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Abstract  

Ecological communities often contain a wide diversity of species but how 

different species may arise and stably coexist, especially in homogenous spatial 

environments, is poorly understood. In this dissertation, I use the well-known digital 

life system, Tierra, to explore the influence of predation on community diversity in a 

homogenous environment. In order to introduce predation into the Tierra system, I 

design a digital predator whose survival and reproduction depend on the amount of 

CPU energy acquired through predation. This energy dependence of predators on their 

prey robustly generates a “Lotka-Volterra-like” cyclic oscillation in Tierra. This cyclic 

outcome suggests that the design of digital prey and predators may capture some 

essential properties of the predation relationship observed in nature.  

After predation is built into the Tierra system, I study two predation strategies that 

predators may use when encountering two or more different types of prey, namely, 

proportional predation and positive frequency-dependent predation. I block all the 

mutations in Tierra so that predators and prey interact with each other in an ecological 

scenario. The simulation results show that a predator population with positive 

frequency-dependent behavior maintains a stable coexistence of multiple competing 

prey species, but a predator population with proportional predation behavior fails to do 

so. Further studies on the underlying mechanisms of the maintenance of prey diversity 

reveal that by consuming disproportionately more of the common prey type than of the 

rare one, positive frequency-dependent predation essentially provides a strong negative 

feedback regulation on prey populations, which tends to equalize the abundances of 

different prey species and thus results in a stable persistence of prey diversity. 
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Therefore, in contrast to the previous studies which questioned whether the mechanism 

of positive frequency-dependent predation functioned at a population level, the 

simulation results here strongly support that a population of frequency-dependent 

predators has the potential to maintain the diversity of prey species in nature.  

Besides their effects on maintaining prey diversity, the two predation strategies 

are further examined from the perspective of enhancing the fitness of predators when 

they feed on two different types of prey. The simulation results show that when the 

predators with one predation strategy become the dominant type, they change the 

relative abundance of two prey types in such a way that favors, rather than depresses, 

the predators with the other predation strategy. This mutual support, rather than 

exclusion, allows the two predation strategies to be comparably competitive and thus 

may coexist in the population or either one of them may go extinct.  

With the understanding of prey diversity maintained by a population of predators 

with positive frequency-dependent behavior in the ecological scenarios, I proceed to 

explore the changes in community diversity influenced by predators during evolution 

when various types of mutations in Tierra are turned on to allow digital creatures to 

evolve. The simulation results show that the community with persistent intensive 

predation robustly exhibits significantly higher diversity than the community without 

predation. Therefore, positive frequency-dependent predation may also be able to 

promote and maintain a high level of diversity in an evolving ecological community. In 

addition, with the presence of predation in the community, the sizes of digital creatures 

remain relatively constant during evolution, which prevents the loss of complex 

structures in the genomes of creatures as well as promoting rich interactions among 
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creatures. This suggests that the community of prey and predators may maintain 

interesting ecological dynamics through longer periods of evolution. Furthermore, as 

digital creatures constantly adapt to their ever-changing biotic environment, a 

coevolving pattern between prey and predator populations spontaneously emerges in 

Tierra: prey mutate their templates to avoid being found by predators and predators 

evolve their templates to circumvent the escape strategy developed in the newly 

evolved prey. These reciprocal adaptations may continuously create new niches and 

thus drive the evolution of prey and predators in the digital community.  
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Chapter 1: Introduction  

In this chapter, I review a few classic papers and recent studies on the increase 

and maintenance of high species diversity in homogenous environments by predation 

(in addition to the literature review in this chapter, more literature review on “Lotka-

Volterra” cycles, proportional predation, especially positive frequency-dependent 

predation, are included in chapters 2, 3 and 4 where each of those topics is studied in 

detail). Then I briefly describe the history of digital life and emphasize its recent 

applications to explore general principles in evolutionary biology. After that, I 

introduce the well-known digital life system, Tierra, which I use to investigate how a 

population of digital predators with positive frequency-dependent behavior may 

promote and maintain high community diversity during evolution. Finally, I lay out the 

questions that are examined in this dissertation.    

1.1 Effects of Predation on the Increase and Maintenance of Species 

Diversity in Homogenous Environments 

Species diversity is one of the most ubiquitous and spectacular phenomena in 

nature, but how it may arise, persist and shape the evolutionary process is still far from 

being fully understood. One of the ecological theories proposes that in a homogenous 

environment, high species diversity may be achieved by predation. Due to competitive 

exclusion, many species may be driven to extinction by a few dominant competitors. 

But this reduction of species diversity can be avoided by the presence of predators. 

Predators limit the populations of dominant prey species and thus more resources 

become available to support the survival of other species. This predation mechanism to 
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prevent the loss of prey diversity has been supported by several classic and elegant 

experimental studies. For example, Paine discovered that without the predatory sea star 

Pisaster, the dominant competitors, mussels and barnacles, began to occupy more and 

more space and eventually crowded out other invertebrate prey species in the area. The 

15 prey species that stably coexisted in the presence of sea stars rapidly decreased to 8 

species after the predator was removed (Paine, 1966; Paine, 1974). Morin observed a 

similar effect of predation on the abundances of different prey species, as he studied a 

vertebrate predator, newt (Notophthalmus viridescens), feeding on 3 species of larval 

frogs (Scaphiopus holbrooki, Hyla crucifer and Bufo terrestris). In the absence of 

predation, Scaphiopus tadpoles dominated the pond along with some Bufo, but Hyla 

population was almost driven to extinction. However, with the introduction of newts 

which preferentially fed on Scaphiopus and Bufo tadpoles. Hyla population markedly 

increased and the 3 frog species coexisted in the community with a more even relative 

abundance (Morin, 1981).  

Recently, research has begun to reveal that in addition to maintaining prey 

diversity in ecological scenarios, predators may also act as a selection force to promote 

the diversification of prey species. For example, Fine et al. found that tree species that 

lived on nutrient-poor white-sand soils (white-sand soil specialists) were different from 

those that lived on nutrient-rich lateritic red-clay soils (clay soil specialists). However, 

this difference was not caused by the soil types, but rather by the herbivores that 

inhabited the white-sand soils. When the tree seedlings of clay soil specialists were 

transplanted to white-sand soils, in the absence of herbivores, they actually survived 

significantly better than the tree seedlings of white-sand soil specialists. However, 
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under the attack of herbivores, white-sand soil specialists outcompeted clay soil 

specialists. Meanwhile, probably due to resource demands to maintain herbivory 

defense, white-sand soil specialists could not grow as fast as clay soil specialists on the 

clay soils. Therefore, herbivores may facilitate habitat specialization, which besides 

allowing different tree species to coexist, may also promote new tree species to emerge 

(Fine et al., 2004; Marquis, 2004). This predation initiated diversification process in 

prey was also reported by Eklöv and Svanbäck, as they found that predation risk in 

different habitats may induce morphological changes in prey fish (Eklöv and Svanbäck, 

2006). Nosil and Crespi conducted a field experiment to examine the influence of visual 

predators on the divergence of Timema walking sticks. Their results demonstrated that 

two ecotypes of walking stick insects differed significantly in their phenotypic traits 

and this difference was strongly positively correlated with the divergent selection 

imposed by bird predators (Nosil and Crespi, 2006). In addition to field studies in 

which the consequence of predators on prey divergence may be examined, well-

designed laboratory experiments allow researchers to directly observe the ongoing 

process of prey diversification under predation. For example, bacterium Pseudomonas 

fluorescens, when incubated in static broth cultures, rapidly evolved phenotypic 

diversity: from the isogenic population of a single smooth morph (SM) to 3 coexisting 

morphs (smooth (SM), wrinkly spreader (WS) and fuzzy spreader (FS)), with each 

occupying a different place in the spatially heterogeneous environment provided by the 

static cultures (Rainey and Travisano, 1998). By constantly shaking the cultures, Gallet 

et al created a homogeneous environment for P. fluorescens and found that the 

ancestral SM morph did not diversify. However, after the predator Bdellovibrio 
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bacteriovorus was introduced into the cultures, WS and FS morphs emerged. Those 

results suggested that in the presence of predation, the phenotypic diversity of P. 

fluorescens could also be achieved in a spatially homogenous environment (Gallet et 

al., 2007). Brockhurst et al. conducted a similar experiment but used viral parasites 

(bacteriophage). Besides demonstrating that the presence of parasites increased the 

phenotypic diversity of P. fluorescens in homogenous environments, they also revealed 

that predation or parasitism may generate novel ecological opportunities for prey to 

evolve resistance or escape strategies and thus result in the diversification in prey 

species (Brockhurst et al., 2004).  

On the other hand, stable coexistence of multiple prey species, generated and 

maintained by predation, provides more feeding options for predators. To avoid 

competing for the same resource, predators may also diversify to different species, with 

each specializing on a different prey type (Stanley, 1973). Therefore, predation may 

have the potential to facilitate the increase of diversity in both prey and predator 

species. 

1.2 Studying Evolutionary Challenges by Using Digital Creatures 

The earliest study of digital life began around the mid 1980s as researchers tried 

to invent computer programs that were able to reproduce themselves. Mutations did not 

occur, thus those self-replicating programs could not evolve (Dewdney, 1984). Thomas 

Ray was the first to create freely evolving digital life. In his “Tierra” world, digital 

creatures competed for limiting resources, CPU time and memory space, for their 

survival and reproduction. The genomes of digital creatures, composed of machine 

instructions, were continuously modified by random mutations which provided the 
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creatures with the potential to evolve a variety of adaptations to their ever-changing 

environment, as described in detail in section 1.3 (Ray, 1991). Many design features in 

Tierra were later adopted by Christoph Adami as he developed digital life in the Avida 

system. Besides self-replication, the digital creatures in Avida could also receive data 

input, carry out computations and output results, and earned extra CPU energy to speed 

up their replication if they evolved pathways to perform correct calculations. Through 

the evolution of computational ability, complex digital creatures were first observed to 

emerge from their simple ancestors in Avida (Wilke and Adami, 2002; Adami, 2006). 

Currently, the evolution of digital life inside a computer has become an alternative but 

powerful experimental method to explore general principles in evolutionary biology. In 

addition to strikingly fast generation times of digital creatures (on the order of seconds), 

the evolutionary experiments in the digital world can be accurately repeated and 

thoroughly analyzed: almost any variables in the experiments can be manipulated and 

be precisely measured; moreover, complete genetic information of all digital creatures 

can be recorded, which allows one to trace back any evolutionary path of interest. 

Therefore, by examining the evolution of digital creatures, researchers may be able to 

address some fundamental questions that are difficult or impossible to study with 

organic life forms (Wilke and Adami, 2002; Adami, 2006; O‟Neill, 2003). 

Many studies have demonstrated the power of using digital creatures to unravel 

evolutionary challenges. For example, Lenski et al. explored a long-standing question 

in evolutionary biology ― how can complex features in organisms be generated by 

random mutations and natural selection? Through tracking the evolutionary path from 

an ancestral digital creature with a complete lack of computational ability to its remote 



6 

 

descendant which performed a complex logic function by coordinately executing many 

machine instructions in its genome, and examining the consequence of every mutation 

in the intermediate genomes along this pathway, Lenski et al. showed that the ancestral 

creature first, by a relative few mutations, evolved the ability to perform simple 

functions. Those groups of machine instructions which were responsible for carrying 

out simple computations served as building blocks, from which the instructions for 

executing the complex function emerged. They also found that not all the mutations 

were beneficial but deleterious mutations were often necessary for the appearance of 

the subsequent beneficial mutations. Furthermore, the ability to perform the complex 

function could be achieved through many different evolutionary paths, which indicated 

that the origin of complex features by random mutations and natural selection may 

occur with a high probability, rather than being a rare event (Lenski et al., 2003). 

Lenski et al. also studied interactions among mutations in the genomes of digital 

creatures and found that antagonistic epistasis (a deleterious mutation at one site 

mitigated the deleterious effect of a mutation at another site) was much more significant 

in genomes with a complex structure than in simple genomes. This epistasis allowed 

complex genomes to be less influenced by deleterious mutations (Lenski et al., 1999). 

Ostrowski et al. investigated the transition process from generalist to specialist by 

examining the evolutionary path of digital generalist creatures which were able to 

perform different logic functions. They found that when the digital creatures evolved 

the ability to perform one function very efficiently, they often lost the ability to perform 

other functions, through neutral and deleterious mutations (Ostrowski et al., 2007). Due 

to their simple genomic structures, digital creatures were not able to store resources for 
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subsequent use. This feature was exploited by Kraaijeveld as he investigated the costs 

of parasite resistance in the absence of resource reallocation. He found that as digital 

creatures competed for limiting resources for their reproduction, the host genotypes 

which evolved better resistance to parasites had a slower replication rate than the 

susceptible host genotypes in the environment lacking parasites. Therefore, resistance 

to parasites may also be costly when resistance was not resource based (Kraaijeveld, 

2007).  

Long-term evolutionary patterns, which may be difficult to study with organic life 

forms due to their long generation times, are frequently explored in the digital world. 

For example, research on macro-evolution showed that in the evolving digital 

community, long periods of stasis during which the genomes of digital creatures 

remained relatively constant, were often interrupted by brief periods of rapid change 

during which the structures of genomes were dramatically modified, allowing a 

significant increase in the fitness of digital creatures (Ray, 1991; Ray, 1994; Adami, 

1995). This intermittent picture of evolution observed in the digital community was 

consistent with the pattern that occurred in long-term experiments with Escherichia coli 

(Lenski and Travisano, 1994) and supported the punctuated equilibrium theory (Gould 

and Eldredge, 1977). Adami et al. examined the changes of genomic complexity in 

digital creatures over more than 10,000 generations and reported that a distinctive 

increase in complexity occurred, along with a jump in the fitness of digital creatures, 

during a major evolutionary transition (Adami et al., 2000). Yedid and Bell 

systematically varied one of the crucial parameters of the evolutionary process ― 

mutation rate, to observe its consequence on the digital community. Their results 
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showed that at low mutation rates, as a beneficial mutant emerged, it quickly became a 

dominant genotype, reaching an abundance of more than 80% and the succeeding 

dominant genotype was always the direct descendant of the current dominant type. 

However, at high mutation rates, the dominant genotype typically had an abundance of 

less than 40% and coexisted with many rare genotypes in the community. The 

succeeding dominant genotype often originated from a non-dominant type. Those 

results suggested that classic periodic selection may only apply to the cases of very low 

mutation rates, thus new theories may need to be developed to explain the evolutionary 

patterns in a community with high mutation rates (Yedid and Bell, 2001). Wagenaar 

and Adami investigated the effect of history on adaptations when digital creatures were 

transferred from one environment to another and found that the digital creatures were 

able to quickly adapt to the new environment by evolving new computational ability to 

acquire extra CPU energy. However, their fitness in the new environment was affected 

by their history of living in the old environment and this historical influence was less 

significant when the two environments were different than when they were similar to 

each other (Wagenaar and Adami, 2004).  

The mechanisms of increasing and maintaining community diversity during 

evolution in a spatially homogenous environment have also been investigated by using 

digital creatures. For example, Cooper and Ofria studied the influence of resource 

availability on the evolution of diversity in a digital community. They provided nine 

different computational resources in the environment which rewarded digital creatures 

with extra CPU energy if they developed the ability to correctly perform the 

calculations. They found that when those resources were depletable (that is, as more 
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individuals consumed a resource, the resource level would decrease, which reduced the 

benefit gains to further exploit this resource), high genotypic diversity emerged and 

persisted in the community and coexisting genotypes often specialized on using 

different resources. However, as they increased the resource level to be infinite, that is, 

a resource was always available regardless of the number of creatures that consumed it, 

the diversity disappeared and the community was dominated by a single genotype. 

Their results supported the idea that competition for limiting resources may be 

fundamental to the rise of community diversity (Cooper and Ofria, 2002). This 

mechanism of density-dependent resource consumption was further examined by Chow 

et al. as they explored the relationship between the rate of resources flowing into the 

digital community (productivity) and the species richness in the community. They 

found that species richness achieved its maximum value at an intermediate productivity 

level, rather than at low and high productivities, which suggested that sufficient but 

limited resources could facilitate the speciation process among digital creatures (Chow, 

et al., 2004). Zaman et al. studied the effects of parasites on host diversity in the 

evolving digital community and revealed that the host population that coevolved with 

parasites exhibited a higher diversity than the host population that evolved alone. 

Moreover, the evolving host-parasite community was more diverse than the host-

parasite community lacking continuous new mutations (Zaman et al., 2011). 

With these successful and convincing studies with digital life, more and more 

researchers are starting to recognize that these non-carbon based life forms may provide 

important contributions to our understanding of the evolutionary process in organic life.  
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1.3 Tierra System 

Tierra is a virtual computer which implements Darwinian evolution inside a real 

computer. It operates on a block of RAM memory, referred to as the “soup”, where 

digital creatures “live” and actively interact with one another. The “genome” of each 

digital creature consists of a sequence of machine instructions which, when being 

executed, allow the creature to reproduce itself. The Tierran virtual operating system 

specifies the mechanisms of the allocation of memory space and CPU time among 

creatures. Moreover, to achieve the simultaneous survival of many digital creatures in 

the soup, the operating system emulates a parallel execution of the genomes of different 

creatures by allowing each creature to execute a small portion of its genome in turn. 

Old and defective creatures are constantly removed from the soup to provide space for 

newborn creatures. Furthermore, various types of mutations occur in Tierra to modify 

the genomes of creatures and thus produce new genotypes. Those mutations may arise 

as background noise, similar to the effect of cosmic rays, to change the machine 

instructions of any creatures in the soup, or may occur during the replication process 

and cause some instructions in the daughter cell to be different from those in its mother 

cell. With the continuous emergence of new genotypes by mutations and selection 

favoring the genotypes that successfully acquire resources to replicate themselves in the 

highly competitive environment, the evolution of a digital ecological community begins 

in Tierra (Ray, 1991).  

Most evolutionary simulations use some pre-defined criteria to evaluate the 

fitness of each individual in the population. Then based on its fitness value, each 

individual is assigned to leave a certain number of offspring to the next generation. 
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However, in nature, there are no explicit criteria; instead, the fitness of an individual is 

directly measured by its ability to survive, and by the number of offspring it produces. 

This implicit fitness function is fully achieved in Tierra as creatures compete for 

limiting resources (CPU time and memory space) for their survival and reproduction. 

The digital creatures which acquire more resources may leave more descendants in the 

soup. More importantly, digital creatures are able to enhance their fitness by evolving 

novel strategies to exploit one another. For example, after the soup was dominated by 

populations of creatures that were able to reproduce by themselves, digital parasites 

emerged which relied on some machine instructions in their hosts (normal self-

replicating creatures) to complete their reproduction process. This exploitation of the 

genomes of other creatures allowed parasites to significantly reduce their size and under 

selection favoring smaller genomes, digital parasites flourished in the soup and caused 

their host populations to decline (a separate ecological run showed that the digital host 

and parasite populations essentially exhibited a “Lotka-Volterra” cycle). Surrounded by 

abundant parasites, some hosts evolved resistance to parasites and became the dominant 

genotypes in the soup. Later on, the populations of those immune hosts were invaded 

by a new type of parasite which developed some strategies to circumvent the immunity 

in the hosts. In addition to the immune hosts, the presence of digital parasites also 

facilitated evolution of hyper-parasites which, when attacked by parasites, not only 

prevented parasites from using their genomes but also seized the parasites‟ CPU time. 

This exploitation of other creatures‟ CPU time as an additional energy source increased 

the reproduction rate of hyper-parasites. After parasites, being deprived of CPU time, 

went extinct, the community of hyper-parasites reached a high level of genetic 
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uniformity which promoted the emergence of social creatures (social hyper-parasites), 

which invented a strategy to reproduce in groups by cooperating with their neighboring 

creatures. This community of social hyper-parasites was later invaded by cheaters 

(hyper-hyper-parasites): a cheater inserted itself between two neighboring social hyper-

parasites and stole the hyper-parasite‟s CPU time when a cooperative reproduction 

occurred between the two social creatures (Ray, 1991).  

This spontaneous emergence of diverse types of digital creatures, with each 

evolving a novel strategy to exploit its biotic environment, strongly suggests that the 

Tierra system may have the potential to support an open-ended evolution inside a 

computer by continuously creating new niches through the active interactions among 

digital creatures. Furthermore, instead of simulating the life forms on earth, the Tierra 

system supports the synthesis of digital life forms as they exploit their silicon world. 

Therefore, digital life may be considered as an independent instance of life which 

evolves in a completely different environment than the organic life on earth. The 

comparison between organic life and digital life may provide us a deep understanding 

of the fundamental characteristics of life. 

1.4 Questions Investigated in This Dissertation  

In this dissertation, I conduct simulations in the Tierra system to explore the 

effects of predation on the increase and maintenance of community diversity in a 

homogenous environment. I attempt to create a predation scenario in Tierra similar to 

the one in nature: I design a digital predator which is able to capture digital prey and 

acquire CPU energy from them, and then I evaluate this design by examining whether 
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the dynamics of digital prey and predator populations follow the “Lotka-Volterra” 

cyclic oscillation, the most fundamental predation relationship observed in nature.        

After predation is built into the Tierra system, I study two predation strategies that 

predators may use when they feed on different types of prey, that is, proportional 

predation and positive frequency-dependent predation. I first compare the influence of 

those two predation strategies on the maintenance of prey diversity in an ecological 

scenario and explore the underlying mechanisms for a predation strategy to support the 

stable coexistence of multiple competing prey species. Then I examine which of the 

two predation strategies would provide predators a higher fitness in a dynamic biotic 

environment in which the relative abundance of different prey types is constantly 

changing.   

With the understanding of prey diversity maintained by frequency-dependent 

predators in the ecological scenarios, I proceed to explore a more challenging but more 

intriguing question: whether those predators could also generate high and stable 

community diversity during an evolutionary process. I design the rules to allow 

predators to track the new prey types which continuously emerge during evolution, and 

thus to execute positive frequency-dependent predation based on their most recent 

predation history. Then, I compare diversity in the community with intensive predation 

with that in the community lacking predation. Furthermore, by examining changes in 

the genomes of evolving creatures, I study the coevolutionary dynamics between 

predator and prey populations in Tierra.     
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Chapter 2: Introducing Predation into the Tierra System 

In the original Tierra implementation, two forms of predation emerged through 

evolution: parasites and hyper-parasites. Digital parasites evolved to exploit the genome 

codes of other creatures and thus relied on those creatures for reproduction. A “Lotka-

Volterra-like” cycle existed between those parasites and their hosts (Ray, 1991). Digital 

hyper-parasites were able to reproduce themselves and steal additional CPU energy 

from parasites to enhance their reproduction rate (Ray, 1991). Because the survival of 

hyper-parasites did not depend on the existence of parasites, a “Lotka-Volterra” 

predation relationship was not present between the hyper-parasite and parasite 

populations. Rather, hyper-parasites tended to drive parasites to extinction. In this 

chapter, I attempt to create a predation scenario more similar to the one in nature, that 

is, predators acquire energy from their prey and the predator and prey populations 

exhibit the “Lotka-Volterra” cycle. I design a digital predator which is able to capture 

multiple prey individuals in its local area and obtain a small amount of energy from 

each prey. Then I evaluate this design by exploring whether or not the “Lotka-Volterra” 

cyclic dynamics exist between the digital predator and prey populations in Tierra.       

2.1 Digital Predator and Prey 

In Tierra, each digital creature is a self-replicating computer program whose 

execution requires CPU time. Therefore, the survival and reproduction of a digital 

creature depend on the amount of CPU time that the creature possesses, similar to the 

energy requirement for the survival and reproduction of an organic creature in nature. 
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2.1.1 Ancestral Creature in the Original Tierra System 

The ancestral creature was an 80 instruction-long, self-replicating algorithm. It 

was composed of three basic functional blocks: self-examination, replication loop and 

copy procedure, as shown in Figure 2.1. The ancestral creature first examined itself to 

find its beginning and ending locations in the memory space. Then it calculated its size 

by subtracting the addresses of those two locations and allocated a block of memory of 

this size for its daughter. After that, the copy procedure was called to copy the entire 

genome into the daughter cell, one instruction at a time. Following the completion of 

genome replication, the daughter cell was released as a mature individual by the 

DIVIDE instruction. After the first daughter was produced, the size of the ancestral 

creature had already been recorded, so the procedure of self-examination was not 

necessary when initiating the production of the second daughter. The ancestral creature 

directly proceeded to allocate memory space for the second daughter cell and then the 

copy procedure was followed by cell division, in an endless loop (Ray, 1991).  

Due to the exact numeric addresses used in the traditional Von-Neumann machine 

language, programs were extremely vulnerable to mutation, that is, any mutation events 

were almost certain to completely break down the programs. In order to develop 

evolvable programs, Tierran language used a novel address technique, called “address 

by templates”. This technique was inspired by molecular interactions in the biological 

system, for example, in order for molecule A to find and bind to molecule B, some 

conformations on the surface of molecule A needed to be complementary to those on 

molecule B. Similarly, Tierran language implemented 6 pairs of complementary 

templates to mark and locate sites in the ancestral creature. For example, the creature 
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began with the template 1111 and the complementary template 0000 was used to find 

the beginning address; the beginning of the copy procedure was marked with the 

template 1100 and the complementary template 0011 was used to call the copy 

procedure, and so on. When a template mutated, it was likely to match another template 

in the creature, rather than to cause the death of the program. Therefore, programs with 

“address by templates” were able to survive under mutations and thus had potential to 

evolve (Ray, 1991).    

2.1.2 Digital Predator 

The digital predator is 100 instructions long and shares the same basic structures 

of self-examination, reproduction loop and copy procedure as the ancestral creature in 

the original Tierra system. However, the predator has an additional predation loop 

inserted before reproduction, as shown in Figure 2.2. When the predator executes this 

predation loop, it starts to search for prey from its two ends (beginning and ending 

locations) bi-directionally, as shown in Figure 2.3. If a template in a prey is 

complementary to the predation template in the predator and that prey has not been 

eaten by other predators yet, then the predator eats that prey. This causes a certain 

percent of the prey‟s CPU time to be transferred to the predator, and the prey‟s CPU 

time is reduced to a small amount. Then the predator continues searching for more prey 

until either it has eaten the maximum number of prey allowed in one predation loop or 

it has reached the boundary of its local area, as illustrated in Figure 2.3.  
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Figure 2.1: Algorithmic flow chart for the ancestral creature in the original Tierra system: ax, 

bx, and cx are CPU registers and arrows outside of the boxes indicate jumps in the flow of the 

execution of the program. The creature begins with the template 1111 and the complementary 

template 0000 is used to find the beginning location of the creature which is then stored into bx. 

