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Abstract

Modeling studies consistently demonstrate that the most violent winds in a

tornadic vortex occur in the lowest tens of meters above the surface. These ve-

locities are unobservable by radar platforms due to line of sight considerations.

In this work, a methodology is developed which utilizes parametric tangential

velocity models derived from Doppler radar measurements, together with a

tangential momentum and mass continuity constraint, to estimate the radial

and vertical velocities in a steady axisymmetric frame. This technique is tested

with a set of model output utilized as “truth . The methodology yields good

estimates when the tangential vortex model is a good approximation to the

actual tangential wind field, in the regions that are retrievable from the infor-

mation aloft. Interestingly, there are regions of the unobservable portion of

the domain that do not communicate with the region above through the dy-

namics we have selected. These regions are explored, and different variational

procedures for estimating solutions on these regions are discussed. A prob-

abilistic method is utilized to quantify how uncertainty in the vortex model

parameters translates into the retrieved radial and vertical velocities, and the

resulting improvement in estimations using ensemble statistics is discussed.
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Introduction

Research on tornado dynamics has been done for over half a century, with

observational studies beginning even earlier. As with all the sciences, mete-

orology relies on a constant interplay between observational and model stud-

ies, each suggesting improvements for the next generation of the other. In

the 1970s a tornado vortex chamber (TVC) was constructed at Purdue Uni-

versity, and the resulting simulations led to a greater understanding of the

dependence of qualitative features of the tornado on a small set of physical

parameters (e.g., Church et al. (1977), Church et al. (1979)). Field experi-

ments such as the Verification of Origin of Rotation in Tornados Experiment

(VORTEX) gather observations of real severe thunderstorms, many of which

generate tornadoes. In addition, theoreticians have done modeling studies in

which the Navier-Stokes equations together with the continuity equation and

appropriate models for the transport of heat and moisture, and the dissipation

of kinetic energy due to turbulence are integrated numerically to get a sense

of how idealized concentrated vortices behave under model assumptions.

Ultimately, these various methods of analyzing vortices all tell us different

things about real tornados in nature. The TVC experiments and modeling

studies indicate that the structure of the wind field near the ground should

have a particular form, to be in agreement with the physical ideas about the

interaction between rotation aloft and friction at the ground.
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In this work, we develop a methodology for combining observational data

with a parametric tangential velocity model and simplified equations of mo-

tion in order to retrieve the other two components of the wind field below

height which is observable by a mobile radar. The questions of existence and

uniqueness are mathematically interesting even for the situation where the

dynamics are seemingly simple. The analysis done here should convince re-

searchers to tread carefully when using complex sets of model equations to

draw information from observations.

2



Chapter 1

Tornadoes and Fluid Dynamics

1.1 Physical Description of the Dynamics

Tornadoes are regions of highly concentrated vertical vorticity. The question

of how the vertical vorticity becomes concentrated enough to form a tornado

is referred to as the tornadogenesis problem. This is still an open problem in

meteorology, one that experiments like VORTEX and VORTEX2 have been

designed to answer. The rotations that are interesting to this field can be

as large as a supercell (persistent rotating updraft), or smaller features like

mesocyclones and their children, tornadoes.

Once a tornado is in existence, the reviews in Lewellen and Sheng (1980),

Snow (1982) and Lewellen (1993) divide it into several sections where the

dominant dynamics are different. Lewellen et al. (2000) describe the tornado as

a region of elevated angular momentum, while the inflow layer near the ground

can be visualized as a jet of diminished angular momentum. The diminished

angular momentum is caused by friction at the ground, which retards the

swirling wind and allows air to penetrate to the center of the vortex, keeping

air aloft from filling in and “drowning” the vortex.

A few hundred meters above the ground is the core region, in which the dy-
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namics are thought to be in near cyclostrophic balance, which means that the

radial pressure gradient force (1
ρ
∂p
∂r

) is approximately balanced by the centrifu-

gal force (v
2

r
). Fiedler and Rotunno (1986) describe a method of estimating the

maximum wind speed of a tornado using the equation of cyclostrophic balance

and the pressure drop along the centerline of the tornado, which is called the

thermodynamic method, and the resulting maximum tangential wind speed the

thermodynamic speed limit. Studies have shown that if cyclostrophic balance

determined the maximum wind speed, with a hydrostatic pressure field, then

the maximum wind speeds would be much lower than what is estimated from

damage surveys and radar analysis. Knowledge of the maximum wind speed

possible is important for designing structures that are capable of withstanding

tornadoes.

Near the ground, but away from the axis of rotation is the inflow region,

where air is being drawn into the rotating column of rising air that makes up

the tornado and its parent mesocyclone. Depending on the strength of the in-

flow, there may or may not be boundary layer separation at the ground (Snow,

1982). The inflow region is important to the maintenance of the tornado, since

this is the source of mass and momentum that are feeding the rotation.

The region between the center of the vortex and the maximum radial inflow

near the ground is what is referred to as the corner flow region, named for

the fact that the flow in this region changes from primarily radial in the inflow

to vertical as air passes into the updraft and up into the core. It is here that

friction unbalances the cyclostrophic balance in the core by weakening the

tangential velocity and allowing flow to penetrate to the center of the vortex.

This can lead to much higher maximum wind speeds than those estimated

from the thermodynamic method, as is described in Fiedler (1994).
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1.2 The Navier-Stokes and Continuity Equa-

tions

A natural geometry for vortex motion is cylindrical coordinates, centered at

the vortex axis. Taking (u, v, w) to be the radial, tangential (azimuthal), and

vertical velocities of the fluid, the Navier-Stokes equations are given by (Kundu

and Cohen, 2008)

∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂θ
+ w

∂u

∂z
− v2

r
= −1

ρ

∂p

∂r
+ ν

(
∆u− u

r2
− 2

r2

∂v

∂θ

)
(1.1)

∂v

∂t
+ u

∂v

∂r
+
v

r

∂v

∂θ
+ w

∂v

∂z
+
uv

r
= − 1

ρr

∂p

∂θ
+ ν

(
∆v +

v

r2
− 2

r2

∂u

∂θ

)
(1.2)

∂w

∂t
+ u

∂w

∂r
+
v

r

∂w

∂θ
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ b+ ν∆w (1.3)

where ν is the eddy viscosity, assumed constant, and ρ is the constant air den-

sity, p is the pressure, and b is the buoyancy force, which can be parameterized

as a function of the temperature and moisture gradients, or obtained from a

prognostic equation that follows from the First Law of Thermodynamics. The

Laplacian in cylindrical coordinates is given by

∆ =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
+

∂2

∂z2
. (1.4)

To close the system, we take the incompressible continuity equation:

1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
+
∂w

∂z
= 0. (1.5)

Since we are interested in a swirling flow, it is useful to consider the radial,
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azimuthal and axial vorticities, defined by

(η, ξ, ζ) = ∇× (u, v, w),

or component-wise

η =
1

r

∂w

∂θ
− ∂v

∂z
(1.6)

ξ =
∂u

∂z
− 1

r

∂(rw)

∂r
(1.7)

ζ =
1

r

∂(rv)

∂r
− 1

r

∂u

∂θ
(1.8)

1.3 The Dry Steady Axisymmetric Approxi-

mation

Axisymmetric dynamics, where all functions are assumed to be independent

of θ, have been the focus of much tornado research (e.g. (Lewellen and Sheng,

1980), (Rotunno, 1979), (Fiedler and Rotunno, 1986)). We shall begin with

the simplified problem where we assume axisymmetric, steady flow, where all

derivatives with respect to θ and t vanish. The steady axisymmetric equations

are

u
∂u

∂r
+ w

∂u

∂z
− v2

r
= −1

ρ

∂p

∂r
+ ν

{
∂

∂r

[
1

r

∂(ru)

∂r

]
+
∂2u

∂z2

}
(1.9)

u
∂v

∂r
+ w

∂v

∂z
+
uv

r
= ν

{
∂

∂r

[
1

r

∂(rv)

∂r

]
+
∂2v

∂z2

}
(1.10)

u
∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

{
∂

∂r

[
1

r

∂(rw)

∂r

]
+
∂2w

∂z2

}
(1.11)
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and the axisymmetric continuity equation is

1

r

∂(ru)

∂r
+
∂w

∂z
= 0. (1.12)

The vorticities (1.6) - (1.8) simplify to

η = −∂v
∂z

(1.13)

ξ =
∂u

∂z
− 1

r

∂(rw)

∂r
(1.14)

ζ =
1

r

∂(rv)

∂r
(1.15)

Equations (1.9)-(1.12) are “dry” and isothermal, since they do not con-

tain the effects of water vapor or temperature. We are not considering the

tornadogenesis problem (unlike Davies-Jones (2008)), so this approximation is

reasonable, since tornado dynamics mostly occur away from the precipitating

portion of the storm. Further, we are interested in near surface tornadic winds,

which are far away from the cloud base, and so should be mostly independent

of the effects of moisture.

A common technique for axisymmetric dynamics (e.g., see Rotunno (1979))

is to replace u and w by a single streamfunction Ψ that satisfies u = 1
r
Ψz and

w = −1
r
Ψr. By construction, Ψ satisfies (1.12). The equation (1.14) gives a

Poisson equation for Ψ in terms of ξ. We can construct a second equation

for ξ by differentiating (1.9) with respect to z and (1.11) with respect to r

and subtracting. Finally, (1.10) can be used as is, or multiplied by r to create

an equation for the circulation Γ. These three equations are independent of

pressure, and are the typical form used for simulation in the references listed

above and Chapter 8.
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The time required for a radar platform to completely sample a thunder-

storm is on the order of minutes, which implies that any motions of the tornado

that have a shorter time scale than this will not be visible in the measurements.

Further, the axisymmetric vortex can be seen as the azimuthal average of the

full asymmetric vortex, which would be the first term of a Fourier series ex-

pansion of the full flow:

u(r, θ, z) = uo(r, z) +
∞∑
n=1

un(r, z) sin(nθ) + ûn(r, z) cos(nθ)

The terms which are higher frequency (spatially) can be hypothesized to be

diminishing perturbations to this averaged state. Hence, estimating the aver-

age state is the obvious first step in the process of estimating the fully three

dimensional wind field.
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Chapter 2

Modeling Tornadic Vortices

There are several approaches to modeling tornados. Analytic solutions to the

Navier-Stokes equations with simplifying assumptions were discovered before

the advent of modern supercomputing. More recently, numerical explorations

have explored the physical parameters that might be important, such as buoy-

ancy and friction. Due to the inherently multiscale nature of tornados, realistic

simulations are not typically feasible, and so often simple models are used in

conjunction with data to improve data quality and increase understanding of

observed features. In this chapter, we first review a few of the analytic vortex

models, and then give a brief summary of past numerical work, leading to

the development of a model of intermediate complexity that can be used in

conjunction with an empirical tangential vortex model to estimate the other

components of the wind field.

2.1 Analytic Solution Vortex Models

Several analytic solutions to the Navier-Stokes equations under simplifying

assumptions exist (e.g. Rott (1958), Sullivan (1959) for general (steady) solu-

tions, and Long (1958), Kuo (1967) for similarity solutions).
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2.1.1 Rankine Vortex

The Rankine vortex model satisfies the steady form of the Navier-Stokes equa-

tions in two separate regions consisting of an inner domain of solid body ro-

tation (r < R) and an outer domain of irrotational flow (r > R), which are

joined at some radius of maximal tangential velocity (r = R), assumed to be

a solid rotating boundary between the two regions:

urk(r, z) = wrk(r, z) = 0 (2.1)

vrk(r) =

vmax
r
R

r ≤ R

vmax
R
r

r ≥ R
(2.2)

This model describes the structure of a simple, steady vortex quite well, and

has a small set of parameters. The model is not smooth at r = R, and this can

lead to unrealistically high maximum tangential wind speeds when modeling

doppler radar velocities. Also, if we are interested in nontrivial u and w, we

have to consider more possibilities.

2.1.2 Burgers-Rott Vortex

The Burgers-Rott model has nontrivial functions for all three components of

wind velocity:

u = −ar (2.3)

v =
Γ∞
2πr

(
1− e

−ar2
2ν

)
(2.4)

w = 2az (2.5)

10



This model has an updraft that increases with height, and an inflow that

strengthens with radial distance from the center of the vortex. While more

complex than the Rankine vortex model, there are still some features lacking.

Note that there is no dependence on height for u or v, and no radial dependence

for w. Typical radar data indicate a dependence in the horizontal flow on the

height coordinate. For example, near the ground u should be negative as air

flows in, while higher in the storm, u should be positive as air diverges from

the center. In addition, Snow (1982) discusses the phenomenon of central

core downdrafts for certain dynamic regimes, the so-called ”two-cell” vortex,

which this model cannot capture. Finally, the tangential velocity satisfies a

free slip lower boundary condition, rather than a no slip condition, which leads

to tangential wind velocities that are weaker than real tornados.

2.1.3 Sullivan’s Vortex

The Sullivan vortex model is more complex:

u = −ar + 6
ν

r

(
1− e−

ar2

2ν

)
(2.6)

v =
Γ

2πr

[
H(ar2/2ν)

H(∞)

]
(2.7)

w = 2az(1− 3e−
ar2

2ν ) (2.8)

where

H(x) =

∫ x

0

exp

(
−t+ 3

∫ t

0

[
1− e−s

s

]
ds

)
dt. (2.9)
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Sullivan’s vortex exhibits the existence of a two-celled vortex for certain pa-

rameter regimes.

These models have been used for data and theoretical analyses due to their

being solutions of some form of the Navier-Stokes equations. Meteorologists

trust the equations of motion because they arise from very basic assumptions

about the laws that govern the universe, namely conservation of mass and

momentum. The drawback they all share is that the tangential wind velocity is

free-slip at the ground, implying that friction does not play a role in weakening

the cyclostrophic balance aloft, which is counter to our understanding of the

physical mechanisms present in real tornados, as discussed in Chapter 1. As

such, they are more appropriate for the tangential velocity above the lowest

few hundred meters above the surface.

2.2 Wood-White Model

In the spirit of the Rankine model (2.2), Wood and White developed a more

general empirical tangential velocity model in Wood and White (2011). The

version of their model used here is given by

φ(r;n, k, rc) =
nrc

n−krk

(n− k)rcn + krn
. (2.10)

This model shares many of the features of the Rankine vortex, including a

single maxima at r = rc and an algebraic rate of decay for r > rc. The major

difference is that the vortex is smooth at r = rc, and that we can control the

rate of decay. Researchers (e.g. Robin Tanamachi, personal communication)

have commented that the effect of the nonsmooth derivative in the Rankine
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model can be seen in the analyzed radar data, when these observations are

fit by a Rankine vortex using a least-squares technique, with larger tangential

velocities than are physically consistent with other measurements.

2.2.1 A Constraint on k

Suppose we model the tangential velocity as v = vcφ(r)ψ(z), where φ is the

Wood-White (WW) function and ψ is a model for the vertical variation in v.

Computing the vertical vorticity ζ for this v we get

ζ = v∞
nkrn−kc rk−1

(n− k)rnc + krn

[
1 +

1

k
− nrn

(n− k)rnc + krn

]
ψ(z). (2.11)

Note that for k = 1,

ζ(0, z) =
2n

(n− 1)rc
ψ(z) 6= 0

but for k > 1,

ζ(0, z) = 0.

On the other hand, the radial derivative of vorticity, ζr, can be shown to satisfy

ζr(0+, z) =

 0 when k = 1

+∞ when k > 1
(2.12)

Clearly the vertical vorticity should have a finite radial derivative at the vortex

axis. In the case where we let ψ ≡ 1, the k > 1 case leads to infinite radial

velocities at the vertical axis (r = 0), which is unphysical. For these reasons,
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we will assume k = 1.

2.2.2 Derivatives

For future reference, we compute various derivatives of interest with the con-

straint k = 1.

φww(r;n, rc) =
nrc

n−1r

(n− 1)rcn + rn
(2.13)

d

dr
φww(r;n, rc) =

n(n− 1)rn−1
c

((n− 1)rcn + rn)2
(rc

n − rn) (2.14)

d2

dr2
φww(r;n, rc) =

−n2(n− 1)rc
n−1rn−1

((n− 1)rcn + rn)3
((n+ 1)rc

n − rn) (2.15)

1

r

d

dr
(rφww(r;n, rc)) =

nrc
n−1

((n− 1)rcn + rn)2
(2(n− 1)rc

n − (n− 2)rn)

(2.16)

d

dr

(
1

r

d

dr
(rφww(r;n, rc))

)
=

n2rc
n−1rn−1

((n− 1)rnc + rn)3

(
(n− 2)rn − (n2 + n− 2)rc

n
)

(2.17)

2.3 Vertical Variation in the Tangential Veloc-

ity

The tornado dynamics reviews mentioned in the last chapter discuss how v

changes with height. At the ground, v should be zero due to the fact that the

ground has zero swirl velocity. The no slip condition has been shown to pro-

duce wind fields with statistics closer to actual tornadoes than other boundary

conditions, such as a free slip condition. From the ground, v increases smoothly

to a relative maximum just above the inflow layer, at the “core radius”, above
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which it decreases to the top of the funnel cloud. This general description can

also be approximated by the WW function described in the last section. Hence,

we could model the tangential velocity with v = vcφww(r; rc, nr)φww(z; zc, nz),

or in the case of multiple maxima, with a linear combination of these functions.
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Chapter 3

Statement of the problem

3.1 Introduction

The most violent winds in a tornado occur in the lowest tens of meters above

the ground, but line of sight limitations for radar platforms make this region

of the tornado, namely the inflow and corner flow regions, impossible to mea-

sure directly. Here we explore a mathematical framework for estimating the

structure of the wind velocity below the radar horizon, assuming that we have

measurements of the radial velocity u and tangential velocity v above the radar

horizon, and that the tangential velocity’s behavior below the radar horizon

is predictable using empirical models.

