
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

FINDING MINIMUM GAPS AND DESIGNING KEY DERIVATION

FUNCTIONS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

YU-HSIN LI

Norman, Oklahoma

2011

FINDING MINIMUM GAPS AND DESIGNING KEY DERIVATION
FUNCTIONS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Qi Cheng, Chair

Dr. Sudarshan Dhall

Dr. Changwook Kim

Dr. Ralf Schmidt

Dr. Krishnaiyan Thulasiraman

© Copyright by YU-HSIN LI 2011
All Rights Reserved.

To Mom and Dad

Acknowledgements

My first and foremost thanks and appreciation to Dr. Qi Cheng for persevering with

me as my advisor throughout the time it took me to complete this research. He

has provided guidance, support, ideas, and encouragement during my time at the

University of Oklahoma. This dissertation would never be finished without him.

I appreciate my committee members, Dr. Sudarshan Dhall, Dr. Changwook Kim,

Dr. Ralf Schmidt, and Dr. Krishnaiyan Thulasiraman, for their precious time and

effort to read this dissertation and give their suggestions.

Many thanks to Jim Summers for his excellent server administration. This dis-

sertation contains a large amount of computation on CS lab servers. Without sound

working Linux machines, data generation would have difficulties.

I want to thank Barbara Bledsoe and Chyrl Yerdon for office support, for assisting

with course enrollment, and for all sorts of tedious paper work. My special thanks to

Barbara for her always kind, efficient, and helpful responses to me and everybody.

Last but definitely not the least, I would like to thank my wife, Chia-Hui Tsai,

for her support and encouragement. I could not have completed this effort without

her assistance, tolerance, and enthusiasm.

iv

Contents

Acknowledgements iv

List of Tables vii

List of Figures ix

List of Algorithms x

Abstract xi

1 Introduction 1

1.1 Time and space trade-off . 2

1.2 The smallest gap between sums of square roots 3

1.3 Memory-bounded moderately hard functions 4

1.4 Results and structure . 5

2 Sums of Square Roots 6

2.1 Introduction . 6

2.2 Related work . 7

2.3 An upper bound of the smallest gap 8

3 The Smallest Gap Between Sums of Square Roots of Small Integers 10

3.1 Motivation . 10

3.2 Space efficient technique . 11

3.3 Algorithm for finding the gap . 12

3.4 Time and space complexity . 14

v

3.5 Numerical data and observations . 15

4 Moderately Hard Functions 18

4.1 Motivation . 18

4.2 CPU-bounded functions . 19

4.3 Memory-bounded functions . 20

4.4 Key derivation functions . 22

4.5 Fighting spams . 23

4.6 Formal definition of memory-bounded functions 25

5 Number Theoretic Constructions 29

5.1 Motivation . 29

5.2 Construction . 29

5.3 Memory-efficient exponentiating method 31

5.4 Closed form observation . 34

5.5 Conclusion . 41

6 Conclusion and Future Work 42

Appendices 48

A Proof of Linear Independence 48

B Statistics on Sums 51

C Statistics on Gaps 64

D Required Minimum Precision 70

vi

List of Tables

3.1 The smallest difference of (n, k) . 17

5.1 Inputs and outputs of Zeilberger’s algorithm 41

B.1 Statistics on sums of square roots of (n, k) = (5000, 3) 51

B.2 Statistics on sums of square roots of (n, k) = (1000, 4) 54

B.3 Statistics on sums of square roots of (n, k) = (300, 5) 59

B.4 Statistics on sums of square roots of (n, k) = (150, 6) 60

B.5 Statistics on sums of square roots of (n, k) = (100, 7) 62

B.6 Statistics on sums of square roots of (n, k) = (100, 8) 63

C.1 Statistics on gaps of (n, k) = (5000, 3) 64

C.2 Statistics on gaps of (n, k) = (1000, 4) 66

C.3 Statistics on gaps of (n, k) = (300, 5) 66

C.4 Statistics on gaps of (n, k) = (150, 6) 67

C.5 Statistics on gaps of (n, k) = (100, 7) 67

C.6 Statistics on gaps of (n, k) = (100, 8) 69

D.1 The smallest difference of k = 3 . 70

D.2 The smallest difference of k = 4 . 73

D.3 The smallest difference of k = 5 . 76

D.4 The smallest difference of k = 6 . 80

D.5 The smallest difference of k = 7 . 83

D.6 The smallest difference of k = 8 . 88

vii

List of Figures

1.1 Hellman’s cryptanalytic time-space trade-off 3

1.2 The minimum nonzero difference between two paths 4

4.1 A memory hierarchy [BO03] . 21

5.1 Outputs from the algorithm Hyper 40

B.1 Statistics on sums of square roots of (n, k) = (5000, 3) 57

B.2 Statistics on sums of square roots of (n, k) = (1000, 4) 57

B.3 Statistics on sums of square roots of (n, k) = (300, 5) 58

B.4 Statistics on sums of square roots of (n, k) = (150, 6) 58

B.5 Statistics on sums of square roots of (n, k) = (100, 7) 61

B.6 Statistics on sums of square roots of (n, k) = (100, 8) 61

C.1 Statistics on gaps of (n, k) = (5000, 3) 65

C.2 Statistics on gaps of (n, k) = (1000, 4) 65

C.3 Statistics on gaps of (n, k) = (300, 5) 66

C.4 Statistics on gaps of (n, k) = (150, 6) 67

C.5 Statistics on gaps of (n, k) = (100, 7) 68

C.6 Statistics on gaps of (n, k) = (100, 8) 68

D.1 Minimum precision required when k = 3 72

D.2 Minimum precision required when k = 4 72

D.3 Minimum precision required when k = 5 86

D.4 Minimum precision required when k = 6 86

viii

D.5 Minimum precision required when k = 7 87

D.6 Minimum precision required when k = 8 87

ix

List of Algorithms

3.1 The space-saving mechanism for enumeration 12

3.2 Algorithm for finding r(n, k) . 13

4.1 The space inefficient hash function M [DNW05] 24

5.1 Exponentiating by squaring [Schneier96] 33

x

Abstract

The problem size gets larger as computers become faster. Using naive algorithms,

even equipped with fast CPUs and large memories, computers still cannot handle

many problems of certain size. Some searching tasks, however, can be answered with

the help of the algorithmic technique, such as time and space trade-off.

Let k and n be positive integers, n > k. Define r(n, k) to be the minimum positive

value of ∣∣∣√a1 + · · ·+
√
ak −

√
b1 − · · · −

√
bk

∣∣∣
where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than n. It is im-

portant to find a tight bound for r(n, k), in connection to the sum-of-square-roots

problem, a famous open problem in computational geometry. The current best lower

bound and upper bound are far apart. For exact values of r(n, k), only a few simple

cases have been reported so far, and they can be found easily using exhaustive search.

A new algorithm is developed to find r(n, k) exactly in nk+o(k) time and in ndk/2e+o(k)

space. Space usage is decreased dramatically along with little increase in time, com-

pared to an intuitive trade-off method. Our algorithm reduces time for swap-in and

swap-out, minimizing the total running time. The problem is solved in size that was

infeasible for a naive trade-off scheme. We also present lots of numerical data.

The time and space trade-off technique has its limitation. For some problems,

when space is reduced to a certain extent, time will be increased exponentially. The

trade-off technique does not apply to this situation. We explore such a property that

discourages trade-off attacks.

Key generation is an important part of symmetric-key encryption algorithms, such

xi

as AES. A key derivation function can be used to generate symmetric cipher session

keys. As CPU technology advances, key derivation functions are more vulnerable

to off-line brute force attacks. Based on the Memory Wall problem, we propose a

simple number-theoretic way to mitigate exhaustive search attacks. We also present

a formal definition of memory-bounded functions. On one hand, if attackers try to

reduce memory usage, they are forced to spend dramatically more time. On the other

hand, a memory-bound security scheme will minimize the difference between high-end

and low-end computers. Trade-off attacks will hence be deterred.

xii

Chapter 1

Introduction

Two important parts of a digital computer are central processing unit (CPU) and

memory. The CPU reads data from memory, executes instructions, and stores results

back to memory. Computers solve problems due to their CPU power and memory.

The computation power is evaluated in cycles per unit time. A faster computer can

run more cycles in the same amount of time and results in less CPU time. Memory

as a storage space can be classified by accessing speed. Faster memory is costlier

and hence smaller in capacity. With the advance of computer hardware technology,

computers are capable of solving more complex problems than before.

To quote a Chinese proverb “While the priest climbs a post, the devil climbs ten”.

Problem size gets larger as computers become faster. Using naive algorithms, even

equipped with fast CPUs and large memories, computers still cannot handle many

problems of certain size. Some problems, however, can be answered with the help of

algorithmic techniques.

Many exhaustive searching tasks, such as inversion of one-way functions and dis-

crete logarithm problems, allow time-space trade-offs [Hellman80]. Time and space

trade-off is an algorithmic technique to accelerate CPU throughput. Time refers to

CPU time while space can be cache, memory, or hard drive. In this dissertation, space

refers to main memory and will be used interchangeably. The key idea of trade-off

schemes is reusability of one-time work: compute once and reuse again. From com-

putational point of view, time can be saved by reusing pre-computed results stored

in some space. As long as storage-lookup time is less than re-computation time, this

1

technique would be effective. Time and space trade-off is financially worthy. The cost

to update a CPU is usually more expensive than to expand storage space. The ad-

vance of CPU technology is also faster than that of storage. The trade-off technique

is a good choice when the budget to improve computer performance is limited.

1.1 Time and space trade-off

An example of time and space trade-off is to invert a one-way string permutation

f , where sometimes exhaustive search is the only choice. Given a string y, we look

for f−1(y) from N possible permutations such that f(f−1(y)) = y. Let M be the

total space and T be the total time required to derive an answer. We assume that

storing a string needs M = 1 and that computing f once takes T = 1. One intuitive

way, completely relying on CPU computations, costs M = 1 and T = N, resulting

in minimum memory demand but slow speed. Another extreme way needs M = N

but is fast. It is composed of two phases, preprocessing (off-line) and on-line phase.

The off-line phase stores all pairs of y and f−1(y) in a sorted table while the on-line

phase answers by a lookup. The scheme depends absolutely on memory and costs

T = logN and M = N. Although preprocessing time can be amortized by future

searches, this extreme method consumes enormous space.

Hellman introduced a method to trade memory against time [Hellman80]. It is

a middle ground between two extremes and is formed by preprocessing and on-line

phases. Consider that each string is a point in a set of N permutations. The idea is to

divide N by m, the number of chains, as shown in Figure 1.1. For each starting point,

permute repeatedly t times to derive an endpoint. One endpoint takes t operations

and hence m endpoints would cover all N points. To build a lookup table, the space

requirement is 2m, storing only pairs of starting and ending points. The preprocessing

phase constructs such a table and sorts it by ending points. The time requirement

2

is still tm = N, apparently not a good method for a one-time-only inversion. The

preprocessing time can be, however, amortized over the number of inversions, if the

task needs to be conducted more than once. The on-line phase aims to match y in

the sorted table. If y is not found, the user has to permute y and search for the

new string; repeat till a match is found. When found, f−1(y) can be deduced by

re-calculating the chain from the corresponding starting point. The on-line phase

requires T = t ∗ log(m) = N
m
∗ log(m) and M = 2m. The trade-off exists between T

and M.

Naively applying the technique will not benefit us much. Space requirement would

still be huge for certain problems, such as finding the smallest gap between sums of

square roots. The plain trade-off scheme works for certain problem sizes if space

demands are feasible. For larger sizes, a better technique is expected.

1.2 The smallest gap between sums of square roots

Comparing the lengths of two polygonal paths can be treated as calculating the

difference of the sums of square roots, as nodes are on integral coordinates in a two-

Figure 1.1: Hellman’s cryptanalytic time-space trade-off

3

dimensional plane. The minimum nonzero difference has been an open problem for

decades.

An efficient algorithm is developed to search for the minimum difference between

the sums of square roots of small integers. As a typical searching task, the time

and space trade-off technique is employed to save computation time. Our technique

further improves the naive trade-off scheme. Space usage is decreased dramatically

along with little increase in time, compared to an intuitive way. Our technique reduces

time for swap-in and swap-out, minimizing the total running time. The problem is

solved for sizes infeasible for the naive trade-off scheme.

1.3 Memory-bounded moderately hard functions

Slow computation, as an access-control mechanism, is preferred in some situations. It

hinders a large surge of using certain computer resources, e.g. impediment to denial

of service (DoS) attacks. DoS attack floods a network service with requests in a short

time preventing legitimate users from the service. Examples of attacks include TCP

SYN flooding and HTTP request flooding [JKR02]. The idea is to take advantage of

fast and free computing resources. Most network services rely on these characteristics

Figure 1.2: The minimum nonzero difference between two paths

4

to attract customers. Malicious users exploit properties to obstruct traffic.

Some problems can be solved in polynomial time. They are considered easy prob-

lems. There exist situations when space is reduced to certain extent, time will be

increased exponentially. Easy problems become hard ones. The trade-off technique

does not apply to them. We want to explore such property that discourages trade-off

attacks.

The anti-tradeoff property provides a solution against DoS attacks. Forcing to

walk randomly in certain amount of memory is a good access-control mechanism. On

one hand, it will be hard to attack. Trying to reduce memory amount usage, malicious

users result in dramatically paying more time instead. This is a direction for security

schemes. On the other hand, memory-bound control schemes will minimize differences

between high-end and low-end computers.

1.4 Results and structure

The sum-of-square-roots problem is a famous open problem in computational geom-

etry. The best lower bound and upper bound are far apart. Chapter 2 introduces

a new upper bound. An algorithm in Chapter 3 finds exactly the minimum gap for

small integers. The result has been published in the proceeding of the 9th Latin

American Theoretical Informatics Symposium (LATIN 2010) [CL10].

Memory-bounded functions have been designed to combat email spams in a se-

quence of papers [ABMW03, DGN03, DNW05] but lacked for a formal definition. The

first formal definition is given in Chapter 4. A number-theoretic construction is in

Chapter 5. The result has been published in the International Symposium on Trusted

Computing [CL08]. Conclusion and future work will be discussed in Chapter 6.

5

Chapter 2

Sums of Square Roots

2.1 Introduction

In computational geometry, a fundamental problem is to compare lengths of two

polygonal paths. On a two-dimensional plane, if points have integer coordinates,

the length of a line can be expressed in a square root of an integer because of the

Pythagorean Theorem. Several connected such lines form a polygonal path. The

length of a path can be expressed in the sum of square roots of integer. Given two

paths, we want to know their difference to determine a shorter one.

The problem of comparing two sums of square roots of integer exists in Turing

Machine model. Computational geometry relies on computers. Computers nowadays

are an implementation of the Turing machine model. Compared to the real-number

model, Turing machine has its own limitation to handle this problem. In compu-

tational geometry one sometimes assumes a model of real-number machines, where

one memory cell can hold one real number. It is then assumed that an algebraic

operation, taking a square root as well as a comparison between real numbers can

be done in one operation. There is a straight forward way to compare sums of

square roots in a real-number machine. But this model is not realistic, as shown

in [Shamir79, Schonhage79].

The geometrical question can be reduced to a numerical problem of comparing

two sums of square roots of integers.

6

Definition 2.1.1. For positive integers n, k, ai, bi. Let

r(n, k)
def
= min

1≤ai,bi≤n

(∣∣∣∣∣
k−1∑
i=0

√
ai −

k−1∑
i=0

√
bi

∣∣∣∣∣) 6= 0.

r(n, k) describes the smallest gap between two sums while − log r(n, k) repre-

sents the number of digits of precision needed. We try to find an upper bound of

− log r(n, k) as a function of n and k. This has been an open problem for decades.

The origin of it can be dated back to 1981 [O’Rourke81], or even earlier. So far, only

weak bounds have been found [DMO01].

2.2 Related work

Angluin and Eisenstat [AE04] considered the case k = 2 and gave bounds on the

minimum nonzero separation of the sum of two square roots of positive integers from

an integer. They proved that r(n, 2) = Θ(1
n3/2).

Using the root separation method, Burnikel et al. [BFMS00] proved that− log r(n, k) =

O(22k log n).

The Prouhet–Tarry–Escott problem asks for two disjoint sets A and B of n integers

each, such that:
∑

a∈A a
i =

∑
b∈B b

i for each integer i from 1 to a given k. For a fixed

k, Ω(k log n− 1
2

log n) is a lower bound of − log r(n, k) due to Ronald Graham [QW06].

Qian and Wang [QW06] gave a constructive upper bound of r(n, k) = O(n−2k+
3
2),

which is a lower bound of − log r(n, k) = Ω(k log n). They also conjectured that

log r(n, k) = Θ(n
1
2
−2k−2

).

Cheng [Cheng06] gave an upper bound − log r(n, k) = 2O(n/ logn) which beats the

root separation bound as long as n ≤ ck log k for some constant c.

There is a wide gap between the known upper bound and the lower bound of

7

− log r(n, k). Until the fundamental problem has been resolved, we cannot even put

the presumably easy problem such as Euclidean Minimum Spanning Tree problem in

P (the polynomial-time class), and the Euclidean Traveling Salesman problem in NP

(the nondeterministic polynomial-time class).

2.3 An upper bound of the smallest gap

Qian-Wang’s upper bound was derived from the inequality:

0 <

∣∣∣∣∣
2k−1∑
i=0

(
2k − 1

i

)
(−1)i

√
t+ i

∣∣∣∣∣ ≤ 1× 3× 5× · · · × (4k − 5)

22k−1t2k−
3
2

.

