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Abstract 

The ongoing upgrade of the National Weather Service WSR-88D radar network 

to polarimetric capabilities, as well as similar upgrades worldwide, will soon provide a 

wealth of data and information regarding storm precipitation physics. Fully 

understanding how a variety of microphysical processes are revealed in polarimetric 

data is necessary for the best use of these new data by operational and research 

meteorologists. The focus of this study is to quantify a number of these precipitation 

physics “fingerprints” in the polarimetric radar variables by using a synthesis of explicit 

microphysical modeling, electromagnetic scattering calculations, thought experiments, 

and polarimetric radar observations. 

The complete set of polarimetric variables available from linearly-orthogonal 

dual-polarization radars are derived from basic electromagnetic scattering principles. A 

detailed physical description of these variables is then provided for applications in 

precipitation and other atmospheric scatterers, as is a summary of common data 

artifacts. The impact of various precipitation physical processes on these radar variables 

is then quantified. Using explicit microphysical models, scattering calculations, 

observations, and thought experiments, the microphysical fingerprints are determined 

and quantified for raindrop thermal conduction, raindrop size sorting by sedimentation, 

updrafts, and vertical wind shear, evaporation of raindrops, coalescence of raindrops, 

and freezing of raindrops in deep convective storm updrafts. A catalogue of the 

qualitative fingerprints of a number of precipitation processes is summarized.  



1 

Chapter 0: Introduction 

The dual-polarization upgrade of the United States National Weather Service 

(NWS) Weather Surveillance Radar 1988 Doppler (WSR-88D) network is underway. 

By the middle of 2013, all 159 WSR-88D radars will be equipped with polarimetric 

capabilities, ushering in a new era for operational and research meteorology. Soon, all 

NWS meteorologists will have at their disposal a wealth of new information gained 

from these new polarimetric radar measurements.  Similar polarimetric upgrades to 

radars are occurring worldwide.  Thus, radar polarimetry is an emerging tool that can be 

applied to numerous operational situations and used to improve warnings, short-term 

forecasts, and quantitative precipitation estimation. In addition to the numerous 

operational benefits, the polarimetric upgrade offers a new realm of research 

opportunities, especially in the realm of precipitation microphysics. No longer will the 

experimental domain of precipitation physics be limited to the cloud chamber or the 

wind tunnel; the laboratory will soon be the entire continental United States.  

These new opportunities will build on several decades of work in the field of 

radar polarimetry. Such research efforts date back to the 1950s, with work by A. 

Shupyatsky (А. Шупяцкий) and collaborators at the Central Aerological Observatory, 

in the Soviet Union (e.g., Shupyatsky 1959; Gerzenshon and Shupyatsky 1961; 

Shupyatsky and Morgunov 1963; Minervin and Shupyatsky 1963; Morgunov and 

Shupyatsky 1964). Beginning with this pioneering work from the Golden Age of 

science in the USSR, the history of developments in the field is described in Seliga et al. 

(1990), including the considerable work by Canadian scientists with circular 

polarization radar (e.g., McCormick and Hendry 1970, 1975; Hendry and McCormick 
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1974). The “modern era” of research with orthogonal linear polarization radar began in 

the United States with the papers by Seliga and Bringi (1976, 1978). Significant 

contributions by Jameson (1983a,b, 1985a,b), Sachidananda and Zrnić (1985, 1986, 

1987), Jameson and Mueller (1985), and Balakrishnan and Zrnić (1990a,b) improved 

the understanding and interpretation of the variables available with linearly orthogonal 

polarimetric radars.   

Much of the ensuing work focused primarily on operational applications of 

polarimetric radar data, including quantitative precipitation estimation and hydrometeor 

classification. In contrast, polarimetric radar observations have been underutilized for 

research into precipitation physics. This dissertation contributes to this endeavor. The 

purpose of this study is to quantify the polarimetric “fingerprints” of different 

microphysical processes through a synthesis of observational data analysis, theory, and 

explicit microphysical modeling. 

One approach to modeling precipitation physics is to isolate processes in 

simplified, one-dimensional models that treat the physics explicitly.  (The alternative, 

used in most storm-scale numerical weather prediction models, is to treat all physical 

processes through the use of microphysics parameterization schemes.)  The benefit of 

the simplified modeling approach is that a single process is isolated and can be explored 

in a variety of conditions, with the experimenter maintaining full control and 

understanding of the model.  Additionally, because of the drastically-reduced 

computational expense, the physical process may be treated explicitly in a spectral 

model framework, thereby more closely approximating the process in nature.  The 

drawbacks of such an approach are that the models are idealistic, typically do not 
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account for the parent storm or its circulations, and may neglect other processes that are 

important in nature. Whereas the parameterization scheme approach is more general and 

is coupled to a full dynamical model, the important physics at work in a given situation 

can be ambiguous, obfuscated by interactions with all other processes in the model.  

Additionally, microphysics parameterizations assume a priori a particle size distribution 

governed by only one to three moments of the distribution; this severely limits the 

ability of such schemes to accurately reproduce a variety of physical processes that 

preferentially affect certain portions of the particle size distribution. 

Taking these factors into consideration, this study has adopted the philosophy of 

the simplistic model approach. Notwithstanding the aforementioned caveats of this 

approach, it allows one to fully explore the impact of certain physical processes on the 

polarimetric variables. In a more general model, the elucidation of the underlying 

physics is extremely difficult, if not impossible. By beginning with a simple modeling 

approach, the polarimetric radar fingerprint of each microphysical process can be 

unambiguously described. In this way, the dominant processes can be identified in 

observational data, facilitating a physical interpretation of the observations and 

providing a benchmark for comparisons with numerical simulations. Such comparisons 

can be used to identify and quantify sources of error in microphysics parameterization 

schemes used in convection-permitting numerical models, ultimately paving a path to 

refinement and validation of such schemes. 

The remainder of the dissertation will be formatted as follows. The next chapter 

provides a theoretical basis for and formulation of all polarimetric radar variables. 

Chapter 2 is a discussion of the physical interpretation of the polarimetric radar 
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variables in different types of atmospheric scatterers. Chapter 3 provides a summary 

and description of common artifacts in dual-polarization radar data. Each proceeding 

chapter will explore a different precipitation physical process, including the 

development of the microphysics model, electromagnetic scattering model, and model 

results. These processes include thermal conduction for raindrops (Chapter 4), size 

sorting of raindrops (Chapter 5; with material from Kumjian and Ryzhkov 2012), 

evaporation of raindrops (Chapter 6; with material from Kumjian and Ryzhkov 2010), a 

preliminary investigation into the collisional processes of coalescence and breakup 

(Chapter 7, with material from Kumjian et al. 2012b), and freezing of raindrops within 

convective updrafts (Chapter 8; with material from Kumjian et al. 2012a). A catalog of 

the impact of precipitation physical processes is summarized in Chapter 9. Appendix A 

includes formulae for computing the complex dielectric of particles, as well as 

demonstrates the impact of the choice of model for distributing liquid water on or in a 

particle on the polarimetric radar variables. Because several of the chapters are derived 

from published papers, they are formatted as to be self-contained, including their own 

introductory and background material, as well as their own summary and conclusions. 
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Chapter 1: Polarimetric Radar Variables: Theoretical Formulation 

This chapter presents a theoretical formulation of all dual-polarization radar 

variables, derived from first principles of basic electromagnetic scattering theory. 

 

1. Electromagnetic Scattering Basics 

Consider an individual hydrometeor illuminated by electromagnetic radiation.  

The incident electric field can be expressed as a complex vector  ⃗⃗  , which describes the 

amplitude and phase of the radiation and can be decomposed into its components in one 

or more polarizations.  The scattered electric field vector  ⃗⃗   is related to  ⃗⃗   by the 

scattering matrix  , 

  
⃗⃗⃗⃗  

     

 
   
⃗⃗⃗⃗                                                                                                               

where the wavenumber        and R is the range (typically, with respect to the 

radar).  In the orthogonal linear polarization basis, S for the hydrometeor is expressed as 

   [
      

      
]                                                                                                              

The elements of the scattering matrix are the complex scattering functions
1
    .  The 

subscripts x and y represent the scattered and incident wave polarizations, respectively.   

For linearly-orthogonal dual-polarization radar applications, we can expand (1.1):  

[
   

   
]  

     

 
[
      ̂   ̂       ̂   ̂ 
      ̂   ̂       ̂   ̂ 

] [
   

   
]                                                             

where   ̂ and   ̂ are the unit directional vectors of the scattered and incident waves.  

Because weather radars tend to be monostatic systems, we are interested in the 

                                                 
1
 Note that these are conventionally called scattering “amplitudes,” which is a bit of a misnomer because 

the elements of the scattering matrix are in fact complex numbers.  Here, we adopt the term “function” 
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backscattered signal.  If we define k =   ̂ as the direction of the incident wave 

propagation, then the backscattered signal direction is   ̂    .  In general, 

hydrometeors can be canted with respect to the plane of polarization.  The geometry of 

such scattering is shown in Figure 1.1.  The hydrometeor canting can be described by 

two angles: (1) canting of the particle within the plane of polarization, α, and (2) the 

canting of the particle out of the plane of polarization, ψ.  The angle α is taken between 

the projections of the true vertical and the axis of symmetry of the hydrometeor N onto 

the plane of polarization.  The angle ψ is simply 90° - β, where β is the radar antenna 

elevation angle.   

 

Fig. 1.1: Geometry of scattering.  The Cartesian axes x, y, and z are shown in gray (z represents 

the true vertical). The plane with orthogonal yellow lines represents the plane of polarization, 

which is embedded within a spheroidal hydrometeor with symmetry axis N.  The direction of 

wave propagation is k, which is at elevation angle β.  The particle orientation is given by two 

angles: α, which is its canting angle within the plane of polarization (with respect to vertical 

polarization), and ψ, which is the angle between the propagation direction and symmetry axis of 

the particle (in other words, 90° - ψ represents the canting angle out of the plane of 

polarization). 
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Simple geometric considerations (Fig. 1.2) allow us to account for canting 

within the plane of polarization (i.e., α ≠ 0°).  The incident radiation at both 

polarizations will each have components along (and thus excite) the dipoles aligned 

with the particle’s major and minor axes (b and a).  Thus, the incident radiation at H 

and V polarizations can be expressed as 

     ̂          ̂          ̂            ̂            ̂                                  

     ̂          ̂          ̂             ̂            ̂                              

where we have defined the unit directional vectors   ̂ and   ̂ as the direction of H and V 

polarizations, and   ̂ and   ̂ as along the particle’s major and minor axes (see Fig. 1.2).  

Note that the relation between the principal polarization axes and the particle’s major 

and minor axes is given by a simple rotation matrix,     :   

[
  ̂

  ̂
]  [

         
        

] [
  ̂

  ̂
]      [

  ̂

  ̂
]                                                

The scattered radiation is proportional to the component of incident radiation that 

illuminates each dipole, as well as the complex scattering function
2
 of each dipole: 

[
   

   
]  

     

 
[
    
    

]    [
   

   
]                                                       

However, because the radar receives signals at H and V polarization, we must rotate the 

reference frame back to (H,V) using the inverse of the rotation matrix,       : 

[
   

   
]  

     

 
      [

    
    

]    [
   

   
]                                           

It is clear from inspection of eqns. (1.3) and (1.7) that the scattering matrix S can be 

written as 

                                                 
2
 Now that the geometry is such that the axes are the principal axes of the canted drop, there is no 

depolarization (i.e., the scattering matrix in the rotated reference frame is diagonal). 
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        [
    
    

]     

 [
                                  

                                  
]                              

following Holt (1984) and Ryzhkov (2001).   

 

Figure 1.2: View of the polarization plane (blue circle) illuminating a raindrop canted within the 

plane of polarization at angle α.  The direction of wave propagation k is into the page.  The 

raindrop’s major and minor axes (yellow arrows) are in the    ̂  and    ̂ directions, respectively. 

 

Equation 1.8 is a special case of when the particle’s symmetry axis N is aligned 

within the plane of polarization (i.e., ψ = 0°).  In general, however, ψ ≠ 0°, in which 

case the complex scattering functions sbb and saa are functions of ψ.  Holt and Shepherd 

(1979) derive these functions in the Rayleigh approximation in what is known as the 

“backscatter rule”: 

                                                                                

where fa (fb) is the complex scattering function of the particle if the electric field vector 

is parallel (perpendicular) to the its symmetry axis.  Holt (1984) demonstrates that this 
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approximation is valid in raindrops for radar wavelengths   > 0.9 cm and for elevation 

angles   < 10°.  At S band, this “backscatter rule” is valid for most hydrometeors 

except large hail.  Thus, substituting eqn. (1.9) into eqn. (1.8), we obtain  

  [
                   

              

                      
                    

         … 

                                          

                                 
]                                

After using several trig identities, the expression simplifies to 

   [
          

                    
          

          
                    

          
]                                    

  

2. Calculating the Complex Scattering Functions 

The complex scattering functions fa,b in eqn. (1.11) characterize the 

electromagnetic response of particles illuminated by incident radiation.  In general, fa,b 

are functions of the wavelength of the incident radiation, and the irradiated particle’s 

properties, including size, shape, temperature, and composition.  The particle’s 

composition affects its complex dielectric factor ε = ε’ - j ε’’, which is a measure of a 

material’s electromagnetic response when irradiated. The complex scattering functions 

can be calculated using approximate analytical formulas (e.g., Rayleigh 1871; see also 

Doviak and Zrnić 1993), or more rigorous numerical techniques such as the T-Matrix 

method (e.g., Waterman 1969; Vivekanandan et al. 1991; Mishchenko 2000) or the 

discrete dipole approximation (see reviews by Draine 1988; Draine and Flatau 1994).  

The range of validity for these methods depends on the wavelength of the incident 

radiation  , as well as the characteristic size and composition of the particle being 
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radiated.  For hydrometeors treated as spheroids, it is convenient to use the resonance 

parameter 

  
 √| |

 
                                                                                               

where D is the equivalent spherical diameter of the spheroid, and ε is the complex 

dielectric factor.  The resonance parameter is unity at the peak of the first resonance; 

depending on the application and desired accuracy, thresholds of 0.6 – 0.8 are used to 

determine the limits of the Rayleigh approximation (e.g., Ryzhkov et al. 2011). 

a. Rayleigh Approximation 

 Under the Rayleigh approximation to the Mie (1908) solution of scattering by a 

sphere, the complex scattering functions are given by 

    
   

     
   

 
    

   
                                                                               

where the polarizability factors of the particle along its minor and major axes are 

     
 

     
 

   

                                                                                        

Note in eqn. (1.13) that the forward and backward scattering functions (superscript 0 

and , respectively) are identical in the Rayleigh approximation.  In eqn. (1.14), we 

have defined the shape parameters     , which are functions only of the particle axis 

ratio,     ⁄ . For spherical particles,    , and the shape parameters       

  ⁄ .  For oblate particles, b > a, and 

   
  

    
[  

       √     

√    
]              

 

 
                                

For the case of prolate spheroids, b < a, and the shape parameters are given by 
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[

 

 √    
  (

  √    

  √    
)   ]              

 

 
                       

The shape factors are shown in Figure 1.3.  If we assume the particle is spherical with 

the same volume as the oblate or prolate spheroid, eqn. (1.13) can be simplified to 

    
   

     
   

 
    

   

   

   
                                                                                      

In the case of mixed-phase particles (e.g., melting hail, freezing raindrops), it is 

convenient to use the two-layer spheroid model (e.g., Bohren and Huffman 1983).  If 

the volume fraction of the inner spheroid is 1, the complex scattering functions of the 

two-layer particle are given by 

     
    

   

      [                    ]             

[                    ][            ]                 
    

        

In eqn. (1.18), the complex dielectric factors 1 and 2 correspond to the inner and outer 

spheroid, respectively (Fig. 1.4). 

The Rayleigh formulas work well for computing radar variables based on the 

“real” parts of the complex scattering functions, for values of resonance parameter    

<< 1.0.  However, they should not be used to calculate variables related to the 

“imaginary” parts of the scattering functions for any value of  , as the values provided 

are inaccurate. 
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Fig. 1.3: Shape factors    and    for oblate (top panel) and prolate (bottom panel) spheroids. 

 

 

 

Fig. 1.4: Geometry of the two-layer spheroid, with an inner spheroid of dielectric constant 1 

and outer dielectric 2.  The silhouette of the inner spheroid is shown by the gray dashed curve. 

 

3. The Covariance Matrix 

Radar meteorologists process the received raw complex voltages to obtain the 

second-order moments, because the expected value or mean (first order moment) 

composite voltage over an ensemble of hydrometeors sums to zero owing to the random 
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phase of the individual contributions (Zrnić 1991).  A fully polarimetric radar can 

measure all quantities in the “covariance matrix” C, defined in the linear (HV) basis as 

(Zrnić 1991) 

  [

〈      
 〉 〈      

 〉 〈      
 〉

〈      
 〉 〈      

 〉 〈      
 〉

〈      
 〉 〈      

 〉 〈      
 〉

]  [

〈|   |
 〉 〈      

 〉 〈      
 〉

〈      
 〉 〈|   |

 〉 〈      
 〉

〈      
 〉 〈      

 〉 〈|   |
 〉

]              

In eqn. (1.19), angle brackets denote ensemble averaging, and the asterisk represents the 

complex conjugate.  Note that the covariance matrix in (1.19) has been reduced from its 

more general 4x4 form by assuming reciprocity (           The diagonal elements of 

(1.19) are magnitudes only and represent the received co-polar H, cross-polar, and co-

polar V powers.  These diagonal elements contain no phase information, whereas the 

off-diagonal elements are complex and thus contain both power and phase information.  

This is evident by examining one of these elements (e.g., C13) in expanded form: 

〈      
 〉  〈|      

 |    [          ]〉  

The phase angles ij = i – j represent the phase lag or lead between the backscattered 

radiation (i polarization) and the incident radiation (j polarization) at the location of the 

scatterer.  In other words, in the absence of propagation effects, the co-polar phase 

angle ii represents the phase shift imparted on the i-polarization radiation upon 

backscatter.  Thus, the argument of the element C13 is the co-polar differential phase 

shift upon backscatter, herein denoted as  

         . 

Because of the symmetry in (1.19), the element C31 is simply -; thus, it is considered 

non-unique.  The remaining off-diagonal elements that provide unique phase 

information are C12 (C21) and C32 (C23): 
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    〈      
 〉  〈|      

 |    [          ]〉  〈|      
 |         

   
  〉 

    〈      
 〉  〈|      

 |    [          ]〉  〈|      
 |         

   
  〉. 

Note that we have defined    
     

 as the so-called depolarization phase shifts (Ryzhkov 

2001).  To summarize the phase information available in the covariance matrix, we 

define the “covariance phase matrix”: 

          [

    
   

 

    
   

     
   

     
   

 

]                                                

 

4. Polarimetric Radar Variables from the Covariance Matrix 

The elements of the covariance matrix are used to infer physical properties of 

the hydrometeors within the radar sampling volume.  The co-polar power at H 

polarization (C11 in eqn. 1.19) is related to the radar reflectivity factor at horizontal 

polarization: 

   
   

  |  | 
〈|   |

 〉                                                                      

In eqn. (1.21), the dielectric factor |          ⁄ |  is written as |  |    Note that the 

coefficient comes from a normalization such that for small scatterers, Zh is identical to 

the Rayleigh reflectivity (based on eqn. 1.13). Similarly, the co-polar power at V 

polarization (C33) is related to the radar reflectivity factor at vertical polarization: 

   
   

  |  | 
〈|   |

 〉                                                                      

The ratio of these co-polar powers is the differential reflectivity factor: 

    〈|   |
 〉  〈|   |

 〉                                                                     
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The cross-polar power (C22) is compared to the co-polar powers in the linear 

depolarization ratio, 

   
   

 〈|   |
 〉 〈|   |

 〉                                                                

and  

   
   

 〈|   |
 〉 〈|   |

 〉                                                                

The off-diagonal elements of C are used in correlation coefficients.  The most common 

is the co-polar cross-correlation coefficient, taken at zero lag time, 

    〈      
 〉 √〈|   | 〉〈|   | 〉                                                                

The remaining coefficients take the correlation between the co-polar and cross-polar 

signals, and are sometimes referred to as the co-cross-polar correlation coefficients 

(e.g., Ryzhkov 2001; Ryzhkov et al. 2002b): 

    〈      
 〉 √〈|   | 〉〈|   | 〉                                                               

    〈      
 〉 √〈|   | 〉〈|   | 〉                                                               

The angled brackets denote averaging over the ensemble of hydrometeors within the 

radar sampling volume.  Thus, these expected values can be written in terms of the 

distribution of the hydrometeor’s physical properties, such as size, shape, and canting 

angle.  In the most general form,  

〈      
 〉  ∫  ( ⃗⃗ )      

   ⃗⃗ 

 

 

                                                                     

where    ⃗⃗   is the probability density of hydrometeor properties, which are defined by 

the vector  ⃗⃗ .  Using S11 from eqn. (1.11) in eqn. (1.29), substituting the result into 

(1.21), and assuming that the particle size and shape distributions are independent from 



16 

the distribution of orientation angles, we obtain a revised expression for radar 

reflectivity factor at horizontal polarization (Ryzhkov 1991) 

   
   

  |  | 
∫ |  |

    |  |
      

    
       

       

 

 

              

 |     |
                                                            

The second term in the integrand of eqn. (1.30) can be simplified by noting that 

|  |
      

    
         

         . Similarly, using S22 in eqn. (1.29) and 

substituting into (1.22), the radar reflectivity factor at vertical polarization becomes 

   
   

  |  | 
∫ |  |

        
            

       

 

 

                                           

 |     |
                                                            

and using S21 = S12 and equation (1.29) in equations (1.24) – (1.25), the linear 

depolarization ratios become 

   
     

 
   

  |  | 
 

    
∫  |     |

                       
 

 

                 

For meteorological applications, the magnitude of the cross-correlation coefficients is 

taken.  This is because particles with large “imaginary” parts of the refractive index 

(and/or non-Rayleigh scatterers) produce nonzero phase shifts upon backscatter, which 

cause the correlation coefficients to become complex.  Following the same analysis as 

above, the magnitude of the co-polar cross-correlation coefficient becomes 
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|   |  
   

  |  | 
 

√    

|∫ |  |
  |     |

                

 

 

      
    

               
    

       
              |                                  

Similarly, the magnitudes of the co-cross-polar correlation coefficients may be written 

as 

                 |   |  (
   

  |  | 
)

 
  

    √   
   

|∫ |     |
                  

 

 

   
           

              |                                                 

and 

 |   |  (
   

  |  | 
)

 
  

    √   
   

|∫ |     |
                                          

 

 

   
           

              |                                              

The trigonometric terms in eqns. (1.30) – (1.35) are defined by Ryzhkov (1991, 2001) 

and Ryzhkov et al. (2011) as angular moments: 

   〈          〉           〈          〉    〈          〉      

   〈          〉        〈               〉         〈          〉   

   〈               〉       〈               〉                  

         〈          〉                                                    
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Convenient analytical formulas for the angular moments in eqn. (1.36) exist for three 

special cases that are described in section 6.  Substituting the definitions of the angular 

moments (1.36) into the expressions for the polarimetric radar variables derived above, 

and defining the coefficient as         |  | , we arrive at expressions for all 

backscattering polarimetric radar variables in simplified notation: 

    ∫ |  |
     [  

        ]   |     |
                                            

 

 

 

    ∫ |  |
     [  

        ]   |     |
          

 

 

                                  

    
  

  
                                                                                        

   
     

 
 

    
∫ |     |

          

 

 

                                                               

|   |  
 

√    

|∫ |  |
  |     |

         
    

                                              

 

 

   
                 |                                                                             

|   |  
 

 
 

    √   
   

|∫ |     |
      

                 

 

 

|                                  

|   |  
 

 
 

    √   
   

|∫ |     |
      

                 

 

 

|                                  
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Note that the lowercase subscripts denote linear units.  In practice, owing to the huge 

dynamic range of the power-related variables, these variables are presented in 

logarithmic units, denoted by uppercase subscripts:  

                                                     

                       

5. Forward-scattering variables 

Electromagnetic waves propagating in an atmosphere filled with gases and 

hydrometeors will undergo what are collectively known as propagation effects, which 

include the acquisition of an additional propagation phase shift, loss of amplitude owing 

to absorption and scattering in the medium (known as attenuation), and depolarization 

in the presence of canted hydrometeors.  Figure 1.5 is a cartoon illustrating the effects 

of propagation phase shift and attenuation, and Figure 1.6 describes depolarization by a 

canted hydrometeor. These effects are described by imparting an additional complex 

phase shift on the propagating electromagnetic wave compared to what it would have 

after propagating the same distance in a vacuum.  This can be thought of as the wave 

slowing as it propagates through a medium, characterized by an effective complex index 

of refraction 

                  
                                                                                  

that comprises contributions from the air        and the scatterers along the propagation 

path        . The propagation phase shift is governed by the real parts of     , and the 

loss of amplitude or attenuation is governed by the imaginary parts of     . For weather 

radar frequencies, the real part of        is given by 
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  [      ]  
    

    
(       

           

    
)                                     

where T is the temperature in degrees Kelvin, P is the pressure in hPa, and e is the vapor 

pressure (also given in hPa).  The contribution to the effective refractive index from 

scatterers along the propagation path depends on their total number concentration, radar 

wavelength, and the forward scattering amplitude of hydrometeors, indicated by the 

superscript (0): 

    
       

  

  
〈      

   〉                                                                      

Because atmospheric scatterers tend to be anisotropic, 〈   
   〉  〈   

   〉.  Thus,      , 

which produces for differential propagation effects between horizontal and vertical 

polarizations (i.e., differential propagation phase shift and differential attenuation). 

Recall the expression for an electromagnetic plane wave traveling a distance  : 

 ⃗            ̂         ̂                                                                     

which can be separated into its amplitude and phase components 

 ⃗             [             ]   ̂          [             ]   ̂   

       

It is common practice to separate the time-varying part: 

 ⃗       
             ̂    

             ̂                                   

where  

[
   

   
]  [

                   

                   
]                                                           

The complex effective refractive index defined in eqn. (1.44) is combined with the 

wavenumber k to obtain the effective wavenumber 
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Fig. 1.5: Schematic illustrating propagation effects of differential propagation phase shift and 

attenuation.  Each panel shows successive times; the vertically-polarized signal is represented 

by the orange arrow, and the horizontally-polarized signal by the blue arrow, and propagation 

direction is given by the black vector,  ̂.  The gradual separation of the H and V signals as they 

propagate through the rain represents the differential propagation phase shift.  Signal amplitude 

is portrayed by the color shading of the arrows: the fading of the arrows represents attenuation. 
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Fig. 1.6: Schematic illustrating the depolarization of the incident electromagnetic wave as a 

result of hydrometeor canting. (a) The canted raindrop, characterized by major axis b and minor 

axis a (depicted by the yellow arrows) is illuminated by an incident horizontally-polarized wave 

depicted by the glowing green arrow. Because there is a component of the incident wave that is 

aligned with both axes of the drop (black dashed line), (b) both dipoles of the drop are excited, 

as depicted by the orange glowing arrows.  (c) These excited dipoles emit secondary radiation 

that can be decomposed into horizontal and vertical components (the green dashed lines indicate 

the decomposition of the radiation emitted by the major axis b, and the cyan lines represent the 

decomposition of the radiation emitted by the minor axis a). (d) The scattered radiation in the 

forward and backward directions now has a cross-polar (vertically-polarized) component.  

 

 ̃                                                                                      

which is also complex.  Note that we have separated contributions from propagation 

through air                and from propagation through hydrometeors      

     
         From eqn. (1.46), we can see that 

      〈      
   〉                                                                           

The contribution from hydrometeors to the effective wavenumber can be summarized in 

the matrix 

    [
     

      
]     [

〈   
   〉 〈   

   〉

〈   
   〉 〈   

   〉
]  [

      

      
]                        

Note that the cross-polar components of eqn. (1.53) exist only if depolarization on 

propagation occurs (i.e., if the propagating wave acquires a cross-polarization 

component upon forwardscatter). 

To account for propagation effects, the effective wavenumber in eqn. (1.51) 

replaces k in eqn. (1.50), resulting in 
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                   (   ̃          )                                                            

The phasors in eqn. (1.54) are solutions to the set of differential equations 

 

  
[
   

   
]   [

   

   
]  [

      

      
] [

   

   
]                                                           

If the mean canting angle of hydrometeors along the propagation path is equal to 0 or 

90 (i.e., on average the particles’ symmetry axes are aligned with the vertical or 

horizontal), then there is no depolarization on propagation.  In this case, the matrix   is 

diagonal, with its elements given by 

  [
   ̃  

    ̃ 

]  [
          

          
]                                           

Thus, the H- and V-polarization waves propagate independently.  On the other hand, if 

the mean hydrometeor canting angle along the propagation path is not equal to 0 or 

90, then depolarization of the signal upon propagation occurs.  This means that the 

wave’s initial polarization state changes during propagation through a hydrometeor 

medium as it acquires a cross-polarized component of radiation.  In this case, the matrix 

  can be written as 

  [
              

              
]  [

            〈   
   〉

   〈   
   〉          

]                

  [
           

           
]                                                                       

For the most general case, with   given by (1.57), the solution to (1.55) is given by 

[
      

      
]        [

           

          
]    [

     

     
]                          

where 1 and 2 are the eigenvalues,  
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with 

  √                                                                               

After substituting the rotation matrix from eqn. (1.5), the solution (1.58) becomes 

[
      

      
]   [

     

     
]  [

      

      
] [

     

     
]                                               

where the transmission matrix   is defined as 

  [
                                              

                                              
]                          

The magnitudes of the elements in the transmission matrix correspond to losses by 

attenuation on propagation through a medium.  As such, it is convenient to write the 

losses matrix 

  [
      

      
]  [

|   |
 |   |

 

|   |
 |   |

 ]                                                          

In the absence of depolarization on propagation, the cross-polar components of eqn. 

(1.53) vanish (           〈 〉   ), and the eigenvalues (eqn. 1.59) become 

                  ̃ 

                  ̃ 

                                                          

and thus the phasor expression for       can be written as in eqn. (1.54).  Because the 

effective wavenumbers  ̃    are complex, it is convenient to separate contributions from 

the real and imaginary parts (i.e., the parts characterizing the propagation phase shift 

and attenuation losses).  Using the definition in eqn. (1.52), this yields 

     
          [  (                  {〈   

   〉}      {〈   
   〉})  ] 
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         [  (          {〈   
   〉})  ]    [          {〈   

   〉}]          

for the horizontally-polarized wave, and a similar expression 

               [  (          {〈   
   〉})  ]    [          {〈   

   〉}]        

for the vertically-polarized wave.  It is clear from eqns. (1.65) – (1.66) that the real part 

of the complex effective wavenumber  ̃    characterizes a phase shift, which we can 

define as  

     (          {〈      
   〉})   [    {      }  

  

  
  {〈      

   〉}]              

Similarly, we can relate the imaginary part of the effective wavenumber to elements of 

the losses matrix, or attenuation factors, using eqn. (1.63) 

             [(            {〈      
   〉})  ] 

                 [(   {      }  
  

 
   〈      

   〉 )   ]                   

Thus, phasors (1.65) – (1.66) are written as 

     
       √         [       ]

     
       √         [       ]

                                                      

The attenuation factors are usually expressed in logarithmic scale and can be written as 

the product of propagation distance r and the specific attenuation at horizontal and 

vertical polarizations     , as 

     (      )                                                                              

where the specific attenuation is defined as 

           [   {      }     {〈      
   〉}]                                            



26 

Note that the negative sign is a result of choosing the              convention for the 

time-varying part of the propagating electromagnetic wave.  If, instead, the negative 

convention is used, the specific attenuation would be positive.  The factor of 8.686 

comes from twice (for two-way attenuation) the result of           .  

For most weather radar frequencies, attenuation by atmospheric gases is very 

small compared to attenuation in hydrometeors; thus, the second term in eqn. (1.71) is 

dominant.  For anisotropic particles,      , and so it is informative to take their 

difference, known as specific differential attenuation 

                    {〈   
   〉  〈   

   〉}                                           

Though the contribution of atmospheric gases to the phase shifts h,v is much larger 

than that of hydrometeors, it is anisotropic hydrometeors alone that can change the 

difference between these phase shifts at horizontal and vertical polarizations, known as 

the differential phase shift upon propagation 

              ∫          

 

 

                                                   

In eqn. (1.73), the factor of 2 is because the measured propagation differential phase 

shift is two-way. Also in eqn. (1.73) we have introduced the specific differential phase 

shift, which is defined using eqns. (1.67) and (1.73) as 

    
  

  
  {〈   

   〉  〈   
   〉}     {〈   

   〉  〈   
   〉}                               

In the definitions (1.72) – (1.74), the angular brackets denote ensemble averaging, as 

before.  Recall from eqn. (1.29) that this can be related to integration over the particle 

size distribution.  Using this relation, and employing the approximation that          
   

, 
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which is valid for Rayleigh scatterers, we can express the specific attenuations and 

specific differential phase for the general case for hydrometeors canted within and out 

of the plane of polarization: 

          ∫ [  {  
   }    {  

      
   }           ]                         

 

 

 

          ∫ [  {  
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∫   {  
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where the factor of 180/ in eqn. (1.78) converts from radians to degrees.  Using the 

formulas for the angular moments presented in the previous section, we can write the 

variables as 

               ∫ [  {  
   }    {  
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               ∫ [  {  
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and 
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Note that the coefficients to eqns. (1.79) – (1.82) are modified such that the units of AH, 

AV, and ADP are in dB km
-1

, and KDP is in deg km
-1

, given that scattering amplitudes     
   

 

and radar wavelength  are in mm, and the particle size distribution        is in m
-3

. 

 

6. Special cases for angular moments 

There exist at least three special cases for which there are simple analytical 

formulas for the angular moments (e.g., Ryzhkov 2001, Ryzhkov et al. 2011).  These 

are: (a) completely random orientation of the hydrometeors, (b) random orientation of 

hydrometeors in the horizontal plane, and (c) a two-dimensional axisymmetric Gaussian 

distribution of canting angles (Fig. 1.7). 

 

a. Completely random orientation 

 For totally chaotic orientation of hydrometeors, the angular moments reduce to  

      
 

 
               

 

 
           

 

  
                          

This case can be applied to particles that are chaotically tumbling within the radar 

sampling volume, including (perhaps) tornadic debris. 

 

b. Random orientation in the horizontal plane 

Owing to viscous drag, various types of small (low-Reynolds number) 

hydrometeors orient themselves such that their major axis is aligned in the horizontal.  

However, in the absence of any external forcing (e.g., a strong electric field), there is no 

preferential orientation in the horizontal plane.  Such orientation is typical for columnar 
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ice crystals or needles.  In this case, the angular moments are functions of only radar 

antenna elevation angle (; cf. Figure 1.1): 

     
 

 
         

 

 
    

 

 
         

 

 
    

 

 
         

               
 

 
                                                                 

 

c. Two-dimensional axisymmetric Gaussian distribution of orientations. 

For low radar antenna elevation angles , and for angular distribution widths 

that are not very large, we can approximate an axisymmetric Gaussian distribution as 

       
 

      
   [ 

   〈 〉  

   
  

   〈 〉  

   
 

]                                

where 〈 〉 and 〈 〉 are the mean canting angles of the particles out of and within the 

plane of polarization, respectively (cf. Figure 1.1).  The angular distribution widths 

along the  and  directions are given by    and          〈 〉.  Note that the 

approximation (1.85) allows for averaging over the angles  and  independently.  This 

type of orientation angle dispersion represents a large array of hydrometeor types that 

are modeled as oblate spheroids, including raindrops, snowflakes, ice pellets, graupel 

particles, and hailstones.  In this case, the angular moments may be expressed as 
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In eqn. (1.86),       (    ) and             , with the angular distribution 

widths given in radians.  The expressions in (1.86) can be simplified further if we 

assume that 〈 〉   , and that the radar antenna elevation angles are low (such that 〈 〉 

is near /2).  In this case,          〈 〉      , and thus        .  Under 

these simplifications, the angular moments (1.86) can be expressed as  
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Fig. 1.7: Special cases where analytical formulas exist for the angular moments: (a) Completely 

random particle orientation, (b) random orientation in the horizontal plane, (c) two-dimensional 

axisymmetric Gaussian distribution of canting angles.  In each case, the gray shaded regions 

represent the space of possible particle orientations. 
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Chapter 2: Polarimetric Radar Variables: Physical Description 

Theoretical formulations for the complete set of backscattering and forward 

scattering polarimetric radar variables available for radars transmitting signals at 

linearly-orthogonal polarizations (H and V) were presented in the previous chapter.  

Here, we present physical descriptions of these variables for weather radar applications.  

Sources in the literature include reviews by Herzegh and Jameson (1992), Doviak and 

Zrnić (1993), Zrnić and Ryzhkov (1999), Straka et al. (2000), Bringi and Chandrasekar 

(2001), and Ryzhkov et al. (2005a). 

 

1. Radar reflectivity factor 

 The most basic radar measurand is related to the amplitude of the returned 

signal, called the radar reflectivity factor. Dual-polarization radars measure the radar 

reflectivity factor at both horizontal polarization (denoted as ZH) and vertical 

polarization (ZV). The amplitudes of the returned signals, and thus the radar reflectivity 

factors, are directly proportional to the backscattering cross sections of the target       , 

which are related to the complex scattering functions as 

         |      |
 
                                                                        

Note that the backscattering cross section (also called the “radar cross section”) has 

units of area.  It can be thought of as the cross-sectional area of a sphere that, if 

scattering the transmitted radar signal isotropically, would produce the same amplitude 

as the received signal (e.g., Skolnick 1980; Doviak and Zrnić 1993).  For small 

hydrometeors for which the Rayleigh approximation is valid,        is proportional to 

the sixth power of the equivalent spherical diameter of the particle D
6
.  Thus, in the 
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Rayleigh approximation, the intrinsic ZH and ZV of hydrometeors are larger for larger 

particles.  However, for larger hydrometeors that fall in the Mie (or “resonance”) 

scattering regime, this monotonic relation between hydrometeor size and ZH,V no longer 

holds. 