3.2 Physical Considerations

The goal is to estimate the three velocity components u, v, and w on a physical

domain Ω = [0, R]× [0, H]. Let 0 < h < H and define Ωh = [0, R]× [0, h], and

assume we have measurements of u and v on Ω\Ωh, the “observable region”.

The domain schematic in Figure 3.1 indicates the assumptions for the problem.

The green boxes represent discrete measurements {(ui, vi)} of u and v, say
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from two synchronized radar platforms. The blue lines represent boundary

conditions that we can deduce from theory. Some numerical models (e.g.

Davies-Jones (2008)) have taken u = v = ∂w
∂r

= 0 at r = 0 and ∂u
∂z

= v = w = 0

at z = 0, though these boundary conditions have been the subject of much

debate in the past. The dashed red line represents an outer radial boundary

along which we have no information on any of the velocity components.

3.3 The Tangential Component of Velocity

From Chapters 1 and 2, we know there are reasonable assumptions we can

make about the structure of the tangential wind velocity in the tornado, whose

lower portion is contained in Ω. The presence of observations of v in Ω \

Ωh indicates that we could seek an empirical parametric model for v that

minimizes a cost associated to fitting the observational data within the random

errors (noise) associated with the measurements. The vertical variation in

v that arises from the parametric model will be entirely determined by the

data in Ω \ Ωh, and so we will have to rely on our intuition about how the

tangential velocity should behave below the radar horizon, together with the

fitting procedure, in order to say anything about the other components u and

w. Procedures for selecting v will be discussed in Chapter 4.

3.4 Dynamical constraints for u and w

Given a model for v which approximates the measurements as described in

the last paragraph, we can look for possible radial velocities u and vertical

velocities w that are dynamically consistent with our model for v. Of course,
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“dynamically consistent” implies a set of underlying dynamical assumptions.

Conservation of mass is a fundamental physical requirement. Since we are in

the r − z plane, we take the incompressible axisymmetric continuity equation

1

r
(ru)r + wz = 0 (3.1)

to be the constraint which imposes conservation of mass. Clearly this con-

straint alone is insufficient for determining u and w, and so we need another

constraint. Examining the other equations of motion (1.9)-(1.11) described in

Chapter 1, we see that (1.10) does not contain a pressure term:

u
∂v

∂r
+ w

∂v

∂z
+
uv

r
= ν

{
∂

∂r

[
1

r

∂(rv)

∂r

]
+
∂2v

∂z2

}
, (3.2)

and so seems possibly to close the system, in the sense that with v chosen, we

have two constraints and two unknowns u and w to be determined.

Introduce the Stokes streamfunction Ψ defined by

1

r

∂Ψ

∂z
= u (3.3)

−1

r

∂Ψ

∂r
= w (3.4)

Defined this way, the function Ψ satisfies (3.1) automatically. This change of

variables can be seen as an equivalent way of satisfying mass conservation, and

is discussed in the analysis alongside the velocity formulation.
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3.4.1 Different Types of Solutions

We are interested in finding functions u and w which satisfy

ζu− ηw = β (3.5)

1

r
(ru)r + wz = 0, (3.6)

where ζ = 1
r
(rv)r, η = −vz and β = ν(ζr − ηz) are known or estimated in

advance. How should we require these constraints to be enforced? We can force

them to hold pointwise, which is to say that we seek u,w ∈ C1(Ω) which satisfy

these equations at every (r, z) ∈ Ω. We call this the strong form of the problem.

In Chapter 5, we will analyze the strong form of the problem and discuss when

we can find classical solutions. Throughout mathematics, there are many

examples of problems that do not admit solutions satisfying these kinds of

conditions, such as hyperbolic conservation laws, which exhibit discontinuities

in finite time. The typical solution is to work with the equations in a “weak

form”, whose definition depends on the problem, but usually involves forcing

an integrated form of the equations to be satisfied. For our case, we could look

for solutions u,w ∈ H1(Ω) which minimize

J(u,w) =

∫
Ω

λv(ζu− ηw − β)2 + λm

(
1

r
(ru)r + wz

)2

dA. (3.7)

Clearly a strong solution would be a minimizer, and if the strong solution was

unique, then the minimizer would be also. This would give a complete theory

for the problem.

If we express the problem in terms of Ψ, then it reduces to a single equation
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for the strong form:

ζΨz + ηΨr = rβ (3.8)

and a corresponding cost function to (3.7) would be

J(Ψ) =

∫
Ω

λv(ζΨz + ηΨr − rβ)2dA. (3.9)

Even though the problems are equivalent, we will see that occasionally it is

easier to use the velocity formulation to analyze the properties of the solutions,

while the streamfunction formulation is easier to deal with mathematically and

computationally.

3.4.2 Variational Wind Retrievals: Standard Procedures

The field of wind retrieval from radar measurements has utilized methodolo-

gies similar to both the strong approach and the weak approach. Dual doppler

analysis papers from the past decade almost exclusively use a variational ap-

proach due to its flexibility for including different families of constraints, and

the ability to choose how strongly to enforce them on a case by case basis.

Supposing we can find u and w which satisfy (3.5) and (3.6) either point-

wise, or in some other form, we still have observations of u, and we would

like our retrieved velocities to be consistent with these observations. If our

model and data were perfect, consistency would be equivalent to finding the

minimizer of (3.7). Unfortunately, real atmospheric vortices are not steady,

nor are they axisymmetric, so our modelization of the problem is going to have

errors. In addition, the measurements we take of the atmospheric velocities
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will have random errors associated to the instrument noise, which is always

present in radar measurements.

We would like our flow to satisfy the theoretical boundary conditions that

are indicated in the domain schematic. This includes both homogeneous

Dirichlet and Neumann conditions at the surface and at the vertical axis for u

and w. We can consider the requirement that the flow match these conditions

as additional constraints in our cost function. The data matching condition

will provide the u boundary condition in the observable region, but we have

to figure out what conditions make sense for u at the outer radial bound-

ary below z = h, and for w at the top and outer radial boundaries. Where

the boundary condition is unknown, the typical practice is to use the natu-

ral boundary condition arising from the Euler-Lagrange equations associated

with the cost functional, typically called the “variational boundary condition”,

since the minimization procedure actually determines the boundary condition.

The retrieved boundary values will be dependent on the first guess for the min-

imization.

In addition to data matching and satisfying theoretical requirements rel-

ative to each other, there is a common assumption amongst researchers that

the fields they retrieve should vary smoothly over a domain, and contain no

“noise” or small-scale fluctuations. Forcing the solutions to match data with

random measurement errors can lead to this sort of small scale noise, as can

poor spatial resolution in the discrete computational grid or use of a numerical

method not suited to the physical problem. As a result, it is common practice

to include “smoothing terms” as constraints in the cost functional in order to

seek solutions with a minimum of small scale noise. These smoothing terms

are typically the weak form of elliptic operators, such as the square of the gra-
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dient (equivalent to the Laplacian operator in the Euler-Lagrange equations),

or the square of the Laplacian (equivalent to the biharmonic operator), and

so on.

Suppose that we have selected a tangential velocity model v, and have

observations of the radial velocity uo in the observable region Ω\Ωh arising from

a transformation from radar coordinates. A cost functional which captures the

essence of the preceding discussion is given by

J(u,w) = Jv + Jm + Jo + Jb + Js (3.10)

Jv(u,w) =

∫
Ω

λv(ζu− ηw − β)2dA (3.11)

Jm(u,w) =

∫
Ω

λm

(
1

r
(ru)r + wz

)2

dA (3.12)

Jo(u) =

∫
Ω\Ωh

λo(u− uo)2dA (3.13)

Jb(u,w) =

∫
∂Ω

[
λud(u− ud)2 + λwd(w − wd)2+

+ λun(∇u · ~n− un)2 + λwn(∇w · ~n− wn)2
]
ds (3.14)

Js(u,w) =

∫
Ω

[
λus|∇u|2 + λws|∇w|2

]
dA (3.15)

Here the quantities λ(·) are weights that are taken to be measures of the con-

fidence in each constraint. The functions ud and un represent the possibly

nonhomogeneous Dirichlet and Neumann boundary conditions for u, and sim-

ilarly for w. The existence of a unique minimizer for this functional is not

guaranteed, and our mathematical analysis for the problem would have to in-

clude the necessary conditions for such a minimizer. The difficulties involved

in the mathematical analysis of such a complex cost functional motivate us to

consider the simpler problem of finding classical solutions, and avoiding the
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full variational procedure whenever possible.

3.5 Summary

We have a collection of observations {ui, vi}Nobsi=1 , which we assume are taken

on regular observational grid at elevations in the range [0, R] × [h,H]. From

these observations, we would like to reconstruct u, v, and w on [0, R]× [0, H].

Our knowledge about the general characteristics of the tangential velocity in

tornados seems to indicate we can estimate v on Ω using an empirical para-

metric model. With this model in hand, we seek u and w that are dynamically

consistent with v, subject to the constraints

ζu− ηw = β (3.16)

1

r
(ru)r + wz = 0, (3.17)

where ζ = 1
r
(rv)r, η = −vz and β = ν(ζr − ηz).

We seek the best possible solutions following the procedure

• Choose an appropriate model for the tangential data, via least-squares

or some other fitting technique.

• Seek strong solutions to (3.5) and (3.6) where they exist and are unique.

• Seek solutions that satisfy a weaker form of (3.5) and (3.6) where strong

solutions don’t exist or are not unique.

Potentially sensitive parameters to investigate include errors in observa-

tions, weights for different terms in our variational formulation, and uncertain

boundary conditions at r = R.

23



Ω

Ωh

0 R

h

H

 
Observations

Figure 3.1: Schematic of the Physical Domain. The blue lines represent bound-
ary conditions we can assume to be no slip or no flux. The red line is the outer
radial boundary where we have no data.
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Chapter 4

Choosing v for a Given Set of Observations

In this chapter, we discuss various methodologies for choosing a tangential

velocity model, using ideas from the theory and practice of inverse problems,

as well as information theory. We will consider different families of models,

and then choose the families that fit the data well, in addition to being of

minimal complexity necessary.

4.1 Least-Squares Cost Functional

Suppose that there exists a set of tangential wind speed measurements {v̂i}Nobsi=1

at spatial locations {(ri, zi)}Nobsi=1 , and that the data can be modeled with a para-

metric model v(r, z; q), where q ∈ Q ⊂ Rp is the vector of model parameters.

Define the least-squares data misfit functional by

J(q) =
1

2

Nobs∑
i=1

(v(ri, zi; q)− v̂i)2. (4.1)

where we implicitly assume the data to be error free.

Proposition 4.1: Suppose that Q ⊂ Rp is compact, and that for each i,

v(ri, zi; q) is continuous on Q. Then there exists a minimizer q∗ ∈ Q of J .
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Proof. If v(ri, zi; q) is continuous on Q for each i, then J is also continuous on

Q. Since Q is compact, the Extreme Value Theorem guarantees the existence

of q∗ ∈ Q such that J(q∗) = minQ J(q).

If qn ∈ Q is a minimizing sequence, ||qn − q∗|| → 0, then in what topology

does v(r, z; qn) → v(r, z; q∗)? The next result says that the convergence is

uniform on Ω, as long as v is a smooth function of its parameters.

Proposition 4.2: Let qn → qo in Q, and suppose Ω ⊂ R2 and Q are convex

and compact and v ∈ C1(Ω × Q). Then supΩ |v(r, z; qn) − v(r, z; qo)| → 0 as

n→∞.

Proof. From the mean value theorem for functionals, for each n ∈ N there is

a t(n) ∈ R so that

v(r, z; qn)− v(r, z; qo) = ∇qv(r, z; (1− t(n))qn + t(n)qo) · (qn − qo).

We know that qo ∈ Q from Proposition 4.1. Since v ∈ C1(Ω×Q), and Ω×Q

is compact, ∇qv is bounded on Ω×Q, say by K, and so

sup
Ω
|v(r, z; qn)− v(r, z; q∗)| ≤ K||qn − q∗|| → 0,

as n→∞.

Remark 4.3: The same argument, with more smoothness assumptions, would

give uniform convergence of the spatial derivatives of v (and hence the vortic-

ities) to the spatial derivatives of the optimal estimate v(r, z; q∗). The proof

rests upon the convexity and compactness of our spatial domain Ω and the pa-

rameter space Q. Our problem involves Cartesian products of closed intervals
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for these sets, and so this assumption will be satisfied.

4.2 Uncertainty in Model and Observations

In the presence of measurement and model error, the estimation problem

changes from the setting of optimization theory to that of probability theory.

Although the minimization problem defined by (4.1) always has a solution,

vectors q ∈ Qε ⊂ Q may exist such that the resulting model v(r, z; q) matches

the data to within the measurement error’s statistics, described by the random

vector ε. In this case, it is impossible to reject the models which are the images

of each q ∈ Qε, since they have nontrivial likelihood, relative to ε.

Following Tarantola (2005), we can use probability distributions to describe

the state of information we gain from combining our model v(q) together with

observations v̂. If we postulate the existence of a true tangential velocity field

vt, then posterior distribution of model parameters in Q taking observations

and uncertainties in D into account is given by

σQ(q) = const · ρQ(q)

∫
D

ρd(v
t)Θ(vt|q)
µd(vt)

dvt (4.2)

where ρQ is the prior distribution of uncertainty in the model parameters, ρD is

the measurement error prior distribution, Θ(vt|q) is the uncertainty in the error

between v(q) and the true velocity, and µD is the homogeneous distribution

over the observation space D.

We can define error distributions εM and εD via v(q) = vt + εM and v̂ =
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vt + εD. Suppose both εD and εM have Gaussian distributions:

Θ(vt|q) = const. exp
[
(vt − v(q))TC−1

T (vt − v(q))
]

(4.3)

ρD(vt) = const. exp
[
(vt − v̂)TC−1

D (vt − v̂)
]

(4.4)

Tarantola shows that the by simplifying the product of these two, the posterior

σQ(q) is given as

σQ(q) = const · ρQ(q) exp
[
(v(q)− v̂)TC−1(v(q)− v̂)

]
, (4.5)

where C = CT + CD. Note that vt disappears from our considerations, which

is essential, since vt is unknown.

Remark 4.4: The Gaussian assumption for εD is a common one. Assuming

that the parametric model v(q) is a reasonable representation of what we

expect vt to be, the Gaussian assumption is a fair one as well. Since the

separate covariance matrices combine into a single covariance, we can model

the combined uncertainty by choosing C to represent the covariance present

in the data values, and perhaps inflate it by a reasonable factor.

Remark 4.5: The image of q ∈ Q in velocity space is Gaussian, as is seen

from (4.5). The density will still have a MLE at some vector q∗, because

the weighted least-squares cost functional J = (v(q)− v̂)TC−1(v(q)− v̂) with

symmetric positive definite C will have a global minimum, using the same

continuity and compactness argument of Proposition 4.1.
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Chapter 5

Strong Solutions of the Model Equations

5.1 Introduction

In this chapter, we explore a methodology for finding solutions of our model

equations, both in the velocity form

ζu− ηw = β (5.1)

∂(ru)

∂r
+ rwz = 0 (5.2)

and in the streamfunction form

ζΨz + ηΨr = rβ (5.3)

in the strong sense, meaning that we seek a pair of functions u,w ∈ C1(Ω) (or

Ψ ∈ C2(Ω)) that satisfy the equations pointwise on Ω. In the sections that

follow, we explore the impact of the assumptions of limited observability on

the mathematical questions about our system.
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5.2 Solution by Method of Characteristics

Below we deduce the requirements for strong solutions, first in the stream-

function formulation, and then in the velocity formulation.