Similarly, the ending location is found and stored into ax. The size of the creature is calculated 

and stored into cx. Then the creature allocates a block of memory of this size for its daughter 

and the beginning location of the daughter cell is stored into ax. After that, the copy procedure 

is called by matching the two complementary templates 0011 and 1100. The values in the 3 

registers, ax, bx, and cx, are saved to the stack before the execution of the copy loop. Then the 

genome of the mother cell (starting from the address saved in bx, with the size saved in cx) is 

copied to the daughter cell (starting from the address saved in ax, with the same length as its 

mother), one instruction at a time. When the duplication completes, the copy loop is exited by 

matching the templates 0100 and 1011. The original values of ax, bx, and cx are restored from 

the stack and the program proceeds to release the mature daughter through cell division. After 

the reproduction of its first daughter, the creature continues producing more daughters through 

the loop of memory allocation, copy procedure and cell division.    

1111 

find 0000 [start] → bx 
find 0001 [end] → ax 
calculate size → cx 

self-exam 

1101 

allocate daughter → ax 
call 0011 [copy procedure] 

cell division 
jump 0010 

1100 

copy procedure 

save registers to stack 
1010 

move instr. at [bx] → [ax] 
decrement cx 

if cx == 0 jump 0100 
increment ax & bx 

jump 0101 
1011 

restore registers 
return 

1110 
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Figure 2.2: Algorithmic flow chart for the predator and prey in the Tierra system. The 

predation template in the predator (0110) is complementary to the template in the prey (1001), 

which allows the predator to catch the prey and acquire CPU time from it. In each predation 

loop, the predator is allowed to eat at most m prey in its local area. If either the predator has 

eaten m prey or the predator has reached the boundary of its local area before it captures m prey, 

the predation loop is exited and the program proceeds to reproduction.   

Predator Prey 

1111 1111 

self-exam self-exam 

  find 0000 [start] → bx 
  find 0001 [end] → ax 

calculate size → cx 

find 0000 [start] → bx 
find 0001 [end] → ax 
calculate size → cx 

1101 

0111 
find 0110 [predation marker] 

get prey‟s CPU time 
if the predator has eaten less 
than 𝑚 prey in its local area  

jump 1000 

predation loop 

reproduction 

allocate daughter → ax 
call 0011 [copy procedure] 

cell division 

jump 0010 

1100 

copy procedure 

save registers to stack 
1010 

move instr. at [bx] → [ax] 
decrement cx 

if cx == 0 jump 0100 
increment ax & bx 

jump 0101 
1011 

restore registers 
return 

1110 

predation marker 

1001 

1101 

reproduction 

allocate daughter → ax 
call 0011 [copy procedure] 

cell division 
jump 0010 

1100 

copy procedure 

save registers to stack 
1010 

move instr. at [bx] → [ax] 
decrement cx 

if cx == 0 jump 0100 
increment ax & bx 

jump 0101 
1011 

restore registers 
return 

1110 
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Figure 2.3: Illustration of the function of the predation loop in a predator. The predator detects 

its prey by searching for the template in the prey‟s genome, which is complementary to the 

predation template in itself.             represents the predator;          represents the prey that is 

available to the predator (the prey can be detected by the predator and has not been eaten by 

other predators);         represents the prey which can be detected by the predator but has already 

been eaten by other predators;          represents the prey which cannot be detected by the 

predator. Starting from its two ends, the beginning and ending locations, the predator searches 

for prey bi-directionally in its local area. The local area demonstrated in this figure is about 10 

creatures long on either side of the predator. In one predation loop, the predator is allowed to 

eat at most m prey. This figure shows the case of m = 6. (a) The number of available prey in the 

predator‟s local area is greater than (or equal to) 6. The predator captures 6 prey individuals and 

then exits the predation loop. (b) The number of available prey in the predator‟s local area is 

less than 6. The predator catches 4 prey individuals but is not able to find more prey before 

reaching the boundary of its local area. It then exits the predation loop with 4 captured prey 

individuals. 

 

After the predator exits the predation loop, it finds a space for its daughter and 

enters the copy procedure for replication. Following the release of its mature daughter, 

the predator enters the predation loop again to accumulate more energy for future 

reproduction. This loop of predation and then reproduction repeats until death.  

The commented Tierran assembler source code for the digital predator is 

presented in Appendix A. 

 

 local area 

search for prey bi-directionally 

 local area 

search for prey bi-directionally 

(a) 

(b) 
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2.1.3 Digital Prey 

The digital prey is the same as the ancestral creature in the original Tierra system 

except for an additional template before the reproduction loop, as shown in Figure 2.2. 

This template is complementary to the predation template in the predator and thus by 

template matching, the predator is able to find its prey.  

The commented Tierran assembler source code for the digital prey is presented in 

Appendix B. 

2.1.4 CPU Energy for Digital Prey and Predators 

The Tierra system assigns a standard amount of CPU time to each prey to support 

the survival and reproduction of the prey throughout its lifetime. However, a predator 

obtains reasonable CPU energy from the system only at the very beginning of its 

lifetime, that is, the amount of CPU time provided by the system is only sufficient for 

the predator to execute the predation loop to try to capture its first prey. After that, the 

predator receives only a very small amount of CPU time from the system (about 5% of 

the CPU time that a prey obtains from the system). If the predator fails to catch prey, it 

has almost no CPU time to execute more instructions. Therefore, the survival and 

reproduction of a predator almost completely depend on the CPU energy that it acquires 

from its captured prey. 

 

 

 



21 

 

2.2 “Lotka-Volterra-like” Cycle between Digital Predator and Prey 

Populations  

2.2.1 Predator-prey Cycle in Nature and the “Lotka-Volterra” Model  

Predator and prey populations in nature often exhibit closely synchronized cycles 

and long-term observations have confirmed that those population cycles continue more 

or less unchanged over many generations. For example, the populations of Canadian 

lynx and its principal prey, the snowshoe hare, showed very regular fluctuations of 

large magnitude. Over the observation period of 206 years, the cycles of those two 

species stably persisted and each cycle, on average, lasted about 9.6 years. The cycles 

were also highly synchronized with peaks in hare abundance one or two years ahead of 

the peaks in lynx abundance. This synchrony of the two species occurred over distances 

of more than 1000 km across Canada (Elton and Nicholson, 1942). Such cyclic 

behaviors of populations also occur between hosts and their pathogens. As the host 

population becomes abundant and crowded, the chances for pathogens to contact a new 

host significantly increase. Therefore, disease spreads rapidly among host individuals 

and causes the host population to decline to low levels. The low density of the host 

population breaks the chain of contagion, which results in the re-establishment of the 

host population. This pattern of host-pathogen interactions was clearly demonstrated by 

the synchronized population cycles of forest tent caterpillars and nuclear polyhedrosis 

viruses, the pathogen that caused high mortality of tent caterpillars at high population 

densities (Myers, 2000).   

In the natural environment, besides predation, other factors such as weather 

conditions, habitat suitability and population dispersal may also affect population 



22 

 

cycles. To further investigate the impact of predator-prey interactions on the oscillation 

of populations, researchers have tried to establish those cycles in laboratory settings. 

For example, Gause introduced Paramecium as the prey and Didinium as the predator 

into a nutritive medium in a test tube and after providing some hiding places for prey to 

escape, he achieved recurring oscillations in the predator and prey populations (Gause, 

1934; Gause et al., 1936). Huffaker used two different mite species with one feeding on 

the other to establish experimental populations. As he increased the spatial complexity 

of the environment and introduced barriers to retard predator dispersal so that prey 

could escape predation and re-establish themselves in a remote habitat before predators 

arrived, he obtained coexisting cyclic fluctuations of predator and prey populations 

(Huffaker, 1958). Those laboratory experiments confirm that the synchronized 

population cycles of predators and their prey could result from the predation-escape 

interactions between them.  

During the 1920s, Alfred J. Lotka and Vito Volterra developed the first 

mathematical model of predator-prey interactions to explain the cyclic dynamics of 

populations. The “Lotka-Volterra” model used differential equations to describe the 

factors that caused the changes in population sizes. The prey population declined due to 

predation and the larger the prey and/or the predator population, the higher the rate of 

encounter between predator and prey. Therefore, in the “Lotka-Volterra” model, the 

rate of prey removal by predators was directly proportional to the product of the 

population sizes of predators and prey. On the other hand, predation provided energy 

for predators to survive and reproduce thus, in the “Lotka-Volterra” model, the birth 

rate of predators depended on the number of captured prey. According to the “Lotka-
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Volterra” model, the change in the abundance of predator and prey populations 

followed a continuous closed cycle, one-quarter cycle out of phase, with the prey 

population increasing and decreasing ahead of the predator population (Lotka, 1925; 

Volterra, 1926).  

In conclusion, both laboratory experiments and mathematical models reveal that 

the highly synchronized cyclic oscillations of predator and prey populations observed in 

the natural environments could be explained by the dynamic interactions between 

predators and their prey. As predators acquire energy from their prey through predation, 

and the escaped prey restore the prey population, the cycles form: an abundant prey 

population provides more food for predators and thus is followed by a rise in the 

predator population. But as the number of predators increases, the growing predation 

pressure depresses the prey population. When fewer prey individuals are available, the 

predator population decreases which reduces the predation pressure. With fewer 

predators around, the remaining prey survive better and thus the prey population begins 

to increase again. 

2.2.2 “Lotka-Volterra-like” Cycle in Tierra 

To evaluate the predation relationship built in Tierra, I compare the dynamics 

between digital predator and prey populations with those in nature and investigate 

whether or not the fundamental pattern of the “Lotka-Volterra” cycle exists in Tierra. 

Methods 

The dynamics of the digital predator and prey populations are examined in 

ecological simulations, in which Tierra is run without mutation. Two types of prey, 

which differ only in their genome lengths, are used to interact with the predator. Type-
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A prey is 86 instructions long and type-B prey is 96 instructions long. Each prey type 

contains a template complementary to the predation template in the predator, so the 

predator is able to detect both of them. I seed the soup (a block of RAM memory) with 

300 predator individuals evenly distributed among 3000 individuals of type-A prey. 

Each predator is allowed to search for prey in its local area, about 10 creatures long on 

either side of the predator. In each predation loop, a predator can eat at most m (m = 6) 

prey individuals and it receives 15% of the CPU time from each prey. The amount of 

CPU time remaining in the captured prey is reduced to 15% of its original value. In a 

simulation run, I use the number of instructions that have been executed to measure the 

passage of time. The runs in this experiment last until 1000 million instructions have 

been executed, and I record the population sizes of predators and type-A prey during 

the runs. Then I use exactly the same parameter settings, except replacing type-A prey 

with 3000 individuals of type-B prey, to explore the relationship between the predator 

and type-B prey populations.   

Results  

In Tierra, each digital prey receives a certain amount of CPU time from the 

system, but a digital predator, similar to its counterpart in nature, acquires energy only 

through predation. When a digital predator searches for multiple prey in its neighboring 

area and obtains a small amount of CPU time from each prey, the “Lotka-Volterra-like” 

cycle forms between the predator and prey populations (Shao and Ray, 2010).  

As shown in Figure 2.4(a), after the transient initial stage, the type-A prey 

population rapidly reaches a constant level of about 2400 individuals and stably 

coexists with the predator population of about 900 individuals.  
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Figure 2.4: Coexistence of the predator and type-A prey populations in Tierra. (a) The predator 

and type-A prey populations stably coexist in the Tierra system. (b) “Lotka-Volterra-like” cycle 

between the predator population and the type-A prey population at the steady state from 800 to 

1000 million instructions executed in the Tierra system. 

 

As I examine the population dynamics at the steady state between 800 and 1000 

million instructions executed, as shown in Figure 2.4(b), a coupled cyclic oscillation 

between the predator and prey populations appears. But unlike “a quarter cycle out of 

phase” in the traditional Lotka-Volterra cycle, the phase shift between the predator and 
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prey populations in Figure 2.4(b) seems to be “a half cycle out of phase”, namely, as the 

predator population reaches the maximum, the prey population reaches the minimum, 

and vice versa. This phase shift may result from the “birth causes death” setup in the 

Tierra system: all digital creatures live in the same finite memory space and when this 

memory space is full, one or several old creatures are killed in order to provide enough 

room for a new-born creature. As a result, when one population grows with many new-

born individuals, it occupies more and more memory space and thus forces the other 

population to shrink. However, despite the difference in the phase shift, the underlying 

mechanism that drives the cyclic oscillation of the prey and predator populations in 

Tierra is the same as that in the Lotka-Volterra cycle. As shown in Figure 2.5, which is 

a copy of Figure 2.4(b) with 4 vertical dividing lines, as the prey population increases in 

region A, predators acquire more CPU energy from their prey through predation. As a 

result, the predator population ceases declining and starts to increase in region B. The 

growth of the predator population prevents the expansion of the prey population and 

causes it to decrease. As the available prey individuals drop in region B, the CPU 

energy transferred from the prey population to the predator population reduces which 

hinders the further growth of the predator population and causes it to decrease in region 

C. Therefore, the coupled cyclic dynamics between the digital predator and prey 

populations result from the energy dependence of predators on their prey, the very 

critical component which supports the Lotka-Volterra cycle in nature. Due to this 

fundamental similarity in producing population cycles, the dynamic oscillations of prey 

and predators in Tierra are called a “Lotka-Volterra-like” cycle. 
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Figure 2.5: Coupled cyclic dynamics between the digital predator and prey populations. A copy 

of Figure 2.4(b) with 4 vertical dividing lines demonstrates that the coupled cyclic dynamics 

between the digital predator and prey populations result from the energy dependence of 

predators on their prey.   

 

A very similar dynamic pattern appears when predators forage on type-B prey. As 

shown in Figure 2.6(a), the type-B prey population of about 2200 individuals steadily 

coexists with the predator population of about 850 individuals. This coexistence is 

achieved through the establishment of the “Lotka-Volterra-like” cycle between the 

predator and type-B prey populations, as shown in Figure 2.6(b). 

2.2.3 Fluctuations due to Randomness in the Tierra System 

To verify that the dynamic pattern between the predator and prey populations 

results from predation, rather than from random fluctuations in the Tierra system, I 

investigate the changes in population sizes caused by randomness in the system and 

compare those changes with the population dynamics shown in Figure 2.4. 
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Figure 2.6: Coexistence of the predator and type-B prey populations in Tierra. (a) The predator 

and type-B prey populations stably coexist in the Tierra system. (b) “Lotka-Volterra-like” cycle 

between the predator population and the type-B prey population at the steady state from 800 to 

1000 million instructions executed in the Tierra system. 
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function and share the same genome length as the type-A prey. Because each prey 

receives, on the average, the same amount of CPU time from the system, the prey types 

with the same genome length theoretically have the same reproduction rate and thus 

their population sizes should be maintained at a constant level. The fluctuations in the 

population sizes of type-A prey and its variant (type-A
*
 or type-A

**
 prey), therefore, 

reflect randomness in the system. I seed the soup with 300 individuals of type-A
*
 prey 

evenly distributed among 3000 individuals of type-A prey and run the simulation until 

1000 million instructions have been executed to observe the population dynamics 

between type-A prey and type-A
*
 prey. Then I replace type-A

*
 prey with 300 

individuals of type-A
**

 prey to explore the variations of the population sizes of type-A 

prey and type-A
**

 prey.   

Results 

In contrast to those shown in Figure 2.4, the population dynamics caused by 

random fluctuations in the system present a completely different pattern. As shown in 

Figure 2.7(a), the type-A prey and type-A
*
 prey populations slowly drift over 1000 

million instructions executed. Similarly, in Figure 2.8(a), the type-A prey and type-A
**

 

prey populations also change slowly with type-A
**

 prey drifting to extinction. The 

population dynamics from 800 to 1000 million instructions executed, as shown in both 

Figure 2.7(b) and Figure 2.8(b), exhibit a slow drift of the type-A prey and its variant 

populations without visible cycling.  
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Figure 2.7: Population drift due to randomness in the Tierra system. (a) The type-A prey and 

type-A
* 

prey populations slowly drift due to randomness in the Tierra system. (b) The type-A 

prey and type-A
* 
prey populations slowly drift without visible cycling from 800 to 1000 million 

instructions executed in the Tierra system. 

 

Those dynamic patterns shown in Figure 2.7 and 2.8 confirm that the coupled 

cyclic oscillations between the predator and prey populations in Figure 2.4 are not the 

results of random fluctuations in the Tierra system, but rather result from the energy 

transfer from prey to predators through predation.  
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Figure 2.8: Population drift due to randomness in the Tierra system. (a) The type-A prey and 

type-A
** 

prey populations slowly drift due to randomness in the Tierra system, and type-A
**

 

prey drift to extinction. (b) The type-A prey and type-A
** 

prey populations slowly drift without 

visible cycling from 800 to 1000 million instructions executed in the Tierra system. 
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acquire enough energy from the prey population, the predator population would go 

extinct. On the other hand, if, under high predation pressure, prey fail to find refuges to 

escape predation, predators would eat the prey population to extinction and then 

become extinct themselves. Here, I vary the amount of energy transferred from a 

captured prey individual to its predator and the amount of energy that remains in a 

captured prey to explore the conditions that maintain the coexistence of the predator 

and prey populations in Tierra. 

Methods 

I seed the soup with 300 predator individuals evenly distributed among 3000 

individuals of type-A prey. Each predator searches for prey in its local area (about 10 

creatures long on either side of the predator) and it is allowed to eat at most m (m = 6) 

prey individuals in each predation loop. The allocation of the amount of CPU time 

between a predator and its prey has three different combinations as follows: the 

predator receives 15% of the CPU time from its prey and the prey‟s CPU time is 

reduced to 0; the predator receives 10% of the CPU time from its prey and the prey‟s 

CPU time is reduced to 15% of its original value; the predator receives 15% of the CPU 

time from its prey and the prey‟s CPU time is reduced to 15% of its original value. The 

simulation runs last until either the prey or the predator population goes extinct but if 

both populations persist, the runs last until 1000 million instructions have been 

executed. I record the population sizes of predators and type-A prey during the runs. 

Results  

In Tierra, digital predator and prey individuals live in the same memory space 

(soup). When a simulation run starts, the population size of prey is 10 times larger than 
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that of predators. Surrounded by abundant prey resources, the predator population 

rapidly increases which causes the prey population to decline. If a prey‟s CPU time is 

reduced to 0 when caught by a predator, this prey would lose all the energy to execute 

its genome and thus fail to reproduce offspring. In the setup of Tierra simulations, there 

are no refuges for prey to hide. Thus, as predators occupy more and more space in the 

soup, they are able to find and eat every single prey. After predators consume the last 

prey individual in the soup, the predator population itself becomes extinct as well, as 

shown in Figure 2.9(a). Therefore, in the scenario that the CPU time of a captured prey 

is reduced to 0, the predator population would drive the prey population to go extinct 

and thus the “Lotka-Volterra” cycle is not possible. 

As discussed in 2.2.1, when refuges are available, predators are unable to 

completely eliminate the prey population and those prey individuals surviving in the 

refuges re-establish the prey population after the predation pressure declines. In the 

absence of refuges in Tierra, I mimic this “refuges effect” by preserving a small amount 

of CPU time in captured prey individuals. That is, a predator does not completely 

remove all the CPU time of its prey, but rather reduces its prey‟s CPU time to a low 

value, such as 15% of the prey‟s original CPU time. As shown in Figure 2.9(b) and (c), 

with the restoration resulting from the small amount of CPU time maintained in the 

captured prey individuals, the prey population persists under predation.  

 

 

 

 



34 

 

 
 

 
 

 

 

Figure 2.9: Coexistence of predator and prey populations depends on the amount of CPU 

energy in each population. (a) When a predator receives 15% of the CPU time from its prey and 

the prey‟s CPU time is reduced to 0, the prey population goes extinct, followed by extinction of 

the predators. (b) When a predator receives 10% of the CPU time from its prey and the prey‟s 

CPU time is reduced to 15% of its original value, the predator population goes extinct. (c) 

When a predator receives 15% of the CPU time from its prey and the prey‟s CPU time is 

reduced to 15% of its original value, the predator and prey populations stably coexist in the 

Tierra system. 
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As shown in Figure 2.9(b), when a predator receives 10% of the CPU time from 

each of its prey, the predator population goes extinct after 15 million instructions have 

been executed. However, when the amount of CPU time that a predator acquires from 

its prey increases to 15%, as shown in Figure 2.9(c), the predator and prey populations 

stably coexist over 1000 million instructions executed. Therefore, sufficient energy 

transfer from prey to predators is required for the persistence of the predator population.  

The amount of CPU time remaining in captured prey individuals affects the 

persistence of the prey population. The amount of CPU time that predators acquire 

through predation (the number of prey caught and the amount of CPU time received 

from each captured prey) influences the maintenance of the predator population. Here, I 

investigate the effects of those three parameters on the robustness of the “Lotka-

Volterra-like” cycle between the predator and prey populations. 

Methods 

I seed the soup with 300 predator individuals evenly distributed among 3000 

individuals of type-A prey and each predator searches for prey in its local area (about 

10 creatures long on either side of the predator). I vary the number of prey individuals 

that a predator is allowed to eat in each predation loop in the range of 3 to 6 (m = 3, 4, 

5, 6) and for each value of m, I systematically increase the amount of CPU time 

transferred from a captured prey to its predator. When a predator is allowed to eat at 

most 3 or 4 prey individuals in one predation loop, the amount of CPU time that the 

predator acquires from its prey increases from 20% to 40% in 2% increments and the 

amount of CPU time of a captured prey is reduced to 30% of its original value; when a 

predator is allowed to eat at most 5 or 6 prey individuals in one predation loop, the 
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amount of CPU time that the predator acquires from its prey increases from 10% to 

30% in 2% increments and the amount of CPU time of a captured prey is reduced to 

15% of its original value. The simulation runs last until either the prey or the predator 

population disappears but if both populations persist, the runs last until 1000 million 

instructions have been executed. I record the duration (the number of instructions 

executed) that the predator and prey populations coexist.   

Results  

When a predator eats at most 3 or 4 prey individuals in each predation loop (m = 

3 or 4), the prey population, with 30% of the CPU time remaining in the captured prey, 

persists regardless the changes in the amount of CPU time that the predator population 

receives. On the other hand, as shown in Figure 2.10(a) and (b), the predator population 

could not avoid extinction until it acquires enough energy through predation. For 

example, when m = 3, the predator population persists only after at least 34% of the 

CPU time from each captured prey is delivered to its predator; when m = 4, at least 24% 

of the CPU time from captured prey needs to be transferred to predators for the 

persistence of the predator population. The “Lotka-Volterra-like” cycle robustly 

appears when the predator and prey populations stably coexist in the soup. As m 

increases from 3 to 4, the range of the amount of CPU time required for supporting the 

predator population extends from [34%, 40%] to [24%, 40%]. Therefore when 

predators are allowed to consume more prey individuals, the “Lotka-Volterra-like” 

cycle exists over a larger parameter space.  
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Figure 2.10: Robustness of the “Lotka-Volterra-like” cycle between the predator and type-A 

prey populations in the Tierra system. (a) With m = 3, the “Lotka-Volterra-like” cycle appears 

when the amount of CPU time that a predator acquires from its prey is equal to or greater than 

34%. (b) With m = 4, the “Lotka-Volterra-like” cycle appears when the amount of CPU time 

that a predator acquires from its prey is equal to or greater than 24%. (c) With m = 5, the 

“Lotka-Volterra-like” cycle appears when the amount of CPU time that a predator acquires 

from its prey is equal to or greater than 18%. (d) With m = 6, the “Lotka-Volterra-like” cycle 

appears when the amount of CPU time that a predator acquires from its prey is equal to or 

greater than 14%.   

 

A very similar pattern appears, as shown in Figure 2.10(c) and (d), when a 

predator eats at most 5 or 6 prey individuals in each predation loop (m = 5 or 6). The 

prey population persists with 15% of the CPU time remaining in the captured prey. The 

predator population persists when sufficient energy is obtained through predation. As m 
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increases from 5 to 6, the “Lotka-Volterra-like” cycle occurs over a broader range of 

the amount of CPU time acquired by predators, from [18%, 30%] to [14%, 30%]. 

 

 
 

 
 

 

Figure 2.11: As predators acquire more CPU energy through predation, the size of the predator 

population increases. (a) Coexistence of the predator and type-A prey populations in the Tierra 

system when m = 4, a predator receives 24% of the CPU time from its prey and the amount of 

CPU time of a captured prey is reduced to 30% of its original value. (b) Coexistence of the 

predator and type-A prey populations in the Tierra system when m = 4, a predator receives 28% 

of the CPU time from its prey and the amount of CPU time of a captured prey is reduced to 

30% of its original value. 
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In the parameter ranges where the “Lotka-Volterra-like” cycle between the 

predator and prey populations occurs, such as the amount of CPU time that predators 

receive is [34%, 40%] when m = 3, [24%, 40%] when m = 4, [18%, 30%] when m = 5 

and [14%, 30%] when m = 6, the population size of predators increases with the amount 

of energy transferred from prey to predators. As illustrated in Figure 2.11(a) and (b), in 

the case of m = 4, as the amount of CPU time that a predator acquires from each of its 

prey increases from 24% to 28%, the predator population at the steady state increases 

from about 920 individuals to about 1080 individuals.      

2.3 Conclusion 

In nature, when a prey is caught by a predator, only a small amount of energy is 

transferred to the predator. A predator has to catch multiple prey in order to acquire 

sufficient energy. Similar to its counterpart in nature, a predator in Tierra catches 

multiple prey in its local area and obtains a small amount of energy from each prey. The 

simulation results show that the “Lotka-Volterra-like” cycle robustly appears in Tierra 

over a wide range of parameter settings. This suggests that the design of digital prey 

and predators may capture some essential properties of predation which allow the 

creatures in Tierra to follow the same fundamental relationship between predator and 

prey populations observed in nature and thus may be suitable to study predator-prey 

population dynamics.  
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Chapter 3: Exploring Effects of Two Predation Strategies on Prey and 

Predator Populations in an Ecological Scenario 

In contrast to chapter 2 in which the dynamic relationship between one digital 

predator species and one digital prey species is examined, in this chapter, I attempt to 

use the Tierra system to investigate more complicated ecological challenges, the 

interactions between one predator species and two or more prey species. I compare two 

predation strategies, that is, proportional predation and positive frequency-dependent 

predation, to explore their effects on maintaining prey species diversity in an ecological 

scenario when all mutations are blocked. Then I study the underlying mechanisms for a 

predation strategy to support the stable coexistence of multiple prey species. 