Let ai =
(
2k−1
2i−2

)2
(t + 2i− 2) for 1 ≤ i ≤ k and bi =

(
2k−1
2i−1

)2
(t + 2i− 1) for 1 ≤ i ≤ k.

Then we have

0 <

∣∣∣∣∣
k∑
i=1

√
ai −

k∑
i=1

√
bi

∣∣∣∣∣ ≤ 1× 3× 5× · · · × (4k − 5)

22k−1t2k−
3
2

.

Note that
(
2k−1
i

)
can be as large as

(
2k−1
k

)
≥ 22k−1/(2k). To get an upper bound for

r(n, k), assign

n =

(
2k − 1

k

)2

(t+ k),

thus we have − log r(n, k) ≥ 2k log n−8k2+O(log n+k log k). Hence Qian and Wang’s

result only applies when n is much greater than 24k. In particular it does not give a

meaningful bound for small n and small k, for instance, r(100, 7).

Another interesting upper bound depends on the Prouhet–Tarry–Escott problem,

which is to find a solution for a system of equations:

k∑
i=1

ati =
k∑
i=1

bti , 1 ≤ t ≤ k − 1

under the condition that a1 ≤ a2 · · · ≤ ak and b1 ≤ b2 · · · ≤ bk are distinct lists

8

of integers. No such solutions have, however, been found for k = 11 and k > 13

[BLP03]. Therefore the approach based on the Prouhet–Tarry–Escott problem is not

scalable.

Here we present an upper bound based on the pigeonhole argument.

Definition 2.3.1. An integer n is square-free if there is no integer a > 1 such that

a2
∣∣∣n. We use s(n) to denote the number of positive square-free integers less than n,

e.g. s(100) = 61.

Proposition 2.3.2. The set {
√
n
∣∣∣n ∈ N is square-free} is linearly independent over

rationals.

Proof. See A.0.4.

Theorem 2.3.3. We have

r(n, k) ≤ k
√
n− k(

s(n)+k−1
k

)
− 1

.

Proof. Consider the set
{

(a1, a2, · · · , ak)
∣∣∣ai is squaer-free, 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤

n.
}

The set has cardinality
(
s(n)+k−1

k

)
. For each element (a1, a2, · · · , ak) in the set,

the sum
∑k

i=1

√
ai is distinct by Proposition 2.3.2. Hence there are

(
s(n)+k−1

k

)
many

distinct sums in the range [k, k
√
n]. There must be two points within the distance

k
√
n−k

(s(n)+k−1
k)−1

from each other. The theorem follows.

From this, one can derive

Corollary 2.3.4. − log r(n, k) ≥ k log n− k log k +O(log(nk))

Note that in comparison to the Qian–Wang’s bound, this is weaker when n is very

large. But it is better when n is a polynomial in k. Hence, it has wider applicability.

For example, when n = 100 and k = 7, it can give us a meaningful upper bound:

r(100, 7) ≤ 7.2× 10−8.

9

Chapter 3

The Smallest Gap Between Sums of Square Roots of Small

Integers

3.1 Motivation

How close is the bound to reality? We need a provable bound which represent the

actual situation. The bound should be as tight as possible. A way to show this is by

running some feasible cases. In addition, numerical data shed lights on the type of

integers whose square roots summations are extremely close.

So far only a few toy examples have been reported and they can be found easily

using an exhaustive search:

r(20, 2) ≈ .0002 =
√

10 +
√

11−
√

5−
√

18.

r(20, 3) ≈ .000005 =
√

5 +
√

6 +
√

18−
√

4−
√

12−
√

12.

Computing power has gradually increased every year which allows us to go beyond

toy examples. Nevertheless, it still has its limitation. Our extensive numerical studies

cover only small n and k.

In many practical situations, especially in the exact geometric computation, n

and k are small. Explicit bounds like one we produce here help to decide how much

precision is needed.

Moreover, since the upper bound is so far away from the lower bound, the numer-

ical data may provide us some hints on which bound is closer to the truth and may

10

inspire us to formulate a reasonable conjecture on a tight bound of r(n, k).

3.2 Space efficient technique

We are looking for the smallest difference between any two sums of square roots of

integers by running cases on small n and k. To the best of our knowledge, there is

no better way other than exhaustive search.

The smallest non-zero difference only is due to two consecutive sums. Let S be a

set of sums of all combinations in form
√
a1+
√
a2+
√
a3+· · ·+√ak, where 1 ≤ ai ≤ n.

For a given sum si ∈ S, the smallest difference of |si − sj| occurs when |i− j| = 1,

where i, j are indices of sorted S. Otherwise, there will always be a smaller one. Hence

the first task is to sort the sums of all combinations.

In terms of combinations, we need to enumerate all combinations with repetition.

For example, for n = 2 and k = 3, we have {
√

1 +
√

1 +
√

1,
√

1 +
√

1 +
√

2,
√

1 +
√

2 +
√

2,
√

2 +
√

2 +
√

2}. According to Euler, the number of k-combinations, with

repetitions, from n distinct object is

|(n, k)| = (n+ k − 1)!

k!(n− 1)!
=

(
n+ k − 1

k

)
.

The storage of all combinations takes up lots of memory space. A primitive double

data type, which takes up 8 bytes, does not have enough precision. Instead, we use

double-double [QD08], which has approximately 32 decimal digits and requires 16

bytes. A middle-to-high end computer nowadays has memory about 8 gigabytes. To

handle the case (n, k) = (100, 7), we need 45.4 gigabytes of memory space. It is

prohibitive to handle such cases without a space-efficient algorithm.

Number theorists have been using a space-saving mechanism to test difficult con-

jectures on computers. For example, consider the following diophantine equation:

a4 + b4 + c4 = d4. Bernstein’s idea [Bernstein01] was to build two streams of sorted

11

integers, one for a4 + b4 and another one for d4 − c4, and then look for collisions.

Algorithm 1 presents the mechanism. With this idea, the space requirement can be

saved by |S|
1
2 .

Algorithm 3.1: The space-saving mechanism for enumeration

Input: P is a sorted list of
∣∣(n, k − dk

2
e)
∣∣ elements.

Q is a sorted list of
∣∣(n, k − bk

2
c)
∣∣ elements.

Output: The sorted list of |(n, k)| elements.
Build a heap for P [i]‖Q[1], 1 ≤ i ≤ sizeof(P);1

while sizeof(P) 6= 0 do2

Pop the root element, P [i]‖Q[j], from heap;3

if j < sizeof(Q) then4

Push P [i]‖Q[j + 1] into heap;5

end6

Re-heap;7

end8

The use of heaps to enumerate the sums in a sorted order appeared quite early [Knuth73,

Section 5.2.3]. Let P and Q be sorted lists and let P [i], Q[i] be the their ith element,

respectively. Denote element concatenation by ‖. The above algorithm dynamically

enumerates one element per iteration in sorted order, avoiding massive storage re-

quirement. This is an important technique to perform exhaustive search beyond toy

examples.

3.3 Algorithm for finding the gap

We present Algorithm 2 to compute r(n, k) exactly based on the idea of enumerating

summations using a heap. It further improves the execution performance: instead of

P [i]‖Q[j + 1], Algorithm 2 pushes P [i]‖Q[j′] into the heap.

Theorem 3.3.1. When Algorithm 2 halts, it outputs r(n, k).

12

Algorithm 3.2: Algorithm for finding r(n, k)

Input: Two positive integers n, k (n > k).
Output: r(n, k) = smallestDifference.
Let P be an array containing all k-combinations, with repetitions, from 1 to n.1

Let (a1, a2, . . . , aA) be an element in P, where 1 ≤ a1 ≤ a2 ≤ · · · ≤ aA ≤ n and
A = bk

2
c;

Sort P according to
∑A

i=1

√
ai;2

Let Q be an array containing all (k − A)-combinations, with repetitions, from3

1 to n. Let (a1, a2, . . . , ak−A) be an element in Q, where
1 ≤ a1 ≤ a2 ≤ · · · ≤ ak−A ≤ n;
Sort Q according to

∑k−A
i=1

√
ai;4

smallestDifference←∞;5

previousRootValue← 0;6

Denote element concatenation by ‖. Build a heap for P [i]‖Q[1] according to7 ∑A
l=1

√
P [i][l] +

∑k−A
l=1

√
Q[j][l], where 1 ≤ i ≤ sizeof(P) and

1 ≤ j ≤ sizeof(Q).;
while sizeof(P) 6= 0 do8

Pop the root element, P [i]‖Q[j], from heap;9

currentRootValue←
∑A

l=1

√
P [i][l] +

∑k−A
l=1

√
Q[j][l];10

if 0 < |currentRootValue− previousRootValue| < smallestDifference then11

smallestDifference← |currentRootValue− previousRootValue|;12

end13

previousRootValue← currentRootValue;14

if ∃j < j′ < sizeof(Q) such that P [i][A] ≤ Q[j′][1] then15

Push P [i]‖Q[j′] into heap;16

end17

Re-heap;18

end19

13

Proof. For any 1 ≤ a1 ≤ a2 · · · ≤ aA ≤ n, define

Sa1,a2,··· ,aA = {(a1, a2, · · · , ak)
∣∣∣aA ≤ aA+1 ≤ aA+2 ≤ · · · ≤ ak ≤ n}

Partition the set S = {(a1, a2, · · · , ak)
∣∣∣1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ n} into subsets

according to the first A elements, namely,

S =
⋃

1≤a1≤a2≤···≤aA≤n

Sa1,a2,··· ,aA .

As usual, we order two lists of integers by their sums of square roots. Consider the

following procedure: select the smallest element among all the the minimum elements

in all the subsets, and remove it from the subset. If we repeat the procedure, we

generate a stream of elements of S in a sorted order.

It can be verified that in our algorithm, the heap consists of exactly all the min-

imum elements from all the subsets. The root of the heap contains the minimum

element of the heap. After we remove the element at the root, we put the next

element from its subset into the heap. Hence the algorithm produces a stream of ele-

ments from S in a sorted order. The minimum gap between two consecutive elements

in the stream is r(n, k) by definition.

Our search reveals that r(100, 8) = 2.77×10−21, which is reached by
√

16+
√

43+
√

43+
√

46+
√

60+
√

85+
√

89+
√

95, which is 60.04349365830255824227265498 and
√

7+
√

41+
√

42+
√

51+
√

76+
√

83+
√

94+
√

97, which is 60.04349365830255824226988331.

3.4 Time and space complexity

Without using Algorithm 1, a naive exhaustive search algorithm needs O(nk) space.

Our means aims at the smallest difference. Once a new element is enumerated, the

gap will be recorded, then the element can be freed.

14

Our algorithm uses much lesser space than the sorting approach while preserving

the time complexity, which makes computing r(100, 8) feasible.

Theorem 3.4.1. The algorithm runs in time at most nk+o(k) and space at most

nd
k
2
e+o(k).

Proof. Using the root separation bound, we need at most O(22k log n) bit to represent

the sum of square roots for comparison purposes. So comparing two elements takes

time (22k log n)O(1). Since every element in S appears at the root of the heap at most

once and |S| ≤ nk, the main loop has at most nk iterations. For each iteration, the

time complexity is

(22k log n)O(1) log(nd
k
2
e).

The complexity of other steps are much smaller comparing to the loop. Hence the

time complexity is nk+o(k). The space complexity is clearly nd
k
2
e+o(k).

3.5 Numerical data and observations

To implement our algorithm, the main issue is to decide the precision when computing

the square roots and their summations. We need to pay attention to two possibilities:

First, two summations may be different, but if the precision is set too small, then

they appear to be equal numerically. Keep in mind that we have not ruled out that

r(n, k) can be as small as n−2
k
. Secondly two expressions may represent the same

real number, but after the numerical calculation, they are different. This is the issue

of numerical stability. In either case, we may get a wrong r(n, k).

Our strategy is to set the precision at about 2k log n decimal digits. For example,

to compute r(100, 8), we use the data type which has precision about 28 decimal

digits. Whenever the difference of two summations is smaller than n−2k, we call a

procedure based on Proposition 2.3.2 to decide whether the two numbers are equal

or not.

15

We produce some statistical data about the sums of square roots and the gaps be-

tween two consecutive sums. On the same high-end PC, the computation takes about

18 hours to find r(100, 7) and about 30 days for r(100, 8). There are 217, 538, 310, 639

numbers in [8, 100] which can be written as summations of 8 square roots of positive

integers less than 100. Hence there are 217, 538, 310, 638 gaps between two consecutive

numbers after we sort all the sums.

In Table B.6 and Figure B.6, we list an integer 8 ≤ a ≤ 80 with the number

of α such that bαc = a and α can be represented as
√
a1 +

√
a2 + · · · +

√
a8 (

1 ≤ a1 ≤ a2 · · · ≤ a8 ≤ 100). Note that if two summations have the same value, they

are counted only once. From the table, we see that there are 13, 281, 868, 775 sums

in the [55, 56), which gives us a more precise pigeonhole upper bound for r(n, k) at

1/13281868775 = 7.529× 10−11, which is still several magnitudes away from r(n, k).

In Table C.6 and Figure C.6, for each range, we list the number of gaps between

consecutive numbers in the range. From the table, we see that there are 4 gaps which

have the maximum magnitude at 10−21.

16

Table 3.1: The smallest difference of (n, k)
n k r(n,k) Sum of Square Roots

100000 2 6.58× 10−18 (
√

47035 +
√

82802) - (
√

43728 +
√

87330)

100 2 1.53× 10−07 (
√

33 +
√

74) - (
√

28 +
√

82)

5000 3 2.84× 10−20 (
√

29 +
√

1097 +
√

3153) - (
√

226 +
√

987 +
√

2324)

100 3 8.45× 10−10 (
√

31 +
√

48 +
√

98) - (
√

42 +
√

42 +
√

89)

1000 4 9.15× 10−20
(
√

154 +
√

381 +
√

770 +
√

774)

- (
√

128 +
√

394 +
√

637 +
√

967)

100 4 5.04× 10−14
(
√

45 +
√

63 +
√

91 +
√

96)

- (
√

44 +
√

65 +
√

93 +
√

93)

300 5 1.45× 10−19
(
√

101 +
√

131 +
√

185 +
√

211 +
√

212)

- (
√

61 +
√

128 +
√

154 +
√

264 +
√

269)

100 5 5.66× 10−15
(
√

36 +
√

40 +
√

83 +
√

86 +
√

94)

- (
√

52 +
√

62 +
√

66 +
√

69 +
√

79)

150 6 3.97× 10−19
(
√

34 +
√

36 +
√

57 +
√

76 +
√

92 +
√

149)

- (
√

11 +
√

35 +
√

52 +
√

95 +
√

139 +
√

142)

100 6 2.89× 10−17
(
√

21 +
√

54 +
√

62 +
√

67 +
√

92 +
√

99)

- (
√

15 +
√

59 +
√

76 +
√

76 +
√

82 +
√

90)

100 7 1.88× 10−19
√

7 +
√

14 +
√

39 +
√

70 +
√

72 +
√

76 +
√

85√
13 +

√
16 +

√
46 +

√
55 +

√
67 +

√
73 +

√
79

100 8 2.77× 10−21
(
√

16 +
√

43 +
√

43 +
√

46 +
√

60 +
√

85 +
√

89 +
√

95)

- (
√

7 +
√

41 +
√

42 +
√

51 +
√

76 +
√

83 +
√

94 +
√

97)

17

Chapter 4

Moderately Hard Functions

4.1 Motivation

Functions are mappings from strings to strings. One function can be computed by

different algorithms. A function is considered hard if there is no known efficient algo-

rithm to compute it. Easy functions are suitable for completing tasks efficiently while

hard ones deter abusers. Cryptographic schemes are built upon these hardness to en-

sure security. We want, for instance, that finding the inverses of one-way functions is

infeasible on any modern computer.

There are situations to apply neither too hard nor too easy functions. Moderately

hard functions are suitable and are useful for access control. If it is too easy for a

user to send any amount of email to many users, spams will be a problem. A resource

is usually shared by different users. To regulate its usage, a user is required to make

some extra efforts. That is, the machine needs to spend more time and/or space.

The idea is first introduced by Cynthia Dwork and Moni Naor [DN92]. They call

this kind of function a pricing function, as a user needs to pay a fee, in terms of

computing resources, in order to use the service. This is a means to discourage abuse

of resource. In general, a moderately hard function can be used to implement an

access control scheme.

In theoretical computer science and cryptography, a function is generally consid-

ered easy if the complexity of its algorithm is in P. Not all polynomial-time algo-

rithms are, however, fast in reality. Users may feel prominent difference in running

18

algorithms with complexity in O(n2) and in O(n3), though both are in P. Moderately

hard functions are not well studied but are indeed useful in some situations.

This chapter is organized as follows: Sections 4.2 and 4.3 are the introduction

to CPU-bounded moderately hard functions and memory-bounded counterparts; the

fourth and the fifth sections contain applications of these ones. The last section gives

a formal definition.

4.2 CPU-bounded functions

Moderately hard functions can be implemented in two ways: CPU-bounded and

memory-bounded. The former emphasizes on time while the later focuses on space.

The goal of moderately hard functions is to impose extra costs on computation. It

can be accomplished by both means but CPU-bounded ones have their limitation.

When one computes a CPU-bounded function, the majority of work is done by

the central processor alone. The speed of CPU decides how fast we can compute.

Moderately hard functions aim to slow down a computation, not indefinitely but

long enough to feel the delay. As CPU chip technology advances, the slowness of

moderately hard CPU-bounded functions gets insignificant.