In addition to particle size, ZH,V depend on the particle’s composition. The 

particle property important for electromagnetic applications is the effective complex 

dielectric factor (or relative permittivity) , which depends on the particle’s physical 

composition, temperature, and the frequency of the incident radiation (see Appendix A).  

The relative permittivity of a hydrometeor can be thought of as a measure of how much 

energy is taken in from an incident electromagnetic field; this energy is then available to 

be radiated by the particle (i.e., scattered) or absorbed and dissipated to thermal energy 

(i.e., attenuation).  The real part of the complex dielectric factor is related to scattering, 

whereas the imaginary part is related to attenuation.  Thus, hydrometeors characterized 

by a large relative permittivity produce larger backscatter for a given size and shape.  

Because water >> ice, wetter hydrometeors of a given size and shape generally produce 

larger backscatter and attenuation. 

The quality of radar reflectivity factor measurements can be deteriorated by radar 

miscalibration, partial beam blockage, attenuation, and noise bias.  The desired 

measurement accuracy for operational radars is about 1 – 2 dBZ (e.g., NEXRAD Joint 

System Program Office 1984; Ryzhkov et al. 2005b). 
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a. Radar reflectivity factor in rain 

At all common weather radar wavelengths (S, C, and X bands), the intrinsic ZH and 

ZV of raindrops increase monotonically with increasing size (Fig. 2.1a,b), except for 

supergiant raindrops in excess of 8 mm.  Recall that ZH,V are also dependent on the 

concentration of hydrometeors within the radar sampling volume; thus, increased 

concentration of raindrops leads to larger ZH,V.  Therefore, heavier rain tends to be 

associated with larger ZH and ZV.  The inherent ambiguity associated with its 

dependence on concentration and size means that ZH,V alone cannot provide any 

information about the raindrop size distribution (DSD).  As such, observations of heavy 

tropical rain characterized by very large concentrations of small raindrops may reveal 

the same ZH or ZV as the leading edge of a continental convective storm characterized 

by a sparse population of large drops. As we will see, the difference between ZH and ZV 

proves to be extremely useful in mitigating such ambiguities. 
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Fig. 2.1a. Normalized radar reflectivity factors at orthogonal polarizations (H in blue, V in 

black) for (a) S (λ = 10.97 cm), (b) C (λ = 5.40 cm), and (c) X (λ = 3.2 cm) bands. Solid curves 

represent drop temperatures of 0 C; dashed curves represent drop temperatures of 20 C. 
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Fig. 2.1b: Normalized radar reflectivity factor at horizontal polarization (ZH) for raindrops, 

shown for S band (black), C band (blue), and X band (red) at two temperatures: 0 °C (solid 

curves) and 20 °C (dashed curves). 

 

b. Radar reflectivity factor in solid ice particles 

The complex dielectric factor of ice is much smaller than that of water.  As a result, 

the ZH,V of solid ice particles (e.g., ice pellets, high-density hailstones) are smaller than 

the corresponding values for liquid particles of the same size and shape.  This difference 

can be quantified by taking the ratio of the terms |  |
  |  |  (cf. eqn. 2.3), which 

results in a difference of about 6 – 7.2 dBZ between the logarithmic radar reflectivity 

factors of liquid particles and ice particles (for a review, see Smith 1984).  Aside from 

this difference, the general trend is the same for small ice pellets as it is for raindrops 

(Fig. 2.2). 

For larger ice particles such as hailstones, the relation between ZH,V and particle size 

becomes very complex (Fig. 2.3), especially for particles of sufficient size to produce 

resonance scattering. Indeed, the oscillations evident in Fig. 2.3 reveal that for certain 
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size bands, larger hailstones have intrinsically lower ZH,V than slightly smaller stones.  

This uncertainty is compounded by the aforementioned inherent ambiguity with 

concentration, which underscores the importance of not relying solely on ZH or ZV for 

information regarding hail size: larger ZH does not necessarily imply larger hailstones 

(e.g., Kumjian et al. 2010a; Blair et al. 2011). 

 

 

Fig 2.2: Normalized reflectivity factor at horizontal polarization (ZH) for raindrops (dotted lines) 

and ice pellets (solid lines), shown for S, C, and X bands (black, blue, and red curves). Ice 

pellets are considered the same size and shape as raindrops, but have a distribution of canting 

angles σ = 40°. 
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Fig. 2.3: Normalized reflectivity factor at horizontal polarization (ZH) for dry, oblate (axis ratio 

= 0.8, σ = 40°) hailstones, at S, C, and X bands (black, blue, and red curves).  

 

c. Reflectivity factor in dry snow 

Dry snowflakes comprise a mixture of ice and air with density less than that of solid 

ice.  Aside from that, natural snowflakes are incredibly diverse, appearing with a wide 

range of densities, sizes, and shapes.  For example, hexagonal plates up to a few 

millimeters in diameter have comparatively high density, close to that of solid ice, 

whereas snow aggregates can grow quite large (> 1 cm) with very low density (< 100 kg 

m
-3

).  The larger sizes of aggregates tend to compensate for their low density, producing 

some of the largest ZH values observed in dry snow.   

Because dry snowflakes are sufficiently modeled using the Rayleigh approximation 

for oblate spheroids, we can make use of the Debye formula (eqn. A7) 
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 as well as the definition of the Rayleigh reflectivity factor to show that 

  
|  |

 

|  | 
 

    
 ∫      

                                                       

 

 

 

where the dielectric factor |     |  is written in terms of the dielectric factor for ice as 

|  |
      

         
 . Numerous observational studies have found that the density of 

snow tends to be approximately inversely proportional to the diameter of the snowflake 

(e.g., Holroyd 1971; Fabry and Szyrmer 1999; Brandes et al. 2007). Thus, substituting 

             into (2.3) demonstrates the fact that the reflectivity factors ZH,V in 

snow are proportional D
4
, rather than D

6
 (as for raindrops and ice pellets). This results 

in substantially smaller values of ZH,V for dry snow aggregates than for raindrops or ice 

pellets of the same size (Fig. 2.4). 

 

Fig. 2.4: Normalized reflectivity factor at horizontal polarization (ZH) for dry snow (thick 

curves), ice pellets (thin curves), and raindrops (dotted curves), at S, C, and X bands (black, 

blue, and red curves). Dry snowflakes are assumed to be oblate spheroids with axis ratio of 0.6, 

σ = 40°, with density given by the empirical formula of Brandes et al. (2007). 
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d. Reflectivity factor in mixed-phase particles  

The rapid increase in complex refractive index of an ice particle that acquires liquid 

water leads to an increase in ZH.  Thus, in general, the ZH of a mixed-phase particle is 

correlated with its mass (or volume) fraction of liquid water. For example, the well-

known melting layer “bright band” largely is a result of the increase in refractive index 

as dry snowflakes acquire liquid water during melting (Fig. 2.5).  The peak ZH in the 

melting layer is thought to arise from large, wet snow aggregates before they melt 

completely and collapse into smaller-sized raindrops (e.g., Doviak and Zrnić 1993).  

Similarly, melting hailstones produce a maximum in ZH above the ground, at the 

location of the onset of shedding (e.g., Ryzhkov et al. 2009).  Hailstones undergoing 

wet growth in convective updrafts are also characterized by very large ZH (Fig. 2.6). 

 

Fig. 2.5: Normalized reflectivity factor at horizontal polarization (ZH) for melting snowflakes, 

shown for S, C, and X bands (black, blue, and red curves). Melting snowflakes treated using the 

model of Ryzhkov et al. (2008) and Giangrande (2007), at the level of the ZDR maximum in the 

brightband. 
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Fig. 2.6: Normalized reflectivity factor at horizontal polarization (ZH) for wet hailstones, shown 

for S, C, and X bands (black, blue, and red curves).  Melting hailstones are treated using the 

model of Ryzhkov et al. (2009), at the ground level. 

 

2. Differential reflectivity factor 

As alluded to above, the added value of polarimetry comes when one compares 

the returned signals at orthogonal polarizations.  The difference between the logarithmic 

ZH and ZV (or, ten times the logarithm of the ratio of the two) is called the differential 

reflectivity factor ZDR. Because the dependence on concentration cancels out by taking 

the ratio of Zh and Zv, ZDR is independent of the total number concentration of particles 

within the resolution volume. It also means that ZDR is independent of the absolute 

receiver and transmitter calibration. 

 For Rayleigh scatterers, the backscattering cross section is larger for larger 

particles.  So, if a particle’s horizontal axis is larger than its vertical axis (i.e., the 

particle is oblate), the backscattering cross section at horizontal polarization is larger 

than that at vertical polarization.  Therefore, ZDR is positive for oblate particles 
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(similarly, ZDR is negative for prolate particles).  Spherical particles (or those that 

tumble randomly) produce ZDR of 0 dB.  The behavior of ZDR for resonance scatterers is 

more complex and is described below. 

Differential reflectivity is immune to radar miscalibration, and is independent of 

particle concentration.  However, signal quality is deteriorated in the presence of 

anisotropic beam blockage, noise bias, radome effects, and nonuniform beam filling 

(Ryzhkov 2007).  ZDR is affected by propagation effects, including differential 

attenuation.  If the radar operates in the simultaneous transmission and reception mode 

(SHV; Doviak et al. 2000), signal depolarization upon propagation through 

hydrometeors with nonzero mean canting angle can cause cross-coupling of the H- and 

V-polarized waves, leading to noticeable biases in the measured ZDR downrange of the 

depolarizing media (e.g., Ryzhkov and Zrnić 2007; Hubbert et al. 2010a,b).  This latter 

point is described further in Chapter 3. 

 

a. Differential reflectivity in rain 

The use of ZDR for rainfall measurements was suggested by Seliga and Bringi 

(1976). The shape of the larger, faster-falling raindrops is distorted owing to 

aerodynamic drag, causing the drops to become shaped rather like a French dinner roll 

(Fig. 2.7).  Such raindrop oblateness increases with increasing raindrop size (e.g., 

Pruppacher and Beard 1970; Beard and Chuang 1987; Brandes et al. 2002; Thurai et al. 

2009; and many others).  So, the intrinsic ZDR of a raindrop increases with its size (Fig. 

2.8). In precipitation, ZDR is a measure of the reflectivity-weighted mean drop size 

within the sampling volume.  ZDR is positive in rain, increasing from near 0 dB in 
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drizzle to > 4 dB in heavy continental rain (e.g., Doviak and Zrnić 1993).  Exceptions to 

this trend include heavy tropical rain, characterized by small drops (and thus lower 

overall ZDR), and situations of size sorting, in which large observed ZDR values 

(collocated with low or moderate ZH) indicate a sparse population of large drops with 

very low rain rates (see Chapter 5; also Kumjian and Ryzhkov 2012). 

Note that the C- and X-band curves in Fig. 2.8 display deviations from the 

monotonic increase in ZDR with drop size.  These “bumps” are a result of resonance 

scattering at the shorter wavelengths, and are a function of temperature. Resonance 

scattering produces an enhancement of the amplitude of the backscattered signal owing 

to constructive interference of the wave reflected off the front surface of the drop and 

that off the back surface. The most remarkable resonance occurs for 5 – 6 mm drops at 

C band; a lesser bump appears in 3 – 4 mm drops at X band. The difference in the 

amplitude of these resonance bumps is because of the difference in relative permittivity: 

resonance effects are stronger for smaller values of the imaginary part of the complex 

dielectric function, which is related to attenuation losses within the particle.  Because 

the magnitude of the imaginary part of the complex dielectric function for water is 

smaller at C band than at X band, the resonance at C band is stronger (owing to larger 

attenuation with the particle at X band).  If natural raindrops could reach the resonance 

size at S band (about 1.1 cm in diameter), the resonance effect would be strongest at S 

band. Increased temperature leads to smaller imaginary parts of the complex dielectric 

of water (see Appendix A); therefore, warmer raindrops produce stronger resonance 

effects.  Chapter 4 discusses the determination of raindrop temperature. 
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Fig. 2.7: Comparison of the oblate spheroidal shapes of a French-style dinner roll (left panel) to 

a 6-mm raindrop (right panel).  Raindrop photograph adapted from Thurai et al. (2009).  

 

 

Fig. 2.8: Differential reflectivity (ZDR) for raindrops at S, C, and X bands (black, blue, and red 

curves). Shown for two temperatures: 0 °C (top) and 20 °C (bottom). 
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b. Differential reflectivity in solid ice particles 

Because of the difference in complex dielectric between liquid water and ice, the 

ZDR of a given particle size and shape is smaller for solid ice particles than liquid water 

particles.  In addition, ice particles have increased widths of their canting angle 

distributions, which decreases the observed ZDR.  For small ice pellets (i.e., frozen 

raindrops), the ZDR does not exceed about 0.3 dB at all weather radar wavelengths (Fig. 

2.9). 

 

Fig. 2.9: Differential reflectivity (ZDR) for frozen raindrops (ice pellets), shown for S, C, and X 

bands (black, blue, and red curves, respectively).  Particle axis ratios are identical to those of 

raindrops; the width of canting angle distribution  = 40. 

 

For larger solid ice particles such as hailstones, the functional dependence of 

ZDR on size becomes rather complicated (Figure 2.10).  Once resonance size is reached, 

the intrinsic ZDR of oblate hailstones can drop to negative values.  Negative values 
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occur in resonance scattering when the reflectivity factor at vertical polarization ZV 

peaks above the reflectivity factor at horizontal polarization ZH.  For an oblate hailstone, 

the horizontal dimension of the stone is larger than the vertical dimension for given 

equivalent spherical diameter; thus, the electromagnetic resonance occurs first for the 

horizontal polarization radiation (this corresponds to the peak in ZDR in Fig. 2.10).  

Resonance effects then lead to a decrease in ZH for increasing size. However, once a 

hailstone is sufficiently large, the vertical polarization radiation reaches its first 

resonance peak.  Because the hailstone is larger overall for the vertical polarization 

resonance size than the horizontal polarization resonance size, the peak in ZV is larger 

than the peak in ZH, which explains the larger magnitude of the negative ZDR 

oscillations. 

 

Fig. 2.10: Differential reflectivity (ZDR) for dry hailstones, at S, C, and X bands (black, blue, 

and red curves).  The aspect ratio of hailstones > 1 cm in diameter is fixed at 0.8. 
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Note that the amplitude of these negative ZDR oscillations is damped by increased 

widths of the canting angle distribution; perfectly random orientation of hailstones 

would result in ZDR of 0 dB, regardless of hailstone size or shape.  However, 

observations of pronounced negative ZDR values in severe convective storms that 

produced giant hail (e.g., Kumjian et al. 2010a,c; Picca and Ryzhkov 2012) indicate that 

some degree of alignment exists.  Kumjian et al. (2010a) suggest the possibility of using 

such negative ZDR values aloft as an indication of giant hail; however, it is unclear how 

reliable an indicator negative ZDR values are.  Further, other signatures such as 

dramatically reduced hv (Picca and Ryzhkov 2012) in the hail growth region of storms 

may be more reliable. 

 

c. Differential reflectivity in dry snow 

The ZDR in dry snow varies substantially, depending on the habit of the ice crystals. 

Pristine oblate ice crystals such as hexagonal plates theoretically can produce ZDR as 

high as 10 dB (e.g., Hogan et al 2002; Andrić et al. 2012). Pristine prolate crystals such 

as columns or needles can produce ZDR values as large as 3 – 4 dB.  On the other hand, 

snow aggregates tend to produce very low ZDR values (< 0.5 dB; Ryzhkov and Zrnić 

1998a; Ryzhkov et al. 2005a), primarily owing to their very low density.  Whereas ZH 

or ZV alone offer no indication of snow crystal type, fields of ZDR in winter storms 

reveal striking structure (e.g., Fig. 2.11), indicative of various snow crystal habits. As 

observed in the figure, there tends to be an inverse correlation between ZH and ZDR in 

snow.  For example, the lake-effect snow band in Figure 2.11 (located in southwestern 
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Fig. 2.11: Observations of a winter storm event on 13 January 2012, at 2119:08 UTC in the 

Great Lakes region of the United States. Observations from upgraded WSR-88D radars 

including KPBX (Pittsburgh), KCLE (Cleveland), KGRR (Grand Rapids), KLOT (Chicago), 

and KAPX (Gaylord). The 0.5° elevation scan is shown, with fields of (a) ZH, and (b) ZDR.   
 

Michigan, coming off Lake Michigan) demonstrates the inverse correlation between ZH 

and ZDR in snow, as the heaviest snow is characterized by ZH near 35 dBZ and ZDR near 

0 dB. ZDR is considerably higher (> 3 dB) on the periphery of this snow band.  

Aggregation of snowflakes destroys the polarimetric information necessary to 

determine crystal habit; the large size of the aggregates dominates the signal from 

smaller pristine crystals even if they are present (e.g., Bader et al. 1987). Thus, the 

periphery or edges of such high-ZH snow bands may be more useful in determining the 

dominant crystal habit.  

 

d. Differential reflectivity in mixed-phase particles 

Much like the impact of liquid water on ZH, ZDR is strongly affected by the presence 

of liquid water on or in a particle.  For particles of a given size and shape, increasing the 

liquid water fraction tends to increase in ZDR. However, melting progresses at different 
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rates for different particle sizes. Additionally, for sufficiently large melting particles 

there is an upper limit to the amount of liquid water that is able to accumulate as a film 

on their surfaces before shedding commences (e.g., Rasmussen and Heymsfield 1987). 

Appropriate treatment of melting is necessary to accurately determine the 

electromagnetic scattering characteristics of such particles. 

The intrinsic ZDR of melting snowflakes is shown in Fig. 2.12. Note that the 

computed radar variables are sensitive to the treatment of the distribution of liquid 

water (e.g, see Fabry and Szyrmer 1999; also Appendix A).  The large increase in ZDR 

observed in the melting layer of stratiform precipitation (e.g., Fig. 2.13) is produced by 

melting snowflakes. However, preliminary efforts to model the melting of snowflakes 

without aggregation (e.g., Ryzhkov et al. 2008; Giangrande 2007) are incapable of 

reproducing the magnitude of the observed ZDR increase routinely observed in the 

melting layer. This indicates that aggregation of melting snowflakes is a key process in 

producing large values of ZDR. 

 

Fig. 2.12: Differential reflectivity (ZDR) for melting snowflakes, at S, C, and X bands (black, 

blue, and red curves). 

 



50 

 

Fig. 2.13: Observed vertical cross section (RHI) of ZH (left) and ZDR (right) showing a melting 

layer bright band between about 2.5 and 3.0 km in height. The data are from the Bonn X-band 

Polarimetric (BOXPOL) radar, collected on 22 June 2011 at 1144 UTC. Courtesy of the 

Meteorologisches Institüt at the Universität Bonn. 

 

The intrinsic ZDR in melting hailstones (Fig. 2.14) exhibits complicated behavior 

owing to resonance scattering effects at all radar wavelengths. For hailstones 

approximated by two-layer spheroids, as in Figure 2.14, the ZDR tends to remain lower 

than the ZDR for pure raindrops. Because large hailstones shed excess meltwater, ZDR 

tends to remain comparatively small (positive or negative). Note that other choices for 

the modeled hailstone parameters may produce different results, and an appreciable 

amount of uncertainty exists in selecting some of these parameters (e.g., Ryzhkov et al. 

2009; Kumjian et al. 2010a). Also, in storms the melting hail tends to be mixed with 

raindrops. The presence of large drops can increase the observed ZDR (e.g., Ryzhkov et 

al. 2009). This effect is especially prevalent at C band, where observed ZDR values in 

melting hail are consistently very large (Anderson et al. 2011). 
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Fig. 2.14: Differential reflectivity (ZDR) for wet hailstones, for S, C, and X bands (black, blue, 

and red curves).  

 

3. Differential propagation phase shift 

The differential propagation phase shift     is the difference in phase between 

the H and V channels that accumulates upon (two-way) propagation of the radar signal 

through an anisotropic medium. Anisotropic scatterers along the propagation path are 

characterized by complex effective refractive indices (see Chapter 1), which are 

different at H and V polarizations. This can be thought of as the H- and V-polarization 

waves propagating at different speeds through the anisotropic medium. Because most 

hydrometeors are oblate, the accumulated phase shift is such that the H-polarization 

wave lags the V-polarization wave, defined as positive    .     increases as the 

oblateness and complex dielectric factor of hydrometeors increase; however, it is not 

affected by (i.e., is equal to zero in) spherical or randomly tumbling particles. Because 

    is a phase measurement (not power), it is immune to radar miscalibration, partial 
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beam blockage, attenuation, and is not biased by noise (e.g., Zrnić and Ryzhkov 1999). 

Thus, it is an attractive variable for use in quantitative precipitation estimation and 

attenuation correction. 

By convention, properties of the media are designated as “specific” quantities 

(i.e., per unit distance). For example, losses in electromagnetic wave amplitude during 

propagation are described in terms of specific attenuation. Likewise, to conform to 

convention, we take one-half the range derivative of    , which is known as the 

specific differential phase KDP. KDP provides the accumulated differential phase shift 

per unit distance in the radial direction. Thus, it can be useful for identifying regions of 

heavy precipitation where a large differential phase shift has accumulated over a short 

distance. Because its calculation involves finite differencing, KDP is difficult to estimate 

if     has large fluctuations, such as when the signal-to-noise ratio (and/or ρhv) is low. 

Estimates of KDP are prone to errors in the presence of nonuniform beam filling (e.g., 

Ryzhkov and Zrnić 1998b; Gosset 2004; Ryzhkov 2007; see also Chapter 3), and in the 

presence of backscatter differential phase δ. 

 

a. Differential propagation phase shift in rain 

Use of KDP for measurements of rain was introduced by Seliga and Bringi 

(1978), Jameson (1985a), and Sachidananda and Zrnić (1986, 1987). Owing to drop 

oblateness,     and KDP are positive in pure rain. Because of the aforementioned 

qualities of KDP, it is an attractive variable for use in rainfall estimation (e.g., Zrnić and 

Ryzhkov 1996; Ryzhkov and Zrnić 1996; Brandes et al. 2001; Ryzhkov et al. 2005a,d), 

particularly in cases where hail is mixed with rain (Balakrishnan and Zrnić 1990a; 
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Giangrande and Ryzhkov 2008), or for long-term accumulations of light rain (e.g., 

Borowska et al. 2011b). Additionally, Sachidananda and Zrnić (1987) found that KDP is 

almost linearly related to rainfall rate. Because the dependence on size of KDP is 

smaller than that of ZH, it is more sensitive to smaller drop sizes. 

The normalized values of KDP in rain are shown in Figure 2.15. In precipitation, 

the measured KDP is inversely proportional to the radar wavelength; therefore, for a 

given precipitation echo, the measured KDP at X band will be roughly 3.4 times larger 

than at S band and 1.7 times larger than at C band. Figure 2.15 also reveals that the 

dependence of C-band KDP on temperature is much larger than at S or X bands. 

 

Fig. 2.15: Normalized specific differential phase (KDP) for raindrops, at S, C, and X bands 

(black, blue, and red curves). Shown for two temperatures: 0 °C (top) and 20 °C. 
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b. Differential propagation phase shift in solid ice particles 

The normalized values of KDP in small ice pellets are much smaller than in 

raindrops of the same size and shape (Fig. 2.16), owing primarily to the much smaller 

complex relative permittivity of ice compared to water.  A secondary factor is the 

increased canting angle distribution width for frozen particles. For dry hailstones, 

however, the behavior of KDP is rather complicated (Fig. 2.17), featuring large 

oscillations and both positive and negative values. These large fluctuations are a result 

of Mie scattering and indicate a “trading off” in the amount of phase shift acquired on 

propagation between the H and V polarization waves. In other words, negative values 

of normalized KDP indicate that the V-polarization wave has “slowed” relative to the H-

polarization wave, and positive values represent the opposite. These large oscillations 

are superposed on a general decreasing trend, which may lead to negative KDP values in 

large hailstones. However, in practice, the presence of backscatter differential phase (δ) 

will likely obfuscate the “true” KDP, as will the larger statistical fluctuations associated 

with a decrease in ρhv. 
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Fig. 2.16: Normalized specific differential phase (KDP) for ice pellets, at S, C, and X bands 

(black, blue, and red curves). 

 

 

Fig. 2.17: Normalized specific differential phase (KDP) for dry hailstones, at S, C, and X bands 

(black, blue, and red curves). 
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c. Differential propagation phase shift in dry snow 

As with ZDR, the intrinsic KDP in dry snow can vary widely depending on the 

crystal habit. Snow aggregates tend to have KDP values near zero (i.e., are essentially 

“invisible” to the propagation phase shift), whereas pristine ice crystals can produce 

KDP values on the order of 0.5 deg km
-1

 at S band (e.g., Ryzhkov and Zrnić 1998a; 

Ryzhkov et al. 1998; Kennedy and Rutledge 2011; Andrić et al. 2012), and even higher 

at shorter radar wavelengths.  This can be useful in determining regions of ongoing 

secondary ice crystal production (Andrić et al. 2012) or dendrite growth (Kennedy and 

Rutledge 2011) in cases when the intrinsic large ZDR of low-ZH pristine ice crystals is 

obfuscated by contributions from high-ZH aggregates, which have low intrinsic ZDR. 

Strong electric fields within the upper portions of storms can cause an alignment of low-

inertia columnar ice crystals, which can produce enhanced positive or negative KDP (as 

well as signal depolarization; see Ryzhkov and Zrnić 2007, and Chapter 3). 

Measurements of KDP in dry snow can be very noisy, owing to low variability of the 

radial slope of     with range. This especially inhibits use of KDP at S band in dry 

snow in areas of low signal-to-noise ratio, where statistical fluctuations in     are 

larger. 

 

d. Differential propagation phase shift in mixed-phase particles 

As with ZDR, an increase in liquid water content leads to larger KDP values for a 

given particle size and shape (at least for small hydrometeors). Again, this is directly 

related to the much larger relative permittivity of water compared to ice. Because large, 
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wet snow aggregates can produce resonance scattering (even at S band), the addition of 

differential phase shift upon backscatter δ can lead to problems estimating KDP.  

 

 

Fig. 2.18: Normalized specific differential phase (KDP) for melting snowflakes, at S, C, and X 

bands (black, blue, and red curves). 

 

In melting hail, the normalized KDP values (Fig. 2.19) display a complex 

behavior similar those in dry hail. Of note, the magnitudes of the oscillations at S band 

are larger than for dry hail, whereas those at C and X bands are comparatively smaller. 

Additionally, the same overall decrease in normalized KDP with size is evident. Again, 

however, Mie scattering effects will likely render the measured KDP values suspect in 

the case of large wet hail. 
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Fig. 2.19: Normalized specific differential phase (KDP) for wet hailstones, at S, C, and X bands 

(black, blue, and red curves). 

 

4. Co-polar cross-correlation coefficient 

The co-polar cross-correlation coefficient ρhv is the correlation between the 

complex co-polar H and co-polar V backscattered signals, taken at zero lag time. 

[Biases in the polarimetric variables are possible in regions of low signal-to-noise ratio; 

thus, estimating the moments at lag one (e.g., Melnikov 2006; Melnikov and Zrnić 

2007) is often adopted to mitigate such biases]. Because ρhv depends on the complex 

scattering functions and not just their magnitudes, it accounts for both power and phase 

of the returned signal. It can be thought of as a measure of similitude between the 

amplitude and phases of the returned signals at H and V polarizations; in other words, it 

can be considered a measure of diversity of the scatterers in the radar sampling volume. 

This diversity includes any physical characteristic of the hydrometeors that affects the 

returned signal and phase that varies within the sampling volume, including 
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composition or complex dielectric factor, shape, and orientation angle. Note that a 

diversity of sizes in the sampling volume does not affect ρhv unless the shape of the 

particles varies across the spectrum. In addition, variability of differential phase within 

the sampling volume can also reduce ρhv. Particles producing significant variations of 

the backscatter differential phase (δ) thus lead to reduced ρhv. Backscatter differential 

phase is described in the next section. 

ρhv is independent of absolute radar calibration, and is not affected by 

propagation effects including attenuation, differential attenuation, and signal 

depolarization (e.g., Zrnić and Ryzhkov 1999). In addition, ρhv is independent of the 

concentration of hydrometeors in the sampling volume. However, ρhv is not immune to 

noise bias (when taken at zero lag time), and it can be affected by nonuniform beam 

filling. Because of these qualities, ρhv can be an extremely important variable in 

hydrometeor classification schemes.  For example, nonmeteorological scatterers tend to 

produce very low ρhv, exhibiting little overlap with values observed in precipitation. 

Such nonmeteorological scatterers include chaff (Zrnić and Ryzhkov 2004; Fig. 2.20), 

smoke and ash from fires (e.g., Melnikov et al. 2008, 2009; Fig. 2.21), biological 

scatterers such as birds, bugs, and bats (e.g., Ryzhkov et al. 2005a; Fig. 2.22), sea 

clutter (e.g., Ryzhkov et al. 2002a; Fig. 2.23), and tornadic debris (Ryzhkov et al. 

2005c; Fig. 2.24). 

 

a. Co-polar cross-correlation coefficient in rain 

 The co-polar cross-correlation coefficient exhibits high values (> 0.97) in rain at 

S and X bands. Values are slightly less than unity owing to a change of particle shape 
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with size, and slight wobbling of drops as they fall. Because of the enhanced resonance 

effects for large raindrops at C band, ρhv at C band in pure rain can be as low as 0.93 

(Ryzhkov and Zrnić 2005). In light rain and drizzle, ρhv should be close to 1.0 for all 

radar wavelengths and can serve as a measure of the quality of the radar system. 

 

b. Co-polar cross-correlation coefficient in solid ice particles 

 Small ice pellets produce ρhv near 1.0 at all radar wavelengths. There are no 

resonance effects owing to the drastically smaller values of the complex dielectric factor 

of solid ice. Very slight reductions in ρhv are caused by the change of particle shape 

with size as in rain, and increased tumbling of particles (larger σ) compared to raindrops 

of the same size and shape. 

 Large, nonspherical hailstones can produce reductions in ρhv, even if completely 

dry. This is because such particles produce nonzero backscatter differential phase shifts 

as a result of Mie scattering. Additional factors contributing to the decrease in ρhv of 

hailstones are enhanced tumbling, and possibly irregularities in shape such as lobes or 

spikes (e.g., Balakrishnan and Zrnić 1990b). 

 

c. Co-polar cross-correlation coefficient in dry snow 

 Like ZDR, the values of ρhv in dry snow can vary depending on the dominant 

crystal habit present. For instance, large, fluffy aggregates of snow produce ρhv very 

close to 1.0 (their very low density counteracts the wobbling effect and irregular 

shapes). On the other hand, pristine anisotropic crystals can produce a tangible decrease 
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in ρhv (< 0.96) because the impact of a distribution of canting angles is accentuated with 

highly anisotropic particles. 

 

d. Co-polar cross-correlation coefficient in mixed phase particles 

 The lowest observed values of ρhv in precipitation are produced by wet ice 

particles such as melting snow and melting hail. The addition of liquid water 

accentuates differences in shapes, wobbling, etc. The melting layer “bright band” in ρhv 

is unmistakable in stratiform precipitation, observed as a dramatic decrease in ρhv below 

values expected in pure rain or pure dry snow at S, C, and X bands (Fig. 2.25). Such 

pronounced signatures make ρhv reductions the basis of automated melting layer 

detection algorithms for polarimetric WSR-88D radars (Giangrande et al. 2005, 2008). 

This decrease in ρhv is caused by several factors, including a mixture of hydrometeor 

types and shapes (wet snow aggregates, pure liquid raindrops, etc.), wobbling of wet 

snowflakes, nonuniform beam filling, and (possibly) resonance scattering caused by the 

largest wet aggregates. 

 Wet hail can also produce anomalously low ρhv at all weather radar wavelengths, 

especially those stones of resonance size. Within the updrafts of severe convective 

storms, very low ρhv caused by large hailstones undergoing wet growth is a commonly 

observed feature, often called the “ρhv hole” (e.g., Ryzhkov et al. 2005c; Kumjian and 

Ryzhkov 2008a; Picca and Ryzhkov 2012). Values below 0.85 are routinely observed at 

S band in such signatures, and Picca and Ryzhkov (2012) observed ρhv < 0.4 at C band. 

Melting hailstones mixed with raindrops often produce depressed ρhv values beneath the 

melting layer; such observations prove a useful indicator of the presence of hail (e.g., 
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Ryzhkov et al. 2005a,c; Heinselman and Ryzhkov 2006; Kumjian and Ryzhkov 2008a; 

Park et al. 2009). 

 

Fig. 2.20: Display of (top) ZH and (bottom) ρhv from the polarimetric WSR-88D radar in Key 

West, Florida (KBYX) on 7 February 2012, at 2128 UTC. Data show chaff mixed with 

precipitation. The chaff is clearly identified by ρhv as bands of extremely low ρhv values (< 

0.70), whereas the precipitation has ρhv near unity. 
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Fig. 2.21: Display of (top) ZH and (bottom) ρhv from the polarimetric WSR-88D radar in 

Melbourne, Florida (KMLB) on 31 January 2012, at 2114 UTC. Data show a large grassfire 

north of the radar. The smoke and ash from the fire is clearly identified by ρhv values (< 0.50), 

whereas the clouds have ρhv near unity. 
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Fig. 2.22: Display of (top) ZH and (bottom) ρhv from the polarimetric WSR-88D radar in 

Huntsville, AL (KHYX) on 3 March 2012, at 0545 UTC. Data show a widespread region of 

biological scatterers, including insects and birds as very low ρhv, as well as a few precipitation 

cells evident by ρhv near unity. 
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Fig. 2.23: Display of (top) ZH and (bottom) ρhv from the polarimetric WSR-88D radar in 

Langley Hill, Washington (KLGX) on 7 February 2012, at 2242 UTC. Data show sea clutter 

mixed with precipitation. The sea clutter is clearly identified by ρhv values (< 0.70), whereas the 

precipitation has much higher ρhv (> 0.90). 
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Fig. 2.24: Display of (top left) ZH, (top right) Doppler velocity, (bottom left) ρhv, and (bottom 

right) ZDR from the polarimetric WSR-88D radar in Springfield, Missouri (KSGF) on 29 

February 2012, at 0605 UTC. Data show a tornadic debris signature, marked by high ZH, low 

ZDR, very low ρhv collocated with a vortex signature in the Doppler velocities, located at 

approximately x = 22 km, y = 39 km.  
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Fig. 2.25: Display of ρhv from the BOXPOL radar. Data are from the same scan as Figure 2.13. 

A dramatic decrease in ρhv is evident in the melting layer. The decrease in ρhv with range is a 

result of decreased signal-to-noise ratio. 

 

5. Backscatter differential phase shift 

In addition to the component of differential phase acquired as the H and V 

polarized waves propagate through an anisotropic medium, Mie scattering produces a 

component of differential phase on backscatter off nonspherical particles that are large 

compared to the radar wavelength. Known as the backscatter differential phase shift δ, 

this additional phase shift can lead to a reduction in ρhv and is a tell-tale sign of Mie 

scatterers within the radar sampling volume. Additionally, δ is superposed on the 

propagation differential phase shift    , leading to difficulty in estimating KDP. 
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The backscatter differential phase shift is zero for spherical or randomly 

tumbling particles, and generally is larger for larger values of complex relative 

permittivity. There is no straightforward physical explanation for the cause of δ because 

the physics of resonance scattering is extremely complicated. It may be thought of as a 

delay in excitation (and thus backscatter) of the H or V dipole of an illuminated particle 

owing to the particle’s size and geometry, which is such that internal refraction and 

interference between the incident and excited waves occur.    

 

a. Backscatter differential phase shift in rain 

 At S band, δ is negligible for most raindrop sizes (Fig. 2.26). For shorter radar 

wavelengths, δ becomes noticeable for resonance-sized drops (5 – 6 mm at C band; 3 – 

4 mm at X band). There exists a temperature dependence that is most noticeable at C 

band, where warmer raindrops produce a larger variation in δ over the resonance size 

band. For this reason alone, C-band ρhv values measured in pure rain can be lower than 

at S or X bands, reaching a theoretical minimum of about 0.93 (Ryzhkov and Zrnić 

2005). 
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Fig. 2.26: Backscatter differential phase shift (δ) for raindrops, at S, C, and X bands (black, 

blue, and red curves). Shown for two temperatures: 0 °C (top) and 20 °C (bottom). 

 

b. Backscatter differential phase shift in solid ice particles 

 Owing to the much smaller complex dielectric factor of ice than for water, the δ 

for solid ice pellets is much smaller at all three radar wavelengths than for raindrops of 

the same size and shape (Fig. 2.27). For particles larger than 1 cm, however, the effects 

of resonance scattering are clear (Fig. 2.28), as δ exhibits large fluctuations for large dry 

hailstones. The wavelength dependence is clear from Figure 2.28 as well, as the 

fluctuations start first at X band, then C band, and lastly at S band. Note that the 

patterns are the same for each wavelength, just shifted to smaller sizes for higher 
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frequencies. This indicates that the behavior of δ as a function of size is produced 

entirely by the geometry of the particle, with a simple scaling between particle size and 

radar wavelength (for spheroidal particles of the same axis ratio, as in the modeled hail). 

 

Fig. 2.27: Backscatter differential phase shift (δ) for ice pellets, at S, C, and X bands (black, 

blue, and red curves). 

 

 

Fig. 2.28: Backscatter differential phase shift (δ) for dry hailstones, at S, C, and X bands (black, 

blue, and red curves). 
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c. Backscatter differential phase shift in dry snow 

 At all radar wavelengths, dry snowflakes produce negligible δ owing to their 

low density (and thus very low values of complex dielectric). Even the complex 

geometry of large snow aggregates apparently is insufficient to produce appreciable 

values of δ. 

