sterics to be a small factor.  Similar results are observed 

within the M-N-O bond angles.  Overall, electron donating substituents promote 

increased metal-ligand backbonding which is manifest as wider bond angles.  The 

opposite is true for electron withdrawing substituents. 

 The molecular structures for Fe(NO)2(PPh3)2 and [Fe(NO)2(PPh3)2]PF6 were 

published by Albano and Atkinson respectively.30, 35  Atkinson noted a number of 

important differences between the structure of the neutral compound and that of the 

cation.  First, oxidation of Fe(NO)2(PPh3)2 was accompanied with a substantial increase 

(0.095 Å) in the Fe-P bond length from 2.267(2) Å in the neutral compound to 2.362(1) 

Å in the cation.  This is an effect that is consistent with increased Fe-P π back-bonding 

character in the HOMO of Fe(NO)2(PPh3)2.  The N-O bond was observed to have 
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shortened (Δ -0.03 Å) from 1.190(10) Å in the neutral compound to 1.160(6) Å in the 

cation while the Fe-N bond was lengthened (Δ +0.011 Å) from 1.650(7) Å in the neutral 

compound to 1.661(4) Å in the cation.  The effects on these two bonds was consistent 

with π back-bonding to the nitrosyl π* orbitals, but was relatively small.  Nevertheless, 

Atkinson reported a higher nitrosyl IR stretching frequency for the cation [ΔνNO = ~100 

cm-1] which is consistent with a 1-electron metal centered oxidation.  The geometry 

around the iron center of (Ar3P)2Fe(NO)2 changed markedly upon oxidation.  The 

interphosphine angle, P-Fe-P, increased by 11.2° and the internitrosyl angle decreased by 

10.3°.  Finally, the nitrosyl ligands in the cation bent inward toward each other in an 

“attracto” confirmation [Δ(∠ Fe-N-O) = 12.0°]. 

All of the observations reported by Atkinson were consequences of the single 

electron oxidation of Fe(NO)2(PPh3)2 which is the extreme case of perturbing electron 

density at the metal center.  It might be expected that some intermediate effects would be 

observed, as described in my work using ligands to “fine tune” the density to a lesser 

extent.  The results of electrochemical oxidation of our compounds are discussed in the 

next section. 
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2.4.5  Electrochemistry 

The cyclic voltammogram for compound 4, Fe(NO)2(P(C6H6)3)2, was previously 

reported by Atkinson to have a single diffusion controlled fully reversible oxidation in 

CH2Cl2 at E°’ = 0.37 V vs. SCE (-0.10 vs. Fc/Fc+).  No reductions were observed in the 

potential range 0.00 to -1.80 V vs. SCE.  The present determination for 4 agrees within 

30 mV of Atkinson’s result.  Except for the compound 7, Fe(NO)2(P(C6H4-p-CF3)3)2, 

each of the other compounds analyzed exhibited a single reversible oxidation within the 

potential range examined.  The electrochemical data for each compound is summarized in 

Table 2.7. 

Changing the bascitiy of the ligands attached to the iron metal center can be 

expected to affect the formal redox potential of the compound.  Compounds with more 

electron density available at the metal center should be easier to oxidize relative to the 

parent compound whereas those compounds with less electron density available should 

be more difficult to oxidize than the parent.  It was observed that compounds with the 

most basic phosphine ligands were the easiest to oxidize as indicated by their lower E°’ 

values.  Changing to more electron withdrawing substituents caused a noticeable increase 

in E°’ from -0.21 V vs. Fc/Fc+ in 1 to 0.10 V in 6, a difference of 0.31 V.  The largest 

single ΔE°’ (ΔE°’ = Ex – Eparent) occurred upon changing from p-H to p-F (ΔE°’ = 0.18 

V).  All of the other differences were < 0.05 V.  Epa for 7, Fe(NO)2(P(C6H4-p-CF3)3)2, 

was much more positive than that of any of the other compounds occurring at 0.51 V vs. 

Fc/Fc+ which is 0.37 V more positive than Epa in 6, Fe(NO)2(P(C6H4-p-Cl)3)2. 
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 A Hammett plot of E°’ versus 6σ can be fitted to two lines which look very 

similar to the two line plot obtained from the 31P NMR data analysis.  However, in this 

case, the compounds clearly fall into two separate groups.  (i.e. electron withdrawing and 

electron donating) 

 

 

Figure 2.29. Plot depicting E°’ for each Fe(NO)2(PAr3)2 as a function of the Hammett 
parameter. 

 

Attempting to fit the data to a single trend line gives a slope of 0.11 with r2 = 

0.82.  Better fits result if two separate lines are used for the two groups.  The slopes of the 

lines obtained are similar.  The line obtained from the electron donating groups has a 

slope 0.047 with r2=0.98 while the line obtained for electron withdrawing groups had a 

slope of slope = 0.036 with r2 = 1 since there are only two compounds.  Comparing only 
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improves the fit for the electron donating groups and gives a slope = 0.049 with r2=0.999.  

Parallel lines similar to those described here and involving the same substituents on 

phenyl rings have been reported for a Hammett plot of the relative reactivities of para-

substituted phenylacetyenes.61 

 Hammett plots are known to give poor correlations when resonance factors are 

involved.  Therefore an attempt was made to obtain a correlation between E°’ and 

Brown-Okamoto constants as was done with the 31P NMR data in Section 2.4.3.  No 

single linear correlation was found as shown in Figure 2.30.  The same two separate 

groups are present which seems to suggest that resonance is not a major factor separating 

the two groups. 

 

Figure 2.30. Plot depicting E°’ for each Fe(NO)2(PAr3)2 as a function of the Brown-
Okamoto constant σp
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2.4.6  Infrared Spectroelectrochemistry 

 All of the studied compounds are easily oxidized to what are presumably 

[Fe(NO)2]
+ containing species.  The formation of each electrogenerated product is 

indicated by the appearance of two infrared bands shifted to higher wave numbers 

relative to the neutral compound.  Simultaneously, the two infrared bands at lower 

wavenumbers which are associated with the neutral compound disappear.  ΔνNO for each 

oxidation is approximately 100 cm-1 which is an indication that the oxidations are metal 

centered. 

The difference spectra for all compounds studied are similar except for the 

spectrum for 7, Fe(NO)2(P(C6H4-p-CF3)3)2.  The IR bands for 7+ are not clearly defined 

and do not appear as symmetrical as those of the other compounds.  This observation 

suggests that 7+ is short lived (perhaps releasing NO) compared to the other products on 

the time scale of the experiment. 

The relative order of the νNOs for product species is the same as that of the neutral 

compounds previously described.  While as previously stated ΔνNO for each compound is 

approximately 100 cm-1, the antisymmetric stretches for the compounds containg the 

more electron-donating substituents have larger ΔνNOs (by about 4 cm-1) than the 

antisymmetric stretches of the compounds containing the more electron-withdrawing 

substituents. 

The compound [Fe(NO)2(P(C6H5)3)2]
+[PF6]

- is known.30  The νNO of this 

compound (νNO = 1766 cm-1 and 1814 cm-1) is, as might expected, comparable to 4+ (νNO 

= 1767 cm-1 and 1816 cm-1) 
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2.5.  Conclusion 

We set out to determine how the spectroscopic and electrochemical properties of 

the Fe(NO)2 group are affected by small changes on the periphery of some dinitrosyliron 

diphosphine complexes (DNICs).  We noted that determining this type of information 

was important because it will help provide a better understanding of the properties of the 

Fe(NO)2 moiety.  In pursuit of this goal we have successfully prepared a homologous 

series of six previously unpublished DNICs and characterized them by FTIR and 31P 

NMR spectroscopy, X-ray crystallography, cyclic voltammetry and fiber-optic infrared 

spectroelectrochemistry. 

Considering all of our results collectively, it was found that relatively small 

changes on the periphery of the DNICs do indeed have a major effect on their 

spectroscopic and electrochemical properties.  We further report that the solvent system 

also has a noticeable influence.  In addition, IR, 31P NMR spectroscopic and 

electrochemical data all show evidence of two different classes of Fe(NO)2L2 compounds 

(L = phosphine; those with electron withdrawing groups and those with electron donating 

groups at the phosphine periphery). 

Specifically, with FTIR spectroscopy we showed that the νNOs of our DNICs 

could be correlated with the phosphine ligand basicity as measured by the Hammett 

substituent parameter.  We showed that in addition to the ligand basicity, the solvent 

donor and acceptor capacity affected the νNOs as quantified by the Gutmann donor and 

acceptor numbers.  We also showed that in CH2Cl2 and in toluene, the compounds with 

electron donating groups could be distinguished from those with electron withdrawing 

groups.  Such a distinction could not be made with the coordinating solvent acetonitrile, 
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which suggested that the three different kinds of solvents interacted differently with each 

of the two classes of DNICs. 

With the 31P NMR data, we showed that the phosphine chemical shifts are 

affected by the ligand basicity as exhibited by a two-line Hammett plot.  Furthermore we 

obtained a linear relationship between δ(31P) and the Brown-Okamoto constant 

suggesting that resonance factors also play some role, however, it is not clear how these 

factors are related or what other factors may be involved. 

Substituent influenced structural differences are evident in the X-ray 

crystallographic data, but the changes are very small.  However, on two extremes (most 

electron withdrawing substituents versus most electron donating substituents) the 

differences are quite clear.  We were able to show that, among other small changes, the 

Fe(NO)2 responds to the peripheral substituents by exhibiting an enhanced “attracto” 

conformation with electron withdrawing groups. Larger O•••Fe•••O angles found when 

electron donating groups are in place. 

Lastly, the electrochemistry and the infrared spectroelectrochemistry of the 

Fe(NO)2 group is dramatically affected by small changes on the periphery of the DNICs.  

All of the compounds studied exhibit 1-electron oxidations.  Reductions were not evident 

within the solvent potential limit, however, the parent Fe(NO)2(CO)2 compound was 

easily reduced in a 1-electron process.  Compounds containing the more basic phosphines 

were easily oxidized at lower E°’ values while exhibiting a ΔνNO (compared to the neutral 

compound) of about 100 cm-1.  Changing to less basic phosphines with more electron 

withdrawing substituents (e.g. p-F, p-Cl, p-CF3) shifted E°’ values higher eventually 

leading to the short lived [Fe(NO)2(P(C6H4-p-CF3)3)2]+ compound relative to the cyclic 
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voltammetry time scale employed.  Oxidation of 7, Fe(NO)2(P(C6H4-p-CF3)3)2, may even 

release NO as indicated by its infrared difference spectrum. 