5.2.1 Characteristic ODEs for the Streamfunction Ψ

A classical method of solution for axisymmetric fluid flow is the introduction

of a streamfunction Ψ, which is defined implicitly for incompressible flows as

1
r
∂Ψ
∂z

= u and −1
r
∂Ψ
∂r

= w. Note that this definition automatically satisfies

the mass conservation constraint (5.2). Further, if we plug in these expres-

sions for u and w in (5.1), the streamfunction must satisfy (5.3). This is a

first-order, hyperbolic partial differential equation, with corresponding char-

acteristic equations

dr

dt
= η (5.4)

dz

dt
= ζ (5.5)

dΨ

dt
= νrβ (5.6)

where t denotes motion along the characteristic curve (r(t), z(t)). Below we

will develop the mathematical theory for solutions of (5.4) and (5.5). For now,

simply note that if r and z along the characteristic curves are known, then

Ψ(t) = Ψ(ro, zo) +

∫ t

0

r(τ)β(r(τ), z(τ))dτ (5.7)

where (ro, zo) = (r(t = 0), z(t = 0)) are Cauchy data for the r and z equations.

The difficulty in posing the problem in terms of Ψ is that of converting
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data about u and w into data about Ψ. In order to satisfy the axial boundary

condition u(0, z) = 0, we must have that 1
r
Ψz(r, z) → 0 as r → 0 for every z.

Thus Ψ(0, z) must actually be constant. Similarly, if we assume that w = 0 at

z = 0, this gives 1
r
Ψr(r, 0) = 0 for every r, and so Ψ(r, 0) must be constant. In

order that we keep the velocities finite at the origin, we must have Ψ ≡ const

on the bottom and axial boundaries, and sowe take Ψ = 0 for simplicity. For

the purposes of providing (5.6) with initial data at (ro, zo), we can use either

of the definions of Ψ and integrate, since

Ψ(ro, zo) =

∫ ro

0

−rw(r, zo)dr = ro

∫ b

zo

u(ro, z)dz (5.8)

Each of these integrals involves some uncertainty for our problem, because we

cannot measure w directly, and the second integral either requires us to start

at z = 0 (where Ψ = 0) and know the structure of u in Ωh (which is our goal),

or to know Ψ at some upper limit b.

In the special case where ν = 0, we see that Ψ is constant on characteristic

curves. This constant is in general dependent on the characteristic curve, and

hence there must exist a function F such that Ψ = F (Γ). By definition, this

implies that

u =
1

r

∂F

∂Γ

∂Γ

∂z
(5.9)

w = −1

r

∂F

∂Γ

∂Γ

∂r
(5.10)

Removing the viscosity reduces the unknowns down to the univariate function

F . The question that remains is how to estimate this function. Without more

information, the functional relationship F is arbitrary, meaning that any F
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will satisfy the requirements of (5.3) with ν = 0. The boundary conditions

imply that F (0) = 0.

5.2.2 Characteristic ODEs for u and w

For all (r, z) where ζ(r, z) 6= 0, we can solve for u in (5.1) and substitute the

resulting expression into (5.2), which yields a first order hyperbolic equation

in w

η
∂w

∂r
+ ζ

∂w

∂z
+
ζ

r

∂

∂r

(
r
η

ζ

)
w = −νζ

r

∂

∂r

(
r

ζ

(
∂ζ

∂r
− ∂η

∂z

))
(5.11)

with corresponding characteristic ordinary differential equations

dr

dt
= η (5.12)

dz

dt
= ζ (5.13)

dw

dt
+
ζ

r

∂

∂r

(
r
η

ζ

)
w = −νζ

r

∂

∂r

(
r

ζ

(
∂ζ

∂r
− ∂η

∂z

))
. (5.14)

Similarly, when η(r, z) 6= 0, we can solve for w and obtain a first order hyper-

bolic equation for u,

η
∂u

∂r
+ ζ

∂u

∂z
+ η

(
1

r
+

∂

∂z

ζ

η

)
u = νη

∂

∂z

(
1

η

(
∂ζ

∂r
− ∂η

∂z

))
(5.15)
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with characteristic ordinary differential equations

dr

dt
= η (5.16)

dz

dt
= ζ (5.17)

du

dt
+

(
η

r
+ η

∂

∂z

(
ζ

η

))
u = νη

∂

∂z

(
1

η

(
∂ζ

∂r
− ∂η

∂z

))
. (5.18)

Remark 5.1: Note that the characteristic curves (r(t, s), z(t, s)) are the same

for both sets of equations in the velocity formulation, as well as in the stream-

function formulation, and depend only on v, its derivatives, and the starting

point parameterized by s. Hence the ODEs for u, w, and Ψ are valid on the

same curves. Thus, for u and w to be solutions of our initial pair of equations,

both (5.14) and (5.18) have to hold everywhere that ζ 6= 0 and η 6= 0.

Remark 5.2: These are linear ordinary differential equations for u and w in

t, and as such can be solved through the use of integrating factors. Define

fu(r, z) = η
r

+ η ∂
∂z

(
ζ
η

)
and gu(r, z) = νη ∂

∂z

(
ζr−ηz
η

)
, and fw(r, z) = r−1ζ ∂

∂r
(r η

ζ
)

and gw(r, z) = −νr−1ζ ∂
∂r

(r ζr−ηz
ζ

). Once r and z have been found as functions

of t and s, u and w can be written explicitly along the characteristic curves as

u(t) = uo exp

[
−
∫ t

0

fu(τ)dτ

]
+

∫ t

0

gu(τ) exp

[
−
∫ t

τ

fu(σ)dσ

]
dτ (5.19)

w(t) = wo exp

[
−
∫ t

0

fw(τ)dτ

]
+

∫ t

0

gw(τ) exp

[
−
∫ t

τ

fw(σ)dσ

]
dτ (5.20)

where uo = u(ro, zo) and wo = w(ro, zo) are initial conditions. Qualitatively,

fu and fw are the inviscid parts of the solutions, and gu and gw capture the

effects of viscosity on the solutions.
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5.2.3 Existence and Uniqueness

We consider the question of existence and uniqueness of solutions to the char-

acteristic ordinary differential equations (5.4) and(5.5). These two equations

appear in each set of characteristic differential equations, implying that the

characteristic curves in the plane are the same for each system. The formal

solutions given by (5.7), (5.19), and(5.20) assume knowledge of r and z along

each characteristic curve. Further, in order for us to have a unique solution

on Ωh, every point of Ωh must have a characteristic curve passing through it,

which also passes through the observable region Ω \ Ωh.

Lemma 5.3: Let v ∈ C1(Ω) such that the circulation Γ = rv satisfies ∇Γ 6= 0

on every open subset of Ω. Then

(1) The solutions, (r(t), z(t)), of (5.4)-(5.5), are the largest connected subset

of Ω which satisfy Γ(r(t), z(t)) = Γ(ro, zo) for all t, where (ro, zo) :=

(r(0), z(0)) are initial conditions.

(2) If ζ(r, z) 6= 0 or η(r, z) 6= 0, then there is a unique characteristic curve

passing through (r, z).

(3) If ζ(r, z) = 0 and η(r, z) = 0 then (r, z) corresponds to a critical point of

Γ.

Proof. (1) When η 6= 0, we can write the solution curves as (r, z(r)) by

considering

dz

dr
=
ζ

η
(5.21)
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and when ζ 6= 0 as (r(z), z) from

dr

dz
=
η

ζ
. (5.22)

Note that

ζ

η
=

(rv)r
−rvz

= −Γr
Γz

which implies that the characteristic curves are everywhere tangent to

the level curves of Γ, which is proportional to the circulation on circles

of radius r about the center of the vortex.

Any point in the largest connected subset that contains the level curve

containing (ro, zo) is a point on the trajectory (r(t), z(t)), simply by

taking large (or small) enough values for t. Likewise, any point on the

trajectory is in this connected subset, else the mapping t 7→ (r(t), z(t))

would fail to be continuous, which contradicts the theory of ordinary

differential equations.

(2) Note that ∇Γ = [(rv)r, rvz]
T = [rζ,−rη]T, and so if one of the vortici-

ties is nonzero at (ro, zo), then ∇Γ 6= 0, and the implicit function theo-

rem guarantees the existence of a nontrivial curve (r(t), z(t)) for t near

zero, on which Γ(r(t), z(t)) = Γ(ro, zo). Since the circulation function

is continuously differentiable, we know the sets {(r, z) ∈ Ω : Γ(r, z) =

C1} ∩ {(r, z) ∈ Ω : Γ(r, z) = C2} = ∅ for C1 6= C2, and so the curve is

unique.

(3) If both vorticities are zero at (ro, zo), then ∇Γ(ro, zo) = ~0, and since Γ
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is nonconstant on every open subset of Ω, we have a critical point at

(ro, zo).

Remark 5.4: Defining “level curve” as a connected component of the set

{(r, z) ∈ Ω : Γ(r, z) = Γo}, this lemma says that as long as Γ is nonconstant

on open sets, every point (ro, zo) will have a unique level curve of Γ passing

through it, and that this level curve is actually the trajectory of the dynamical

system (5.4)-(5.5) with initial value (r(0), z(0)) = (ro, zo).

Remark 5.5: We can traverse the level curves of Γ in the t direction, or the

−t direction. If we traverse in the positive t direction, motion along the curve

follows the signs of the vorticities. In the negative t direction, motion along

the curve moves in the direction opposite to the signs of the vorticities.

Definition (Characteristic Curves and Information Voids): Suppose that v ∈

C1(Ω), and ∇Γ 6= 0 on open sets.

(a) Define the map c(·, ro, zo) : R → Ω by (r, z) = c(t, ro, zo), where (r, z)

is the forward solution of (5.4)-(5.5) at time t, with initial condition

(ro, zo).

(b) For (ro, zo) ∈ Ωo, define C(ro, zo) to be the orbit of (ro, zo) under the

dynamical system (5.4)-(5.5), which is the image of R under c(·, ro, zo).

(c) If there exists a T such that c(T, ro, zo) = (ro, zo), then C(ro, zo) is called

closed.
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(d) Define the set Kh = {(r, z) ∈ Ωh : C(r, z) ∩ (Ω \ Ωh) = ∅}. We call Kh

the information void associated with h, since the data in the observable

region do not communicate with Kh along characteristic curves.

Remark 5.6: Ω is a bounded set, and so Kh is compact. This means that for

each (r, z) ∈ Ω, there is a point (r∗, z∗) ∈ Kh such that dKh(r, z) = ||(r∗, z∗)−

(r, z)||2.

Theorem 5.7: Suppose v ∈ C2(Ω) and Γ is nonconstant on all open subsets

U ⊂ Ω. Then Ψ is the solution of (5.3) if and only if Ψ satisfies (5.6) on

the curves which are solutions of (5.4) and (5.5), and hence there is a unique

solution at every (r, z) ∈ Ω \Kh.

Proof. If (r, z) /∈ Kh, then the characteristic curve C(r, z) intersects the ob-

servable region Ω \Ωh, and so we have an observation Ψ(ro, zo) at some point

(ro, zo) ∈ Ω \ Ωh. Hence there is a t ≥ 0 so that Ψ(r, z) = Ψ(ro, zo) +∫ t
0
r(τ)β(τ)dτ.

Theorem 5.8: Suppose v ∈ C2(Ω) and Γ is nonconstant on all open sub-

sets U ⊂ Ω. Then u and w are solutions of (5.1) and (5.2) if and only

if they satisfy (5.14) on Ω \ ({(r, z) ∈ Ω : ζ(r, z) = 0} ∪Kh), and (5.18) on

Ω \ ({(r, z) ∈ Ω : ζ(r, z) = 0} ∪Kh).

Proof. This follows from Lemma 5.3, Remark 5.4 and (5.19)-(5.20).

Remark 5.9: Theorems 5.7 and 5.8 give a unique strong solution on every

characteristic where we have data for u, w, or Ψ, and so they connect the

“local” characteristic ODE theory with the “global” PDE theory. It states that
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information aloft tells us about the dynamics below, at the physical locations

that lie on characteristics emanating from Ω\Ωh.

5.3 Properties of Information Voids

Assumption 5.10: For this section we will always assume that v ∈ C1(Ω)

and that Γ is nonconstant on open subsets of Ω, so that Lemma 5.3 applies.

Proposition 5.11: Suppose that Γ(ro, zo) 6= Γ(r, z) for all (r, z) ∈ Ω \ Ωh.

Then (ro, zo) ∈ Kh.

Proof. Lemma 5.3 implies that C(ro, zo) is a level curve of Γ. Hence, if

Γ(ro, zo) 6= Γ(r, z) for all (r, z) ∈ Ω \ Ωh, then C(ro, zo) ∩ (Ω \ Ωh) = ∅.

Remark 5.12: This condition is sufficient, but not necessary. Consider a

tangential velocity model

v(r, z) = φww(r, nr, rc)(aφww(z, nz, zc) + bφww(z, ñz, z̃c)) (5.23)

with more than one maximum at the same radius, as in Figure 5.1. Note that

there are closed characteristic curves surrounding the maximum which occurs

at z = 100m, though the circulation maximum value there is the same as the

one which occurs on ∂Ω+
h . Hence this implies that attaining the absolute max

of Γ on z = h does not guarantee a lack of voids in Ωh.

Proposition 5.13: If v vanishes on the axes, then no characteristic curve

may intersect the axes r = 0 or z = 0.
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Figure 5.1: An example of the circulation function yielding information voids
which are disconnected from ∂Ω+

h (z = h), though Γ attains its maximum on
∂Ω+

h .
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Proof. Note that v(r, 0) = 0 implies that Γ(r, 0) = 0, and similarly on the

vertical axis. Hence, the axes are characteristic curves. Further, since Γ is

differentiable, its level curves may not intersect. Thus, no other characteristic

curve may cross the axes.

5.3.1 Tensor Product Tangential Velocity Model

We can prove more specific results when we assume that the tangential velocity

can be modeled by a tensor product of one dimensional functions.

Assumption 5.14 (Tensor Product Form of v): Suppose that

v(r, z, q) = φ(r; qr)ψ(z; qz) (5.24)

ζ(r, z, q) =
1

r

d

dr
(rφ(r; qr))ψ(z; qz) (5.25)

η(r, z, q) = −φ(r; qr)
d

dz
ψ(z; qz) (5.26)

(1) φ and ψ are smooth enough to satisfy the requirements for well-posedness

of the problem,

(2) φ(0) = ψ(0) = 0,

(3) φ(r) > 0 on (0, R) and ψ(z) > 0 on (0, H).

(4) φ and ψ are nonconstant on open intervals.

Remark 5.15: Condition (2) enforces the requirement that v vanish on the

axes. Condition (3) is needed to keep the flow from aloft from being separated

from the flow below. Condition (4) is needed so that Γ is nonconstant on

open sets, which was a key assumption that led to a unique characteristic
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curve passing through every point. This also prevents ∂Ω+
h from being itself a

characteristic curve, except possibly at isolated points, where the gradient is

Proposition 5.16 (Fixed Points): The fixed points of (5.4)-(5.5) consist of

the set

Fv =

{
{0} ∪

{
r ∈ (0, R) :

d

dr
(rφ(r; qr)) = 0

}}
×

×
{
{0} ∪

{
z ∈ (0, H) :

d

dz
(ψ(z; qz)) = 0

}}
.

Proof. Clearly if (r, z) ∈ Fv, then ζ(r, z) = η(r, z) = 0. Conversely, assume

ζ(r, z) = η(r, z) = 0. If r 6= 0 and z 6= 0, then both ψ(0) 6= 0 and φ(0) 6= 0,

and so d
dr

(rφ(r)) = dψ
dz

(z) = 0. If d
dr

(rφ(r)) 6= 0, then φ(r) = 0, which implies

r = 0. Similarly, if dψ
dz
6= 0, then z = 0.

Corollary 5.17: Suppose that d
dr
rφ(r) has a finite collection of zeros r1 <

r2 < ... < rn, and that dψ
dz

also has a finite collection of zeros z1 < z2 < ... < zm.

Then each of these, viewed as a horizontal (vertical) line, is a nullcline for

(5.4)-(5.5).

Remark 5.18: Corollary 5.17 implies that the characteristic curves can only

change direction when crossing the horizontal or vertical lines determined by

the zeros of the component models. With this knowledge, we can easily divide

the domain into sections bounded by the nullclines and consider the direction

of the trajectories in each section as t increases. If we want to traverse the

characteristic in the opposite direction, we take t to be decreasing.
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Proposition 5.19: Suppose that d
dr

(rφ(r)) = 0 at r = ro, and dψ
dz

= 0 at

z = zo. Then C(ro, z1) is tangent to the horizonal line z = z1 at (ro, z1), and

C(r1, zo) is tangent to the vertical line r = r1 at (r1, zo).

Proof. The slope dz
dr

of characteristic curve is zero at r = ro since dz
dt

=

ζ(ro, z) = 0. In addition, the point (ro, zo) is on the line z = zo, which

also has slope 0. Hence C(ro, zo) is tangent to z = zo. Although dz
dr

at (r1, zo)

is undefined, we can clearly see that C(r1, zo) and r = r1 intersect, and that

dr
dt

at (r1, zo) is 0.