The CPU-bound may still be an effective means if a new generation CPU makes

little progress in processing non-parallelized tasks. The CPU clock rate is an index

of processor performance. In year 2000, Vikas Agarwal et al. predicted that the

annual clock rate improvement would be 12v17%, compared to 50v60% growth in

the past [AHKB00]. Indeed, the CPU design trend has focused on multi-core archi-

tectures [BDKKMPR05, SC10].

To design moderately hard compute-bound functions against multi-core or many-

core CPUs, it is important to make them non-amortized. The final result should be

derived from a series of computations. Each intermediate result should be based on

19

previous ones and none of them can be cached or be omitted.

4.3 Memory-bounded functions

Memory-bounded functions impose extra costs for computation in terms of space.

Execution of software programs needs space to store intermediate data and/or in-

structions. A program is composed of data and instructions. They are originally

stored on disk. When the program is loaded, they are copied to main memory. As

the processor executes the program, related instructions and data will be read/write

from/to main memory.

Main memory is separated from CPU chip in hardware design. It takes time to

transfer data and instructions between them. The CPU accesses data from registers,

located in the CPU chip, almost 100 times faster than from main memory [BO03].

The latency becomes a bottleneck as CPU technology advances and memory unit

cost drops. To deal with this issue, system designers made another kind of memory,

cache, to store temporary data to be possibly used in the near future. While the main

memory is made of dynamic random access memory(DRAM), cache is implemented

with static random access memory(SRAM) and runs faster.

Cache acts as a buffer to shorten the memory data access latency. There are

two types of caches, L1 and L2. L1 is smaller in size and runs as fast as registers.

L2 is 5 to 10 times slower but still runs 5 to 10 times faster than accessing main

memory [BO03]. Figure 4.1 shows the hierarchy of memory. The higher the rank, the

faster the access time and hence costlier.

Unlike CPU performance advanced fast in the past three decades, the improve-

ments in memory technology is not prominent. The ratio of CPU clock cycle and

memory data access latency was 0.3 in 1980 and 220 in 2005, and the gap is still

growing [SC10]. To solve this problem, the cache size in current computer archi-

20

tecture designs has ever increased. Cache misses are expensive, causing delays of

hundreds of CPU clock cycles [Manferdelli07]. Such bottleneck in performance is

called the Memory Wall.

The Memory Wall affects the development of CPU design. From 1990 to 2000, mi-

croprocessors have been improving in overall performance at a rate of approximately

50v60% per year [AHKB00]. Performance can be evaluated in terms of CPU clock

speed, measured in megahertz (MHz) or gigahertz (GHz). Such rate has decreased

greatly in recent years. Instead, the main stream of processor design focuses on multi-

core CPUs. The change is partly due to the Memory Wall problem [BDKKMPR05].

Memory-bounded functions are designed according to the Memory Wall problem.

The major speedup of computer performance, in terms of running a job which cannot

be parallelized, is due to a faster CPU rather than memory. When a function designed

to be data-access-driven, it will not benefit as much using faster CPU.

The growing divergence between memory data access latency and CPU speed has

important applications for moderately hard functions.

Figure 4.1: A memory hierarchy [BO03]

21

4.4 Key derivation functions

A password is an important component of a secure computer system. It is an array of 8

or more characters including letters and decimal digits. It should be easily memorized.

To gain access to a computer account, a password is usually required. We can also use

a password to encrypt electronic files. In that case, a password does not act directly

as an encryption key for a symmetric encryption algorithm such as AES. Instead the

encryption key, which is much longer than a password, is generated from the password

by a key derivation function. This procedure is particularly important to protect files

on laptops, as lost laptops are posed as serious security risks nowadays. Passwords are

usually the weakest link in a cryptographic system, since average users of computer

systems tend to select passwords which are vulnerable to dictionary attacks.

If laptops are lost to malicious users, they can obtain encrypted file easily. Attack-

ers can then launch off-line exhaustive search attacks on passwords. To slow down

the attacks, we need to make sure that the key derivation function takes a while

to output a secret key from a password. Key derivation functions are also used to

store passwords in a central server. In a system break-in, attackers can obtain the

values outputted by a key derivation function from passwords. It is hoped that since

key derivation functions are slow, exhaustive searches for passwords would be very

expensive.

A common practice of designing key derivation functions is to apply the popular

hash functions like MD5 or SHA1 on passwords recursively for several thousand times.

As processors speed up, passwords become weaker at the same rate. Once again we

see that using space efficient hash functions like MD5 or SHA1 defeats the purpose

of achieving security against attackers with improving computer systems.

Algorithm 3 resolves this issue. If we use M as a key derivation function, then we

simply let M(P) be the secret key, where P is the password. To save the password on

22

a server for identity verifications, we store M(P). We choose l such that the function

will run for three seconds on middle range computers. By doing that, we can be sure

that low-end systems will not suffer a lot in computing M(P), while high-end systems

will not gain much in computing M(P). Exhaustive searching for P given M(P) will

be infeasible even for high-end machines.

4.5 Fighting spams

A large percentage of emails we receive are spams. This, ironically, is due to the low

cost and efficiency associated with the email system, the properties that first made it

so popular. To alleviate this problem, Dwork and Naor in 1992 proposed to charge

senders postage of computation efforts [DN92]. The idea has been implemented in

the HASHCASH proof-of-work system. Suppose that a sender wants to send us a

message m that includes her address, our address, the date and the content, etc. We

will require her to attach a string k in the email so that the hash value of m and k

putting together, i.e. h(m, k), starts with certain a number of zeros. The sender will

have to exhaustively search for the string k, if the hash function can be modeled as

a random oracle. The verification part is simple and fast.

If we use the popular hash functions like MD5 or SHA1, which are designed

to be space and time efficient, attackers who possess high-end systems with faster

processors will have not much difficulty in finding k, if we do not want legitimate

senders with only low-end systems to suffer tremendously. On the other hand, if

the functions used in finding proof-of-work are space inefficient, not only do we slow

the high-end machines that are spreading spam, but we also treat low-end machines

more fairly, which often need to send many legitimate emails. In light of this, re-

searchers [ABMW03, DGN03] started to investigate space inefficient hash functions

that will access the main memory frequently and randomly during the computation.

23

Abadi et al. [ABMW03] proposed functions based on inverting of prescribed func-

tions. To prevent the time-space tradeoff attack, Dwork et al. [DGN03] proposed to

use functions that read random positions in a big table (for the current configuration,

a table of size 16 Mbytes is good enough). The table has to look random. One way

to achieve that is to fix a truly random string, i.e. a bit string with high Kolmogorov

complexity. But a long random string will greatly increase the size of email client

programs. After all, adding 16 Mbytes to email clients is not very appealing. Can

we generate such a table using a short program that runs in large space? Dwork et

al. [DNW05] designed a graph theoretic method to generate large tables from short

inputs, but the procedure is quite involved.

The Dwork et al.’s space inefficient hash function M is built on hash functions

H0, H1, H2 and H3, and a large array T . T is a big table and cannot be entirely placed

into cache. Algorithm 3 is copied from [DNW05] for completeness.

Algorithm 4.1: The space inefficient hash function M [DNW05]

Input: m, l
A = H0(m);1

while l 6= 0 do2

c = H1(A);3

A = H2(A, T [c]);4

l = l − 1;5

end6

return H3(A)7

The time of accessing memory should be the dominating part of the computation,

so the hash functions H1 and H2 in the above program need to be time and space

efficient. The size of A need to be determined carefully. See [DGN03] for details.

As for H0 and H3, it is a good idea to use MD5 or SHA1. Even though they have

weakness in collision resistance, it does not affect this application.

For fighting spam, an email sender is required to attach a bit string k to her

message m such that a certain number of bits at the beginning of M(m, k) are all

24

zeros. We select a number l so that the time to find a k takes about 10 seconds in a

middle range computer. We should not require every sender to attach a proof-of-work.

Doing this would impose too much overhead on email systems. We note that most

of legitimate emails we receive are from addresses that have sent us legitimate emails

before. Therefore we need to maintain a list of trusted addresses and domains, and

require only the sender from an address not in the list to attach a proof-of-work. The

procedure needs to be handled automatically by the system. This greatly reduces the

workload of some centralized email servers like Gmail. If combined with other tools

such as filters, we believe that it will significantly reduce the amount of spams.

4.6 Formal definition of memory-bounded functions

Since we want the output of a memory-bounded function to look random, it is natural

to first examine pseudo-random generators, which are one of the most important

cryptographic primitives. There is vast literature on the topic. But most of pseudo-

random number generators are not good for the purpose, because given short random

inputs, they can be computed in a space efficient manner. Furthermore, most of

pseudo-random generators are based on hash chains and they suffer from the time-

space tradeoff attacks. Let h be a cryptographic hash function like MD5 or SHA1.

Let r0 be a random string. We can build a hash chain of length e by defining

ri = h(ri−1), 0 ≤ i ≤ e− 1.

How fast can we compute ri for a random i? If we have about one unit of space

(assume that each unit can hold one value in the chain), then we have to apply the

hash function i times to compute ri. On average, it takes O(e) hash applications to

compute a random element in the hash chain. On the other hand, given s memory

25

units, we can pre-compute a table

r0, rbe/sc, rb2e/sc, · · · , rb(s−1)e/sc,

which may be regarded as hints for computing the hash chain. Then on average it

takes only O(e/s) hash applications to compute an element in the chain. More space

allows a more efficient algorithm to compute an element in the chain. This is an

example of time-space trade-off.

Time-space trade-off attack is not acceptable to memory-bounded functions. In-

stead, if space is below a certain point (close to the size of the output), no polynomial

time algorithm should exist to compute any part of the output. This motivates the

following definition of memory-bounded function.

Definition 4.6.1. We call a function F : {0, 1}r → ({0, 1}s)e memory-bounded, if

• the function can be computed in time polynomial in r;

• there exists a subset S of {0, 1}r with cardinality greater than 2r−2r/2, such that

for any function h : {0, 1}r → ({0, 1}s)e/2, for any polynomial time algorithm A

running in space of se/2 + log e bits and for all a ∈ S, we have

∣∣∣{i | 1 ≤ i ≤ e, A(h(a), i) = F(a)[i]
}∣∣∣ ≤ e

2
+
e

s
.

Remark: Inevitably there are inputs a of F that F(a)[i] can be computed in

space efficient manner for any i, but the number of them should be small. In the

above definition, the number is less than 2r/2.

Remark: Elements in output array usually belong to the set {0, 1, 2, · · · , q −

2, q − 1} where 2s−1 ≤ q ≤ 2s. So a se/2-bit data can potentially hold e/2 + e/s

elements.

26

Remark: There is no requirement for the computational complexity of the func-

tion h. One should consider h(a) as hints, which may be pre-computed to facilitate

a space efficient algorithm to compute F(a)[i].

Remark: If h(a) consists of part of the output array F(a), then we can read

e/2 + e/h elements in the array. But by definition, there is no algorithm that can

compute one more element in the limited space of se/2 bits.

To summarize the definition, even though the output is generated from a short

input, it behaves like a random string to a machine with only limited space.

Theorem 4.6.2. Assume that H0, H1, H2, H3 are random oracles in the algorithm

defining M . If we implement T by using the output generated by a memory-bounded

function F with a random input of s bits and with l > r, the algorithm M will have

l/3 many cache misses with probability greater than 1− 0.95l.

Intuitively during the computation of M , it is unlikely that the value of A will

repeat. The location of access, c, cannot be predicted if the hash function H1 can be

modeled as a random oracle. If the cache has size se/2 or less, then the probability

of cache miss would be at least 1/2− 1/s, since at most e/2 + e/s many elements in

T can be computed using only caches.

Proof. If an input a of F was selected randomly, then with probability 1− 1
2r/2

, a ∈ S.

In any of the l iterations of the loop of M , assume that cache content is C at the

beginning of the iteration and the computer is running an algorithm A to compute

F(a)[c]. If there is no cache miss, then

c ∈
{
i | 1 ≤ i ≤ e, A(C, i) = F(a)[i]

}
.

Since c is computed from a random oracle H1, according to definition of memory-

bounded functions, no cache miss happens with probability less than or equal to

27

1/2+1/s. For l iterations, the algorithm has l/3 or less cache misses with a probability

of ∑
1≤i≤l/3

(
l

i

)
(1/2 + 1/s)l−i(1/2− 1/s)i <

(
l
dl/3e

)
2l

< 0.944l.

The algorithm has l/3 or more cache miss with probability at least (1− 0.707r)(1−

0.944l) > 1− 0.95l.

28

Chapter 5

Number Theoretic Constructions

5.1 Motivation

Number theoretic functions form the backbone of public-key cryptosystems. Compu-

tationally cryptography related number theoretic functions are mostly modular expo-

nentiations, or their variations, such as elliptic curve point multiplications. A large

amount of work has been done to improve the efficiency of modular exponentiations,

but they are notoriously slow, comparing with symmetric encryption/decryption and

popular hash functions. On the other hand, usually modular exponentiations can

be evaluated in a small amount of space, hence they are not memory-bounded. For

instance ab (mod n) (a, b, n are positive integers and a, b < n) can be computed in

O(log n) space, and the output size is not larger than the input size.

5.2 Construction

We consider the exponentiation (1 + x)n (mod p, xe − a). If

(1 + x)n (mod p, xe − a) = c0 + c1x+ c2x
2 + · · ·+ ce−1x

e−1, (5.2.0.1)

we formally define Fp,e,a to be

Fp,e,a(n) = (c0, c1, · · · , ce−1) ∈ Fe
p.

29

First observe that an input has size O(log p) bits if we require that n < p and that e is

about (log p)O(1). The function can be computed in polynomial time using O(e log p)-

bit space. However there is no known efficient algorithm to compute any part of

coefficient using less than e log p space. The condition that xe − a is irreducible is

crucial here, for otherwise the ring Fp[x]/(xe − a) can be split, and the computation

can be done in smaller space.

Notice that the i-th coefficient can indeed be computed in smaller space by eval-

uating the expression

ci =
∑

ej+i≤n

(
n

ej + i

)
aj (mod p)

term by term. But the method will take exponential time, because not only the

number of terms is exponential in log n, but also each term involves factorial-like

functions, which are hard to compute individually.

Conjecture 5.2.1. The function Fp,a,e is memory-bounded.

One might ask whether for a small τ , there exist hints h1, h2, · · · , hτ ∈ Fp de-

pending on n, and an algorithm that, given i, computes the ci in (5.2.0.1) from i and

h1, h2, · · · , hτ . The following lemma shows that this is impossible when there is no

restriction on n.

Theorem 5.2.2. Denote the order of 1 + x in the field Fp[x]/(xe− a) by ord(1 + x).

Let τ be an integer less than logp ord(1 +x). For any functions f0, f1, · · · , fe−1, there

do not exist functions h1, h2, · · · , hτ in Z+
≤pe → Fp such that

(1 + x)n (mod p, xe − a)

=
∑

0≤i≤e−1

fi(h1(n), h2(n), · · · , hτ (n))xi

for all 1 ≤ n ≤ pe.

30

Proof. The theorem can be proved by a counting argument. Fix any function f0, f1, · · · , fe−1

and h1, h2, · · · , hτ , ∣∣∣∣∣{ ∑
0≤i≤e−1

fi

(
h1(n), h2(n), · · · , hτ (n)

)
xi
}∣∣∣∣∣

≤
∣∣∣{(ĥ1, ĥ2, · · · , ĥτ) | ĥi ∈ Fp for 1 ≤ i ≤ τ

}∣∣∣
= pτ < ord(1 + x),

but ∣∣∣{(1 + x)n (mod p, xe − a) | 1 ≤ n ≤ pe
}∣∣∣ = ord(1 + x),

thus

(1 + x)n (mod p, xe − a) =

∑
0≤i≤e−1

fi(h1(n), h2(n), · · · , hτ (n))xi

can not hold for all 1 ≤ n ≤ pe.

Remark: Usually the order of 1 + x is close to pe, hence the size of hints has to

be very large in order for an algorithm to compute the coefficient in a space efficient

manner. The theorem does not prove that F is memory-bounded, because we require

that n ≤ p in F . But it does serve as a support evidence to the conjecture that F is

memory-bounded.

5.3 Memory-efficient exponentiating method

In Section 5.2, modular arithmetics refers to calculating in/between equivalent classes

according to the modulus. Let a, q,m, b ∈ Z, a = qm + b, where q is quotient and

0 ≤ b < m is residue. The modulus m partitions Z into m equivalent classes. a ≡ b

(mod m) means that a and b are equivalent.

31

Modular exponentiation corresponds to repeated multiplication of the same base

for exponent number of times. The product is an integer between 0 and m so does

any intermediate result. Modular exponentiation has lots of applications in the field

of cryptography. Take the famous RSA scheme as example, the ciphertext c ≡ me

(mod n), where m is the plaintext and n, e together is the public key. Both encryp-

tion and decryption rely on modular exponentiation. The speed of exponentiation

determines practicability of these schemes.

The naive way of deriving be (mod m) is first calculate be and then modulo it by

m. Say we are interested in finding 750 (mod 19). The first step results in

1798465042647412146620280340569649349251249,

which needs 43 decimal digits of space to proceed next step while 7 and 50 need at

most 2. The space requirement of this method is O(e log b) and time is O(e).

Observing the fact below, exponentiation can be divided into multiple square

steps. And we can apply modulo on each intermediate product to reduce the space

requirement.