Furthermore, I examine those two predation strategies from the perspective of 

enhancing the reproductive success of predators in a dynamic biotic environment in 

which prey populations are continuously changing.      

3.1 Proportional Predation and Positive Frequency-dependent Predation 

3.1.1 Proportional Predation 

Proportional predation, namely frequency-independent predation, means that 

when provided with two or more types of prey, predators feed on different prey in 

proportion to their relative abundances in environment. This predation strategy has been 

documented in various predatory species. For example, in a study of food habits of 

longnose dace, Rhinichthys cataractae, a fish feeding primarily on insects at the bottom 

of streams, Gerald collected samples of longnose dace from the Yellowstone River and 

the benthic organisms in the same area where fish lived. Through carefully analyzing 
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the food contents in fish‟s digestive tract and examining the abundances of various 

insects in the samples of benthic organisms, he found that the frequency occurrence of 

inactive and/or inconspicuous insects, such as Tendipedidae and Plecoptera, in fishes‟ 

digestive tracts was approximately the same as that in the benthic samples. This result 

suggested that longnose dace may consume the partially hidden insects in proportion to 

their abundances in the river bed (Gerald, 1966). Several laboratory experiments were 

also conducted to explore proportional predation under more controlled settings. For 

example, when studying the selective feeding behavior of the starfish Pisaster, 

Landenberger placed two types of prey which were equally favored by starfish, spiny 

whelks and turban snails, in the tanks and recorded the number of each prey type 

consumed by starfish over a 3-week period. As he gradually increased the percentage of 

whelks in the initial prey population (composed of whelks and snails) from 20%, 33%, 

67% to 80%, he found that the percentage of whelks in starfish‟s diet was 21%, 37%, 

64.6 and 87.7%, respectively. These experimental data indicated that starfish may 

exhibit proportional predation behavior when feeding on equally preferred prey 

alternatives (Landenberger 1968). The predatory behavior of ladybird beetles 

Coccinella on two aphid species, Acyrthosiphon pisum and Aphis fabae, also exhibited 

the characteristics of proportional predation: each ladybird larva had been fed a pure 

diet of one of the aphid species before it was placed on a bean plant with both prey 

types. However, the feeding preference of ladybird larvae was not modified by 

previously consumed prey type and the percentage of Acyrthosiphon pisum eaten by 

ladybird larvae increased linearly with the percentage of Acyrthosiphon pisum in the 

mixtures of the two prey species. Thus, ladybird larvae fed on the two aphid species in 
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direct proportion to their relative abundances (Murdoch and Marks, 1973). Proportional 

prey consumption was also reported when juvenile flounders Platichthys flesus L. fed 

on two of their common prey species, active swimming amphipod Bathyporeia and 

sedentary bivalve Macoma, as the relative abundances of the two prey species varied in 

a series of aquarium experiments (Mattila and Bonsdorff, 1998). A recent study on the 

interactions between two prey species, pea aphids (Acyrthosiphon pisum) and potato 

leafhoppers (Empoasca fabae), which shared a common predator nabid (Nabis spp.) 

revealed that as the ratio of aphids-to-leafhoppers on an alfalfa plant changed, nabids 

attacked the two prey species in proportion to their availabilities (Ӧstman and Ives, 

2003).  

Those field studies and laboratory experiments demonstrate that proportional 

predation may be widely used by various types of predators, especially when predators 

have an equal or weak preference between two prey alternatives and their feeding 

preference does not alter as the relative abundances of different prey types fluctuate.    

3.1.2 Positive Frequency-dependent Predation 

Positive frequency-dependent predation means that the predation risk of a prey 

individual increases with the relative frequency of that prey type in the environment. 

That is, a predator consumes disproportionately more of the common prey type than of 

the rare one (Allen, 1988). Positive frequency-dependent predation occurs when 

predators show an equal or weak preference between two equally abundant prey types, 

however, in contrast to proportional predation, predators‟ feeding preference changes in 

response to prey abundances, namely, predators strongly favor the common prey type 

and ignore the rare one (Murdoch, 1969). 
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The studies on positive frequency-dependent predation originated from the 

inquiry on the persistence of balanced color polymorphism in a population. Poulton 

(1884) hypothesized that the brown-green dimorphism in the larvae of geometrid moths 

(Cyclophora spp.) could result from predation if predators tended to consume the more 

abundant morph over the rare one. Tinbergen (1960) proposed that as predators 

encountered prey, they may acquire „search images‟ which enhanced their ability to 

rapidly distinguish cryptic prey from the background. Due to the higher encounter rate 

with the prey individuals of the common type, predators would quickly form a „search 

image‟ of this prey type which was then followed by heavy exploitation of the prey 

from the common type. Clarke (1969) suggested that the formation of „search images‟ 

could be the proximate cause of positive frequency-dependent predation and the 

consequent maintenance of polymorphism in a population (Allen, 1988). When 

Murdoch studied the predatory behavior of sea-shore snails feeding on barnacles and 

mussels, he found that snails showed a weak preference between the two prey species 

when they were equally abundant. However, this feeding preference was changed 

dramatically by previous experience on prey consumption: snails strongly favored 

barnacles if they had consumed barnacles before they were given equal numbers of the 

two prey species; similarly, mussels were disproportionately overeaten if snails had 

previous feeding experience on mussels. Those results suggested that positive 

frequency-dependent predation may also apply to different prey species which shared a 

common predator (Murdoch, 1969). Murdoch et al. further investigated the switching 

behavior of predators by laboratory experiments on guppies (Poecilia reticulatus) 

feeding on Drosophila and tubificid worms. The two prey species distributed at 
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different places in the aquarium tank: Drosophila stayed on the water surface while 

tubificid worms located at the bottom of the tank. As the availabilities of the two prey 

varied, the guppies moved to and spent more time in the area where the prey increased 

in abundance, relative to the other alternative prey. This caused frequency-dependent 

mortality as the guppies disproportionately attacked the more abundant prey species 

(Murdoch et al, 1975). Murdoch‟s work extended the potential of positive frequency-

dependent predation from maintaining the genetic diversity within the same species to 

maintaining the species diversity within ecological communities.    

As a proposed mechanism for maintaining genetic polymorphisms and species 

diversity in nature, positive frequency-dependent predation has been intensively 

investigated (Allen 1988; Punzalan et al., 2005). A variety of theoretical models were 

developed to study the frequency-dependent behavior of predators. For example, Elton 

and Greenwood (1970) designed a mathematical equation to describe the sigmoid 

relationship between the frequency of a prey type in predator‟s diet and the availability 

of this prey type in the environment. Manly‟s switching model (1973) focused on 

relative prey risk as a function of relative prey density. Combining the features of the 

Elton-Greenwood and Manly models, Gendron proposed a more general model which, 

similar to the two earlier models, fit well with the empirical data on frequency-

dependent predation but also provided a better insight into the underlying mechanisms 

of this predation behavior (Gendron, 1987). Hubbard et al. explained frequency-

dependent behavior of predators from the perspective of optimal foraging. They 

examined two mathematical models of optimal diet which predators would take in order 

to maximize their inclusive fitness and found that the predictions deduced from the 
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models were consistent with the experimental results on frequency-dependent selection. 

Therefore, they suggested that frequency-dependent predation and optimal foraging 

may represent different aspects of the same process (Hubbard et al., 1982). Besides 

theoretical analysis, many field studies and laboratory experiments were conducted to 

show evidence of search image formation and the resulting frequency-dependent 

behavior in both invertebrate and vertebrate predators. For example, Allen and Clarke 

used two approaches to investigate the predation behavior of wild birds, such as 

blackbirds, house sparrows and so on, when presented with green and brown artificial 

prey. In the first approach, the number of prey with one color was 9 times more than 

that with the other color and birds were observed to take disproportionately more of the 

prey with the common color. In the second approach, birds had been familiarized with 

prey of one color before they were provided with prey of both colors in equal 

proportions. This time, birds took more of the prey with the familiar color. Therefore, 

both approaches demonstrated that birds seemed to exhibit frequency-dependent 

behavior (Allen and Clarke, 1968). Rausher observed that when ovipositing female 

butterflies Battus philenor searched for host plants in their natural habitats, some of 

them focused on narrow-leaved host plants while others concentrated on broad-leaved 

ones. This leaf shape preference appeared to be a learned behavior, rather than 

genetically fixed response, because females were able to modify their preference based 

on the leaf shapes that they had previously exploited. Rausher‟s study indicated that 

females may form a search image of the leaf shape which may continuously be 

reinforced as females successively visited the same type of host plants. The females 

with the strong search image of a leaf shape discovered the corresponding host plants 
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more rapidly and thus exploited those host plants in greater proportion than their 

abundance in the habitat (Rausher, 1978).  Pietrewicz and Kamil studied search image 

formation in blue jays Cyanocitta cristata as those birds detected the image of cryptic 

moths on slides. By providing the birds a 16-slide series with 8 slides containing the 

image of a moth (positive slides) and 8 background slides with no moth (negative 

slides), they found that if all positive slides contained the image of the same type of 

moths, the percentage of correct detection increased dramatically after the birds had 

been exposed to 3 or 4 positive slides; however, if the images of two moth types with 4 

slides each intermixed to form the 8 positive slides, the percentage of correct detection 

remained relatively low over the entire test series. Those experimental data, which 

demonstrated that the predator‟s ability to detect a particular type of cryptic prey could 

be significantly improved through the recent successive detection of that prey type, 

provided the first direct evidence of search image formation (Pietrewicz and Kamil, 

1979). Jackson and Li examined the predatory behavior of araneophagic jumping 

spiders Portia labiata and discovered that those spiders tended more often to eat the 

same type of prey that they had consumed previously, which indicated that P. labiata 

may adopt the search images of their prey. In contrast to the traditional opinion that 

several repeated encounters with the same type of prey may be necessary for predators 

to form a search image, P. labiata acquired strong search images of their favorite prey 

types, such as web-building spiders, after a single encounter. Forming a specific search 

image for one type of spider enhanced P. labiata‟s success rate to capture that prey type 

but decreased their ability to detect other types of spiders (Jackson and Li, 2004). 

Olendorf et al studied positive frequency-dependent predation from the perspective of 
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prey, when exploring color polymorphism in male guppies (Poecilia reticulatus). In 

contrast to the experiments conducted by Murdoch et al. (Murdoch et al., 1975), 

Olendorf et al used guppies as prey, rather than predators. They manipulated the 

frequencies of male guppies with different color patterns in native streams and 

estimated their survival rates through a standard mark-release-recapture protocol. 

Because the short-term mortality of male guppies was mainly caused by their predators 

in the river, the experimental results, which showed that the males of the rare phenotype 

had a significantly higher recapture rate than those of the common phenotype, 

suggested that the rare type had a larger survival advantage under predation (Olendorf 

et al, 2006). 

Despite the strong circumstantial evidence to support search image formation in 

predators as they foraged for cryptic prey, Gendron and Staddon proposed an 

alternative hypothesis, namely search rate hypothesis, to elucidate the relationship 

between prey crypticity and predators‟ search speed to detect prey. They developed a 

theoretical model based on the observations that birds spent more time scrutinizing 

potential prey when the prey became more cryptic (more closely matched the 

background). Gendron and Staddon reasoned that a high search speed would increase 

the frequency of prey encounters while a low search speed would improve the detection 

probability of an encountered prey. Thus, an optimal search rate would exist to balance 

the encounter rate and the detection probability in order to achieve the maximum rate of 

prey capture. This optimal search rate would drop as prey became more cryptic 

(Gendron and Staddon, 1983). The predictions of this theoretical model were supported 

by the laboratory simulations in which humans acting as model predators searched for a 
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target character (the „prey‟) embedded in the background characters on a computer 

screen (Gendron and Staddon, 1984). According to the search rate hypothesis, after 

several successive encounters with a cryptic prey type, predators learned to decrease 

their search speed which led to an increase in the detection probability of that prey. 

Thus, the improvement of predators‟ ability to detect a previously encountered prey 

type could result from a reduction in search rate, rather than the adoption of a search 

image of the prey. Moreover, the two prey types used in Pietrewicz and Kamil‟s 

experiments were not equally cryptic (Pietrewicz and Kamil, 1979), so when presented 

with mixed prey, predators may spend more time searching for the more cryptic prey of 

the two types which could lower their search efficiency. Aiming to distinguish the 

search image hypothesis and the search rate hypothesis, Plaisted and Mackintosh 

conducted experiments similar to Pietrewicz and Kamil‟s but presented the predators, 

the pigeon Columba livia, with equally cryptic artificial prey. Their results showed the 

same patterns as those in Pietrewicz and Kamil‟s studies. In addition, as Plaisted and 

Mackintosh manipulated the frequencies of two equally cryptic prey, they found that 

the prey type with a higher frequency was better detected than that with a lower 

frequency. Because the search rate hypothesis predicted that the two prey types with 

equal crypticity would have an equal detection probability regardless of their 

abundances while the search image hypothesis predicted that the detection probability 

would increase with prey abundance, these experimental results supported the search 

image hypothesis and refuted the search rate hypothesis (Plaisted and Mackintosh, 

1995). Further experiments revealed that as the interval between the successive 

encounters of artificial prey decreased, the detection performance of predators 
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improved remarkably. Those results emphasized that a „search image‟ was a short-term, 

temporary process (Plaisted, 1997). Dukas and his colleagues investigated the 

underlying neuropsychological mechanisms for search image formation. Studies on 

neurobiology revealed that the brain could efficiently process only a limited amount of 

information at one time therefore when handling difficult tasks, focusing attention on 

one task, rather than dividing attention to several tasks, often resulted in a better 

behavioral performance on the attended task. Inspired by those findings, Dukas and 

Ellner developed a theoretical model which predicted that when foraging for cryptic 

prey, in order to maximize energy intake, predators should devote all of their attention 

to search for a single type and ignore alternatives and should always switch to the most 

abundant prey type (Dukas and Ellner, 1993). Their model was supported by laboratory 

experiments which demonstrated a cost of dividing attention: when foraging for digital 

images of cryptic prey on a computer screen, blue jays (Cyanocitta cristata) showed a 

25% lower detection rate if they searched for two distinct target types simultaneously 

than if they focused attention on a single target (Dukas and Kamil, 2001). Dukas further 

proposed that constrained by limited attention, when searching for highly cryptic prey, 

predators had to selectively attend one specific prey type at a time to increase the 

probability of detection. Therefore forming a search image of the focused prey type and 

continuously searching for this type until its abundance significantly dropped seemed to 

be an optimal foraging strategy that predators would develop (Dukas, 2002).  

Positive frequency-dependent predation had the potential to stabilize prey 

populations because predators tended to switch to and feed on the most abundant prey 

type, which resulted in relatively even population sizes of different prey species. In the 
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case of two competing prey species which shared a common predator species, the two 

prey might be able to coexist indefinitely under predation (Murdoch, 1969). This 

logical deduction of maintaining prey species diversity by positive frequency-dependent 

predation was examined thoroughly by various theoretical models. For example, the 

mathematical model developed by Oaten and Murdoch suggested that consuming 

disproportionately the more abundant prey type was a necessary condition for predators 

to stabilize prey populations (Oaten and Murdoch, 1975). Analysis of the dynamics of a 

system composed of two prey and one predator species revealed that when predators 

fed more heavily on the more abundant prey species, the system had stable coexisting 

equilibrium states for those three species populations over a wide range of parameter 

space (Tansky, 1978; Teramoto et al, 1979). As the system was extended to one 

predator species with n competing prey species, predators with positive frequency-

dependent behavior still produced stability in the system through relaxing the 

competitive exclusion among prey species (Comins and Hassell, 1976).  

Although the elegant and concise mathematical analysis provided strong support 

for the stable coexistence of multiple prey species or balanced prey polymorphisms 

maintained by a predator species with switching behavior, not many empirical studies 

have been performed to directly evaluate it. Some laboratory experiments, which used 

only a few or just one predator in each trial, demonstrated the stabilizing effect of 

positive frequency-dependent predation on prey populations. For example, to explore 

the maintenance of prey polymorphism, Bond and Kamil created a virtual moth 

population with 3 different morphs on a computer screen and presented it to 6 blue jays, 

Cyanocitta cristata, birds which were known to exhibit positive frequency-dependent 
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behavior when detecting digital cryptic moths. The detected moths were considered 

„killed‟ and removed from the population and the relative abundance of the surviving 

prey, which reflected the predation pressure on different morphs, was preserved when 

the population was regenerated in the next generation. The experimental results showed 

that despite variations in the relative proportion of different morphs in the initial 

population, the 3 moth types stably coexisted over 50 generations. Therefore, the stable 

prey polymorphism could be maintained by positive frequency-dependent predation 

(Bond and Kamil, 1998).  

Based on the assumption that a population would have an equivalent behavior to a 

few individuals, the experimental results obtained by using only a few predator 

individuals were generally extrapolated to predation at the population level, namely a 

population of frequency-dependent predators in a natural environment would also be 

able to maintain prey diversity. However, this conclusion was seriously questioned by 

further empirical and theoretical examinations with a predator population. For example, 

Cornell and Pimentel investigated the interactions between a predator population, the 

parasitoid wasp Nasonia vitripennis, and its 3 fly host populations P. sericata, P. regina 

and M. domestica in a laboratory ecosystem. Parasitoid wasps strongly preferred the 

host type that they had consumed previously and they concentrated their attacks on the 

most abundant host. When the 3 host species competed against one another in the 

absence of predators, the strongest competitor P. sericata eliminated the other 2 species 

in about 5 weeks. However, when parasitoid wasps were introduced to attack the pupae 

of the 3 host species for 48 hours, the persistence of P. regina and M. domestica was 

elongated to 7 weeks. Probably due to the relatively short predation period, the stable 
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coexistence of the 3 host species was not achieved in their experiments (Cornell and 

Pimentel, 1978). Ishii and Shimada established two-host-one-parasitoid populations 

with two competing beetles, C. chinensis and C. maculates as the hosts and the 

pteromalid wasp A. calandrae as their common parasitoid. Females of the parasitoid 

wasps acquired olfactory search images during oviposition and thus developed their 

feeding preference for the current abundant host species. Two types of beans, azuki 

beans and black-eye beans, were used as food resources for host larvae, and female 

parasitoids searched for and attacked the larvae and pupae of both host species inside 

the beans. However, azuki beans provided a much better refuge for host larvae than 

black-eye beans: the parasitism rate inside azuki beans was 0-30% while that inside 

black-eye beans was nearly 100%. In the absence of parasitoids, C. chinensis was 

competitively excluded in about 20 weeks. In contrast, under positive frequency-

dependent predation from parasitoids, the coexistence duration of two host species was 

remarkably prolonged to 118 weeks at the intermediate ratios of the two resource beans. 

Ishii and Shimada‟s experiments demonstrated that a population of frequency-

dependent predators could significantly enhance the coexistence of two competing prey 

species (Ishii and Shimada, 2012). However, their experimental results were strongly 

influenced by the ratio of azuki and black-eye beans. For example, the persistence of 

two host species could not be elongated under predation at low and high ratios of two 

bean types (Ishii and Shimada 2010; Ishii and Shimada, 2012). Therefore, protective 

refuges may play a crucial role in the long-term coexistence of two prey species, which 

may obscure the effects of positive frequency-dependent predation on prey diversity in 

their experiments. Merilaita developed an individual-based computational model and 
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explicitly described the increase of attack probability with previous feeding experience 

as the strength of positive frequency-dependent predation (∆P). ∆P = 0 indicated that 

the previously consumed prey type had no influence on a predator‟s current feeding 

preference and thus represented proportional predation behavior; ∆P > 0 suggested that 

a predator favored the familiar prey type and the larger the ∆P, the stronger the 

frequency-dependent behavior. Thus by varying ∆P, the effect of positive frequency-

dependent predation on the maintenance of prey diversity could be directly observed. 

Her simulation results showed that the coexistence time of two prey phenotypes, 

although increased with ∆P, dramatically decreased as the number of predator 

individuals increased (Merilaita, 2006). 

I establish a predator population and their prey populations in Tierra. Each digital 

predator follows the same rules used in Merilaita‟s paper to capture prey in its local 

area. By systematically adjusting the strength of positive frequency-dependent 

predation ∆P, I attempt to explore the permanent coexistence of multiple prey species 

maintained by a population of frequency-dependent predators.     

3.2 Effect of Two Predation Strategies on the Maintenance of Prey Species 

Diversity 

The simulation results in chapter 2 show that the “Lotka-Volterra-like” cycle 

robustly appears between predator and prey populations in Tierra and predators can 

detect and acquire energy from either type-A prey or type-B prey for survival and 

reproduction (Figure 2.4 and Figure 2.6). Here, I present both type-A and type-B prey 

to predators and apply a set of simple rules to specify the behavior of predators as they 

encounter different prey types in their neighboring area. Depending on the parameter 
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value in the rules, digital predators may either use a constant probability to catch prey 

regardless of prey types or adjust their capture rates based on the local abundance of 

different prey types. Then I verify that those two predation strategies applied in Tierra 

are essentially the same as proportional predation and positive frequency-dependent 

predation exhibited by real predators in laboratory experiments (Murdoch and Marks, 

1973; Mattila and Bonsdorff, 1998; Lawton et al., 1974; Murdoch et al., 1975). By 

comparing the two predation strategies used by digital predators, I investigate the 

conditions and mechanisms under which the presence of a predator population supports 

the coexistence of two different types of prey. Those conditions for the maintenance of 

prey diversity are further examined as I increase the number of prey species from two to 

three.   

3.2.1 Predation Behavior of Predators at a Population Level 

Methods 

A digital predator searches for prey in its local area by matching its predation 

template with the complementary template in prey. Then the predator captures its prey 

and acquires energy from it with a certain probability. This capture probability varies 

based on the type of prey that the predator encounters and is specified by the following 

rules:   

(1) Initially, each predator is assigned an equal probability to capture type-A and type-B 

prey when encountered, that is, 𝑃𝐴 = 𝑃𝐵 = 0.5 

(2) If the predator captures a type-A prey, its probability to capture type-A prey is 

increased by ∆𝑃 and to capture type-B prey is decreased by ∆𝑃, that is, 

𝑃𝐴 = 𝑃𝐴 + ∆𝑃                       𝑃𝐵 = 𝑃𝐵 − ∆𝑃 
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(3) If, instead, the predator captures a type-B prey, its probability to capture type-A 

prey is decreased by ∆𝑃 and to capture type-B prey is increased by ∆𝑃, that is, 

𝑃𝐴 = 𝑃𝐴 − ∆𝑃                       𝑃𝐵 = 𝑃𝐵 + ∆𝑃 

(4) All capture probabilities are bounded by 𝑃𝑚𝑖𝑛  and 𝑃𝑚𝑎𝑥 , that is, 

0 ≤ 𝑃𝑚𝑖𝑛 ≤ 𝑃𝐴 , 𝑃𝐵 ≤ 𝑃𝑚𝑎𝑥 ≤ 1 

The default values of the minimal and maximal capture probabilities are 𝑃𝑚𝑖𝑛 =

0 and 𝑃𝑚𝑎𝑥 = 1, if not otherwise mentioned. 

In the above set of rules, if ∆𝑃 = 0, the capture probabilities for two different prey 

types remain equal, that is 𝑃𝐴 = 𝑃𝐵 = 0.5. This is the scenario of proportional predation 

in which the predator always uses the same probability to capture prey regardless of 

their abundance. On the other hand, if ∆𝑃 > 0, the predator has a higher probability to 

capture the type of prey which is more frequently encountered. This behavior of 

disproportionately consuming the common prey type represents positive frequency-

dependent predation.  

In a laboratory experiment, a predator‟s predation behavior is revealed by 

computing the percentage of one type of prey in the predator‟s diet as the percentage of 

that prey type in the environment increases from 0 to 100%. In simulation runs, the 

behavior of a predator population in which each predator obeys the above predation 

rules is examined through the following setup: I run 9 separate simulations and in each 

simulation, I seed the soup with 3000 prey individuals and 300 predator individuals. In 

each predation loop, a predator is allowed to eat at most m (m = 4) prey and acquires 

35% of the CPU time from each prey and the CPU time of a captured prey is reduced to 

40% of its original value. The only difference among the 9 simulations is the relative 
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proportion of two prey types, that is, the percentage of type-A prey in the 3000 prey 

individuals increases from 10% to 90% in 10% increments. Ideally, I should calculate 

the percentage of type-A prey in the predators‟ diet while the ratio of type-A prey in the 

environment remains constant. However, in the simulations, as the predators start to 

consume different prey types, the relative proportion of two prey types changes. I allow 

the predators to explore the prey populations sufficiently but not to appreciably modify 

the ratio between type-A and type-B populations. Typically, when the percentage of 

type-A prey differs from its initial value by 5%, I calculate the percentage of type-A 

prey in the predators‟ diet. For example, one of the simulations starts with 600 

individuals of type-A prey evenly distributed among 2400 individuals of type-B prey, 

that is, the percentage of type-A in the 3000 prey individuals is 20%. When type-A prey 

increase to 25%, I calculate the percentage of type-A prey in the predators‟ diet (the 

number of type-A prey that have been eaten is divided by the total number of prey that 

have been eaten by the predator population). 

I set ∆𝑃 to two different values: ∆𝑃 = 0 to allow each predator to capture prey 

with a constant rate and ∆𝑃 = 0.1 to allow each predator to adjust its capture rates for 

different prey types. For each value of ∆𝑃, I perform the 9 simulation runs described 

above and observe the behavior of the predator population as the percentage of type-A 

prey in prey populations increases.  

Results 

When ∆𝑃 = 0, each digital predator applies the same probability (𝑃𝐴 = 𝑃𝐵 = 0.5) 

to capture type-A and type-B prey regardless of their local abundance. As shown in 

Figure 3.1(a), the percentage of type-A prey in the predators‟ diet is almost completely 
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proportional to the percentage of type-A prey in the environment. Therefore, as each 

individual predator shows no preference for one prey type over the other, the predator 

population exhibits proportional predation behavior on the prey populations. 