Remark 5.20: Proposition 5.19 says that the zeros of the vertical vorticity in

the radial direction correspond to constrained maxima or minima of Γ along

horizontal lines, and the zeros of the radial vorticity correspond to constrained

maxima or minima of Γ along vertical lines.

Proposition 5.21: Suppose that Γ = rφ(r)ψ(z) has a relative maximum at

the point (ro, zo) ∈ Ωo, and that ∇Γ 6= 0 on Ωo \ {(ro, zo)}. If 0 < z1 < H

satisfies C(ro, z1) ⊂ Ωo, then C(ro, z) is a closed curve.

Proof. Let z1 > zo. Since Γ has only a single relative maximum, we must have

that ∂Γ
∂r
> 0 for r < ro and ∂Γ

∂r
< 0 for r > ro, and similarly for the vertical

gradient of Γ. Consider the characteristic curve which passes through (ro, z1),

and first traverse in the positive t direction. Since Γz(ro, z1) < 0, η > 0, and

so the characteristic curve moves to the right. For r > ro and z > zo, η > 0

and ζ < 0, and so the characteristic curve moves to the right and down. Since

we assumed that C(r0, z1) ⊂ Ωo, there must be an r1 with ro < r1 < R such

that (r1, zo) ∈ C(ro, z1), else C(ro, z1) would cross the line r = R. Similarly,
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since for r > ro and z < zo, η < 0 and ζ < 0, there must be a 0 < z2 < z0

such that (ro, z2) ∈ C(ro, z1). Otherwise C(ro, z1) would intersect the lower

axis z = 0, which would contradict Proposition 5.13. Thus C(ro, z1) intersects

the line r = ro at (ro, z2). By traversing C(ro, z1) in the negative t direction

starting from (ro, z1), and using similar arguments, there is a 0 < z3 < zo such

that (ro, z3) ∈ C(ro, z1).

Suppose z2 < z3. Then there is a z∗ with z2 < z∗ < z3, and since Γz > 0,

we must have that

Γ(ro, z2) < Γ(ro, z
∗) < Γ(ro, z3). (5.27)

But this is a contradiction, since Γ(ro, z2) = Γ(ro, z3).

Let t2 such that c(t2, ro, z1) = (ro, z2) and t3 such that c(−t3, ro, z1) =

(ro, z3). Then c(t2 + t3, ro, z1) = (ro, z1) and C(ro, z1) is closed.

Remark 5.22: Figure 5.2 gives a schematic representation of the characteris-

tic curves when the assumptions of Proposition 5.21 are satisfied.

Proposition 5.23: Suppose that Γ = rφ(r)ψ(z) has a relative maximum at

the point (ro, zo) ∈ Ωo, and that ∇Γ 6= 0 on Ωo \ {(ro, zo)}. If h < z0, then

Kh = ∅.

Proof. There are two cases. For r ≤ ro, η < 0 and ζ ≥ 0. Hence if we

traverse C(r, z) in the positive t direction, the curve must eventually cross

z = h, since C(r, z) cannot intersect the vertical axis. For r > ro, η < 0 and

ζ < 0. Since C(r, z) cannot intersect the horizontal axis, there must be a z1

such that (ro, z1) ∈ C(r, z), and now we can apply the argument from the
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Figure 5.2: Closed curves surrounding the relative maximum at (ro, zo). Ar-
rows are pointing in the positive t direction.

first case, using our (ro, z1) as our initial point. Hence, for any (r, z) ∈ Ωh,

C(r, z) ∩ (Ω \ Ωh) 6= ∅, which implies Kh = ∅.

Remark 5.24: Proposition 5.23 implies that if we have observations below the

maximum tangential velocity, then we can retrieve the wind fields everywhere

in Ω using the characteristic methodology.

Proposition 5.25: Suppose that Γ = rφ(r)ψ(z) has a relative maximum at

the point (ro, zo) ∈ Ωo, and that ∇Γ 6= 0 on Ωo \ {(ro, zo)}, and zo < h. Then

one and only one of the following statements holds:

(1) C(ro, h) is a closed curve, and Kh is the interior of the region enclosed

by C(ro, h).

(2) C(ro, h) intersects the outer radial boundary at (R, z1) and (R, z2), and

Kh is the interior of the region enclosed by C(ro, h) and the segment

{(R, z) : z1 ≤ z ≤ z2}
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Proof. First, if C(ro, h) is not a closed curve, then if we traverse in the negative

t direction, we must cross the line z = zo, and then the line r = ro, because

C(ro, h) cannot intersect the axes. This implies that there is a t such that

c(−t, ro, h) = (r∗, z∗) with r∗ > ro and z∗ < zo. If C(ro, h) were to cross

the line z = zo again, then the signs of the vorticities would force C(ro, h) to

intersect r = ro, and at the point (ro, h) by the argument in Proposition 5.21.

Similarly, if we traverse C(ro, h) in the positive t direction, C(ro, h) cannot

cross the line z = zo, or else C(ro, h) would be a closed curve. Thus, either

C(ro, h) is a closed curve, or C(ro, h) intersects the outer radial boundary at

two distinct points (R, z1) and (R, z2), where z1 < zo < z2. In either case,

denote the set enclosed by C(ro, h) (and possibly {R} × [z1, z2]) by Ko.

If (r, z) ∈ Ωh \ Ko, proceed as before by traversing C(r, z) either in the

positive (r < ro or z < zo) or negative (r > ro and z > zo) t direction. We know

that c(t, r, z) /∈ Ko for all t ∈ R because ∂Ko = C(ro, h) (possibly plus the

outer boundary), and characteristic curves may not intersect. Since c(t, r, z)

also cannot intersect the axes, there must be a t such that c(t, r, z) ∈ (Ω \ Ωh).

Thus K ⊂ Ko.

If (r1, z1) ∈ Ko, we have that Γ(r1, z1) > Γ(r, z) for all (r, z) ∈ Ω\Ωh. Thus

C(r1, z1)∩ (Ω \ Ωh) = ∅ and so (r1, z1) ∈ K. Hence Ko ⊂ K, and K = Ko.

Proposition 5.26: Suppose that Γ = rφ(r)ψ(z) has a relative maximum at

the point (ro, zo) ∈ Ωo, and that ∇Γ 6= 0 on Ωo \ {(ro, zo)}. Then there is an

ho such that if z < ho, C(r, z) ∩ (Ω \ Ωh) 6= ∅.

Proof. Since C(ro, h) ⊂ Ω is closed, it is also compact. Hence the map (r, z) 7→

z has a minimizer at some point ho. Thus, if z < ho, (r, z) /∈ Ko, and so

C(r, z) ∩ (Ω \ Ωh) 6= ∅ by Proposition 5.25.
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Figure 5.3: Illustration of relationship between h and ho

Remark 5.27: Figure 5.3 illustrates the nontrivial region below ho where the

wind fields are retrievable.

Corollary 5.28: The ho which is given by Proposition 5.26 is the solution

of ψ(z) = ψ(h).

Proof. By examining the signs of the vorticities for our assumptions, this point

has to be on the vertical line r = ro, since dz
dr
6= 0 when r 6= ro. Hence, ho is

just the solution of the equation ψ(z) = ψ(h).

Corollary 5.29: If h1 and h2 are two minimum observable heights for the

same tangential velocity model that satisfies the assumptions of Proposition 5.26

with zo < h1 < h2, then the two heights ho1 and ho2 guaranteed by Proposi-

tion 5.26 satisfy ho1 > ho2.

Proof. Since Γ has a relative max at (ro, zo), and Γz < 0 for z > zo, we must

have that Γ(ro, h1) > Γ(ro, h2). By Proposition 5.25, this implies that Kh1 ⊂
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Kh2 and C(ro, h1) is contained in Kh2 . Hence the minimum of the mapping

(r, z) 7→ z restricted to C(ro, h1), which we denoted ho1, must be no smaller

than when restricted to C(ro, h2), denoted ho2. In fact, the inequality must

be strict, or else we would have that C(ro, h2) = C(ro, h1), which contradicts

h1 < h2.

Remark 5.30: The interpretation of Corollary 5.29 is that if we have a given

set of observations above h, and the corresponding ho below which we can

retrieve the wind fields, and are able to augment these observations somehow

to decrease h to ĥ, then we will be able to retrieve information further above

the ground, at a new height ĥo. This leads to an observation strategy, since

we can determine in advance how low to scan in order to retrieve wind fields

at heights of interest.

5.4 Analysis with Wood-White Models

Following Snow (1982), the vertical variation in the tangential wind field in

the lowest vertical levels of the tornado can be modeled by the Wood-White

function, with the same caveat about forcing k = 1, only this time so that w

will be zero at z = 0, and of course choosing a different n parameter. Hence,

let

v(r, z) = vmaxφww(r;nr, rc)φww(z;nz, zc) (5.28)

ζ(r, z) = vmax
1

r

d

dr
(rφww(r;nr, rc))φww(z;nz, zc) (5.29)

η(r, z) = −vmaxφww(r;nr, rc)
d

dz
φww(z;nz, zc) (5.30)
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5.4.1 Characteristic ODE Solutions

Proposition 5.31 (Wood-White Characteristic Curves): Let v be as in (5.28).

Then

(1) The set of fixed points Fv = {0, rζ} × {0, zc}, where

rζ =

(
2(nr − 1)

nr − 2

)1/nr

rc. (5.31)

(2) ζ(r, z) is positive for r < rζ and negative for r > rζ.

(3) η(r, z) is negative for z < zc and positive for z > zc.

(4) Γ has a single relative and absolute maximum at (rζ , zc), and ∇Γ(r, z) =

0 on Ω \ {rζ , zc}.

Proof. (1) From Proposition 5.16, we need to find the zeros of d
dr

(rφ(r;nr, rc))

and d
dz
φ(z;nz, zc). These formulas are given by (2.14) and (2.16), and

imply that d
dr

(rφ(r;nr, rc)) = 0 at r = rζ , and d
dz
φ(z;nz, zc) = 0 when

z = zc.

(2) Equation (2.16) implies this immediately, since the factor 2(nr−1)rc
nr−

(nr − 2)rnr is positive for r < rc and negative for r > rc.

(3) This follows from (2.14).

(4) This is an immediate consequence of (2) and (3), and the fact that ∇Γ =

[rζ,−rη]T.

Remark 5.32: This divides Ω into four regions, with the behavior of the

characteristic curves depending on which region the curve is passing through.
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Figure 5.4 is a schematic drawing of the behavior. The arrows are pointing in

the direction that the values of (r(t), z(t)) move as t increases, starting from

the filled dot.

z

r

ζ > 0

η < 0

ζ > 0

η > 0

ζ < 0

η > 0

ζ < 0

η < 0

z

rζ

c

Figure 5.4: Schematic of Characteristic Curves with Wood-White Model

5.4.2 Qualitative Analysis for the Case ν = 0

When ν = 0, we can use the differential equations for u and w to gain further

insight.

Proposition 5.33: Let v be as in (5.28), and ν = 0. Then horizontal line

z = zc and the curve described implicitly by

rφr(r)

(rφ(r))r
=
φ(z)φzz(z)

(φz(z))2
(5.32)

divide Ω into regions on which the rate of change of u along characteristics

does not change sign.
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Proof. In the inviscid case, (5.19) simplifies to

u(t) = uo exp

[
−
∫ t

o

fu(τ)dτ

]
(5.33)

Clearly, when fu is positive, u is decreasing, and vice versa. The integrand

can be written in terms of component models, and simplified to

η

r
+
ζzη − ζηz

η
= −

[
−φr(r)(φz(z))2 + 1

r
(rφ(r))rφ(z)φzz(z)

]
φz(z)

. (5.34)

Since the integrand is a quotient, it can only change sign at the zeros of the

factors. Clearly one of these is z = zc. If we set the interior of the numerator

equal to zero, we end up with

rφr(r)

(rφ(r))r
=
φ(z)φzz(z)

(φz(z))2
, (5.35)

which is the curve in the statement of the Proposition.

Remark 5.34: Note that (rc, 0) and (rζ , zc) both satisfy the equation. Fig-

ure 5.5 shows an example of qualitative schematic of where u is increasing and

decreasing, with its curve along which du
dt

= 0, and implies that we will find the

minimum values of u along this curve. The symbol Z∗ is the value of z where

φzz(z) changes sign. Figure 5.6 shows an example retrieved Wood-White radial

velocity with a numerical approximation of the corresponding curve overlaid.

5.4.3 Information Voids

Since our model satisfies Assumption 5.14, the results from Section 5.3.1 apply

to this example. Thus for a given h > zc, Kh is the region bounded by C(rζ , zc)
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Figure 5.5: Schematic of Sign Changes for du
dt

(and possibly the outer boundary).

Figure 5.7 illustrates an example for nr = 3, nz = 2, rc = 462, zc = 504,

and h = 630. The white area indicates the information void for this particular

example. Note that for z values beneath Kh, characteristic curves connect the

point (r, z) to the observable region.
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WW Estimated Radial Velocity with ut = 0 curve
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Figure 5.6: Wood-White estimated radial velocity with du
dt

= 0 overlaid.
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Level Curves of ! with Unreachable Set K
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Figure 5.7: Wood-White circulation with maximum at zc = 504, minimum
observable height h = 630, and resulting information void Kh.
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Chapter 6

Estimation on Information Voids

6.1 Introduction

We saw in Chapter 5 that there are conditions that imply the existence of

regions of the domain called information voids, for which our model equa-

tions (5.1) and (5.2) together with observations above the minimum observable

height line z = h do not have a unique solution. This means that the model

and data don’t contain enough information to uniquely define the flow in these

regions. In this chapter we explore methods to define a unique solution to the

problem in these regions, in a way that is consistent with strong solutions of

the problem outside these sets.

For tractability, we will make the following assumptions.

Assumption 6.1: Γ has a single relative and absolute maximum at (ro, zo),

and ∇Γ 6= 0 on Ω \ {(ro, zo)},

Assumption 6.2: R is sufficiently large that Kh ⊂ Ωo,

Assumption 6.3: The strong solutions u, w, and Ψ are known on Ω \Kh.
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6.2 Weak Solutions for the Dirichlet Problem

In an attempt to better determine the behavior of solutions in the information

voids, we consider (5.3) with the addition of a small diffusive term:

−ε∆Ψ + ζ
∂Ψ

∂z
+ η

∂Ψ

∂r
= νrβ. (6.1)

Denote AεΨ := ε∆Ψ+ζ ∂Ψ
∂z

+η ∂Ψ
∂r

. This modified problem is a steady advection-

diffusion problem, with the radial and vertical vorticities playing the role of

advection velocities, and the small constant ε the diffusivity. This problem is

well-known in fluid mechanics to be a singular perturbation problem, in that

the character of the solutions changes dramatically as ε→ 0.

We are interested in solving (6.1) on Kh with boundary condition Ψb(t)

on ∂Kh from the characteristic solutions described in Chapter 5. We can

“homogenize” the problem by defining Ψ̃ = Ψ − Ψ̂, where Ψ̂|∂Kh = Ψb, and

moving the boundary terms to the right hand side as forcing terms:

AεΨ̃ = νrβ + AεΨ̂ =: f (6.2)

This allows us to consider the problem on the space H1
0 (Kh), which gives

use of the Poincare inequality. For simplicity, we will use Ψ in place of Ψ̃

in the discussion that follows, but with the assumption that we are taking

homogeneous boundary conditions on ∂Kh.

Let ϕ ∈ H1
0 (Kh), multiply both sides of (6.1) by ϕ, and integrate over Kh.
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After integrating the Laplacian term by parts, we have

aε(Ψ, ϕ) :=

∫
Kh

ε∇Ψ · ∇ϕ+ ζΨzϕ+ ηΨrϕdA =

∫
Kh

fϕdA (6.3)

Note that aε : H1
0 (Kh) × H1

0 (Kh) → R is a bilinear form. We need two

fundamental results to proceed with existence considerations. The first is a

special case of the Sobolev inequalities for H1
0 (Kh).

Theorem 6.4 (Poincaré Inequality): Suppose Ω is an open, bounded set in

Rn for some n. Then there exists a γ(Ω) > 0 such that for all u ∈ H1
0 (Ω),

||u||L2(Ω) ≤ γ||∇u||L2(Ω) (6.4)

Remark 6.5: This theorem implies that the || · ||H1 and || · ||H1
0

are equivalent

on H1
0 (Ω), since we have that

||u||H1
0 (Ω) ≤ ||u||H1(Ω) ≤ (1 + γ)||u||H1

0 (Ω) ∀u ∈ H1
0 (Ω). (6.5)

The result can be extended to a more general case, in which Ω is bounded in

one coordinate direction, since the proof follows from integration by parts and

the fact that functions in H1
0 (Ω) vanish on the boundary.

The second result is the basic theorem regarding problems involving bilin-

ear forms on Hilbert spaces.