Observation 1.

b2 (mod m)

≡
(
b (mod m)

)(
b (mod m)

)
(mod m)

≡
(
b (mod m)

)2
(mod m)

Integers are represented in binary format in computers. Multiplication by 2 can

be done efficiently by just shifting n bit to the left, where n is the number of bits

required to represent that integer. Squaring requires only n bit-operations rather

32

than multiplying. Shifting n-bits can be done faster than multiply an integer by

2. According to this, the following algorithm dramatically reduces time and space

requirement. Compared to the intuitive method, it does O(log e) multiplications and

needs O(logm) in space.

Algorithm 5.1: Exponentiating by squaring [Schneier96]

Input: base b, exponent e, modulus m
Output: result
result := 1;1

while e > 0 do2

if (e & 1) == 1 then3

result := (result ∗ b) (mod m);4

end5

e := e >> 1;6

b := (b ∗ b) (mod m);7

end8

return result9

This technique applies on the situation (1+x)n (mod p, xe−a), where p is a prime

number and n, e, a are in Z. The time requirement is O(log n) and space is O(e log p).

For example, (1 + x)50 (mod 79, x26 − 3) is congruent to

57x25 + 73x24 + 63x23 + 57x22 + 77x21 + 11x20 + 20x19 + 32x18 + 28x17

+61x16 + x15 + 46x14 + 68x13 + 17x12 + 72x11 + 78x10 + 77x9 + 7x8

+9x7 + 32x6 + 62x5 + 71x4 + 9x3 + 9x2 + 26x+ 53.

It is hard to derive the coefficient of certain term without using O(e log p) space. For

each iteration of while loop, the algorithm squares base and then does modulo. These

intermediate results take up space.

33

5.4 Closed form observation

One criterion of choosing a memory bounded function is to show that there is no

shortcut way to derive any partial results. In the case of (1 +x)n (mod p, xe− a), we

are looking for evidence of deriving some binomial coefficients using small memory

space. (1 + x)n (mod p, xe − a) will be a good candidate of memory bound if we

cannot find such certificate.

The binomial formula (x + y)n =
∑n

k=0

(
n
k

)
xn−kyk relates to our goal. We are

interested in computing sums of binomial coefficients in small space, or calculate it

directly, where k is not consecutive integers. More generally, we consider the case of

Definition 5.4.3.

Definition 5.4.1. ∀n, k ∈ Z,
(
n
k

) def
= n(n−1)(n−2)···(n−k+1)

k!
.

Definition 5.4.2. ∀n, k ∈ Z,
(
n
k

) def
= 0 if k < 0, k > n, or n ≤ 0.

Definition 5.4.3.

fi(n, l)
def
=
∑

0≤k≤n

(
n

lk − i

)
, where i, l ∈ N and 0 ≤ i ≤ l.

One way to compute fi(n, l) in small space is to express it in closed form. For a

fixed n and i, fi(n, l) becomes a series as l varies. A closed form exhibits a series as

a sum of a fixed (independent of n) number of hypergeometric terms.

A geometric series
∑

k≥0 tk is one in which the ratio of every two consecutive

terms is constant, i.e., tk+1

tk
is a constant function of the summation index k. A

hypergeometric series
∑

k≥0 tk is one in which t0 = 1 and the ratio of two consecutive

terms is a rational function of the summation index k, i.e., in which

tk+1

tk
=
P (k)

Q(k)
,

34

where P and Q are polynomials in k. Examples of such hypergeometric terms are

tk = x2k or tk = (3k−8)!
(k+1)!

.

Definition 5.4.4 (Hypergeometric closed form [PWZ96]). A function f(n) is said to

be of closed form if it is equal to a linear combination of a fixed number, r, say, of

hypergeometric terms. The number r must be an absolute constant, i.e., it must be

independent of all variables and parameters of the problem.

Petkovsek et al. [PWZ96] developed computer programs for simplifying sums that

involve binomial coefficients. Their algorithm, Hyper, outputs all hypergeometric

closed forms of a recursive relation. A recurrence relation is an equation that recur-

sively defines a sequence: each term of the sequence is defined as a function of the

preceding terms.

We are going to find a recursive relation for fi(n, l) and start with a special case.

Definition 5.4.5.

fi(n)
def
=
∑

0≤k≤n

(
n

3k − i

)
.

Observation 2.

f0(n+ 1) = f0(n) +
∑

0≤k≤n

(
n

3k − 1

)
= f0(n) + f1(n).

f1(n+ 1) = f1(n) +
∑

0≤k≤n

(
n

3k − 2

)
= f1(n) + f2(n).

f2(n+ 1) = f2(n) +
∑

0≤k≤n

(
n

3k

)
= f2(n) + f0(n).

Lemma 5.4.6. 2fi(n)−3fi(n+1)+3fi(n+2)−fi(n+3) = 0 is the recursive relation

of fi(n).

Proof. The proof is done by induction on n.

35

1. When n = 1, we have

2f0(1)− 3f0(2) + 3f0(3)− f0(4) = 2− 3 + 6− 5 = 0.

2f1(1)− 3f1(2) + 3f1(3)− f1(4) = 0− 3 + 9− 6 = 0.

2f2(1)− 3f2(2) + 3f2(3)− f2(4) = 2− 6 + 9− 5 = 0.

2. Assume

2f0(n)− 3f0(n+ 1) + 3f0(n+ 2)− f0(n+ 3) = 0 and

2f1(n)− 3f1(n+ 1) + 3f1(n+ 2)− f1(n+ 3) = 0 and

2f2(n)− 3f2(n+ 1) + 3f2(n+ 2)− f2(n+ 3) = 0.

3. Want to show 2f0(n+ 1)− 3f0(n+ 2) + 3f0(n+ 3)− f0(n+ 4) = 0.

2f0(n+ 1)− 3f0(n+ 2) + 3f0(n+ 3)− f0(n+ 4)

=2

(
f0(n) +

∑
0≤k≤n

(
n

3k − 1

))
− 3

(
f0(n+ 1) +

∑
0≤k≤n+1

(
n+ 1

3k − 1

))

+ 3

(
f0(n+ 2) +

∑
0≤k≤n+2

(
n+ 2

3k − 1

))
−

(
f0(n+ 3) +

∑
0≤k≤n+3

(
n+ 3

3k − 1

))

=2
∑

0≤k≤n

(
n

3k − 1

)
− 3

∑
0≤k≤n+1

(
n+ 1

3k − 1

)
+ 3

∑
0≤k≤n+2

(
n+ 2

3k − 1

)
−

∑
0≤k≤n+3

(
n+ 3

3k − 1

)
=2f1(n)− 3f1(n+ 1) + 3f1(n+ 2)− f1(n+ 3)

=2f1(n+ 1)− 3f1(n+ 2) + 3f1(n+ 3)− f1(n+ 4)

=2

(
f1(n) +

∑
0≤k≤n

(
n

3k − 2

))
− 3

(
f1(n+ 1) +

∑
0≤k≤n+1

(
n+ 1

3k − 2

))

+ 3

(
f1(n+ 2) +

∑
0≤k≤n+2

(
n+ 2

3k − 2

))
−

(
f1(n+ 3) +

∑
0≤k≤n+3

(
n+ 3

3k − 2

))

36

=2
∑

0≤k≤n

(
n

3k − 2

)
− 3

∑
0≤k≤n+1

(
n+ 1

3k − 2

)
+ 3

∑
0≤k≤n+2

(
n+ 2

3k − 2

)
−

∑
0≤k≤n+3

(
n+ 3

3k − 2

)
=2f2(n)− 3f2(n+ 1) + 3f2(n+ 2)− f2(n+ 3)

=2f2(n+ 1)− 3f2(n+ 2) + 3f2(n+ 3)− f2(n+ 4)

=2

(
f2(n) +

∑
0≤k≤n

(
n

3k

))
− 3

(
f2(n+ 1) +

∑
0≤k≤n+1

(
n+ 1

3k

))

+ 3

(
f2(n+ 2) +

∑
0≤k≤n+2

(
n+ 2

3k

))
−

(
f2(n+ 3) +

∑
0≤k≤n+3

(
n+ 3

3k

))

=2
∑

0≤k≤n

(
n

3k

)
− 3

∑
0≤k≤n+1

(
n+ 1

3k

)
+ 3

∑
0≤k≤n+2

(
n+ 2

3k

)
−

∑
0≤k≤n+3

(
n+ 3

3k

)
=2f0(n)− 3f0(n+ 1) + 3f0(n+ 2)− f0(n+ 3)

=0

Lemma 5.4.6 can be further generalized.

Lemma 5.4.7.

f0(n+ 1, l) = f0(n, l) + f1(n, l).

f1(n+ 1, l) = f1(n, l) + f2(n, l).

f2(n+ 1, l) = f2(n, l) + f3(n, l).

...

fl−1(n+ 1, l) = fl−1(n, l) + f0(n, l).

Proof. According to Pascal’s rule, the proof is straight forward.

f0(n+ 1, l) =
∑

0≤k≤n

(
n

lk

)
+
∑

0≤k≤n

(
n

lk − 1

)
= f0(n, l) + f1(n, l).

37

f1(n+ 1, l) =
∑

0≤k≤n

(
n

lk − 1

)
+
∑

0≤k≤n

(
n

lk − 2

)
= f1(n, l) + f2(n, l).

f2(n+ 1, l) =
∑

0≤k≤n

(
n

lk − 2

)
+
∑

0≤k≤n

(
n

lk − 3

)
= f2(n, l) + f3(n, l).

...

fl−1(n+ 1, l) =
∑

0≤k≤n

(
n

lk − l + 1

)
+
∑

0≤k≤n

(
n

lk

)
= fl−1(n, l) + f0(n, l).

Definition 5.4.8 (Operator N). ∀k ∈ Z , fi(n, l)N
k def

= fi(n+k, l) and fi(n, l)/N
k def

=

fi(n− k, l).

Lemma 5.4.9. fi(n, l)
(
1 + (1−N)l

)
= 0 is the recursive relation of fi(n, l), where

2 - l.

Proof. The proof is done by induction on n.

1. When n = 0, we have

fi(0, l)
(
1 + (1−N)l

)
=

(∑
0≤k≤n

(
0

lk − i

))(
1 + (1−N)l

)
= 0,∀i.

2. Assume fi(n, l)
(
1 + (1−N)l

)
= 0,∀i.

3. f0(n + 1, l)
(
1 + (1−N)l

)
= (f0(n, l) + f1(n, l))

(
1 + (1−N)l

)
= 0. Similarly,

it holds for all other i.

Lemma 5.4.10. n
N
fi(n, l)

(
1− (1−N)l

)
= 0 is the recursive relation of fi(n, l),

where 2 | l.

38

Proof. The proof is done by induction on n.

1. When n = 0, we have

0

N
fi(0, l)

(
1− (1−N)l

)
= 0,∀i.

2. Assume n
N
fi(n, l)

(
1− (1−N)l

)
= 0,∀i.

3. n+1
N
f0(n+ 1, l)

(
1− (1−N)l

)
= n+1

N
(f0(n, l) + f1(n, l))

(
1− (1−N)l

)
= 0. Similarly, it holds for all other i.

The process of deriving closed form solutions of a function containing binomial

coefficients involves two steps [PWZ96]:

• Step 1: Convert a summand function into recurrence.

• Step 2: Find all closed form solutions for the recurrence.

The first step is done by Zeilberger’s algorithm, which fast discovers the recurrence

for a proper hypergeometric term. The second part is finished by the algorithm Hy-

per. They have been implemented as Maple and Mathematica programs respectively.

Table 5.1 shows the inputs and outputs of Zeilberger’s algorithm, program ct. In case

of y(n) =
∑(

n
8k

)
and higher, the program ct returns the following: Error, (in ct)

cannot determine if this expression is true or false: FAIL < 0.

Figure 5.1 shows outputs from the algorithm Hyper by plugging first five recur-

rences from above table. As l increases, the level of recurrence increases, which means

higher space complexity.

When Hyper returns the empty brackets “{}”, it signifies the absence of hyperge-

ometric solutions. If it returns 2, for instance, the answer corresponds to y(n) = 2n.

39

Figure 5.1: Outputs from the algorithm Hyper

40

Table 5.1: Inputs and outputs of Zeilberger’s algorithm
Input Output

y(n) =
∑(

n
3k

)
2y(n)− 3y(n+ 1) + 3y(n+ 2)− y(n+ 3) = 0

y(n) =
∑(

n
4k

)
4ny(n)− 6ny(n+ 1) + 4ny(n+ 2)− ny(n+ 3) = 0

y(n) =
∑(

n
5k

) 2y(n)− 5y(n+ 1) + 10y(n+ 2)
−10y(n+ 3) + 5y(n+ 4)− y(n+ 5) = 0

y(n) =
∑(

n
6k

) 6ny(n)− 15ny(n+ 1) + 20ny(n+ 2)
−15ny(n+ 3) + 6ny(n+ 4)− ny(n+ 5) = 0

y(n) =
∑(

n
7k

) 2y(n)− 7y(n+ 1) + 21y(n+ 2)− 35y(n+ 3)
+35y(n+ 4)− 21y(n+ 5) + 7y(n+ 6)− y(n+ 7) = 0

Hence, for the case of fi(n, l), we conjecture that there is no closed form solution

when 2 | l.

5.5 Conclusion

Popular hash functions are designed to be collision resistant and to be space efficient.

Space efficiency is an undesired property in fighting spam and in deriving secret keys

from short passwords. We hardly need to worry about collisions in these applications,

since passwords are very short, and collisions do not help to decrease the effort to find

proof-of-work. We propose to use the space inefficiency of exponentiations of sparse

polynomials to build memory-bounded functions. They can be used to design space

inefficient hash functions.

41

Chapter 6

Conclusion and Future Work

The time and space trade-off technique helps a lot in finding lower bound of the sum-

of-square-roots problem, a famous open problem in computational geometry. In this

dissertation, an upper bound is presented along with a space-efficient algorithm to

find r(n, k) exactly in nk+o(k) time and in ndk/2e+o(k) space. As an example, r(100, 7)

is calculated in a few hours on one PC and r(100, 8) in about one month. Numerical

data seems to suggest that our upper bound is better than the root separation bounds.

Further investigation, both experimental and theoretical, is needed.

Moderately hard functions have been proposed to combat junk emails. One way to

implement is by utilizing the memory bound. Memory-bounded functions incorporate

random walks in memory space. They use time and space trade-off technique with

emphasis on large memory usage and hence properly slow down CPU throughput.

High-end computers do not enjoy much acceleration than low-ends. These functions

are essentially hash functions with a special constraint.

Popular hash functions are designed to be collision resistant and space efficient.

Space efficiency is an undesired property in fighting spam and in deriving secret keys

from short passwords. We hardly need to worry about collisions in these applications,

since passwords are very short, and collisions do not help to decrease the effort to

find proof-of-work. Moderately hard memory-bounded functions can be considered

as memory-inefficient hash functions.

A formal definition of memory-bounded functions is given in Chapter 4. This is the

first to the best of our knowledge. Hard number theoretic functions form foundations

42

of modern cryptography. Based on the definition, we aim to construct tables in a

number theoretical way.

Chapter 5 demonstrates how to build such tables. Compelling a computer to ran-

domly walk in memory space relies on a table with uniformly distributed data. Such

tables should be constructed effortlessly so that they can be shared even though they

take lot of memory space. This is an important requirement for practical concerns.

The future goal is to prove a function memory-bounded. We have reasons to

conjecture that the constructed table will make a function memory-bounded. It

would be nice to find out a proof.

43

Bibliography

[ABMW03] Martin Abadi, Mike Burrows, Mark Manasse, and Ted Wobber (2003)
Moderately hard, memory-bound functions. Proceeding of the 10th Network and
Distributed System Security Symposium (NDSS), ISBN: 1-891562-16-9.

[AE04] Dana Angluin and Sarah Eisenstat (2004) How close can
√
a +
√
b be to an

integer? Technical Report 1279, Department of Computer Science, Yale Univ,
ftp://ftp.cs.yale.edu/pub/TR/tr1279.pdf.

[AHKB00] Vikas Agarwal, M.S. Hrishikesh, Stephen W. Keckler, and Doug Burger
(2000) Clock Rate versus IPC: The End of the Road for Conventional Microar-
chitectures. Proceeding of the 27th International Symposium on Computer Archi-
tecture, ISSN: 1063-6897, pages 248-259.

[BDKKMPR05] Shekhar Y. Borkar, Pradeep Dubey, Kevin C. Kahn, David J.
Kuck, Hans Mulder, Stephen S. Pawlowski, and Justin R. Rattner (2005)
Platform 2015: Intel Processor and Platform Evolution for the Next Decade.
http://www.intel.com/technology/architecture/platform2015/.

[Bernstein01] Daniel Bernstein (2001) Enumerating solutions to p(a) + q(b) = r(c) +
s(d). Mathematics of Computation, ISSN: 0025-5718, volume 70, number 233,
pages 389-394.

[BFMS00] Christoph Burnikel, Rudolf Fleischer, Kurt Mehlhorn, and Stefan Schirra
(2000) A Strong and Easily Computable Separation Bound for Arithmetic Expres-
sions Involving Radicals. Algorithmica, ISSN: 0178-4617, volume 27, number 1,
pages 87-99.

[BLP03] Peter Borwein, Petr Lisoněk, and Colin Percival (2003) Computational In-
vestigations of the Prouhet–Tarry–Escott Problem. Mathematics of Computation,
ISSN: 0025-5718, volume 72, number 244, pages 2063-2070.