 

 

 

Figure 3.1: Predation behavior of a predator population in Tierra changes with ∆𝑃. (a) A 

predator population in the Tierra system exhibits proportional predation behavior when ∆𝑃 = 0. 

(b) A predator population in the Tierra system exhibits positive frequency-dependent behavior 

when ∆𝑃 = 0.1. The dashed line indicates the hypothetical situation in which the relative 

frequency of a prey type in the environment does not affect the predators‟ feeding preference. 

 

When ∆𝑃 = 0 .1, each digital predator has a higher probability to capture a 

previously encountered prey type, as specified by the rules in the “Methods” section. As 

shown in Figure 3.1(b), when the percentage of type-A prey in the environment is less 

than 50%, the predator population disproportionately eats less type-A prey and when 

type-A prey become the abundant prey type (>50%), the predator population 

disproportionately consumes more type-A prey. The switch of the preferable prey type 

occurs exactly when type-A prey change from a rare type to a common one (50%). 

Therefore, although each digital predator exhibits prey preference based on the prey 
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types actually encountered, which may not agree with the relative frequency of prey 

types at a global scale, the predator population executes almost perfect positive 

frequency-dependent predation on the prey populations (Shao and Ray, 2010).  

3.2.2 Maintenance of the Coexistence of Two Prey Types 

Methods 

The maintenance of prey diversity by predators is explored by comparing the 

results of three simulations. In the control run (without predation), I seed the soup with 

a type-A population of 1500 individuals and a type-B population of 1500 individuals 

and observe the dynamics of those two prey populations in the absence of predators. 

The simulation run stops when one of the prey types becomes extinct. In the two 

experimental runs (with predation), I introduce a predator population of 300 individuals 

into the same kind of initial prey populations used in the control run, containing two 

types of prey. The only difference between the two experimental runs is the predation 

strategy used by each predator after it encounters a prey in its neighboring area (about 

10 creatures long on either side of the predator). In the first experimental run, I set 

∆𝑃 = 0 so that the predator eats the prey with a constant rate of 0.5 regardless of the 

prey type.  However, in the second experimental run, I set ∆𝑃 = 0.1 so that the predator 

is biased to consume the more abundant prey type. For each experimental run, in each 

predation loop, a predator is allowed to eat at most m (m = 4) prey and acquires 35% of 

the CPU time from each prey. The CPU time of a captured prey is reduced to 40% of its 

original value. The simulation run stops when one of the prey populations goes extinct 

but if both prey populations persist, the run lasts until 1800 million instructions have 
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been executed. I record the population sizes of the predator and two prey species during 

the runs.  

Results  

Many field and laboratory experiments demonstrated that in the absence of 

predators, two prey species which shared the same limiting resources could not coexist 

indefinitely. The more competitive prey species would gradually occupy more and 

more resources and drive the less competitive prey species to go extinct (Gause, 1934; 

MacArthur, 1958; Hardin, 1960). This competitive exclusion is also observed in Tierra 

when type-A prey compete with type-B prey in the environment with limiting CPU 

time and memory space. Because a type-A prey (86 instructions long) is shorter than a 

type-B prey (96 instructions long), when both prey types receive, on the average, the 

same amount of CPU time from the system, type-A prey reproduce more offspring than 

type-B prey do. Therefore, although the two types of prey start with the same 

population size of 1500 individuals, the more rapid replicating type-A prey gradually 

crowd out type-B prey and drive them to go extinct after 120 million instructions have 

been executed, as shown in Figure 3.2(a). 

When a predator population of 300 individuals which exhibits proportional 

predation is introduced into the soup, the two prey types are consumed by predators 

with a constant probability and thus the number of captured individuals of a prey type is 

proportional to the population size of that prey type. As a result, when the population of 

type-A prey becomes larger than that of type-B prey, predators start to consume more 

type-A than type-B prey individuals. This slows down the process by which type-A 

prey crowd out type-B prey from the soup.  
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Figure 3.2: Coexistence of two prey species is maintained by a predator population with 

positive frequency-dependent behavior. (a) Competitive exclusion between two types of prey; 

type-B prey go extinct. (b) Under proportional predation from a predator population, type-A 

and type-B prey coexist for a longer period of time. But this coexistence of the two prey types is 

not stable and type-B prey eventually go extinct. (c) Under positive frequency-dependent 

predation from a predator population, type-A and type-B prey stably coexist. 

 

As shown in Figure 3.2(b), the decline of the type-B prey population is slower 

than that in the control run, especially after the number of type-B prey has been 

significantly reduced. However, type-A prey and type-B prey do not coexist in the soup 

for a very long time. The type-B prey population keeps declining and eventually goes 

extinct after 160 million instructions have been executed. Therefore, although 
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proportional predation can prolong the coexistence of the two prey types to some 

extent, it fails to maintain the stable coexistence of prey species.  

However, when a predator population of 300 individuals which exhibits positive 

frequency-dependent behavior is introduced into the soup, the dynamics of the prey 

populations change dramatically. As shown in Figure 3.2(c), after the transient initial 

stage, the predator population reaches a steady level of about 600 individuals and the 

two prey populations stably coexist with approximately 1500 individuals of type-A and 

1100 individuals of type-B. This stable coexistence of the two prey populations is 

maintained over the entire simulation run of 1800 million instructions executed (Shao 

and Ray, 2010). Therefore, in contrast to proportional predation, positive frequency-

dependent predation is able to maintain the diversity of prey species. 

3.2.3 Robustness to the Variations of Parameter Settings 

Methods 

To explore the robustness of positive frequency-dependent predation in 

maintaining the coexistence of type-A and type-B populations, I systematically vary the 

two parameters which affect the predation behavior of a predator, the adjustment rate 

∆𝑃 and the adjustment range 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥 , and the initial relative proportion of two 

prey types, respectively. The default setting of those three parameters is that ∆𝑃 = 0.1, 

𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥 = 0 − 1 and the percentage of type-A prey in the 3000 prey individuals is 

50% (1500 individuals of each prey type) and when one parameter varies, the other two 

remain unchanged. I set ∆𝑃 = 0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.05, 0.1  and  0.2 , 

respectively, to examine the effect of ∆𝑃 on the maintenance of prey diversity. Then I 

set ∆𝑃  back to 0.1  and gradually shrink the adjustment range, 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥 = 0 −
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1, 0.1 − 0.9, 0.2 − 0.8, 0.3 − 0.7, 0.4 − 0.6, 0.5 − 0.5 . Finally, after setting 𝑃𝑚𝑖𝑛 −

𝑃𝑚𝑎𝑥  back to 0 − 1 , I vary the percentage of type-A prey among the 3000 prey 

individuals from 10% to 90% in 10% increments. For each parameter setting, in each 

predation loop, a predator is allowed to eat at most m (m = 4) prey and acquires 35% of 

the CPU time from each prey. The CPU time of a captured prey is reduced to 40% of its 

original value. I record the duration (the number of instructions that have been 

executed) that the two prey types coexist.   

Results  

The adjustment rate ∆𝑃  directly affects the strength of positive frequency-

dependent predation. ∆𝑃 = 0  is the scenario of proportional predation in which a 

predator always uses the same probability, 𝑃𝐴 = 𝑃𝐵 = 0.5, to eat type-A and type-B 

prey. As ∆𝑃  increases, a predator can more effectively adjust its probability of 

capturing different types of prey based on the abundance of prey types in its local area. 

As shown in Figure 3.3(a), when ∆𝑃 ≥ 0.02, the predator population has sufficient 

frequency-dependent behavior to maintain the coexistence of the two prey populations 

over the entire simulation run of 1800 million instructions executed.  

The adjustment range 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥  specifies the lower and upper boundaries of 

the capture probability, which indirectly limits a predator‟s ability to prefer the more 

abundant prey type. For example, when 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥 = 0.5 − 0.5 , a predator‟s 

probabilities to consume different prey types are fixed at 𝑃𝐴 = 𝑃𝐵 = 0.5 (equivalent to 

the scenario of proportional predation), that is, a predator fails to adjust its capture 

probabilities based on local prey abundance even if ∆𝑃 = 0.1.  
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Figure 3.3: Robustness of positive frequency-dependent predation in maintaining the 

coexistence of two prey types. (a) When the adjustment range is 0 − 1 and the percentage of 

type-A prey in the environment is 50%, type-A and type-B prey populations stably coexist 

when ∆𝑃 ≥ 0.02. (b) When ∆𝑃 = 0.1 and the percentage of type-A prey in the environment is 

50%, type-A and type-B prey populations stably coexist under all the adjustment ranges except 

for 0.5 − 0.5. (c) When ∆𝑃 = 0.1 and the adjustment range is 0 − 1, type-A and type-B prey 

populations stably coexist at 9 different initial ratios of the two prey populations.   

 

However, this limitation is gradually relaxed as the adjustment range extends 

towards 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥 = 0 − 1. As shown in Figure 3.3 (b), except for 𝑃𝑚𝑖𝑛 − 𝑃𝑚𝑎𝑥 =
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0.5 − 0.5, which eliminates the effect of positive frequency-dependent predation, the 

two prey populations coexist under all other adjustment ranges over the simulation run 

of 1800 million instructions executed.  

By disproportionately consuming the more abundant prey type, positive 

frequency-dependent predation can maintain the coexistence of two prey types even 

when the initial sizes of the two prey populations vary dramatically. As shown in Figure 

3.3(c), when the percentage of type-A prey in the 3000 prey individuals increases from 

10% (300 individuals of type-A prey and 2700 individuals of type-B prey) to 90% 

(2700 individuals of type-A prey and 300 individuals of type-B prey), the two prey 

types coexist under each of the 9 initial ratios of the two prey populations over the 

simulation run of 1800 million instructions executed.  

The stable persistence of two prey populations in Tierra under a variety of 

parameter settings suggests that positive frequency-dependent predation may robustly 

support the coexistence of two prey species (Shao and Ray, 2010). 

3.2.4 Mechanisms of Maintaining Prey Species Diversity by Positive Frequency-

dependent Predation  

Methods 

The simulation results in 3.2.1, 3.2.2 and 3.2.3 show that a predator population 

which exhibits proportional predation fails to maintain the coexistence of two prey 

types, however, a predator population which performs positive frequency-dependent 

predation can robustly support prey diversity. The only difference between the two 

predation strategies is the value of ∆𝑃 , that is, ∆𝑃 = 0  corresponds to proportional 

predation and ∆𝑃 > 0  corresponds to positive frequency-dependent predation. 
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Therefore, by systematically varying ∆𝑃, I attempt to explore the mechanisms inherent 

in the two predation strategies which influence the maintenance of the diversity of prey 

species.  

I set ∆𝑃 to 6 different values, that is, ∆𝑃 = 0, 0.01, 0.025, 0.05, 0.1 and 0.2, to 

gradually increase the strength of positive frequency-dependent predation. To observe 

the influence of ∆𝑃  on the switching behavior of a predator population as the 

abundance of type-A prey increases, for each ∆𝑃  value, I perform the 9 separate 

simulation runs which are described in detail in the Methods section in 3.2.1. Briefly 

speaking, in each simulation run, I seed the soup with 3000 prey individuals and 300 

predator individuals. In each predation loop, a predator is allowed to eat at most m (m = 

4) prey and acquires 35% of the CPU time from each prey and the CPU time of a 

captured prey is reduced to 40% of its original value. The 9 simulation runs differ only 

in the relative proportion of two prey types in the initial prey populations, that is, the 

percentage of type-A prey among the 3000 prey individuals varies from 10% to 90% in 

10% increments. In each simulation, when the percentage of type-A prey differs from 

its initial value by 5%, I calculate the percentage of type-A prey in the predators‟ diet.  

As shown in Figure 3.1(b), the predator population switches its feeding 

preference when type-A prey change from a rare type to a common one. I study the 

mechanisms for maintaining the diversity of prey species when type-A prey is a rare 

type and a common type, respectively. In the scenario that type-A is a rare type, I set 

the percentage of type-A prey in the 3000 prey individuals to 20%, that is, 600 type-A 

prey individuals evenly distributed among 2400 type-B prey individuals. On the other 

hand, in the scenario that type-A is a common type, I set the percentage of type-A prey 



66 

 

to 80%, that is, 600 type-B prey individuals evenly distributed among 2400 type-A prey 

individuals. Except for the difference in the relative proportion of type-A prey in the 

initial prey populations, the two scenarios share the same parameter settings as follows: 

for each scenario, I perform 6 separate simulation runs. In each simulation, the soup is 

seeded with 3000 prey individuals and 300 predator individuals. In each predation loop, 

a predator is allowed to eat at most m (m = 4) prey and acquires 35% of the CPU time 

from each prey and the CPU time of a captured prey is reduced to 40% of its original 

value. The 6 simulation runs differ only in the strength of positive frequency-dependent 

predation, that is, ∆𝑃 = 0, 0.01, 0.025, 0.05, 0.1 and 0.2, respectively. Each run lasts 

either until one of the prey types becomes extinct or, if both prey types persist, until 

2000 million instructions have been executed. I record the relative proportion of type-A 

prey in the prey populations (𝑅𝐴), that is, the population size of type-A prey is divided 

by the summation of the population sizes of type-A and type-B prey, during a 

simulation run.      

Besides observing the effect of ∆𝑃 on the coexistence of two prey species over an 

entire simulation run, I also examine the changes of the type-A prey population during 

the initial stage of a simulation run (from 0 to 100 million instructions executed). 

Furthermore, I calculate the average and standard deviation of the relative proportion of 

type-A prey in the prey populations (𝑅𝐴) during the period of 1500 to 2000 million 

instructions executed, to explore how the steady state of the type-A prey population is 

influenced by the strength of positive frequency-dependent predation. 
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Figure 3.4: Positive frequency-dependent behavior becomes more distinctive as ∆𝑃 increases. 

(a) A predator population in the Tierra system exhibits proportional predation when ∆𝑃 = 0 and 

extremely weak positive frequency-dependent predation when ∆𝑃 = 0 .01. (b) A predator 

population in the Tierra system exhibits increasingly stronger positive frequency-dependent 

behavior with the increase of ∆𝑃 (∆𝑃 = 0.025, 0.05, 0.1 and 0.2). The diagonal dashed line 

indicates the hypothetical situation in which the relative frequency of a prey type in the 

environment does not affect the predators‟ feeding preference. The two vertical dashed lines 

mark the relative abundance of type-A prey in environment at 20% and 80%, respectively. 

 

Results 

As shown in Figure 3.4(a), when ∆𝑃 = 0 , the predator population executes 

proportional predation, namely, the number of type-A prey individuals eaten by the 

predators is proportional to the abundance of type-A prey in the environment. For 

example, as illustrated by the two vertical dashed lines, when the percentage of type-A 

prey in the environment is 20% and 80%, the percentage of type-A prey in the 

predators‟ diet is also about 20% and 80%, respectively. The behavior of the predator 

population with extremely weak positive frequency-dependent predation, such as 

∆𝑃 = 0 .01, does not differ significantly from proportional predation. However, as 

∆𝑃 gradually increases, the predator population exhibits stronger and stronger positive 
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frequency-dependent behavior. As shown in Figure 3.4(b), when less than 50% of the 

prey populations are composed of type-A prey, predators consume disproportionately 

less type-A prey and the larger the ∆𝑃, the less the type-A prey individuals are found in 

the predators‟ diet. For example, when the percentage of type-A prey in the 

environment is 20%, as ∆𝑃 = 0.025, 0.05, 0.1 and 0.2, the percentage of type-A prey 

in the predators‟ diet is 20.2%, 17.8%, 12%, 6.5%, respectively. On the other hand, 

when type-A prey become the abundant type (>50%), predators disproportionately 

consume more of them and the larger the ∆𝑃, the more the type-A prey individuals are 

eaten by the predators. For example, when the percentage of type-A prey in the 

environment is 80%, as ∆𝑃 = 0.025, 0.05, 0.1 and 0.2, the percentage of type-A prey 

in the predators‟ diet is 79.9%, 82.7%, 87.6%, 91.5%, respectively.  

Based on the calculation of the relative proportion of type-A prey in the prey 

populations (𝑅𝐴) defined in the Methods section, 𝑅𝐴 = 1 indicates the extinction of the 

type-B prey population, and on the other hand, 𝑅𝐴 = 0.5 suggests that type-A and type-

B prey are equally abundant. In the scenario that type-A is a rare type, 𝑅𝐴  starts at 0.2 

and quickly rises for all 6 values of ∆𝑃, as shown in Figure 3.5(a). For proportional 

predation ( ∆𝑃 = 0 ) and extremely weak positive frequency-dependent predation 

( ∆𝑃 = 0.01 ), 𝑅𝐴  increases to 1 which suggests that the type-B prey population 

eventually goes extinct and thus the two prey types fail to coexist (Figure 3.5(a)). When 

∆𝑃 = 0.025, 𝑅𝐴  increases to 0.9 then decreases and after that, it fluctuates between 0.7 

and 0.8 with a large amplitude (Figure 3.5(a)). Therefore, at this ∆𝑃 value, type-A prey 

are significantly more abundant than type-B prey.  
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Figure 3.5: When type-A is a rare type in the initial prey populations, the stable coexistence of 

two prey types is achieved by the strong negative feedback regulation present in positive 

frequency-dependent predation. (a) Proportion of type-A prey in the prey populations (𝑅𝐴) in 6 

simulations with each corresponding to a different ∆𝑃  value. When ∆𝑃 = 0 and 0.01 , 

𝑅𝐴  increases to 1, which indicates the extinction of the type-B prey population. When ∆𝑃 =

0.025, 0.05, 0.1 and 0.2, 𝑅𝐴  is smaller than 1 over the entire simulation run, which suggests the 

coexistence of type-A and type-B prey populations. (b) Proportion of type-A prey in the prey 

populations (𝑅𝐴 ) during the initial stage of the simulation runs (0‒100 million instructions 

executed). When 𝑅𝐴  is less than 0.5 (0‒50 million instructions executed), the larger the ∆𝑃, the 

more rapid the growth of the type-A prey population. When 𝑅𝐴  is greater than 0.5 (50‒100 

million instructions executed), the larger the ∆𝑃, the slower the increase of the type-A prey 

population. (c) As ∆𝑃  increases, the average of 𝑅𝐴  at the steady state (1500‒2000 million 

instructions executed) approaches 0.5 with decreasing fluctuation (error bars represent the 

standard deviation). This suggests that a more stable coexistence of the two prey types is 

attained by a stronger negative feedback regulation on prey populations.  
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Although the two prey types coexist, due to the small population size of type-B 

prey, this coexistence may not be very stable. With the further increase of ∆𝑃 (∆𝑃 =

0.05, 0.1 and 0.2) , 𝑅𝐴  falls into the range of 0.5 to 0.7 which suggests that the 

abundances of type-A and type-B prey become similar to each other (Figure 3.5(a)). 

The type-B prey population, although still smaller than the type-A prey population, has 

reached a sufficient size to prevent itself from extinction caused by the competitive 

exclusion from type-A prey and/or randomness in the Tierra system. Hence, the two 

prey types achieve a stable coexistence under strong positive frequency-dependent 

predation.  

When type-A is a rare prey type (<50%) in the environment, as shown in Figure 

3.4, the larger the ∆𝑃 , the less the number of type-A prey individuals eaten by 

predators. As a result, the type-A prey population has a better opportunity to grow. This 

growth pattern of the type-A prey population is clearly demonstrated in Figure 3.5(b) in 

the period of 0‒50 million instructions executed: type-A prey, composed of 20% of the 

initial prey populations, increase over time and the larger the ∆𝑃, the quicker the rise of 

the type-A prey population. On the other hand, when type-A is a common prey type 

(>50%), as shown in Figure 3.4, the larger the ∆𝑃, the more the type-A prey individuals 

are found in the predators‟ diet. Thus the growth of the type-A prey population is more 

severely depressed. This change in the type-A prey population is shown in Figure 3.5(b) 

in the period of 50‒100 million instructions executed: when the proportion of type-A 

prey becomes greater than 0.5, the larger the ∆𝑃, the slower the growth of the type-A 

prey population. In conclusion, when type-A is a rare prey type, by disproportionately 

consuming less type-A prey, a predator population with positive frequency-dependent 
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behavior facilitates the rapid increase of the type-A population; while when type-A prey 

are abundant, by disproportionately consuming more type-A prey, the predator 

population quickly depresses the type-A population. Therefore, positive frequency-

dependent predation provides a strong negative feedback regulation on the prey 

populations. Due to the lack of this regulation, a predator population with proportional 

predation or weak positive frequency-dependent predation (∆𝑃 = 0 and 0.01) could not 

effectively prevent the growth of the type-A prey population when type-A prey are 

prevailing, and thus type-B prey are eventually excluded from the soup. Figure 3.5(c) 

shows that, at the steady state, with the increase of ∆𝑃, 𝑅𝐴  becomes closer to 0.5 with 

smaller fluctuations, namely, type-A and type-B prey have a more similar abundance. 

This suggests that the strong negative feedback regulation tends to equalize the 

population sizes of different prey types, which results in a stable persistence of two prey 

types. Therefore, the strong negative feedback regulation present in positive frequency-

dependent predation may be the critical condition to maintain the coexistence of prey 

species. 

This mechanism that prey species diversity is maintained by strong negative 

feedback regulation is further examined in the scenario that type-A is a common prey 

type. As shown in Figure 3.6(a), 𝑅𝐴  starts at 0.8 and quickly increases to 1, which 

indicates the extinction of type-B prey, under proportional predation (∆𝑃 = 0 ). A 

predator population with weak positive frequency-dependent predation ( ∆𝑃 =

0.01 and 0.025) allows the type-B prey population to survive in the soup for a longer 

time but cannot prevent it from going extinct.  
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Figure 3.6: When type-A is a common type in the initial prey populations, the stable 

coexistence of two prey types is achieved by the strong negative feedback regulation present in 

positive frequency-dependent predation. (a) Proportion of type-A prey in the prey populations 

( 𝑅𝐴 ) in 6 simulations with each corresponding to a different ∆𝑃  value. When ∆𝑃 =

0, 0.01 and 0.025 , 𝑅𝐴  increases to 1, which indicates the extinction of the type-B prey 

population. When ∆𝑃 = 0.05, 0.1 and 0.2, 𝑅𝐴  is smaller than 1 over the entire simulation run, 

which suggests the coexistence of type-A and type-B prey populations. (b) Proportion of type-A 

prey in the prey populations during the initial stage of the simulation runs (0‒100 million 

instructions executed). The larger the ∆𝑃, the slower the increase of the type-A prey population 

(∆𝑃 = 0, 0.01 and 0.025) or the quicker the decrease of the type-A prey population (∆𝑃 =

0.05, 0.1, and 0.2). (c) As ∆𝑃  increases, the average of 𝑅𝐴  at the steady state (1500‒2000 

million instructions executed) approaches 0.5 with decreasing fluctuation (error bars represent 

the standard deviation). This suggests that a more stable coexistence of the two prey types is 

attained by a stronger negative feedback regulation on prey populations. 
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However, under strong positive frequency-dependent predation ( ∆𝑃 =

0.05, 0.1 and 0.2), 𝑅𝐴  falls into the range of 0.5‒0.7 which suggests the continuous 

coexistence of type-A and type-B prey. Because type-A prey are much more abundant 

than type-B prey in the initial prey populations, predators impose a stronger depression 

on type-A prey by consuming more of them in positive frequency-dependent predation 

than in proportional predation. This depression on the type-A prey population is clearly 

shown during the initial stage of simulation runs (0‒100 million instructions executed) 

in Figure 3.6(b). Compared to proportional predation ( ∆𝑃 = 0 ), weak positive 

frequency-dependent predation (such as ∆𝑃 = 0.01 , especially ∆𝑃 = 0.025 ) 

considerably slows down the increase of the type-A prey population. Moreover, strong 

positive frequency-dependent predation ( ∆𝑃 = 0.05, 0.1 and 0.2 ) results in a 

substantial decrease in the type-A prey population and the larger the ∆𝑃, the more rapid 

and more significant the decline of the type-A population. Similar to Figure 3.5(c), 

Figure 3.6(c) shows that at the steady state, 𝑅𝐴  approaches 0.5 with the increase of ∆𝑃. 

Therefore, the stronger negative feedback regulation in positive frequency-dependent 

predation produces more even population sizes of type-A and type-B prey and thus 

more stable persistence of prey diversity.   

3.2.5 Maintenance of the Coexistence of Three Prey Types by Positive 

Frequency-dependent Predation   

Methods  

To further examine the role of positive frequency-dependent predation in 

maintaining prey diversity, I study a scenario in which the initial prey populations are 

composed of more than two prey types. Besides type-A and type-B prey, I add one 



74 

 

more species, type-C prey with a length of 90 instructions. Except for the length 

difference, the three prey types share the same structure and function and a predator is 

able to detect each of them by matching its predation template with the complementary 

template in prey. When a predator encounters a prey in its local area, the rules of 

capture probability, which are directly extended from the case of two prey types, are as 

follows:    

(1) Initially, each predator is assigned an equal probability to capture type-A, type-B 

and type-C prey when encountered, that is: 𝑃𝐴 = 𝑃𝐵 = 𝑃𝐶 = 0.5 

(2) If the predator captures a type-A prey, its probability to capture type-A prey is 

increased by ∆𝑃 and to capture type-B and type-C prey is decreased by ∆𝑃, that is: 

𝑃𝐴 = 𝑃𝐴 + ∆𝑃           𝑃𝐵 = 𝑃𝐵 − ∆𝑃           𝑃𝐶 = 𝑃𝐶 − ∆𝑃 

(3) If the predator captures a type-B prey, its probability to capture type-A and type-C 

prey is decreased by ∆𝑃 and to capture type-B prey is increased by ∆𝑃, that is: 

𝑃𝐴 = 𝑃𝐴 − ∆𝑃           𝑃𝐵 = 𝑃𝐵 + ∆𝑃           𝑃𝐶 = 𝑃𝐶 − ∆𝑃 

(4) If the predator captures a type-C prey, its probability to capture type-A and type-B 

prey is decreased by ∆𝑃 and to capture type-C prey is increased by ∆𝑃, that is: 

𝑃𝐴 = 𝑃𝐴 − ∆𝑃           𝑃𝐵 = 𝑃𝐵 − ∆𝑃           𝑃𝐶 = 𝑃𝐶 + ∆𝑃 

(5) All capture probabilities are bounded by 𝑃𝑚𝑖𝑛  and 𝑃𝑚𝑎𝑥 , that is: 

0 ≤ 𝑃𝑚𝑖𝑛 ≤ 𝑃𝐴 , 𝑃𝐵 , 𝑃𝐶 ≤ 𝑃𝑚𝑎𝑥 ≤ 1 

The default values of the minimal and maximal capture probabilities are 𝑃𝑚𝑖𝑛 =

0 and 𝑃𝑚𝑎𝑥 = 1, if not otherwise mentioned. 