Theorem 6.6 (Lax-Milgram): Let H be a Hilbert space, and B : H ×H → R

be a bilinear mapping, for which there exist constants α, β > 0 such that

|B(u, v)| ≤ α||u||H ||v||H ∀u, v ∈ H (6.6)
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and

β||u||2H ≤ B(u, u) ∀u ∈ H (6.7)

Then if f is a bounded linear functional on H, there exists a unique element

u ∈ H such that

B(u, v) = f(v) (6.8)

for every v ∈ H.

Remark 6.7: For a proof of this theorem, see Evans (1998). The first condi-

tion (6.6) is simply that the bilinear form is bounded. The second condition

(6.7) is referred to as coercivity.

Remark 6.8: Note if we assume that ζ is bounded, then

−||ζ||∞|ΨΨz| ≤ −|ζΨΨz| ≤ ζΨΨz ≤ |ζΨΨz| ≤ ||ζ||∞|ΨΨz| (6.9)

and similarly for the first order term containing η. For simplicity, define

ω∞ = ω∞(Kh) = max{||ζ||L∞(Kh), ||η||L∞(Kh)}. (6.10)

Lemma 6.9 (Boundedness of aε): Suppose ζ, η ∈ L∞(Kh). Then aε is bounded

for every ε ≥ 0.
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Proof. Let Ψ, ϕ ∈ H1
0 (Kh). Then

∫
Kh

ε|∇Ψ · ∇ϕ|dA ≤
∫
Kh

ε|∇Ψ||∇ϕ|dA ≤ ε||∇Ψ||L2(Kh)||∇ϕ||L2(Kh)

= ε||Ψ||H1
0 (Kh)||ϕ||H1

0 (Kh)

where the first inequality follows from the Cauchy-Schwarz inequality for R2,

and the second inequality from the Cauchy-Scharz inequality for H1
0 (Kh). Fur-

ther,

∫
Kh

|ζΨzϕ+ ηΨrϕ|dA ≤ ω∞||ϕ||L2(Kh)

(
||Ψz||L2(Kh) + ||Ψr||L2(Kh)

)
≤ 2γω∞||Ψ||H1

0 (Kh)||ϕ||H1
0 (Kh)

where γ = γ(Kh) is given by the Poincare Inequality. Thus we have

aε(Ψ, ϕ) ≤ (ε+ 2ω∞γ)||Ψ||H1
0 (Kh)||ϕ||H1

0 (Kh) (6.11)

and aε is bounded.

Lemma 6.10 (Coercivity Criterion for aε): Suppose that ζ, η ∈ L∞(Kh), and

that γ(Kh) is the Poincare constant. If ε > ω∞
(
γ + 1

2

)
, then aε is coercive.
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Proof. Equation (6.9) implies

aε(Ψ,Ψ) ≥
∫
Kh

ε|∇Ψ|2dA− ω∞
(∫

Kh

|ΨΨr|+ |ΨΨz|dA
)

≥ ε||∇Ψ||2L2(Kh) − ω∞
(
||Ψ||2L2(Kh) +

1

2
||Ψr||2L2(Kh) +

1

2
||Ψz||2L2(Kh)

)
≥ ε||∇Ψ||2L2(Kh) − ω∞

(
γ +

1

2

)
||∇Ψ||2L2(Kh)

=

(
ε− ω∞

(
γ +

1

2

))
||Ψ||2H1

0 (Kh) (6.12)

Thus, coercivity follows if ε > ω∞
(
γ + 1

2

)
.

Remark 6.11: Since the size of ε determines how much the solution departs

from the strong solution outside of Kh, this result allows us to use a mini-

mum amount of “smoothing” to achieve a consistent solution with the strong

solution outside Kh.

Lemma 6.12: The functional

F (ϕ) =

∫
Kh

fϕdA (6.13)

is bounded and linear.

Proof. By definition, and the assumption that Ψ̂ ∈ H1(Kh),

|F (ϕ)| ≤
∫
Kh

|fϕ|dA =

∫
Kh

∣∣∣νrβϕ+ ε∇Ψ̂ · ∇ϕ+ (ζΨ̂z + ηΨ̂r)ϕ
∣∣∣ dA

≤
(
||νrβ||∞ + (ε+ γω∞)||Ψ̂||H1(Kh)

)
||ϕ||H1

0 (Kh). (6.14)

Since F is clearly linear, we have that F is a bounded linear functional on

H1
0 (Kh).
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Theorem 6.13 (Existence and Uniqueness of Solutions for Dirichlet Problem):

Let aε be defined as in (6.3), and let Ψb ∈ C1(∂Kh) with Ψ̂ ∈ H1(Kh) such

that the trace of Ψ̂ is Ψb. Further, assume that ζ, η, and β are essentially

bounded, and that

ε >

(
γ +

1

2

)
ω∞ (6.15)

Then there exists a unique function Ψ ∈ H1
0 (Kh) such that

aε(Ψ, ϕ) = F (ϕ) ∀ϕ ∈ H1
0 (Kh) (6.16)

Proof. This follows immediately from Lemmas 6.9, 6.10, 6.12, and the Lax-

Milgram Theorem.

Remark 6.14: Since we know ζ and η a priori, we can choose ε in advance to

be no larger than necessary for well-posedness of the problem. This will ensure

minimal departure from the advective flow present outside of the information

void.

In addition, since we are enforcing the Dirichlet boundary condition Ψb, we

will have a continuous joining of the streamfunction inside the information void

and outside it as well. This does not imply that the velocities are continuous

across the interface, since they are components of the gradient of Ψ.

6.3 Weak Solutions for the Neumann Problem

The theoretical considerations for (6.3) imply continuity of Ψ on ∂Kh, but not

smoothness. Since u and w are components of the gradient of Ψ, continuity of
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Ψ is not enough to ensure that the velocities will be continuous over the entire

domain. After applying the characteristic method, we know the velocities u

and w on Ω \ Kh, which are only incorporated into the Dirichlet problem in

an integral sense, since Ψ is an antiderivative of u and w.

Since ∂Kh is a characteristic curve, it is also a level curve of Γ. This means

that the normal vector to ∂Kh is parallel to ∇Γ. Since we know that Γ has

an absolute maximum at (ro, zo) ∈ Kh, ∇Γ will be pointing inward toward

(ro, zo). Thus the normal derivative of Ψ is given by

∂Ψ

∂n
= ∇Ψ · − ∇Γ

|∇Γ|
= −

∂Ψ
∂r

∂Γ
∂r

+ ∂Ψ
∂z

∂Γ
∂z√(

∂Γ
∂r

)2
+
(
∂Γ
∂z

)2
= −rζw − ηu

ζ2 + η2
(6.17)

A Neumann formulation, rather than the Dirichlet formulation discussed in

Section 6.2, would utilize the information about u and w on ∂Kh.

In deriving (6.3), we assumed that Ψ ∈ H1
0 (Kh). For the Neumann prob-

lem, this assumption no longer holds. Define

gb(t) = −r(t)ζ(t)wb(t)− η(t)ub(t)

ζ2(t) + η2(t)
(6.18)

to be the desired inhomogeneous Neumann boundary condition. If we multiply

(6.1) by ϕ ∈ H1(Kh), integrate over Kh, the resulting expression is

∫
Kh

[ε∇Ψ · ∇ϕ+ ζΨzϕ+ ηΨrϕ] dA =

∫
Kh

rβϕdA+

∫
∂Kh

εgbϕdt. (6.19)

Note that the left hand side of (6.19) is aε as we defined it in Section 6.2,

except that the domain of aε is now H1(Kh)×H1(Kh), and so we cannot use

the Poincarè inequality to verify the requirements of the Lax-Milgram theorem.
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Remark 6.15: If Ψ ∈ H1(Kh) satisfies (6.19) for every ϕ, then so does Ψ+C,

where C ∈ R is any constant, since the equation involves only the derivatives

of Ψ. Since weak solutions are not unique, aε cannot be coercive on H1(Kh).

This implies that we need to augment our weak formulation if we want a

unique solution.

With the interests of existence and uniqueness in mind, we consider (6.1)

with the addition of a small zeroth order term,

ε∆Ψ + ζΨz + ηΨr + εΨ = rβ. (6.20)

and employ the same method as we used in Section 6.2. We now seek Ψ ∈

H1(Kh) which satisfies the weak form of this equation with Neumann condi-

tions, given by

∫
Kh

[ε∇Ψ · ∇ϕ+ ζΨzϕ+ ηΨrϕ+ εΨϕ] dA =

∫
Kh

rβϕdA+

∫
∂Kh

εgbϕdt.

(6.21)

Denote ãε(Ψ, ϕ) :=
∫
Kh

[ε∇Ψ · ∇ϕ+ ζΨzϕ+ ηΨrϕ+ εΨϕ] dA. The next two

propositions show that the problems of existence and uniqueness are solved

with the addition of the small zeroth order term.

Lemma 6.16 (Boundedness of ãε): Suppose ζ, η ∈ L∞(Kh). Then the bilinear

form ãε : H1(Kh)×H1(Kh)→ R is bounded for every ε > 0.

Proof. Referring to the proof of Proposition 6.9, we can use the same estimates

(without the Poincarè constant γ), together with the fact that if Ψ ∈ H1(Kh),

then Ψ,Ψr,Ψz ∈ L2(Kh), and ||Ψ||L2(Kh) ≤ ||Ψ||H1(Kh) (and similarly for the

62



spatial derivatives), and so

ãε(Ψ, ϕ) ≤ (ε+
ω∞
2

)||Ψ||H1(Kh)||ϕ||H1(Kh). (6.22)

Thus ãε is bounded on H1(Kh)×H1(Kh).

Lemma 6.17 (Coercivity Criterion for ãε): Suppose that ζ, η ∈ L∞(Kh). If

ε > ω∞, then ãε is coercive.

Proof. Note that

ãε(Ψ,Ψ) ≥ ε

∫
Kh

(
|∇Ψ|2 + Ψ2

)
dA− ω∞

∫
Kh

|Ψ|(|Ψr|+ |Ψz|)dA

≥ ε

∫
Kh

(
|∇Ψ|2 + Ψ2

)
dA− ω∞

2

∫
Kh

(
2Ψ2 + |∇Ψ|2

)
dA

≥
∫
Kh

(ε− ω∞)
(
|∇Ψ|2 + Ψ2

)
dA

= (ε− ω∞)||Ψ||H1(Kh)

Thus for ε > ω∞, ãε is coercive.

Theorem 6.18 (Existence and Uniqueness of Solutions for the Neumann Prob-

lem): Let ãε be defined as in (6.21). Further, assume that ζ, η, and β are

essentially bounded, and that

ε > ω∞ (6.23)

Then there exists a unique function Ψ ∈ H1(Kh) such that

aε(Ψ, ϕ) =

∫
Kh

rβϕdA+

∫
∂Kh

gbϕdt ∀ϕ ∈ H1(Kh) (6.24)
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Proof. The result follows from Lemmas 6.16, 6.17 and the Lax-Milgram theo-

rem.

Remark 6.19: While Theorem 6.18 ensures continuity of the normal deriva-

tive of Ψ across ∂Kh, this is still not sufficient to enforce continuity of u and

w between Ω \ Kh and Kh. The linear combination of the two velocities in-

dicated by (6.18) will be continuous on ∂Kh (in the trace sense), but the

velocities themselves may not be. That is, if we denote the solution of the

Neumann problem by Ψε, and the corresponding velocities by uε and wε, then

we expect Ψε to satisfy (6.18) where ub and wb will be the traces of uε and wε

on ∂Kh. It does not follow that uε → ub or wε → wb as interior points ap-

proach the boundary ∂Kh. However, the continuity of this normal derivative

is an improvement over the result of the Dirichlet problem, where we only had

continuity of Ψ at the boundary.

6.4 Regularity of Weak Solutions

Evans (1998) contains several useful theorems that apply directly to the elliptic

forms aε and ãε. Denote the generic second order elliptic partial differential

operator on an open, bounded domain U ⊂ Rn by

Lu := −
n∑

i,j=1

aij(x)uxiuxj +
n∑
i=1

bi(x)uxi + c(x)u (6.25)
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and the weak form associated to Lu = f by

α(u, v) =

∫
U

[
n∑

i,j=1

aij(x)uxivxj +
n∑
i=1

bi(x)uxiv + c(x)uv

]
dx =

∫
U

fvdx.

(6.26)

Then the following results hold.

Proposition 6.20 (Smoothness of Solutions): Suppose aij, bi, c ∈ Cm+1(U),

and f ∈ Hm+1(U). If u ∈ H1(U) satisfies (6.26), then u ∈ Hm+2
loc (U), and for

any strict subset V ⊂⊂ U ,

||u||Hm+2(V ) ≤ C
(
||f ||Hm(U) + ||u||L2(U)

)
(6.27)

Proof. See Evans (1998).

Corollary 6.21: Suppose aij, bi, c ∈ C∞(U), and f ∈ C∞(U). If u ∈ H1(U)

satisfies (6.26), then u ∈ C∞(U).

Proof. See Evans (1998). The proof uses the previous proposition, together

with a particular case of the Sobolev inequalities.

Remark 6.22: These two results make no assumptions about boundary con-

ditions, and so they will hold for either the Dirichlet or Neumann problems.

They say that smoothness in v implies smoothness in Ψ, and hence in u and

w. This implies that the velocities are smooth in the interior of KH .
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6.5 Extending the Domain of the Dirichlet Prob-

lem

Sections 6.2 and 6.3 detail different methods of attempting to seek a solution

that deviates from the strong solutions as little as possible using an elliptic

smoother of the form (6.1) or (6.20). Under assumptions on ε, the weak form

of these problems have unique solutions on the interior of Kh. The solution

of the Dirichlet problem agrees with the boundary data Ψb on ∂Kh, while

the solution of the Neumann problem has a normal derivative (to ∂Kh) which

agrees with the characteristic data, composed of a linear combination of u and

w. Neither of these formulations ensures continuity of u and w across ∂Kh.

Assumption 6.2 says that R is large enough that Kh ⊂⊂ Ω, and so by

Assumption 6.1 there must be a δ > 0 so that the set Uδ enclosed by the

characteristic curve {(r, z) ∈ Ω : Γ(r, z) = Γ(rζ , h)−δ} is contained within the

interior of Ω. The boundedness and coercivity results from Section 6.2 will

hold for Uδ, with the replacement of the norms for functions defined on Kh

by norms for functions defined on Uδ, and the Poincare constant γδ = γ(Uδ).

Thus we can assert the Lax-Milgram theorem to achieve well-posedness of the

Dirichlet problem for (6.3) with data Ψb on ∂Uδ.

From Assumption 6.3 and the results in Chapter 5, we know that the set

Uδ \Kh is reachable by characteristics passing through ∂Ω+
h . This means that

there is a function Ψc ∈ C1(Uδ\Kh) that agrees with the characteristic solution

on the exterior of Kh, and which we can extend in a smooth fashion to Ψδ
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defined on all of Uδ. Consider the functional given by

Jδ(Ψ) =
1

2
||Ψ−Ψδ||2H1(Uδ)

(6.28)

We calculate the first variation of Jδ. Let ϕ ∈ H1
0 (Uδ), and compute

i(t) = Jδ(Ψ + tϕ) =
1

2

∫
Uδ

[
(Ψ + tϕ−Ψδ)

2 + |∇(Ψ−Ψδ) + t∇ϕ|2
]
dA,

(6.29)

from which it follows that

i′(t) =

∫
Uδ

[(Ψ−Ψδ − tϕ)ϕ+ (∇(Ψ−Ψδ) + t∇ϕ) · ∇ϕ] dA. (6.30)

Assuming that Jδ has a minimizer at Ψ we must have the i′(0) = 0, whence

∫
Uδ

[(Ψ−Ψδ)ϕ+∇(Ψ−Ψδ) · ∇ϕ] dA = 0, (6.31)

which must be satisfied if Ψ is to be a minimizer of Jδ. With this in mind, we

seek a function Ψ ∈ H1
0 (Uδ) which satisfies

aε(Ψ, ϕ) +
〈
Ψ1Uδ\Kh , ϕ

〉
H1(Uδ)

=

∫
Uδ

fϕdA+
〈
Ψδ1Uδ\Kh , ϕ

〉
H1(Uδ)

(6.32)

for all ϕ ∈ H1
0 (Uδ), where 1Uδ\Kh is the indicator function for the region

on which we have characteristic solutions. Denote aδ(Ψ, ϕ) := aε(Ψ, ϕ) +〈
Ψ1Uδ\Kh , ϕ

〉
H1(Uδ)

.

Theorem 6.23: Let ζ, η ∈ L∞(Uδ), ε > ω∞
(
γδ + 1

2

)
− 1, and Ψδ ∈ H1

0 (Uδ).
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Then there exists a Ψ such that

aδ(Ψ, ϕ) =

∫
Uδ

fϕdA+
〈
Ψδ1Uδ\Kh , ϕ

〉
H1(Uδ)

(6.33)

for all ϕ ∈ H1
0 (Uδ).