All of the results herein can be used to emphasize the fact that the environment 

around DNICs affect their chemistry.  This is true even from relatively remote positions 

on the molecule.  As more is learned about the role of DNICs in biological systems 

including the local environment surrounding them (i.e. ligands), this information may be 

useful in helping to control their chemical fate and in predicting their derivatives. 
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Chapter 3.  The Behavior of 2-Methyl-2-nitrosopropane 
 in Several Solvents: A Kinetics and Equilibrium 

Study Using 1H NMR Spectroscopy 

3.1.  Introduction 

 Nitric oxide, NO, or its activated form reacts with a variety of species to form 

several different types of derivative compounds.  In the first chapter of this thesis, it was 

mentioned that NO reacts with metals to form nitrosyl (metal-NO) compounds.1  NO also 

attaches to some organic fragments to form a variety of nitroso (X-N=O) derivatives that 

include N-nitroso (nitrosamines), O-nitroso (alky/aryl nitrites), S-nitroso (alkyl/aryl 

thionitrites) and C-nitroso (nitrosoalkanes and nitrosoarenes) compounds (Figure 3.1).2 

 

 

Figure 3.1. Schematic depicting some reactions of nitric oxide with metals and with 
representative organic fragments. 

 

C-nitroso compounds (RNO) are known to bind to metals.3-4  They are also 

occasionally utilized in polymer chemistry.5  Recent interest in the fundamental 

properties of this class of compounds has been increasing due to the recognition of the 
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roles that they play in various biological processes.3  For example, nitrosoarenes are 

known to bind to hemoglobin and myoglobin.  A hemoglobin complex with Ph-NO is 

known to be a metabolic product resulting from nitrobenzene poisoning.3  Under certain 

physiological conditions some amine containing drugs are metabolized by the enzyme 

cytochrome P450 to yield C-nitroso derivatives, and the activity of cytochrome P450 is 

also thought to be inhibited by its binding to RNO compounds.3, 6-8 

Some C-nitroso compounds are known to be carcinogens in laboratory animals 

and in humans while, in contrast, others are thought to have potential as donors of nitric 

oxide for therapeutic use and may be able to selectively deliver a single redox form of 

NO to biological targets of interest.9-10 

Given the biological relevance and the synthetic utility of RNO type compounds,  

it is of interest to study their fundamental properties and the conditions under which they 

are active.  A number of reviews covering the preparation, coordination chemistry, and 

history of RNO compounds have been published.3-4, 11-13 

C-nitroso compounds may exist in monomeric or dimeric form.  Dimeric forms 

are formally azodioxy compounds, that may also be cis/trans dimers.  In solution, the 

dimeric form is in equilibrium with the monomeric form (Figure 3.2) and except in the 

case of tertiary C-nitroso dimers, isomerization to the corresponding oxime 

(R′CH=NOH) may be possible.3, 13 

 

Figure 3.2. General equation for an RNO dimer-monomer equilibrium in solution. 
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Our interest in the fundamental chemistry of C-nitroso compounds has led us to 

study the equilibrium established by the tertiary dimer 2-methyl-2-nitrosopropane 

(tBuNO)2.  The solid dimer is colorless and in solution the monomer is blue.14  This 

equilibrium has previously been studied by various techniques including 1H NMR, 14N 

NMR, and UV-vis spectroscopy.15-18  In most cases, however, the data obtained was for a 

single solvent and at a single temperature.14-24  In this chapter, we report a kinetics and 

equilibrium study of the 2-methyl-2-nitrosopropane dissociation reaction involving a 

series of solvents over a sufficient temperature range to allow for the calculation of 

thermodynamic data for the dimer-monomer equilibrium.  We were particularly 

interested in establishing the dependence of the equilibrium and rate constants on various 

solvent parameters. 

We thus set out to determine equilibrium and rate constants (Keq, k1 and k-1) in 

seven different solvents using 1H NMR spectroscopy.  Equilibrium constants were 

determined over a range of temperatures from 10 to 40 °C as appropriate for the solvent.  

Rate constants were determined in the range 20 - 30 °C.  The dependence of Keq, k1 and  

k-1 on selected solvent parameters was established and related thermodynamic and kinetic 

parameters were calculated.  We thank Brian G. Gowenlock (United Kingdom) for 

providing us with a copy of an unpublished manuscript and his request for us to 

investigate this subject. 
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3.2.  Experimental 

 

3.2.1  Chemicals 

 The dimer, 2-methyl-2-nitrosopropane, was purchased from Sigma-Aldrich 

Chemical company (Milwaukee, WI), stored at -10° C, and used as received.  Acetone-d6 

(D, 99.9%), acetonitrile-d3 (D, 99.8%), chloroform-d (D, 99.8%), cyclohexane-d12 (D, 

99.5%), dichloromethane-d2 (D, 99.9%), dimethyl sulfoxide-d6 (D, 99.9%) and ethanol-d6 

(D, 99%, anhydrous) were purchased from Cambridge Isotope Laboratories (Andover, 

MA).  All deuterated solvents (except chloroform) were obtained in single-use ampoules 

and used as received.  Chloroform was drawn from a stock reagent bottle, subjected to at 

least three freeze-pump-thaw cycles and stored under nitrogen over Grade 514 Type 4A 

molecular sieves. 

3.2.2  Instrumentation 

 Variable temperature 1H NMR spectra were obtained using a Varian Mercury-VX 

300 MHz spectrometer equipped with a four-nuclei autoswitchable pulse field gradient 

probe.  The calibration of the variable temperature unit was checked periodically using 

the temperature dependence of the chemical shift between the OH resonances and the 

CH3 resonances of methanol.  Spectra were obtained (as described in Section 3.2.3) using 

a 45-degree pulse.  All chemical shifts (δ, ppm) were referenced to the residual signal of 

the solvent employed. 
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3.2.3  Variable Temperature NMR in Different Solvents 

 A known amount of 2-methyl-2-nitrosopropane (10-15 mg) was added to a dry 

pre-weighed NMR tube (5 mm OD Precision ASTM Type 1 Class A Borosilicate Glass).  

The exact weight of the sample was determined by the difference between the weight of 

the empty NMR tube and the same NMR tube containing the sample.  The NMR 

spectrometer was prepared (i.e., software settings).  The variable temperature probe was 

set to the desired temperature using a dummy sample that consisted of the solvent to be 

used.  After setting appropriate instrument parameters and shimming, the dummy sample 

was removed.  After the temperature was set, the initial time was set (t = 0 s) using a 

stopwatch while 1.0 mL of solvent was added by syringe to the NMR tube containing the 

sample (this procedure took 1-3 s).  The colorless and clear sample was quickly inverted 

2 or 3 times to ensure proper mixing and then placed into the spectrometer probe.  A 

single transient spectrum was taken immediately.  Shimming was carried out again if 

required.  The time was again recorded and an arrayed experiment was started taking a 

single transient spectrum every 1 minute for 2 - 4 hours. (Note: T1 for the dimer was 

determined to be ~ 2.1 s in cyclohexane at 20 °C)  In all cases, the initial NMR spectra 

showed a large single resonance corresponding to the dimer downfield relative to another 

smaller peak corresponding to the monomer.  During the course of the experiment the 

smaller peak due to the monomer became more pronounced while the peak corresponding 

to the dimer decreased in size.  After each experiment the mass of the NMR tube 

containing the solvent and sample was obtained.  This procedure was repeated in 

triplicate or more for each determination of k1 at 20, 25 and 30 °C and for each 

determination of Keq at 10, 15, 20, 25, 30, 35 and 40 °C in the seven different solvents. 
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3.3.  Results 

 A representative 1H NMR spectrum of 2-methyl-2-nitrosopropane is shown in 

Figure 3.3. 

 

Figure 3.3. 1H NMR spectrum showing peaks for the dimeric and monomeric species 
at 20 °C in acetonitrile at time 218 s (~3.6 min). 

 

The absolute intensity integrated area was obtained for each peak (Ad and Am for 

the dimer and the monomer respectively).  The sum of the area under the peaks 

corresponding to the dimer and to the monomer was normalized to a value of 100.  The 

initial dimer concentration, [dimer]o, was calculated using the exact mass of the solid 

sample and the density adjusted volume of the solvent. 
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The concentration of the dimer at time t, [dimer]t, was calculated by 

[dimer]t =
Ad t( )
100

[dimer]o
      (1)

 

where Ad(t) is the area under the peak corresponding to the dimer at time t.  The 

concentration of the monomer at time t was calculated by 

[monomer]t =
2Am t( )
100

[dimer]o
          (2)

 

where Am(t) is the area under the peak corresponding to the monomer at time t. 

Representative concentration traces for the monomer and dimer are shown in 

Figure 3.4.  As the concentration of the dimer decreases with time, the concentration of 

the monomer increases.  In this case, after about 8000 s (~ 2.2 h), the concentration no 

longer changes with time indicating that the system has attained equilibrium. 

 

Figure 3.4. Concentration (M) vs. time (s) traces for the monomer and dimer in 
acetonitrile at 20°C. 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0 2000 4000 6000 8000 10000 12000 14000 

C
on

ce
n

tr
at

io
n

 (
M

) 

Time (s) 

monomer 

dimer 



 

 83 

 As mentioned in the introduction section of this chapter, the dissociation of 

dimeric 2-methyl-2-nitrosopropane is an example of a dynamic equilibrium. 

dimer 
 

k1

k-1
 2 monomer    (3) 

The reaction is chemically reversible.  Starting initially with only the dimer, the 

reaction proceeds to the right forming the monomer and the rate of this forward reaction 

decreases with time.  As the concentration of the monomer increases, the rate of the 

reverse reaction increases. 

The first derivative of the concentration vs. time traces depicted in Figure 3.4 are 

shown in Figure 3.5.  The plot in Figure 3.5 depicts the rate of the reaction with respect to 

the dimer (bottom curve) and the monomer (top curve).  The rate of the forward (D  

2M) reaction  is given by 

−
d[dimer]

dt
= k1[dimer]t

       (4)
 

and rate of the reverse (2M  D) reaction  is given by 

d[monomer]

dt
= k-1[monomer]t

2

        (5)
 

and thus the overall reaction rate is given by 

overall rate = k1[dimer]t - k-1[monomer]t
2

 = −
d[dimer]

dt
 = 
1

2

d[monomer]

dt       (6)
 



 

 84 

The overall reaction rate can be expressed in terms of either the dimer or the 

monomer concentrations.  It is common practice to express the overall rate such that the 

numerical value of the rate will be the same regardless of which species is used.  For the 

general reaction aA  bB the overall rate of the reaction is -1/a d[A]/dt which is 

numerically equal to 1/b d[B]/dt.  Thus it is necessary to multiply the differential 

expression for the monomer in Equation 6 by ½ in order to obtain the overall rate. 