[BO03] Randal E. Bryant and David R. O’Hallaron (2003) Computer Systems: A
Programmer’s Perspective. Prentice Hall. ISBN: 0-13-034074-X.

[Boreico08] Iurie Boreico (2008) My Favorite Problem: Linear Independence of Rad-
icals. The Harvard College Mathematics Review, volume 2, number 1.

[Cheng06] Qi Cheng (2006) On Comparing Sums of Square Roots of Small Integers.
The 31st International Symposium on Mathematical Foundations of Computer

44

Science (MFCS), Lecture Notes in Computer Science, volume 4162, ISBN: 978-3-
540-37791-7, pages 250-255.

[CL08] Qi Cheng and Yu-Hsin Li (2008) A Number Theoretic Memory Bounded
Function and Its Applications. The International Symposium on Trusted
Computing (TrustCom ’08), pages 2021-2025, Digital Object Identifier
10.1109/ICYCS.2008.114.

[CL10] Qi Cheng and Yu-Hsin Li (2010) Finding the Smallest Gap between Sums
of Square Roots. The 9th Latin American Theoretical Informatics Symposium
(LATIN ’10), Lecture Notes in Computer Science, volume 6034, ISBN: 978-3-642-
12199-9, pages 446-455.

[DGN03] Cynthia Dwork, Andrew Goldberg, and Moni Naor (2003) On memory-
bound functions for fighting spam. Advances in Cryptology-CRYPTO ’03, volume
2729, ISBN: 978-3-540-40674-7, pages 426444.

[DMO01] Erik D. Demaine, Joseph S. B. Mitchell, and Joseph O’Rourke
(2001) The Open Problems Project, Problem33: Sum of Square Roots.
http://maven.smith.edu/∼orourke/TOPP/P33.html.

[DN92] Cynthia Dwork and Moni Naor (1992) Pricing via Processing or Combatting
Junk Mail. Advances in Cryptology-CRYPTO ’92, volume 740, ISBN: 978-3-540-
57340-1, pages 139-147.

[DNW05] Cynthia Dwork, Moni Naor, and Hoeteck Wee (2005) Pebbling and proofs
of work. Advances in Cryptology-CRYPTO ’05, volume 3621, ISBN: 978-3-540-
28114-6, pages 37-54.

[Hellman80] Martin Hellman (1980) A Cryptanalytic Time-Memory Trade-Off. IEEE
Transactions on Information Theory, ISSN: 0018-9448, volume 26, issue 4, pages
401-406.

[JKR02] Jaeyeon Jung, Balachander Krishnamurthy, and Michael Rabinovich (2002)
Flash crowds and denial of service attacks: characterization and implications for
CDNs and web sites. The 11th international conference on World Wide Web
(WWW ’02), ISBN:1-58113-449-5, pages 293-304.

[Knuth73] Donald Knuth (1973) The Art of Computer Programming, volume 3.
Addison-Wesley. ISBN:0-20103-803-X.

[Manferdelli07] John L. Manferdelli (2007) The Many-Core Inflection Point for Mass
Market Computer Systems. CTWatch Quarterly, ISSN: 1555-9874, February.

[O’Rourke81] Joseph O’Rourke (1981) Advanced problem 6369. American Mathemat-
ical Monthly, volume 88, number 10, page 769.

[PWZ96] Marko Petkovsek, Herbert Wilf, and Doron Zeilberger (1996) A = B. A K
Peters Ltd., ISBN: 978-1-56881-063-8.

45

[QD08] QD v2.3.7 (C++/Fortran-90 double-double and quad-double computation
package), http://crd.lbl.gov/∼dhbailey/mpdist/.

[QW06] Jianbo Qian and Cao An Wang (2006) How much precision is needed to
compare two sums of square roots of integers? Information Processing Letters,
ISSN: 0020-0190, volume 100, issue 5, pages 194-198.

[SC10] X.-H. Sun and Y. Chen (2010) Reevaluating Amdahl’s law in the multicore
era. Journal of Parallel and Distributed Computing, ISSN: 0743-7315, volume 70,
number 2, pages 183-188.

[Schneier96] Bruce Schneier (1996) Applied Cryptography: Protocols, Algorithms, and
Source Code in C, Second Edition (2nd ed.). Wiley. ISBN: 978-0471117094.

[Schonhage79] Arnold Schönhage (1979) On the power of random access machines.
Proceedings of the 6th Colloquium, on Automata, Languages and Programming,
Lecture Notes in Computer Science, volume 71, ISBN: 978-3-540-09510-1, pages
520-529.

[Shamir79] Adi Shamir (1979) Factoring numbers in O(log n) arithmetic steps. Infor-
mation Processing Letters, ISSN: 0020-0190, volume 8, number 1, pages 28-31.

46

Appendices

47

Appendix A

Proof of Linear Independence

Definition A.0.1. Let a1, a2, · · · , ah ∈ Z be not all zeros. Define a set of linear

expressions

L(x1, x2, · · · , xh)
def
= {a1x1 ± a2x2 ± · · · ± ahxh},

which contains all combinations of sign of each term.

There are 2h−1 elements in L(x1, x2, · · · , xh).

Definition A.0.2. Let T ∈ Z\{0} be a variable.

FL,x1,x2,x3,··· ,xh(T)
def
=
∏
e∈L

(T − e) =
∏(

T − (a1x1 ± a2x2 ± a3x3 ± · · · ± ahxh)
)
.

Note that changing the sign of any of x2, x3, · · · , xh only re-permutes the set

L(x1, x2, · · · , xh). So, FL,x1,x2,x3,··· ,xh(T) = FL,x1,±x2,±x3,··· ,±xh(T) =
∏

(T − a1x1 ±

a2x2 ± a3x3 ± · · · ± ahxh). This implies that the power of x2, x3, · · · , xh are even in

the expanded form of FL,x1,x2,··· ,xh(T).

The power of x1 can be even or odd. We treat FL,x1,··· ,xh(T) as a polynomial of

x1, x2, · · · , xh and group its expanded form by parity of x1.

FL,x1,··· ,xh(T) = x1P (x21, x2, x3, · · · , xh, T) +Q(x21, x2, x3, · · · , xh, T),

where P contains monomials with power of x1 is odd and Q does that with even

48

power. Since the power of x2, x3, · · · , xh are even in the expanded form, we can write

FL,x1,··· ,xh(T) = x1P
′(x21, x

2
2, x

2
3, · · · , x2h, T) +Q′(x21, x

2
2, x

2
3, · · · , x2h, T).

Note that P ′ and Q′ generate integers if x21, x
2
2, x

2
3, · · · , x2h, and T are all integers.

Proposition A.0.3. Let n1, n2, · · · , nN be square-free numbers and a1, a2, · · · , aN ∈

Z be not all zeros. ∑
1≤i≤N

ai
√
ni 6∈ Z\{0}.

Proof. [Boreico08] Prove by induction on N. When N = 1, it is clear. Assume on

the contradiction that a1
√
n1 + a2

√
n2 + · · · + ah

√
nh = M ∈ Z\{0}. By definition,

L(
√
n1,
√
n2, · · · ,

√
nh) = {a1

√
n1 ± · · · ± ah

√
nh}. We have FL,√n1,

√
n2,··· ,

√
nh

(M) =∏
e∈L(M − e) = 0. We also have FL,√n1,

√
n2,··· ,

√
nh

(M) =
√
n1P

′(n1, n2, · · · , nh,M) +

Q′(n1, n2, · · · , nh,M) = 0. So,

P ′(n1, n2, · · · , nh,M) = Q′(n1, n2, · · · , nh,M) = 0.

Hence, −√n1P
′(n1, n2, · · · , nh,M)+Q′(n1, n2, · · · , nh,M) = FL,−√n1,

√
n2,··· ,

√
nh

(M) =∏
(M + a1

√
n1 ± a2

√
n2 ± a3

√
n3 ± · · · ± ah

√
nh) = 0.

Therefore, M = −a1
√
n1 ± a2

√
n2 ± · · · ± ah

√
nh for some combination of sign.

But we have assumed that M = a1
√
n1 + a2

√
n2 + · · ·+ ah

√
nh ∈ Z\{0}. Summation

of these two M cancels a1
√
n1 and results in

2M = (a2 ± a2)
√
n2 + (a3 ± a3)

√
n3 + · · ·+ (ah ± ah)

√
nh,

which contradicts to the induction hypothesis.

Proposition A.0.4. The set {
√
n | n ∈ N is square-free} is linearly independent

over rationals.

49

Proof. The proposition is equivalent to the following: Let ai ∈ Z and let ni be different

square-free numbers, where 1 ≤ i ≤ N.

If a1, a2, · · · , aN are not all zeros , then a1
√
n1 + a2

√
n2 + · · ·+ aN

√
nN 6= 0.

Prove by induction on N. When N = 1, it is clear. Assumption that a1
√
n1 +

a2
√
n2 + · · · + ah−1

√
nh−1 6= 0. When N = h, assume on the contradiction that

a1
√
n1 + a2

√
n2 + · · ·+ ah

√
nh = 0.

a1
√
n1 + a2

√
n2 + · · ·+ ah−1

√
nh−1 = −ah

√
nh

a1
√
n1nh + a2

√
n2nh + · · ·+ ah−1

√
nh−1nh = −ahnh ∈ Z\{0},

which contradicts to the Proposition A.0.3.

50

Appendix B

Statistics on Sums

Table B.1: Statistics on the summations of square roots

of (n, k) = (5000, 3).

3 4 5 6 7 8

4 15 43 99 206 400

9 10 11 12 13 14

713 1185 1911 2950 4385 6337

15 16 17 18 19 20

8907 12295 16655 22097 28981 37357

21 22 23 24 25 26

47650 60052 74965 92677 113525 138027

27 28 29 30 31 32

166551 199577 237948 281279 331464 388240

33 34 35 36 37 38

452345 524933 606445 697749 799706 913467

39 40 41 42 43 44

1039529 1178845 1333677 1503114 1690466 1895287

45 46 47 48 49 50

Continued on Next Page. . .

51

Table B.1 – Continued

2119584 2365011 2632038 2923134 3239383 3582228

51 52 53 54 55 56

3953396 4354689 4788446 5255278 5758272 6299144

57 58 59 60 61 62

6879535 7501883 8169257 8881764 9644207 10458582

63 64 65 66 67 68

11325468 12250208 13234034 14279067 15390870 16568833

69 70 71 72 73 74

17820269 19142611 20545988 22028164 23595388 25249510

75 76 77 78 79 80

26991603 28829005 30758422 32784371 34912226 37136255

81 82 83 84 85 86

39464476 41895567 44431313 47070060 49813869 52667301

87 88 89 90 91 92

55623906 58685743 61857470 65129967 68508590 71988885

93 94 95 96 97 98

75575207 79258476 83041661 86920838 90896965 94962543

99 100 101 102 103 104

99116748 103360270 107683773 112086586 116567538 121118278

105 106 107 108 109 110

125731862 130412102 135150468 139935625 144773478 149645947

111 112 113 114 115 116

Continued on Next Page. . .

52

Table B.1 – Continued

154556626 159492487 164452779 169426215 174404293 179384900

117 118 119 120 121 122

184354909 189310548 194237568 199129554 203983309 208780264

123 124 125 126 127 128

213515162 218177924 222757232 227237453 231620252 235881678

129 130 131 132 133 134

240016469 244004262 247848231 251519386 255011530 258313668

135 136 137 138 139 140

261403948 264275199 266915487 269297163 271415683 273251496

141 142 143 144 145 146

274788141 276015820 276924539 277528487 277830401 277833091

147 148 149 150 151 152

277542224 276956357 276090607 274937063 273509996 271814719

153 154 155 156 157 158

269852829 267631210 265151762 262424757 259459748 256257600

159 160 161 162 163 164

252824364 249168646 245299561 241221119 236944794 232477497

165 166 167 168 169 170

227818206 222986772 217988366 212827174 207518811 202062422

171 172 173 174 175 176

196479816 190771427 184951056 179026817 173008101 166909684

177 178 179 180 181 182

Continued on Next Page. . .

53

Table B.1 – Continued

160735535 154502639 148219297 141895510 135546660 129181081

183 184 185 186 187 188

122813342 116453357 110116641 103812122 97558366 91363708

189 190 191 192 193 194

85241778 79210217 73281092 67466365 61784955 56250282

195 196 197 198 199 200

50873988 45675350 40669453 35869955 31296035 26962290

201 202 203 204 205 206

22884274 19082025 15571185 12367107 9491402 6960169

207 208 209 210 211 212

4789812 3002758 1616310 647264 118855 274

Table B.2: Statistics on the summations of square roots

of (n, k) = (1000, 4).

4 5 6 7 8 9

4 17 50 128 299 651

10 11 12 13 14 15

1312 2497 4528 7919 13259 21464

16 17 18 19 20 21

Continued on Next Page. . .

54

Table B.2 – Continued

33766 51722 77403 113364 162925 229953

22 23 24 25 26 27

319399 437431 590709 788355 1039928 1357857

28 29 30 31 32 33

1755316 2248742 2856881 3599975 4503890 5595350

34 35 36 37 38 39

6905693 8470771 10329432 12527095 15110538 18133144

40 41 42 43 44 45

21651965 25728582 30427681 35819193 41974094 48966774

46 47 48 49 50 51

56874026 65776432 75749543 86874225 99225454 112883109

52 53 54 55 56 57

127914469 144390021 162369319 181907566 203046425 225829072

58 59 60 61 62 63

250265896 276375109 304136746 333531976 364517079 397003873

64 65 66 67 68 69

430912753 466111103 502443997 539740555 577790727 616376654

70 71 72 73 74 75

655248449 694155665 732808268 770925737 808200617 844332516

76 77 78 79 80 81

878997048 911884053 942677958 971068074 996744522 1019421242

82 83 84 85 86 87

Continued on Next Page. . .

55

Table B.2 – Continued

1038815756 1054671487 1066745530 1074841243 1078773080 1078393131

88 89 90 91 92 93

1073600227 1064347442 1050620603 1032468820 1010015903 983420298

94 95 96 97 98 99

952951128 918927677 881770721 841910265 799745434 755720474

100 101 102 103 104 105

710233330 663697718 616513305 569088417 521801507 475027536

106 107 108 109 110 111

429126037 384439820 341281465 299958940 260730167 223850276

112 113 114 115 116 117

189529164 157951870 129256259 103557201 80910237 61340627

118 119 120 121 122 123

44809082 31246800 20506433 12402275 6669106 2991851

124 125 126

974691 159884 2724

56

0

5e+007

1e+008

1.5e+008

2e+008

2.5e+008

3e+008

50 100 150 200

N
u
m

b
er

of
el

em
en

ts

Integer value of elements in (n, k) = (5000, 3)

Figure B.1: Statistics on the summations of square roots of (n, k) = (5000, 3).

0

2e+008

4e+008

6e+008

8e+008

1e+009

1.2e+009

20 40 60 80 100 120

N
u
m

b
er

of
el

em
en

ts

Integer value of elements in (n, k) = (1000, 4)

Figure B.2: Statistics on the summations of square roots of (n, k) = (1000, 4).

57

0

1e+008

2e+008

3e+008

4e+008

5e+008

6e+008

7e+008

8e+008

9e+008

10 20 30 40 50 60 70 80

N
u
m

b
er

of
el

em
en

ts

Integer value of elements in (n, k) = (300, 5)

Figure B.3: Statistics on the summations of square roots of (n, k) = (300, 5).

0

1e+008

2e+008

3e+008

4e+008

5e+008

6e+008

7e+008

8e+008

9e+008

10 20 30 40 50 60 70

N
u
m

b
er

of
el

em
en

ts

Integer value of elements in (n, k) = (150, 6)

Figure B.4: Statistics on the summations of square roots of (n, k) = (150, 6).

58

Table B.3: Statistics on the summations of square roots of (n, k) = (300, 5).
5 6 7 8 9 10
4 17 54 146 355 817

11 12 13 14 15 16
1747 3549 6932 13073 23745 41809

17 18 19 20 21 22
71565 119269 194016 308499 480530 733937

23 24 25 26 27 28
1100836 1623688 2356719 3369470 4749103 6602766

29 30 31 32 33 34
9058272 12269794 16415340 21700160 28355408 36634084

35 36 37 38 39 40
46813055 59183469 74036388 91671343 112357622 136343901

41 42 43 44 45 46
163812365 194898187 229633010 267956016 309680149 354493114

47 48 49 50 51 52
401940354 451412562 502155395 553269137 603734631 652410302

53 54 55 56 57 58
698094835 739556412 775598887 805078395 827018698 840576595

59 60 61 62 63 64
845142458 840326357 826021999 802413863 769953678 729412528

65 66 67 68 69 70
681820418 628458668 570801455 510462944 449123074 388382164

71 72 73 74 75 76
329687126 274253086 223086114 176942554 136361965 101635242

77 78 79 80 81 82
72811905 49723807 31996843 19082226 10287515 4812225

83 84 85 86
1816812 481367 61516 1125

59

Table B.4: Statistics on the summations of square roots of (n, k) = (150, 6).
6 7 8 9 10 11
4 17 56 156 394 930

12 13 14 15 16 17
2045 4305 8697 17029 32243 59483

18 19 20 21 22 23
106987 187776 322385 541654 891451 1437954

24 25 26 27 28 29
2275108 3532700 5383936 8059262 11850679 17124305

30 31 32 33 34 35
24322842 33964165 46637761 62986115 83670416 109341655

36 37 38 39 40 41
140579352 177833442 221344374 271077265 326648169 387246356

42 43 44 45 46 47
451635042 518106172 584548542 648484050 707219063 757978808

48 49 50 51 52 53
798083080 825164812 837394715 833636309 813582877 777834956

54 55 56 57 58 59
727868809 665948167 594995754 518364757 439599403 362169922

60 61 62 63 64 65
289178310 223124297 165719338 117861415 79694555 50744570

66 67 68 69 70 71
30004211 16155869 7684090 3076705 952216 194798

72 73
17067 169

60

0

2e+008

4e+008

6e+008

8e+008

1e+009

1.2e+009

10 20 30 40 50 60 70

N
u
m

b
er

of
el

em
en

ts

Integeral value of elements in (n, k) = (100, 7)

Figure B.5: Statistics on the summations of square roots of (n, k) = (100, 7).