 

d. Backscatter differential phase shift in mixed phase particles 

 In contrast to dry snow, wet snow can produce resonance scattering effects, 

possibly even at S band. For individual snowflakes, (Fig. 2.29), δ is most apparent at X 

band. However, the presence of large, wet aggregates at the bottom of the melting layer 

inferred from polarimetric data (e.g., Zrnić et al. 1993; Ryzhkov et al. 2008; Giangrande 

2007) may be of sufficient size and wetness to cause nonzero δ at S band, causing a 

decrease in ρhv. However, there remains uncertainty in quantifying the relative 

importance of δ and of nonuniform beam filling (Ryzhkov 2007) in decreasing ρhv.  

Figure 2.30 is a display of     measured with the BOXPOL radar at the same time as 

the scan shown in Figure 2.13. The nonmonotonic behavior of     through the melting 

layer is clearly seen, indicating δ possibly as high as 5 - 15. Note that such “bumps” 

in the radial profile of     are quite distinct from the monotonic increase in 

precipitation, which is evident at low levels farther downrange (annotated in the figure). 

KDP estimation is difficult in the presence of δ because of the negative slope of the 

measured     on the downrange side of the δ bump, as shown schematically in Figure 

2.31. 
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Fig. 2.29: Backscatter differential phase δ for melting snowflakes at S, C, and X bands (black, 

blue, and red curves).  

 

 Melting hailstones can exhibit substantial δ at all radar wavelengths (Figure 

2.32). The large fluctuations over narrow size bands suggest that ρhv can be dramatically 

lowered in wet hail, as is typically observed. 
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Fig. 2.30: As in Figure 2.13, but     is shown. Note the “bump” in     through the melting 

layer, a contribution to differential phase caused by backscatter off large, wet snow aggregates. 

 

 

Fig. 2.31: Schematic illustrating the difficulty estimating KDP (the slope of the dashed straight 

lines) in the presence of a δ bump on the radial profile of the measured     (blue curve). 

Erroneously large positive and negative errors in the KDP estimates are depicted in red, whereas 

the true KDP is shown in green. 
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Fig. 2.32: Backscatter differential phase shift (δ) for melting hailstones, at S, C, and X bands 

(black, blue, and red curves). 

 

6.  Linear depolarization ratio 

 When electromagnetic radiation of a given polarization illuminates a 

hydrometeor canted in the plane of polarization, both dipoles are illuminated. This leads 

to the hydrometeor scattering radiation with components of both polarizations. The 

secondary radiation that has the same polarization as the incident radiation is called the 

co-polar component, whereas when the incident and scattered polarizations are 

different, the scattered radiation has a cross-polar component (and the hydrometeor is 

said to have depolarized the incident radiation). The concept of depolarization is shown 

schematically in Figure 1.6.  

The linear depolarization ratio LDR is a measure of the magnitude of the 

depolarized component of the backscattered signal normalized by the co-polar 
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component of the backscattered radiation. It is not available from radars that transmit 

and receive H and V polarization waves simultaneously. Because LDR is a ratio (like 

ZDR), it is independent of absolute radar calibration and is independent of hydrometeor 

number concentration. However, it can be affected by noise bias and is not immune to 

propagation effects. For example, upon propagation of a radar signal through a 

depolarizing medium, the observed LDR will exhibit an increasing trend. After emerging 

from the depolarizing medium, the signal retains the “memory” of depolarization and 

LDR values remain elevated, even in a noncanted medium. Because the depolarized 

component of scattered radiation tends to be orders of magnitude smaller than the co-

polar component, the measured LDR is given in logarithmic units (dB) and is generally 

negative. For example, in the case of no depolarization on backscatter, LDR is equal to 

negative infinity. However, limitations of the antenna (and other hardware) design 

typically limit the so-called “cross-polar isolation” to about -40 dB, which is generally 

about the lower limit of measurable LDR.  

LDR increases for irregularly shaped particles that are canted with respect to the 

polarization of the incident wave. Because most hydrometeors tend to have 0 mean 

canting angle (implying zero depolarization), it is the width of the canting angle 

distribution (σ) that controls LDR. In other words, increasing σ tends to increase LDR for 

nonspherical particles. 

 

a. Linear depolarization ratio in rain 

LDR in rain tends to be very low, especially for smaller drops that have essentially 

spherical shape (Fig. 2.32). Though larger drops are oblate and can thus depolarize the 
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incident radiation if canted, the mean canting angle of raindrops tends to be 0 (e.g., 

Ryzhkov et al. 2002b). Thus, some of the lowest values of measured LDR tend to be in 

rain.  

 

Fig. 2.33: Linear depolarization ratio (LDR) for raindrops, at S, C, and X bands (black, blue, and 

red curves). Shown for two temperatures: 0 °C (top), and 20 °C (bottom). 

 

b. Linear depolarization ratio in solid ice particles 

 The LDR in small ice pellets is lower than raindrops of the same size and shape 

(Fig. 2.34), indicating that the decreased complex dielectric factor of ice, which tends to 

decrease LDR, dominates the effect of increased tumbling, which tends to increase LDR. 

In contrast, the LDR of dry hailstones can grow quite large at all radar wavelengths (Fig. 

2.35). There is a large separation of LDR values at S, C, and X bands for hailstones 
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smaller than about 5 cm, with the largest values at X band. This suggests the possibility 

of using dual-wavelength LDR measurements to determine hail size. 

 

Fig. 2.34: Linear depolarization ratio (LDR) for ice pellets, at S, C, and X bands (black, blue, and 

red curves). 

 

 

Fig. 2.35: Linear depolarization ratio (LDR) for dry hailstones, at S, C, and X bands (black, blue, 

and red curves). 
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c. Linear depolarization ratio in dry snow 

For a given ZH, the ZDR in dry snow and light rain exhibits heavy overlap (e.g., 

Ryzhkov and Zrnić 1998a). Because of the increased wobbling of dry snowflakes, 

however, LDR offers additional discriminatory power (Fig. 2.36) for detecting 

differences between depolarizing dry snowflakes and light rain in which depolarization 

is very small. This is especially true for smaller, higher-density snowflakes. 

 

Fig. 2.36: Linear depolarization ratio (LDR) for dry snowflakes, at S, C, and X bands (black, 

blue, and red curves). Snowflakes considered as oblate spheroids (aspect ratio 0.7), with density 

decreasing as a function of size following Brandes et al. (2007). Complex scattering amplitudes 

were computed using the Rayleigh approximation. The canting angle distribution width σ = 40°. 

 

d. Linear depolarization ratio in mixed phase particles 

In contrast to dry snow, LDR can be quite large in melting snowflakes at all radar 

wavelengths (Fig. 2.37), making it an attractive variable for melting layer detection. The 

enhancement is due to large, wet, oblate snowflakes wobbling. An increase in liquid 

water content on a particle helps enhance the cross-polar component of the 

backscattered radiation, enhancing LDR.   
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Wet hailstones produce much larger values of LDR than pure rain (Fig. 2.38). 

This includes hailstones at low levels, or hail undergoing wet growth in convective 

storm updrafts aloft. The latter contributes to an observed enhancement of LDR known 

as the “LDR cap” (e.g., Jameson et al. 1996; Bringi et al. 1997; Hubbert et al. 1998; 

Kennedy et al. 2001). 

 

Fig. 2.37: Linear depolarization ratio (LDR) for melting snowflakes, at S, C, and X bands (black, 

blue, and red curves). 
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Fig. 2.38: Linear depolarization ratio (LDR) for wet hailstones, at S, C, and X bands (black, blue, 

and red curves). 

 

7. Co-cross-polar correlation coefficients 

 Two of the least-explored polarimetric radar variables are the co-cross-polar 

correlation coefficients ρxh and ρxv, which measure the correlation between the cross-

polarized and co-polarized components of the backscattered radiation. Ryzhkov (2001) 

provides a theoretical description of ρxh and ρxv, and the follow-up study by Ryzhkov et 

al. (2002b) provides some of the first measurements of these variables in precipitation. 

The co-cross-polar correlation coefficients ρxh and ρxv depend strongly on the 

orientation of the irradiated hydrometeors. For particles that are randomly oriented in 

the horizontal plane or entirely randomly oriented, ρxh and ρxv are identically zero. More 

commonly, however, hydrometeor orientations are described by an axisymmetric, two-

dimensional, Gaussian distribution of canting angles. In this case, Ryzhkov (2001) 

demonstrates that ρxh and ρxv depend almost entirely on the mean canting angle <α> of 

hydrometeors within the resolution volume, and the width of the canting angle 
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distribution σ. (When σ is larger than <α> , which occurs for most hydrometeors, the 

magnitudes of the co-cross-polar correlation coefficients are proportional to the ratio 

<α>/σ). As such, the co-cross-polar correlation coefficients are much more sensitive to 

changes in particle orientation than to variations in the particle size distribution. If the 

mean canting angle of particles within the sampling volume is <α> = 0, then ρxh = ρxv = 

0. Measured nonzero values (about 0.2 – 0.3) of ρxh and ρxv in rain are a manifestation 

of <α> ≠ 0 in a given resolution volume (e.g., Ryzhkov et al. 2002b). The average <α> 

over a propagation path (defined as the “net” canting angle) needs to be only a few 

tenths of a degree to cause a visible trend in |ρxh| and |ρxv|. Such net canting of raindrops 

may be possible in cases of vertical wind shear (e.g., Brussard 1976). Ice crystals aloft 

oriented with strong electric fields (but not exactly in the vertical or the horizontal) have 

been observed to cause a strong increase in |ρxh| and |ρxv| with range. The lowest values 

of |ρxh| and |ρxv| occur in the melting layer, owing to increased wobbling of large, wet 

snow aggregates. Enhanced σ tends to decrease the importance of <α>. 

The co-cross-polar correlation coefficients are independent of hydrometeor 

concentration and are independent of absolute radar calibration. However, they are 

affected by noise bias and are quite sensitive to propagation effects, especially 

depolarization on propagation. In fact, on propagation through a medium of 

nonspherical particles which are canted with respect to the plane of polarization (i.e., 

those that cause depolarization), |ρxh| and |ρxv| display a pronounced increase with range. 

After emerging from the depolarizing medium, the signal retains the “memory” of the 

depolarization and ρxh and ρxv maintain their enhanced values. Note that a noticeable 

trend of |ρxh| and |ρxv| in range can also signify radar system imperfections. 
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Whereas the magnitudes of ρxh and ρxv are directly related to the orientation 

parameters <α> and σ, the phases of ρxh and ρxv are related to the sign of <α> and the 

presence of non-Rayleigh scatterers in the resolution volume. For Rayleigh scatterers 

with small values of the imaginary part of the complex dielectric factor (including dry 

snow and ice crystals), the phase of ρxh and ρxv is 0 or π, depending on the sign of <α>. 

For particles with larger imaginary parts of the complex dielectric factor (or non-

Rayleigh targets), the phases are nonzero and may contain information about the 

microphysical properties of the particles. Note that unlike the co-polar differential phase 

shift upon backscatter δ, the so-called depolarization phases (see Chapter 1) are much 

less affected by particle shape; particles simply must be sufficiently nonspherical as to 

produce a depolarized component of the backscattered radiation. 

 

8. Specific attenuation 

 Though not directly measured, the specific attenuation AH,V is an important 

polarimetric radar variable, especially at shorter radar wavelengths. It is the amount of 

attenuation of the co-polar H (or V) polarization signal as it propagates through a lossy 

medium, typically expressed in logarithmic units (dB km
-1

). In other words, it describes 

the amount that the measured reflectivity factor at H (or V) polarization ZH,V decreases 

owing to attenuation. Integrating AH or AV over range along a radial provides the total 

attenuation of the signal along that radial. Specific attenuation is directly proportional to 

the imaginary part of the complex forward scattering amplitudes of a given 

hydrometeor, and thus depends on the particle’s composition and size.  
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a. Specific attenuation in rain 

 The normalized AH as a function of size for raindrops is shown in Figure 2.39. 

The proportionality to wavelength is clearly seen, as values are negligible for most drop 

sizes at S band, but become large for large raindrops at the shorter radar wavelengths. 

The temperature dependence is also quite evident, especially for the resonance sizes at 

C band. Because the specific attenuation values are insignificant for drops smaller than 

about 3 mm at all wavelengths, it is clear that only rain with > 3 mm diameter drops can 

produce appreciable attenuation. Continental convective rain, for which numerous large 

drops are produced by melting small hail and graupel, thus can produce significant 

attenuation at the shorter radar wavelengths. 

 

Fig. 2.39: Normalized specific attenuation (AH) for raindrops at S, C, and X bands (black, blue, 

and red curves). Shown for two temperatures: 0 °C (top), and 20 °C (bottom). 
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b. Specific attenuation in solid ice particles 

 Owing to the much smaller imaginary part of the complex dielectric factor of 

ice, attenuation in small ice particles is negligible compared to attenuation in raindrops 

of the same size and shape (Fig. 2.40). In contrast, AH in large hailstones can be quite 

significant at all radar wavelengths (Fig. 2.41). Note that resonance-sized hailstones at S 

band (> 6 cm) produce larger values of AH than at C and X bands. 

 

 

Fig. 2.40: Normalized specific attenuation (AH) for ice pellets, at S, C, and X bands (black, blue, 

and red curves). 
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Fig. 2.41: Normalized specific attenuation (AH) for dry hailstones, at S, C, and X bands (black, 

blue, and red curves). 

 

c. Specific attenuation in dry snow 

Because of the very small imaginary part of the complex relative permittivity of 

dry snow, the specific attenuation in snow is negligible at S, C, and X bands. 

 

d. Specific attenuation in mixed-phase particles 

 Though melting snow generally produces small values of AH at S band, the 

attenuation at C and X bands can be quite large (Fig. 2.42). Wet hailstones can produce 

significant AH at all three wavelengths (Fig. 2.43). Note that AH for wet hail is generally 

smaller than for dry hailstones at all three weather radar wavelengths. Also, the values 

of AH in wet hail are similar for S, C, and X bands. 
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Fig. 2.42: Normalized specific attenuation (AH) for melting snow, at S, C, and X bands (black, 

blue, and red curves). 

 

 

 

Fig. 2.43: Normalized specific attenuation (AH) for wet hail, at S, C, and X bands (black, blue, 

and red curves). Note that it is the same scale as for dry hailstones. 
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9. Specific differential attenuation 

Whereas AH and AV describes the decrease in ZH and ZV owing to attenuation, 

their difference ADP = AH – AV describes the decrease in ZDR, called specific differential 

attenuation. ADP is directly proportional to the difference between the imaginary parts 

of the complex forward scattering amplitudes at H and V polarizations, and thus 

depends on the particle’s composition, shape, and size. Spherical particles have ADP = 0 

by definition. 

 

a. Specific differential attenuation in rain 

ADP is near 0 for smaller raindrops at all wavelengths because of their nearly 

spherical shapes (Fig. 2.44). Large drops produce large ADP values at X band, and 

again, the temperature dependence is evident. 
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Fig. 2.44: Specific differential attenuation (ADP) for raindrops, at S, C, and X bands (black, blue, 

and red curves). Shown for two temperatures: 0 °C (top), and 20 °C (bottom). 

 

b. Specific differential attenuation in solid ice particles 

Specific differential attenuation is very small in ice pellets (Fig. 2.45), owing to 

the small imaginary part of the complex dielectric factor of ice at all three wavelengths. 

Large dry hailstones, however, can produce large ADP (Fig. 2.46), assuming they are 

nonspherical. However, at C and X bands the large positive and negative fluctuations in 

ADP are centered on zero; the integrated effect of a distribution of dry hailstones may 

indeed make ADP near zero, even if such large hailstones are present. At S band, ADP 
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values tend to be positive (which would result in a decrease in ZDR) for oblate hailstones 

smaller than about 10 cm. 

 

Fig. 2.45: Specific differential attenuation (ADP) for ice pellets, at S, C, and X bands (black, 

blue, and red curves). 

 

 

Fig. 2.46: Specific differential attenuation (ADP) for dry hailstones, at S, C, and X bands (black, 

blue, and red curves). 



90 

c. Specific differential attenuation in dry snow 

 The imaginary part of the complex dielectric factor of snow is very small; hence, 

ADP in dry snow is insignificant at all three weather radar wavelengths. 

 

d. Specific differential attenuation in mixed-phase particles 

 Melting snow can produce very large ADP at C and X bands (Fig. 2.47). 

Differential attenuation is possible at S band when large, wet snow aggregates are 

present in the melting layer. An example of S-band differential attenuation in melting 

snow is provided in Figure 2.48, evident as a radial streak of slightly negative ZDR 

emanating from the melting layer bright band starting at a range of about 50 km. 

 Wet hail produces very large differential attenuation (Fig. 2.49) at all three 

wavelengths. Unlike for dry hailstones, ADP values tend to be positive for most 

hailstone sizes at all radar wavelengths, implying a decrease in ZDR should be observed 

in melting hail (if it is sufficiently large). Also of note is that the ADP values for S band 

in giant hail (> 5 – 6 cm) are larger than at C and X bands. Large differential attenuation 

at shorter wavelengths is routinely observed in convective storms, and correcting for 

such anomalous differential attenuation remains a challenging problem (e.g., Bringi et 

al. 1990; Snyder et al. 2010; Gu et al. 2011; Borowska et al. 2011a). At S band, 

differential attenuation in convective storms is less common, but is still observed 

(Figure 2.50). 
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Fig. 2.47: Specific differential attenuation (ADP) in melting snowflakes at S, C, and X bands 

(black, blue, and red curves). 

 

 

Fig. 2.48: Data from a vertical cross section through a winter stratiform precipitation event on 

27 January 2009 at 2317 UTC, taken with the S-band KOUN along the 181° azimuth. The radial 

streak of negative ZDR emanating from about 50 km range is caused by differential attenuation. 
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Fig. 2.49: Specific differential attenuation (ADP) in wet hailstones at S, C, and X bands (black, 

blue, and red curves). 
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Fig. 2.50: Observations of (a) ZH, and (b) ZDR with the S-band polarimetric WSR-88D near 

Vance Air Force Base in Oklahoma (KVNX). Data are from 0.5° in elevation, on 3 February 

2012, at 0335 UTC. The radial streaks of negative ZDR are indications of differential 

attenuation. 
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Chapter 3: Artifacts in dual-polarization radar data. 

 Dual-polarization radar data offer important new information regarding the type 

and size of precipitation particles within storms, as shown in the first two chapters. 

However, with this new technology comes a new collection of possible data artifacts. 

Proper identification and understanding of these potential problems will alleviate 

confusion in the interpretation and utilization of dual-polarization data.  In this chapter, 

we discuss some of the most common artifacts present in dual-polarization data, their 

effect on data quality, and their possible uses. 

 

1. Attenuation / Differential Attenuation 

Attenuation is the extinction of the transmitted signal as it propagates through a 

medium.  Power is removed from the propagating signal and dissipated as thermal 

energy within the hydrometeors.  The specific attenuation (in dB km
-1

) of the 

horizontally polarized signal by perfectly oriented hydrometeors is given by 

         ∫   {  
   

}

 

 

                                                                   

and is a function of the imaginary part of the forward complex scattering amplitude 

  
   

.  In the Rayleigh approximation, recall that     

  
      

   
 

    

   

 

   
 

   

                                                                

Therefore,       . This inverse dependence on radar wavelength means that higher-

frequency (shorter-wavelength) radar signals suffer from more attenuation in rain than 

lower-frequency (longer-wavelength) systems.  A secondary reason that smaller-



95 

wavelength radars suffer more attenuation is that the imaginary part of the complex 

dielectric function  is larger for shorter wavelengths (at a given temperature; see 

Appendix A).  The National Weather Service WSR-88D radar network operates at S 

band, or at about 11-cm wavelength, so attenuation and differential attenuation typically 

are not major concerns.  However, it can be observed in some extreme cases, such as 

when the beam propagates through the supercell storm in Figure 1.  Specific differential 

attenuation is the difference in attenuation between the horizontally- and vertically-

polarized channels: 

          ∫   {  
      

   }      

 

 

                                              

Differential attenuation causes a decrease in ZDR, and is especially noticeable in Fig. 3.1 

as the down-range ZDR values drop below -3 dB.  Differential attenuation is also evident 

in Figure 3.2. Notice the increased differential propagation phase in this area; the 

propagation phase shift     is proportional to the real part of the complex forward 

scattering amplitudes. Thus, regions experiencing attenuation often exhibit large     . 

Because phase measurements are unaffected by attenuation,     is extremely useful for 

correction of attenuation and differential attenuation (e.g., Bringi et al. 1990; Testud et 

al. 2000; Snyder et al. 2010; Gu et al. 2011; Borowska et al. 2011a). 
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Fig. 3.1: Two-panel plot of ZH (top) and ZDR (bottom) from the polarimetric WSR-88D radar 

near Huntsville, AL (KHTX) collected on 2 March 2012, at 2254 UTC.  Data were sampled at 

the 0.5⁰ elevation angle.  The example shows differential attenuation, evident as the swath of 

negative ZDR values downrange of the supercell storm. 

 

2. Nonuniform Beam Filling 

Regions of differential attenuation are often coincident with regions of radially-

oriented ρhv reductions (Fig. 3.2).  Though often confused with attenuation
3
, this artifact 

is a result of nonuniform beam filling.  Beam broadening with range can lead to 

inhomogeneous filling of the sampling volume (Fig. 3.3).  In the event that there are 

large cross-beam gradients of     within the radar sampling volume, ρhv is reduced 

                                                 
3
 Recall that ρhv is not affected by attenuation. 
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(e.g., Ryzhkov 2007).  This reduction in ρhv occurs because of the spread of     values 

within the sampling volume, which is analogous to the reduction in ρhv associated with 

the presence of Mie scatterers that produce nonzero differential phase shift upon 

backscatter (δ).  Recall that a diversity of differential phase within the sampling volume 

reduces the correlation coefficient ρhv.  In addition, large cross-beam gradients in ZH or 

ZV can lead to biases in ZDR,    , and ρhv (Ryzhkov 2007). 

 

Fig. 3.2: Four-panel display of ZH (top left), ZDR (top right), ρhv (bottom left), and     (bottom 

right), collected with the polarimetric WSR-88D radar near Memphis, TN (KNQA) on 1 

February 2012, at 2215 UTC. Data show the effects of nonuniform beam filling, especially in 

the radial streaks of reduced ρhv, as well as differential attenuation in ZDR. 
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Fig. 3.3: Schematic illustrating nonuniform beamfilling (NBF).  In this example, the bottom 

portion of the beam intercepts heavy rain characterized by large ΦDP values while the top of the 

beam intercepts ice-phase particles (with low ΦDP) above the freezing level.  This large spread 

of ΦDP results in a reduction of ρhv.  

  

Nonuniform beam filling is common when convective storms occur at large 

distances from the radar.  The reduction in ρhv causes increased statistical fluctuations in 

all polarimetric variables.  The reduced data quality leads to a deterioration of 

quantitative precipitation estimates and hydrometeor classification.  The latest version 

of the hydrometeor classification algorithm (Park et al. 2009) accounts for regions of 

reduced signal quality, but meteorologists should be aware of these areas when 

interpreting polarimetric radar measurements. 

 

3. Depolarization streaks 

 In the presence of strong electric fields in the upper regions of storms, small ice 

crystals may align with the electric field.   This phenomenon has been observed with 
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polarimetric radars that transmit circularly-polarized waves (e.g., Hendry and 

McCormick 1976; Kreihbel et al. 1996) and linearly-polarized waves (e.g., Caylor and 

Chandrasekar 1996; Metcalf 1997; Ryzhkov and Zrnić 2007; Hubbert et al. 2010b; 

Palmer et al. 2011).   The common alignment of the crystals lasts until a lightning 

discharge substantially reduces the electric field intensity, whereupon the crystals return 

to more typical orientations (generally, with their larger dimension more-or-less aligned 

in the horizontal).  Crystals aligned in an electric field that is neither purely horizontal 

or vertical in orientation can produce a peculiar artifact in polarimetric measurements 

made with radars operating in the simultaneous transmission and reception mode, such 

as the WSR-88D (Ryzhkov and Zrnić 2007; Hubbert et al. 2010a,b; Zrnić et al. 2010a).  

Polarimetric radars operating in a mode of alternating transmission and reception are 

immune to this type of artifact. 

The artifact appears as radial “streaks” of positive or negative ZDR (e.g., Figure 

3.4) generally at higher elevation angle scans where the radar is sampling ice 

hydrometeors.  These “depolarization streaks” are not visible in the ρhv fields, but are 

sometimes coincident with discernable increases in     (because of crystal anisotropy).  

A necessary condition for these streaks to appear is a nonzero phase           , 

where    is the system phase upon transmission and     is the intrinsic differential 

phase shift along the interceding medium.  In many cases, the transmitted wave 

propagates through rain at lower altitudes before entering the ice-phase region, 

acquiring nonzero    , so this condition is satisfied.    

When the transmitted wave enters the depolarizing medium (i.e., the oriented ice 

crystals), the electromagnetic wave becomes progressively depolarized, as depicted in 
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the schematic in Figure 3.5.  Once the signal is depolarized, the remainder of the data 

downrange of the point of depolarization is compromised.  This artifact inhibits the 

usefulness of ZDR for quantitative precipitation estimation and hydrometeor 

classification.  However, these depolarization streaks, though a detriment to quantitative 

precipitation estimation and hydrometeor classification, can serve as a useful indicator 

of the presence of a relatively strong electric field (i.e., sufficiently strong to orient low-

inertia crystals).  Though the presence of such streaks does not always indicate an 

imminent lightning discharge, further research may determine their applicability as a 

lightning forecasting tool.  Additionally, the generation of electric charge requires rimed 

particles, implying the presence of supercooled liquid water.  Localization of areas of 

ongoing riming, especially in embedded convection within more widespread stratiform 

precipitation, may be useful to indicate conditions favorable for aircraft icing.  These 

and other applications of depolarization streaks remain to be investigated.   
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Fig. 3.4: Four-panel display of ZH (top left), ZDR (top right),     (bottom left), and ρhv (bottom 

right). Shown is an example of depolarization streaks, from Tropical Storm Erin (19 August 

2007, 0856 UTC). Data were collected with the research WSR-88D radar (KOUN) in Norman, 

OK at 8.0° elevation.  
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Fig.  3.5: Cartoon illustrating the depolarization of the signal by crystals oriented in an electric 

field ( ⃗ ).  The original polarization of the transmitted wave (blue, only H-polarization is shown) 

is depolarized by the canted ice crystals, changing the polarization state of the propagating wave 

(red vector).  From the moment of depolarization in the canted medium (green circle), the rest 

of the signal further along the radial is compromised, evident as a radial streak of positive or 

negative ZDR.  The sign of ZDR depends on the accumulated     along the propagation path 

leading up to the canted crystals, the system differential phase upon transmission, and the 

orientation angle of the crystals (Ryzhkov and Zrnić 2007). 

 

4. Polarimetric Three-Body Scattering Signature (PTBSS) 

 The three-body scattering signature (TBSS; Zrnić 1987; Wilson and Reum 

1988) in the ZH field has been used to indicate the presence of hail (e.g., Lemon et al. 

1998).  The signature appears as a radially-oriented “spike” of weak ZH protruding from 

the far side (relative to the radar) of the storm.  It occurs when electromagnetic radiation 

scattered off hailstones reflects off the ground, then scatters again off the hailstones and 

towards the radar.  In polarimetric radar observations, the near-storm portion of the 

TBSS is often observed to have extremely large ZDR values (> 6 dB) and very low ρhv 

(< 0.5) whereas the downrange portion tends to have low ρhv and negative ZDR (Fig. 

3.6). 
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Fig. 3.6: Three-panel display of ZH (top), ZDR (middle), and ρhv (bottom) from the polarimetric 

WSR-88D radar near Knoxville, TN (KMRX). Shown is an example of a polarimetric three-

body scattering signature (PTBSS), observed on 2 March 2012 at 2318 UTC, at elevation 2.4⁰.  
The PTBSS extends nearly 50 km behind the hail core. Note the large positive ZDR (> 4 dB) just 

beyond the hail core, followed by predominantly negative values downrange. Values of ρhv are 

extremely low (< 0.6) throughout.   
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The cause of the large ZDR associated with the PTBSS can be explained within 

the framework of simple scattering theory.  The received ZDR from the PTBSS can be 

considered the product of three factors, as explained by Picca and Ryzhkov (2012): 

    
  

  
 

  

  
 

  

  
                                                                              

The first factor (PH / PV) characterizes the difference between radiation patterns of the 

scatterer at H and V polarizations.  The second factor (σH / σV) is the ratio between 

radar cross-sections (at H and V polarizations) of the ground or underlying surface 

beneath the hail core.  The third factor is a ratio of attenuation factors at H and V 

polarization (LH / LV) that characterizes losses due to propagation through the hailstones 

as well as scatter off the ground or underlying surface.  Note that each of these factors is 

a function of the angle θ of the radiation path between the hail core and the ground 

(measured from nadir).   

 In the Rayleigh scattering approximation, a hailstone can modeled as 

horizontally- and vertically-oriented electric dipoles aligned with the major and minor 

axes of the particle, which is assumed to be spheroidal in shape.  When illuminated by 

incident microwave radiation, the dipoles that are aligned with the incident radiation 

polarization vector are excited and emit secondary radiation.  The radiation emitted by 

the excited horizontal (vertical) dipole is horizontally- (vertically-) polarized.  In 

general, the radiation patterns at H and V polarizations are different.  For example, the 

V dipole does not radiate in the downward direction, but only at oblique angles (θ ≠ 0°).  

In contrast, the H dipole does radiate directly downward (Fig. 3.7, part I).  Thus, the 

radiation scattered in the nadir direction (θ = 0°) has no vertically-polarized component, 

resulting in infinite ZDR (Kumjian et al. 2010b). 
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 In reality, of course, the PTBSS is produced by downscatter paths over a conical 

region (e.g., Zrnić 1987).  Thus, V-polarized component of the downscattered signal is 

nonzero, though still much smaller than the H-polarized component.  This produces 

large (but finite) bistatic ZDR (e.g., Aydin et al. 1998).  In contrast, at these 

downscattered paths close to nadir the ratio of ground cross sections σH / σV is close to 

one, assuming the absence of any interesting geological features (Fig. 3.7, part II).  

Similarly, the loss factor LH / LV is also near unity (Fig. 3.7, part III).  Thus, the PTBSS 

ZDR is determined primarily by the factor PH / PV, which is expected to be very large for 

the reasons explained above.  Because the downscattered paths at angles near nadir are 

shorter than those at larger angles, the highest ZDR is expected to be located nearest the 

hail core.  Indeed, observations of PTBSSs reveal that the highest ZDR signatures are 

separated from the presumed hail core (maximum in ZH) by ranges comparable to the 

height AGL of the sampled hail core (Kumjian et al. 2010b).  Extended TBSSs indicate 

contributions from downscattered paths at larger θ.  At such larger θ, the bistatic ZDR 

(that is, the ratio PH / PV) decreases (Aydin et al. 1998).  Similarly, the ratios LH / LV 

and σH / σV decrease with increasing θ (e.g., Ulaby et al. 1982; Hubbert and Bringi 

2000; Picca and Ryzhkov 2012). This can lead to negative ZDR values in the downrange 

portions of PTBSSs (Fig. 3.7). 

The PTBSS can be especially useful for hail detection when the ZH TBSS is 

obfuscated by the presence of other storms.  However, the very large ZDR values should 

not be mistaken for a ZDR column.  Though ZDR columns can be coincident with 

reduced ρhv, the nonmeteorological values associated with the PTBSS can be used to 

discern between the two signatures.  Also note that the PTBSS only appears on the rear  
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Fig. 3.7: Schematic illustrating the polarimetric TBSS.  In the top panel, selected paths of 

electromagnetic radiation are shown.  Radiation scatters of the hailstones and towards the 

ground at two off-nadir angles (θa and θb).  The measured ZDR in the PTBSS is the product of 

three ratios: I. The “bistatic ZDR” (Aydin et al. 1998), which is the ratio of the powers of the 

radiation scattered downward by the hailstones (PH/PV); II. The ratio of the ground 

backscattering cross section at H and V polarizations (σH / σV); and a factor representing the 

differential attenuation suffered by the signal as it propagates through the hailstones and off the 

ground (LH / LV).  The left column schematically shows these three factors for θa, close to nadir, 

whereas the right column shows the three factors for θb > θa.  Adapted from Picca and Ryzhkov 

(2012), with changes. 
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side of the storm (i.e., the downrange side).  It is unlikely that the PTBSS can be used as 

an indicator of hail size, just as the TBSS in ZH is ambiguous (Zrnić et al. 2010b).  The 

explanation above considered hailstone radiation patterns in the Rayleigh 

approximation.  Even at S band, hailstones larger than about 2 – 3 cm in diameter are 

outside of the valid limits of the Rayleigh approximation, in which case their radiation 

patterns are produced by higher-order multipoles excited by the incident radiation.  

Thus, though larger hailstones may be able to downscatter more radiation, their intrinsic 

bistatic ZDR is much lower than the smaller hailstones (that have radiation patterns more 

closely approximated by two dipoles aligned with their principle axes), as seen in 

Figure 3.8. 

 

Fig. 3.8: Bistatic ZDR produced by dry, oblate hailstones (axis ratio 0.8) for S and C bands 

(black solid and gray dashed lines, respectively).  From Kumjian et al. (2010b). 
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Chapter 4: The Impact of Raindrop Conduction and Temperature on 

the Polarimetric Radar Variables. 

 

1. Introduction 

We saw in the background sections that some of the dual-polarization radar 

variables are quite sensitive to the temperature of raindrops. If a temperature difference 

exists between a raindrop and the surrounding air, enthalpy is transferred between the 

drop and air in an attempt to minimize the temperature gradient. Because the air and the 

raindrop are in direct contact, such a diffusion of thermal energy is considered 

conduction.  

In most electromagnetic scattering computations, the raindrop temperature is 

simply taken as the environmental temperature. This chapter presents a simple model of 

thermal conduction between the raindrops and the air to determine the temperature of 

raindrops as the fall in an environment characterized by a vertical gradient of 

temperature (i.e., lapse rate). Such a model can be used to efficiently provide a better 

estimate of raindrop temperature for electromagnetic scattering calculations, which 

could be especially relevant for shorter-wavelength radars.  

 

2. Model description 

The balance equation governing the transfer of thermal energy between a 

raindrop and its environment is given as (e.g., Pruppacher and Klett 1979): 

  

  
|
          

        ̅(       )                                                          
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where   is the drop radius,    is the thermal conductivity of air,   ̅ is the ventilation 

coefficient for thermal energy transfer,   is the temperature of the ambient environment, 

and       is the temperature of the surface of the raindrop.  Expressions for the thermal 

conductivity and ventilation coefficient are provided in Chapter 6.  If there are no other 

sources of heating or cooling of the raindrop (e.g., no evaporation/condensation), then 

we can express 

  

  
|
          

 
  

  
|
     

    
      

  
                                                

where   is the mass of the drop and    is the specific heat capacity of liquid water 

(4186 J kg
-1

 K
-1

).  If we assume the environmental temperature   does not change in 

time, then we may include   in the right hand side of eqn. (4.2): 

  

  
|
          

 
  

  
|
     

    
 

  
(       )                                   

Substituting eqn. (4.1) into eqn. (4.3), 

   
 

  
(       )         ̅(       )                                               

Re-arranging the terms and considering the raindrops as spheres such that  

  
 

 
       

we arrive at a simple, separable ordinary differential equation for the temperature 

difference between the raindrop and its environment              

     

  
  

     ̅
      

                                                                   

Eqn. (4.5) can be easily integrated to obtain an expression for the temperature 

difference    as a function of time: 
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            ( 
 

  
)                                                                

where     is the initial temperature difference between the raindrop and its 

environment, and the relaxation time    is given by 

   
      

     ̅
                                                                           

which is on the order of several seconds for most drop sizes.  It can be seen that for 

         . In the case of evaporation or condensation, the thermal energy 

balance equation for the drop contains an additional term describing the latent enthalpy 

of vaporization associated with mass diffusion.  As shown in Pruppacher and Klett 

(1997), this additional term results in an equilibrium   ; stated mathematically, as 

   ,       . Thus, the case of simple conduction and no latent 

heating/cooling should be considered as the most conservative case, or minimum bound 

of the temperature difference between the raindrop and the surrounding environment. 

The theoretical framework of Pruppacher and Klett (1997) considers a raindrop 

suddenly placed in an environment with ambient temperature        .  Though 

idealized, it is possible to relate this treatment to a physical analog in the real 

atmosphere.  In cold microphysical processes, raindrops may originate from the melting 

of ice particles such as snow, graupel, or hail.  As a particle is melting, it consists of 

liquid water and solid ice in some combination and has a temperature of 0 °C, as all 

external thermal energy is applied to latent heating associated with melting.  Because 

the process of melting is of finite duration, the melting particle may fall to levels where 

   0 °C before all ice has melted.  The moment it becomes a purely liquid particle, the 
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raindrop temperature may begin to adjust to the environmental temperature through 

conduction, if such a temperature difference exists. 

However, in most cases of raindrops falling in the atmosphere, the assumption 

of environmental temperature constancy is not valid.  This is because of environmental 

vertical temperature gradients, which almost always exist.  In the Lagrangian reference 

frame of the raindrop, this is equivalent to a time-varying environmental temperature.  

We can change the independent variable from time   to height   by dividing the 

equations by     ⁄    , the terminal fallspeed of the raindrops. This provides an 

expression for drop temperature as a function of height, 

      

  
 

 

    
(       )                                                                     

Equation (4.8) is solved numerically in a simple one-dimensional bin model.  

The vertical resolution is 1.0 m.  Independent calculations are made for each raindrop 

size bin, ranging from 0.5 to 8.0 mm in 0.1-mm increments.  The drops start at the top 

of the domain at 0 °C, whereas the temperature is > 0 °C at the top of the domain and 

increases towards the ground.  The thermodynamic profiles can be prescribed based on 

an assumed lapse rate, or initialized with an observed sounding interpolated onto the 

model grid space. 