Proof. Note that

〈
Ψ1Uδ\Kh ,Ψ

〉
≥ ||Ψ||2H1(Uδ)

≥ ||Ψ||2H1
0 (Uδ)

(6.34)

which implies that

aδ(Ψ,Ψ) ≥
(
ε− ω∞

(
γδ +

1

2

)
+ 1

)
||Ψ||2H1

0 (Uδ)
. (6.35)

Hence aδ is coercive, and the estimate in Lemma 6.9 together with the Poincare

inequality imply that

aδ(Ψ, ϕ) ≤ (ε+ (2ω∞(Uδ) + 1)γδ + 1)||Ψ||H1
0 (Uδ)||ϕ||H1

0 (Uδ) (6.36)

Thus aδ is bounded. The operator

Fδ(ϕ) =

∫
Uδ

(
f + Ψδ1Uδ\Kh

)
ϕdA (6.37)

is clearly linear in ϕ, and is bounded since f,Ψδ, ϕ ∈ L2(Uδ) and Ψδ, ϕ ∈

L2(Uδ \ Kh). Therefore, the Lax-Milgram theorem provides the existence of

Ψ ∈ H1
0 (Uδ) which satisfies (6.33).

68



6.6 Discussion

The methods detailed in this chapter are elliptic “smoothers”, meaning that

they attempt to smoothly interpolate the boundary data into the interior of the

information voids. The theory above discusses the existence and uniqueness

theory relevant to each of these methods. Implementation of any of these

methods is a complex problem due to the geometry of the region, which is

an irregular closed curve. Generating finite elements for sets like Kh in an

efficient and accurate manner is a topic of open research in the community

that researches numerical methods for partial differential equations. One way

that we could approach this is to use the locally orthogonal coordinate system

that arises from the unit vectors proportional to ∇Γ and the vector tangent

to the level curves of Γ.
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Chapter 7

Accounting for Uncertainty

7.1 Introduction

In the previous chapters, we developed of a methodology for estimating the

wind fields below a minimum observable height, using observations above this

height to estimate parameters for a tangential velocity model, and then using

the model equations (5.1) and (5.2) to extrapolate into the unobservable region

in a dynamically consistent manner. All of the development has assumed

a perfect model and perfect data. In this chapter, we discuss methods of

minimizing the effects of both modelization error and measurement error in

our data.

7.2 Smooth Dependence on Parameters

When the modelization of the problem is imperfect, or the data have errors

which lead to a suboptimal choice of v, continuity of the solution map v 7→

(u,w) implies that small errors in v yield small errors in u and w. The results

in Section 5.2.3 imply that we can consider the dependence of u and w on v

using the characteristic differential equations, since the spatial dependence of
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u and w are also determined by v, according to Lemma 5.3. We can adapt

Theorems 10.7.1 and 10.7.2 of Dieudonne (1960), which discuss these systems

of the form ẋ = f(t, x, z), where z is a parameter vector. We are assuming

v ≡ v(q), and so the question is really whether the characteristic curves vary

smoothly with q, and whether u and w are smooth functions of q along these

curves. These results answer both questions in the affirmative, as long as v

and its spatial derivatives are smooth on the space of parameters Q.

Theorem 7.1 (Dieudonne): Let E be a Banach space over R, I ⊂ R and

H ⊂ E be open subsets, Q a metric space, and f a mapping from I ×H ×Q

into E. Suppose that

(1) for any q ∈ Q, (t, x) 7→ f(t, x, q) is continuously differentiable from I×H

into E and

(2) f and D2f are continuous in I ×H ×Q.

Then for any point (to, xo, qo) ∈ I ×H × Q, there is an open J ⊂ I centered

at t0 and T ⊂ Q centered at q0 such that for each q ∈ T , there is a unique

solution t 7→ x(t, q) of ẋ = f(t, x, q) on J such that x(t0, q) = x0. Further, the

mapping (t, q) 7→ x(t, q) is bounded and continuous in J × T .

Remark 7.2: For our case, the function f is the vector composed of the right

hand sides of (5.4),(5.5), and one of (5.6),(5.18), and (5.14). For Theorem 7.1

to hold, we need ζ, η and their first and second order partial derivatives with

respect to r and z to be continuously differentiable with respect to the pa-

rameters over Q for the entire spatial domain Ω. Since the distribution of

characteristic curves (r(q), z(q)) are solutions of differential equations that

satisfy the assumptions of the Theorem 7.1, these results apply to the global
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solutions of the equations, in those regions where the characteristic solutions

are uniquely defined. Hence there is a set Q̂ ⊂ Q such that the solution

mapping q 7→ (u(r, z), w(r, z)) restricted to Q̂ is continuous.

Similar theorems of Dieudonne say that more smoothness in f with respect

to the parameters yields more smoothness in u with respect to the parameters,

up to analyticity.

7.3 Consistency with Observations

Recall that we have observations of the radial velocity u in the region Ω \Ωh.

These observations contain random measurement errors, which together with

our modelization errors imply the need for an “analysis” state which repre-

sents an optimal combination of the observations with the model constraints,

weighted by their error characteristics.

First, assume that our tangential model for v has a single maximum at

(ro, zo), and that ∇Γ 6= 0 on Ωo \ {(ro, zo)}. Since we have characteristics

passing through every point in Ω \ Ωh, we can seek values of the radial veloc-

ity along ∂Ω+
h so that when we solve for u(t) along each characteristic curve

(passing through Ω \ Ωh) we attain a minimum value of some weighted com-

bination of modelization and observation errors. This is precisely the data

assimilation problem, though somewhat simplified, since initial conditions at

different locations on Ω \ Ωh are completely independent of each other, since

characteristic curves cannot cross.
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7.3.1 Approximating the Observation Surface

Since our measurements are in the form of discrete volume averages of radial

velocity, ûi, at locations (ri, zi) for i = 1, ..., Nobs, we must construct an approx-

imating function uo(r, z) for our observational data so that we can compare

the observations with model solutions along characteristic curves.

Given a two dimensional array, there are many different ways we can ap-

proximate the surface which generated those points. In meteorology, this topic

is known as “objective analysis”. If we assume that the data are regularly

spaced, then we can approximate the observation surface using tensor prod-

ucts of one dimensional functions, which leads to a tremendous speedup of the

algorithms needed to compute the surface.

Interpolants exactly match the function values at the spatial locations of

the data. One example which is pertinent to the discussion at hand is the

bilinear interpolant, which is the tensor product of two sets of piecewise linear

functions. This interpolant is monotone, meaning that the spatial derivatives

of the interpolant are the same as the finite difference approximations from

the data, and no spurious extrema are created. A bicubic interpolant is a

tensor product of cubic splines, such as hermite splines, or cubic b-splines.

These are not monotone interpolants, but they are smoother than the bilinear

interpolant, and theoretical results assert that the L2 approximation error is

smaller than that of the bilinear interpolant.

We can apply regression techniques using a least-squares fit (or some other

criterion) of data using a predetermined set of functions. The resulting ap-

proximation will not match the data at the spatial points, but is more robust

with respect to errors in the data. If we select a Fourier (or Chebyshev) series
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truncated at some N << Nobs, and then choose the coefficients of the series

using least squares or some other criteria, then the resulting approximation

will be a regression approximation of the data.

7.3.2 Optimal Initial Conditions for Negligible Obser-

vation Errors

Suppose that the errors in the data are negligible relative to the modelization

errors. This amounts to choosing the initial values u(0, s) or Ψ(0, s) which

most closely approximate the raw observations. Since u(0, s1) and u(0, s2) are

independent for s1 6= s2, we can find the minimizer for each s, and the result

will be a global minimum.

Proposition 7.3: Assume that η > 0 on Ω \ Ωh. Given (s, h) ∈ ∂Ω+
h , and

T (s) > 0 the smallest value of t such that c(T (s), s, h) ∈ ∂ (Ω \ Ωh), the value

of u(0, s) which minimizes the objective functional

Ju(u(0, s)) =
1

2

∫ T (s)

0

(uo(r(t, s), z(t, s))− u(t, s))2 dt (7.1)

is given by

u(0, s) =

∫ T (s)

0

(
uo(r(t, s), z(t, s))−

∫ t
0
gu exp

[
−
∫ t
τ
fudσ

]
dτ
)

exp
[
−
∫ t

0
fudτ

]
dt∫ T (s)

0
exp

[
−2
∫ t

0
fudτ

]
dt

.

(7.2)

.

Proof. Assuming that η > 0 (so that (5.18) is valid), we can write the solution
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of (5.18) as (5.19). Omitting s for simplicity, the objective functional is

Ju(u(0)) =
1

2

∫ T

0

(
uo(r(t), z(t))− u(0) exp

[
−
∫ t

0

fudτ

]
−∫ t

0

gu exp

[
−
∫ t

τ

fudσ

]
dτ

)2

dt

=
1

2

∫ T

0

(
uo(r(t), z(t))−

∫ t

0

gu exp

[
−
∫ t

τ

fudσ

]
dτ

)2

dt−

u(0)

∫ T

0

(
uo(r(t), z(t))−

∫ t

0

gu exp

[
−
∫ t

τ

fudσ

]
dτ

)
×

× exp

[
−
∫ t

0

fudτ

]
dt+ (u(0))2

∫ T

0

exp

[
−2

∫ t

0

fudτ

]
dt

The derivative of J with respect to u(0, s) is

dJ

du(0)
= −

∫ T

0

(
uo(r(t), z(t))−

∫ t

0

gu exp

[
−
∫ t

τ

fudσ

]
dτ

)
×

× exp

[
−
∫ t

0

fudτ

]
dt+ u(0)

∫ T

0

exp

[
−2

∫ t

0

fudτ

]
dt.

Setting this to 0 and solving for u(0, s), we get (7.2). This value of u(0, s)

is a minimum because Ju is quadratic in u(0, s), and d2J
du(0,s)2

> 0, since

exp
[
−
∫ t

0
fudτ

]
> 0 for every t.

Remark 7.4: Since we know the characteristic curves in advance, we can

calculate the optimal initial conditions a priori for each s using (7.2).

Remark 7.5: We can discretize (7.2) by choosing a partition {to, t1, ..., tm}

of the interval [0, T (s)], upon which the outer integrals become sums, and the
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optimizer is given by

u(0, s) =

∑m
i=0

(
uo(r(ti, s), z(ti, s))−

∫ ti
0
gu exp

[
−
∫ ti
τ
fudσ

]
dτ
)

exp
[
−
∫ ti

0
fudτ

]
dt∑m

i=0 exp
[
−2
∫ ti

0
fudτ

]
dt

.

(7.3)

The inner integrals can be approximated using trapezoidal quadrature meth-

ods, in order to provide the most efficient calculation, since ti < tj implies

[0, ti] ⊂ [0, tj].

Remark 7.6: Similarly, Ψ(t, s) = Ψ(0, t) +
∫ t

0
rβdτ , and our objective func-

tional would be given by

JΨ(Ψ(0, s)) =
1

2

∫ T (s)

0

(
Ψ(0, s) +

∫ t

0

rβdτ −Ψo(r(t, s), z(t, s))

)2

dt. (7.4)

Differentiating with respect to Ψ(0, s), setting the derivative to 0, and solving

for Ψ(0, s), we see that

Ψ(0, s) =
1

T (s)

∫ T (s)

0

(
Ψo(r(ti, s), z(ti, s))−

∫ t

0

rβdτ

)
dt (7.5)

which says that the optimal initial value for the streamfunction problem is the

mean of the deviations of the predictions from the observation interpolant,

which is exactly what we would expect, since Ψ(0, s) plays the role of an

“intercept”, with the rest of the behavior of Ψ being totally determined by v

and its derivatives.

Remark 7.7: We could extend this technique to the case where the observa-

tions are not considered error free using either uncorrelated error variances for
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each observation, or an observation error covariance matrix which contains the

quantified correlations between the observations’ errors. The resulting min-

imum will be similar in spirit to the solutions presented above, and a more

general discussion of this topic can be found in Lakshmivarahan et al. (2006).

7.4 Uncertain Outer Radial Boundary Condi-

tions

From the results in Chapters 5 and 6, for a specified h, we can find a unique

u, v, and w which satisfy the model equations and approximately match the

observations (using the results in Section 7.3), if we assume that K is bounded

by a characteristic curve. This means that if Kh ∩ {(R, z) : 0 < z < h} is a

set of positive measure, then the problem is not completely solved.

One solution is take a Neumann condition at this outer radial boundary.

Since the normal is the radial unit vector ~ir, this is equivalent to assuming the

∂Ψ
∂r

= 0, and hence that w(R, z) = 0, which may not be physically realistic

if the tornado in embedded in a larger scale storm updraft. We could also

take a nonzero Neumann condition that we believe to represent the strength

of the storm scale updraft, perhaps estimated from aloft and assuming a linear

decrease to the ground level.

7.5 Probabilistic Estimation of u and w

Recall we denoted the space of admissible parameters Q. We now consider

this as a space of random vectors q that take their values in Rp. The sampling

method is discussed in Tarantola (2005). The posterior pdf σQ(q) is given by
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the formula (4.5). From Chapter 5, we know that each choice of q maps to a

unique set of characteristic curves that are the level curves of the circulation

Γ(r, z, q). In addition, every characteristic which passes through the MOH

line will have data that can be used to find u and w. Denote this mapping

A : Q → H2(Ωh) × H2(Ωh). If we compute A(q) = (u(q), w(q)) for every

q ∈ Q, we have a collection of velocity fields that represent the range of the

map q 7→ (u,w) . Each of these realizations (uo, wo) also can be attached

to the density value σQ(qo) of its preimage A−1(u,w) ∈ Q. In this case we

can define a density σ(u,w) = σQ(A−1(u,w)), and compute statistics for the

collection of velocity fields (u, v, w) associated to this distribution using the

moments derived from this density.

Of course we cannot examine the velocity field for each parameter vector

q. With a limited set of computational resources, the best we can hope for is

a large, finite sample of parameter vectors that capture the characteristics of

the density σQ, such as its maximum likelihood estimator, mean and variance.

If our set Q is compact, then a uniformly spaced sample will capture these

properties if the resolution of the sample is fine enough. Partition the space

Q =
⋃m
i=1Qi, where Qi

⋂
Qj = ∅ when i 6= j, and denote the volume of Qi by

V (Qi). Then we can replace our continuous density with a discrete one:

σQ(q) ≈
Nq∑
i=1

σQ(qi)χQi(q) (7.6)

With this discretization, our probability density function becomes a probabil-

ity mass function (pmf), with the interpretation that P{q = qi} = σQ(qi)V (Qi),

and P {u(q) = u(qi), w(q) = w(qi)} = σQ(qi)V (Qi). Using this pmf, we can

calculate the moments of the distribution of the velocities. This approach is
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similar to the way that the ensemble Kalman filter (EnKF) approximates the

error covariance necessary to assimilate the next time period of observations

with the model forecast, though we are using agreement with the observations

as a weighting, so that we don’t use a uniform pmf to calculate the covariance.

Once we have discretized the pdf, we have to consider how much compu-

tational cost we can afford for calculating the forward solutions of the charac-

teristic ODEs for a given resolution. If we denote the discretized sample space

as QNq , the computation of the range of A(QNq) is a “perfectly parallel” prob-

lem, since for each realization q, the wind field (u(q), w(q)) can be computed

independently of all of the others. Further, since QNq is a finite set, we can

rank these vectors by the corresponding pmf values, and choose the nq most

likely (largest pmf values) for which to compute the image wind fields (u, v, w).

In this way, we can estimate how much of the variability we are capturing by

summing the corresponding probabilities.

From Chapter 5, we know that for the case that we have extrema in the

circulation below the MOH line, we will have information voids such that the

points within these sets will not have a unique solution flowing from observa-

tional data above. Without the addition of more information or techniques,

this makes quantities like the mean and variance of the velocity fields less

meaningful, since they will not be directly comparable at all grid points. A

comparison on the gridpoints all of the realizations share is meaningful, but

likely will leave out interesting features. For this reason, it makes sense to

compare random variables without spatial dependence defined on the veloci-

ties, such as maximum absolute wind speed. We can assign any such random

variable F (u, v, w) the distribution σQ(q) in the same way that we assigned

the distribution to the velocities, and in this way calculate statistics. These
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statistics are a way of distilling the information contained in each realization

of the parameter space into a useful quantity.