As the reaction proceeds to equilibrium, the rates of the forward and reverse 

reactions become equal and the overall reaction rate becomes zero both with respect to 

the monomer and with respect to the dimer. 

 

Figure 3.5. First derivative of the concentration (M) vs. time (s) traces for the 
monomer and dimer in acetonitrile at 20°C.  Each curve represents the rate 
of the reaction with respect to that substance.  The overall rate of the 
reaction = -d[dimer]/dt  = ½d[monomer]/dt and approaches zero as 
equilibrium is attained. 
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3.3.1 Equilibrium Constants for the Dissociation of the 2-Methyl-2-Nitrosopropane 
Dimer in Various Solvents 

 

 As previously mentioned, once a state of equilibrium is attained the rates of the 

forward and reverse reactions are equal.  Thus, employing equilibrium concentrations, the 

overall reaction rate is 

overall rate = k1[dimer]eq - k-1[monomer]eq
2  = 0        (7) 

and therefore 

k1[dimer]eq = k-1[monomer]eq
2

         (8)
 

which can be rearranged to give 

k1
k-1

=
[monomer]eq

2

[dimer]eq             (9)

 

which is the form for the equilibrium constant 

Keq =
[monomer]eq

2

[dimer]eq             (10)

 

The equilibrium concentrations were determined by averaging the concentrations 

obtained near the end of each experiment to assure that equilibrium was in place.  

Typically the last 10 minutes of each experiment was used.  The equilibrium constants 

determined for seven different solvents are provided in Table 3.1.  Each value is the 

average of 3 or more experimental determinations obtained under similar conditions (i.e. 
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initial concentration of dimer, solvent, temperature).  The error reported is the sample 

standard deviation for each set.  In all cases the error was larger at higher temperatures. 

It is already known that chemical equilibria are affected by temperature.  The 

results herein are consistent with this fact.  Taking the data for acetonitrile as an example, 

it can be seen that the equilibrium constant is 3.51 ± 0.09 at 25 °C.  Decreasing the 

temperature by 10 °C to 15°C results in a lowering of the equilibrium constant nearly in 

half to 1.90 ± 0.07.  Similarly, raising the temperature 10 °C to 35 °C results in the near 

doubling of the equilibrium constant to 6.98 ± 0.36.  A similar pattern with temperature 

was observed for all seven solvents used in this study. 

In further considering the data in Table 3.1, it is clear that changing the solvent 

affects the magnitude of the equilibrium constant.  Among the solvents used, the largest 

values were obtained in acetone while the smallest values were obtained in ethanol and 

chloroform.  At 25 °C the equilibrium constant for acetone was 5.14 ± 0.19.  For 

chloroform, the value was 1.47 ± 0.20.  Values for the other five solvents fall in between.  

The reasons for this observed solvent effect are not immediately clear, but will be 

explored further in the discussion section in terms of solvent properties. 
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Table 3.1. Equilibrium Constants, Keq (M) for the Dissociation of 2-Methyl-2-Nitrosopropane Dimer in Various Solvents † 

 Temperature (°C) 

 Solvent 10 15 20 25 30 35 40 

1 Acetone 2.24 ± 0.08 3.03 ± 0.12 3.81 ± 0.20 5.14 ± 0.19 6.88 ± 0.27 -- -- 

2 Acetonitrile 1.45 ± 0.06 1.90 ± 0.07 2.64 ± 0.13 3.51 ± 0.09 4.88 ± 0.20 6.98 ± 0.36 8.65 ± 0.28 

3 Chloroform 0.59 ± 0.05 -- 1.03 ± 0.10 1.47 ± 0.20 2.15 ± 0.26 -- -- 

4 Cyclohexane 0.90 ± 0.04 1.27 ± 0.07 1.85 ± 0.20 2.60 ± 0.32 3.46 ± 0.48 4.76 ± 0.59 6.00 ± 0.64 

5 Dichloromethane -- -- 2.00 ± 0.06 2.75 ± 0.35 4.11 ± 0.23 -- -- 

6 DMSO -- -- 1.13 ± 0.16 1.71 ± 0.20 2.50 ± 0.28 3.32 ± 0.23 3.86 ± 0.59 

7 Ethanol 0.61 ± 0.04 0.80 ± 0.06 1.14 ± 0.09 1.52 ± 0.11 2.06 ± 0.13 2.67 ± 0.24 3.31 ± 0.24 

† The error reported is the sample standard deviation for each set of at least 3 experimental determinations under similar conditions. 
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3.3.2 Rate Constants for the Dissociation of 2-Methyl-2-Nitrosopropane Dimer in 
Various Solvents 

 

The dissociation kinetics of 2-methyl-2-nitrosopropane dimer was studied in 

seven different solvents by 1H NMR spectroscopy.  First-order kinetics for the 

dissociation were determined to be the case for all solvents used. 

As mentioned in the previous section (Equation 6), the overall rate of the reaction 

can be expressed as 

overall rate = −
d[dimer]

dt
 = k1[dimer]t - k-1[monomer]t

2

  (11)
 

 An expression to determine k1 can be found by using Equation 9 to eliminate k-1 

from Equation 11.  A number of algebraic substitutions can be made in order to obtain an 

expression with concentration terms on the left and k1 dt on the right.25  After integrating 

both sides the following rate law with the concentrations of the dimer and monomer as a 

function of time is obtained.  a, b, x, y and qd are functions of the initial, [dimer]o, and 

equilibrium, [dimer]eq, concentrations of the dimer, and c is the total solution 

concentration based on monomer units. 

ln
x[dimer]t + a

y[dimer]t + b

⎛

⎝⎜
⎞

⎠⎟
= -qdk1t            (12) 

c = [monomer]t + 2[dimer]t 
a = [dimer]eq(-c2 + 4[dimer]o[dimer]eq) = -[dimer]eqx 
b = c2([dimer]o - [dimer]eq) 
x = c2 - 4[dimer]o[dimer]eq 
y = 4([dimer]eq

2 - [dimer]o[dimer]eq) = -4[dimer]eq b/c2 
qd = (c + 2[dimer]eq) / (c - 2[dimer]eq) 
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The values for the forward rate constant k1 were determined using Equation 12 

and by least-squares fitting using COPASI.26  A plot of the left side of Equation 12 over  

-qd versus time gives a slope equal to k1.  The rate constant for the reverse reaction was 

calculated using Equation 13.  The values for k1 and k-1 obtained with Equations 12 and 

13 are shown in Table 3.2 and agree with those obtained using COPASI. 

Keq =
k1
k-1      (13)

 

As expected, the rate constants shown in Table 3.2 are affected by temperature.  

For example, the rate constant for dissociation reaction of the dimer in acetone at 20 °C is 

1.06 x 10-3 s-1.  Increasing the temperature by 5 degrees to 25 °C causes the rate constant 

to double while increasing the temperature by 10 degrees to 30 °C results in the rate 

constant increasing by a factor of 4.  The same relationship between temperature and k1 is 

observed for the other six solvents employed.  The reverse rate constants, k-1, for all 

solvents used were observed to approximately double with a 10-degree increase in 

temperature.  For example, k-1 for acetone at 20 °C is 2.79 x 10-4 L mol-1 s-1 while at 30 

°C, k-1 is 5.71 x 10-4 L mol-1 s-1. 

It is clear that the solvent affects both k1 and k-1 at a given temperature.  For 

example at 25 °C, the forward rate constants range from 5.88 x 10-4 s-1 in chloroform to 

4.50 x 10-3 s-1 in cyclohexane.  At the same temperature, the reverse rate constants range 

from 3.14 x 10-4 L mol-1 s-1 in dichloromethane and 3.19 x 10-4 L mol-1 s-1 in acetonitrile 

to 1.73 x 10-3 in cyclohexane.  Potential explanations for these observations are presented 

in the discussion section. 
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Table 3.2. Rate Constants for the 2-Methyl-2-Nitrosopropane Dimer-Monomer 
Equilibrium in Various Solvents † 

 Temperature (°C) 

 Solvent 20 25 30 

   104 x k1 (s
-1) 

1 Acetone 10.6 ± 0.21 20.3 ± 0.41 39.3 ± 0.57 

2 Acetonitrile 5.68 ± 0.16 11.2 ± 0.21 20.9 ± 0.83 

3 Chloroform 2.81 ± 0.05 5.88 ± 0.11 11.9 ± 0.48 

4 Cyclohexane 24.0 ± 0.35 45.0 ± 2.3          -- 

5 Dichloromethane 4.70 ± 0.21 8.64 ± 0.30          -- 

6 DMSO 5.99 ± 0.21 11.8 ± 0.23          -- 

7 Ethanol 6.89 ± 0.16 13.0 ± 0.02 24.0 ± 1.4 

    

  104 x k-1 (L mol-1 s-1) 

1 Acetone 2.79 ± 0.16 3.94 ± 0.17 5.71 ± 0.24 

2 Acetonitrile 2.15 ± 0.12 3.19 ± 0.10 4.27 ± 0.24 

3 Chloroform 2.73 ± 0.27 4.00 ± 0.55 5.56 ± 0.71 

4 Cyclohexane 13.0 ± 1.4 17.3 ± 2.3          -- 

5 Dichloromethane 2.35 ± 0.13 3.14 ± 0.41          -- 

6 DMSO 5.30 ± 0.77 6.91 ± 0.82          -- 

7 Ethanol 6.04 ± 0.50 8.57 ± 0.62 11.7 ± 1.0 

    

†  k1 = forward rate constant and k-1 = reverse rate constant for the D      2M equilibrium.  The error 
reported for k1 is the sample standard deviation for each set of at least 3 experimental determinations under 
similar conditons.  The error in k-1 is the propagated error based on the errors in k1 and Keq where k-1 = 
k1/Keq. 
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3.3.3 Calculation of Thermodynamic and Kinetic Parameters. 

 As mentioned in Section 3.3.1, the equilibrium constant for the 2-methyl-2-

nitrosopropane dimer-monomer equilibrium is defined as 

Keq =
[monomer]eq

2

[dimer]eq      (14)

 

where “eq” denotes concentrations determined under equilibrium conditions.  Under non-

equilibrium conditions, Equation 14 above becomes 

Q =
[monomer]t

2

[dimer]t      (15)
 

which is defined as the reaction quotient. 