  

3. Model Results 

Figure 4.1 shows the results of an idealized simulation of the temperature of 

raindrops falling 2 km through an environment with a lapse rate of 6.5 °C km
-1

.  The 

initial drop temperature at the top of the domain is 0 °C, and the environmental 

temperature at the top of the domain is 3 °C.  It is clear that the larger drops warm 
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slower than the smaller drops.  Note that the smallest drop size shown (0.5 mm) adjusts 

to the environmental temperature essentially instantaneously, and thus the far left of the 

figure can be considered the environmental temperature as well. 

 The difference (  ) between the raindrop temperature and the environmental 

temperature (Figure 4.2) clearly shows the dependence of drop size.  Whereas the 

smaller raindrops (< 2.5 mm) fall slowly enough and are small enough in size to be able 

to adjust to the environmental temperature, large drops (> 5 mm) are unable to “catch 

up” to the changing environmental temperature, maintaining a temperature at least 1.5 

°C colder than their surroundings. 

 

Fig. 4.1: Temperature of raindrops (°C, color shading) as a function of drop size (mm) and 

height (m AGL).  Drops were initialized at the top of the domain with temperature 0 °C.  The 

lapse rate ( ) is 6.5 °C km
-1

, with initial temperature 3 °C at the top of the domain.   
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Fig. 4.2: As in Fig. 4.1, but the difference between the drop temperature and air temperature 

(ΔT) is shown.  A negative difference indicates that the drops are colder than the ambient air at 

that level. 

 

If allowed to fall about 2 km, all drop sizes attain an equilibrium temperature 

difference with respect to the ambient environmental temperature.  This equilibrium 

temperature difference is independent of the initial temperature of the raindrops 

prescribed aloft (i.e., top boundary condition), but is a function of both the drop size and 

the environmental lapse rate.  For a given environmental lapse rate, drops attain an 

equilibrium temperature difference    that increases in magnitude with lapse rate and 

drop size (Fig. 4.3).  For drops smaller than about 2.5 mm in diameter, all realistic 

atmospheric lapse rates result in an equilibrium    of less than 1 °C in magnitude.  
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However, larger drops and steep lapse rates can combine to yield large values of 

equilibrium    (< -3 to -6 °C).  Therefore, large raindrops are always colder than the 

environmental temperature (given that environmental temperature decreases with 

height). 

 Recall that these calculations ignore the effects of raindrop evaporation, which 

acts against the thermal energy transfer of conduction and therefore would enhance the 

temperature differences.  Thus, these calculations can be considered conservative 

estimates
4
 of the difference between raindrop temperature and the air temperature.  

 

 

Fig. 4.3: Equilibrium temperature difference (ΔT in °C) as a function of drop size (in mm) for 

lapse rates (Γ in °C km
-1

) between 1 and 10 °C km
-1

. All drop sizes attain their equilibrium 

temperature difference after free fall of about 2 km. 

                                                 
4
 Not to be misconstrued as politically conservative estimates about scientific issues, which are generally 

inaccurate enough as to be discarded. 
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4. Impact of Temperature on Scattering 

 The temperature of a particle affects its scattering properties because its 

complex dielectric factor ε is temperature (and wavelength) dependent (Fig. 4.4).  

Expressions for computing the complex dielectric function from Ray (1972) are found 

in Appendix A.  Note that the real part of ε has a larger dynamic range (as a function of 

temperature) for shorter radar wavelengths. For these smaller radar wavelengths, where 

resonances scattering effects are important for large raindrop sizes, these temperature 

effects can become significant (Fig. 4.5).  The raindrop size assumed for calculations 

presented in Fig. 4.5 is 5.9 mm, which corresponds to the peak resonance in the ZDR 

curve at C band.  It is clear that ZDR varies by several dB depending on the raindrop 

temperature.  Similarly, the backscatter differential phase δ changes by about 10 

degrees in the temperature range shown.  Because small raindrops have negligible δ at 

C band, a given distribution of raindrops will produce lower ρhv for increased 

temperature, owing to a larger diversity of δ within the radar sampling volume.   
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Fig. 4.4: Complex dielectric of liquid water drops as a function of temperature for three radar 

wavelengths: S, (black curves), C, (dark gray curves) and X (light gray curves).  (left) Real part, 

in solid lines, and (right) imaginary part, in dashed lines. 

 

 

 

Fig. 4.5: ZDR (left) and δ (right) as a function of raindrop temperature, computed for a 

resonance-sized raindrop 5.9 mm in diameter at C band. 
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Chapter 5: The Impact of Size Sorting on the Polarimetric Radar 

Variables 

 

 Material in this chapter comes from Kumjian and Ryzhkov (2012). 

 

1. Introduction 

The onset of precipitation in clouds is the development of particles large enough 

to sediment relative to cloud droplets and ice crystals.  The rate of descent of these 

precipitation particles is dependent on their mass: larger, heavier particles tend to fall 

faster than smaller, lighter particles in quiescent conditions.  This fall speed difference 

leads to differential sedimentation of precipitating particles, which explains the frequent 

appearance of “big drops” beneath developing ordinary convective clouds preceding the 

onset of heavier precipitation. 

Numerous microphysical processes affect the evolution of the raindrop size 

distribution (DSD) as the drops sediment, including coalescence, breakup, and 

evaporation.  This chapter will focus on size sorting of raindrops; evaporation is treated 

in Chapter 6, and the collisional processes in Chapter 7.  Consider a continuously 

precipitating cloud.  If only hydrometeor fallout is considered, differential 

sedimentation is transient.  This is because, after sufficiently long times, the smallest 

drops have reached the surface, and all drop sizes occupy all altitudes between the cloud 

and the ground, thereby eliminating any size sorting.  However, in nature, various types 

of atmospheric flows can maintain this otherwise transient size sorting, resulting in 

prolonged regions of ongoing particle sorting in precipitating storms.  For example, 
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consider the presence of a convective updraft.  If upward vertical velocities are 

sufficiently strong, smaller raindrops may be lofted while larger drops are able to fall 

against the updraft and reach the ground.  The presence of the updraft thus maintains the 

initial transient size sorting by completely removing the smallest particles from the 

distribution. 

Though undetectable by single-polarization radars, size sorting can have an 

impact on dual-polarization radar observations.  The differential reflectivity factor 

(ZDR), first introduced by Seliga and Bringi (1976), is the logarithmic ratio of received 

signal powers at horizontal and vertical polarizations.  It provides bulk information 

about the power-weighted shape of scatterers in the radar sampling volume.  Because 

raindrop oblateness increases with increasing size (e.g., Pruppacher and Pitter 1971; 

Brandes et al. 2004a, 2005), ZDR in rain is a reflectivity-weighted measure of raindrop 

size in the sampling volume.  Because DSDs altered by size sorting  result in regions of 

the storm with large median drop sizes, polarimetric observations of these regions 

reveal large ZDR values.  However, in rainfall, ZDR tends to increase with increasing 

radar reflectivity factor at horizontal polarization ZH (e.g., Sachidananda and Zrnić 

1987) because heavier rain tends to have larger concentrations of bigger drops that 

increase both ZH and ZDR.  Thus, ZDR values alone are not sufficient to diagnose regions 

of ongoing size sorting.  Rather, owing to the narrowing effect of size sorting on DSDs 

(e.g., Rosenfeld and Ulbrich 2003), ZH tends to be relatively low in cases of size 

sorting.  Therefore, observations of relatively low ZH and large ZDR, indicating a DSD 

skewed to larger drop sizes in relatively low concentrations, may be indicative of 

ongoing size sorting.  The importance of such features led to the inclusion of a “big 
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drops” category to the polarimetric hydrometeor classification algorithm to be 

implemented in the nationwide WSR-88D radar network dual-polarization upgrade 

(e.g., Straka et al. 2000; Park et al. 2009).  Note that the regions of small drops “sorted 

out” also represent a skewed DSD that is a result of size sorting, but such small-drop-

dominated distributions may not be as apparent in polarimetric radar data.  

Size sorting by updrafts and other mechanisms, including strong vertical wind 

shear, has been recognized for several decades.  One of the earliest works to realize the 

importance of wind shear on precipitation particle size sorting is that of Marshall 

(1953).  He computed analytic trajectories of particles falling in a sheared flow, 

determining that linear vertical shear results in parabolic particle trajectories, and 

realized the importance of the particle’s rate of descent on the slope of the trajectory.  

Further, he stated “as the precipitation pattern moves past a fixed point on the ground, 

the first precipitation to arrive should be the fastest falling” (Marshall 1953).  In the 

complete absence of vertical wind shear, Marshall (1953) demonstrated the absence of 

any continuous precipitation sorting (aside from the initial transient effect), even for 

vertically homogeneous winds of any magnitude. 

 Atlas and Plank (1953) also discuss the differential advection of particles in 

sheared flow and the importance of gravitational sorting of different sized particles.  

Gunn and Marshall (1955) computed the effect of wind shear sorting on radar 

reflectivity and rainfall rate.  Their simplified computations produced patterns that bear 

a remarkable resemblance to those produced by the bin models in the present study 

shown below.  In Gunn and Marshall (1955), the largest raindrops are shown at the 

leading edge of their modeled rain shaft, foreshadowing the impact of size sorting on 
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ZDR demonstrated herein.  Atlas and Chmela (1957) explicitly mention that updrafts can 

cause additional size sorting of hydrometeors, in addition to wind shear, the latter of 

which is also mentioned in Hitschfeld (1960).  Such conclusions are echoed in later 

works by Zawadzki and de Agostinho Antonio (1988) and Kollias et al. (2001), which 

are based on more sophisticated observations and analysis techniques, and that of 

Battan (1977), which emphasizes the deviation in the DSD from exponential caused by 

wind shear size sorting. 

Sauvageot and Koffi (2000) indirectly hint at size sorting by wind shear as a 

factor in creating multimodal DSDs in some circumstances.  However, their explanation 

of the appearance of large drops at the leading edge of squall lines invokes overlapping 

of rain shafts from several convective cells in various stages of growth, but such 

observations can be explained in much simpler terms by size sorting alone, as shown 

below.  The review by Rosenfeld and Ulbrich (2003) briefly mentions the impact of size 

sorting on the DSD, as well as the possibility of updrafts affecting the observed DSD at 

the ground.  It is unclear why their schematic indicates a decrease in the number of 

large drops associated with a substantial increase in the number of medium-sized drops; 

the narrowing effect of the DSD is exaggerated to the point of perhaps being inaccurate 

in their presentation.  

Scientific curiosity about and focus on the issue of differential sedimentation 

and size sorting has been recently reignited by research in bulk microphysics 

parameterization schemes (e.g., Wacker and Seifert 2001; Milbrandt and Yau 2005a; 

Dawson et al. 2010; Mansell 2010; Milbrandt and McTaggart-Cowan 2010) and in 

polarimetric radar observations (e.g., Ryzhkov et al. 2005c; Kumjian and Ryzhkov 
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2008a, 2009).  The purpose of this chapter is to review common size-sorting 

mechanisms and quantify the impact of such sorting on the polarimetric radar variables 

with the use of simplistic bin models.  Additionally, the inability of simple one- and 

two-moment bulk microphysics parameterizations to reproduce realistic hydrometeor 

size sorting is discussed, and errors in the computed polarimetric radar variables owing 

to the assumptions in such bulk schemes are quantified. 

 

2. Size Sorting in Bulk and Bin Model Configurations  

 Differential sedimentation of precipitation particles arises from differences in 

fallspeeds of particles of differing size.  Observations of raindrops in free fall show that 

fall speed increases with increasing drop diameter, at least for drops smaller than about 

6 mm (e.g., Gunn and Kinzer 1949; Pruppacher and Beard 1970; Fig. 5.1).  The 

polynomial relation between drop size D (in mm) and fallspeed vt (m s
-1

) presented in 

Brandes et al. (2002) 

                                                               

best matches the historical observational data and more recent observations (e.g., Thurai 

and Bringi 2005).  The other relations used in Fig. 5.1 are summarized in Table 5.1.  

Note the disagreement of the velocity relations for larger drops (> 6 mm).  The power 

law relation of Atlas and Ulbrich (1977), which was developed for ease of use in 

analytic and numerical computations, substantially overestimates the fall speed of drops 

larger than about 4 mm.  On the other hand, the velocity relation used in some bulk 

microphysics parameterization schemes (e.g., Ferrier 1994; Milbrandt and Yau 2005b; 

originally from Uplinger 1981) slightly underestimates the fall speeds of the largest 
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drops.  Note that other microphysics schemes use a variety of other different fall speed 

relations, but the present study will consider only those mentioned above. 

 

Fig. 5.1: Raindrop terminal fall speed as a function of diameter.  Observations of Gunn and 

Kinzer (1949) are shown as open circle markers.  The Atlas et al. (1973) exponential relation 

(gray solid curve), Atlas and Ulbrich (1977) power law relation (gray dotted line), Brandes et al. 

(2002) polynomial relation (eqn. 5.1; thick black line), and the functional relation used in bulk 

microphysics parameterization schemes (“Bulk MPS,” thick gray dashed line, from Uplinger 

1981) are overlaid. 

 

Source Relation 

Uplinger (1981); MY05b                              

Atlas et al. (1973)                            

Atlas and Ulbrich (1977)                 

Brandes et al. (2002) Eqn. (5.1) in text 

Table 5.1: Fall speed relations used in Fig. 5.1.  In each equation, D is in mm and the fall speed 

is in m s
-1

. 
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In bulk schemes, the particle size distributions are assumed to have a shape 

described by an analytic function, generally the three-parameter gamma distribution 

(e.g., Ulbrich 1983): 

        
                                                                   (5.2) 

where N0, , and  are the intercept, spectral shape, and slope parameters, respectively.  

The aforementioned studies have demonstrated that microphysics schemes with only 

one prognostic moment (usually mass mixing ratio) are unable to capture differential 

sedimentation.  In contrast, double-moment microphysics schemes with a fixed spectral 

shape parameter produce unrealistically large differential sedimentation, often leading 

to excessively large particles and mean particle diameters (e.g. Wacker and Seifert 

2001; Milbrandt and Yau 2005a, herein MY05a).  Models employing spectral (or “bin”) 

microphysics are able to explicitly capture differential sedimentation, as each particle 

size bin is assigned its own fallspeed.  Whereas bulk models with diagnostic (for two-

moment schemes) or prognostic (for three-moment schemes) spectral shape parameters 

can better match the differential sedimentation from bin models after an extended 

amount of time, the initial  match between the bulk scheme solutions and that of the bin 

model is often quite poor (MY05a).  None of these studies has investigated the 

maintained size sorting possible by updrafts or vertical wind shear. 

Recent investigations of supercell storms have revealed repetitive polarimetric 

radar signatures that are seemingly characteristic of such storms (Kumjian and Ryzhkov 

2008b).  Hypothesized explanations of several of these signatures (notably, the “ZDR 

arc” and “ZDR column”) invoke size sorting as a significant process contributing to their 

appearances (Kumjian and Ryzhkov 2008a, 2009).  Evidence in support of the size-
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sorting hypothesis has come from the use of Doppler spectra data (Yu et al. 2009), 

disdrometer observations (Carey et al. 2010), and numerical simulations with bulk 

microphysics schemes (Jung et al. 2010) as well as simplified bin models (Kumjian and 

Ryzhkov 2009).  As shown below, size sorting occurs not just in supercell storms, but 

can appear in any precipitating system.  The dilemma is then readily apparent: if size 

sorting has such a pronounced effect on dual-polarization observations, and bulk 

microphysics schemes widely used in operational numerical weather prediction models 

cannot adequately capture size sorting, then there exist serious problems for future 

attempts to utilize dual-polarization data in storm-scale numerical models (e.g., data 

assimilation).   

The remainder of this chapter is devoted to quantifying the impact of size 

sorting on dual-polarization radar variables using simplified bin models applied to 

common size sorting mechanisms.  Additionally, the errors in the radar variables 

computed based on assumptions in bulk microphysics schemes will be quantified. 

 

3. Size sorting models 

 For each subsection below, a model of a particular size sorting mechanism is 

developed and results are presented.  Each mechanism is applied to both a bin model 

framework and to the assumptions of bulk schemes.  The resulting DSDs are converted 

into S-band polarimetric radar variables as follows.  For the bin models, drops are 

divided into 80 bins (0.05 mm to 7.95 mm in 0.1-mm increments).  Calculation of the 

polarimetric radar variables from the bulk scheme profiles uses the same drop 

partitioning to discretize the moment integrals to ensure that differences in the 
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polarimetric variables are entirely because of differences in the explicit versus 

parameterized treatment of size sorting.  The radar variables are then computed from 

scattering amplitude calculations using a T-Matrix code.  Raindrops are assumed to be 

pure liquid water at a temperature of 20 C, with mean canting angle of 0 with respect 

to the vertical, and a canting angle distribution root-mean square (rms) width of 10 

(e.g., Ryzhkov 2001; Ryzhkov et al. 2002b).  The corrected Brandes et al. (2004a,b, 

2005) drop shapes are assumed.  Such a formulation is analogous to recent polarimetric 

radar operators developed for bulk models (Jung et al. 2010) and for bin models 

(Ryzhkov et al. 2011).   

 

a. Pure sedimentation 

 1) MODEL DESCRIPTION 

 Differential sedimentation of precipitation particles is the most basic mechanism 

of size sorting.  Following the previously cited literature, a simple one-dimensional 

model of pure sedimentation is constructed.  In this framework, a distribution of 

raindrops is prescribed at the top of the domain, and these drops begin falling at the 

initial time.  The initial distribution is inverse exponential in shape (i.e., the spectral 

shape parameter  = 0), with raindrop mass mixing ratio   = 1 g kg
-1

 and the Marshall-

Palmer (1948) intercept parameter N0 = 8000 m
-3

 mm
-1

.  Fresh drops are continuously 

replenished at the top of the domain (“cloud base”) at each time step, which is     0.5 

s.  The domain is 3 km tall, with vertical grid spacing of 10 m.  There are no changes in 

air density with height.  A simple first-order forward in time upstream in space finite 

differencing scheme is used.  It should be noted that such a scheme is numerically 
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diffusive, thereby smoothing the resulting “shockwaves” formed because of the quasi-

linear advection equations used in the bulk schemes (e.g., Wacker and Seifert 2001).  

The fine grid spacing is intended to minimize the effects of the diffusive numerical 

scheme. 

 To simulate the sedimentation of drops in bulk schemes, moment-weighted fall 

speeds are calculated based on the prognostic moments of total number concentration 

(    , the zeroth moment), mass mixing ratio ( , proportional to the third moment), 

and Rayleigh reflectivity factor ( , the sixth moment) :   

 ̅  ∫            
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where      is the drop size distribution,       is the MY05b fallspeed relation given 

in Table 5.1, and      is the raindrop mass expressed in terms of diameter.  By using 

such moment-weighted fallspeeds, bulk schemes assume every drop size falls at the 

same speed for given values of     ,  , and  .  The prognostic moments used above 

(0
th

 , 3
rd

, and 6
th

) are selected because of their widespread use in operational numerical 

weather prediction models.  Note that the choice of moments can produce significantly 

different results, as demonstrated by Wacker and Lüpkes (2009) and Milbrandt and 

McTaggart-Cowan (2010, herein MM10).  For the single-moment (1M) case, the mass-

weighted fallspeed is given by eqn. (5.4), with sedimentation of q governed by 
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Both the mass- and number-weighted fallspeeds given by eqns. (5.3-5.4) are used for 

the double-moment (2M) case, with sedimentation of      given by 

     

  
  ̅ 

 

  
                                                                       

Note that  ̅   ̅  for any shape parameter α ≥ 0, so mixing ratio q will always 

sediment faster than      (which is the cause of excessive “size sorting”, e.g., MY05a; 

MM10; Mansell 2010).  For the three-moment (3M) scheme, sedimentation of Z is 

given by 

  

  
  ̅ 

 

  
                                                                          

The shape parameter α is prognosed following the closure scheme of MY05a,b by 

implicitly solving for α using the new values of  ,  , and      (eqns. 5.6-5.8) at each 

level and timestep: 

               

               
      (

   

      
)
 

                                  

In the iterative solver, α is determined to a precision of 0.05.  Using the new α, the slope 

and intercept parameters   and    are computed.  

For the bin model, two drop velocity relations are used: the relation in eqn. (5.1), 

which is most accurate for larger drop sizes (Thurai and Bringi 2005), and the relation 

used in computing the moment-weighted fall speeds for the bulk schemes (Table 5.1; 

MY05b).  The latter is used to make a fair comparison between the bulk and bin model 
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approaches, though it leads to slight underestimation of size sorting because it 

underestimates the fall speed of the largest raindrops by up to 1 m s
-1

. 

 

2) MODEL RESULTS 

 Figure 5.2a presents the modeled DSDs at t = 333 seconds at a height of 1000 m 

above the ground from the bulk scheme simulations as well as the reference bin 

solutions.  This time is selected because it captures the initial transient size sorting 

effect before the steady-state profiles have developed and the largest raindrops (in the 

bin framework) have just reached the ground, and the height level is selected because it 

is near the bottom of the bulk scheme rainshafts.  Despite the initial inverse exponential 

DSD aloft, the resulting bin reference solution DSDs have narrowed, producing a deficit 

of smaller drops.  The 1M scheme (with fixed    and ) accounts for decreasing mass 

at lower levels by removing large drops, doing “violence” to the actual physics (to 

borrow a phrase from Kessler 1969).  The 2M scheme (with fixed ) produces a DSD 

with an extremely shallow slope, also in disagreement with the reference solution.  

MY05a and MM10 found similar results and proposed diagnostic relations for α, 

allowing the 2M schemes to capture the narrowing distribution shape owing to size 

sorting.  Alternatively, they demonstrate that 3M schemes (which prognose α) better 

approximate the narrowing DSD.  The 3M scheme solution certainly provides a much 

better representation of the bin solutions, albeit imperfectly (Fig. 5.2).    The difference 

in the two fall speed relations used in the bin reference solution is evident in the DSDs 

at the ground at t = 333 s (Fig. 5.2b).  The Brandes et al. (2002) velocity relation 

produces higher concentrations of the largest drops compared to the bulk scheme 
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relation (Uplinger 1981; Ferrier 1994; MY05b).  There are no DSDs from the 1M and 

2M bulk schemes in Fig. 5.2b because the sedimenting fields of   and      have not 

reached the ground by this time.  In contrast, the 3M scheme produces a narrow DSD 

similar to the bin solutions. 

 

 

Fig. 5.2: DSDs from the sedimentation model.  The initial DSD aloft is shown by the thin dotted 

line in both panels.  (a) At t = 333 s, at height level z = 1000 m AGL, the one-moment bulk 

microphysics scheme (“1M bulk”) solution is given by the solid black line, the two-moment 

solution (“2M bulk”) is given by the dashed black line, and the three-moment (“3M bulk”) 

scheme solution is shown in the solid line with asterisk markers.  The reference bin solutions 

are shown in solid red and blue lines, the difference being the assumed fall speed relation.  (b) 

As in (a), but surface (z = 0 m) DSDs at t = 333 s from the reference bin solutions.  Note that in 

(a), the bin solutions overlap. 

 

 As expected from the substantial disagreements in the simulated DSDs, the 

vertical profiles of the S-band polarimetric radar variables also differ significantly (Fig. 

5.3). In the ZH profile (Fig. 5.3a), neither the 1M or 2M bulk schemes’ rainshafts has 

reached the surface, whereas the surface ZH from the bin solutions is about 36 dBZ.  

The 3M scheme provides a rather close agreement to the bin solutions, underestimating 

the ZH by about 2 dBZ at the ground.  At midlevels, the 2M scheme overpredicts ZH by 



130 

nearly 10 dBZ, whereas the 1M and 3M schemes match well (< 1 dBZ error).  

Predominantly, this difference is because of the excessive number of large drops (which 

strongly affect ZH) predicted by the 2M scheme.  Note that where ZH ≤ 0 dBZ, all radar 

variables have been censored to emulate a minimum detectable radar signal.   

The profiles of ZDR (Fig. 5.3b) are perhaps the most revealing.  The 1M solution 

predicts an accurate profile down to about 1 km AGL, but is entirely wrong below 1 

km, owing to a lack of any drops able to fall below that level.  Thus, ZH and ZDR 

decrease sharply at the leading edge of this “shockwave.”  The inability to capture the 

size sorting is due to the use of a single prognostic moment; all variables of interest are 

a single-valued function of q, and because q does not reach the ground, ZDR (and all of 

the radar variables) follows the same pattern.  In stark contrast, the 2M scheme 

produces excessive “size sorting,” resulting in an overprediction of ZDR by over 2.5 dB 

(a relative error of 168%) at midlevels and towards the bottom of the rain shaft.  The 

simulated ZDR values reach the upper limit (about 4 dB) because of the truncated DSD 

used to calculate the polarimetric variables (maximum drop size is 8 mm); otherwise, 

ZDR values could far exceed those observed at S band as unrealistically large (and 

presumably oblate) drops would be produced.  The 3M scheme ZDR profile is closer to 

the bin solutions, though still underestimates ZDR by almost 0.5 dB (about 25% relative 

error).  The 3M errors will be discussed in more detail below.  Though the reference 

solutions are similar to one another, the Brandes et al. (2002) velocity relation predicts a 

surface ZDR value 0.15 dB larger than the power-law relation used in bulk schemes.    

The increase in ZDR at the surface over the initial value aloft is over 1.0 dB for both bin 
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solutions, illustrating the ability of size sorting to substantially enhance ZDR values in 

rain. 

The profiles of KDP (Fig. 5.3c) produced by the bulk scheme solutions also show 

the shock wave problem, albeit smoothed by the diffusive finite differencing scheme 

used.   The 2M scheme produces a midlevel relative maximum in KDP, causing an 

overprediction compared to the bin solution (relative error of 217%), whereas the 1M 

scheme’s maximum overprediction of KDP is only about 10%.  The 3M scheme 

overpredicts KDP at midlevels, with a maximum relative error of 24%.  The reference 

solution smoothly varies in height and both velocity relations produce nearly identical 

results.  Though differences exist in the profiles of ρhv (Fig. 5.3d), the changes are small 

in magnitude at S band (all variations are < 0.01) and likely are not measurable.    At 

smaller radar wavelengths, resonance scattering associated with large raindrops (5-6 

mm at C band, 3-4 mm at X band) could exacerbate the errors to the extent that they 

become measurable. 
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Fig. 5.3: Vertical profiles of the S-band polarimetric radar variables predicted by the 

sedimentation model at t = 333 seconds.  The solutions for the one-moment (solid black line), 

two-moment (dashed black line), and three-moment (dotted black line) bulk schemes are 

compared to the reference solutions (red and blue solid curves).  Variables shown are calculated 

for S band: (a) ZH, (b) ZDR, (c) KDP, and (d) ρhv.  For the bulk schemes, all variables are censored 

where ZH ≤ 0 dBZ. 

 

 During sedimentation of the sixth moment Z in the 3M scheme, the shape 

parameter α can grow to unrealistically large values.  Disdrometer observations 

generally do not reveal α larger than about 15 – 20 (e.g., Zhang et al. 2001; Cao et al. 

2008).  The microphysics scheme of MY05b limits α to a maximum of αmax = 40 during 

sedimentation (D. Dawson, 2011 personal communication), which is used in the present 

study. Varying αmax changes the error characteristics, especially at the bottom of the rain 

shaft (Fig. 5.4).  Whereas the magnitudes of the relative errors in ZH are < 5%, larger 

errors (> 20%) are possible in ZDR and KDP.  Above about 1 km AGL, ZDR errors 
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become increasingly negative towards the ground (Fig. 5.4b), indicating 

underestimations for all values of αmax.  This is because narrowing the DSD by 

increasing α leads to a decrease in the number of small drops (which is physically 

consistent with size sorting) as well as a decrease in the number of large drops (which is 

inconsistent; cf. Figure 5.2a).  Thus, ZDR is underestimated.  Below 1 km, at the very 

bottom of the rain shaft, the ability of the 3M scheme to reproduce the “true” ZDR 

profile depends on αmax.  Limiting αmax to 10 results in an overprediction of ZDR near the 

ground, because once the αmax is achieved, the additional size sorting is represented by 

decreasing the slope parameter Λ, as in the 2M scheme.  The vertical profiles of relative 

errors in KDP (Figure 5.4c) demonstrate similar behavior, but of opposite sign.  The 

increasingly positive errors (overestimations) result from an artificial increase in the 

number medium-sized drops (cf. Fig. 5.2a).  Based on the excessive narrowing of the 

DSD that occurs for large αmax demonstrated above, it is recommended to use more 

rigid constraints (e.g., αmax = 20.0 – 30.0) for the 3M scheme, especially for polarimetric 

radar applications. 
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Fig. 5.4: Relative errors in the polarimetric variables computed from the three-moment scheme 

with different values of maximum shape parameter α: 10 (black solid line), 20 (dashed black 

line), 30 (solid gray line), and 40 (dash-dot gray line).  Variables shown are (a) ZH, (b) ZDR, and 

(c) KDP.  The Brandes et al. bin solution is considered “truth” for these error calculations.  

Positive errors correspond to overestimations by the 3M scheme, negative errors to 

underestimations. 

 

b. Updraft 

1) MODEL DESCRIPTION 

Though the differential sedimentation modeled above is transient, such size 

sorting can be maintained by various influences.  Perhaps the most frequently observed 

modifying influence is an updraft.  Precipitation particles injected into an updraft (from 

above, for example) or developing within the updraft are subject to size sorting as the 

updraft’s vertical winds act in opposition to the particle terminal fallspeed.  In the case 
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where the updraft speed is greater than the particle fallspeed, the particle is lofted.  In 

contrast, faster-falling particles may fall “against” the updraft if their fallspeeds exceed 

the vertical velocity in the cloud.  Beneath such an updraft, only the faster-falling, larger 

particles are able to fall.  This process is probably responsible for the lower portions of 

observed “ZDR columns,” where the largest particle fallout leads to enhanced ZDR all the 

way to the ground beneath convective updrafts (Bringi and Chandrasekar 2001; 

Kumjian and Ryzhkov 2008a,b). 

 In a crude representation of an updraft, a one-dimensional fallout model such as 

the one described in the previous subsection can be utilized.  Instead of using the 

terminal fallspeeds    of the drops, however, their vertical velocity is modified by the 

updraft speed w at a given level by taking     .  In this way, drops with |  |  | | 

are then lofted upwards and whisked out of the domain, removed from the distribution.  

Such a model framework was employed by MY05a, except hailstones were used rather 

than raindrops. In a steady-state version of such a model (i.e.,    ⁄   ), the flux of 

drops at each height level is conserved: 
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In the bulk configuration, 
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2) MODEL RESULTS 

Barring any vertical variations in air density, the vertical profiles of all 

polarimetric variables beneath the updraft are constant in height (not shown).  Stronger 

updraft speed w results in lower ZH and increased ZDR (Fig. 5.5). The decreased ZH with 

increasing updraft is because of the steady-state assumption of the model: drop flux 

    [       ]  is conserved at each level, so larger ascent velocity [       ] 

corresponds to decreased concentration       and thus smaller ZH.  ZDR is enhanced 

because stronger updrafts loft drops of increasingly larger sizes, increasing the 

minimum drop size able to fall through the updraft.  The maximal value of ZDR beneath 

the updraft is dependent on the DSD initially injected into the updraft as well as the 

updraft speed.  Because drops with diameters in excess of about 6 mm all fall at roughly 

the same speed, DSDs with “flatter” tails (i.e., small slope parameters and/or negative 

shape parameters) and thus relatively more big drops will produce larger ZDR values. 

In bulk schemes, the impact of the updraft entirely depends on the moment-

weighted fallspeeds for    , and      compared to the updraft speed.  In a crude 

representation of an updraft such as a one-dimensional model, this can lead to cases 

where q is able to sediment but      is lofted, resulting in undefined DSDs.  In more 

realistic treatments of convective updrafts (such as in high-resolution three-dimensional 

numerical models), the “sorting” effect is captured in two-moment schemes, leading to 

enhanced ZDR within and beneath the updraft (e.g., Jung et al. 2010).  
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Fig. 5.5:  Results from the 1D updraft model, showing the ground-level (a) ZH and (b) ZDR as a 

function of the updraft speed at the top of the domain          . 

 

c. Vertical Wind Shear 

1) MODEL DESCRIPTION 

The effect of vertical wind shear is to provide non-zero storm-relative flow, 

allowing raindrops to be advected away from directly beneath the cloud.  Because 

smaller drops fall slower than larger drops, the smaller drops encounter this storm-

relative flow for longer periods of time and are thus transported farther downstream 

than the larger drops.  This flavor of size sorting, along with that caused by convective 

updrafts described above, helps explain the enhancement of ZDR (and narrow 

distribution of large drops) frequently observed at the leading edge of linear mesoscale 

convective systems (e.g., Ulbrich and Atlas 2007; Morris et al. 2009; Kumjian and 

Ryzhkov 2009; Teshiba et al. 2009). 

A simple two-dimensional model is constructed to quantify the changes in 

polarimetric radar variables as a result of vertical wind shear.  The model is similar to 

the previous one-dimensional versions, except a vertical wind profile is introduced.  For 

the results shown below, the “storm”-relative winds increase linearly towards the 
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ground from 0 m s
-1

 at cloud base (3 km AGL) to 20 m s
-1

 near the surface (i.e., a 

sounding would show winds increasing from 0 m s
-1

 at the surface to 20 m s
-1

 at 3 km 

AGL).  A 1-km wide precipitating “cloud” is placed at the top left portion of the 

domain.  The cloud precipitation intensity pattern has a Gaussian distribution centered 

at the middle of the cloud (x = 1000 m), with maximum rainwater mixing ratio of   = 

2.0 g kg
-1

, which corresponds to a rainfall rate of about 50 mm hr
-1

, tapering towards the 

edges (distribution width is 300 m).  The model configuration is shown schematically in 

Figure 5.6.    The rain DSD (based on  ) is prescribed at the top of the domain as a 

Marshall-Palmer (1948) inverse exponential type.  The slope parameter   of the DSD is 

determined by the Gaussian-distributed   profile, which results in a modulation of all 

polarimetric radar variables (larger ZH, ZDR, and KDP, and lower ρhv at the center of the 

cloud).  Raindrop motion is determined purely by advection and sedimentation, 

governed by 

    
 

  
[    ]       

 

  
[    ]                                                        

in the bin model (assuming air density is constant in height).  In other words, no 

momentum transfer between the air and raindrops (e.g., Shapiro 2005) is accounted for, 

and no other microphysical processes are considered.  Horizontal resolution is 5 m, and 

vertical resolution is 75 m.  Note that this model is steady state (no time dependence in 

eqn. 5.14), illustrating how such wind shear size sorting can maintain the transient 

effect of differential sedimentation.  The bulk scheme configuration is governed by 

equations similar to (5.14), except the moment-weighted fallspeeds replace   , and    , 

and      replace     .   
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Fig. 5.6: Schematic of the two-dimensional wind shear model configuration.  Storm-relative 

wind (u – ustorm) profile is shown to the left.  The domain and example resulting ZH distribution 

(shaded in dBZ) is shown to the right.  The “cloud” rainwater mixing ratio      profile is shown 

above the domain (g kg
-1

). 

 

2) MODEL RESULTS 

 The results of the bin model configuration are presented in Figure 5.7.  Left-to-

right advection of the precipitation is evident in all fields.  Values of all polarimetric 

radar variables are removed where ZH is less than 0 dBZ, as before.  In ZH, the largest 

values are confined to the center of the rainshaft (Fig. 5.7a).  The ZDR field (Fig. 5.7b) 

reveals where the impact of the size sorting is most readily apparent in the polarimetric 

variables: the highest values are found towards the ground and at the leading edge of the 

echo, along the gradient of ZH.  For the shear and initial model parameters used here, 

the maximal value of ZDR near the surface is 36% larger than the maximal value in the 

cloud aloft, indicating the ability of wind shear size sorting to amplify the observed ZDR 
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in precipitating systems.  KDP (Fig. 5.7c) closely follows the ZH pattern, as expected.  

The hv field (Fig. 5.7d) exhibits slightly decreased values towards the leading edge, 

though changes at S band are imperceptible to WSR-88D radars (< 0.01). 

 

Fig. 5.7: Results from the two-dimensional wind shear model using the bin formulation.  Panels 

show the two-dimensional fields of (a) ZH, (b) ZDR, (c) KDP, and (d) hv.  Overlaid on panel (a) is 

the ZDR contours (0.5 – 2.5 dB in 0.5 dB increments), whereas panels (b)-(d) have ZH contours 

10 – 40 dBZ (in 10-dBZ increments) overlaid.  For ZH < 0 dBZ, all fields are set to zero. 

 

The 1M scheme reproduces ZH fairly well, though the rainshaft is narrower at 

low levels (Fig. 5.8a).  In terms of ZDR (Fig. 5.8b), the 1M results are wholly 

unsatisfying, owing to the inability of 1M schemes to model size sorting; rather, there is 

a one-to-one correspondence between q and all other variables (including ZH and ZDR).  
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Therefore, 1M schemes produce the maximum in ZDR collocated with the maximum in 

ZH.  Similar to ZH, the KDP field (Fig. 5.8c) is reproduced well.  Though slight 

differences are evident in the hv field (Fig. 5.8d), the overall changes in hv are too 

small to be measured at S band.   

 

 

Fig. 5.8: As in Fig. 5.7, except the results are from the single-moment bulk scheme 

configuration. 

 

 Results from the 2M scheme are presented in Figure 5.9.  Though the width of 

the rainshaft closer matches the bin model solution, the ZH values (Fig. 5.9a) are 

incorrectly enhanced by about 10 dBZ in the middle of the echo below about 2.5 km.  
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The same overprediction of ZH is evident in the pure sedimentation model (cf. Fig. 5.3a) 

and is a result of the increased number concentration of larger drops, which 

significantly contribute to the overall ZH signal (at S band, ZH is proportional to D
6
).  