7.6 Summary

The topics in this chapter were chosen for their relevance to the topic at hand,

and more generally to any situation where data and models are being used

in conjunction with one another. The results about continuity of the solution

map q 7→ (u, v, w) limits the sensitivity of the solutions to small errors in

the selection of the optimal parameter vector. The discussion in Section 7.3.2

demonstrates a simple algorithm for maximizing the ability of our method to

make predictions in agreement with the observations. Section 7.4 points out a

few difficulties when Kh ∩ ∂Ωh 6= ∅. Finally, Section 7.5 provides a framework

for estimating how the uncertainty in the optimal choice of parameter vector

q translates to uncertainty in the estimated wind fields u and w, by way of the

probability density function σQ(q) on Q. Certainly more could be discussed,

but these topics give a brief overview of the types of issues we must face with

random errors in our data.
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Chapter 8

Numerical Experiments

8.1 Introduction

In this chapter, we examine the performance of the retrieval methodology

described in the previous chapters. The experiments we will perform will

test how the methodology responds with respect to changes in the height h

that dictates what features of the wind field we can see, as well as how the

retrieval quality varies with different amounts of noise added to the data. In

the first section, we will discuss the generation of pseudo-observations with

which to test the method. The second section will demonstrate the results

proved in Chapter 5 regarding information voids and near surface observability.

The third section will explore the effects of errors in the observations on the

retrieval, and will include the estimation of random variables defined on the

wind fields.

8.2 Generation of Pseudo-Observations

As a first test of the methodology, a set of pseudo-observations was gener-

ated using a “snapshot” of model output of the Davies-Jones axisymmet-
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ric thunderstorm model, which is described in Davies-Jones (2008). The

relative maximum in the tangential wind velocity of vc = 75.129m
s

occurs

at (rc, zc) = (462m, 504m), and the model fields were all made nondimen-

sional by dividing the fields by vc. A Wood-White tangential wind field

v = φww(r, nr, 1)φww(z, nz, 1) was fit to the cross sections of the model data

lying on the lines r = rc (for nz) and z = zc (for nr). The resulting parameters

are nr = 3.2 and nz = 2.5, when the data to be fit are taken to be the lowest

square kilometer. The tangential wind velocity v and corresponding circula-

tion Γ are shown in Figure 8.1. Taking ν = 0, the streamfunction Ψ was

computed on the domain Ω = [0, 4] × [0, 4] by integrating the model output

values for the vertical velocities along the height where the tangential veloc-

ity achieved its relative maximum to calculate Ψ along this line, and then by

finding the point on this line with identical circulation to the point of interest.

Since ν = 0, the results in Chapter 5 show that Ψ is constant on characteris-

tics. The corresponding radial and vertical velocities were estimated by using

second order centered finite differences to estimate the partial derivatives of

Ψ. The resulting velocity fields are depicted in Figure 8.3. Notice that in sign

and in magnitude, the retrieved u and w approximate the model fields to a

fair degree. The inflow location and strength are approximately the same as

that of the Davies-Jones model data, and the size and strength of the updraft

are also very similar to the model data.

8.3 Impacts of the Minimum Observable Height

We are interested in examining the performance of the methodology for strong

solutions when the minimum observable height h is varied from 1 to 4. The
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Figure 8.1: Normalized Davies-Jones tangential velocity and Wood-White tan-
gential velocity model.

Figure 8.2: Pseudo-observations of streamfunction derived from the Davies-
Jones model data
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Figure 8.3: Normalized Davies-Jones radial and vertical velocities (left) and
pseudo-observations of radial and vertical velocities derived from the stream-
function in Figure 8.2.
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normalized h normalized ho 100m ho
1.25 0.793 79.3
1.50 0.648 64.8
1.75 0.541 54.1
2.00 0.459 45.9
3.00 0.270 27.0
4.00 0.181 18.1

Table 8.1: Pairing of minimum observable height h and minimum unreachable
height ho. Normalized ho is in units of zc, while 100m ho is for zc = 100m.

height ho below which everything is retrievable using the characteristic method-

ology can be calculated a priori using the equation

φww(ho, nz, zc) = φww(h, nz, zc). (8.1)

This computation was performed for values of h, and the results are presented

in Table 8.1. As the relevant theoretical work states, a larger value for h

corresponds to a smaller value for ho, and so when we have less observational

data, we cannot retrieve as high above the ground with the characteristic

method.

8.4 Impacts of Random Errors

We are interested in the effects of measurement errors on all aspects of wind

field estimation. The initial problem of estimating v in the presence of er-

rors was discussed in Chapter 4, while the problem of estimating the resulting

distribution of radial and vertical velocities via sampling was discussed in

Chapter 7. Supposing that our observational error has a standard deviation

of 1m
s

, which after rescaling by vc corresponds to 0.013, we can calculate the

wind fields we retrieve that arise from parameter vectors that yield tangential
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Figure 8.4: A realization Σ of an uncorrelated discretized Gaussian error dis-
tribution with covariance σ2I (σ = 0.103), and the sum of the Wood-White v
from Figure 8.1 with Σ, 2Σ, and 3Σ.

velocities that lie within this tolerance in an L2 sense or an L∞ sense. Fig-

ure 8.4 shows a realization of an uncorrelated Gaussian error distribution with

standard deviation 0.013 and the sum of our idealized tangential velocity with

multiples of this random error.

8.4.1 Estimating the Tangential Velocity

First, we determine how well the least-squares fitting procedure can recover

the tangential velocity parameters, assuming different minimum observable

heights h. This minimization is done in via the sampling method, meaning

we sample a discretized version of the sample space Q which is the Cartesian

86



product of intervals which represent reasonable ranges for each parameter.

Table 8.2 shows the variability of estimating the five parameters when we

vary the minimum observable height and the amount of random error in the

tangential velocity observations.

8.4.2 Physical Quantities of Interest

The sampling procedure for estimating u, v and w as random variables over

Q is a useful means of determining the impacts of random observation error

on the solutions. Unfortunately, we know that the information voids Kh are

intimately linked to the parameters for v, and so the location and size ofKh will

vary with each choice of q ∈ Q. To remedy this, we can distill the information

contained in the strong solutions u, v, and w into real valued random variables

that depend on the velocities, but not on the spatial variables directly.

One quantity of interest is the maximum inflow speed, defined as

u+ = min
z≤zc

u(r, z) (8.2)

and the physical location where this occurs, denoted xmif = (rmif , zmif ), where

u(rmif , zmif ) = u+. It might occur that xmif is not unique. These quantities

tell us where we should expect the air flowing into the tornado near the surface

to be the strongest, since the literature tells us that radial flow will dominate

the energy budget in this part of the vortex.

Another quantity we are interested in is the maximum updraft speed, defined
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as

w+ = max
r≤rc

w(r, z) (8.3)

and xmud, which is where the vertical velocity achieves its maximum. We

expect this maximum to occur along the axis of the tornado, above the corner

flow region for our test case, since we are working with a single-celled vortex

(Snow (1982)).

A third random variable of interest to structural engineers is the maximum

absolute wind speed, given by

|~v|max = max
(r,z)∈Ω

√
u2 + v2 + w2 (8.4)

together with its maximizer xmaw. This quantity is equivalent to the maximum

kinetic energy per unit mass in the physical domain. Kinetic energy is a

part of Bernoulli’s constant, which is conserved for our (inviscid) problem on

streamlines. If we neglect gravitational effects, and assume a constant density,

we can estimate the maximum pressure drop near the surface using pressure

and velocity measurements aloft and the equation

1

2

√
u2 + v2 + w2 +

p

ρ
= Const (8.5)

where the the constant depends on the streamline.
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8.4.3 Distributions of Physical Quantities from Sam-

pling

We examine here the effect of different sizes of random error, as measured

by the standard deviation of the normal distribution from which it is drawn,

on real valued random variables defined on the velocities, such as maximum

absolute wind speed. For the purposes of these tests, we will consider only

strong solutions, and hence not include the effects of the void filling techniques

discussed in Chapter 6 on the solutions. This is reasonable, since the elliptic

formulations will achieve their extrema on the boundaries of Kh, and hence

will not alter distributions for the random variables such as maximum absolute

wind speeds.

The results detailed in the tables below were computed as follows. The set

Q = Qvc ×Qnr ×Qnz ×Qrc ×Qzc , where

Qvc = [0.3, 2], (8.6)

Qnr = [1.5, 4.5], (8.7)

Qnz = [1.5, 4.5], (8.8)

Qrc = [0.3, 2], and (8.9)

Qzc = [0.3, 2]. (8.10)

Q was sampled uniformly with a spacing of 0.1 in each component space, and

the resulting collection of vectors {~qi}Nqi=1 (Nq > 5.5 · 106 for each h) were used

to specify a set of admissible tangential velocities {vi(r, z)}Nqi=1. The observable
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domain Ω\Ωh was discretized with a grid {(rj, zj)}Ngj=1, and the cost functional

Jh(vi) =

Ng∑
i=1

(vi(rj, zj)− vo(ri, zj))2 (8.11)

was evaluated for each vi, where vo is the true v plus some multiple of Σ. Fol-

lowing Tarantola (2005), we define a probability distribution on the admissible

velocities via

ph(vi) = exp [−J(vi)] (8.12)

which allows us to discuss the outcomes of our retrievals in probabilistic lan-

guage. We view the minimizer v̂ of Jh as the maximum likelihood estimator of

ph. Since vo contains errors, v̂ will not necessarily represent the “true” tangen-

tial velocity. Since the space of admissible velocities is finite, we can rank them

in order of descending likelihood ph(vi), and use this distribution to weight

the retrieved velocities ui and wi. Using these weights we can compute means

and standard deviations for u+, w+ and |~v|max and compare for different error

standard deviations and values of h. Results for h = 1, 1.2, 1.5, 1.7, 2, 2.5, 3, 3.5

and for uncorrelated Gaussian errors with standard deviation σ, 2σ and 3σ

(σ = 0.103) are given below. Table 8.3 shows the ensemble mean parameters

for different values of h and errors, to compare with Table 8.2.

8.4.4 Discussion

The conclusions of the theoretical results in Chapter 5 are demonstrated in

Figures 8.5-8.13, where in general, increasing h increases the volume of the in-

formation void Kh, represented in white. The relationship in the figures isn’t
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Optimal Parameters
σ

h vc nr nz rc zc Ω \ Ωh error Ω error
1 1 3.2 2.5 1 1 2.93e-5 0.00003

1.2 1 3.2 2.5 1 1 2.96e-5 0.00003
1.5 1 3.2 2.5 1 1 2.95e-5 0.00003
1.7 1 3.2 2.5 1 1 3.00e-5 0.00003
2 1 3.2 2.5 1 1 2.95e-5 0.00003

2.5 1 3.2 2.5 1 1 3.01e-5 0.00003
3 1 3.2 2.5 1 1 2.92e-5 0.00003

3.5 1.1 3.2 2.6 1 1 3.60e-5 0.0004

2σ
h vc nr nz rc zc Ω \ Ωh error Ω error
1 1 3.2 2.5 1 1 2.29e-4 0.0002

1.2 1 3.2 2.5 1 1 2.31e-4 0.0002
1.5 1 3.2 2.5 1 1 2.31e-4 0.0002
1.7 1 3.2 2.5 1 1 2.34e-4 0.0002
2.0 0.9 3.2 2.5 1 1.1 4.22e-4 0.0012
2.5 1.8 3.2 2.4 1 0.6 2.34e-4 0.045
3.0 0.8 3.3 2.5 1 1.2 2.25e-4 0.0043
3.5 1.9 3.2 2.6 1 0.7 2.81e-4 0.0559

3σ
h vc nr nz rc zc Ω \ Ωh error Ω error
1 1 3.2 2.5 1 1 5.16e-4 0.0005

1.2 1 3.2 2.5 1 1 5.21e-4 0.0005
1.5 1 3.2 2.5 1 1 5.14e-4 0.0005
1.7 1 3.1 2.5 1 1 5.36e-4 0.0005
2.0 1.6 3.2 2.3 1 0.6 5.28e-4 0.0288
2.5 0.7 3.2 2.8 1 1.5 5.25e-4 0.0119
3.0 0.7 3.2 2.8 1 1.5 5.14e-4 0.0119
3.5 1.2 3.2 2.1 1 0.6 6.52e-4 0.0084

Table 8.2: Optimal parameters versus h for error with standard deviation σ,
2σ and 3σ.
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Ensemble Mean Parameters
σ

h vc nr nz rc zc Ω \ Ωh error Ω error
1 1 3.2 2.5 1 1 3.00e-5 0.00004

1.2 1.1 3.2 2.4 1 0.9 4.53e-5 0.0002
1.5 1.2 3.2 2.4 1 0.9 1.88e-4 0.0014
1.7 1.2 3.2 2.5 1 0.9 2.73e-4 0.0017
2 1.1 3.2 2.6 1 1 3.85e-4 0.0009

2.5 1.1 3.2 2.7 1 1.1 4.42e-4 0.0007
3 1 3.2 2.6 1 1.2 4.50e-4 0.0007

3.5 1 3.2 2.7 1 1.2 3.13e-4 0.0009

2σ
h vc nr nz rc zc Ω \ Ωh error Ω error
1 1.1 3.3 2.4 1 0.9 1.17e-4 0.00009

1.2 1.1 3.2 2.4 1 0.9 4.35e-4 0.0021
1.5 1.2 3.2 2.5 1 0.9 6.25e-4 0.0022
1.7 1.1 3.2 2.6 1 1 8.13e-4 0.0016
2.0 1 3.2 2.7 1 1.1 8.59e-4 0.001
2.5 1 3.2 2.7 1 1.2 9.03e-4 0.0014
3.0 1 3.2 2.6 1 1.2 9.41e-4 0.0016
3.5 1 3 2.8 1 1.2 7.11e-4 0.003

3σ
h vc nr nz rc zc Ω \ Ωh error Ω error
1 1.1 3.1 2.5 1 0.9 4.31e-4 0.0009

1.2 1.1 3.1 2.6 1 1 4.81e-4 0.0006
1.5 1 3 2.7 1.1 1 5.09e-4 0.0006
1.7 1 3 2.6 1 1.1 5.05e-4 0.0006
2.0 1 3 2.6 1 1 5.27e-4 0.0006
2.5 1 2.9 2.6 1 1.1 5.01e-4 0.0008
3.0 1 2.9 2.7 1.1 1.1 4.93e-4 0.0012
3.5 1 2.9 2.7 1.1 1.1 5.07e-4 0.0017

Table 8.3: Ensemble mean parameters versus h for error with standard devi-
ation σ, 2σ, and 3σ.
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Optimal and Ensemble Mean Values of u+, w+, and |~v|max

σ
u+ w+ |~v|max

h MLE Ens Mean MLE Ens Mean MLE Ens Mean
1 -0.810 -0.829 1.652 1.653 1.653 1.654

1.5 -0.766 -1.228 1.336 1.576 1.338 1.678
2 -0.473 -1.086 1.111 1.564 1.158 1.642

2.5 -0.454 -0.957 1.074 1.444 1.125 1.542
3 -2.261 -0.947 2.400 1.398 2.400 1.522

3.5 -2.196 -0.915 2.459 1.388 2.459 1.538

2σ
u+ w+ |~v|max

h MLE Ens Mean MLE Ens Mean MLE Ens Mean
1 -0.810 -0.978 1.653 1.671 1.653 1.703

1.5 -0.766 -1.279 1.336 1.598 1.337 1.724
2 -0.755 -1.080 1.400 1.514 1.428 1.600

2.5 -0.455 -0.961 1.074 1.431 1.125 1.535
3 -0.383 -0.943 0.963 1.373 1.051 1.512

3.5 -0.324 -0.883 0.899 1.402 1.034 1.541

3σ
u+ w+ |~v|max

h MLE Ens Mean MLE Ens Mean MLE Ens Mean
1 -0.777 -1.038 1.653 1.680 1.653 1.722

1.5 -0.762 -1.035 1.336 1.498 1.337 1.552
2 -0.755 -0.973 1.398 1.471 1.428 1.522

2.5 -2.066 -0.930 2.237 1.396 2.238 1.486
3 -0.516 -0.908 1.123 1.371 1.148 1.478

3.5 -0.981 -1.025 1.219 1.235 1.256 1.457

Table 8.4: Comparison of Maximum Likelihood Estimator (MLE) and Ensem-
ble Mean values of u+, w+ and |~v|max.
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exactly comparable, since we are using the maximum likelihood estimator pa-

rameter values for each subset of observations, which are different for different

values of h. Also, note that even though it appears that the voids reach to

the surface, this is merely an artifact of solving the problem on a grid with a

particular resolution. Were we to increase the resolution of the spatial grid,

the retrievable heights ho would become apparent.

The numerical experiments support the logical conclusion that fewer ob-

servations (larger h) and more error (larger standard deviation) both lead to

degraded results. A more interesting result is that the ensembles with less a

priori information (larger h) predict weaker velocities near the surface than

do the ensembles closer to the relative maximum of the tangential velocity.

Examining Table 8.2, there seems to be a tradeoff between the maximum core

velocity vc and the core height zc, which is to say that these two values move in

opposite directions along a contour of our cost functional. For example, when

the error level is 3σ, spikes in the vc parameter are accompanied by decreases

in the zc parameter, and vice versa. There is also some correlation with the nz

parameter and these other two, indicating some sensitivity in the results to the

selection of these parameters. Certainly, vc and zc play a role, which can be

seen using a heuristic argument involving Bernoulli’s principle, since zc alters

the width of the “channel” through which the inflow is squeezed. Looking at

the distributions of u+, w+ and |~v|max, we see that the mode of these three

parameters moves closer to zero as h increases. The cause of this behavior is

unclear, though we could speculate that this weakening is due to predicting

larger core heights zc than the true zc, which by Bernoulli’s principle would

lead to a weaker inflow and a correspondingly weaker updraft.