 The overall tendency for the dimer dissociation reaction to occur is governed by 

the change in Gibbs free energy, ΔG.  At any point during the reaction, ΔG is given by 

ΔG = ΔG° + RT ln Q     (16) 

where ΔG° is the standard Gibbs free energy change, R is the universal gas constant, T is 

the absolute temperature (given in Kelvin), and Q is the reaction quotient as defined 

above.  Once equilibrium is attained, ΔG = 0 and Q = Keq.  Thus, at equilibrium, the 

relationship between ΔG° and K is given by 

ΔG° = - RT ln Keq     (17) 

 The values of ΔG° based on the equilibrium constants in Table 3.1 are given in 

Table 3.3. 
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Table 3.3. Gibbs Free Energies (ΔG°, kJ mol-1) for the Dissociation of 2-Methyl-2-Nitrosopropane Dimer in Various Solvents † 

 Temperature (°C) 

 Solvent 10 15 20 25 30 35 40 

1 Acetone -1.90 ± 0.08 -2.66 ± 0.09 -3.26 ± 0.13 -4.06 ± 0.09 -4.86 ± 0.10 -- -- 

2 Acetonitrile -0.87 ± 0.10 -1.54 ± 0.09 -2.37 ± 0.12 -3.11 ± 0.06 -4.00 ± 0.10 -4.98 ± 0.13 -5.62 ± 0.08 

3 Chloroform 1.24 ± 0.20 -- -0.07 ± 0.24 -0.96 ± 0.34 -1.93 ± 0.30 -- -- 

4 Cyclohexane 0.25 ± 0.10 -0.57 ± 0.13 -1.50 ± 0.26 -2.37 ± 0.31 -3.13 ± 0.35 -4.00 ± 0.32 -4.67 ± 0.28 

5 Dichloromethane -- -- -1.69 ± 0.07 -2.51 ± 0.32 -3.56 ± 0.14 -- -- 

6 DMSO -- -- -0.30 ± 0.35 -1.33 ± 0.29 -2.31 ± 0.28 -3.07 ± 0.18 -3.52 ± 0.40 

7 Ethanol 1.16 ± 0.15 0.53 ± 0.18 -0.32 ± 0.19 -1.04 ± 0.18 -1.82 ± 0.16 -2.52 ± 0.23 -3.12 ± 0.19 

† ΔG° (kJ mol-1) was calculated using Equation 17 and the equilibrium constants provided in Table 3.1.  The error reported for ΔG° is the propagated error based 
on the error reported for Keq. 
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 ΔG° is related to the change in enthalpy, ΔH, and to the change in entropy, ΔS° as 

given by 

ΔG° = ΔH° - TΔS°            (18) 

The contributions from enthalpy and entropy to ΔG° can be determined experimentally 

by measuring the equilibrium constant as a function of temperture.  By combining 

equations 17 and 18 it is possible to write 

lnKeq = −
Δ H °

RT
+
Δ S°

R     (19)
 

which is one form of the van’t Hoff Equation.  Values for ΔH° and ΔS° can be 

determined by a plot of ln Keq versus 1/T where the slope of the plot equals -ΔH°/R and 

the y-intercept equals ΔS°/R.  A representative plot is shown in Figure 3.6. 

 

Figure 3.6. A plot of ln Keq versus 1/T (Equation 19) for the 2-methyl-2-
nitrosopropane dimer-monomer dissociation reaction in acetonitrile.  The 
slope equals -ΔH°/R and the y-intercept equals ΔS°/R. 
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Values for ΔH° and ΔS° were computed using the slope and the y-intercept from 

Equation 19 and are shown in Table 3.4. 

Table 3.4. Standard Changes in Enthalpy, ΔH°, and Entropy, ΔS°, 
for the 2-Methyl-2-Nitrosopropane Dimer-Monomer 
Dissociation Reaction in Various Solvents † 

 Solvent 
ΔH° 

(kJ mol-1) 
ΔS° 

(J mol-1 K-1) 

1 Acetone 39.6 ± 1.1 146.5 ± 3.9 

2 Acetonitrile 45.2 ± 1.1 162.4 ± 3.6 

3 Chloroform 45.5 ± 3.3   155.9 ± 11.1 

4 Cyclohexane 47.3 ± 0.8 166.3 ± 2.8 

5 Dichloromethane 53.3 ± 3.9   187.5 ± 13.1 

6 DMSO 47.9 ± 4.2   164.9 ± 13.8 

7 Ethanol 42.7 ± 0.8 146.5 ± 2.7 

† The reported error was calculated using the statistics from the least-squares plot of 
Equation 19. 

 It is known that temperature affects the rate of a reaction by affecting the value of 

the rate constant k.  One relationship between temperature and the rate constant of a 

reaction is given by  

k = Ae -Ea/RT     (20) 

which is known as the Arrhenius equation.  The term Ea is the activation energy which is 

typically expressed in the units joules/mole.  The term A is the pre-exponential or 

frequency factor which has the same units as k.  The other two parameters R and T are the 

universal gas constant and the absolute temperature. 
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 By taking the natural logarithm of both sides and rearranging Equation 20 into the 

form for a straight line, the Arrhenius equation can be written as 

ln k = lnA −
Ea
R

1

T
     (21) 

and in two-point form as 

ln
k2
k1
=
Ea
R

1

T1
−
1

T2

⎛

⎝⎜
⎞

⎠⎟
     (22) 

Using Equation 21 to plot ln k versus 1/T gives a straight line with a slope equal to -Ea/R 

and a y-intercept equal to ln A.  A representative Arrhenius plot is shown in Figure 3.7. 

 

  

Figure 3.7. A plot of ln k versus 1/T (Equation 21) for the 2-methyl-2-nitrosopropane 
dimer-monomer dissociation reaction in acetonitrile.  The slope equals -
Ea/R and the y-intercept equals ln A. 

y = -11.261x + 25.267 
R² = 1.000 

-13.40 

-13.20 

-13.00 

-12.80 

-12.60 

-12.40 

-12.20 

-12.00 

-11.80 

3.28 3.30 3.32 3.34 3.36 3.38 3.40 3.42 

ln
 k

 

103 x 1/T (K) 



 

 96 

 Using the data in Table 3.2, Ea was determined for the values of k in each solvent 

and are given in Table 3.5. 

 

Table 3.5. Activation Energies for the 2-Methyl-2-Nitrosopropane Dimer-Monomer 
Dissociation Reaction in Various Solvents † 

 forward (D  2M)  reverse (2M  D) 

 Solvent 
ln A 
(s-1) 

Ea 
(kJ mol-1) 

 
ln A 

(L mol-1 s-1) 
Ea 

(kJ mol-1) 

1 Acetone 32.8 ± 0.6 96.6 ± 1.6  13.5 ± 0.6 52.9 ± 1.5 

2 Acetonitrile 32.0 ± 0.6 96.1 ± 1.4  12.4 ± 1.5 50.7 ± 3.7 

3 Chloroform 35.7 ± 0.1 106.9 ± 0.2  13.4 ± 0.7 52.6 ± 1.7 

4 Cyclohexane 31.5 91.5  10.6 42.0 

5 Dichloromethane 28.7 88.6  9.0 42.3 

6 DMSO 33.1 98.7  8.3 38.5 

7 Ethanol 30.6 ± 0.1 92.4 ± 0.1  12.6 ± 0.5 48.7 ± 1.2 

† D = dimer, M = Monomer.  The reported error was calculated using the statistics from the least-squares 
plot of Equation 21. 

 

 Considering the data in Table 3.5 obtained from the empirically derived Arrhenius 

equation, it is clear that there are two factors (the pre-exponential or frequency factor and 

the activation energy) that may be affected by certain solvent properties and thus affect 

the rate constant k.  At a given temperature, any factor affecting either A or Ea will 

subsequently affect k.  In general, a lower activation energy corresponds to a larger k and 

a larger activation energy corresponds to a smaller k.  This trend is generally reflected in 

the data obtained as chloroform with the largest Ea (forward) has the smallest forward 

rate constant and cyclohexane with a relatively small value for Ea (forward) has the 
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largest rate constant as shown in Table 3.2.  The actual values for k are of course also 

dependent on the magnitude of A. 

 The Arrhenius equation is limited in that it ignores the chemical mechanism.  

More specifically, the Arrhenius equation ignores the possibility of there being one or 

more intermediates involved in the conversion of reactions to products.  Thus, the use of 

the activation energy to explain the magnitude of rate constants has been replaced with 

transition state theory.27 

 Transition state theory has been used widely to examine the effect of solvent on 

chemical reactions and the model provides a useful means to explain observed effects on 

the reaction rate constant in terms of specific kinetic parameters (e.g. ΔG‡, ΔH‡ and ΔS‡).  

The theory states that in order for a reaction to proceed from reactants to products, the 

reactants must first pass through a higher energy transition state (Figure 3.8). 

 

 

Figure 3.8. Free energy reaction coordinate diagram.  ΔG‡
 is Gibbs free energy of 

activation (kJ mol-1) for the forward (f) and reverse reactions (r). 
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 Transition state theory provides another relationship between temperature and the 

rate constant of a reaction in the form of the Eyring equation which is 

    (23) 

 

where k is the rate constant, T is the absolute temperature, ΔH‡ is the enthalpy of 

activation, ΔS‡ is the entropy of activation, R is the universal gas constant.  kb is 

Boltzmann’s constant, and h is Planck’s constant. 

 Using the Eyring equation a plot of ln(k/T) versus 1/T was prepared and the 

activation parameters ΔH‡, and ΔS‡ were determined and are provided in Table 3.6.  A 

representative Eyring plot is shown in Figure 3.9. 