The excessive amount of larger drops is caused by a combination of the decreased 

intercept parameter N0 (owing to substantially decreased total number concentration 

    ) and a decreased slope parameter   (flattening of the distribution shape to account 

for the still-appreciable rainwater mixing ratio  ).  These differences are caused by the 

different sedimentation rates of      and  , owing to the weighted fallspeed differences 

discussed above.  Figure 5.10 depicts the modeled   and      fields, which clearly 

demonstrate the impact of the different weighted fallspeeds on the advection and 

sedimentation of precipitation modeled in the 2M bulk scheme.  The      field, which 

has a lower fallspeed characteristic of the smaller raindrops, is quickly blown 

downstream, while the   field is advected less rapidly owing to its larger characteristic 

fallspeed (more heavily weighted by the large drops).  

 The excessive overprediction of large drops and underprediction of smaller 

drops yields excessive ZDR over much of the rainshaft (Fig. 5.9b): ZDR reaches its 

maximum value at S band. Whereas the 1M scheme produces no size sorting at the 

leading edge of the precipitation echo, the 2M scheme exaggerates the size sorting (and 

thus ZDR).  Similar to ZH, KDP (Fig. 5.9c) is enhanced in the center of the echo, 

overpredicted by 0.6 – 0.8 deg km
-1

.  This enhancement can also be attributed to the 

overprediction of large drop sizes and the strong dependence of KDP on drop size (KDP  

D
4.5

).  The minimum values of hv (Fig. 5.9d) run along the gradient of ZDR, similar to 

the bin model results, though again these variations across the precipitation shaft are 
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imperceptible to S-band radars.  Note that the overprediction of large drops, which are 

resonance scatterers at C- and X-band frequencies, will substantially lower the hv in 

regions of high ZDR. 

 

Fig. 5.9: As in Figs. 5.7 and 5.8, except the results from the two-moment bulk scheme 

configuration are shown.  Note the changes in the color scales of ZH, ZDR and KDP. 
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Fig. 5.10: Fields of rainwater mixing ratio ( , in g kg
-1

 and contoured in black) and total number 

concentration (    , in m
-3

 and contoured in gray) from the two-dimensional wind shear model 

run using the two-moment scheme shown in Fig. 5.9. 

 

 In contrast to the 1M and 2M schemes, the 3M results (Fig. 5.11) closely 

resemble the bin model solution.  Whereas the ZH field is nearly indistinguishable from 

the bin model (Fig. 5.11a), the 3M scheme underestimates the maximum ZDR at the 

leading edge by nearly 0.5 dB (Fig. 5.11b).  The 2-dB contour of ZDR only reaches a 

height of about 0.5 km AGL in the 3M scheme, whereas the same contour extends 

above 1.5 km AGL in the bin solution (cf. Figs. 5.7a and 5.11a).  Also, KDP values are 

slightly overestimated in the 3M scheme at low levels (Fig. 5.11c).  As demonstrated in 

the 1D sedimentation model, the overestimation in KDP occurs because of an 

overprediction of smaller and medium-sized drops. 
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Fig. 5.11: As in Figs. 5.7 – 5.9, except results from the three-moment bulk scheme 

configuration are shown. 

 

The difference fields in ZDR between the bin model solution and those of the 

bulk schemes are illustrated in Fig 5.12.  The 1M scheme substantially underpredicts 

ZDR nearly everywhere (Fig. 5.12a), especially towards the ground where size sorting is 

most pronounced in the bin model results.  Underpredictions are nearly 2 – 3 dB 

through a considerable depth of the rainshaft.  The region of slightly negative 

differences aloft illustrates where the highest q (and thus highest ZH and ZDR in the 1M 

scheme) is offset from the region of enhanced ZDR in the bin model results.  In contrast, 

large overpredictions of ZDR (>2 dB) are evident in the 2M scheme (Fig. 5.12b).  The 
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narrow region of positive differences at the leading edge is caused by the difference in 

location of the front edge of the echo.  Though the largest drops heavily weight the 

fallspeed of  , the smaller drops still have an impact (eqn. 5.4), which causes  ̅  to be 

slightly less than the true fallspeed of the largest drops.  Thus, the   field is advected 

slightly farther downstream than the actual edge of large drops determined by the bin 

model.  Differences in the 3M scheme (Fig. 5.12c) are no more than 0.5 dB in 

magnitude, with slight underestimations over much of the rain shaft.  These 

comparatively small errors are a result of excessive narrowing of the DSD, resulting in 

undercounting of the largest drops.  These errors increase in magnitude towards the 

ground and towards the leading edge of the shaft because of the increasingly narrow 

DSD simulated by the 3M scheme’s treatment of size sorting. 
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Fig. 5.12: ZDR difference fields between (a) the bin model and the 1M bulk scheme, (b) the bin 

model and the 2M bulk scheme, and (c) the bin model and the 3M bulk scheme.  Contours in 

0.5-dB intervals are overlaid (solid lines for positive differences, dashed lines for negative). 

 

As expected, changes in the magnitude of the vertical wind shear affect the 

maximal ZDR found at low levels in the bin model.  Increasing the maximum storm-

relative winds further increases the maximum ZDR values near the ground, as well as the 

vertical depth and width of a given ZDR contour.  The relative increase in maximal 

ground-level ZDR increases approximately logarithmically with vertical wind shear (not 

shown).  Additionally, the DSD aloft controls the relative change in ZDR, as initial 

DSDs characterized by larger ZDR produce smaller relative changes at the ground (i.e., 



148 

size sorting acting on DSDs that begin with significant contributions from large drops 

will produce comparatively smaller low-level ZDR enhancements). 

 The simulations above consider the case of unidirectional vertical wind shear.  It 

is worth mentioning that size sorting by directional wind shear can produce unique 

polarimetric radar signatures.  Using a simplified three-dimensional bin model of 

precipitation fallout and advection, Kumjian and Ryzhkov (2009) showed that size 

sorting is capable of explaining the observed “ZDR arc” signature along the forward 

flank precipitation echo of supercell storms.  The strong directional and speed shear 

common in supercell inflow environments sorts raindrops in such a manner to 

reproduce the observed shape and alignment of the ZDR arc signature.  Further, Kumjian 

and Ryzhkov (2009) found a positive correlation between the simulated magnitude of 

the maximum ZDR in the simulated signature and the storm-relative environmental 

helicity in the inflow environment.  Thus, unidirectional shear alone can provide 

enhancements of ZDR at low levels, but the addition of directional shear can also alter 

the alignment of the observed ZDR enhancement. 

 

4. Polarimetric Radar Observations 

 As demonstrated in the preceding simulations, size sorting leads to an increase 

in ZDR coincident with a decrease in ZH (and KDP).  Often, the enhancement of ZDR is 

located along a gradient of ZH.  Indeed, polarimetric radar observations (particularly in 

convective storms) routinely reveal such patterns of ZH and ZDR that may be attributed 

to size sorting.  For example, Figure 5.13 is a genuine RHI (or vertical cross-section) 

through a mesoscale convective system that demonstrates the impact of size sorting on 
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the observed polarimetric variables at a snapshot in time.  Along the leading edge of the 

squall line, large values of ZDR collocated with modest ZH are found starting at a range 

of about 65 km through about 80 km.  The highest values of ZDR (> 4 dB) are found at 

the base of a developing convective core (evident by the enhanced ZH aloft).  The ZDR 

enhancement owing to size sorting is a result of some combination of transient 

differential sedimentation and the updraft, the extent of which is unknown owing to the 

lack of vertical velocity measurements in the storm.    ZDR values of 2 – 4 dB for ZH < 

30 dBZ represent a significant departure (1 – 3 dB) from what is expected in typical rain 

DSDs in Oklahoma (e.g., Cao et al. 2008), demonstrating the efficiency of the size 

sorting process at substantially altering the DSD. 

 

Fig. 5.13: Observations from 17 June 2005, at 0544 UTC, along the azimuth 191°.  ZDR (in dB) 

is shaded, with ZH contours of 30, 40, and 50 dBZ overlaid.  The abscissa is range (distance) 

from the KOUN radar. The high ZDR region near the ground at a range of about 85 km is from 

biological scatterers (i.e., insects and/or birds).  
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 The ZDR arc signature in supercell storms (Fig. 5.14) is a unique example of size 

sorting by wind shear, characterized by large ZDR along the gradient in ZH.  Indeed, ZDR 

values in excess of 4 dB are present outside the 30-dBZ ZH contour, indicating a sparse 

concentration of large drops.  The size sorting mechanism hypothesized to produce the 

ZDR arc signature is the strong wind shear (both directional and speed) in supercell 

environments (Kumjian and Ryzhkov 2008b, 2009).  As such, it contains potentially 

useful information regarding the type of environmental wind shear available to the 

storm and can serve as an indicator of storm severity (Kumjian and Ryzhkov 2009). 

 

Fig. 5.14: Example PPI from 30 May 2004 at 0.5° elevation, at 0044 UTC.  The color shading is 

ZDR (dB), with the 30-, 40-, 50-, and 55-dBZ contours of ZH overlaid.  Distances are relative to 

the location of the KOUN radar. 
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Deep convective storms are not the only situations in which size sorting is 

observed.  Figure 5.15 is a genuine RHI scan from near Bonn, Germany, taken on 22 

June 2011 with the Bonn X-band Polarimetric radar (BOXPOL), operated by the 

Meteorological Institute of the University of Bonn.  The scan captures an isolated cell 

producing light to moderate rain falling into an environment with vertical wind shear.  

The observed fields of ZH and ZDR beneath the melting layer are qualitatively similar to 

the modeled rainshaft in Fig. 5.7.  Namely, the highest ZDR is located at the leading 

edge of the shaft along a gradient in ZH (located at about 29 km in range), whereas the 

higher ZH is offset and coincident with lower ZDR (30 – 31 km in range).  A vertical 

profile of the Doppler velocities extracted from a range of 29 km (Fig. 5.16) illustrates 

the vertical shear, as inbound (negative) velocities become increasingly negative with 

height.  The shear is strongest in the layer near 1 km AGL, where magnitudes reach 

0.02 s
-1

. 

 

 

Fig. 5.15: RHI scans of ZH (left) and ZDR (right), taken at 0404 UTC 22 June 2011 from the 

Bonn X-band Polarimetric radar (BOXPOL) operated by the Meteorological Institute at the 

Universität Bonn (Germany).  Data are from the 309.5⁰ azimuth. 
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Fig. 5.16: Vertical profile of Doppler velocity extracted from the RHI shown in Figure 15, at a 

range of 29 km. 

 

Figure 5.17 depicts a different scenario on the same day, when widespread 

stratiform precipitation was present.  At 0944 UTC (Fig. 5.17, top panels), a distinct 

melting layer “bright band” is evident between 2.5 and 3.0 km AGL in both ZH and ZDR.  

At this time, the majority of the rain has not fully reached the ground, evident in the 

lack of ZH > 20 dBZ below 1 km AGL (strong echoes near the surface are from ground 

clutter).  Enhanced ZDR is observed at the lower portions of the rain curtains, in the 

gradient of ZH.  The next RHI taken 5 minutes later reveals that all rain has reached the 

ground (Fig. 5.17, bottom panels), and the inverse correlation between ZH and ZDR is no 

longer found everywhere along the base of the shafts. This transient effect of 

differential sedimentation is reminiscent of the 1D model in section 3a. 
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Fig. 5.17: As in Fig. 5.15, but from 0944 UTC (top panels) and 0949 UTC (bottom panels) on 

22 June 2011.  Data from BOXPOL, operated by the Meteorological Institute at the Universität 

Bonn (Germany). 

  

Finally, Figure 5.18 is an illustrative example of several cells in various stages 

of development.  The elevated cell located at about 11 km range has the highest ZDR at 

the bottom of the rain shaft, along a gradient of ZH, again indicative of the differential 

sedimentation flavor of size sorting.  The cell at 13 km range again reveals high ZDR at 

the lower portion of the rainshaft; however, this time, the ZH values also increase 

towards the ground.  Rather than indicating ongoing size sorting, the radar observations 

indicate that the vertical evolution of the DSD in this cell is dominated by some other 

process, such as raindrop growth by coalescence.  Such an example demonstrates that 

one must assess ZDR and ZH to detect regions of ongoing size sorting.  The example 

observations from Germany were all collected on the same day, demonstrating that 

while size sorting is often transient in nature, it is widespread in many types of 

precipitating systems. 
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Fig. 5.18: As in Figs. 5.15 and 5.17, but from 1454 UTC on 22 June 2011. Data from BOXPOL, 

operated by the Meteorological Institute at the Universität Bonn (Germany). 

 

5. Discussion 

In nature, precipitation formation in continental deep convective storms is 

generally dominated by ice microphysical processes (e.g., Dye et al. 1974; Rosenfeld 

and Ulbrich 2003, among others).  Thus, melting of graupel and small hail particles 

often is responsible for the production of large raindrops.  A notable exception is in 

tropical convection, where large raindrops forming from efficient coalescence growth in 

the absence of ice processes are also possible (e.g., Rauber et al. 1991; Szumowski et al. 

1997; Hobbs and Rangno 2004).  As a consequence of shedding of excess meltwater 

(Rasmussen and Heymsfield, 1987), small hail and graupel of sizes between 

approximately 8 – 14 mm melt into large raindrops of about 8 mm in size, producing a 

relative excess of larger drops (Ryzhkov et al. 2009).  Such an enhancement of the 

concentration of the largest drops can amplify the size sorting effect by producing larger 

ZDR values.  This enhancement is probably important for attaining maximal ZDR values, 

because although ZDR increases monotonically for increasing raindrop size (at S band), 

the fallspeed of drops larger than about 6 mm is essentially the same, according to the 
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Brandes et al. (2002) relation.  This leveling-off of the fall speeds thereby inhibits 

further sorting.  Further observations of large drop fall speeds through video 

disdrometer measurements is critical for better understanding the sorting potential of the 

largest drop sizes.  

As demonstrated above, rain DSDs altered by size sorting tend to be narrow 

with large median drop sizes (e.g., Battan 1977; Zawadzki and de Agostinho Antonio 

1988; Rosenfeld and Ulbrich 2003; MY05a).  Narrowing of the DSD is at the expense 

of the smaller drops, which are sorted out of the distribution.  The effect of this process 

on the DSD is analogous to evaporation (e.g., Rosenfeld and Ulbrich 2003), which also 

preferentially depletes the smaller drops.  Observations of ZDR enhancements are 

sometimes explained by invoking evaporation as a significant contribution (e.g., Jung et 

al. 2010).  However, Kumjian and Ryzhkov (2010) quantified the impact of evaporation 

on the polarimetric radar variables in rain and demonstrated that the enhancement of 

ZDR owing to evaporation (no more than 0.1 – 0.2 dB at S band, even in extreme cases) 

is completely dominated by enhancements in ZDR owing to size sorting.  Size sorting is 

more efficient at narrowing the DSD than evaporation.   

In bulk microphysics parameterization schemes with fixed shape parameter ( in 

eqn. 5.2), such substantial narrowing of the DSD by size sorting (represented by 

increased ) obviously is not captured.  To address this shortcoming, MY05a and 

MM10 propose a diagnostic shape parameter, or one that is allowed to vary as a 

function of the other two prognostic moments.  In the most common configuration for 

bulk microphysics schemes, the two prognostic moments are the mass mixing ratio   

and the total number concentration     , which are proportional to the 3
rd

 and 0
th
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moments (M3 and M0, respectively).  A useful parameter characterizing the DSD is the 

mean-mass diameter, defined as 

   (
  

  
)
   ⁄

 (
      

       
)
  ⁄

 [
      

      

 

  
]                                      

In multi-moment bulk microphysics schemes, size sorting is represented by      

having a smaller sedimentation velocity than     ̅   ̅  .  Therefore,      is reduced 

(“sorted”) more than  , resulting in larger   .  Larger values of Dm are analogous (but 

not equivalent) to the larger median diameters observed in situations of ongoing size 

sorting.  Thus, MM10 suggest the following diagnostic relation for the shape parameter 

 (with prognostic moments M3 and M0)
5
 

                                                                                 

where    is given in mm.  For    > 0.7 mm, the shape parameter increases 

quadratically with   .  Thus, size sorting is parameterized by dramatically narrowing 

the DSD with increasing   , an approach similar to those adopted in MY05a and 

Seifert (2008).  Note that the minimum shape parameter allowed by this 

parameterization is 2.0. 

 Another relation between DSD parameters is suggested in Cao et al. (2008), 

based on disdrometer observations: 

                                                                           

where the slope parameter   is expressed in mm
-1

.  This relation was derived semi-

empirically based on thousands of disdrometer measurements in central Oklahoma and 

is similar to earlier work by Zhang et al. (2001) and Brandes et al. (2004a,b) based on 

                                                 
5
 Note that the diagnostic relation proposed in MM10 is generalized such that any two moments may be 

used.  Here, M3 and M0 are shown because of their common use, and for subsequent comparisons. 
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disdrometer observations in Florida, both of which are verified by polarimetric radar 

measurements.   

Note that negative values of shape parameter are allowed in Eqn. (5.17), in 

contrast to the relation in Eqn. (5.16).  These negative shape parameters (which are 

observed in real DSDs) are usually associated with small slope parameters, indicating a 

rather broad, flat DSD commonly observed in convective storms.  Such DSDs are 

usually characterized by large median diameters (and thus ZDR, and Dm).  The 

disagreement is obvious (Fig. 5.19): in cases of large   , Eqn. (5.16) suggests a very 

large positive , whereas Eqn. (5.17) suggests a negative value for  (Fig. 5.19b).   

Why the disagreement?  Size sorting such as differential sedimentation tends to 

narrow the distribution, as shown in numerous previous studies as well as the results 

presented above.  However, disdrometer measurements of Cao et al. (2008) generally 

do not show values of  in excess of about 15 or 20 at the ground.   
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Fig. 5.19: Comparison of relations between DSD parameters by Cao et al. (2008), indicated by 

the solid black line, and Milbrandt and McTaggart-Cowan (2010; MM 2010), indicated by the 

dashed gray line.  (a) The relation between DSD slope parameter Λ and shape parameter  is 

shown.  (b) The relation between mean-mass diameter    and shape parameter  is shown.  

Relations were determined by Eqns. (5.16-5.17). 

 

Consideration of sampling issues partly resolves the disagreement.  Disdrometer 

observations in Cao et al. (2008) used only 1-minute DSDs with more than 50 drops 

counted.  According to Cao et al. (2008) and others, the 2D video disdrometer has a 

sampling area on the order of 0.01 m
2
.  For a “big drop” DSD that forms as a result of 

size sorting, the characteristic drop velocity is about 8 – 9 m s
-1

.  Using 9 m s
-1

, the 
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characteristic sampling volume of the disdrometer is about 5.4 m
3
.  Using the 1D 

sedimentation model (section 3a of this chapter), one can calculate the total number 

concentration of drops by simply summing the bin model DSD at each height level.  

Thus, we can determine where the disdrometer would sample less than 50 drops, 

assuming a sampling volume of 5.4 m
3
. For the time shown in Figure 5.2, the total 

number of drops sampled in one minute is about 3.3.  However, the hypothetical 

sampling volume would begin sampling > 50 drops when the DSD located at about 400 

m AGL reaches the surface (Fig. 5.20).  At 9 m s
-1

, that height corresponds to about 45 

seconds.  Therefore, only about the first 45 – 60 seconds of the “size sorting” DSD 

during fallout will be sampled by the 2D video disdrometer in the case of our 1-D 

fallout model.   

 

 

Figure 5.20: Number of drops sampled by the 2D video disdrometer. The vertical axis indicates 

height AGL of the DSD at the time shown in Figure 5.2 (this can be thought of as roughly 

corresponding to time).  The vertical bar at 50 drops indicates the minimum sampling ability of 

the disdrometer. Calculations performed on the DSDs simulated by the bin solution of the 1D 

fallout model (Fig. 5.2). 
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If we apply the same type of calculations to the 2D wind shear model (section 

3c), the first 1 km of the rain shaft leading edge are not sampled by the 2D video 

disdrometer; in other words, the disdrometer would not sample 50 drops until the point 

at x = 3 km in the 2D rain shaft in Figure 5.7.  In conclusion, such a threshold (> 50 

drops) would obviously remove some situations where size sorting is a dominant 

process, such as at the onset of precipitation and at the leading edge of storms in 

sheared environments. Undercatchment of large drops is also a well-known sampling 

issue for disdrometers (e.g., Tokay et al. 1999; Williams et al. 2000; Schuur et al. 2001; 

Cao et al. 2008, among others).  Thus, cases where size sorting is dominant likely do 

not contribute to the statistical analyses that produce the DSD parameter relations based 

on disdrometer observations.  Cao et al. (2008) formulated a correction for this by 

identifying where their relation (eqn. 5.17) is likely to produce errors with dual-

polarization radar measurements; namely, in areas of size sorting characterized by large 

ZDR and relatively low ZH. 

The incompatibility of the relations is a two-way street, though.  As 

demonstrated by observations, most DSDs characterized by large median drop sizes 

(and/or   ) are not the result of size sorting.  Thus, applying a relation such as Eqn. 

(5.16) everywhere and at all times may not be appropriate.  Similar to the refinement of 

the  - Λ relation by Cao et al. (2008), the relation in Eqn. (5.16) may need to be 

corrected in cases where large    is the result of processes that produced a broader, 

flatter spectrum.  An analogy can be made with polarimetric measurements: high ZDR 

by itself does not necessarily mean size sorting; one must consider both ZH and ZDR to 
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determine areas where size sorting is possible.  Such considerations may become 

especially important in future attempts to assimilate polarimetric radar data directly into 

numerical models with bulk microphysics schemes. 

The results demonstrating the deficiencies of bulk microphysics 

parameterizations in simulating the polarimetric radar variables in situations of ongoing 

size sorting have implications for attempts to assimilate polarimetric data.  Because of 

the inability of 1M schemes to produce size sorting, assimilation of ZDR into a model 

using such a scheme will likely increase analysis errors in cases of size sorting (e.g., 

Jung et al. 2010).  This is because, in the framework of a 1M scheme, there is a one-to-

one correspondence between the assimilated observation (ZDR) and the predicted model 

variable (e.g., rain mass mixing ratio  ).  Thus, regions of high ZDR would correspond 

to larger  .  In the case of observed size sorting, the model would adjust to the high-ZDR 

observation by incorrectly increasing rain mass at that location, which is exactly 

opposite of the physical situation.  The incorrect inclusion of additional water mass can 

affect other processes such as evaporation, which has ramifications for the development 

and strength of cold pools (e.g., Dawson et al. 2010).  Therefore, if using 1M 

microphysics schemes in assimilation experiments where size sorting may be prevalent 

(e.g., supercells or other deep moist convection), it is best not to use ZDR data.  

2M schemes with fixed shape parameter (α) suffer from excessive size sorting.  

For this reason, diagnostic-α (e.g., MY05b; MM10) and other techniques (e.g., Mansell 

2010) were developed.  In MY05 and MM10, α increases with increasing mean-mass 

diameter    to reflect the narrowing of DSDs undergoing size sorting.  ZDR offers an 

attractive observation that can be related to   ;  of course, high ZDR (and large   ) 
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alone does not necessarily mean size sorting is occurring.  Therefore, it may be 

desirable to “flag” areas of the storm where size sorting may be occurring using ZH and 

ZDR observations, thereby limiting the use of such diagnostic-α relations only to regions 

where they are necessary.  Such a flagging system could make use of predetermined ZH 

and ZDR thresholds, or locations in which the ZH and ZDR data exhibit a strong negative 

correlation.   

Though size sorting may not be widespread throughout all precipitating systems, 

it can be most pronounced and sustained in deep moist convective storms (DMCS), 

especially supercells.  Many storm-scale data assimilation studies focus on such DMCS, 

both in observing system simulation experiments (OSSEs; e.g., Snyder and Zhang 2003; 

Tong and Xue 2005; Jung et al. 2008; Yussouf and Stensrud 2012) as well as real-data 

experiments (e.g., Hu et al. 2006a,b; Aksoy et al. 2009; Lim and Sun 2010; Schenkman 

et al. 2011a, 2011b; Dowell et al. 2011; Snook et al. 2011).  Thus, the challenges 

associated with assimilating polarimetric radar data in cases of vigorous size sorting 

may be encountered in future endeavors when DMCS are investigated in high-

resolution numerical models. 

 

6. Summary 

 This chapter has reviewed size sorting of precipitation particles by the most 

frequently-observed mechanisms, including differential sedimentation, updrafts, and 

vertical wind shear.  Simple bin models were constructed to quantify the impact of size 

sorting by sedimentation, an updraft, and vertical wind shear on the polarimetric radar 

variables: ZH, ZDR, KDP, and ρhv.  Additionally, the treatment of size sorting by bulk 
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microphysics parameterizations was discussed, and errors in the simulated polarimetric 

radar variables were quantified. 

 The following summarizes the key points: 

1. Size sorting of raindrops in the simplified bin models has a significant 

impact on the polarimetric radar variables, most notably leading to an 

increase in ZDR along a gradient of ZH.  These results are in agreement with 

previous observational studies (e.g., Ryzhkov et al. 2005c; Kumjian and 

Ryzhkov 2008a,b, 2009). 

2. The initial transient effect of differential sedimentation has been explored 

thoroughly by the modeling community.  However, the transient effect can 

be maintained by updrafts and vertical wind shear. These size sorting 

mechanisms have not been investigated widely in the framework of bulk 

microphysics schemes, but are explored here. 

3. Single-moment parameterizations are incapable simulating size sorting, in 

agreement with many previous studies (e.g., Wacker and Seifert 2001; 

MY05a; among others).  This inability to reproduce size sorting results in 

large errors in ZDR computed from the resulting DSDs.  Also in agreement 

with earlier studies, double-moment schemes with fixed shape parameters 

can suffer from excessive “size sorting.”  This leads to dramatic 

overestimation of ZDR (by several dB), ZH, and KDP in large parts of a 

simulated rainshaft encountering wind shear, as well as beneath newly-

precipitating clouds.  Use of a diagnosed shape parameter in a two-moment 

scheme or a prognosed shape parameter in a three-moment scheme largely 
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mitigates the errors associated with size sorting.  However, excessive 

narrowing of the DSD may occur if the shape parameter is allowed to grow 

to unrealistic values.  Limiting the maximum value of the shape parameter to 

20.0 – 30.0 reduces the errors. 

4. Though size sorting is most apparent in deep convective storms, examples 

from other precipitation regimes (including stratiform rain and isolated 

shallow convection) demonstrate that size sorting is widespread in 

occurrence and is possible in any precipitating system. 

5. Special care must be taken in attempts to assimilate polarimetric radar data 

into numerical weather prediction models, especially ZDR in cases of 

ongoing size sorting.  Problems may arise because of the fundamental 

disconnect between the physical process of size sorting (which strongly 

affects ZDR) and the parameterization of the process in bulk schemes, which 

in some cases does not resemble reality. 
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Chapter 6: The Impact of Raindrop Evaporation on the Polarimetric 

Radar Variables. 

 

The material in this chapter is derived from Kumjian and Ryzhkov (2010). 

 

1. Introduction. 

As rain falls from a precipitating cloud, the distribution of mass amongst 

different sized drops is governed by several microphysical processes.  The evolution of 

this drop size distribution (DSD) is a complex problem that has received considerable 

attention in the literature over the past few decades.  The dominant microphysical 

processes governing the evolution of the DSD as drops descend towards the ground 

include differential sedimentation or size sorting, spontaneous breakup, collisional 

breakup, coalescence, and growth or decay by vapor diffusion (i.e., condensation or 

evaporation).  Early works by Young (1975), Srivastava (1978), and Johnson (1982) 

determined that spontaneous breakup is relatively unimportant compared to collisional 

breakup, especially for larger rainwater contents.  Laboratory studies by Low and List 

(1982a) and Beard and Ochs (1995) have improved our understanding of collisional 

processes such as coalescence and breakup.  Based on their experimental data, Low and 

List (1982a,b) developed coalescence efficiencies and a parameterization for the 

fragment size distribution of particles resulting from the collisional breakup of 

raindrops in the so-called filament, sheet, and disk modes. These and similar 

parameterizations have been widely analyzed, improved, and utilized in zero-

dimensional box models and one-dimensional rainshaft models (e.g., Gillespie and List 
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1976, 1978; List and Gillespie 1976; Low and List 1982b; Brown 1986, 1987; List and 

McFarquhar 1990, among others).  Evaporation beneath the cloud base was included in 

the models by List et al. (1987), Tzivion et al. (1989), Brown (1993, 1994), Hu and 

Srivastava (1995), and Seifert (2008). 

These studies and others have found that the collisional processes of coalescence 

and breakup tend to dominate the evolution of the DSD shape. These processes tend to 

drive an arbitrary initial DSD towards a family of equilibrium shapes which are related 

through simple multiplicative factors (List et al. 1987; Brown 1987, 1993; Hu and 

Srivastava 1995).  The latter authors found that DSD evolution can be categorized into 

two phases: (1) collisional processes dominate the evolution of the spectrum as it 

approaches equilibrium, followed by (2) evaporation dominates the spectral evolution, 

smoothing maxima and decreasing the overall mass (while only slowly changing the 

shape of the distribution).  If the initial drop size distribution is already close to its 

equilibrium shape, Hu and Srivastava (1995) found that the first stage does not occur.  

Note that some of the equilibrium DSDs in the aforementioned works are the result of 

artifacts in the original Low and List (1982a,b) parameterization; the parameterization 

by McFarquhar (2004) based on the Low and List data alleviates some of these 

shortcomings and produces equilibrium distributions that are quite different than those 

found in the previous studies.  

The collisional processes themselves do not contribute to or deplete liquid water 

content in the sub-cloud layer: they simply redistribute mass to different sizes.  

However, net evaporation (the diffusion of water vapor away from drops) depletes the 

total rainwater content, which has significant implications for quantitative precipitation 
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estimation. In addition, the generation of negative buoyancy via evaporational cooling 

plays an important role in storm evolution, including the production of severe 

downdrafts (e.g., Srivastava 1985, 1987) and even possibly affecting a supercell storm’s 

likelihood of producing a tornado (e.g, Markowski et al. 2002, 2003; Grzych et al. 

2007).  Despite the many studies that quantify the impact of environmental conditions 

on the rate of evaporation and how evaporation affects the rainfall rate, DSD, 

downdrafts, and radar reflectivity factor (e.g., Srivastava 1985, 1987; Rosenfeld and 

Mintz 1988; Hu and Srivastava 1995), there is a paucity of studies investigating how 

evaporation is manifested in the polarimetric variables.  A notable exception is Li and 

Srivastava (2001), who quantified the impact of evaporation on differential reflectivity 

ZDR.  In contrast, this chapter quantifies the sensitivity of all polarimetric radar variables 

to various environmental thermodynamic conditions, and variations in DSDs for light 

rainfall rates, as well as to formulate recommendations to aid in hydrometeorological 

rainfall estimation. As such, this work should not be viewed as an attempt to investigate 

DSD evolution; rather, the goal is to quantify the impact of evaporation on the 

polarimetric radar variables as a preliminary step in determining the polarimetric 

fingerprints of warm rain microphysical processes.   

The following section will describe the physics of raindrop evaporation.  The 

qualitative impact of evaporation on the polarimetric variables will be conceptualized to 

provide a framework for the quantitative analysis conducted in the remainder of the 

paper.  This quantification will be done using an explicit microphysics model that is 

described in section 3.  Section 4 details the results of model sensitivity tests meant to 

explore the parameter space, and of simulations of different evaporation scenarios. The 
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impact of evaporation on rainfall estimation is explored in the discussion section 5, 

followed by a brief comparison with an observational study in section 6. Section 7 is a 

summary of the important conclusions.  

 

2. Physics of Evaporation 

Liquid drops in clouds can grow by the diffusion of water vapor from the ambient 

environment if the ambient vapor density (  ) is greater than the vapor density at the 

droplet’s surface      .  On the other hand, if the vapor density at the surface of the 

drop exceeds the vapor density in the ambient environment, vapor is diffused away 

from the drop (evaporation).  These scenarios are depicted in Figure 6.1.  

The rate of mass diffusion from a falling drop can be written as 

  

  
      ̅                                                                                           

where   is the radius of the drop,   ̅ is the ventilation coefficient for vapor diffusivity to 

account for the ventilation effects of a drop falling,    is the molecular diffusion 

coefficient of water vapor in air, and    and     are the vapor density of the ambient 

environment and at the surface of the drop, respectively.  Following Pruppacher and 

Klett (1978) and Rogers and Yau (1989), one can derive an approximate expression 

describing the time rate of change of the drop radius undergoing growth or decay by 

vapor diffusion: 
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Fig. 6.1: Cartoon illustrating net vapor diffusion (a) onto a drop from the ambient environment 

(condensation), and (b) away from a drop into the ambient environment (evaporation). The 

dashed gray line represents a volume around the drop demarcating the near-drop environment 

and the ambient environment.  
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In eqn. (6.2),   is the saturation ratio, and    and    are terms related to heat 

conduction and vapor diffusion, respectively: 

   (
  

   
  )

    

  ̅   
                                                                 

and 

   
     

  ̅       
                                                                              

In the above terms,    is the latent heat of vaporization,    is the gas constant for water 

vapor,   is the air temperature,   is the density of liquid water,    is the thermal 

conductivity of air,       is the saturation vapor pressure of air as a function of 

temperature. The ventilation coefficients for vapor and heat are defined as  

  ̅             Sc
  ⁄  Re

  ⁄                                                         

and 

    ̅             Pr
  ⁄  Re

  ⁄                                                        

as in Pruppacher and Klett (1978) and Rasmussen and Heymsfield (1987).  The 

ventilation coefficients are functions of the Schmidt ( Sc), Reynolds ( Re), and Prandtl 

( Pr) numbers.  The temperature dependencies of the thermodynamic quantities follow 

Rasmussen and Heymsfield (1987), but are provided in SI units here for convenience.  

The latent enthalpy of vaporization (in J kg
-1

) as a function of temperature (in K) is 

given as 

            (
      

 
)
 

                                                     

where the exponent   is  
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The thermal conductivity of air (in J m
-1

 s
-1

 K
-1

) is expressed as 

                                                                                 

Similarly, diffusivity of water vapor in air (m
2
 s

-1
) is expressed as 

            (
 

      
)
    

(
  

 
)                                                      

where    is the reference level pressure, taken as 1000 hPa.  Saturation vapor pressure 

(in hPa) as a function of temperature is approximated following Rogers and Yau (1989): 

                 ( 
    

 
)                                                        

In order to calculate the Schmidt, Prandtl, and Reynolds numbers, the kinematic 

viscosity of the air (  ) is required.  The kinematic viscosity (in m
2
 s

-1
) is dependent on 

the dynamic viscosity of the air (  ) as well as the air density,     : 

         ⁄                                                                             

The dynamic viscosity of air (kg m
-1

 s
-1

) for temperatures above freezing is assumed to 

be 

                                                                          

and the air density is calculated from the environmental thermodynamic profiles via the 

ideal gas law. 

For now, we focus on a qualitative interpretation of (6.2).  For subsaturated 

environments (where S < 1), raindrop radius will decrease, indicating decay through 

evaporation.  Also, because       is inversely proportional to drop radius, the radii of 

smaller drops will decrease more rapidly during evaporation than larger drops. A simple 

thought experiment (“gedankenexperiment”) suggests that the preferential depletion of 

smaller drops will result in a decrease in observed ZH and KDP with an increase in the 
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observed ZDR.  The observed decrease in ZH has been well documented and is intuitive.  

Decreasing drop diameters across the spectrum and a decrease in the concentration of 

smaller drops (those that are totally evaporated) will result in a decreased magnitude of 

backscattered signal.  Recall that KDP is less sensitive than ZH to large drops, and as a 

corollary, more sensitive to changes in the lower end of the drop size spectrum.  

Therefore, one can expect evaporation to affect KDP more substantially than ZH. 

The expected increase in ZDR is less intuitive because all drops are losing mass 

(size).  However, because ZDR is a measure of the median drop size in a distribution, a 

preferential depletion of smaller drops (which generally have a large concentration) 

causes an increase in the median drop size of a given DSD.  This effect is shown 

schematically in Figure 6.2.  At S band, the change in ρhv owing to evaporation in pure 

rain is not expected to be significant for reasons discussed in a later section.  The 

magnitude of changes in all polarimetric variables should be dependent on the relative 

contributions of small drops and large drops and thus is strongly dependent on the DSD. 

 

Fig. 6.2: Cartoon illustrating how evaporation can cause an increase in the median drop size Dm 

of a distribution.  The solid blue line indicates the drop size distribution (DSD) before 

evaporation occurs; the dashed orange line represents the modified DSD owing to evaporation. 
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3. Model Description 

In an effort to quantify the impact of evaporation on the polarimetric variables 

under different conditions and assumptions, a simple numerical model is constructed.  

The idealized one-dimensional model explicitly computes the change in size of 

raindrops falling through subsaturated air.  The model domain can be thought of as the 

sub-cloud layer, with 100-m vertical resolution.  Eighty initial drop sizes are 

considered, ranging from 0.05 mm to 7.95 mm in 0.1-mm increments.  Each drop size 

“bin” is tracked independently in order to isolate the effects of evaporation.  Hence, no 

drop interactions such as collisions, coalescence, or breakup are taken into account.  

Note that coalescence and breakup significantly contribute to the evolution of the drop 

size spectrum, as found in the numerous theoretical and modeling studies mentioned 

above.  These collisional processes become increasingly important in heavier rainfall.  

On the other hand, evaporation tends to only change the slope of the DSD slowly, 

instead mainly affecting the total water content (e.g., Srivastava 1978; Hu and 

Srivastava 1995).  For rainfall estimation, evaporation is important because it is the only 

sub-cloud process that directly affects the total mass of rainwater reaching the ground. 