I perform two simulation runs to compare the dynamics of prey populations in the 

absence of predators with those in the presence of predators. In the control run (without 
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predation), the soup is seeded with 3000 prey individuals with 1000 individuals of each 

prey type. The simulation run stops when only one prey population remains and the 

population size of each prey type is recorded during the run. In the experimental run 

(with predation), I introduce 300 predator individuals into the initial prey populations 

used in the control run. Each predator searches for prey in its local area and executes 

positive frequency-dependent predation (∆𝑃 = 0.1) based on local prey abundance. In 

each predation loop, a predator is allowed to eat at most m (m = 4) prey and acquires 

35% of the CPU time from each prey. The CPU time of a captured prey is reduced to 

40% of its original value. The simulation run lasts until 1800 million instructions have 

been executed and I record the population sizes of the predator and three prey species 

during the run.  

Results 

The three prey types differ in their genome lengths, type-A prey being 86 

instructions long, type-B prey being 96 instructions long and type-C prey being 90 

instructions long. In the absence of predators, the three prey types compete with one 

another and the creatures with a shorter genome length reproduce faster than those with 

a longer genome length, as each creature receives approximately the same amount of 

CPU time from the system. As shown in Figure 3.7(a), when the simulation run starts 

with 1000 individuals of each prey type, due to competitive exclusion, type-B prey go 

extinct after 144 million instructions have been executed and then type-C prey are 

crowded out by type-A prey after 504 million instructions have been executed and the 

type-A prey population occupies the entire soup.  
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Figure 3.7: Coexistence of three prey species is maintained by a predator population with 

positive frequency-dependent behavior. (a) Competitive exclusion among three types of prey; 

type-B prey and then type-C prey go extinct. (b) Type-A, type-B, and type-C prey stably 

coexist under the predation from a frequency-dependent predator population. 

 

However, when a predator population of 300 individuals with positive frequency-

dependent behavior is introduced into the three prey populations of 1000 individuals of 
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idea that positive frequency-dependent predation is able to maintain the diversity of 

prey species (Shao and Ray, 2010).   

3.2.6 Discussion 

In a natural environment, it is likely to be a full predator population, rather than a 

few predator individuals, that regulate prey populations. Therefore, after laboratory 

experiments have successfully demonstrated that the stable coexistence of multiple prey 

phenotypes could be maintained by one or a few predators with positive frequency-

dependent behavior, it is crucial to further investigate whether the prey diversity could 

be achieved by a population of such predators. Merilaita developed an individual-based 

computational model in which the strength of positive frequency-dependent predation 

could be gradually adjusted. Her simulation results showed that although one or two 

predator individuals could maintain the diversity of prey species, which was consistent 

with the laboratory experimental results, five or ten predator individuals failed to do so. 

Because the duration that two prey species coexisted decreased dramatically as the 

number of predator individuals increased, it was concluded that positive frequency-

dependent predation may not be a sufficient mechanism to maintain species diversity in 

nature (Merilaita, 2006).  

However, the setup of the simulations in Merilaita‟s study may not agree with the 

natural behavior of a predator population. In the laboratory experiments with one or two 

predator individuals, each predator was able to explore the entire populations of two 

prey types and switched to the common type based on the global abundance of different 

types. Merilaita also allowed each predator to obtain prey from the entire prey 

populations regardless of the number of predator individuals. It was found that a single 
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predator individual maintained prey species diversity longer than ten predator 

individuals. This result was rationalized as follows: “when there were ten predators, the 

behavior of each individual predator was formed by only one tenth of the information 

about prey type frequencies in relation to the total number of consumed prey, compared 

to the one-predator case.” (Merilaita, 2006) That is, based on the prey types that a 

predator had consumed, this predator attempted to acquire the information about the 

relative abundance of two prey types and adjusted its predation behavior to prefer the 

common prey type. Clearly, the predator obtained more accurate information on the 

global abundance of prey types if it consumed more prey individuals. When the same 

total number of prey individuals was consumed in both cases, the predator in the one-

predator case consumed 10 times more prey individuals than each predator in the ten-

predator case did. Therefore, in contrast to the predator in the one-predator case, each 

predator in the ten-predator case lacked the global information on prey type frequencies 

and thus it failed to constantly consume the abundant prey type. As a result, a 

population of ten predators could not maintain prey diversity as efficiently and 

accurately as a single predator individual. However, in a natural environment, a 

predator individual can neither access the entire prey populations nor acquire complete 

information about them. Rather, each predator searches for prey only in its local area 

and switches to the common type based on the local prey abundance which may not be 

consistent with the frequencies of the prey types at the global scale. This feature of 

local predation is elegantly executed in the Tierra system where a predator searches for 

prey in the range of 10 creatures on either side. The simulation results show that when 

each predator in Tierra, similar to its organic counterpart in nature, implements positive 
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frequency-dependent predation based on the prey type actually encountered and does 

not have any information about the entire prey populations, a population of 600 

predator individuals maintains the coexistence of two prey types. This emergent global 

pattern of species coexistence from the local interactions between prey and predators is 

robust to the variations of the parameters that affect either the predation behavior of 

predators or the initial relative proportion of the two prey types in the environment. 

Further studies on the underlying mechanisms of the maintenance of prey diversity 

reveal that predators with positive frequency-dependent behavior support a quick 

increase of the prey population of a rare type, by disproportionately consuming fewer 

individuals of that type, and meanwhile depress the prey population of a common type, 

by disproportionately eating more individuals of that type. This strong negative 

feedback regulation tends to equalize the abundance of different prey types and thus 

facilitates the stable persistence of the diversity of prey species. Moreover, as I increase 

the number of prey types from two to three, the predator population also successfully 

maintains the coexistence of three prey species. Therefore, those simulation results 

strongly suggest that positive frequency-dependent predation may be a reasonable 

mechanism to maintain species diversity in nature.    

On the other hand, digital creatures in Tierra compete for limiting CPU time and 

memory space. As a result, in the absence of predation, the stable coexistence of 

multiple digital species may not be easy to attain. For example, if two digital species 

differ in their genome lengths, the one with a shorter genome length reproduces faster 

and thus crowds out the one with a longer genome length, as shown in Figure 3.2(a). If, 

instead, the two digital species share the same genome length, theoretically they should 
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reach a stable coexistence, but due to the accumulation of randomness in the system, 

the populations of those two species slowly drift and sometimes one of them drifts to 

extinction, as shown in Figure 2.8. However, after predation is introduced into the 

Tierra system, predators, by consuming more prey individuals of the abundant types, 

provide a negative feedback regulation on prey populations. The weak negative 

feedback regulation in proportional predation elongates the coexistence time, although 

fails to maintain a stable persistence, of different prey species; while the strong negative 

feedback regulation in positive frequency-dependent predation successfully stabilizes 

and maintains the diversity of prey species. Therefore, introducing some strong 

negative feedback mechanisms into the system may be one of the approaches to achieve 

species diversity in Tierra.  

3.3 Effect of Two Predation Strategies on the Fitness of Predators 

In a natural environment, the predators with a successful predation strategy are 

able to capture more prey individuals and thus acquire more energy for reproduction. 

Those predators leave more offspring which may inherit the same predation strategy 

from their parents. Therefore, over generations, the individuals with the successful 

strategy would gradually spread in the predator population, crowding out those with 

less successful predation strategies.  

In section 3.2, I investigate the effect of proportional predation and positive 

frequency-dependent predation on the maintenance of prey species diversity. In this 

section, I attempt to study those two predation strategies from the perspective of 

predators, that is, which strategy would provide predators with higher fitness and 

whether or not the individuals with the better predation strategy would over time, 
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spread through the entire predator population and drive those with the less competitive 

predation strategy to extinction. 

Assume that there are two types of prey, type-A and type-B, in the environment. 

A predator with proportional predation always uses the same fixed probability, 𝑃𝐴 =

𝑃𝐵 = 0.5 , to capture different types of prey. However, a predator with positive 

frequency-dependent predation adjusts its capture probabilities based on the abundance 

of two prey types. Compared to proportional predation, positive frequency-dependent 

predation seems a more adaptive predation strategy: it is equivalent to proportional 

predation when the availability of two prey types is similar, but as the abundance of one 

prey type rises, by increasing the predators‟ ability to capture the more available prey 

type, it enables predators to consume more prey individuals than proportional predation 

does. As a result, positive frequency-dependent predation appears a better strategy and 

the predators with this strategy should be more competitive, driving those with 

proportional predation to go extinct. 

However, the simulation results in section 3.2.4 suggest that despite the relative 

proportion of two prey types in the initial prey populations, a predator population with 

strong positive frequency-dependent predation tends to equalize the abundance of two 

prey types (𝑅𝐴  approaches 0.5) and thus creates a better circumstance for the survival of 

predators with proportional predation (proportional predation is comparable to positive 

frequency-dependent predation only when the two prey types have a similar 

abundance). On the other hand, a predator population with proportional predation 

results in type-A prey being much more abundant than type-B prey (the type-B prey 

population eventually goes extinct), a favorable environment for the predators with 
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positive frequency-dependent predation (when one prey type is significantly more 

abundant than the other, positive frequency-dependent predation is better than 

proportional predation). Therefore, when the predators with one predation strategy 

dominate the predator population in Tierra, they change the relative abundance of two 

prey types in such a way that favors, rather than depresses, the predators with the other 

predation strategy. As a result, the competition of two predation strategies may be more 

complicated than the above simple deduction that positive frequency-dependent 

predation is definitely a better strategy than proportional predation.           

Methods 

As shown in Figure 3.4, when ∆𝑃 = 0.1 or 0.2, the predator population exhibits 

distinctive frequency-dependent behavior. Therefore, I use positive frequency-

dependent predation with ∆𝑃 = 0.1 and 0.2 to compete against proportional predation. 

In each competition scenario of the two predation strategies, the soup is seeded with 

300 predator individuals evenly distributed among 3000 prey individuals. The predator 

population is composed of the predators using proportional predation (denoted as PP-

predators) and the predators using positive frequency-dependent predation (denoted as 

PFDP-predators) with 150 individuals of each type. However, the relative abundance of 

two prey types in the initial prey population varies in 3 ways: two prey types are 

equally abundant with 1500 individuals of each type; type-A prey are significantly 

more abundant than type-B prey (2400 individuals of type-A prey and 600 individuals 

of type-B prey); type-B prey are significantly more abundant than type-A prey (2400 

individuals of type-B prey and 600 individuals of type-A prey). Therefore, in each 

competition scenario of the two predation strategies, I perform 3 separate simulation 
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runs, with each corresponding to one of the compositions of the initial prey population. 

In each simulation run, predators search for prey in their neighboring areas (about 10 

creatures long on either side of the predator). After a predator encounters a prey, if it is 

a PP-predator, it captures the prey with a constant rate of 0.5 regardless of the prey 

types; but if it is a PFDP-predator, it exhibits prey preference, namely, it has a higher 

probability to consume the more abundant prey type. In each predation loop, a predator 

is allowed to eat at most m (m = 4) prey and acquires 35% of the CPU time from each 

prey. The CPU time of a captured prey is reduced to 30% of its original value. 

Depending on when a predator type and/or a prey type may go extinct, the length of a 

simulation run varies between 1000 to 4000 million instructions executed. I record the 

population sizes of predator and prey species during the runs.  

Results 

As shown in Figure 3.5(a) and Figure 3.6(a), a population of PFDP-predators with 

∆𝑃 = 0.1 and 0.2 maintains a very stable coexistence of two prey types by equalizing 

their abundances (𝑅𝐴 approaches 0.5). In an environment with an equal abundance of 

different prey types, PP-predators are equivalent to PFDP-predators and thus the two 

types of predators may coexist or either one of them could go extinct. The competition 

of PP-predators and PFDP-predators with ∆𝑃 = 0.1 under different compositions of the 

initial prey population is shown in Figure 3.8(a), (b) and (c). At the beginning of each 

simulation run, type-A prey are significantly more abundant than type-B prey for about 

200 million instructions executed, which results in an increase of the PFDP-predator 

population. Those PFDP-predators then quickly reduce the abundance difference 

between type-A and type-B prey, providing a better surviving environment for PP-
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predators. For example, the two prey types achieve an approximately equal abundance 

during the period of 200-400 million instructions executed in Figure 3.8(b) and (c). As 

a result, PFDP-predators do not always win the competition, but rather either type of 

predators could go extinct. In Figure 3.8(a), PP-predators approach extinction around 

381 million instructions executed and then PFDP-predators maintain the coexistence of 

two prey types with a similar abundance. However, in Figure 3.8(b), PFDP-predators 

become extinct around 836 million instructions executed and then the population of PP-

predators fails to maintain the coexistence of two prey types, resulting in the extinction 

of type-B prey around 1244 million instructions executed. The same dynamic pattern of 

predator and prey populations reappears in Figure 3.8(c), with the extinction of PFDP-

predators around 1026 million instructions executed, followed by the disappearance of 

type-B prey around 1897 million instructions executed.  

The simulation results of the competition of PP-predators and PFDP-predators 

with ∆𝑃 = 0.2  further confirm that the increase of the PFDP-predator population, 

caused by the unequal abundance of type-A and type-B prey at the beginning of a 

simulation run, quickly diminishes the abundance difference between the two prey 

types and thus creates an environment where PP-predators and PFDP-predators are 

equally competitive.  
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Figure 3.8: Competition between PP-predators and PFDP-predators with ∆𝑃 = 0.1. The initial 

predator population is composed of 150 individuals of each type. The initial prey population has 

3 different compositions (a) type-A prey = 2400 individuals and type-B prey = 600 individuals 

(b) type-A prey = type-B prey = 1500 individuals (c) type-A prey = 600 individuals and type-B 

prey = 2400 individuals. The simulation run lasts until 1000, 2000, and 2500 million 

instructions have been executed in (a), (b), and (c), respectively.  
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Figure 3.9: Competition between PP-predators and PFDP-predators with ∆𝑃 = 0.2. The initial 

predator population is composed of 150 individuals of each type. The initial prey population has 

3 different compositions (a) type-A prey = 2400 individuals and type-B prey = 600 individuals 

(b) type-A prey = type-B prey = 1500 individuals (c) type-A prey = 600 individuals and type-B 

prey = 2400 individuals. The simulation run lasts until 1500, 2000, and 4000 million 

instructions have been executed in (a), (b), and (c), respectively.  
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As shown in Figure 3.9(a) and (b), the nearly equal abundance of two prey types 

achieved by the PFDP-predator population (after about 300 million instructions 

executed in Figure 3.9(a) and after about 200 million instructions executed in Figure 

3.9(b)) leads to an intensive competition between PP-predators and PFDP-predators: the 

population of PP-predators does not consistently decline, but rather it fluctuates and 

even increases to a level comparable to or greater than the population of PFDP 

predators during the period of 400-500 million instructions executed in Figure 3.9(a) 

and (b). The eventual extinction of the PP-predator population may result from 

randomness in the Tierra system. After PP-predators are crowded out, the population of 

PFDP-predators maintains a very stable coexistence of the two prey types with an equal 

abundance. In Figure 3.9(c), PP-predators and PFDP-predators coexist over the entire 

simulation run of 4000 million instructions executed, although due to the large 

fluctuation in the population sizes, this coexistence of the two predator types may be 

unstable. A close examination of Figure 3.9(c) is demonstrated in Figure 3.10, which is 

a copy of Figure 3.9(c) with 6 vertical dividing lines. As shown in Figure 3.10, the 

changes of the relative abundance of type-A and type-B prey concur perfectly with the 

dominant predator type in the predator population. For example, after the initial stage of 

the simulation run in region A, PP-predators become the dominant type in region B 

which results in type-A prey being significantly more abundant than type-B prey, a 

favorable environment for PFDP-predators. As a result, the population of PFDP-

predators increases. Towards the end of region B, the proportion of PFDP-predators in 

the predator population becomes greater than 50%, which causes type-A and type-B 

prey to approach a similar abundance, an environment in which PP-predators and 
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PFDP-predators are approximately equally competitive. Due to randomness in the 

system, PFDP-predators win the competition and become the dominant predator type in 

region C. The large number of PFDP-predators further reduces the abundance 

difference between the two prey types. In the middle of region C, type-A and type-B 

prey reach an equal abundance, which prevents PP-predators from going extinct and 

even provides an opportunity for the population of PP-predators to increase. PP-

predators eventually become the dominant predator type in region D which, similar to 

the pattern in region B, causes a considerable increase of the type-A prey population. 

The huge abundance difference between the two prey types results in an increase in the 

PFDP-predator population at the end of region D, which then, by equalizing the 

abundance of the two prey types, creates an environment in which the two types of 

predators are comparably competitive. Due to randomness in the system, PP-predators 

win the competition and thus become the dominant predator type in region E. The 

patterns of population dynamics in region E repeat those in region D, except that at the 

end of region E, PFDP-predators win the competition and become the dominant 

predator type in region F. The dominance of PFDP-predators leads to a similar 

abundance of the two prey types in region F, which provides a chance for the 

population of PP-predators to increase again. The dynamic patterns of predator and prey 

populations in Figure 3.10 clearly demonstrate that the dominant predator type, by 

executing its predation strategy, modifies the relative abundance of the two prey types 

to create a favorable environment for the other predator type. This mutual support, 

rather than exclusion, between the two predator competitors may be the mechanism for 

the coexistence of the two predator types.  
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In a natural ecological community, species in the same trophic level often 

experience a much more severe competition than those in different trophic levels 

(Hardin, 1960). Interestingly, this competition pattern spontaneously emerges in the 

digital community, composed of two prey and two predator species. As mentioned in 

chapter 2 (section 2.2.2), all digital creatures in Tierra live in the same finite memory 

space. In a community with one prey and one predator species, as the population of one 

species increases, the population of the other species decreases, therefore, a mirror 

image of the two species is exhibited in Figure 2.4. While, in a community with four 

species, theoretically, several possible combinations of the abundance of each species 

exist to fully fill up the memory space. However, as shown in Figure 3.10, only one 

combination actually occurs over the entire simulation run of 4000 million instructions 

executed: two pairs of mirror images with one pair between two predator types and the 

other pair between two prey types. That is, an increase in the population of one predator 

type causes a decline in the population of the other predator type, but has no significant 

influence on the populations of two prey types. Similarly, an increase in the population 

of one prey type severely decreases the population of the other prey type, but has little 

effect on the populations of two predator types. This similarity between trophic level 

competition in the digital community and that in the natural community suggests that 

the competition dynamics among species may follow some very general principles that 

are independent of any physical life forms.         

Discussion 

In Tierra, each digital creature receives a certain amount of CPU time from the 

system to execute and replicate its genome and occupies a block of memory with the 
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size of its genome length. The CPU energy and memory space provided by the Tierra 

simulator create a relatively static physical environment for digital creatures. With the 

introduction of predation into the Tierra system, digital predators mainly acquire the 

CPU time from their prey and thus the availability of digital prey forms a dynamic 

biotic environment for predators. When two types of prey and two types of predators 

are present, with each predator type executing a different prey capture strategy, the 

fitness of each predator type changes with the composition of the prey population which 

itself is consistently modified by predators through predation. For example, PP-

predators tend to increase the abundance difference between two prey types, which 

enhances the fitness of PFDP-predators. Meanwhile, PFDP-predators tend to equalize 

the abundance of two prey types, which promotes the fitness of PP-predators and allows 

the two types of predators to be comparably competitive. As a result, either type of 

predators could win the competition. Moreover, the two types of predators could also 

achieve an unstable coexistence during which the dominant predator type, by regulating 

the relative abundance of two prey types, supports the population growth of the other 

predator type. Therefore, which predation strategy (PP or PFDP) would provide 

predators a higher fitness depends on the biotic environment where predators live, and 

in this biotic environment, the composition of the prey population continuously changes 

and exhibits different patterns under different predation pressure.    

3.4 Conclusion  

In this chapter, I explore two predation strategies in an ecological scenario in 

which all the mutations in Tierra are blocked. The simulation results show that a 

predator population using a proportional predation strategy fails to maintain prey 
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species diversity. However, a predator population with positive frequency-dependent 

behavior maintains a stable coexistence of multiple prey species. Further investigations 

reveal that positive frequency-dependent predation provides a negative feedback 

regulation on prey populations which tends to equalize the abundance of different prey 

species and thus results in a stable persistence of prey diversity. On the other hand, 

when predators consume different types of prey, they actively modify the composition 

of the prey population. More specifically, as predators execute different predation 

strategies, the relative abundance of different prey types converges to different patterns. 

As a result, the competition outcome of PP-predators and PFDP-predators depends on 

their current biotic environment.  

In the next chapter, I will turn on various types of mutations in the Tierra system 

and study the influence of positive frequency-dependent predation on the increase and 

maintenance of community diversity in an evolutionary scenario. Furthermore, the 

evolution of digital creatures, during which new types of prey and predators 

continuously emerge through mutations, generates a much more complicated biotic 

environment than the one in the ecological scenario without mutations. I will explore 

the adaptation of prey and predators to their local, ever-changing ecological 

communities as the evolutionary processes occur in Tierra. 
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Chapter 4: Exploring Effects of Positive Frequency-dependent 

Predation on the Increase and Maintenance of Genetic Diversity in an 

Evolving Ecological Community and the Coevolution between Prey 

and Predator Populations 

Simulation results in chapter 3 suggest that in an ecological scenario, a predator 

population with positive frequency-dependent behavior maintains a stable coexistence 

of multiple competing prey species. In this chapter, by introducing mutations into the 

Tierra system, I attempt to explore whether those predators could generate high and 

stable diversity in an evolving ecological community. I redesign the rules that predators 

follow to capture prey in their local areas in order to adapt to the evolutionary situation 

in which new types of prey and predators continuously emerge. Then, I compare the 

diversity present in the populations, measured by the Shannon-Wiener index, before 

and after predators with positive frequency-dependent behavior are introduced into the 

community. Furthermore, by examining the changes in the genomes of predators and 

prey, especially the changes in the predation templates in predators and their 

complementary templates in prey, I study the coevolution between predator and prey 

populations during an evolutionary process in Tierra.     

4.1 Effects of Positive Frequency-dependent Predation on the Increase and 

Maintenance of Diversity in an Evolving Ecological Community  

Besides as a mechanism to maintain stable prey polymorphisms within 

populations and prey species diversity within communities in an ecological scenario, 

positive frequency-dependent predation was also predicted to have the potential to 

promote genetic diversity and species diversity during evolution, by increasing the 

richness and the abundance evenness of genotypes in a population and species in a 
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community (Clarke, 1979; Murdoch, 1969; Allen, 1988). This prediction has been 

investigated by several theoretical models. For example, by using an extension of 

classical Lotka-Volterra predator-prey models, Doebeli and Dieckmann studied 

evolutionary branching of prey and predator populations and found that positive 

frequency-dependent predation, which depressed the common prey phenotypes and thus 

allowed the rare ones to survive, could easily cause evolutionary branching in prey. 

However, after a prey phenotype had split into two distinct types, the branching of their 

predators depended on some specific conditions: the predators may not experience 

branching, being a generalist feeding on both new prey types, or may split into two 

predator types, with each specializing on one prey type (Doebeli and Dieckmann, 

2000). Furthermore, Doebeli and Ispolatov proposed that positive frequency-dependent 

predation may need to be considerably strong in order to generate diversity in an 

isolated phenotype. However, when many different phenotypes in high-dimensional 

spaces actively interacted with one another, like those in the living organisms, large 

amounts of diversity could be easily achieved and maintained by positive frequency-

dependent predation (Doebeli and Ispolatov, 2010). In addition to the elegant and 

concise mathematical analysis, the increase of diversity in a community by frequency-

dependent predators is also studied through field observations and laboratory 

experiments as follows. After examining the number of tree species and the density of 

each species in tropical forest habitats, Janzen suggested that herbivores that 

preferentially consumed the seedlings growing near their parent trees may lead to the 

extraordinary diversity of tree species (Janzen, 1970; Huntly, 1991). By comparing the 

diversity of seeds and seedlings in 200 sites in a tropical forest, Harms et. al also 
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concluded that the high diversity of plant species at least partially resulted from the 

continuing disproportionate predation on the abundant types of seeds and seedlings 

(Harms et. al., 2000). Bond and Kamil reported the first controlled experiment on the 

evolution of prey phenotypic diversity under positive frequency-dependent predation. 

They used 4 blue jays (Cyanocitta cristata), which were known to exhibit positive 

frequency-dependent behavior, to hunt for digital moths on a computer screen and 

allowed the moth population of 200 individuals to evolve via a genetic algorithm in 

which the moths escaping predation had a much higher chance to reproduce than those 

detected by the jays. They found that over 100 successive generations, the moth 

population which was preyed upon by the jays showed significantly greater phenotypic 

variance than that evolved without predation (Bond and Kamil, 2002; Bond, 2007).  

In my work, a predator population of 300 individuals, rather than just a few 

predator individuals, is introduced into the initial prey community and both predators 

and prey are allowed to continuously evolve. I attempt to explore the maintenance of 

predation in the community during evolution and the changes of community diversity 

by the populations of frequency-dependent predators.     

4.2 Execution of Positive Frequency-dependent Predation in Evolving 

Predator and Prey Populations  

When various types of random mutations are introduced into the Tierra system, 

the genomes of digital creatures are modified and thus new types of prey and predators 

continuously emerge. Therefore, unlike the ecological scenario in chapter 3 in which 

the prey types are known and the number of prey types is fixed, in the evolutionary 

scenario the prey types that a predator can detect in its local area vary over time.  
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To keep track of the changes in local prey types and their abundances, each 

predator individual saves the M most common, recently captured prey types, which are 

constantly updated as prey evolve. This allows a predator individual to execute positive 

frequency-dependent predation based on its most recent predation history in an 

evolving local environment. The detailed algorithm is as follows: 

(1)  Each predator individual keeps a record of the M most common prey types that it 

has captured previously.  