 

Figure 3.9. A plot of ln (k/T) versus 1/T (Equation 23) for the 2-methyl-2-
nitrosopropane dimer-monomer dissociation reaction in acetonitrile.  The 
slope equals -ΔH‡/R and the y-intercept equals [ ln (kb/h) + ΔS‡/R ]. 
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Table 3.6. Activation Parameters for the 2-Methyl-2-Nitrosopropane Dimer 
Monomer Equilibrium in Various Solvents † 

 forward (D  2M)  reverse (2M  D) 

 Solvent 
ΔH‡ 

(kJ mol-1) 
ΔS‡ 

(J K-1 mol-1) 
 

ΔH‡ 
(kJ mol-1) 

ΔS‡ 
(J K-1 mol-1) 

1 Acetone 94.1 ± 1.5 19.3 ± 5.2  50.5 ± 1.5 -140.8 ± 4.9 

2 Acetonitrile 93.6 ± 1.4 12.5 ± 4.6  48.3 ± 3.7 -150.2 ± 12.5 

3 Chloroform 104.5 ± 0.2 43.5 ± 0.6  50.1 ± 1.8 -142.1 ± 5.9 

4 Cyclohexane 89.0 8.6  39.5 -165.2 

5 Dichloromethane 86.2 -14.5  39.9 -178.2 

6 DMSO 96.3 22.0  36.1 -184.4 

7 Ethanol 89.9 ± 0.1 1.3 ± 0.4  46.2 ± 1.2 -148.8 ± 4.2 

† D = dimer, M = monomer.  The reported error was calculated using the statistics from the least-squares 
plot of Equation 23. 

 

 Transition state theory assumes that a special type of equilibrium with an 

equilibrium constant K‡ exists between the reactants and the activated complex.  The rate 

constant for a reaction is given by  

 

k = (kBT/h)K‡      (24) 

 

Since K‡ is an equilibrium constant, it is possible to write 

 

ΔG‡ = -RT ln K‡     (25) 

 

which is similar to Equation 17 and where ΔG‡ is Gibbs free energy of activation. 
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It follows from Equations 24 and 25 that the rate constant is related to ΔG‡ by 

k = (kBT/h)exp(-ΔG‡/RT)         (26) 

 

The relationship between ΔG‡, enthalpy and entropy at a given temperature is by 

ΔG‡ = ΔH‡ - TΔS‡     (27) 

 

ΔG‡ for the forward and reverse reactions was calculated using the data in Table 

3.6 and Equation 27 above.  The results are provided in Table 3.7.  ΔG‡ for both the 

forward and reverse reactions varies very little with temperature (~0.2 kJ mol-1 and ~1.6 

kJ mol-1 over a ten degree range for the forward and reverse reactions respectively).  

There is a clear variation with solvent as the non-polar solvent cyclohexane has the 

lowest ΔG‡ for both the forward and the reverse reactions.  Chloroform and acetonitrile, 

polar aprotic solvents, have among the largest values of ΔG‡
.  The relationship between 

ΔG‡
f, ΔG‡

r, and ΔG° as indicated in Figure 3.8 is confirmed within this data. ΔG‡
f - ΔG‡

r 

in Table 3.7 are approximately equal to the corresponding ΔG° values presented in Table 

3.3. 

 Lastly, Equation 26 indicates that any factor affecting the Gibbs free energy of 

activation will ultimately affect k.  It should also be noted that since ΔG‡
 is composed of 

enthalpy and entropy components (Equation 27), any factor affecting ΔH‡ and/or ΔS‡ will 

affect ΔG‡
 and thus k. 

 The effect of the solvent on Keq k1 and k-1 is discussed in terms of various 

solvation parameters and in terms of the solvent effect on the thermodynamic and 

activation parameters in the next section. 
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Table 3.7. Free Energies of Activation for the 2-Methyl-2-Nitrosopropane Dimer 
Monomer Equilibrium in Various Solvents † 

 Temperature (°C) 

 Solvent 20 25 30 

   ΔG‡
f (kJ mol-1) 

1 Acetone 88.5 ± 2.2 88.4 ± 2.2 88.3 ± 2.2 

2 Acetonitrile 90.0 ± 1.9 89.9 ± 1.9 89.8 ± 1.9 

3 Chloroform 91.7 ± 0.3 91.5 ± 0.3 91.3 ± 0.3 

4 Cyclohexane 86.5 86.4 86.4 

5 Dichloromethane 90.4 90.5 90.6 

6 DMSO 89.8 89.7 89.6 

7 Ethanol 89.5 ± 0.2 89.5 ± 0.2 89.5 ± 0.2 

    

  ΔG‡
r (kJ mol-1) 

1 Acetone 91.7 ± 2.0 92.4 ± 2.1 93.1 ± 2.1 

2 Acetonitrile 92.3 ± 5.2 93.1 ± 5.3 93.8 ± 5.3 

3 Chloroform 91.7 ± 2.5 92.5 ± 2.5 93.2 ± 2.5 

4 Cyclohexane 88.0 88.8 89.6 

5 Dichloromethane 92.1 93.0 93.9 

6 DMSO 90.1 91.1 92.0 

7 Ethanol 89.8 ± 1.7 90.6 ± 1.8 91.3 ± 1.8 

    

† ΔG‡
f and ΔG‡

r are the free energies of activation for the forward (D  2M) and reverse (2M  D) 
reactions respectively.  The values in this table were calculated using Equation 27.  The relationship 
between ΔG‡

f , ΔG‡
r and ΔG° is ΔG° = ΔG‡

f - ΔG‡
r . ΔG° values are given in Table 3.3. 
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3.4.  Discussion 

 Considering the data in Tables 3.1 and 3.2 it is clear that both the equilibrium and 

rate constants for the 2-methyl-2-nitrosopropane dissociation reaction are dramatically 

affected by a change in the solvent at a given temperature.  In order to explain these 

observations, it is desirable to determine if there are one or more solvent properties that 

can be related to the magnitude of Keq and/or k.  In addition, since it is known that 

equilibrium and rate constants are related to various thermodynamic and kinetic 

parameters, it is also desirable to determine if correlations exists between solvent 

parameters and these model quantities.  Knowing the aforementioned information should 

assist with making it possible to interpret the solvent dependency of Keq and k in terms of 

proposed reaction mechanisms. 

 

3.4.1  Solvent Effects on Equilibrium and Rate Constants 

The equilibrium constant is affected by the choice of solvent and is related to the 

free energy of reaction by Equation 17.  The degree to which the free energies of the 

solute molecules in equilibrium are affected by solvation will ultimately affect the value 

of ΔG°.  As ΔG° changes, the equilibrium composition of the reaction will change and 

this change is reflected by a change in the equilibrium constant.  Generally, the 

equilibrium is expected to shift with a change in solvent in a way to favor the side most 

stabilized by solvation.28 

The rate constants of chemical reactions are also affected by the choice of solvent.  

A classic example of this is demonstrated by how the rate of an SN2 reaction is changed 

depending on whether or not the reaction is carried out in a protic or in a polar aprotic 
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solvent.  The reaction rate is generally slower in protic solvents relative to the rate in 

polar aprotic solvents because the solvent molecules in protic solvents are capable of 

forming hydrogen bonds with negatively charged nucleophiles thus lowering their energy 

level and decreasing reactivity towards electrophiles.29 

Hughes and Ingold used transition state theory (mentioned in the results section) 

to qualitatively describe the effect of solvent on the rate of a reaction.30-32  The main 

solvent parameter used was that of solvent polarity.  It was suggested that if the transition 

state is more polar than the initial state of the reactants, then an increase in solvent 

polarity will stabilize the transition state relative to the initial state thus leading to an 

increase in the reaction rate.  The opposite is true if the transition state is less polar than 

the initial state.  An increase in solvent polarity would decrease the reaction rate. 

Solvents are, of course, characterized by numerous chemical and physical 

properties including: boiling point, freezing point, density, vapor pressure, cohesive 

pressure, dielectric constant, refractive index, dipole moment, polarizability, hydrogen 

bonding capabilities, donor-acceptor properties, and others.33  Based on the ideas of 

Hughes and Ingold and for the purposes of this work, we begin by trying to find 

correlations with solvent polarity.  Solvent polarity along with polarizability, hydrogen 

bonding capabilities, and donor-acceptor interactions is a major component of what 

constitutes a solvent’s solvation ability which is expected to affect Keq and k.28 
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3.4.2  Solvent Polarity 

 The polarity of a solvent refers to the attractive and repulsive forces between ionic 

or dipolar solutes and solvent dipoles.30, 34  Solvents exerting relatively strong such forces 

are known as polar solvents.  While it is common in the chemical literature to employ the 

relative permittivity, εr, (the dielectric constant) or the permanent dipole moment of a 

solvent molecule to quantify solvent polarity, it is best to think of solvent polarity as the 

sum of all the molecular properties (excluding those leading to a chemical change) 

responsible for the interactions between solvent and solute molecules (i.e. solvation).30, 34  

Such properties include Coulombic, inductive, dispersion, hydrogen bonding, and 

electron pair donor (EPD)/electron pair acceptor (EPA) interaction forces. 

 Several different scales are used to quantitatively assess solvent polarity. As 

mentioned above, the permanent dipole moment of the solvent molecule and the relative 

permittivity are two such scales.  Cohesive pressure and refractive index have also been 

applied.30, 35  In addition, several empirically derived scales have been developed based 

on the solvatochromic response of chemical probes to a solvent’s overall solvation 

ability.  Such scales include the Z scale, the ET(30) scale and its normalized version the   

ET
N scale.34, 36-40  The Gutmann donor and acceptor number scales have been used to 

quantify solvent electron pair donor and acceptor interactions with the solute.41-44  Some 

of the most widely used scales are provided in Table 3.8. 