0

2e+009

4e+009

6e+009

8e+009

1e+010

1.2e+010

1.4e+010

10 20 30 40 50 60 70 80

N
u
m

b
er

of
el

em
en

ts

Integer value of elements in (n, k) = (100, 8)

Figure B.6: Statistics on the summations of square roots of (n, k) = (100, 8).

61

Table B.5: Statistics on the summations of square roots of (n, k) = (100, 7).
7 8 9 10 11 12
4 17 57 161 418 1003

13 14 15 16 17 18
2259 4865 10044 20061 38742 72903

19 20 21 22 23 24
133706 239593 420279 722739 1218852 2017818

25 26 27 28 29 30
3280805 5239096 8218857 12664315 19165803 28482325

31 32 33 34 35 36
41554376 59503519 83607939 115241837 155784865 206478894

37 38 39 40 41 42
268254403 341520055 425961992 520334126 622307266 728445926

43 44 45 46 47 48
834229563 934295227 1022797808 1093860379 1142175328 1163570911

49 50 51 52 53 54
1155526520 1117588507 1051539385 961294902 852549403 732208073

55 56 57 58 59 60
607649679 486014737 373475729 274666260 192383944 127511613

61 62 63 64 65 66
79264404 45637971 23914891 11119037 4410314 1398655

67 68 69 70
316043 40172 1476 1

62

Table B.6: Statistics on the summations of square roots of (n, k) = (100, 8).
8 9 10 11 12 13
4 17 57 164 431 1050

14 15 16 17 18 19
2405 5263 11049 22430 44087 84363

20 21 22 23 24 25
157463 287193 513089 899487 1548871 2622669

26 27 28 29 30 31
4371856 7178672 11618227 18538681 29172649 45274942

32 33 34 35 36 37
69296337 104581534 155593264 228140602 329565423 468876526

38 39 40 41 42 43
656736782 905290595 1227697273 1637381646 2146936750 2766660621

44 45 46 47 48 49
3502860953 4355940633 5318595539 6374248495 7496113100 8647060506

50 51 52 53 54 55
9780641949 10843296358 11777790745 12527657835 13042255212 13281868775

56 57 58 59 60 61
13222206419 12857766456 12203244922 11293200030 10179167253 8924982672

62 63 64 65 66 67
7600809547 6276409090 5014916390 3867671700 2870702945 2043201394

68 69 70 71 72 73
1388255200 895290965 543862936 308050514 160437835 75360655

74 75 76 77 78 79
31047417 10752045 2920890 551804 57323 1664

80
1

63

Appendix C

Statistics on Gaps

Table C.1: Statistics on the gaps of (n, k) = (5000, 3).
10−20 ∼ 10−19 10−19 ∼ 10−18 10−18 ∼ 10−17 10−17 ∼ 10−16 10−16 ∼ 10−15

4 2 30 402 3776

10−15 ∼ 10−14 10−14 ∼ 10−13 10−13 ∼ 10−12 10−12 ∼ 10−11 10−11 ∼ 10−10

37714 382372 3786457 37907236 374151076

10−10 ∼ 10−9 10−9 ∼ 10−8 10−8 ∼ 10−7 10−7 ∼ 10−6 10−6 ∼ 10−5

3342025737 13224270886 3671462146 138020004 7548734

10−5 ∼ 10−4 10−4 ∼ 10−3 10−3 ∼ 10−2 10−2 ∼ 10−1 10−1 ∼ 1
431036 27163 1921 103 5

64

0

2e+009

4e+009

6e+009

8e+009

1e+010

1.2e+010

1.4e+010

2 4 6 8 10 12 14 16 18 20

N
u
m

b
er

of
el

em
en

ts

Number of decimal digits needed to express elements in (n, k) = (5000, 3)

Figure C.1: Statistics on the gaps of (n, k) = (5000, 3).

0

2e+009

4e+009

6e+009

8e+009

1e+010

1.2e+010

1.4e+010

1.6e+010

1.8e+010

2e+010

2 4 6 8 10 12 14 16 18 20

N
u
m

b
er

of
el

em
en

ts

Number of decimal digits needed to express elements in (n, k) = (1000, 4)

Figure C.2: Statistics on the gaps of (n, k) = (1000, 4).

65

Table C.2: Statistics on the gaps of (n, k) = (1000, 4).
10−20 ∼ 10−19 10−19 ∼ 10−18 10−18 ∼ 10−17 10−17 ∼ 10−16 10−16 ∼ 10−15

1 23 333 2833 28173

10−15 ∼ 10−14 10−14 ∼ 10−13 10−13 ∼ 10−12 10−12 ∼ 10−11 10−11 ∼ 10−10

289942 2879619 28837669 287029389 2747043792

10−10 ∼ 10−9 10−9 ∼ 10−8 10−8 ∼ 10−7 10−7 ∼ 10−6 10−6 ∼ 10−5

18317656395 18727827263 1051997943 58540923 3769056

10−5 ∼ 10−4 10−4 ∼ 10−3 10−3 ∼ 10−2 10−2 ∼ 10−1 10−1 ∼ 1
243811 17596 1383 125 5

0

2e+009

4e+009

6e+009

8e+009

1e+010

1.2e+010

2 4 6 8 10 12 14 16 18

N
u
m

b
er

of
el

em
en

ts

Number of decimal digits needed to express elements in (n, k) = (300, 5)

Figure C.3: Statistics on the gaps of (n, k) = (300, 5).

Table C.3: Statistics on the gaps of (n, k) = (300, 5).
10−19 ∼ 10−18 10−18 ∼ 10−17 10−17 ∼ 10−16 10−16 ∼ 10−15 10−15 ∼ 10−14

9 70 1013 10708 106142

10−14 ∼ 10−13 10−13 ∼ 10−12 10−12 ∼ 10−11 10−11 ∼ 10−10 10−10 ∼ 10−9

1057841 10703286 106097453 1026867788 7424234818

10−9 ∼ 10−8 10−8 ∼ 10−7 10−7 ∼ 10−6 10−6 ∼ 10−5 10−5 ∼ 10−4

10175945086 724055328 41202961 2823186 199757

10−4 ∼ 10−3 10−3 ∼ 10−2 10−2 ∼ 10−1 10−1 ∼ 1
14671 1338 99 5

66

0

1e+009

2e+009

3e+009

4e+009

5e+009

6e+009

7e+009

8e+009

2 4 6 8 10 12 14 16 18

N
u
m

b
er

of
el

em
en

ts

Number of decimal digits needed to express elements in (n, k) = (150, 6)

Figure C.4: Statistics on the gaps of (n, k) = (150, 6).

Table C.4: Statistics on the gaps of (n, k) = (150, 6).
10−19 ∼ 10−18 10−18 ∼ 10−17 10−17 ∼ 10−16 10−16 ∼ 10−15 10−15 ∼ 10−14

3 58 530 7330 72503

10−14 ∼ 10−13 10−13 ∼ 10−12 10−12 ∼ 10−11 10−11 ∼ 10−10 10−10 ∼ 10−9

799716 7907620 79436984 770641372 5576744694

10−9 ∼ 10−8 10−8 ∼ 10−7 10−7 ∼ 10−6 10−6 ∼ 10−5 10−5 ∼ 10−4

7741146745 570941357 34146678 2469429 182632

10−4 ∼ 10−3 10−3 ∼ 10−2 10−2 ∼ 10−1 10−1 ∼ 1
15269 1304 86 5

Table C.5: Statistics on the gaps of (n, k) = (100, 7).
10−19 ∼ 10−18 10−18 ∼ 10−17 10−17 ∼ 10−16 10−16 ∼ 10−15 10−15 ∼ 10−14

7 47 1245 14139 129248

10−14 ∼ 10−13 10−13 ∼ 10−12 10−12 ∼ 10−11 10−11 ∼ 10−10 10−10 ∼ 10−9

1459473 13100265 132767395 1272832428 8256755966

10−9 ∼ 10−8 10−8 ∼ 10−7 10−7 ∼ 10−6 10−6 ∼ 10−5 10−5 ∼ 10−4

7766837445 463570895 30415764 2314151 176109

10−4 ∼ 10−3 10−3 ∼ 10−2 10−2 ∼ 10−1 10−1 ∼ 1
14890 1300 80 5

67

0

1e+009

2e+009

3e+009

4e+009

5e+009

6e+009

7e+009

8e+009

9e+009

2 4 6 8 10 12 14 16 18

N
u
m

b
er

of
el

em
en

ts

Number of decimal digits needed to express elements in (n, k) = (100, 7)

Figure C.5: Statistics on the gaps of (n, k) = (100, 7).

0

2e+010

4e+010

6e+010

8e+010

1e+011

1.2e+011

5 10 15 20

N
u
m

b
er

of
el

em
en

ts

Number of decimal digits needed to express elements in (n, k) = (100, 8)

Figure C.6: Statistics on the gaps of (n, k) = (100, 8).

68

Table C.6: Statistics on the gaps of (n, k) = (100, 8).
10−21 ∼ 10−20 10−20 ∼ 10−19 10−19 ∼ 10−18 10−18 ∼ 10−17 10−17 ∼ 10−16

4 118 1598 12961 194745

10−16 ∼ 10−15 10−15 ∼ 10−14 10−14 ∼ 10−13 10−13 ∼ 10−12 10−12 ∼ 10−11

1899601 18367740 188014906 1832870080 17451973275

10−11 ∼ 10−10 10−10 ∼ 10−9 10−9 ∼ 10−8 10−8 ∼ 10−7 10−7 ∼ 10−6

107179609158 85672158135 4834929115 330274907 25729746

10−6 ∼ 10−5 10−5 ∼ 10−4 10−4 ∼ 10−3 10−3 ∼ 10−2 10−2 ∼ 10−1

2095578 163106 14501 1279 80

10−1 ∼ 1
5

69

Appendix D

Required Minimum Precision

Table D.1: The smallest difference of k = 3.

k n r(n,k) Sum of Square Roots

3 3153...5000 2.84× 10−20 (
√

29 +
√

1097 +
√

3153) - (
√

226 +
√

987 +
√

2324)

3 2025...3152 6.80× 10−20 (
√

190 +
√

398 +
√

1482) - (
√

176 +
√

195 +
√

2025)

3 1738...2024 8.84× 10−17 (
√

831 +
√

905 +
√

1738) - (
√

511 +
√

1384 +
√

1664)

3 1720...1737 2.36× 10−16 (
√

924 +
√

1336 +
√

1517) - (
√

629 +
√

1548 +
√

1720)

3 1489...1719 2.82× 10−16 (
√

724 +
√

1125 +
√

1420) - (
√

645 +
√

1166 +
√

1489)

3 1019...1488 7.64× 10−16 (
√

32 +
√

951 +
√

1019) - (
√

255 +
√

443 +
√

986)

3 500...1018 4.12× 10−15 (
√

105 +
√

287 +
√

484) - (
√

96 +
√

290 +
√

500)

3 472...499 8.54× 10−14 (
√

41 +
√

247 +
√

472) - (
√

76 +
√

274 +
√

345)

3 276...471 3.14× 10−13 (
√

10 +
√

234 +
√

276) - (
√

49 +
√

178 +
√

217)

3 222...275 4.81× 10−13 (
√

90 +
√

99 +
√

222) - (
√

85 +
√

110 +
√

214)

3 211...221 8.22× 10−12 (
√

33 +
√

61 +
√

211) - (
√

53 +
√

90 +
√

128)

3 207...210 2.45× 10−11 (
√

67 +
√

154 +
√

189) - (
√

31 +
√

207 +
√

207)

3 182...206 3.62× 10−11 (
√

25 +
√

135 +
√

182) - (
√

58 +
√

111 +
√

143)

3 158...181 5.75× 10−11 (
√

4 +
√

152 +
√

158) - (
√

15 +
√

111 +
√

156)

3 115...157 6.86× 10−11 (
√

38 +
√

43 +
√

105) - (
√

36 +
√

39 +
√

115)

Continued on Next Page. . .

70

Table D.1 – Continued

k n r(n,k) Sum of Square Roots

3 103...114 4.86× 10−10 (
√

56 +
√

66 +
√

96) - (
√

50 +
√

67 +
√

103)

3 98...102 8.45× 10−10 (
√

31 +
√

48 +
√

98) - (
√

42 +
√

42 +
√

89)

3 60...97 1.55× 10−09 (
√

12 +
√

17 +
√

56) - (
√

1 +
√

40 +
√

60)

3 52...59 2.21× 10−08 (
√

10 +
√

36 +
√

45) - (
√

8 +
√

34 +
√

52)

3 39...51 1.27× 10−07 (
√

9 +
√

33 +
√

35) - (
√

11 +
√

26 +
√

39)

3 38 3.34× 10−07 (
√

9 +
√

24 +
√

38) - (
√

5 +
√

33 +
√

37)

3 21...37 4.00× 10−07 (
√

6 +
√

21 +
√

21) - (
√

14 +
√

15 +
√

16)

3 20 1.26× 10−05 (
√

5 +
√

14 +
√

20) - (
√

3 +
√

19 +
√

19)

3 15...19 4.69× 10−05 (
√

4 +
√

13 +
√

14) - (
√

7 +
√

8 +
√

15)

3 13, 14 1.49× 10−04 (
√

1 +
√

13 +
√

13) - (
√

3 +
√

10 +
√

11)

3 11, 12 1.94× 10−04 (
√

2 +
√

10 +
√

11) - (
√

5 +
√

8 +
√

8)

3 7...10 2.04× 10−03 (
√

2 +
√

2 +
√

7) - (
√

1 +
√

5 +
√

5)

3 5, 6 6.57× 10−03 (
√

2 +
√

2 +
√

2) - (
√

1 +
√

1 +
√

5)

3 4 9.64× 10−02 (
√

2 +
√

2 +
√

4) - (
√

1 +
√

3 +
√

4)

3 3 9.64× 10−02 (
√

1 +
√

2 +
√

2) - (
√

1 +
√

1 +
√

3)

3 2 4.14× 10−01 (
√

1 +
√

1 +
√

2) - (
√

1 +
√

1 +
√

1)

71

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
in

im
um

 d
ec

im
al

 p
re

ci
si

on
 r

eq
ui

re
d

n

Figure D.1: Minimum precision required when n varies and k = 3.

0

2

4

6

8

10

12

14

16

18

20

100 200 300 400 500 600 700 800 900 1000

M
in

im
u
m

d
ec

im
al

p
re

ci
si

on
re

q
u
ir

ed

n

Figure D.2: Minimum precision required when n varies and k = 4.

72

Table D.2: The smallest difference of k = 4.

k n r(n,k) Sum of Square Roots

4 967...1000 9.15× 10−20
(
√

154 +
√

381 +
√

770 +
√

774)

- (
√

128 +
√

394 +
√

637 +
√

967)

4 685...966 1.17× 10−19
(
√

73 +
√

630 +
√

640 +
√

685)

- (
√

143 +
√

564 +
√

569 +
√

653)

4 614...684 8.14× 10−19
(
√

116 +
√

208 +
√

329 +
√

443)

- (
√

50 +
√

95 +
√

519 +
√

614)

4 574...613 3.83× 10−18
(
√

214 +
√

218 +
√

223 +
√

310)

- (
√

4 +
√

300 +
√

348 +
√

574)

4 534...573 7.07× 10−18
(
√

5 +
√

54 +
√

519 +
√

534)

- (
√

95 +
√

189 +
√

197 +
√

322)

4 503...533 1.73× 10−17
(
√

174 +
√

264 +
√

311 +
√

503)

- (
√

104 +
√

372 +
√

384 +
√

417)

4 469...502 2.07× 10−17
(
√

79 +
√

324 +
√

373 +
√

446)

- (
√

165 +
√

234 +
√

307 +
√

469)

4 421...468 3.46× 10−17
(
√

63 +
√

253 +
√

357 +
√

380)

- (
√

21 +
√

285 +
√

410 +
√

421)

4 413...420 5.32× 10−17
(
√

10 +
√

219 +
√

383 +
√

412)

- (
√

1 +
√

313 +
√

354 +
√

413)

4 372...412 8.53× 10−17
(
√

130 +
√

206 +
√

208 +
√

273)

- (
√

73 +
√

197 +
√

220 +
√

372)

4 344...371 2.38× 10−16
(
√

131 +
√

158 +
√

171 +
√

336)

Continued on Next Page. . .