(2)  When a predator individual catches a type-i prey individual, this type is compared 

with the recorded prey types. 

(a) If type-i has been caught before, the probability to capture type-i prey, 𝑃𝑖  

increases by ∆𝑃 and to capture other prey types, 𝑃𝑗  decreases by ∆𝑃, that is, 

𝑃𝑖 = 𝑃𝑖 + ∆𝑃;  𝑃𝑗 = 𝑃𝑗 − ∆𝑃 (𝑗 = 1 …𝑀 and 𝑗 ≠ 𝑖) 

(b)  If, instead, type-i has not been caught before, type-i is recorded as one of the M 

prey types, and then the probability to capture type-i prey increases by ∆𝑃 and 

to capture other prey types decreases by ∆𝑃.  

(c)  If the predator individual has already saved M prey types but type-i is not one 

of them, type-i replaces the least common one among the M types, and then the 

probability to capture type-i prey increases by ∆𝑃 and to capture other prey 

types decreases by ∆𝑃.   

(d) All capture probabilities 𝑃𝑘(𝑘 = 1 …𝑀) are bounded by 𝑃𝑚𝑖𝑛  and 𝑃𝑚𝑎𝑥 , that is, 

0 ≤ 𝑃𝑚𝑖𝑛 ≤ 𝑃𝑘 ≤ 𝑃𝑚𝑎𝑥 ≤ 1 (𝑘 = 1 …𝑀) 

For all the simulation runs in this chapter, I set M = 5, ∆𝑃 = 0.1 , 𝑃𝑚𝑖𝑛 = 0 and 

𝑃𝑚𝑎𝑥 = 1. Due to random mutations, the genomes of digital creatures change rapidly, 
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which limits the number of individuals of a specific genotype. On the other hand, 

digital creatures with the same genome length usually share a very similar genetic 

structure. If digital prey individuals are grouped by their sizes, each size class, in 

contrast to each genotype, has significantly more individuals and evolves more slowly. 

This would allow predators to experience more prey individuals of the same class 

before they are modified by mutations and thus to effectively execute positive 

frequency-dependent predation. Therefore, in the above algorithm, prey types are 

classified by the genome lengths, rather than by the genotypes, of prey individuals. If a 

predator individual captures a type-i prey individual, its probability to capture the prey 

individuals which share the same size as type-i prey increases by ∆𝑃.  For example, 

assume there are 3 prey genotypes which are 86 instructions long, 86aaa, 86aab and 

86aac (In Tierra, a genotype is named by the size of the creature followed by a three-

letter code (Ray, 1998)). If a predator individual catches an individual of 86aaa, then it 

has a higher probability to catch prey individuals of 86aaa as well as 86aab and 86aac. 

4.3 Increase and Maintenance of Genetic Diversity by Positive Frequency-

dependent Predation in an Evolving Ecological Community in Tierra 

In the original Tierra system, when one or a few successful genotypes emerged 

through mutations, they usually gained reproductive advantages and rapidly crowded 

out other existing genotypes. Thus, the soup was repetitively dominated by very few 

genotypes and the evolving populations exhibited relatively low diversity (Ray, 1994). 

The simulation results in the ecological runs in chapter 3 suggest that a predator 

population with positive frequency-dependent behavior depresses the populations of 

dominant prey types and thus allows the more competitive prey types to coexist with 
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the less competitive ones. If, regardless of the changes in the genomes of digital 

predators and prey caused by mutations, predation could persist during an evolutionary 

run, predator populations may be able to limit the dominant prey types. This would 

provide more resources to support the survival of other prey types and thus more prey 

types may have the opportunities to evolve. With this increase in the number of 

coexisting prey types, more types of food sources may be available to predators which 

may promote the differentiation of predator types, with each specializing on a certain 

type of prey. As a result, this evolving ecological community may achieve high 

diversity. 

The digital organisms in Tierra, similar to bacteria, reproduce asexually and thus 

the traditional concept of species based on reproductive isolation may not be applied to 

those digital creatures. In the ecological scenario in chapter 3, the genomes of the 

predator and three prey types differ significantly from one another. Therefore it may be 

appropriate to view each genotype as a different species. However, in the evolutionary 

scenario in which genomes of predators and prey constantly change, the evolving 

community is composed of many genotypes that only differ from one another by a few 

mutations (those genotypes may not be considered as different species), as well as, a 

considerable number of genotypes that vary significantly in their genome lengths and 

structures (those genotypes may be viewed as different species). Currently, there are 

two popular approaches to measure the diversity in the digital community: one 

approach focuses on the numerous coexisting genotypes and calculates the genetic 

diversity by the Shannon-Wiener index (Ray, 1994; Cooper and Ofria, 2002). The other 

approach is to create an operational definition of species, for example, Chow et. al first 
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calculated the phylogenetic distance between each pair of genotypes, which was 

defined as “the total number of intermediate genotypes along the lines of descent 

leading to their most recent common ancestor”, and then applied a clustering algorithm 

to divide all genotypes into different clusters, with each cluster containing the 

genotypes that had small phylogenetic distances from one another. Chow et. al then 

defined each cluster as a species (Chow et. al., 2004; Lenski et. al., 2003). In my work, 

I follow the first approach to measure the diversity in the evolving digital community.  

4.3.1 Genetic Diversity in the Evolving Predator and Prey Populations in Tierra  

Methods 

One of the causes of the cessation of evolution in the original Tierra system was 

that ecological interactions only emerged when selection favored smaller genomes 

(when all creatures received equal amounts of CPU time from the system, smaller 

creatures reproduced faster than larger ones). Selection favoring smaller genomes 

eventually led to stasis when genomes reduced their sizes as much as possible, and no 

significant genetic variants were possible. Predation is a mechanism of allowing 

ecological interactions in the absence of selection for smaller genomes. In this chapter, 

as predation is introduced into the system, digital creatures evolve under size-neutral 

selection in which the amount of CPU time that a creature receives from the system is 

proportional to its genome length. This would allow creatures with different sizes to 

have a similar reproduction rate, which potentially prevents the dominance of smaller 

creatures and the resulting loss of complex structures in genomes. Therefore, due to 

size-neutral selection and predation, an evolutionary process in Tierra may continue 

longer with interesting ecological interactions between predator and prey populations. 
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The increase and maintenance of genetic diversity in an evolving community by 

predators is explored by comparing the results of two simulations. In the experimental 

run (with predation), I seed the soup with a predator population of 300 individuals and 

3 prey types (type-A, type-B and type-C), each with a population of 1000 individuals. 

As various types of random mutations modify the genomes of digital creatures, new 

prey and predator genotypes continuously appear. A predator is allowed to capture prey 

and acquire CPU energy from them but is not allowed to capture other predators. 

Therefore, the evolving ecological community is essentially a simple two-layer food 

chain, composed of one prey layer and one predator layer. Each predator searches for 

prey in its local area and executes positive frequency-dependent predation (∆𝑃 = 0.1) 

based on its most recent predation history, as described in details in section 4.2. In each 

predation loop, a predator is allowed to eat at most m (m = 4) prey and acquires 40% of 

CPU time from each prey. The CPU time of a captured prey is reduced to 30% of its 

original value. To observe predation over an evolutionary run, I record the time when a 

predator individual captures a prey individual and then I count the number of such 

predation events occurring in every million instructions executed. In the control run 

(without predation), I seed the soup with the same prey populations used in the 

experimental run (type-A, type-B and type-C, with 1000 individuals of each prey type) 

but I replace the predator population with 300 individuals of pseudo-predators. The 

genome of a pseudo-predator is the same as that of a predator except for the instruction 

to execute predation. Due to the lack of the ability to capture prey, pseudo-predators 

receive CPU time from the system for their reproduction. This community of prey and 

pseudo-predators evolves as mutations continue changing the genomes of digital 
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creatures. The introduction of pseudo-predators allows the experimental run and the 

control run to start with the same genetic diversity of the initial community and the only 

difference between the two simulation runs is the presence or absence of predation.  

In both the experimental run and the control run, the simulation lasts until 1500 

million instructions have been executed and I record the genetic diversity in the 

evolving community over time. Genetic diversity is evaluated by the Shannon-Wiener 

index, one of the most popular measures of community diversity used by ecologists 

(Hill, 1973).  Assume there are S different genotypes in a community, the Shannon-

Wiener index is calculated as  

𝐻 = − 𝑝𝑖 ln⁡(𝑝𝑖)               where  𝑝𝑖 =
𝑛𝑖

𝑁

𝑆

𝑖=1

 

𝑝𝑖  represents the relative abundance of a genotype i, measured by the number of 

individuals in genotype i (𝑛𝑖 ) divided by the total number of all individuals in the 

community  𝑁 . Therefore, genetic diversity calculated by the Shannon-Wiener index 

considers both the number of genotypes and the evenness of their abundances, that is, 

genetic diversity increases when more genotypes and/or when greater genotype 

evenness are present in the community.  

The genotypes which have just one individual are the mutants that are not able to 

reproduce. After excluding those genotypes, I calculate the genetic diversity of the 

community for every 1000 instructions executed and then average those values of 

genetic diversity over every million instructions executed. Furthermore, I focus on the 

genotypes which have at least 5 individuals and consider them as successful mutants 

due to their ability to acquire resources to produce multiple offspring in the highly 
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competitive environment in Tierra. I calculate the genetic diversity of those successful 

genotypes for every 1000 instructions executed and then average those values of 

genetic diversity over every million instructions executed. In addition, I use the same 

approach (calculate the values for every 1000 instructions executed and then average 

them over every million instructions executed) to measure the average genome size of 

the genotypes which reproduce at least once and also those which have at least 5 

individuals. 

Results 

Figure 4.1 shows 7 snapshots of the simulator window, when 0, 150, 300, 600, 

900, 1200 and 1500 million instructions have been executed, during the control run (left 

column (a1) – (a7)) and the experimental run (right column (b1) – (b7)), respectively. 

As shown in Figure 4.1(a1) and (b1), both the control run and the experimental run start 

with the same prey populations (86aaa, 96aaa and 90aaa are type-A, type-B and type-C 

prey, respectively, with 1000 individuals of each type) but with a different predator 

population: 300 individuals of predators (100aaa) are present in the initial community 

of the experimental run, while those predators are replaced by 300 individuals of 

pseudo-predators (100aac) in the control run. Due to the same number of genotypes and 

the same number of individuals in each genotype, the two communities share the same 

initial genetic diversity. However, the two communities exhibit different patterns during 

the evolutionary process. In the control run, the community is frequently dominated by 

one or a few genotypes, as illustrated in Figure 4.1(a2) when 150 million instructions 

have been executed. 
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Figure 4.2: Persistence of predation and genetic diversity in an evolving community when 40% 

of CPU energy is transferred from a captured prey to its predator. (a) After the transient initial 

stage, intensive predation is stably maintained in the community. (b) Genetic diversity of 

surviving genotypes in the community with predation and without predation. (c) Genetic 

diversity of successful genotypes in the community with predation and without predation.   
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Figure 4.3: Persistence of predation and mean genome size in an evolving community when 

40% of CPU energy is transferred from a captured prey to its predator. (a) After the transient 

initial stage, intensive predation is stably maintained in the community. (b) Mean genome size 

of surviving genotypes in the community with predation and without predation. (c) Mean 

genome size of successful genotypes in the community with predation and without predation.   
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As time passes, as shown in Figure 4.1(a3) ‒ (a7), the creatures may gradually 

evolve towards larger sizes, which considerably reduce the number of creatures living 

in the soup. Furthermore, most of the genotypes have a negligible population size and 

thus may disappear from the community soon after their birth. In contrast, the 

community in the experimental run usually exhibits high evenness of abundances 

among different genotypes. Many genotypes survive well and achieve a good 

population size. The lengths of creatures may not change significantly over the 

simulation run and thus the number of creatures living in the soup is similar to that in 

the initial community, as shown in Figure 4.1(b2) ‒ (b7). 

The genetic diversity and the sizes of creatures in the evolving community are 

further examined in Figure 4.2 and Figure 4.3 as they are calculated for every million 

instructions executed. In the experimental run, intensive predation persists in the 

ecological community, as shown in Figure 4.2(a): after the initial transient stage, the 

number of predation events per million instructions executed reaches about 380 and 

then following a temporary decrease, occurring around 400 million instructions 

executed, the predation level increases to and stably maintains at about 500 predation 

events per million instructions executed until the end of the run. In contrast, no 

predation events occur in the control run because no predators are introduced into the 

initial community and no creatures are able to become predators through mutations 

during the run. The genetic diversity, calculated by the surviving genotypes which are 

able to reproduce at least once, in the experimental run does not differ significantly 

from that in the control run, as shown in Figure 4.2(b). This negligible difference of the 

genetic diversity in the two runs may result from the strong influence of mutations on 
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the genetic diversity. In an evolving community, new genotypes continuously emerge 

through mutations and most of them may produce at least one offspring before death. 

Therefore, mutations may greatly enhance the number of surviving genotypes in the 

community and thus may obscure the effect of predation on the genetic diversity. 

However, the successful genotypes, after being generated through mutations, live in the 

soup for a certain period of time and highly rely on their biotic environment to achieve 

a population of at least 5 individuals. Thus, the number of successful genotypes may be 

much less sensitive to mutations. When the genetic diversity is computed for the 

successful genotypes, as shown in Figure 4.2(c), the community in which predators 

actively feed on prey exhibits a much higher genetic diversity than the community 

lacking in predation. In addition, the temporary decrease in the predation level around 

400 million instructions executed in Figure 4.2(a) concurs with the drop in the genetic 

diversity of the community in the experimental run in Figure 4.2(c). The high genetic 

diversity achieved and maintained by predation may result from the disproportionate 

consumption of the most abundant prey genotypes by predators: in the absence of 

predation, one or a few genotypes quickly dominate the soup and drive other genotypes 

to go extinct. This can cause an abrupt, dramatic decrease in genetic diversity. Then 

mutations modify the genomes of the dominant genotypes which causes new genotypes 

to appear and thus the recuperation of the genetic diversity. This pattern of sudden drop 

and then rapid restoration of the genetic diversity repetitively appears throughout the 

control run, as shown in Figure 4.2(c). However, in the experimental run, predators 

with positive frequency-dependent behavior may depress the dominant prey genotypes 

and thus allow the less competitive prey to survive for a longer time. Therefore, more 
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prey genotypes have a chance to reach a population of 5 or more individuals before 

being crowded out of the soup. This increase in the number of successful prey 

genotypes may also promote the survival of various predator genotypes. With the 

persistent flourishing of prey and predator genotypes, the genetic diversity of the 

community may reach and stably maintain a high level, as shown in Figure 4.2(c).  

Figure 4.3(a) is a copy of Figure 4.2(a) which shows the persistence of predation 

in the ecological community in the experimental run. Both the average genome size of 

the surviving genotypes and the average genome size of the successful genotypes in the 

control run are significantly larger than those in the experimental run, as shown in 

Figure 4.3(b) and Figure 4.3(c), respectively. Because the soup has a fixed finite space, 

as the sizes of creatures increase, the number of creatures living in the soup declines. 

By preventing an increase in the average genome size of digital organisms, the 

community with the presence of predation maintains a number of creatures as large as 

that in the initial community and thus may allow rich ecological interactions to 

continuously occur among creatures during the evolutionary process.   

4.3.2 Robustness to the Variations of Parameter Settings 

Methods 

The simulation results in section 4.3.1 suggest that with the presence of predation, 

the genetic diversity of successful genotypes in an evolving ecological community 

reaches and maintains a high level. One of the most crucial parameters that support 

predator populations and thus the persistence of predation during an evolutionary run is 

the amount of energy transferred from prey to predators through predation. To explore 

the robustness of the influence of predation on genetic diversity, I systematically vary 
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the amount of CPU time that a predator acquires from each of its captured prey from 

35%, 45%, 50%, 55% to 60%, while keeping other parameter settings the same as those 

used in section 4.3.1 when the scenario that a predator receives 40% of CPU time from 

each prey is studied. Then I compare the genetic diversity of successful genotypes in 

the evolving populations in the absence and the presence of predation. Moreover, I 

examine the sizes of creatures during evolutionary runs when the CPU energy acquired 

by predators varies. Because the number of individuals in the surviving genotypes is 

significantly more than that in the successful genotypes, the sizes of surviving 

genotypes have a much stronger impact on the number of creatures living in the soup. 

Thus, I evaluate the abundance of creatures in the community through the average 

genome size of surviving genotypes.  

The robustness of the influence of predation on genetic diversity is further 

examined by repeating a simulation run with different random seeds. For each of the 6 

experimental runs (the amount of CPU energy transferred from a captured prey 

individual to its predator varies from 35% to 60% in 5% increments), I perform 10 

replicates by using 10 random seeds and record the number of replicates in which 

predation persists in the evolving community for 1000 million instructions executed. 

Then I average the genetic diversity of successful genotypes over those replicates with 

persistent predation and compare it to the one calculated in the control run over the 

same random seeds. In addition, I record the standard deviation at 0, 250, 500, 750 and 

1000 million instructions executed, as a measure of the variations in the genetic 

diversity of successful genotypes among different replicates. 
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Results 

As shown in Figure 4.4(a), when a predator receives 35% of CPU time from each 

of its captured prey, predation events only occur at the beginning of the simulation run 

and rapidly decline to 0 after 30 million instructions executed. This suggests that 

predator populations may not acquire sufficient energy through predation and thus 

quickly go extinct. With the disappearance of predators in the evolving community, the 

genetic diversity of successful genotypes in the experimental run becomes almost 

indistinguishable with that in the control run, as shown in Figure 4.4(b). The sizes of 

creatures in the experimental run also significantly increase, being very similar to those 

in the control run, as shown in Figure 4.4(c).  

However, when a predator receives 45%, 50%, 55% and 60% of CPU time from 

each of its prey, respectively, the patterns of the persistence of predation, genetic 

diversity and sizes of creatures exhibited in Figure 4.2 and Figure 4.3 robustly reappear. 

As shown in Figure 4.5 ‒ Figure 4.8, after the initial transient stage, intensive predation 

stably persists in the evolving community over the entire simulation run of 1500 million 

instructions executed. With the continuous presence of predators, the genetic diversity 

of successful genotypes in the experimental run is considerably higher than that in the 

control run. Moreover, in the experimental run, the average genome size of surviving 

genotypes in the evolving community remains almost the same as that in the initial 

community. In contrast, in the control run, the sizes of creatures increase dramatically 

during the evolutionary process with huge fluctuations. 
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Figure 4.4: Persistence of predation, genetic diversity and mean genome size in an evolving 

community when 35% of CPU energy is transferred from a captured prey to its predator. (a) 

Predation is not maintained in the community. (b) Genetic diversity of successful genotypes in 

the community with predation and without predation. (c) Mean genome size of surviving 

genotypes in the community with predation and without predation.   
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Figure 4.5: Persistence of predation, genetic diversity and mean genome size in an evolving 

community when 45% of CPU energy is transferred from a captured prey to its predator. (a) 

Predation is stably maintained in the community. (b) Genetic diversity of successful genotypes 

in the community with predation and without predation. (c) Mean genome size of surviving 

genotypes in the community with predation and without predation.   
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Figure 4.6: Persistence of predation, genetic diversity and mean genome size in an evolving 

community when 50% of CPU energy is transferred from a captured prey to its predator. (a) 

Predation is stably maintained in the community. (b) Genetic diversity of successful genotypes 

in the community with predation and without predation. (c) Mean genome size of surviving 

genotypes in the community with predation and without predation.   
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Figure 4.7: Persistence of predation, genetic diversity and mean genome size in an evolving 

community when 55% of CPU energy is transferred from a captured prey to its predator. (a) 

Predation is stably maintained in the community. (b) Genetic diversity of successful genotypes 

in the community with predation and without predation. (c) Mean genome size of surviving 

genotypes in the community with predation and without predation.   
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Figure 4.8: Persistence of predation, genetic diversity and mean genome size in an evolving 

community when 60% of CPU energy is transferred from a captured prey to its predator. (a) 

Predation is stably maintained in the community. (b) Genetic diversity of successful genotypes 

in the community with predation and without predation. (c) Mean genome size of surviving 

genotypes in the community with predation and without predation.   
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As I repeat an experimental run with 10 different random seeds, the amount of 

CPU energy that predators acquire from their prey greatly influences the likelihood of 

the maintenance of predation in the evolving community. As shown in Table 4.1, when 

a predator receives 35% of CPU time from each of its prey, no predation persists in the 

community in any of the 10 replicates. However, a stable, high level of predation starts 

to appear when 40% of CPU time is transferred from each prey to its predator, as 

persistent predation occurs in 2 out of 10 replicates. With the further increase of the 

energy transferred to predator populations, such as a predator receives 45%, 50%, 55% 

or 60% of CPU time from each of its prey, the stable, continuous predation, which 

occurs in 6 to 8 out of 10 replicates, may robustly happen in the community. The 

averages and standard deviations of the genetic diversity of successful genotypes over 

the replicates in which predation steadily persists for 1000 million instructions executed 

are shown in Figure 4.9(a) ‒ (e) and Table 4.2. Those results suggest that over a wide 

range of the amount of energy acquired by predators, the genetic diversity of successful 

genotypes in the community with intensive predation is clearly much higher than that in 

the community lacking in predation. 

 

Table 4.1: Predation is more likely to persist in an evolving community as predator populations 

acquire more CPU energy from their prey.  

Amount of CPU time that a predator acquires 

from each of its prey (predp) 

Number of replicates that predation persists in the 

evolving community for 1000 million instructions 

executed, among 10 replicates  

35% 0 

40% 2 

45% 6 

50% 7 

55% 8 

60% 7 
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Figure 4.9: Average genetic diversity of successful genotypes over the replicates in which 

intensive predation is stably maintained in the evolving community, compared to that in the 

community without predation. (a) 40 % of CPU energy is transferred from a captured prey to its 

predator. (b) 45 % of CPU energy is transferred from a captured prey to its predator. (c) 50 % of 

CPU energy is transferred from a captured prey to its predator.     
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Figure 4.9 (continue): Average genetic diversity of successful genotypes over the replicates in 

which intensive predation is stably maintained in the evolving community, compared to that in 

the community without predation. (d) 55% of CPU energy is transferred from a captured prey to 

its predator. (e) 60 % of CPU energy is transferred from a captured prey to its predator. 

 

Table 4.2: Standard deviation of the genetic diversity of successful genotypes over the 

replicates in which intensive predation is stably maintained in the evolving community (pred), 

compared to that in the community without predation (Npred). The standard deviation is 

recorded at 0, 250, 500, 750 and 1000 million instructions executed, respectively. 

Time 

(million instr. 

executed) 

Standard Deviation 

predp = 40% predp = 45% predp = 50% predp = 55% predp = 60% 

pred Npred pred Npred pred Npred pred Npred pred Npred 

0 0 0 0 0 0 0 0 0 0 0 

250 0.175 0.076 0.268 0.283 0.216 0.316 0.186 0.449 0.295 0.348 

500 0.073 0.795 0.321 0.674 0.180 0.738 0.389 0.341 0.559 0.805 

750 0.153 0.129 0.232 0.306 0.039 0.667 0.201 0.408 0.247 0.644 

1000 0.064 0.061 0.403 0.542 0.353 0.509 0.275 0.538 0.366 0.458 
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4.4 Coevolution between Digital Predator and Prey Populations in Tierra 

The process of coevolution describes the reciprocal evolutionary adaptations of 

two species that interact ecologically. One of the most extensively studied 

coevolutionary scenarios is the antagonistic interaction between predator and prey 

species: through predation, predators exert selective pressures on prey which facilitates 

the evolution of escaping attributes in prey, such as fast speed, protective coloration and 

toxic chemical defenses, to deter predation. The prey individuals with efficient escaping 

mechanisms have better chance to survive and reproduce, passing on their attributes to 

future generations. On the other hand, with the development of escaping adaptations in 

prey species, predators experience selective pressures to improve their ability to capture 

prey. The predators with better feeding mechanisms acquire more food and thus 

produce more offspring which inherit the predation characteristics, such as acute 

detection and efficient attack, to circumvent the escaping strategies newly evolved in 

prey. Such a coevolutionary relationship between prey and predators may cause the two 

species to continuously evolve, as each species tries to increase its own fitness, at the 

expense of the other (Rausher 2001). 

Similar to the ecological interactions between prey and predator species in nature, 

digital prey and predators in Tierra also shape the biotic environment of each other. As 

beneficial mutations occur in digital prey which enhance their ability to escape 

predation and thus to produce more offspring, digital predators may evolve adaptive 

response to exploit those newly thriving prey types. Here, I attempt to explore the 

coevolution patterns between predator and prey populations in Tierra. 
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Figure 4.10: Mutations on predator genomes, rather than on prey genomes, cause new types of 

predators to emerge. The two simulation runs in (a) and (b) are performed under the same 

parameter settings, except for the initial predator population: a predator population of 300 

individuals is introduced into the initial prey community in the run in (a), but not in the run in 

(b). Therefore, any predators that appear in the run in (b) come from prey mutants. (a) Stable 

and intensive predation persists in the evolving ecological community. The sudden, dramatic 

change of the predation level, during the period of 1060-1120 million instructions executed, 

may indicate the occurrence of coevolution between predator and prey populations. (b) When 

predators are generated purely from prey mutants, the number of predation events is negligible 

(the maximum value of the vertical axis in (b) is 50, rather than 1200).  

 

4.4.1 Coevolution between Predators and Prey Observed at the Genome Level 

During an evolution run in Tierra, occasionally, the stable persistence of intensive 

predation in the evolving ecological community is interrupted by a brief period of 
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significant decline of predation. As illustrated in Figure 4.10(a), after the initial 

transient stage, the number of predation events per million instructions executed is 

steadily maintained around 500, however, this predation level suddenly drops to about 

100 and then quickly returns to about 500 in the period of 1060 to 1120 million 

instructions executed. This huge decrease of the predation level may indicate that the 

majority of prey populations in the community evolve some escaping strategies to avoid 

being found by predators. And the following increase of the predation level may 

suggest that predators evolve novel capture mechanisms to exploit the newly evolved 

prey.  