 In the following subsections, the relationship between Keq, k1 and k-1 for the  

2-methyl-2-nitrosopropane dissolution reaction and solvent polarity using several of the 

aforementioned scales will be examined starting with relative permittivity. 
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Table 3.8. Relative Permittivity, Viscosity and Various Empirical Scales of Solvent Polarity † 

  εr 
a Z b ET

N c DN d AN e Kamlet-Taft Parameters f η g 

 Solvent  kcal mol-1  kcal mol-1 kcal mol-1 π* α β cP 

1 Acetone 20.56 65.7 0.355 17 12.5 0.62 0.08 0.48 0.322 

2 Acetonitrile 35.94 71.3 0.460 14.1 18.9 0.66 0.19 0.40 0.362 

3 Chloroform 4.89 63.2 0.259 4 23.1 0.69 0.20 0.10 0.566 

4 Cyclohexane 2.02 60.1 0.006 0 0 0.00 0.00 0.00 0.973 

5 Dichloromethane 8.93 64.2 0.309 1 20.4 0.73 0.13 0.10 0.437 

6 DMSO 46.45 70.2 0.444 29.8 19.3 1.00 0.00 0.76 2.146 

7 Ethanol 24.55 79.6 0.654 32 37.1 0.54 0.86 0.75 1.162 

†  (a) relative permittivity or dielectric constant measured at 25 °C, (b) Kosower’s Z scale, (c) normalized energy of transition for Reichardt’s betaine dye, (d) 
Gutmann donor number, (e) Gutmann acceptor number, (f) Kamlet-Taft general polarity, hydrogen bond donor, and hydrogen bond acceptor parameters (π*,α & 
β respectively), (g) solvent viscosity measured at 20 °C.  The data in this table were obtained from references.30, 33, 35, 41, 45-46 
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3.4.3  Correlations with Relative Permittivity, εr, (the dielectric constant) 

 The dielectric constant, εr, of a solvent is a measure of how well the solvent can 

separate opposing charges (i.e. a measure of polarization).35  If the solvent is placed 

between two oppositely charged plates in an electric field, Eo, the field strength in a 

vacuum, will be lowered to E as a result of the solvent molecules, with permanent or 

induced dipoles, aligning themselves with the field in an ordered arrangement.  The 

dielectric constant is defined as 

εr = Eo/E     (28) 

 

As mentioned previously, the dielectric constant tends to mirror solvent polarity as 

molecules with large molecular dipoles, large molecular polarizabilities and/or hydrogen 

bonding sites tend to have larger dielectric constants.27 

 A plot of the log Keq versus εr for the 2-methyl-2-nitrosopropane dissociation 

reaction is shown in Figure 3.10.  (the identities of solvents 1-7 are defined in Table 3.8) 

 

Figure 3.10. Plot of log Keq (20 °C) versus εr. 
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An interesting relationship between the equilibrium constant and the dielectric constant 

of the polar aprotic solvents used in this study was found.  Starting with chloroform 3, an 

increase in the dielectric constant was accompanied with an increase in the equilibrium 

constant to a maximum and then by a decrease.  This trend suggests that the solvent’s 

ability to separate charges has little effect on dissociation reaction when the dielectric 

constant is small, but once the dielectric constant is large enough (which represents 

greater ability to separate charges), the solvent begins to stabilize the dimer and this 

stabilization is reflected by a decrease in the equilibrium constant.  Cyclohexane 4, a non-

polar solvent, and ethanol 7, a polar-protic solvent, do not fall directly within this trend.  

(indicated by open circles on the plot)  More solvents of those respective types would 

need to be included in order to reveal any potential relationships. 

 A plot of the k1 versus εr for the 2-methyl-2-nitrosopropane dissociation reaction 

is shown in Figure 3.11. 

 

Figure 3.11. Plot of log k1 (20 °C) versus εr. 
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No single trend exists incorporating all seven solvents studied.  However, some useful 

observations are apparent.  The largest rate constant correlates with the least polar (in this 

case non-polar) solvent, cyclohexane 4.  The smallest rate constants correlate with the 

two most polar solvents acetonitrile 2 and DMSO 6.  The two chlorinated solvents, 

chloroform and dichloromethane (3 & 5 respectively), which contain polarizable chlorine 

atoms, appear as outliers and do not follow any particular trend.  If the plot is examined 

leaving out the two chlorinated solvents and ethanol 7, which is the only solvent in the 

group with strong hydrogen bonding capabilities, a linear trend emerges including 

solvents 4, 1, 2 and 6 (r2 = 0.93).  Assuming εr is a true measure of solvent polarity, this 

analysis indicates that the dimer is stabilized by polar solvents.  In addition, this analysis 

indicates that the polarizable chlorinated solvents and the hydrogen bonding solvent 

interact in a significantly different way with the dimer than do the other non-polar and 

polar aprotic solvents.  The former two categories of solvents have additional interacting 

forces (i.e. significant polarizability and hydrogen bonding capability) that apparently 

affect k1 in addition to those forces quantified by the dielectric constant.  At this point, it 

should be noted that the dielectric constant is a bulk solvent property and that its value in 

the vicinity of a particular solute molecule is lower than that for the bulk solvent because 

those molecules existing in the solvation shell are less free to orientate themselves in a 

direction imposed by the charged plates used to measure εr.
30  This means that the bulk 

value of εr may not correlate with properties that depend on solute/solvent interactions.  

Presumably, the molecular εr is required to obtain satisfactory trends.  Lastly, no useful 

trends between k-1 and relative permittivity were found. 
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3.4.4  Solvatochromism 

Solvatochromism is a change in the electronic absorption or emission spectrum of 

a chromophore or fluorophore induced by the solvent.47  Typically the change occurs in 

response to a change in solvent polarity.  This phenomenon has been exploited to develop 

empirical scales of solvent polarity.34, 48  Two of the most popular such scales are the Z 

scale and the ET(30) scale.34, 36-40 

 

3.4.5  Correlations with the Kosower Z scale 

Kosower’s Z scale was developed based upon the spectrum of N-ethyl-4-

methylcarboxypyridinium iodide.27  Following excitation, the system undergoes a charge-

transfer from the iodine ion to the pyridinium moiety forming a neutral radical species.  

The excited state has a smaller dipole than the ground state.  Thus, in polar solvents the 

ground state is stabilized relative to the excited state.  As a result, the energy required for 

excitation in polar solvents increases (a blue shift).  Parameters for the Z scale are 

correlated to λmax (nm) for the excitation in a particular solvent according to Equation 29. 

 

Z (kcal mol-1) ≡ hcNA/λ(max)    (29) 

 

where h is Plank’s constant, c is the speed of light in a vacuum, NA is Avogadro’s 

number. 
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 The relationship between the equilibrium constant and Kosower’s Z scale is 

similar to the one described for the dielectric constant in the last section except the 

relative positions of two solvents have switched.  A plot of log Keq versus Z is shown in 

Figure 3.12. (the identities of solvents 1-7 are defined in Table 3.8) 

 

Figure 3.12. Plot of log Keq (20 °C) versus Z. 
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scales partially agree, this likely accounts for why the most polar solvent on the two 

scales is different. 

A plot of log k1 versus Z for the 2-methyl-2-nitrosopropane dissociation reaction 

is shown in Figure 3.13. 

 

 

Figure 3.13.  Plot of log k1 (20 °C) versus Z. 
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Once again the chlorinated solvents (3 & 5) appear as outliers and do not follow any 

particular trend.  As with εr, if we accept that Z is a ranking of solvent polarity, the 

analysis indicates that polar solvents stabilize the dimer and that the polarizable 

chlorinated solvents and the hydrogen bonding solvent interact differently with the dimer.  

In fact, based on the Z scale, the hydrogen-bonding factor is quite pronounced as ethanol 

appears as an outlier.  If we consider the plot without ethanol and without the two 

chlorinated solvents a linear correlation results with solvents 4, 1, 6, and 2 (r2 = 0.99).  

Both εr and Z scales include the same solvents in a linear trend albeit in a slightly 

different order.  Lastly, as with relative permittivity, no useful trends between k-1 and the 

Z scale were found. 

 

3.4.6  Correlations with the ET(30) and ET
N scales 

Using a procedure similar to that described for establishing the Z scale, the ET(30) 

scale was developed using the longest wavelength electronic absorption band of the 

solvatochromic dye 2,6-diphenyl-4-(2,4,6-triphenylpyridinio)phenolate (also known as 

Dimroth-Reichardt’s betaine).34, 39-40, 48-49  The visible transition for this dye leads to a 

less polar excited state as a result the compound exhibits a hypsochromic shift (a blue 

shift) as solvent polarity is increased which is the basis for the ET(30) scale.  A modern 

normalized version of the scale referred to as the ET
N scale has also been developed.27  The 

ET(30) scale is probably the most popular among the solvatochromic scales.  A number of 

undergraduate experiments have been developed using it.50-52 
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 The relationship between Keq and ET
N is nearly identical to that described for the Z 

scale.  The positions of the solvents relative to each other are the same on both scales.  

This is may be because both scales were developed similarly.  A plot of log Keq versus ET
N 

is shown in Figure 3.14. 

 

Figure 3.14.  Plot of log Keq (20 °C) versus ET
N. 
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A plot of log k1 versus the ET
N scale for the 2-methyl-2-nitrosopropane dissociation 

reaction is shown in Figure 3.15. 

 

 

Figure 3.15.  Plot of log k1 (20 °C) versus ET
N. 
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3.4.7  Correlations with the Gutmann Donor Number 

 The donor number (DN) is a measure of a solvent’s Lewis basicity (i.e. the ability 

of the solvent to donate a pair of electrons).42-44  Developed by Gutmann, the DN is 

defined as the negative enthalpy of reaction of a base (the donor solvent, S) with the 

Lewis acid antimony pentachloride, SbCl5 in dilute dichloroethane solution. 

 

S:  +  SbCl5    S-SbCl5  ΔH° / kcal mol-1 ≡ DN  (30) 

 

No apparent relationship exists between the donor number and Keq.  However 

there may be a relationship within two different groups of solvents (coordinating and 

non-coordinating).  A plot of log Keq vs DN is shown in Figure 3.16. 

 

 

Figure 3.16.  Plot of log Keq (20 °C) versus DN. 
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Solvents 3, 4 and 5 are all non-coordinating solvents and appear grouped on the left side 

of the plot.  There is a general decrease in Keq with increasing DN among this small 

group.  Solvents 2, 6, 1, and 7 are grouped on the right side of the plot.  Taking a line 

from 1 and 2 down to 6 and 7, there is a general decrease in Keq with increasing DN.  

More of each type of solvent (non-coordinating and coordinating) would be necessary to 

fully confirm these trends.  In hindsight, both of these groups exists on the previous plots 

describing log Keq versus εr, Z and ET
N however, the groups are not as apparent because 

the points are not as tightly grouped.  The DN scale clearly accounts for an interaction 

not completely accounted for in the previous scales. 

A plot of log k1 versus the Gutmann donor number is depicted in Figure 3.17. 

 

 

Figure 3.17. Plot of log k1 (20 °C) versus DN. 
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There is no one trend incorporating all seven solvents used in this study.  There appears, 

however, to be a trend involving solvents 4, 1, and 6.  The trend mirrors the one observed 

with the Z and ET
N scales except in this case the hydrogen bonding solvent ethanol 7 is not 

far removed from the trend line.  Acetonitrile 2 appears as an outlier.  As with all of the 

previous analyses both of the chlorinated solvents are outliers and do not appear to fit the 

trend.  Since the donor number is a measure of a solvent’s Lewis basicity, with the 

exception of the outliers, from this analysis it appears that as basicity (ability to donate 

electron density) of the solvent increases, k1 decreases.  This probably occurs due to the 

stabilization of the dimer. 