73

Table D.2 – Continued

k n r(n,k) Sum of Square Roots

- (
√

82 +
√

156 +
√

235 +
√

344)

4 248...343 6.92× 10−16
(
√

50 +
√

205 +
√

212 +
√

240)

- (
√

48 +
√

196 +
√

218 +
√

248)

4 212...247 5.43× 10−15
(
√

148 +
√

167 +
√

182 +
√

212)

- (
√

118 +
√

190 +
√

197 +
√

209)

4 194...211 1.55× 10−14
(
√

39 +
√

141 +
√

167 +
√

185)

- (
√

46 +
√

103 +
√

190 +
√

194)

4 152...193 3.43× 10−14
(
√

34 +
√

56 +
√

151 +
√

152)

- (
√

64 +
√

67 +
√

91 +
√

149)

4 96...151 5.04× 10−14
(
√

45 +
√

63 +
√

91 +
√

96)

- (
√

44 +
√

65 +
√

93 +
√

93)

4 89...95 3.60× 10−12
(
√

18 +
√

38 +
√

62 +
√

84)

- (
√

1 +
√

66 +
√

79 +
√

89)

4 85...88 9.06× 10−12
(
√

7 +
√

15 +
√

51 +
√

62)

- (
√

3 +
√

21 +
√

36 +
√

85)

4 59...84 2.97× 10−11
(
√

20 +
√

33 +
√

33 +
√

53)

- (
√

13 +
√

26 +
√

47 +
√

59)

4 46...58 1.85× 10−10
(
√

16 +
√

34 +
√

41 +
√

46)

- (
√

24 +
√

30 +
√

37 +
√

43)

4 36...45 6.91× 10−09
(
√

23 +
√

24 +
√

34 +
√

35)

- (
√

21 +
√

28 +
√

31 +
√

36)

4 33...35 2.84× 10−08
(
√

8 +
√

16 +
√

20 +
√

33)

Continued on Next Page. . .

74

Table D.2 – Continued

k n r(n,k) Sum of Square Roots

- (
√

12 +
√

17 +
√

19 +
√

26)

4 31, 32 5.02× 10−08
(
√

2 +
√

15 +
√

24 +
√

31)

- (
√

9 +
√

10 +
√

23 +
√

23)

4 23...30 6.17× 10−08
(
√

2 +
√

14 +
√

18 +
√

23)

- (
√

6 +
√

10 +
√

16 +
√

21)

4 21, 22 4.00× 10−07
(
√

6 +
√

10 +
√

21 +
√

21)

- (
√

10 +
√

14 +
√

15 +
√

16)

4 19, 20 1.38× 10−06
(
√

7 +
√

10 +
√

12 +
√

18)

- (
√

2 +
√

14 +
√

16 +
√

19)

4 16...18 3.20× 10−06
(
√

6 +
√

10 +
√

11 +
√

14)

- (
√

5 +
√

8 +
√

13 +
√

16)

4 14, 15 4.25× 10−06
(
√

3 +
√

8 +
√

11 +
√

13)

- (
√

6 +
√

7 +
√

7 +
√

14)

4 12, 13 4.82× 10−06
(
√

3 +
√

3 +
√

4 +
√

12)

- (
√

2 +
√

5 +
√

6 +
√

8)

4 11 4.84× 10−05
(
√

1 +
√

3 +
√

9 +
√

11)

- (
√

2 +
√

5 +
√

5 +
√

10)

4 10 6.02× 10−05
(
√

3 +
√

5 +
√

5 +
√

5)

- (
√

2 +
√

2 +
√

6 +
√

10)

4 9 1.09× 10−04
(
√

1 +
√

1 +
√

7 +
√

9)

- (
√

3 +
√

3 +
√

3 +
√

6)

4 8 1.03× 10−03
(
√

3 +
√

3 +
√

3 +
√

8)

Continued on Next Page. . .

75

Table D.2 – Continued

k n r(n,k) Sum of Square Roots

- (
√

1 +
√

3 +
√

7 +
√

7)

4 7 2.04× 10−03
(
√

2 +
√

2 +
√

3 +
√

7)

- (
√

1 +
√

3 +
√

5 +
√

5)

4 5, 6 6.57× 10−03
(
√

1 +
√

2 +
√

2 +
√

2)

- (
√

1 +
√

1 +
√

1 +
√

5)

4 4 7.52× 10−02
(
√

1 +
√

1 +
√

3 +
√

4)

- (
√

2 +
√

2 +
√

2 +
√

2)

4 3 9.64× 10−02
(
√

1 +
√

1 +
√

2 +
√

2)

- (
√

1 +
√

1 +
√

1 +
√

3)

4 2 4.14× 10−01
(
√

1 +
√

1 +
√

1 +
√

2)

- (
√

1 +
√

1 +
√

1 +
√

1)

Table D.3: The smallest difference of k = 5.

k n r(n,k) Sum of Square Roots

5 269...300 1.45× 10−19
(
√

101 +
√

131 +
√

185 +
√

211 +
√

212)

- (
√

61 +
√

128 +
√

154 +
√

264 +
√

269)

5 264...268 1.64× 10−19
(
√

41 +
√

64 +
√

108 +
√

156 +
√

260)

- (
√

70 +
√

74 +
√

97 +
√

107 +
√

264)

Continued on Next Page. . .

76

Table D.3 – Continued

k n r(n,k) Sum of Square Roots

5 190...263 1.85× 10−19
(
√

11 +
√

67 +
√

101 +
√

127 +
√

157)

- (
√

41 +
√

55 +
√

57 +
√

104 +
√

190)

5 179...189 1.12× 10−17
(
√

11 +
√

63 +
√

79 +
√

141 +
√

179)

- (
√

7 +
√

96 +
√

104 +
√

107 +
√

154)

5 158...178 1.66× 10−17
(
√

47 +
√

50 +
√

73 +
√

103 +
√

158)

- (
√

13 +
√

78 +
√

89 +
√

130 +
√

142)

5 148...157 2.99× 10−16
(
√

49 +
√

95 +
√

105 +
√

133 +
√

148)

- (
√

52 +
√

85 +
√

119 +
√

127 +
√

146)

5 143...147 4.80× 10−16
(
√

45 +
√

67 +
√

103 +
√

106 +
√

112)

- (
√

43 +
√

56 +
√

89 +
√

110 +
√

143)

5 117...142 5.08× 10−16
(
√

47 +
√

60 +
√

76 +
√

92 +
√

102)

- (
√

30 +
√

65 +
√

86 +
√

88 +
√

117)

5 112...116 4.97× 10−15
(
√

34 +
√

46 +
√

77 +
√

92 +
√

112)

- (
√

14 +
√

73 +
√

87 +
√

99 +
√

100)

5 94...111 5.66× 10−15
(
√

36 +
√

40 +
√

83 +
√

86 +
√

94)

- (
√

52 +
√

62 +
√

66 +
√

69 +
√

79)

5 83...93 1.16× 10−14
(
√

15 +
√

16 +
√

62 +
√

67 +
√

72)

- (
√

3 +
√

38 +
√

54 +
√

65 +
√

83)

5 81, 82 1.49× 10−13
(
√

17 +
√

38 +
√

65 +
√

67 +
√

77)

- (
√

19 +
√

35 +
√

57 +
√

72 +
√

81)

5 75...80 4.13× 10−13
(
√

14 +
√

45 +
√

64 +
√

65 +
√

66)

- (
√

26 +
√

30 +
√

47 +
√

73 +
√

75)

Continued on Next Page. . .

77

Table D.3 – Continued

k n r(n,k) Sum of Square Roots

5 62...74 4.93× 10−13
(
√

2 +
√

34 +
√

45 +
√

52 +
√

61)

- (
√

15 +
√

21 +
√

38 +
√

42 +
√

62)

5 59...61 5.04× 10−13
(
√

7 +
√

11 +
√

23 +
√

40 +
√

59)

- (
√

4 +
√

22 +
√

29 +
√

30 +
√

52)

5 58 1.43× 10−12
(
√

5 +
√

30 +
√

37 +
√

53 +
√

58)

- (
√

2 +
√

34 +
√

42 +
√

55 +
√

57)

5 57 2.06× 10−12
(
√

26 +
√

27 +
√

29 +
√

37 +
√

46)

- (
√

7 +
√

30 +
√

38 +
√

45 +
√

57)

5 51...56 5.76× 10−12
(
√

12 +
√

14 +
√

37 +
√

49 +
√

50)

- (
√

7 +
√

22 +
√

40 +
√

43 +
√

51)

5 49, 50 2.25× 10−11
(
√

8 +
√

10 +
√

20 +
√

47 +
√

49)

- (
√

15 +
√

21 +
√

26 +
√

27 +
√

31)

5 33...48 2.53× 10−11
(
√

1 +
√

18 +
√

24 +
√

30 +
√

32)

- (
√

6 +
√

12 +
√

15 +
√

33 +
√

33)

5 31, 32 3.86× 10−10
(
√

6 +
√

22 +
√

22 +
√

22 +
√

22)

- (
√

10 +
√

11 +
√

15 +
√

28 +
√

31)

5 30 1.11× 10−09
(
√

6 +
√

17 +
√

17 +
√

26 +
√

30)

- (
√

3 +
√

19 +
√

23 +
√

25 +
√

29)

5 17...29 1.55× 10−09
(
√

3 +
√

3 +
√

14 +
√

14 +
√

17)

- (
√

1 +
√

10 +
√

10 +
√

15 +
√

15)

5 16 6.54× 10−07
(
√

3 +
√

8 +
√

11 +
√

13 +
√

16)

- (
√

2 +
√

6 +
√

15 +
√

15 +
√

15)

Continued on Next Page. . .

78

Table D.3 – Continued

k n r(n,k) Sum of Square Roots

5 15 3.86× 10−06
(
√

3 +
√

10 +
√

11 +
√

11 +
√

14)

- (
√

2 +
√

5 +
√

15 +
√

15 +
√

15)

5 14 4.25× 10−06
(
√

2 +
√

2 +
√

11 +
√

12 +
√

13)

- (
√

3 +
√

6 +
√

7 +
√

7 +
√

14)

5 12, 13 4.82× 10−06
(
√

1 +
√

1 +
√

10 +
√

12 +
√

12)

- (
√

2 +
√

5 +
√

6 +
√

8 +
√

10)

5 10, 11 1.16× 10−05
(
√

3 +
√

3 +
√

6 +
√

6 +
√

6)

- (
√

1 +
√

2 +
√

5 +
√

9 +
√

10)

5 9 3.26× 10−04
(
√

5 +
√

5 +
√

5 +
√

6 +
√

7)

- (
√

2 +
√

3 +
√

8 +
√

8 +
√

9)

5 7, 8 9.56× 10−04
(
√

1 +
√

5 +
√

5 +
√

7 +
√

7)

- (
√

2 +
√

4 +
√

6 +
√

6 +
√

6)

5 6 1.98× 10−03
(
√

2 +
√

3 +
√

3 +
√

5 +
√

5)

- (
√

1 +
√

1 +
√

6 +
√

6 +
√

6)

5 5 6.57× 10−03
(
√

1 +
√

1 +
√

2 +
√

2 +
√

2)

- (
√

1 +
√

1 +
√

1 +
√

1 +
√

5)

5 4 2.53× 10−02
(
√

1 +
√

1 +
√

2 +
√

4 +
√

4)

- (
√

2 +
√

2 +
√

2 +
√

2 +
√

3)

5 3 9.64× 10−02
(
√

1 +
√

1 +
√

1 +
√

2 +
√

2)

- (
√

1 +
√

1 +
√

1 +
√

1 +
√

3)

5 2 4.14× 10−01
(
√

1 +
√

1 +
√

1 +
√

1 +
√

2)

- (
√

1 +
√

1 +
√

1 +
√

1 +
√

1)

Continued on Next Page. . .

79

Table D.3 – Continued

k n r(n,k) Sum of Square Roots

Table D.4: The smallest difference of k = 6.

k n r(n,k) Sum of Square Roots

6 149, 150 3.97× 10−19
(
√

34 +
√

36 +
√

57 +
√

76 +
√

92 +
√

149)

- (
√

11 +
√

35 +
√

52 +
√

95 +
√

139 +
√

142)

6 141...148 6.20× 10−19
(
√

9 +
√

38 +
√

42 +
√

71 +
√

118 +
√

132)

- (
√

6 +
√

14 +
√

82 +
√

82 +
√

105 +
√

141)

6 134...140 1.60× 10−18
(
√

4 +
√

72 +
√

75 +
√

97 +
√

129 +
√

134)

- (
√

28 +
√

56 +
√

69 +
√

84 +
√

103 +
√

133)

6 130...133 1.67× 10−18
(
√

18 +
√

64 +
√

86 +
√

92 +
√

101 +
√

104)

- (
√

28 +
√

42 +
√

51 +
√

99 +
√

123 +
√

130)

6 110...129 7.79× 10−18
(
√

12 +
√

33 +
√

49 +
√

57 +
√

79 +
√

110)

- (
√

15 +
√

20 +
√

70 +
√

71 +
√

78 +
√

84)

6 99...109 2.89× 10−17
(
√

21 +
√

54 +
√

62 +
√

67 +
√

92 +
√

99)

- (
√

15 +
√

59 +
√

76 +
√

76 +
√

82 +
√

90)

6 94...98 8.19× 10−17
(
√

6 +
√

16 +
√

22 +
√

58 +
√

75 +
√

94)

- (
√

2 +
√

19 +
√

28 +
√

63 +
√

80 +
√

84)

Continued on Next Page. . .

80

Table D.4 – Continued

k n r(n,k) Sum of Square Roots

6 88...93 1.09× 10−16
(
√

9 +
√

50 +
√

59 +
√

63 +
√

71 +
√

77)

- (
√

22 +
√

29 +
√

51 +
√

54 +
√

80 +
√

88)

6 67...87 1.16× 10−16
(
√

7 +
√

20 +
√

29 +
√

42 +
√

52 +
√

67)

- (
√

16 +
√

24 +
√

27 +
√

35 +
√

39 +
√

66)

6 65, 66 4.54× 10−16
(
√

14 +
√

15 +
√

28 +
√

42 +
√

47 +
√

65)

- (
√

12 +
√

17 +
√

32 +
√

45 +
√

51 +
√

52)

6 59...64 7.56× 10−15
(
√

11 +
√

15 +
√

31 +
√

32 +
√

34 +
√

40)

- (
√

17 +
√

17 +
√

21 +
√

21 +
√

30 +
√

59)

6 57, 58 7.41× 10−14
(
√

17 +
√

23 +
√

32 +
√

42 +
√

55 +
√

57)

- (
√

19 +
√

24 +
√

39 +
√

41 +
√

44 +
√

56)

6 54...56 4.00× 10−13
(
√

10 +
√

23 +
√

32 +
√

38 +
√

43 +
√

54)

- (
√

13 +
√

24 +
√

30 +
√

31 +
√

47 +
√

53)

6 53 4.00× 10−13
(
√

6 +
√

23 +
√

32 +
√

38 +
√

40 +
√

43)

- (
√

10 +
√

13 +
√

30 +
√

31 +
√

47 +
√

53)

6 50...52 4.13× 10−13
(
√

10 +
√

19 +
√

20 +
√

38 +
√

42 +
√

50)

- (
√

17 +
√

25 +
√

26 +
√

26 +
√

34 +
√

43)

6 40...49 1.20× 10−12
(
√

5 +
√

9 +
√

22 +
√

26 +
√

31 +
√

39)

- (
√

7 +
√

10 +
√

17 +
√

21 +
√

36 +
√

40)

6 36...39 2.53× 10−11
(
√

6 +
√

18 +
√

26 +
√

30 +
√

32 +
√

36)

- (
√

12 +
√

15 +
√

25 +
√

26 +
√

33 +
√

33)

6 31...35 7.76× 10−11
(
√

11 +
√

13 +
√

24 +
√

25 +
√

27 +
√

31)

- (
√

14 +
√

15 +
√

22 +
√

23 +
√

26 +
√

29)

Continued on Next Page. . .

81

Table D.4 – Continued

k n r(n,k) Sum of Square Roots

6 26...30 4.91× 10−10
(
√

8 +
√

9 +
√

14 +
√

20 +
√

21 +
√

26)

- (
√

15 +
√

15 +
√

15 +
√

15 +
√

15 +
√

19)

6 24, 25 1.06× 10−09
(
√

7 +
√

9 +
√

11 +
√

15 +
√

17 +
√

19)

- (
√

2 +
√

5 +
√

13 +
√

20 +
√

22 +
√

24)

6 17...23 1.55× 10−09
(
√

3 +
√

3 +
√

8 +
√

14 +
√

14 +
√

17)

- (
√

1 +
√

8 +
√

10 +
√

10 +
√

15 +
√

15)

6 15, 16 5.19× 10−07
(
√

6 +
√

8 +
√

10 +
√

12 +
√

12 +
√

14)

- (
√

2 +
√

11 +
√

11 +
√

11 +
√

15 +
√

15)

6 13, 14 9.90× 10−07
(
√

2 +
√

8 +
√

13 +
√

13 +
√

13 +
√

13)

- (
√

5 +
√

10 +
√

11 +
√

11 +
√

11 +
√

11)

6 12 4.82× 10−06
(
√

1 +
√

1 +
√

1 +
√

10 +
√

12 +
√

12)

- (
√

1 +
√

2 +
√

5 +
√

6 +
√

8 +
√

10)

6 7...11 4.82× 10−06
(
√

3 +
√

3 +
√

3 +
√

3 +
√

4 +
√

7)

- (
√

2 +
√

2 +
√

2 +
√

5 +
√

6 +
√

7)

6 6 4.82× 10−06
(
√

3 +
√

3 +
√

3 +
√

3 +
√

4 +
√

5)

- (
√

2 +
√

2 +
√

2 +
√

5 +
√

5 +
√

6)

6 5 6.57× 10−03
(
√

2 +
√

2 +
√

2 +
√

2 +
√

2 +
√

3)

- (
√

1 +
√

1 +
√

2 +
√

2 +
√

3 +
√

5)

6 4 7.52× 10−02
(
√

1 +
√

1 +
√

1 +
√

2 +
√

3 +
√

4)

- (
√

1 +
√

2 +
√

2 +
√

2 +
√

2 +
√

2)

6 3 9.64× 10−02
(
√

1 +
√

1 +
√

1 +
√

1 +
√

2 +
√

2)

- (
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

3)

Continued on Next Page. . .