By acquiring the predation instruction through mutations, potentially, with very 

low probability, a prey individual could become a predator. To verify that a predator 

population with a reasonable size could not result from prey mutants, I start a 

simulation run with pure prey populations and allow prey to mutate to predators. Except 

for the initial predator population, this simulation run uses exactly the same parameter 

settings as the run that produces Figure 4.10(a). As shown in Figure 4.10(b), when 

predators are generated purely from prey mutants, the number of predation events is 

negligible (the maximum value of the vertical axis in Figure 4.10(b) is 50, rather than 

1200). This result supports that in Figure 4.10(a), when predation drops to a very low 

level around 1090 million instructions executed, the majority of the predators, rather 

than all the predators, go extinct, then mutations on the surviving predators result in the 

emergence of new types of predators which may feed on the recently evolved prey.  
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Here, I perform a detailed analysis on the genomes of digital creatures that appear 

in the period when the dramatic change of predation level occurs, to investigate whether 

or not coevolution exists between predator and prey populations.   

Methods 

I use a built-in software tool in Tierra, called “Probe” (Ray, 1998), to find the 

genomes, in the period of 800 to 1300 million instructions executed, whose maximum 

population size reaches or exceeds 100 individuals. For each of those major genomes, I 

record its name, the time that it first appears in the soup, its maximum population size 

and the time that the maximum population size is achieved, and whether this genome is 

a prey or a predator. After identifying 13 major predator genomes and 14 major prey 

genomes, I plot those genomes in separate graphs to observe the time periods that their 

populations thrive in the soup and reach the maximum sizes. To detect the prey 

genomes that a predator genome mainly feeds on, for each of the 13 predator genomes, 

I count the number of individuals in each of the 14 prey genomes that are captured by 

the predator. In addition, I record the predation template in each predator genome but 

for each prey genome, I record those templates which are complementary to the 

predation templates in the 13 predator genomes (different predator genomes may use 

distinct predation templates to search for prey).       

Results 

Figure 4.11(a) shows the portion of Figure 4.10(a) in the period of 800 to 1300 

million instructions executed. The dramatic decrease of the predation intensity in an 

ecological community could result from a decline of prey populations or a decline of 

predator populations.  
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Figure 4.11: Predation level in the evolving ecological community and the thriving major 

predator and prey genomes during the period of 800 ‒ 1300 million instructions executed. (a) 

The dramatic change of predation level. (b) Major predator and prey genomes whose maximum 

population size exceeds 100 individuals. Each line represents one genome with the starting 

point indicating the time that the genome first appears in the soup with 1 individual and the 

ending point indicating the time that the genome reaches its maximum population. In the order 

of the time that each genome reaches its maximum population, from left to right, the 13 

predator genomes are 91aba, 91afh, 91abo, 91adt, 91aid, 91ana, 92aeg, 91aiw, 91aqt, 91agf, 

91arc, 91amx and 91aqg, and the 14 prey genomes are 88abu, 86add, 89acc, 90afi, 90aie, 91aei, 

89agd, 90agf, 89aip, 87aeh, 87afq, 86adm, 90alu and 90ame.    

 

However, Figure 4.11(b) shows that during the period of sudden drop in the 

predation level, 2 major prey genomes (89agd and 90agf) flourish in the soup, 
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achieving large population sizes. Therefore, the low predation level is most likely 

caused by the decrease of predator populations, rather than lack of prey. That is, there 

are plenty of prey individuals available in the soup but predators fail to capture them. 

For example, as shown in Figure 4.11(b), predator genome 91aiw and prey genome 

89agd coexist in the soup for a while and both of them have large population sizes, 

therefore, they have good chance to encounter each other. However, the population of 

predator 91aiw starts to decrease when the population of prey 89agd increases rapidly. 

This may indicate that predator 91aiw is unable to find prey 89agd, in other words, prey 

89agd may have evolved some escape strategy to hide from predator 91aiw. On the 

other hand, predator genome 91aqt emerges after the presence of prey genomes 89agd 

and 90agf in the soup and then the population of predator 91aqt increases with the 

populations of prey 89agd and 90agf. This may suggest that predator 91aqt feeds on 

prey 89agd and 90agf, which may result in the rise of the predation level after the drop.    

The predation relationship between a predator genome and a prey genome is 

further examined by the template matching that a predator uses to capture its prey. As 

shown in Table 4.3, based on the predation template in a predator genome, the 13 major 

predator genomes are divided into 4 groups,: the predator genomes in group #1 (91aba, 

91afh, 91abo and 91adt), in group #2 (91aid, 91ana, 92aeg and 91aiw), in group #3 

(91aqt) and in group #4 (91agf, 91arc, 91amx and 91aqg) use 001, 011, 01 and 010 as 

the predation template, respectively. The 14 major prey genomes are divided into 2 

groups: the prey genomes in group #1 (88abu, 86add, 89acc, 90afi, 90aie and 91aei) 

have templates 1100 and 101; the prey genomes in group #2 (89agd, 90agf, 89aip, 

87aeh, 87afq, 86adm, 90alu and 90ame) have template 101 but not template 1100. As a 
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predator individual searches for its prey, it tries to find a template in prey which is 

complementary to its predation template. This complementary template in prey could 

be either a single template or contained in a longer template. The templates which are 

complementary to the predation templates in predator group #1 and group #2 are 110 

and 100, respectively and both are contained in template 1100, therefore, the predators 

in group #1 and group #2 could potentially feed on prey group #1. Similarly, the 

templates which are complementary to the predation templates in predator group #3 and 

group #4 are 10 and 101, respectively and are either contained in or equal to template 

101, therefore, the predators in group #3 and group #4 could potentially feed on prey 

group #2. As digital creatures continuously evolve in the soup, prey and predator 

genomes may emerge, survive and go extinct at different times. Therefore, besides 

template matching, the actual execution of predation also depends on whether or not a 

predator genome encounters its prey in the soup. Based on the number of predation 

events that occur between each pair of predator and prey genomes, I identify the prey 

genomes that each predator genome actually feeds on. As shown in Table 4.3, the 

predators which share the same predation template may actually capture different prey 

genomes. This feeding difference of the predators may result from their different 

thriving periods in the soup. For example, due to template matching, predator genome 

91aba could potentially capture all the prey genomes in prey group #1, however, 91aba 

only feeds on prey genomes 88abu, 86add and 89acc. The failure of 91aba to capture 

prey genomes 90afi, 90aie and 91aei in prey group #1 may be because 91aba population 

has become extinct before 90afi, 90aie and 91aei appear in the soup.   
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Table 4.3: The prey genomes that each major predator genome actually feeds on during the 

period of 800 ‒ 1300 million instructions executed. The first column lists the 13 major predator 

genomes which are divided into 4 groups, indicated by the 3 horizontal double-lines, based on 

their predation templates. That is, the predator genomes in group #1, #2, #3, #4 have predation 

template 001, 011, 01 and 010, respectively. The first row lists the 14 major prey genomes 

which are divided into 2 groups, indicated by the vertical double-line. The prey genomes in 

group #1 have template 1100 and 101, but template 1100 disappears in prey group #2. An “X” 

indicates an actual predator-prey pair. For example, the 3 “X” in the second row suggest that 

predator genome 91aba feeds on prey genomes 88abu, 86add and 89acc.  

             Prey 

Predator 

88abu 

1100/101 

86add 

1100/101 

89acc 

1100/101 

90afi 

1100/101 

90aie 

1100/101 

91aei 

1100/101 

89agd 

101 

91aba     001 X X X     

91afh      001 X X X X    

91abo     001 X X X X X   

91adt      001   X  X   

91aid      011   X  X X  

91ana     011     X X  

92aeg     011      X  

91aiw     011   X  X X  

91aqt      01       X 

91agf      010       X 

91arc      010        

91amx    010       X 

91aqg     010        

 

             Prey 

Predator 

90agf 

101 

89aip 

101 

87aeh 

101 

87afq 

101 

86adm 

101 

90alu 

101 

90ame 

101 

91aba     001        

91afh      001        

91abo     001        

91adt      001        

91aid      011        

91ana     011        

92aeg     011        

91aiw     011        

91aqt      01 X X X X    

91agf      010 X  X X X X X 

91arc      010      X X 

91amx    010 X  X X X X X 

91aqg     010       X 
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Combining the information present in Figure 4.11(b) and in Table 4.3, I attempt 

to reveal the coevolution of predator and prey populations during the period of 800 to 

1300 million instructions executed. Figure 4.12 illustrates the flourishing periods of the 

2 prey groups and 4 predator groups, and the complementary template matching 

between the prey and predator groups. During the period of 800 to 1060 million 

instructions executed, prey genomes (prey group #1) maintain the templates 1100 and 

101 as they evolve. Although predator genomes change their predation template from 

001 (predator group #1) to 011 (predator group #2) during evolution, each of those 

predation templates has its complementary template contained in 1100. Therefore, the 

predators in group #1 and #2 are able to capture the prey genomes in prey group #1 and 

thus a high level of predation persists in the evolving community. During the period of 

1060 to 1090 million instructions executed, prey may mutate template 1100 as they 

evolve. As a result, template 1100 is no longer contained in the prey genomes in prey 

group #2. Predators which use predation template 011 to search for their prey are 

unable to feed on the existing prey in the soup which contain template 101. Therefore, 

the predator populations in predator group #2 may decline rapidly, causing the sudden, 

dramatic decrease of predation level. The newly evolved prey genomes, by removing 

the template (1100) attacked by predators, escape predation and thrive in the soup with 

very weak predation pressures. However, this low predation period does not last very 

long. As abundant prey genomes with template 101 survive in the soup, predators 

quickly evolve their predation template to exploit this new food source. The predator 

genome in group #3 uses a shorter predation template 01 to search for prey and 

successfully feeds on the prey genomes with template 101, resulting in the rapid 
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increase of predation level during the period of 1090 to 1150 million instructions 

executed. The high predation level is then further maintained as predators evolve a 

more complete predation template 010 in group #4 to capture the prey genomes in prey 

group #2, during the period of 1150 to 1300 million instructions executed. The increase 

in the size of the predation template from 2 to 3 suggests that predators do not evolve a 

cheating strategy, by continuously reducing the size of their predation template, which 

potentially allows predators to find the complementary templates in more prey 

individuals.  

In summary, the dramatic change of the predation level, during the period of 1060 

to 1120 million instructions executed, may clearly demonstrate the coevolution between 

predator and prey populations: by mutating templates, prey avoid being found by 

predators and thus escape predation. This adaptation evolved in prey severely reduces 

the fitness of their predators (predator group #2). Then predators evolve their predation 

templates to attack the templates contained in the newly evolved prey, circumventing 

the escape mechanisms developed in prey (predator group #3 and #4). Therefore, the 

coevolution between predator and prey populations in Tierra may essentially be the 

coevolution between the predation templates in predators and their complementary 

templates in prey. Moreover, the coevolution process may consistently occur 

throughout the entire simulation run: a significant decrease of predation level may 

occur when the majority of prey populations in the soup escape predation around the 

same time; however, if different prey populations evolve escape strategies at different 

times, the predators that feed on distinct prey types may alternately thrive in the soup, 

which may maintain a high stable predation level.     
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4.4.2 Coevolution between the Predation Templates in Predators and Their 

Complementary Templates in Captured Prey    

By identifying the genomes of major predators and prey and then examining the 

predation templates in predators and their complementary templates in prey, I 

demonstrate one example of coevolution between predators and prey at a particular 

period of time (when the predation level dramatically drops) in section 4.4.1 and 

conclude that the coevolution between predator and prey populations may be driven by 

the predation templates in predators and their complementary templates in prey, rather 

than by specific predator and prey genotypes. Here, by focusing on the changes in 

predation templates and their complementary templates, I attempt to study the 

coevolution between predators and prey throughout the entire simulation run. 

Methods 

Similar to the simulation setup used in section 4.3.1, I seed the soup with a 

predator population of 300 individuals and 3 prey types (type-A, type-B and type-C), 

each with a population of 1000 individuals. Those genomes of digital creatures are 

continuously modified by mutations during the simulation run. Each predator searches 

for prey in its local area and executes positive frequency-dependent predation (∆𝑃 =

0.1) based on its most recent predation history, as described in detail in section 4.2. In 

each predation loop, a predator is allowed to eat at most m (m = 4) prey. The results in 

Table 4.1 suggest that intensive predation is most likely to persist in an evolving 

community when the amount of CPU time that a predator acquires from each of its prey 

is in the range of 45% ‒ 60%. To observe more examples of coevolution between 

predators and prey, I vary the amount of CPU energy transferred from a captured prey 
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individual to its predator from 45% to 60% in 5% increments. The CPU time of a 

captured prey is reduced to 30% of its original value. The evolution of templates is 

investigated by the changes of their abundances in the soup over time: when a predator 

individual captures its prey, I record the predation template in that predator and its 

complementary template in the prey. Then I count the number of each predation 

template and its complementary template, respectively, in every million instructions 

executed. I focus on the major predation templates which are used by predators more 

than 2000 times during a simulation run of 1000 million instructions executed. 

Results 

Figure 4.13(a) exhibits the persistence of predation in an evolving community, 

measured by the number of predation events per million instructions executed. As I 

decompose those predation events based on the predation templates that predators use 

to capture prey, the evolutionary patterns of different predation templates emerge. As 

shown in Figure 4.13(b), template 0110 in the ancestor predators rapidly declines and 

disappears at the beginning of the simulation run. Then the soup is dominated by the 

predators with template 011, which are later replaced by the predators with template 

001. The predators with template 000 thrive and coexist with those with template 001 

during the period of 500 ‒ 600 million instructions executed. Finally, the predators with 

template 100 appear and dominate the soup. More examples of the evolution of 

predation templates are shown in Figure 4.14, as I vary random seeds and the amount of 

CPU energy transferred from prey to predator populations.  
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Figure 4.13: Evolution of predation templates in predators during a simulation run of 1000 

million instructions executed. (a) Intensive predation stably persists in the evolving community. 

(b) Five different predation templates successively emerge during the evolutionary process.  

 

Figure 4.14(a) exhibits a continuous transition of 5 predation templates as one 

template completely replaces another without much periods of coexistence of two 

templates. However, in Figure 4.14(b), despite the dominance of predation template 

011, three templates (0010, 001 and 010) successively emerge and coexist with 

template 011 for a certain period of time.  
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Figure 4.14: Evolution of predation templates in predators in an evolving ecological 

community. (a) Five different predation templates sequentially emerge, with one replacing 

another. (b) Eight different predation templates emerge and some templates coexist in the soup. 

(c) Six different predation templates emerge and multiple templates coexist in the soup, 

especially during the period of 650 ‒ 900 million instructions executed. 
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Figure 4.14 (continue): Evolution of predation templates in predators in an evolving ecological 

community. (d) Six different predation templates emerge: some templates coexist in the soup 

and a more complex template emerges from simple templates. (e) Five different predation 

templates emerge and more complex templates evolve after the soup has been dominated by 

simple templates for a long period of time.  

 

The more apparent coexistence of two predation templates occurs around 700 

million instructions executed in Figure 4.14(b) and around 400 million instructions 

executed in Figure 4.14(c). During the period of 650 ‒ 900 million instructions 

executed in Figure 4.14(c), three predation templates persistently coexist in the soup, 

although with the replacement of template 0010 by 011. Moreover, the two templates, 

011 and 110, seem to reach a relatively stable coexistence at the end of the simulation 

0 1 2 3 4 5 6 7 8 9 10

x 10
8

0

200

400

600

800

1000

1200

#
 o

f 
p

re
d

at
io

n
 e

v
en

ts
 p

er
 m

il
li

o
n

 i
n

st
r.

 

fo
r 

ea
ch

 p
re

d
at

io
n

 t
em

p
la

te

time (# of instr. executed)

 

 

0110

010

110

000

0010

00

0 1 2 3 4 5 6 7 8 9 10

x 10
8

0

200

400

600

800

1000

1200

#
 o

f 
p

re
d

at
io

n
 e

v
en

ts
 p

er
 m

il
li

o
n

 i
n

st
r.

 

fo
r 

ea
ch

 p
re

d
at

io
n

 t
em

p
la

te

time (# of instr. executed)

 

 

0110

011

01

010

0010

(e) 

(d) 



138 

 

run. This coexistence of multiple predation templates may indicate the differentiation of 

predators, with each using a different strategy to catch prey. Besides the sequential 

replacement of predation templates over time and the coexistence of two templates, 010 

and 000, during the period of 550 ‒ 780 million instructions executed, Figure 4.14(d) 

also shows that a more complicated predation template, 0010, could emerge and survive 

after the soup has been dominated by shorter predation templates for a long time. This 

potential to evolve longer predation templates is more clearly demonstrated in Figure 

4.14(e): the ancestor predators are replaced by those with a very simple predation 

template, 01 and those predators dominate the soup for about 300 million instructions 

executed. However, this does not prevent the later emergence of longer, more 

sophisticated predation templates ― the predators with template 010 appear and 

flourish, which completely removes those with template 01. Moreover, the predators 

with template 0010 reach a considerable population size and coexist with the predators 

with template 010 during the period of 400 ‒ 480 million instructions executed. With a 

reasonable template size, predators are able to evolve a variety of different predation 

templates, which enriches the potential predation strategies that predators could develop 

to capture their constantly evolved prey. 

The evolution of each complementary template in prey exhibits exactly the same 

pattern as its corresponding predation template in predators. For example, in Figure 

4.13(b), the lines that represent the predation templates 0110, 011, 001, 000 and 100 

also represent the complementary templates 1001, 100, 110, 111 and 011, respectively. 

Due to the mismatching of templates, prey may escape predation from previous 

predators, for example, the prey with complementary template 011 may not be found by 
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the predators with predation template 000. However, it is also possible that the 

predators with predation template 000 and 100 may share the same type of prey with 

template 0111, by matching different parts of the template. In this case, the escape 

strategies may not be evolved in prey. On the other hand, the continuous evolution of 

predation templates in predators is presumably driven by the evolution of prey. 

Moreover, a detailed study on all the templates contained in prey genomes in the 

evolving community reveals that the overwhelming majority of the templates are 

shorter than 5 binary digits. Therefore, it is extremely unlikely that 3 or more different 

predation templates attack the same template in prey. As shown in Figure 4.13 ‒ 4.14, 5 

or 6 different predation templates, even 8 predation templates in Figure 4.14(b), have 

evolved in the soup during the simulation run of 1000 million instructions executed. 

This strongly suggests that prey may modify the template attacked by predators to 

escape predation, which promotes the changes in the predation template as predators try 

to capture the evolved prey by locating another template in prey.          

4.5 Conclusion and Discussion 

In this chapter, I investigate the influence of positive frequency-dependent 

predation on the genetic diversity in an evolving ecological community. The simulation 

results show that in the absence of predators, the community is repetitively dominated 

by a few genotypes, which causes the frequent, dramatic diversity loss. However, after 

a predator population with positive frequency-dependent behavior is introduced into the 

community and the intensive predation persists despite the constant changes in predator 

and prey genomes, the genetic diversity in the community significantly increases and 

steadily maintains a high level. The stable persistence of predation and the high genetic 
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diversity robustly occur in the evolving community over a wide range of the amount of 

CPU energy that predators acquire from their prey. Therefore, in a simple, spatially 

homogeneous environment in Tierra, positive frequency-dependent predation may be a 

mechanism to support the coexistence of a variety of different genotypes in the 

community during an evolutionary process.   

The evolution of an ecological community in Tierra has been studied under the 

selection favoring smaller genomes and under the size-neutral selection, respectively. In 

the first scenario, many intriguing ecological interactions among digital creatures 

spontaneously emerged throughout the simulation run but the sizes of digital creatures 

continuously shrunk over time. This reduction in sizes caused a severe loss of complex 

structures in genomes and eventually no significant genetic variants could be generated 

(Ray, 1991; Ray, 1994). In the second scenario, although smaller genomes emerged and 

thrived in the soup from time to time, most digital creatures in the community evolved 

towards larger sizes, which greatly decreased the number of creatures living in the soup 

and thus reduced the possible ecological interactions in the community (Ray, 1994). 

The simulation results presented in this chapter suggest that when a predator population 

with positive frequency-dependent behavior is introduced into the initial community, 

the evolution of the community under the size-neutral selection exhibits a completely 

different pattern ― the sizes of digital creatures remain almost the same during the 

evolutionary process, which prevents the loss of genetic information in genomes as well 

as promoting rich ecological interactions by allowing abundant creatures to survive in 

the soup. Therefore, this community of predator and prey populations may evolve 

longer with interesting ecological dynamics.   
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The coevolution between prey and predator populations is observed in the digital 

community as I examine the genomes of digital creatures during the period of a 

dramatic decrease in the predation level: prey mutate the template attacked by predators 

and thus escape predation and predators modify their predation template to match 

another template in the newly evolved prey. Further simulations on the evolution of 

predation templates in predators and their complementary templates in prey suggest that 

the coevolution between prey and predators may continuously occur throughout the 

simulation run and predators, by maintaining a reasonable size of predation templates, 

may have the potential to evolve a variety of different predation strategies.      

The current approach of, when a predator individual captures its prey, recording 

the predation template in the predator and its complementary template in the prey, 

clearly demonstrates that as new prey types continuously emerge in the soup, predators 

are capable to mutate their predation templates to exploit the recently evolved prey. 

However, because this approach focuses on the prey being captured, rather than those 

escaping predation, the evolution of escape strategies in prey may only be studied 

indirectly: the template in prey attacked by the current predators is not complementary 

to the predation template in the immediate ancestral predators. Moreover, the length of 

most templates in prey genomes is shorter than 5 binary digits, which restricts the 

chance that predators with different predation templates may share the same type of 

prey. Therefore, along with the successive occurrence of at least 5 predation templates 

in predators, the escape strategies in prey may be developed multiple times during a 

simulation run. In the future, I would like to directly observe when those escape 

strategies are evolved in prey by following the changes of the template in prey that is 
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currently attacked by predators but disappears in the genomes of immediate descendant 

prey. 
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Chapter 5: Conclusions and Future Research  

In this chapter, I summarize the main conclusions of my research work based on 

the simulation results presented in chapters 2, 3 and 4. Then I lay out two possible 

future research directions. 

5.1 Conclusions  

In this dissertation, I use the Tierra system to study the influence of positive 

frequency-dependent predation on the diversity of an ecological community. In order to 

introduce active predation into the Tierra system, I design a digital predator which is 

able to capture multiple digital prey individuals in its local area and obtain a certain 

amount of CPU energy from each prey. Unlike digital prey which constantly receive 

CPU energy from the system, digital predators acquire CPU energy for their survival 

and reproduction only through predation. This energy dependence of predators on their 

prey robustly generates a coupled cyclic oscillation between the predator and prey 

populations in Tierra, which has a pattern similar to the “Lotka-Volterra” cycle in 

nature. Therefore, the design of digital prey and predators may capture some essential 

properties of the predation relationship observed in nature and thus may be suitable to 

study predator-prey population dynamics.  

With predation built into the Tierra system, I study two predation strategies that 

predators may use when encountering two different types of prey, namely, proportional 

predation and positive frequency-dependent predation. Proportional predation means 

that predators feed on different prey types in proportion to their relative abundances in 

the environment, that is, predators show no preference for one prey type over the other. 

Positive frequency-dependent predation means that predators consume 
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disproportionately more of the common prey type than of the rare one, that is, predators 

strongly favor the abundant prey type. I block all the mutations in Tierra so that 

predators and prey interact with each other in an ecological scenario, without evolution. 

The simulation results show that in the absence of predation, two competing prey types 

could not coexist as the prey type that reproduces faster drives the other type to go 

extinct. When a predator population with proportional predation behavior is introduced 

into the prey populations, the two prey types coexist for a longer time but a stable 

coexistence of prey types is not achieved. However, when the prey populations are 

under the predation of a predator population with positive frequency-dependent 

behavior, the two prey types stably coexist and this coexistence is robust to the 

variations of the parameters that affect either the predation behavior of predators or the 

initial relative proportion of the two prey types in the environment. Further studies on 

the underlying mechanisms of the maintenance of prey diversity reveal that predators 

with positive frequency-dependent behavior consume disproportionately fewer 

individuals of a rare prey type, which facilitates the rapid population growth of that 

type. Meanwhile, those predators consume disproportionately more individuals of a 

common prey type and thus severely depress its population. Therefore, positive 

frequency-dependent predation provides a strong negative feedback regulation on the 

prey populations, which tends to equalize the abundances of different prey species and 

thus results in a stable persistence of prey diversity. Moreover, as the number of prey 

types increases from two to three, a predator population with positive frequency-

dependent behavior also successfully maintains the stable coexistence of three prey 

species. Therefore, in contrast to previous studies which showed that the coexistence 
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duration of two prey species dramatically decreased as the number of predator 

individuals increased and thus proposed that a population of frequency-dependent 

predators in nature may fail to maintain a stable coexistence of multiple prey species, 

the simulation results in this dissertation strongly support that positive frequency-

dependent predation may be a reasonable mechanism to maintain the diversity of prey 

species in nature.  

Besides their effects on maintaining prey diversity in a community, the two 

predation strategies are further examined from the perspective of enhancing the 

reproductive success of predators as they feed on two different types of prey. Because 

in Tierra, digital predators acquire the CPU energy from their prey, the availability of 

digital prey forms a dynamic biotic environment for predators. This biotic environment 

is constantly modified by predators and converges to different patterns as predators 

execute different predation strategies. For example, when the predators with 

proportional predation (PP-predator) dominate the predator population, one prey type 

becomes significantly more abundant than the other, which creates a favorable 

environment for the predators with positive frequency-dependent predation (PFDP-

predator) and thus results in a rapid growth of the PFDP-predator population. On the 

other hand, when PFDP-predators dominate the predator population, the two prey types 

tend to approach a similar abundance, an environment which enhances the competitive 

ability of PP-predators. Therefore, the dominant predator type, by executing its 

predation strategy, changes the relative abundance of two prey types in such a way that 

favors, rather than depresses, the other predator type. This mutual support, rather than 

exclusion, allows the two predation strategies to be comparably competitive and thus 
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the two predator competitors may coexist in the population or either one of them may 

go extinct. In addition to demonstrating that the fitness of predators highly depends on 

the biotic environment where they live, this ecological community composed of two 

predator types and two prey types also exhibits one of the most fundamental principles 

of competition ― competition within the same trophic level is much more severe than 

that between different trophic levels. 