 Alternatively, there are two different groups of solvents on the plot. Solvents 4, 5 

and 3 are all non-coordinating solvents and appear grouped on the left side of the plot.  

As DN increases, k decreases.  This trend is also generally observed among the remaining 

solvents which are all coordinating solvents.  Taking a line from 1 and 2 over to 6 and 7, 

there is a small general decrease in k1 with increasing DN. 

 It should be noted that the trends described with the DN are not clear.  There 

appears to be more than one way of interpreting the plot suggesting, unsurprisingly, that 

other factors are involved.  More solvents of the three different types would need to be 

plotted against DN to potentially gain more insight. 
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 There appears to be a useful relationship between the donor number and k-1.  A 

plot of log k-1 versus DN is shown in Figure 3.18. 

 

Figure 3.18.  Plot of log k-1 (20 °C) versus DN. 
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3.4.8  Correlations with the Gutmann Acceptor Number 

 The acceptor number (AN) of a solvent (also developed by Gutmann and co-

workers) is a measure of the solvent’s Lewis acidity (i.e. the ability of the solvent to 

accept a pair of electrons).41-43  The AN scale is based on 31P chemical shift 

measurements of triethylphosphine oxide dissolved in the solvent of interest.  The 31P 

resonance of triethylphosphine oxide acts as a highly sensitive probe towards a change in 

solvent because the oxygen atom of the PO moiety interacts differently with different 

solvents. 

 A plot of log Keq versus the acceptor number is shown in Figure 3.19. 

 

Figure 3.19. Plot of log Keq (20 °C) versus AN. 
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the right side of the plot.  More solvents of each type would need to be included in order 

to reveal any trends among the groups.  The polar aprotic solvents appear in the center of 

the plot in what appears to be a general trend.  With the exception of DMSO 6, as the 

solvent acceptor number increases Keq decreases.  The fact that DMSO falls outside this 

trend suggest that some factor involving this particular solvent is not accounted for by the 

AN scale.  Based on this trend the ability of the solvent to accept electron density from 

the dimer stabilizes the dimer thus lowering the equilibrium constant. 

A plot of log k1 versus the acceptor number is shown in Figure 3.20. 

 

Figure 3.20. Plot of log k1 (20 °C) versus AN. 
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bonding solvent ethanol is an outlier suggesting that it interacts with the dimer in a very 

different way compared to the other solvents. 

 There is some evidence for a relationship between the acceptor number and k-1.  A 

plot of log k-1 versus AN is shown in Figure 3.21. 

 

Figure 3.21.  Plot of log k-1 (20 °C) versus AN. 
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that as the AN increases, k-1 increases.  This trend is the opposite of the one described 

between k1 and AN. 

 

3.4.9  Kamlet-Taft Analysis 

 The analyses thus far reveal that a single solvent parameter does not yield fully 

useful correlations with the reaction equilibrium or rate constant.  This is not entirely 

surprising because when changing from one solvent to another one necessarily changes 

multiple properties some of which may have an effect on Keq or k.  Different scales 

account for different solvent parameters.  The question is to what extent do individual 

solvent parameters affect Keq or k. 

 The Kamlet and Taft method is one of several linear solvation energy 

relationships (LSER) which divide different aspects of solvent polarity or solvation 

ability into several different parameters which when regressed into a linear relationship 

can be used to correlate and predict solvent dependent variables in a useful way.53-56  The 

Kamlet-Taft parameters include π*, α, β, δ, δH and ζ and are available in tables for 

numerous solvents. 

 The π* parameter is based on the solvatochromic response of multiple dyes, not 

just one as is the case with the Z and ET(30) scales mentioned earlier.  The π* parameter 

is a measure of the general polarity/polarizability of the solvent.  The scale was 

intentionally developed in such a way that it does not include hydrogen bonding effects.  

The α parameter represents the solvent hydrogen bond donor (HBD) ability or acidity.  
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The β parameter represents the solvent hydrogen bond acceptor (HBA) ability or Lewis 

basicity.  The δ parameter is an empirical polarizability correction term needed for 

polychlorinated and aromatic solvents.  For non-chlorinated aliphatic solvents δ = 0.0.  

For polychlorinated aliphatic solvents δ = 0.5 and for aromatic solvents δ = 1.0.  The δH 

and ζ parameters are the Hildebrand solubility parameter and a coordinate covalency 

index.  Neither of these last two parameters will be used or discussed further here.  With 

the π*, α, β, and δ parameters, the most familiar form of the Kamlet-Taft equation is 

expressed as 

log k = log ko + s(π* + dδ) + aα + bβ    (31) 

 

The coefficents s, d, a and b express the extent (magnitude) to which that particular 

solvent property contributes to k.  ko is the value of k in a reference solvent.  The Kamlet-

Taft parameters for the solvents used in this study are provided in Table 3.8. 

A linear regression was carried out on the data set of k1 for each solvent at 20 °C 

to determine the coefficents s, d a and b using Microsoft® Excel and the StatPlus® 

statistical analysis tool.  The resulting equation follows (r2 = 0.94) 

 

log k1 = -2.61 - 1.41 (π* -0.249δ) - 0.712α + 1.08β             (32) 

 

The standard errors for the intercept, s, d, a and b are ±0.12, ±0.60, ±0.55, ±0.37 and 

±0.80 respectively. 
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 The Kamlet-Taft analysis successfully provides a relationship between the 

forward rate constant and solvent parameters for polarity/polarizability, hydrogen bond 

donor ability, and hydrogen bond acceptor ability.  Ideally, with this information, it 

should be possible to predict the forward rate constant in any solvent for which Kamlet-

Taft parameters are known. 

 A plot of log k1 (experimental) versus log k1 (calculated), which was determined 

with Equation 32, is shown in Figure 3.22. 

 

 

Figure 3.22. Plot of the experimentally determined log k1 versus the calculated value. 

 

The Kamlet-Taft multiparameter equation (Equation 32) is able to estimate the 

rate constants for all seven solvents used in the study.  The percent difference between 

the experimental rate constants and the calculated values is less than 1.0% for all solvents 

except acetone (-1.45%), chloroform (-3.28%) and dichloromethane (-3.38%). 
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The Kamlet-Taft analysis indicates that the largest contribution to the rate comes 

from the solvent’s polarity/polarizability (-1.41π*) followed by contributions from 

hydrogen bond acceptor (HBA) ability or basicity (+1.08β) and hydrogen bond donor 

(HBD) ability or acidity (-0.712α).  An optimal fast rate of dissociation would thus be 

attained in a solvent with low polarity/polarizability, low acidity and a higher ability to 

accept hydrogen bonds with the relative importance of these factors indicated by the 

coefficients in the Kamlet-Taft equation. 

As shown in Figure 3.22, the correlation of log k1 (experimental) versus log k1 

(calculated) gives a linear relationship with a slope of 1.00 and a correlation coefficient 

of r = 0.97.  The coefficient of variance, r2
 = 0.94 which suggests that 94% of the 

experimental results can be explained by Equation 32.  The overall significance of the 

regression model (Equation 32) was tested using the F statistic where βk represents the kth 

regression coefficient.  The null hypothesis for the test is H0: β1 = β2 = … βk = 0.  The 

alternative hypothesis is that at least one of the regression coefficients is not equal to 

zero.  The F value for this test was determined to be 8.34 with p = 0.11.  The significance 

of the model is improved somewhat by choosing to neglect the δ parameter which, in this 

case, is non-zero for and thus only relevant for the two chlorinated solvents.  Leaving the 

δ term out gives an F value of 15.0 with p = 0.03 which is a clear rejection of the null 

hypothesis suggesting an acceptable correlation.  The revised equation is 

 

log k1 = -2.61 - 1.14π* - 0.568α + 0.727β             (33) 
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The standard errors for the intercept, s, a and b are ±0.10, ±0.17, ±0.17 and ±0.19 

respectively.  All coefficients in Equation 33 were found to be statistically significant 

with t-stat values being -26.3224 (p = 0.0001), -3.3623(p = 0.0384), 3.8569(p = 0.0263) 

and -6.5624(p = 0.0058) for the intercept, s, a and b respectively.  A plot of log k1 

(experimental) versus log k1 (calculated) for Equation 33 gives a linear relationship with 

a slope of 1.00 and a correlation coefficient of r = 0.97.  The coefficient of variance, r2
 = 

0.94 which as with Equation 32 suggests that 94% of the experimental results can be 

explained by Equation 33. 

 A Kamlet-Taft analysis was also carried out with k-1 and with Keq.  The results 

were mixed.  The analysis involving Keq gave a poor correlation with r2 = 0.19.  The 

analysis with k-1 was more useful with r2 = 0.62, but certainly not significant.  Therefore, 

it was not possible to find a useful Kamlet-Taft expression with either k-1 or Keq 

suggesting that there are other factors affecting these two quantities. 

Recalling that the reverse reaction involves the coming together of two solvated 

monomer units, it was thought that the solvent viscosity, η, might play a roll in 

determining the reverse reaction rate constant k-1.  A plot of log k-1 (20 °C) versus the 

viscosity of the solvent is shown in Figure 3.23. 
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Figure 3.23. Plot of log k-1 (20 °C) versus the solvent viscosity. 

 

 The relationship between log k-1 and the solvent viscosity appears promising.  

There is a clear trend incorporating solvents 2, 5, 3 and 7.  This general result suggests 

that the more viscous solvents provide a greater opportunity for the monomer units to 

interact whereas they are more able to escape contact in the less viscous solvents.  

Solvent 1, acetone, along with cyclohexane 4 and DMSO 6 do not follow the trend 

suggesting that another parameter is involved.  Encouraged by these results involving the 

viscosity and k-1, an attempt was made to construct a multiparameter equation involving 

the Kamlet-Taft parameters and the solvent viscosity.  As can be seen in Figure 3.24, a 

useful trend was established.  The multiparameter equation for the calculated value of log 

k-1 follows (r2 = 0.99) 

log k-1 = -3.22 + 0.0197α + 0.0112β - 0.800π* + 0.340η  (34) 
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Figure 3.24. Plot of the experimentally determined log k-1 versus the calculated value. 