The relative contributions to depletion of total water content from combinations of 

coalescence, breakup, and evaporation have been investigated previously (e.g., Hu and 

Srivastava 1995; Seifert 2008).  Hu and Srivastava (1995) found that the effects of 

coalescence and breakup on the depletion of water content tend to approximately 

balance.  In their model, total rainwater mass depletion in simulations that employed 

full microphysics (coalescence, breakup and evaporation) was similar to those in which 

only evaporation was considered.  Thus, only including evaporation in this model, 
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although inherently limiting its applicability towards simulating the evolution of the 

DSD, is justifiable to improve computational efficiency given our focus on the radar 

measurements and associated rainfall estimation.   

 At the top of the domain, or at “cloud base,” any DSD model can be prescribed.  

In the sub-cloud domain, any vertical profile of temperature and relative humidity can 

be administered. The feedback on the environmental thermodynamic profiles due to 

evaporation may be turned on or off.  The feedback adjustment scheme is described 

below. At the initial time, drops begin to fall into the top of the domain, as in many 

rainshaft models.  After numerous tests, the time step was selected to be 0.25 seconds, 

maximizing computational efficiency while maintaining stable solutions.     

We are interested in the vertical profiles of the polarimetric variables, so we 

convert eqn. (6.2) into an expression for the change in drop radius with height. This is 

accomplished by dividing eqn. (6.2) by the fall speed of raindrops as a function of size, 

     .  To simplify the ensuing integration, the empirical power law fall speed relation 

suggested by Atlas and Ulbrich (1977) is used for the terminal velocity of the raindrops 

         (
  

    
)
   

                                                           

where        m s
-1

 mm
-0.67

,       , and the equivalent spherical diameter D is 

given in mm.  The multiplicative factor        ⁄      is a density correction, where    is 

the surface reference density value following Foote and duToit (1969) and Beard 

(1985).  Though eqn. (6.14) is less accurate for large drops than more recent empirical 

models (e.g., Brandes et al. 2002), it well represents the fall speeds of smaller drops (< 

5 mm) for which evaporation effects are most significant.  Thus, performing the change 

of variables in eqn. (6.2) and using the velocity relation (6.14) yields an analytic 
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expression for the change in diameter of a raindrop with initial size D0 as a function of 

height 

     [  
   

 
      

 
∫      (

      
  

  
)

 

  

   

   ]

     ⁄  

                    

where we have defined   as the right hand side of eqn. (6.2): 

  
   

     
                                                                        

To numerically integrate this expression,   and      are assumed to be constant over 

each height step            (where        ). For sufficiently small height steps 

(100 m is used in this study), we obtain  

        [     
    

           

 
(
        

  
)

   

  ]

     ⁄  

            

In this way, the simple expression (6.17) is used to calculate what a given initial drop 

size should be at any height beneath the cloud base for given thermodynamic profiles, 

assuming the drops are falling at terminal velocity. 

 In many of the aforementioned modeling studies, the mass concentration of 

raindrops      is governed by the following equation 

 

  
[    ]  

 

  
[      ]  

 

  
[
  

  
    ]                          

The first term on the left hand side is the Eulerian time rate of change of the mass 

concentration of the drops, and the second term is the change in drop concentration 

owing to differential sedimentation.  The third term describes the change in 

concentration of drops of mass   due to growth or decay by vapor diffusion,     ⁄  

(i.e., the time rate of change of the drop mass due to condensation or evaporation).  On 
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the right hand side, the terms   and   account for the collisional processes of breakup 

and coalescence, respectively; these will be omitted herein.  For the calculation of radar 

variables, it is more convenient to work in terms of drop diameter,  .  Thus, we seek to 

express eqn. (6.18) in terms of     , where        is the number of raindrops of size 

  to     .  The mass and size distributions are related by 

         
  

  
                                                                    

Assuming spherical symmetry of the raindrops,      ⁄      , and thus  

  

  
 

 

     
                                                                          

When computing the polarimetric radar variables, drop shape is important and 

must be dealt with appropriately.  However, assuming a spherical shape of drops does 

not significantly impact computations of evaporation (Straka and Gilmore 2006).  Thus, 

the inconsistency with treating drop shape will not affect the results of this study.  The 

mass diffusion term must be written in terms of D: 
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Thus, substituting eqns. (6.19) – (6.21) into eqn. (6.18), and making use of the change 

of variables  

 

  
 

  

  

 

  
 

yields the governing equation in terms of drop diameter D: 
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For the most general case in a 1D rainshaft model, the drop concentration is a function 

of diameter, height, and time, i.e.,           . For brevity, the functional 
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dependence of   and   will herein be omitted.  Thus, applying the chain rule to expand 

the derivatives in eqn. (6.22) results in 
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For drops falling at terminal velocity   ,  

  

  

  
 

  

  

  

  
 

  

  
    

So, eqn. (6.23) becomes 
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which governs the time rate of change of the raindrop size distribution.  Using eqn. 

(6.14) for terminal velocity and noting that     ⁄       , we can write eqn. (6.24) 

in discrete form 
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for each time step i, height level j, and drop size bin k. Note that the density correction 

factor and constant   have been absorbed into the variable  . 

 As raindrops begin to evaporate in subsaturated air, the thermodynamic 

properties of the air within the rainshaft are affected.  Specifically, the shaft moistens 

and cools with time, thereby decreasing subsaturations and limiting the amount of 

evaporation that occurs.  The decrease in temperature and precipitation loading 

contribute to negative buoyancy relative to the surrounding precipitation-free air, which 

forces a localized downdraft.  The downdraft also serves to limit evaporation because it 
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can transport drops downwards faster than they would otherwise descend, decreasing 

the amount of time available for evaporation.     

To simulate the local cooling and moistening effect, we utilize equation (6.1) as 

well as the equation governing thermal conduction towards the drop 

  

  
      ̅                                                                      

where    is the temperature of the drop’s surface.  For simplicity, we assume the 

raindrop temperature to be in equilibrium at each level, neglecting the brief relaxation 

period towards their equilibrium temperature.  Recently, Tardif and Rasmussen (2010) 

have investigated the validity of the equilibrium assumption and found that it may not 

hold if drops experience thermodynamic changes on time scales comparable to the 

equilibrium relaxation time.  In our study, the height step (100 m) ensures that the drops 

remain within one grid box (in which thermodynamic conditions are constant) over the 

relaxation time scale, which tends to be on the order of 4-5 s for most drop sizes.  A 

more accurate treatment of drop temperature is presented in Chapter 4. Using the total 

amount of mass evaporated at each level, and assuming that all latent enthalpy from the 

environment contributes directly to cooling the drop’s surface (which immediately cools 

the surrounding air), the incremental change in air temperature is calculated at each time 

step.  Similarly, the entire mass of liquid water lost due to evaporation goes directly into 

vapor, increasing the ambient air vapor density.  Using the new temperature and vapor 

density, and the ideal gas law for water vapor, the new relative humidity can be 

calculated.   

This environmental feedback scheme may be turned on or off in the model.  

Because the model is one-dimensional and is not tied to any dynamics, we have omitted 



179 

the generation of a downdraft.  The velocity relation in eqn. (6.14) overestimates the fall 

speeds of the moderate and large drops already, which may partially account for the 

errors introduced when neglecting a downdraft.  Also, to be realistic and dynamically 

consistent, the generation of a downdraft would require some parameterization of 

entrainment; without this entrainment, the shaft moistens and cools until it becomes 

saturated, halting further evaporation. 

The change in diameter of the drop size bins at each height level and the 

calculated concentration of drops at each level are used to compute the vertical profiles 

of polarimetric variables according to the T-Matrix method (e.g., Mishchenko 2000).  

For raindrop shapes, we assume the relation suggested by Brandes et al. (2002; 

corrected in 2005): 

  

  
                                                            

where   is in mm.  See Brandes et al. (2002) for a discussion of the differences between 

this relation and others that are used frequently in the literature.  The raindrops are 

assumed to have a mean canting angle of 0° with respect to the vertical, with a canting 

angle distribution width of 20°.  In general, 20 is too high for typical rainfall; a 

standard deviation of 10° is more appropriate (e.g., Ryzhkov 2001; Ryzhkov et al. 

2002).  However, the higher value was chosen to increase the effect of evaporation on 

ρhv.  The impact of this wider distribution of canting angles is to dampen the effects of 

evaporation on the other variables very slightly.   

 The evaporation model calculations will be separated into two groups: 

sensitivity studies, which will focus on the exploration of parameter space, and 

simulations, which will model vertical profiles of the polarimetric radar variables using 
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observed thermodynamic soundings from different climate regions.  The sensitivity 

studies are designed to test the model sensitivity as well as the sensitivity of the 

polarimetric radar variables to different thermodynamic conditions, DSD models, and 

rainfall rates.  The simulations are intended to illustrate potential variations in vertical 

profiles of polarimetric variables in different regions of the United States that may be 

observed following the ongoing nationwide weather radar upgrade to polarization 

diversity.  For the experiments, the gradual moistening and cooling feedback 

mechanism has been turned off in order to create “snapshots” of the profiles of 

polarimetric variables.  For applied simulations, the mechanism should be turned on to 

avoid overaggressive evaporation. 

 

4. Model Results 

a. Sensitivity Studies 

Because of the aforementioned differences in drop size dependency for each of 

the polarimetric variables, sensitivity to selection of the DSD is expected.  To address 

this, each model sensitivity experiment is repeated using different initial DSDs.  The 

three-parameter gamma model (e.g., Ulbrich 1983) is used: 

        
                                                                  

The rainfall rate for each DSD is fixed at the top of the domain.  For the special case of 

the exponential DSD (    , the Marshall-Palmer DSD (herein MP) relation is used. 

Note that the intercept parameter most often used with the MP distribution,          

m
-3

 mm
-1

, is calculated for use at sea level. Because we are using fixed rainfall rates 
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aloft, we must use a density-corrected version:               ⁄        For the MP 

distribution, we can use the velocity relation (14) to calculate the slope parameter  : 

  (
 

 
         )

      

        ⁄                                                          

Though the gamma model has three parameters, observational and modeling studies 

suggest that two of the parameters are constrained and thus not independent (e.g., Zhang 

et al. 2001, 2006; Brandes et al. 2004b; Cao et al. 2008; Seifert 2008).  For Oklahoma 

precipitation, Cao et al. (2008) found an empirical relation between the shape parameter 

  and the slope parameter   based on disdrometer measurements:  

                                                                                      

applicable for       . Despite some debate over the validity of such relations (e.g., 

Moisseev and Chandrasekar 2007), the constrained gamma model is used. Shape 

parameter   is varied between -1 and 5 in our calculations.  These values encompass the 

bulk of observations in Oklahoma rain (e.g., Cao et al. 2008).  A slightly broader range 

of values of   was found in rain in Florida (Zhang et al. 2001), so there is some 

dependence on climate region. Because   is determined from the pre-selected   values 

using eqn. (6.30) and we have fixed the rainfall rate  

  
 

 
∫               

 

 

                                                                 

the intercept parameter    can be determined by solving (6.31) using (6.28): 

   
 

 
  (

  

    
)
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It is evident that a variety of DSD shapes have been selected (Fig. 6.3), covering a 

broad spectrum of precipitation regimes.  Note that in Oklahoma precipitation, the 

negative shape parameters are most often associated with convective precipitation 

events, so the relatively high concentration of larger drops makes physical sense.  Also 

note the similarities between the MP DSD (corresponding to    ) and the       

distribution, which nearly overlap for all drop sizes except at the small drop end of the 

spectrum. 

 

Fig. 6.3: DSD models used for the simulations. The Marshall-Palmer exponential distribution 

(solid black line); the      gamma model (solid dark gray line); the     gamma model 

(solid light gray line); the gamma model with     (dashed black line); and the model with 

    (dashed dark gray line).  All models are for rainfall rates of 5 mm hr
-1

. 
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For each set of model runs the polarimetric radar variables are calculated for 

both S (10.9-cm wavelength) and C (5.4-cm wavelength) bands.  In the first set of 

experiments, idealized isothermal layers 2-km deep are considered.  The temperature is 

fixed at 20 °C, and relative humidity (RH) is set constant in height but varies from 10% 

to 95% in each experiment.  Though not necessarily realistic, these experiments simply 

explore the parameter space of the model.  In the second set of sensitivity runs, a dry 

adiabatic lapse rate is prescribed with a surface temperature of 30 °C.  The RH profile is 

assumed to increase linearly from the given surface value to 100% at the cloud base 

(top of the domain, taken to be 3 km).  The surface values are varied from 55% to 95% 

in 5%-increments.  These idealized well-mixed boundary layer cases apply to warm 

season precipitation events. Simulations using observed thermodynamic profiles, 

including both warm and cool season events, are explored in section 5. In these two sets 

of sensitivity tests, each of the DSD models is used.  The final set of sensitivity tests 

varies R from 0.1 mm hr
-1

 to 20 mm hr
-1

 using the MP DSD for a dry adiabatic 

environment with a surface RH of 75% and a surface temperature of 30 °C.   

 At the onset of precipitation, transient differential sedimentation occurs. As 

discussed in Chapter 5, the reason for this is simply the difference in terminal velocity 

of the large drops versus the smaller drops; the large drops fall faster and thus reach the 

ground before the smaller drops.  Once enough time has elapsed, all drops that do not 

evaporate reach the ground, and the observable effects of differential sedimentation 

disappear. Note that the impact of differential sedimentation on the radar variables 

dominates any signal from evaporation, which produces more subtle changes in the 

vertical profiles of the polarimetric variables (Fig. 6.4).  Thus, for the remainder of the 
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sensitivity studies and experiments where we quantify the effects of evaporation, the 

calculations are carried out for long times (equivalently, waiting for the profiles to attain 

steady-state solutions where the environmental feedback mechanism has been turned 

off). 

 

Fig. 6.4: Example simulation in a well-mixed boundary layer of 3 km depth, with surface 

temperature of 30 °C and surface relative humidity of 70%.  The simulation uses the MP DSD 

aloft with a rainfall rate of 5 mm hr
-1

.  The left column is after 60 seconds, showing the transient 

effect of differential sedimentation in vertical profiles of each of the polarimetric variables.  The 

right column shows the steady-state profiles for the same environment.  Solid lines are for S 

band, dashed lines indicate C-band values. 
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It is convenient to define the “evaporative change” in the polarimetric variables 

over the depth of the model domain, which is simply the value of the polarimetric 

variable at the ground minus its initial value aloft
6
.  The evaporative change will be 

denoted as a  before the variable.  As discussed above, evaporation will produce 

negative ZH and KDP (indicative of a decrease towards the ground) and a positive 

ZDR (indicative of an increase towards the ground). To make a more meaningful 

comparison between ZH and KDP the evaporative change in KDP will be converted 

into logarithmic units 

                [
           

          
]                                                  

Recall that the logarithmic differences for ZH, ZDR, and KDP can be converted into 

relative changes (for example, a 3-dB decrease corresponds to about a 50% reduction 

from its original value). 

The results from the first set of experiments (considering isothermal layers) are 

summarized in Figs. 6.5 and 6.6 for S band and C band, respectively.  It is clear that all 

of the variables are sensitive to the relative humidity in the layer, but perhaps more 

importantly the results are sensitive to the initial DSD model selected.  The       

model exhibits much greater evaporative change in ZH and KDP than the other models 

(Figs. 6.5a,c; 6.6a,c).  This is explained by two factors.  First, the distribution contains a 

large concentration of small drops, which are preferentially evaporated, resulting in a 

substantial decrease in mass.  Second, the       DSD has fewer large drops than any 

other distribution.  These large drops, which do not evaporate as efficiently as smaller 

                                                 
6
 In all cases, the changes in polarimetric variables due to evaporation are not constant in height and 

depend on the environmental thermodynamic profiles as expressed by the variable     . 
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drops, tend to overwhelm the contribution to the observed ZH (and to a lesser extent, 

KDP) for the other DSD models, which all exhibit lower magnitudes of ZH and 

KDP(dB).  

Because ZDR is more sensitive to drop size than ZH, it follows that the large 

ZDR values occur for the DSDs with relatively large concentrations of big drops.  

However, also playing an important role in producing the significant ZDR values is a 

large concentration of small drops.  The preferential evaporation of a significant portion 

of the spectrum will substantially increase the median drop size of the spectrum.  This is 

why the MP model has the highest ΔZDR (Figs. 6.5b, 6.6b): it has the highest 

concentration of small drops and a comparatively large concentration of big drops.  

Also note that the ZDR at C band (Fig. 6.6b) is somewhat higher for all DSD models 

owing to resonance scattering effects of large drops.  

 At S band, hv magnitudes are quite small (< 0.002 even for extreme 

evaporation) for all DSD shapes, at least for the electromagnetic scattering model 

employed in this study (Fig. 6.5d).  Such small changes are insignificant and likely 

within the uncertainty of the WSR-88D measurements, or about  0.005 to 0.01.  At C 

band, the evaporative changes in ρhv are slightly larger in magnitude and negative for all 

models (Fig. 6.6d).  For modest evaporation rates, changes in ρhv at both radar 

wavelengths are insignificant and probably difficult to detect operationally. 
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Fig. 6.5: Sensitivity of the evaporative change in the S-band dual-polarization variables to 

various constant relative humidity profiles for the 5 DSD models.  The domain depth is 2 km 

and isothermal at 20 C.  The plotting convention for the DSD models is the same as in Fig. 6.2.  

The panels display evaporative changes in (a) ZH, (b) ZDR, (c) KDP, and (d) ρhv. 
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Fig. 6.6: As in Fig. 6.5, but for C band. 

 

Next, idealized 3-km deep mixed layers are considered for the calculations.  The 

results for S and C bands are summarized in Fig. 6.7.  The resulting ΔZH and ΔKDP are 

dependent on the surface RH and the DSD prescribed aloft, as expected.  However, a 

feature of note is that ΔZH and ΔKDP reverse sign for three of the DSD models 

(MP;       ; and      ) for large values of surface RH.  This is because the 

relatively cool and moist conditions beneath cloud base do cause enough evaporation to 

counteract the effect of “raindrop convergence,” a result of the drops encountering 

increasing air density as they fall towards the ground.  In the absence of any 

evaporation, the concentration of drops increases slightly with decreasing height, which  
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Fig. 6.7: Calculations of the evaporative changes in each of the polarimetric variables (each row 

is a variable) based on a 3-km deep idealized well-mixed layer, with a surface temperature of 30 

°C.  The surface relative humidity (RH) values are shown along the abscissa.  Each column 

represents a DSD model, as indicated.  The solid lines represent S-band values and the dashed 

lines represent C-band values. 

 

affects ZH and KDP, but not ZDR or ρhv.  Also of note is that the difference between the 

S- and C-band values of ΔZDR and Δρhv increases with higher concentrations of large 

drops, a result of the resonance scattering effects prevalent in big drops at C band. 

The results of varying the rainfall rate R are provided in Figure 6.8.  For the 

higher rainfall rates considered, one should expect a greater change in KDP for a given 

amount of evaporation than is observed in ZH.   At both S and C bands, ρhv is 

insignificant for all rainfall rates with the MP model.  For the S-band calculations, ΔZDR 
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decreases with increasing rainfall rate whereas the ΔZDR at C band increases slightly.  

The difference in behavior may be attributable to the enhanced resonance scattering 

effects at C band.   

 

 

Fig. 6.8: Sensitivity of the evaporative change in the polarimetric variables to rainfall rate for 

the exponential DSD.  The 3-km deep domain has a dry adiabatic temperature (surface 

temperature of 30 °C) with a surface relative humidity of 75%.  S-band values are shown in 

solid lines and C-band values are in dashed lines.  In the left panel, ΔZH (black) and ΔKDP (gray) 

are shown, both in dB.  In the right panel, black represents ΔZDR and gray represents Δρhv. 

 

 The sensitivity experiments have shown for given thermodynamic conditions, 

the largest ΔZH and ΔKDP occur for the       DSD model, with the        model 

producing the smallest evaporative changes.  These results are directly related to the 

shape of the DSD. Smaller concentrations of large (> 4 mm) drops produce larger 

evaporative changes in ZH and KDP.  The logarithmic changes in KDP are slightly greater 

in magnitude than those of ZH because KDP is less dependent on drop diameter than ZH. 

Because ZH typically is displayed in logarithmic units (dBZ), whereas KDP generally is 

displayed in deg km
-1

, ΔKDP may be more obvious to operational meteorologists.  For 

example, an equivalent evaporative change of 3 dB for ZH (e.g., 33 dBZ to 30 dBZ) 
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“appears” less significant than a 3 dB relative change in KDP (e.g., 1.0 deg km
-1

 to 0.5 

deg km
-1

).  However, it should be noted that for the relatively light rainfall rates 

considered in this study and at S band, KDP can be noisy and difficult to estimate.  At 

shorter radar wavelengths, KDP estimates will be less noisy as the KDP values will be 

larger (recall from Chapter 1 that KDP is inversely proportional to radar wavelength). 

This suggests that evaporative changes may be easier to detect operationally with C- 

and X-band polarimetric radars. 

 For given conditions, the largest values of ΔZDR occur for the MP DSD, and the 

smallest values are produced by the        DSD. The changes depend on relative 

contributions from both the small- and large-drop ends of the size spectrum.  Having the 

largest concentration of big drops of any of the DSDs used in this study, the        

DSD resulted in the smallest ΔZDR.  This is because of the comparatively low 

concentration of small drops (< 2 mm).  With fewer small drops being depleted, there is 

a smaller shift in the median drop size.  Coupled with this is the fact that the substantial 

concentrations of big drops, which are not as affected by evaporation, dominate the 

contributions to the backscattered signal. 

 

b. Simulations with Observed Soundings 

It is informative to look at real cases in an attempt to see the types of variations 

in vertical profiles of the polarimetric variables that may be observed in different 

evaporation scenarios.  To accomplish this, we have selected three soundings from 

different regions that display different thermodynamic characteristics.  These observed 

temperature and relative humidity profiles are used to initialize the model. 
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The three soundings are shown in Figure 6.9.  The first sounding comes from 

Albuquerque, New Mexico on 16 August 2007 at 0000 UTC (Fig. 6.9a) and represents 

the summer season in the western United States with a deep, dry well-mixed layer.  

Light precipitation echoes were observed on the Albuquerque WSR-88D radar about 

the time of the sounding.  Next is a spring sounding (Fig. 6.9b), taken from Norman, 

Oklahoma on 24 May 2008 at 1800 UTC and may be said to represent an atmosphere 

primed for severe weather: a cyclic tornadic supercell developed north of Oklahoma 

City in the afternoon, producing at least 10 tornadoes.  The third sounding (Fig. 6.9c) 

comes from Wallops Island, Virginia on 7 October 2009 at 0000 UTC and represents a 

cool, moist boundary layer in which light rain was observed throughout the day.  Note 

that the environmental feedback mechanism has been turned off for these simulations.    

 

 

Fig. 6.9: Observed low-level (surface to approximately 3 km AGL) soundings used for the 

evaporation model simulations, representing three different evaporation scenarios: (a) 

Albuquerque, New Mexico on 16 August 2007 at 0000 UTC; (b) Norman, Oklahoma on 24 

May 2008 at 1800 UTC, and (c) Wallops Island, Virginia on 7 October 2009 at 0000 UTC.  

Thick black solid (dashed) line indicates the temperature (dewpoint temperature) profile.  The 

horizontal line with asterisk markers at the top of each sounding indicates the 3-km AGL height.  

 

 The MP distribution with a 5 mm hr
-1

 rainfall rate aloft is used in the 

simulations.  The MP model is employed because it is perhaps the most widely known 

DSD model and provides intermediate magnitudes of evaporative changes.  As 
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previously demonstrated, the choice of DSD model can have a significant impact on the 

evaporative changes of the polarimetric variables.  This should be considered when 

interpreting the outcome of the simulations and the computed vertical profiles of 

polarimetric variables presented herein.  Nonetheless, the purpose of these simulations 

is to illustrate the potential variations in vertical profiles of polarimetric observables that 

may occur in different climate regions and seasons throughout the United States. 

 Figure 6.10 displays the vertical profiles of polarimetric variables for the 

Albuquerque sounding (Fig. 6.9a).  For both radar wavelengths, ZH is less than -6 dB.  

The ΔZDR is nearly 0.3 dB at S band, which may be detectable by the WSR-88D radars, 

and greater than 0.3 dB at C band.  The magnitude of the change in ρhv is negligible at S 

band.  At C band, the Δρhv is about -0.003, which may be observable with very high-

quality radar systems.  The evaporative changes in all polarimetric variables for each of 

the simulated soundings are summarized in Table 6.1.   
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Fig. 6.10: Simulated vertical profiles of polarimetric variables for the Albuquerque sounding 

(Fig. 6.9a).  The solid line indicates S band and the dashed line indicates C band.  Variables 

shown are (a) ZH, (b) ZDR, (c) KDP, and (d) ρhv.  The MP DSD model is used at the cloud base, 

with a rainfall rate of 5 mm hr
-1

 aloft. 
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 Albuquerque, NM Norman, OK Wallops Island, VA 

ΔZH – S band -6.23 dB -2.29 dB -1.25 dB 

ΔZH – C band -6.32 dB -2.33 dB -1.28 dB 

ΔZDR – S band 0.27 dB 0.13 dB 0.09 dB 

ΔZDR – C band 0.32 dB 0.14 dB 0.09 dB 

ΔKDP(dB) – S band -6.88 dB -2.59 dB -1.45 dB 

ΔKDP(dB) – C band -6.80 dB -2.56 dB -1.43 dB 

Δρhv – S band -0.0006 -0.0003 -0.0002 

Δρhv – C band -0.0031 -0.0011 -0.0007 

Table 6.1: Results of simulated evaporative changes in the polarimetric variables at S and C 

bands from the three soundings in Fig. 6.9.  Simulations used the MP distribution with a rainfall 

rate aloft of 5 mm hr
-1

. 

 

Because of the uncertainty involved with the choice of initial DSD, the same 

simulations are performed with the        distribution as well as the       DSD.  

These models were selected for a comparison since they encompass the extremes for 

evaporative changes in the different polarimetric variables (Table 6.2).  The        

distribution exhibits much smaller magnitudes of ΔZH and ΔKDP than the MP 

simulations.  Also note that Δρhv changes sign with the        model depending on 

radar wavelength.  In contrast, the       DSD produces the most significant ΔZH and 

ΔKDP values and very small changes in ZDR and ρhv.  These simulations can be viewed 

as the approximate quantitative bounds on the possible changes in polarimetric 

characteristics of light rain due to evaporation in differing environments. 
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 Albuquerque, NM Norman, OK Wallops Island, VA 

ΔZH – S band -1.22, -21.0 dB -0.12, -8.06 dB +0.16, -4.86 dB 

ΔZH – C band -1.32, -21.0 dB -0.13, -8.07 dB +0.15, -4.86 dB 

ΔZDR – S band 0.00, 0.08 dB 0.02, 0.03 dB 0.01, 0.02 dB 

ΔZDR – C band 0.21, 0.08 dB 0.07, 0.03 dB 0.05, 0.02 dB 

ΔKDP(dB) – S band -1.32, -21.2 dB -0.18, -8.14 dB +0.12, -4.91 dB 

ΔKDP(dB) – C band -1.44, -21.2 dB -0.24, -8.14 dB +0.08, -4.91 dB 

Δρhv – S band +0.0016, -0.0001 +0.0006, ≈0 +0.0004, ≈0 

Δρhv – C band -0.0030, -0.0001 -0.0006, ≈0 -0.0004, ≈0 

Table 6.2: As in Table 1, but the        and       distributions are used, respectively, the 

values resulting from each DSD model separated by a comma in the table.  Magnitudes of Δρhv 

less than 10
-4

 are indicated as ≈0.  

 

5. Rainfall Rate Estimation  

In addition to calculating vertical profiles of the polarimetric radar variables, we 

calculate the vertical profiles of rainfall rate using the true value based on the DSD 

itself (eqn. 6.31) as well as radar relations developed for S-band rainfall estimation from 

the Joint Polarization Experiment (JPOLE; Ryzhkov et al. 2005a; also see Giangrande 

and Ryzhkov 2008): 

              
                                                                                

           |   |
     sgn                                                          

and based on DSD simulations by Bringi and Chandrasekar (2001) 

                   
          

                                                     

where R is given in mm hr
-1

 and the lowercase subscripts for Zh and Zdr indicate values 

in linear units.  Understanding how radar-estimated rainfall rates may change in height 
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due to evaporation is important for QPE, especially far from the radar or in regions of 

complex terrain where low levels may not be adequately sampled (e.g., Maddox et al. 

2002). Computing rainfall rates based on accepted algorithms (eqns. 6.34 – 6.36) and 

comparing these estimates to the actual rainfall rate demonstrates the performance of 

each of the algorithms in situations where the DSD is changing with height through 

evaporation. 

 Vertical profiles of rainfall rate are plotted in Fig. 6.11.  A MP distribution is 

assumed at the top of the domain with a rainfall rate of 5 mm hr
-1

.  In all cases, the true 

rainfall rate changes more rapidly than any of the estimates.  Note that the initial large 

decrease in R in the Wallops Island simulation is a consequence of the dry layer near 

700 hPa (see Fig. 6.9c).  At the top of the domain, the R(ZH, ZDR) estimate is closest to 

the actual R, but as the raindrops evaporate, the R(KDP) better matches the true R.  It 

should be noted, however, that actual measurements of KDP can be noisy in light rain, so 

R(KDP) is not necessarily the best estimate for operational use in the case of evaporation 

and light rain, unless rainfall accumulations are taken over long times (e.g., Borowska 

et al. 2011b).  The evaporative changes at the ground using different rainfall rate 

estimates are summarized in Table 6.3.  Overall, the R(ZH, ZDR) relation best captures 

the change in rainfall rate with height (i.e., it is least sensitive to the change in DSD at 

low rainfall rates, which was frequently claimed as an advantage of the polarimetric 

radar estimates), though all relations underestimate the change as calculated from the 

actual DSD.  It is clear that substantial decreases in rainfall rate are possible in dry 

environments, and even in the moist Wallops Island environment the true rainfall rate 
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decreased by almost 3 mm hr
-1

.  If the rainfall rate at low levels is not adequately 

estimated based on radar measurements, this error can accumulate with time. 

 

Fig. 6.11: Vertical profiles of rainfall rates for the three soundings.  The thick solid line is the 

actual R determined from the DSD at each level.  The dash-dot line is R(ZH) (eqn. 6.34), the 

dashed line is R(KDP) (eqn. 6.35), and the dotted line is R(ZH, ZDR) (eqn. 6.36).  At cloud base, 

the MP model is used for these simulations, with a rainfall rate of 5 mm hr
-1

 aloft. 

 

 Albuquerque, NM Norman, OK Wallops Island, VA 

ΔR(ZH) in mm hr-1 -3.05 -1.48 -0.87 

ΔR(KDP) in mm hr-1 -2.70 -1.42 -0.87 

ΔR(ZH, ZDR) in mm hr-1 -3.82 -2.13 -1.34 

ΔR (true) -4.55 -3.46 -2.86 

Table 6.3: Evaporative change in rainfall rate for each of the three soundings for the three 

rainfall algorithms R(ZH), R(ZH,ZDR), and R(KDP) (eqns. 6.34 – 6.36, respectively) based on the 

MP DSD along with the “true” rainfall rate calculated from the actual DSD.   
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There are numerous R(ZH, ZDR) relations suggested in the literature (see 

Ryzhkov et al. 2005c for a review).  For comparison, the calculations are reproduced 

comparing the R(ZH, ZDR) relation from eqn. (6.36) to the one recommended by 

Giangrande and Ryzhkov (2008): 

                   
          

                                                                

and the relation of Brandes et al. (2002),       

                 (  
     )    

                                                                

The relations in eqns. (6.36) and (6.38) produced similar results and outperform the 

relation in eqn. (6.37) in gauging the decrease in rainfall rate due to evaporation.  This 

is likely due to the stronger dependence of R on ZDR in eqns. (6.36) and (6.38): the 

subtle changes in shape of the DSD are not captured by ZH, whereas ZDR does provide 

some information about the shape of the DSD.   

Reproducing the calculations with the        DSD, the relative errors 

(between the estimates of evaporative change in rainfall rate and the true evaporative 

change in rainfall rate) depend on the sounding but are all within 2 mm hr
-1

 of the true 

ΔR.  In contrast, these errors are minimized with the R(ZH,ZDR) relation for the       

and MP models.  The difficulty for operational forecasters is to determine the initial 

DSD aloft.  There are rigorous methods for DSD retrieval based on polarimetric radar 

measurements, such as the procedures described in Zhang et al. (2001, 2006), and 

Brandes et al. (2002, 2004).  These methods mainly rely on ZH and ZDR measurements.   

Using the idealized well-mixed layer environments, and initializing the model 

with a variety of constrained gamma DSD models with varying rainfall rates (0.1 – 20 

mm hr
-1

) and shape parameters (-1 ≤ μ ≤ 5), the relation between the initial ZH and ZDR 
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aloft and the evaporative change in rainfall rate over the domain (in this case, 3 km) is 

explored.  With the constrained gamma DSD models, the relative change in rainfall 

rate due to evaporation (ΔR/R) is independent of the initial ZH aloft.  Thus, ΔR/R is a 

function of the environment (including temperature, RH, and depth of the sub-cloud 

layer) and the initial ZDR aloft.  Observations of ZH and ZDR at cloud base can be used to 

identify the initial rainfall rate aloft.  Obviously, these parameters may be a function of 

time in evolving storms, but for quantitative precipitation estimation one must assume a 

steady state for at least the duration of a radar volume scan.  Next, the relative humidity 

(or another moisture variable) and temperature profiles in the layer beneath the radar 

horizon can be determined from observations or numerical weather prediction model 

output (e.g., the Rapid Update Cycle, or RUC; e.g., Benjamin et al. 1991, 1994, 2004). 

In this manner, environmental conditions and the observed ZDR (which does not change 

much with height) can be utilized efficiently to estimate ΔR/R (Figs. 6.12, 6.13).  Such 

a process may aid in quantitative precipitation estimates, especially in regions far from 

the radar or in the case of poor low-level radar coverage.   
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Fig. 6.12:  The dependence of relative change in rainfall rate ΔR/R on S-band ZDR aloft and 

surface relative humidity.  Results are of calculations using a 3-km deep idealized well-mixed 

layer with surface temperature of 30 °C.  Each curve corresponds to a different value of surface 

relative humidity (solid black line for 55%, solid gray line for 75%, and dashed gray line for 

95%).  Only constrained gamma models (with 5 mm hr
-1

 rainfall rate) are used in the 

calculations, where ΔR/R is independent of ZH aloft. The gray numbers along the abscissa 

correspond to the shape parameter (μ) values associated with the given ZDR.  



202 

 

Fig. 6.13: As in Figure 6.12, except here C-band values are shown. 

 

6. Comparison with Observations 

 A recent study by Borowska et al. (2011b) investigated the accumulation of light 

rainfall over a one-month period in Bonn, Germany. Their results are in agreement with 

the theoretical model described here. Notably, they found that ZDR was larger at lower 

elevations, although it corresponded to a smaller rainfall rate. This inverse correlation 

between trends in ZDR and rainfall rate towards the ground can also be cause by size 

sorting (see Chapter 5); however, because their observations spanned one month, the 

transient effects of size sorting can be safely ruled out. Borowska et al. (2011b) also 

applied the evaporation model to median conditions in Bonn: surface RH = 87%, T = 

7.6 °C, and sub-cloud depth of 1 km. The model predicts a 22% decrease in KDP over 
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the 1 km depth, using the       DSD with an initial rainfall rate of 3 mm hr
-1

. Their 

measurements indicate a 20% average decrease in KDP over that layer, in quite good 

agreement with the theoretical predictions offered by the simple model. This limited set 

of observations suggests that the evaporation model captures the essential physics in 

light rain.  

 

7. Summary of Conclusions 

In this chapter we have investigated and quantified the impact of evaporation on 

the polarimetric radar variables that will be available following the national upgrade of 

the WSR-88D radar network: ZH, ZDR, KDP, and ρhv.  Evaporation can produce 

significant decreases in ZH and KDP and subtle increases in ZDR, with no significant 

change in ρhv at S band.  At C band, changes in KDP, ZDR, and ρhv are amplified for a 

given amount of evaporation.  The change in true rainfall rate due to evaporation is 

dependent on the initial shape of the DSD aloft, which exemplifies the importance of 

using polarimetric radar observations to reduce this uncertainty.  To test the sensitivity 

of the polarimetric variables to thermodynamic conditions in the sub-cloud 

environment, initial DSD aloft, and rainfall rate, a simple explicit bin microphysics 

model is constructed and numerous experiments were conducted.  Because it neglects 

raindrop collisional processes, the model is limited to relatively light rainfall rates and 

should not be used to simulate DSD evolution.  However, comparison with an 

observational study by Borowska et al. (2011b) demonstrates good agreement between 

the theoretical predictions of the model and the observational data. To summarize the 

main conclusions: 
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1) As expected, warmer and/or drier environments produce more evaporation 

and thus more substantial changes in the polarimetric radar variables as well 

as the rainfall rates inferred from these variables. 

2) The resulting vertical profiles of polarimetric variables from the simplistic 

model are sensitive to the initial DSD aloft, which is of considerable 

uncertainty in various precipitation regimes.  Thus, polarimetric radar 

measurements (ZH, ZDR) aloft are needed to diminish the uncertainty due to 

DSD variability.  Drop size distributions with large concentrations of smaller 

drops (< 2 mm) and relatively low number concentrations of big drops (> 4 

mm) exhibit the largest evaporative changes in ZH and KDP.  This is because 

the small drops are preferentially evaporated, while the backscattered signals 

are not overwhelmed by contributions from a large number of big drops.  

Distributions with a comparatively large concentration of big drops and a 

sufficiently high concentration of smaller drops (such as the MP model) will 

exhibit the largest increase in ZDR.  Evaporative changes in ρhv are generally 

quite small in magnitude and likely unobservable at both S and C bands.   