Positive frequency-dependent predation, in addition to being a mechanism to 

maintain prey diversity in an ecological scenario, is also predicted to have the potential 

to increase community diversity during evolution. However, very little research has 

been conducted to study this prediction. After observing that a predator population with 

positive frequency-dependent behavior successfully maintains a stable coexistence of 

multiple competing prey types in an ecological setup in Tierra, I turn on various types 

of mutations to allow digital prey and predators to evolve freely and investigate the 

changes of community diversity by the populations of frequency-dependent predators in 

an evolutionary scenario. The simulation results show that in the absence of predators, 

the community is repetitively dominated by a few genotypes, which causes frequent, 

dramatic diversity loss. However, with the introduction of predators which generate 

intensive predation in an evolving ecological community, many prey and predator 

genotypes persistently flourish in the soup and thus the genetic diversity in the 

community rapidly achieves and steadily maintains a relatively high level. This increase 

and maintenance of genetic diversity by frequency-dependent predators robustly occurs 

over a wide range of the amount of CPU energy transferred from prey to predator 

populations. Therefore, those simulation results strongly suggest that positive 
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frequency-dependent predation may be a mechanism to support the coexistence of a 

variety of different genotypes in the community during an evolutionary process. In 

addition, unlike previous studies in which the sizes of digital creatures in an evolving 

community either continuously shrunk or continuously increased, in the current 

community composed of prey and predator populations, the sizes of digital creatures 

remain almost the same during evolution, which prevents the loss of genetic 

information in genomes as well as promoting rich ecological interactions among 

abundant coexisting creatures. Therefore, this community of prey and predators may 

maintain interesting ecological dynamics through longer periods of evolution.  

One of the intriguing ecological interactions present in the evolving digital 

community is the continuous coevolution between predator and prey populations: prey 

mutate the template attacked by predators and thus escape predation and predators 

modify their predation template to match another template in the recently evolved prey 

and thus exploit new available food sources. These reciprocal evolutionary adaptations 

of prey and predators consistently develop multiple times during a simulation run. In 

the future, I would like to study the coevolutionary dynamics in more detail by 

examining the exact moments that coevolution occurs and the changes of the templates 

in prey and predator genomes that cause the occurrence of coevolution.   

5.2 Future Research 

5.2.1 Coevolution between Predation Templates in Predators and Template 

Resources in Prey 

As shown in Figure 2.2, in addition to the predation marker, a prey individual 

contains several other templates which specify its beginning and ending locations and 
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direct the reproduction loop and the copy procedure in its genome. When any one of 

those templates (or a shorter template contained in it) is complementary to the predation 

template in a predator, this prey could be potentially found by the predator. Therefore, 

all the templates in prey genomes may be viewed as available food sources for 

predators to exploit and those food sources consistently evolve with prey populations.  

To study the evolutionary relationship between predators and their food sources, I 

can record the template information of each creature that ever survives in the soup. For 

example, if the creature is a predator individual, I record its predation template and the 

complementary template that it finds in its prey; if the creature is a prey individual, I 

record all the templates in its genome. By acquiring complete information on all the 

templates in prey genomes, I may observe the period of existence of each template in 

prey in the soup and thus may clearly detect when escape strategies evolve in prey. For 

example, if none of the templates (and the shorter templates contained within them) in 

major prey genomes are complementary to the predation templates which have just 

become extinct, it may strongly suggest that selection favors the mutated variations of 

prey templates, which leads to a dramatic decrease in frequency of prey templates that 

match the predation templates in predators.  

Furthermore, with rich information on the templates in prey, I may also study the 

patterns of predation strategies developed in predators, such as, are predators more 

likely to attack the most abundant templates in prey populations? Could predators 

differentiate, with each specializing on a different food source (that is, could several 

predation templates coexist in the soup, with each attacking a different type of prey)? 

Could a predator type feed on several food sources (that is, could a predator evolve one 
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predation template to match the templates in different types of prey)? In contrast to 

previous studies in which digital creatures were provided with several predefined, fixed 

food sources (Cooper and Ofria, 2002; Chow et al., 2004), here, the evolution of 

feeding strategies is examined when predators are facing a dynamic environment in 

which the available prey types continuously change over time and prey types may also 

constantly develop adaptations to escape predation. Therefore, this research may 

provide better insight into the survival of predators in their ever-changing biotic 

environment in nature.   

5.2.2 A Food Chain with More Than Two Layers 

In the current design in which predators are allowed to eat prey but not other 

predators, the food chain in Tierra has only two layers, a prey layer and a predator 

layer. One of the future research directions may be to build a longer, more complicated 

food chain by allowing predation among predators: besides capturing prey, larger 

predators may also feed on smaller predators, for example, a predator genotype 100aaa 

may consume a predator genotype 85aaa, by obtaining a certain amount of CPU time 

from them and reducing the CPU time of a captured predator to a low level. Similar to 

the scenario in nature in which the creatures that feed on both plants and herbivores 

may acquire plants more easily than catch herbivores, the larger predators in Tierra may 

have a higher chance to capture prey than to capture smaller predators. This design of 

allowing predation among predators increases the complexity of the internal structure of 

an ecological community and I would like to explore whether a high level of genetic 

diversity could be achieved and stably maintained during evolution in this more 

sophisticated community. Furthermore, by comparing the genetic diversity of two 
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communities, one in which predators are only allowed to feed on prey and the other in 

which larger predators are allowed to consume prey and smaller predators, I may be 

able to study whether an increase in the complexity of ecological interactions among 

creatures could lead to a higher genetic diversity in the community. 
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Appendices  

Appendix A: Assembler Source Code for the Digital Predator  

genotype:  100 aaa    genetic:  0,100    parent genotype:  human 

ploidy:  1    track:  0 

; comments:  the predator ancestor, written by human 
  

CODE 
 

nop1           ; 01          0   beginning marker 

nop1           ; 01          1   beginning marker 

nop1           ; 01          2   beginning marker 

nop1           ; 01          3   beginning marker 

zero            ; 04          4   put zero in cx 

not0            ; 02          5   put 1 in first bit of [cx] 

shl              ; 03          6   shift left [cx] ([cx] = 2) 

shl              ; 03          7   shift left [cx] ([cx] = 4) 

movDC      ; 18          8   move [cx] to [dx] ([dx] = 4) 

adrb            ; 1c          9   get (backward) address of beginning marker -> ax 

nop0           ; 00        10   complement to beginning marker 

nop0           ; 00        11   complement to beginning marker 

nop0           ; 00        12   complement to beginning marker 

nop0           ; 00        13   complement to beginning marker 

subAAC     ; 07        14   subtract [cx] from [ax], result in [ax] 

movBA      ; 19        15   move [ax] to [bx], bx now contains start address of mother 

adrf            ; 1d        16   get (forward) address of end marker -> ax 

nop0          ; 00        17   complement to end marker 

nop0          ; 00        18   complement to end marker 

nop0          ; 00        19   complement to end marker 

nop1          ; 01        20   complement to end marker 

incA          ; 08        21   increment [ax], to include dummy instruction at end 

subCAB    ; 06        22   subtract [bx] from [ax] to get size, result -> cx 

nop1          ; 01        23   reproduction loop marker 

nop1          ; 01        24   reproduction loop marker 

nop0          ; 00        25   reproduction loop marker 

nop1          ; 01        26   reproduction loop marker 

ifz              ; 05        27   dummy instruction to separate templates 

ifz              ; 05        28   dummy instruction to separate templates 

nop0          ; 00        29   predation loop complement 

nop1          ; 01        30   predation loop complement 

nop1          ; 01        31   predation loop complement 

nop1          ; 01        32   predation loop complement 

adrp           ; 1b        33   search for complementary predation marker in another organism 

nop0          ; 00        34   predation marker 

nop1          ; 01        35   predation marker 

nop1          ; 01        36   predation marker 

nop0          ; 00        37   predation marker 

predat        ; 14        38   get prey's time slice 

ifp             ; 15         39   if exit predation loop, skip next instruction 

jmpo         ; 13         40   jump to template below (predation loop) 

nop1         ; 01         41   predation loop template 

nop0         ; 00         42   predation loop template 

nop0         ; 00         43   predation loop template 

nop0         ; 00         44   predation loop template 

mal           ; 1e         45   allocate space ([cx]) for daughter, address to ax 
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call           ; 16         46   call template below (copy procedure) 

nop0         ; 00         47   copy procedure complement 

nop0         ; 00         48   copy procedure complement 

nop1         ; 01         49   copy procedure complement 

nop1         ; 01         50   copy procedure complement 

divide       ; 1f          51   release mature daughter cell 

jmpo         ; 13         52   jump to template below (reproduction loop) 

nop0         ; 00         53   reproduction loop complement 

nop0         ; 00         54   reproduction loop complement 

nop1         ; 01         55   reproduction loop complement 

nop0         ; 00         56   reproduction loop complement 

ifz             ; 05         57   dummy instruction to separate templates 

ifz             ; 05         58   dummy instruction to separate templates 

nop1         ; 01         59   copy procedure template 

nop1         ; 01         60   copy procedure template 

nop0         ; 00         61   copy procedure template 

nop0         ; 00         62   copy procedure template 

pushA      ; 0c          63   push [ax] onto stack 

pushB      ; 0d          64   push [bx] onto stack 

pushC      ; 0e          65   push [cx] onto stack 

nop1        ; 01          66   copy loop template 

nop0        ; 00          67   copy loop template 

nop1        ; 01          68   copy loop template 

nop0        ; 00          69   copy loop template 

movii       ; 1a          70   move the instruction at [bx] to [ax] (copy one instruction) 

decC        ; 0a          71   decrement [cx] (size) 

ifz            ; 05          72   if [cx] == 0 perform next instruction, otherwise skip it 

jmpo        ; 13          73   jump to template below (copy procedure exit) 

nop0        ; 00          74   copy procedure exit complement 

nop1        ; 01          75   copy procedure exit complement 

nop0        ; 00          76   copy procedure exit complement 

nop0        ; 00          77   copy procedure exit complement 

incA         ; 08         78   increment [ax] (address in daughter to copy to) 

incB         ; 09         79   increment [bx] (address in mother to copy from) 

jmpo        ; 13         80   bidirectional jump to template below (copy loop) 

nop0        ; 00         81   copy loop complement 

nop1        ; 01         82   copy loop complement 

nop0        ; 00         83   copy loop complement 

nop1        ; 01         84   copy loop complement 

ifz            ; 05         85   dummy instruction to separate templates 

ifz            ; 05         86   dummy instruction to separate templates 

nop1        ; 01         87   copy procedure exit template 

nop0        ; 00         88   copy procedure exit template 

nop1        ; 01         89   copy procedure exit template 

nop1        ; 01         90   copy procedure exit template 

popC       ; 12         91   pop [cx] off stack (size) 

popB       ; 11         92   pop [bx] off stack (start address of mother) 

popA       ; 10         93   pop [ax] off stack (start address of daughter) 

ret            ; 17        94   return from copy procedure 

nop1        ; 01        95   end template 

nop1        ; 01        96   end template 

nop1        ; 01        97   end template 

nop0        ; 00        98   end template 

ifz            ; 05        99   dummy instruction to separate creature 
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Appendix B: Assembler Source Code for the Digital Prey  

(a) Type-A prey (86 instructions long) 

genotype:  0086aaa    genetic:  0,86    parent genotype:  0666god 

ploidy:  1    track:  0 

; comments:  the prey ancestor, written by a human 

 

CODE 
 

nop1        ; 01        0   beginning marker 

nop1        ; 01        1   beginning marker 

nop1        ; 01        2   beginning marker 

nop1        ; 01        3   beginning marker 

zero         ; 04        4   put zero in cx 

not0         ; 02        5   put 1 in first bit of cx 

shl           ; 03        6   shift left cx (cx = 2) 

shl           ; 03        7   shift left cx (cx = 4) 

movDC   ; 18        8   move cx to dx (dx = 4) 

adrb         ; 1c        9   get (backward) address of beginning marker -> ax 

nop0        ; 00        10   complement to beginning marker 

nop0        ; 00        11   complement to beginning marker 

nop0        ; 00        12   complement to beginning marker 

nop0        ; 00        13   complement to beginning marker 

subAAC  ; 07        14   subtract cx from ax, result in ax 

movBA   ; 19         15   move ax to bx, bx now contains start address of mother 

adrf         ; 1d         16   get (forward) address of end marker -> ax 

nop0        ; 00        17   complement to end marker 

nop0        ; 00        18   complement to end marker 

nop0        ; 00        19   complement to end marker 

nop1        ; 01        20   complement to end marker 

incA        ; 08        21   increment ax, to include dummy instruction at end 

subCAB  ; 06        22   subtract bx from ax to get size, result in cx 

adrp         ; 1b        23   search predation marker in another creature -> ax 

nop1        ; 01        24   predation marker 

nop0        ; 00        25   predation marker 

nop0        ; 00        26   predation marker 

nop1        ; 01        27   predation marker 

ifz            ; 05        28   dummy instruction to separate templates 

nop1        ; 01        29   reproduction loop marker 

nop1        ; 01        30   reproduction loop marker 

nop0        ; 00        31   reproduction loop marker 

nop1        ; 01        32   reproduction loop marker 

mal          ; 1e        33   allocate space (cx) for daughter, address to ax 

call          ; 16        34   call template below (copy procedure) 

nop0        ; 00        35   copy procedure complement 

nop0        ; 00        36   copy procedure complement 

nop1        ; 01        37   copy procedure complement 

nop1        ; 01        38   copy procedure complement 

divide      ; 1f         39   create independent daughter cell 

jmpo        ; 13        40   jump to template below (reproduction loop) 

nop0        ; 00        41   reproduction loop complement 

nop0        ; 00        42   reproduction loop complement 

nop1        ; 01        43   reproduction loop complement 

nop0        ; 00        44   reproduction loop complement 

ifz            ; 05        45   dummy instruction to separate templates 
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nop1        ; 01        46   copy procedure template 

nop1        ; 01        47   copy procedure template 

nop0        ; 00        48   copy procedure template 

nop0        ; 00        49   copy procedure template 

pushA      ; 0c        50   push ax onto stack 

pushB      ; 0d        51   push bx onto stack 

pushC      ; 0e        52   push cx onto stack 

nop1        ; 01        53   copy loop template 

nop0        ; 00        54   copy loop template 

nop1        ; 01        55   copy loop template 

nop0        ; 00        56   copy loop template 

movii       ; 1a        57   move contents of [bx] to [ax] (copy one instruction) 

decC        ; 0a        58   decrement cx (size) 

ifz            ; 05        59   if cx == 0 perform next instruction, otherwise skip it 

jmpo        ; 13        60   jump to template below (copy procedure exit) 

nop0        ; 00        61   copy procedure exit complement 

nop1        ; 01        62   copy procedure exit complement 

nop0        ; 00        63   copy procedure exit complement 

nop0        ; 00        64   copy procedure exit complement 

incA        ; 08        65   increment ax (address in daughter to copy to) 

incB         ; 09        66   increment bx (address in mother to copy from) 

jmpo        ; 13        67   bidirectional jump to template below (copy loop) 

nop0        ; 00        68   copy loop complement 

nop1        ; 01        69   copy loop complement 

nop0        ; 00        70   copy loop complement 

nop1        ; 01        71   copy loop complement 

ifz            ; 05        72   this is a dummy instruction to separate templates 

nop1        ; 01        73   copy procedure exit template 

nop0        ; 00        74   copy procedure exit template 

nop1        ; 01        75   copy procedure exit template 

nop1        ; 01        76   copy procedure exit template 

popC       ; 12        77   pop cx off stack (size) 

popB       ; 11        78   pop bx off stack (start address of mother) 

popA       ; 10        79   pop ax off stack (start address of daughter) 

ret            ; 17        80   return from copy procedure 

nop1        ; 01        81   end template 

nop1        ; 01        82   end template 

nop1        ; 01        83   end template 

nop0        ; 00        84   end template 

ifz            ; 05        85   dummy instruction to separate creature 

(b) Type-B prey (96 instructions long) 

genotype:  0096aaa    genetic:  0,96    parent genotype: 0668god 

ploidy:  1    track:  0 

; comments:  the prey ancestor, written by a human 

 

CODE 
 

nop1        ; 01        0   beginning marker 

nop1        ; 01        1   beginning marker 

nop1        ; 01        2   beginning marker 

nop1        ; 01        3   beginning marker 

zero         ; 04        4   put zero in cx 

not0         ; 02        5   put 1 in first bit of cx 

shl           ; 03        6   shift left cx (cx = 2) 
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shl           ; 03        7   shift left cx (cx = 4) 

movDC   ; 18        8   move cx to dx (dx = 4) 

adrb         ; 1c        9   get (backward) address of beginning marker -> ax 

nop0        ; 00      10   complement to beginning marker 

nop0        ; 00      11   complement to beginning marker 

nop0        ; 00      12   complement to beginning marker 

nop0        ; 00      13   complement to beginning marker 

subAAC  ; 07      14   subtract cx from ax, result in ax 

movBA    ; 19     15   move ax to bx, bx now contains start address of mother 

adrf          ; 1d     16   get (forward) address of end marker -> ax 

nop0        ; 00     17   complement to end marker 

nop0        ; 00     18   complement to end marker 

nop0        ; 00     19   complement to end marker 

nop1        ; 01     20   complement to end marker 

incA        ; 08     21   increment ax, to include dummy instruction at end 

subCAB  ; 06     22   subtract bx from ax to get size, result in cx 

nop1        ; 01     23   reproduction loop marker 

nop1        ; 01     24   reproduction loop marker 

nop0        ; 00     25   reproduction loop marker 

nop1        ; 01     26   reproduction loop marker 

ifz            ; 05     27   dummy instruction to separate templates 

nop0        ; 00     28   predation loop complement 

nop1        ; 01     29   predation loop complement 

nop1        ; 01     30   predation loop complement 

nop1        ; 01     31   predation loop complement 

adrp         ; 1b     32   search for predation template in another organism 

nop1        ; 01     33   predation marker 

nop0        ; 00     34   predation marker 

nop0        ; 00     35   predation marker 

nop1        ; 01     36   predation marker 

ifp            ; 15     37  if exit predation loop, skip next instruction 

jmpo        ; 13     38   jump to template below (predation loop) 

nop1        ; 01     39   predation loop template 

nop0        ; 00     40   predation loop template 

nop0        ; 00     41   predation loop template 

nop0        ; 00     42   predation loop tmeplate 

mal          ; 1e     43   allocate space (cx) for daughter, address to ax 

call          ; 16     44   call template below (copy procedure) 

nop0        ; 00     45   copy procedure complement 

nop0        ; 00     46   copy procedure complement 

nop1        ; 01     47   copy procedure complement 

nop1        ; 01     48   copy procedure complement 

divide      ; 1f      49   create independent daughter cell 

jmpo        ; 13     50   jump to template below (reproduction loop) 

nop0        ; 00     51   reproduction loop complement 

nop0        ; 00     52   reproduction loop complement 

nop1        ; 01     53   reproduction loop complement 

nop0        ; 00     54   reproduction loop complement 

ifz            ; 05     55   dummy instruction to separate templates 

nop1        ; 01     56   copy procedure template 

nop1        ; 01     57   copy procedure template 

nop0        ; 00     58   copy procedure template 

nop0        ; 00     59   copy procedure template 

pushA      ; 0c     60   push ax onto stack 

pushB      ; 0d     61   push bx onto stack 

pushC      ; 0e     62   push cx onto stack 
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nop1        ; 01     63   copy loop template 

nop0        ; 00     64   copy loop template 

nop1        ; 01     65   copy loop template 

nop0        ; 00     66   copy loop template 

movii       ; 1a     67   move contents of [bx] to [ax] (copy one instruction) 

decC        ; 0a     68   decrement cx (size) 

ifz            ; 05     69   if cx == 0 perform next instruction, otherwise skip it 

jmpo        ; 13     70   jump to template below (copy procedure exit) 

nop0        ; 00     71   copy procedure exit complement 

nop1        ; 01     72   copy procedure exit complement 

nop0        ; 00     73   copy procedure exit complement 

nop0        ; 00     74   copy procedure exit complement 

incA        ; 08     75   increment ax (address in daughter to copy to) 

incB        ; 09     76   increment bx (address in mother to copy from) 

jmpo        ; 13     77   bidirectional jump to template below (copy loop) 

nop0        ; 00     78   copy loop complement 

nop1        ; 01     79   copy loop complement 

nop0        ; 00     80   copy loop complement 

nop1        ; 01     81   copy loop complement 

ifz            ; 05     82   dummy instruction to separate templates 

nop1        ; 01     83   copy procedure exit template 

nop0        ; 00     84   copy procedure exit template 

nop1        ; 01     85   copy procedure exit template 

nop1        ; 01     86   copy procedure exit template 

popC       ; 12     87   pop cx off stack (size) 

popB       ; 11     88   pop bx off stack (start address of mother) 

popA       ; 10     89   pop ax off stack (start address of daughter) 

ret            ; 17     90   return from copy procedure 

nop1        ; 01     91   end template 

nop1        ; 01     92   end template 

nop1        ; 01     93   end template 

nop0        ; 00     94   end template 

ifz            ; 05     95   dummy instruction to separate creature 

(c) Type-C prey (90 instructions long) 

genotype:  0090aaa    genetic:  0,90    parent genotype:  0666god 

ploidy:  1    track:  0 

; comments:  the prey ancestor, written by a human 

 

CODE 
 

nop1        ; 01        0   beginning marker 

nop1        ; 01        1   beginning marker 

nop1        ; 01        2   beginning marker 

nop1        ; 01        3   beginning marker 

zero         ; 04        4   put zero in cx 

not0         ; 02        5   put 1 in first bit of cx 

shl            ; 03        6   shift left cx (cx = 2) 

shl            ; 03        7   shift left cx (cx = 4) 

movDC   ; 18         8   move cx to dx (dx = 4)  

adrb         ; 1c         9   get (backward) address of beginning marker -> ax 

nop0        ; 00       10   complement to beginning marker 

nop0        ; 00       11   complement to beginning marker 

nop0        ; 00       12   complement to beginning marker 

nop0        ; 00       13   complement to beginning marker 
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subAAC  ; 07       14   subtract cx from ax, result in ax 

movBA    ; 19      15   move ax to bx, bx now contains start address of mother 

adrf          ; 1d      16   get (forward) address of end marker -> ax 

nop0        ; 00      17   complement to end marker 

nop0        ; 00      18   complement to end marker 

nop0        ; 00      19   complement to end marker 

nop1        ; 01      20   complement to end marker 

incA        ; 08      21   increment ax, to include dummy instruction at end 

subCAB  ; 06      22   subtract bx from ax to get size, result in cx 

adrp         ; 1b      23   search predation marker in another creature -> ax 

nop1        ; 01      24   predation marker 

nop0        ; 00      25   predation marker 

nop0        ; 00      26   predation marker 

nop1        ; 01      27   predation marker 

ifz            ; 05      28   dummy instruction to separate templates 

nop1        ; 01      29   reproduction loop marker 

nop1        ; 01      30   reproduction loop marker 

nop0        ; 00      31   reproduction loop marker 

nop1        ; 01      32   reproduction loop marker 

mal          ; 1e      33   allocate space (cx) for daughter, address to ax 

call          ; 16      34   call template below (copy procedure) 

nop0        ; 00      35   copy procedure complement 

nop0        ; 00      36   copy procedure complement 

nop1        ; 01      37   copy procedure complement 

nop1        ; 01      38   copy procedure complement 

divide      ; 1f       39   create independent daughter cell 

jmpo        ; 13      40   jump to template below (reproduction loop) 

nop0        ; 00      41   reproduction loop complement 

nop0        ; 00      42   reproduction loop complement 

nop1        ; 01      43   reproduction loop complement 

nop0        ; 00      44   reproduction loop complement 

ifz            ; 05      45   dummy instruction to separate templates 

ifz            ; 05      46   dummy instruction to separate templates 

ifz            ; 05      47   dummy instruction to separate templates 

nop1        ; 01      48   copy procedure template 

nop1        ; 01      49   copy procedure template 

nop0        ; 00      50   copy procedure template 

nop0        ; 00      51   copy procedure template 

pushA      ; 0c      52   push ax onto stack 

pushB      ; 0d      53   push bx onto stack 

pushC      ; 0e      54   push cx onto stack 

nop1        ; 01      55   copy loop template 

nop0        ; 00      56   copy loop template 

nop1        ; 01      57   copy loop template 

nop0        ; 00      58   copy loop template 

movii       ; 1a      59   move contents of [bx] to [ax] (copy one instruction) 

decC        ; 0a      60   decrement cx (size) 

ifz            ; 05      61   if cx == 0 perform next instruction, otherwise skip it 

jmpo        ; 13      62   jump to template below (copy procedure exit) 

nop0        ; 00      63   copy procedure exit complement 

nop1        ; 01      64   copy procedure exit complement 

nop0        ; 00      65   copy procedure exit complement 

nop0        ; 00      66   copy procedure exit complement 

incA        ; 08      67   increment ax (address in daughter to copy to) 

incB        ; 09      68   increment bx (address in mother to copy from) 

jmpo        ; 13      69   bidirectional jump to template below (copy loop) 
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nop0        ; 00      70   copy loop complement 

nop1        ; 01      71   copy loop complement 

nop0        ; 00      72   copy loop complement 

nop1        ; 01      73   copy loop complement 

ifz            ; 05      74   this is a dummy instruction to separate templates 

ifz            ; 05      75   this is a dummy instruction to separate templates 

ifz            ; 05      76   this is a dummy instruction to separate templates 

nop1        ; 01      77   copy procedure exit template 

nop0        ; 00      78   copy procedure exit template 

nop1        ; 01      79   copy procedure exit template 

nop1        ; 01      80   copy procedure exit template 

popC       ; 12      81   pop cx off stack (size) 

popB       ; 11      82   pop bx off stack (start address of mother) 

popA       ; 10      83   pop ax off stack (start address of daughter) 

ret            ; 17      84   return from copy procedure 

nop1        ; 01      85   end template 

nop1        ; 01      86   end template 

nop1        ; 01      87   end template 

nop0        ; 00      88   end template 

ifz            ; 05      89   dummy instruction to separate creature 

 

 