Examining the differences between maximum likelihood estimator results
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and ensemble mean results, we can see that the ensemble mean for both es-

timated model parameters and for wind speed maxima are less sensitive to

errors in the data than than the corresponding maximum likelihood estima-

tor values. For example, in the 3σ error portion of Table 8.4, when h = 2.5,

the MLE wind maxima are greatly overestimated due to some strong random

error present in the observation field for this level, while the ensemble means

are about the same as for the other heights and error levels. In addition, the

observable domain (Ω \ Ωh) errors in the tangential wind field are of the same

order of magnitude for both the MLE and ensemble mean, but when we com-

pare errors over the entire domain Ω, we see that not only are the errors at

individual heights h improved when we use ensemble mean parameters, but

the progression of errors as h increases makes more logical sense, that is, the

errors increase as h increases, while the optimal parameter errors show no dis-

cernible pattern. This is evidence that in a situation utilizing real data, using

ensemble mean parameters might help us to better hedge against uncertainty

due to errors in both modelization and observations.

8.5 Approximating Weak Solutions of the El-

liptic Problem

For completeness, we consider the perturbed elliptic problem from Section 6.5,

with the domain extended to Uh ⊃ Kh, and Ψc defined to be the characteristic

solution on Uh\Kh. We choose Uh to be the smallest rectangle in the discretized

space that properly contains Kh, so that we can use a simple tensor product

finite element basis. Under the assumptions in this chapter, the boundary
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values at r = R are given by the characteristic solutions, and so with a proper

choice of ε, (6.32) has a unique solution.

8.5.1 Discretized Problem and Solutions

Discretize the solution Ψ̂ε(r, z) ≈
∑Ne

i=1 βibi(r, z), the characteristic data as

Ψ̂c(r, z) ≈
∑Ne

i=1 β
c
i bi(r, z) and define

âε(Ψ̂ε, bj) =
Ne∑
i=1

βi

∫
Uh

[ε∇bi · ∇bj + bj(η, ζ) · ∇bi] dA (8.13)

âδ(Ψ̂ε, bj) = âε(Ψ̂ε, bj) +
Ne∑
i=1

∫
Uh

[bibj +∇bi · ∇bj] 1Uh\KhdA (8.14)

F̂ (ϕ) =

∫
Uh

rν(ζr − ηz)bjdA+
Ne∑
i=1

βci

∫
Uh

[bibj +∇bi · ∇bj] 1Uh\KhdA.

(8.15)

Note that this places the requirement for enforcing the boundary conditions

on the characteristic solution Ψc, since there are no terms in F̂ corresponding

to boundary conditions. Since we assumed that Kh ⊂ U o
h, our problem will be

equivalent to the one where we include these terms, since they are present in

the characteristic solution.

For our problem all of these operators can be written in terms of tensor

products, since both the vorticities and solution basis functions are products
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of one dimensional functions:

ζ(r, z) =

(
∂rφ(r) +

1

r
φ(r)

)
ψ(z) (8.16)

η(r, z) = −φ(r)∂zψ(z) (8.17)

bi(r, z) = `i(r)˜̀
i(z) (8.18)

With this in mind, define the following matrices:

Aji =

∫ R

0

d`i
dr

d`j
dr
dr

∫ H

0

˜̀
i
˜̀
jdz +

∫ R

0

`i`jdr

∫ H

0

d˜̀
i

dz

d˜̀
j

dz
dz (8.19)

Bji = −
∫ R

0

φ(r)`j
d`i
dr
dr

∫ H

0

dψ

dz
˜̀
i
˜̀
jdz+ (8.20)

+

∫ R

0

(
dφ

dr
+

1

r
φ(r)

)
`i`jdr

∫ H

0

ψ(z)˜̀
j
d˜̀
i

dz
dz

These are the operators that correspond to âε. For the penalization terms,

we have to be careful not to include contributions that arise from the in-

formation void Kh. Since we anticipate a uniform spatial grid (∆r and ∆z

constant) with Nr and Nz spatial gridpoints in each direction, and piecewise

linear basis functions centered on these grid points, we can simply “tag” the

basis functions whose centers that lie within Uh \Kh, and compute an opera-

tor C consisting only of contributions from this tagged set of basis functions,

associated with the function T (bi, bj), which is zero when either basis function

is centered inside Kh and one otherwise. We can compute C with our tag
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function via

Cji =

∫
Uh

[
d`i
dr

d`j
dr

˜̀
i
˜̀
j + `i`j

d˜̀
i

dz

d˜̀
j

dz
+ `i(r)˜̀

i(z)`j(r)˜̀
j(z)

]
T (`i ˜̀i, `j ˜̀j)dA

(8.21)

This is a simple way to enforce agreement over a set which approximates

Uh \Kh, and converges to Uh \Kh as the mesh size converges to zero.

For this initial test, we will take ν = 0. This implies that the right hand

side linear forcing is given by

ϑj =
Ne∑
i=1

Cjiβ
c
i + dj. (8.22)

where dj is the term that arises from making the problem homogeneous. This

case, it consists of the contributions of piecewise linear basis functions centered

on the boundary grid points to the operators A and B for the entries of their

neighbors on the interior of the domain, but transferred to the right side of the

equation. Putting it all together, we are seeking ~β ∈ RNe which arises from

(εA+B + C)~β = ϑ. (8.23)

The invertibility of the operator on the right is guaranteed so long as ε satisfies

the coercivity criterion holds. In practice, computing γ(Ω) may be difficult.

A search of the literature provides an estimate γ(U) ≤ D
π

where D is the

diameter of U , so long as U is convex (Bebendorf, 2003). For our special case,

the suprema of ζ and η are easily calculated using the derivative formulas

(2.14)-(2.17). Setting the second derivatives to zero, we get ||ζ||∞ = |ζ(r∗, zc)|,
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where r∗ =
(
n2
r+nr−2
nr−2

)1/nr
rc and ||η||∞ = |η(rc, z

∗)|, where z∗ =
(

1
nz+1

)1/nz
zc.

Choosing ε appropriately with respect to these constants should yield a unique

solution.

8.5.2 Discussion

Figures 8.23-8.31 show some sample results, with Uh to be taken as the rect-

angle which is one grid point wider in each direction than Kh. The figures

show the characteristic solutions on the left, and the weak solutions arising

from the extended domain problem on the right, in each case for the maximum

likelihood streamfunctions whose information voids were contained within Ωo.

The smoothed solutions are not particularly accurate in the information

voids, but rather appear to be the boundary values “smeared” into a neighbor-

ing region of the void. While the solution is now defined over all of Ω, there is

no reason to place a large amount of confidence in this weak solution, since it

bears little resemblance to a physical flow once we take derivatives to compute

u and w. The small scale fluctuations in Ψε are amplified in u and w, which is

evident from the oscillatory behavior near the boundaries of Kh. However, the

flow equations are being satisfied in some sense, and so the relevant physics are

being represented. Further, information from outside Kh is being introduced

into the interior of Kh, which is preferable to no information inside Kh at all.

Intuitively, the two types of dynamics are fighting against each other. The

advective portion of the model equations is attempting to only propagate so-

lutions along characteristic curves, while the elliptic portion is attempting to

spread information in a physically homogeneous manner. The relative sizes of

these terms determine which effect is dominant, and when they have compa-
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rable sizes, the effect is a mixture of the two. For grid points that are within

some critical neighborhood of an observation, the diffusive part of the dynam-

ics is able to propagate information from that observation to the gridpoint.

The other points, near the middle of Kh, are not within this critical radius,

and so do not feel the impact of these observations as much. This is evident

when we compare the streamfucntion solutions before and after smoothing,

with the portions of the boundary that have larger streamfunction values be-

ing surrounded by larger values in the smoothed solution, and similarly for the

smaller values.
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Figure 8.5: Retrieved Streamfunction Fields Using the MLE Tangential Ve-
locity for Different Values of h and Error Σ.
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Figure 8.6: Retrieved Radial Velocity Fields Using the MLE Tangential Ve-
locity for Different Values of h and Error Σ.
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Figure 8.7: Retrieved Vertical Velocity Fields Using the MLE Tangential Ve-
locity for Different Values of h and Error Σ.
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Figure 8.8: Retrieved Streamfunction Fields Using the MLE Tangential Ve-
locity for Different Values of h and Error 2Σ.
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Figure 8.9: Retrieved Radial Velocity Fields Using the MLE Tangential Ve-
locity for Different Values of h and Error 2Σ.
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Figure 8.10: Retrieved Vertical Velocity Fields Using the MLE Tangential
Velocity for Different Values of h and Error 2Σ.
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Figure 8.11: Retrieved Streamfunction Fields Using the MLE Tangential Ve-
locity for Different Values of h and Error 3Σ.
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Figure 8.12: Retrieved Radial Velocity Fields Using the MLE Tangential Ve-
locity for Different Values of h and Error 3Σ.
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Figure 8.13: Retrieved Vertical Velocity Fields Using the MLE Tangential
Velocity for Different Values of h and Error 3Σ.
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Figure 8.14: Conditional Distributions of 1000 Most Likely Values of u+ for
Different Values of h and Error Σ.
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Figure 8.15: Conditional Distributions of 1000 Most Likely Values of w+ for
Different Values of h and Error Σ.
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Figure 8.16: Conditional Distributions of 1000 Most Likely Values of |~v|max

for Different Values of h and Error Σ.
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Figure 8.17: Conditional Distributions of 1000 Most Likely Values of u+ for
Different Values of h and Error 2Σ.
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Figure 8.18: Conditional Distributions of 1000 Most Likely Values of w+ for
Different Values of h and Error 2Σ.
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Figure 8.19: Conditional Distributions of 1000 Most Likely Values of |~v|max

for Different Values of h and Error 2Σ.
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Figure 8.20: Conditional Distributions of 1000 Most Likely Values of u+ for
Different Values of h and Error 3Σ.
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Figure 8.21: Conditional Distributions of 1000 Most Likely Values of w+ for
Different Values of h and Error 3Σ.
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Figure 8.22: Conditional Distributions of 1000 Most Likely Values of |~v|max

for Different Values of h and Error 3Σ.
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Figure 8.23: MLE characteristic streamfunction solutions (left) and elliptic
BVP solutions (right) for error 1σ for h = 1.5 (top), h = 2 (middle) and
h = 2.5 (bottom).

119



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

z

MLE Radial Velocity (h = 1.5, 1σ)

0.71422

0.57127

0.42832

0.28537

0.14242

0.00053

0.14348

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

z

MLE Radial Velocity (h = 1.5, 1σ)

0.71422

0.57127

0.42832

0.28537

0.14242

0.00053

0.14348

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

z

MLE Radial Velocity (h = 2.0, 1σ)

0.71422

0.57127

0.42832

0.28537

0.14242

0.00053

0.14348

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
z

MLE Radial Velocity (h = 2.0, 1σ)

0.71422

0.57127

0.42832

0.28537

0.14242

0.00053

0.14348

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

z

MLE Radial Velocity (h = 2.5, 1σ)

0.71422

0.57127

0.42832

0.28537

0.14242

0.00053

0.14348

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

z

MLE Radial Velocity (h = 2.5, 1σ)

0.71422

0.57127

0.42832

0.28537

0.14242

0.00053

0.14348

Figure 8.24: MLE characteristic radial velocity solutions (left) and elliptic
BVP solutions (right) for error 1σ for h = 1.5 (top), h = 2 (middle) and
h = 2.5 (bottom).
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Figure 8.25: MLE characteristic vertical velocity solutions (left) and elliptic
BVP solutions (right) for error 1σ for h = 1.5 (top), h = 2 (middle) and
h = 2.5 (bottom).
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Figure 8.26: MLE characteristic streamfunction solutions (left) and elliptic
BVP solutions (right) for error 1σ for h = 1.5 (top), h = 2 (middle) and h = 3
(bottom).
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Figure 8.27: MLE characteristic radial solutions (left) and elliptic BVP so-
lutions (right) for error 1σ for h = 1.5 (top), h = 2 (middle) and h = 3
(bottom).
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Figure 8.28: MLE characteristic vertical velocity solutions (left) and elliptic
BVP solutions (right) for error 1σ for h = 1.5 (top), h = 2 (middle) and h = 3
(bottom).
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Figure 8.29: MLE characteristic streamfunction solutions (left) and elliptic
BVP solutions (right) for error 1σ for h = 1.5 (top), h = 2.5 (middle) and
h = 3 (bottom).
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Figure 8.30: MLE characteristic radial velocity solutions (left) and elliptic
BVP solutions (right) for error 1σ for h = 1.5 (top), h = 2.5 (middle) and
h = 3 (bottom).
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Figure 8.31: MLE characteristic vertical velocity solutions (left) and elliptic
BVP solutions (right) for error 1σ for h = 1.5 (top), h = 2.5 (middle) and
h = 3 (bottom).
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Chapter 9

Summary and Discussion

At the outset of this work, we asked whether it was possible to utilize mea-

surements of wind velocities from a few hundred meters above the surface to

estimate the character of the wind velocities near the surface in a tornadic flow.

Several approaches presented themselves. We chose a simple set of dynamics,

coupled with an empirical parametric model for the tangential velocity, in or-

der to (1) allow for a complete mathematical analysis of theoretical issues like

existence and uniqueness and to (2) facilitate a careful analysis of the propa-

gation of uncertainty in the form of measurement error through the retrieval

process.

The first insight we drew on was the modeling of the tangential wind com-

ponent using empirical models. These functions represent our best guess about

the behavior of the tangential velocity near the surface, where the interaction

with the surface causes v to weaken, thus allowing air to penetrate into the

core of the vortex. In the same chapter, we discussed how uncertainty in the

model and the data could be represented as probability density functions, and

how these densities could be combined to get a posterior density, from which

we could draw samples and attempt to understand the impact of errors on the

retrieved radial and vertical velocities.
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We addressed the theoretical questions of finding strong solutions u and

w to our model equations in Chapter 5. We found that there is always a

nontrivial region near the surface that can be directly estimated from data

aloft. We also discovered that the combination of our observations and model

constraints were not always enough to obtain a unique solution over the entire

unobservable domain, flowing directly from the mathematical formulation of

our problem as a first order hyperbolic equation. For a particular class of tan-

gential velocity models, namely the tensor product of two functions satisfying

certain conditions, we classified sets we called information voids where the

strong solutions fail to be uniquely defined, and showed that for more general

tangential velocity models, this classification no longer holds, since there are

counterexamples.

In Chapter 6, we explored three methodologies for specifying a unique

solution on information voids, and showed how do so with minimal departure

from the strong solutions by choosing a diffusivity constant ε which is no larger

than necessary to satisfy the requirements of the Lax-Milgram theorem.

For a deeper look at investigating the effects of uncertainty, Chapter 7

initially reviewed a few theorems that gave assurance that the solution map

v 7→ u,w is continuous for our set of equations, and so small errors or pertur-

bations in v should not concern us too much. A few simple results show how

we can specify values of the velocities along the boundary of Ωh which ensure

maximum agreement of the characteristic solutions with observations in Ω\Ωh.

Finally, we explicitly discuss how sampling the parameter space Q and com-

puting the forward solutions corresponding to each parameter vector leads to

a probability distribution for the velocity components. Using this distribution,

we can calculate moments and other statistics, and perform hypothesis tests,
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which are far more useful than a single “optimal” answer.

We implemented these ideas in Chapter 8 using a set of pseudo-observations

generated in part from an idealized thunderstorm/tornadogenesis model writ-

ten by Robert Davies-Jones, a research meteorologist with a distinguished

career studying, among other things, tornado dynamics. The numerical tests

indicated that for our idealized problem, the methodology performs well when

the model parameters are estimated accurately, indicating the need for ensem-

bles to average out parameter estimate errors. Since the collections of strong

solutions were not all defined on the entire physical domain, random variables

defined on the velocities were calculated, and the propagation of uncertainty

from the observations to these variables was also investigated numerically.

To recap, the initial question we asked was answered in the affirmative, and

along the way we developed mathematical theory to address the difficulties we

encountered. There are a few open questions to answer. The first is how to

best estimate the streamfunction from observations of u and v alone. In our

tests we used measurements of w to initialize Ψ, and using a real dual Doppler

data set, we would not have access to the vertical velocity. The second is

how to choose an appropriate tangential model for a collection of radar data.

This question is best addressed in the realm of model selection, using one

or more of the various information criteria. Finally, a real data set is going

to have nontrivial, possibly correlated random error in it, and before we are

able to apply this methodology, we will need to find an appropriate method

to preprocess observations so as to end up with useful results. These are all

appropriate topics for future work.
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