3) When the evaporative changes are converted into logarithmic units, the 

difference in KDP is larger in magnitude than that of ZH.  This is because KDP 

is less sensitive to large drops than ZH.  Since KDP is generally displayed in 

linear units (deg km
-1

), evaporative changes may be more evident in KDP 

than in ZH, especially at shorter radar wavelengths.  It is important to note 

that estimates of KDP at S band can be noisy, especially in light rain as 
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considered in this study.  The relative changes of KDP are about the same at S 

and C bands. 

4) Except for evaporative changes in ZDR at C band, the changes in polarimetric 

variables become less significant with increasing rainfall rate.  For rainfall 

rates larger than about 10 mm hr
-1

, the effects of evaporation on the 

evolution of the drop size spectrum as well as the vertical profiles of 

polarimetric variables is less significant than other microphysical processes 

such as coalescence and breakup. These collisional processes should be 

considered dominant in heavy rain and should be included in more general 

applications. 

Additionally, the use of observed soundings to initialize the model produces 

realistic vertical profiles of polarimetric variables.  Different environments produce 

different degrees of evaporation that are in principle measurable by operational S- and 

C-band polarimetric radars.  Quantitative bounds to the evaporative changes in 

polarimetric variables are suggested using the extremes in variations in DSD shape.  

However, we should again emphasize the limitations of the model.  Because drop 

coalescence and breakup are ignored, the model is applicable only to relatively light 

rain.  To more accurately model sub-cloud microphysics for more general applicability, 

these effects must be considered.  Also, the moistening and cooling of the shaft must be 

turned “on” for simulation studies, especially when coupled with dynamical models.  

 In situations where low levels are unobserved by radar, modeling based on 

thermodynamic information from soundings or numerical weather prediction models 

such as the RUC may provide guidance for precipitation estimates, allowing for 
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adjustments to be made to observed rainfall rates aloft.  Assuming the DSD can be 

described by a constrained gamma model, the relative change in rainfall rate due to 

evaporation ΔR/R is independent of ZH aloft.  Thus, ZDR (together with the 

environmental thermodynamic profiles) can be used in a simple evaporation model to 

estimate ΔR/R.  This method differs from conventional statistical or climatological 

techniques because the simple modeling approach in this study is physically based.  The 

use of polarimetric measurements provides crucial information that is not available with 

single-polarization radar measurements of ZH.  Such adjustments to conventional 

techniques may improve estimates of rainfall rates at the surface, benefiting hydrology 

models and forecasts.   
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Chapter 7: The Impact of Coalescence on the Polarimetric Radar 

Variables. 

 

Material from this chapter comes from a conference paper (Kumjian et al. 

2012b). The results and method presented herein should be considered more 

preliminary than the other chapters (which derive material from published articles). 

 

1. Introduction. 

Precipitation growth via the “warm rain processes” does not involve ice 

particles, as the name implies.  Instead, cloud droplets grow by condensation until they 

become sufficiently large as to sediment relative to the other droplets.  Once such 

sedimentation occurs, droplet growth quickly continues by accretion of other cloud 

droplets different in size (and thus fall speed), whereupon the collecting droplet rapidly 

grows in size to a raindrop.  Apparently, only 1 droplet in 10
6
 must attain sufficiently 

large size to initiate the production of precipitation (e.g., Rogers and Yau 1989; 

Pruppacher and Klett 1997). 

As the precipitation particles fall to the ground, the evolution of the DSD 

beneath cloud base is governed by four main processes: growth of large drops (and 

subsequent depletion of small drops) by coalescence, depletion of large drops (and 

increase in concentration of smaller drops) by collisional breakup, size sorting of drops, 

and a decrease of drop sizes across the spectrum (and depletion of the smallest drops) 

by evaporation.  Size sorting and evaporation were discussed in Chapters 5 and 6, 

respectively. The remaining two warm-rain processes (coalescence and breakup) are 



208 

considered the “collisional” processes and are discussed herein. The equation governing 

the evolution of number density n in time by the collisional processes can be written 

following Gillespie and List (1978) and Brown (1995, among others) as: 

       

  
 ∫ ∫                    [         ]              
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The first two terms on the right hand side of eqn. (7.1) represent drop breakup, and the 

latter two terms represent drop coalescence.  Here,         is the coalescence 

efficiency for drops of masses μ and μ1,             is the average number of drop 

fragments with mass           produced by collision and subsequent breakup of 

drops with masses μ and μ1, and         is the collision kernel for drops with masses μ 

and μ1. The collision kernel is given by 

         (      
)
 

          |      |                                     

where rμ is the radius of a drop with mass μ,      is the collision efficiency of drops 

with masses μ and μ1, and    is the falling velocity of a drop with mass μ.   

Obviously, the governing equation (7.1) is rather complex.  As such, there have 

been many studies of this equation, methods for solving it, and its parameterizations 
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(Low and List 1982a,b; Brown 1986, 1987, 1993, 1994; List et al. 1987; List and 

McFarquhar 1990; Seifert et al. 2005).  In contrast, there have been relatively few 

studies of these processes in nature, such as remote sensing-based retrievals of changes 

in the DSD owing to these processes.  Dual-polarization radar is particularly well suited 

for such a study, as the polarimetric radar variables are sensitive to changes in the 

overall shape of the rain DSD, especially the large-drop end of the size spectrum.  This 

sensitivity is particularly pronounced at shorter radar wavelengths (C and X bands). 

Because of the aforementioned complexity of the governing equation, this 

chapter takes a different approach. Instead of a one-dimensional column model, vertical 

profiles of the polarimetric radar variables in warm-rain precipitation are investigated, 

and microphysical retrievals are performed. These retrievals include DSD parameters, 

which are used to explore the vertical evolution of the DSD in ongoing coalescence.  

 

2. Physics of Coalescence: a Gedankenexperiment. 

Before embarking on the microphysical retrievals, it is instructive to consider a 

simple thought experiment, or gedankenexperiment. Consider two identical drops with 

mass    and diameter           ⁄    ⁄ , where    is the density of liquid water.  A 

collection of    of these drops would result in a radar reflectivity factor (in the Rayleigh 

approximation) of        
 .  Consider now that these two drops collide and coalesce 

to form one larger drop of mass       .  It follows that the diameter    of the new 

big drop is given by       ⁄   , and the concentration of the big drop         .  

Thus, we can calculate the Rayleigh radar reflectivity factor of the new big drop:  

       
       ( 

  ⁄   )
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In other words, the new reflectivity factor is 3 dBZ larger than before the two drops 

coalesce.  We can perform the same analysis for KDP, which is dependent on drop 

diameters as D
4
 to D

6
, depending on the rainfall rate.  It is clear that for the smaller 

dependence on diameter, the change in KDP is less. (If we assume, for the sake of 

argument, that       , then             ). Thus, we can conclude that 

coalescence affects KDP (in general) less than Z.  Because drop oblateness 

monotonically increases with increasing drop size, it follows that coalescence of two 

smaller drops tends to increase ZDR (as a result of the increased oblateness and size of 

the new big drop).  

Using the simple power-law relation of Atlas and Ulbrich (1977) for the relation 

between drop size and terminal velocity          , the same analysis reveals that 

rainfall rate R increases for coalescence, owing to the larger drop sizes: 

       
        

          ( 
  ⁄   )

    
                 

It is clear that only those quantities proportional to    for    3.0 are increased by the 

process of coalescence, which includes Rayleigh reflectivity factor Z, KDP, ZDR, and 

rainfall rate.  Liquid water content M is proportional to the third moment of the DSD 

and thus is not changed during pure coalescence.  In other words, the total amount of 

liquid water mass is conserved during coalescence; it is simply redistributed among the 

drop sizes.  That M is conserved during pure coalescence will be a fundamental 

assumption of the microphysical retrievals in the following sections. 
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3. Observed Data. 

Data from the Bonn X-band Polarimetric (BOXPOL) radar in Bonn, Germany 

are presented here. Genuine RHIs were collected with 0.1⁰  spacing in elevation, 

affording high spatial resolution.  The precipitation event occurred on 22 June 2011, in 

which several warm-rain storms were observed (e.g., Figure 7.1).  Ten vertical profiles 

are extracted from this RHI between 13 and 14 km range.  The median of these profiles 

is then constructed (Figures 7.2-7.3).  The data reveal a distinct, well-pronounced 

increase in both ZH and ZDR towards the ground, indicative of increasingly larger drops 

present closer to the ground.  Note that this differs from the signatures of differential 

sedimentation and evaporation, where ZH decreases as ZDR increases (see Chapters 5 – 

6).  Differential sedimentation is seen in the developing cell at 11 km range.  Instead, 

the profiles in Figures 2-3 provide a clear indication of raindrop growth. We 

hypothesize that the radar signal and drop growth are being dominated by coalescence.  

Collisional breakup (which tends to decrease ZDR) is undoubtedly occurring, but it is not 

enough to balance the overall contribution of coalescence to the radar signal.  ZH 

increases by over 20 dBZ in 2 km depth. Likewise, ZDR increases by about 2.5 dB. Note 

that the data below about 600 m in height are contaminated by ground clutter and have 

been censored from Figures 7.2 and 7.3. The next sections present a method of 

retrieving microphysical information (section 4) as well as preliminary results from this 

method (section 5). The goal is to test the hypothesis that coalescence growth of 

raindrops is the dominant process ongoing at the times of the radar scans in Figures 7.2 

– 7.3, and that it is the microphysical fingerprint of coalescence that is observed in the 

data. 
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Fig. 7.1: Genuine RHI scan collected with BOXPOL on 22 June 2011 at 1454 UTC, along the 

309.5° azimuth.  Polarimetric radar variables shown are (top) ZH, and (bottom) ZDR. The cell of 

interest is located between 13 and 14 km range. 
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Fig. 7.2: Median vertical profile of ZH through the storm in Figure 7.1, constructed from 10 

extracted vertical profiles at ranges 13 – 14 km. 

 

 

Fig. 7.3: Median vertical profile of ZDR through the storm in Figure 7.1, constructed from 10 

extracted vertical profiles at ranges 13 – 14 km. 
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4. Microphysical Retrievals: Methods. 

Dual-polarization radar observations have the unique capability of being used to 

retrieve information about the rain DSD shape (e.g., Zhang et al. 2001; Brandes et al. 

2002, 2004a,b).  For this chapter, calculations of the dual-polarization radar variables 

for a wide range of DSDs found in nature are modeled by the constrained-gamma 

relation (e.g., Zhang et al. 2001, 2003)  

        
                                                                            

The constrained gamma DSD is constrained by an assumed relation between shape 

parameter μ and slope parameter Λ, which has been observed in natural DSDs (e.g., 

Cao et al. 2008): 

                                                                              

where here Λ is in mm
-1

.  The constrained-gamma relation is convenient in that there 

exists a relation between the DSD slope parameter Λ and ZDR (Fig. 7.4). The T-matrix 

method (Mischenko 2000) was used to compute the complex scattering amplitudes of 

raindrops at X band with a temperature of 15 ⁰ C, from which the polarimetric variables 

were computed following Ryzhkov (2001) and Ryzhkov et al. (2011). The μ-Λ relation 

from Cao et al. (2008) is used to determine the ZDR for a given slope parameter Λ. 

Though some controversy exists about the physical nature of this relation (e.g., see 

Zhang et al. 2003; Moisseev and Chandrasekar 2007; Seifert 2008), it is clear from 

Figure 7.4 that it lies within the natural range of values. The observed ZDR profile is 

compared to the Λ-ZDR relation to determine the best match for Λ. Then, the retrieved 

profile of Λ is used with eqn. (7.4) to retrieve the vertical profile of μ (Fig. 7.5). A 

vertical profile of ZDR is computed based on the retrieved Λ and μ values (remember 
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that ZDR is independent of concentration and thus does not depend on N0). Obviously, 

one should expect this retrieved ZDR to agree very well with the observed profile; this 

step is performed as a “sanity check” for the retrievals of Λ and μ. 

 

Fig. 7.4: Scatter of the range of Λ-ZDR points observed in nature (black points), overlaid with 

the ZDR from the Cao et al. (2008) relation (green). Calculations made at X band, for raindrops 

with temperature = 15 °C. 

 

At the bottom of the profile, total liquid water content M, 

  
 

 
  ∫         

 

 

                                                              

is determined (rather subjectively) based on what provides best match of the observed 

profiles of the polarimetric radar variables.  From this height, the flux of liquid water 

mass content M is assumed to remain constant with height 
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In other words, it is assumed that no water mass is lost owing to evaporation; rather, 

liquid water mass is simply redistributed from one size bin to another
7
, and is affected 

by the change in raindrop fallspeed with height owing to changes in air density. Air 

density is determined from the 12 UTC sounding on 22 June 2011 from Essen, 

Germany (Fig. 7.6), located roughly 90 km to the north-northwest of Bonn.  Using M, μ, 

and Λ at each height, intercept parameter N0 is determined by solving eqn. (7.5):  

   
      

         
                                                                        

where   is the gamma function.  The retrieved DSD at each level is then determined by 

equation (7.3). Note that ZH is not used to determine the DSD parameters; rather, the ZH 

calculated from the retrieved DSD will be compared to observations as a test of the 

methods and assumptions. 

 

Fig. 7.5: Vertical profiles of (a) slope parameter Λ and (b) shape parameter μ, retrieved from 

polarimetric radar measurements. 

                                                 
7
 Because coalescence causes a shift of mass from smaller drops to larger drops, it is analogous to 

conservative fiscal policy favoring the wealthy. In contrast, breakup can be thought of as a redistribution 

of mass from large drops to small drops, analogous to social democratic fiscal policy. 
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Fig. 7.6: Observed sounding from Essen, Germany, on 22 June 2011 at 12 UTC. 

  

5. Microphysical Retrievals: Results. 

The vertical profiles of polarimetric radar variables ZH and ZDR are calculated 

from the retrieved DSD at each level.  Figure 7.7 compares the retrieved ZDR profile to 

the observed ZDR profile.  As expected, there is very good agreement over all height 

levels.  This is because the ZDR-Λ relation was used as an input to the retrieval. Figure 
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7.8 shows the retrieved vertical profile of ZH compared to the observations.  Recall that 

ZH is under the constraint that the flux of the mass water content is conserved at each 

level.  The surprisingly good agreement below about 2 km indicates that this 

assumption is likely valid. In other words, the analysis provides evidence in favor of our 

hypothesis that coalescence likely is the dominant process below this height.  Indeed, 

relative errors (Fig. 7.9) in the retrieved ZH (compared to the observed ZH) below 2 km 

AGL are within ± 10%. The disagreement between retrieved and observed ZH above 

about 2 km is also informative.  It demonstrates that the assumption of constant M flux 

is not valid in this height interval.  We can infer this because the ZDR profiles match 

very well, implying that the overall shape of the DSD (μ and Λ) are rather close to 

reality.  In other words, there is likely a change in M with height above about 2 km.  

Because the retrieved profile has larger values of ZH above 2 km than the observed 

profile, but matches below 2 km, one can infer that M is being generated or added at 

levels above 2 km, owing to activation of more drops (e.g., within an updraft) or 

accretion of cloud water droplets. 

 



219 

 

Fig. 7.7: Retrieved ZDR (blue curve) and the observed ZDR (green curve) profiles as a function of 

height. 

 

 

Fig. 7.8: As in Figure 7.7, but the retrieved (blue) and observed (green) ZH profiles are shown. 
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Fig. 7.9: Relative error (%) of the retrieved ZH profile for 1454 UTC on 22 June 2011. 

 

The DSDs retrieved at each level (Figure 7.10) reveal the evolution of DSDs 

undergoing assumed pure coalescence.  It is important to emphasize that we do not 

attempt to perfectly retrieve the actual DSD; rather, the retrieval provides a plausible 

look at the evolution of the DSD in height affected by pure coalescence.  Indeed, 

disagreement between the retrieved profiles and the observations is also instructive, as 

illustrated above.  Moving towards the ground (colors in Figure 7.10 transition from 

black to blue to red) the concentration of smaller drops (< 1.5 mm) decreases 

substantially as the concentration of large drops increases and the DSD broadens.  Note 

that this effect is retrieved solely from our assumptions and polarimetric data; no 

physical parameterization of coalescence has been implemented.   
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These retrieved DSDs can be used to compute the other polarimetric radar 

variables KDP and ρhv (Fig. 7.11). Note the increase in KDP towards the ground; similar 

to ZH, this implies that the increase in particle size overcomes the decrease in particle 

concentration. This result also agrees well with the gedankenexperiment described 

earlier: if converted to logarithmic units, the increase in KDP is about 12 dBZ, which is 

less than the increase in ZH (closer to 20 dBZ). The decrease in the retrieved ρhv, though 

small in magnitude, is consistent with the broadening of the DSD depicted by Figure 

7.10. 

 

Figure 7.10: Retrieved DSD at each height level, with each color indicating a certain depth.  As 

expected with coalescence growth, the initially narrow DSD broadens and acquires a shallower 

slope, indicative of an increase in concentration of large drops and a decrease in concentration 

of small drops (sizes < 2 mm). 
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Fig. 7.11: Retrieved profiles of KDP (left panel) and ρhv (right panel) from 22 June 2011, 1454 

UTC. 

 

6. Discussion and Conclusions. 

Though the gedankenexperiment and microphysical analysis presented above 

deal with coalescence, in principle the same approach can be employed to explore the 

other collisional process: drop breakup. Based on the gedankenexperiment, we can 

expect breakup to produce a fingerprint in the polarimetric radar variables that is 

opposite in sign of that of coalescence. In other words, whereas coalescence leads to an 

increase in ZH, ZDR, and KDP, and a decrease in ρhv, breakup should cause a decrease in 

ZH, ZDR, and KDP, and an increase in ρhv. Note that the magnitudes may be different, 

depending on the number of drop fragments generated by the breakup of a single large 

drop; in many cases, it will be larger than 2 (e.g., Low and List 1982a,b). Microphysical 
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retrievals based on the same principle of conserved water mass flux could be performed. 

However, it is unlikely that examples of breakup-dominated rain will be found. In all 

likelihood, coalescence and breakup are occurring simultaneously in heavy rain. 

However, because coalescence tends to increase the larger drops that dominate the 

backscattered signal, the signal of coalescence is far more likely to be observed than a 

signal from breakup. If there is no clear change in the polarimetric radar variables with 

height (i.e., no pronounced increase in ZDR or KDP)
8
, one may speculate that coalescence 

growth and breakup are “in balance.” 

In summary, an overview of the physics of drop coalescence was provided, 

describing the impacts on the polarimetric radar variables based on a simple thought 

experiment. In addition, a method for retrieving microphysical information was 

presented. In the case of coalescence, fundamental physical assumptions (namely, the 

conservation of liquid water mass flux) lead to testable predictions about the changes in 

the polarimetric radar variables, which are validated by the observations.  Such 

retrievals provide experimental evidence that can be used for comparison with various 

models and parameterizations of the warm-rain physical processes. Additionally, they 

provide a basis for better understanding of how such microphysical processes affect 

rainfall rate beneath cloud base, which can be used to improve the accuracy of remote 

quantitative precipitation estimation. 

 

 

 

                                                 
8
 Note that an increase in ZH and KDP still occurs in the absence of any particle growth because of 

conservation of drop flux in an environment in which density increases towards the ground. 
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Chapter 8: The Impact of Freezing on the Polarimetric Radar 

Variables.  

 

Material in this chapter comes from Kumjian et al. (2012a), submitted to the 

Journal of the Atmospheric Sciences. 

 

1. Introduction 

Within warm-season deep convective mid-latitude storms, both warm and cold 

microphysical processes occur that can be important for determining the precipitation 

characteristics of such storms.  Warm-rain generated liquid drops can be carried above 

the environmental 0 C level by the storm’s updraft, where they subsequently freeze 

into ice pellets.  These frozen drops can grow further via accretion of supercooled liquid 

cloud water (riming), transforming them into graupel.  The graupel and frozen drops 

can serve as an important source of hailstone embryos (e.g., Knight and Knight 1970; 

1974; 2001; Federer and Waldvogel 1978; Knight 1981; Ziegler et al. 1983; Nelson 

1983).  Graupel particles are also known to play an important role in lightning 

production through charge transfer and separation (e.g., MacGorman and Rust 1998, 

and references therein).  Therefore, accurate representation of the freezing process in 

storm-scale numerical weather prediction models is important, including for short-term 

forecasts of hail and lightning hazards in severe convective storms.  

Dual-polarization radar observations in convective storms routinely reveal 

columnar regions of enhanced differential reflectivity (ZDR) that extend above the 

environmental freezing level, in some cases by as much as 2 km or more.  Such “ZDR 
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columns” (Fig. 8.1) are indicative of wet, oblate hydrometeors being lofted above the 

freezing level by the convective storm updraft.  Since the first observations of such 

signatures (Hall et al. 1984; Illingworth et al. 1987; Caylor and Illingworth 1987; Tuttle 

et al. 1989), they have been widely documented (e.g., Meischner et al. 1991; Herzegh 

and Jameson 1992; Conway and Zrnić 1993; Höller et al. 1994; Brandes et al. 1995; 

Hubbert et al. 1998; Kennedy et al. 2001; Loney et al. 2002; Ryzhkov et al. 2005c; 

Kumjian and Ryzhkov 2008a).  At the top of ZDR columns, polarimetric radar 

observations typically reveal a sharp decrease in ZDR owing to a substantial decrease in 

the complex dielectric constant and increased tumbling of hydrometeors as they freeze 

into solid ice pellets.  Coincident with this freezing zone is a decrease in the co-polar 

cross-correlation coefficient (ρhv), which is sometimes called the ρhv hole (e.g., Kumjian 

and Ryzhkov 2008a).  For radars operating in the mode of alternate transmission and 

reception of horizontally- and vertically-polarized waves, the hydrometeors and 

processes contributing to the ρhv hole are observed as a pronounced increase in linear 

depolarization ratio (LDR), called the LDR “cap” (e.g., Jameson et al. 1996; Bringi et al. 

1997; Hubbert et al. 1998; Kennedy et al. 2001).  Though large changes in ρhv and LDR 

at the summit of ZDR columns have been associated with the wet growth of graupel and 

hail (e.g., Herzegh and Jameson 1992; Jameson et al. 1996; Kennedy et al. 2001; Picca 

and Ryzhkov 2012), changes that are smaller in magnitude may be explained by the 

increased tumbling and diversity of particle species present during the freezing process 

(Bringi et al. 1997; Hubbert et al. 1998).  These signatures have been implicated in the 

role of hail formation and development (e.g., Kennedy et al. 2001; Picca and Ryzhkov 

2012), and thus studying them may reveal important practical information.   
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Fig. 8.1: Example of polarimetric data presented as a vertical cross-section through a supercell 

storm on 10 May 2003, at 0346 UTC, observed with the S-band polarimetric WSR-88D in 

Norman, Oklahoma.  From left-to-right, panels show ZH, ZDR, and ρhv.  A ZDR column is evident 

at about 44 km range.  Note that the environmental melting level is at 4.2 km above the ground, 

and the updraft-perturbed melting level is near 5.2 km, assuming a surface-based parcel. 

 

The evolution of ZDR columns and their capping signatures can also provide 

insight into the storm’s behavior.  For example, the evolution of ZDR columns has been 

recently investigated (Picca and Ryzhkov 2010; Picca et al. 2010) and has proven useful 

in the short-term forecast of severe convective storms and hail fall.  These preliminary 

studies found strong positive lagged correlations between changes in the integrated 

volume of positive ZDR values above the environmental freezing level (“ZDR column 

volume”) and changes in the surface reflectivity factor (ZH) 60-dBZ to 40-dBZ ratio on 

timescales of about 15-20 minutes.  Picca and Ryzhkov (2012) also found that a deeper 

minimum in the ρhv hole atop the ZDR column was followed by an increase in hail size at 

the surface.  Analogously, Kennedy et al. (2001) found that LDR maxima aloft preceded 

the largest hail at the surface.        

Aircraft penetrations through ZDR columns confirm the inferences based on 

polarimetric radar data: that ZDR columns comprise liquid raindrops and small, wet 

graupel and hailstones (e.g., Brandes et al. 1995; Smith et al. 1999; Loney et al. 2002; 

Schlatter 2003; Clabo et al. 2009).  These observations demonstrate the existence of 
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liquid or mixed-phase hydrometeors at subfreezing temperatures in clouds.  The 

presence and distribution of liquid water on or in a particle substantially alter its 

scattering characteristics, particularly at shorter radar wavelengths.  Therefore, an 

accurate representation of such hydrometeors is crucial for applications of radar 

(especially polarimetric radar) data and for model-observation intercomparisons.  

Unfortunately, many bulk microphysics parameterization schemes do not allow for such 

mixed-phase particles at subfreezing temperatures. A notable exception is Thériault and 

Stewart (2010), whose winter microphysics scheme includes a “slush” category for 

partially-frozen/melted hydrometeors.  Instead, many schemes convert liquid raindrops 

directly into ice pellets once they are lofted above the freezing level to sufficiently cold 

temperatures (e.g., Wisner et al. 1972; Ziegler 1985; Milbrandt and Yau 2005b), 

representing instantaneous freezing.  Because of this, some bulk microphysics 

parameterization schemes struggle to reproduce realistic ZDR columns (e.g., Jung et al. 

2008; 2010).  Such model inadequacies may limit the utility of numerical investigations 

of the possible prognostic capabilities of ZDR columns: namely, the link between their 

evolution and storm behavior that has been recently revealed (e.g., Picca et al. 2010; 

Picca and Ryzhkov 2010).  

To fully explore and understand these apparent links between ZDR column 

evolution and storm behavior, we must first understand the physics governing the 

appearance of the columns.  To do this, a one-dimensional explicit bin microphysics 

and electromagnetic model is developed and used to quantify the polarimetric radar 

variables.  Though lacking the generality of full three-dimensional full-physics models, 

this type of simplified modeling approach allows for a better understanding of the 
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impact of the freezing process on the polarimetric radar variables in isolation from other 

processes.  As mentioned above, bulk microphysics parameterization schemes often 

used in more general numerical weather prediction models inadequately describe the 

complete nucleation and freezing process, limiting their utility in investigations of ZDR 

columns.  The layout of the rest of the chapter is as follows.  Section 2 provides an 

overview of the physics of raindrop freezing.  The microphysics and electromagnetic 

model are described in section 3.  Section 4 presents results of the model, including 

sensitivity tests and comparisons with observations.  The chapter closes with a 

discussion and brief summary (section 5) of the main results. 

 

2. Overview of the Physics of Freezing Drops 

In the atmosphere, supercooled liquid drops typically undergo heterogeneous 

nucleation because of the presence of impurities in the liquid water or aerosols in the 

air.  Pruppacher and Klett (1997; herein PK97) describe four modes of heterogeneous 

nucleation: deposition, condensation, immersion, and contact.  When the air is 

supersaturated with respect to ice, water vapor can be deposited directly as ice on the 

surface of a particle at temperatures below 0 °C in the deposition mode.  For situations 

where saturation with respect to water is attained, subfreezing ice nuclei may act as 

cloud condensation nuclei, where freezing occurs at some later stage during 

condensation.  In the immersion mode, the foreign particle is submersed in the liquid 

drop at temperatures above 0 °C, whereupon freezing occurs when the drop becomes 

sufficiently cold.  In the contact mode, ice nuclei initiate nucleation instantaneously 

upon contact with a supercooled drop.  The latter two modes are of interest for drop 
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freezing in convective storms. 

Heverly (1949), Bigg (1953a,b), Langham and Mason (1958), Barklie and 

Gokhale (1959), Pitter and Pruppacher (1973), and Vali (1971, 1994) among others 

have showed through observations that the median nucleating temperature    of a 

population of drops is a function of the drop volume,   .  This can be expressed in 

terms of the supercooled median nucleating temperature           (where 

      and      °C): 

                                                                                      

where A and B are constants determined by the sample of water and its immersed 

foreign particles or impurities.  There are two schools of thought on the process of how 

this freezing is initiated (PK97).  In the “stochastic hypothesis,” it is assumed that at a 

given temperature, all equal-sized ice embryos formed in a population of equal-sized 

supercooled drops will have an equal probability of reaching the critical size for 

freezing, as a result of random fluctuations among the water molecules.  Immersed 

nuclei will enhance the freezing potential, but otherwise not affect the stochastic nature 

of freezing.  In the other view, called the “singular hypothesis,” heterogeneous drop 

freezing is attributed entirely to the immersed nucleus with the warmest characteristic 

freezing temperature.  In addition, the number of ice germs formed in a particular drop 

depends on the number of immersed nuclei in the drop that are activated.  Though both 

hypotheses have some elements of experimental evidence supporting them, neither is 

complete by itself (PK97).  Because the singular hypothesis requires knowledge of the 

number concentration of immersed nuclei in each drop (which is generally not known), 

the stochastic hypothesis is used in this study.  
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The freezing process occurs in two stages.  The first stage generally is assumed 

to happen instantaneously upon nucleation, wherein dendritic ice crystal growth occurs 

in the core of the liquid drop, converting only a small portion of the liquid water into 

ice.  The amount of ice formed depends on the environmental temperature as described 

quantitatively in the next section.  The subsequent freezing occurs from the outside in, 

as an ice shell forms around the droplet and grows inward (e.g., Fig. 8.2, from Johnson 

and Hallett 1968; PK97). The latter stage can take up to several minutes for the largest 

drop sizes (Fig. 8.3). 

 

 

Fig. 8.2: Photograph of a 1-mm drop, from Johnson and Hallett (1968). The outer ice shell has 

just begun to form, and dendritic growth is evident in the drop core. The photograph was taken 

10 seconds after nucleation, and complete freezing took another 40 seconds.  
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Fig. 8.3: Time for raindrops to freeze (color shading in seconds), following the assumptions and 

calculations of PK97.  The drops are assumed to be nucleated and remain at a given ambient 

temperature.  Calculations are based on PK97’s eqn. (16-36).  White shading indicates times 

over 300 seconds.   

 

Smith et al. (1999) investigated the freezing of supercooled raindrops atop the 

ZDR column in a convective storm.  The authors hypothesized that the drop freezing 

contributed to the LDR cap signature but did not show computations of the polarimetric 

radar variables.  Though drop nucleation was treated in an overly simplistic manner, the 

study included the effects of accretion of supercooled water onto the freezing drops, 

conditions more realistic in convective storm updrafts.  The heating of a particle due to 

accretion tends to prolong the freezing process.  The authors also point out that remaining 

liquid water on the outside of freezing or frozen drops would also contribute to the 



232 

increase in LDR frequently observed in polarimetric radar data.  The upgrade of National 

Weather Service WSR-88D network will equip the radars with polarization diversity, but 

the radars will operate in the mode of simultaneous transmission and reception of 

horizontally and vertically polarized waves.  Therefore, LDR measurements will not be 

available.  Instead, hv is measured; this variable will be reduced (analogously to an 

enhancement of LDR) for the same reasons as described by Smith et al. (1999).  A 

diversity of hydrometeor types (ice pellets, partially-frozen drops, and pure liquid drops) 

will also contribute to reducing hv atop ZDR columns.  In severe convective storms, Picca 

and Ryzhkov (2012) argue that significant reductions in ρhv atop ZDR columns in the 

temperature region between -10 °C and -20 °C indicate wet growth of giant (> 5 cm 

diameter) hailstones, owing to strong non-Rayleigh scattering effects.  For the sake of 

simplicity, however, the current study will only consider the freezing of raindrops. 

 

3. The Model 

a. Freezing Model Physics and Equations  

The model simulates the freezing of raindrops in a simplified, steady-state one-

dimensional column “updraft.”  Previous studies have computed the polarimetric 

variables for idealized freezing drops without treatment of microphysics (e.g., Bringi et 

al. 1997; Hubbert et al. 1998), or have treated the microphysics in a simplified manner 

without showing computations of the radar variables (e.g., Smith et al. 1999).  Here, we 

couple an explicit microphysics model with electromagnetic scattering calculations to 

compute vertical profiles of the polarimetric radar variables.  The impact of the 

stochastic nucleation and deterministic freezing processes on the polarimetric radar 
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variables are of interest in this study.  Thus, we neglect the growth of frozen particles by 

accretion and its associated contributions to the heat budget.  Growth by accretion tends 

to prolong the freezing process and may contribute to the LDR “cap” observed atop ZDR 

columns (e.g., Jameson et al. 1996; Smith et al. 1999), but is not needed to explain it 

according to Bringi et al. (1997) and Hubbert et al. (1998).  Additionally, collisions 

between particles of different sizes, a process which expedites freezing, are neglected.  

The temperature profile is prescribed as moist adiabatic to emulate in-cloud conditions, 

following a pseudoadiabat from a typical warm-season sounding in Norman, Oklahoma.  

At the first grid level, which corresponds to a height level of about 5.1 km MSL and a 

pressure level of about 552 hPa on the sounding, the temperature is 0 °C.  The relative 

humidity profile is fixed at 99%.  The updraft speed increases quadratically with height 

as 

     
         

    

                                                              

where all symbols are explained in Table 8.1.  Integration occurs every 10 m, though 

data are only stored (and thus polarimetric radar variables are computed) every 100 m.  

Any distribution of raindrops can be placed at the bottom of the domain and is advected 

upwards by the updraft.  The “default” drop size distribution (DSD) is in the form of the 

three-parameter gamma model (e.g., Ulbrich 1983): 

        
                                                                  

with    = 0.1 m
-3

 mm
-2

,   = 1, and   = 0.62 mm
-1

.  These values were selected to match 

a DSD predicted at the bottom of a simulated updraft in the spectral bin microphysics 

Hebrew University Cloud Model (HUCM; e.g., see descriptions in Khain et al. 2004; 

2011; the storm is from the simulation by Ryzhkov et al. 2011). The drop sizes are 
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partitioned into 80 bins (0.05 mm to 7.95 mm in 0.1-mm increments).  Liquid raindrop 

velocities are given by the Brandes et al. (2002) polynomial function of diameter D (in 

mm) with a density correction factor (Foote and duToit 1969; Beard 1985)  

      (
  

    
)
 

                                                

       

whereas the velocity of ice pellets is determined by an expression fitting the velocity of 

ice pellets in the HUCM: 

     (
  

    
)
 

                                                            

The fallspeeds of partially frozen drops change linearly from those of pure liquid to 

those of pure ice particles, based on mass water fraction.  Because the model is steady 

state, the flux of particles is conserved at each level. 

The initial nucleation is assumed to be in the immersion mode.  Various foreign 

particles can be selected for the immersed nuclei by choosing B values in eqn. (8.1) 

from the literature (e.g., Barklie and Gokhale 1959; Diehl and Wurzler 2004).  For the 

calculations shown herein, the value for nuclei typical for rainwater (B = 2.0 x 10
-4

 cm
-3

 

s
-1

) from Barklie and Gokhale (1959) is used.  One can express eqn. (8.1) in terms of the 

fractional change (per unit time) in the number of unfrozen drops yet to be nucleated    

following Bigg (1953b): 

 
 

  

   

  
    [          ]                                                 

Note that Barklie and Gokhale (1959) found the mean value of α = 0.65 °C
-1

, 

independent of the water sample.  Equation (8.5) shows that the rate of change of the 

number of un-nucleated drops increases with drop volume    and supercooling 
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temperature   .  In other words, larger drops nucleate faster than smaller drops, and 

colder temperatures produce more rapid nucleation of drops of any given size.  Suppose 

one now introduces a cooling rate,   

    
  

  
 

   

  
                                                                     

Under such conditions, eqn. (8.5) can be written as (PK97) 

 
 

  

   

  

  

   
 

   

  
[          ]                                         

Thus, at a given supercooled temperature   , more rapid cooling (larger   ) leads to 

fewer nucleations per unit time.  Consider the implications for an updraft: in the 

Lagrangian framework of the raindrop, the cooling rate is equivalent to the rate of 

ascent within the updraft, which lofts drops to successively cooler temperatures.  In this 

case, the cooling rate (8.6) can be written as 

    
  

  
                                                                       

where         ⁄       is the updraft-modified vertical velocity of the raindrop, and 

          ⁄  is the lapse rate within the updraft, which is taken as moist adiabatic 

in this study.  This leads to the important conclusion that a stronger updraft (implying 

more rapid ascent of the raindrops) yields less drop nucleations per unit time.  In other 

words, stronger updrafts provide more rapid cooling, delaying the onset of drop 

nucleation.   

In the framework of our model, at a given height level (or model grid point), the 

updraft velocity   is constant.  Thus, we can integrate the differential equation (8.7) at 

each level: 
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∫  
 

  

   

   
 

  

 

   
  ∫

   

    
[       

    ]   
 

  

 

            

which, after performing a change of variables on the left-hand side of the equation  

∫        
  

  

  

 
   

    
∫[       

    ]   
 

  

 

      

results in    

   (
  

  
)  

   

    
[
        

 
    ]                                                     

where    is the total number of drops.  Exponentiating both sides, we obtain an 

expression for the number of drops (at a given height) not yet nucleated as a function of 

supercooled temperature   : 

            { 
   

    
[
        

 
   ]}                                            

So, the fraction of drops that are nucleated at a given height is given by: 

      

  
      { 

   

    
[
        

 
   ]}                                           

which is shown schematically in Figure 8.4.  Thus, for a given drop size (  ), the 

fraction of drops that nucleate at a given height is governed by the supercooled 

temperature at that height    and the upward velocity of the drops   .  All else being 

equal, a fractional increase in the updraft strength   will increase the fraction of un-

nucleated drops
9
 by a power of       ⁄   

                                                 
9
 For example, suppose the conditions are such that about 50% of drops of a given size are 

nucleated at a supercooled temperature   .  If the updraft strength at that level is increased by 

20%, only about 43.9% of those drops are then nucleated at   . 
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Fig. 8.4: Schematic illustrating the fraction of drops nucleated as a function of supercooled 

temperature   .  The median supercooled temperature     indicates the temperature at which 

50% of the drops of a given size are nucleated.  Note that    and     are positive; also labeled 

on the abscissa is    (= 0 °C). 