 

The standard errors for the intercept, a, b, s, and C (the coefficient for η) in 

Equation 34 are ±0.054, ±0.087, ±0.114, ±0.086 and ±0.041 respectively.  An 

examination of the statistical data reveals that the overall correlation is significant with an 

F value of 47.8 with p = 0.02.  As with k1, the largest contribution to the rate constant 

comes from the solvent polarity/polarizabilty (-0.800π*) followed by a relatively large 

contribution from the solvent viscosity (+0.340η).  Note that the contribution from the 

solvent viscosity is positive which supports the earlier observation with the single 

parameter trend.  The last two contributions come from the α and β terms (hydrogen 

bond donating (+0.0197α) and hydrogen bond accepting (+0.0112β) abilities).  The 

contributions from these two parameters are quite small.  In fact, the statistical analysis 

shows that they are not significant having coefficients with t-stat values of 0.2259 (p = 
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0.991) and 0.0979 (p = 0.999).  However, the p values for the coefficients of π* and η are 

both less than 0.05 indicating that they are statistically significant. 

 Given the fact that the α and β terms were not statistically significant in the 

multiparameter equation for the calculated value of log k-1 (Equation 34), the analysis 

was repeated without them which yielded an improved result.  The revised equation is 

 

log k-1 = -3.21 - 0.792π* + 0.343η    (35) 

 

The standard errors for the intercept, s and C (the coefficient for η) are ±0.035, ±0.051 

and ±0.024 respectively.  Equation 35 is very similar to Equation 34, but over all 

significance of the model is improved.  The F value for the regression is 178.4 with p = 

0.0001.  The t-stat values for the coefficients of the intercept, π* and η were -91.2889 (p 

= 0.), -15.5025 (p = 0.0001) and 14.4271 (p = 0.0001) all being statistically significant. 

 Encouraged by the fact that statistically significant multiparameter equations were 

found for both k1 and k-1, another effort was made to find a relationship with Keq.  It 

seemed reasonable that solvent effects on Keq would involve all those factors affecting k1 

and k-1, thus a regression was carried out using π*, α, β and η.  The resulting equation is  

 

log Keq = 0.614 - 0.362η - 0.605α + 0.754β - 0.357π*  (36) 

 



 

 130 

The standard errors for the intercept and the coefficients of η, α, β and π* are ±0.12, 

±0.087, ±0.19, ±0.25 and ±0.18 respectively.  Unfortunately, the model was not found to 

be statistically significant in that it has an F value of 5.42 with p = 0.16.  Nevertheless the 

results suggest that contributions from all four parameters affect log Keq with the largest 

contribution coming from the hydrogen bond acceptor ability of the solvent (+0.754β) 

followed by the hydrogen bond donating ability (-0.605α), the solvent viscosity 

(-0.362η) and finally the solvent polarity/polarizability (-0.357π*).  These results suggest 

that increasing η, α or π* will tend to decrease Keq shifting the equilibrium left.  This is 

reasonable in that increasing any of these three parameters would tend to stabilize the 

dimer.  Apparently an increase in the solvent’s Lewis basicity would tend to shift the 

equilibrium to the right.  This may, in part, explain why Acetone 1, and Acetonitrile 2, 

have the highest equilibrium constants of the solvents studied in this work.  They are not 

the most basic solvents used in this study.  They have donor numbers of 17 and 14.1 

respectively.  They do, however, have relatively low viscosities, which tend to favor the 

reaction shifting to the right.  On the other hand, DMSO 6, and Ethanol 7 both have large 

viscosities of 2.146 cP and 1.162 cP respectively.  Perhaps the viscosity of these solvents 

is more important than the larger donor numbers of 29.8 and 32 respectively and this 

explains why they have lower equilibrium constants relative to acetone and acetonitrile.  

A plot of the experimentally determined log Keq versus the calculated value is shown in 

Figure 3.25.  While, as stated above, the predictive value of this model is not statistically 

significant, the resulting trend is encouraging and warrants further study with more 

solvents of varied types (e.g. polarities, donor/acceptor abilities and viscosities). 
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Figure 3.25. Plot of the experimentally determined log Keq versus the calculated value. 

 

3.4.10  Correlations with thermodynamic and kinetic parameters 

 Table 3.4 summarizes the standard changes in enthalpy and entropy for the 

dissociation reaction.  The enthalpy values do not vary much from solvent to solvent.  

The largest variation is evident in the values for ΔS° and thus at a given temperature it is 

the entropy term controlling the value of ΔG° and thus the value of Keq via Equation 17.  

The values of ΔH° and ΔS° are linearly related with a positive slope.  No correlations 

with εr, Z, ET
N, DN or AN were found. 

 Equation 26 gives the relationship between ΔG‡ and the rate constant.  Equation 

27 gives the relationship between ΔG‡
  and the other two activation parameters, ΔH‡ and 

ΔS‡
.  As mentioned in the results section, factors that affect the Gibbs free energy of 
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parameters with εr, Z, ET
N, DN and AN with little success.  It was found that ΔH‡ and ΔS‡

 

are linearly related (r2 = 0.93) as has been observed previously in similar compounds.57 

 

 

Figure 3.26. Plot of the entropy of activation versus the enthalpy of activation. 

 

As with ΔH°, ΔH‡ does not vary much with solvent, however ΔS‡ varies 

significantly making the TΔS‡ the important factor affecting ΔG‡.  No particularly useful 

correlations were found between either ΔH‡ or ΔS‡ with εr, Z, ET
N, DN or AN.  However, 

the AN correlated well with ΔGf
‡ as shown in Figure 3.27 below.  As the acceptor 

number increases, ΔGf
‡ increases linearly.   Ethanol, 7 appears as an outlier on the right 

side of the plot.  This plot is the mirror image of the plot of log k1 versus the acceptor 

number in Figure 3.20 which might have been expected since ΔG‡ and k are related by 

Equation 26. 
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Figure 3.27. Plot of Gibbs free energy of activation versus the solvent acceptor number. 

 

3.5.  Conclusion 

 

With this study the equilibrium constants and the forward and reverse rate 

constants for the 2-methyl-2-nitrosopropane dissociation reaction were successfully 

determined over a range of temperatures.  Related thermodynamic and kinetic parameters 

for the reaction in each solvent were determined.  The dependence of the rate and 

equilibrium constants on various solvent parameters was successfully established.  The 

results of this project show that the effect of solvent on the dissociation reaction is 

dramatic.  Attempts were made to correlate the magnitude of the equilibrium and rate 

constants with some commonly used solvent polarity scales each of which measures 
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trends with a subset of the solvents were found, but no trends were found which could 

encompass the whole range of solvents used. 

It was found that the solvent acceptor number is a major factor in determining the 

magnitude of both the equilibrium constant and the forward rate constant.  The acceptor 

number was found to be linearly related with Gibbs free energy of activation with the 

exception of the strongly hydrogen bonding solvent ethanol appearing as an outlier. 

The Kamlet-Taft multiparameter approach was successfully employed to express 

a complete relationship between the forward rate constant and specific solvent 

parameters.  Solvent polarity followed by hydrogen bond acceptor ability or basicity and 

hydrogen bond donor ability or acidity were found to be the most important factors in 

determining the forward rate constant.  The contribution to the rate constant from 

polarity/polarizability, hydrogen bond acceptor (HBA) ability or basicity, and hydrogen 

bond donor (HBD) ability or acidity was suggested by the individual correlations with εr, 

Z, ET
N, DN and AN.  However, the relative importance of each of these parameters is 

different for each solvent making it difficult to find single parameter correlations.  The 

Kamlet-Taft analysis made it possible to determine the relative contribution of each 

parameter. 

A general relationship between solvent viscosity and k-1 was found.  As the 

solvent viscosity increased k-1 increased.  By modifying the Kamlet-Taft equation to 

include solvent viscosity as a parameter, a multiparameter equation was found to include 

all seven solvents used in this study.  Solvent polarity and viscosity were determined to 

be the major parameters affecting the value of k-1. 
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Finally, using what was learned about the effects of various solvent parameters on 

k1 and k-1, a multiparameter equation was found relating solvent properties to Keq.  The 

major factors affecting the value of Keq were determined to be (in order of decreasing 

contribution) the solvent’s hydrogen bond accepting ability, hydrogen bond donating 

ability, viscosity and solvent polarity/polarizability. 
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Epilogue 
 

The ultimate goal of any research project is to disseminate the results in a way 

that will benefit society, be it through publication in peer reviewed journals, through oral 

presentations or through teaching.  One of my original goals for this work was to take 

graduate level research and introduce and incorporate it into an undergraduate 

educational setting.  It is well known that many of the experiments currently used in 

typical undergraduate laboratories are dated.  While they are useful for some teaching 

purposes, they do not directly relate to the state of the scientific art, and as a result often 

do not engage student learning in a way that makes them excited about science and want 

to learn more.  In this modern age when scientific based television and the internet are 

quite compelling, many students expect to take science courses that at least somewhat 

resemble what they are exposed to by the media 

In the early days of my graduate work at OU,  I contributed to a paper for the 

Journal of Electroanalytical Chemistry which involved the monitoring of 

electrogenerated species on the surface of an electrode with a newly-designed (in our 

laboratory) fiber-optic probe system.  This work involved the combination of two classic 

technologies (infrared spectroscopy and electrochemistry) put together in a new way to 

make what had been a more cumbersome approach (the use of optically transparent thin 

layer electrodes; OTTLEs) more straightforward and "undergraduate friendly".  I found 

working on this project compelling and it occurred to me that this technology could be 

used as an exciting teaching tool in the undergraduate laboratory setting.  I was also 

convinced that it could be a useful method around which I could design undergraduate 

research projects. 
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 Many undergraduates experience research for the first time when they are 

enrolled in their discipline’s Senior Capstone course.  The projects in this dissertation 

lend themselves well to being starting points for multiple undergraduate research 

experiences and/or Capstone projects.  The varied concepts involved in both of these 

projects are a combination of (i) those covered in the typical undergraduate course 

curriculum, and (ii) new ones that have not yet found their way into typical 

undergraduate-level courses and laboratories.   The experience of learning these concepts 

in a research environment will be very valuable to the students and will allow them to 

gain access to advanced techniques and instrumentation which will make learning much 

more engaging. 

 In the Summer 2005, Summer 2008, and Fall 2008 semesters, I had the 

opportunity to teach the General Chemistry sequence here at OU.  Having had those 

experiences and the experience of participating in guest electrochemistry lectures at 

Langston University in 2009 and 2010 (where I incorporated some of my dissertation 

work into the guest lectures), I am more convinced than ever that developing unique and 

engaging research experiences for undergraduates will help promote student learning. 

 The DNIC project (Chapter 2) and the RNO project (Chapter 3) in this 

dissertation have the potential to be expanded by instructors of chemistry into 

experiences for undergraduates that will be much more compelling than the current slate 

of experiments used.  That, in part, is my desire for the future of this work. 
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