82

Table D.4 – Continued

k n r(n,k) Sum of Square Roots

6 2 4.14× 10−01
(
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

2)

- (
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1)

Table D.5: The smallest difference of k = 7.

k n r(n,k) Sum of Square Roots

7 85...100 1.88× 10−19
(
√

7 +
√

14 +
√

39 +
√

70 +
√

72 +
√

76 +
√

85)

- (
√

13 +
√

16 +
√

46 +
√

55 +
√

67 +
√

73 +
√

79)

7 80...84 1.88× 10−18
(
√

19 +
√

29 +
√

42 +
√

42 +
√

51 +
√

62 +
√

70)

- (
√

4 +
√

5 +
√

53 +
√

69 +
√

75 +
√

75 +
√

80)

7 72...79 5.44× 10−18
(
√

21 +
√

22 +
√

34 +
√

45 +
√

49 +
√

58 +
√

61)

- (
√

7 +
√

15 +
√

40 +
√

42 +
√

65 +
√

70 +
√

72)

7 71 3.83× 10−17
(
√

1 +
√

10 +
√

41 +
√

51 +
√

51 +
√

61 +
√

71)

- (
√

8 +
√

20 +
√

28 +
√

38 +
√

45 +
√

60 +
√

62)

7 62...70 6.46× 10−17
(
√

5 +
√

15 +
√

23 +
√

32 +
√

37 +
√

55 +
√

62)

- (
√

4 +
√

19 +
√

26 +
√

31 +
√

33 +
√

56 +
√

59)

7 61 2.37× 10−16
(
√

10 +
√

35 +
√

36 +
√

43 +
√

43 +
√

52 +
√

59)

- (
√

6 +
√

30 +
√

46 +
√

46 +
√

47 +
√

48 +
√

61)

Continued on Next Page. . .

83

Table D.5 – Continued

k n r(n,k) Sum of Square Roots

7 54...60 2.97× 10−16
(
√

21 +
√

31 +
√

34 +
√

36 +
√

41 +
√

51 +
√

54)

- (
√

28 +
√

32 +
√

35 +
√

37 +
√

37 +
√

44 +
√

52)

7 51...53 4.57× 10−16
(
√

13 +
√

17 +
√

26 +
√

36 +
√

38 +
√

39 +
√

46)

- (
√

11 +
√

14 +
√

15 +
√

40 +
√

42 +
√

51 +
√

51)

7 41...50 3.43× 10−15
(
√

6 +
√

11 +
√

21 +
√

26 +
√

35 +
√

38 +
√

39)

- (
√

7 +
√

10 +
√

19 +
√

23 +
√

37 +
√

40 +
√

41)

7 34...40 2.80× 10−13
(
√

11 +
√

16 +
√

21 +
√

23 +
√

26 +
√

29 +
√

29)

- (
√

10 +
√

13 +
√

22 +
√

24 +
√

24 +
√

30 +
√

34)

7 33 1.15× 10−12
(
√

11 +
√

12 +
√

17 +
√

17 +
√

19 +
√

26 +
√

30)

- (
√

7 +
√

13 +
√

14 +
√

18 +
√

22 +
√

28 +
√

33)

7 29...32 1.02× 10−11
(
√

8 +
√

9 +
√

10 +
√

19 +
√

19 +
√

20 +
√

21)

- (
√

5 +
√

5 +
√

13 +
√

13 +
√

23 +
√

24 +
√

29)

7 28 9.66× 10−11
(
√

2 +
√

2 +
√

11 +
√

14 +
√

26 +
√

26 +
√

28)

- (
√

1 +
√

13 +
√

13 +
√

17 +
√

17 +
√

17 +
√

23)

7 22...27 2.42× 10−10
(
√

3 +
√

10 +
√

11 +
√

11 +
√

17 +
√

21 +
√

22)

- (
√

6 +
√

7 +
√

14 +
√

14 +
√

15 +
√

16 +
√

20)

7 21 1.55× 10−09
(
√

3 +
√

3 +
√

3 +
√

14 +
√

14 +
√

17 +
√

21)

- (
√

1 +
√

3 +
√

10 +
√

10 +
√

15 +
√

15 +
√

21)

7 19, 20 1.55× 10−09
(
√

3 +
√

3 +
√

3 +
√

14 +
√

14 +
√

17 +
√

19)

- (
√

1 +
√

3 +
√

10 +
√

10 +
√

15 +
√

15 +
√

19)

7 17, 18 1.55× 10−09
(
√

3 +
√

3 +
√

3 +
√

14 +
√

14 +
√

17 +
√

17)

- (
√

1 +
√

3 +
√

10 +
√

10 +
√

15 +
√

15 +
√

17)

Continued on Next Page. . .

84

Table D.5 – Continued

k n r(n,k) Sum of Square Roots

7 14...16 4.96× 10−08
(
√

7 +
√

8 +
√

8 +
√

11 +
√

13 +
√

13 +
√

14)

- (
√

2 +
√

6 +
√

14 +
√

14 +
√

14 +
√

14 +
√

14)

7 11...13 1.49× 10−07
(
√

5 +
√

5 +
√

5 +
√

5 +
√

5 +
√

5 +
√

10)

- (
√

3 +
√

3 +
√

6 +
√

6 +
√

6 +
√

6 +
√

11)

7 10 4.82× 10−06
(
√

3 +
√

3 +
√

3 +
√

3 +
√

4 +
√

8 +
√

10)

- (
√

2 +
√

2 +
√

2 +
√

5 +
√

6 +
√

8 +
√

10)

7 7...9 4.82× 10−06
(
√

3 +
√

3 +
√

3 +
√

3 +
√

4 +
√

7 +
√

7)

- (
√

2 +
√

2 +
√

2 +
√

5 +
√

6 +
√

7 +
√

7)

7 6 4.82× 10−06
(
√

2 +
√

3 +
√

3 +
√

3 +
√

3 +
√

4 +
√

5)

- (
√

2 +
√

2 +
√

2 +
√

2 +
√

5 +
√

5 +
√

6)

7 5 6.57× 10−03
(
√

1 +
√

1 +
√

2 +
√

2 +
√

2 +
√

2 +
√

3)

- (
√

1 +
√

1 +
√

1 +
√

1 +
√

2 +
√

3 +
√

5)

7 4 2.53× 10−02
(
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

4 +
√

4)

- (
√

1 +
√

1 +
√

1 +
√

2 +
√

2 +
√

2 +
√

3)

7 3 9.64× 10−02
(
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

2 +
√

2)

- (
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

3)

7 2 4.14× 10−01
(
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

2)

- (
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1)

85

0

2

4

6

8

10

12

14

16

18

20

50 100 150 200 250 300

M
in

im
u
m

d
ec

im
al

p
re

ci
si

on
re

q
u
ir

ed

n

Figure D.3: Minimum precision required when n varies and k = 5.

0

2

4

6

8

10

12

14

16

18

20

20 40 60 80 100 120 140

M
in

im
u
m

d
ec

im
al

p
re

ci
si

on
re

q
u
ir

ed

n

Figure D.4: Minimum precision required when n varies and k = 6.

86

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80 90 100

M
in

im
u
m

d
ec

im
al

p
re

ci
si

on
re

q
u
ir

ed

n

Figure D.5: Minimum precision required when n varies and k = 7.

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100

M
in

im
u
m

d
ec

im
al

p
re

ci
si

on
re

q
u
ir

ed

n

Figure D.6: Minimum precision required when n varies and k = 8.

87

Table D.6: The smallest difference of k = 8.

k n r(n,k) Sum of Square Roots

8 97...100 2.77× 10−21
(
√

16 +
√

43 +
√

43 +
√

46 +
√

60 +
√

85 +
√

89 +
√

95)

- (
√

7 +
√

41 +
√

42 +
√

51 +
√

76 +
√

83 +
√

94 +
√

97)

8 89...96 4.53× 10−21
(
√

13 +
√

21 +
√

28 +
√

34 +
√

47 +
√

68 +
√

84 +
√

89)

- (
√

11 +
√

30 +
√

33 +
√

46 +
√

53 +
√

54 +
√

65 +
√

81)

8 86...88 3.20× 10−20
(
√

28 +
√

39 +
√

42 +
√

42 +
√

44 +
√

60 +
√

60 +
√

84)

- (
√

10 +
√

22 +
√

36 +
√

48 +
√

67 +
√

75 +
√

79 +
√

86)

8 68...85 4.48× 10−20
(
√

13 +
√

27 +
√

46 +
√

51 +
√

57 +
√

59 +
√

60 +
√

65)

- (
√

24 +
√

35 +
√

37 +
√

38 +
√

45 +
√

62 +
√

62 +
√

68)

8 67 2.22× 10−18
(
√

8 +
√

27 +
√

28 +
√

47 +
√

53 +
√

55 +
√

61 +
√

64)

- (
√

2 +
√

10 +
√

39 +
√

57 +
√

62 +
√

65 +
√

67 +
√

67)

8 66 3.61× 10−18
(
√

14 +
√

21 +
√

27 +
√

34 +
√

36 +
√

47 +
√

52 +
√

66)

- (
√

11 +
√

15 +
√

23 +
√

38 +
√

38 +
√

57 +
√

58 +
√

65)

8 63...65 9.56× 10−18
(
√

1 +
√

20 +
√

30 +
√

32 +
√

39 +
√

40 +
√

53 +
√

58)

- (
√

6 +
√

14 +
√

16 +
√

26 +
√

33 +
√

57 +
√

57 +
√

63)

8 54...62 1.15× 10−17
(
√

12 +
√

18 +
√

25 +
√

29 +
√

41 +
√

41 +
√

42 +
√

54)

- (
√

13 +
√

22 +
√

23 +
√

34 +
√

37 +
√

38 +
√

43 +
√

49)

8 51...53 4.57× 10−16
(
√

11 +
√

13 +
√

17 +
√

26 +
√

38 +
√

39 +
√

46 +
√

49)

- (
√

1 +
√

14 +
√

15 +
√

40 +
√

42 +
√

44 +
√

51 +
√

51)

8 46...50 1.12× 10−15
(
√

20 +
√

22 +
√

25 +
√

35 +
√

35 +
√

42 +
√

43 +
√

46)

- (
√

17 +
√

29 +
√

32 +
√

33 +
√

33 +
√

33 +
√

45 +
√

45)

8 44, 45 2.32× 10−15
(
√

11 +
√

11 +
√

17 +
√

17 +
√

22 +
√

41 +
√

43 +
√

44)

Continued on Next Page. . .

88

Table D.6 – Continued

k n r(n,k) Sum of Square Roots

- (
√

10 +
√

10 +
√

23 +
√

26 +
√

26 +
√

27 +
√

40 +
√

40)

8 41...43 3.43× 10−15
(
√

6 +
√

7 +
√

11 +
√

21 +
√

26 +
√

35 +
√

38 +
√

39)

- (
√

10 +
√

10 +
√

10 +
√

19 +
√

23 +
√

28 +
√

37 +
√

41)

8 38...40 1.45× 10−14
(
√

3 +
√

8 +
√

10 +
√

28 +
√

31 +
√

32 +
√

33 +
√

35)

- (
√

10 +
√

13 +
√

14 +
√

19 +
√

21 +
√

24 +
√

29 +
√

38)

8 37 2.01× 10−13
(
√

3 +
√

15 +
√

22 +
√

26 +
√

26 +
√

33 +
√

33 +
√

36)

- (
√

6 +
√

13 +
√

17 +
√

21 +
√

30 +
√

34 +
√

34 +
√

37)

8 33...36 2.57× 10−13
(
√

10 +
√

11 +
√

11 +
√

19 +
√

22 +
√

23 +
√

24 +
√

24)

- (
√

5 +
√

6 +
√

9 +
√

15 +
√

25 +
√

31 +
√

31 +
√

33)

8 31, 32 3.61× 10−12
(
√

7 +
√

10 +
√

14 +
√

15 +
√

21 +
√

22 +
√

23 +
√

31)

- (
√

5 +
√

8 +
√

11 +
√

16 +
√

24 +
√

27 +
√

28 +
√

28)

8 24...30 4.78× 10−12
(
√

2 +
√

3 +
√

3 +
√

11 +
√

15 +
√

21 +
√

21 +
√

24)

- (
√

1 +
√

7 +
√

8 +
√

10 +
√

10 +
√

14 +
√

23 +
√

23)

8 23 4.78× 10−12
(
√

3 +
√

3 +
√

6 +
√

6 +
√

11 +
√

15 +
√

21 +
√

21)

- (
√

1 +
√

2 +
√

7 +
√

10 +
√

10 +
√

14 +
√

23 +
√

23)

8 22 6.82× 10−10
(
√

1 +
√

1 +
√

5 +
√

14 +
√

15 +
√

15 +
√

22 +
√

22)

- (
√

6 +
√

6 +
√

6 +
√

7 +
√

11 +
√

13 +
√

13 +
√

21)

8 21 1.55× 10−09
(
√

2 +
√

3 +
√

3 +
√

14 +
√

14 +
√

17 +
√

19 +
√

21)

- (
√

1 +
√

2 +
√

10 +
√

10 +
√

15 +
√

15 +
√

19 +
√

21)

8 19, 20 1.55× 10−09
(
√

2 +
√

3 +
√

3 +
√

14 +
√

14 +
√

17 +
√

19 +
√

19)

- (
√

1 +
√

2 +
√

10 +
√

10 +
√

15 +
√

15 +
√

19 +
√

19)

8 17, 18 1.55× 10−09
(
√

2 +
√

3 +
√

3 +
√

14 +
√

14 +
√

17 +
√

17 +
√

17)

Continued on Next Page. . .

89

Table D.6 – Continued

k n r(n,k) Sum of Square Roots

- (
√

1 +
√

2 +
√

10 +
√

10 +
√

15 +
√

15 +
√

17 +
√

17)

8 15, 16 4.96× 10−08
(
√

7 +
√

8 +
√

8 +
√

11 +
√

13 +
√

13 +
√

14 +
√

15)

- (
√

2 +
√

6 +
√

14 +
√

14 +
√

14 +
√

14 +
√

14 +
√

15)

8 14 4.96× 10−08
(
√

7 +
√

8 +
√

8 +
√

10 +
√

11 +
√

13 +
√

13 +
√

14)

- (
√

2 +
√

6 +
√

10 +
√

14 +
√

14 +
√

14 +
√

14 +
√

14)

8 11...13 1.49× 10−07
(
√

1 +
√

5 +
√

5 +
√

5 +
√

5 +
√

5 +
√

5 +
√

10)

- (
√

1 +
√

3 +
√

3 +
√

6 +
√

6 +
√

6 +
√

6 +
√

11)

8 10 4.82× 10−06
(
√

3 +
√

3 +
√

3 +
√

3 +
√

3 +
√

5 +
√

9 +
√

10)

- (
√

1 +
√

2 +
√

3 +
√

5 +
√

5 +
√

6 +
√

8 +
√

10)

8 9 4.82× 10−06
(
√

3 +
√

3 +
√

3 +
√

3 +
√

3 +
√

5 +
√

7 +
√

9)

- (
√

1 +
√

2 +
√

3 +
√

5 +
√

5 +
√

6 +
√

7 +
√

8)

8 6...8 4.82× 10−06
(
√

3 +
√

3 +
√

3 +
√

3 +
√

4 +
√

6 +
√

6 +
√

6)

- (
√

2 +
√

2 +
√

2 +
√

5 +
√

6 +
√

6 +
√

6 +
√

6)

8 5 1.46× 10−03
(
√

1 +
√

1 +
√

1 +
√

2 +
√

2 +
√

5 +
√

5 +
√

5)

- (
√

2 +
√

2 +
√

2 +
√

2 +
√

2 +
√

3 +
√

3 +
√

4)

8 4 2.53× 10−02
(
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

4 +
√

4)

- (
√

1 +
√

1 +
√

1 +
√

1 +
√

2 +
√

2 +
√

2 +
√

3)

8 3 9.64× 10−02
(
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

2 +
√

2)

- (
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

3)

8 2 4.14× 10−01
(
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

2)

- (
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1 +
√

1)

90

	Acknowledgements
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Introduction
	Time and space trade-off
	The smallest gap between sums of square roots
	Memory-bounded moderately hard functions
	Results and structure

	Sums of Square Roots
	Introduction
	Related work
	An upper bound of the smallest gap

	The Smallest Gap Between Sums of Square Roots of Small Integers
	Motivation
	Space efficient technique
	Algorithm for finding the gap
	Time and space complexity
	Numerical data and observations

	Moderately Hard Functions
	Motivation
	CPU-bounded functions
	Memory-bounded functions
	Key derivation functions
	Fighting spams
	Formal definition of memory-bounded functions

	Number Theoretic Constructions
	Motivation
	Construction
	Memory-efficient exponentiating method
	Closed form observation
	Conclusion

	Conclusion and Future Work
	Appendices
	Proof of Linear Independence
	Statistics on Sums
	Statistics on Gaps
	Required Minimum Precision