  

Following PK97, we can use an approximate form of eqn. (8.9), assuming 

                    , to find the median supercooled temperature    , or the 

temperature at which 50% of the drops have been nucleated.  Substituting      for    

and     for    in this form of eqn. (8.9) and solving for    , we obtain:  

          
 

 
  [

           

   
]                                                  

Note that the median supercooled temperature     is dependent on the updraft velocity; 

for a fractional increase in updraft strength of  ,     increases by       °C. 

Only a portion of drops within a given size bin will nucleate at a particular 

temperature (cf. eqn. 8.11), capturing the stochastic nature of drop nucleation.  These 

packets of drops will follow their own unique “growth trajectories” for the remainder of 

their ascent.  Thus, at any given height level, partially-frozen drops in the same size bin 
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may have progressed to different stages of freezing, depending on their unique growth 

trajectories.  It is expected that this diversity of particle liquid water fractions at a given 

level in the mixed-phase region of the updraft will contribute to decreased ρhv, as is 

commonly observed, without invoking significant contributions from non-Rayleigh 

scatterers.    

These partially-frozen drops are assumed to have an ice germ in their core, with 

the remaining unfrozen fractional liquid volume    given by 

     
    
  

                                                                      

following PK97.  From this level, the drops continue their ascent in the updraft and 

begin to freeze according to PK97, who assume ventilated drops undergoing isotropic 

heat loss via conduction and evaporation to the environment, neglecting riming.  The 

governing heat balance equations are as follows 

        

  

  
(  

    
  

)  
      [        ]

   
                               

             

 
      [        ]

   
      [        ]  ̅                    ̅           

See Table 8.1 for a description of all symbols in the above equations.  Because the 

surface temperature of the drop Ta is generally unknown, we solve for it in equation 

(8.15) and use the following relation (from PK97) to eliminate it: 

                         [        ] (
   ̅̅ ̅

  
)
     

                       

Solving the remaining equations for     ⁄   one obtains an expression for the growth 

rate of the ice shell:  
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  [               ̅                ]

    (  
    

  
) [            ]

                               

where we have defined  

      ̅        ̅    ̅̅ ̅   ⁄                                                     

By dividing both sides of the expression by the particle vertical velocity   , one obtains 

an expression that is used to compute the ice shell thickness at each height level.  Once 

   , the particle is entirely frozen and is considered an “ice pellet.”  After this 

transition, the ice pellet does not grow or interact with any other particles for the 

remainder of its ascent. 

 

b. Electromagnetic Model 

 The next portion of the model involves computing the complex scattering 

amplitudes of the particles as they ascend and freeze.  In order to preserve the physics 

of freezing, the hydrometeors are treated as two-layer spheroids, with an outer ice shell 

(the thickness of which is determined explicitly) surrounding an inner core consisting of 

liquid water.  Appendix A discusses the various ways to distribute liquid water on or in 

a particle using T-Matrix calculations.  The complex dielectrics of water and ice ϵw and 

ϵi are functions of temperature and radar wavelength, and are computed following the 

formulas in Ray (1972), which are also presented in Appendix A.  The radar wavelength 

is assumed to be  = 10.97 cm (S band).  The Rayleigh approximation to the scattering 

amplitudes of a two-layer spheroid is used, following Bohren and Huffman (1983): 
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      [                   ]            

[                   ][            ]                
   

       

In eqn. (8.19),   is the volume fraction of the inner spheroid (i.e., the liquid core) and  

     are shape factors for the oblate spheroids with major axis     and minor axis   : 

   
    

  
(  

      

 
)         

    

 
                                           

where 

  √  
   

   ⁄                                                               

The axis ratios of all particles are defined for the individual diameter D size bin by the 

Brandes et al. (2002, 2005) relation for raindrops: 

  

  
                                                          

where D is in mm.  The S-band polarimetric radar variables are calculated from the 

scattering amplitudes for each hydrometeor species (rain, partially frozen drop, and ice 

pellet), following Ryzhkov (2001) and Ryzhkov et al. (2011).  The particles are 

assumed to have a mean canting angle of 0°, with a canting angle distribution width 

dependent on the mass water fraction of the particle: 10° for pure rain, increasing to 40° 

for pure ice pellets linearly as a function of mass water fraction (e.g., Ryzhkov et al. 

2002b, 2009).  Because eqn. (8.19) is valid only for the Rayleigh condition, one must 

determine the appropriate range of diameters for which the Rayleigh approximation is 

valid at C and X bands using the resonance parameter  

     | |
 

  ⁄                                                                       
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When the Rayleigh approximation is no longer valid, one must use more sophisticated 

scattering calculations, such as the T-Matrix method (e.g., Mischenko 2000).  In 

addition to the Rayleigh approximation, we have computed the polarimetric radar 

variables for selected model runs using a T-Matrix method similar to the one used by 

Aydin and Zhao (1990).  Only selected model runs were converted to radar variables 

using the T-Matrix method because it is computationally expensive as there are 

numerous (>100 000) possible particles owing to the various growth trajectories.  The 

computational parameters are treated as before, with raindrops and ice pellets treated as 

oblate spheroids (composed of pure water and pure ice, respectively) and partially-

frozen drops treated as two-layer spheroids, with an outer shell made of ice and the 

inner core of water.  The Rayleigh approximation results (at S band) agree well with the 

T-Matrix calculations.  The Rayleigh-computed profiles of ZH, ZDR, ρhv, and LDR are 

within about 1 dBZ, 0.1 dB, 0.0005, and 0.5 dB, respectively, of the T-Matrix profiles. 

 

4. Model Results 

a. Sensitivity Tests 

Figure 8.5 is a 4-panel display of vertical profiles of the polarimetric radar 

variables based on model calculations with varying updraft intensities.  It is evident that 

the shape of the ZH profile (Fig. 8.5a) is most strongly affected by the updraft intensity, 

as this variable is dependent on the number concentration of particles.  This is because 

the model is steady state, so the number flux of particles is conserved at each level.  The 

shape of the ZH profile reflects this inverse proportionality to the updraft intensity: 

larger w corresponds to smaller ZH.  Superposed on this shape is a 7 dBZ decrease 
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owing to the difference in refractive index between liquid water and solid ice as drops 

nucleate and freeze.  

The impact of updraft intensity on ZDR, ρhv, and LDR is much less apparent, 

owing to their independence from total number concentration.  A striking feature in the 

ZDR profiles (Fig. 8.5b) is a zone marked by a sharp decrease in values from over 3 dB 

at heights below about 1000 m above the melting layer (AML) to 0.4 dB at heights 

above 2000 m AML.  This zone with a sharp decrease in ZDR is coincident with the 7 

dBZ decrease in ZH and is what we will be referring to as the “freezing zone.”  Note that 

the location of this freezing zone is shifted upwards slightly with stronger updrafts.  The 

shape of the updraft profile is not as important for the resulting ZDR profile as the 

updraft intensity.  Sensitivity tests were performed using a constant updraft speed w 

throughout the domain and are discussed below.    

The vertical profile of ρhv (Fig. 8.5c) reveals a minimum located at the bottom of 

the freezing zone, followed by an increase within the freezing zone.  Like ZDR, the 

height of these features increases with increasing updraft strength.  The reason for the 

minimum ρhv is the coexistence of a mixture of particle species in the larger size bins: 

pure liquid raindrops, solid ice pellets, and partially-frozen drops that have progressed 

through various stages in the freezing process are all collocated at the same level (Fig. 

8.6).  Because all particles have diameters < 1 cm, reductions in ρhv at S band are small.  

At C and X bands, reductions may be larger in magnitude.  Additionally, larger particles 

and/or wet growth of ice particles probably are necessary for substantial ρhv reductions 

at all radar wavelengths.   Similar to the profile of ρhv, the profile of LDR (Fig. 8.5d) 

reaches its maximum at the freezing zone, after which it decreases sharply as the 
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particles become entirely ice.  Note that the large maximum in LDR (LDR “cap”) often 

observed in deep convective storms is not reproduced, which suggests that larger 

particles and/or wet growth is required to reproduce this type of feature (e.g., Jameson 

et al. 1996; Smith et al. 1999). 

 

Fig. 8.5: Vertical profiles of (a) ZH, (b) ZDR, (c) ρhv, and (d) LDR computed from output of the 

freezing model, shown in meters above the melting level (AML).  The model parameters used 

for the calculations include the default DSD (see eqn. 8.3 and associated text) with varying 

updraft maximum intensity: 19 m s
-1

 (solid curves), 25 m s
-1

 (dashed curves), and 30 m s
-1

 

(dotted curves).  These calculations are for S band, employing the Rayleigh approximation. In 

each case,    = 15 m s
-1

, and      = 5 km. 
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Fig. 8.6: Vertical profiles of the number concentration (in m
-3

) of the 61
st 

size bin corresponding 

to a liquid drop of size 6.05 mm.  The concentration of raindrops is shown in the black solid 

line, partially-frozen drops (or “slush”) in the dashed dark gray line, and completely frozen ice 

pellets in the dotted gray line.  The default DSD and updraft with      = 25 m s
-1

 are used, 

with    = 15 m s
-1

 and      = 5 km. 

 

An important assumption of previous studies relating changes in the ZDR column 

to changes in storm intensity (e.g., Picca et al. 2010; Picca and Ryzhkov 2010) is that 

the changes in the ZDR column height are because of changes in updraft intensity.  

Though intuitive, this relation has not been quantified.  In the next set of idealized 

calculations, the updraft intensity is varied, but the updraft speed is held constant in 

height to remove the effects of the shape of the updraft profile.  The vertical extent of 

the ZDR column is quantified using the height of the freezing zone above the melting 

level.  The height of the freezing zone is determined by the height of the maximum 
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absolute value of the vertical gradient of ZDR.  Results of these tests (Figure 8.7) 

demonstrate an increasing freezing zone height (meaning a “taller” ZDR column) with 

increasing updraft speed.  However, the sensitivity is much higher for smaller updraft 

speeds (10 – 20 m s
-1

).  This is because these weaker updrafts yield very slow ascent 

speeds for the largest raindrops, allowing ample time for them to nucleate and freeze at 

lower heights.  

 

Fig. 8.7: Height of the freezing zone above the melting level as a function of the updraft speed.  

The default DSD is assumed.  For these idealized calculations, the updraft profile is constant 

throughout the domain, varying from 11 m s
-1

 to 50 m s
-1

. 

 

The model sensitivity to the nucleation scheme is explored next (Fig. 8.8).  

Here, the “default” settings correspond to those outlined in the model description above, 

containing the size-dependent median nucleating temperature    as well as a 

probability distribution function (PDF) of nucleating temperatures to capture the 
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stochastic nature of drop nucleation (cf. eqn. 8.11).  First, the drop-size dependency of 

   is removed, and all drops are assigned    = -9.6 °C.  This corresponds to the    of 

the largest drop size bin in the default settings.  Using this scheme (which still includes 

the PDF and thus stochastic effects) results in a sharper ZDR gradient in the freezing 

zone, leading to complete freezing of the drops about 500 m lower than the default 

settings.  The difference between this scheme and the default nucleation setting is most 

evident at the top of the freezing zone, which is mostly affected by the freezing of 

smaller drop sizes; in this case, the smaller drops are nucleated (and thus begin the 

freezing process) at lower heights.  The difference is smallest at the bottom of the 

freezing zone, where the largest drops are the most significant contributors to ZDR. 

 Next, the stochastic nucleation process is turned off so that all drops in each size 

bin nucleate at the same   .  As expected, this causes an even sharper ZDR gradient.  

Note that in this case, the ZDR does not begin decreasing until a higher level (1500 m 

AML).  This is because the larger drops do not nucleate at temperatures warmer than 

  , in contrast to the stochastic nucleation simulations.  Thus, the entire freezing 

process occurs within a 200-m deep layer.  If all drops were to freeze instantaneously at 

a given   , the resulting ZDR profile would be a step function (i.e., no freezing zone).  

Therefore, it is clear that the treatment of the stochastic nucleation process strongly 

affects the depth of the freezing zone – that is, the gradient of ZDR atop ZDR columns. 
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Fig. 8.8: Vertical profiles of ZDR resulting from model runs with different nucleation schemes.  

The default scheme described in the text is shown with the black curve and includes the size-

dependent mean nucleating temperature and stochastic nucleation process.  The dashed dark 

gray curve represents the runs when all drops are assigned a mean nucleating temperature of    

= -9.6 °C (the    of the largest drop size in the default run).  The gray dotted curve represents a 

simulation when all drops are assigned a    = -9.6 °C and no probability distribution function 

(PDF); in other words, the stochastic component of nucleation has been removed, and all drops 

in each size bin simply nucleate at   .  

 

In addition to the factors affecting the characteristics of the freezing zone 

discussed above, we see from eqn. (8.11) that the PDF governing drop nucleation is 

dependent on the parameter B.  The parameter B, which represents the chemical 

properties of the immersed nucleus in the drops, can vary several orders of magnitude 

depending on the type of immersed material (e.g., Diehl and Wurzler 2004).  Numerical 
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experiments were performed assuming the values for rainwater, leaf material, pollen, 

and various mineral dusts (not shown).  Though the shape of the ZDR profile was not 

significantly altered by varying B, the height of the freezing zone was affected.  Smaller 

values of B lead to fewer drop nucleations at a given height level (or, equivalently, to 

colder   , cf. eqn 8.12) which causes the freezing zone to appear at higher altitudes.  

The freezing zone height increases by about 550 m for every order of magnitude 

decrease of B, demonstrating how immersed materials characterized by smaller B are 

less efficient at inducing drop nucleation at relatively warmer temperatures. Note that 

stronger updrafts also can be thought of in terms of increasing    , leading to higher 

freezing zones.   

 

b. Comparison with Observations 

 The updraft-freezing model predicts the vertical profiles of the polarimetric 

radar variables within and above ZDR columns, but how well do these model predictions 

match the observations?  The cross-section in Figure 8.1 of the prominent ZDR column 

was reconstructed from several elevation angle sweeps and thus involves some degree 

of interpolation.  Instead, genuine vertical cross-section scans (or range-height 

indicators, RHIs) are desirable for direct comparisons with the model.  Such data were 

collected on the afternoon of 24 April 2011 by the C-band University of Oklahoma 

Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME; see 

Palmer et al. 2011).  Data were collected using 0.1° elevation angle spacing.  The 

melting layer is evident in the data at about 2.7 km AGL (Fig. 8.9).  At a range of about 

29 km, a storm cell displays a pronounced ZDR column that extends above the 



249 

environmental 0 °C level. Vertical profiles extracted from this storm cell are compared 

to model output (Fig. 8.10).  The initial DSD was selected to approximately match the 

ZH and ZDR at the environmental freezing level, with values    = 1000 m
-3

 mm
-0.463

,   = 

1.35 mm
-1

, and   = -0.537, with      = 13.6 m s
-1

 at      = 5.0 km, and    = 11.9 m 

s
-1

.  The modeled profile of ZDR is consistent with the observed profiles, though the 

magnitude of the modeled ZDR gradient in the freezing zone is smaller than the observed 

profiles (Fig. 8.10a).  In other words, the observed ZDR values drop off more rapidly in 

height than the modeled values.  This may be attributed to contact nucleation, which is 

expected to enhance the rate of nucleation and freezing in real storms, but was 

neglected in this model.  Also note that at shorter radar wavelengths (C and X bands), 

resonance scattering effects in the presence of large raindrops can contribute to 

discrepancies with the S-band calculations.  The observed profiles of ZH (Fig. 8.10b) 

display more variability than those of ZDR.  However, the modeled profile of ZH lies 

within the bounds of observations for most of the profile. The small disagreements in 

the shape of the ZH profile are mainly attributed to the assumed updraft profile. 
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Fig. 8.9: Observations from the C-band OU-PRIME on 24 April 2011, at 1909 UTC, along the 

azimuth 233.3°.  Panels shown are (a) ZH, and (b) ZDR.  Range rings are shown every 5 km.  The 

ZDR column of interest is centered at a range of about 29 km. 
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Fig. 8.10: (a) Fifteen observed vertical profiles of ZDR extracted from the RHI in Figure 8.9, 

from the ZDR column centered at a range of about 29 km (gray lines), compared to the model 

ZDR profile (thick black curve).  (b) As in (a), but ZH profiles are shown.  

 

Similar RHI scans were collected in a different climate region: near Bonn, 

Germany, with the Bonn X-band Polarimetric radar (BOXPOL) operated by the 

Meteorological Institute of the University of Bonn (Fig. 8.11).  Data were collected on 

24 June 2011, with 0.1° spacing in elevation, when isolated convective storms were 

affecting the area.  The nearest rawinsonde observations from Essen (approximately 90 

km to the northwest) at 1200 UTC show the environmental freezing level at about 1.8 

km AGL (not shown).  Vertical profiles extracted from these RHI scans compare 

favorably with the modeled ZDR profile, using   = 1.4 mm
-1

,   = -0.495,      =    = 

10.4 m s
-1

 (Fig. 8.12).  Again, the gradient of ZDR (especially at the top of the observed 

freezing zone) is sharper than the modeled profile, likely owing to contact nucleation 

being neglected in the model. 
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Fig. 8.11: Vertical cross-sections of ZH (left) and ZDR (right) taken along the 309.5° azimuth on 

24 June 2011, at 1034 UTC by the X-band BOXPOL radar.  Data are courtesy of the 

Meteorological Institute of the University of Bonn.  The ZDR column of interest is centered at 

about 23 km range. 

 

 

Fig. 8.12: As in Figure 8.10, but for 11 vertical profiles extracted from the RHI in Figure 8.11.   
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Despite the simplicity of the model employed in this study, it is able to 

reproduce key features in the upper portions of ZDR columns: namely, an accurate 

height above the melting level, similar gradient of ZDR in the freezing zone, and correct 

ZDR values within and above the column.  Additionally, the simulated ZH profile is in 

general agreement with the observed profiles, notwithstanding the uncertainty in the 

actual updraft profile.  This implies that, despite neglecting certain processes, the key 

physics governing the appearance of the top of ZDR columns are captured in our 

implementation of the stochastic nucleation process and subsequent explicit treatment 

of the deterministic freezing of drops. 

 

5. Discussion and Summary 

 The major characteristics of ZDR columns include the values of ZDR within and 

above the columns, the vertical extent of the column above the melting level, and the 

properties of the freezing zone (i.e., the gradient of ZDR, ρhv minimum, LDR maximum, 

etc.).  The theoretical model presented in this study is capable of reproducing many of 

these observed features.  ZDR values within and above the column can be matched with 

an initial DSD.  The impact of updraft intensity on the vertical extent of the ZDR column 

is quantified, demonstrating that stronger updrafts lead to taller ZDR columns.  The ZDR 

gradient within the freezing zone is in reasonable agreement with observed ZDR 

columns, indicating that the important physical processes (stochastic nucleation 

followed by deterministic freezing) are captured in the modeled framework.  

Discrepancies between the modeled and observed profiles (observations show a sharper 

ZDR gradient) are instructive, as they may indicate the role of contact nucleation on 
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expediting the freezing process, especially for the smaller drops.  Such a process 

expedites the freezing process by promoting nucleations at relatively warmer 

temperatures, particularly for smaller and medium drop sizes for which fallspeed 

differences are largest.  A ρhv minimum is produced in the freezing zone, even using the 

Rayleigh approximation for calculations.  This ρhv reduction is due to a mixture of 

different particle types (liquid drops, partially frozen drops, and ice pellets) collocated 

at the same level (cf. Fig. 8.6), as well as the gradual increase in the width of the 

distribution of hydrometeor canting angles as freezing progresses.  The latter also leads 

to a slight increase in LDR.  In convective storms containing larger particles, growth by 

accretion serves to further decrease ρhv and increase LDR (Jameson et al. 1996; Bringi et 

al. 1997; Hubbert et al. 1998; Smith et al. 1999; Picca and Ryzhkov 2012).  More 

general models with larger particles and/or those that account for wet growth should 

produce enhanced LDR and ρhv extrema.  

 The vertical extent of ZDR columns above the melting level is directly related to 

updraft strength in two ways: first, stronger updrafts lead to reduced median nucleating 

temperatures (  ), causing drops to nucleate at relatively colder temperatures.  Second, 

the faster ascent velocity of lofted drops allows the drops to ascend farther before total 

freezing occurs, in effect reducing the freezing rate.  Thus, strong updrafts may loft 

particles to heights of about 2 km above the updraft-perturbed 0 °C level before 

complete freezing, in agreement with numerous observed cases.  In addition, strong 

updrafts produce positive temperature perturbations owing to the release of latent 

enthalpy during condensation; for example, simple parcel theory considerations reveal 

parcels reaching 0 °C at heights 1 km or more above the environmental 0 °C level in 
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cases of large (> 3000 J kg
-1

) CAPE.  Therefore, in extreme cases, one may expect ZDR 

columns to extend as much as 3 km or more above the environmental 0 °C level (cf. 

Fig. 8.1). 

 The height of the freezing zone also increases with decreasing parameter B, 

which describes the impact of the chemical properties of the immersed material on the 

median nucleating temperature.  According to values found in Barklie and Gokhale 

(1959) and Diehl and Wurzler (2004), the parameter B can vary over several orders of 

magnitude, depending on the immersed foreign particle.  For every order of magnitude 

decrease of B, the height of the freezing zone increases by about 550 m.  Within a 

convective storm updraft, such an increase corresponds to a decrease in temperature on 

the order of 3 °C, in agreement with Wisner et al. (1972).  Because the formation and 

growth of hailstones is sensitive to environmental temperature and the amount of 

supercooled liquid water and ice present (e.g., PK97; Nelson 1983; Ziegler 1983, 

among others), such changes in height (and temperature) of the freezing zone may have 

an impact on these hail growth processes.  There have been recent indications that the 

concentration of aerosols may affect hail growth (e.g., Khain et al. 2011); here, we 

speculate that in addition, the type of aerosols that become immersed in liquid raindrops 

that are lofted above the environmental freezing level may also play a role in the hail 

growth process.  For example, immersed particles leading to freezing of drops at 

relatively warmer temperatures would allow more efficient growth into graupel particles 

by riming, whereas delayed freezing until colder temperatures may result in a larger 

relative proportion of frozen drops being lofted into the prime hail-growth region of -10 

to -20 °C.  Incorporating a probabilistic nucleation and deterministic freezing scheme 
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into a more general three-dimensional storm-scale numerical model will help verify or 

refute this speculation.  

 The ability of the simplified modeling approach to reproduce key observed 

features in ZDR columns improves confidence in our understanding of the dominant 

processes involved in raindrop freezing, and provides a simple yet powerful tool for 

exploring these processes.  Appropriate treatment of raindrop nucleation and freezing is 

a necessary precursor to employing more general three-dimensional numerical weather 

prediction models in investigations of ZDR columns, especially those aiming to elucidate 

the link between storm behavior and the evolution of ZDR columns.   
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Symbol Meaning 

  Constant determined by water sample 

impurities 

  Outer radius of the entire particle 

  Constant determined by water sample 

impurities 

   Specific heat capacity of water 

  Particle diameter 

   Minor axis of the spheroid 

   Major axis of the spheroid 

   Diffusivity of water vapor in air 

  √  
   

   ⁄  
Function of aspect ratio that determines shape 

factor 

     Scattering amplitude along major/minor axis 

  ̅ Ventilation coefficient of heat 

  ̅ Ventilation coefficient of water vapor 

   Fractional liquid volume following nucleation 

  Height above the melting layer 

     Height of the maximum updraft speed, wmax 

   Heat conductivity of air 

   Heat conductivity of ice 

     Shape factors for oblate spheroids 

LDR Linear depolarization ratio (in dB) 

   Latent enthalpy of freezing/melting 

   Latent enthalpy of sublimation 

     Number concentration of particles of diameter 

D to D + dD 

   DSD intercept parameter  

   Number concentration of drops of diameter D 

that are nucleated 

   Total number concentration of drops of 

diameter D 

   Number concentration of drops of diameter D 

yet to be nucleated 

  Inner radius of the growing ice shell 

  Air temperature 

   273.15 K 

   Temperature at the surface of the drop 

   Median nucleating temperature 

   Supercooled temperature 

    Median supercooled temperature 

   Ambient environmental temperature far from 

the particle 

  Time 

   Volume of raindrops 
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      Velocity of raindrops 

     Velocity of ice pellets 

  Updraft speed  

   Updraft-modified vertical velocity of drop 

   Updraft speed at the 0 °C level 

     Maximum updraft speed 

ZDR Differential reflectivity factor (dB) 

ZH Radar reflectivity factor at horizontal 

polarization (dBZ) 

  Constant = 0.65 °C
-1

 

  Density correction factor for velocity (0.4) 

   Lapse rate within updraft (moist adiabatic) 

   Cooling rate 

   Complex dielectric of ice 

   Complex dielectric of liquid water 

  Complex dielectric of the freezing particle 

  DSD slope parameter 

  Radar wavelength 

  Volume fraction of the inner spheroid (core) 

   Reference density = 1.2 kg m
-3

 

     Air density at a given height level 

ρhv Co-polar cross-correlation coefficient 

    Water vapor density at the particle surface 

           Saturated vapor density at the ambient 

environmental temperature 

     Ambient water vapor density 

   Density of liquid water 

   Relative humidity 

    ̅̅ ̅    ⁄
     

 Average slope of the saturated vapor density 

(over ice) as a function of temperature in the 

neighborhood of T∞ 

  Resonance parameter 

  Fractional increase in updraft speed 

  Thermodynamic factor in eqn. (8.17) 

Table 8.1: Explanation of symbols used throughout the equations and the text. 
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Chapter 9: Summary, Conclusions, and Future Work 

 

The complete suite of backscattering and forward scattering polarimetric radar 

variables is derived for the linearly orthogonal (H and V polarization) basis. The 

physical interpretation of these variables is then provided, along with electromagnetic 

scattering calculations, as well as examples from newly upgraded WSR-88D radars. 

Artifacts in polarimetric radar data that are routinely observed are also discussed. After 

describing the theoretical and physical basis for the polarimetric radar variables, we turn 

to use of these variables for microphysical research. 

Understanding the impact of different microphysical processes on the observed 

polarimetric radar variables is important for a range of applications. Recognizing these 

characteristic “fingerprints” in the observed data allows for better physical 

interpretation of polarimetric radar observations and for identification of the dominant 

microphysical processes ongoing in a given storm at a given time. Such knowledge can 

then be used to validate microphysics parameterization schemes. If numerical 

simulations of storms cannot reproduce the observed radar features in real storms, it is 

clear that certain physical processes are not adequately (or accurately) handled in the 

parameterizations. Identifying and improving these problematic parameterizations can 

lead to better storm-scale numerical forecasts. Additionally, appropriate treatment of 

precipitation physics in models is crucial for efficient polarimetric radar data 

assimilation. If models cannot reproduce observed polarimetric radar signatures in 

storms, how can assimilation of the radar data improve model analyses and forecasts?  
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This dissertation offers a preliminary step towards quantitatively describing the 

impact of certain processes on the dual-polarization radar variables. Namely, the 

fingerprints of raindrop size sorting, evaporation, coalescence, and freezing are 

investigated. Additionally, a model was developed to predict the temperature of 

raindrops as they descend through an atmosphere with nonzero lapse rate, which can be 

used for scattering calculations. A combination of explicit bin microphysical models, 

scattering calculations, and simple thought experiments were used to determine the 

impacts of these processes on the radar variables. 

A pictorial catalog of the impact of the precipitation processes on the 

polarimetric radar variables ZH, ZDR, KDP, and ρhv is provided in Figure 9.1. Note that 

each of the processes shown has a unique “fingerprint” in the polarimetric radar 

variables. Some are similar (e.g., evaporation and size sorting). However, as shown in 

this study, the magnitudes of the changes are different for evaporation and size sorting. 

Though evaporation and size sorting can cause similar decreases in ZH and KDP, the 

increase in ZDR for evaporation (on the order of 0.2 to 0.3 dB) is much smaller than that 

for size sorting (up to 1 dB or more). This underscores the need to understand how these 

processes affect the radar measurands in quantitative terms. Future work is required to 

quantitatively describe the processes not fully considered in this dissertation: raindrop 

breakup, aggregation of snowflakes, melting of ice particles, etc. 

 With the ongoing upgrade of the WSR-88D radar network to dual-polarization 

capabilities, polarimetric radar data are expected to play an increasingly important role 

in both operational meteorology and atmospheric science research. Operational 

meteorologists will benefit from use of the data in warning decision-making, diagnoses 
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of storm behavior and intensity, hydrometeor identification, and quantitative 

precipitation estimation, among many other applications. Research scientists will be 

able to use data for pure microphysics research, as well as validation studies for 

precipitation physics parameterizations in numerical models, and eventually, 

polarimetric radar data assimilation. As more data become available, new signatures 

and polarimetric fingerprints may be discovered, potentially offering a wealth of new 

topics for research. 
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Fig. 9.1: Pictorial catalog of the qualitative polarimetric fingerprints of different microphysical 

processes. The direction of the arrows indicates the direction of the change in the radar variable 

owing to the given process. Sideways arrows indicate changes can be in either direction. For a 

given process, the size of the arrow indicates the magnitude of the change relative to the other 

variables in a qualitative sense.  
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Appendix A: Computing the Complex Dielectric Factor. 

 

1. Complex Dielectric Factors for Pure Water and Ice 

  The electromagnetic scattering properties of hydrometeors and other targets 

depend on the complex dielectric factor of the substance being illuminated by the 

incident radiation. Recall that the complex dielectric factor (or relative permittivity)  of 

a substance characterizes its response to an applied electromagnetic field, including its 

ability to scatter the radiation, as well as its ability to absorb and dissipate it as thermal 

energy. 

  Precipitation particles comprise some combination of liquid water, ice, and air.  

For simplicity, it is often assumed that the relative permittivity of air       .  

Formulas for computing the values of        and      are given by Ray (1972): 
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In the case of fresh liquid water,  
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and in the case of solid ice (density = 917 kg m
-3

), 
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In the above expressions, the radar wavelength  is expressed in cm, and the 

temperature    is in C.  The computed values for        and      over a range of 

temperatures for the three common weather radar wavelengths (S, C, and X bands) are 

shown in Figures A1 and A2.  Note that        varies widely over the range of 

temperatures compared to     . 
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Fig. A1: Values of the (a) real part, and (b) imaginary part of the complex dielectric for water, 

computed based on the expressions of Ray (1972) for three radar wavelengths: S band (black 

curves), C band (blue curves), and X band (red curves). 

 

 

Fig. A2: As in Figure A1, except for ice. 
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2. Complex Dielectric Factors for Mixtures 

 When hydrometeors are not solid ice or pure liquid water, it is necessary to 

employ so-called mixing formulas to determine the appropriate complex dielectric.  Dry 

snow, graupel, and low-density hailstones can be considered a mixture of solid ice and 

air, characterized by a density           such that                    .  The relative 

permittivity of such particles is dependent on the volume fraction of ice    , defined as 

                                                                                         

It follows that 

    
              

         
 

         

    
                                                       

The mixing formula of Maxwell Garnett (1904)  
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)                                              

determines the complex dielectric of the particle, which can be rewritten using (A4) and 

considering        as 

          
   

         

    

      
      

  
         

    

      
      

                                                     

For many radar applications, it is more convenient to express (A6) in the Debye form: 

           

           
 

         

    

      

      
                                                         

 Mixed-phase particles include any hydrometeor that comprises some 

combination of air, ice, and liquid water.  This includes melting ice particles and 

freezing liquid particles.  The volume fraction of water     increases (decreases) as 
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particles progressively melt (freeze) and has a substantial impact on the electromagnetic 

properties of the particle.  However, in addition to the amount of liquid water present in 

a particle, its distribution is very important.  For example, at the onset of melting, 

snowflakes tend to accumulate most of their liquid water on the outer portions of their 

branches (e.g., Knight 1979; Matsuo and Sasyo 1981; Fujiyoshi 1986; Mitra et al. 

1990).  On the other hand, spongy graupel or hailstones tend to accumulate liquid water 

first in their interior, filling air pockets before accumulating on the exterior (e.g., 

Rasmussen et al. 1984).  High-density hailstones accumulate liquid water in an outer 

film surrounding the inner core of solid ice (e.g., Rasmussen and Heymsfield 1987).  In 

contrast, a freezing raindrop develops an outer ice shell and freezes inward (e.g., 

Pruppacher and Klett 1997). 

 The simplest model of a mixed-phase particle again uses the Maxwell Garnett 

(1904) formula.  However, a choice should be made on how to treat the three 

constituents (see Fabry and Szyrmer 1999 for a review of numerous ways of treating 

melting snowflakes).  One of the most common approaches for melting snow include 

treating the snowflake as a “matrix” in which there exist embedded spheroidal water 

“inclusions” (Fig. A3a).  In this case, eqn. (A6) is first used to compute the complex 

dielectric of the snow matrix (         ), then  
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)                             

The other approach is to treat water as the “matrix” containing spheroidal ice-air 

“inclusions,” (Fig. A3b) in which case 
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   (

          
            
             

         
            
             

)                                

These two approaches lead to different results for           , which is a source of 

uncertainty in scattering calculations.  Apparently, (A8) works better for lower water 

fractions and (A9) works better for high water fraction (e.g., Meneghini and Liao 1996; 

Matrosov 2008; Ryzhkov et al. 2011).  Some combinations of (A8) – (A9) have been 

proposed by these authors, including the expression of Ryzhkov et al. (2011): 
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where the parameter  

     ( 
     

   
  )                                                   

and Erf is the error function.   

 For melting high-density hailstones, melting graupel in the “soaking” stage, and 

freezing raindrops, the two-layer approach should be used (Figs. A3c and A3d), where 

       and      are computed following (A1) – (A2) above. 
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Fig. A3: Schematic cartoon illustrating several different models for treating mixed-phase 

hydrometeors. (a) Ice matrix with water inclusions; (b) water matrix with ice inclusions; (c) 

water-coated with an ice core; (d) ice-coated with a water core. 

 

3. Impact of the distribution of liquid water on the polarimetric radar variables. 

 The choice of how water is distributed on or in the particle significantly impacts 

the polarimetric variables. Figure A4 is a comparison of ZH calculated for four different 

water distribution models of an oblate spheroid composed of water and ice (both spongy 

models, and both two-layer models). For a given liquid volume fraction    , the 

normalized ZH values can vary by as much as 7 – 10 dBZ, depending on the radar 

wavelength. In general, the water-coated spheroids produce larger ZH for a given    , 

except for very wet particles at shorter wavelengths. 

 Figure A5 shows the ZDR values for the different water distribution models. Note 

that differences of 2 – 3 dB are possible for the same particle size, shape, and water 

volume fraction     depending on how the liquid water is distributed. It is not possible 

to make general statements, such as “Water-coated particles tend to produce larger 

ZDR.” This may be true for small values of    , though clearly the behavior is more 

complex for large     and/or shorter radar wavelengths. For example, at X band, the 
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largest ZDR is produced by a spongy particle treated as an ice matrix with water 

inclusions, whereas for smaller     the ZDR of water-coated particles is nearly 3 dB 

larger than the other models. Similar complicated behavior is evident in the normalized 

KDP (Fig. A6). 

 The backscatter differential phase shift (δ) depends strongly on the distribution 

of liquid water as well (Fig. A7). Whereas δ is insignificant at S band (Fig. A7a), it 

becomes appreciable at C band for water-coated particles (Fig. A7b) and at X band for 

all models (Fig. A7c). Recall that the distribution of δ within the radar sampling volume 

significantly affects the measured ρhv. 

 LDR values vary significantly for a given     at all wavelengths (Fig. A8). For 

example, at S band, the LDR of a water-coated particle can be as much as 6 to 7 dB 

larger than that of an equally-wet ice-coated particle. This suggests the importance of 

accretion of liquid water by particles undergoing freezing within convective updrafts in 

producing the large LDR values (“LDR cap”) that are frequently observed (Jameson et al. 

1996; Hubbert et al. 1998). 

 Though attenuation is insignificant at S band for the particle size shown (Figs. 

A9a,A10a), it becomes important for C and X bands (Figs. A9b-c, A10b-c). Note that 

the distribution model producing the largest values of AH and ADP depends strongly on 

the value of    . For example, at X band, water-coated particles composed of 10% 

liquid water by volume produce the largest ADP. In contrast, particles with     near 80% 

that are treated as spongy with an ice matrix and water inclusions produce more than 

twice the differential attenuation as water-coated particles with the same    . 
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 In summary, the choice of how liquid water is distributed on or within a particle 

can substantially affect the calculated polarimetric radar variables, especially for shorter 

radar wavelengths. The choice of liquid water distribution model is thus of great 

importance, and should be appropriate for the relevant microphysics. 
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Fig. A4: Normalized values of the radar reflectivity factor at horizontal polarization (ZH) as a 

function of liquid water volume fraction computed for a 6-mm particle, using four models of 

water distribution: ice coat with water core (black solid curves), spongy with an ice matrix and 

water inclusions (black dashed curves), water coat with an ice core (gray solid curves), and 

spongy with a water matrix and ice inclusions (gray dashed curves). Calculations performed 

using a T-Matrix code, for three radar wavelengths: (a) S band (10.97 cm), (b) C band (5.4 cm), 

and (c) X band (3.2 cm). Particle axis ratio is that of an equivalent-sized raindrop. 
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Fig. A5: As in Fig. A4, but differential reflectivity factor (ZDR) is shown.  
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Fig. A6: As in Figs. A4-A5, but normalized values of specific differential phase (KDP) are 

shown.  
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Fig. A7: As in Figs. A4-A6, but the backscatter differential phase shift (δ) is shown.  
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Fig. A8: As in Figs. A4-A7, but the linear depolarization ratio (LDR) is shown.  
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Fig. A9: As in Figs. A4-A8, but normalized values of the specific attenuation at horizontal 

polarization (AH) are shown.  
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Fig. A10: As in Figs. A4-A9, but specific differential attenuation (ADP) is shown.  
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Appendix B 

 

Fig. B1: Три Заповеди российского Зэка (Three Commandments of the Russian Convict). 
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